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ABSTRACT

CONVERGENCE OF LOTZ-RÄBIGER NETS ON BANACH SPACES

Erkurşun, Nazife

Ph. D., Department of Mathematics

Supervisor : Prof. Dr. Eduard Emel’yanov

June 2010, 50 pages

The concept of LR-nets was introduced and investigated firstly by H.P. Lotz in [27] and by F.

Räbiger in [30]. Therefore we call such nets Lotz-Räbiger nets, shortly LR-nets. In this thesis

we treat two problems on asymptotic behavior of these operator nets.

First problem is to generalize well known theorems for Cesàro averages of a single operator to

LR-nets, namely to generalize the Eberlein and Sine theorems. The second problem is related

to the strong convergence of Markov LR-nets on L1-spaces. We prove that the existence

of a lower-bound functions is necessary and sufficient for asymptotic stability of LR-nets of

Markov operators.

Keywords: Banach space, operator net, LR-net, Markov operator, strong convergence, mean

ergodicity, asymptotic stability, lower bound function, attractor.
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ÖZ

BANACH UZAYLARI ÜZERİNDEKİ LOTZ-RÄBİGER NETLERİNİN YAKINSAKLIG̃I

Erkurşun, Nazife

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Eduard Emel’yanov

Haziran 2010, 50 sayfa

LR-ag̃ kavramı ilk olarak H. P. Lotz [27] ve F. Räbiger [30] tarafından tanımlanarak incelen-

miştir. Bu nedenle biz bu özel ag̃ları Lotz-Räbiger ag̃ları ya da kısaca LR-ag̃ları olarak ad-

landıracag̃ız. Bu tezde LR-ag̃ları olarak adlandırılan özel operatör ag̃ların asimtotik özellikleri

ile ilgili iki problem ele alınmaktadır.

İlk problemimiz bazı özel koşulları sag̃layan bir operatörün Cesàro ortalaması olarak bilinen

operatör ag̃ları için verilmiş olan teoremlerin genişletilmesidir. Dig̃er bir deyişle Eberlein

ve Sine teoremleri LR-ag̃larına genişletilmiştir. İkinci problem L1-uzayı üzerinde Markov

operatörlerinden oluşan LR-ag̃larının kuvvetli yakınsaması ile ilgilidir. Daha sonra alt sınır

fonksiyonunun varlığının bu özel ag̃ların asimtotik kararlılığı için yeterli ve gerekli oldug̃u

ispatlanmıştır.

Anahtar Kelimeler: Banach uzayı, operatör netleri, LR-net, Markov operatörü, kuvvetli yakın-

saklık, ortalama ergodiklik, asimptotik kararlı-lık, alt sınır fonksiyonu, çekici.
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CHAPTER 1

INTRODUCTION

The notion of Cesaro averages of one-parameter semigroups is one of the oldest and exten-

sively studied topic in the theory of operators in Banach spaces. Especially, the asymptotic

behavior is one of the most important concepts in many disciplines. For example in PDE

and in dynamical system theories they have many useful and remarkable applications. In the

literature, there are dozens of textbooks and papers directly related to asymptotic behavior

of them. Of course it is not possible to cover all references. In the thesis we consider the

asymptotic behavior of new operator nets which is an LR-net. Those nets are generalization

of one-parameter semigroups of Cesàro averages. The scope of the study is presented in the

first chapter.

Second chapter present the general background which is needed in the thesis. In the first

section, we deal with operator nets, operator semigroups on a Banach space X and operator

net convergence. Mean ergodicity of the semigroup of operators is mentioned in the second

section. Some of examples and some important theorems such as Mean Ergodic Theorem

and Eberlein Theorem are given. The backbone of the thesis is based on Markov operator.

We show some examples and results about Markov operator in the third section. The other

significant issue is Lasota lower-bound criterion. Therefore we introduce the definition of a

lower-bound function and asymptotic stability in the fourth section. This section is completed

with Lasota criterion and its proof. In the remainder of this chapter, we present an extension

of Sine’s counterexample. On arbitrary Banach space if T m is mean ergodic for some m ∈ N

then T is mean ergodic. The converse is not true in general. But for reflexive Banach space,

statement is that T m is mean ergodic for some m ∈ N if and only if T is mean ergodic. R.

Sine has constructed a positive isometry in a C(K)-space where K is compact Hausdorff space
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such that T is mean ergodic but T 2 is not. We extend Sine’s construction to pth power of T

where p is prime. This result is published in [14]

The main notion of the thesis is a special operator net, Lotz-Räbiger net or briefly LR-net.

Therefore we mention the definition and basic result about LR-nets in the first section of

Chapter 3. We give several examples which are related with different areas of mathematics

in the second part of Chapter 3

Fourth chapter is focused on the generalization of Eberlein and Sine Theorems for LR-nets.

We extend the Eberlein theorem which is known for more than sixty years for Cesaro averages

of single operators and T -ergodic nets to LR-nets. For further application of the convergence,

the concept of attractor is important. So the last part of this section deals with this concept.

At the end of the chapter, Sine theorem is extended to LR-nets. The results of Chapter 4 are

published in [13]

Fifth chapter is the main part of the thesis. We discuss the strong convergence for Markov

operator LR-nets on L1-spaces. The main result of the chapter stated in the first section given

by Emelyanov and Wolff for single Markov operator on L1-spaces [11]. The extension of

this theorem gives a relation between asymptotic stability and strong convergence of LR-nets

with finite dimensional fixed space. In the second section, we give the asymptotic stability

and lower-bound function definitions which are motivated be classical definitions to LR-nets.

Classical definitions are discussed in the fourth section of Chapter 2. The rest of the section,

the relation between lower-bound function and asymptotic stability of Markov LR-nets on L1-

space are discussed and the section ends with the proposition giving an example of Markov

LR-nets which need not be T -ergodic nets. In the third section Lasota criterion for abelian

Markov semigroups are studied. The results are published in [15].
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CHAPTER 2

PRELIMINARIES

For the convenience of the reader, we present in this chapter the general background needed

in the thesis and we give some basic structural properties.

2.1 Operator nets and convergence

Let X be a Banach space. We denote by L(X) the Banach algebra of all bounded linear

operators in X. In addition to the norm topology, we also consider the strong and weak

operator topologies on L(X). Because the subject of this thesis is LR-nets, which depend on

operator nets, firstly we mention operator nets and operator semigroups on X.

Definition 1 A family Θ = (Tλ)λ∈Λ ⊆ L(X) indexed by a directed set Λ = (Λ,≺) is called an

operator net where the directed set Λ is a nonempty set together with a reflexive and transitive

binary relation with the additional property that every pair of elements has an upper bound.

In the following Λ always represents a directed set.

Definition 2 A nonempty subsetA ⊆ L(X) is called a semigroup if

T, S ∈ A ⇒ T ◦ S ∈ A (∀T, S ∈ A).

A semigroupA is called abelian if

T ◦ S = S ◦ T (∀T, S ∈ A).
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If a semigroup has an a unit and every element is invertible, the semigroup is a group. Gener-

ally operator semigroups are indexed by non-negative integers or non-negative reals and are

called one-parameter semigroups. Obviously, any one-parameter semigroup is abelian.

The following definition is about the norm-convergence of nets in Banach spaces.

Definition 3 Let X be a Banach space. A net (zλ)λ in X converges to z0 ∈ X in the norm if for

every ε > 0 there exists λ0 ∈ Λ such that ∀λ ≥ λ0 we get ‖zλ − z0‖ < ε. We use for the conver-

gence in the norm limλ→∞ ‖zλ − z0‖ = 0 or simply the following symbol ‖·−‖ limλ→∞ zλ = z0.

The following two definitions are about special conditions on semigroups.

Definition 4 A one-parameter semigroup T indexed by R+ is called strongly continuous if

lim
t→0
‖Ts+t x − Tsx‖ = 0 (∀s ≥ 0, x ∈ X).

Hereafter we use the notation T = (Tt)t∈J where J = R+ for a one-parameter semigroup in

the continuous-parameter case and (T n)∞n=1 for the discrete semigroup, generated by a single

operator T .

Definition 5 If a continuous-parameter semigroup T satisfies T0 = I where I is the identity

operator in X, it is called it a C0-semigroup.

The following definition is due to Eberlein [6], who firstly gave the definition under the name

a system of almost invariant integrals for semigroup T in 1949.

Definition 6 Let T be a semigroup of (L(X) , ◦). A uniformly bounded net C = (Cλ)λ∈∗ of

operators in X is called T -ergodic net for the semigroup T if

• (E1) Cλx is in the closed convex hull of T (x) for every x ∈ X and every λ ∈ Λ,

• (E2) limλ ‖Cλ(I − T )x‖ = 0 for all x ∈ X and all T ∈ T

• (E3) limλ ‖(I − T )Cλx‖ = 0 for all x ∈ X and all T ∈ T

We refer to [18] for basic examples of T -ergodic nets.
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Example 7 Every uniformly bounded Abelian operator semigroup T admits a T -ergodic net.

Take Λ = coT where coT is the convex hull of T and Aλ = λ. Define a partial order in Λ by

T ≥ S if and only if there exists an R ∈ Λ with T = RS . It follows from RS = S R that Λ is a

directed set and T is T ergodic net.

Proof: Firstly, we prove that Λ = coT and Aλ = λ is a directed set. Since the operator net is

abelian, reflexivity is obvious. If T ≥ S and S ≥ K then there exists R1 such that T = R1S

and there exists R2 such that S = R2K. Therefore with R = R1R2, we obtain T = RK. Thus

by the definition of partial order we get T ≥ K so transitivity holds. Finally given S and R are

in Λ, consider the operator T = RS . By commutativity T ≥ S and T ≥ R.

In the second step, we show Aλ = λ ∈ Λ is a T -ergodic net. (E1) is directly satisfied by

definition of Aλ = λ. Consider Aλ and An(T ) = 1
n
∑n−1

k=0 T k. For large enough λ the inequality

Aλ ≥ An(T ) holds. So there exists R with Aλ = RAn(T ). As a consequence, we obtain

Aλ − AλT = RAn(T ) − RAn(T )T

= R
(I − T n)

n

and limλ→∞ ‖(Aλ − AλT )x‖ = limn→∞

∥∥∥∥R (I−T n)
n x

∥∥∥∥ = 0 by uniform boundedness of the semi-

group T .

This clearly yields (E3) by commutativity. Accordingly (Aλ) is T -ergodic net.

