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                                    ABSTRACT 
 

 

DETECTION AND TRACKING OF DIM SIGNALS FOR UNDERWATER 

APPLICATIONS 

   

 

Şengün Ermeydan, Esra  

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mübeccel Demirekler  

 

July 2010, 86 pages  

 

  

Detection and tracking of signals used in sonar applications in noisy environment 

is the focus of this thesis. We have concentrated on the low Signal-to-Noise Ratio 

(SNR) case where the conventional detection methods are not applicable. 

Furthermore, it is assumed that the duty cycle is relatively low. In the problem 

that is of concern the carrier frequency, pulse repetition interval (PRI) and the 

existence of the signal are not known. The unknown character of PRI makes the 

problem challenging since it means that the signal exists at some unknown 

intervals. A recursive, Bayesian track-before-detect (TBD) filter using particle 

filter based methods is proposed to solve the concerned problem. The data used by 

the particle filter is the magnitude of a complex spectrum in complex Gaussian 

noise. The existence variable is added in the design of the filter to determine the 

existence of the signal. The evolution of the signal state is modeled by a linear 

stochastic process. The filter estimates the signal state including the carrier 

frequency and PRI. Simulations are done under different scenarios where the 

carrier frequency, PRI and the existence of the signal varies. The results 

demonstrate that the algorithm presented in this thesis can detect signals which 

cannot be detected by conventional methods. Besides detection, the tracking 

performance of the filter is satisfying.   

  

Keywords: Track-before-detect (TBD), particle filter, Gaussian, sonar 
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        ÖZ  
 

 

SUALTI UYGULAMALARI İÇİN ZAYIF İŞARETLERİN TESPİT VE TAKİBİ  

  

 

Şengün Ermeydan, Esra  

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü  

Tez Yöneticisi: Prof. Dr. Mübeccel Demirekler  

 

Temmuz 2010, 86 sayfa  

  

  

Sonar uygulamalarında kullanılan sinyallerin gürültülü ortamda tespiti ve takibi 

bu tezin temel konusudur. Biz geleneksel tespit yöntemlerinin uygulanabilir 

olmadığı düşük Sinyal-Gürültü-Oranı (SNR) durumuna odaklandık. Dahası, 

doluluk-boşluk oranının göreceli olarak düşük olduğu varsayıldı. Söz konusu 

problemde, taşıyıcı frekansı, darbe tekrarlama aralığı ve sinyalin bulunup 

bulunmadığı bilinmemektedir. Darbe tekrarlama aralığının bilinmemesi durumu 

problemi daha da zorlaştırmaktadır çünkü bu durum sinyalin bazı bilinmeyen 

aralıklarla ortaya çıkması manasına gelmektedir. Problemi çözmek için, bir 

özyineli, Bayesian, parçacık süzgeç tabanlı yöntemleri kullanan tespitten önce 

takip süzgeci önerilmektedir. Parçacık süzgeci tarafından kullanılan veri 

kompleks Gauss gürültü içinde kompleks spektrumun büyüklüğüdür. Sinyalin 

varlığını belirleyebilmek için süzgecin tasarımına varlık değişkeni eklenmektedir. 

Sinyal durumunun evrimi doğrusal stokastik süreç ile modellenmektedir. Süzgeç, 

taşıyıcı frekansını ve darbe tekrarlama aralığını içeren sinyalin durumunu tahmin 

etmektedir. Sinyalin taşıyıcı frekansının, darbe tekrarlama aralığının ve sinyalin 

var olup olmadığı durumlarının değiştiği senaryolar altında benzetimler 

yapılmaktadır. Sonuçların gösterdiği gibi bu tezde sunulan algoritma geleneksel 

yöntemlerle tespit edilemeyen sinyalleri tespit edebilmektedir. Tespitin yanı sıra, 

süzgecin takip performansı beklentileri karşılamaktadır. 

 

Anahtar Kelimeler: Tespitten önce izleme, parçacık süzgeci, Gauss, sonar 
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1 

CHAPTER 1  

 

 

                           INTRODUCTION 

 

 

 

1.1 General Information 

Detection and tracking are important subjects that are extensively studied in the 

literature. In this thesis, detection will mean deciding whether the received signal is 

emitted from a dynamic system such as radar, sonar etc. or simply represents the 

effects of interference which is referred as noise. Tracking is the process of 

extracting the information about the detected system such as its carrier frequency, 

pulse repetition interval etc. based on measurements. In the conventional approach, 

the detection and tracking is done by thresholding the output of a signal processing 

unit of a surveillance sensor [6].  

 

However, the new technologies in electronics and the noisy environment that they 

placed harden the detection of enemy targets. The signals that are emitted from 

most of the radars and sonar have low duty cycle and these signals most of the time 

have low SNR (Signal to Noise Ratio).  

 

The aim of this thesis is to detect and track constant PRI signals that are used in 

sonar applications. Since sonar applications are of our main concern we assume that 

computation of FFT is feasible so the frequency domain representation of the signal 

is used in detection and tracking. In our application we assume that the signal 

consists of a single sinusoid, so is narrow band and has a known duration. This 

framework may be considered as a restrictive one compared to detection and 

tracking of wide band signals like linear FM or non constant PRIs like staggered 

signals. However, the problem is interesting due to the challenge of detecting and 
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tracking of very low SNR signals with relatively short duration. An example of the 

signal that we used in our experiments is given in Figure 1.1. The simulated data 

which will be used as the input to the filter is the magnitude of complex spectrum 

in complex Gaussian noise. The frequency domain representation of the signal in 

noise with peak SNR of 9.76 dB and average SNR of -8.96 dB, is given in Figure 

1.4. The envelope of complex Gaussian noise is Rayleigh distributed and the 

magnitude of a signal in complex Gaussian noise is Ricean distributed [16]. Our 

aim is to detect and track this signal with low SNR. Since SNR is very low the 

problem will do the detection/tracking in Track Before Detect (TBD) sense. 

Furthermore because of the uncertainty of the existence of the signal as well as the 

uncertainty of the parameters of it we have modeled and solved the problem using 

particle filter. The Rayleigh characteristic of noise and the nonlinearity in the 

measurement model are also motives to prefer particle based filter.    
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Figure 1.1 The signal in time domain 
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Figure 1.2 The signal in time domain where the carrier frequency 

is 20fc kHz  and the signal is sampled at 50 KHz 
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Figure 1.3 The signal in time domain where the carrier frequency is 

20fc kHz  and the signal is sampled at 200 KHz 
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Figure 1.4 The entire simulated data with 2 0.1w
, the signal amplitude is 

0.01amp , the carrier frequency 20fc kHz , the PRI 1.5secPRI and the 

pulse width 20msecPW , the sampling frequency 50fs kHz  

 

1.2 Scope of the Thesis 

In this study, a particle filter solution to low SNR signal detection and tracking is 

proposed. Proposed method is based on track-before-detect (TBD) approach. The 

thesis is composed of six chapters. In Chapter 2, the theoretical background of the 

particle filter and the track-before-detect algorithm is explained briefly.  

 

In Chapter 3, the proposed particle filter based TBD algorithm is explained. The 

considered problem is that the carrier frequency, pulse repetition frequency (PRI) 

and the existence of the signal is not known. The thresholding process that is done 

in the conventional detection methods is not applicable since the aim is to detect 

low SNR signals.  
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In Chapter 4, the detection and tracking of signals emitting from frequency agile 

systems and PRI agile systems are investigated. Frequency agility is the ability to 

change the carrier frequency of the system; this technique is mainly used to account 

for jamming, and mutual interference with friendly sources. Some radars or sonar 

change their pulse repetition frequency (PRF), to benefit from the advantages of 

high and low PRF.  

 

Conclusions that are obtained from this study and the future work are given in 

Chapter 5.  
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CHAPTER 2  

 

 

                                  BACKGROUND 

 

 

 

2.1 Bayesian Estimation 

A class of real world estimation problems is to get information about some 

parameter vector x  given some observations y  about that parameter vector. If 

there is some function that relates y  to x  such that ( )y h x , then the information 

about x  can be deduced by using ( )x g y  where 
1( ) ( )g y h y . This problem is 

known as parameter inversion (or parameter estimation) in the literature [1]. 

 

However in many practical situations, parameter (or state) vector x  and 

observations are random quantities. For these cases the problem of making 

interference about x  from observations y  is solved by Bayesian Estimation. In the 

probability theory, any information about state x  considering observations y  is 

obtained by using: 

( | )p x y : conditional probability density  function     

(pdf) of x  given y    

 

(2-1) 

 

 

Probability density functions constitute a self-consistent mathematical modeling of 

the information about a parameter that allows making various inferences [4]. In the 

literature; mean, mode, median, and higher order moment estimates are used to 

extract a parameter given its pdf. The Bayes‟ theorem is used to obtain ( | )p x y :  

( | ) ( )
( | ) =

( )

p y x p x
p x y

p y
 (2-2) 
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In this equation, the pdf ( | )p x y  is also called the posterior density and ( )p x  is 

called the prior density.  The posterior density is used to represent what is known 

about x  after the observation y . ( | )p y x  is the conditional density of y  given x  

and ( )p y  is the marginal density of the observations and act as a normalization 

constant. ( )p y   is calculated by the following expression: 

( ) ( | ) ( )p y p y x p x dx   

 

(2-3) 

 

2.1.1 Importance Sampling 

In many problems, the posterior density ( ) ( | )x p x y  cannot be solved 

analytically. However, a numerical approximation can be obtained by using a large 

set of samples drawn from such a distribution; this approach is called Monte Carlo 

(MC) methods in the literature. Drawing samples from an arbitrary probability 

density function is generally not possible. So some sampling techniques are 

developed to overcome this difficulty. One of these sampling techniques is 

importance sampling.  In this technique, another density  ( )q x  which is easy to 

generate independent samples from is used as importance or proposal density.  The 

importance or proposal density should satisfy the following condition: 

                ( ) 0 ( ) 0x q x  for all xn
x R      

 

(2-4) 

 
Then the Monte Carlo approximation for ( )x with N samples is: 

( )

( )

1

( )

1

( ) ( )

ˆ ( )

( )

i

N
i

x
i

N N
i

i

x dx

dx

x

  

 

(2-5) 

 

where 
( ); 1, ,ix i N  are independent samples distributed according to ( )q x  

and
( )( )ix  are the importance weights defined as: 

( )
( )

( )

( )
( )

( )

i
i

i

x
x

q x
  

 

(2-6) 
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As it is seen the samples that should represent ( )x  are drawn from another density 

q(x) but are weighted according to the likelihood ratio values of them in two 

densities.  

 

If the system is dynamic which means that the state x  evolves with time, then the 

posterior density is represented as ( )kx . In most of the situations, 1( )kx  is 

calculated by using the new measurement and considering ( )kx .  In order to find 

samples which will be used to approximate 1( )kx , samples of time k  are 

recursively re-weighted based on measurement at time 1k . In the literature, the 

tools which use this procedure to estimate the posterior density sequentially and 

recursively as time evolves are called as Particle filters.  

