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ABSTRACT

POSITIONING BASED ON TRACKING OF SIGNAL PARAMETERS IN A SINGLE
BASE STATION WIMAX NETWORK USING FINGERPRINTING

Koksal, Murat Miran
M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fethi Payidar Geng

August 2010, 155 pages

IEEE 802.16 is a point to multipoint broadband wireless access standard, designed from
ground up for fast and reliable mobile networking. Several location-related MAC layer fields
specified in the standard indicate that WiMAX networks can be convenient backbones for
future positioning systems. Information encapsulated in MAC headers is especially
important for single base station positioning systems which require fewer network resources
than multiple reference station location systems, but need more location-related input data.
In this thesis, an algorithm for positioning mobile stations in a single base station network is
presented to investigate location capability of WiMAX systems. The algorithm makes use of
fingerprinting to create a training database and seeks to find locations of mobile stations by
tracking them according to their signal parameters. Experimental results give an idea about
how a single base station positioning system performs in the absence of sufficient
location-related data, and suggest that better results can be obtained if MAC headers

specified in IEEE 802.16 standard can be accessed.

Keywords: positioning, WiMAX, fingerprinting, tracking



Oz

TEK BAZ iSTASYONLU BiR WIMAX AGINDA SAHNE ANALIZiI YONTEMI iLE
SINYAL PARAMETRELERININ TAKIBINE DAYALI KONUMLANDIRMA

Kdksal, Murat Miran
Yiuksek Lisans, Bilgisayar Muhendisligi Bolumd

Tez Yoneticisi : Prof. Dr. Fethi Payidar Geng

Agustos 2010, 155 sayfa

IEEE 802.16, hizli ve giivenilir mobil aglarin kurulmasi igin tasarlanmig, tek noktadan gok
noktaya hizmet vermeye yonelik genis menzilli bir kablosuz erisim standartidir. Standartta
tanimlanan ve konum bilgisi tasiyan bazi Ortama Erigsim Kontroli katmani alanlari, WiMAX
aglarmin Ozellikle tek baz istasyonlu konumlardirma sistemleri icin uygun birer omurga
olacagina isaret etmektedir. Bu tezde, WiMAX sistemlerinin konumlandirma kapasitelerinin
incelenmesi igin tek baz istasyonlu aglarda bulunan mobil istasyonlarin yerlerini tahmin
etmeye yarayan bir algoritma tamitilmaktadir.  Algoritma, temel egitim veritabanin
olusturmak igin sahne analizi tekniginden faydalanmakta ve sinyal parametrelerine gore
mobil istasyonlar1 izleyerek yerlerini belirlemeye calismaktadir. Deney sonuglari, konum
bilgisi iceren yeterli miktardaki verinin elde bulunmamasi durumunda tek baz istasyonlu bir
konumlandirma sisteminden ne kadar verim alinabilecedi hakkinda bir fikir vermekle
beraber IEEE 802.16 standartinda tanimlanan Ortama Erisim Kontroli basliklarina

erisilmesi durumunda daha iyi sonuclarin elde edilebilecegini 6ne siirmektedir.

Anahtar Kelimeler: konumlandirma, WiMAX, sahne analizi, izleme
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CHAPTER 1

INTRODUCTION

Position estimation is the process of finding the location of a mobile (or stationadg in
a wireless network by evaluating the signals that are transmitted betweerottetand a
number of fixed nodes [18, 31]. Since the introduction of wireless néisudee GSM, fast
development of which made mobile communication a reality, positioning systemsiinasig
a significant amount of interest. It is expected that positioning technicasedlon WiMAX
networks which implement IEEE 802.16 standard will receive high attentiosimigar way;
because, WIMAX provides high speed network access and mobility at the Sae which
is tomorrow’s trend in wireless communications [8]. Thikeats deployment of WIMAX in a
positive way. It is a natural result of availability that positioning with thesgeayis is getting

more attention.

In this thesis project, location capability of a real world single base station WWiMétwork
is investigated through development and evaluation of a position estimatioittatgoihe
purpose is to realize position estimation by only making use of the informatiompsulesed
in transmitted network packets as specified in IEEE 802.16 standard, antbddying the
available WiMAX hardware at all. Existence of positioning related data in MA&ders, like
Timing Adjust which can provide fine grained information about distancenobhbile station

from a base station, encouraged research in this area.

The algorithm proposed in this work is a two dimensional, physical positioniclgntgue
which provides absolute locations to users. It utilizes fingerprinting, thdtasllects signal
parameters at known locations, to create a training database. When a ntetile iequests
its location to be estimated, a training database is queried with signal paranegtered

by that station, and a position estimate is computed using the location informatitaineeh



in resulting records. Normally, in case of a base station that is installed in thdenafid
an absolutely straight area, fingerprinting can only help to determine a ¢eigered at
the base station) on which a mobile station to be located can be found. Hoiveaereal
world scenario it is known that the service area of a base station hasweuampgraphy, and
signal impairments come into play because of environmental variability. Tdrerahstead
of a whole circle, more specific results about a mobile station’s location cabthemed via
fingerprinting. The algorithm takes advantage of this. Since the lackfid¢igmt information
caused by utilization of one base station can not be compensated by fintiegpalone, a
tracking method is developed and integrated into the algorithm. Tracking iselcpart of

this work, and inherently requires mobile stations to be in motion during positioning

The remainder of this thesis is organized as follows. Chapter 2 providegytoand
information about IEEE 802.16 standard and WIMAX. Signal impairments tedtiae
transmission quality, fundamental position estimation techniques, and pararttettiare
used to locate mobile stations are also introduced in Chapter 2. Chapter B8geeiated
work about single base station positioning. In Chapter 4, hardwareddivehse employed in
this work are enumerated, and equipment problems which fundamentallynicéldethe
proposed algorithm’s development process are explained. Chaptesénts the studied area
in the Middle East Technical University campus and gives details abowt gignal
measurements and fingerprinting were carried out. In Chapter 6, a two slonah
visualization of collected fingerprints is described. Chapter 7 explains thetiproposed
position estimation algorithm and k Nearest Neighbor algorithm in detail. Chdapter
describes the experiments, discusses the results of the algorithms, andresripem.

Finally, Chapter 9 concludes the thesis and presents suggestions ferviuk.



CHAPTER 2

BACKGROUND INFORMATION

This chapter covers background information about

wireless broadband technologies utilized in this thesis,

signal impairments that can be encountered in wireless networks,

techniques for estimating positions of mobile stations in wireless networks, and

parameters that can be used by position estimation techniques.

2.1 |EEE 802.16 and WIMAX

IEEE 802.16 WirelessMAN Standard for Wireless Metropolitan Area Netw/dgs a point
to multipoint broadband wireless access standard developed by the IEEEG8Working
Group on Broadband Wireless Access Standards which is a unit of BEBERH.AN/MAN
Standards Committee [2]. The standard describes the air interface arse$amn establishing
requirements for physical layer (PHY) and Medium Access Controflgy&C) [43]. Main
purpose of the standard is to define a technology that will provide a ffestiee and easy to
deploy wireless alternative to wired broadband systems, allowing higld $ped and mobile

network access established with stability and security in mind.

Work on IEEE 802.16 standard was first started in 1998 with the formaticheolEEE
802.16 Working Group. The goal was to come up with a wireless broadbatem with an
emphasis on fixed, point to multipoint communication in line of sight (LOS) enuemts.

The first deliverable of the group was the original 802.16 standar@setein December

3



2001. Operation frequencies defined in the standard ranged frorilA86:66GHz, and
Time Division Multiplexing (TDD) was employed as the multiplexing scheme. Following
the first standard, a number of amendments were released, each oh&lofimwproved or
extended the standard in afférent way [4]. Support for non line of sight (NLOS)
propagation and new frequency ranges (2GHz to 11GHz) was adiflednivoduction of
Orthogonal Frequency Division Multiplexing (OFDM) in PHY, which is a miadion
scheme known for its resistance to harsh channel conditions like multipadd |4 Further
revisions, including addition of Orthogonal Frequency Division Multipleedgs (OFDMA)
to available multiplexing schemes, resulted in releasing an updated versiangiétidard in
2004, named IEEE 802.16-2004. Later in 2005, with completion of IEEE18222005
amendment, which specified means for roaming and seamless handoveanted earned

the ability to support mobility [4].

IEEE 802.16e-2005 combinesftieient transmission and multiplexing schemes with
advanced techniques that are used to achieve stable data transmissiailabilty of
multiple channel bandwidths, frequency bands, transmission schemesneaos that it is
flexible enough to be adapted tdferent needs. As mentioned above, IEEE 802.16e-2005
supports both single carrier and multi carrier transmission schemes (OHrve)Division
Multiplexing (TDM,) Time Division Multiple Access (TDMA,) and more importantly
OFDMA are specified as available multiplexing schemes (OFDMA makes it pessib
dynamically adjust data rate according to channel conditions which is why adf lsig
importance for the standard.) Also explained in the standard are modulatiemss of
Quadrature Phase Shift Keying (QPSK,) Quadrature Amplitude Modula@#M,) and
duplexing schemes of Time Division Duplexing (TDD,) Frequency DivisiompExing
(FDD.) The standard is designed to operate on 2GHz-11GHz frequamge for fixed
applications, and 2GHz-6GHz frequency range for mobile applications wlidnnel
bandwidths ranging from 1.75Mhz to 15MHz [4]. Typical cell radius istextato vary

between 3-5 miles for fixed applications, and 1-3 miles for mobile applicaticcw@diag to

[6].

Switching from technical details of the standard to a more abstract look: IEE.16
protocol architecture consists of four sub layers [36]. Physicar/dlie lowest layer in the
architecture, deals with specification of transmission medium and identificdtfcagoency

bands over which signals can be transmitted. Transmission layer, foord physical layer,



takes on the tasks of signal encoding, preamble generation, bit transmissidhe
transmitting side, and signal decoding, preamble removal, and bit receptithe oeceiving
side. Together, these two sub layers are equivalent to the lowest lay@pem Systems

Interconnection (OSI) model (physical layer) [36].

MAC layer, which stands above transmission layer, manages base stg@8)sand
subscriber stations’ (SS) access to the communication medium, that is, themadiwel. On
the transmitting end it appends an address and error detection bits to the hieltawas
received from upper layers and destined for a receiver, while onregbeiving end it
acknowledges a received frame by its address, extracts actual ddtahecks integrity of
the data using error detection bits. Steps one should take to access mediomnimkl
direction (from base station to subscriber stations) are easier compdhedaimes concerned
with access in uplink direction (subscriber stations to base station) sincdini dpection

multiple subscriber stations have to compete for access to the medium [36].

On top of the IEEE 802.16 protocol architecture is convergence layeseviiask is to
differentiate between filerent kinds of packets received from upper layers and process the
appropriately according to their class [23, 24, 36]. MAC layer and emence layer

together are equivalent to layer two of OSI model (data link layer) [36].

It is a good idea to learn about basics of OFDM, OFDMA, and AdaptiveliMation and
Coding (AMC) to get a better understanding of IEEE 802.16e-2005. DR transmission
scheme which makes use of multiple carriers to transmit a data stream. A sirgglerioy
channel which would normally carry a single data stream is divided into multipksdler
channels called subcarriers. The idea in OFDM is to split the main data streamuitiple
lower bit streams and carry each one of them over one subcarriefBéch subcarrier is
modulated with a conventional modulation scheme” such as QAM or QPSK [4dlike
regular frequency division multiplexing, OFDM does not need non oppitey subcarriers
but it requires subcarriers to be orthogonal, meaning that they catapumrt not interfere
with each other [9]. An advantage of orthogonal subcarriers is thatdugiire less bandwidth
compared to non overlapping subcarriers. The most important advarftageing multiple
subcarriers is that they show high resistance against Inter-symbdkehatece (1SI) which is
a problem caused by multipath propagation. When a transmitter sends a gignakely

that multiple copies of the signal, each taking &atent path, arrive at the receiving end



at different times. That means while a transmitted signal is being received, a centpon
of a previously transmitted signal may also be received which can intesignehe actual
signal. OFDM can cope with this problem, because by dividing a frequehaynel into
multiple subcarriers it increases the symbol time, that is, the period of time dwhiap
receiver waits for a signal. Therefore, it reduces the likelihood ddivéieg a component of

a previously sent signal during transmission of a subsequent ontneFprevention against
Inter-symbol Interference is provided by using guard intervals betwgmbols since it adds

up to the symbol time. However, it requires more power and bandwidth torisioeed [4].

OFDM deals with multi carrier modulation of one bit stream over one communicetiannel
[44]. So, itis not a channel access method for multiple users. OFDMAdgt®FDM to
make it usable in multi user environments by grouping subcarriers into multiptéhannels
which are assigned to fierent users [4]. The ability to assign subchannels witfedent
number of subcarriers to fiiérent users allows serving each user with feedént Quality of
Service (QOS) [44]. Such subchannelization is obtained by Adaptivdultion and Coding
which dynamically changes modulation and coding schemes according toaetlcanditions.
First, quality of a communication link that was set up between a base stationsabdaiber
station is evaluated. If downlink is being investigated, subscriber stationumesasignal-to-
noise and interference ratio and informs base station about it. In cagpdirgf,lbase station
can handle channel quality estimation itself. Information about channétygisaprocessed
by base station to find the highest modulation and coding schemes for theetb@aprovide
highest possible data rate [4]. However, note that robustness is msiralde than high
throughput, which is why a base station changes modulation and codingasloéa channel
to lower ones when stability of the channel is questionable. For example, abscriber
station that is close to its associated base station, 64 QAM can be used in itmaropdor
high throughput. But, as the subscriber station moves away from the tadie® sto protect
reliability of the link, the base station can dictate using a more robust modulatiemsclike
16 QAM or QPSK, increasingfiective range and decreasing data rate at the same time [6].

Therefore, there is a “real-time tradébetween throughput and robustness on each link” [4].

In IEEE 802.16e-2005, connection reliability is further ensured by ther econtrol
mechanism called Automatic Retransmission Request (ARQ) which requires an
acknowledgement packet to be sent from a receiver to a transmitter svtiemsmitted

packet successfully arrives at the receiver. If an expectedoadkdgement packet is not



received on the transmitting side, the transmitter assumes that the packettvekesivered
correctly, and resends it. The standard also supports Hybrid-ARGRE&) which combines
regular ARQ with Forward Error Correction (FEC) [4]. In FEC, a ligeetries to identify
and correct possible bit errors in a received data block using erroeatimn information
transmitted with the data. Before sending data to a receiver, a transmitteatesak
function which takes the data to be sent as its input, and outputs a bit stringl calle
“error-correcting code.” The transmitter creates a data block by ajppgthat bit string to
the actual data, and transmits it to the receiver. Upon receiving the date e receiver
computes an error-correcting code using the received data to compeith the received
code. If codes are the same, then it is assumed that there are no errerslatahlif they are
different, then it is understood that there are bit errors. In the case ofrbit éeing
identified as recoverable depending on code length and algorithm beidgersoneous bits
can be found and corrected in the receiving end [36]. Hybrid-AR&ida#ly works by
passing a data block through a FEC coder before it is transmitted. Wheatthés deceived
the process is reversed using a FEC decoder, and if the decoding feilsaasmission is
requested. When retransmitted data is received, it is combined with thedotorme to

extract the actual data correctly [4].

In addition to the techniques mentioned above, IEEE 802.16 based netearkdeliver
enhanced performance by utilizing multiple antenna elements. AdvancedranBystems
is the optional feature which increases range, system capacity, $pefficeency and
signal-to-noise ratio (SNR) gain. Simply put, a base station can improve reliabylity
adapting its antenna array to focus on an individual subscriber statidrtransmitting

powerful signals that combine multiple regular signals [25].

IEEE 802.16 has a connection oriented MAC layer which was designed witiit®) of
Service in mind. The standard supports a number ¢ dint trdfic types, like voice or web,
and allows #icient allocation of radio resources to users according to their needtheIn
case of multiple connections between a base station and a subscriber st@atioopnnection
is handled separately, meaning that each one can be assignediesendirdtic class [4]. In
IEEE 802.16e-2005 there are five scheduling services called Qualityewic® classes,
defined [25]. Unsolicited Grant Service (UGS) is used for uplink cotioes over which
fixed size data packets are transmitted periodically. Voice over Interm¢ddet (VoIP)

without silence suppression is an application generating constant bitGBtR) (trafic for



which UGS can be used. Real-Time Polling Service (rtPS) is suitable fotinealstreams
that require periodic transmission of variable size data packets in uplinitidine It can be
used for carrying variable bit rate (VBR) streams like Moving PicturesespGroup
(MPEG) videos [25]. Extended rtPS combines UGS and rtPS, guaragtesitain data rate
while transmitting real time VBR streams. Extended rtPS is a convenient chaice fo
applications like VolP with silence suppression [4, 25]. Non-Real-Time Rpl8ervice
(nrtPS) is designed for delay tolerant VBR streams that require certain nmmifata rate to

be ensured. nrtPS is adequate for applications like FTP. Finally, Bist EBE) provides
efficient service for uplink trdic that requires no specific data rate or delay guarantees, e.g.
HTTP [4].

Overall, IEEE 802.16 puts all schemes, methods and features that aremadrdlmove into a
standard, and defines means in which they work together in harmony tahHerfoundations

of last generation broadband wireless networks. The standardisl lsape and numerous
options come in handy to satisfyfilirent needs and realize various network applications.
However, high customizability is an obstacle for deployment of interopenabte/orks.
IEEE 802.16 Working Group developed the standard but did not dealnaittowing down
the scope of it, leaving that task to the industry. This lead to formation of a nafit p
organization which defined the details of “interoperable implementations [dbJEEE
802.16 based networks called WiMAX, short for Worldwide Interopé#itglior Microwave

Access. The organization itself is called WIMAX Forum [4].

WiIMAX Forum consists of equipment and component suppliers from thesing{6]. Main
purpose of the forum is to make agreed decisions about options of IBEA@® standards
that a WIMAX device should implement. For example; IEEE 802.16e-2005 astgpp
frequencies from 2GHz to 11GHz, but WIMAX Forum pays attention to 2.5GHd
3.5GHz for actual implementation. Forum defines a number of ‘system ofibe
compatibility and interoperability among IEEE 802.16 based devices. TheBkpare sets
of physical and MAC layer features some of which are mandatory while®#re optional
[4]. Apart from ensuring compatibility and interoperability among devices withtem
profiles, WIMAX Forum promotes adoption of WiIMAX products; acts as a lga& in
deployment process of WIMAX systems, and speeds up the penetratiomseftkistems into

the market [6, 46].
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Figure 2.1: WIMAX enabled HTC EVO 4G cellular phone and Overdrivg48&Mobile
Hotspot by Sierra Wireless [13, 11].

There are two versions of WiMAX that are being mentioned frequently. Ri¥dAX is the
version based on IEEE 802.16-2004 standard which is specialized&ess communication
between stationary nodes while Mobile WIMAX is based on IEEE 802.16& 2téndard
which extends the former with support for mobility. One of the important pitagseof both
is that they have IP based reference network architectures. Thasraea® architecture

utilizing IP based protocaols is responsible for carrying services beteregmodes [4].

In general, there are two types of end nodes in a WiMAX network; baserstnd subscriber
station. Base stations can be installed on top of buildings or towers whilerhdysstations
may come in a variety of forms. A fixed subscriber station can be in form ajwdoor

antenna which provides better signal reception and network performanea all in one
indoor modem (like an ADSL modem) which has the advantage of easier installadio
subscriber station can also be a mobile device like a notebook, cellular,phobée hotspot
(Figure 2.1,) portable media player, etc. allowing access to ubiquitous retwarthe go.

An example of WiMAX topology can be seen in Figure 2.2.
Advantages of WIMAX networks make them a good competitor against othesless
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WIMAX Tower

Figure 2.2: An example WiMAX topology [27].

broadband and wired network technologies. Painless base station instadlatidotal cost
of deployment within reasonable limits make WiMAX networks a good choiceogspefor
areas where it is not practical to build a wired infrastructure becauseafvenient terrain.
Installing base stations is a less time consuming task compared to wiring a large seea.
WIMAX networks can be used for data, Voice over Internet ProtocolRY and Internet
Protocol Television (IPTV) services, and may be employed to complemerdr oth
communication technologies, e.g. WIiMAX as backhaul for Wi-Fi networls [existing
companies providing wired network services can make use of mobility feanfis&EMAX

to extend their service areas and leap ahead of the competition. Mobil¢apexdich did
not make the transition to third generation (3G) systems can utilize WiMAX to fill & g

and provide high performance mobile applications just like 3G operators.

According to WIMAX Forum’s Industry Research Report [47] issued joril 2010 there
are 148 countries with WiMAX deployments, and a total of 588 WiMAX netwdtkat are
either in service or plann@dd deployment.” As stated by Dr. Mohammad Shakouri, vice
president of WIMAX Forum, “Today the initial WiMax system is designed tovite 30 to

40 megabit [per second] data rates” [40]. Real world speed testedtaut by subscribers of
Vividwireless reveal an average data rate of 12.23 Mbps and a péakade of 36.78 Mbps
[41].
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2.2 Signal Impairments

In a communication system, either wired or wireless, a transmitted signal thatiisetefor a
receiver always encounters some degradation, causing the ets&wal to be dferent from
the original one. These modifications are caused by signal impairments argi@xplained

in this chapter to gain a better understanding of wireless communication inad) 3@t

2.2.1 Attenuation

Attenuation is reduction in signal strength due to distance between a transmittes a
receiver. In order for a receiver to notice and interpret a sign&ngth of the signal must be
above a certain level. Information carried with a signal can be extracteeotly only if the
received signal is more powerful than perceived noise. At certatartiss, attenuation can
cause communication to get interrupted or be completely halted. Existence of lenultip
receivers makes attenuation a bigger concern since each receivdrecat a dierent
distance from a transmitter. It is not hard to see that mobility adds up to théeprolio
overcome these factors amplifiers can be used. One property of attenismtibat it
increases as higher frequencies are used for communication. Tisasaalative strengths of
frequency components of received signals to bEedint than that of transmitted signals

[36].

2.2.2 Free space loss

Free space loss is the reduction in signal power caused by disperssognafs in wireless
communication medium. Because of that a transmitted signal disperses with éjstanc
receiver that is coupled with a fixed antenna receives less powghals as it moves away
from the transmitter. A signal experiences attenuation caused by free ks even when
other types of signal impairments are assumed not to be present. Nornmeglgpgace loss
increases as signals are transmitted at higher frequencies. Howeredyugtion of antenna
gain changes this relation such that free space loss decreases adreighencies are used

for transmission [36].
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2.2.3 Noise

As mentioned previously, a received signal is not the same as its transmitgdnvsince
transmitted signal gets modified by distortions related to the transmission systevevétp
this is not the only reason why transmitted and received signals fieeadit. There are other
signals in the transmission system and communication medium that get included in the
reception process without the receiver knowing anything about it. &bodesirable signals
are called as noise andtect reception of actual signals destructively. There are four
different types of noise. Thermal noise is the one that is caused by theritsioagof
electrons. Every electronic deviceffars from thermal noise, and there is no way of getting
rid of it. That is why thermal noise sets an upper bound on communicationrpefce.
Second noise type is intermodulation noise. If there are two signal transnssgioiferent
frequencies that are being carried out in the same medium at the same timesigma can

be produced at a frequency that is equal to the sumféerdnce of those two frequencies.
That newly produced signal is called intermodulation noise and is an unavaiggeal since

it can interfere with transmissions being modulated at that frequency. This# type is
crosstalk which is caused by uncontrollable coupling of two signal paths.wileless
communication this happens when unexpected signals are sensed hyngeegitennas
unintentionally (because of that signals disperse, as mentioned previouslygeneral,
crosstalk and thermal noise disturb a transmission at a similar rate. However,
transmissions at the unlicensed industrial, scientific and medical (I1SI) bagids crosstalk
is a more damaging. The last noise type is impulse noise which is the most problg/patic
for digital transmissions. It is an unexpectedly produced noise with @ gdhration and high
amplitude. It can be caused by electromagnetic disturbances or communisgsiam
defects [36].

2.2.4 Atmospheric absorption

Atmospheric factors like water vapor and oxygen can add up to loss inlsgeagth in

wireless communication. Transmissions at around 22Glfersthe most from water vapor
while oxygen disturbs transmissions at around 60GHz the most. Thesesfact less
dangerous for transmissions occurring at lower frequencies, iefipdelow 15 GHz and 30

GHz for water vapor and oxygen, respectively. A transmission canbgsiected by water
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droplets hanging in the air (caused by rain and fog) since droplets sayrsas to scatter

and result in attenuation [36].

2.2.5 Refraction

Refraction is another atmospheric impairment in wireless systems and is thedpend
transmitted signal. It emerges as a result of change in propagation dpesidioal depending
on the change in that signal’s height above sea level. In the case ofda liixe of sight
(LOS) communication, refraction can obstruct reception of a transmittealgigmtially or

completely [36].

2.2.6 Multipath

In a wireless environment, a transmitter and a receiver can be locatedttsaicltheir
communication is not hindered by existence of obstacles in between them,, ti@réscan
be a line of sight path between them. However, with the introduction of mobilitpemaus
obstacles like trees, buildings and living beings in motion are brought inte plepending
on transposition of the moving node. Because of these obstacles, transsigttats may
experience reflection, fifaction or scattering, causing multiple copies of the same signal to
be produced and propagated in the medium. Inherently, these copieh, fafioey different
paths, may arrive at the receiving end atatient times and actively influence reception of
the actual signal either constructively or destructively. Variation aikexl signal power due
to such multipath propagation and changes in transmission medium is called, faadhigis

a crucial subject to cover in wireless communication systems design. As neshinove,

multipath propagation can be in form of reflectionffidiction or scattering.

Reflection happens when one component of a signal hits a surface thages than the
wavelength of the signal and gets reflected in another direction. Theretloe signal
component follows a path that isftérent from the actual signal path, and may or may not be
received by its destined receiver. If that new path leads the signal @uenp to its
destination, depending on the length of the path it may be received apptekinaa the
same time as the actual signal or later than that (in which case it is highly likelththat

signal component interferes with a subsequent signal.)
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Diffraction is similar to reflection, but it happens when a signal hits the edgeaifjaat that
is larger than the wavelength of the signal. Such an encounter causégtds continue its
propagation in another direction. fraction may aid reception of signals in non line of sight
(NLOS) cases [36]. Nevertheless, because of that every time a sgdiliracted it loses
some of its power; the received signal may be totally unintelligible. Such losgnalgpower

is called as shadowing [4].

Scattering is the spreading of multiple weaker copies of a signalfierdnt directions as a
result of the original signal experiencing an obstacle with a size close kessrthan the
wavelength of the signal. Scattering andf@diction are important propagation mechanisms
especially for mobile wireless communications since they can influence sigoaption

positively [36].

2.2.7 Doppler shift

The last impairment féecting mobile communication is the Doppler shift. When there is
a relative motion between a transmitter and a receiver, frequency of tentitéed signal
observed by the receiver becomeffatient than the actual one. The amount dfestence
depends on vehicular speed and the carrier frequency that is beidgdisppler shift causes

reduction in signal-to-noise ratio (SNR) [4].

2.3 Position Estimation

Position estimation is the process of finding the location of a mobile station (MS) or a
stationary node in a wireless network by evaluating signals that are ey@théetween that
node and a number of fixed nodes, that is, base stations (BSs) [18,TBEfe are three
techniques in general that can be used to estimate the position of a node ielessvir

network: dead reckoningproximity location andradiolocation[30].

Dead reckoning is a basic location technique in which starting position of & thad will be
located is known in the beginning. As the node moves around its accelenagionity and
direction of travel are measured to calculate how much and in which directiooviés from

the starting point. Each new position estimate is computed based on a preveolzonside
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of such a chain of computations is that positioning errors in early estimatidnstaggked
together, causing subsequent estimations ftesfrom larger errors. Still, it is possible to
reduce such errors by utilizing more reliable positioning techniques from time tottime
obtain accurate position estimates, and then using dead reckoning to combsigsent

positions [30].