�

Example 8 Let T1,T2, · · · ,Td be commuting power bounded operators in X. Put Λ = Nd. S

is a semigroup generated by T1,T2, · · · ,Td. For λ = (λ1, · · · , λd) we take

Aλ = (
d∏

v=1

λv)−1
λ1−1∑
i1=0

· · ·

λd−1∑
id=0

T i1
1 · · · T

id
d

Then Aλ is S-ergodic net.

2.2 Mean Ergodic Theorem

The mean ergodic theorem mentioned above deals with the convergence of averages which

bring along the orbits of elements of the space under a family of operators. In this section, we
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characterize the strong convergence concept needed to define mean ergodicity of operator nets

and semigroups. In the meantime to understand mean ergodicity we need some definitions

about Cesaro averages of operators.

Definition 9 Let T be a one-parameter semigroup in L(X). We denote the Cesàro averages

(means) of T by

ATt = AT
n :=

1
n

n−1∑
k=0

T k (whenever T = (T n)∞n=0)

and

ATt :=
1
t

∫ t

0
Ts ds (whenever T = (Tt)t≥0)

.

The integral above is taken with respect to the strong topology on L(X). A one-parameter

semigroup T in L(X) is called Cesàro bounded if

sup
t

∥∥∥ATt ∥∥∥ < ∞.
Then it is possible to mention about mean ergodicity of an operator semigroup.

Definition 10 A one-parameter semigroup T is called mean ergodic if the norm limit

limT→∞ATT exists for all x ∈ X. We call T mean ergodic whenever the semigroup T =

(T n)∞n=1 is mean ergodic.

Any mean ergodic one-parameter semigroup is Cesàro bounded and satisfies the condition

limt→∞
∥∥∥t−1Tt x

∥∥∥ = 0. The first is a consequence of the Uniform Boundedness Principle.

The statement is that let X and Y be Banach spaces and M ⊂ L(X,Y), then M is uniformly

bounded if and only if for each x ∈ X the set {T x : T ∈ M} is a bounded subset of Y . The

second basically for single operator follows from the identity

n + 1
n

An+1 =
1
n

T n + An (n ∈ N).

The important conditions for the mean ergodicity is firstly given by Eberlein in 1949 for T -

ergodic nets. In 1938, F. Riesz proved it for Lp spaces and independently K. Yosida in 1938

and S. Kakutani in 1938 gave the proof for general Banach spaces. The next theorem is a

special case of results of Eberlein (cf. Krengel [18, Thm.1.1]), stated later in Theorem 14.

6



Theorem 11 (Mean Ergodic Theorem) Let T be a Cesàro bounded operator in a Banach

space X. Then for any x ∈ X satisfying

lim
n→∞

∥∥∥n−1Tnx
∥∥∥ = 0

and for any y ∈ X, the following conditions are equivalent

(i) Ty = y and y ∈ co{x,Tx,T 2x, · · · }; where co{x,Tx,T 2x, · · · } is the closed convex hull of

the sequence {T nx, n ∈ N}

(ii) y = limn→∞ Anx;

(iii) y = w − limn→∞ Anx;

(iv) y is a weak cluster point of the sequence (Anx).

Our next purpose is to state a mean ergodic theorem for Xme spaces given by Yosida for single

operator T in a Banach space X. Before Yosida theorem statement, we need the notations:

Xme(T ) :=
{
x ∈ X : ∃ lim

n→∞
AT

n x
}

N(T ) := (I − T )X

Clearly if T is Cesàro bounded, then Xme is a closed linear subspace of X.

Theorem 12 (Yosida) Let T be a Cesàro bounded operator in a Banach space X which sat-

isfies limt→∞
∥∥∥t−1Tt x

∥∥∥ = 0 for all x ∈ X. Then Xme(T ) = Fix(T ) ⊕ N(T ), and the operator

P : Xme(T )→ X, which is defined by

Px := lim
n→∞
AT

n x (x ∈ Xme(T ))

is a projection onto Fix(T ) satisfying P = T ◦ P = P ◦ T.

Corollary 13 Let T be a Cesàro bounded operator in a Banach space X which satisfies

limt→∞
∥∥∥t−1Tt x

∥∥∥ = 0 for all x ∈ X. Then T is mean ergodic if and only if X = Fix(T ) ⊕ N(T )

Theorem 14 (Eberlein(1949)) If T is a semigroup of continuous linear operators in a Ba-

nach space X and admits a T -ergodic net {Aλ : λ ∈ Λ} then for any x, y ∈ X the following

conditions are equivalent:

7



(i) Ty = y for all T ∈ T and y ∈ coT (x);

(ii) y = limλ Aλx;

(iii) y = w − limλ Aλx;

(iv) y is a weak cluster point of {Aλx : λ ∈ Λ}.

2.3 Markov Operators

Chapter 4 is based on Markov operators so in this section we introduce Markov operators

on the Banach space L1. The theory of Markov operators is very rich. Many authors have

been interested in this subject for many years. In the next section, we investigate asymptotic

behavior of Markov operators. Therefore in the section, the concept of Markov operator and

some of its properties is studied.

Let (Ω,Σ, µ) be a σ–finite measure space, and let L1 = L1(Ω,Σ, µ) be the space of all real

valued Lebesgue-integrable functions on (Ω,Σ, µ) equipped with the integral norm ‖·‖ := ‖·‖1.

ByD = D(Ω,Σ, µ) we denote the set of all densities on Ω, that is

D = { f ∈ L1 : f ≥ 0, ‖ f ‖ = 1} ,

and denote L1
0 := { f ∈ L1 : ‖ f+‖ = ‖ f−‖}. A linear operator T : L1 → L1 is called a Markov

operator if T (D) ⊆ D.

Now we give some examples of Markov operators and Markov semigroups [31].

Example 15 Markov Operators

1.Frobenius-Perron operator. Let (X,Σ,m) be a σ-finite measure space and let S be a trans-

formation of X. If a measure µ describes the distribution of points in the space X, then the

measure ν given by ν(A) = µ(S −1(A)) describes the distribution of points after S .

Assume that S is non-singular, that is, if m(A) = 0 then m(S −1(A)) = 0. If µ is absolutely

continuous with respect to m, then ν is also absolutely continuous. µ is absolutely continuous

with respect to m, (µ � m) means if µ(E) = 0 for every E ∈ Σ for which m(E) = 0. Therefore

ν(E) = µ(S −1(A)) = 0.

8



If f is the density of µ and if g is the density of ν then we define the operator PS by PS f = g.

This operator can be extended to a linear operator PS : L1 → L1. Hence we obtain a Markov

operator which is called the Frobenius-Perron operator for the transformation S .

2.Iterated function system. Let S 1, · · · , S n be non-singular transformations of the space

X. Let P1, · · · , Pn be the Frobenius-Perron operators corresponding to the transformations

S 1, · · · , S n. Let p1(x), · · · , pn(x) be non-negative measurable functions defined on X such

that p1(x) + · · · + pn(x) = 1 for all x ∈ X. Let x be a point in X. We choose a transformation

S i with probability pi(x) and S i(x) describes the position of x after the action of the system.

The evolution of densities of the distribution is described by the Markov operator

P f =

n∑
i=1

Pi(pi f ).

3. Integral operator. If k : X ⊗ X → [0,∞) is a measurable function such that∫
X

k(x, y)m(dx) = 1

for each y ∈ X, then

P f (x) =

∫
X

k(x, y) f (y)m(dy)

is a Markov operator.

Example 16 Markov Semigroups

1. Fokker-Planck equation. In the d-dimensional space Rd the Fokker-Planck equation has

the form

∂u
∂t

=

d∑
i, j=1

∂2(ai j(x)u)
∂xi∂x j

−

d∑
i=1

∂(bi(x)u)
∂xi

, u(x, 0) = v(x).

We assume that the functions ai j and bi are sufficiently smooth and

d∑
i, j=1

ai j(x)λiλ j ≥ α |λ|
2

for some α > 0 and every λ ∈ Rd and x ∈ Rd. The solution of this equation describes the

distribution of a diffusion process. This equation generates a Markov semigroup given by

P(t)v(x) = u(x, t), where v(x) = u(x, 0).

9



2. Liouville equation. If we assume that ai j ≡ 0 in above example, then we obtain the

Liouville equation
∂u
∂t

= −

d∑
i=1

∂

∂xi
(bi(x)u)

As in the previous example, this equation generates a Markov semigroup given by P(t)v(x) =

u(x, t), where v(x) = u(x, 0).

Markov operators have several properties that we will use in the following sections. First, if

f , g ∈ L1, then for any Markov operator T , we get

T f (x) ≥ Tg(x) whenever f (x) ≥ g(x) (1)

An operator T satisfying (1) is said to be monotonic. Thus Markov operators are monotonic.

Proposition 17 Let (Ω,Σ, µ) be a σ–finite measure space and T be a Markov operator. Then,

for every f ∈ L1,

(i) (T f )+ ≤ T ( f +);

(ii) (T f )− ≤ T ( f −);

(iii) |T f | ≤ T | f |;

(iv) ‖T f ‖ ≤ ‖ f ‖.

Markov operators satisfy the following inequalities, needed in Chapter 4. For the proofs, see

[22]. If any operator T satisfies it then it is called a contraction. Since Markov operator is a

contraction, it has the stability property of iterates. For any f ∈ L1

∥∥∥T n f
∥∥∥ =

∥∥∥T (T n−1 f )
∥∥∥ ≤ ∥∥∥T n−1 f

∥∥∥
and thus for any two different elements f1, f2 ∈ L1 and f1 , f2, we obtain∥∥∥T n f1 − T n f2

∥∥∥ =
∥∥∥T n( f1 − f2)

∥∥∥ ≤ ∥∥∥T n−1( f1 − f2)
∥∥∥ =

∥∥∥T n−1 f1 − T n−1 f2
∥∥∥

Inequality simply states that during the process of iteration of two individual functions the

distance between them can decrease but never increase.

The support of the function g is the set of all x such that g(x) , 0, that is,

supp g = {x : g(x) , 0}.
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Proposition 18 ‖T f ‖ = ‖ f ‖ if and only if T f + and T f − have disjoint supports.

Having developed some of the more important elementary properties of Markov operators,

we can introduce a fixed point of T as in section 3.1. A function f satisfying T f = f for a

Markov operator T is called a fixed element and if f is a density and fixed point then we call

it stationary density of T . From Proposition 17, we can easily prove the following.