2.1.2 State Space Representation 

The track-before-detect (TBD) problem which will be the focus of this thesis can be 

defined by considering the evolution of the state sequence ,kx k N  according to 

the following equation. 

1( , )k k k kx f x w   

 

(2-7) 

 In this equation kw , called process noise sequence, is a sequence of independent 

random variables with a known distribution. It is assumed that the initial state, state 

at 0k  has the prior density 0( )p x . Function kf  is assumed to be known. The 

objective is to recursively estimate the probability density function of the state kx  

from the measurements. The relation between the state kx  and the measurement at 

time k  defined as: 

( , )k k k ky h x v   

 

(2-8) 

 
where kv  is a sequence of independent random variables with a known distribution 

called measurement noise sequence. kh defines the measurement equation and is 

assumed to be known. The process and measurement noise sequences and the initial 

state are assumed to be independent.  
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2.1.3 Particle Filter 

The discussion and derivations about the recursive particle filter given here is based 

on [2]. First of all, it is required to introduce the cumulative state and measurements 

up to time  k  as ; 0, ,k jX x j k  and ; 0, ,k jY y j k . As it is 

mentioned earlier, Bayesian approach makes an interference about the state kx , 

given the measurements up to time k . So the aim is to calculate the posterior 

distribution of kx  conditional on the measurements up to time k , i.e., ( | )k kp x Y .  

The joint posterior density is denoted by ( | )k kp X Y . 
1

,
N

i i

k k i
X  denotes a set of 

weighted particles that characterizes the joint posterior ( | )k kp X Y , where 

, 1, ,i

kX i N  is a set of support points with the associated weights 

, 1, ,i

k i N . In this notation the weights are normalized such that
1

1
N

i

k

i

. If 

the Monte Carlo approach mentioned above is used, the joint posterior density is 

approximated as follows: 

1

( | ) ( )
N

i i

k k k k k

i

p X Y X X   

 

(2-9) 

  

The normalized weights i

k
 are chosen according to the principle of importance 

sampling which is mentioned before. If the samples i

kX  are drawn from the 

importance density ( | )k kq X Y , then according to (2-6): 

( | )

( | )

i
i k k

k i

k k

p X Y

q X Y
  

 

(2-10) 

 

 

If at time step 1k  samples constituting an approximation to 1 1( | )k kp X Y are 

available, then as the measurement ky is received at time k , ( | )k kp X Y  can be 

approximated with a new set of samples. If the importance density is chosen to 

factorize such that: 
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1 1 1( | )  ( | , ) ( | )k k k k k k kq X Y q x X Y q X Y

  

 

(2-11) 

 

then the samples ~ ( | )i

k k kX q X Y  can be obtained by including the new state 

1~ ( | , )i

k k k kx q x X Y  to the existing samples  
1 1 1~ ( | )i

k k kX q X Y . It is important to 

get the weight update equation. In order to derive that equation the distribution 

( | )k kp X Y  can be expressed in terms of the data likelihood and prior distribution: 

                 1 -1

1

( | , ) ( | )
( | ) 

( | )

k k k k k
k k

k k

p y X Y p X Y
p X Y

p y Y
 

1 1 1 1 1

1

( | , ) ( | , ) ( | )

( | )

k k k k k k k k

k k

p y X Y p x X Y p X Y

p y Y
 

1
1 1

1

( | ) ( | )
 ( | )

( | )

k k k k
k k

k k

p y x p x x
p X Y

p y Y
 

                        1 1 1( | ) ( | ) ( | )k k k k k kp y x p x x p X Y  

 

 

 

 

 

(2-12) 

 

 

Then using (2-11) and (2-12) in (2-10) , the weight update equation can be written 

as: 

 

1 1 1

1 1 1

( | ) ( | ) ( | )

 ( | , ) ( | )

i i i i
i k k k k k k

k i i i

k k k k k

p y x p x x p X Y

q x X Y q X Y
 

                             1
1

1

( | ) ( | )

 ( | , )

i i i
i k k k k

k i i

k k k

p y x p x x

q x X Y
  

 

 

 

 

(2-13) 

 

 

In many applications, it is only required to estimate ( | )k kp x Y  in each time step, 

considering this the weight update equation can be modified as: 

1
1

1

( | ) ( | )

 ( | , )

i i i
i i k k k k

k k i i

k k k

p y x p x x

q x x y
  

 

(2-14) 

 
 

With the help of the modified weights the posterior density can be approximated as 

given in Equation (2-15). 
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1

( | ) ( )
N

i i

k k k k k

i

p x Y x x   

 

(2-15) 

  

Considering sequential measurements, the recursive propagation of the weights i

k
 

and support points i

kx  the algorithm is defined as the Sequential Importance 

Sampling (SIS) particle filtering. 

 

In the ideal case, the importance density function should be the posterior density 

itself. If the importance function of the form (2-11) is used, it has been shown that 

the variance of the importance weights can only increase over time [3]. This 

increase in variance decreases the accuracy and defined as the degeneracy 

phenomenon in particle filter. In real world applications, after a certain number of 

recursions, all but one particle will have extremely small normalized weights. A 

suitable measure of degeneracy of an algorithm is the effective sample size effN  

and estimated as [3]:  

2

1

1

( )
eff N

i

k

i

N   

 

(2-16) 

 

where i

k
is the normalized weight obtained using (1.16). The value of effN  lies in 

the interval 1 effN N , so a small effN  indicates severe degeneracy. 

2.1.4 Resampling Process 

In order to overcome the degeneracy of samples in SIS, resampling process is 

applied. Resampling is a crucial step in particle filtering algorithms when effN  falls 

below a threshold thrN  which is predetermined [8]. The aim of the resampling 

process is to eliminate particles with low importance weights and replicate samples 

with high importance weights. Resampling involves a mapping of weighted 

particles ,i i

k kx  into a new set of particles ˆ ,1i

kx N  with uniform weights. 

Several resampling schemes have been proposed in the literature, the pseudo code 

of one of such resampling algorithms that is used in this thesis is given in Table 2.1. 
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Table 2.1 Resampling Algorithm 

 

 Initialize the cumulative sum of weights(CSW): 1

1 kc  

 FOR 2:i N  

o Construct CSW: 
1

i

i i kc c  

 End FOR 

 Start at the bottom of the CSW: 1i  

 Draw a starting point 
1

1
~ (0, )u U

N
. 

 FOR 1:j N  

o Move along the CSW: 
1

1 ( 1)ju u N j  

o WHILE j iu c  

 1i i  

o END WHILE 

o Assign ˆ i

k kx x  and ˆ 1i

k N  and obtain the resampled set 

ˆ ,1i

kx N . 

 END FOR        
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2.1.5 Selection of Importance Density 

One of the most critical issues in the design of the particle filter is the choice of the 

importance density
1( | , )i

k k kq x x y . In this part, two standard choices are briefly 

explained. 

 

The optimal importance density function that minimizes the variance of the 

importance weights, conditioned upon 
1

i

kx  and ky  has shown to be [8] : 

1 1( | , ) ( | , )i i

k k k opt k k kq x x y p x x y  

1 1

1

( | , ) ( | )

( | )

i i

k k k k k

i

k k

p y x x p x x

p y x
  

 

 

 

(2-17) 

 
Then the particle weights will be:  

1 1( | )i i i

k k k kp y x   

 

(2-18) 

 
If the optimal importance density function is used, the importance weights at time 

k  can be computed before the particles are propagated to time k . 

 

In order to use the optimal importance function, it must be possible to sample from 

1( | , )i

k k kp x x y and evaluate
1( | )i

k kp y x . In the general case, either of these two 

may not be so easy [3].  

 

In many applications, a suboptimal choice of importance function is used. The most 

popular suboptimal choice is the transitional prior: 

1 1( | , ) ( | )i i

k k k k kq x x y p x x   

 

(2-19) 

 
If the transitional prior is used as importance density function, then the importance 

weights are calculated as: 

1 ( | )i i i

k k k kp y x   

 

(2-20) 

 
It is mentioned that if the optimal importance density function is used, the 

importance weights at time k  can be computed before the particles are propagated 

to time k . However, in the suboptimal choice computing the importance weights 



 

14 

before the propagation of the particles is not possible.  The pseudo code of the 

sequential importance resampling (SIR) filter algorithm is given in Table 2.2. 

 

Table 2.2 SIR Filter Algorithm 

Given the observed data ky  at k  , do 

 FOR 1:i N  

o Draw 
1~ ( | )i i

k k kx p x x  

o Calculate 1

1

( | ) ( | )

 ( | , )

i i i
i k k k k

k i i

k k k

p y x p x x

q x x y
 

 End FOR 

 Normalize the weights: 

1

i
i k

k N
j

k

j

 

 Calculate 
2

1

1

( )
eff N

i

k

i

N  

 IF eff thrN N  

o Resample ,i i

k kx  to obtain the new set of particles resampled set 

,1i

kx N . 

 END IF 
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2.2 Monte Carlo Markov Chain Methods 

Monte Carlo Markov Chain (MCMC) methods are used to simulate multivariate 

distributions using computer simulations. In MCMC, the goal is to construct a 

Markov Chain whose stationary distribution is the target density which is desired to 

simulate. (In Bayesian interference, the target density would typically a prior, ( )p x , 

or a posterior ( | )p x y , but MCMC can also be used in  non Bayesian contexts.) In 

other words, MCMC methods can be used to get samples from target distribution 

using an easy-to-sample distribution. One of the algorithms used in this respect is 

Metropolis-Hastings algorithm. 

2.2.1 Metropolis Hastings Algorithm 

The details of the Metropolis-Hastings (MH) algorithm that is given here follow 

[5]. Consider a Markov Chain whose stationary distribution is the target 

density ( )x ; ,x x  are states in the chain. It is assumed that ( | )q x x  is candidate-

generating density which is a function of both the current state x  and the proposed 

state x .  The candidate-generating density should satisfy the following relation: 

 

( | ) ( ) ( | ) ( )q x x x q x x x   (2-21) 

 Then there will be a factor ( | ) 1r x x  such that the above relation is balanced: 

 

( | ) ( ) ( | ) ( | ) ( )q x x x r x x q x x x   

 

(2-22) 

 
It is obvious that ( | )r x x  is obtained as: 

( | ) ( )
( | ) min 1,

( | ) ( )

q x x x
r x x

q x x x
  

 

(2-23) 

 
 

The pseudo-code of the MH algorithm is given in Table 2.3.  
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Table 2.3 Metropolis –Hastings Algorithm 

 Generate a candidate x  using ( | )q x x  and x . 

 Evaluate the acceptance probability  

                           
( | ) ( )

( | ) ( )

q x x x

q x x x
 

                           ( | ) min 1,r x x  

 Sample ~ (0,1)u U . 

 If ( | )u r x x , accept the move by seting x x , else reject it.                     

