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ABSTRACT 

 

INVESTIGATION OF THE EFFECT OF SEMI-GEODESIC 

WINDING ON THE VIBRATION CHARACTERISTICS OF 

FILAMENT WOUND SHELLS OF REVOLUTION 

 

İbrahimoğlu, Can Serkan 

M.S., Department of Aerospace Engineering  

Supervisor: Assoc. Prof. Dr. Altan Kayran 

 

September 2010, 118 pages 

 

 

In this thesis, the effect of semi-geodesic winding on the free vibration characteristics of 

filament wound composite shells of revolution with variable radii of curvature is studied. The 

analysis is performed by a semi-analytical solution method which is based on the numerical 

integration of the finite exponential Fourier transform of the fundamental shell of revolution 

equations. The governing equations for the free vibration analysis are initially obtained in terms of 

fundamental shell variables, and they are reduced to a system of first order ordinary differential 

equations by the application of finite exponential Fourier Transform, resulting in a two point 

boundary value problem. The boundary value problem is then reduced to a series of initial value 

problems, and the multisegment numerical integration technique is used in combination with the 

frequency trial method in order to extract the natural frequencies and determine the mode shapes 

within a given range of natural frequencies. Previous studies on geodesic winding is extended such 

that the effect of semi-geodesic winding which rely on the preset friction between the fiber and the 

mandrel surface on the stiffness and vibration characteristics of filament wound shells of revolution 

is investigated. Additionally, finite element analysis is employed to compare the results obtained 

from semi-analytical model solved by numerical integration and finite element model solved by 

finite element method. Sample results are obtained for filament wound truncated conical and 

spherical shells of revolution and the effect of the winding pattern on the vibration characteristics of 

shells of revolution is investigated thoroughly.  

Keywords: Filament Winding, Free Vibrations, Composite Shells, Shells of Revolution, Semi-

geodesic Winding 
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ÖZ 

 

FİLAMENT SARGI İLE ÜRETİLEN DÖNEL KABUK YAPILARDA 

YARI-JEODEZİK SARIMIN KABUK YAPILARININ TİTREŞİM 

ÖZELLİKLERİNE OLAN ETKİSİNİN İNCELENMESİ 

 

İbrahimoğlu, Can Serkan 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü  

Tez Yöneticisi: Doç. Dr. Altan Kayran 

 

Eylül 2010, 118 sayfa 

 

 

Bu tezde, filament sargı yöntemi ile üretilmiş olan kompozit dönel kabuk yapılarda yarı-jeodezik 

sarımın kabuk yapılarının serbest titreşim özelliklerine etkisi incelenmiştir. Analiz, sonlu üstel 

Fourier dönüşüm metodu uygulanmış ana dönel kabuk denklemlerinin sayısal entegrasyonunu temel 

alan yarı-analitik bir çözüm metoduna dayanır. Ana denklemler temel kabuk değişkenleri ile formüle 

edilmiş kısmi diferansiyel denklem sistemine dönüştürülmüştür. Sonra bu denklemler iki noktalı 

sınır değer problemi olacak şekilde sonlu üstel Fourier dönüşüm metodu uygulanarak birinci 

dereceden adi diferansiyel denklemlere dönüştürülmüştür. Sınır değeri problemi bir grup başlangıç 

değer problemine dönüştürülmüş ve verilen doğal frekans aralığındaki kritik modlar frekans deneme 

metodu ile bütünleşik çok parçalı sayısal integrasyon metodu kullanılarak bulunmuştur. Filament 

sargı işlemi sırasında fiber ve mandrel yüzeyi arasındaki sürtünmeye bağlı olan yarı-jeodezik 

sarımın filament sargı metodu ile üretilen dönel kabuk yapılarının sertlik ve serbest titreşim 

özelliklerine etkisi incelenerek, önceden jeodezik sarım üzerine yapılmış araştırmalar 

genişletilmiştir. Ayrıca seçilmiş yapılar için sonlu elemanlar analizi gerçekleştirilerek yarı-analitik 

sayısal entegrasyon metodu sonuçları ile karşılaştırılmıştır. Örnek sonuçlar kesik kompozit konik ve 

küresel dönel kabuk yapılar için elde edilmiş ve sarım paterninin dönel kabuk yapıların titreşim 

özelliklerine olan etkisi derinlemesine incelenmiştir. 

Anahtar kelimeler: Filament Sargı, Serbest Titreşim, Kompozit Kabuklar, Dönel Kabuklar, Yarı-

jeodezik Sarım 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 BACKGROUND 

The word composite in the term of composite material signifies that two or more materials 

are combined on a macroscopic scale to form a useful third material. The key is the macroscopic 

examination of a material wherein the components can be identified by the naked eye. Composite 

materials have a long history of usage. Their precise beginnings are unknown, but all recorded 

history contains references to some form of composite material. For example, straw was used to 

strengthen mud bricks by many civilizations. Plywood was used by the ancient Egyptians when they 

realized that wood could be rearranged to achieve superior strength and resistance to thermal 

expansion as well as to swelling caused by the absorption of moisture. Medieval swords and shields 

were constructed with layers of different metals. [1] 

Filament wound pressure vessels using glass fibers were the first strength critical 

application for modern composites. After those, boron filaments were developed in the 1960`s which 

started many programs to promote various aircraft structures made of composite components [2].  

After 1986, when an all composite airplane set the world record in non-stop flight around 

the world, composite technology gained acceleration. This plane, designed and built by Burt Rutan 

and his coworkers, was not only a demonstration of an ultra light structure, but also a proof of 

toughness and resilience of the composite structures. The improved technology of composites has 

spurred applications outside the aerospace industry. Sporting goods industry became a major 

industry for composites. Thousands tons of composites are used for tennis and squash rackets, golf 

shafts, bicycles, oars for rowing and other equipments where weight, stiffness and strength are 

important [2](Figure1.2). Currently, range of applications is very large; they are used in electronics 

(insulation and support, boxes and covers, antennas and radomes, etc.), buildings (chimneys, 

concrete molds, furniture, windows, etc.), transports (body components, transmission shafts, trailers, 

seats, wagons, boats, etc.), and in many other general mechanical applications [3].  
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Today, composite materials refer to materials having strong fibers –continuous or non 

continuous- surrounded by a weaker matrix material. The matrix serves to distribute the fibers and 

also transmit the load to the fibers.  

Fibers consist of thousands of filaments, each filament having a diameter of between 5 and 

15 micrometers, allowing them to be producible using textile machines [3].  

Principal fiber materials are:  

 Glass  

 Aramid or Kevlar® (very light)  

 Carbon (high modulus or high strength)  

 Boron (high modulus or high strength)  

 Silicon Carbide (high temperature resistance) 

In forming fiber reinforcement, the assembly of fibers to make fiber forms for the 

fabrication of composite material can take different forms, leading to different structural 

characteristics (Figure 1.1). Materials created using one-directional tows, yarns, tapes are called 

unidimensional; using two-directional woven or nonwoven fabrics (felts or mats) are called 

bidimensional, and using multi-directional fabrics (>2) are called tridimensional.  

Figure 1.1 Different fiber forms [2] 

Matrix materials include the following:  

 Polymeric matrix: thermoplastic resins (polypropylene, polyphenylene sulfone, polyamide, 

polyetheretherketone, etc.) and thermoset resins (polyesters, phenolics, melamines, 

silicones, polyurethanes, epoxies). Their principal physical properties can be found in [3].  

 Mineral matrix: silicon carbide, carbon. They can be used at high temperatures.  

 Metallic matrix: aluminum alloys, titanium alloys, oriented eutectics.  
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Apart from the remarkable weight advantage of composite materials, there are other 

superiorities of composite materials which make their use favorable [3]:  

 Composite materials do not yield (their elastic limit correspond to the rupture limit) 

 Composite materials are very fatigue resistant 

 Composite materials age subject to humidity (epoxy resin can absorb water by diffusion up 

to 6% of its mass; the composite of reinforcement/resin can absorb up to 2%) and heat.  

 Composite materials do not corrode, except in the case of “aluminum with carbon fiber” in 

which case galvanic phenomenon creates rapid corrosion.  

 Composite materials are not sensitive to the common chemicals used in engines: grease, 

oils, hydraulic liquids, paints and solvents, petroleum. However, paint thinners attack the 

epoxy resins.  

 Composite materials have medium to low level impact resistance (inferior to that of 

metallic materials).  

 Composite materials have excellent fire resistance as compared with the light alloys with 

identical thicknesses. However, the smokes emitted from the combustion of certain 

matrices can be toxic.  

Figure 1.2 Specific strength of different composites [3] 

There are many manufacturing techniques which are selected considering the respective 

ease for a specific part. Some of the most used techniques are given below. More detailed 

information on those techniques can be found in [3], as well as in other composite materials 

reference books. In this study, only filament winding method will be analyzed to a further depth, as 

presented analysis is applicable for filament wound structures.  
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 Bulk molding compound 

 Centrifugation 

 Contact molding 

 Filament winding 

 Compression molding 

 Autoclave molding 

 Pultrusion  

 Reinforced-reaction injection molding 

 Structural-reaction injection molding 

 Resin transfer molding 

 Sheet molding compound 

 Reinforced thermoplastics 

 Reinforced stamped thermoplastics 

 etc.

Traditional filament winding was one of the earliest fabrication processes used for 

producing continuous filament composites. In the laboratory this process can be used to form 

controlled composites in two optional formats. In the first, the fibers are pre-impregnated by passing 

them through a suitable matrix, while the second option requires winding the fibers onto a mandrel 

and impregnating the total assembly. When a sufficient number of layers of fibers have been 

appropriately laid down, the impregnated windings are cured. Alternately, if the second process is 

used, the mandrel is impregnated and allowed to furnace cool following a programmed procedure 

[4].  

The basic elements of traditional filament winding are a mandrel and a spool. The mandrel 

spins fiber off the spool as the spool moves parallel to it. The fiber can be wound in helical, hoop (or 

circumferential), and polar patterns around the mandrel, as seen in Figure 1.4. [5]  

Figure 1.3 Traditional filament winding method.
1
  

 

1. www.thaicomposites.com/technology.php 
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Filament winding machines operate on the principles of controlling machine motion 

through various axes of motion. The most basic motions are the spindle or mandrel rotational axis, 

the horizontal carriage motion axis and the cross or radial carriage motion axis (Figure 1.3). 

Additional axes may be added, typically a rotating eye axis or a yaw motion axis, and when the 

pattern calls for more precise fiber placement further additional axes may be added. 

 

Figure 1.4 Helical, circumferential (or hoop), and polar winding patterns.
2 
 

The strongest and lightest arrangement for composites is when they are made with 

continuous and aligned fiber reinforcements. Filament winding is a composites manufacturing 

process that keeps the fibers continuous and aligned throughout each part. This process winds from 

spools of fiber continuously so that the fibers can remain uncut through the entire manufacturing 

process. 

Using filament winding technique, generally shell structures are generated. A shell is a thin 

walled body, just as a beam or plate is, whose middle surface is curved in at least one direction. For 

instance, cylindrical and conical shells have only one direction in which the middle surface is 

curved. On the other hand, in a spherical shell there is curvature in both directions. Shell theory is 

greatly complicated compared to beam and plate theory because of this curvature. Then, to 

complicate shell theory with all of the material complexities associated with laminated composite 

materials makes shell theory of composite materials a great challenge [4].  

 

2.  Callister, 1997, p.537 
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“…When designing filament-wound components, one obviously has to cope with the 

possibilities and limitations inherent to filament winding technology. Design and manufacturing 

interact with one another in the sense that feasible component complexity depends on the available 

winding equipment. On the other hand, there is the winding machine itself, with its dimensions, 

degrees of freedom and control capacity determining the possible component geometry and size; the 

more degrees of freedom, the more complex the component may be but also the more complex 

control will become. When conceiving mandrel geometry, the designer must realize that sharp edges 

cause the tensioned fibre to cut in at the edges and that flat surfaces result in poor consolidation. 

Furthermore, mandrel geometry must allow for the fibre to be returned at the ends. In many 

applications the mandrel must be removable, requiring either a collapsible or segmented mandrel 

configuration, or a soluble or meltable mandrel material. Also important is that mandrel and 

composite are both subjected to the same temperature cycle during cure, making the final part 

dimensions dependant on the thermal expansion of the mandrel material.  Finally, there is also the 

surface quality of the component; if important, either vacuum bagging or an external mould must be 

used…” [6]. Laminate lay-up design considerations and fiber trajectories are the main topic of this 

study; thus their design will be discussed extensively in the following sections.  

Figure 1.5 Carbon fiber applications [16] 

Fiber-reinforced composites are widely used in aircrafts, rockets and automotive structures 

for their low weight with high strength and stiffness. Good corrosion and chemical resistance of 

composites allow them to be used in storage and transport of fluid and gases for rockets and 

automobiles (Figures 1.5 and 1.6). In addition, a designer can utilize the anisotropy produced by 

building up a laminate from plies with a properly selected fiber-resin combination and orientation-

stacking sequence to meet the performance requirements. Filament winding is one of the fabrication 

techniques for high performance composites. Continuous filaments are the economical and excellent 

form of fiber reinforcement and can be oriented to match the direction of the stresses loaded in a 
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structure. Filament winding also allows the placement of fibers with a highly reproducible degree of 

precision [7].  

Figure 1.6 Glass fiber applications in chemical, oil and water industries [16]  

Non-traditional filament winding is less well known. The concept here is basically the 

inverse of traditional filament winding. In non-traditional filament winding the spools rotate around 

the mandrel [5]. Most famous application of this system was used to seismically retrofit bridge 

columns in USA [8, 9].  

“… A major problem in the construction industry is building a structure that can withstand 

cyclic axial and cyclic lateral loads during an earthquake. Typically, steel retrofits are used to 

improve flexural and shear strength of a RC column because steel has established structural design 

allowables and properties. However, steel reinforcements corrode over time and require periodic 

maintenance. Although the material cost for purchasing the steel to be used in these retrofits is low, 

installation and regular maintenance is laborious and costly. Reinforced concrete (RC) columns, 

which carry the largest load in many RC structures, are particularly vulnerable to failure during 

seismic activity. One solution to protect these columns from earthquakes is to retrofit the RC 

columns using fiber-reinforced plastic (FRP) composites. The company XXsys Technologies has 

developed a speedy method for applying a FRP composite wrap to RC columns. XXsys designed a 

machine called the Robo-Wrapper that constructs a hoop-wrapped jacket around a RC column using 

tows of continuous carbon fiber pre-impregnated with resin (Figure 1.7). The Robo-Wrapper is a 

programmable two-axis machine that can wrap pre-preg tow to precise dimensions around highway 

and bridge columns. The machine rotates around the column while it moves up and or down, 

encasing the entire column with carbon fiber pre-preg. Because the carbon fiber is continuous, the 

wrap created provides uniform confinement of the concrete. This ensures there are no weak spots 
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where the shear strength and flexural strength would be low. XXsys also designed a radiant heat 

oven, which cures the resin at high temperatures (Figure 1.8). During the cure, the resin cross-links 

and forms a hard shell. The resin also acts as an adhesive and bonds to the concrete forming a tight 

structure around the entire cross section of the column. 

 

Figure 1.7 The ROBO-Wrapper I™. A 

freeway column retrofit filament winder. [8]  

Figure1.8 XXsys’curing system. [8] 

Two main machines, the Robo-I and the Robo-II, are used to retrofit RC columns of all 

sizes. The Robo-I, shown in Figure 1.7, can complete a composite wrap for an average freeway 

circular column, four feet in diameter and 20 feet high, in 8 to 12 hours. The Robo-II has the 

capability of wrapping two 22 foot tall circular columns per day, which includes machine set-up, the 

actual wrapping, and then removing the equipment from the site. The Robo-I uses up to six spools of 

pre-preg tow while the Robo-II uses twice as many spools and can wind 4 to 5 times faster. The 

XXsys’ wrap system is well equipped for handling seismic retrofits of structurally deficient bridge 

columns. A typical retrofit process would follow three general steps: column preparation, operation 

of the Robo-Wrapper, and the curing system. During the first step the columns surface area is 

cleaned of dirt and dust. All defects in the concrete are fixed to ensure as close to a contamination-

free surface as possible. The less contamination on the surface the better the composite wrap will 

bond to the concrete column. The second step involves assembling the Robo-Wrapper machine, 

programming the machine, and wrapping the column. The Robo-Wrapper is made up of two 

segments that are lifted to the appropriate location and bolted together. Once in place, the machine is 

programmed and then activated. The final step is the curing system. The curing system, shown in 

Figure 1.8, is constructed after each column is wrapped. The curing oven is made up of radiant 

curing panels that are bolted together around an eight-foot section of the column. The panels are 
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insulated and the power source is a diesel electric generator. The cables shown in the same figure are 

the electric power cables connecting the generator to the curing panels. Thermocouples are used to 

measure the actual temperature of the part accurately. When the job is finished a detailed report 

showing what was done, such as jacket thickness in specific areas, etc., can be reviewed. The XXsys 

method of FRP composite application is an example of non-traditional filament winding method…” 

[9].  

Another example for non-traditional winding process is a machine manufacturing 

CompTether™ tendons which are used to tether Tension Leg Platforms to the ocean floor. Carbon 

fiber rods are wound helically around these very long tendons). In the case of the manufacturing 

process from DeepWater Composites, seen in Figure 1.9, the CompTether™ tendon moves through 

the center of the rotating shuttle that holds the spools [5]. 

Composite materials offer several attractive attributes for offshore service; high specific 

strength along with high corrosion resistance, good thermal insulation, excellent damping and 

fatigue performance, and high specific stiffness. These properties combined with the unmatched 

tailorability of fiber reinforcements along load paths have motivated the industry to promote the use 

of composites in several critical load bearing applications, particularly for risers, spoolable tubulars 

and tethers. Latest design innovations are also addressing embedding fiber optics, strain sensors and 

electrical conductors into the composite part to monitor structural integrity and loads during service, 

and to obtain operational conditions from remote locations. Metrics for success will be in the 

development of data bases, terminations, process automation, standards/certification testing and 

criteria for maintenance, repair and/or replacement decisions [10]. 

Figure 1.9 Carbon fiber rods are wound helically around these very 

long tendons.
3
  

 

3.  www.ivt.ntnu.no 
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Although there is extensive industry experience with the design, installation and operation 

of tension leg platforms (TLPs) with steel risers, the concept is currently becoming out of favor for 

deepwater for two primary reasons: (i) its current steel tether design cannot be extended beyond 

about 1500-m; (ii) steel risers at such depths are heavy and require high axial tension mechanisms 

which can only be accommodated by building a bigger platform. It is commonly acknowledged that 

the introduction of composite riser and tether technology can extend the current range of TLP 

applicability to beyond 3000-m water depth with 37% reduction in total installed cost. These savings 

are derived from reduced top tension requirements, total system weight, stacked volume and 

buoyancy weight providing excellent hang off performance [10]. 

Currently, the environment pollution and energy crisis are two important problems all 

around the world.  Hydrogen energy is considered as a kind of advanced energy due to its 

advantages of clean and cyclic utilization. The economic, safe, efficient hydrogen storage technique 

is a key to the practicality of the hydrogen utilization. Carbon fiber/epoxy composites have been 

increasingly used to develop the lightweight high pressure hydrogen vessel in areas of the hydrogen 

fuel cell vehicle because they exhibit many advantages such as high strength/stiffness-to-weight 

ratio and excellent resistance to fatigue and corrosion [11]. Due to limited space available on the 

vehicle, the hydrogen storage system is critically required to reach the lightweight, small volume, 

low cost, and excellent safety performance so that the continuous and safe run of vehicle can be 

satisfied [12]. This creates a great need for improvements in terms of high efficiency and high 

strength pressure vessels.  