Proposition 19 If T f = f then T f + = f + and T f − = f −.

2.4 Lasota’s Criterion

In this section we introduce the concept of asymptotic stability for Markov operators, which is

the generalization of exactness for Frobenius-Perron operators. Then a lower-bound function

definition is introduced. Lastly, the relation between these two notions are shown and called

the Lasota’s criterion.

At first, we mention the exactness of Frobenius-Perron operator because the asymptotic sta-

bility is its generalization.

Definition 20 Let (Ω,Σ, µ) be a normalized measure space and S : X → X a measure pre-

serving transformation such that S (A) ∈ Σ for each A ∈ Σ. If

lim
n→∞

µ(S n(A)) = 1 f or every A ∈ Σ, µ(A) > 0

then S is exact.

The following theorem gives the relation between exactness of Frobenius-Perron operator and

its strong convergence.

Theorem 21 Let (Ω,Σ, µ) be normalized measure space, S : X → X a measure preserving

transformation and P the Frobenius-Perron operator corresponding to S . Then S is exact if

and only if (Pn f ) is strongly convergent to 1 for all f ∈ D.

Since P is linear, convergence of (Pn f ) to 1 for every f ∈ D is equivalent to the convergence

of (Pn f ) to 〈 f , 1〉 for every f ∈ L1.
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Theorem 22 S is exact if and only if limn→∞ |Pn f − 〈 f , 1〉| = 0 for f ∈ L1.

For the proof of the preceding theorem, see [22].

The notion of exactness for Frobenius-Perron operators associated with a transformation is

generalized for Markov semigroups on arbitrary measure space. A normalized measure space

is not required.

Definition 23 Let Θ = (Tλ)λ∈Λ be a Markov semigroup in L1(Ω,Σ, µ). It is called asymptoti-

cally stable whenever there exists a density u such that

lim
λ→∞
‖Tλ f − u‖ = 0 (∀ f ∈ D).

To state the Lasota criterion we need the definition of lower-bound function for Markov semi-

groups.

Definition 24 A function h ∈ L1
+ is called a lower-bound function for Θ if

lim
λ→∞
‖(h − Tλ f )+‖ = 0 (∀ f ∈ D).

We say that h is nontrivial if h , 0.

For a single operator, lower-bound function figuratively mean successive iterates of for every

density f by T are finally almost everywhere above h. Any nonpositive function of course

can be a lower-bound function but since f ∈ D so T n f ∈ D and all of them are positive, so

a negative lower-bound function is not interesting. Therefore a nontrivial function h ≥ 0 is

taken.

Now we state the following theorem of A. Lasota and give its proof [11] accordingly to [12].

Theorem 25 Let Θ = (Tt)t∈J be a (not necessarily continuous if J = R+) one-parameter

Markov semigroup in E := L1(Ω,Σ, µ). Then the following assertions are equivalent:

(i) Θ is asymptotically stable;

(ii) There is 0 , h ∈ L1
+ such that, for any density f ∈ L1 and for any t ∈ J , there exists

ft ∈ L1
+ with limt→∞ ‖ ft‖ = 0 and Tt f + ft ≥ h for all t ∈ J;

(iii) There exists a nontrivial lower-bound function for Θ.
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Proof:

(i) ⇒ (ii): Let a density u ∈ L1 satisfy limt→∞ ‖Tt f − u‖ = 0 for any density f , then u is a

nontrivial lower-bound function for Θ.

(iii) ⇔ (ii): Let 0 , h ∈ L1
+ be a nontrivial lower-bound function for Θ. Then for any density

f , the condition (ii) is satisfied with ft := (Tt f − h)− for all t ∈ J.

(ii)⇒ (i):

Case I : Assume Θ = (T n)∞n=0 is discrete. Let 0 , h ∈ L1
+ be a nontrivial lower-bound function

for T and denote,

L1
0 := { f ∈ L1 : ‖ f+‖ = ‖ f−‖}

Since h is a nontrivial lower-bound function, we obtain

lim sup
n→∞

∥∥∥(AT
n − h)+

∥∥∥ ≤ 1 − ‖h‖

< 1 (∀ f ∈ D)

and so T is mean ergodic. Then there exists T -invariant density, say u. Since L1 = L1
0 ⊕R · u,

it suffices to show that

lim
n→∞

∥∥∥T n f
∥∥∥ = 0 (∀ f ∈ L1

0). (2)

Notice that (‖T n f ‖)∞n=1 is a monotone sequence since T is a contraction. Hence

‖ f ‖ ≥ lim
n→∞

∥∥∥T n f
∥∥∥

= inf
n

∥∥∥T n f
∥∥∥ (∀ f ∈ L1).

Now suppose that there exists f ∈ L1
0 with 2α := limn→∞ ‖T n f ‖ > 0. Then because h is a

lower-bound function and ‖ f+‖ = ‖ f−‖ ≥ α holds;

2α = lim
n→∞

∥∥∥T n f
∥∥∥

= lim
n→∞

∥∥∥T n( f+ − f−)
∥∥∥

= lim
n→∞

∥∥∥(T n f+ − αh)+ − (T n f− − αh)+

∥∥∥
≤ lim

n→∞

(∥∥∥(T n f+ − αh)+

∥∥∥ +
∥∥∥(T n f− − αh)+

∥∥∥)
= 2α(1 − ‖h‖)

which is impossible. Consequently the condition (2) holds.
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Case II : Now assume that Θ = (Tt)t≥0 is a semigroup of Markov operators, which is not

necessarily continuous. We shall prove the implication (ii) ⇒ (i) in this case. In this way,

we reproduce the elegant arguments in [10]. Take any t0 > 0 and define T = Tt0 . Then h is

a nontrivial lower-bound function for (T n)∞n=1. The first part of the proof implies that there

exists a unique T -invariant density u such that

lim
n→∞

T n f = u (∀ f ∈ D)

Having shown that Ttu = u for t ∈ kt0∞k=1, we now demonstrate that Ttu = u for all t ∈ R+.

Pick t′ > 0, set f ′ = T ′t u, and note that

u = T nu = Tnt0u.

Therefore ∥∥∥T ′t u − u
∥∥∥ = lim

n→∞

∥∥∥T ′t u − u
∥∥∥

= lim
n→∞

∥∥∥T ′t (Tnt0u) − u
∥∥∥

= lim
n→∞

∥∥∥Tnt0(T ′t u) − u
∥∥∥

= lim
n→∞

∥∥∥T n(T ′t u) − u
∥∥∥

= lim
n→∞

∥∥∥T n f − u
∥∥∥

= 0

Since t′ is arbitrary, we have that u is T -invariant.

Finally to show that Θ is asymptotically stable. Take a density f . Then

t → ‖Tt f − u‖ = ‖Tt f − Ttu‖

is a non-increasing function. Take a subsequence tn := nt0. It is known that limn→∞
∥∥∥Ttn f − u

∥∥∥ =

0, then limt→∞ ‖Tt f − u‖ = 0.

�

2.5 An extension of Sine’s counterexample

In this section, we generalize Sine’s counterexample of a positive contraction in a C(K)-space

which is mean ergodic but its square is not [36]. For this purpose, we need some basic
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definition as lemmata which are important not only for stating the mean ergodic theorem but

also for other discussions throughout the thesis.

Theorem 26 S is mean ergodic if S m is mean ergodic for some m ∈ N

The converse is true for positive operators in ideally ordered Banach spaces where any Ba-

nach space is ideally ordered Banach space if X+ is strongly normal and all order intervals

in X are weakly compact. However, the converse is not true in general, even for positive

contractions. The first example of such an operator is due to R. Sine, who had constructed a

positive isometry T in a C(K)-space, such that T is mean ergodic, but T 2 is not. Note that, if

we omit the positivity assumption on the operator, such an example can be constructed much

more easily even in C[0, 1].

We extend Sine’s construction and present a positive mean ergodic isometry in a C(K)-space,

such that its q-th power is not mean ergodic for an arbitrary fixed q ∈ N, q , 1. Consider the

operator T ∈ L(`∞(Z)) generated by the left shift transformation:

T ((an)n∈Z) := (an+1)n∈Z .

Then T is a positive invertible isometry in `∞(Z). Let 1 < p ∈ N be a prime. Define a bilateral

sequence cp = (cp
n )n∈Z by the formula

cp
n =



0 if n = 0

1 if pm ≤ n < pm+1 and n = m + kp

0 if pm ≤ n < pm+1 and n , m + kp

cp
−n if n < 0

.

Let Cp be the closed subalgebra of `∞(Z) generated by the sequences T s(cp) for all s ∈ Z and

by the constant sequence (1)n∈Z. Obviously, Cp is a Banach lattice algebra and T q is a positive

invertible isometry on Cp for all q ∈ Z. A routine computation shows that T q is mean ergodic

on Cp if and only if q , p · r for all r ∈ Z, r , 0.

Let ∆ = {p1, ..., p j} be a finite set of primes. Take the direct sum C =
⊕ j

i=1Cpj of Banach

lattice algebras Cpj (here we assume that they do not possess common elements, otherwise

we replace them by isometrically isomorphic copies). Since a finite direct sum `∞⊕ . . .⊕`∞ is

isometrically isomorphic to `∞, we may consider C as a Banach lattice subalgebra of `∞(Z).

Define R ∈ L(C) as follows:

R((x1, . . . , x j)) := (T (x1), . . . ,T (x j)) (x1 ∈ Cp1 , . . . , x j ∈ Cpj)
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Obviously, an operator Rl in the Banach lattice algebra C is mean ergodic if and only if pi is

not a divisor of l for all i = 1, ..., j.

Note that the Banach lattice algebra C constructed above is commutative and possesses a

strong unit. Therefore, by Gelfand’s theorem, C can be identified with C(K), where K is a

Hausdorff compact space. Moreover, K is an appropriate quotient space of the Čech – Stone

compactification β(Z) of integers. Note that K can be obtained from β(Z) by identification of

points which cannot be distinguished by elements of C ⊂ C(β(Z)). The main disadvantage of

the construction above is that it cannot be extended to an infinite set of primes. If we do this

by defining in a similar way an algebra G and an operator R ∈ L(G) for an infinite set ∆ of

primes, the operator R is no longer mean ergodic.

However, it is still possible to construct, in a commutative Banach lattice algebra without a

strong unit, a positive mean ergodic operator U such that all nontrivial powers Uq are not

mean ergodic. For this purpose, we take for every prime p an operator T on Cp such that T is

mean ergodic, but T p is not. Denote by Λ the set of all primes p > 1. Consider the c0-direct

sum of the set (Cp)p∈Λ of Banach lattice algebras

G =
⊕
p∈∆
Cp .