In proximity systems, position of a node is calculated by collecting data aboxinuity of
the node to a number of fixed detection devices and processing them. Syis¢sas can be
suitable for positioning applications covering small areas; however tleegarpractical for
locating devices in larger areas arguably because of the cost asdauithtéenstalling lots of

fixed detection devices. Proximity systems support Isethandremote positioning30].

In self positioning, which is also known as mobile centric positioning [20]; ailadation
gathers signals from a number of reference points, e.g. base statimhsnakes some
measurements based on those signals to estimates its location itself [12]. Nasimalys
transmitted by reference points must contain information about their posit®dnT8e most
popular example of self positioning (note that it is not a proximity system) is Globa
Positioning System (GPS) which consists of satellites revolving around thi Bad
broadcasting positioning information which allow GPS receivers to determigie dkvn

location [12].

The opposite of self positioning is remote positioning, also known as netwemkric
positioning, in which location of a node is determined by the network [20]t,Elve node to
be positioned transmits signals which are sensed and measured by oneeoregwivers
(reference nodes) [18]. Measurement results are forwardedeateatunit by the receivers
where they are combined together to come up with a position estimation. If it isedgthe
node can be informed about its location [12]. An example of proximity systditiging
remote positioning is primitive positioning systems that are currently being ysedllolar
networks where location of a cellular phone is roughly estimated by identifhimgector or
cell that the phone is currently residing in. Advantage of remote positionititatsit does

not require any modifications on mobile stations [30].

There is a third positioning technique calledirect positioningwhich is investigated in two
groups. Inndirect remote positioninga mobile station determines its own location just like a

regular self positioning node after which it sends the location data to a reitetS&snilarly
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in indirect self positioninga remote positioning system computes the location of a mobile

station and transmits the location data to the node [12].

Going back to positioning techniques, the last one is radiolocation. Radiimioacteals with
finding position of a mobile station by measuring and processing signalsregethdetween

the station and multiple base stations. Just like proximity systems, radiolocattemsysan
utilize self or remote positioning. GPS, which was mentioned as a self positioyétens
previously, is also a radiolocation system. Radiolocation with self positioniggines
establishing forward links (from base station to mobile station) which means thnatbile
station owns antennas receiving signals broadcasted by base statiomtetmide its
location. Radiolocation with remote positioning requires establishing reverse (from
mobile station to base station,) meaning that a mobile station must have a transmittet to sen

signals to base stations that will calculate its location [30].

In this thesis, radiolocation is considered as the primary positioning techragde
everything from this point on will be explained for radiolocation. Also, thaiponing
algorithm proposed in this work is an example of a two step algorithm as exglainEL 8].
In the first step of a two step positioning algorithm, certain signal parametersxaacted
from transmitted signals. These parameters can be Time of Arrival (TOAg)efof Arrival
(AOA)) Received Signal Strength (RSS,) etc. which will be describedsh section. In the
second step, according to the parameters that are obtained, location estisiatiaried out
using methods like fingerprinting, geometric methods, etc. In a two step remsitepimg
algorithm, reference nodes can obtain parameters from collected sigddlsrevard them to
a central unit where actual positioning will take place. It is also possiblesference nodes
to directly forward the signals they collect to a central unit; however in ths¢ ¢the central

unit will be left with more work to do including parameter extraction [18].

Each positioning technique that is described in here can be used féiegedt positioning
application. Requirements of fterent applications have implications not only for the
technique to be employed but also for the type of location information to be U$ede are
four types of location information which aghysical location symbolic locationabsolute

locationandrelative location[31].

Location information provided by a positioning system can be in form of ighyor

symbolic location [22]. Physical location defines an object’s location atelyr without
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leaving room for ambiguity. An example system is GPS which provides latitudgjtl@e
and altitude of an object. Symbolic location, on the other hand, gives afstexbal
explanations, e.g. ‘in room 107, ‘in meeting room,’ ‘next to bus statiomérefore, systems
that are only based on symbolic location provide undetailed information. lbssilple to
convert a physical location to a symbolic location by querying a databaseevetach record

consists of a physical location and its corresponding symbolic location.

An absolute location system provides location information according to adsheference
grid. That means all nodes in the system agree on using the same refgrahcso that
data corresponding to a location are interpreted in the same way by all. featesxample,
coordinates given by two GPS receivers which are located at the samevibbe the same,
and for any GPS equipment (receiver or satellites) those coordinategoivili to the same
place on the Earth. A positioning system can also make use of relative logcatgaming that
there is no shared reference grid and each node in the system caa iredgeence grid of its
own. An example can be a robot swarm where each robot computescaidtatween itself
and other robots in its vicinity to find out which direction it should be headedtoe can
convert an absolute location to a relative location in existence of a refepoint according
to which relative location can be calculated. Conversion in reverse dineigtialso made
possible by triangulation, but it requires knowledge about absolute pusitbreference

points [22].

2.4 Parameters for Positioning

In a two step positioning algorithm, parameters extracted from signals in thstéipscan be
used by a number of location estimation schemes in the second step. Herd, ttvase®
schemes will be explained with the signal parameters that accompany themfly, Brie
geometric techniques estimate the position of a node by exploiting geometric retégion
depending on signal parameters while mapping (also known as fingergriotirscene
analysis) techniques rely on extracting location dependent signal afitem in field signal
observations, and compare signal parameters of the node to be locatatagighpatterns

[18].
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2.4.1 Geometric Techniques

Geometric techniques estimate position by utilizing geometric properties of trigBdlest
combines circular or hyperbolic uncertainty regions obtained by evalusitjngl parameters
to find their intersection point. An uncertainty region is the locus which a mobie o be
located resides on, meaning that if there are multiple such regions then thenusd be at a
location that is a part of all the uncertainty regions at hand. Geometriciteeradeal with
identifying that location which is the intersection point [18]. There are twesyqf geometric

techniques: trilateration and triangulation [31].

2.4.1.1 Trilateration

Trilateration, also known as range measurement, uses parameters ¢g signsmitted by
multiple reference stations (RSs) to determine distances between them andileestadion
(MS) to be located [31]. Each one of those distances represents aaotied one of the
reference stations. The point where circles intersect gives the loaztitve mobile station
[18].

Signal parameters which allow position estimation by trilatateration are

e Time of Arrival (TOA,)
e Roundtrip Time of Arrival (RTOA,)
e Time Difference of Arrival (TDOA) and

e Received Signal Strength (RSS.)

Time of Arrival  In a wireless communication system, the distance between a transmitter
and a receiver is proportional to the amount of time a transmitted signal spemelach its
destination (the receiver) [31, 12]. This amount of time is called as pedjmagtime or flight

time of a signal. In a TOA based technique, one way propagation time of d sigwelling
between a reference station and a mobile station is measured to compute theedistareen
them by multiplying the propagation time with the radio signal velocity [31]. Sinceetlse

no knowledge about the direction of the mobile station (relative to the referstation,) a
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Figure 2.3: Positioning with TOA, RTOA, or RSS parameters.

computed distance only defines a circle centered at the reference sftmexact position
of this mobile station on the circle can not be known until extra information isigeaV

A TOA measurement using a second reference station defines anottier sasulting in
two circles intersecting at two points. Because of that there is still ambiguitytattaich

one of those points to select as the location of the mobile station, a third redeséation
must be employed to do another TOA measurement [30, 12]. Thereforteyd dimensional
positioning of a mobile station, at least three reference stations are mqbigeire 2.3) to

measure TOA parameters of signals transmitted to or received from the mtaliibe $31].

The problem with TOA is that a receiver has to know the exact time that antitias
transmits a signal to it [12]. Both receiver and transmitters have to be plgsigchronized
to prevent possible errors in position estimation process [31]. Synidaton can be
provided by using a shared clock or exchanging timing information. Apanh imposing
rigid timing constraints, signal to noise ratio dfextive signal bandwidth can be increased

to provide more accurate position estimates [18].

Roundtrip Time of Arrival RTOA is the time it takes for a signal to travel from a
transmitter to a receiver, and then back to the transmitter. Positioning wise RI@#&d in
the same way as Time of Arrival. If a reference station is to measure RTGAnobbile

station, then it transmits a signal to the mobile station and starts a timer. Uponmgdeis
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transmitted signal, the mobile station responds by transmitting another signatd#uk
reference station. The reference station stops the timer when it retieatesgnal from the
mobile station, and uses the elapsed time (which is approximately two times the one way
measurement [12], Time of Arrival) in estimating position of the mobile station. The
advantage of RTOA is that it does not require synchronization betweemmanicating
stations. However, because of that the time a responding station spemdsdega received
signal is included in RTOA and the transmitter does not know how long thaepsatime is,

there may be positioning errors that can not be ignored, especially ih rsimgre systems.

For long range systems where transmission time is significantly higher thansfmender's

process time, this may not be a very important problem [31].

Timing Advance Timing Advance (TA) is a parameter defined in Global System for
Mobile Communications (GSM) specification and can be considered as awmdl
implementation of Roundtrip Time of Arrival. The parameter was introduced tageathe
transmissions originating from mobile stations and destined for base tregisetitions
(BTSs.) GSM telecommunications standard employs Time Division Multiple Access
(TDMA) as the channel access scheme, meaning that all transmissiomsnobile stations

to base transceiver stations must comply with certain timing rules. A basednagrsstation
has multiple mobile stations associated with it, each one of which seeks permission f
channel access to transmit signals. Permission is required, becausedf thare mobile
stations transmit signals to the same base transceiver station at the sameijlltcayse
interference at the receiving end. Therefore, each mobile station rawsdigned to a time

slot during which it is allowed to transmit signals. TA deals with those time slots [12]

A base transceiver station sets dfelient TA for each one its associated mobile stations
“according to the perceived round trip propagation delay BTS-MS-RIZ3.” A mobile
station receiving a TA adjusts its transmission timing accordingly, so that thalsign
transmits arrive at the receiving end during the expected time slot. Since TA is
representation of propagation time, it can be used to estimate the distanceerbetwe
communicating stations. Just like other trilateration parameters, it definesutacilecus

that contains position candidates for a mobile station [12]. TA can have a fralm 0 to 63

[14] where each increment corresponds to a distance of 554 metérsii& means it can

only be used for coarse position estimation.
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Figure 2.4: Positioning with TDOA parameter.

Time Difference of Arrival TDOA is the diference between arrival times of two signals
transmitted from two dierent reference stations to a mobile station or vice versa. A TDOA
parameter defines a hyperbola with its foci at the reference stationsTh8]mobile station

is located somewhere on that hyperbola, meaning that there is an uncectaivdy and to
find out its exact location a second hyperbola (another TDOA measuteiserequired.
That means there must be a third reference station to do a new TDOA nmeasiireTwo
hyperbolas generally intersect at one point (Figure 2.4) which detesrttieeposition of the
mobile station being investigated [31]. However, it is also possible for two rbhytes to
intersect at two points and cause ambiguity in position estimation. The solutiorchoasu
case is an extra TDOA measurement to draw a third hyperbola which inteisher two

hyperbolas at one certain point [12].

TDOA measurements require reference stations to be synchronizetiebuabbile station to
be located does not need to be synchronized with reference statisedf jpositioning case,
reference stations must transmit signals to the mobile station at the same time, shidhéy

provide time dfset information with their signals, so that TDOA parameter can be measured
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correctly. Similarly, in remote positioning case, reference stations must d@eldéadgeable
about the relationship between their clocks in order to correctly evaluatsighals they

receive from a mobile station [12].

TDOA of a mobile station and two reference stations can be measured badingrthe
Time of Arrival parameter measured between the mobile station and one oéférence
stations from the Time of Arrival parameter measured between the mobile ssatibthe
other reference station. One of those Time of Arrival parameters maydmeo unknown
timing offset which is caused by the absence of synchronization between the nahbde s
and reference stations. This may sound like it can give birth to an euwsnédOA
computation; however because of that the reference stations arerayizeld with each
other, the same unknown timindtset will be included in all Time of Arrival measurements.
During subtraction timing fisets of the two Time of Arrival parameters will cancel each

other and the result will be the correct value of TDOA [18].

Received Signal Strength Multipath fects explained in previous sections cause problems
in radio propagation which in turn has a negative influence on the agcofameasured
signal parameters. An alternative parameter is RSS which is an indicatce aftémuation
that a transmitted signal experiences until it is received, that is, ffexelice between signal
strengths of a transmitted signal and a received signal. RSS parametggoébtransmitted
between a mobile station and a reference station can be translated into aed@taange
estimate [31]. A circle centered at the reference station is drawn usingatingé estimate,
defining the area where the mobile station can be at. Therefore, like the ioaSene of
Arrival and Roundtrip Time of Arrival, multiple circles (multiple RSS measuretsievith
different reference stations) are needed to find an intersection poirg tieemobile station

is actually located at [30].

Multipath fading and shadowing can have bateets on RSS measurements, leading to
insuficient accuracy in positioning [31]. Averaging RSS values measureer“av
suficiently long time interval [18]” can help reducing sucdffieets to some degree. However,
for a slow or stationary mobile station, averaging RSS values is likely to besssstece low
mobility will cause most of the measurements tétsufrom the same signal impairments

[30].
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BS1

Figure 2.5: Positioning with AOA parameter.

2.4.1.2 Triangulation

Triangulation is the process of locating a mobile station by measuring its antgésed¢o
multiple reference stations [31]. Each angle defines a straight line betiveemobile station
and one of the reference stations that intersects with another straighefinediby another
angle. In absence of measurement errors, multiple lines are expectedrsméntat one
point. In case of intersection at multiple points (because of random gromes can not know
which point to select as the location of the mobile station. Furthermore, intraylucore
parameters can increase the number of intersections; because, eaganaeneter may
incorporate errors that occur during parameter estimation processtuallg resulting in

erroneous lines intersecting at more than one point [18].

There is one parameter that allows triangulation which is called as Angle BAfAOA) or

Direction of Arrival (DOA.)

Angle of Arrival AOA is the angle “formed by the circular radius” from a reference
station to a mobile station [31]. As mentioned in the previous paragraph, ands@Aes a
straight line between two communicating stations. In order to locate a mobile statiwn in
dimensions at least two intersecting lines (two AOA parameters) must be deailab
(Figure 2.5.) A third AOA parameter allows positioning in three dimensions. tAipam

requiring less number of reference stations (compared to trilateration nsetlamdadvantage
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of AOA based positioning is that it does not require reference stations &yihchronized
[31].

Directional antennas or antenna arrays are essential parts of an yseks[31]. A system
incorporating an antenna array estimates this parameter by doing calcubstg®tson arrival
times of a signal at diierent array elements, and antenna geometry [18]. These indispensable
components of AOA systems constitute a disadvantage because of theindizgharent
complexity. Another downside is that positioning performance gets degjelan observed
mobile station moves away from its corresponding reference station. Fompéxaif AOA
of a mobile station that is 200 meters away from a measuring reference stagistmisited
as 46 degrees instead of 45 degrees, the error in position estimation withlnedad meters
(distance will be computed as approximately 204 meters.) However, when thikesiation
moves 1000 meters away from the reference station in the same directio®/aarfor of 1
degree will cause 18 meters of positioning error (computed distance willrheters) [31].
There is no such problem in Time of Arrival, Roundtrip Time of Arrival om€& Difference

of Arrival based systems [30].

AOA measurements are susceptible to multipath reflections; because, caortspooing signal
which follow paths other than the actual one can mislead the antenna arragssuming
that the signal is transmitted from another direction [31]. Most of the time, thizizase
with wireless networks which sier from the absence of line of sight (LOS) paths between

communicating stations [30].

It is stated in [18] that increasing signal-to-noise ratio (SNRigaive bandwidth, inter
element spacing or the number of antenna elements improves AOA estimatiaagccu
Also, [30] states that achieving accurate time estimations like Time of ArrivalinBioip
Time of Arrival or Time Diference of Arrival is considerably easier than achieving accurate

AOA estimations.

A positioning system can make use of multiple signal parameters that are expsairiar to
locate mobile stations in a wireless network. The motivation behind such hydirehees is
that diferent signal parameters extracted from signals that are transmitted tocedreck
from a mobile station provide more information about its location and allow betttigno
estimation performance. For example; Time of Arrival and Angle of Alyia Time

Difference of Arrival and Angle of Arrival can be used together bysiesy [18].
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2.4.2 Mapping/ Fingerprinting / Scene Analysis

Fingerprinting techniques estimate position of a mobile station by making usevadysky
collected information about signals. Before performing position estimationdjeid
investigations about certain signal parameters are done and stored id@@agse with
corresponding location information [18]. Each piece of gathered détadiag to a known
location is called as a fingerprint. Location of a mobile station is determined byaromgp
its signal parameters with records (fingerprints) in the database. Frigarp is currently
used in most positioning systems and a common implementation is Received Signagtistr

(RSS) based fingerprinting [31].

Fingerprinting techniques are developed to overcome measuremert grrsome degree
[31]. Itis easy for geometric techniques to géeated by signal impairments negatively and
deliver incorrect results. Fingerprinting strives to solve this issue byireg a mobile
station to measure signals at known locations before actually estimating poditemmy o
mobile station. The idea is that at the same location in an environment, all mobile station
will experience signal degradation at approximately the same amountdeectihat they all
sufer from the same signal impairments taking place in that region. Therefore,
investigations previously done in the coverage area of a wireless netyikvaluable
information about what kind of signals to expect atelient points, and the information is

reliable since it takes thefects of signal impairments into account.

Fingerprinting based positioning consists of two stages which fiti@e and online (run
time, real time, or training) stage. ffbne stage is the phase where in field signal
measurements are carried out to collect training data that will be used in cidige. As
mentioned earlier, data about signals received from one or more regetations are
coupled with the investigating mobile station’s location coordinates at that time @estand
stored into a database as a fingerprint record. Aftéicsent training data are gathered,
actual position estimation process can be started which corresponds witreestage. The
database containing training data is queried with signal parameters of arvetbsnobile
station, and fingerprints containing similar parameter values are evaluatechéoup with a

location estimate [31].
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Training data can be expressed as

T ={(mg,l1), (M1, 11), ..., (Mg, Ing)Y (2.1)

wherel; is the coordinates of a location wheit® signal measurement is doney; is the
parameter array of the signals received at locatipnand Nt is the total number of
fingerprints collected. If a mobile station is exploring an environment to ceaafRSS map

for fingerprinting purposes, each; element contains RSS parameters of signals it receives
from a number of reference stations, at locatipn In online stage, RSS parameters
belonging to a mobile station to be located are interpreted according to certsitiopo
estimation rules, e.g. pattern matching algorithms, and a lochi®produced as a result
[18]. There is a variety of rules that can be used in fingerprinting systdmshis thesis

project, k Nearest Neighbor (kNN) algorithm is employed.

Disadvantage of fingerprinting based positioning systems is that they eegpiiiciently
large training databases which correctly map accurately estimated signatgiars to the
investigated environments. Training databases may need to be updateticadlyido take
into account the variations in signal characteristics caused by envirdaheeanges. This is
a costly operation in terms of the time anfdoet involved, especially for wireless networks

covering large areas [18].

2.4.2.1 Kk Nearest Neighbor

The simplest version of kNN algorithm returns coordindie®rresponding to the parameter
arraym; whose Euclidean distance to the parameter set of the mobile station to be located is
the shortest among all distandgs — m;|| as shown below.

j=arg min ||m—-m; 2.2
j=arg_ mi NT}” il (2.2)

General KNN formula takes into consideration the coordinatégdmaining database records,
1@, .10, whose parameter vectora), m@, ... m®, have the smallest distance to
the parameter vector of the tracked mobile station The position estimatd, is computed

as the weighted sum of those coordinates,
~ k .
=2 wi(m), (2.3)
i=1
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wherew;(m) represents the weighting factor 8¢, and is calculated using parameter vectors
m andm(). There are various weighting functions that can be utilized. For examplNa
algorithm that makes use of the uniform weighting scheme basically computasttiraetic

mean ofk coordinate vectors [18]:

k
M= %Z 10, (2.4)
i=1
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CHAPTER 3

RELATED WORK

In this chapter, position estimation techniques designed for single base stabibite

networks are reviewed.

Porretta et al. [34] presented “a novel algorithm that makes use of ed¥8)[single base
station] antenna array to locate MTs [mobile terminals] in cellular networkse” @roposed
location technique required a base station that allowed estimation of multipathetijisi C)
parameters including Time of Arrival (TOA) and Angle of Arrival (AOAJhere was no need
to modify mobile terminals for the technique to work; modifications were only to péeap
to base stations. Location determination was performed according to thedeaxisvhether
the mobile terminal was in line of sight (LOS) of the base station or not. If the tatmias in
LOS, then simple trigonometric computations were done in order to determine #it@®ioc
If the terminal was in non line of sight (NLOS), then a cost function minimizatias warried
out. Time of Arrival and Angle of Arrival information were essential fyth situations. In
non line of sight case, some information about the environment in the BShwetybod was
also required which was called as “sentinel function.” As explained opaper, a sentinel
function “is defined as the Euclidean distance between the BS and thetfizesl] obstacle
found along the azimuth direction identified by the anglgFigure 3.1.) Samples for the
function were measured at small steps like 0.5 or 1 degrees, and alleverad by the base

station was scanned.

The decision of line of sight or non line of sight was made according to a sipnptzdure.
First, a distance measurement was done using Time of Arrival informatian MPC sent
from a mobile terminal which was received at a base station. The distaisceowgpared with
the sentinel function defined by Angle of Arrival of the received MR@¢d in case that the

distance was not bigger than the sentinel function the mobile terminal wanedda be in
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Figure 3.1: “Definition of the sentinel functigi(«) for a real urban scenario (a district of the
town of Viareggio, Italy).” [34]

line of sight condition. In other words, if

di = v(cr1)2 - (hes — hyT)2 (3.1)

(wherec is the speed of lightr; is the absolute propagation delégs andhyt are heights
of the base station and the mobile terminal, respectively) was smaller than artegbe
sentinel function forw (Angle of Arrival) then line of sight was assumed and coordinates of

the mobile terminal were calculated as

RMT = XBs + d1 - COS @1) (32)

YMT = YBs + d1 - Sin (a1) (3.3)
wherexyt andyuT define coordinates of the base station.

Non line of sight condition was assumeddif was bigger than the sentinel function. That
meant a cost function was minimized in order to estimate the coordinates. In #as ca
multiple subsequent MPCs were taken into account. Scatterers along the gfriyrival,
objects that caused MPCs to “reflect offdict for the last time before reaching the BS”,
were found forN MPCs, and their coordinates were computed using following formulas

since their distance to the base station (sentinel function,) and Angle etlsrivere known.

Xsi = Xgs + ¢(ai) - COS) (3.4)
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Ysi = Yss + ¢(ai) - sin() (3.5)

wherexgs andygs define coordinates of base statigfy;) is sentinel functiong; is Angle of
Arrival, andi = 1,..., N. Propagation delays between the mobile terminal and the scatterers

were also computed using the formula.

=i - 20 36)

wherer; is Time of Arrival. The cost function to be minimized for location estimation was

defined as
N
FOoy) = > pPfAxY) (3.7)
i=1

wherep is a weighting factor, with

fi(xy) = crri— \/(X— Xsi)? + (Y — Ysi)®. (3.8)
Subsequently, coordinates of the mobile terminal were chosen asxtie pair which
minimizedF (X, y).
(Xw, Ymr) = arg _min {F(x,y)} (3.9)
(xy)eD

whereD is defined as

D= {(x, y) I\/(X— Xgs)? + (Y — YBs)® < m} (3.10)
since the mobile terminal had to be at most away from the base station.

As seen above, the defined cost function tdbKMPCs into account for each possibbe ¥)
pair. The pair that ensured the cost function to yield the smallest valuessasad to be the
coordinates of the mobile terminal. What attracts attention here is that the algaradmuse
of a Time of Arrival method without using multiple base stations. Time of Ariinedrmation
that should have been retrieved from multiple base stations was replacdtiavitiiormation

retrieved from multiple scatterers using only one base station.

One downside of the proposed technique was that performance ddgradias observed in
cases where multipath components reached base station after experiemaitigle
reflections, diractions, etc. The reason for this degradation was that the algorithm tmok in

account only the last scatterers visited before reaching base station.

The proposed technique showed good performance in both line of sidhitan line of sight

environments according to the performance tests and complied with the Unitesbs Sta
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Figure 3.2: “16-building Manhattan environment with the BS located at theecef the
scenario.” [34]

Federal Communications Commission (FCC) regulations of Enhanced Sefivites [15]
(which required an accuracy of 125 meters in 67% of location estimation ttitiie #ime of
writing.) In a 16 building Manhattan Environment (Figure 3.2) with a base statighe
middle of the scenario environment, location error was recorded as 31smabelr standard
deviation was 40 meters. With the base station on a corner of a building whiglnvwiae
middle of the scenario environment, location error increased to 54 metetsstandard
deviation increased to 68 meters. In a 64 building Manhattan Environment vétbabe
station in the middle of the scenario environment, location error was 33 materstandard
deviation was 45 meters. Finally, in a district of the town of Viareggio, Italyation error

was recorded as 34 meters, and standard deviation was 93 meters.

Zhaounia et al. [49] used Time of Arrival (TOA,) Angle of Arrival (40) and scatterer
information like Porretta et al. [34] in order to locate a mobile terminal (MT.) Td&tering

model that was used is shown in Figure 3.3.

While in reference [34] initially it was decided whether the observed mobifeited was in
line of sight (LOS) or non line of sight (NLOS) with its associated base staitioreference
[49] line of sight was considered for the beginning and following iteratimarsdled accuracy

issues for non line of sight cases.
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Figure 3.3: Scattering model used in reference [49]. Image courtddplodimed Zhaounia.

The proposed method was initialized with the estimation of location using the following

formulas (similar to Equation 3.2 and Equation 3.3) which were applicable foofisght

situations.
1 N
NZ; COS (pi) (3.11)
1 N
NZ sin (i) (3.12)
i=1

wheres; is theith non line of sight range parameter calculated fromitRerime of Arrival
measurementy is the number of resolved multipaths,is the Angle of Arrival of the signal
impinging on the base station (BS) belonging to iﬂt?escatterer, and andy are coordinates

of the mobile terminal.

For estimation of location in non line of sight situations, more information waseate&al
be incorporated into the estimation process. Therefore, information abatierers around
the mobile terminal was also taken into consideration which would be used foovingr
accuracy. One thing to note here was that sorfiiéne processing was required in order
to obtain “a reasonable accurate characterization of the scatteringrenend’, which may

remind the reader of fingerprinting technique.

After computation of the initial coordinates, second step was to estimate therecstte
coordinates around the mobile terminal using an equation that made use ofitthle in

coordinatess;, andy;.
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“Joint pdf [probability density function] of the vector consisting of all thistdncesr;”
between the MT and scatterers “giver: [x,y]",” f ([rl e rN]Tle), was used as the base of
the third step. “Maximum Likelihood estimate” was explained as “the solution that

minimizes the quantityd = 3N, r;.

Above quantity simply stated that closest scatterers to the mobile terminal weghtso
Following this, a system of equations was obtained by “setting the gradieniiah respect
to 6 to zero.” By applying a Least Squares estimator to this system of equati@ns)obile
terminal location estimate was deduced in the third step. After third step, sstegmavas

revisited, therefore above procedure was executed in an iterated manne

Experimental studies showed that the proposed technique provided rfarmance
enhancement of about 40%” compared to line of sight localization techniplaired in

Equation 3.11 and Equation 3.12.

Bishop et al. [7] proposed a localization technique that made use ofdisérson,” that is,
both Direction of Arrival (DOA) estimations and Received Signal Stremgdlicator (RSSI)

measurements.