Another possible future application for the filament wound conical shells is the wind 

turbine tower production. During last 20 years wind turbine manufacturers took the path of building 

larger machines to generate more electricity (Figure 1.10). However, the bigger the size got, the 

more material was required to support the loads, leading to a great weight increase. For the market, 

more weight and bigger size mean new manufacturing techniques and design with several pieces to 

be able to transport, bigger cranes and more labor. If one also considers the practical difficulties 

while transferring the product, such as height of bridges on the way, available roads wide enough 

without sharp corners, enclosure of the roads to traffic during transport, police escort to trucks, 

etc.(Figure 1.11). As a result, new methods are great importance nowadays for the future of wind 

turbine market.  
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Figure 1.10 Evolution of wind turbines.
4
  

 

 

 

 

 

Figure 1.11 Transport of a segment of wind turbine tower.
5
  

 

 

 

 

 

 

Figure 1.12 Cranes to install offshore turbines.
6
  

 4.  www.wind-energy-the-facts.org/en/executive-summary/part-i-technology.html 
5. truckstop.truckismo.com 

6. www.siemens.com/innovation 
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Lately, cement and steel hybrid towers are designed for towers higher than 100m. For steel 

towers, 100m hub height is normally the limit, because a larger height requires a tower diameter of 

more than the 4.3m, which cannot be transported anymore because of bridge passage. The height of 

the tower is extremely critical as the higher hub heights mean higher wind speeds and higher energy 

generation, especially for the low wind regions such as most of Turkey. A Dutch company called 

Advanced Tower Systems recently designed and built a 133m tower using this hybrid idea and 

claims 18% increase in the energy generation. The lower section of the tower consists of narrow 

concrete pre-fabricated parts, the upper section of conventional steel components [13]. As the 

industry faces new challenges, new structural solutions may become available for the wind generator 

superstructures, using advanced composite materials technology and employing their advantages, 

such as prolonged life, improved dynamic damping characteristics, extended fatigue life, reduced 

maintenance cost and reduced logistic costs for installation as a consequence of smaller size and 

weight.  

According to European Wind Power Association (EWEA), off-shore wind farms will 

dominate the next 20 years of the wind energy market (Table 1.1) [15]. Improvements in the 

manufacturing methods and extended research on the topic could be very beneficial for off-shore 

market. In the case of the composite material tower made by the filament winding method welding is 

no longer necessary and the cost of labor is reduced due to simplification of bolting and drilling. 

And, as there is no need for welding, there is no roughness of the surface by welding [14]. 

Application of traditional or non-traditional winding method on the field instead of manufacturing 

the tower on the land and transporting to off-shore might be another critical improvement for the 

industry. Those simplifications, especially in terms of weight and labor, are highly critical for off-

shore applications where the working conditions are far from ideal and the transportation is 

expensive (Figure 1.12).  
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Table 1.1 Forecast of offshore wind energy installations 2000-2030 by EWEA [15]  

Nowadays, researchers are working on the new solutions for the adaptability of the molds 

to build filament wound composite materials. One recent trend is the reusable mandrels with shape 

memory polymers. Shape memory polymer (SMP) resin is an integral component of a shape 

memory composite system. A shape memory composite acquires some SMP characteristics, making 

it a unique material for use in dynamic structures and other applications requiring both load strength 

and "shape-shifting" flexibility. Under thermal controls, shape memory composites can be 

temporarily softened, reshaped, and rapidly hardened to function as structures in a variety of 

configurations.
7
 

 

 

7.  www.crgrp.com/technology/overviews/smp1.shtml 
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 In this method, mandrel is placed in a clamshell mold, heated above its transition 

temperature and blown into its complex shape under air pressure. Still under air pressure, the 

mandrel is cooled in its new shape. Once cooled, it is removed from the mold and installed on a 

winder. The rigid mandrel is filament-wound. After the part cures, the mandrel is heated above its 

transition temperature to return to its initial tubular shape. Then, the composite part is completed 

(Figure 1.13) [16].  

  

  

Figure 1.13 Reusable mandrels with shape memory polymers [16]  

However, one of the problems with filament winding is that the trajectory of the fiber path 

and the corresponding fiber angles cannot be chosen freely because of the fiber path stability 

requirement. Initially, using geodesic path was the easiest and applicable solution, but requirements 

of the industry improved as the new technologies are presented to the market. Mentioned 

requirement pushed engineers to research for application of fiber paths other than the geodesic 

trajectories.  

1.2 THESIS STATEMENT AND METHOD 

One of the main advantages of composite materials is the freedom in the design. Composite 

designer is able to construct his/her material, having stiffness only in the required direction(s) and 

saving weight by not having an unnecessary isotropic behavior. The stiffness coefficients of 

laminated shells of revolutions are usually assumed to be constant for avoiding the exhausting and 

complicated calculations resulting from the varying stiffness coefficients as a function of the 

longitudinal coordinate. For a shell of revolution, for which its radius change along the longitudinal 

axis, fiber orientations and thicknesses change along that axis, which ultimately influences the 

stiffness coefficients.  
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Geodesic fiber trajectories are the most frequently used trajectories in the filament winding 

operation due to the fact that filaments wound along geodesic paths do not require any friction to be 

stable. For conical shells of revolution it has been shown that geodesic winding causes the winding 

angle and the thickness to vary along the meridian of the shell of revolution [17][18]. The starting 

edge of the winding operation, whether small radius edge or large radius edge, also affects the 

variation of the winding angle and the thickness of the shell of revolution along the meridian of the 

shell of revolution, and this in turn causes continuous meridional variation of the stiffness 

coefficients. 

 

Figure 1.14 Geodesic and semi-geodesic fiber paths 

In filament winding operation filaments must not necessarily be wound along geodesic 

paths to be stable. The so-called semi-geodesic fiber paths slightly deviate from the geodesic paths 

counting on friction to keep the fiber in its proper position (Figure 1.14) [19]. In case of semi-

geodesic fiber path the tensile force in the fiber also has force component transverse to the fibers, 

and this transverse force component can cause fibers to slip if enough friction is not available. The 

ratio of the transverse force to the normal force on the fiber is defined as the slippage tendency 

which must be less than the maximum friction coefficient [20][21]. In case of preset constant 

slippage tendency the winding law can be expressed by a differential equation, which is more 

complex than the winding law for geodesic winding [20]. Numerical integration is necessary in 

particular geometries to define the continuous meridional variation of the winding angle, thickness 

and the stiffness coefficients, due to semi-geodesic winding process.  

This thesis will compare the free vibration characteristics of conical and spherical shells of 

revolution, which are wound along geodesic and semi-geodesic fiber paths.For the mentioned task, 

derivation of the winding angle along the longitudinal direction for conical and spherical shells of 

revolution, which are wound along semi-geosesic paths, is realized.For a conical shell of revolution 

the winding angle can be calculated analytically by using the derived formula; however for the 

spherical shell of revolution the final form is an ordinary differential equation and requires a 

numerical integration solution to determine the fiber orientation at each meridional location.  
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Semi-geodesic winding presents alternative fiber paths which can be exploited for 

theoretical reasons and especially for optimization purposes. Semi-geodesic winding analysis will be 

performed for different slippage tendencies between fiber and mandrel surface, which is usually 

determined experimentally.  

The effect of geodesic and semi-geodesic winding patterns on the free vibration 

characteristics of composite shells of revolution is investigated by means of a semi-analytical 

solution method which is based on the numerical integration of the finite exponential Fourier 

transform of the fundamental shell of revolution equations. For the semi-geodesic winding the effect 

of the preset constant slippage tendency on the vibration characteristics is particularly analyzed.  

Sample results are obtained for filament wound truncated conical and spherical shells of 

revolution and the effect of the geodesic and semi-geodesic winding patterns on the free vibration 

characteristics of composite shells of revolution is investigated thoroughly. 

1.3 LITERATURE SURVEY 

Laminated composite shells of revolution are widely encountered structures in many 

applications such as pressure vessels, rocket nozzles, fuselage frames, external stores, antenna etc. 

The axisymmetric composite shells of revolution are typically manufactured by the filament winding 

process either by winding organic or inorganic filaments or tapes over a mandrel of required shape. 

During the filament winding process, the filaments are placed in arbitrary orientation with respect to 

the geometric axis of the shell of revolution with the fundamental requirement that filaments must be 

slip-free [22]. Geodesic fiber trajectories are the most frequently used trajectories in the filament 

winding operation due to the fact that filaments wound along geodesic paths do not require any 

friction to be stable. For conical shells of revolution it has been shown that geodesic winding causes 

the winding angle and the thickness to vary along the meridian of the shell of revolution [18][23]. 

The starting edge of the winding operation, whether small radius edge or large radius edge, also 

affects the variation of the winding angle and the thickness of the shell of revolution along the 

meridian of the shell of revolution, and this in turn causes continuous meridional variation of the 

stiffness coefficients. 

In filament winding operation filaments must not necessarily be wound along geodesic 

paths to be stable. The so-called semi-geodesic fiber paths slightly deviate from the geodesic paths 

counting on friction to keep the fiber in its proper position [25]. In case of semi-geodesic fiber path 

the tensile force in the fiber also has force component transverse to the fibers, and this transverse 

force component can cause fibers to slip if enough friction is not available. The ratio of the 

transverse force to the normal force on the fiber is defined as the slippage tendency which must be 

less than the maximum friction coefficient [22][25]. In case of preset constant slippage tendency the 
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winding law can be expressed by a differential equation, which is more complex than the winding 

law for geodesic winding [22]. Semi-geodesic winding presents alternative fiber paths which can be 

exploited especially for optimization purposes.  

A rather complete analysis of composite material shells, both utilizing classical shells 

including transverse and shear deformation has been compiled by Vinson and Chou [26]. In 1975, 

Wilkins and Love [27] examined the combined compression and shear buckling behavior of 

laminated composite cylindrical shells characteristics of fuselage structures. Compression-shear 

interaction curves were obtained for sample shells. Compared to classical buckling theory the actual 

compression buckling values were 65% of the theoretical value. The disparity was attributed to 

imperfections. Good agreement between theory and experiment were realized for shear.  

The free vibration of laminated orthotropic cylindrical shells using classical theory has been 

studied by White [28], Dong [29], Bert [30], and Tasi [31] [32]. Misky [33] [34] included transverse 

shear deformation and transverse normal strain of orthotropic homogenous cylindrical shells. Dong 

and Tso [35] analyzed the vibration of layered orthotropic homogenous cylinders including 

transverse shear deformation. Sun and Whitney [36] studied the axially symmetric vibration of 

laminated composite cylindrical shell including transverse shear deformation, transverse normal 

stress and strain, rotator inertia and higher order stiffness and inertia terms.  

Most of the previous work on the study of the vibration characteristics of composite shells 

of revolution has been performed by taking constant stiffness coefficients or on shells of revolution, 

with constant radii of curvature, for which the stiffness coefficients and thickness remain constant 

along the meridian of the shell of revolution. Some examples of these studies include the work of 

Noor and Peters [37], who used a combination of Fourier series representation in the circumferential 

direction, three-field mixed finite element model for the discretization in the meridional direction, 

and analyzed cylindrical and toroidal shells of revolution. A semi-analytical study of the composite 

shells of revolution has been performed by Xi et al. [38], who used conical finite elements and 

included transverse shear deformation in their analysis. A finite element semi-analytical model for 

laminated axisymmetric shells is presented by Correia et al. [39]. Ferreria et.al. [40] presented a 

meshless method based on multiquadric radial basis functions for the solution of natural frequencies 

of cross-ply composite shells. Nguyen-Van et.al. [41] investigated the free vibration analysis of 

laminated shell structures based on FSDT with a novel quadrilateral finite element. 

A typical study of the effect of the variation of the stiffness coefficients due to geodesic 

winding on the buckling behavior of filament wound conical shells has been performed by Goldfield 

and Arbocz [18]. Korjakin et.al [42] investigated the damped vibrations of laminated conical shells 

by finite element analysis, and incorporated the effect of the variation of the winding angle and 

thickness due to geodesic winding on the natural frequencies of laminated conical shells. Park et.al 

[43] considered the variation of the winding angle in the longitudinal and thickness direction in the 
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dome part of a cylindrical pressure vessel due to semi-geodesic winding and performed finite 

element analysis of the pressure vessel subject to internal pressure. Recently, Kayran and 

Yavuzbalkan [44] studied the effect of the variation of stiffness coefficients due to geodesic winding 

on the free vibration characteristics of filament wound shells of revolution by a semi-analytical 

method.  

It was concluded by Baruch et al. [23] that the stiffness coefficients needed for the analysis 

of a laminated structure have to be calculated only after taking into account the manufacturing 

process which can be used to build the structure. Based on the examples presented about the studies 

performed on the dynamics of composite shells of revolution, it is assessed that the effect of winding 

patterns on the dynamic characteristics of filament wound shells of revolutions has not received 

enough attention in the literature. Therefore, the main aim of the present thesis is to study the effect 

of winding patterns on the free vibration characteristics of filament wound composite shells of 

revolution. Specifically, at first the effect of the initial winding angle, the starting edge of the 

winding, geodesic and semi-geodesic winding patterns on the variation of the winding angle, 

thickness and stiffness coefficients is investigated.  

By introducing the preset slippage tendency during the winding process, it is aimed to 

investigate its influence on the free vibration characteristics and mode shapes. This information has a 

potential to provide a new parameter to control the dynamic characteristics of the shell structure and 

increase the design options for optimization of the structure.    

1.4 THESIS ORGANISATION 

The remaining chapters of this thesis are organized as follows: 

Chapter 2 presents the governing equations of free vibration analysis of anisotropic 

laminated composite shells of revolution and the multisegment method is briefly explained as the 

method of solution. Described solution technique and presented governing equations are very well 

known from literature and have been used for rotationally symmetrical shells of revolutions wound 

by using geodesic fiber paths.  

Chapter 3 explains the filament winding laws for geodesic winding and semi-geodesic 

winding. In the case of introduction of preset slippage tendency, the winding law is expressed by a 

differential equation. The variation of winding angle for a conical and spherical shell of revolution is 

derived in this chapter for a semi-geodesic winding process. Derived fiber orientation and thickness 

equations enabled the calculation of stiffness coefficients along the shell and also to determine the 

dynamic characteristics of the shell. Semi-geodesic winding laws are integrated to the available 
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computer code which is developed to calculate the natural frequencies for the shells of revolution 

wound by using geodesic fiber paths. 

Chapter 4 presents a verification study conducted by using the finite element analysis 

(FEA), which is a different solution method compared to the semi-analytical model solved by 

numerical integration. For this comparison study, commercially available PATRAN/NASTRAN 

software is employed. This verification study was required due to the limited references in the 

literature and its purpose is to check the proper integration of the semi-geodesic fiber path to the 

multi-segment numerical integration method, rather than verification of the accuracy of the two 

different solution approaches.   

Chapter 5 summarizes the numerical results obtained for a truncated conical shell and 

spherical shell of revolution. Introduction of preset slippage tendency and its effect on stiffness 

coefficients and free vibration characteristics is the main research topic in this study. The effect of 

semi-geodesic winding on stiffness coefficients, natural frequencies and mode shapes for both shell 

structures are investigated throughout this chapter. Moreover, for a conical shell of revolution, the 

effect of the cone angle is also investigated as it is the main geometrical parameter altering the cone 

geometry and dynamic properties.  

Finally, conclusions are summarized and recommendations for future work are discussed in 

Chapter 6. 
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CHAPTER 2 

 

GOVERNING EQUATIONS OF FILAMENT WOUND SHELLS 

OF REVOLUTION AND METHOD OF SOLUTION 

 

 

This thesis investigates the effect of semi-geodesic winding on the free vibration 

characteristics of filament wound composite shells of revolution. The vibration resulting from the 

action of forcing upon a system is known as forced vibration, and the one resulting from initial 

conditions is called free vibration. An elastic structure displaced from its equilibrium position and 

thereafter allowed to oscillate with no further imposed force is considered as exhibiting free 

vibration.  

Theory of shells is examined under the theory of elasticity in two parts: two-dimensional 

and three-dimensional shell theories. Two-dimensional shell theories are derived from three-

dimensional elasticity theory employing assumptions concerning the kinematics of deformation 

through the thickness of the shell. Two-dimensional shell theories include thin and thick; shallow 

and deep; linear and non-linear shell theories defined considering the thickness of the shell, the span 

length or radii of curvatures, and the magnitude of linear and rotational displacements [45].  

In this thesis, thin elastic shell theory is employed. Thin elastic shell theory assumes small 

elastic deformations under the influence of loads. Small deformation assumption allows the usage of 

the equilibrium conditions for deformed elements same as if they were not deformed. The behavior 

of thin elastic shells is based upon the equations of the theory of linear elasticity. However, three-

dimensional equations of elasticity in rectangular coordinate system do not assure the analytical 

solutions of thin elastic shells. Two main “difficulty factors” involved in achieving an analytical 

solution of the boundary value problem using the three-dimensional elasticity theory is stated clearly 

in [45].  
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“…The first of these factors deals with the “degree of the geometrical complexity” of the 

shells, for example prescribed in the circular coordinate system. The number of boundaries in the 

shell geometry can lead to difficulties in the application of boundary conditions. The second 

“difficulty factor” involved in the solution of the three-dimensional equations of motion and the 

strain-displacement relations of shells in the circular coordinate system deals with the “degree of 

material complexity”. In fact, the most general form of the constitutive equations, do not have 

analytical solutions available in the literature. Therefore, almost all shell theories for thin elastic 

shells reduce the three-dimensional elasticity problem into a two-dimensional problem by making 

suitable assumptions. This is usually done by eliminating the coordinate normal to the shell surface 

in the development of the two-dimensional shell theories…” [45]. 

There exist a number of theories for thin homogenous elastic shells which describe the 

deformations of a thin elastic shell. The linear differential equations of classical shell theories have 

some differences considering the assumptions made about the form of small terms and the order of 

terms. The classical shell theories are based on the Love- Kirchhof assumptions which states:  

 Straight lines normal to the undeformed reference surface remain straight and normal to the 

deformed reference surface; 

 The normal stresses perpendicular to the reference surface can be neglected in the stress-

strain relation (plane stress condition in the two-dimensional elasticity); 

 The transverse displacement is independent of the thickness coordinate (the transverse 

normal of the reference surface is inextensible). 

“…The classical shell theories are expected to yield sufficiently accurate results when (i) 

the lateral and/or longitudinal dimension, or the radii of curvature-to-thickness ratio is large (thin 

elastic shell); (ii) the dynamic excitations are within the low-frequency range (in the scope of small 

deformations); (iii) the material anisotropy (isotropic or orthotropic) is not severe. However, the 

application of Love-Kirchhoff assumptions based theories to laminated composite shells could lead 

to errors in deflections, stresses, buckling loads and natural frequencies. These errors occur due to 

the anisotropy and heterogeneity of the materials of different layers and the existence of layers 

which exhibit weak resistance to transverse shear and normal deformations. A remedy for decreasing 

errors to some extent is to account for transverse shear deformations in two-dimensional shells 

theories for the laminated composite shell analysis. As a matter of fact that the experiments have 

revealed that neglecting transverse shear strains in the modeling leads to underestimations of 

deflection and overestimates of natural frequencies and buckling loads. In the case of plates and 

shells made of advanced laminated composite materials such as graphite-epoxy and boron-epoxy, 

where the ratio of elastic in-plane moduli to transverse shear moduli are very great (i.e., of the order 

25-40 instead of 2.6 for isotropic materials), the transverse shear deformation becomes significant. 