Then G is a commutative Banach lattice algebra without a strong unit. We define an operator

U in G setting U |Cp := T . Then U is mean ergodic, but, for any n , 0,±1, n has a prime

divisor p, say n = k · p. Hence Un is not mean ergodic for all n , 0,±1, since U |n
Cp

:= T k·p is

not mean ergodic. Note that, in our construction, the operators U−1 and U are mean ergodic.

The results of Section (2.5) was published in [14].
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CHAPTER 3

LR− NETS

This chapter is devoted to LR−nets which are the main theme of the thesis. First of all,

the definition of an LR-net and some elementary results are given. Then we discuss some

examples which are needed in the next chapters.

3.1 Elementary Results

For the following definition we prefer to call Lotz-Räbiger net, briefly LR-net. First of all,

it is introduced at the beginning of 80th by Heinrich Lotz under the name M-sequence and

published in 1984. The main aim of Lotz was to find a unified approach to various Tauberian

theorems for operators in Banach spaces. In 1993 Frank Räbiger introduced the following

notion and called it M−net.

Definition 27 A net Θ = (Tλ)λ∈Λ ⊆ L(X) is called a Lotz-Räbiger net (= LR−net) if

LR1 : Θ is uniformly bounded;

LR2 : limλ→∞

∥∥∥Tλ ◦ (Tµ − I)x
∥∥∥ = 0 for every µ ∈ Λ and for every x ∈ X;

LR3 : limλ→∞

∥∥∥(Tµ − I) ◦ Tλx
∥∥∥ = 0 for every µ ∈ Λ and for every x ∈ X.

We may suppose that an LR−net contains the identity operator. In fact, for a given LR−net

Θ = (Tλ)λ ∈ Λ, denote by Λ̂ the set Λ ∪ λ0 for λ0 < Λ and extend the partial order from

Λ to Λ̂ setting λ0 ≺ λ for all λ ∈ Λ. Put Tλ0 := IX . The family Θ̂ = (Tλ)
λ∈Λ̂

is an LR−net

containing the identity operator. We always suppose that an LR−net contains the identity
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operator because the only interesting questions concerning LR−nets are those of asymptotic

nature (e.g. whenever λ→ ∞).

The next definition indicates a fixed vector of an operator net Θ.

Definition 28 Let Θ = (Tλ)λ∈Λ be a net in a Banach space X. A vector x is called fixed under

Θ if Tλx = x for every Tλ ∈ Λ. Denote by Fix(Θ) the set of all fixed vectors of Θ.

It is easy to see that Fix(Θ) is a closed subspace in X.

The proof of the next proposition is straightforward. It says us that for proving a vector in X

is a fixed vector, it is enough to show that it is eventually fixed. This proposition can not be

extended to an arbitrary uniformly bounded operator nets.

Proposition 29 Let Θ = (Tλ)λ∈Λ be an LR-net in X and x is any vector in X. Then x ∈ Fix(Θ)

if and only if there exists λ(x) ∈ Λ satisfying Tλ(x) = x for all λ ≥ λ(x).

Proof: The necessity is obvious.

For sufficiency part, take an element x ∈ X satisfying Tλ(x) = x for all λ ≥ λ(x). Let µ be

an arbitrary element of Λ. Because of the condition (LR 3) and the continuity of (Tµ − I) we

obtain

0 = lim
λ→∞

(Tµ − I) ◦ Tλx = (Tµ − I) lim
λ→∞

Tλx.

By the assumption, the limit equality lim
λ→∞

Tλx = x holds. Therefore Tµx = x for arbitrary

µ ∈ Λ. Hence x ∈ Fix(Φ).

�

Next definition will form the backbone of the thesis.

Definition 30 The net Θ is called strongly convergent if the norm limit limλ→∞ Tλx exists for

each x ∈ X.

The following elementary result explains the relationship between the strong convergence and

the fixed space of an LR-net. Note that Proposition 31 cannot be extended to an arbitrary uni-

formly bounded operator net. In Chapter 1, we mentioned the splitting theorem for operator
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semigroups under the name mean ergodicity of operator semigroups. The next theorem is the

splitting theorem for LR-nets. Originally the next theorem statement consists of the direct

sum of Fix(Θ) and span
⋃
λ∈Λ(I − Tλ)X, stated by Räbiger without proof in [30].

We state the following elementary fact.

Proposition 31 Let Θ = (Tλ)λ∈Λ be an LR-net in X. Then the set⋃
λ∈Λ

(I − Tλ)X

is a linear space. Thus we may replace span
⋃
λ∈Λ(I − Tλ)X with

⋃
λ∈Λ(I − Tλ)X.

Proof: Let x = (I − Tλ1)u and y = (I − Tλ2)v be in
⋃
λ∈Λ(I − Tλ)X. Since for every µ ∈ λ and

for each x ∈ X, limλ→∞

∥∥∥(I − Tµ) ◦ Tλx
∥∥∥ = 0 by (LR 2), we obtain

lim
λ→∞
‖Tλx‖ = lim

λ→∞
‖Tλ ◦ (I − Tλ1)u‖ = 0 ,

lim
λ→∞
‖Tλy‖ = lim

λ→∞
‖Tλ ◦ (I − Tλ2v)‖ = 0 .

Therefore lim
λ→∞

Tλ(x + y) = 0 and x + y ∈
⋃
λ∈Λ(I − Tλ)X. The same argument is true for

arbitrary x, y ∈
⋃
λ∈Λ(I − Tλ)X. Consequently,

⋃
λ∈Λ(I − Tλ)X is a linear subspace of X .

�

Theorem 32 Let Θ = (Tλ)λ∈Λ be an LR-net in X. Then Θ is strongly convergent if and only if

X = Fix(Θ) ⊕
⋃
λ∈Λ

(I − Tλ)X . (1)

Moreover, in this case, the strong limit P of Θ is a projection onto Fix(Θ).

Proof: For the first implication, assume X = Fix(Θ) ⊕
⋃
λ∈Λ(I − Tλ)X. It is enough to prove

that the norm limit exists for all x ∈
⋃
λ∈Λ(I − Tλ)X, because Tλx = x for all x ∈ Fix(Θ). For

fixed µ ∈ Λ and x ∈ (I − Tµ)X, there exists some v ∈ X such that x = (I − Tµ)v. The norm

convergence of the net (Tλx)λ∈Λ is provided by (LR 2)

lim
λ→∞
‖Tλx‖ = lim

λ→∞

∥∥∥Tλ ◦ (I − Tµ)x
∥∥∥ = 0

So for every x ∈
⋃
λ∈Λ(I − Tλ)X the norm limit of the net (Tλx)λ∈Λ is equal to zero.
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For the other implication, assume Θ is strongly convergent. Hence the strong limit P of Θ is

a continuous operator. Consider any point x ∈ X we have

Tµ(Px) − Px = (Tµ − I) lim
λ→∞

Tλx = lim
λ→∞

(Tµ − I) ◦ Tλx = 0

for any µ ∈ Λ because of the condition (LR 3). Hence TµPx = Px, ∀µ ∈ Λ and Px ∈ Fix(Θ)

Moreover P2x = P(Px) = Px and by arbitrariness of x, P is the continuous projection onto

Fix(Θ). Henceforth X = P(X) ⊕ ker P where P(X) = Fix(Θ). The last step of the proof is

showing that
⋃
λ∈Λ(I − Tλ)X = ker P ..

Let x be an arbitrary element of
⋃
λ∈Λ(I − Tλ)X. By (LR 2), limλ→∞ Tλx = limλ→∞ Tλ ◦ (I −

Tµ)x = 0 so x ∈ ker P. For the other inclusion assume x ∈ ker P then we have limλ→∞ Tλx =

Px = 0 and x = limλ→∞(I − Tλ)x ∈
⋃
λ∈Λ(I − Tλ)X

�

3.2 Examples of LR−nets

3.2.1 Single operators

Example 33 (Lotz) Let T ∈ L(X) be a contraction (i.e. ‖T‖ ≤ 1). Then the sequence (AT
n )∞n1

of Cesàro meansAT
n := 1

n

n−1∑
k=0

T k of the operator T is an LR−net.

Proof. Consider

AT
n ◦ (T − I)x =

1
n

n−1∑
k=0

T k ◦ (T − I)x

=
1
n

n−1∑
k=0

T k+1x −
n−1∑
k=0

T kx


=

1
n

(T n + T n−1 + · · · T − (T n−1 + · · · + T + I))x

=
1
n

(T n − I)x
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Since T is a contraction the limit value

lim
n→∞

∥∥∥AT
n ◦ (T − I)x

∥∥∥ = lim
n→∞

‖T nx − x‖
n

≤ lim
n→∞

(
‖T nx‖

n
+
‖x‖
n

)
≤ lim

n→∞

(
‖T‖n

n
‖x‖ +

‖x‖
n

)
= 0

.

Now for any s > n

AT
n ◦ (T s − I)x =

1
n

n−1∑
k=0

T k ◦ (T s − I)x

=
1
n

n−1∑
k=0

T k+sx −
n−1∑
k=0

T kx


=

1
n

(T s+n−1 + T s+n−2 + · · · T s − (T n−1 + · · · + T + I))x

=
1
n

(T s+n−1 + · · · T n − (T s−1 + · · · + I))x

Since T is a contraction the limit value ofAT
n ◦ (T s − I)x in norm is zero as n goes to infinity.

Then,

AT
n ◦ (AT

m − I)x = AT
n ◦ (

1
m

m−1∑
k=0

T k − I)x

=

AT
n ◦ (

1
m

m−1∑
k=0

T k −

m−1∑
k=0

Ik)x


=

AT
n ◦ (

1
m

m−1∑
k=0

(T k − Ik))x


=

1
m

m−1∑
k=0

AT
n (T k − I)x

Since above is true for every k, AT
n (T k − I) converges to zero, sum of these terms goes to

zero. Therefore the LR-net definition conditions are satisfied andAT
n net is an LR-net.