 

2.3 Track Before Detect (TBD) Algorithms 

In traditional tracking algorithms, the measurements are extracted by thresholding 

the output of a signal processing unit of a surveillance sensor [6]. Thresholding 

reduces the data flow and thus simplifies the tracking process. The probability of 

target detection and the probability of false alarms are determined by the choice of 

the detection threshold for a target of a certain signal-to-noise ratio (SNR).  

 

However, thresholding process can cause the elimination of the useful information. 

The loss of information is of little concern for high SNR targets, since good 

probability of detection can be achieved with a small false alarm rate. The 

development of the technology accelerated the implementation of low SNR targets 

such as stealthy military aircraft and cruise missiles. Using the unthresholded data 

for simultaneous detection and tracking of stealthy (dim) targets has a considerable 

advantage [7].   

 

The concept of supplying the tracker with all of the sensor data without applying a 

threshold is known in the literature as track-before-detect (TBD) approach. TBD 

approach improves the track accuracy and gives opportunity to track low SNR 
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targets. However, in TBD approaches the main difficulty is that the measurement is 

the whole sensor image so it is a highly nonlinear function of the target state. One 

way to overcome the problems is to discretise the state space. Several approaches 

for TBD have been developed using this method such as Hough Transform [6] , 

Bayesian estimator [9] and dynamic programming [7].  These methods operate on 

several scans of data, prohibit or penalize deviations from the straight-line motion; 

however using a discrete-state space in this approach requires enormous 

computational resources.  

 

Particle filter approach is proposed to be an alternative to discretising the state. As 

it is explained in the previous sections, the particle filter is a tool which uses Monte 

Carlo techniques to solve the estimation integrals that are intractable.  The 

application of particle filter to TBD problems are developed by a number of authors 

[2], [10] and [11]. 

 

Another approach to the TBD problems is the histogram probabilistic 

multihypothesis tracker, H-PMHT [12], [13]. The main difference between the H-

PMHT and the other TBD algorithms is that H-PMHT uses a parametric 

representation of the target pdf rather than a numerical one. The computational load 

is reduced significantly in this approach [14].  

 

In the following part, the brief information about the TBD algorithms is given.  

2.3.1 Hough Transform 

In Hough Transform, the measured data are transformed into stationary bins in 

target state space.  The bins generally represent the two normal parameters of a 

straight line. Extensions to other types of curves have been made in the literature, 

however it can be stated that the Hough transform is most applicable to straight-line 

targets. In the application of Hough Transform to the TBD problems, the straight 

line to be detected defines the target range as a function of time and is given by: 

cos sinR t  

 

(2-24) 
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(2-24) represents a mapping form the time-range space to the Hough parameter 

space ( , ) . The target motion which defines a line in the time-range domain, can 

also be defined by two constant parameters in Hough domain. The parameters are 

the angle  and the distance  from the origin to the line along the perpendicular 

shown in Figure 2.1 .  (2-24) is used to compute a value of  for each i . After a 

predetermined number of scans, detection is declared if the accumulated power 

exceeds a predetermined threshold in any  ( , )  bin. A detailed example of Hough 

Transform application to the TBD is given in [6].  

 

Figure 2.1 Hough Transform representation of range versus time [6] 

2.3.2 Dynamic Programming- Viterbi Algorithm 

As it is mentioned Hough Transform is mostly applicable to straight-line targets. 

The application of dynamic programming to TBD approach is more flexible and 

more readily available to maneuvering targets. Viterbi Algorithm (dynamic 

programming) is a maximum likelihood estimator for discrete states. The 

application of Viterbi algorithm to TBD is explained in [14]. The main task of the 

Viterbi algorithm is to find the most likely sequence of states. In other words, rather 

than accumulating the probability from alternate paths, Viterbi algorithm selects the 

single best path. One of the main advantages of this algorithm is that it always 
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produces an estimate consistent with the dynamic model. However, it requires high 

computation. 

2.3.3 Particle Filter 

A recursive Bayesian filter incorporates the complete data as a highly non-linear 

measurement, which can be readily implemented using particle filter techniques. In 

the particle filter algorithm, a binary existence variable, kE , is defined such that if 

0kE  then there is no target; if 1kE , then target exists. The algorithm makes a 

direct approximation of the target-state posterior ( | 1, )k k kp x E Y  and the existence 

probability ( | )k kp E Y .  

 

Two set of particles are constructed. The first set is the birth particles, they 

represent the case where the target did not exist in the data at time 1k  but it exists 

at time k ; in other words the birth particles estimates 1( | 1, 0, )k k k kp x E E Y . 

The second is called existing particles and they represent the case where the target 

has continued to exist in the data from time 1k  to k . The existing particles are 

used to estimate 1( | 1, 1, )k k k kp x E E Y . The algorithm declares a target detected 

when the existence probability is above a tunable threshold. The details of the 

algorithm are given in [11], [14].  

2.3.4 Histogram PMHT 

In H-PMHT algorithm, the superposition of power from the scattering sources is 

assumed and the received power in each sensor pixel is probabilistically associated 

with the target and clutter models. For each model, the individual quanta and their 

assignment weights are combined to form a single synthetic measurement and 

measurement covariance. These measurement and covariance are used by point-

measurement-based estimator. The application of H-PMHT to the TBD is detailed 

in [14]. 
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CHAPTER 3  

 

 

DETECTION AND TRACKING OF LOW SNR 

SIGNALS WITH TBD ALGORITHM 

 

 

 

3.1 Introduction 

In this thesis, a particle filter solution with track-before-detect (TBD) algorithm is 

used to detect signals that have low SNR. Particle filter based track-before-detect is 

developed in [10], [11] and [14]. However, all these works given in the literature 

are done for the purpose of tracking a dim target in an active way. The return signal 

exists at consecutive frames although it is very weak. The problem considered in 

this thesis is to detect signals in a very noisy environment for which the carrier 

frequency, pulse repetition interval (PRI) and the existence of the signal are not 

known. The unknown character of PRI makes the problem especially interesting 

since it means that the signal exists at some unknown intervals.  

 

The thresholding process that is done in the conventional detection methods is not 

truly possible for low SNR signals. For low SNR targets the threshold must be low 

to allow sufficient probability of detection. However, a low threshold gives a high 

rate of false detections; following that the tracking system form false tracks. An 

alternative method is the track-before-detect algorithms where a threshold is not 

used. A recursive, Bayesian track-before-detect filter implemented using particle-

based methods is the main focus of this thesis. The target existence and the 

measurements are modeled very similar to the models described in [11].  

 



 

21 

3.2 Signal Model 

In the concerned detection problem, the threat signals are pulsed and their existence 

interval, carrier frequency, PRI and energy are not known. Besides, the duty cycles 

of the signals are quite low.  

 

The signal state kx consists of the carrier frequency kfc , the Pulse Repetition 

Interval kPRI , the power kA  and the time of arrival of the pulse ktc . It is assumed 

that the time of arrival is related to the PRI of the signal. The evolution of the state 

is modeled by the linear stochastic process where 
T

k k k k kx fc PRI A tc : 

 

1

1

1

1

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1

k k

k k

k

k k

k k

fc fc

PRI PRI
w

A A

tc tc

 

 

 

 

(3-1) 

 

 

In this representation kw  is an independent, identically distributed Gaussian noise 

sequence with covariance matrix kQ . The covariance matrix kQ  is assumed to be 

diagonal and in our application we have selected the covariance matrix as: 

 

1 0 0 0

0 0.05 0 0

0 0 1 0

0 0 0 0

kQ  

 

 

 

(3-2) 

 

 

The diagonal covariance matrix indicates uncorrelated noises for these quantities. 

Explanation about the selection of the values used in the covariance matrix is given 

in Section 3.6.1.  

The existence of signal in the data is also determined by the system. The signal 

existence (presence) variable is represented by kE  where 1kE , if the signal is 

present, and 0kE  if there is no signal in the received data. The target existence is 
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modeled by a two-state Markov chain. It is assumed that transitional probabilities 

of the Markov chain are defined in terms of signal‟s “birth” ( bP ) and “death” ( dP ) 

probabilities as: 

 

                        11| 0b k kP P E E  

                        10 | 1d k kP P E E  

 

 

(3-3) 

 

 

The probability of staying alive is represented by 1 dP  and the probability of 

remaining absent is given by 1 bP . The signal existence probabilities evolve 

according to: 

 

                  1k kE E  where 
1

1

b b

d d

P P

P P
 

 

 

 

(3-4) 

 
 

The initial target existence probability is assumed to be known.  

 

„Time‟ is an important concept in this work. Discrete time is represented by a 

subscript k , however it may correspond to different real times for different 

particles that will be described later. To give better explanation for the time concept 

we will explain what actually is done during the process. The first step of the 

process is to take spectrogram of the signal for a time interval of τ0 seconds. That 

will be considered as a „measurement frame‟ of the system denoted as k  at a 

nominal or the smallest possible time interval τ0. The updating procedure of the 

filter by the measurement frame, however, is not done at each k  but according to 

the value of the PRI of the particular particle of interest. The recursive filtering 

solution is explained in detail at section 3.5.  

 

3.3 Measurement Model 

One of the most common techniques for analyzing a given signal is Fourier 

Transformation. The frequency components of the signal can be examined via 
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Fourier Transform. For stationary signals, the Fourier Transform gives enough 

information about the frequency spectrum. However, most of the signals in real life 

have frequency contents that change over time. The most frequently used time-

frequency representation of a signal is Short-Time Fourier Transform (STFT). In 

basic terms, STFT is a moving window Fourier Transform. The frequency content 

of a signal is examined as the time window is moved and a 2D time frequency 

distribution called the spectrogram is generated. As a result, the spectrogram gives 

information about the frequency content of the signal at different time instances 

[20].  

 

The measurement model is based on the assumption that the sensor provides the 

spectrogram of the data in noise. The spectrogram of the data is obtained basically 

in two processes. Firstly, the signal is windowed and following that the discrete 

Fourier transform is applied. The measurement model uses the magnitude of the 

spectrum in each DFT bin. The entire spectrum obtained for a certain interval of 

length τ0 is used as the measurement at discrete time k. As a result the measurement 

at time k is a matrix of size nxm where n is the number of frames that FFT is 

calculated in the time interval of length τ0 and m is the number of frequency bins. 

Length τ0 is selected considering the smallest possible value of PRI, since it is 

desired to have at most one pulse in one measurement frame. 

 

Measurement is associated with the signal‟s state as well as the existence of it so its 

model is given in Equation (3-5). ( , )i j

ky  is the data at measurement frame k  

indexed by bin ( , )i j . 

 

( , ) ( , )

( , )

( , )

( ) , ( 1)

, ( 0)

i j i j

k k k
i j

k i j

k k

W x V if signal exists E
y

V if signal does not exist E
 

 

 

(3-5) 

 
 

In (3-5), the function ( , ) ( )i j

kW x represents the signal after the windowing and DFT 

process, ( , )i j

kV  denotes the background noise, . denotes the magnitude. The 

central limit theory states that the background noise obeys a complex Gaussian 
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distribution [4]. It is assumed that the background noise has zero mean or mean is 

subtracted.  Therefore, ( , )i j

kV  is a zero mean identically and independently 

distributed complex random variable which is Gaussian with variance 22 w
.  