Actually, as pointed out by Koiter [46], refinement of Love-Kirchhoff assumptions based theory, 
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namely classical shell theory, of thin elastic shells is meaningless unless the effects of transverse 

shear and normal stresses are taken into consideration. Transverse shear deformation plays a very 

important role in reducing the effective flexural stiffness of anisotropic and laminated plate and shell 

structures than in corresponding isotropic plate and shell structures…”[47]. This analysis led to 

development of refined shell theories and computational models to obtain sufficiently accurate 

results for response and failure characteristics of anisotropic and laminated composite shells. 

“…Roughly, they can be splitted into three categories: the three-dimensional elasticity models, the 

quasi-three-dimensional models, and the two-dimensional shear-flexible models. In the three-

dimensional elasticity models, the 15 unknowns (3 displacements, 6 normal and shear stresses, and 6 

normal and shear strains) are tried to be found out directly by 15 available equations of elasticity (3 

equilibrium equations, 6 stress-strain relations, and 6 strain-displacement relations) without any 

assumptions whereas in quasi-three-dimensional models, simplifying assumptions are made 

regarding the stress (or strain) state in the shell (or in the individual layers), but no a priori 

assumptions are made about the distribution of the different response quantities in the thickness 

direction. The use of both three-dimensional and quasi-three-dimensional models for predicting the 

response characteristics of anisotropic and laminated composite shells with complicated geometry is 

computationally cumbersome; therefore, they are only applied to shells with simple geometries, 

loading and boundary conditions. On the other hand, the two-dimensional shell theories are adequate 

and practical for predicting the gross response characteristics such as natural frequencies, buckling 

loads, and average through-the-thickness displacements and rotations of anisotropic and laminated 

composite shells. But they are not adequate for the precise accurate prediction of the transverse 

stresses and deformations. There are four approaches for constructing two-dimensional shell theories 

for laminated composite shells which can be listed as: Method of hypotheses; method of expansion; 

asymptotic integration technique; iterative methods and methods of successive corrections. 

The first approach is an extension of the Kirchhoff-Love approach and is based on 

introducing a priori plausible kinematic or static assumptions regarding the variation of 

displacements, strains and/or stresses in the thickness direction. The simplest of these hypotheses is 

the linear variation of the displacement components used in conjunction with first-order shear 

deformation theories. Although the method of hypotheses has the advantages of physical clarity and 

simplicity of applications, it has the drawback of not providing an estimate of the error in the 

response predictions. 

The second approach is based on a series expansion, in terms of the thickness coordinate 

for displacements and/or stresses. It also includes the method of initial functions in which the 

displacements and stresses are expanded in a Taylor series in the thickness coordinate. The relations 

between the higher-order derivatives of each of the displacements and stresses and their lower-order 

derivatives are obtained by successive differentiation of the three-dimensional elasticity relations. 
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In the third approach, appropriate length scales are introduced in the three-dimensional 

elasticity equations for the different response quantities, followed by parametric (asymptotic) 

expansions of these quantities in power series in terms of a small thickness parameter. The three-

dimensional elasticity equations are thereby reduced to recursive sets of two-dimensional equations, 

governing the interior and edge zone responses of the shell. The edge zone (or boundary layer) is 

produced by self-equilibrated boundary stresses in the thickness direction. The lowest-order system 

of two-dimensional equations, depending on the choice of the length of scales, corresponds to the 

thin-shell assumptions. The higher-order systems introduce thickness correction effects in a 

systematic and consistent manner. 

The fourth approach includes various iterative approximations of the three-dimensional 

elasticity equations, and predictor-corrector procedures based on a single correction or successive 

corrections of the two-dimensional equations…” [48]. 

This thesis employs a two-dimensional shell theory including shear deformation based on 

the method of hypotheses in association with the smeared continuum approach. “…The smeared 

continuum approach is defined with the simplifying assumption of laminated anisotropy which is 

often used in applying two-dimensional theory to plates and shells consisting of layers of composite 

materials. In this approach, the individual properties of composite constituents, the fibers and the 

matrix, are “smeared” and thus each lamina is treated as an orthotropic material…”[47]. Similar to 

classical shell theories laminated composite shell theories including shear deformation vary among 

themselves considering the different assumptions. These assumptions are listed in [48] as: 

 global through-the-thickness, or piecewise, layer-by-layer, approximations; 

 purely kinematic assumptions (on displacements and strains), or a hybrid combination of 

kinematic and stress assumptions; 

 linear or nonlinear, through-the-thickness, variation of the response of quantities; 

 including or neglecting the transverse normal strains. 

The equivalent single-layer theories are developed by assuming the form of the 

displacement field or stress field as a linear combination of unknown functions and the thickness 

coordinate: 

),,()(),,,(
0

tyxztzyx j

i

N

j

j

i  


  (2.1) 

where φi is the i
th

 component of displacement or stress, (x,y) are the in-plane coordinates, z 

is the thickness coordinate, t denotes the time, and φi
j
 are functions to be determined [49].  
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The following assumptions and considerations are made during the derivation of governing 

equations using Reissner-Naghdi’s thin elastic shell theory for the free vibration analysis of 

anisotropic laminated composite, thin, doubly curved shells: 

 The shell is considered to be thin when the ratio of the shell thickness to the wavelength of 

the deformation mode and/or radii of curvature is less than 1/10. 

 The thickness is constant throughout the shell. 

 The shell undergoes geometrical linear deformation. In other words, all the displacement 

terms and their derivatives are linear in the kinematic relations. 

 There is no change in the temperature of the shell during the analysis (isothermal state). 

 The shell is to be linear elastic.  

 The displacements are prescribed with the assumed displacement field using consistent 

two-dimensional shell theory. 

 The system of curvilinear coordinates (ξ1, ξ2, ξ) is chosen in a manner that at each point the 

elastically equivalent directions coincide with coordinate directions, noting that, 

infinitesimally small elements defined at different points of the body by three pairs of 

coordinate surfaces, being anisotropic possess identical elastic properties.  

 The doubly curved shell has mutually orthogonal curvilinear coordinate system. The two of 

the curvilinear coordinates ξ1 and ξ2 coincides with the orthogonal lines of principal 

curvature of its reference surface. The third coordinate, the thickness coordinate, is normal 

to the reference surface at that point. 

 The normal stresses perpendicular to the reference surface of the shell are small when 

compared to other stress so that they can be neglected in the stress-strain relation. This 

leads to plane stress elasticity problem. 

 A linear element normal to the undeformed reference surface undergoes at most a 

translation and a rotation and suffers no extension. Thus, a linear element normal to the 

reference surface before deformation remains linear but does not necessarily remain normal 

to the reference surface after the deformation of the shell. This phenomena results in the 

inclusion of the shear deformation effects in the formulation whereas this does not exist in 

the classical shell theory. In addition to shear deformation, the rotary inertias are included 

in the formulation. In this study, the first-order shear deformation theory is used. 

 The assumed displacement field does not satisfy the transverse shear boundary conditions 

on the top and bottom surfaces of the shell since a constant shear angle through the 

thickness is assumed, and plane sections remain plane. Therefore, shear correction factors 

are usually required for equilibrium consideration. The shear correction factors are only 

functions of lamination parameters (number of layers, stacking sequence, degree of 

orthotropy and fiber orientation in each layer). 
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 The transverse normals of the shell are considered to be inextensible. This results in zero 

transverse normal strain. In other words, the transverse displacement of the shell is 

independent of the thickness. 

 The laminated composite shell is replaced by an equivalent single-layer which is statically 

and dynamically in equilibrium. 

 The reference surface of the laminated composite doubly curved shell is taken at the middle 

of the laminate. 

 An anisotropic body is one which has different values of a material property in different 

directions at a point; namely, material properties are directionally dependent, the functions 

of position. In laminated anisotropic shells, the individual layers are, in general, anisotropic 

and/or orthotropic depending on the fiber orientation angle, and the principal axes of 

material symmetry of the individual layers coincide with only one of the principal 

coordinates of the shell (the thickness normal coordinate). 

 The layers of the lamination are assumed to be perfectly bonded. The perfectly bonding 

between layers exists when there is no gap of flaw between layers, no lamina can slip 

relative to another, and the laminate acts as a single lamina with special integrated 

properties. 

 The material properties of the equivalent single-layer are constant along ξ1 and ξ2 

directions, or 
 

and θ directions for doubly curved shells or shells of revolution, 

respectively. 

 The shell structure is physically linear; that is, there are no discontinuities and complexities 

such as holes, stiffeners or being crack-free and invariable cross-sectional area in any 

direction. However, shells with circumferential stiffeners or rings can be considered in the 

further analysis. 

In the following sections, the differential element and the curvilinear coordinate system are 

defined for doubly curved shells at first. In addition, the expressions studied in the differential 

geometry section are presented for an arbitrary point on the surface located ξ away up with respect to 

the reference surface in the shell space. Then, the field equations of doubly curved shell are derived. 

Subsequently, these derived equations are manipulated to obtain the fundamental system of 

equations of a shell of revolution. 
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2.1 GOVERNING EQUATIONS OF ANISOTROPIC SHELLS OF 

REVOLUTION 

Figure 2.1 shows the geometry notation used for a shell of revolution. In Figure 2.1, R  

and R  
denote the radii of curvature of the middle surface of the shell in the tangential )(  and 

meridional ( ) directions, respectively. R  denotes the distance of the shell mid surface from the 

axis of revolution (  sinRR  ).  

Figure 2.1 Geometry and coordinate system of the shell of revolution  

In accordance with the first order transverse shear deformation theory, the displacement 

field is approximated as  

     ttutU ,,,,,,, 0     (2.2) 

     ttutU ,,,,,,, 0     (2.3) 

   twtW ,,,,, 0    (2.4) 

where WUU ,,  represent the displacement of a general point in the shell thickness in 

meridional, tangential and thickness directions, respectively. In Eqs. (2.2)-(2.4), 
000 ,, wuu  represent 

the mid surface displacements at 0 , and  and  represent the rotations of a transverse 

normal about   and   curvilinear coordinates, respectively. Based on Reissner shell theory [50], 

utilizing the displacement field given by Eqs. (2.2) - (2.4), membrane and bending strain expressions 

for a general shell of revolution with radii of curvatures R and R become 
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Eqs. (2.11) and (2.12) give the transverse shear strains in terms of rotations of the mid-

surface normal, and mid-surface displacements. For the first order shear deformation theory, the 

rotation terms   and   are also unknowns. 

Full anisotropic form of the constitutive equations relating the stress resultants to mid 

surface strains (
000 ,,   ) and curvatures (   ,, ) are given in matrix form as [51] 
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where Nij terms represent force per unit length, and Mij terms represent moment per unit 

length. The stiffness coefficients are expressed in the usual manner as [51] 
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In Eq. (2.14), ijQ  are the transformed reduced stiffness coefficients, NL denotes the total 

number of layers, and hk and hk-1 denote the vector distance of the outer and inner surface of the k
th

 

lamina measured from the mid plane of the shell wall, respectively. Integration of the transverse 

shear stresses across the thickness of the shell yields the transverse shear stress resultants as 
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where the transverse shear stiffness coefficients are given by 
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In Eq. (2.16), it is assumed that the transverse shear stress has a parabolic distribution 

across the shell wall. A factor of 5/4 multiplies the distribution function used by Whitney [52] so 

that the shear factor calculated for the layered anisotropic shell wall can be consistent with the 

established shear factor from the previous work of Reissner [50] and Mindlin [53] for the 

homogenous case. 

Governing equations for free vibration analysis of macroscopically anisotropic, laminated, 

doubly curved shells of revolution can be obtained through the use of Hamilton’s Principle. 

Application of Hamilton’s principle results in five partial differential equations, with the 

independent variables being time, and meridional ( ) and circumferential ( ) coordinates. These 

are Eqns. (2.17-2.21) [54] 
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In Eqs. (2.17) - (2.19), the terms on the right hand side of the equality sign represent the 

inertia terms related to the translation of the mid shell surface, and double dot sign indicates 

differentiation with respect to time twice. In Eqs. (2.20) - (2.21), the terms on the right hand side 

represent rotary inertia terms. For a hybrid composite shell wall, the mass density ρ is calculated as 

an average across the thickness. Application of Hamilton’s principle also generates conditions on the 

boundary displacements, and boundary stress resultants applied on the constant meridional 

coordinate ( =constant) for a shell of revolution. For the free vibration problem boundary 

conditions are given by [54] 

Either  N or  00 u  (2.22) 

Either  N or  00 u  (2.23) 

Either  Q  or  00 w  (2.24) 

Either  M or  0  (2.25) 

Either  M or  0  (2.26) 

Eqs. (2.5) - (2.26) are the governing equations of free vibration for anisotropic shells of 

revolution, with arbitrary shape of the meridian, based on the Reissner-Naghdi shell theory. 

2.2 DERIVATION OF FUNDAMENTAL SYSTEM OF EQUATIONS 

The order of the system of Eqs. (2.5) - (2.26) is ten with respect to the meridional 

coordinate . Consequently, it is possible to reduce Eqs. (2.5) - (2.26) to ten partial differential 

equations which are first order in . The essential point in the derivation of these equations is the 

definition of the unknowns, as exactly those quantities that enter into the appropriate boundary 

conditions on a rotationally symmetric edge of the shell of revolution. These unknowns are called as 

the fundamental variables, and they are defined in the fundamental variable vector ψ as 

),,( tψ =  TMMNNQuuw   ,,,,,,,,, 000
 (2.27) 

Fundamental system of equations is obtained by deriving expressions for the first derivative 

of the fundamental variables with respect to meridional coordinate . For the free vibration analysis, 
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the time dependence of each quantity in synchronous motion appears in a factor e
iωt

, where ω is the 

natural frequency. Thus, time variable can be eliminated, and in that case the translatory and rotary 

inertia terms in Eqs. (2.17) - (2.21) would include the natural frequency ω. All the first derivatives of 

the fundamental variables when collected in matrix format would appear as  
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The first expression 
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w

 in Eq. (2.28) can be obtained by substituting the transverse shear 

strain expressions given by Eqs. (2.11) and (2.12) in the second expression of Eq. (2.15), which 

gives the transverse shear stress resultant Q . After the manipulation of the terms, the first 

fundamental equation can be determined.  
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In Eq. (2.29), the coefficients 1514131211 ,,,, cccccp and 16c  are given in compact form by 

Kayran and Yavuzbalkan [57]. In the following, all the coefficients of the fundamental system of 

equations are given in compact form in [57]. Since the coefficients are too lengthy, they are not 

repeated in this thesis. Readers are referred to Yavuzbalkan [44] for the explicit expressions of the 

coefficients.  

The expressions for the first   derivatives of the mid surface displacements
0
u , 

0
u  and 

rotation terms   and   can be determined simultaneously from the constitutive relations given 

by Eq. (2.13). After substituting the strain displacement relations given by Eqs. (2.5) - (2.10) into the 

expressions for N , N , and M , M  given in Eq. (2.13), we get four equations involving 

the first   derivatives of 
0
u ,

0
u ,   and  . These equations can be expressed in compact form 

as a matrix equation in Eq. (2.30). 

jdh   (2.30) 

where                      
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In Eq. (2.30), the components of the 4X4 coefficient matrix h depend on stiffness 

coefficients ( ijA , ijB , ijD ; )6,2,1, ji ), and radii of curvature of the shell ( R , R ). The 
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components of the vector j on the right hand side of Eq. (2.30) comprise of the fundamental 

variables,   derivatives of the fundamental variables, meridional coordinate  , stiffness 

coefficients ( ijA , ijB , ijD ; )6,2,1, ji , and radii of curvature of the shell ( R , R ). Eq. (2.30) is 

solved symbolically by Matlab for the first   derivatives of 
0
u ,

0
u ,   and  , and they are 

given in simplified form by Eqs. (2.31) - (2.34). 
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The first derivatives of Q , N , N , M and M with respect to   are determined 

from the equilibrium Eqs. (2.19), (2.17), (2.18), (2.20) and (2.21), respectively. After placing the 

required   derivative of the fundamental variables to the left hand side of the equations, the terms 

remaining on the right hand side are expressed in terms of fundamental variables, through the use of 

constitutive Eqs. (2.13) and (2.15), and   derivatives of the mid surface displacements and rotations 

given by Eq. (2.29) and Eqs. (2.31) - (2.34). The simplified expressions of the derivatives of stress 

resultants which are obtained by this process are given in Eqs. (2.35) - (2.39). 
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(2.39) 

Eq. (2.29) and Eqs. (2.31) - (2.39) are the fundamental system of partial differential 

equations in   and  . In the following, reduction of these equations to first order system of 

ordinary differential equations will be discussed. The reduction process makes use of the rotational 

symmetry of the shell of revolution. 

2.2.1 Classical Fourier decomposition of the fundamental variables 

For the classical shell theory, when the full anisotropic form of constitutive relations given 

by Eqs. (2.13) and (2.15) are utilized, the uncoupling of the governing equations describing the 

symmetric and antisymmetric responses, with respect to circumferential coordinate, cannot be 

achieved by the classical Fourier decomposition of the fundamental shell variables. Therefore, 

multisegment numerical integration technique cannot be employed due to the existence of coupling 

stiffness coefficients with subscripts 16 and 26 in the constitutive relations, Eq. (2.13), and shear 

coupling stiffness coefficients with subscript 45 in Eq. (2.15). The same restriction also exists for the 

first order shear deformation shell theory [55]. Vanishing of coupling stiffness coefficients with 

subscripts 16, 26, and 45 imply laminates with specially orthotropic layers. Thus, with the classical 

Fourier decomposition of the fundamental variables in the circumferential direction, it is not possible 
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to treat shells of revolution with full anisotropic constitutive relations, which allow for arbitrary 

orientation of fibres with respect to the curvilinear coordinate system of the shell of revolution. 

2.2.2 Finite exponential Fourier transform of the fundamental variables 

When the full anisotropic form of constitutive relations given by Eqs. (2.13) and (2.15) are 

utilized, each fundamental variable, in Eq. (2.28), can be expanded in complex Fourier series in an 

attempt to generate a new fundamental system of equations. The aim is to uncouple of the governing 

equations, describing the symmetric and antisymmetric responses with respect to circumferential 

coordinate θ. Complex Fourier series representation of the fundamental variable vector ψ can be 

shown as 

 n
n ei)(),( 
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ψψ  (2.40) 
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It is clearly seen in Eq. (2.41) that application of finite exponential Fourier transform results 

in doubling of the number of fundamental variables. In this study, conversion of the system of partial 

differential equations, Eq.(2.29) and Eqs. (2.31) - (2.39), to the system of ordinary differential 

equations is accomplished through the use of finite exponential transform given by Eq. (2.41). 