�

Example 34 If T ∈ L(X) is an operator in X with uniformly bounded Cesàro averagesAT
n :=

1
n

n−1∑
k=0

T k, n ∈ N and if n−1T n → 0 strongly, then (AT
n )∞n=1 is an LR-net.
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Proof. Consider the proof of Example 33, AT
n ◦ (T − I)x =

1
n

(T n − I)x. Since
T n

n
converges

0 strongly, AT
n ◦ (T − I)x converges to zero as n → ∞. Now, for any s > n, we know that

AT
n ◦ (T s − I)x =

1
n

(T s+n−1 + · · · T n − (T s−1 + · · ·+ I))x. Again since
T n

n
converges 0 strongly

and (T s−1 + · · · + I)x is an any element of X and n goes to ∞, AT
n ◦ (T s − I)x converges to

zero as n → ∞. Then from equation AT
n ◦ (AT

m − I)x =
1
m

m−1∑
k=0

AT
n (T k − I)x and for every

k, AT
n (T k − I) converges to zero, sum of these terms goes to zero. Therefore the LR-net

definition conditions are satisfied and (AT
n )n is an LR-net.

�

3.2.2 Operator semigroups

Example 35 (Lotz) Let Θ = (T (t))t>0 be a strongly continuous one-parameter semigroup of

operators in X. Let Ct := t−1
∫ t

0 T (s)ds t > 0, be the Cesaro means of Θ, where the integral

(if it exists) is defined strongly. If there exists a > 0 such that (Ct)0<t≤a is uniformly bounded,

then (I − Ct)0<t≤a is an LR-net (for t → 0). If there exists b > 0 such that (Ct)t≥b is uniformly

bounded and t−1T (t) tends strongly to zero as t → ∞, then (Ct)t≥b is an LR-net for t → ∞.

Example 36 Let G ⊆ L(X) be a uniformly bounded Abelian operator semigroup. Then G is

a directed set with respect to the natural partial order ≺ defined by S ≺ T if there exists an

R ∈ G with T = R ◦ S .

If the operator net (TT )T∈(G,≺), where TT := T for all T ∈ G, converges strongly as T → ∞,

then (TT )T∈(G,≺) is an LR-net.

In the case, when the strong limit satisfies the condition

lim
T∈(G,≺)

S ◦ T = S

for every S ∈ G, the net (I − TT )T∈(G,≺), where TT := T for all T ∈ G, is an LR-net.

3.2.3 T -ergodic nets

Example 37 Every T -ergodic net for a given operator semigroup T ⊆ L(X) is an LR-net.

22



Proof.

Cλx = co(T x) =


n∑

j=1

λ jT jx : λ j ∈ R, T j ∈ T and
n∑

j=1

λ j = 1

.

For some fix λ0, Cλ0 x = limλ′ Kλ′ x where Kλ′ x =

n∑
j=1

λ′jT jx.

Since T−ergodic net is uniformly bounded, then the first condition of LR−net is directly

satisfied. Then

∥∥∥Cλ(Cµ − I)x
∥∥∥ =

∥∥∥Cλ(Cµ − I)x + Cλ(I − T )x −Cλ(I − T )x
∥∥∥

≤
∥∥∥Cλ(Cµ − I + I − T )x

∥∥∥ + ‖Cλ(I − T )x‖

≤
∥∥∥Cλ(Cµ − T )x

∥∥∥ +
ε

2
≤ ‖Cλ‖

∥∥∥Cµ − T
∥∥∥ ‖x‖ +

ε

2

Since Cµ is in the closed convex hull of T ;

≤
ε

2 ‖Cλ‖ ‖x‖
+
ε

2
≤ ε.

Therefore the second condition of LR−net is satisfied.

∥∥∥(Cµ − I)Cλx
∥∥∥ =

∥∥∥(Cµ − I)Cλx + (I − T )Cλx − (I − T )Cλx
∥∥∥

≤
∥∥∥(Cµ − I + I − T )Cλx

∥∥∥ + ‖(I − T )Cλx‖

≤
∥∥∥(Cµ − T )Cλx

∥∥∥ +
ε

2
≤ ‖Cλ‖

∥∥∥Cµ − T
∥∥∥ ‖x‖ +

ε

2

Again Cµ is in the closed convex hull of T ;

≤
ε

2 ‖Cλ‖ ‖x‖
+
ε

2
≤ ε.

and the third condition is satisfied. Hence every T−ergodic net is an LR−net.

�

3.2.4 Pseudoresolvents

Example 38 (Räbiger) Let Λ be a nonempty subset of Cl and let (Rλ)λ∈Λ ⊆ L(X) be a pseu-

doresolvent,( i.e. satisfies the Hilbert identity Rλ −Rµ = (µ− λ)Rλ ◦Rµ for all λ, µ ∈ Λ). Then
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(λRλ)λ∈Λ is called Abel means relative to (Rλ)λ∈Λ. Let αλ be a net in Λ such that (αλRαλ) is

uniformly bounded.

(a) If lim
λ→∞

αλ = a ∈ Cl then ((αλ − a)Rαλ)λ∈Λ is an LR-net.

(b) If lim
λ→∞
|αλ| = ∞ then (I − αλRαλ)λ∈Λ is an LR-net.

Proof.

Since (αλRαλ) is equi-continuous, (I − αλRαλ) is uniformly bounded. Consider

(I − αλRαλ)(I − (I − αµRαµ))x

= (I − αλRαλ)αµRαµ x

= αµRαµ x − αλαµRαλRαµ x

= αµRαµ x −
αλαµ

αλ − αµ
(Rαλ − Rαµ)x

= αµRαµ x −
αλαµ

αλ − αµ
Rαλ x +

αµαλ

αλ − αµ
Rαµ x

If the limit is taken, it is enough to check the limit value as λ goes to∞.

lim
λ→∞

(I − αλRαλ)(I − (I − αµRαµ))x

= lim
λ→∞

(
αµRαµ x −

αλαµ

αλ − αµ
Rαλ x +

αµαλ

αλ − αµ
Rαµ x

)
= αµRαµ x − lim

λ→∞

αλαµ

αλ − αµ
Rαλ x + lim

λ→∞

αµαλ

αλ − αµ
Rαµ x

= αµRαµ x − lim
λ→∞

αµ(αλRαλ x)
αλ − αµ

+ lim
λ→∞

αµαλ

αλ(1 − αµ
αλ

)
Rαµ x

= − lim
λ→∞

αµ(αλRαλ x)
αλ − αµ

= 0

Because αλRαλ is uniformly bounded and lim
λ→∞
|αλ| = ∞. Therefore (I − αλRαλ) is an LR-net.

The proof of the first part is the same.

�
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3.2.5 Projections

Example 39 (Lotz) Let (Ω,Σ, µ) be a probability space, let 1 ≤ p ≤ ∞, and let X =

Lp(Ω,Σ, µ). Let (Σn)∞n=1 be an increasing sequence of σ−subalgebras of Σ. For every f ∈ X,

let Cn f ∈ X be the conditional expectation of f with respect to Σn. Then the sequence

(I −Cn)∞n=1 is an commutative LR−net.

Proof. For any (Σn)∞n=1 σ−subalgebra (Σn) of Σ, conditional expectation is a contractive pro-

jection from Lp(Ω,Σ, µ) to Lp(Ω,Σn, µ). Since X is a probability space, (I −Cn)n is uniformly

bounded. The condition LR2 is satisfied because conditional expectation has properties such

that assume Σn and Σm is an σ−subalgebras of Σ, then the relation between conditional ex-

pectation of subalgebras is Cn ◦Cm = Cmin(n,m). So

(I −Cn)(I − (I −Cm))x = ((I −Cn)Cm)x (3.1)

= (Cm −CnCm)x (3.2)

= (Cm −Cmin(n,m))x (3.3)

Since (Σn)∞n=1 is an increasing sequence and consider the strong limit, then for n > m,

(I −Cn)(I − (I −Cm))x = (Cm −Cmin(n,m))x (3.4)

= (Cm −Cmin(n,m))x (3.5)

= (Cm −Cm)x = 0 (3.6)

Hence LR2 and because of the commutativity of conditional expectation, LR3 are satisfied.

�

Example 40 Let X be a Banach space and let (Pn)∞n=1 ⊆ L(X) be a uniformly bounded se-

quence of projections with PnPm = Pmin(n,m). Then the sequence (I − Pn)∞n=1 is an LR−net.

Proof of Example 40 is the same like Example 39.

�
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3.2.6 Ordinal numbers

Example 41 Let `2(κ) be the standard Hilbert space (see [5]), where κ is a limit ordinal

(`2(κ) is separable if and only if κ � ω). The vectors eι( j) = δι, j , for ι ≺ κ, form a complete

orthonormal basis for `2(κ). Let Λ be the set of all finite subsets (including the empty set)

of κ with a natural ordering λ1 � λ2 if and only if λ1 ⊆ λ2. Given λ = {ξ1, · · · , ξn} ∈ Λ

define Tλ to be the orthogonal projection on lin{eξ1 , · · · , eξn}
⊥. Obviously Tλ form an (LR)

net. We notice that for each η ∈ `2(κ) we have limλ→∞ ‖Tλη‖2 = 0. Moreover, given η

there exists an increasing sequence λ1 � λ2 � · · · (depending on η) such that the ordinary

limit limn→∞
∥∥∥Tλn

∥∥∥
2 = 0. However, if κ is uncountable then there exists no subsequence

λ1 � λ2 � · · · which is universally good for all η ∈ `2(κ). Clearly the net under consideration

may be uplifted to the Banach lattice C(X) of all (real valued) continuous functions, where

X stands for the unit (closed) ball of `2(κ) endowed with *weak=weak topology. Namely,

define Tλ f (η) = f (Tλη). It follows that limλ→∞ Tλ f (η) = f (0) pointwise (a close look on the

structure of weakly continuous functions gives that the convergence limλ→∞ Tλ f = f (0)1 is

uniform on X i.e. in the sup norm).

Proof. An ordinal number is defined as the order type of a well-ordered set. The motivation

is to define an ordinal number as the set of all ordinals less than itself. Any nonzero ordinal

has the minimum element zero. It may or may not have a maximum element. If an ordinal

number α, then it is the next ordinal after α is called successor ordinal, namely the successor

of α written α + 1. A nonzero ordinal which is not a successor is called a limit ordinal.

Another important definition about ordinal number is the following. If α is a limit ordinal

and X is a set, an α-index sequence of elements of X is a function from α to X. This notion

is a generalization of a sequence. An ordinary sequence is the case α = ω. Now, if X is

a topological space, we say that an α-indexed elements of X converges to a limit x when it

converges as a net. That is to say, for every neighbourhood U of x, there exists an ordinal

β < α such that xι ∈ U for all ι ≥ β. Ordinary-indexed sequences are more powerful than

ordinary sequences to determine limits in topology.