Direction of Arrival estimations required utilization of estimation algorithms usimigrna
arrays, and provided “angle of the target relative to the base stationéter, for Direction of
Arrival-only localization, estimations from multiple base stations were needaeli¢ollected.
On the other hand, methods which only relied on RSSI measurements weddddoe “prone
to high uncertainties.” It was thought that a single base station method whézsh RSSI
measurements could be improved with Direction of Arrival estimations sinceultideelp
reducing “uncertainty in the movement of the mobile target.” Thereforesmednision was

decided to be exploited.

A Robust Extended Kalman Filter (REKF) was employed for localization mepas well
as for tracking mobile terminals. The proposed technique relied on measueetaleen at a
single base station as with previously mentioned techniques, and was lesatine state

estimations derived via Robust Extended Kalman Filter.

To test the performance of the “sensor fusion based localization estinsingy the REKF,”
a simulation environment was prepared which included a base station andragmmbile

terminal. RSSI measurements and Direction of Arrival estimations were a\bg the
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base station, and there was no information about “maneuverability” of thdertebminal.
Experiments which were performed in a 10x10 km suburban area shtve¢dmobile
terminal location was “estimated to a relatively high accuracy.” Througlerebsons of
“error in location estimation,” it was also shown that sensor fusion basadization yielded
better results than RSSI-only localization. It was stated that “presenuglofuncertainties
in the measurement noise” caused “localization to within approximately 500 m” éolidk

minutes “over a tracking range of approximately 12 km” with the proposeadhigaé.

Apart from [34], Porretta et al. proposed another method [33] whighcentrates on
tracking mobile terminals (MT) using subsequent position estimations prodogeah
already existing “Single Base Station Positioning (SBSP) method designeddarcellular
and third generation (3G) wireless communications systems.” The method ralsdaul
velocity estimations of mobile terminals. Tracking and velocity estimation processalig
started with receiving position estimations of a mobile terminal from an “accloesdion
technique” “at fixed time intervals.” After collection of “raw data,” “a lineeggression
setup” [21] was utilized for processing the data in an “adaptive” fashising a number of
previous position estimations, it was decided whether the mobile terminal wasgritast’
or “slow.” In case of a “slow” mobile terminal, “the inertia of the proposedoaitthm” was
increased, leading to accurate position estimation. In case of a “fast” mobiie#d, the
inertia was decreased, meaning that the mobile terminal could be “suitabledradihe
algorithm was repeated each time a new position estimate was made available hysée c

estimation technique.

“A well known, linear regression based, smoothing algorithm [21]” fadntiee base of the
presented method. Whibdt;) = [x.(t;), x2(t;)]" € R? denoted the actual location of a mobile
terminal X(t;) = [X.(ti), %2(t;)]" denoted the estimated location that was provided by a chosen
positioning algorithm, wheree N andt; =i - At. It was deemed suitable to apply smoothing
to X(t)) in order to discard negativefects of erroneous estimations. It was explained that “the
actual track followed by the user can be approximated more closely by simgpatie data

X(t).” The position of the tracked mobile terminal was approximated by
() = [t - &(t)] + b(t;) (3.13)

“where a(t;) is the estimated constant speed vector E(u) is the estimated MT position

at timetp = 0.” Here, lastk position estimations were used to compute the time dependent
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codficients, &t;) and@(ti), according to a “linear regression setup” [21]. As explained by
Porretta et al. [33] the sequence given by Equation 3.13 “yields a sntbestienation for the
track followed by the user.” Dierential of the 3.13 also yielded time dependent velocity of
the mobile terminal.

(1) = [|aw)] (3.14)

Further smoothing of mobile terminal position was provided by utilizing its velocityals
known that the terminal could not move more th&in- vmax within a time interval ofAt,
wherevmax is the maximum possible velocity. It was also known that the valug,gf could
be diferent depending on how mobile the terminal was. For examglg,of a walking man
andvmax Of a driving man could not be the same. Therefore, to provide better posio
accuracy for dterent types of mobility schemes, an adaptive approach was emplaygd.
was reduced for mobile terminals labeled as “slow” and increased for moliiets labeled
as “fast.” In order to decide whether the terminal was moving “fast” orwsldollowing
criteria was specified.

viast it () > v

_ (3.15)
v i () < v

Vmax(li) = {

where¥(t;) = (1/K) - Zij:i—k+1 U(tj) andv* is a threshold value. The criteria basically checked
whether the average of “the laktMT velocity estimations” was bigger than the given
threshold or not. If the average velocity was bigger than the thresholdnobde terminal
was assumed to be “fast” and assigned to a maximum velocit\ygnagif. If the average
velocity was smaller than the threshold, the terminal was assumed to be “sldvasaigned

to a maximum velocity o#319%. Following this, below equation was obtained.

K(ti+1) if B[ < rmax®)

X(ti+1) = I'max(ti)

. . (3.16)
X(t) — Hp“ - p otherwise

whereg = [X(ti) — X(ti+1)], andrmaxti) = Vmaxli) - At is the radius of the circle centered at
the approximated positiorx(t;). This equation implied that the next position of the mobile
terminal had to be at mostax(ti) away from the current position. “The position of the MT at
timetj,,” then could be “estimated through the regression approach” explained paier
“using the lastk values” obtained from Equation 3.16. As seen from the above equation,
Vmax(ti) was the value that managed the inertia of the algorithm. Whggti) = vrfniﬁ the
inertia was decreased which allowed the algorithm to “suitably” track “fas&rsiwhile the

inertia was increased whemax(ti) = VS9%so that “slow” users could be tracked “accurately.”
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A disadvantage of the presented method was that it was “adapted to,tdotzsly, straight
motion” since it was “based on a linear regression setup.” The method nvedyzad using
“two different microcellular scenarios.” First, a simulation was carried out usiaig ‘fdlom a
real urban scenario, namely a district of the town of Viareggio, Italy” whposition
estimation performance was degraded initially because of non line of sighDSIN
propagation of signals in the beginning of the path followed by the mobile termirtak

non line of sight situation was stated to represent “the worst case fdorpemce
assessment of a tracking algorithm.” On the other hand, the performascenproved when
the mobile station was in line of sight (LOS) with its associated base station (B$ng#n

value of 18 m and a standard deviation of 29 m” were obtained for the “lotaticor.”

Performance of velocity estimation was also evaluated, and showed ‘@mwéth a mean

value of 2.16 iys and a standard deviation of 2.57sh

Another simulation was performed in a “16-building Manhattan-like envirorttm@imilar

to the one in Figure 3.2.) In this scenario, non line of sight condition wasrexmed in
most of the followed path which caused performance degradation in posgtonation as
expected. Mean value of the location error was measured as 30 m withdarstateviation

of 15 m. Evaluation of velocity estimation revealed “an error with a mean valelf m's
and a standard deviation of 2.3G97 It should be noted that performance of the proposed

method partially relied on the performance of its underlying position estimationitlgo

Yang and Liang [39] proposed a method that makes use of scatterslaouabile terminal
(MT) like [34] and [49]. The method presented a solution to the problemirafles base
station (BS) positioning by utilizing a “maneuverable BS” unlike other methodshwdssume
stationary base stations. This allowed to measure parameters, which weiia pssitioning,
at multiple reference points (base station positions) as the base station ntaebdesembled
measurements carried out with multiple stations. Therefore, the method turredglesbase

station location into multiple base station problem, and eased the process of estimatio

The scatter distribution model assumed that scatters were distributed inlarcinea with a
radius ofRs around the mobile terminal from which they were emitted (Figure 3.4.) Signals
sent from the terminal to its associated base station were reflected by tiezessa Angle of
Arrival (AOA, «;) and Time of Arrival (TOA 1), as well as position of the base station, were

known. Distance travelled by a scattering signal was equal to sum of tiaecksbetween the
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Figure 3.4: “The single reflection model for the SSL [single station locati{sf]

mobile terminal and itsth scattererg;, and the distance between between the scatterer and

the base statior;, that is

rH=C-7i=¢ +d (3.17)

whereC is the speed of light. Position of a scatterer was computed according to & “circ
fitting algorithm” using known parameters,, «;, and position of the base station. That
allowed calculation off;. Because of that the base station was moving, information about
multiple scatterers could be collected. Once scatterer positions were kitowag easy to
estimate the mobile terminal’s position. As seen in Figure 3.5, scatterers labeleshnah,

and Sz could be thought of as base stations of their own, that is, as “virtual siatiens.”
Since distances between the terminal and “virtual base stations” coulddugatad using

the formulac; = r; — d; the setup in Figure 3.5 could be treated as a multiple base station

case.

A simulation of the presented method was conducted with 3 scatters and aisgatidius
of Rg=300 meters. Measurements revealed a root mean square error (Rf1&k)ve 200
meters when 40 measurement points were used which fell below 50 meterveitid 8nore
measurement points. Another simulation investigated the impactfigfreit number of
scatters an@s. The results showed a decrease in RMSE with increasing number of scatter

RMSE was also decreased when smdigwas used.
Although it allowed conversion of single base station problem to multiple basersta
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Figure 3.5: “Mobile station location in the multi station location system.” [39]

problem and simplified the estimation method, the maneuverability requirementsef ba

stations may be counted as a downside since those are generally statopripryents.
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CHAPTER 4

SYSTEM MODEL

This chapter gives information about the WiIMAX network infrastructuitgble WiMAX
hardware and DGPS equipment employed in this thesis. Problems that weaitydielated
to the WIMAX equipment are described, and thdifeets on development of the proposed

position estimation algorithm are explained.

4.1 Equipment and Software

Measurement equipment for this research project consisted of

¢ WIMAX infrastructure including one base station at the Department of Compute
Engineering in Middle East Technical University which was granted bsl,Iprovided

and installed by ZTE,
e notebooks with Intel WIMAX adapters granted by Intel, and

e professional DGPS equipment borrowed from Geodetic and Gedgragbrmation

Technologies Division in Middle East Technical University.

WIMAX infrastructure consists of two cabinets as depicted in Figure 4.1.0Reeon the left
contains indoor baseband unit of the base station (to which cables commafitennas on
top of the Computer Engineering building are connected) and wirelesssagageway; the
one on the right contains Authentication Authorization Accounting (AAA)vees and
firewall. From multiple profiles for Access Service Network (ASN), eaelirg for a

different decomposition of functions within ASN (to base station and ASN gagway
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Figure 4.1: General view of existing WIMAX system at the Department of Qdarp
Engineering in Middle East Technical University

infrastructure in the department makes use of Profile C which splits the faedbietween

the base station (where radio resource management is implemented) and\tigaté®ay.

There are two sector antennas one of which operates at 3.5GHz ag1d ed®0 degree range
in the direction of Food Engineering Department while the other one opee2sGHz and
covers a 90 degree range in the direction of Culture and ConventionrCEnh&eantennas are
inclined downwards in order to receive signal inside the building. Thastrfucture complies
with IEEE 802.16e specification, providing support for hafidmd roaming as well as fixed
services. WIMAX signal can be received line of sight (LOS) frofA Bormitory although it
is not in the exact range of the antenna pointing to that direction. AccotdiZgE’s tests,
coverage range of the system should be more than 1.1 km at 2.5GHz &nd®R& 3.5GHz
[51]. Also, indoor test results show that at 2.5GHz, data rate insideusaramms of building
A was 10.3 Mbps (with the exception of two rooms out of fifteen, where gatafell down
to 5 and 6 Mbps), and inside various rooms of building B it ranged from Hsvib 15 Mbps.
Using outdoor CPE, data rates of 3.5 Mbps in first floor hall of rectorcamMbps in third
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floor meeting room were achieved at 3.5 Ghz [50].

Two people are in charge of the infrastructure. Research Assistaet Kipc is in charge of

operation of the infrastructure, and Dr. Cevat Sener is in charge whgeaial work.

Notebooks granted for research purposes were coupled with Inte AXjM/i-Fi Link 5150
adapters, supporting IEEE 802.16e and 802l/@#raft-N standards while operating at
2.5GHz spectrum for WiIMAX and 2.4GHz and 5.0GHz spectra for Wi-Fi|.[28®fficial
Linux drivers developed by Intel [29] were installed on the notebodR&PS equipment
which consisted of a main unit, an external antenna, an external battéraraexternal
Bluetooth transceiver was said to be achieving up to 10 cm accuracy.lev@lging
operation, the equipment transferred location information to a Pocket PCBbwetooth
which was saved into a file using a mobile Geographic Information Systen) &pffication

called MakroPAD developed by Mehmiétan.

Apart from the equipment mentioned above, a couple of desktop applisatiere utilized
throughout the experiments. MakroMap Pro 3.2 is the desktop companibtalkriioPAD

which was used to visualize and export coordinate data produced byGRS[2quipment.
Quantum GIS [3], which is an open source GIS, was also used to visualareinate data

with corresponding signal measurements in detail to identify erroneoussDé&RIings.

For the programming part, the Microsoft .NET Framework (version 2) [83% used to
develop simulation of the proposed positioning system in C# language. Iihalion with
the framework, MATLAB R2007b was employed to make use of available clogteode
which was needed for position estimation, and the link between the framewutk a

MATLAB was established by MATLAB Builder for .NET component [38].

4.2 Equipment Problems

Before doing any actual measurements, data collected by both WIMAX adapte
Differential Global Positioning System (DGPS) were examined in order to saekivial of
information could be received. As expected, DGPS equipment provillledf@mation

about position including coordinates and GPS time.
On WIMAX side, initially it was expected to see IEEE 802.16e Medium AccesstiGb
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(MAC) layer headers of incoming and outgoing packets so that a numlieias that would

come handy in position estimation process could be extracted.

On Microsoft Windows operating system, it was possible to see ReceigedlSStrength
Indicator (RSSI,) Carrier to Interference-plus-Noise Ratio (CINRg Awmerage Transmit
Power (AvgTxPwr) from Intel's own WIMAX software [26]; howeveparameter values
were only printed to screen. Therefore, the data could not be written im¢atdile or

database for later use.

For analyzing IEEE 802.16e MAC headers, Wireshark [48], a netwodkocol analyzer
supporting WIMAX packet demodulation, was used to capture packets fiathhough the
adapter in Windows. The program successfully captured incoming aigwing packets;
however those were identified as Ethernet Il packets instead of IERE@® packets. An
Ethernet Il packet only contains two MAC addresses (one for destinatioe for source)
and a field called EtherType which defines the protocol used in payloadMAC frame

[1, 35]. That meant there were seemingly no IEEE 802.16e specific d#ia ofata packets
sent and received by the WiIMAX adapter.

After seeing that information could not be gathered in a useful form in Girsd attention
was turned to Linux. @icial Linux drivers of Intel WIMAX devices provided from [29]
were installed and investigated in order to find some information that would beedtiiiz
positioning. In fact, same signal parameters as in Windows (RSSI, CINGT>@Pwr) were
shown to user when the command used for connecting to a WiMAX networkinvaked
with certain options. Although these parameters would be useful, it was stilgkiidhat
information contained in IEEE 802.16e MAC headers were necessabgftar positioning.
Therefore, packet capture was repeated using Wireshark in Limfortunately, all captured

packets were identified as Ethernet Il packets again.

Normally, IEEE 802.11 (Wi-Fi) packet capture resulted the same way WiMiXidowever,
in Linux, Wi-Fi adapters could be set to work in “monitor mode” which allowagtaring of
“management packets.” It was thought that if WIMAX adapter could alsedie¢o work in
monitor mode, then it might capture management packets which contained datatlkgbe

used for positioning. An e-mail was sent tfiicial Linux WiMAX Mailing List! and it was

1 wimax@linuxwimax.org
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asked how to set the adapter to work in monitor méde.reply to the e-mail was sent by
Inaky Perez-Gonzalézwho was a responsible for Linux drivers of Intel's WiMAX adapters,
and it was stated that “The Intel device’s firmware stripes the MAC heatat only delivers
to the host IP packets, so there is no way to access them.” Since reatbenposbblem was
the adapter’s firmware, only solution could be loading the adapter with a mawdire which
would not cut ¢f MAC headers before handing packets on to the operating system. An e-
mail was sent to Inaky Perez-Gonzalez and it was asked whether duniel grovide another
firmware for research purposes if an individual request was madeply to that mail, it was
explained “I very much doubt it. The firmware team is extremely busy; theg hdnard time
servicing our own requests, so servicing external requests is evendifiogult.” In another
reply posted by Mr. Jayahit was stated “There are no definiteown plans to have the
firmware do that.” The reason for such a firmware restriction was exglasé‘'a resource
problem” by Inaky Perez-Gonzalez. It was stated that there wereagiexrd which provided

MAC headers to his knowledge.

The problem was discussed with chair of Department of Computer Engigeand it was
decided to contact Intel and ZTE, companies who granted and installed dR&XV
infrastructure in the department, respectively. Proper firmware andrdrior the granted
adapters were requested from Intel, and a WIiMAX Universal Seria @ISB) adapter

which could dump packets and signal information into a file was requestedATdE.

Companies, most of which had products certified by Wimax Forum [46} &kso contacted
to find out whether their products could provide detailed information ab@akeds,
including Airspan Networkys Beceerfi, Fujitst/, Mitsumi, Modacony, Motorola®,
NEC!, Samsuntf, WiMax Network Solutions, Iné2, and Zyxel*. Replies were received

from Fujitsu, Modacom, Motorola, and Zyxel all of which were negativdhe most

2 The e-mail that was sent can be accessed tionp: //www.mail-archive.com/wimax@linuxwimax.
org/msg00639.html

% inaky@linux.intel.com

4 jayant@linux.intel.com
aweiner@airspan.com
6 info@beceem.com, aagrawal@beceem.com
7 kuroda.takahiro@jp.fujitsu.com
8 otani.koji@mitsumi.co.jp
9 thkim@modacom.co.kr
greg.mcgee@motorola.com
11 sugimoto@necat.nec.co.jp
12 asiwish@samsung.com
13 ysa@wimaxns.com
14 Rachel.Chen@zyxel.cn

(4]
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satisfactory reply came from Teny KfhiModacom) who actually summarized the situation:
“In my opinion, all WiIMAX products could support your needs. Becadsselopment
engineers need debugging messages for 10T, device should sgpgdmate this function.
But, these messages have some critical information of manufactures (tckmev how

and their own skill, etc.) Then this functionality cannot be supported forused”

Eventually, no adapter was provided to the Department by Intel, ZTE, diddnal contacts.

Accordingly, only RSSI, CINR, and AvgTxPwr were left to be usedgositioning.

4.3 Non accessible Parameters

In WIMAX networks, in addition to parameters like Time of Arrival (TOA,) AngléArrival
(AOA,) Received Signal Strength (RSS,) etc. a MAC layer field called Timidgigt (TA)
can be used for positioning [8]. Timing Adjust is similar to Timing Advance (jmesly
mentioned in Section 2.4.1.1) in GSM networks which is determined by base st@Bi5ss
and sent to mobile stations (MSs) for adjusting timing of transmissions in the upliedticin

(from mobile station to base station.)

Timing Adjust is a 32 bit signed integer which defines “The amount of the timeined) to
adjust [subscriber station] SS transmission so the burst will arrive aexpected time
instance at the BS.” [25] Sign of a Timing Adjust value commands a mobile statieitiier
advance or delay its transmission time. Timing Adjust units depend on the employed
physical layer. For single carrier physical layers (PHY) of WireleA&MSC and
WirelessMAN-SCa, Timing Adjust units are set gs and 5; modulation symbols,
respectively. For Orthogonal Frequency Division Multiplexing (OFDdt) Orthogonal
Frequency Division Multiple Access (OFDMA) based PHY (WirelessM@RDM and
WirelessMAN-OFDMA) units are set a,é; whereFg is sampling frequency [23]. Timing
Adjust provides more fine grained range measurements compared to Timviagde] each

increment of which corresponds to a long distance of 554 meters [12].

A mobile station is informed about its Timing Adjust via a ranging response pagkeh is
one of the management packets defined in IEEE 802.16 specificationg Sicbranded
WIMAX adapters were able to capture and log management packets with thé&ridaders,

it would be possible to investigate and utilize encapsulated Timing Adjust informé&iio
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positioning purposes. In addition to that, MAC headers could reveal mfoemation about
parameters that were dynamically controlled, e.g. modulation technique iasisemobile
station moved around in coverage area. Availability of more parameters whstbkincrease
the location ability of a single base station; however, lack of necessarpriegguipment

disallowed to extract such information from received packets.
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CHAPTER 5

SIGNAL MEASUREMENTS

The position estimation algorithm proposed in this thesis requires a trainingadatét be
created in the first place. This database should consist of signhal parameeasured at
known locations in the coverage area of the employed WIMAX base stationchiitue
called fingerprinting is utilized in order to collect such signal parameterghignchapter,
investigated part of the coverage area is presented, and details mmalinseasurements and

fingerprinting process are given.

Measurements were carried out between JL']‘S’/, 2009 and July 2@, 2009 in Middle East
Technical University campus (Figure 5.1). Thdfelience between the smallest and the
biggest latitudes visited during measurements were approximately computéd aseers
(between green and red circles,) and thfedénce between the smallest and the biggest
longitudes were approximately computed as 1185 meters (between yelloviuanciroles.)

In Figure 5.1 end points of the measured area can be seen. Green cindteris Civil
Engineering building is, blue circle is where A4 Gate is, and red circle is evRaculty of
Economic Administrative Sciences | building is. Yellow circle shows the locatibn o

WIMAX base station (BS) which is built on top of Computer Engineering building.

The points shown in 5.1 were not defined arbitrarily. Full circles actualbystne places
beyond which it was not possible to receive signals from the base stptidodgne is where
bus station in dormitory area is.) Considering the fact that base station amtesmaiginally

a 90 degree sector antenna and was pointed towards the stadium, it westingeio see that

the signal could be received practically in a 180 degree area.

The 118%904 nt area was not examined completely as it would take a certain amount of

time. Timberlands were hard, insecure and unnecessary to examineisédearain was
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Figure 5.1: A part of Middle East Technical University campus which is anecage
of WIMAX. ©2010 Google - Imagery92010 DigitalGlobe, GeoEye, Map da@2010
Basarsoft [19, 10, 17, 5].

rough, practically people were not going there, and GPS measuremenld nat yield
accurate information since trees degraded or completely blocked sigrgdtien. Doing
measurements in diverse areas where residents of the campus were rassihg through
was thought to be a better idea since it would take less time, represent eesitdifitions
(which is important because a real life positioning case is being studied,}taindllow
experimentation, demonstration and understanding of ideas expressedtiresiis. Areas

where measurements were done are shown with transparent greenria 3:@u

As seenin Figure 5.2, main roads which are dispersed nicely and extémidszontally and
vertically in the area were almost completely investigated (Green line in left gktheircle
is only used by people.) Roads were important; because, it would be leogsibvestigate
behavior of signals over wide areas by doing measurements on roadte@ther hand,

places like stadium and quasi rectangular regions in its vicinity were exarmnader to
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Figure 5.2: Areas where WIMAX and GPS measurements were d@2010 Google -
Imagery©2010 DigitalGlobe, GeoEye, Map da@&2010 Basarsoft [19, 10, 17, 5].

investigate signal behavior in a single region which did not extend over @ avigh, e.g. the
whole campus. Note that green lines generally show open areas whé&® Bdsild provide
accurate location information although problems still occurred in woody megithe middle

of the map as well as on roadsides overshadowed by trees.

A notebook with a WIMAX adapter, and wearable DGPS equipment were fxed
measurements. The notebook was carried on a back pack. Since theraom@nnection
between the DGPS unit and the notebook, two measurements were doretedgt the
same time. Therefore, it was necessary to combine collected WiMAX and &@3ad later
use. In both WIMAX and GPS, time was stored each time a new measurement(@ntry
fingerprint) was made. So, time could be used as an attribute according toewtis from
the two measurements could be matched. One thing to consider here was $htn@Rvas
different from the local time. Because of that, before each sessideretice between the

notebook’s time and GPS time was recorded. THEedince was taken into account as an
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Figure 5.3: Measurement areas were completely scanned by walkingaitepknes.

offset value throughout the matching process. It was seen thatffeeedice was changing

from exactly 3 hours to 3 hours and 13 seconds.

For WIMAX, it was initially thought that fingerprints taken every 5 to 10 metemild be
enough for positioning. However, after it was reconsidered that vgsedgynals wereftected

by signal impairments like attenuation, multipath, refraction, fading, etc. [36¢twcaused
erroneous measurements [31], it was decided fingerprints could bredgpkeoximately every
1-2 meters. Such dense measurements would allow reducing undesitfabie ef erroneous
fingerprints to a certain degree. That was going to be realized by angrfaggerprints [18]

in small areas, e.g.»% n? squares, and using the resulting values in positioning. That would
surely decrease the number of fingerprints fiime database (considering the number of
fingerprints collected every 1-2 meters); but, it would still provide enadegh, close to the
number of entries that would be yielded via measurements done using 5-10imeteals.

The tradef was doing more time consuming and exhausting work for the sake of having
more accurate WiMAX signal measurements, which was worthwhile. Measntareas
were completely scanned by walking in parallel lines as illustrated in Figurev6ede green

dots correspond to fingerprints.

As mentioned before, there could also be errors in GPS positions beofuisees and
buildings. To handle these errors, after each session GPS data weetedwith Quantum

GIS [3], Geographical Information System software. Collected date weed as input for
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Figure 5.4: An example to erroneous GPS measurements. Points in the lefceirect
GPS readings and points in the right, which are far away from correcsune@ents, show
erroneous measurements.

Quantum GIS using “Delimited Text” plug in, and visited points were shown iraalgcal
map. Considering the way the points were grouped in the map, and knowigkimld of a
map to expect; it was easy to see whether there were errors or not. Aplexs given in

Figure 5.4 where points in the right side of the map are results of erromeeasurements.

A part of erroneous GPS points were removed during combination maée4iMAX and
GPS data using a C program. After that, a map was created again, and ihed®d if
there were still erroneous GPS data left. In order to remove those enfdessiit Excel was
chosen; because, it was required to examine data by eye. When aearsgpoint was found,

a simple macro was written to find other points similar to that one, and line contairahg th
point was erased. Erroneous points consisted of latitude, longitudeJténde values which

were out of expected ranges.