 

The peak Signal to Noise Ratio (SNR) is defined as: 

 

                      

2

2

( )
10log10

2

k

w

W x
SNR  

 

 

(3-6) 

 
 

The average Signal to Noise Ratio (SNR) is defined as: 

 

                      

2

2

( )
10log10

2

k

w

W x PW
SNR

PRI
 

 

 

(3-7) 

 
 

In the equation shown denoted as (3-7), PW  and PRI represent the pulse width 

and the pulse repetition interval of the signal respectively. 

 

In the track-before-detect applications considered in this thesis, the data forming the 

measurement, ky , is the magnitude of the discrete Fourier transform of a windowed 

sinusoid in Gaussian noise. An example of the measurement frames used for 

simulations in this thesis is shown Figure 3.2 and the time domain representation of 

that signal is given in Figure 3.1. In Figure 3.2, the signal is circled in red. The peak 

SNR is 19.3 dB and the average SNR is 0.6 dB for this case. The smallest possible 

PRI is 0.5sec  in the simulations; therefore τ0 is selected as 0.5sec .The distribution 

of the measurement data and the likelihood function are given in section 3.4.  
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Figure 3.1 The signal in time domain 
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Figure 3.2 The measurement frames, each corresponds to data of 0.5sec  
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3.4 PDF Constructions of the Particle Filter 

The distribution of the measurement data is modeled as explained in [16].  As it is 

stated, the measurement, ky , is the magnitude of the discrete Fourier transform of a 

windowed sinusoid in Gaussian noise. 

 

If there is a signal in the data, the intensity of each bin is Ricean distributed for 

which the likelihood function ( , )( | , 1)i j

k k kp y x E  is expressed as in Equation (3-8).  

 

( , )

22
( , ) ( , )( , ) ( , )( , )

02 2 2

( | , 1)

( )( )
exp

2

i j

k k k

i j i ji j i ji j
k kk kk

w w w

p y x E

y W xy W xy
I

 

 

 

 

(3-8) 

 

 

where 2

w
 is noise variance, 0 (.)I  is the modified Bessel function of first kind and 

of order zero. The function ( , ) ( )i j

kW x represents the signal after the windowing and 

DFT process, indexed by bin ( , )i j  and . denotes the magnitude. The measured 

intensity in bin ( , )i j  is denoted by ( , )i j

ky . 

 

If there is no signal in the data, in other words the data is only composed of noise, 

then the intensity in each bin is Rayleigh distributed.  The density function of the 

Rayleigh distribution ( , )( | 0)i j

k kp y E  can be written as: 

              

2
( , )( , )

( , )

2 2
( | 0) exp

2

i ji j
ki j k

k k

w w

yy
p y E  (3-9) 

 

 

The noise in each bin is assumed to be independent; therefore the complete density 

function is the product over all of the contributions from each bin. 
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( , )

1 1

( | , 1) ( | , )
N M

i j

k k k k k k

i j

p y x E p y x E  

              ( , )

1 1

( | 0) ( | )
N M

i j

k k k k

i j

p y E p y E  

 

(3-10) 

 

 

The likelihood ratio that will be used for the weights of the particles in the 

following sections is expressed as   ( , )( | , )i j

k k kl y x E : 

              
( , )

( , )

( , )

( | , 1)
( | , )

( | 0)

i j
i j k k k

k k k i j

k k

p y x E
l y x E

p y E
 (3-11) 

 

 

Using (3-16) and (3-15) ( , )( | , )i j

k k kl y x E  can be written as: 

              

2
( , ) ( , ) ( , )

( , )

02 2

( ) ( )
( | , ) exp

2

i j i j i j
ki j k k

k k k

w w

W x y W x
l y x E I  

 

(3-12) 

 

 

The complete likelihood ratio denoted as  ( | , )k k kL y x E  is defined as: 

              
( | , 1)

( | , )
( | 0)

k k k
k k k

k k

p y x E
L y x E

p y E
 (3-13) 

 

 

( | , )k k kL y x E  can be written as the product of the likelihood ratios in each bin: 

              
( , )

1 1

( | , ) ( | , )
N M

i j

k k k k k k

i j

L y x E l y x E  (3-14) 

 

where the number of bins of data in the i  and j directions are denoted as  N  and 

M respectively.  

 

3.5 The Bayesian Framework Approach to the Problem 

In this section, the problem of track-before-detect is formulated in the framework of 

recursive Bayesian estimation based on [11]. The aim is to find the joint posterior 
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pdf at time k  defined as  ( , | )k k kp x E Y  and it is assumed that the latest data frame 

ky  and the joint posterior pdf of the signal state and the existence of the signal at 

time 1k , denoted as 1 1 1( , | )k k kp x E Y  is known. It should be reminded that 

kY denotes all the measurements from time 1  up to time k . 

 

The aim of the track-before-detect filter is to find ( , | )k k kp x E Y  and the probability 

of existence ( 1| )k kP E Y .  The density denoted ( , | )k k kp x E Y  can be expressed as 

the product of two factors in Equation (3-15).   

 

         ( , | ) ( | , ) ( | )k k k k k k k kp x E Y p x E Y P E Y  

 

(3-15) 

 

  

It is obvious that the state related with the signal kx  is undefined if 0kE , 

therefore in the calculation of the update equation, the density that is of concern 

will be ( | 1, )k k kp x E Y .  

 

In the calculation of ( | )k kP E Y , the probability of existence ( 1| )k kP E Y  and the 

probability of absence ( 0 | )k kP E Y  are related by: 

 

          ( 0 | ) 1 ( 1| )k k k kP E Y P E Y  

 

(3-16) 

  

Therefore, it will be enough to calculate the probability of existence.  

3.5.1 The Signal State Density 

In this part, the signal state density denoted as ( | 1, )k k kp x E Y  is derived. The 

signal state density can be approximated as: 

1 1( | 1, ) ( | 1, 1, ) ( | 1, 0, )k k k k k k k k k k kp x E Y p x E E Y p x E E Y  

           

 (3-17) 
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In  (3-17), the posterior state density is written as a sum of two densities. The first 

one denoted as 1( | 1, 1, )k k k kp x E E Y  is called the existing density where a 

signal existed in the data at time 1k . The density denoted as 

1( | 1, 0, )k k k kp x E E Y  is called birth density where a signal has started to exist 

in the data between times 1k  and k . 

 

The existing density  1( | 1, 1, )k k k kp x E E Y  can be expanded using Bayes‟ rule: 

1 1
1

1 1

( | , 1) ( | 1, 1, )
( | 1, 1, )

( | 1, 1, )

k k k k k k k
k k k k

k k k k

p y x E p x E E Y
p x E E Y

p y E E Y
 

           

(3-18) 

 
 

If the numerator and denominator of the equation (3-18) are divided by 

( | 0)k kp y E  which is the density when the signal does not exist, (3-18) can be 

expressed in terms of the likelihood ratio: 

1 1
1

1 1

( | , 1) ( | 1, 1, )
( | 1, 1, )

( | 1, 1, )

k k k k k k k
k k k k

k k k k

L y x E p x E E Y
p x E E Y

L y E E Y
 

           

(3-19) 

 
 

The state dynamic model can be used in the calculation of the prediction density 

denoted as 1 1( | 1, 1, )k k k kp x E E Y  in (3-19).  

1 1

1 1 1 1 1 1

( | 1, 1, )

( | , 1, 1) ( | 1, )

k k k k

k k k k k k k k

p x E E Y

p x x E E p x E Y dx
 

           

 

(3-20) 

 
 

The similar expansions are done in order to find the birth density: 

 

1
1

1

( | , 1) ( | 1, 0)
( | 1, 0, )

( | 1, 0)

k k k k k k
k k k k

k k k

p y x E p x E E
p x E E Y

p y E E
 

           

(3-21) 

 
 

If the numerator and denominator of the equation (3-21) are divided by 

( | 0)k kp y E  which is the density when the signal does not exist, then (3-21) can 

be expressed in terms of the likelihood ratio. 
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1
1

1

( | , 1) ( | 1, 0)
( | 1, 0, )

( | 1, 0)

k k k k k k
k k k k

k k k

L y x E p x E E
p x E E Y

L y E E
 

           

(3-22) 

 
 

The prior density denoted as 1( | 1, 0)k k kp x E E  describes the case where the 

signal has started to exist in the data between the times 1k  and k . (Note that if 

the target does not exist at the time 1k  then 

1 1 1( | 1, 0, ) ( | 1, 0)k k k k k k kp x E E Y p x E E ). 

 

3.5.2 Summary of the Derivations 

The terms that are derived in the preceding sections can be calculated as functions 

of 

 the prior probability of existence, 1 1( | )k kP E Y  

 the Markov transition probabilities, bP  and dP  

 the likelihood ratio ( | , )k k kL y x E , 

 a prior state density assuming that the signal existed at time 1k , 

1 1 1( | 1, )k k kp x E Y  

 a transition density assuming that the signal continued to exist through times 

1k  and k , 1 1( | , 1, 1)k k k kp x x E E  

 a prior state density assuming that the signal started to exist between times 

1k  and k , 1( | 1, 0)k k kp x E E . 

These quantities can be obtained from the state and the measurement models.  

 

3.6 Particle Filter Implementation 

The recursive Bayesian solution of the track-before-detect problem is based on 

particle filtering. A particle approximation is used to calculate and recursively 

update the posterior density ( | 1, )k k kp x E Y . Each particle describes a possible 

state, kx . Two sets of particles are used in the implementation of the particle filter 
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and they are combined to form the posterior density. The first set of particles 

describes the existing density whereas the second set of particles describes the birth 

density.  

3.6.1 The PDF Representation of Continuous State: Existing Density 

This set of particles is used to approximate the density of the continuous state, 

1( | 1, 1, )k k k kp x E E Y when the signal exists. It is assumed that the prior density 

1 1 1( | 1, )k k kp x E Y  is represented by the set of particles 1.... ei N  called 

existing particles with values ( )

1

e i

kx  and weights ( )

1

e i

k
; eN  represents the 

number of existing particles. The algorithm of the calculation 

1( | 1, 1, )k k k kp x E E Y  consists of the steps explained below: 

1. The importance density is selected as transitional prior, i.e., 1( | )k kp x x . 

With this choice the state transition model given in (3-1) is used to update 

the particles. The precise algorithm is given below by Equation (3-23). The 

particles representing state sequence is expanded according to this equation. 

 

            ( ) ( )

1

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1

e i e i i

k k kx x w  1.... ei N  

 

 

 

(3-23) 

 

 

In Equation (3-23), kw  is an independent, identically distributed Gaussian noise 

sequence with covariance kQ . The covariance matrix kQ  is given by: 

 

1 0 0 0

0 0.05 0 0

0 0 1 0

0 0 0 0

kQ  

 

 

 

(3-24) 
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We assume that the noises affecting the state variables are independent. This 

assumption is reasonable for the first 3 state variables that correspond to carrier 

frequency, PRI and magnitude of the signal. The last state is the time of arrival of 

the signal which is clearly related with the PRI. We assume that the time of arrival 

is precise so it has no noise component but PRI, which can be considered as our 

sensing of the signal, is noisy. The values written as noise powers are somewhat 

arbitrary. The small value of the variance of PRI is a result of small intervals 

between possible PRI values.   