Other background for such example is a definition of Hilbert space for arbitrary set. Let I be

any set. `2(I) to be the set of all functions x : I → F such that x(i) , 0 for at most a countable

number of i and ‖x‖2 =
∑
i∈I

|x(i)|2 < ∞. Then `2(I) is a Hilbert space with respect to inner
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product 〈x, y〉 =
∑

i∈I x(i)y(i). Moreover the vectors eι( j) = δι, j , for ι ≺ κ, form a complete

orthonormal basis (Conway basis) for `2(κ).

Let Λ be the set of all finite subsets (including the empty set) of κ with a natural ordering

λ1 � λ2 if and only if λ1 ⊆ λ2. For λ = {ξ1, · · · , ξn} ∈ Λ define Tλ to be the orthogonal

projection on lin{eξ1 , · · · , eξn}
⊥. If λ is large enough and µ � λ, we obtain lin{eλ1 , · · · , eλn}

⊥ ⊂

lin{eµ1 , · · · , eµm}
⊥, additionally Tλ ◦ (I−Tµ)x = Tλy where y is an element of lin{eµ1 , · · · , eµm}.

Finally, we obtain ‖Tλy‖ = 0 for enough large λ. Therefore (LR2) condition is satisfied. For

the last condition of LR-nets, (I − Tµ) ◦ Tλx = (I − Tµ)y where y ∈ lin{eλ1 , · · · , eλn}
⊥. Since

µ � λ, lin{eµ1 , · · · , eµm} ⊆ lin{eλ1 , · · · , eλn}, we obtain (I − Tµ)y = 0. Hence we obtain (Tλ) is

an LR-net on X.

�

Example 42 Let us consider the order interval X = {ξ : 0 � ξ � ω1}, where ω1 is the first

uncountable ordinal. Clearly (cf. [16]) X equipped with the topology generated by the basis

{(ι1, ι2] : 0 � ι1 � ι2 � ω1} is a compact Hausdorff space. As usual X = C(X) denotes the

Banach space of all functions on X with sup norm. Let us consider again Λ to be the family

of all finite (nonempty) subsets of [0, ω) = N and define

(•) Tλ f (ι) =


1

card(λ)
∑

j∈λ f (ι + j) if ι is not a limit ordinal

f (ι) if ι is a limit ordinal.

Clearly Tλ are positive linear contractions on C(X), Tλ1 = 1 and form an (LR) net. For each

f ∈ X we have limλ→∞ Tλ f = f exists in the sup norm and for non limit ordinals f (ι) = f (ξι),

where ξι = min{ξ � ι : ξis a limit ordinal}. Modifying; we introduce

(�) S λ f (ι) =
1

card(λ)

∑
j∈λ

f (ι − j),

(if ι = ηι + kι, where kι ∈ N, ηι is a limit ordinal supporting ι from below and kι < j then we

set ι − j = ηι). Clearly, limλ→∞ S λ f (ι) = f (ι) = f (ηι) exists pointwise, but the limit function

is not continuous in general.
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3.2.7 Heat Equations

Example 43 (Emelyanov) Let (Ht)t≥0 be a C0-semigroup of kernel operators acting on the

space L1(R) as follows:

(Ht f )[x] = (4πt)−1/2
∫ ∞

−∞

exp[
−(x − y)2

4t
] f (y)dy, (∀x ∈ X, t ∈ R+).

These operators deliver the solution u(t, x) = (Ht f )[x] of the heat equation on the real line
∂u
∂t = ∂2u

∂t2 with the initial condition u(0, x) = f (x). Then (Ht)t≥0 is an LR-net.

Proof.

This semigroup elements are Markov operator and completely mixing. So more generally we

should prove that any one-parameter semigroup of completely mixing Markov operators on

L1-space (cf. [22]) is an LR-net.

Let us remind definition of completely mixing for semigroups.

Definition 44 Let (Tt)t≥0 be a one-parameter semigroup on L1-space. It is called completely

mixing if limt→∞ ‖Tt x‖ = 0 for all f ∈ L1
0.

Consider the (LR 2) condition. limλ→∞

∥∥∥Tλ ◦ (I − Tµ) f
∥∥∥ = limλ→∞ ‖Tλz‖ = 0 because (I −

Tµ) f = z ∈ L1
0. Therefore (LR 2) condition is satisfied. Since T is a Markov operator and Θ is

completely mixing, condition (LR 3) is satisfied directly.

�

3.2.8 Approximate Identities

Example 45 (Emelyanov) Let A = (A, •, ‖·‖) be a Banach algebra. We embed A to L(A)

isometrically as follows;

π(a)(x) := a • x (∀x ∈ A)

Then for any approximate identity (eλ)λ∈Λ in A, the operator net (I − π(eλ))λ∈Λ ⊆ L(A) is a

LR-net.
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Proof. An approximate identity in a Banach algebra A is a net (eλ)λ∈Λ such that for every

element a ∈ A the net (a • eλ)λ∈Λ and (eλ • a)λ∈Λ have limit a. Therefore, we obtain the

following conditions.

lim
λ→∞

∥∥∥(I − π(eλ)) ◦ (I − (I − π(eµ)))a
∥∥∥ = lim

λ→∞

∥∥∥(I − π(eλ)) ◦ π(eµ)a
∥∥∥

= lim
λ→∞

∥∥∥(I − π(eλ)) ◦ (eµ • a)
∥∥∥

= lim
λ→∞

∥∥∥(eµ • a − eλ • eµ • a)
∥∥∥

=
∥∥∥eµ • a − eµ • a

∥∥∥ = 0

and

lim
λ→∞

∥∥∥(I − (I − π(eµ))) ◦ (I − π(eλ))a
∥∥∥ = lim

λ→∞

∥∥∥π(eµ) ◦ (I − π(eλ))a
∥∥∥

= lim
λ→∞

∥∥∥π(eµ) ◦ (a − eλ • a)
∥∥∥

= lim
λ→∞

∥∥∥(eµ • a − eµ • eλ • a)
∥∥∥

=
∥∥∥eµ • a − eµ • a

∥∥∥ = 0

Additionally, since A is a Banach algebra ‖Tλ‖ < 1, the net is uniformly bounded. Therefore

it is an LR-net.

�
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CHAPTER 4

CONVERGENCE OF LR-NETS

4.1 Extension of Eberlein’s theorem to LR-net

4.1.1 Theorem

A lot of results about concrete LR-nets belongs to the classical ergodic theory. However,

only very few facts about general LR-nets, like Proposition 29 and Theorem 32, are known.

For instance, Theorem 47 below is well known more than sixty years for LR-nets of Cesàro

averages as the Mean Ergodic Theorem, and for T -ergodic nets as the Eberlein Theorem.

Theorem 47 had been proved for M-sequences by Lotz in [27, Thm. 3]. The general form of

Theorem 47 had been stated, without a proof, by Räbiger in [30, Prop. 2.3]. In this section,

we present a complete proof (see [13]). We remind the following theorem needed as a tool to

prove the Eberlein Theorem for LR-nets.

Theorem 46 (Mazur) Let X be a Banach space and let A ⊂ X. Then the norm closure of A

coincides with its weak closure.

Theorem 47 (Räbiger) Let Θ = (Tλ)λ∈Λ be an LR-net in X. Then the following assertions

are equivalent:

(i) Θ is strongly convergent.

(ii) The net (Tλx)λ∈Λ has a weak cluster point for every x ∈ X.
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Proof: The proof of the first implication is straightforward. For the converse, let x ∈ X be an

arbitrary element and y be a weak cluster point of the net (Tλx)λ∈Λ. By the Mazur theorem,

y ∈ co(Tλx)λ∈Λ . (1)

To begin with, we need to show that y ∈ Fix(Θ). Since y is a weak cluster point of the LR-net

(Tλ)λ∈Λ for the point x, for given ε, (Tλx)λ∈Λ satisfies the following

|〈Tλx, h〉 − 〈y, h〉| ≤
ε

3

By using the condition (LR2), we obtain for fix µ ∈ Λ and ε > 0 there exists ζ ∈ Λ satisfying

the following three formulas:

|〈Tµ y, h〉 − 〈Tµ ◦ Tζ x, h〉| ≤
ε

3
, (2)

|〈Tµ ◦ Tζ x, h〉 − 〈Tζ x, h〉| ≤
ε

3
, (3)

|〈Tζ x, h〉 − 〈y, h〉| ≤
ε

3
. (4)

Consequently, the summation of (2), (3), (4) we get;

|〈Tλx, h〉 − 〈y, h〉| = |〈Tµ y, h〉 − 〈Tµ ◦ Tζ x, h〉 + 〈Tµ ◦ Tζ x, h〉 − 〈Tζ x, h〉 + 〈Tζ x, h〉 − 〈y, h〉|

≤ |〈Tµ y, h〉 − 〈Tµ ◦ Tζ x, h〉| + |〈Tµ ◦ Tζ x, h〉 − 〈Tζ x, h〉|

+ |〈Tζ x, h〉 − 〈y, h〉| < ε

As a result y ∈ Fix(Θ).

Secondly, we prove that the net (Tλx)λ∈Λ converges to y in the norm topology. On account of

the uniform boundedness of LR-nets, the supremum M := supλ∈Λ ‖Tλx‖ is finite. Given ε > 0,

there exists an S ∈ co(Tλ)λ∈Λ satisfying

‖y − S x‖ ≤ ε . (5)

By (LR 2), there exists λ0 ∈ Λ such that

‖Tλ ◦ S x − Tλ x‖ ≤ ε (∀λ ≥ λ0) . (6)
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Combining of these conditions with y ∈ Fix(Θ), we have

‖y − Tλx‖ = ‖y − Tλ ◦ S x + Tλ ◦ S x − Tλx‖

≤ ‖Tλ(y − S x)‖ + ‖Tλ ◦ S x − Tλx‖

≤ Mε + ε (∀λ ≥ λ0) .

Since x ∈ X and ε > 0 were chosen arbitrary, the formula ‖y− Tλx‖ < ε implies that the net Θ

converges strongly

�

4.1.2 Application to attractors

The following definition is needed for more application of the convergence theorem. The

notion of attractor or constrictor was invented for a one-parameter discrete Markov semigroup

by A. Lasota, T. Y. Li and J. A. Yorke. Later, for an abelian linear operator semigroup on a

Banach space, many authors investigated the notion of attractors (see [12, 22]).