Application of finite exponential transform to first fundamental equation (Eq. (2.29)) will be 

demonstrated to explain the conversion procedure. Application of finite exponential transform to 

each term in Eq. (2.29) results in 
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(2.44) 

It should be noted that during the application of the finite exponential transform to the θ 

derivative of the lateral displacement w
0
 in Eq. (2.29), the definite integral is taken by applying 

integration by parts. Since all variables are periodic with a period of 2π in the circumferential 

direction, the first term of the integral, which includes the difference of the boundary values of w
0
 at 

0 and 2π vanishes. The same argument also holds for higher order θ derivatives of all fundamental 
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variables. Thus, after the real and imaginary parts of Eq. (2.44) are separately written, two first order 

ordinary differential equations are obtained. 
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(2.46) 

Application of the finite exponential Fourier transform to the remaining fundamental partial 

differential equations (Eqs. (2.31) - (2.39)), results in a system of 20 first order ordinary differential 

equations, which is represented by the following matrix equation. 
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where n is the circumferential wave number and 
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The elements of the coefficient matrix K are given by Kayran and Yavuzbalkan [57].  

The variables used in the fundamental system of equations, Eq. (2.47), are not the actual 

physical variables, but they are the transformed variables given by Eqs. (2.42) and (2.43). Therefore, 

the boundary conditions, Eqs. (2.22) – (2.26), specified at the two constant meridional coordinates 

should also be expressed in terms of the transformed variables. If the exponential transform is 

applied to the fundamental variables at the boundary of the shell of revolution, then for the free 

vibration problem the following equality holds.  
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Eq. (2.50) implies that both the real and imaginary parts have to be equal to zero. Thus, the 

boundary conditions expressed in terms of the transformed fundamental variables can be represented 

as 

Either  ),( nsnc NN  or  0),( 00 nsnc uu   (2.51) 
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 Either  ),( nsnc NN  or  0),( 00 nsnc uu   (2.52) 

Either  ),( nsnc QQ   or  0),( 00 nsnc ww  (2.53) 

Either  ),( nsnc MM  or  0),( nsnc    (2.54) 

Either  ),( nsnc MM  or  0),( nsnc    (2.55) 

Fundamental system of equations, Eq. (2.47), together with the boundary conditions, Eqs. 

(2.51) – (2.55), specified at the two boundary edges of an anisotropic shell of revolution form an 

eigenvalue problem for the eigenvectors which are the transformed displacements, and stress 

resultants. Eigenvalues are the natural frequencies, ω.   

2.3 METHOD OF SOLUTION 

2.3.1 Multisegment numerical integration 

The solution of Eq. (2.47) together with the boundary conditions, Eqs. (2.51) – (2.55), for 

the natural frequencies and the transformed displacements, and stress resultants, in principle follows 

the multisegment numerical integration technique. However, due to the application of finite 

exponential Fourier transform to handle the full anisotropic form of the constitutive relations, 

eigenvalue extraction process differs from the technique proposed by Kalnins [56].  

In the multisegment numerical integration technique, the shell is divided into M number of 

segments in the meridional direction, and the solution to Eq. (2.47) can be written as 

)(),,()( ii n  ψTψ         ),...2,1( Mi   (2.56) 

where the transfer matrices Ti are obtained from the initial value problems defined in each 

segment i by 
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with the initial conditions 

IT ),,( ii n   (2.58) 

where I is the identity matrix. 

Continuity requirements of the fundamental variables at the end points of the segments, 

lead from Eq. (2.56) to the following partitioned matrix equation 
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When the boundary conditions given by (2.51) – (2.55) are transformed, total of ten 

elements of the fundamental variable vector ψ at the each edge of the shell, 1 and 1M , must be 

prescribed. For computational ease, the rows of the fundamental variable vector ψ at both ends of 

the shell, 1  and 1M , are adjusted such that the first ten elements of )( 1ψ and the last ten 

elements of )( 1Mψ are the prescribed boundary conditions. In the following, to keep the 

uniformity of the notation used for the partitioned fundamental variable vector, the boundary 

conditions are also represented by the same vector notation defined by Eqs. (2.48) and (2.49). 

Therefore, boundary conditions at the ends of the shell of revolution are expressed by (2.60).  
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Eq. (2.59) constitutes a system of linear homogenous matrix equation with 2M unknowns. 

The solution for the eigenvalue problem requires the writing out of matrix equations in each interval 

i separately, and bringing the whole equation set into an upper diagonal matrix equation by Gauss 

elimination. The resulting matrix equation is given by Eq.(2.61).  
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where, the )1010( X  matrices Ei and Ci are evaluated successively from 

(2)
11 TE   (2.62) 

1
1

)4(
11

 ETC  
(2.63) 

                                 
1
1

)1()2( 
 iiii CTTE       ),...,3,2( Mi   

(2.64) 

                                  
  11

1
)3()4( 

 iiiii ECTTC       ),...,3,2( Mi   
(2.65) 

Natural frequencies are determined by requiring non-trivial solution of the last row of Eq. 

(2.61), and setting the determinant of the coefficient matrix to zero. 
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0det MC  (2.66) 

Assuming that a particular natural frequency is determined from Eq. (2.66), then from the 

last row of Eq. (2.61), )( 1
(1)

Mψ is determined up to an arbitrary constant. The remaining 

unknown fundamental variables at each ends of the shell segments can then be calculated 

successively from 

   1
)1(1)2(


 MMM  ψEψ  (2.67) 

                                  
   1

)2(1
1

)1(



  iMiMiM  ψCψ     )1,...,2,1(  Mi  (2.68) 

                                 
   1

)1(1)2(



  iMiMiM  ψEψ     )1,...,2,1(  Mi  (2.69) 

For the specially orthotropic material model and improved shell theory, which includes first 

order shear deformation, the order of the characteristic matrix CM is five [55]. However, the 

derivation process for the characteristic matrix shows that, for the macroscopically anisotropic 

material model and first order shear deformation theory, the order of the characteristic matrix CM 

becomes ten. 

2.3.2 Frequency trial method 

The solution of natural frequencies through Eq. (2.66) requires a frequency search, because 

the determinant of the characteristic matrix CM can only be evaluated if all the transfer matrices Ti 

are determined at each end of the shell segments. On the other hand, since the coefficient matrix K 

includes the frequency term ω, solution of the initial value problems (Eq. (2.57)) subject to initial 

conditions (Eq. (2.58)) can be accomplished for any particular circumferential vibration mode, only 

if a trial frequency is given as input. In principle, Kalnins [56] solved the natural frequencies of 

isotropic shells of revolution using classical shell theory by calculating the determinant of CM for 

incremented values of the frequency ω, until a change in the sign of the determinant of CM occurs. 

Later on Kayran and Vinson [55] used the same technique to extract the natural frequencies for the 

specially orthotropic shells with arbitrary number of layers using the first order shear deformation 

shell theory. In these studies, because the full anisotropic constitutive relations were not used, 

classical Fourier decomposition was applied, and it was observed that determinant of the 

characteristic matrix CM actually changed sign at the natural frequency.  

However, as the fundamental system of equations are applied by the application of finite 

exponential Fourier transform to the circumferentially coupled partial differential equations, the 

determinant of the characteristic matrix CM does not change sign at the natural frequency. Variation 

of the determinant of the characteristic matrix for the case of exponential Fourier transform is 

studied by Kayran and Yavuzbalkan [57]. In the referred study, it is seen that the determinant of the 
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10x10 characteristic matrix of the exponential Fourier transform is exactly the square of the 

determinant of the 5x5 characteristic matrix of the classical Fourier decomposition.  

Because the determinant of the characteristics matrix does not change sign through a 

natural frequency, a different algorithm is employed by Kayran and Yavuzbalkan to locate the 

natural frequency. The method essentially relies on checking the slope change of the determinant of 

the characteristic matrix, and detecting the interval where a natural frequency resides. After the 

extraction of the natural frequency, the transformed fundamental shell variables (Eqs. (2.42) and 

(2.43)) along the meridian of the shell are determined recursively from Eqs. (2.67) – (2.69) by 

operating on the already determined sub matrices Ci and Ei The dominant fundamental variable 

involved in the particular natural vibration mode is decided by looking at the normalized mode 

shapes along the meridian of the shell. For the particular circumferential wave number, the actual 

variation of the fundamental variables can be constructed by utilizing the cosine and sine parts of the 

fundamental shell variables, in the complex Fourier series representation Eqs. (2.40) and (2.41). 

In the present study, the initial value problems defined by Eqs. (2.57) and (2.58) are solved 

by numerically integrating the equations by the International Mathematical and Statistical Library 

(IMSL) subroutine DIVPAG utilizing the Adams-Moulton numerical integration option. The initial 

step in the solution procedure is to integrate Eq. (2.57), subject to the initial condition Eq. (2.57), in 

each shell segment and store the elements of the transfer matrices at the end of each shell segment. 

For a particular circumferential wave number n and trial frequency ω, Eq. (2.57) is numerically 

integrated and the continuous meridional variation of the winding angle, thickness and the stiffness 

coefficients, due to semi-geodesic winding, of the shell of revolution is handled during the numerical 

integration process. In the current study numerical integration of Eq. (2.57) within each shell 

segment is performed by the IMSL subroutine DIVPAG which uses a user supplied subroutine 

where all the elements of the coefficient matrix K are given. Therefore, as long as continuous 

variation of the elements of the coefficient matrix along the meridian of the shell of revolution is 

coded accordingly, arbitrary meridional variation of the shell properties can be handled very 

accurately.  



39 

 

CHAPTER 3 

FILAMENT WINDING LAWS 

 

In this section filament winding laws will be briefly reviewed to aid the understanding of 

the variation of the winding angle and the thickness of filament wound shells of revolution along the 

meridian. The geometry and winding patterns are the basic parameters governing the manufacturing 

of a filament wound shell of revolution. Figure 3.1 shows a typical fiber path on the surface of a 

shell of revolution. On the surface of the shell of revolution, which is defined by ),( xS


, fiber 

follows a path )(s


 [43]. 

 

Figure 3.1 Fiber path on the surface of a shell of revolution 

321 ˆsin)(ˆcos)(ˆ),(  xRxRxxS 


 
(3.1) 

 ˆ)(ˆ)()( 1 ssxs 


 
(3.2) 

In Eqs. (3.1) and (3.2) 1̂ , 2̂ , 3̂  represent the unit vectors in the x, y and z directions, and 

̂ represents the unit vector in the tangential direction θ. The change in the fiber tension 
tf


 along 

the fiber path gives rise to a force
rf


, per unit length of the fiber on the mandrel surface.  
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ds

fd
f t
r





 

(3.3) 

rf


 is directed towards the center of curvature of the fiber path and it can be split into a 

normal component 
nf


, which is perpendicular to the surface of the shell of revolution, and a 

transverse force 
bf


 which lies in the tangent plane drawn to the surface. 
bf


 is perpendicular to the 

plane formed by the tangent vector to the fiber path t


 and the normal vector n


. In semi-geodesic 

winding terminology, it is common to define the slippage tendency “fst” which is defined as the ratio 

of the transverse force 
bf


 and normal force 
nf


 [6]. 
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b.f
fst

r

r

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




 

(3.4) 

In Eq.(3.4) c


 is the unit curvature vector, and b


is the binormal vector and they are defined 

by Eq. (3.5). 

ds
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(3.5) 

where 
xS


 and 
S


 are the normalized basis vectors of the surface in the x and θ directions, 

respectively. 
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(3.6) 

The tangent vector to the fiber path can also be written as in Eq.(3.7); 

  sincos SSt x




 
(3.7) 

where α is the local winding angle shown in Figure 3.1.  

Eq. (3.4) can be manipulated and brought into the form given by Eq. (3.8) with the help of 

Eqs.(3.5)-(3.7). A detailed derivation of Eq. (3.8) can be found in [43]. 

 




cos)1(

sin)1(cossin)1(
2

2222

RR

RRRRRfst

dx

d






 

(3.8) 

In Eq. (3.8) R’ and R’’ indicate the first and second derivatives of with respect to x which is 

the axial coordinate shown in Figure 3.1. Eq.(3.8) gives the variation of the winding angle along the 

axis of the shell of revolution. Since the slippage tendency “fst” is taken as non-zero, Eq. (3.8) gives 
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the winding pattern for a semi-geodesic fiber path on the surface of the shell of revolution. For 

geodesic fiber path, slippage tendency “fst” is taken as zero and in that case Eq. (3.8) simplifies to  




tan
R

R

dx

d 


 

(3.9) 

3.1 GEODESIC WINDING 

Due to the fiber path stability requirements in the filament winding, the trajectory of the 

fiber path and the corresponding winding angles cannot be selected freely. Fibers are wound onto the 

mandrel along different paths which require stability and no slippage. The trajectory connecting two 

points on a surface according to the shortest distance over that surface is defined as the geodesic 

path. As this path represents the shortest distance, a fiber placed along this line will not slip when 

being pulled and no friction will be required to keep the fiber stable.  

For a shell of revolution with varying radii of curvature, Eq. (3.9) can be integrated from a 

known winding angle at one end of the shell of revolution, and the winding angle at any axial 

location can be calculated.  

For a general shell of revolution integration of Eq. (3.9) from a known winding angle α1 at 

one edge of the shell (x1,R1)to any axial location (x,R) yields Eq. (3.10). 

R

R

x

x 1
1

1
1 sinsinsin  

 

(3.10) 

For a truncated spherical shell of revolution 
sRRR  

 and sinsRR   therefore, 

Eq. (3.10) can be expressed as 





sin

sin
sinsin 1

1

 

(3.11) 

where 
1 is the meridional angle of the starting edge of the winding, and   is the 

meridional angle at any axial location. 

It should be noted that with geodesic winding once the starting edge and winding angle are 

chosen for a given geometry the whole fiber trajectory is determined. Therefore, fiber path freedom 

is quite limited with geodesic winding. 

 



42 

 

3.2 SEMI-GEODESIC WINDING 

Filaments are not necessarily wound geodesically to be stable. Stable non-geodesic 

winding, often called semi-geodesic winding, can also be performed. This requires a little deviation 

from the geodesic paths, depending on the required friction to hold the fiber at the desired position. 

Semi-geodesic winding offers more design freedom but still remains limited to the available friction 

during the winding process.  

3.2.1 Variation of the winding angle for truncated conical shell of revolution  

In case of semi-geodesic winding of conical shell of revolution, Eq. (3.8) can be simplified 

because ''R vanishes and 'R

 

is given by tan β where β
 
(π/2- ) is the semi-vertex angle of the 

truncated cone. Therefore, for a truncated conical shell with the semi-vertex angle β, as shown in 

Figure3.2, closed form solution to Eq. (3.8) can be found.  

β

R

x
x1
α1

x

α

R1

Figure3.2 Truncated conical shell of revolution geometry  

Using the geometrical relations for a truncated conical shell of revolution shown in Figure 

3.2, Eqs. (3.12) are derived.  


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(3.12) 

Substituting R , 'R and ''R in Eq. (3.8) where primed terms indicate the first and second 

derivatives of R with respect to x, the axial coordinate, Eq. (3.13) is obtained.  





tan.

tan).tansin.(

x

fst

dx

d 


 

(3.13) 

SL 
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Integration of Eq.(3.13) from a known winding angle α1 at one edge o f the shell (x1,R1) to 

any axial location (x,R) yields to Eq. (3.15). Detailed solution for the integration of Eq. (3.14) is 

given in the Appendix A.  

dx
x

d
fst

x

x

 


11

1

tan).tansin.(

tan







  

(3.14) 
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(3.15) 

3.2.2 Variation of the winding angle for truncated spherical shell of revolution  

For a spherical shell of revolution R and R  is equal to the radius of the sphere sR  as 

shown in Figure3.3 and R  is given by sinsR .  
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(3.16) 

 

Figure 3.3 Spherical shell of revolution geometry  

2

 

ds

sRR   

dx

  
d

 

sR

 

1R  

2R  

R  

Shell segment 



44 

 

 

Figure 3.4. Geometry of the spherical shell studied 

For spherical shells of revolution or any general shell of revolution, the variation of the 

winding angle with respect to meridional coordinate
 

should be obtained. Therefore, first a 

relationship between 




d

d

 

and 
xd

d

 

has to be derived where 




d

d  can be obtained employing chain 

rule for 
xd

d .  

In this case Eq. (3.8) simplifies to  









cos

sincot

d

d 

fst

 

(3.17) 

where   is the meridional coordinate shown in Figure2.1. A detailed derivation of Eq. 

(3.17) is presented in Appendix B.  

It should be noted that Eq. (3.17) cannot be explicitly integrated because   and α variables 

cannot be separated. For a truncated spherical shell of revolution, to determine the winding angle at 

a meridional location 
 
Eq. (3.17) has to be integrated from a known winding angle α1 at one edge 

of the shell ( 1 ) to any meridional location ( ). It should be noted that during the numerical 

integration of Eq. (2.57) in shell segments, for a conical shell of revolution the winding angle can be 

directly calculated from Eq. (3.15) at each integration step. However, for a spherical shell of 

revolution calculation of the winding angle at a meridional location necessitates another numerical 

integration of Eq. (3.17) at each integration step during the numerical integration of Eq. (2.57) in 

shell segments. Therefore, computational cost increases substantially. For the spherical shell of 

revolution, to overcome the computational cost of determining the winding angle at any meridional 

location the winding angles at the centers of each shell segment are calculated in the beginning, and 

they are taken as constant for the whole shell segment during the numerical integration of Eq. (2.57). 

Thus, numerical integration of Eq. (3.17) at each integration step during the numerical integration of 

Eq. (2.57) is eliminated. It should be noted that as long as sufficient number of shell segments is 

used during the numerical integration of Eq. (2.57), assigning constant winding angle, which is 
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calculated at the center of the shell segment, to the whole segment brings about no accuracy lost in 

determining the natural frequencies.  

3.3 THICKNESS VARIATION 

In filament winding operation, any unit length of the fiber at any location on the surface of 

the shell of revolution brings with itself the same amount of matrix, and the number of fibers in a 

cross-section is always constant. Therefore, the amount of material in a circumferential slice of the 

shell of revolution, with unit fiber length at a fiber orientation angle of α, should remain constant. 

Thus, it follows that the thickness of a general filament wound shell of revolution, at any axial 

location, can be calculated from Eq. (3.18) [6, 18, 43]. 





cos

cos 11
1
R

R
tt 

 

(3.18) 

where t represents the thickness of a single ply at the axial location where the radius is R, 

and t1 represents the thickness of a single ply at one edge of the shell of revolution where the radius 

is R1.  

3.4 APPLICABILITY OF THE WINDING LAWS 

In case of geodesic or semi-geodesic winding of shells of revolution Eqs. (3.8) and (3.18), 

which give the variation of the winding angle and thickness along the shell of revolution, are valid if 

winding angle α is less than 90
o
. For pure circumferential winding fiber orientation angle is 90

o
, 

therefore Eqs.(3.8) and (3.18) do not apply, and thickness remains constant since any unit length of 

the fiber brings with itself the same amount of matrix. Equation (3.18) shows that the thickness of 

the shell of revolution increases substantially when the fiber orientation angle approaches 90
o
. 

Practically the increase in the thickness of the shell of revolution is caused by fiber concentration on 

a relatively small area due to the repetitive rotation of the fiber around the circumference.  

For the geodesic winding it is clear from Eq. (3.10) that if the winding starts at the small 

radius edge of the shell of revolution, as long as the initial winding angle is less than 90
o
, then the 

winding angle will decrease along the meridian and it will always be less than 90
o
. However, if the 

winding starts at the large radius edge, then the winding angle will increase along the meridian of the 

shell, and depending on the initial winding angle and the ratio of the radii (R1/ R), the winding angle 

may reach 90
o
 somewhere along the axis of the shell of revolution.  