 

2. The new particle weights are calculated using the likelihood ratio given in 

(3-14). The un-normalized weights denoted as ( )e i

ku  are calculated as: 

 

            ( ) ( )1
( | , )e i e i

k k k k

e

u L y x E
N

 1.... ei N  

 

 

(3-25) 

 

 

3. The weights are normalized: 

 

            

1

i
i k

k N
n

k

n

u

u

 1....i N  

 

 

(3-26) 

 

 

4. The approximation for the posterior density 1( | 1, 1, )k k k kp x E E Y  is 

obtained by using the set of particles ( )e i

kx  with the corresponding weights 

( )e i

k
.  

3.6.2 The PDF Representation of Continuous State: Birth Density 

If a particle is representing an existing track, the systems dynamics are used as prior 

information. However, this is not possible for the case of the calculation of the birth 

density, denoted as 1( | 1, 0, )k k k kp x E E Y , since it is assumed that the signal 



 

33 

does not exist at time 1k . In this case the birth particles defined as ( )b i

kx  are 

placed to the state were they could be expected to yield high likelihood. The birth 

particles are uniformly distributed within the highest intensity bins. It is assumed 

that even low SNR signals will instantaneously disturb the underlying noise. In this 

case the data is used to draw samples to form part of the initial state vector ( )b i

kx , 

the carrier frequency ( )b i

kfc , the energy ( )b i

kA and the time of arrival ( )b i

ktc . The 

selection of the PRI is done according to the procedure described in 3.6.4. The 

algorithm for the calculation of 1( | 1, 0, )k k k kp x E E Y  consists of the following 

steps. 

 

1. In order to create a set of bN  number of birth particles; the newborn 

particles are placed uniformly to the nhigh  number of highest intensity 

bins: 

 

            ( )

1~ ( | 1, 0, )b i

k k k k kx q x E E y  1.... bi N  

 

 

(3-27) 

 
2. The un-normalized particle weights are calculated using the likelihood ratio 

given in the Equation (3-14) as [17]: 

    

   
( ) ( ) ( ) ( )

( ) 1

( ) ( ) ( )

1

( | , ) ( | 1, 0)

( | 1, 0, )

b i b i b i b i
b i k k k k k k

k b i b i b i

b k k k k

L y x E p x E E
u

N q x E E y
  

 

 

(3-28) 

 

where 
( ) ( ) ( )

1

( ) ( ) ( )

1

( | 1, 0)

( | 1, 0, )

b i b i b i

k k k

b i b i b i

k k k k

p x E E nhigh

q x E E y total number of bins
  given in 

[17].  

3. The weights are normalized as: 

 

            

1

i
i k

k N
n

k

n

u

u

 1....i N  

 

 

(3-29) 
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4. The approximation for the posterior density 1( | 1, 0, )k k k kp x E E Y  is 

obtained using the set of particles ( )b i

kx  with corresponding weights ( )b i

k
.  

 

3.6.3 The Probability of Existence 

The probability that the signal exist in the data, ( 1| )k kP E Y , is expanded as [11]: 

1 1( 1| ) ( 1, 1| ) ( 1, 0 | )k k k k k k k kP E Y P E E Y P E E Y  

           

(3-30) 

 
 

By using the definition of conditional probability, each term in the right hand side 

of this equation can be written as: 

1 1 1 1

1 1

( , 1, 1| ) ( , 1, 0 | )
( 1| )

( | ) ( | )

k k k k k k k k
k k

k k k k

p y E E Y p y E E Y
P E Y

p y Y p y Y
 

           

(3-31) 

 

 

The likelihood values 1 1( , 1, 1| )k k k kP y E E Y  and 1 1( , 1, 0 | )k k k kP y E E Y  

are expanded as: 

1 1 1 1

1

1 1 1 1

1

( 1| )

1
( | 1, 1, ) ( 1, 1| )

( | )

1
( | 1, 0, ) ( 1, 0 | )

( | )

k k

k k k k k k k

k k

k k k k k k k

k k

P E Y

p y E E Y P E E Y
p y Y

p y E E Y P E E Y
p y Y

 

           

 

 

(3-32) 

 

 

The equations 1 1( 1, 1| )k k kP E E Y  and 1 1( 1, 0 | )k k kP E E Y  can be written in 

terms of bP , dP  and the probability of existence at time 1k  1 1( 1| )k kP E Y  to 

give: 

1 1 1 1

1

1 1 1 1

1

( 1| )

1
( | 1, 1, )(1 ) ( 1| )

( | )

1
( | 1, 0, )( )[1 ( 1| )]

( | )

k k

k k k k d k k

k k

k k k k b k k

k k

P E Y

p y E E Y P P E Y
p y Y

p y E E Y P P E Y
p y Y

 

           

 

 

(3-33) 
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If the numerator and denominator of the equation (3-33) are divided by 

( | 0)k kp y E  which is the background noise density, then (3-33) becomes a 

function of the likelihood ratio and can be written as given in Equation (3-34). 

 

1 1 1 1

1 1 1

( 1| ) ( | 1, 1, )(1 ) ( 1| )

( | 1, 0)( )[1 ( 1| )]

k k k k k k d k k

k k k b k k

P E Y L y E E Y P P E Y

L y E E P P E Y
 

           

 

(3-34) 

 
 

The measurement likelihood ratio 1 1( | 1, 1, )k k k kL y E E Y  can be found as 

follows: 

 

1 1

1 1

( | 1, 1, )

( | , 1) ( | 1, 1, )

k k k k

k k k k k k k k

L y E E Y

L y x E p x E E Y dx
 

           

 

(3-35) 

 
 

The measurement likelihood ratio 1( | 1, 0)k k kL y E E  for birth particles can be 

found as follows: 

 

1

1

( | 1, 0)

( | , 1) ( | 1, 0)

k k k

k k k k k k k

L y E E

L y x E p x E E dx
 

           

 

(3-36) 

 
 

The conditional likelihood 1( | )k kp y Y  can be expanded by conditioning on kE  and 

1kE . With this expansion the term  1( | )

( | 0)

k k

k k

p y Y

p y E
 can be expressed as: 

 

1
1 1 1 1

1 1 1

1 1 1 1

( | )
( | 1, 1, )(1 ) ( 1| )

( | 0)

( | 1, 0)( )[1 ( 1| )]

( 1| ) (1 )[1 ( 1| )]

k k
k k k k d k k

k k

k k k b k k

d k k b k k

p y Y
L y E E Y P P E Y

p y E

L y E E P P E Y

P P E Y P P E Y

 

           

 

 

(3-37) 

 

 

Equations (3-34) and (3-37) give the required probability of existence [11]. 
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3.6.4 PRI Modeling 

In this work we assume that the value of the PRI is not known however, it has a 

prior density. A priory density is defined by considering possible PRI values, i.e., 

PRI is assumed to be around some pre determined specific values and modeled as a 

mixture of Gaussian around these values. In particular we have selected the means 

of the mixtures as 0.5 1 1.5 2 where the unit is in seconds with equal weight 

and variance 0.01. The PRI value for each particle is drawn from this density 

denoted as ( )x : 

1 2 3 4

( )

( | 0.5,0.01) ( |1,0.01) ( |1.5,0.01) ( | 2,0.01)

x

w N x w N x w N x w N x
 

 

(3-38) 

 
where the 1 2 3 4w w w w  are the mixture weights and they equal to 0.25iw  

for 1...4i .  

 

The plot of a priory distribution of PRI, ( )x , is given in Figure 3.3. 
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0
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0.1
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0.25
The desired distribution of PRI values

The PRI values
 

Figure 3.3 A priory distribution for the PRI values of the particles 
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Metropolis-Hastings algorithm described in 2.2.1 is used to draw samples from this 

distribution. The candidate-generating density is a 1D Gaussian  

( | ) ( | , )pq x x N x x , where p  is a parameter of the proposal. 

 

The histogram of the samples which will be used to assign the PRI values of 

particles are given in Figure 3.4 . The variance of the candidate-generating density 

is chosen as 
2 25p  and the number of samples is 1000N .  
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Figure 3.4 The histogram of the samples obtained for PRI value 

 

3.6.5 The Complete Algorithm 

T

k k k k kx fc PRI A tc is the continuous state of our model and it must be 

initiated at time 1k by finding N vectors which correspond to part of N initial 
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particles. Initial kfc , kA  and 
ktc  values are drawn from the highest intensity bins 

since they are necessarily birth particles at time 1k . Initial PRI is drawn from the 

Gaussian mixture density explained in the previous section.  

 

In the problem, as it is stated earlier the signal‟s duty percent is quite low. To get 

the measurement spectrogram of the signal is computed with a certain frame rate. 

Consecutive frames of certain number are considered as a „measurement frame‟. 

For example, for the data shown in Figure 3.6 measurement frame‟s length is 

selected as 0.5sec . Figure 3.5 shows the spectrogram of in the signal under noise 

for 10 seconds, so in this figure there are 20 measurement frames. In other words, 

the data for 0:0.5sectime  will form the first measurement frame and the data for 

0.5:1sectime will be considered as 2nd  measurement frame, etc. It can be 

observed that there is a signal circled in red in the 2nd  and 5th measurement 

frames, but there are no pulses in 3rd and 4th  frames. The existing particles are 

updated if there is an expected pulse on that frame according to PRI value. In other 

words, not all of the existing particles are updated in each frame; updating is done if 

and only if the time of arrival parameter of the pulse for that particle is in the limits 

of the concerning frame, then the existing particle is updated using the procedure 

described in 3.6.1. 
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Simulated measurement data
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Figure 3.5 The simulated data with peak SNR 19.3 dB, the carrier frequency 

20fc kHz , the PRI 1.5secPRI and the pulse width 20msecPW  
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Figure 3.6 The measurement frames, each corresponds to data of 0.5sec  
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After updating of the existing particles, the number of efficient particles is 

computed. If the number of efficient particles is lower than the predetermined 

threshold (if eff thrN N ) then re-sampling is done. The purpose of re-sampling step 

is to eliminate the samples with low importance weights and replicate the samples 

with high importance weights.  

 

The next step is to estimate the signal state. The carrier frequency and the time of 

arrival of the pulses are estimated using the minimum mean-square error (MMSE) 

estimation given in Equation (3-39). 

                                    
1

N
i i

k k k

i

E x x  

           

 

(3-39) 

  

The following step is the so called death-birth process where some of the particles 

are declared as dead randomly by applying the Markov transition matrix given in 

(3-4). It is desired to have the number of particles constant, therefore new particles 

are born after the death process. In other words, the number of birth particles is 

equal to the number of death particles. By using the procedure explained in 3.6.2, 

the birth particles are assigned.  