Definition 48 Let Θ = (Tλ)λ∈Λ be an operator net on a Banach space X. A subset A is called

an attractor for Θ if

lim
λ→∞

dist‖·‖(Tλx, A) = 0 (∀x ∈ BX) .

where BX is the closed unit ball of X. The family of all attractors of Θ is denoted by Att(Θ).

The first application of attractor is the following proposition.

Proposition 49 Every LR-net possessing a weakly compact attractor is strongly convergent.

Proof: Let A be an weakly compact attractor for an LR-net Θ. Given an element x ∈ X and a

sequence (λn)∞n=0 in Λ that converges to∞. Take aλn ∈ A for any λn such that
∥∥∥aλn − Tλn x

∥∥∥→
0. Since A is weakly compact, the sequence (aλn) has a weakly convergent subsequence (aλnm

).

Then the subsequence (Tλnm
x)∞m=0 of (Tλn x)∞n=0 is weakly convergent to the same limit.

�
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Theorem 50 (Emel’yanov) Every LR-net containing a weakly compact operator is strongly

convergent.

Proof:

Let Θ = (Tλ)λ∈Λ be an LR-net on a Banach space X and let Tλ0 be a weakly compact. Take

x ∈ BX because of (LR 3) and uniform boundedness of LR-net, ie, Tλx ∈ MBX for all λ we get

lim
λ→∞

dist‖·‖(Tλx,Tλ0(MBX)) = 0.

Since the norm-closure of Tλ0(MBX) is a weakly compact and lim
λ→∞

dist‖·‖(Tλx,Tλ0(MBX)) = 0

then Tλ0(MBX) is weakly compact attractor of Θ. By Proposition 49 Θ is strongly convergent.

�

4.2 Extension of Sine’s theorem to LR-nets

In this section, we present an extension of Sine’s ergodic theorem to LR-nets. The theorem

was discovered by R. Sine [35] in the special case when an LR-net is a net of Cesàro averages

of a single operator (cf. Krengel’s book [18, Thm. 2.1.4]). It had been extended to arbitrary

T -ergodic nets, by J.J. Koliha, R. Nagel, and R. Sato (cf. [18, Thm. 2.1.9]). For “small”

LR-net (=M-sequence) it is due to H.P. Lotz [27, Thm. 3].

Theorem 51 An LR-net Θ = (Tλ)λ∈Λ in X is strongly convergent if and only if its fixed space

Fix(Θ) separates the fixed space Fix(Θ∗) of the adjoint operator net Θ∗ = (T ∗λ)λ∈Λ in X∗.

Proof: Assume that Fix(Θ) separates Fix(Θ∗). In view of Theorem 32, to show the strong

convergence of Θ, it suffices to prove (1) . If (1) is failed then, by the Hahn – Banach theorem,

there exists an h ∈ X∗, h , 0, with 〈x, h〉 = 0 for all

x ∈ Fix(Θ) ⊕
⋃
λ∈Λ

(I − Tλ)X .

Show that h ∈ Fix(Θ∗) . Since

(y − Tµy) ∈
⋃
λ∈Λ

(I − Tλ)X (∀y ∈ X ,∀µ ∈ Λ) ,
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we have

〈y, h〉 = 〈Tµy, h〉 = 〈y,T ∗µh〉 = 0 (∀y ∈ X ,∀µ ∈ Λ) . (7)

It follows from (7) that T ∗µh = h for all µ ∈ Λ and therefore h ∈ Fix(Θ∗) . Thus, h is a nonzero

fixed point of Θ∗ such that 〈x, h〉 = 0 for all x ∈ Fix(Θ). This contradicts the assumption.

Assume the net Θ converges strongly, and denote its limit in the strong operator topology by

P. Take an h ∈ Fix(Θ∗), h , 0. In view of h , 0, there exists an x ∈ X with 〈x, h〉 , 0.

Consequently

〈Px, h〉 = lim
λ→∞
〈Tλx, h〉 = lim

λ→∞
〈x,T ∗λh〉 = 〈x, h〉 , 0 . (8)

Since Px ∈ Fix(Θ), the formula (8) shows that Fix(Θ) separates Fix(Θ∗).

�
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CHAPTER 5

LR-NETS OF MARKOV OPERATORS IN L1-SPACES

In this chapter, we investigate LR-nets of Markov operators in L1-spaces. In the first section,

we give the conditions for strong convergence of LR-nets of Markov operators. Then the

asymptotic stability and Lasota criteria are discussed.

5.1 The main result

The main goal of the section is to study the strong convergence of LR-net of Markov operator

in L1-spaces. The result has first given by Emelyanov and Wolff [11] for single Markov

operator T on L1 space. Then Alpay, Binhadjah, Emelyanov and Ercan [2] generalized the

result for positive power bounded operators in KB-spaces.

The following theorems are necessary for the proof of the Theorem 54 in this section. The

first theorem present property of positive projections defined on Banach lattices.

Theorem 52 [32, Prop III,11.5] Let P be a positive projection in L(E) where E is any Banach

lattice. The range P(E) is a Riesz space under the order induced by E and a Banach lattice

under a norm equivalent to the norm induced by E. If P is strictly positive, then P(E) is a

Riesz subspace of E.

Therefore Fix(Θ) is a Banach lattice under a norm equivalent to the norm induced by E := L1.

Additionally, by Kakutani theorem which is the statement that a Banach lattice is an AL-space

if and only if it is Riesz isomorphic to L1(µ). Because of the additivity of the norm on Fix(Θ),

it is itself an L1-space.
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Moreover the following theorem gives a condition under which an Archimedean Riesz space

is finite dimensional [1].

Theorem 53 (Judin) If every subset of pairwise disjoint elements in an Archimedean Riesz

space E is finite then E is Riesz isomorphic to some Rn.

In the mean time, we can state our main theorem in this chapter. Note that the preceding of

the following theorem [11, Thm 1] is generalized in [2] to Cesàro averages of a positive power

bounded operator in arbitrary KB-space (see [2, Thm 1, Thm 2]).

Theorem 54 Let Θ = (Tλ)λ∈Λ be a LR-net of Markov operators in E := L1(Ω,Σ, µ). Then the

following assertions are equivalent:

(i) there exist a function g ∈ L1
+ and a real η, 0 ≤ η < 1, such that

lim
λ→∞

∥∥∥∥(Tλ f − g)+

∥∥∥∥ ≤ η (∀ f ∈ D); (1)

(ii) the net Θ is strongly convergent and dim Fix(Θ) < ∞ .

Proof: By the remark after the definition of LR-nets, we may assume that the Markov LR-net

Θ contains the identity operator.

(ii)⇒(i): For the first assertion, we show that Θ converges strongly in the first step. By

Theorem 51, it is enough to check that Fix(Θ) separates Fix(Θ∗) , more precisely for every

0 , ψ ∈ Fix(Θ∗), there exists a vector 0 , w ∈ Fix(Θ) which satisfies 〈ψ,w〉 , 0.

Let 0 , ψ ∈ E∗ = L∞(Ω,Σ, µ), T ∗λψ = ψ for all λ ∈ Λ. We may assume ‖ψ+‖ = ‖ψ‖ = 1.

Take some f ∈ E which satisfies ‖ f ‖ = 1 and 〈ψ+, f 〉 ≥ 1 − ε for ε := (1 − η)/3. We have

‖ | f | ‖ = ‖ f ‖ = 1 and

1 ≥ 〈|ψ|, | f |〉 ≥ 〈ψ+, | f |〉 ≥ 〈ψ+, f 〉 ≥ 1 − ε.

Consequently

〈ψ, | f |〉 = 〈2ψ+, | f |〉 − 〈|ψ|, | f |〉 ≥ 2(1 − ε) − 1 = 1 − 2ε.

Let f ′′ ∈ E∗∗ be a w∗-cluster point of the net (Tλ(| f |))λ∈Λ. This cluster point exists because of

Banach-Alaoglu Theorem. Then 〈Tλ| f |, x〉 → 〈 f ′′, x〉, 〈(I − Tµ) ◦ Tλ| f |, x〉 → 〈(I − Tµ) f ′′, x〉
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and by (LR 3), 〈(I−Tµ)◦Tλ| f |, x〉 → 0. Therefore f ′′ satisfies Tµ f ′′ = f ′′ for arbitrary µ ∈ Λ.

By assumption, we obtain

lim
λ→∞

dist(Tλ(| f |), [0, g]) ≤ η

and order interval [0, g] is weakly∗ compact in E. Hence

f ′′ ∈ [0, g] + ηBE∗∗ ⊆ E + ηBE∗∗ ,

where BE∗∗ denotes the unit ball of E∗∗. Since the dual to any normed lattice is Dedekind

complete, any band in a Dedekind complete vector lattice is a projection band and any AL-

space is KB-space, E is a projection band in E∗∗ (see [1, Thm. 14.12]). Denote by P the band

projection P : E∗∗ → E. Then (I − P) f ′′ ∈ ηBE∗∗ , and

〈ψ, P f ′′〉 = 〈ψ+, P f ′′〉 − 〈ψ−, P f ′′〉 =

〈 f ′′, ψ+〉 − 〈(I − P) f ′′, ψ+〉 − 〈ψ−, P f ′′〉 ≥

〈 f ′′, ψ〉 − η = 〈ψ, | f |〉 − η ≥ 1 − 2ε − η = ε > 0 . (2)

It follows from (2) that P f ′′ , 0. Since f ′′ is a w∗-cluster point of the net (Tλ(| f |))λ∈Λ,

P f ′′ > 0. For any ζ, µ ∈ Λ, we have

Tζ ◦ P f ′′ = Tζ ◦ P ◦ T ∗∗µ f ′′ ≥ Tζ ◦ P ◦ T ∗∗µ ◦ P f ′′ =

Tζ ◦ P ◦ Tµ ◦ P f ′′ = Tζ ◦ Tµ ◦ P f ′′ .

In particular, for Tζ = IE , we obtain

P f ′′ ≥ Tµ ◦ P f ′′ (∀µ ∈ Λ) . (3)

Since Tµ is a Markov operator and P f ′′ ≥ 0, it follows from (3) that

Tµ(P f ′′) = P f ′′ (∀µ ∈ Λ) . (4)

Clearly 〈ψ, P f ′′〉 > 0, therefore there exists a vector w ∈ Fix(Θ), namely w = P f ′′, which

satisfies 〈ψ,w〉 , 0. By Theorem 51, the net Θ converges strongly.