For the semi-geodesic winding depending on the shell geometry, initial winding angle and 

available friction the winding angle may increase along the shell axis even though the winding starts 

at the small radius edge; the increase of the winding angle along the shell axis is demonstrated for a 

truncated conical shell in Section 5.1.   
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3.5 INTEGRATION OF SEMI-GEODESIC WINDING LAWS TO THE NUMERICAL 

INTEGRATION BASED COMPUTER CODE  

The computer code developed to determine the natural frequencies and the variation of all 

the fundamental shell variables of laminated anisotropic shells of revolution employs the geodesic 

winding angle calculation for the fibers. Introduction of the friction to the winding process allows 

the use of semi-geodesic fiber paths. For conical shells of revolution Eq. (3.15) describes the semi-

geodesic winding angle as a function of initial winding angle, geometry of the shell and the slippage 

tendency. Thus, for conical shell geodesic winding angle formula Eq. (3.10) is replaced by semi-

geodesic angle formula derived (Eq. (3.15)). The analytical solution obtained for the conical shell 

decreases the computational costs and allows calculating and employing winding angle at every 

meridional step of DIVPAG solver. However, the convenience of analytical solution is not 

applicable for a spherical shell of revolution. For a spherical shell of revolution, winding angle at 

every meridional coordinate should be calculated by integrating Eq. (3.17) from a known winding 

angle α1 to any meridional location. As mentioned before in section 3.4, integration of Eq. (3.17) to 

determine the winding angle at meridional locations of each DIVPAG step increases the 

computational costs drastically. Although, computer code for this approach is generated, to 

overcome the high computational cost the winding angles at the centers of each shell segment are 

calculated in the beginning of the code and assigned to the whole segment respectively as constant 

values for each segment. It should be stated that this approach might bring some accuracy loss for 

small number of shell segments; however as long as sufficient number of shell segments is selected, 

this approach leads to the same results as the first approach. Results comparing two methods will be 

presented in the next sections of this thesis in detail.  
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CHAPTER 4 

 

VERIFICATION AND COMPARISON WITH FINITE 

ELEMENT SOLUTION 

 

 

Present study employs the multisegment numerical integration technique in order to 

determine natural frequencies and the transformed displacements and stress resultants. Most of the 

data on the vibration analysis of composite shells of revolution can be found on shells of revolution 

with constant radii of curvature such as cylindrical shells of revolution which have constant 

thickness and winding angle. For composite shells of revolution with variable radii of curvature the 

variation of thickness and winding angle has not been taken into consideration in the literature 

except for the work of Korjakin et.al [42]. Korjakin analyzed the damped vibrations of conical shells 

of revolution by incorporating the thickness and winding angle change due to geodesic winding.  

Validation of this multisegment numerical integration method for composite shells of 

revolution with constant thickness and winding angle has been previously given by Yavuzbalkan 

[44] and Kayran and Yavuzbalkan [57]. However, for semi-geodesic winding it has not been 

possible to find data to compare against. Therefore, due to limited references on the topic, a 

comparison study is conducted using a commercial finite element solver NASTRAN v2007.0, and 

the results of multisegment numerical integration and finite element method are compared. 

For comparison purposes, analysis of an anisotropic shell is performed for a conical shell 

geometry which is clamped at small radius end and fixed at large end. The shell studied has the 

material and geometric properties as given below. Material directions are presented in Figure 4.1.   

 Modulus in the fibre direction: 1E =213.74GPa, Modulus transverse to fibre: 2E =18.62 GPa 

 Shear moduli: 171.51312 GG GPa, 137.423 G GPa, Poisson’s ratio: 12 =0.28 

 Mass density:  =2051.88 kg m
-3

 

 Shell small radius, R
min= 57 cm, Shell large radius, R

max
 = 60 cm 
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 Stacking sequence for starting winding angle of 30
o
 is [30

o
 /-30

o
/30

o
/-30

o
]S  at the small 

radius end.  

 Preset slippage tendency, fst = 0.2 

 

 

 

 

Figure 4.1 Direction definitions  

Comparison of natural frequencies in Chapter 4 and 5 was made based on the non-

dimensional frequency parameter given in Eq. (4.1);  

1Ω Eh    (4.1) 

The comparison study has been performed for the conical shell by using 50 segments along 

axial direction. In order to confirm mesh density used in the finite element model (FEM), case 

studies with different mesh sizes on the conical model were carried out. Influence of mesh density is 

presented in Appendix C. The results presented in Appendix C show that division of the shell 

structure into 50 segments in the meridional direction is a highly acceptable compromise between 

output quality and the computation time.  

A continuous solution comparison is avoided as in case of inexistent analytical solution 

(e.g. spherical shell); continuous solution is not cost-effective and not employed. In addition, the use 

of high number of axial elements necessitates large number of elements in the circumferential 

direction and this increases the computational cost of the finite element solution.  

Figure 4.2 Meshed finite element model of the conical shell geometry  

x 

1 

2 

3 
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In order to realize FEA model shown in Figure 4.2, conical geometry is meshed in 

PATRAN 2005 r2 and elements corresponding to same segment on axial location are assigned with 

the same winding angle and thickness using the values calculated externally. The winding angle and 

thickness assignments to the elements in the circumferential slice at a particular axial location have 

been made manually without writing an external subroutine to automate the process. Automatic 

assignment of the winding angle and layer thicknesses to the elements still needs to be worked on as 

a future work.  

In case of the conical shell studied in this section, using the available analytical solution, 

the winding angle and thickness values at the axial midpoint of each segment is calculated and 

assigned as constant to the corresponding elements. However, in order to extend the present study to 

shells of revolutions other than conical geometry, a numerical solution is necessary to define 

winding angles and thicknesses. As solution of Eq. (2.88) is possible analytically for conical shell 

geometry, it is used for the purpose of defining the most accurate numerical approach. Different 

integration possibilities considered can be stated as following (see Figure 4.3 and 4.4 for a graphical 

representation);  

1. Integration from the beginning of the shell to the midpoint of the segment  

2. Integration from the midpoint of the segment before to the midpoint of the current 

segment  

3. Integration from the beginning of the shell to the end of segment and assigning the 

average of beginning and end winding angle of segment to the midpoint value of 

the segment  

4. Integration from the end of segment to the beginning of next segment and 

assigning the average value to the midpoint of the segment.  

Figure 4.3 Graphical representation for the numerical integration options 1 and 2. 

Directly solve for the midpoint value and assign this value to the segment.  
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Figure 4.4 Graphical representation for the numerical integration options 3 and 4. 

Use the average of the beginning and end of each segment for the relevant segment.  

In case of integrating from the beginning of the shell for each segment, as the number of 

segment increases, the integration step increases as well. To compensate this deterioration of 

solution resolution, in the solver the numerical integration step is related proportionally to the 

number of segment. Eq. (4.2) shows the step size adaptation used which is calculating the step size 

(H) considering the current axial location (R) and segment number (LSEGMENT). In Eq. (4.2), the 

multiplier “50” in the denominator is selected as a result of trade-off analysis between computation 

cost and solution accuracy.  

SEGMENT

i

L

RR
H





50

)(
 (4.2) 

4th order Runge-Kutta (RK4) solution is adapted to the current differential problem and Eq. 

(2.93) is integrated numerically. Table 4.1 shows the winding angles, in radians, calculated using 

different methods for a conical shell which is wound starting with 30
o
 from the small end and 

slippage tendency is 0.2. Although all four approaches gave good results as, compared to analytical 

solution as presented in Table 4.1, the best accuracy considering all axial location is obtained by 

employing the integration method 1. As a result of this analysis, method 1 is used for all numerical 

integration solutions throughout this research.  

Table 4.1 Comparison of different numerical integration approaches with analytical 

solution for a 500 segment conical shell. (fst=0.2, α1=30
o
) 

 
Winding angle [radians] 

Segment # Method 1 Method 2 Method 3 Method 4 Analytical 

1 0.52354999 0.52354999 0.523549926 0.523549926 0.52354999 

100 0.517100598 0.517087631 0.517100472 0.517087633 0.517100598 

200 0.510754125 0.510728473 0.510754002 0.510754002 0.510754002 

300 0.504569613 0.504531737 0.504569614 0.50453174 0.504569735 

400 0.498540844 0.498491072 0.498540845 0.498490955 0.498540963 

500 0.492661586 0.492600003 0.492661588 0.492600063 0.492661703 
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Once the method for numerical integration method is decided, it is necessary to determine 

the accuracy of the RK4 method compared to the analytical solution. Table 4.2 shows the 

comparison of the normalized frequencies calculated using analytical and numerical method of 

calculation procedure of winding angle for the conical shell which is geometrically described above. 

The initial winding angle is taken as 45
o
, preset slippage tendency is 0.2 and shell is divided into 50 

segments in the axial direction for multisegment solution. Calculations are performed for two 

different boundary conditions clamped-free (CFS) and clamped-clamped (CCS). The small radius 

edge is taken as clamped and large radius edge is taken as free and clamped, respectively. As it can 

be seen from Table 4.2 percent errors in case of numerical integration based calculation of the 

winding angle is very small and does not cause any problems to be used in case needed (e.g. 

spherical shell analysis).  

Table 4.2 Comparison of normalized frequencies calculated using analytical and numerical 

calculation procedure of the winding angle. (50 segments, fst=0.2, α1=45
o
 ) 

 Analitical Solution RK4 Solution % ERROR 

n CFS CCS CFS CCS CFS CCS 

0 0.888541 0.989288 0.888538 0.989281 0.000338 0.000708 

1 0.815486 1.012917 0.815484 1.012909 0.000245 0.000790 

2 0.646735 1.060461 0.646734 1.060453 0.000155 0.000754 

3 0.474222 1.097605 0.474223 1.097597 0.000211 0.000729 

4 0.341413 1.135936 0.341415 1.135928 0.000586 0.000704 

5 0.251200 1.124479 0.251201 1.124477 0.000398 0.000178 

6 0.194719 0.979998 0.194720 0.979999 0.000514 0.000102 

7 0.163799 0.841352 0.163799 0.841354 0.000000 0.000238 

8 0.152973 0.723383 0.152973 0.723386 0.000000 0.000415 

9 0.157610 0.629213 0.157609 0.629216 0.000634 0.000477 

11 0.195922 0.512601 0.195920 0.512602 0.001021 0.000195 

13 0.256012 0.483099 0.256009 0.483097 0.001172 0.000414 

15 0.330097 0.518269 0.330093 0.518266 0.001212 0.000579 

Figure 4.5 shows the mode shapes and natural frequencies for circumferential wave 

numbers ranging from n =0 to n =5. Given plots are the outputs calculated by NASTRAN v2007.0 

solver and represented in PATRAN 2005 r2. In Figure 4.5 half of the total number of nodal points 

gives the circumferential wave number. Thus, in the comparison of the results of the finite element 

solution with the results of multi-segment numerical integration solution the wave number is taken 

as the main parameter in identifying the right mode used in comparing the natural frequencies.  
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  (a) 

 

  (c) 

 

 (e) 

 

 (b) 

 

(d) 

 

  (f)

Figure 4.5 Finite Element Model output results for (a) n=0, (b) n=1, (c) n=2, (d) n=3, 

(e) n=4, (f) n=5  
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Table 4.3 gives a comparison between natural frequencies determined by employing 

analytical and numerical calculation of winding angle and thickness at each axial location. To 

overcome the computational cost of determining the winding angle at any meridional location the 

winding angles at the centers of each shell segment are calculated in the beginning, and they are 

taken as constant for the whole shell segment. As mentioned before, analytical results presented in 

Table 4.3 represents the natural frequencies obtained using continuous (at each DIVPAG step) 

calculation of winding angle along the axial coordinates. On the other hand, numerical determination 

of the winding angle employs RK4 from the beginning of the shell to midpoint of each segment for 

50 segments. Similarly, FEM assumes constant winding angle and thicknesses for each segment, 

where midpoint winding angles and thicknesses are calculated analytically externally.  

The results show that most of the non-dimensional frequency parameters agree very well up 

to the fourth digit for the numerical and analytical determination of the winding angle. Finite 

element solution has a maximum 3% of deviation from the solution determined by the multisegment 

numerical integration method modified for semi-geodesic fiber paths. Based on the comparison of 

the natural frequencies determined by the use of multi-segment numerical integration method and 

the finite element method it can be concluded that maximum 3% difference is an acceptable 

difference and the verification is complete.  
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Table 4.3 Comparison of natural frequencies calculated using numerical 

integration method and finite element method.  

Analytical Calculation of Winding Angle –  

Natural Frequency Output 

n f [rad/s] Ω   

0 4526.20 0.8510   

1 4302.04 0.8088   

2 3689.88 0.6937   

3 2988.18 0.5618   

4 2365.08 0.4446   

5 1868.82 0.3513   

Numerical Calculation of Winding Angle –  

Natural Frequency Output (50 Segment) 

n f [rad/s] Ω 
 

0 4526.21 0.8510 
 

1 4302.05 0.8088 
 

2 3689.88 0.6937 
 

3 2988.19 0.5618 
 

4 2365.09 0.4446 
 

5 1868.83 0.3514 
 

FEM Output (50 segment) 

n f [rad/s] Ω Difference % 

0 4601.43 0.8651 1.63 

1 4177.44 0.7854 -2.98 

2 3603.91 0.6776 -2.39 

3 2913.58 0.5478 -2.56 

4 2310.52 0.4344 -2.36 

5 1833.06 0.3446 -1.95 

One should note that the verification study presented in this chapter is not conducted in 

order to define the accuracy of the multi-segment numerical integration solution technique. multi-

segment numerical integration solution method is a semi-analytical solution, only assumptions are 

the assumptions of Reissner-Naghdi linear shell theory and the power of this technique in the 

determination of free vibration characteristics for shells of revolution manufactured using geodesic 

path is very well proven by the previous studies [55, 57].  

However, for a shell of revolution wound using semi-geodesic path, there is no reference in 

the literature to compare the results obtained by multi-segment solution method. In this case, finite 

element analysis is just a reference study to check the proper application of the multi-segment 

numerical integration solution technique.  
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CHAPTER 5 

 

NUMERICAL RESULTS AND DISCUSSION 

 

 

5.1 FILAMENT WOUND TRUNCATED CONICAL SHELLS OF 

REVOLUTION.  

5.1.1 Effect of semi-geodesic winding on the winding angle, thickness, 

stiffness coefficients and natural frequencies 

Undamped free vibration characteristics of filament wound conical shells of revolution, 

with varying fiber orientation angle and thickness, is first studied for a truncated conical shell 

which has a small end radius of 0.53m, large end radius of 0.6 m and cone angle  of 10o.   

The shell studied is assumed to be manufactured from high modulus graphite epoxy with 

the following properties: 

Modulus in the fiber direction: 1E =213.74GPa, Modulus transverse to fiber: 2E =18.62 

GPa, Poisson’s ratio: 12 =0.28, Shear moduli: 171.51312  GG GPa, 137.423 G GPa, Mass 

density:  =2051.88 kg m-3, eight ply shell with symmetric layout [θ/-θ/θ/-θ]S and with equal ply 

thickness of 0.24 mm at the starting edge of the winding which is the small radius edge. The 

material properties are selected in accordance with Kayran and Yavuzbalkan [57] for comparison 

purposes.  

For a filament wound truncated conical shell for which the winding starts from the small 

radius end, the effect of semi-geodesic winding on winding angle and thickness along meridional 

direction is shown in Figures 5.1 and 5.2. It should be noted that the thickness variation of the 

shell presented in Figure 5.2 is normalized with respect to the initial thickness at the small radius 

end. In order to investigate the effect of semi-geodesic winding for the whole range of possible 

starting winding angles, initial winding angles for the presented analysis are selected as 15o, 30o, 

45o, 60o and 75o. In Figure 5.1 variation of winding angle is given in units of degree considering 

the ease of commenting on the applicability of winding and magnitude effect of the preset 
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slippage tendency. As mentioned in section 3.4, applied method is only valid if the winding angle 

α is less than 90o. Equation (3.18) shows that the thickness of the shell of revolution increases 

substantially when the fiber orientation angle approaches 90o. Practically the increase in the 

thickness of the shell of revolution is caused by fiber concentration on a relatively small area due 

to the repetitive rotation of the fiber around the circumference. This effect can be seen on graphs 

(e) on both Figures 5.1 and 5.2 where the initial winding angle is 75o and preset slippage tendency 

is 0.3. It is observed that in given case the winding angle increases along meridional direction and 

at about 40% of the shell ending angle reaches to 90o and due to the repetitive rotation of the 

fiber, thickness of the shell increases indefinitely.  

 

Figure 5.1 Variation of the winding angle along the meridional coordinate. (a) α1=15o; 
(b) α1=30o; (c) α1=45o, (d) α1=60o; (e) α1=75o 

: geodesic;  : fst=0.1; : fst=0.2 ;  : fst=0.3  
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It should also be noted that for semi-geodesic winding depending on the shell geometry, 

initial winding angle and available slippage tendency the winding angle may increase along the 

shell axis even though the winding starts at the small radius edge. From Figure 5.1 it can be seen 

that the winding angle is higher when the preset slippage tendency is higher, and even though the 

winding starts at the small radius edge, if the preset slippage tendency is above a certain value the 

winding angle increases along the meridian of the shell of revolution. Figure 5.2 also shows that 

the thickness of the filament wound shell of revolution with a higher preset slippage tendency is 

higher compared to the thickness attained with a lower preset slippage tendency during the 

filament winding process. It should also be noted that depending on the slippage tendency, initial 

winding angle and the geometry of the shell of revolution, thickness may increase or decrease 

along the meridian. For instance, for the initial winding angle of 60o thickness increases along the 

meridian for the preset slippage tendency of 0.3. For geodesic winding and semi-geodesic 

winding with slippage tendencies of 0.1 and 0.2, thickness decreases along the meridian. 

Calculations also showed that when the initial winding angle is decreased, the relative differences 

among the winding angles and thicknesses, which are attained with the use of different preset 

slippage tendencies during the winding process, also decrease.  

 

 

Figure 5.2 Variation of the thickness along the meridional coordinate. (a) α1=15o; 
(b)α1=30o; (c) α1=45o, (d) α1=60o; (e) α1=75o 
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Figure 5.2 (continued) Variation of the thickness along the meridional coordinate. 
(a) α1=15o; (b)α1=30o; (c) α1=45o, (d) α1=60o; (e) α1=75o 

 : geodesic;  : fst=0.1; : fst=0.2 ;  : fst=0.3  

By employing different preset slippage tendencies the effect of semi geodesic winding 

on the natural frequencies is investigated for the initial winding angles in the range of 15o-75o at 

the small radius edge. Figures 5.3-5.7 show the variation of the normalized major stiffness 

coefficients for different preset slippage tendencies and for the initial winding angles of 15o, 30o, 

45o, 60o and 75o respectively. In Figures 5.3-5.7 extensional stiffness coefficients (A11, A22 and 

A66) are normalized with respect to the value of A11, bending stiffness coefficients D11, D22 and 

D66 are normalized with respect to the value of D11 and bending stiffness coefficients D16 and D26 

are normalized with respect to the value of D16 at the small radius edge of the conical shell. 

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0
x/L

N
or

m
al

iz
ed

 T
hi

ck
ne

ss
  

(e)



59 
 

 

 

 

 

Figure 5.3 Variation of stiffness coefficients along the meridional coordinate for α1=15o 

 : geodesic;  : fst=0.1; : fst=0.2 ;  : fst=0.3 
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Figure 5.4 Variation of stiffness coefficients along the meridional coordinate for α1=30o 

 : geodesic;  : fst=0.1; : fst=0.2 ;  : fst=0.3 
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Figure 5.5 Variation of stiffness coefficients along the meridional coordinate for α1=45o 
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Figure 5.6 Variation of stiffness coefficients along the meridional coordinate for α1=60o 
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Figure 5.7 Variation of stiffness coefficients along the meridional coordinate for α1=75o 
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Note that for a given initial winding angle and thickness, stiffness coefficients calculated 

at the small radius edge of the shell will also be the same for different preset slippage tendencies. 