As mentioned before combination of WiMAX and GPS data were handled uginggaam
written in C which used time of entries to synchronize and match two measurements.
Resulting file was written into a text file. An example of combination process engiv
Tables 5.1, 5.2, and 5.3. Table 5.1 contains sample GPS data which inclwddb,ro

coordinate values, GPS time, and normalized GPS time. Normalized GPS time istealcula
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Table 5.1: GPS Measurement Sample

. GPS GPS Time

D Coordinates Time Time Diterence

1 4415635.321003 482214.963558 940.050000 03:07:37 06:07:37
2 4415634.601803 482214.007175 939.750000 03:07:38 06:07:38
3 4415633.956661 482213.022464 939.650000 03:07:39 06:07:39
4  4415633.126837 482211.909079 939.450000 03:07:40 06:07:40
5 4415631.688470 482209.982061 939.150000 03:07:42 06:07:42
6 4415631.098790 482209.011729 939.150000 03:07:43 06:07:43
7 4415630.490844 482207.941608 938.950000 03:07:44 06:07:44
8 4415629.753511 482206.828437 938.750000 03:07:45 06:07:45
9 4415629.163931 482205.815356 938.650000 03:07:46 06:07:46
10 4415628.574184 482204.873522 938.450000 03:07:47 06:07:47
11 4415627.947575 482203.874604 938.250000 03:07:48 06:07:48

Table 5.2: WIMAX Measurement Sample

ID Notebook Time RSSI CINR  AvgTxPwr
1 06:07:40 -85dBm 6dB 5dBm
2 06:07:41 -84dBm 7dB 4 dBm
3 06:07:43 -84dBm 7dB 5dBm
4 06:07:44 -85dBm 6dB 0dBm
5 06:07:45 -80dBm 10dB -5 dBm
6 06:07:47 -83dBm 8dB -3dBm
7 06:07:48 -82dBm 9dB -3 dBm
8 06:07:49 -78dBm 12 dB -7dBm
9 06:07:50 -81dBm 10dB -4 dBm
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by adding time dierence between GPS and notebook, which is exactly 3 hours in this case,
to GPS time. Table 5.2 contains sample WiMAX data which includes row 1D, nokeboo
time, and signal parameters (RSSI, CINR, AvgTxPwr.) Table 5.3 contaits flom
Table 5.1 and Table 5.2 combined together. It can be seen from Table b.GRI&aentry
with ID 1 is used twice, that is, it is matched with two WIMAX entries. Reason fahsu
matching is that it is allowed to match WIMAX and GPS entries with a tim@edince
smaller than or equal to 1 second. This is a necessarily provided flexibiétause, GPS
time and notebook time does not match exactly all the time. As a worst caseisgcenar
consider that a new WIMAX entry was recorded at each odd secoidda @&PS entry was
recorded at each even second. In this situation none of the entrieshmuidtched if only
entries with same time were allowed to be matched. This flexibility allows WiIMAX entry
with ID 2 to be utilized instead of to be wasted. Rows in italic in Table 5.1 and Tab|dds.2

which there are no matching entries, are not used in Table 5.3.
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Table 5.3: Combined WiMAX and GPS Measurements

GPS WIMAX GPS GPS Time- Computer WIMAX Signal

ID ID Coordinates Time Of. Time Parameters

1 1 4415633.126837 482211.909079 939.450000 06:07:40 06:07:400BB85 6dB 5dBm
1 2 4415633.126837 482211.909079 939.450000 06:07:40 06:07:41dBB4 7dB 4 dBm
6 3 4415631.098790 482209.011729 939.150000 06:07:43 06:07:43dBB4 7dB 5dBm
7 4 4415630.490844 482207.941608 938.950000 06:07:44 06:07:44dBB85 6dB 0dBm
8 5 4415629.753511 482206.828437 938.750000  06:07:45 06:07:45dBf80 10dB -5dBm
10 6 4415628.574184 482204.873522 938.450000 06:07:47 06:07:43dB8 8dB -3 dBm
11 7 4415627.947575 482203.874604 938.250000 06:07:48 06:07:48dB8 9dB -3dBm
11 8 4415627.947575 482203.874604 938.250000 06:07:48 06:07:49dBfii 12 dB -7 dBm




CHAPTER 6

PREPARING THE ENVIRONMENT

In this chapter, it is explained how collected fingerprints were visualizedtéying a signal
map and how a grid map was extracted from that initial signal map in order tongaie

accuracy in positioning.

6.1 Drawing Initial Signal Map

After signal measurements and data combination was completed, it was timettosigeal
maps which would demonstrate how signal parameters changed over WildveXage area.
A program was written in C# for plotting the maps, which later would be improvedbto
position estimation. First, a basic map was plotted which gave no clue aboutsgiagion.
The map was duplicated because there were three signal parameteesveResignal
Strength Indicator (RSSI,) Carrier to Interference-plus-Noise RatlblR)) and Average
Transmit Power (AvgTxPwr.) For each parameter fiedéent map was to be plotted since
behavior of each parameter was desired to be investigated on its owre Wheld also be
another map which would combine all three parameters’ information togethtére doase of
position estimation later. Each map belonging to a parameter was colorediagdarthat

parameter’s value. Coloring process was handled in the following way.

Each pixel in screen has a RGB (red, green, blue) value defining thetodbe displayed.
Colors are identified by giving a number from 0 to 255 for each one qgfgeskn, and blue
values. For example; while (255, 0, 0) identifies pure red, (255, 255) @lentifies black.
For each parameter, the biggest and the smallest values were founthffasurement data,

and a variation interval was calculated. Red, green, and blue valuesponding to one unit
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of variance in each parameter was found, and pixels were coloreddaugly. For example;
RSSI value changed from -28 dBm to -92 dBm which meant that its variatiervad was 64
units. Therefore, 1 unit of change in RSSI could be represente@fby 4 units of change

in color. Because of that -92 dBm was the smallest value of RSSI, it wassented by

(0, 0, 0). Similarly, -28 dBm was represented by (255, 255, 255). vifai required to find
RGB value of -60 dBm RSSI, its flerence from the smallest value RSSI could take would
be computed-60-(-92) = 32, and the resulting value would be converted to an RGB value,
32x 26%5 = 127. A pixel with a RSSI value of -60 dBm would then be represented by, (1
127, 127). Since the same value was given for red, green, and blys, weae plotted in

grayscale.

It should be noted here that multiple real points (GPS coordinates, theréfgerprints)
could correspond to one pixel in plotted maps because of scaling. Foe#ssrm, average
of RSSI, CINR, and AvgTxPwr of all fingerprints corresponding tolepixel was calculated
and saved. While maps were colored, those average values wereeredsitRSSI, CINR,
AvgTxPwr maps can be seen in Figure 6.1(a), Figure 6.1(b), and F&lfe). In RSSI and
CINR maps (Figure 6.1(a) and Figure 6.1(b)) lighter colors imply highearpater values
which are desirable since high RSSI and CINR are found in good comntiemdanks. In
AvgTxPwr map darker places imply usage of lower transmit power which sgatde for

longer battery life.

As mentioned before, there was a fourth map which was colored accdaodatighree signal
parameters at the same time. That map was the most important one; becaursegd the
base of position estimation process which would utilize all parameters. Colafrthgt map
was done in the same way explained above with orfkerdince. Value of red was set
according to RSSI, value of green was set according to CINR, ane& wdlblue was set
according to AvgTxPwr. Therefore, for each parameter a scale ®tiais was used. Each
pixel in resulting map was colored according to the pixel's average RSIBIRCand
AvgTxPwr values, and the map was colorful unlike previous graysaads.oAs can be seen
in Figure 6.2(a), colorfulness of the map made it more detailed and inforntatwveother
maps. Variation of signal is easier to observe here. Yellow places imply s&jteal because
RSSIl is high (signal strength is good,) CINR is high (signafisctive because carrier signal
is intelligible) and AvgTxPwr is low (mobile terminal (MT) battery will last longerchese

power used for sending signals to base station (BS) is low.) Greenes ianply worse
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signal compared to yellow areas. Blue areas show places where sigadl is

6.2 Splitting Signal Map into Grid Cells

In Chapter 5 it was briefly explained that dense measurements weredcautién order to
obtain more accuracy. The desired accuracy was provided by exgactrid map from the
signal map. The process was fairly straightforward. The signal magsivgsy divided into
square regionsgfid cells or shortly cells) with same dimensions. Each cell was assigned
an RSSI value, a CINR value, and an AvgTxPwr value by computing geesaparameter
values of individual fingerprints recorded in that cell. Expected sighal mobile terminal

(MT) moving in the area of a cell was identified by that grid’s assignedrpatar values.

The advantage of taking average of multiple fingerprints in cells was reglucidesirable
effects of erroneous measurements which would cause misleading results ifionpos
estimation. Therefore, it was decided to do positioning according to gridaals On the
downside, cells would provide coarse estimations; because, a mobile tethainafas found
to be moving in a cell could be anywhere in the area of that cell. Howevdrdtvenside
was not a significant one for mainly two reasons. First, it was alreadykiioere was a low
probability of reducing the number of possible cells where a mobile terminal megite to
one (or just a few cells.) In other words, there would be an obscurityl@moin estimations
to some degree, anyway, that would prevent relatively less coarse gstimarhe problem
was caused by lack of information, interconnected to utilization of only ose kséation.
Having a coarse estimation (estimating a cell instead of exact coordinateshsignificant
compared to that problem. Second, cells covered a reasonably smalappaximately
10x10 n? throughout studies. Uncertainty caused by the area covered by aazlhet
considered as a problem, especially realizing the fact that a single béise gtasitioning

technique was being studied.

In initial grid map only grid borders were plotted over the signal map which udilizi
parameters as seen in Figure 6.2(b). The map was needed to be impraechdividual
fingerprints were not considered anymore. So, cells were coloregdyiag the coloring
process of individual fingerprints to cells. Each cell was colored biyngiit an RGB value

according to its average RSSI, CINR, and AvgTxPwr values. Thdtimegumap is shown in
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Figure 6.2: (a) Signal map plotted using RSSI, CINR, and AvgTxPwrlr(tial version of
the grid map (11890 cells.) (c) Grid map colored according to averages of RSSI, CINR, an
AvgTxPwr (118<90 cells.)
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Figure 6.3: Grid map colored using HSL color space {@98cells.)

Figure 6.2(c).

Figure 6.2(c) showed in grid form how signal changed, but it was ant satisfactory. The

reason was that, although it nicely demonstrated variation of the signatoverage area, it

failed to show color dferences between neighboring cells. For example; in stadium area it

seemed that the signal changed smoothly from up to down like there werediams with
different signal prints, and a soft transition in between. However, whdosa took was
taken at stadium it could be seen that there were small variations betwigdbaorng cells
which implied that the signal might not be changing smoothly. Since the primappge of
drawing map was to get visual aid in understanding the problem that wlsadigmg it was
thought that the map could be improved. Upon recommendation, Hue Saturagfiness
(HSL) color spaced was employed instead of RGB. It is explained that tlieltattempt
to describe perceptual color relationships more accurately than RGB"@42oring of cells
was done in the same way as before: signal parameters, RSSI, CINRvghxPwr were
assigned to elements of HSL color space, hue, saturation, and lightregssctiecly. The

algorithm in [42] was implemented in C# to convert HSL value of a cell to its spwading
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RGB value so that it could be represented in the grid map. Latest versiba gfid map was

like Figure 6.3.

The resulting map gave better idea about signal variation than the previqus lingould
clearly be seen from the HSL map that the color transition in stadium was nentioath, and
even though neighboring cells were of the same color there was noticéalolimg between
them. It was a good progress to see variations existed between cellséeasuwill be
seen in following chapters, position estimation would rely on those variatioctuaby, it
was not important to know what kind of signal was implied by which color. ijgortant
thing to consider was that simply there were parameters assigned to cellshamges in
these parameters could give information about mobility between cells. Thengpdallowed

comprehending that.
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CHAPTER 7

POSITION ESTIMATION

In this chapter, both the proposed position estimation algorithm and k Nddegghbor
algorithm are described in detail. It is explained how tracking was carriddirothe

proposed algorithm and why clustering was used.

The proposed position estimation algorithm is designed to provide two dimehsiona
physical, and absolute location information for mobile stations (MSs) in a WiMANvork
with a single base station (BS.) The algorithm utilizes fingerprinting to make ughéor
absence of multiple base stations and the shortage of signal parametgrsdéor position
estimation. As mentioned in previous chapter, positioning is based on comEansde
between signal parameters of tracked mobile stations and training datargfings
corresponding to grid cells (or shortbells) Signal parameters of a cell were computed by
averaging signal parameters of individual points falling into the cell. Thesea number of
positioning parameters that must be optimized for the network environmentewhe
positioning will take place. This implies that positioning performance not onbedds on
robustness of the algorithm, but also is significantljeeted by selection of parameter
values. The algorithm can return one or, more likely, multiple locations asudt dsthe
estimation process and it can be forced to return one result by settingdtedrparameter.

Input section of Figure 7.1 lists the parameters used in positioning algorithm.

7.1 Proposed Position Estimation Algorithm

Figure 7.1 and Figure 7.2 form backbone of the proposed algorithm. Rosisitmation
starts with collecting signal parameters, that is, Received Signal Stremdjttator (RSSI,)
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input  : cells is an array containing data of all cells in grid map.
maxRssiDiff is the maximum RSSI tlierence allowed.
maxCinrDiff is the maximum CINR dference allowed.
maxAvgTxPwrDiff is the maximum AvgTxPwr dierence allowed.
maxUncontinuity is an integer.
radiusForNeighbors is an integer.
expansionFactor is an integer.
increment is an integer.
nis an integer.
maxK is an integer.
output : clusterCenters is a storage array for multiple cells’ data.
variable: window is a FIFO array with a length of.
stream is a stream for incoming fingerprints.
incoming is a storage for various fingerprint data.
toBeFound is a storage for various fingerprint data.
previousResult is an array containing:z€ll, uncontinuity) pairs.
possibleCells is an array for multiple cells’ data.
filteredResult is an array containingc€ll, uncontinuity) pairs.

cell is a storage for various cell data.
uncontinuity is an integer.

Figure 7.1: Main position estimation algorithm. See Figure 7.2 for the rest.

Carrier to Interference-plus- Noise Ratio (CINR) and Average TrainBower (AvgTxPwr,)

of a tracked mobile station (line 1 in Figure 7.2.) Signal parameters are eecéivm a
stream (line 2) which is created between the mobile station and a station taking on the task
of position estimation (either a base station with which the mobile station is assocrated o
the mobile station itself.) The reason for having the mobile station provide its owalsign
parameters in the algorithm was that the only network element which both redasignal
parameters and provided corresponding data in a useable format wibaok coupled with

a WiIMAX adapter, and that all training and scenario data were collected vatmtachine.

Whenever a new fingerprint (a signal parameter set coming from the mstailion) is
available, it is pushed into a First In, First Out (FIFO) arraynflow) with a maximum
length of n (lines 2 and 3,) which is the first parameter of the positioning algorithm. In the
beginning, the array is empty, meaning that its number caCimirt(window)) is zero. As
fingerprints ihcoming) are received from the tracked mobile station, the array is filled up.
When it reaches its maximum capacity (line 4) the average of signal parameetapsulated

as fingerprints that are stored window is computed (line 5.) They will be used throughout
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// Part 1: Receiving incoming fingerprints.

1 while there is incoming fingerprindo

2 incoming « new fingerprint frorstream;
3 Pushincoming into window;

4 if Count (window )=n then

5 toBeFound « Average (window);

// Core position estimation starts.
// Part 2: Parameter comparison with grid map (Figure 7.4.)

6 possibleCells « ParameterComparison (toBeFound, maxRssiDiff,
maxCinrDiff, maxAvgTxPwrDiff, cells);

// Part 3: Tracking (Figure 7.5.)

7 filteredResult <« Tracking (cells, radiusForNeighbors, expansionFactor,
increment, previousResult, possibleCells, maxUncontinuity);

// Part 4: C(lustering.
8 clusterCenters « KMeansClustering (filteredResult, maxK);

// Part 5: Preparation for next iteration.

9 previousResult « filteredResult;
10 Pop fromwindow;
11 end
12 end

Figure 7.2: Main position estimation algorithm, continued.

the positioning step. What this means is that the core position estimation mechanism
(innermost code portion in Figure 7.2) is provided with an input that is theageeof
multiple actual inputs. As for why such an input method was applied, indil/fthgerprints
may be erroneous because of signal impairments or temporary measupoidams the
mobile station experiences. Averaging values of multiple subsequent gimgsr help
normalizing such deviations which, if not handled properly, can lead theritigh yield
incorrect estimations. Here, parametedefines the number of individual fingerprints to be
collected and averaged. It may be assumed that usingow reduces the number of inputs
fed into the core estimation mechanism at the raten0€.g. if total number of individual
fingerprints received throughout the execution of a position estimatiorigasken because
of window, actual number of computed inputs#; That would be true if at the end of an
iteration of core position estimatiowindow was completely emptied. However, only the
oldest entry in array is removed, and next time a new fingerprint is reddiv the next

iteration, it is pushed into the array (Figure 7.3.) Core position estimation isctagkan
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Figure 7.3: Received signal parameter sets are pushed into a FIF}Qﬁ‘i’&Iep.) When the
array is full, average of signal parameters stored in the array is computased throughout
one algorithmic iteration (@d step.) Before a subsequent iteration starts, the oldest signal
parameter set is removed from the arraS}j(Step) and a new one is presented (backst‘b 1
step.)

with the average of fingerprints in the array, resulting +n inputs which is close tbsince

n is mostly a one digit number.

7.1.1 Parameter Comparison and Initial Grid Cell Selection

First step of core position estimation is comparing signal parameters of alircétie map
(cells) with signal parameters of the newly computed input fingerptoBefFound.) The
purpose is to identify the cells whose signal parameters are in certain protanigse of
the input fingerprint. As stated in Figure 7.4 depicting tPerameterComparison function,
proximity is specified by three algorithmic parameters calieakRssiDiff, maxCinrDiff and
maxAvgTxPwrDiff. These algorithmic parameters define the maximufieince that a cell’s
signal parameters are allowed to have from signal parameters of thefingetprint. In

order for a cell to have the opportunity to get examined later in the position ¢®tima
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input :toBeFound is a storage for various fingerprint data includisgi, cinr,
avgTxPwr.
maxRssiDiff is the maximum RSSI ¢lierence allowed.
maxCinrDiff is the maximum CINR dference allowed.
maxAvg TxPwrDiff is the maximum AvgTxPwr dierence allowed.
cells is an array containing data of all cells in grid map.

rssi is an integer storing RSSI.
cinr is an integer storing CINR.
avgTxPwr is an integer storing AvgTxPwr.

output : possibleCells is an array for multiple cells’ data.

variable: element is a storage for various cell data includirssgi, cinr, avgTxPwr.
rssiDiff is an integer.
cinrDiff is an integer.
avgTxPwrDiff is an integer.

// Part 2: Parameter comparison with grid map.

1 foreachelement in cells do

2 rssiDiff < Absolute (toBeFound.rssi — element.rssi);

3 cinrDiff « Absolute (toBeFound.cinr — element.cinr);

4 avgTxPwrDiff « Absolute (toBeFound.avgTxPwr — element.avgTxPwr);
5 if rssiDiff < maxRssiDiff and cinrDiff < maxCinrDiff

6 and avg TxPwrDiff < maxAvgTxPwrDiff then

7 \ Pushelement into possibleCells;

8 end

9 end

Figure 7.4: ParameterComparison function.

process, so that it may be elected as one of the cells where a tracked ntatiiile san be,
the cell should pass the parameter test in this step. Every tha@ameterComparison
function is invoked, all cells in the grid map are examined (line 1 in Figure 7.4r)e&och
cell element,) absolute dierences Absolute function) between cell parameters and the
input fingerprint are calculated (lines 2, 3 and 4 in Figure 7.4 showingatipas related to
RSSI, CINR and AvgTxPwr, respectively.) Since each one of thesenter diferences has
to be smaller than or equal to the maximum amount specified by the algorithmic paerame
the algorithm must have corresponding conditional constructs (lines B anéFigure 7.4.)
Cells whose parameters ensure the condition are identified as the ones aviricked
mobile station can be. Therefore, they are pushed into an quwaysilfleCells) and passed on

to the main algorithm for further investigation.
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7.1.2 Tracking

Switching back to the main algorithm (Figure 7.2,) now there is a list of qadkss{bleCells)

that will be used for tracking the mobile station to be located as it moves arouti in
coverage area of the network. During parameter comparison, all caligieg a certain
condition were collected. If the algorithm was designed to estimate position irstepe
without using previously obtained data, then some properties of the cefisssibleCells
would be evaluated to come up with a final position estimate. However, that estialke

be far from accurate since those cells would be selected as the ressgihghla computation
based on just a few signal parameters (because of unavailability of nawesmpters,)
meaning that most probably there would be a lot of selected cells which isdasiuable
situation. In addition to that, those cells would likely be located at opposite dinsatibthe
coverage area with similar signal patterns because of the fact that molibestahich are
situated at dferent locations and which have the same distance to a base station can have
very similar signal parameters. In such a case, if a simple positioning scherse w
developed, e.g. returning the average of coordinates of those cells gsslion estimate,

final estimate would mostly be somewhere around the middle of the map.

It was known that with such a small number of available parameters simplehstoaigard
positioning like the one explained above would be very troublesome. Aicgydit was
thought that if extra meaningful information could be extracted from prevjmositioning
steps and used in the current step; there could be a chance to impréwenaeice of the
algorithm. Tracking exactly does this. Simply put, it checks whether the cells in
possibleCells are neighbors of the cells that were selected as final position estimates in one
previous step of the main algorithm. The motivation behind such a control if thatobile
station located at a certain point is moving around at a certain speed, tbea ahort time
interval it can not be at a very distant point, but somewhere around itd jmitilat. That idea
was implemented in tracking portion of the algorithm. The cells which are neigldighe
results of a previous iteration of the algorithm keep their ‘posgibailt cell’ title for this
iteration. The ones which are not neighbors of previous result cellslanenated since the
idea was that a mobile station could not move somewhere other than close proxiraity
point at which it was located a short time ago. The intention was to track p@gsiths the

mobile station could be following and reduce those paths, therefore the nawinpessible
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result cells, with each iteration of the algorithifracking function makes use of a number of
algorithmic parameters to allow the algorithm to be optimized féitedént scenarios, e.g.

tracking of humans, tracking of cars, etc.

If Tracking is invoked for the first time (line 1 in Figure 7.5) it means that this is the first
iteration of the main algorithm and as a matter of course the array containingesilsed
from a previous iteratiomp(eviousResult) is empty. However, even for the first iteration, the
algorithm requires a non empty array of cells to start tracking processe Birthe beginning
there is no information available about the location of a mobile station (befoeévieg any
signal parameters from it) the only thing that can be said without doubt igtieanobile
station is somewhere in the coverage area of the network. In other vitozdn,be located at
any one of the cells in the map. So, eaelerfient) and every cell in the magélls) are saved
into the array ofpreviousResult (as results of & iteration) only when it's the first time the

function is executed.

Before explaining rest of th&racking function, here is an example which shows the problem
with basic tracking and the solution to it that is employed in this algorithm. In Figa@)/
there is a map of a network environment with 8 rows and 10 columns, considtadptal

of 80 cells. There is a mobile station in the environment which follows a path gfdrim
the cell labeled 1 (the cell with index al) and moving towards the cell labelgth#&lcell
with index j1), visiting the cells in increasing label order (al, b2, c3, d3,f23g2, g1,
h1, i1, j1.) The cell whose label is boldtt‘50ell or e3) is where the mobile station was in
the last iteration of basic tracking algorithm, and cells colored in light blue a@adisition
estimates resulting from that iteration. Imagine that, the mobile station moves to treetex
as depicted in Figure 7.6(b), and is still being tracked. Light blue cells arewhat were
previously mentioned agreviousResult for this iteration. Also imagine that according to
the signal parameters received from the mobile station, the algorithm idemtifssibleCells

as the yellow ones. As mentioned in the definition of tracking previously, theritdg
will check whether the yellow cells are among neighbors of cells from aiquevteration,
(neighbors of the light blue cells.) Since this is a simple positioning examplanashiat the
neighbors rfeighbors) of previousResult are the dark blue cells in Figure 7.7(a). What the
current picture tells is that location of the mobile station was estimated as onefotithight
blue cells in previous iteration, and now it is expected to be somewhere indadedr light)

region; however, according to the signal parameters received frermdbile station in the
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input : cells is an array containing data of all cells in grid map.
radiusForNeighbors is an integer.
expansionFactor is an integer.
increment is an integer.
previousResult is an array containingz€ll, uncontinuity) pairs.
possibleCells is an array for multiple cells’ data.
maxUncontinuity is an integer.

cell is a storage for various cell data.
uncontinuity is an integer.

output : filteredResult is an array containingc€ll, uncontinuity) pairs.
variable: element is a storage for various cell data.
cellUncontinuityPair is a storage forggell, uncontinuity) pair.
neighbors is a storage array for multiple cells’ data.
count is an integer.

// Part 3: Tracking.

if this is the first tim&racking function is invokedhen
foreachelement in cells do
| Push(element, 0) into previousResult;
end
end
oreach cellUncontinuityPair in previousResult do

// GetNeighboringCells is defined in Figure 7.10.

neighbors « GetNeighboringCells (cellUncontinuityPair, increment,
radiusForNeighbors, expansionFactor);

foreach element in possibleCells do

if element is in neighbors then

Push(element, O)nto filteredResult;

count « count + 1,

end

if count = 0 and cellUncontinuityPair.uncontinuity < maxUncontinuity then
Push(cellUncontinuityPair.cell, cellUncontinuityPair.uncontinuity + 1)
into filteredResult;

end

end

end

Figure 7.5: Tracking function.
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Figure 7.6: Tracking exampleSi(a) and 9 (b) part.
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Figure 7.7: Tracking example,r% (a) and ih (b) part.
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current iteration, it must also be in one of the two yellow cells. So, cells teat@ored both

in yellow and blue will be final position estimates of this iteration, and other cellswilbe
considered as locations where the mobile station can be. Clearly, in Fig(ag th&re is no

cell with both yellow and blue colors, and the algorithm ends up in a situatior@stdd in
Figure 7.7(b). There are no colored cells at all which implies that the patindbde station

was following is lost. This problem may occur frequently in position estimatiorales

of various reasons like a mobile station providing incorrect signal parasnéte to signal
impairments or temporary hardware problems. For example, if signal impairmdiehtet
affect parameter measurements of the mobile station, cells f1 and f2 might be ideasifie
possibleCells instead of g1 and g2, and the algorithm would not lose the path as f2 would be

a successful position estimate.

It is a known fact that signal impairments and similar unwelcome factors irdingn
position estimation can not be controlled or modified according to requiremérttee o
position estimation algorithm. Therefore, the algorithm must be ready formotiems and
have a rescue plan in case of their occurrence. In Figure 7.7(b)el&ly (possibleCells)
and blue fgreviousResult and neighbors) cells were removed (identified as not being final
estimations) because of that there were no cells colored in both yellow amdlvdd is, there
were no cells belonging to botlpossibleCells, and previousResult or neighbors. As an
alternative approach, consider giving a second chance to the celtedatdight blue before
immediately making a judgment about them. Pufetently; consider that final estimations
of a previous iteration are accepted as final estimations of the currenioitergigure 7.8(a)
depicts initial state of the alternative case. The mobile station movedtoet (92) and
provides newly measured signal parameters to the algorithm, meaning thati@nation is
started. Light blue cells will be used aseviousResult one more time for this iteration. As
usual, parameter comparisons are carried out between all cells in the chaéipeareceived
signal parameters to find a coarse list of cells where the mobile station cavhiwd are
shown in Figure 7.8(b)pssibleCells in yellow.) The algorithm will continue executing just
like it did in previous iterations. To refingossibleCells, neighbors oforeviousResult will be
controlled to see whether there are cells that belong to baibssibleCells, and
previousResult and its neighbors. However, in this iteration there will be a slight change in
neighbor identification process. Normally, neighboring cells are identiBgleones which

are one cell away from the elementstviousResult, e.g. as in Figure 7.7(a), since it was
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Figure 7.8: Tracking examplef'?i(a) and & (b) part.
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Figure 7.9: Tracking example',‘hl(a) and & (b) part.
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thought that the mobile station could move at most one cell away from its pselocation

in one unit of time. In Figure 7.8(b) light blue celisréviousResult) are actually estimation
results of two previous iterations which means that selecting locations thateueet away
from previousResult elements as neighboring cells will not befstient to catch up with the
mobile station. That's why for this iteration neighbors will be selected as locatlwat are
two cells away frompreviousResult elements as depicted in Figure 7.9(a). Evidently there
are cells belonging to bothpossibleCells and previousResult in that case, and they are
shown in green color. These two green ones are the final position estiofdtes current
iteration, and they seem to catch up with the mobile station this time even though #sere h
been a problem with following its path in previous iteration. The algorithm willticoe
estimating position as long as it receives new signal parameters. Figuby 3h@fvs the

initial state of a subsequent iteration.

The problem mentioned above was encountered in practice during denextoand testing
of the algorithm, so the solution above was proposed and finally employettaicking
(Figure 7.5) function. Implementation of the alternative approach abosgereaized with
the introduction of a parameter for the cells storedpirviousResult called uncontinuity.
uncontinuity can be thought as an age attribute for cells. Normally, it has a value of® for
cell that is a member of botpossibleCells, and previousResult and its neighbors. Existence
of such a cell implies that the path identified by that cell is being tracked ssitdly as one

of the possible paths which a mobile station to be located may be following. Whenishee
problematic situation like the one explained in the above examplecontinuity is
incremented one by one in each subsequent iteration to point out that tetsein
previousResult are given a second (or more) chance to be evaluated. In problemaiofcas
losing a tracked path, cells have limited opportunities to be reevaluated in multiléates,
and the maximum amount ofuncontinuity is set by the algorithmic parameter called
maxUncontinuity.  Tracking function returns the list of cells that are identified as final

position estimates to the main algorithm usfiigredResult array.