 

The final step is to calculate the probability of existence. In order to calculate 

( 1| )k kP E Y , the terms 1 1( | 1, 1, )k k k kL y E E Y  and 1( | 1, 0)k k kL y E E  

should be computed as shown in equation (3-34). Using the existence particles 

these terms can be approximated by 
( )

1 1

1

( | 1, 1, )
eN

e i

k k k k k

i

L y E E Y u  and 

( )

1

1

( | 1, 0)
bN

b i

k k k k

i

L y E E u  where ( )e i

ku  and ( )b i

ku  denote the un-

normalized existing particles and the un-normalized birth particles respectively 

[11]. Finally, the probability of existence at frame k is computed.  
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( )

1 1

1

( )

1 1

1

1 1 1 1

(1 ) ( 1| )

( )[1 ( 1| )]

( 1| )
( ) ( 1| ) (1 )[1 ( 1| )]

e

b

N
e i

k d k k

i

N
b i

k b k k

i

k k

d k k b k k

u P P E Y

B u P P E Y

P E Y
P P E Y P P E Y

 

           

 

 

(3-40) 

 

 

Table 3.1 gives a summary of the algorithm. 
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Table 3.1 Particle Filter for Track-Before-Detect Algorithm 

Given the observed data ky  at measurement frame k  assuming that N particles 

with 1 1,i i

k kx is available , do 

 FOR 1:i N  

o IF time of the pulse arrival for the particle 
1

i

kx  is at that frame k  

then,  

 Draw 
1 1~ ( | , 1, 1, )i i

k k k k k kx q x x E E y  

 Calculate the un-normalized weights using 

1
( | , )i i

k k k k

e

u L y x E
N

 

(The Existing Particles procedure explained in 3.6.1 ) 

o ELSE  

 Assign 
1

i i

k kx x 1....i N  (To preserve the state of the 

particles which is not updated for this frame) 

 Assign 
1

i i

k ku 1....i N (To preserve the weights of 

the particles which is not updated for this frame) 

 End FOR 

 Normalize the weights: 

1

i
i k

k N
n

k

n

u

u

 1....i N  

 Calculate 
2

1

1

( )
eff N

i

k

i

N  

 IF eff thrN N  

o Resample ,i i

k kx  to obtain the new set of particles resampled set. 

 END IF 
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Table 3.1 continued 

 Estimate the signal state using 
1

N
i i

k k k

i

E x x  

 Apply Markov Chain 1k kE E  where 
1

1

b b

d d

P P

P P
 to kill the 

particles randomly, the number of particles that are dead denoted as bN . 

 

 FOR 1: bi N  

o Draw ( )

1~ ( | 1, 0, )b i

k k k k kx q x E E y  

o Calculate the un-normalized weights using 

( ) ( ) ( ) ( )

1

( ) ( ) ( )

1

( | , ) ( | 1, 0)

( | 1, 0, )

b i b i b i b i
i k k k k k k

k b i b i b i

b k k k k

L y x E p x E E
u

N q x E E y
 

(The Birth Particles procedure explained in 3.6.2 ) 

 End FOR 

 

 Normalize the weights: 

1

i
i k

k N
n

k

n

u

u

 1....i N  

 

 Calculate the probability of existence using the equations  

 

 

( )

1 1

1

( )

1 1

1

1 1 1 1

(1 ) ( 1| )

( )[1 ( 1| )]

( 1| )
( ) ( 1| ) (1 )[1 ( 1| )]

e

b

N
e i

k d k k

i

N
b i

k b k k

i

k k

d k k b k k

u P P E Y

B u P P E Y

P E Y
P P E Y P P E Y

 

 

where ( )e i

ku  and ( )b i

ku  denote the unnormalized existing particles and the 

unnormalized birth particles respectively. 
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3.7 Simulations 

We have implemented our algorithm for a specific simulated problem that can be 

considered somewhat realistic. In this part these simulations are presented. 

 

In the first simulation, the signal has amplitude of 0.01 and the pulse width 

of 20msecPW , the pulse repetition rate is 1.5secPRI  and the carrier 

frequency is 20fc kHz . The peak SNR is 9.79 dB and the average SNR is -8.96 

dB. The signal in time domain is shown in Figure 3.7. The spectrogram of the 

signal is computed and a Gaussian noise with the variance 2 0.1w
 is added to 

each bin. The data generated in this way is divided into frames in time 

corresponding to 0.5sec , so if the total simulation time is 10sec , there will be 20 

frames. In the simulated data, there are five pulses at the measurement frames 

2, 5, 8, 11 14k k k k and k . All the other frames contain only noise in 

the data. In the time domain, the pulses appear at 

0.6, 2.1, 3.6, 5.1 6.6time time time time and time . 

 

 The whole simulated data is shown in Figure 3.8 and the 2nd , 3rd , 4th  and 5th  

measurement frames are given in Figure 3.9. There is signal circled in red in the 

2nd  and 5th frames, but there is no pulse in 3rd and 4th  frames.  

 

The number of particles is 1000N  and the resampling is done if the efficient 

number of particles effN  is below the number of particle threshold 

3thrN N (if eff thrN N  ).  

 

The parameters in the Markov Chain is chosen such that the probability of birth 

0.2bP  and the probability of death 0.2dP . The sampling frequency is chosen 

as 50fs kHz  and 512 point FFT is used. The initial probability of existence is 

0.05 . 
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As its is stated, the state vector is represented as 
T

k k k k kx fc PRI A tc where 

kx consists of the carrier frequency kfc , the PRI 
kPRI , the power kA  and the time 

of the arrival of the pulse 
ktc .  The birth particles are uniformly distributed within 

the 100 highest intensity bins. Therefore the carrier frequency kfc , the power kA   

and the time of arrival of the pulse ktc  are attained from the data. The PRI of the 

particles are assigned using the procedure described in 3.6.4.   
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Figure 3.7 The signal in time domain, the amplitude is 0.01amp , the carrier 

frequency 20fc kHz , the PRI 1.5secPRI and the pulse width 20msecPW  
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Simulated measurement data
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Figure 3.8 The entire spectrogram in noise 
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Figure 3.9 The measurement frames of 2nd , 3rd , 4th  and 5th  
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The results consists the following plots: 

 The histogram of the carrier frequency of the particles at frames 2, 5, 7, 11, 

and 17 

 The plot of the carrier frequency component vs. the weights of the particles 

 The estimated carrier frequency vs. frame 

 The arrival time of the pulses vs. frame  

 The probability of existence vs. frame 
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Figure 3.10 The histogram of the carrier frequency of the particles 
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Figure 3.11 The carrier frequency component vs. the weights of the particles 
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Figure 3.12 The estimated carrier frequency vs. frame 

 

The estimated arrival times of the pulses are given below in Figure 3.13. The PRI 

of the data can be deduced as 1.5PRI by using the time difference between two 

consecutive arrival times.  
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Figure 3.13 The arrival time of the pulses 
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Figure 3.14 The probability of existence vs. frame 
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In the second simulation, the parameters are the same as with the first simulation 

except the signal amplitude. The signal has an amplitude of 0.008amp  and the 

pulse width 20msecPW , the pulse repetition rate 1.5secPRI  and the carrier 

frequency 20fc kHz . The peak SNR is 7.85 dB and the average SNR is -10.90 

dB. The spectrogram of the signal is taken and the Gaussian noise with the variance 

2 0.1w
 is added to each bin. The pulses appear at 

0.6, 2.1, 3.6, 5.1 6.6time time time time and time . The whole simulated 

data is shown in Figure 3.16 and 2nd , 3rd , 4th  and 5th  measurement frames are 

given in Figure 3.17. The signal is circled in red in the 2nd and 5th frames, but 

there is no pulse in 3rd and 4th  frames. Since the signal has lower SNR than the 

first simulation, some of the pulse arrivals cannot be detected. The performance of 

the carrier frequency and PRI estimation is better in the first simulation compared 

to this simulation. The plots of the simulated data are given below: 
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Figure 3.15 The signal in time domain, the amplitude is 0.008amp , the 

carrier frequency 20fc kHz , the PRI 1.5secPRI and the pulse width 

20msecPW  
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Simulated measurement data
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Figure 3.16 The entire spectrogram in noise 
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Figure 3.17 The measurement frames of 2nd , 3rd , 4th  and 5th  
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The results consists the following plots: 

 The histogram of the carrier frequency of the particles at frames 2, 5, 7, 11, 

and 17 

 The plot of the carrier frequency component vs. the weights of the particles 

 The estimated carrier frequency vs. frame 

 The arrival time of the pulses vs. frame  

 The probability of existence vs. frame 
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Figure 3.18 The histogram of the carrier frequency of the particles 
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Figure 3.19 The carrier frequency component vs. the weights of the particles 
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Figure 3.20 The estimated carrier frequency vs. frame 

 

The arrival time of the pulses obtained form the filter is given below in. The PRI of 

the data can be deduced as 1.5PRI by using the time difference between two 

consecutive arrival times.  
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Figure 3.21 The arrival time of the pulses 
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Figure 3.22 The probability of existence vs. frame 
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In the third simulation, the aim is to get the PRI of the data. The signal has an 

amplitude of 0.01 and the pulse width 20msecPW , the pulse repetition rate 

1secPRI  and the carrier frequency 20fc kHz . The spectrogram of the signal is 

taken and the Gaussian noise with the variance 2 0.1w
 is added to each bin. The 

pulses appear at 0.6, 1.6, 2.6, 3.6 4.6time time time time and time . In 

Figure 3.25, 4 consecutive measurement frames are given. There is signal in the 8
th

 

and 10
th

 frames circled in red and there is only noise in the others. It is obvious that 

detecting the existence and the parameters of the signal visually is not possible. 
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Figure 3.23 The signal in time domain, the amplitude is 0.01amp , the carrier 

frequency 20fc kHz , the PRI 1secPRI and the pulse width 20msecPW  
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Simulated measurement data
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Figure 3.24 The entire spectrogram in noise 
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Figure 3.25 The measurement frames of 7th , 8th , 9th  and 10th  
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The arrival time of the pulses obtained form the filter is given below in Figure 3.26. 

The PRI of the data can be deduced as 1secPRI  by using the time difference 

between two consecutive arrival times.  
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Figure 3.26 The arrival time of the pulses 

 

3.8 The Performance of the Algorithm 

In this part, the performance of the filter is gauged on average over 50 Monte Carlo 

runs. The performance of the proposed algorithm is evaluated in terms of root mean 

square (RMS) errors in carrier frequency. The carrier frequency RMS error is 

calculated as given in equation (3-41): 

2

_

1

1
( ) ( ) ( )

MC

c k c est k

i

RMSE fc f f
MC

 

           

 

(3-41) 

 

where ( )c kf is the true carrier frequency at frame k , _( )c est kf  is the estimated 

carrier frequency at frame k , MC  is the number of Monte Carlo runs. 
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Besides the RMS errors in carrier frequency, the results contain average estimated 

carrier frequency and average probability of existence over 50 runs.  