Therefore, the stiffness coefficients are normalized with respect to the value of the stiffness 

coefficients at the small raidus edge where the winding angle is assumed to start. 

Although, it is difficult to draw a general conclusion on the effect of semi-geodesic 

winding on stiffness coefficients, some observations on the behavior of the stiffness terms for 

different preset slippage tendencies and initial winding angles can be stated in this section. 

Figures 5.3-5.7 shows that during the filament winding operation, application of higher preset 

slippage tendency results in higher bending stiffness coefficients, however depending on the 

initial winding angle, the extensional stiffness coefficient may be higher for low preset slippage 

tendency. This effect for bending stiffness terms may be explained by the layer thickness 

variation. Since bending stiffness is proportional to the third power of the thickness, higher 

thickness attained by higher preset slippage tendency causes bending stiffness coefficients to be 

higher.  

When the initial winding angle decreases, relative differences between the extensional 

and bending stiffness coefficients of the shells manufactured with different preset slippage 

tendency also decrease. Although, the shear stiffness coefficient A66 satisfies this statement for 

low starting angles, for high starting angles high preset slippage tendency has a decreasing effect 

on the shear stiffness coefficient A66. On the other hand, for the initial winding angles of 15o, 30o, 

45o, 60o higher preset slippage tendency results in lower extensional stiffness coefficient in the 

meridional direction A11. The decrease of the extensional stiffness in the meridional direction with 

the increase in the preset slippage tendency is due to the higher winding angle attained during the 

winding for the high preset slippage tendency case. Figures 5.3-5.7 also show that if the preset 

slippage tendency is below a certain value, bending stiffness coefficients D11 and D22 decrease 

along the span of the shell. In general it was observed that for the initial winding angles in the 

range of 15o-75o, higher preset slippage tendency resulted in higher extensional and bending 

stiffness in the circumferential direction. For the particular symmetrical shell wall layout with 

even number of layers, the only non-vanishing coupling stiffness coeffcients are D16 and D26, and 

existence of coupling terms makes the shell more flexible and this has a lowering effect on the 

natural frequencies.  

Analyzing the meridional variation effect of the initial winding angle and the slippage 

tendency on the stiffness terms, one may conclude that for relatively low initial winding angles 

such as 15o, the preset slippage tendency has negligible effect on stiffness coefficients. Both 

extensional and bending stiffness coefficients decrease in the meridional direction for 15o and 30o 

starting angles. For the initial winding angles of 45o and 60o, meridional extensional stiffness 

coefficient A11 decreases in meridional direction for the preset slippage tendency 0.2 and 0.3 and 

increases for geodesic winding and for the preset slippage tendency 0.1. Stiffness coefficients A22, 
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D11, D22, D66, D12 and D26 decrease in meridional direction for the starting winding angles 45o and 

60o except when preset slippage tendency is set to 0.3 for the 60o starting winding angle. In that 

case, all the listed stiffness coefficients increase in meridional direction. D16, bending-twisting 

coupling stiffness coefficient always decreases in the meridional direction and the effect of 

slippage tendency and initial winding angle is small for the investigated conical shell 

configuration.  

Finally, for the 75o initial winding angle case all the stiffness coefficients start to 

increase without bound at a certain meridional location. This increase is due to the fact that at that 

meridional location the orientation of the fibers becomes almost circumferential which means that 

the winding angle approaches to 90o. From Eq. (3.18) it can be seen that the thickness of the shell 

of revolution increases substantially when the fiber orientation angle approaches 90o. Practically 

the increase in the thickness of the shell of revolution is caused by fiber concentration on a 

relatively small area due to the repetitive rotation of the fiber around the circumference. 

For the conical shell of revolution, Figures 5.8 and 5.9 give the variation of the non-

dimensional fundamental natural frequency calculated by Eq.(4.1) with respect to circumferential 

wave number, for three different initial winding angles (α1), four different preset slippage 

tendency (including geodesic), and two edge conditions. 

The following abbreviations are used for the legends in Figures 5.8 - 5.10 and Tables 5.1 - 5.2: 

CFS: Clamped at the small radius edge, free at the large radius edge, winding starts at the 

small radius edge 

CCS: Clamped at the small radius edge, clamped at the large radius edge, winding starts 

at the small radius edge 

Note that in Figures 5.8 and 5.9, non-dimensional fundamental natural frequencies which 

are calculated for the initial winding angles of 30o, 45o, and 60o are presented. For small initial 

winding angles, the effect of preset slippage tendency on the fundamental natural frequencies is 

negligible. The low effect of preset slippage tendency on the natural frequencies for small initial 

winding angles is due to the small effect of the preset slippage tendency on the variation of the 

winding angle and the thickness. One can argue that even for 30o initial winding angle results 

shown in Figure 5.8(a) clearly shows that the effect of semi-geodesic winding is not significant. 

For large initial winding angles, the effect of slippage tendency is seen to be more effective on the 

natural frequencies. 
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Figure 5.8 Natural frequency versus n, CCS; (a) α1=30o, (b) α1=45o, (c) α1=60o 

 □: geodesic; ∆: fst=0.1 ; х: fst=0.2 ; ◊: fst=0.3 

 

Figure 5.9 Natural frequency versus n, CFS; (a) α1=30o, (b) α1=45o, (c) α1=60o 

 □: geodesic; ∆: fst=0.1 ; х: fst=0.2 ; ◊: fst=0.3 
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Figure 5.9 (continued) Natural frequency versus n, CFS; (a) α1=30o, (b) α1=45o, (c) α1=60o 

 □: geodesic; ∆: fst=0.1 ; х: fst=0.2 ; ◊: fst=0.3 

Figures 5.8 and 5.9 show that at high circumferential wave numbers when the preset 
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the high circumferential wave numbers, the net effect of stiffness and inertia cause the natural 

frequencies to increase with the increase in preset slippage tendency.  

Figure 5.10 shows the variation of the natural frequencies with the initial winding angle 

for different preset slippage tendency for a shell which is clamped at the small radius edge and 

free at the large radius end. Figure 5.10 shows that if the initial winding angle is further increased 

above 60o, that natural frequencies start to decrease for low circumferential wave numbers such as 

n=1-3. This behavior can be attributed to the fact that when the initial winding angle is further 

increased, the increase in the thickness becomes very high and the increase in the inertia due to 

the thickness increase becomes the dominant factor and natural frequencies decrease. At low 

circumferential wave numbers extensional strain energy is the dominant part of total strain 

energy, therefore above a certain thickness value the inertia increase starts to dominate. The 

decrease in the natural frequencies is more pronounced with the increase in the preset slippage 

tendency. This effect is valid up to the wave number at which the bending strain energy becomes 

more important than the extensional strain energy and D22 starts to dominate. As it was discussed 

before, at high circumferential wave numbers the bending stiffness coefficient in the 

circumferential direction is very dominant on the natural frequencies especially when the preset 

slippage tendency is high. However, for low preset slippage tendency when the initial winding 

angle is further increased it is seen that the natural frequencies of the higher circumferential 

modes drop. This drop is mainly attributed to the decrease in the shell thickness when the initial 

winding angle is increased. For instance, Figures 5.2 (d) and 5.2(e) show that the thickness of the 

shell with the initial winding angle 75o is considerably smaller than the thickness of the shell with 

the initial winding angle of 60o. Since the circumferential bending stiffness coefficient is 

proportional to the third power of the thickness, although the winding angle over the span of the 

shell is higher for the 75o initial winding angle case compared to the 60o initial winding angle 

case, the circumferential bending stiffness coefficient of the shell with the initial winding angle of 

75o should be smaller than the circumferential bending stiffness coefficient of the shell with the 

initial winding angle of 60o over a longer span of the shell. For the 75o and 60o initial winding 

angle cases the comparison of the circumferential bending stiffness coefficient D22 is given in 

Figure 5.11. In this figure the stiffness coefficients are normalized with respect to the meridional 

bending stiffness coefficient D11 of the conical shell which has an initial winding angle of 60o. 

From Figure 5.11 it can be clearly seen that D22 of the conical shell with the 60o initial winding 

angle is higher than the D22 of the conical shell with the 75o initial winding angle over a longer 

span of the shell of revolution for both geodesic winding and semi-geodesic winding with fst=0.1. 

Figure 5.10 also shows that at high circumferential wave numbers and at high initial winding 

angles,  the drop of natural frequencies of conical shells manufactured with lower preset slippage 

tendency, such as geodesic winding, is higher than the drop seen in the frequencies of conical 

shells manufactured with higher preset slippage tendency, such as fst=0.1. The reason for this 

difference can be best explained by examining Figure 5.11. For the 60o and 75o initial winding 
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angle cases, the difference in the circumferential bending stiffness D22 for the geodesic winding 

case is higher than the corresponding difference for the semi-geodesic winding case with fst=0.1. 

Therefore, at high circumferential wave numbers and in the high initial winding angle range, if 

the preset slippage tendency  is low the drop of natural frequency is higher compared to the drop 

for higher preset slippage tendency, as the initial winding angle is increased. Thus, at high 

circumferential wave numbers when the initial winding angle is further increased, the drop of the 

natural frequencies of the shells with low preset slippage tendency is another indication that at 

high circumferential wave numbers circumferential bending stiffness coefficient D22 is the 

dominant term affecting the natural frequencies. 

 

Figure 5.10 Variation of fundamental natural frequency with initial winding angle, CFS; 
(a) n=1, (b) n=3, (c) n=5, (d) n=7, (e) n=9, (f) n=13, (g) n=15 

 ◊: geodesic; □: fst=0.1 ; ∆: fst=0.2 ; х: fst=0.3 
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Figure 5.10 (continued) Variation of fundamental natural frequency with initial winding 
angle, CFS; (a) n=1, (b) n=3, (c) n=5, (d) n=7, (e) n=9, (f) n=13, (g) n=15 

 ◊: geodesic; □: fst=0.1 ; ∆: fst=0.2 ; х: fst=0.3 

 
Figure 5.11 Meridional variation of circumferential bending stiffness coefficient D22 for 

 (a)geodesic winding; (b) fst=0.1 

 : 60o;  : 75o 
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meridional direction (A11) also starts to be effective on the natural frequency. From Tables 5.1 

and 5.2 it can be seen that especially for low circumferential wave numbers and for low initial 

winding angle such as 30o, natural frequencies of conical shells with lower preset slippage 

tendency are slightly higher than the frequencies of shells with higher preset slippage tendency. It 

should be noted that for low initial winding angles such as 30o the thickness of the shell 

manufactured with low preset slippage tendency is smaller than the thickness of the shell 

manufactured with higher preset slippage tendency. Figure 5.2(b) shows this clearly. Therefore, 

the effect of lower inertia due to lower thickness on the frequencies should not be overlooked. 

Table 5.1 Fundamental non-dimensional frequencies  
corresponding to different wave numbers for CFS 

 
α1=30o α1=45o α1=60o 

fst fst fst 
n 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3 
0 0.860 0.856 0.851 0.847 0.844 0.861 0.889 0.924 1.108 1.273 1.411 1.492 
1 0.816 0.813 0.809 0.806 0.788 0.798 0.815 0.840 0.988 1.078 1.158 1.197 
2 0.700 0.697 0.694 0.691 0.641 0.642 0.647 0.655 0.716 0.742 0.758 0.743 
3 0.567 0.565 0.562 0.559 0.480 0.477 0.474 0.473 0.482 0.485 0.481 0.458 
5 0.356 0.354 0.352 0.349 0.260 0.256 0.251 0.247 0.233 0.231 0.226 0.217 
7 0.234 0.232 0.231 0.229 0.166 0.165 0.164 0.164 0.150 0.154 0.162 0.180 
9 0.177 0.177 0.177 0.176 0.148 0.152 0.158 0.165 0.150 0.165 0.191 0.242 
11 0.169 0.170 0.171 0.173 0.175 0.184 0.196 0.211 0.191 0.218 0.261 0.344 
13 0.192 0.195 0.198 0.202 0.224 0.238 0.256 0.279 0.251 0.290 0.353 0.471 
15 0.235 0.239 0.244 0.249 0.286 0.306 0.330 0.361 0.323 0.376 0.461 0.622 

Table 5.2 Fundamental non-dimensional frequencies 
 corresponding to different wave numbers for CCS 

 
α1=30o α1=45o α1=60o 

fst fst fst 
n 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3 
0 0.944 0.941 0.939 0.937 0.942 0.961 0.989 1.029 1.284 1.479 1.758 2.022
1 0.946 0.945 0.943 0.941 0.960 0.982 1.013 1.056 1.309 1.509 1.800 2.060
2 0.954 0.954 0.953 0.953 1.001 1.026 1.060 1.107 1.356 1.560 1.855 1.983
3 0.961 0.964 0.966 0.969 1.038 1.063 1.098 1.143 1.398 1.601 1.642 1.585
5 0.874 0.884 0.895 0.906 1.081 1.103 1.124 1.141 1.103 1.085 1.052 0.997
7 0.739 0.747 0.756 0.765 0.846 0.845 0.841 0.834 0.739 0.719 0.695 0.667
9 0.624 0.630 0.636 0.642 0.645 0.638 0.629 0.619 0.531 0.521 0.515 0.515

11 0.540 0.544 0.548 0.553 0.523 0.518 0.513 0.508 0.445 0.451 0.466 0.497
13 0.491 0.495 0.498 0.502 0.478 0.480 0.483 0.489 0.449 0.472 0.508 0.570
15 0.478 0.482 0.486 0.489 0.495 0.505 0.518 0.535 0.507 0.547 0.605 0.696

It should be noted that except for the high circumferential wave number side, without a 

closed form solution for the natural frequencies, parametric effect of the stiffness coefficients, 

thickness, circumferential wave number and the boundary conditions cannot be explicitly 

identified. Therefore, one cannot always draw an effect-result type of conclusion like the situation 

on the high circumferential wave number side where the bending stiffness coefficient in the 

circumferential direction (D22) stands out as the main parameter governing the natural frequency.  
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5.1.2  Effect of cone angle on the variation of the winding angle, thickness 

and natural frequencies 

In order to investigate the effect of cone angle on the variation of winding angle, 

thickness and natural frequencies of a filament wound conical shell of revolution, results for 

conical shell of revolution with two different cone angles are compared. In the analyses cone 

angles are taken as 10o and 20o. As it can be seen in Figure 3.2, when the cone angle is changed, 

different cone geometries are possible depending on the design considerations. For this study, 

small end radius, Rmin and slant length, SL , are selected as constant and axial length of the shell as 

well as large end radius, Rmax, are allowed to change with the varying cone angle, β.  

Being consistent with the geometry analyzed in Chapter 5, small end radius is selected as 

0.53 m, and slant length is fixed to 0.40311 m. Using the given small end radius and slant length, 

for cone angle of 20o, large end radius, Rmax is calculated as 0.66787 m.  

Results for the two conical shells with different cone angles are presented below. The 

variation of the winding angle, thickness along the shell axis and the free vibration characteristics 

of the two conical shells of revolution are compared for two different preset slippage tendencies. 

As mentioned, different geometries with the same cone angle can be created, and this analysis can 

be extended to those geometries if required as long as the slant length is defined by the design.  

 
Figure 5.12 Variation of the winding angle and thickness along meridional 

direction for two different cone angles using fst=0.1 

 : β=10o;  : β=20o 
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Figure 5.13 Variation of the winding angle and thickness along meridional 
direction for two different cone angles using fst=0.3 

 : β=10o;  : β=20o 

Figures 5.12 and 5.13 show the variation of winding angle and thickness along the 

meridional direction for two different truncated conical shells of revolution having cone angles, 

β=10o and 20o, and for two preset slippage tendency, fst=0.1 and 0.3 respectively. Both shells are 

assumed to be wound with starting winding angle, α1=45o at the small radius edge. From Figures 

5.12 and 5.13 it can be seen that when the cone angle is increased the winding angle and thickness 

decreases compared to the low cone angle case for both preset slippage tendencies analyzed. It is 

also seen that for the same cone angle when the preset slippage tendency is increased the winding 

angle and the thickness becomes higher over the span of the shell compared to the low preset 

slippage tendency.  

Figure 5.14 shows the variation of the natural frequencies of the conical shells with the 

circumferential wave number for two different boundary conditions, two different cone angles and 

for two different preset slippage tendency. Figure 5.14-(a) gives the natural frequencies of the 

conical shell which is clamped at both ends. On the other hand, Figure 5.14-(b) gives the natural 

frequencies of the conical shell which is clamped at the small radius end and free at the large 

radius end. The natural frequencies are also presented in tabular form in Table 5.3 for both edge 

conditions.  

As mentioned in section 5.1, without a closed form solution for the natural frequencies, 

parametric effect of different terms cannot be explicitly identified. However, for the two conical 

shells, with two different cone angles, analyzed it is observed that when the cone angle is 

increased the natural frequencies drop for almost all circumferential vibration modes. This drop in 

the natural frequencies is mainly attributed to the combined effect of the variation of the winding 

angle and thickness. At high circumferential wave numbers the dominant stiffness coefficient 

affecting the natural frequency is the bending stiffness coefficient in the circumferential direction 
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D22. When the cone angle is increased, the winding angle and thickness decrease. The decrease of 

the winding angle and thickness due to an increase in the cone angle accounts for drop in the 

bending stiffness coefficient in the circumferential direction D22. It should be noted that although 

the reduction in the thickness has an increasing effect on the natural frequencies, the increase of 

the circumferential length of the cone in a way compensates the effect of thickness reduction. 

Therefore, the decrease of the circumferential bending stiffness D22 due to the increase of the cone 

angle accounts for the drop of the natural frequency at high circumferential wave numbers. 

 

Figure 5.14 Variation of the fundamental non-dimensional frequencies for two 
different cone angles for (a) CCS, (b) CFS 

 ◊: β=10o, fst=0.1; □: β=10o, fst=0.3; ∆: β=20o, fst=0.1; o: β=20o, fst=0.3 
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angle increases, the differences in the natural frequencies of the shells wound by applying two 

different preset slippage tendency is less for the higher cone angle case. This conclusion can be 

extracted from a careful examination of Figures 5.12 and 5.13. 