Note that it is actually highly desirable that the total number of paths desdaseause this
is how the algorithm obtains better estimates. It works its way through manibf@paths

(coarse position estimates) to fewer paths (better estimates.) The reagoodosing such
an approach to prevent removal of paths immediately when there is a destimmbetween

previous estimates and candidates for current estimates was to be more fil@tracking
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input : cellUncontinuityPair is a storage fordell, uncontinuity) pair.
increment is an integer.
radiusForNeighbors is an integer.
expansionFactor is an integer.

cell is a storage for various cell data.
uncontinuity is an integer.

output : neighbors is a storage array for multiple cells’ data.

variable: rangeExpansion is an integer.

if cellUncontinuityPair.uncontinuity > O then
rangeExpansion « cellUncontinuityPair.uncontinuity — 1;
rangeExpansion « 1 + (rangeExpansion / expansionFactor);
rangeExpansion « rangeExpansion x increment;

else

| rangeExpansion « 0;

end

neighbors « Cells at mostadiusForNeighbors + rangeExpansion cells away from

cellUncontinuityPair.cell;

0 N o 0B~ W N

Figure 7.10: GetNeighboringCells function.

paths so that the path a mobile station actually follows is not eliminated easily leechus

temporary disturbances.

Rest of theTracking function works as follows: first, for each cetlellUncontinuityPair in
previousResult (line 6 in Figure 7.5,) neighboring cellseighbors are determined (line 7.)
Neighbor determination is handled by GetNeighboringCells function (Figd which will
be explained later. Following that, eaelement of possibleCells (the array which contains
cells whose Euclidean distances of signal parameters to those sent bpdkedtimobile
station are in a certain range defined by algorithmic parameters) is checgee whether it
is a neighbor of the currently examinedllUncontinuityPair (lines 8 and 9.) In other words,
cells in previousResult are handled one by one such that all elementpdssibleCells are
compared with one celtéllUncontinuityPair) in previousResult and its neighbors at a time.
If an element in possibleCells is a neighbor ofcellUncontinuityPair then that element is
elected as one of the final estimates and stored into the correspondindfiter@dResult)

meaning that path tracking proceeds without interruption.

In the event that none of the possible cells are membergelf@ncontinuityPair's neighbors,
there are two actions that can be taken. Qua#UncontinuityPair cell is given another chance

to be a final estimate if itsncontinuity is smaller than the maximum value allowed (lines 13
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Table 7.1: An example showing how range expansion changes with ungibytimhen
expansion factor is 2 and increment is 3.

uncontinuity  rangeExpansion
1 3

OO WDN
©O© O oo w

and 14,) two cellUncontinuityPair cell is no longer considered as a location where the tracked
mobile station can be if itauncontinuity has reached the maximum value. While the first
action increases robustness, the second one reduces the numbssibliegoosition estimates

which is the key to better location.

As mentioned in previous paragraphs, neighbors of a cell are determioyed
GetNeighboringCells function which computes the distance that a neighboring cell must
have from another celtéllUncontinuityPair) whose neighbors are being identified. Unit of
distance is cells. Apart fromuncontinuity, three algorithmic parameters calléacrement,
radiusForNeighbors and expansionFactor are used to calculate the distance value and
identify neighbors. Normally, when neighbors of a cell with aicontinuity value of O are
being identified, neighbor distance is set as the default value definettiingForNeighbors.

For example, in the previously mentioned example (Figure 7. #éaljusForNeighbors was

1. If uncontinuity of a cellUncontinuityPair is bigger than 0, then aangeExpansion is
calculated which is the additional distance added to the original one in ordsptnd the

neighboring area. Formula used f@ngeExpansion is

rangeExpansion = |1 + [(uncontinuity — 1)/ expansionFactor] X increment]. (7.1)

The formula expresses that for evesypansionFactor amount of increment imuncontinuity,
neighboring area will be expanded by a factoiirafrement. Accordingly, neighbor distance
is set asradiusForNeighbors+ rangeExpansion. Table 7.1 shows how much the distance is
expanded for dierent uncontinuity values whesxpansionFactor is 2 andincrement is 3. In

the example depicted in Figure 7.9(a), be#tpansionFactor andincrement are 1.
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7.1.3 Clustering

After tracking process is completed, an array of cdilgefedResult) containing position
estimates is returned to the main positioning algorithm in Figure 7.2. Early expésimen
showed that the array contained numerous cells which rendered it Ergieny to return the
cells to a user who is being tracked. Visual investigations of experimerslguong results
revealed that those cells were actually grouped together in a few regidhe imap, e.g.
Figure 7.11. Therefore, instead of returning all those cells, centiadgof cell groups could
be returned. However, to apply that idea to the proposed positioning mesohaan
algorithmic way of grouping cells together must have been found. It wastessee that the
problem at hand was actually the data organization problem called clusterijgon
recommendation, k-means algorithm was examined to see whether it was acliesiéeing
technique for the case at hand. MATLAB’s [38] k-means implementationtested with
input from actual position estimation experiments, and it was seen thatagederusters
represented actual groups of cells correctly which lead to the concligibk-means was an

appropriate choice.

Figure 7.11: A brief visual investigation reveals that red cells form thitesters; one in upper
right part, one in upper left part and one in the crossroad in lower &t p
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K-means was to be integrated into the proposed positioning algorithm, but w@sren
obstacle. k in k-means determines the number of clusters to be generated, and it must be
known before clustering process is started. During testing of k-meamsjatbe ofk was
given explicitly andk clusters were generated eventually. However, during execution of the
positioning algorithm there was no information about clusters at all includovg fmany
clusters should be generated. In fact, when it was thought that clugtesisirequired for the
positioning algorithm it was implied that the clustering technique to be used wooNite a
solution similar to what would be perceived as clusters by a human being vaiilalaility of

no a priori information. Like a human who can say that there are three bggectuin
Figure 7.11 without being given any hints in advance, the clustering algorith be
employed was expected to come up with the most appropriate number and forroftio
clusters. Therefore, it was necessary to find a way to determine the noimtlasters first.
Investigation about the problem revealed that there were methods calldidyvindices

which dealt with searching for a proper number of clusters.

A number of validity indices were examined to see how they performed for dse of
clustering estimation results. A MATLAB tool developed by Kaijun Wang fdameating the
number of clusters [37] was employed for the examinations. The tool fés$ either
k-means or Partitioning Around Medoids (PAM) algorithm to divide a daténsek clusters

for different values ok, and then it runs various validity indices to evaluate the quality of
results. Validity indices included in the package are Rand index, Adjusted Ralex,
Mirkin index, Hubert index, Silhouette, Davies-Bouldin, Calinski-Haszha
Krzanowski-Lai, Hartigan, weighted inter- to intra-cluster ratio, Homodgneand
Separation. Position estimates (an array of cells) obtained by runningapesad algorithm

on different data sets were extracted and reformatted for the tool to procespitbperly.

At the end of execution, computed indices were plotted on screen whicheallmentifying

the validity index that returned the closest result to what was perceivéiebeye to be the
most appropriate number of clusters for the provided data set. Homogerastyelected as
the method of identifying value of k-means algorithm because of that it generated clusters
for various input data as desired. The tool was integrated into the .NEiefvark based
simulation of the proposed positioning algorithm using the MATLAB componeitied
MATLAB Builder for .NET [38].

Clustering is the last important step of the main positioning algorithm in Figure 7efls C
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input :kis aninteger.
cells is an array containing data of all cells in grid map.
nis an integer.

output : meanResult is a storage for various cell data.
rbfResult is a storage for various cell data.

variable: window is a FIFO array with a length of.
stream is a stream for incoming fingerprints.
incoming is a storage for various fingerprint data.
toBeFound is a storage for various fingerprint data.
possibleCells is an array for multiple cells’ data.

// Part 1: Receiving incoming fingerprints.

while (there is incoming fingerpriftand (Count (window ) < n ) do
incoming « new fingerprint frorrstream;
Pushincoming into window;

end
toBeFound < Average (window);

a A W N P

// Part 2: Get k cells with smallest distances
// (Figure 7.13.)

6 possibleCells « CellsWithSmallestDistance (toBeFound, cells, k);

// Part 3: Estimate location using two weighting functions
// (Figure 7.15 and Figure 7.16.)

7 meanResult « Mean (possibleCells, cells);
8 rbfResult < RBF (possibleCells, toBeFound, cells);

Figure 7.12: kNN position estimation algorithm.

identified by Tracking function are fed into the k-means clustering algorithm to come up
with just a few estimations for the current location of a mobile station that is beacged
(line 8.) Here, maxK value, which is the last algorithmic parameter, defines the maximum
number of clusters that k-means is permitted to generate, implying that for puydata set
consisting of cells k-means can formaxK or less number of clusters (whichever number is
more appropriate.) Ultimately, cluster centers are make up the final position estiafahe

tracked mobile station.

7.2 k Nearest Neighbor Algorithm

k Nearest Neighbor (kNN) algorithm, which was previously explained ii®@28.4.2.1, was

also implemented in this thesis project upon recommendation. The purpose feas tan

79



input :toBeFound is a storage for various fingerprint data.
cells is an array containing data of all cells in grid map.
k is an integer.
output : possibleCells is an array for multiple cells’ data.
variable: element is a storage for various cell data.
distance is a floating point number.
temp is an array containinge{(ement, distance) pairs.

// Part 2: Find k cells with smallest distances.
1 foreachelementin cells do

// Euclidean distance between element and toBeFound
(Figure 7.14.)

2 distance « EuclideanDistanceOfParameteofeFound, element);
3 Push(element, distance) into temp;

4 end

5 temp « SortByDistance (temp);

6 Push firstk elements ofemp into possibleCells;

Figure 7.13: kNN CellsWithSmallestDistance function.

idea about the performance of a simple position estimation mechanism utilizingasee b
station (BS.) It was thought that results collected from kNN experimentkl delp make
judgments about the performance of the proposed positioning algorithnaslhat possible
to compare the two algorithms directly since the proposed algorithm yielded omere final
position estimates while KNN always returned exactly one estimate. Neveghteldm able
to do at least a partial comparison between the two, several performealcateons were
carried out on simulation results of both algorithms which are explained in detag next

chapter.

Backbone of the employed kNN algorithm can be seen in Figure 7.12. kNiiithign starts
with the same operations as the proposed positioning algorithm explainedioyssection:
incoming fingerprintsificoming) sent by a mobile station over a data streameém) are
stored in a FIFO arrayw{ndow) whose length isn, and average of the signal parameters
encapsulated in those fingerprintsBeFound) are fed into rest of the algorithm as input (lines
1 to 5.) Following the initial parameter computation, a search is started in grid mide of
environment fork number of cells (not to be confused whtlin k — mean$ with the smallest
Euclidean distances of signal parameters to thoseoBeFound (line 6.) k is the only
algorithmic parameter in here. Figure 7.13 shows @eiswithSmallestDistance function

in detail which undertakes the task of identifying thdseells. For each cellefement) in
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input :toBeFound is a storage for various fingerprint data includisgi, cinr,
avgTxPwr.
element is a storage for various cell data includirsgi, cinr, avgTxPwr.

rssi is an integer storing RSSI.
cinr is an integer storing CINR.
avgTxPwr is an integer storing AvgTxPwr.

output : distance is a floating point number.

variable: rssiDiff is a floating point number.
cinrDiff is a floating point number.
avgTxPwrDiff is a floating point number.

1 rssiDiff « toBeFound.rssi — element.rssi;

2 cinrDiff « toBeFound.cinr — element.cinr;

3 avgTxPwrDiff « toBeFound.avgTxPwr — element.avgTxPwr;

4 distance « Sqrt (Square (rssiDiff)+Square (cinrDiff)+Square (avgTxPwrDiff));

Figure 7.14: KNN EuclideanDistanceOfParameters function.

the map €ells) (line 1 in Figure 7.13) Euclidean distance of signal parameters is calculated
(line 2) and pushed into an arraterqp) (line 3.) After distance computation is finished,
cells temp) are sorted by their distances in increasing order (line 5) and Kirslements
(possibleCells) are returned to the main kNN algorithm. The function calculating Euclidean
distance between two signal parameter daislideanDistanceOfParameters) is described in
Figure 7.14. Itis very similar to thearameterComparison function in Figure 7.4 written for

the proposed positioning algorithm in previous section. Only actiidréince is that at the
end of EuclideanDistanceOfParameters, squares of parameterfiiirences are summed up,

and square root of that value is calculated which gives the Euclideamcista

After identification of k cells, main KNN position estimation algorithm (Figure 7.12)
continues its execution with determination of final position estimates for the mohiiensta
that is being tracked using twoftirent weighting functions, mean and radial basis function
(RBF) (lines 7 and 8.) Mean function which is depicted in Figure 7.15 implemests th
uniform weighting scheme in Equation 2.4. First, arithmetic mean of coordinates
(coordMean) of possibleCells is found (line 1,) then the cell that contains the point
represented byoordMean is identified. In other words, Euclidean distance of coordinates of
each cell ¢lement) in the map €ells) to coordMean is calculated (lines 2 and 3,) and the cell
with the smallest distance is returned to the main kNN algorithm as the final position

estimate that is obtained using the uniform weighting scheme (lines 3t0 5.)
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input : possibleCells is an array for multiple cells’ data.
cells is an array containing data of all cells in grid map.
output : meanResult is a storage for various cell data.
variable: element is a storage for various cell data includiogprdinates.
coordMean is a storage for coordinates data.
minEuclDist is a floating point number.

coordinates is a storage for coordinates data.
// Part 3: Estimate location using Mean weighting function.

coordMean « MeanOfCoordinates (possibleCells);
foreach element in cells do
if EuclideanDistance (element.coordinates, coordMean ) < minEuclDist then
minEuclDist « EuclideanDistance (element.coordinates, coordMean);
meanResult < element;
end
end

N O OB~ WN P

Figure 7.15: kNN Mean function.

Radial basis function weighting function is shown in Figure 7.16 which implemimats

following equation:

T wim)l®
Zg(:l Wi (m) ’

(7.2)

wherel is the position estimaté() is coordinate vector df! cell , andwi(m) is the weighting

factor which is

wi(m) = e—(EucIideanDistanceOfSignalParameters(p(‘>,f))2 (7.3)
wherep® is the signal parameter dh cell andf is the input fingerprint. The implementation
starts with computing the numeratoutnerator) of Equation 7.2. For each celllément) in
possibleCells (line 1) a weighting factomeight) according to Equation 7.3 is calculated (line
2) by making use oEuclideanDistanceOfParameters function described in Figure 7.14. Rest
of the first loop deals with computation of two summationsnierator and denumerator)
that make up Equation 7.2 (lines 3 and 4) whose resatirRbf) is later set by dividing
numerator by denumerator (line 6.) Although coordRbf is the actual radial basis function

estimate, the function returns the cell that contains the point representsmblaiRbf as the
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input : possibleCells is an array for multiple cells’ data.
toBeFound is a storage for various fingerprint data.
cells is an array containing data of all cells in grid map.
output : rbfResult is a storage for various cell data.
variable: element is a storage for various cell data includiogordinates.
weight is a floating point number.
numerator is a floating point number.
denominator is a floating point number.
coordRbf is a storage for coordinates data.
MinEuclDist is a floating point number.

coordinates is a storage for coordinates data.
// Part 3: Estimate location using RBF weighting function.
1 foreach element in possibleCells do
// EuclideanDistanceOfParameters is defined in Figure 7.14.

weight « o-EuclideanDistanceOfParameters (toBeFound, element)?

numerator < numerator + (weight x element.coordinates);
denominator < denominator + weight;
end
coordRbf « numerator/denominator;
foreach element in cells do
if EuclideanDistance (element.coordinates, coordRbf ) < MinEuclDist then
MinEuclDist « EuclideanDistance (element.coordinates, coordRbf);
rbfResult < element;
end
end

© 00 N O o b~ wWwN

BoR e
N B O

Figure 7.16: kNN location estimation using radial basis function.

final estimate (to the main kNN algorithm) since grid based positioning is beinigdanat.
Identification of that cell (lines 7 to 11) is done in the same way adean function (lines 2

to 6 in Figure 7.15.)

Both the proposed position estimation algorithm and kNN algorithm return owies of

estimated cells’ central points to the user when their execution is completed.
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CHAPTER 8

EXPERIMENTS

In this chapter, experiments of the proposed position estimation algorithm &tehfest
Neighbor algorithm are explained. fiects of algorithmic parameters on estimation results
are investigated for each algorithm. Finally, experimental results of the ithlig are

compared and factors that are thoughtfteet the results are stated.

Primary fingerprint data, which provided a priori information for positiatiraation, was
collected in July, and first version of the proposed position estimation algonitias
developed to interpret those fingerprints and track mobile stations (MSs.) eA¢ntd of
August, it was decided that in order to test performance of the algorithdn naake
improvements accordingly, additional scenario data was required, thatsigsal
measurements had to be done in the coverage area, again. Insteadrifgthe area as
previously shown in Figure 5.3, signal parameters would be measuredwdilkang around
in campus like ordinary campus residents. Normal behavior of a persontiomveould be
represented; because, scenario data needed to exemplify the cagersba on the go.
Since state of the environment was mostly unchanged (weather, buildiogs;@mpared to
how it was back in July, same signal impairments were expected to be exmatien
Therefore, there were no concerns about capturing fingerprintséntain location that were
evidently diferent from the ones in the primary training database corresponding tartiee s
location. All WIMAX and DGPS equipment on the mobile station side were readygdta
collection. However, measurements could not be started because odw@sg@oblem with
the WIMAX infrastructure at the Department of Computer Engineering. Aliihomachines
composing the infrastructure seemed to be working, no WiMAX network vedscted by
the WIMAX enabled notebook that previously connected to the network withq@uoblem.

Rebooting the system multiple times did not solve the issue. The company whidtethsta
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the infrastructure was contacted, the problem was explained, andcyrgéthe situation
was emphasized. Unfortunately, it took some time for a technician to be adsmyme the
person who handled the problem was apparently not knowledgeahlétalednfrastructure.
The problem was still persistent more than two months after the company wextd. It
was not a good idea to wait more for the system to be fixed since scengihato be
collected as soon as possible because of time constraints. An algorithmewelepkd to
generate scenario data based on existing fingerprints in the training skatakbaallowed
drawing routes on the signal map (imitating a mobile station walking on a path) and
producing sequences of measured signal parameters which we@miginselected from
fingerprint sets corresponding to the grid cells (or sharélls that made up those routes.
Simulations were carried out using numerous scenarios created by tbéathalg Three
months after the problem was reported, and just before those simulatioadimished, the
technician working on the infrastructure told that the network was backeanbespite the
fact that the system was not fully functional as it should have been viitable WiMAX
enabled notebook was able to detect and connect to the network. This deleyed
progress caused to reconsider the current situation. Eventuallargcelata generated by
the algorithm were decided to be discarded to be replaced by actual sigaslirements.
Nevertheless, results of the simulations based on algorithmically generaedriscdata
helped a lot in improving the proposed position estimation algorithm, investigdtieci of
changing algorithmic parameters on positioning accuracy, and definiagnpéer sets that

were thought to yield better position estimates.

In field measurements were carried out between DecemtB‘eQ@OQ and Decembell"f,
2009 to capture real world scenario data similar to fingerprints stored in #eing
database. Many experiments were performed with the data, results waneinex,
algorithmic parameters were changed accordingly, and this sequencmaispes was
reiterated multiple times. Results mentioned in here and listed in Appendix B weiraibta
by executing the latest version of the proposed position estimation algorithniirimted
time period. Note that it was not possible to test the algorithm with every pogsibdeneter
set. It might be possible to obtain better estimates if more experiments were d¢bmeare
parameter sets. Still, results shown in this chapter are thought to be goodtandiof the
proposed algorithm’s performance since the experiments that were cealere evaluated

in detail to come up with the mosffieient parameter sets.
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Experiments were also conducted to see how k Nearest Neighbor (kigottam would
perform with the same data set, so that a number of comparisons wouldirelsttween the

two algorithms. KNN experiments are explained later in this chapter.

8.1 Proposed Position Estimation Algorithm

An example of simulation results is shown in Table 8.1. First thirteen columns tedica
algorithmic parameters that were used in that experiment while rest of theneslshows
the results. To make it easier to explain each column, column numbers are \ritthenfirst

row. Information contained in each column is listed as follows:

e 1Stand Z‘d columns: Horizontal and vertical cell counts, that is, the number of cells
that were contained in each row of the map used in positioning and the nufrdegiso

that were contained in each column of the same map.

o 34 4N and 8N columns: Maximum dterence that a cell’'s signal parameters,
Received Signal Strength Indicator (RSSI,) Carrier to Interferghee-Noise Ratio
(CINR) and Average Transmit Power of Mobile Station (AvgTxPwr,) walfewed to
have from signal parameters of a tracked mobile station. As explained o®ec
7.1.1, maxRssiDiff, maxCinrDiff and maxAvgTxPwrDiff are algorithmic parameters
used in ParameterComparison function (Figure 7.4) to find an initial set of cells

which may later be identified as final position estimates.

o 6" column: Maximum uncontinuity that a cell was allowed to haweaxUncontinuity
is used inTracking function (Figure 7.5) to limit the additional number of times that a

cell is considered as a possible candidate for the location of a tracked ratztitn.

° 7th, gh and 9" columns: Algorithmic parameters that were provided to
GetNeighboringCells function (Figure 7.10.) As described previously the function is
invoked during tracking of a mobile station to determine a given cell's neighasr

explained in Section 7.1.2.

o 10" column: Capacity of the arrawindow in Figure 7.2) which stored fingerprints

received from a tracked mobile station. Recall that the proposed algocibinmputes
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Table 8.1: An example of the proposed algorithm’s simulation results.
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average of signal parameters that are stored in the array to providgeetiput to the

positioning mechanism.

o 11" column: Maximum number of clusters the algorithm was allowed to generate at

the end of an iteration.

o 13N column: Number of subsequent fingerprints that made up a scenarimar@cdata
were collected in multiple fingerprinting sessions each one of which lasteal fiw
hours. It meant that during a single session an arbitrarily selected patiolaved for
a long time and signal parameters were continuously measured. Since itt cichke
sense to have a few experiments based on such long scenarios (it wolyldraaking
a user for hours which was not the case in practice) those large dataliviefed into
smaller streams ofm subsequent fingerprints. The algorithm was modified to finish
an ongoing positioning experiment after it processedingerprints from a source of
scenario data, and to start a new experiment with the mektigerprints. Thereforem
fingerprints represented one actual scenario used for one experibhenvalue shown

in 13th column in Table 8.1 defines the valueraf

o 12N column: Number ofaverageinputs that were processed before results of an
experiment were written into an output file. For example; in the example in Table 8
each path (or scenario) consisted of 100 fingerprints, and the exmerivwes

concerned with position estimates obtained after processing the first @odfimgs.
Columns 1% to 339 contain results of the experiment defined by above parameters.

o 14" column: Total number of estimations that were carried out. In the examplenshow
it is stated that 188 estimations were recorded, meaning that there wereet8iss

(consisting of 100 fingerprints) evaluated in that experiment.

° 15th, 16th, 17 and 14" columns: Number of estimations that yielded a certain
number of clusters. B column shows the number of estimations that yielded no
clusters, reflecting that position of the tracked mobile station could not be éstima
16th, 17th, 18N columns show the number of estimations that yielded one, two, three
clusters, respectively. It seems that all estimations in the example generaed
cluster which is reasonable because of that the maximum number of clusesehto

one as shown in f"ﬂ column.
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o 19N column: Number of scenarios, for each one of which the proposeditalgor
returned a number of estimates (cells) that included at least one cell whghtwnost
100 meters away from the actual location of a tracked mobile station. For éxaifnp
the algorithm returned three cells as final position estimates for one scesmadione
of those three cells was less than 100 meters away from the actual locagarthth

number in 1§ column is incremented by one for that scenario.

o 20" column: Percentage of the number of estimations which returned cells that wer
at most 100 meters away from actual Iocationsﬂﬂléolumn) to the number of
estimations that yielded one or more position estimates, that 'ig,ctﬂllmn divided

by the summation of 1%‘, 17 and 18" columns.

e 215t column: Percentage of the number of estimations which returned cells that wer
at most 100 meters away from actual Iocations”ﬂléblumn) to the total number of

estimations, that is, 18 column divided by 10 column.

o 220 23d 4ng 24N columns: Same as 1 20N 215t columns, respectively, except

that the inspected distance is 300 meters instead of 100 meters.

o 25N column: Average probability of selecting a cell from the result set of imasion,

which is less than 100 meters away from the actual location of a tracked miztitens

As stated multiple times previously, the proposed algorithm can return more tiean o
position estimate as the result of a position estimation operation. That means a use
who is being tracked can be given a number of locations (instead of exaet]yat one

of which the user may be situated. Kfcells are returned to a user after a positioning
operation is finished, the probability that the user randomly selects a celhvgat

most 100 meters away from its actual location is computed by the formula

”—Iz‘ if k>0
Pe = ) (8.1)
0 ifk=0

whereng is the number of estimated cells that are less than 100 meters away from the
actual location of a tracked user (out kfcells.) pe is calculated for every position
estimation operation (For example, in the example shown in Tablg8i& calculated

188 times for 188 estimations.) These probabilities are used to compute thgeavera

probability in 250 column by the formula

89



t L0
%f’e (8.2)
wheret is the total number of estimations (‘f4co|umn,) pg) is pe of it estimation
andn}* is the number of estimations with one or more results. This formula defines the
average probability of randomly selecting a position estimate, which is in 100 meter
proximity of a tracked mobile station’s actual location, from a set of resuiisired by

a positioning operation that is known to yield at least one estimate.

26" column: Average probability of randomly selecting a position estimate, which is
in 100 meter proximity of a tracked mobile station’s actual location, from a setolts
returned by a positioning operation. It is computed by a slightly modified verdion
Equation 8.2.

t L0
% 8.3)
wheren, is the total number of estimations. Note that position estimations yielding
no results are taken into account in this equation because of that the sndivafual

probabilities is divided by the total number of estimations.

27" and 28" columns: Same as J5and 24N columns, respectively, except that the
inspected distance between cells and tracked mobile station’s actual locatiof is 3

meters instead of 100 meters.

29N column: Root mean square error of the results obtained from position estimatio
operations each one of which returned at least one position estimate. olnuted
by utilizing mean square errors of individual estimations’ results. Meaarsgerror

belonging to an individual estimation is calculated by the formula

mse) =+ > (00— pl)? 8.4)
-1

wheremsdi) is mean square error dh estimation operatiorm, is the number of cells
returned as results (same as the number of clusters gene;é‘(@ds coordinate vector
of j cell’s central point, anqag) is coordinate vector of a tracked mobile station’s
actual location. Following that, root mean square error of one expericoasisting of

multiple estimations is computed by the formula
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t
\ % > msdi) (8.5)
i=1

wheret is the number of estimations that return at least one position estimate.

30" column: Root mean square error of the results obtained from all position
estimation operations including the ones that yielded no results. Main formula is th
same as the one shown in Equation 8.5 with orfeeiince; t is the total number of
estimations (1&1 column.) The function calculating mean square erransgi), is
modified to provide error values for estimations with no results. If one or rioak
position estimates are available, mean square error is calculated as shown in
Equation 8.4. On the other hand, if no position estimates are returned, mgae sq
error is calculated as the maximum distance between a cell in the map and actual
location of the mobile station tracked during that positioning operation. In other
words, distance between the actual location and each cell in the map is fowdhthe

biggest one is identified as mean square error of that estimation operation.

1yt (o) _ g2 ifrso
msdi) = ZJ=1(pe Pa’) (8.6)

max ((py — Pa)?) ifr=0
Second part of Equation 8.6 handles the computation explained above mgqés

coordinate vector df cell’'s center Kth cell being one of many cells in the map.)