 

In the following part the Monte Carlo simulation parameters and the plots of the 

results are given. 

3.8.1 Monte Carlo Simulations 

The common parameters of the first Monte Carlo Simulations are given in Table 

3.2. The amplitude of the signal is changed in two sets. The signal amplitude is 0.01 

(peak SNR 9.79 dB) for the first set and the amplitude is 0.008 (peak SNR 7.85 dB) 

for the second set. 50 Monte Carlo runs are done for each set. The plots of the 

results are given in Figure 3.27, Figure 3.28 and Figure 3.29. 

 

The average estimated carrier frequency and the RMS error of frequency in the 

frames where the signal exist are given in Figure 3.27 and Figure 3.28 respectively. 

These figures show that consistent estimates of the carrier frequency are calculated 

by the filter. However, the higher amplitude of the signal provides better estimated 

frequency and lower RMS errors.  

 

 The detection performance of the algorithm is shown in terms of the probability of 

existence in Figure 3.29. This figure demonstrates that the algorithm presented in 

this thesis can detect signals which cannot be detected by conventional methods. 

The frames containing pulses have high probability of existence whereas the other 

frames which do not contain a pulse have probability of existence values lower than 

0.1.  
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Table 3.2  Monte Carlo Simulation Parameters (A) 

 

The carrier frequency, 
cf  15kHz  

The pulse repetition interval, PRI  1.5sec  

The pulse width, PW  20msec  

The variance of Gaussian Noise, 2

w
 0.1  

Peak SNR 9.79 dB , for signal amplitude=0.01 

 

7.85 dB , for signal amplitude=0.008 

Average SNR -8.96 dB , for signal amplitude=0.01 

 

-10.90 dB , for signal amplitude=0.008 

Total Simulation Time 10sec  

Number of Frames (Data is divided 

into frames in time corresponding to 

0.5sec ) 

20 

Number Of Pulses in the Data 5 pulses at frame 2,5,8,11 and 14 

The sampling frequency, sf  50kHz  

The initial probability of existence 0.05 

The probability of birth, bP  0.2 

The probability of death, dP  0.2 

Number Of Particles 1000 
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Figure 3.27 The average estimated carrier frequency over 50 simulations 
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Figure 3.28 The RMS error in carrier frequency over 50 simulations 
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Figure 3.29 The average probability of existence over 50 simulations 

 

The common parameters for the second set of experiments are given in Table 3.3. 

The pulse repetition interval (PRI) is 0.5sec and the carrier frequency cf  is 20kHz 

in this case, whereas in the first Monte Carlo Simulations these are 1.5sec and 

15kHz respectively. The amplitude of the signal is changed in two sets. The signal 

amplitude is 0.01(peak SNR 9.79 dB) for the first set and 0.008 (peak SNR 7.85 

dB) for the second set. 50 Monte Carlo runs are done for each set. The plots of the 

results are given in Figure 3.30, Figure 3.31 and Figure 3.32.  

 

The average estimated carrier frequency and its corresponding RMS error are given 

in Figure 3.30 and Figure 3.31 respectively. These figures demonstrate that 

estimation of the carrier frequency calculated by the filter is consistent. However, 

the higher SNR provides lower RMS error and better estimated frequency.  

 

 The detection performance of the algorithm is shown in terms of the probability of 

existence in Figure 3.29. High probability of existence indicates the frames 
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consisting pulses whereas the other frames which do not consist pulses have 

probability of existence values lower than 0.05.  

 

Table 3.3 Monte Carlo Simulation Parameters(B) 

 

The carrier frequency, cf  20kHz  

The pulse repetition interval, PRI  0.5sec  

The pulse width, PW  20msec  

The variance of Gaussian Noise, 2

w
 0.1  

Peak SNR 9.79 dB , for signal amplitude=0.01 

 

7.85 dB , for signal amplitude=0.008 

Average SNR -4.19 dB , for signal amplitude=0.01 

 

-6.13 dB , for signal amplitude=0.008 

Total Simulation Time 10sec  

Number of Frames (Data is divided into 

frames in time corresponding to 0.5sec ) 

20 

Number Of Pulses in the Data 7 pulses at frame 4,5,6,7,8,9 and 10 

The sampling frequency, sf  50kHz  

The initial probability of existence 0.05 

The probability of birth, bP  0.2 

The probability of death, dP  0.2 

Number Of Particles 1000 
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Figure 3.30 The average estimated carrier frequency over 50 simulations 
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Figure 3.31 The RMS error in carrier frequency over 50 simulations 
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Figure 3.32 The average probability of existence over 50 simulations 

3.9 Conclusions 

In this chapter, the detection of low SNR signals with TBD concept is explained 

and the simulations that release the performance of the algorithm are done. 

 

 In section 3.7, the histogram of the particles vs. the carrier frequency component at 

frame 2, 5, 7, 11, 17 and the carrier frequency component vs. the weights of the 

particles are given in Figure 3.10 and Figure 3.11 for the first simulation, and for 

second simulation in Figure 3.18 and Figure 3.19. Figure 3.10 and Figure 3.11 

show that in frame 2 the particles appear randomly dispersed in frequency but as 

the filter deduces from the data the presence and the frequency of the signal, the 

particle cloud becomes more concentrated around the true frequency. Besides this, 

the weights are higher for the particles whose frequency component is around the 

true frequency of the signal. The same observation is valid for Figure 3.18 and 

Figure 3.19.  
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The estimated frequency and the estimated arrival time of the pulses are given in 

Figure 3.12 and Figure 3.13 respectively for the first simulation. These figures 

show that there is a slight difference between the estimated frequency and the true 

frequency. Similarly, the arrival time of the pulses are estimated quite well. Figure 

3.20 and Figure 3.21 give the estimated frequency and estimated arrival time of the 

pulses for the second simulation. The SNR is lower in this simulation therefore the 

performance of the filter in estimating the frequency and the arrival time of the 

pulses is degraded in this case, but it is still satisfactory. 

 

The probabilities of existence vs. frames are given in Figure 3.14 and Figure 3.22 

for first and second simulation respectively. As it is stated, the pulses exist at 

frames 2, 5, 8, 11 and 14 for both simulations. Figure 3.14 shows that the 

probability of existence is 1 for frames 2, 5, 8, 11 and 14. However, in Figure 3.22, 

the probability of existence is higher than 0.7 for frames 5, 8, 11 and 14 but it is 

lower than 0.1 at frame 2. It means that the filter could not detect the pulse at frame 

2 since the amplitude is lower in the second simulation. Finally Figure 3.26 shows 

the estimated arrival time of the pulses. As it is seen, the arrival time of the pulses 

can be used to deduce the PRI of the signal.  

 

In section 3.8, the performance of the algorithm is studied. 50 Monte Carlo 

simulations are done for each scenario and the results that reveal the performance 

of the developed algorithm are obtained. The scenario parameters are given in 

Table 3.2 and Table 3.3. 

 

Figure 3.27 and Figure 3.28 show the performance of the algorithm in estimating 

the carrier frequency for the first scenario. The average estimated frequency over 

50 simulations is given in Figure 3.27.  In Figure 3.28, it is seen that the filter 

estimates the carrier frequency of the signal within a distance of 3500 Hz for the 

signal amplitude 0.008 (peak SNR 7.85 dB) and within a distance of 2500 Hz for 

amplitude 0.01 (peak SNR 9.79 dB). As it is expected, the error is lower when the 

SNR is higher. 
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The average probability of existence over 50 simulations is given in Figure 3.29. 

This figure demonstrates that the filter can detect the pulses even when the peak 

SNR is as low as 7.85 dB. The frames consisting pulses can be easily determined 

using this kind of figure.  

 

Similarly, the filter performance for the second scenario can be investigated using 

Figure 3.30 and Figure 3.31. The average estimated frequency over 50 simulations 

is given in Figure 3.30.  In Figure 3.31, it is seen that the error in estimating the 

carrier frequency of the signal is lower than 3500 Hz after frame 6 for amplitude 

0.008 (peak SNR 7.85 dB)  and it is lower than 1500 Hz after frame 5 for amplitude 

0.01 (peak SNR 9.79 dB). As it is in the first case, the performance of the filter gets 

better when the SNR is higher. The average probability of existence over 50 

simulations is given in Figure 3.32. As it is seen, low SNR signals with low duty 

cycle can be detected using this kind of approach.  
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CHAPTER 4  

 

 

FURTHER ANALYSIS OF THE PERFORMANCE 

OF THE FILTER 

 

 

 

4.1 Introduction 

This chapter is devoted to the analysis of the performance of the proposed filter for 

changes in the carrier frequency and pulse repetition interval (PRI).  

 

In the first part, the developed particle filter with TBD algorithm is used to detect 

the signals emitting from frequency agile systems. These systems change their 

operating frequency from burst-to-burst or from pulse-to-pulse basis. Frequency 

agility is preferred mainly because the system has a quite strong protection from 

jamming if it is frequency agile. Frequency agility forces the enemy to spread its 

available jamming power over a significantly increased bandwidth [18]. This means 

that effective jamming cannot be formed in the case of frequency agility.  

 

New technologies in electronics make it possible for systems like radars or sonars 

utilize various PRIs. The filter performance when the emitting system is changing 

PRI is tested in the second experiment. Sonar uses low PRF when the target is far 

away and it increases the PRF when it gets closer. The reason behind this situation 

is the range ambiguity. Low PRF increases the unambiguous range of the system. 

However, when the target is close to the system, sonar increases the PRF to have 

more return signals.  
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4.2 Simulations 

The scenario that the emitting system is frequency agile is tested in the first 

experiment. The common parameters of the Monte Carlo Simulations are given in 

Table 4.1. The simulated data is frequency agile from burst to burst. There are 5 

pulses with carrier frequency 20 kHz appear at 1.6, 2.6, 3.6, 4.6, 5.6 seconds and 

there are 5 pulses with carrier frequency 10 kHz appear at 6.6, 7.6, 8.6, 9.6, 10.6 

seconds. The signal in time domain is shown in Figure 4.1. Some of the 

measurement frames are given in Figure 4.2 when the SNR is 9.79 dB. The signal 

is circled in red in 12
th
 and 14

th
 frames. It is obvious that detecting the existence 

and the parameters of the signal visually is not possible even for SNR 9.79 dB case. 

The amplitude of the signal is changed in two sets. The signal amplitude is 0.01 

(peak SNR 9.79 dB) for the first set and the amplitude is 0.008 (peak SNR 7.85 dB) 

for the second set. 50 Monte Carlo runs are done for each set. The plots of the 

results are given in Figure 4.3, Figure 4.4 and Figure 4.5.  

 

The average estimated carrier frequency and its corresponding RMS error are given 

in Figure 4.3 and Figure 4.4 respectively. These figures show that consistent 

estimates of the carrier frequency are calculated by the filter in frequency agile 

conditions. With one frame delay, the estimated carrier frequency gives the 

consistent values in the case of the frequency change. However, the higher 

amplitude of the signal provides better estimated frequency and lower RMS errors.  