Table 5.3 Fundamental non-dimensional frequencies for two different 
cone angles and preset slippage tendencies 

β=10O, fst=0.1 β=10O, fst=0.3 β=20O, fst=0.1 β=20O, fst=0.3 

n CFS CCS CFS CCS CFS CCS CFS CCS 

0 0.861 0.961 0.924 1.029 0.713 0.828 0.727 0.851 

1 0.798 0.982 0.840 1.056 0.678 0.840 0.686 0.865 

2 0.642 1.026 0.655 1.107 0.571 0.867 0.570 0.898 

3 0.477 1.063 0.473 1.143 0.444 0.898 0.437 0.932 

4 0.346 1.100 0.337 1.184 0.334 0.925 0.325 0.963 

5 0.256 1.103 0.247 1.141 0.252 0.941 0.244 0.983 

6 0.198 0.976 0.192 0.980 0.195 0.888 0.189 0.913 

7 0.165 0.845 0.164 0.834 0.158 0.797 0.154 0.806 

8 0.151 0.731 0.157 0.713 0.137 0.707 0.136 0.707 

9 0.152 0.638 0.165 0.619 0.127 0.628 0.130 0.622 

11 0.184 0.518 0.211 0.508 0.136 0.510 0.146 0.502 

13 0.238 0.480 0.279 0.489 0.167 0.450 0.183 0.449 

15 0.306 0.505 0.361 0.535 0.208 0.443 0.231 0.453 

5.1.3 Effect of semi geodesic winding on the mode shapes 

The effect of semi-geodesic winding on the mode shapes of the conical shell which is 

clamped at both edges is given in Figures 5.15 - 5.17. For the particular solution, circumferential 

wave number is taken as one (n=1) and three different initial winding angle 30o, 45o, 60o are 

investigated. For this configuration and the initial winding angles and the preset slippage 

tendencies used, the dominant fundamental vibration mode was identified as the lateral 

displacement (w0). The dominant displacement mode is decided after the normalization process of 

the fundamental shell variables. The normalization of the displacement mode shapes is made with 

respect to the largest fundamental variable that is determined along the axis of the shell of 

revolution during the solution of the fundamental shell variables. Thus, the displacement 

component which has a value of unity somewhere along the axis of the shell of revolution is the 

dominant mode at that frequency. Figures 5.15 - 5.17 present the normalized cosine and sine parts 

of the lateral, meridional and circumferential displacements given by Eq. (2.42) and (2.43). It 

should be noted that in this particular example, independent from the initial winding angle and 

preset slippage tendency, cosine part of the lateral displacement mode dominates the mode shape 

since the sine part is much smaller. The actual variation of the lateral displacement over the whole 

conical shell can be constructed by utilizing the cosine and sine parts of the lateral displacement 

in Eq.(2.40) for n=1.  
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Figure 5.15 (a) Lateral, (b) circumferential, (c) meridional displacement mode shapes 
for the conical shell of revolution; α1=30o 

 : geodesic;   : fst=0.1; : fst=0.2 ;  : fst=0.3 
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Figure 5.16 (a) Lateral, (b) circumferential, (c) meridional displacement mode shapes 
for the conical shell of revolution α1=45o 

 : geodesic;   : fst=0.1; : fst=0.2 ;  : fst=0.3 
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Figure 5.17 (a) Lateral, (b) circumferential, (c) meridional displacement mode shapes 
for the conical shell of revolution α1=60o 

 : geodesic;   : fst=0.1; : fst=0.2 ;  : fst=0.3 
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For the present investigation, increasing the initial winding angle introduces a noticeable 

effect of the preset slippage tendency. Almost inexistent shift in lateral mode shape for the 30o 

initial winding angle becomes a critical design consideration for using larger starting winding 

angles and for using different values of preset slippage tendencies. For the 60o initial winding 

angle, Figure 5.17 shows that for low preset slippage tendency the lateral displacement mode 

shapes are almost identical as shown by the geodesic winding case and semi-geodesic winding 

case with the preset slippage tendency of 0.1. When the preset slippage tendency is increased, it is 

observed that the peak displacement point shifts towards the small radius edge. From Figure 5.17 

it can be seen that for the semi-geodesic winding case with the preset slippage tendency of 0.3, 

the shift of the peak displacement point towards the small radius edge is approximately 60 percent 

of the span of the shell. 

For the initial winding angle of 60o and for the case with the preset slippage tendency of 

0.3, Figures 5.2 and 5.6 show that the thickness and meridional bending stiffness coefficient D11 

increase towards the larger radius edge of the conical shell. Therefore, the shift of peak lateral 

displacement location towards the small radius edge is mainly attributed to the increased 

thickness and stiffness of the shell towards the larger radius edge for the case with the preset 

slippage tendency of 0.3. The increased bending stiffness of shell near the larger radius edge 

cause the peak displacement location to shift towards the small radius edge for the high preset 

slippage tendency case.  

Similar to the 60o initial winding angle case, Figure 5.16 shows the shift of peak lateral 

displacement location of the dominant mode shape (cosine part of lateral displacement) towards 

the small radius edge for the initial winding angle of 45o. However, this shift is much smaller 

compared to the shift of peak lateral displacement shift for the 60o initial winding angle case 

presented in Figure 5.17. At high initial winding angles the effect of preset slippage tendency is 

more pronounced on the stiffness coefficients. The shift of the peak lateral displacement point is 

towards the small radius edge becomes significant at high initial winding angles and at high preset 

slippage tendency.  

From Figure 5.15, it can be seen that for the 30o initial winding angle case the effect of 

preset slippage tendency is almost negligible. For the particular shell of revolution studied, it is 

seen that especially when the initial winding angle is high, the preset slippage tendency can be a 

significant design parameter affecting the mode shapes of the filament wound shells of revolution.  

For the 60o initial winding case it is also observed that when the preset slippage tendency 

is increased the nodal point of the lateral displacement also shifts towards the small radius edge. 

For the preset slippage tendency of 0.3 the shift of the nodal point towards the small radius edge 

is also significant. Figure 5.17(a) shows that the shift in the nodal point towards the small radius 

edge is approximately 30% of the span of the shell compared to the geodesic winding case. With 
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this case study, it is shown that the semi-geodesic winding may have a significant effect on the 

mode shapes depending on the preset slippage tendency used during the filament winding process.  

5.2 FILAMENT WOUND TRUNCATED SPHERICAL SHELLS OF 

REVOLUTION  

5.2.1 Effect of semi-geodesic winding on the winding angle, thickness, 

stiffness coefficients and natural frequencies 

By implementing the semi-analytical method of solution, a sample study is also 

performed for the effect of the semi-geodesic winding on the natural frequencies of truncated 

filament wound spherical shells. The truncated sphere is assumed to have a radius of 1 m, and 

overall thickness of 5.76 mm at the small radius edge. The shell is clamped at the narrow end 

corresponding to a meridian angle of  10o. The outer edge of the spherical shell, 

corresponding to a meridian angle of  70o, is clamped, and let free (Figure 2.1), resulting in 

analysis for two different boundary conditions. Each ply is assumed to be composed of high 

modulus graphite epoxy, with the same material properties used in the conical shell example, and 

each ply has a thickness of 0.24 mm at the narrow end. Shell wall is composed of 24 layers with 

alternating winding angles [  /// /  /// /  /// ]S.  

The analyses are performed for the spherical shell which is wound by starting the 

winding at the narrow end. In order to investigate the effect of semi-geodesic winding on stiffness 

coefficients and vibration characteristics, initial winding angles of 25o, 45o, and 65o are selected. 

Figure 5.18 gives the variation of the winding angle with respect to the normalized meridian of 

the spherical shell for different preset slippage tendencies. Similar to the truncated conical shell 

analyzed in section 5.1, variation of the winding angle is presented in Figure 5.18 where the 

winding angle has the units of degrees, and the thickness variation along the meridional direction 

is given in Figure 5.19 where the thickness is normalized with respect to the initial thickness at 

the narrow end corresponding to a meridian angle of  10o.  

It should be noted that the variation of the winding angle is obtained by numerically 

integrating Eq.(3.17) from a known winding angle at the starting edge of the winding to any 

general meridional location.  
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Figure 5.18 Variaton of the winding angle along the meridian of the shell for 
initial winding angle of (a) 25o; (b) 45o; (c) 65o 

 : geodesic;  : fst=0.1; : fst=0.2 ;  : fst=0.3 

For the particular spherical shell geometry it is seen that the winding angles for the cases 

with different preset slippage tendencies show sharp drops near the small radius edge and as the 

outer edge is approached winding angles level out. Similar to the behavior for the conical shell, 
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spherical shell investigated such a conclusion cannot be inferred from the results given in Figure 

5.18.  

 

 

Figure 5.19 Variation of the normalized thickness along the meridian of the 
shell for initial winding angle of (a) 25o; (b) 45o; (c) 65o 

 : geodesic;  : fst=0.1; : fst=0.2 ;  : fst=0.3  
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winding angle, is thicker. For other preset slippage tendency cases similar thickness variations are 

calculated and it is observed that higher preset slippage tendency causes slight increases in the 

thickness over the whole span of the spherical shell of revolution.  

 

Figure 5.20 Variation of the normalized thickness along the meridian of the 
shell for fst=0.2 and different initial winding angles 

Figures 5.21 - 5.23 give the variation of the normalized extensional stiffness coefficients 

(Aij) and normalized bending stiffness coefficients (Dij) with respect to the normalized meridian 

of the truncated spherical shell. The variation of stiffness coefficients are plotted for three 

different initial winding angle 25o, 45o and 65o. Normalization is employed in a similar manner to 

the conical shell stiffness analysis; extensional stiffness coefficients (A11, A22 and A66) are 

normalized with respect to the value of A11, bending stiffness coefficients D11, D22 and D66 are 

normalized with respect to the value of D11 and bending stiffness coefficients D16 and D26 are 

normalized with respect to the value of D16 at the small radius edge of the conical shell. Note that 

all stiffness coefficient terms are represented in a logarithmic scale because of the steep 

variations, except for the extensional stiffness coefficient in the meridional direction, A11 term 

which does not vary as steep as other stiffness terms.  
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Figure 5.21 Stiffness coefficients along normalized meridian of the spherical shell for α1=25o 

 : geodesic;  : fst=0.1; : fst=0.2 ;  : fst=0.3  
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Figure 5.22 Stiffness coefficients along normalized meridian of the spherical shell for α1=45o 

 : geodesic;  : fst=0.1; : fst=0.2 ;  : fst=0.3  
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Figure 5.23 Stiffness coefficients along normalized meridian of the spherical shell for α1=65o 

 : geodesic;  : fst=0.1; : fst=0.2 ;  : fst=0.3  
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Figures 5.21-5.23 show that, similar to the conical shells of revolution, winding 

operation by applying higher preset slippage tendency results in higher bending stiffness 

coefficient, but extensional stiffness coefficient might be higher or lower. Unlike conical shells, 

the effect of initial winding angle on the relative differences between the stiffness coefficients of 

the shells manufactured applying different preset slippage tendency is less significant for a 

spherical shell of revolution. The less significant effect of the preset slippage tendency used in the 

manufacturing of the spherical shells of revolution on the stiffness coefficients, compared to the 

corresponding effect for conical shells, can be explained considering the variation of the winding 

angle and thickness of the spherical shell of revolutions, as shown in Figures 5.18 and 5.19. From 

Figure 5.18 it can be seen that especially for high initial winding angles the effect of preset 

slippage tendency on the variation of the winding angles is less pronounced in the spherical shell 

of revolution compared to the conical shells of revolution. More importantly, Figure 5.19 shows 

that the effect of the preset slippage tendency on the thickness variation is very small for initial 

winding angles 25o, 45o and 65o. Therefore, the effect of thickness on the relative differences 

between the stiffness coefficients of the spherical shells, which are manufactured with different 

preset slippage tendencies, is also very small. Therefore, the main reason for the lower effect of 

the preset slippage tendency on the stiffness coefficients is mainly attributed to the fact that the 

differences between the thicknesses of the spherical shells of revolution, which are wound with 

different preset slippage tendencies, are very small. 

For the geodesic winding and 25o initial winding angle case, the bending-twisting 

coupling coefficient D26 is seen to decrease sharply beyond the 40% span location, as seen in 

Figure 21. This sharp decrease is due to the fact that for the geodesic winding case, the winding 

angle decreases along the shell axis continuously such that below the 7o winding angle D26 

becomes negative. Therefore, in the logarithmic the complete curve for D26 is not shown. 

In general it was observed that, for the initial winding angle in the range of 25o-65o 

studied, higher preset slippage tendency resulted in higher extensional and bending stiffness in the 

circumferential direction. Generally, all stiffness coefficients are steeply decreasing along the 

meridional direction for all initial winding angles. However, for the extensional stiffness 

coefficient in the meridional direction, A11, the preset slippage tendency has a lowering effect on 

the stiffness and for the initial winding angles of 45o and 65o A11 slightly increases close to the 

small radius end.  

For the clamped-free and clamped-clamped truncated spherical shell of revolution 

natural frequencies are calculated by the numerical integration based solution technique 

described. Figures 5.24 and 5.25 give the variation of the non-dimensional fundamental frequency 

(Eq. (4.1)), corresponding to non-axisymmetric vibration modes, with respect to the 

circumferential wave number for the initial winding angles of 25o, 45o, 65o and for different preset 

slippage tendencies. For the particular spherical shell geometry it is seen that unlike the situation 
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for the conical shell of revolution, at low circumferential wave numbers the effect of preset 

slippage tendency on the natural frequencies is not much and the natural frequencies of shells 

manufactured by different preset slippage tendencies are very close to each other. At higher 

circumferential wave numbers when the preset slippage tendency is increased, similar to the 

behaviour observed in conical shells, natural frequencies of the spherical shell increase. The 

increase in the natural frequencies with the increase in the preset slippage tendency is again 

attributed to the higher circumferential bending stiffness coefficient (D22) of the spherical shell 

manufactured with higher preset slippage tendency. From Figure 5.18 it can be seen that the 

winding angle of the shell manufactured with higher preset slippage tendency is higher than the 

winding angle of the shell manufactured with lower preset slippage tendency over the whole span 

of the shell. In addition, higher preset slippage tendency causes slight increases in the thickness 

over the whole span of spherical shell of revolution. Therefore, the combined effect of higher 

winding angle and slightly higher thickness over span of the shell results in higher circumferential 

bending stiffness. It should be noted that although the thickness of the spherical shell with higher 

preset slippage tendency is higher, the increase of the natural frequencies with the circumferential 

wave number indicates that at high circumferential wave numbers the circumferential bending 

stiffness becomes more effective on the natural frequencies compared to the effect of inertia. 

Similar to the conclusion drawn for the conical shell example, for the spherical shell on the high 

circumferential wave number side bending stiffness coefficient in the circumferential direction 

(D22) also stands out as the main parameter governing the natural frequency, and higher preset 

slippage tendency results in higher fundamental natural frequencies. However, on the low 

circumferential wave number side one can not single out a parameter which is dominant on the 

natural frequencies.  

 

Figure 5.24 Natural Frequency versus n; CFS; Spherical Shell (a) α1=25o; 

(b)α1=45o; (c) α1=65o 

 □: geodesic; ∆: fst=0.1 ; х: fst=0.2 ; o: fst=0.3  

0

0.08

0.16

0.24

0.32

0 5 10 15
n

Ω

(a)

0

0.06

0.12

0.18

0.24

0.3

0 5 10 15
n

Ω

(b)



89 
 

 

Figure 5.24 (continued) Natural Frequency versus n; CFS; Spherical Shell 

(a)α1=25o; (b) α1=45o; (c) α1=65o 

 □: geodesic; ∆: fst=0.1 ; х: fst=0.2 ; o: fst=0.3  

 

 

Figure 5.25 Natural Frequency versus n; CCS; Spherical Shell (a) α1=25o; 
(b) α1=45o; (c) α1=65o 

 □: geodesic; ∆: fst=0.1 ; х: fst=0.2 ; o: fst=0.3  

0

0.06

0.12

0.18

0.24

0 5 10 15
n

Ω

(c)

1.6

1.8

2

2.2

2.4

2.6

0 5 10 15
n

Ω

(a)

1.6

1.8

2

2.2

2.4

2.6

0 5 10 15
n

Ω
(b)

1.6

1.8

2

2.2

2.4

0 5 10 15n

Ω

(c)



90 
 

Tables 5.4 and 5.5 give the natural frequencies of the spherical shell of revolution for 

two different boundary conditions. Table 5.4 gives the natural frequencies for the clamped-free 

shell, and Table 5.5 gives the natural frequencies for the clamped-clamped shell. It is noted that at 

high circumferential wave numbers when the initial winding angle is increased the differences 

between the natural frequencies for different preset slippage tendency cases become less 

compared to the cases when the initial winding angle is low. Although high preset slippage 

tendency still accounts for higher natural frequencies due to the higher circumferential bending 

stiffness attained by higher preset slippage tendency, the differences between the natural 

frequencies of the spherical shells wound by different preset slippage tendency is less for the high 

initial winding case compared to the low initial winding case. However, for the conical shell 

studied when the initial winding angle is increased the differences between the natural frequencies 

of conical shells wound by applying different preset slippage tendency also increase (Figures 5.8 

and 5.9). This behaviour is just opposite of the behaviour observed in spherical shell of 

revolution. The main reason for this may be attributed to the fact that for the spherical shell of 

revolution, when the winding angle is increased frequencies decrease whereas for the conical shell 

studied natural frequencies increase when the initial winding angle is increased. Therefore, when 

the initial winding angle is increased the differences between the natural frequencies of spherical 

shells wound by applying different preset slippage tendencies may become less compared to the 

differences between the natural frequencies of the spherical shell of revolution which has a low 

initial winding angle.  

It is noticed that when the initial winding angle is increased thickness becomes less 

compared to the thickness attained when the initial winding angle is low and the effect of 

thickness on the circumferential bending stiffness D22 becomes more dominant than the winding 

angle. Therefore, for the same preset slippage tendency, when the winding angle is increased the 

circumferential bending stiffness drops. Since at high circumferential wave numbers the 

circumferential bending stiffness is the most effective parameter on the natural frequency, natural 

frequencies also decrease when the initial winding angle is increased. As a matter of fact for the 

spherical shell of revolution studied, except for some low circumferential wave numbers, for the 

same preset slippage tendency the natural frequencies are seen to decrease with the increase in the 

initial winding angle for almost all circumferential vibration modes.  



91 
 

Table 5.4 Fundamental non-dimensional frequencies  
corresponding to different wave numbers for CFS 

 

α1=25o α1=45o α1=65o 

fst fst fst 

n 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 0.769 0.763 0.756 0.748 0.695 0.687 0.677 0.667 0.610 0.601 0.592 0.582 

1 0.250 0.253 0.256 0.257 0.268 0.268 0.267 0.265 0.239 0.237 0.234 0.231 

2 0.055 0.056 0.056 0.056 0.057 0.056 0.056 0.056 0.047 0.047 0.047 0.046 

3 0.020 0.021 0.021 0.021 0.017 0.018 0.018 0.018 0.012 0.012 0.012 0.012 

5 0.042 0.043 0.044 0.045 0.034 0.034 0.035 0.036 0.021 0.021 0.022 0.023 

7 0.077 0.078 0.080 0.083 0.062 0.064 0.066 0.069 0.039 0.040 0.042 0.043 

9 0.118 0.121 0.125 0.131 0.097 0.100 0.104 0.109 0.062 0.064 0.066 0.070 

11 0.165 0.170 0.177 0.185 0.137 0.141 0.148 0.156 0.089 0.092 0.096 0.101 

13 0.216 0.224 0.234 0.246 0.181 0.188 0.197 0.209 0.119 0.123 0.129 0.137 

15 0.271 0.282 0.296 0.313 0.228 0.238 0.251 0.267 0.151 0.158 0.166 0.176 

Table 5.5 Fundamental non-dimensional frequencies  
corresponding to different wave numbers for CCS 

 

α1=25o α1=45o α1=65o 

fst fst fst 

n 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 1.559 1.549 1.535 1.516 1.523 1.507 1.487 1.462 1.480 1.460 1.436 1.407 

1 1.601 1.621 1.634 1.638 1.639 1.645 1.644 1.635 1.644 1.656 1.632 1.626 

2 1.660 1.718 1.725 1.734 1.722 1.718 1.719 1.710 1.705 1.695 1.684 1.666 

3 1.682 1.737 1.774 1.793 1.737 1.762 1.770 1.767 1.727 1.730 1.722 1.707 

5 1.719 1.824 1.867 1.908 1.795 1.845 1.872 1.883 1.793 1.798 1.812 1.793 

7 1.763 1.872 1.987 2.026 1.855 1.954 1.976 2.003 1.850 1.868 1.882 1.884 

9 1.816 1.945 2.059 2.177 1.916 2.014 2.082 2.125 1.888 1.940 1.967 1.979 

11 1.875 2.022 2.158 2.267 1.981 2.100 2.188 2.251 1.945 2.013 2.054 2.077 

13 1.940 2.102 2.258 2.389 2.048 2.187 2.296 2.376 2.001 2.087 2.142 2.177 

15 2.009 2.185 2.359 2.511 2.117 2.275 2.403 2.503 2.060 2.161 2.231 2.279 

Figures 5.26 and 5.27 show the variation of the fundamental natural frequency of the 

spherical shell of revolution with respect to the initial winding angle for different circumferential 

wave numbers, preset slippage tendencies and for two different edge conditions. For the spherical 

shell which is clamped at the narrow end and free at the outer edge, Figure 5.26 gives the 

variation of the non-dimensional natural frequency with respect the initial winding angle for 

different circumferential wave numbers. Depending on the particular circumferential vibration 

mode, the natural frequencies either decrease continuously or start to decrease beyond a certain 
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initial winding angle. It can be seen from Figure 5.26 that for high circumferential wave numbers 

natural frequency monotonically decrease and the highest frequency occurs at low initial winding 

angles. On the other hand, for low circumferential wave numbers natural frequencies 

corresponding to spherical shells wound with different slippage tendencies initially increase and 

then start to decrease, so they have a peak value in the initial winding angle range 5o-75o.  