315t column: Root mean square error of the results obtained from all position
estimation operations including the ones that yielded no results. Thifésadit from

the previous root mean square error. For an estimation which returresals; mean
square error is defined as the maximum distance between a corner of thanchap
actual location of a tracked mobile station. While in the previous computationlisll ce

are investigated to find an error value, here only four corners of theameagxamined.

135! - pD)? ifr>o0
(P — pa)?
msdi) = (P - pa)?| (8.7)
max ifr=0
(Pt - pa)?
(Pt — Pa)?
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8.2

pdr, pd, pf, p!l in Equation 8.7 are coordinate vectors of the map’s upper right, upper

left, lower right and lower left corners, respectively.

Difference between root mean square errors iR a0d 38t columns can be easily
understood by looking at a grid map, e.g. Figure 7.11. Each row in that orgpios

118 cells while each column contains 90 cells, implying a total 10620 cells. Howev
there are 1701 cells shown in the map; because, cells are created ottig fuaces
where fingerprinting was done. The algorithm always returns noneroe ©f those
1701 cells as position estimates which is why root mean square errotinvas
decided to be computed by examining the available cells in the map. Root mean
square error in 3 was also decided to be computed to provide extra information.

The latter one always generates higher error values.
If all estimation operations related to an experiment yield at least one regidtte of

all three root mean square error formulas will be the same.

321 column: Total time spent for the experiment on a computer powered by a 1.6GHz

Intel Pentium M processor.

33'd column: Average time spent for one position estimation operation on a computer

powered by a 1.6GHz Intel Pentium M processor.

Algorithmic Parameters’ Effects on Estimation Results of Proposed

Position Estimation Algorithm

Before comparing results of the proposed position estimation algorithm to dfitiddearest

Neighbor (kNN) algorithm, results of the former will be discussed on their.ogorithmic

parameters’ #ects on estimation results will be expressed by comparing a number of key

performance indicators (explained in previous section) belongingffereint experiments.

The main indicators to be mentioned are average probabilities of randomlyirsgleasition

estimates, which are in certain proximity to the actual location of a tracked mohiiensta

from a set of results returned by a positioning operatioﬁrt%ld 248N columns in previous

section.) These two indicators are employed since they (along with root mqaareserrors

and total estimation time) integrate all of the information regarding to an expersmwestilts.
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Table 8.2: A set of experiments belonging to the proposed algorithm, deratimgtéfects of cell count on results.
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8.2.1 Horizontal and Vertical Grid Cell Counts

Table 8.2 shows algorithmic parameters and results of eight experiments avkictivided
into four pairs. Experiments in each pair consist of the same algorithmic peraset except
for horizontal and vertical cell counts. Thereforeffeliences between results of experiments
belonging to the same pair are caused lfedences between cell count parameteifse(dEs

of other parameters will also be investigated according to such experimies\) p

As demonstrated by all experiment pairs in Table 8.2, when cell count i®ased,
probability of obtaining a position estimate which deviates at most 100 meterstfrem
actual location is increased. It is understandable that such perfornrapcevement is
obtained; because, increase in cell count is achieved by decreasingf giells, and cells
representing smaller areas bring more accuracy to estimations (Dividingtleeage area
into 60x46, 11890 and 23%182 pieces results in square cells with approximately 20, 10
and 5 meter sides, respectively.) On the other hand, smaller cells’ av@gmgd parameters
will be calculated according to fewer fingerprints which may mean that unedegtects of
signal impairments on training data can not be removed tdfacignt degree. Accordingly,
the tendency to select irrelevant cells during parameter comparison €Figdjy may
increase, eventually causing final estimates to contain significant erfdiis. may be the
reason why probability of obtaining a position estimate which deviates at mOsin&gers
from the actual location is decreased when cell count is increasétfliarl 4N experiment

pairs (root mean square error is also increase&‘qj 2d and 40 pairs.)

To make it easier to understand the possible downside of smaller cells, extasmean be
considered; every single fingerprint on the map can be identified as drcéflat situation
erroneous fingerprints will not be taken care of and incoming signanpeters from a
tracked mobile station will be compared to those. This will make it harder to tradkleno
stations since two neighboring fingerprints in the training database carhbgeegparameter
differences. That is why cells were decided to be utilized in the first placegtoca@we such
fluctuations by calculating average of multiple fingerprints (That was algoavarage of a
number of incoming signal parameters from a tracked mobile station was fedhato

proposed position estimation algorithm.)
One last thing to mention is the change in execution time of experiments. All expgrime
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pairs clearly show that as the number of cells is increased, total time spexpernments
increases simply because of that there are more cells to process. Switohingl8<90 cells
to 237x182 cells causes the execution time to increase more than switching frofé 6@lls
to 118x90 cells. Horizontal and vertical grid cell counts are the algorithmic parasetdch

have the greatest impact on total execution time.

8.2.2 Maximum Received Signal Strength Indicator, Carrier to

Interference-plus-Noise Ratio and Average Transmit Power Oferences

maxRssiDiff, maxCinrDiff and maxAvgTxPwrDiff are maximum Received Signal Strength
Indicator (RSSI,) Carrier to Interference-plus-Noise Ratio (CINR) &werage Transmit
Power of Mobile Station (AvgTxPwr) flierences that a cell’s average signal parameters are
allowed to have from incoming signal parameters of a tracked mobile statiodén far the

cell to be identified as a possible position estimate during parameter companssa qf the
proposed algorithm (Figure 7.4.) In Table 8.3 there are four groupse thfrwhich contain
algorithmic parameters and results of two experiments while the last one contains

information related to three experiments.

It can be seen from the first and fourth experiment groups in Table 8t3treasing values
of maxRssiDiff, maxCinrDiff and maxAvgTxPwrDiff provide higher probabilities of obtaining
position estimates that are at most 100 meters away from actual locations.evetpw
arbitrarily increasing those values can degrade positioning perfornandemonstrated by
second, third and fourth experiment groups. Results suggest thatishan upper limit to
these three algorithmic parameters foffelient numbers of cells. For example, consider a
map consisting of many small cells. In that case, neighboring cells’ averiggal s
parameters will be close to each other, implying that smaller valuesmakRssiDiff,
maxCinrDiff and maxAvgTxPwrDiff will likely be more suitable for tracking. If bigger values
are assigned to these parameters, more than adequate number of cellsideitifeed as
possible position estimates during parameter comparison and accordawisacyof final
estimates will decrease. This is why probability of obtaining a position estimatestiaat
most 100 meters away from the actual location in fourth experiment groceaes (last
two experiments in Table 8.3) even though probability of obtaining a position dstiimet is

at most 300 meters away from the actual location increases modestly.t,lthfacolds for
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Table 8.3: A set of experiments belonging to the proposed algorithm, deraongteafects of maximum RSSI @ierence, maximum CINR fierence

and maximum AvgTxPwr dierence on results.
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results in second and third experiment groups, too. Note that as thdssbpitees increase,

root mean square errors decrease. This is a desirable improvement.

Similar to what is explained above, if a map is divided into larger squareshinaigg cells’
average signal parameters will not be very close to each other sinbecedicwill be
composed of more fingerprints distributed over a wider area (pointing to vaoiability in
signal parameters.) That means paramet@emince between large neighboring cells will be
greater than parameteridirence between smaller neighboring cells. TherefieaieRssiDiff,
maxCinrDiff and maxAvgTxPwrDiff values for positioning based on large cells should be
bigger than those values for positioning based on small cells. Of counsdiced #ects of

other algorithmic parameters can cause altering of above explanations.

Increasing the algorithmic parameters mentioned in this section causes thegu@tgorithm
to require more execution time; because, more cells are selected duringeparaomparison

phase to be processed later.

8.2.3 Maximum Uncontinuity

Maximum uncontinuity is used to bring flexibility to tracking of a mobile station. The
algorithmic parameter prevents immediately acknowledging a cell (which is likely to
represent a location where a tracked mobile station is) as an incorratbpa@stimate in
presence of temporary disturbances in signal measurements. Table l8ch, eontains
algorithmic parameters and results of twelve experiments divided into fivgpgrahows

how different values of maximum uncontinuitffect positioning performance.

First three experiment groups clearly show that when maximum uncontinwgst isvhen a
value greater than zero is assigned to it) probability of obtaining a position éstimtéach
deviates at most 100 meters from the actual location of a tracked mobile statieasas
evidently. For example, probability value of the last experiment in third gradnich uses a
maximum uncontinuity value of 4, is more than two times the probability value of the firs
experiment in the same group. Probability of obtaining a position estimate les8@0an
meters away from the actual location also increases noticeably as value aligtirithmic
parameter is increased. However, there are cases where increasipgrédmeter’s value

does not bring performance improvement as shown in fourth and fifterempnt groups.
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Table 8.4: A set of experiments belonging to the proposed algorithm, deratimgtéfects of ‘maximum uncontinuity’ on results.
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The reason for obtaining decreased positioning performance with avakge of maximum
uncontinuity is that cells which should be eliminated in early iterations of the geapo
positioning algorithm are not removed because of high flexibility introducgdthe
parameter, and presence of those cells caudésreht clustering of final estimations in
following stages. Such unwelcome results hint at an upper limit for this algaiGth

parameter (which changes according to values of other parameters.)

As expected, root mean square error decreases when positioniogmpeance improves due to
utilization of a suitable uncontinuity value. One small downside is that total positjdime
required by the algorithm increases since the parameter causes more t&lpriocessed
throughout the execution. But this increase in total estimation time is not as cigrias

those caused by previously explained algorithmic parameters.

8.2.4 Radius for Neighbors, Expansion Factor and Increment

Radius for neighbors, expansion factor and increment are the algorigfardameters used by
GetNeigboringCells (Figure 7.10) function which identifies a number of neighbors for a
given cell. The function is an essential component of the proposeditalgé tracking
phase. Table 8.5 contains eleven experiments in five groups, showingratius for

neighbors, expansion factor and increment parametegstgositioning results.

As it can be seen from the experiments in Table 8.5, having a parameter teiotioém (1,
1, 1) increases both probabilities of obtaining position estimates that areamggroximity
to the actual location of a tracked mobile station, and decreases root mesme sqrors of
final estimates. Just like previously explained algorithmic parameters, vafubs ones
mentioned here should be adjusted for the particular positioning casedat lhanexample,
arbitrarily assigning a large number to the parameter ‘increment’ may notderdwgher
positioning performance as partially demonstrated by last two experiments fiftkhgroup
in Table 8.5. As the value of ‘increment’ increases, computed neighbdntzoge of a given
cell increases as well, indicating availability of more neighboring cells. Sirazkitrg is
based on processing neighbors of previous position estimates, the ngitbars there are to
handle the more paths there are to track. Therefore, a lot of cells will leéethlas possible
estimates in current iteration of the proposed algorithm, and all of them willKes teato

consideration during clustering, eventually degrading accuracy.
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Table 8.5: A set of experiments belonging to the proposed algorithm, demtmgtafects of ‘radius for neighbors, ‘expansion factor’ and ‘increment’

on results.
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Earlier observations regarding total estimation time hold for the algorithmic p&sesne
mentioned here. When larger parameter values are used, extra exetugomwill be
required; because, there will be additional cells to deal with. Absencarimfus experiments
investigating the fects of radius for neighbors, expansion factor and increment panamete

on estimation results prevents making better inferences about these pasamete

8.25 N

n defines the number of incoming fingerprints from a tracked mobile stationytrage of
which is fed into the proposed position estimation algorithm as an input. Table@ugl@s
eighteen experiments assembled into nine pairs, and shows how positiorfioignaace is
affected by changes in value of There is an important thing to note here about the data
in the table. Because of that the experiments which utilized real world datzcwated on
analyzing other parameters, there was no useful information providedeny that would
allow making observations about the paramater~or this reason, results related to earlier
experiments, which utilized manually generated scenario data, are pkbgeiiable 8.6 to
make interpretation of the parameteri$eets possible. Root mean square error values are

missing from the results since it was not being computed at that time.

Although results of earlier experiments give confusing information abouta general
inference can be drawn based on data in Table 8.6. All experiment painsthe dfect of
switching from ann value of 3 to 6. Probability of obtaining a position estimate which
deviates at most 100 meters from the actual location of a tracked mobile statieasas in

first six pairs (the ones with 6@16 and 11&90 cells) and decreases in last three pairs (the
ones with 23%182 cells) as value of the algorithmic parameter is increased. Also, insrease
in probability values of fourth, fifth and sixth pairs (based on 9@ cells) are less than
those of first three pairs (based onx@® cells.) Combining these observations together
reveals that there is a relationship between the size of cells (or the numimisdpfandn. As

cell size gets smaller, higher values of the algorithmic parameter have eitegudsiive
effects (e.g. when switching from 20x20 square meter cells to 10x10 squ&ee ceds) or
mostly negative #ects (e.g. when switching from 10x10 square meter cells to 5x5 square

meter cells) on estimation results.
As demonstrated by all experiment pairs in Table 8.6 (except the fifth orghgihvalue
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Table 8.6: A set of experiments belonging to the proposed algorithm, deratingtgfects of the algorithmic parameter ‘n’ on results.
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of n provides higher probability of obtaining a position estimate that is at most 300snete
away from the actual location of a tracked mobile station. Performance imyments in first
three pairs (related to this probability) are more noticeable than those in atingrgartially
supporting the relationship explained above. However, there arewlases such an increase
in n degrades positioning performance, even when large cells are usktti@eof other

algorithmic parameters is likely the cause for such situations.

8.2.6 Maximum Cluster Count

Maximum cluster count parameter defines the maximum number of clustersatidiec
generated by k-means clustering algorithm at the end of each iteration gfropesed
position estimation algorithm. Table 8.7 shows how changing the algorithmic paramete

value impacts estimation performance.

Probability of obtaining a position estimate that is at most 100 meters away froacthe!
location of a tracked mobile station increases in all experiments when maximuter cdaant
is increased from one to two. However, lower probability is obtained whepdhemeter is
set to a higher value as shown in last experiments of the second and thiggsgn Table 8.7.

This performance reduction hints at an upper limit for the value of maximunteclasunt.

Probability of obtaining a position estimate that is at most 300 meters away froacthe!
location of a tracked mobile station decreases in all experiments which havienamax
cluster count values greater than one. Clearly, behavior of this pititpad different from
that of the former one, the reason of which can be explained basedeamnshots shown in
Figure 8.1. The screenshots depict position estimates of a mobile station cdnbyuitee
proposed algorithm when maximum cluster counts of one, two and three sa@, u
respectively. Green circles show actual location of the mobile station. Yelimles show
estimates that are less than 100 meters away from the green circles, pigs chow
estimates that are more than 100 meters and less than 300 meters away fromaethe g
circles, and red circles show estimates that are more than 300 meters awathé& green
circles. Probability of selecting an estimate (from returned estimation resuiishwias a
positioning error less than 100 meters isi@nd 3 for the first, second and third screenshots
in Figure 8.1. That means, switching from one cluster to two clusters p\idgher

probability, while switching from two clusters to three clusters causes @&asein value of
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Table 8.7: A set of experiments belonging to the proposed algorithm, deratmgtéfects of maximum cluster count on results.
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Figure 8.1: Position estimates of a mobile station computed by the proposed aigatign
maximum cluster counts of one (a,) two (b) and three (c) are used. Greksshow actual
location of the mobile station and others show position estimates.
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the probability. This supports the results given in Table 8.7. Probability letteg an
estimate which has a positioning error less than 300 meter%isaﬂd% for the first, second
and third screenshots, respectively. Therefore, as the numberstérduncreases, the latter

probability decreases, which also supports the results mentioned before.

One last thing to note is that root mean square error belonging to an expeiimoeeases

most of the time if its maximum cluster count value is increased.

8.2.7 Experiment Length

Experiment length is the number of inputs to be processed (or the humbégooittamic
iterations to be executed) before an experiment is finished. Resultslief eéxperiments,
which were carried out using manually generated scenario data, shovwpdh#ioning
performance fluctuates as the number of iterations increases. Peréarganerally gets

better when 40, 50, 90 or 100 iterations are executed.

Table 8.8 presents experiment results obtained with real world data. Riootan
performance can partially be seen here, too. Probability of obtainingitigmosstimate that
is at most 100 meters away from the actual location of a tracked mobile staticeatsdy
decreases in first and second experiment groups when experimgttt Isrincreased. In
third group, performance reduction is less noticeable, and in fourthpgpauformance
increases as value of the algorithmic parameter is increased. Probabilitytadhiog a
position estimate that is at most 300 meters away from the actual location ofkadrac
mobile station also decreases in first and second experiment groupspasdheeter’s value
is increased; but it increases in third and fourth groups. Lastly, ro@nnsguare error
increases every time the parameter’s value is increased; however, thatashincrease in
error in last two experiment groups is less than that in first two experimemipg.
Therefore, it looks like 90 or 100 iterations tend to increase (or slightlysdee) positioning
performance in general. It is for sure that selection of other algorithnrempeters impacts

the value of experiment length to be used.
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Table 8.8: A set of experiments belonging to the proposed algorithm, deratmgtéfects of experiment length on results.
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8.3 k Nearest Neighbor Algorithm

Simulation results of k Nearest Neighbor (kNN) algorithm are in the formvsha Table 8.9.
First five columns indicate algorithmic parameters that were used in thatequemvhile rest

of the columns shows the results. Information contained in each column is Isfeticavs:

o 1Stand 219 columns: Horizontal and vertical grid cell counts of the map used.

o 3™ column: Number of cellsk(in Figure 7.13.) that were identified by the kNN

algorithm to determine a final position estimate.

o 4t column: Capacity of the arrawindow in Figure 7.12) which stored fingerprints

received from a tracked mobile station.

o 5" column: Number of subsequent fingerprints that made up a scenario. This

parameter is the same as the one used by the proposed position estimationnalgorith

o 6 column: Total number of estimations that were carried out. Note that in kNN
algorithm, every time an incoming signal parameter set is received from a mobile
station, a final position estimate is computed without using information related to
previous iterations, unlike the proposed algorithm. This is why in the exampiersh
in Table 8.9, it is stated that 18300 estimations were recorded. One may think tha
there should have been 18800 estimations since there were 188 sceracbs
containing 100 fingerprints. But, because of that a few input fingesnitake up one
input for the KNN algorithmwindow explained in h column) the actual number is

less than that.
Columns # to 18D contain results of the experiment defined by above parameters.

o 7" column: Number of position estimates, computed by mean weighting function, that

were at most 100 meters away from the actual location of a tracked mobilenstatio

o 8" column: Percentage of the number of position estimates, which were at nfipst 10
meters away from the actual location of a tracked mobile station, to the total numbe
of estimates. It is possible to compare this percentage value to the aveohgbipty

of selecting a cell, which is less than 100 meters away from the actual locdteon o
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Table 8.9: An example of the k Nearest Neighbor algorithm’s simulation results.

18

17

16

15

14

13

12

11

10

avg. est. time

total time

rmse of rbf

% of rbf <300

rbf <300

% of rbf <100

rbf <100

rmse of mean

% of mean<300

mean<300

% of mean<100

mean<100

total number of est.

Scenario length

n

Neighbor count (k)

Vertical cell count

Horizontal cell coun
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tracked mobile station, from the result set of an estimation operation belotaythg
proposed positioning algorithm. Because of théif in Equation 8.2 (average
probability formula) will be either zero or one in KNN, numerator of the equatidl

be equal to the number position estimates that were at most 100 meters amairdro
actual location. Since kNN returns exactly one estimate after each positioning
operation, ‘number of estimations with one or more results’ in the denominatioofpa

the equation will be equal to the total number of KNN estimations. Therefore,

computing Equation 8.2 for kNN gives the value of this percentage.

9t column: Number of position estimates, computed by mean weighting function, that

were at most 300 meters away from the actual location of a tracked mobilenstatio

10t column: Percentage of the number of position estimates, which were at nfost 30
meters away from the actual location of a tracked mobile station, to the total numbe
of estimates. Explanations iffBcolumn are valid for this one, too. The percentage
value is comparable to the average probability of selecting a cell, which is EEs800
meters away from the actual location of a tracked mobile station, from thi sesof

an estimation operation belonging to the proposed position estimation algorithm.

11" column: Root mean square error of estimation results that were computed
according to mean weighting function. This is an ordinary root mean swrave
computation since KNN returns exactly one result at the end of each position

estimation operation (unlike the proposed algorithm.)

12" column: Number of position estimates, computed by radial basis function, that

were at most 100 meters away from the actual location of a tracked mobilestatio

130 column: Percentage of the number of position estimates computed by radgal bas
function, which were at most 100 meters away from the actual location eafcied
mobile station, to the total number of estimates. This percentage value is colegarab
the average probability of selecting a cell, which is less than 100 meters eavaytfe
actual location of a tracked mobile station, from the result set of an estimateyaton

belonging to the proposed positioning algorithm.

14 column: Number of position estimates, computed by radial basis function, that

were at most 300 meters away from the actual location of a tracked mobilenstatio
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o 15N column: Percentage of the number of position estimates computed by radsal bas
function, which were at most 300 meters away from the actual location afcied

mobile station, to the total number of estimates.

o 16 column: Root mean square error of estimation results that were computed

according to radial basis function.

o 17 column: Total time spent for the experiment on a computer powered by a 1.6GHz

Intel Pentium M processor.

o 18N column: Average time spent for one position estimation operation on a computer

powered by a 1.6GHz Intel Pentium M processor.

8.4 Algorithmic Parameters’ Effects on Estimation Results of k Nearest

Neighbor Algorithm

In this section, results of k Nearest Neighbor (kNN) algorithm will be dised on their own.
Algorithmic parameters’fects on estimation results will be expressed as in Section 8.2. The

main indicators to be mentioned are

e percentages of the number of position estimates, which are in certain proxintlity to

actual location of a tracked mobile station, to the total number of estimates, and

e root mean square error of estimation results that were computed accéodmngan

weighting function.

Results related to mean weighting function are employed as indicators; bedias
function provided more accurate position estimates than radial basis fuircadmost all of
the experiments. Average estimation time will not be mentioned as an indicatoritsivece

less than one seconds for each experiment.

8.4.1 Horizontal and Vertical Grid Cell Counts

Table 8.10 shows algorithmic parameters and results of seven experimsaisbéed into

three groups. Experiments in each group consist of the same algorithrarogiar set except
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Table 8.10: A set of experiments belonging to the k Nearest Neighboiithlggidemonstratingféects of grid cell count on results.
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60 46 40 1 100 18800 4742 25% 13898 73% 264,90 3681 19% 11912 63% 321,04 19sec Osec
118 90 40 1 100 18800 5059 26% 13496 71% 276,65 3820 20% 12100 64% 314,28 52sec O sec
237 182 40 1 100 18800 5150 27% 13478 71% 274,07 4587 24% 13152 69% 284,55 158 sec 0 sec
60 46 120 1 100 18800 481 25% 14420 76% 244,18 3681 19% 11912 63% 321,( 20sec Osec
237 182 120 1 100 18800 507 27% 13754 73% 269,02 4554 24% 13182 70% 282 157 sec 0 sec
118 90 200 4 100 18800 4552 24% 14214 75% 253,94 3892 20% 12278 65% 310,68 54sec 0 sec
237 182 200 4 100 18800 4973 26% 13943 74% 265,93 4560 24% 13227 70% 284,68 156 sec O sec




for horizontal and vertical cell counts.

As demonstrated by the examples in Table 8.10, higher horizontal and \vedltaounts
increases percentage of the number of position estimates, which are dt0f@ioseters away
from the actual location of a tracked mobile station, to the total number of estim@es
the other hand, such an increase in algorithmic parameters causesasdeaangercentage of
position estimates which are at most 300 meters away from the actual locatomawked
mobile station. Root mean square error of estimates also increases in nasstvdaish is an

undesirable situation as mentioned before.

8.4.2 Neighbor Count

Table 8.11 lists a number of experiments that demonstrate how positioningmarice of
kNN algorithm changes with fferent values of neighbor count, the number of cells used by

the algorithm to compute a position estimate.

As seen in experiments belonging to the first group in Table 8.11 (experiméht§0x46
cells,) number of position estimates that are at most 100 meters away frontuihElacation
of a tracked mobile station increases little by little as neighbor count is incréased!O to
200. Therefore, value of the corresponding percentage incrsligetty. In the second group,
where 11&90 cells are used, the same percentage decreases when the algoritamietpes
value is increased from 40 to 200. However, increasing it further mayige a small amount
of increase in the percentage value. In the last group, whenel®B2/cells are used, value
of the percentage decreases as neighbor count is increased fngontd @000, regardless of
fluctuations in the number of position estimates that have a maximum positionin@Et@0

meters.

Percentage value related to the position estimates which are at most 300 meigifsoemwv
the actual location of a tracked mobile station i$eeted diferently by the change in
neighbor count parameter. In the first group in Table 8.11, value opttaentage increases
as the algorithmic parameter is increased. In cases where€9D1&:lIs are used, increased
percentage is obtained as the parameter’s value is increased (proatititethialue assigned
to the parameter does not exceed 500.) In the third group, value of thenpgge peaks

when a neighbor count between 1200 and 1600 is used.
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Table 8.11: A set of experiments belonging to the k Nearest Neighboritalgoidemonstratingféects of neighbor count on results.
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60 46 40 4 100 18800 4754 25% 13900 73% 264,95 3760 20% 12059 64% 319,28 19sec 0sec
" 60 46 80 4 100 18800 4770 25% 14276 75% 254,88 3760 20% 12059 64% 319,28 19sec 0sec

60 46 120 4 100 18800 4884 25% 14397 76% 244,43 3760 20% 12059 64% 319,28 20sec 0sec

60 46 200 4 100 18800 4910 26% 14894 79% 231,85 3760 20% 12059 64% 319,28 21sec 0sec

118 90 40 1 100 18800 505' 26% 13496 71% 276,65 3820 20% 12100 64% 314,z 52sec 0Osec

118 90 200 1 100 18800 452 24% 14234 75% 253,39 3824 20% 12119 64% 314, 54 sec 0 sec
2 118 90 300 1 100 18800 453 24% 14401 76% 242,96 3824 20% 12119 64% 314, 54sec Osec

118 90 400 1 100 18800 459 24% 14776 78% 235,05 3824 20% 12119 64% 314, 56 sec 0 sec

118 90 600 1 100 18800 463 24% 14865 79% 231,72 3824 20% 12119 64% 314,( 60sec Osec

237 182 40 1 100 18800 5150 27% 13478 71% 274,07 4587 24% 13152 69% 284,55 158sec O sec

237 182 400 1 100 18800 4744 25% 14173 75% 256,76 4542 24% 13185 70% 282,81 159sec 0sec

237 182 800 1 100 18800 4551 24% 14499 77% 242 4542 24% 13185 70% 282,81 162sec O sec
3 237 182 1200 1 100 18800 4606 24% 15146 80% 232,09 4542 24% 13185 70% 282,81 165sec 0sec

237 182 1600 1 100 18800 4636 24% 15239 81% 229,48 4542 24% 13185 70% 282,81 168sec 0sec

237 182 2000 1 100 18800 4595 24% 14873 79% 231,02 4542 24% 13185 70% 282,81 173 sec 0sec

237 182 4000 1 100 18800 4245 22% 14445 76% 234,7 4542 24% 13185 70% 282,81 194sec 0sec




Finally, as demonstrated by almost all of the experiments in Table 8.11, roatsgaare error
is inversely proportional to percentage of position estimates which are im8@r proximity
of the actual location of a tracked mobile station. That means, as value gidhentage

increases, root mean square error decreases.

843 N

n is the number of incoming fingerprints from a tracked mobile station, the ax@faghich
is fed into the proposed position estimation algorithm as an input. According teshés of
experiments that were carried outy does not have a noticeabléfext on positioning
performance most of the time. But, for some values rofit is possible to see a little
improvement on percentages of position estimates that are in certain proximity acttal
location of a tracked mobile station. Table 8.12 lists a number of experimentsatreasgch
results. As it can be seen in both experiment groups in the table, valuearaf 4 for the
algorithmic parameter do not cause any significant changes in resultst iSljglovements
are achieved (both in percentages and root mean square error) gubater values are

assigned ton.