 

 The detection performance of the algorithm is shown in terms of the probability of 

existence in Figure 4.5. This figure can be used to determine the frames that have 

signal. As it is expected, the frames consisting pulses have high probability of 

existence whereas the other frames which do not consist pulses have probability of 

existence values lower than 0.15.  
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Table 4.1 Simulation Parameters for the First Experiment 

 

The carrier frequency, cf  20kHz , 10kHz  

The pulse repetition interval, PRI  1sec  

The pulse width, PW  20msec  

The variance of Gaussian Noise, 2

w
 0.1  

Peak SNR 9.79 dB , for signal amplitude=0.01 

 

7.85 dB , for signal amplitude=0.008 

Average SNR -7.20 dB , for signal amplitude=0.01 

 

-9.14 dB , for signal amplitude=0.008 

Total Simulation Time 15sec  

Number of Frames (Data is divided 

into frames in time corresponding to 

0.5sec ) 

30 

Number Of Pulses in the Data 5 pulses of 20kHz  at frame 4,6,8,10,12 

 

5 pulses of 10kHz  at frame 14, 16, 18, 

20, 22 

Time Of Arrival (Pulses) 20kHz carrier frequency at 1.6, 2.6, 

3.6, 4.6, 5.6 seconds 

 

10kHz carrier frequency at 

6.6,7.6,8.6,9.6,10.6 seconds 

The sampling frequency, sf  50kHz  

The initial probability of existence 0.05 

The probability of birth, bP  0.2 

The probability of death, dP  0.2 

Number Of Particles 1000 
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Figure 4.1 The signal in time domain, the amplitude is 0.01amp , the carrier 

frequency 20fc kHz  until time=6 sec and 10fc kHz  after time=6.6 sec, the 

PRI 1secPRI and the pulse width 20msecPW  
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Figure 4.2 The measurement frames (peak SNR 9.79 dB)   
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Figure 4.3 The average estimated carrier frequency over 50 simulations  
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Figure 4.4 The RMS error in carrier frequency over 50 simulations 
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Figure 4.5 The average probability of existence over 50 simulations 
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The common parameters of the second scenario are given in Table 4.2. The 

simulated data is PRF agile, the pulse repetition interval changes from burst to 

burst. There are 5 pulses with pulse repetition interval 1.5sec  appear at 1.6, 3.1, 

4.6, 6.1,7.6 seconds and there are 5 pulses with pulse repetition interval 2sec  

appear at 9.6, 11.6, 13.6, 15.6, 17.6 seconds. The signal in time domain is shown in 

Figure 4.6. The 16
th

, 18
th

 ,20
th
 and 22

nd
 measurement frames are given in Figure 4.7 

when the peak SNR is 9.79 dB. There is signal in the 16
th
 and 20

th
 measurement 

frame circled in red, but there is only noise in the 18
th
 and 22

nd
 frames. As it is 

stated before, this figure shows that it is not possible to detect the existence of the 

signal visually for the SNR of 9.79 dB. Two experiments are conducted for two 

different SNR values. The signal amplitude is 0.01 (peak SNR 9.79 dB) for the first 

set of experiments and the amplitude is 0.008 (peak SNR 7.85 dB) for the second 

set. Each set is tested in 50 Monte Carlo runs. The plots of the results are given in 

Figure 4.8, Figure 4.9, Figure 4.10 and Figure 4.11.  

 

Figure 4.8 and Figure 4.9 give the average estimated carrier frequency and the 

RMS error in frequency respectively. Even in PRF agile conditions, consistent 

estimates of the carrier frequency are given by the filter. The accuracy of the 

estimated carrier frequency gets better at the frame which is one after the 

occurrence of the signal. This is reasonable since the filter corrects itself after 

getting the measurement. Besides, higher SNR increases the performance of the 

filter. 

 

 A change in the PRI reduces performance of the signal existence at the point of 

PRI change. However this reduction is not severe and a robust threshold is still 

possible.  

 

The PRI of the data can be deduced from Figure 4.11. It is stated that data is 

divided into frames in time corresponding to 0.5sec , the time difference between 

two consecutive frames in which the probability of existence is high give the PRI of 

the data. As it is seen in the figure, the pulses exist at frames 4, 7, 10, 13, and 16.  
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There are 3 frames between two consecutive pulses and that corresponds to 

1.5sec .It is obtained that the PRI is 1.5sec  up to frame 16. Similarly the pulses 

existing at frames 16, 20, 24, 28, 32, and 36 give a PRI value of 2sec .  
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Table 4.2 Simulation Parameters for the Second Experiment 

The carrier frequency, cf  20kHz  

The pulse repetition interval, PRI  1.5sec , 2sec  

The pulse width, PW  20msec  

The variance of Gaussian Noise, 2

w
 0.1  

Peak SNR 9.79 dB , for signal amplitude=0.01 

 

7.85 dB , for signal amplitude=0.008 

Average SNR -8.96 dB , for signal amplitude=0.01 

when PRI is 1.5 sec 

 

-10.21 dB , for signal amplitude=0.01 

when PRI is 2 sec 

 

-10.90 dB , for signal amplitude=0.008 

when PRI is 1.5 sec 

 

-12.15 dB , for signal amplitude=0.008 

when PRI is 2 sec 

Total Simulation Time 20sec  

Number of Frames (Data is divided 

into frames in time corresponding to 

0.5sec ) 

40 

Number Of Pulses in the Data 5 pulses of 20kHz  at frame 4, 7, 10, 

13, 16 with PRF 1.5sec  

5 pulses of 20kHz  at frame 20, 24, 28, 

32, 36 with PRF 2sec  

Time Of Arrival (Pulses) 20kHz carrier frequency at 1.6, 3.1, 

4.6, 6.1,7.6 seconds 

20kHz carrier frequency at 9.6, 11.6, 

13.6, 15.6, 17.6 seconds 

The sampling frequency, sf  50kHz  

The initial probability of existence 0.05 

The probability of birth, bP  0.2 

The probability of death, dP  0.2 

Number Of Particles 1000 
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Figure 4.6 The signal in time domain, the carrier frequency 20fc kHz , the 

PRI 1.5secPRI  until time=8sec and the 2secPRI  until time=18sec 
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Figure 4.7 The measurement frames (peak SNR 9.79 dB)   
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Figure 4.8 The average estimated carrier frequency over 50 simulations 
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Figure 4.9 RMS error in carrier frequency over 50 simulations 
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Figure 4.10 The average probability of existence over 50 simulations 
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Figure 4.11 The plot which demonstrates that PRI can be deduced from the 

probability of existence data 
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4.3 Conclusions 

In the first set of experiments, 50 Monte Carlo simulations are done for the scenario 

in which the emitter system is frequency agile from burst to burst; there are 5 pulses 

with carrier frequency 20 kHz and following 5 pulses with carrier frequency 10 

kHz. The results demonstrate the performance of the developed algorithm.  

 

Figure 4.3 and Figure 4.4 show the performance of the algorithm in estimating the 

carrier frequency. The average estimated frequency over 50 simulations is given in 

Figure 4.3. The filter estimates of frequency given in the figures should be 

interpreted with a delay of one frame. If the average estimated frequency for 

amplitude 0.01 (peak SNR 9.79 dB) and 0.008 (peak SNR 7.85 dB) are compared, 

it is clear that the estimation performance of the algorithm gets better as the 

amplitude of the signal is higher. In Figure 4.4, as it is expected, the error is higher 

when the carrier frequency of the signal changes from 20 kHz to 10 kHz. The 

average probability of existence over 50 simulations is given in Figure 4.5. This 

figure demonstrates that the filter can detect the pulses even when the SNR is as 

low as 7.85 dB. The frames consisting pulses can be easily determined using this 

result by thresholding the existence probability.  

 

The second set of experiments reveal the performance of the algorithm when the 

system which changes the pulse repetition frequency (PRF). In the scenario, there 

are 5 pulses with pulse repetition interval of 1.5sec  that are followed with 5 pulses 

with PRI of 2sec .  

 

From Figure 4.8 and Figure 4.9, it is seen that the RMS error is higher in frames 

where the PRI is 2seccompared to frames in which PRI is1.5sec . This situation is 

reasonable since there are 3 frames between two consecutive pulses if PRI is 

1.5sec ; however, there are 4 frames in the other case. The smaller duty cycle 

causes the importance weights corresponding to the true frequency in the particle 

filter to decay. 
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The average probability of existence over 50 simulations is given in Figure 4.10. 

This figure shows that the filter can detect the pulses even when the SNR is as low 

as 7.85 dB. When the amplitude is 0.01, the probability of existence is lower in 

frame 20 compared to other frames that contain pulses which is reasonable since 

the system changes its PRI at that frame. Nevertheless, the frames consisting pulses 

can be determined.  
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CHAPTER 5  

 

 

                            CONCLUSIONS 

 
 

 

The real focus of this thesis is on the particle filter application of the track-before-

detect (TBD) approach to sonar signals. In Chapter 2, the theoretical background of 

the particle filter is given and the related works in the literature about TBD 

approach are briefly explained. 

 

In Chapter 3, a new particle filter which aims to detect and track pulsed modulated 

sinusoidal signals in noisy environment is developed. Detection of low SNR signals 

is a challenging problem. The conventional methods use thresholding, however; 

low SNR signals require a low threshold and this results a high rate of false 

detections; following that the tracking system form false tracks. The proposed 

solution is a recursive, Bayesian track-before-detect filter implemented using 

particle-based methods. As it is seen in the experiments, detecting the existence of 

the signal and finding and tracking the parameters of it is not possible for the cases 

considered in this thesis visually.  The simulations show that the algorithm 

presented in this thesis can detect signals which cannot be detected by conventional 

methods. Besides detection, the tracking performance of the filter is satisfying. The 

proposed filter estimates the carrier frequency and PRI of the signal.  

 

The originality of this work is the model developed. Although there are recently 

developed methods in the literature to track low SNR video signals, our problem 

has some inherent differences compared with the low SNR video tracking problem. 

One of the main differences is the existence of the signal only at some frames in a 

periodic fashion. This requires an original definition of the output. The model is 
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flexible enough to accept prior information about the unknown parameters as prior 

density functions. This flexibility is used in PRI prior. The same technique can 

(should) be applied to the selection of carrier frequency as well.   

 

The parameters of the signal are estimated using the MMSE estimation in this 

work. As a future work, the other estimation methods such as maximum a posteriori 

can be applied and the performance of the different estimation methods can be 

compared. 

 

In Chapter 4, the systems that employ frequency agility and PRF agility are 

considered. The simulations demonstrate that the filter estimates the true carrier 

frequency with one frame delay under frequency agility from burst to burst 

conditions. It should be noted that the detection performance is not degraded under 

the frequency agility conditions. Besides, the PRI of the signal can be deduced 

under PRF agility scenarios. The detection performance is not degraded, however it 

is seen that the tracking performance improves when the number of frames between 

two consecutive pulses decrease. 
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