The space Fix(Θ) is an L1-space as the range of a Markov projection. By the condition (1),

the inequality

‖(y − g)+‖ = lim
λ→∞

∥∥∥∥(Tλy − g)+

∥∥∥∥ ≤ η (∀y ∈ D ∩ Fix(Θ))
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holds. Since ‖x‖ = ‖(x − z)+‖ + ‖x ∧ z‖ for all x, z ∈ L1
+, we obtain

‖y ∧ g‖ ≥ 1 − η > 0 (∀y ∈ D ∩ Fix(Θ)).

Hence there exist at most finitely many pairwise disjoint densities in Fix(Θ). Thus dim Fix(Θ) <

∞.

(ii)⇒(i): If dim Fix(Θ) < ∞ there exists a family of pairwise disjoint densities u1,u2,...,up

such that

Fix(Θ) = span{u1, u2, ..., up} .

Denote g := u1 + u2 + · · ·+ up . Take a density f , then P f := lim
λ→∞

Tλ f is a linear combination

of u1, u2, ..., up since P f ∈ Fix(Θ). In view of pairwise disjointness of densities u1,u2,...,up ,

we obtain

P f =

p∑
i=1

αiui ≤

p∑
i=1

ui = g .

Thus

lim
λ→∞

∥∥∥∥(Tλ f − g)+

∥∥∥∥ =
∥∥∥∥(P f − g)+

∥∥∥∥ = 0 (∀ f ∈ D) ,

which completes the proof.

�

5.2 Asymptotic stability of Markov nets

The section is reserved for asymptotic stability in terms of lower bounds. The first theorem is

well known as Lasota’s lower bound criterion of asymptotic stability of Markov semigroups.

In addition we discuss a theorem of Komornik and Lasota [19] for LR-nets. The following

definitions are motivated by the terminology used in the Lasota-Mackey [22].

Definition 55 Let Θ = (Tλ)λ∈Λ be a Markov net in L1(Ω,Σ, µ). We call Θ is asymptotically

stable whenever there exists a density u such that

lim
λ→∞
‖Tλ f − u‖ = 0 (∀ f ∈ D). (5)
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Definition 56 A function h ∈ L1
+ is called a lower-bound function for Θ if

lim
λ→∞
‖(h − Tλ f )+‖ = 0 (∀ f ∈ D). (6)

We say that h is nontrivial if h , 0. Note that any lower-bound function has the norm at most

one.

The main result of this section is the following theorem which generalizes the main result of

the paper [11] on Cesàro averages of Markov semigroups (see results on Markov semigroups

[23, Thm. 2.], [20, Thm. 1.1.], [21, Cor. 1.4.]) to an arbitrary Markov LR-net.

Theorem 57 Let Θ = (Tλ)λ∈Λ be an LR-net of Markov operators in E := L1(Ω,Σ, µ). Then

the following assertions are equivalent:

(i) Θ is asymptotically stable.

(ii) There exists a nontrivial lower-bound function for Θ.

Proof: (i) ⇒ (ii): Since Θ is asymptotically stable, there exists a density u satisfying

lim
λ→∞
‖Tλ f − u‖ = 0 for every f ∈ D. Obviously, u is a non-trivial lower-bound function for Θ.

(ii)⇒ (i): Let 0 , h ∈ E+ be a lower-bound function for Θ. Then

lim
λ→∞

‖(Tλ f − h)+‖ ≤ η (∀ f ∈ D) ,

with η := 1 − ‖h‖. In view of Theorem 54, the net Θ converges strongly and dim Fix(Θ) :=

p < ∞. Theorem 51 implies that

E = Fix(Θ) ⊕
⋃
λ∈Λ

(I − Tλ)L1.

The subspace Fix(Θ) of E is an L1-space as the range of a Markov projection, and hence it

possesses a linear basis {ui}
p
i=1 which consists of pairwise disjoint densities. Since Tλui = ui

for all λ ∈ Λ,

‖(h − ui)+‖ = lim
λ→∞
‖(h − Tλui)+‖ = 0 .

Therefore

ui ≥ h > 0 (i = 1, ..., p) . (7)

Since the family {ui}
p
i=1 consists of pairwise disjoint densities, the condition (7) ensures

dim Fix(Θ) = 1 .
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Now, E = IR · u1 ⊕ span
⋃
λ∈Λ(I − Tλ)L1 and hence

lim
λ→∞

Tλ f = u1

for every density f , since Θ is a Markov LR-net.

�

The next simple proposition provides us with examples of Markov LR-nets which need not to

be T -ergodic nets. We remark that the assertion below is trivial, whenever the Markov net is

an abelian operator semigroup considered with natural ordering (see Example 36).

Proposition 58 Every asymptotically stable Markov net is an LR-net.

Proof: Let Θ = (Tλ)λ∈Λ be a Markov net in L1 such that there exists a density u such that

lim
λ→∞
‖Tλ f − u‖ = 0 (∀ f ∈ D). (8)

Since any Markov net is equi-continuous, we need to check only conditions (LR2) and (LR3)

of Definition 27. Obviously, it is enough to prove these conditions for an arbitrary density x.

Fix a µ ∈ Λ and take an x ∈ D. Denote z := (I − Tµ)x, then ‖z+‖ = ‖z−‖ since Tµ is a Markov

operator. Thus we obtain

lim
λ→∞

Tλ ◦ (I − Tµ) x = lim
λ→∞

Tλ(z+ − z−) =

lim
λ→∞

Tλ(z+) − lim
λ→∞

Tλ(z−) = ‖z+‖ · u − ‖z−‖ · u = 0 ,

which gives (LR2). Moreover,

lim
λ→∞

(I − Tµ) ◦ Tλ x = (I − Tµ) lim
λ→∞

Tλ x = (I − Tµ) u = 0 .

So (LR3) is also satisfied.

�
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5.3 The Extension of Lasota’s stability criterion to an arbitrary abelian Markov

semigroup

The Lasota’s famous criterion of asymptotic stability says that a one-parameter Markov semi-

group is asymptotically stable if and only if there is a nontrivial lower-bound function for

this semigroup (see, for example [20, Thm.1.1.], [22, Thm.5.6.2 and Thm.7.4.1] and [12,

Thm.3.2.1]). It is worthy of note that this criterion, in the case of Frobenius-Perron operators,

goes back to the work of A. Lasota and J. A. Yorke [23, Thm. 1, Thm. 2] We prove Theorem

46 which generalizes Lasota’s lower-bound criteria [20, Thm.1.1.] to abelian Markov semi-

groups. In this section, we always assume that an abelian Markov semigroup is an operator

net with respect to the natural ordering mentioned in Example 36.

Theorem 59 Let Θ = (Tλ)λ∈Λ be an abelian Markov semigroup in L1. Then the following

assertions are equivalent:

(i) Θ is asymptotically stable.

(ii) There exists a nontrivial lower-bound function for Θ.

The proof of this theorem is postponed to the end of the section. What may happened in the

case of arbitrary non-abelian Markov semigroup is not known.

The following lemma is an important step in the proof of Theorem 59.

Lemma 60 Let Θ = (Tλ)λ∈Λ be an abelian Markov semigroup in L1 possessing a nontrivial

lower-bound function then Θ is an LR-net.

Proof: Let 0 , h ∈ L1
+ be a nontrivial lower bound function for Θ, then obviously ‖h‖ ≤ 1.

As in the proof of Proposition 58, it is enough to check conditions (LR2) and (LR3), moreover,

since Θ is abelian, it suffices to prove (LR2) only. Thus we have to prove the following formula

lim
λ→∞
‖Tλ ◦ (I − Tµ) f ‖ = 0 (∀µ ∈ λ, f ∈ L1) .

Obviously, for any f ∈ L1, the vector (I − Tµ) f belongs to L1
0, therefore it is enough to prove

lim
λ→∞
‖Tλz‖ = 0 (∀z ∈ L1

0) . (9)
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Take an arbitrary z ∈ L1
0. Write z in the form

z = 2−1‖z‖(y1 − y2) ,

where y1 = 2 · ‖z‖−1 · z+, y2 = 2 · ‖z‖−1 · z−. Therefore y1 and y2 are densities. Since h is a lower

bound function for the Markov semigroup Θ, there exists an λ1 ∈ Λ such that, the following

‖(h − Tλy1)+‖ ≤ 4−1‖h‖ & ‖(h − Tλy2)+‖ ≤ 4−1‖h‖ (10)

holds for every λ � λ1. The formula (10) can be rewritten as

‖Tλy1 ∧ h‖ ≥
3
4
‖h‖ & ‖Tλy1 ∧ h‖ ≥

3
4
‖h‖ (∀λ � λ1) . (11)

It follows from (11) that ‖Tλy1 ∧ Tλy2‖ ≥ 1/2 for all λ � λ1. Hence

‖Tλy1 − Tλy2‖ ≤ 2 − 2−1‖h‖ (∀λ � λ1) ,

and

‖Tλz‖ ≤ (1 − 4−1‖h‖)‖z‖ (∀λ � λ1) .

Replacing z with Tλ1z ∈ L1
0 and repeating the above arguments gives an element λ2 ∈ Λ

satisfying

‖Tλ ◦ Tλ1z‖ ≤ (1 − 4−1‖h‖)‖Tλ1z‖ (∀λ � λ2) .

By induction, we obtain a sequence (λn)∞n=1 ⊆ Λ satisfying

‖Tλ ◦ Tλn−1z‖ ≤ (1 − 4−1‖h‖)‖Tλn−1z‖ (∀λ � λn) (12)

for every n. It follows from (12) that

‖Tλz‖ ≤ ‖Tλn ◦ Tλn−1 . . . ◦ Tλ1z‖ ≤

(1 − 4−1‖h‖)n · ‖z‖ (∀λ � λ1 + λ2 + . . . + λn) . (13)

Since ‖h‖ > 0, we obtain limλ→∞ ‖Tλz‖ = 0, which is exactly the formula (9). The proof is

completed.

�

Now we are able to prove the main result of the section.
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Proof of Theorem 46: (i) ⇒ (ii): If the Markov semigroup Θ is asymptotically stable

then it is an LR-net by Proposition 58. The existence of nontrivial lower-bound function for

Θ follows now from Theorem 57.

(ii) ⇒ (i): Suppose that there exists a nontrivial lower-bound function for Θ. Then Θ is an

LR-net by Lemma 60, and the asymptotic stability of Θ follows from Theorem 57.

�
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