8.5 Comparison of Proposed Position Estimation Algorithm ad k Nearest

Neighbor Algorithm

In this section, experimental results of the proposed position estimation afgoaitial k
Nearest Neighbor (kNN) algorithm will be compared to come up with a digmusdbout the
former’s positioning performance. Table 8.13 lists algorithmic parametersesults of
eleven experiments belonging to the proposed positioning algorithm. Tableli8t44
information related to ten KNN experiments. Experiments in the tables are seledtesl
following way: for each experiment of the proposed algorithm, a perfoo@ariterion was
computed by giving 65% weight to the probability of obtaining a position estimatelesth
than 100 meter error and 35% weight to the probability of obtaining a positionas with
less than 300 meter error. Same computation was repeated for all experohémskNN
algorithm. Experiments belonging to each algorithms were sorted on their owtheby

computed performance criterion in decreasing order, and top experimergspresented in
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Table 8.12: A set of experiments belonging to the k Nearest Neighborithligoidemonstratingféects of the algorithmic parameter ‘n’ on results.
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118 90 60 6 100 18600 4983 26% 13599 73% 272,24 3900 20% 12147 65% 308,35 52sec 0sec
118 90 60 8 100 18300 4960 27% 13582 74% 265,76 3896 21% 12145 66% 301,33 52sec 0sec
237 182 4000 1 100 18800 424 22% 14445 76% 234,70 4542 24% 13185 70% 282,6 194sec 0 sec
237 182 4000 4 100 18800 42: 22% 14429 76% 235,02 4555 24% 13229 70% 284, 193sec O sec
2
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Table 8.13: Algorithmic parameters and results of eleven experiments bejdiogime proposed position estimation algorithm.
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237 182 10 8 10 8 1 3 1 3 2 90 100 188 O O 1 29,79% 6516% 344,18 150 sec
118 90 10 8 10 4 1 1 1 3 1 80 100 188 O 188  21,81% 79,79% 242,08 14 sec
237 182 7 5 7 4 1 1 1 3 2 90 100 188 O 1 1 30,85% 62,77% 360,36 47 sec
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Table 8.14: Algorithmic parameters and results of ten experiments belonging kd\lbarest
Neighbor algorithm.
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237 182 1200 100 18300 464 25% 15050 82% 223,46 0 sec

237 182 1600 100 18300 46¢€ 25% 15117 82% 220,63 O sec

118 90 500 100 18300 469 25% 14971 81% 222,59 0 sec

8
8
8
237 182 1200 6 100 18600 46€ 25% 15135 81% 230,51 Osec
60 46 200 3 100 18800 490 26% 14905 79% 231,92 0O sec
60 46 200 4 100 18800 491 26% 14894 79% 231,85 Osec
118 90 400 8 100 18300 464 25% 14744 80% 226,99 0 sec
118 90 500 6 100 18600 469 25% 15018 80% 229,67 O sec
118 90 600 8 100 18300 463 25% 14775 80% 223,26 0 sec
237 182 2000 8 100 18300 46z 25% 14767 80% 222,24 0 sec

Table 8.13 and Table 8.14.

Data to be compared are listed as the following:

e Average probability of obtaining a cell, which is within certain proximity to the dctua
location of a tracked mobile station, from the result set of an estimaticm €l 1§h
columns in Table 8.13,) and percentage of the number of position estimatek,halie
certain distance to the actual location of a tracked mobile station, to the total numbe
of estimates (@ and 16" column in Table 8.14.) Recall that the percentage in kNN
results is computed the same way as the average probability in the proposeithals

results as explained in Section 8.3.
e Root mean square errors (ﬁ(l:olumn in Table 8.13 and i column in Table 8.14)
e Average estimation times (ﬁlcolumn in Table 8.13 and i column in Table 8.14)
A general first look at the tables reveals that experiments of the kNNitdgoyielded very

similar results, no matter how ftierent their algorithmic parameters were. Experimental

results of the proposed algorithm show more variability. While probability afioing a
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position estimate with less than 100 meter error does not exceed 26% in Tabeit8.1
reaches up to almost 31% in Table 8.13. On the other hand, probability dhiolgta
position estimate with less than 300 meter error is around 65% or less in half of the
experiments in Table 8.13 and around 80% in the rest while the same probabdltyaigs
around 80% in Table 8.14. There is one thing that attracts attention abowpeneents in
Table 8.13, latter probabilities of which are around 80%. Maximum clustemto@lues of
those experiments (ﬂl column) are one. Taking a look at the results of those experiments
makes it clear that when the proposed positioning algorithm is dictated toagerarmost
one cluster, it produces results similar to those yielded by the kNN algorithroauBe of
that, results of experiments which were carried out using a maximum clustet calue of

two (or more) exhibit the actual positioning performance of the propodgdritom.
Therefore, it is a better idea to compare results of only those experimerdabli@ .13 with

KNN results in Table 8.14.

As mentioned above, proposed algorithm’s probability of obtaining a posistmate with
less than 100 meter error is higher than that of the KNN algorithm, and theogedp
algorithm’s probability of obtaining a position estimate with less than 300 meter Esrror
lower than that of the KNN algorithm. The reason for the proposed algosthatter
probability to be lower can be understood by looking at an example like theirone
Figure 8.2. In the figure, green circle shows the actual location of agdaciobile station,
orange circles show position estimates calculated by the proposed algornittiredacircle
shows estimate of the kNN algorithm. Orange estimate on lower left side of the rttag is
only one that is less than 100 meters away from the green circle. So, tpesed
algorithm’s former probability i% and the kNN algorithm’s former probability is 0. This
explains why the proposed algorithm’s former probability is higher. The saarege circle
and the red circle are the two estimates which are less than 300 meters ameidrgreen
circle. That means the KNN algorithm’s latter probability is 1 while the same pilitlyadf
the proposed algorithm i%. Apparently, such situations occur many times, causing latter

probability value of the proposed algorithm to be less than that of the KNNi#ilgo

Root mean square errors in Table 8.13 and Table 8.14 exhibit a relatidhahip consistent
with the one between probabilities explained above. Root mean squarelsztonging to the
experiments in Table 8.13 that have a maximum cluster count value of twoeategthan

those in Table 8.14, implying that positioning errors in the proposed algoritenwvarse than
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Figure 8.2: A position estimation example. Green circle shows the actual lochdracked
mobile station. Orange circles show position estimates calculated by the pdadgedthm,
and red circle shows estimate of the k Nearest Neighbor algorithm.

those in the KNN algorithm. The reason for such big error values in theopeapalgorithm
can be comprehended by looking at Figure 8.3, feedént view of the case in Figure 8.2.
In the figure, positioning error of the KNN algorithm’s estimate (red circle)ingly the
distance between the estimate and the actual location of the tracked mobile gjagiem (
circle,) which is less than 300 meters. When it comes to calculating positioniag adrr
the proposed algorithm, all three estimates represented by orange cieclasladed in the
computation. Because of that second and fourth distances in Figuree8aBoamd 500 and
600 meters away from the green circle, respectively, proposed algdsitbot mean square

error is higher than 300 meters (higher than kNN algorithm’s error.)

The last comparison will be made between average estimation times of the twibhahgor
There is an obvious fference between the average estimation times listed in Table 8.13 and
Table 8.14. The kNN algorithm seems to finish an estimation operation in less tigan o
second. However, in real world application, it will take a few secondsibse the algorithm

has to wait for a number of fingerprints that will be sent by a tracked motaltea. Still,

120



Figure 8.3: A diferent view of the case in Figure 8.2

average estimation time of the kNN algorithm will be less than that of the proposed
algorithm since the former does not require multiple iterations and more incoming
fingerprints like the latter does. Estimation time of the proposed algorithm maingndsp

on the algorithmic parameter called experiment length which defines the nunmiber o
iterations to be executed. If higher values are assigned to the paranwisrtii@ case in
experiments in Table 8.13) estimation times in real world applications will be as leng a
what is shown in Table 8.13. Actually, it is normal to have such values; usecaif
experiment length is set to 90, that means 90 fingerprints are expecteddodieed from

the tracked mobile station in order to come up with a set of final position estimaitese S
reception of an incoming fingerprint fires an algorithmic iteration and therevagable
processing time until reception of the next fingerprint, it is likely that a fevords after the

last fingerprint is obtained final estimates will be ready. During collectiorsighal
parameters for the training database and for the scenarios, every time @seireraent
equipment moved one meter, one fingerprint was recorded. Similarly, itketlamobile
station sends a fingerprint every time it travels one meter, it takes more tleamionte to
send 90 fingerprints. Therefore, even if the proposed algorithm istalpecess that many
fingerprints in one second, it has to wait more than one minute to receivestiiedaming

fingerprint and process it just like previously received ones.

One thing that had a huge impact on average estimation time was the hardwaesl ditiliz

simulations. The computer which ran simulations to produce data in Table 8. TableB.14
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used an Intel Pentium M 725 1.6GHz processor that was released in R@pbsed position
estimation algorithm worked two times faster when simulations were repeatedonsgpre
of a dual core processor. Considering that dual core processothe standard now and that
the proposed algorithm can be parallelized easily (because numeropshgat fingerprint
comparisons are made,) position of a mobile station can be estimated at ledishésufiaster
using an ordinary up-to-date computer. In that case, execution time tivapsich more
acceptable levels. The proposed algorithm will still execute longer thariNiNeakgorithm by
its nature, but it is possible to further decrease the execution time by ketheimxperiment

length parameter small, moderately risking accuracy of final estimates.

8.5.1 Total Number of Estimations

Apart from what is explained above, there are several other faittarsvorth mentioning like
the total number of estimation operations carried out during an experimesttafe data used
in experiments consisted of 188 paths, each one of which included af@infingerprints.
As seen in Table 8.13, in one experiment of the proposed algorithm, 188 tigtimmare
completed (one estimation for each path in the scenario data.) However,|e8lah more
than 18000 estimations are handled in one experiment (one estimation opéoateach
fingerprint in the scenario data.) This hugéelience of the total number of estimations may
imply some inequality between results of the two algorithms. It might be possibliador
proposed algorithm to yield better and more accurate results if a lot more estimatéve

executed.

8.5.2 Kk Nearest Neighbor Estimates

Experiments revealed that estimated location of a mobile station that is computed ky th
Nearest Neighbor (kNN) algorithm points to somewhere around the teegian of a base
station’s coverage area most of the time. When a mobile station moves aroucentha!
region of a base station’s coverage area and sends fingerprints teha¢orithm, a number

of cells in the central region are identified as possible places where the ratattiten can be.
Processing those cells yields an estimate that points to somewhere arourdtthéregion,
naturally, and the estimate’s root mean square error is likely to be less thatamoralue.

The situation changes a little when the mobile station moves towards other refjibascea.
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Consider that it is moving to the crossroad on lower left side of the map ind-igdd. The
algorithm marks a predefined number of cells according to the incoming firigesr sent by
the mobile station (red cells in the figure.) Processing those cells yields a pastiorate
that is in the middle of the center and left border of the figure (pink cell,) wbarhesponds
to a place not far away from the central region. Positioning error of ttisnate does not
exceed a certain value like the one explained above. Therefore, itcsaidbthat as long as
the mobile station does not move to outer regions of the examined area, positates will
point to locations around the central region, and errors will be in acokpivels. These two

positioning cases seem to occur a lot when small maps are used, like theFagarm7.11.

Scenario data used for simulations mostly consisted of fingerprints collecteddathe
central region of the coverage area and its neighboring regions. rR@gerprints were
collected in outer regions because of issues related to topology and mmastire

equipments. This might have a positiveet on the results of KNN estimations.

8.5.3 Selection of Parameter Values in the Proposed Algorithm

As mentioned before, selection of well matched algorithmic parameters is impfotahe
proposed algorithm to track and locate mobile stations as accurately as|@os$ibr
example, small maximum signal parametefatiences (Section 8.2.2) coupled with a small
maximum uncontinuity (Section 8.2.3) can very easily cause problems in tradkieg
completely being unable to track a mobile station. The reason is that signatgtaera of
subsequently received fingerprints tend to fluctuate frequently. Beaafusuch fluctuations,
in subsequent iterations of the algorithm ffdient cells will be identified as possible
locations where the mobile station can be, and there will be no or few commorthelisre
marked in those iterations. Since common cells are the key to tracking, it will failch a
case. Similarly, selecting very high values for those parameters doessureebtaining the
best possible positioning performance from the algorithm; because, top celis will be
identified as possible locations, leading the algorithm to provide inaccuréiteaéss.
Consider a maximum uncontinuity value of 10. That means cells which are hpmerked
for removal (from being possible cells) will be kept available for ten mdg®réihmic
iterations. It is not wise to give such a great flexibility to the algorithm; bezaimscases

where uncontinuity is not required, that is, when signal transmission isst@nd reliable,

123



cells that should be removed will be given extra chances unnecessarilyndltiple
iterations. A mobile station may move through a few cells and provide ten fingerpo the
algorithm during its short trip. If that mobile station is tracked successfulgn thwill be
totally redundant to save the cells, which should be removed previouslytefomore
algorithmic steps. The actual downside is that those cells will cause the afgddtlrack
extra paths and generateffdrent clusters than what should normally be obtained. These
examples are strong indicators that it is important to optimize the algorithmic pararfate

the positioning case at hand.

8.5.4 Training and Scenario Data

The problem with training and scenario data was that they consisted ofdiinge that were
collected in dfferent seasons. Training data was collected in June, and WiMAX signat$ co
be received from all of the colored regions in the map depicted in Figu(a)6 2cenario data,
on the other hand, was collected in December, and WIMAX signals couldenotdeived
in certain regions of the map, e.g. in the blue road on lower left side of theefiglihat
was why it was not possible to do experiments related to some outer regighe ofap.
Experimental results of the proposed position estimation algorithm and k dédeehbor

(KNN) algorithm might be dterent if scenario data were collected during summer time.

It is thought that because of environmental changes due to seasuialon, there might
have been dierences in fingerprints corresponding to the same location in training and
scenario data. Theseffirences might havetacted experiment results negatively; however,
maximum signal parameterftirences (Section 8.2.2) defined in the proposed algorithm

probably compensated for estimation problems related to sti@nehces.
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CHAPTER 9

CONCLUSION

In this thesis project, a position estimation algorithm for single base station WiMAX
networks is proposed. Before the algorithm was developed, WiMAX eagiifh at hand was
investigated to determine what kind of information about transmitted signals etmebrk
packets could be obtained. It was found out that only Received S#mahgth Indicator
(RSSI,) Carrier to Interference-plus-Noise Ratio (CINR) and Averdgansmit Power
(AvgTxPwr) were available. In order to compensate for the lack @f@ent information (to

be used in positioning) originating from utilization of a single base station, rimgping
technique was decided to be used. The technique allowed analyzingagevarea of the
employed WIMAX base station. Parameters of received signals in downligktatin (from
base station to mobile station) were measured ffedint places using a WiMAX-enabled
mobile station and Dierential GPS (DGPS) equipment. These measurements made it
possible to tell what kind of signal parameters were expected at certaits pa the
coverage area. Data collected via fingerprinting formed a training databbih the
proposed algorithm was based on. A signal map was created using thisugtidatabase and

it was divided into a (variable) number of square grid cells (or shadlys) Cells were
preferred to be used in position estimation; because, averaging sigaatgtars of points
belonging to individual cells could remove possible measurement errorsdiwidaal
fingerprints. Therefore, average signal parameters of each cedla@eputed to generate a

grid map from the signal map, and only that map was employed by the proplggedhm.

The main idea behind the proposed algorithm was to receive signal meesisefrom a
mobile station to be located, query a training database for records thatincaigaal
parameters similar to the ones reported by that mobile station, and returnnatesdstored

in resulting records as possible position estimates. This idea remained the gente d
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development phase of the algorithm; but, some modifications had to be donaugeg a
grid map as the training database as mentioned above) and a number ofnrblale to be
solved to realize it. First, it was known that one base station would not addquate data
to accurately locate a mobile station. It seemed unlikely to find the location of a mobile
station correctly in a single step using a single signal measurement (a singtegter set)
received from the mobile; because, it would not be reliable to use onlyirmwning
parameter set since WiIMAX signals tended to fluctuate, and most of the timewleeee
many cells which had the same signal parameters as the incoming ones. Solutien to
former was to gather multiple incoming signal parameters and calculate theagaver
smoothen out possible errors in measurements. Solution to the latter was draaiinile
stations, meaning that the algorithm would consist of multiple iterations. Basicakgch
iteration some cells were marked according to their Euclidean distance of payameters

to those sent by a mobile station. It was checked whether those cells weng dneoones
which were identified as possible position estimates in a previous iteration ifamgaheir
neighboring cells.) Existence of such cells implied that the paths the mobile statibhlmig

following could really be tracked.

In early versions of the proposed position estimation algorithm, it was oddhat the
number of estimated cells at the end of each iteration was more than a few, nvad#h it
impractical to return all of them as results. On the other hand, as revegledsinal
examinations, those cells were organized into a few groups, implying thagstimeate per
group could be returned as results. Therefore, k-means clusteriogtlaiy, coupled with
Homogeneity validity index (a method that helps to search for a proper nushbkrsters as
explained in Section 7.1.3,) was integrated into the algorithm to provide an tabtep
number of final position estimates to users. The algorithm generally gedenare than one

position estimates.

In order to investigate how the proposed algorithm performed against despogition
estimation solution, k Nearest Neighbor (kNN) algorithm was implemented. Similginab
was done in the proposed algorithm; averages of multiple incoming signahptes sent
from a mobile station were fed into the kNN algorithm as input. KNN did not ino@ie any
kind of tracking methods. It processed a given input to identify a numbeelts, put those
cells through a weighting function and came up with exactly one position estimateein o

step. Note that, the proposed algorithm returned no estimates when algoridwaigiers
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were selected randomly without considering theffeets on positioning performance.

Experiments were carried out on both algorithms and the following results oeained.

e With the proposed algorithm, it was possible to get a higher average probaifility
selecting a cell, which was less than 100 meters away from the actual location o

tracked mobile station, from the result set of an estimation operation.

o With the KNN algorithm, it was possible to get a higher average probabilityle¢teg
a cell, which was less than 300 meters away from the actual location of atraubbile

station, from the result set of an estimation operation.

e There was not a case in either the proposed or the kNN algorithm whiréhedormer
and the latter probabilities had their highest possible values. In experimktiie o
proposed algorithm where the former probability was high (around 30%, )atiter
probability was low (around 65%,) and in experiments of the kNN algorithmrevhe
the latter probability was high (around 80%,) the former probability was looufadt
25%.)

“Accuracy and reliability requirements” for Enhanced 9-1-1, a sentfta is used to
determine location of a cellular phone user in an emergency situation, ariéespédy the

Federal Communications Commission (FCC) as the following [16].
e “For network-based solutions: 100 meters for 67 percent of calls,n3&@rs for 95
percent of calls;
e For handset-based solutions: 50 meters for 67 percent of calls, 156G rioet@5 percent

of calls.”

Experimental results suggest that the proposed algorithm does not cawtplyabove
requirements and it can be used for non-emergency situations whereclowaey is

acceptable.

Advantages of the proposed algorithm can be listed as following.

e There is no hardware modification required for any network equipmerse(btations

and mobile stations.)
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e Although the algorithm was developed as a remote positioning solution in the first
place, it can easily be implemented as a self positioning solution. In remote
positioning case, a tracked mobile station measures various WiMAX sigrehesers
and sends them to its associated base station which executes the algorithme Remo
positioning can also be handled by a dedicated server. In self positioas®y oot
only a mobile station measures parameters of signals that it receives froilAaXN
base station, but also computes its own position by executing the algorithm &séilf.
positioning requires mobile stations to have an up-to-date version of the tainin

database.

e For remote positioning, a lightweight application is required for mobile statiorso s
measured signal parameters to base stations, and a main position estimatiatiapplic
is required for base stations. For self positioning, mobile stations need &thav
main application. Even though the main application is processing power irgeasiy

modern computer can handle it well.

The proposed algorithm also has some disadvantages.

e A mobile station to be located should be in motion. Because, the algorithm is based o
tracking, and tracking can be realized by processing multiple signal pamsmete
measured at lierent places by the monitored mobile station. If a stationary user is
located with the algorithm, most probably very coarse position estimates will be

obtained.

e A disadvantage caused by utilization of fingerprinting is that it should beateg
periodically in order to update a training database. These updates assagcto take
effects of seasonal and environmental changes into account. If a nefaoak more
significant changes like relocation of antennas that are connected tseastaion,
training database should be completely renewed. The more fingerprintisigise are

performed, the more time andfert are consumed.

e Alot of experiments should be carried out to optimize algorithmic parametebeftar

positioning performance.

e Lack of suficient location related information prevents the algorithm from returning

exactly one position estimate.
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10x

14x

Figure 9.1: A position estimation example. Blue circle shows location of an enplogse
station. Green circle shows actual location of a mobile station. Orange @tob@sposition
estimates computed by the proposed algorithm.

According to experimental results, root mean square error of the peopalgorithm’s
position estimates was around 350 meters in the best case where more tharstare were
generated. It was worse than the k Nearest Neighbor algorithm’s pasgdierror which was
around 230 meters in the best case. These errors do not necessairilyhaethe proposed
algorithm’s results were worse than those of the k Nearest Neighboiitalgorin fact, the
proposed algorithm can come up with estimates that are quite close to the acttianof a
mobile station. For example, in Figure 8.3, the estimate which has the smallest elisianc
the actual location of a mobile station, depicted by the green circle, is theemde in
lower left part of the map which is generated by the proposed algorithm.erimless,
because of that other position estimates produced by the proposed atg(ith orange
circles in upper part of the figure) are far away from the actual locaiti®noot mean square

error is high.

The reason for having multiple position estimates was a shortcoming which origjiinate

being unable to access location-related data provided by IEEE 802.16 h&agers. If
location-related MAC fields could be accessed, number of final positiimagses could be
reduced, meaning that root mean square error could be minimized. Thénmpastant data

required for achieving such an improvement is the MAC layer field called Timdjgist
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which allows doing fine grained range measurements. It gives valuablenafion about the

distance between a mobile station and a base station.

Consider the case in Figure 9.1 where blue circle shows location of an erdpbase
station, green circle shows actual location of a mobile station, and orangescshow
position estimates computed by the proposed algorithm. As seen in the figuamcdi®f
each estimate to the base station ifadent. A range measurement obtained by utilizing
Timing Adjust can help to eliminate some of the estimates or directly identify one estimate
as the final positioning result. For example, if the distance between the tasisa and the
mobile station is computed to be around 14 units (14x) using Timing Adjust, estimates in
upper left and upper right part of the figure can be eliminated instantlyjiniganly the
estimate in lower part of the figure. As demonstrated by this example, the mastislwvay

of improving the algorithm to provide fewer and more accurate estimates is to diifizeg

Adjust.

During collection of fingerprints for scenarios, equipment that meassiggthl parameters
moved at the walking speed of a human. For this reason, results of expé&sirepresented
the algorithm’s performance of positioning a walking person. As a futumwew scenario
data can be collected using vehicles offelient types to investigate how accurately the
algorithm can locate mobile stations moving afelient speeds. The investigation process
includes doing experiments with algorithmic parameter sets that are specialtyedefer

tracking mobile stations with varying speeds.

Another future work can be development of a strategy for dynamic seteatialgorithmic
parameters based on analysis of signal parameters and position estintaitescobver time.
For example, when the number of cells that are identified as possible estimatesieration
falls below a certain level (possibly implying that tracking may fail soon,) therdlym can
switch to more flexible algorithmic parameters to catalyze the tracking procdssr. itAis

made sure that the algorithm returns to a more stable state, it can switch bguietocasly

used set of algorithmic parameters.
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APPENDIX A

LIST OF ABBREVIATIONS

3G Third Generation

AAA Authentication Authorization Accounting
ADSL Asymmetric Digital Subscriber Line
AMC Adaptive Modulation and Coding

AOA Angle of Arrival

ARQ Automatic Retransmission Request
ASN Access Service Network

AvgTxPwr Average transmit power

BE Best Hfort

BS Base station

BTS Base Transceiver Stations

CBR Constant Bit Rate

CINR Carrier to Interference-Plus-Noise Ratio
DGPS Diferential Global Positioning System
DOA Direction of Arrival

ertPS Extended Real-Time Polling Service
FCC The Federal Communications Commission
FDD Frequency Division Duplexing

FEC Forward Error Correction

FIFO First In, First Out

FTP File Tranfer Protocol

GIS Geographic Information System

GPS Global Positioning System

GSM Global System for Mobile Communications
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H-ARQ
HSL
HTTP
IEEE

IPTV
ISI
ISI
LOS
kNN
MAC
MPC
MPEG
MS
MT
NLOS
nrtPS
OFDM
OFDMA
(O]
PAM
PHY
QAM
QOSs
QPSK
RBF
REKF
RGB
RMSE
RS
RSS
RSSI

Hybrid-ARQ
Hue Saturation Lightness
Hypertext Transfer Protocol
The Institute of Electrical and Electronics Engineers
Internet Protocol
Internet Protocol Television
Industrial, Scientific and Medical radio bands
Inter-symbol Interference
Line of Sight
k Nearest Neighbor
Medium Access Control layer
Multipath channel
Moving Pictures Experts Group
Mobile station
Mobile terminal
Non Line of Sight
Non-Real-Time Polling Service
Orthogonal Frequency Division Multiplexing
Orthogonal Frequency Division Multiple Access
Open Systems Interconnection
Partitioning Around Medoids
Physical layer
Quadrature Amplitude Modulation
Quiality of Service
Quadrature Phase-Shift Keying
Radial Basis Function
Robust Extended Kalman Filter
Red, Green, Blue color model
Root Mean Square Error
Reference Station
Received Signal Strength

Received Signal Strength Indicator
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RTOA
rtPS
SBSP
SNR
SS

TA

TA
TDD
TDMA
TDOA
TOA
UGS
USB
VBR
\olIP
Wi-Fi
WIMAX

Roundtrip Time of Arrival
Real-time Polling Service
Single base station positioning
Signal-to-Noise Ratio
Subscriber Station
Timing Adjust
Timing Advance

Time Division Multiplexing
Time Division Multiple Access
Time Difference of Arrival
Time of Arrival

Unsolicited Grant Service
Universal Serial Bus

Variable Bit Rate

Voice over Internet Protocol
Wireless Fidelity

Worldwide Interoperability for Microwave Access
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APPENDIX B

EXPERIMENTAL RESULTS OF PROPOSED POSITION
ESTIMATION ALGORITHM
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Table B.1: Experimental results of the proposed position estimation algorilﬂrpe(nt.)
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118 90 8 6 8 7 1 2 1 3 1 80 100 188 0 18 0 0 43 142 2287% 7553% 2472895sec  9sec
118 90 8 6 8 6 1 1 1 3 2 80 100 188 0 1 187 0 92 164 28,72% 64,63% 3546838sec 10 sec
118 90 8 6 8 7 1 2 1 3 2 80 100 18 0 1 187 0 90 164 28,46% 64,89% 3540243sec  10sec
118 90 8 6 8 4 1 1 1 3 2 80 100 188 0 1 187 0 92 162 2846% 64,10% 3556819 sec 9 sec
118 9 10 8 10 4 1 1 1 3 2 80 100 188 0O O 18 0 84 170 27,13% 66,49% 78432788 sec  15sec
60 46 8 6 8 7 1 2 1 3 2 80 100 18 0 2 18 0 91 163 27,66% 6516% 345138 se® 2 sec
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Table B.2: Experimental results of the proposed position estimation algorifﬁ%é}t.)
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118 90 10 8 10 6 1 1 1 3 2 8 100 188 0O O 188 0 80 170 25,80% 65,96% 5344,2923 sec 16 sec
237 182 6 4 6 4 1 1 1 6 3 50 100 18 4 O 59 123 105 171 28,41% 59,95% ,3367 5267 sec 29 sec
118 90 10 8 10 7 1 2 1 3 2 80 100 188 O O 188 0 78 169 2527% 65,69% 8643,2930 sec 16 sec
237 182 7 5 7 4 1 1 1 3 3 90 100 188 0 1 44 143 105 182 27,30% 61,88% ,8859 8968 sec 48 sec
237 182 7 5 7 6 1 1 1 3 3 90 100 188 0O 1 42 145 106 184 27,39% 61,17%,8135710441sec 56 sec
237 182 8 6 8 7 1 2 1 3 3 90 100 188 0 O 26 162 110 185 26,33% 62,77% ,88B5415140sec 81 sec
237 182 7 5 7 7 1 2 1 3 3 9 100 188 O 1 38 149 104 184 26,51% 61,97%,2635710200sec  55sec
237 182 6 4 6 7 1 2 1 3 2 90 100 188 1 5 182 0 89 159 28,19% 58,78% 3709975 sec 32 sec
237 182 8 6 8 4 1 1 1 3 3 90 100 188 0O O 32 156 109 183 26,77% 61,26% ,0B5713744sec 74 sec
237 182 10 8 10 8 1 3 1 3 3 90 100 188 0 O 14 174 111 186 26,15% 61,97%1,313 26297 sec 140 sec
237 182 10 8 10 7 1 2 1 3 3 9 100 188 0 O 13 175 110 187 25,89% 62,32%1,513 26165sec 140 sec
237 182 7 5 7 10 1 3 1 3 3 90 100 188 0 1 41 146 104 184 2598% 62,15%,965 11212 sec 60 sec
118 90 8 6 8 6 1 1 1 3 3 80 100 188 0 1 15 172 108 181 25,44% 62,59% 738B59,1882 sec 11 sec
237 182 10 8 10 4 1 1 1 3 3 90 100 188 0 O 14 174 109 186 25,53% 62,32%1,98 24472sec 131 sec
118 90 8 6 8 7 1 2 1 3 3 80 100 188 0 1 15 172 107 181 25,09% 62,68% 8%8B59,1879 sec 10 sec
237 182 6 4 6 4 1 1 1 3 2 100 100 188 7 7 174 0 84 156 26,86% 58,78% 01396,4955 sec 27 sec
60 46 10 8 10 7 1 2 1 3 2 80 100 188 O 1 187 0 72 172 22,61% 66,49% B39,889 sec 3sec
118 90 8 6 8 4 1 1 1 3 3 80 100 188 0 1 16 171 106 180 25,18% 61,70% 91360,1758 sec 10 sec
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Table B.3: Experimental results of the proposed position estimation algoritrl’ijrmé.’st.)
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237 182 6 4 6 4 1 3 5 3 2 90 100 188 2 8 178 O 82 160 2580% 59,57% B746¥59sec 36 sec
237 182 6 4 6 4 1 3 3 3 2 90 100 188 4 4 180 O 82 156 26,06% 58,78% WB80IB58sec 31 sec
60 46 8 6 8 2 1 1 1 3 3 60 100 188 2 2 12 172 105 177 24,29% 61,17% B58613sec  3sec
118 9 10 8 10 4 1 1 1 3 3 80 100 18 0O 0O 15 173 95 184 22,16% 64,36% 013513000 sec 16 sec
237 182 6 4 6 4 1 1 1 3 2 9 100 18 6 7 175 0 81 150 2553% 56,12% B91I51sec 27 sec
60 46 8 6 8 4 1 1 1 3 3 80 100 188 0O 2 14 172 94 181 22,07% 62,23% 352945sec 6 sec
118 90 6 4 6 5 1 2 1 3 2 50 100 18 6 3 179 O 74 150 23,94% 58,24% 3857B3sec  5sec
60 46 8 6 8 7 1 2 1 3 3 8 100 18 0O 2 16 170 93 180 21,72% 62,23% 353882sec  3sec
118 90 6 4 6 4 1 1 1 3 2 50 100 188 7 2 179 O 74 147 23,94% 57,18% 392,083sec  5sec
237 182 6 4 6 2 2 1 1 3 2 100 100 188 16 4 168 O 75 149 23,14% 55,05% 39359269 sec 50 sec
237 182 6 4 6 3 1 1 1 3 2 100 100 188 12 6 170 O 73 150 22,61% 55,85% 164174742 sec 26 sec
237 182 6 4 6 3 1 1 1 3 3 100 100 188 12 6 74 96 83 164 21,19% 55,32% 081135157 sec 28 sec
237 182 6 4 6 2 1 1 1 6 3 100 100 18 16 4 66 100 79 161 20,79% 54,6697,9812 4095sec 23 sec
118 9 6 4 6 3 1 1 1 3 2 100 100 188 24 6 158 0 68 137 21,54% 50,53% 2366595sec 4 sec
237 182 6 4 6 2 1 1 1 3 2 100 100 188 24 4 160 O 64 138 20,48% 51,86% 931604055sec 22 sec
118 9 6 4 6 3 1 2 2 3 3 100 100 188 20 7 67 94 75 151 19,68% 51,95% 7&51696sec 4 sec
118 90 6 4 6 3 1 1 1 3 3 100 100 188 24 6 72 8 71 145 18,88% 49,47% OM66,671sec 4 sec
60 46 6 4 6 2 1 1 1 3 2 40 100 188 33 2 153 0 60 125 16,76% 46,28% 467,928sec  1sec
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Table B.4: Experimental results of the proposed position estimation algoriﬂ%aﬂt.)
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118 90 6 4 6 0 1 1 1 3 2 50 100 18 41 6 141 0 49 118 14,36% 44,68% G13410sec 3 sec
237 182 4 3 4 8 1 7 3 3 1 8 100 188 37 151 0 O 18 93 957% 4947% 4383Plsec 17 sec
60 46 4 3 4 1 2 1 1 3 1 10 100 188 40 148 0 O 18 91 957% 48,40% 451,92 sed64 1sec
60 46 6 4 6 O 1 1 1 3 2 40 100 188 51 3 134 0O 49 107 1356% 38,83% 529,709sec 1 sec
60 46 6 4 6 2 1 1 1 3 2 80 100 188 44 6 138 0 44 109 11,97% 40,69% 514,B46sec  1sec
237 182 4 3 4 6 1 5 2 3 1 8 100 188 43 145 0 O 15 86 7,98% 4574% 4682F0sec 13 sec
237 182 4 3 4 6 1 5 2 3 2 8 100 188 43 8 137 0 43 107 12223% 37,77% 56252448 sec 14 sec
237 182 6 4 6 0 1 1 1 3 2 100 100 188 57 3 128 O 37 105 11,17% 38,56% 15672529 sec 14 sec
237 182 4 3 4 8 1 7 3 3 3 8 100 188 37 3 77 71 42 128 9,84% 40,87% H023B40sec 18sec
118 9 4 3 4 1 3 1 1 3 1 30 100 188 50 138 O O 15 83 7,98% 44,15% 488,887 se& 3 sec
237 182 6 4 6 0 1 1 1 3 2 90 100 188 52 2 134 0 38 102 11,44% 36,44% 0B513735sec 20 sec
118 9 4 3 4 6 1 1 1 3 1 100 100 188 51 137 O O 14 79 7,45% 42,02% 509,821sec 2 sec
237 182 4 3 4 3 1 1 1 3 1 8 100 188 58 130 O O 15 77 7,98% 40,96% 518BB4sec 11sec
60 46 4 3 4 2 1 1 1 3 1 40 100 188 62 126 0O O 13 79 691% 42,02% 530,77 secd9 1sec
60 46 4 3 4 2 1 1 1 3 1 40 100 188 62 126 0O O 13 79 691% 42,02% 530,77 secd9 1sec
60 46 4 3 4 2 1 1 2 3 1 30 100 188 54 134 0 O 12 79 6,38% 42,02% 503,27 sec55 1sec
118 9 4 3 4 3 1 1 3 3 1 100 100 188 60 128 O O 14 74 7,45% 39,36% 532896sec  2sec
118 9 4 3 4 3 3 1 1 3 3 60 100 188 51 11 68 58 37 108 8,69% 34,84% $46293sec  5sec
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Table B.5: Experimental results of the proposed position estimation algoriﬂﬁ‘mz{tﬁt.)
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118 90 4 3 4 6 1 1 1 3 3 100 100 188 51 15 76 46 36 109 8,69% 34,75% 0551425sec 3 sec
60 46 4 3 4 1 2 1 1 3 1 40 100 188 70 118 0 0 12 70 6,38% 37,23% 548,34 sec56 1sec
118 90 4 3 4 3 1 1 3 3 2 100 100 188 60 7 121 0 31 97 851% 32,71% 575834 sec 3sec
60 46 4 3 4 3 2 1 2 3 3 60 100 188 55 11 77 45 35 100 7,98% 32,71% 546,789sec 1sec
118 90 4 3 4 3 1 1 1 3 1 100 100 188 67 121 0 0 13 64 691% 34,04% 5603B3sec 2sec
118 90 4 3 4 3 1 1 3 3 3 100 100 188 60 7 75 46 34 99 7,98% 31,12% 5768382sec 3 sec
118 90 4 3 4 0 3 1 1 3 3 40 100 188 63 4 73 48 41 93 8,87% 29,43% 567,193se€¢ 3 sec
60 46 4 3 4 4 2 1 1 3 1 80 100 188 62 126 0 0 10 67 532% 3564% 530,72 sec80 1sec
237 182 4 3 4 3 1 1 1 3 3 90 100 188 60 2 76 50 26 106 6,47% 33,07% B69IB6I9sec 9 sec
60 46 4 3 4 4 1 1 1 3 1 80 100 188 62 126 0 0 10 66 532% 3511% 530,98 sect3 1sec
60 46 4 3 4 3 2 1 1 3 3 80 100 188 66 11 78 33 30 86 7,62% 30,59% 579,181set 1sec
60 46 4 3 4 4 2 1 1 3 2 80 100 188 62 9 1177 0 26 86 7,18% 31,38% 572,900setl 1sec
60 46 4 3 4 3 1 1 1 3 2 8 100 188 67 13 108 O 26 81 745% 30,32% 580,8Bsed 1sec
60 46 4 3 4 4 1 1 1 3 3 80 100 188 62 11 79 36 34 89 7,89% 29,26% 574,6I9set 1sec
118 90 4 3 4 3 1 1 1 3 3 100 100 188 67 12 75 34 31 89 7,09% 29,61% 692271sec 2sec
118 900 4 3 4 1 3 1 1 3 3 80 100 188 73 11 66 38 27 82 6,29% 25,98% 603988B5sec 3sec
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Table C.1: Experimental results of the k Nearest Neighbor algoritiﬁtrpélrt.)
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2'73:7 182 1200 8 100 18300 4642 25% 15050 82% 223,47 4472 24% 131% 279,16 169sec O sec
237 182 1600 8 100 18300 4691 25% 15117 82% 220,63 4472 24% 131% 279,16 166sec 0 sec
118 90 500 8 100 18300 4695 25% 14971 81% 222,59 3905 21% 1214% &®1,27 56sec 0sec
237 182 1200 6 100 18600 4664 25% 15135 81% 230,52 4461 23% 1308 285,74 170sec O0sec
60 46 200 3 100 18800 4902 26% 14905 79% 231,92 3702 19% 11924 &&Zb23 21sec O0sec
60 46 200 4 100 18800 4910 26% 14894 79% 231,85 3760 20% 12059 &4%28 21sec O0sec
118 90 400 8 100 18300 4642 25% 14744 80% 226,99 3905 21% 1214% @&D1,27 6lsec 0sec
118 90 500 6 100 18600 4691 25% 15018 80% 229,67 3904 20% 1215% @&E®8,29 59sec 0sec
118 90 600 8 100 18300 4636 25% 14775 80% 223,26 3905 21% 1214% &®1,27 57sec O0sec
237 182 2000 8 100 18300 4622 25% 14767 80% 222,24 4472 24% 131P% 279,16 174sec O0sec
237 182 1600 1 100 18800 4636 24% 15239 81% 229,49 4542 24% 1318% 282,81 168sec O0sec
237 182 1600 2 100 18800 4656 24% 15258 81% 229,63 4580 24% 1310% 284,60 167sec O0sec




T

Table C.2: Experimental results of the k Nearest Neighbor algoritm [f2rt.)
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2§7 182 1600 3 100 18800 4658 24% 15275 81% 229,68 4604 24% 1320% 284,40 168sec 0 sec
237 182 1600 4 100 18800 4674 24% 15275 81% 229,76 4555 24% 1320% 284,63 167sec O0sec
60 46 200 1 100 18800 4884 25% 14912 79% 231,95 3681 19% 11912 &Fb03 21sec Osec
60 46 200 2 100 18800 4881 25% 14899 79% 231,98 3690 19% 12001 &%59 21sec O0sec
118 90 600 6 100 18600 4654 25% 14802 79% 230,26 3904 20% 1215% &©8,29 57sec O0sec
237 182 40 8 100 18300 5126 28% 13396 73% 271,12 4534 24% 1303% 7B1,61 158sec O0sec
118 90 500 1 100 18800 4658 24% 15059 80% 231,22 3824 20% 1211% &44,07 57sec O0sec
118 90 500 2 100 18800 4671 24% 15078 80% 231,40 3859 20% 1211% &44,01 62sec O0sec
118 90 500 3 100 18800 4687 24% 15083 80% 231,41 3828 20% 1223% @&H1,11 56sec O0sec
118 90 500 4 100 18800 4681 24% 15104 80% 231,48 3892 20% 1227 6&HO0,68 58sec O0sec
237 182 1200 1 100 18800 4606 24% 15146 80% 232,09 4542 24% 1318% 282,81 165sec 0 sec
237 182 1200 2 100 18800 4619 24% 15172 80% 232,23 4580 24% 1310% 284,60 171sec O0Osec
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Table C.3: Experimental results of the k Nearest Neighbor aIgoritHFh;:(Srt.)
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237 182 1200 3 100 18800 4637 24% 15191 80% 232,23 4604 24% 1320% 284,40 171sec Osec
237 182 1200 4 100 18800 4635 24% 15204 80% 232,30 4555 24% 1322% 284,63 165sec 0sec
60 46 120 2 100 18800 4901 26% 14408 76% 244,22 3690 19% 12001 &3%59 20sec Osec
60 46 120 3 100 18800 4896 26% 14440 76% 244,26 3702 19% 11924 &H23 20sec 0sec
118 90 60 8 100 18300 4960 27% 13582 74% 265,76 3896 21% 12145 @&%H33 52sec O0sec
237 182 80 8 100 18300 5053 27% 13617 74% 266,28 4486 24% 1311® 72I79,92 157sec 0sec
237 182 120 8 100 18300 5037 27% 13714 74% 263,00 4475 24% 1311% 279,45 159sec O sec
118 90 400 6 100 18600 4623 24% 14722 79% 233,68 3904 20% 1215% @&®8,29 55sec 0sec
118 90 600 1 100 18800 4635 24% 14865 79% 231,72 3824 20% 1211% &44,07 60sec 0Osec
118 90 600 2 100 18800 4636 24% 14855 79% 231,88 3859 20% 1211% @&44,01 58sec 0sec
118 90 600 3 100 18800 4653 24% 14872 79% 231,96 3828 20% 1223% 641,11 57sec 0Osec
118 90 600 4 100 18800 4644 24% 14873 79% 232,00 3892 20% 1227% 680,68 6lsec Osec
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Table C.4: Experimental results of the k Nearest Neighbor algoritﬁtfhp(art.)
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2§7 182 800 8 100 18300 4501 24% 14510 79% 234,47 4472 24% 131% 279,16 163 sec 0sec
237 182 2000 1 100 18800 4595 24% 14873 79% 231,02 4542 24% 1318% 282,81 173 sec 0sec
237 182 2000 2 100 18800 4594 24% 14889 79% 231,11 4580 24% 1310% 284,60 178sec O0sec
237 182 2000 3 100 18800 4593 24% 14880 79% 231,18 4604 24% 1320% 284,40 176sec O0sec
237 182 2000 4 100 18800 4611 24% 14876 79% 231,24 4555 24% 1322% 284,63 172sec O0sec
237 182 2000 6 100 18600 4616 24% 14810 79% 229,34 4461 23% 1308%™ 285,74 177sec O0sec
118 90 100 8 100 18300 4815 26% 13805 75% 259,69 3904 21% 1214% &®1,27 54sec O0sec
237 182 200 8 100 18300 4927 26% 13848 75% 259,02 4469 24% 131P% 279,22 159sec O0sec
118 90 40 8 100 18300 5059 27% 13449 73% 269,54 3897 21% 12142 &®H50 52sec 0sec
237 182 80 6 100 18600 5066 27% 13597 73% 272,97 4465 24% 1306% 786,50 160sec O0sec
237 182 120 1 100 18800 5079 27% 13754 73% 269,02 4554 24% 1318% 283,00 157sec O0sec
237 182 120 6 100 18600 5071 27% 13707 73% 269,41 4458 23% 13086% 285,99 160sec O0sec
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Table C.5: Experimental results of the k Nearest Neighbor algoritﬁtfhp(ﬁrt.)
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118 90 300 8 100 18300 4473 24% 14332 78% 235,68 3905 21% 1214% @&®1,27 58sec 0sec
118 90 400 1 100 18800 4596 24% 14776 78% 235,05 3824 20% 1211% &44,07 56sec 0Osec
118 90 400 2 100 18800 4613 24% 14806 78% 235,06 3859 20% 1211% @&44,01 55sec Osec
118 90 400 3 100 18800 4621 24% 14806 78% 235,24 3828 20% 1223% @&A1,11 62sec O0Osec
118 90 400 4 100 18800 4639 24% 14824 78% 235,27 3892 20% 1227% @&HO0,68 56sec Osec
237 182 3000 8 100 18300 4436 24% 14401 78% 225,20 4472 24% 131P% 279,16 186sec 0 sec
60 46 120 1 100 18800 4813 25% 14420 76% 244,18 3681 19% 11912 @&G&b03 20sec O0Osec
60 46 120 4 100 18800 4884 25% 14397 76% 244,43 3760 20% 12059 &4%28 20sec O0Osec
237 182 400 8 100 18300 4689 25% 14075 76% 249,98 4471 24% 1317% 279,16 161sec 0 sec
237 182 200 2 100 18800 4952 26% 13915 74% 265,72 4586 24% 1310% 284,65 162sec 0sec
237 182 200 3 100 18800 4974 26% 13925 74% 265,95 4610 24% 1320% 284,46 160sec O sec
237 182 200 4 100 18800 4973 26% 13943 74% 265,93 4560 24% 1322% 284,68 156sec 0 sec
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Table C.6: Experimental results of the k Nearest Neighbor algoritﬁtfhp(@rt.)
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237 182 200 6 100 18600 4951 26% 13833 74% 265,22 4457 23% 1308%® 285,78 161sec O0sec
118 90 40 6 100 18600 5097 27% 13406 72% 276,35 3908 21% 12142 &B54 52sec 0sec
118 90 200 8 100 18300 4552 24% 14153 77% 246,89 3905 21% 1214% &®1,27 57sec 0sec
118 90 300 6 100 18600 4512 24% 14335 77% 242,07 3904 20% 1215% &®8,29 54sec O0sec
237 182 800 1 100 18800 4551 24% 14499 77% 242,00 4542 24% 1318% 282,81 162sec 0sec
237 182 800 2 100 18800 4521 24% 14515 77% 242,15 4580 24% 1310% 284,60 167 sec O sec
237 182 800 3 100 18800 4514 24% 14517 77% 242,12 4604 24% 1320 284,40 164sec O0sec
237 182 800 6 100 18600 4508 24% 14462 77% 240,72 4461 23% 1308® 285,74 166sec O0sec
60 46 80 1 100 18800 4716 25% 14263 75% 254,67 3681 19% 11912 63033 19sec 0Osec
60 46 80 2 100 18800 4781 25% 14254 75% 254,68 3690 19% 12001 6358 20sec O0sec
60 46 80 3 100 18800 4750 25% 14270 75% 254,82 3702 19% 11924 63233 19sec O0sec
60 46 80 4 100 18800 4770 25% 14276 75% 254,89 3760 20% 12059 64%283 19sec O0sec
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Table C.7: Experimental results of the k Nearest Neighbor algoritﬁtfhpﬁrt.)
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237 182 400 1 100 18800 4744 25% 14173 75% 256,76 4542 24% 1318% 282,81 159sec O0sec
237 182 400 2 100 18800 4702 25% 14176 75% 256,88 4580 24% 1310% 284,60 163 sec O0sec
237 182 400 3 100 18800 4723 25% 14159 75% 256,95 4604 24% 1320% 284,40 162sec 0 sec
237 182 400 4 100 18800 4720 25% 14152 75% 257,00 4555 24% 1322% 284,63 158sec 0 sec
237 182 400 6 100 18600 4688 25% 14061 75% 256,20 4461 23% 1308® 285,74 163 sec 0sec
118 90 60 6 100 18600 4983 26% 13599 73% 272,24 3900 20% 12147 &®B35 52sec 0Osec
118 90 100 1 100 18800 4897 26% 13866 73% 265,73 3821 20% 1211% &44,07 53sec O0sec
237 182 120 2 100 18800 5053 26% 13816 73% 269,36 4599 24% 1310% 284,82 162sec 0sec
237 182 120 3 100 18800 5074 26% 13777 73% 270,06 4609 24% 13286% 284,62 160sec O sec
237 182 120 4 100 18800 5047 26% 13780 73% 269,94 4557 24% 1322% 284,88 156sec 0 sec
237 182 200 1 100 18800 4971 26% 13894 73% 265,44 4546 24% 1318% 282,85 157sec O0sec
237 182 40 1 100 18800 5150 27% 13478 71% 274,07 4587 24% 1315% 6&8B4,55 158sec 0sec
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Table C.8: Experimental results of the k Nearest Neighbor algoritﬁtfhp(@rt.)
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118 90 40 2 100 18800 5091 27% 13496 71% 277,30 3861 20% 12109 &4A%22 52sec 0sec
237 182 40 2 100 18800 5138 27% 13486 71% 275,87 4627 24% 1309% 686,45 159sec O0sec
118 90 40 3 100 18800 5087 27% 13520 71% 276,93 3830 20% 12225 @&&%31 52sec 0sec
237 182 40 3 100 18800 5156 27% 13456 71% 276,67 4642 24% 1321 7B6,57 159sec O0sec
118 90 40 4 100 18800 5119 27% 13500 71% 277,19 3895 20% 12260 6@HA®MO93 52sec 0sec
237 182 40 4 100 18800 5176 27% 13515 71% 276,79 4599 24% 1317% 786,75 158sec 0 sec
237 182 40 6 100 18600 5116 27% 13369 71% 277,28 4512 24% 1302% 783,16 159sec O0sec
237 182 4000 8 100 18300 4227 23% 14411 78% 226,49 4472 24% 131P% 279,16 197sec O0sec
118 90 200 6 100 18600 4555 24% 14140 76% 253,08 3904 20% 1215% @&H8,29 53sec 0Osec
118 90 300 1 100 18800 4537 24% 14401 76% 242,96 3824 20% 1211% @&44,07 54sec O0Osec
118 90 300 2 100 18800 4540 24% 14420 76% 243,28 3859 20% 1211% @&44,01 54sec O0Osec
118 90 300 3 100 18800 4526 24% 14411 76% 243,27 3828 20% 1223% 641,11 59sec Osec
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Table C.9: Experimental results of the k Nearest Neighbor algoritﬁh(@rt.)
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1H18 90 300 4 100 18800 4517 24% 14420 76% 243,40 3892 20% 1227% @&HO0,68 54sec O0sec
60 46 40 3 100 18800 4731 25% 13918 74% 265,23 3702 19% 11924 63233 19sec O0sec
118 90 100 2 100 18800 4825 25% 13918 74% 266,11 3863 20% 1211% &44,00 52sec 0sec
118 90 100 4 100 18800 4843 25% 13922 74% 266,32 3894 20% 1227 6&H0,69 52sec O0sec
118 90 100 6 100 18600 4820 25% 13782 74% 265,85 3903 20% 1215% &®8,29 52sec 0sec
118 90 60 1 100 18800 4977 26% 13682 72% 272,12 3822 20% 12116 &4%13 53 sec 0Osec
118 90 60 2 100 18800 4984 26% 13696 72% 272,62 3857 20% 12114 &A%06 52sec O0sec
118 90 60 3 100 18800 4989 26% 13691 72% 272,64 3836 20% 12230 &A%20 52sec 0sec
118 90 60 4 100 18800 5007 26% 13695 72% 272,83 3895 20% 12278 @&B®W,72 52sec O0sec
237 182 80 1 100 18800 5043 26% 13722 72% 271,52 4558 24% 1316% 783,29 157sec 0sec
237 182 80 2 100 18800 5074 26% 13716 72% 272,64 4610 24% 1316% 285,22 161sec 0O sec
237 182 80 3 100 18800 5072 26% 13699 72% 273,16 4604 24% 1325% 7B4,98 159sec O0sec
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Table C.10: Experimental results of the k Nearest Neighbor algorithm (art.)
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237 182 80 4 100 18800 5041 26% 13698 72% 273,10 4571 24% 1321% 72B5,30 156sec O0sec
237 182 800 4 100 18800 4508 23% 14536 77% 242,20 4555 24% 1320% 284,63 162sec 0sec
237 182 3000 6 100 18600 4449 23% 14414 77% 232,10 4461 23% 1308% 285,74 187sec 0sec
118 90 200 1 100 18800 4525 24% 14234 75% 253,39 3824 20% 1211% 44,07 54sec 0sec
118 90 200 2 100 18800 4537 24% 14225 75% 253,75 3859 20% 1211% 44,01 53sec 0Osec
118 90 200 3 100 18800 4533 24% 14210 75% 253,84 3828 20% 1223% 31,11 57sec 0Osec
118 90 200 4 100 18800 4552 24% 14214 75% 253,94 3892 20% 1227 6€80,68 54sec 0sec
60 46 40 1 100 18800 4742 25% 13898 73% 264,90 3681 19% 11912 63043 19sec O0Osec
60 46 40 2 100 18800 4760 25% 13888 73% 264,77 3690 19% 12001 6Z&60 19sec 0sec
60 46 40 4 100 18800 4754 25% 13900 73% 264,95 3760 20% 12059 64%,28 19sec O0sec
118 90 100 3 100 18800 4869 25% 13887 73% 266,31 3833 20% 1223% 641,11 54sec 0Osec
118 90 40 1 100 18800 5059 26% 13496 71% 276,65 3820 20% 12100 @&%28 52sec 0sec
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Table C.11: Experimental results of the k Nearest Neighbor algorithm (alrt.)
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237 182 3000 1 100 18800 4457 23% 14451 76% 233,64 4542 24% 1318% 282,81 183 sec 0 sec
237 182 3000 2 100 18800 4452 23% 14450 76% 233,69 4580 24% 1310% 284,60 188sec O0sec
237 182 3000 3 100 18800 4461 23% 14442 76% 233,80 4604 24% 1320% 284,40 187sec O0sec
237 182 3000 4 100 18800 4454 23% 14433 76% 233,87 4555 24% 1322% 284,63 182sec O0sec
237 182 4000 6 100 18600 4230 22% 14421 77% 233,34 4461 23% 1308% 285,74 197sec O0sec
237 182 4000 1 100 18800 4245 22% 14445 76% 234,70 4542 24% 1318% 282,81 194sec 0 sec
237 182 4000 2 100 18800 4244 22% 14443 76% 234,80 4580 24% 1310% 284,60 199sec O0sec
237 182 4000 3 100 18800 4243 22% 14439 76% 234,91 4604 24% 1320% 284,40 198sec O0sec
237 182 4000 4 100 18800 4231 22% 14429 76% 235,02 4555 24% 1322% 284,63 193sec O0sec