Based on the variation of the natural frequency with the initial winding angle, it can also 

be inferred that when the initial winding angle is increased, the effect of the stiffness coefficients 

become more dominant on the natural frequencies compared to the effect of the inertia. The 

decrease of the thickness of the shell wall along the shell axis implies that the translatory and 

rotary inertia also decrease, and the decrease in the inertia terms would tend to increase the 

natural frequencies.  Since the natural frequencies decrease at high initial winding angles, this 

implies that the stiffness coefficients become more effective on the natural frequencies compared 

to the effect of inertia.  

Figure 5.26 clearly displays that except for some low circumferential wave numbers such 

as n=1, natural frequencies of the spherical shell of revolution manufactured with higher preset 

slippage tendency during the winding process has higher natural frequencies. Slightly higher 

thickness of shells wound with higher preset slippage tendency is considered to be the main 

reason for higher frequencies. 
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Figure 5.26 Variation of the natural frequency with initial winding angle: CFS; 
(a) n=1, (b) n=3, (c) n=5, (d) n=7, (e) n=9, (f) n=13, (g) n=15 

 ◊: geodesic; □: fst=0.1 ; ∆: fst=0.2 ; х: fst=0.3 
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Figure 5.26 (continued) Variation of the natural frequency with initial winding 
angle: CFS; (a) n=1, (b) n=3, (c) n=5, (d) n=7, (e) n=9, (f) n=13, (g) n=15 

 ◊: geodesic; □: fst=0.1 ; ∆: fst=0.2 ; х: fst=0.3 

Figure 5.27 gives the variation of the non-dimensional frequency with respect to the 

initial winding angle for the filament wound spherical shell which is clamped at both edges. 

Similar to the clamped-free case, eventually at high initial winding angles, the natural frequencies 

start to decrease due to the significant decrease of the stiffness coefficients caused by thinning of 

the shell wall along the shell axis (Figure 5.19). However, for the clamped clamped case, in the 

low  initial winding angle range (for angles less than 30o-35o) an increase of the natural 

frequencies with the initial winding angle is seen for most circumferential wave numbers. This 

behaviour is an indication that the combined effect of stiffness coefficients and the variable inertia 

on the natural frequencies changes when the outer edge is clamped. Comparison of Figures 5.26 

and 5.27 also reveal that for the clamped-clamped spherical shell the effect of the preset slippage 

tendency on the natural frequencies is more significant compared to the effect of preset slippage 

tendency on the natural frequencies of the clamped-free spherical shell of revolution. Such a 

conclusion could have also been drawn from the examination of Tables 5.4 and 5.5. It can be seen 

that at high circumferential wave numbers regardless of the boundary condition and the initial 

winding angle, application of higher preset slippage tendency during the winding process results 

in higher natural frequencies. For the axisymmetric vibration mode low preset slippage tendency 

is seen to cause higher natural frequencies for both edge conditions and for almost all initial 

winding angles. In general for certain low circumferential wave numbers, such as n=1,2 for the 

clamped-clamped case, for low initial winding angles natural frequencies are higher if the preset 

slippage tendency is high and for high initial winding angles the natural frequencies are lower if 

the preset slippage tendency is high. This conclusion is more obvious for the clamped-clamped 

spherical shell of revolution. 
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Figure 5.27 Variation of natural frequency with initial winding angle: CCS; 
(a) n=1, (b) n=3, (c) n=5, (d) n=7, (e) n=9, (f) n=13, (g) n=15 

 ◊: geodesic; □: fst=0.1 ; ∆: fst=0.2 ; х: fst=0.3  
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Figure 5.27 (continued) Variation of natural frequency with initial winding 
angle: CCS; (a) n=1, (b) n=3, (c) n=5, (d) n=7, (e) n=9, (f) n=13, (g) n=15 

 ◊: geodesic; □: fst=0.1 ; ∆: fst=0.2 ; х: fst=0.3  

The study of the variation of the natural frequencies with the initial winding angle and 

different preset slippage tendencies shows that the slippage tendency applied during the winding 

process can be an important parameter in altering the dynamic characteristics of shells of 

revolution. Therefore, it is recommended that the slippage tendency effect during the so-called 

semi-geodesic winding process be exploited in the best way in any design problem related to the 

filament wound composite shells of revolution. This study intends to stress the significant effect 

of the preset slippage tendency applied during the winding process on the dynamic characteristics, 

or in particular natural frequencies and modes shapes of filament wound shells of revolution. 

5.2.2 Effect of semi geodesic winding on the mode shapes 

The effect of semi-geodesic winding on the mode shapes of the spherical shell of 

revolution which is clamped at both edges is given in Figures 5.28-5.30. For the particular 

solution, circumferential wave number is taken as one (n=1) and the fundamental mode shapes 

corresponding to lateral displacement (w0), circumferential displacement (uθ
0) and meridional 

displacement (uφ
0) are obtained for three different initial winding angles 25o, 45o, 65o and 

different preset slippage tendencies. It should be noted that for the spherical shell configuration, 

initial winding angles and preset slippage tendencies, the dominant fundamental vibration mode 

was identified as the lateral displacement (w0) similar to the conical shell studied.  
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Figure 5.28 (a) Lateral, (b) circumferential, (c) meridional displacement mode shapes for 
spherical shell of revolution; α1=25o 

 : geodesic;   : fst=0.1; : fst=0.2 ;  : fst=0.3 
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Figure 5.29 (a) Lateral, (b) circumferential, (c) meridional displacement mode shapes for 
spherical shell of revolution; α1=45o 

 : geodesic;   : fst=0.1; : fst=0.2 ;  : fst=0.3 
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Figure 5.30 (a) Lateral, (b) circumferential, (c) meridional displacement mode shapes for 
spherical shell of revolution; α1=65o 

 : geodesic;   : fst=0.1; : fst=0.2 ;  : fst=0.3 
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Examination of the mode shapes of the spherical shell of revolution reveals that similar 

to the conical shell example studied, the initial winding angle and the preset slippage tendency 

applied has a noticeable influence on the mode shapes. However, for the spherical shell 

configuration investigated, preset slippage tendency is also seen to be more effective when the 

initial winding angle is small, compared to the conical shell of revolution studied.  

For the spherical shell of revolution the increase in the preset slippage tendency results in 

slight decreases in the bending stiffness in the meridional direction (D11). Figures 5.21-5.23 show 

this, but since the stiffness values are very close to each other it is not easy to distinguish the 

curves from each other. Contrary to the conical shell example studied, the effect of slippage 

tendency on the mode shapes does not lead to a general conclusion which is valid for all initial 

winding angles and preset slippage tendencies. The main reason of this is the bending stiffness 

coefficients which are not varying noticeably with the changing slippage tendencies unlike 

conical shell bending stiffness terms which were increasing considerably with the increasing 

preset slippage tendency. This slight change in bending stiffness terms for a spherical shell might 

cause the thickness (inertia) and other stiffness terms to be more influential. However, it is 

difficult to comment on the effect of each term on the mode shape variation.   

Figures 5.28-5.30 also show that the peaks of the displacements show up near the larger 

radius edge of the sphere for the different initial winding angle and preset slippage tendency cases 

studied. The main reason for this is that for the spherical shell of revolution studied the thickness 

and the stiffness coefficients decrease towards the large radius edge and therefore the peaks shift 

towards the large radius edge.  

As for the conical shell it is seen that the preset slippage tendency can significantly affect 

the modes shapes of the spherical shell of revolution by altering the peak displacement locations 

and relative magnitudes. It can also be stated that for the spherical shell of revolution, 

introduction of slippage tendency is more influential also for small initial winding angle cases as 

opposed to the conical shells.  

This influence of the slippage tendency on the natural frequencies and mode shapes of 

filament wound shells of revolution makes the preset slippage tendency, to be applied during the 

winding process, an important design parameter such that the designer will have one more 

parameter to control towards altering the dynamic characteristics of the shell of revolution during 

the design process.  
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 

 

In the present study, multi-segment numerical integration technique is extended to the 

solution of the free vibration problem of composite shells of revolution which are wound along the 

semi-geodesic fiber paths counting on the preset slippage tendency used during the winding process. 

Winding laws which are applicable to general shells of revolution are specialized for conical and 

spherical shells of revolution and the continuous variation of the winding angle and the thickness 

due to different preset slippage tendency, which is applied during the winding process, is 

incorporated into the semi-analytical solution method.  

Chapter 2 presented the governing equations and method of solution to the derived 

governing equations for the free vibration analysis for anisotropic laminated composite shells of 

revolution. The governing equations for the free vibration analysis are initially obtained in terms of 

fundamental shell variables, and they are reduced to a system of first order ordinary differential 

equations by the application of finite exponential Fourier Transform, resulting in a two point 

boundary value problem including 20 homogeneous linear first order ordinary differential equations 

which are written in matrix form in terms of a coefficient matrix K. The elements of the coefficient 

matrix K includes geometric and material properties of the shell of revolution, and for any linear 

shell theory and shell of revolution type a similar coefficient matrix can be derived.  The resulting 

two point boundary value problem was reduced to a series of initial value problems. The 

multisegment numerical integration method was carried out via dividing the shell into segments so 

as to obtain series of convergent initial value problems which could be solved by any numerical 

integration routine available. Natural frequencies within a given range were calculated by the 

Frequency Trial Method employed by Kayran and Yavuzbalkan [57] which locates the probable 

natural frequencies by checking the slope change of the determinant of the characteristic matrix CM. 

Once a natural frequency is found, the variation of the fundamental shell variables along the shell 

axis could be determined using the recursive relations obtained during the construction of the 

eigenvalue problem  
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Filament winding laws are reviewed in Chapter 3 to introduce the variation of the winding 

angle and the thickness of filament wound shells of revolution along the meridian due to the semi-

geodesic winding. The geometry and winding patterns are the basic parameters governing the 

manufacturing of a filament wound shell of revolution. In this section the applicability of semi-

geodesic fiber path, relying on the preset slippage tendency used during the manufacturing, is 

investigated. Specifically, the effect of preset slippage tendency on the variation of winding angle 

and the thickness along the meridian of the filament wound shells of revolution is studied. The 

expressions which gives the variation of winding angle along the longitudinal direction of shell are 

derived for a conical and spherical shell. Winding agle and thickness are the two important 

parameters which govern the stiffness coefficients. Sample calculations showed that in general, the 

use of higher preset slippage tendency in the winding process results in higher winding angle and 

thickness along the whole meridian of the shell of revolution. In this section, integration of semi-

geodesic winding laws to the numerical integration based solution method for the dynamic analysis 

of filament wound shells of revolution is also described. The main conclusion of the combination of 

Chapters 2 and 3 is that as long as continuous variation, along the meridian of the shell of revolution, 

of the elements of the coefficient matrix K of the fundamental system of equations governing the 

free vibration of shells of revolution, is coded accordingly arbitrary meridional variation of the shell 

properties can be handled very accurately by the numerical integration based solution method. 

Therefore, once the effect of the semi-geodesic winding on the elements of the coefficient matrix is 

identified, by proper coding the effect of semi-geodesic winding on the free vibration characteristics 

of filament wound shells of revolution can be investigated by using the multi-segment numerical 

integration technique in combination with the frequency trial method. 

In Chapter 4 results obtained by the semi-analytical solution method is compared with the 

results of finite element solution for a conical shell geometry. It is shown that for the particular shell 

geometry studied and preset slippage tendency of 0.2, finite element solution has a maximum 3% of 

deviation from the solution determined by the numerical integration based solution method. 

 In Chapter 5 sample studies on the effect of semi-geodesic winding on the stiffness 

coefficients and the free vibration characteristics have been performed for truncated conical and 

spherical shells of revolution. Sample calculations show that the use of higher preset slippage 

tendency in the winding process results in higher winding angle and thickness along the whole 

meridian of the shell of revolution. Based on the results obtained for the truncated conical and 

spherical shells of revolution, it is concluded that when the preset slippage tendency is increased 

circumferential bending stiffness (D22) also increases, and at high circumferential wave numbers 

circumferential bending stiffness stands out as the dominant parameter governing the natural 

frequencies. Therefore, when the preset slippage tendency is increased, natural frequencies of higher 

circumferential vibration modes also increase irrespective of the initial winding angle. However, for 

low circumferential wave numbers a general conclusion on the effect of preset slippage tendency on 
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the natural frequencies cannot be drawn. Depending on the shell type and the initial winding angle, 

shells manufactured with low preset slippage tendency during the winding process may have higher 

natural frequencies than the shells manufactured with high preset slippage tendency. Example study 

on the lateral displacement mode shape of the conical shell also revealed that semi-geodesic winding 

may have a significant effect on the mode shapes depending on the preset slippage tendency used 

during the filament winding process. It is shown that the increase in the bending stiffness due to the 

use of higher preset slippage tendency may cause significant shifts in peak displacement and nodal 

point locations. 

The great advantage of composite materials over isotropic materials are their tailorability 

according to the needs for the specific application. However, traditional geodesic path dependancy 

of the filament winding method defined by the winding laws limited the options of the designer 

compared to other manufacturing techniques. Thus, each parameter improving the flexibility of the 

design and optimization process will allow a more optimized solution and broaden the application 

field. The influence of the preset slippage tendency on the natural frequencies and mode shapes 

makes it a new parameter to control the dynamic properties of shells of revolution. This influence 

shown  throughout this thesis will provide more flexibility to the designer during the optimization 

process of the structure.   

Present study shows that continuous variation of the winding angle and thickness in the 

meridional direction, due to the different preset slippage tendency applied during the winding 

process, can be handled very accurately by the multi-segment numerical integration technique 

because of the very reliable numerical integration routines that are available. Therefore, numerical 

integration based solution technique in combination with the frequency trial method provides a very 

powerful solution alternative to the vibration analysis of shells of revolution wound by using semi-

geodesic fiber paths. 

6.1 RECOMMENDATIONS FOR FUTURE WORK 

The method presented can also be extended to the static problems. Thus, stress analysis of 

filament wound laminated composite shell of revolution which are wound along semi-geodesic fiber 

paths with general boundary conditions can be carried out by any linear shell theory including 

transverse shear deformation. The static solution under axisymmetric loading can further be 

extended to include the geometric and material nonlinearity effects for any available nonlinear shell 

theory by using the solution method outlined by Kalnins [59]. 

The method of solution can further be extended to higher order transverse shear 

deformation theories by modifying the coefficient matrix K. There is no need of using the shear 

correction factor when higher order transverse shear deformation theories are used. 
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Possibility of extending the present method of solution to the laminated shells of revolution 

which are modeled as layerwise rather than as an equivalent single layer can be sought. 

Semi-geodesic winding pattern effect can be analysed for different conical and spherical 

shell geometries and effect of geometrical properties on the vibration characteristics can be 

investigated. Structures other than conical and spherical shapes such as paraboloidal shells of 

revolution can be studied.  

For the present study, winding of the filaments is assumed to be starting from the small 

radius end of the shell of revolution. The effect of winding pattern on the vibration characteristics 

can be also be analyzed for the case for which the winding starts from the large radius end of the 

shell.  
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APPENDIX A 

 

VARIATION OF WINDING ANGLE FOR CONICAL SHELLS 

OF REVOLUTION 

 

 

Considering the geometrical properties given in Figure 3.2, Eq. (A.1) and (A.2) are written;  
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The variation of the winding angle of filament wound shells of revolution along the 

meridian is derived in [43] and given in the form;  
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Substitution of Eqs. (A.2) into Eq. (A.3), leads to Eq. (A.5) for a conical shell of revolution;  
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Eq. (A.5) can be integrated as follows; 
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Integrating the right hand side of the Eq. (A.7), absolute values are not used for x and x1 as 

both terms are positive considering the convention shown in Figure 3.2.  

Applying integration by parts; 
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Eq. (A.10) can be represented as follows;  
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Considering the polynomial equivalence; 
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Substituting Eq. (A.12) into Eq. (A.11) and simplifying;  
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Then, Eq. (A.13) can be integrated and Eq. (A.9) can be substituted back;  
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Considering that sin α and sin α1 have the same sign, absolute values can be eliminated 

from these terms;  
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There exist two solutions for Eq. (A.14):  
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In this case the absolute value signs in Eq. (A.14) can be removed and the terms inside the 

absolute value signs can be taken out as they are, yielding:
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Or in other form, if x1 and x are substituted by 
tan

1R  and 
tan

R
 respectively, Eq. (A.15) 

becomes;  
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In this case when the absolute value signs in Eq. (A.14) are removed a minus sign will 

show up such that after manipulations second solution will be given by Eq. (A.17). 
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Or in other form, if x1 and x are substituted by 
tan

1R  and 
tan

R
 respectively, Eq. (A.17) 

becomes;  
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Thus, solution of Eq. (A.5) leads to two solutions as given in Eq. (A.15) and (A.17). The 

solution depends on the sign of 
fst




tan
sin   and 

fst




tan
sin 1  .  

Note that initial winding angle (α1), preset slippage tendency (fst), and cone angle (β) are 

design parameters and they do not vary for a specific design. Winding angle (α) is the only 

parameter changing during the winding process and this variation is according to Eq. (A.5). It should 

also be noted that, winding angle at any meridional location is not known a priori before the solution 

of Eq. (A.5). This leads to the conclusion that for specific cases (depending on β, fst and α1) only Eq. 
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(A.15) or only Eq. (A.17), or both equations might be valid, which might give two possible positions 

for the winding angle  for a conical shell of revolution.  

However, the validity of those two solutions should be checked considering the continuity 

law in the solution interval. According to the continuity law, if the derivative of α(x) exists in the 

meridional axis from x1 to x, then it must be continuous in this interval. Considering that sin α is a 

continuous function, following statement can be concluded. 

 For infinitely small |x-x1|, α must go to α1, and sin α must go to sin α1. This means that, 

fst




tan
sin   and 

fst




tan
sin 1  must have the same sign to satisfy the continuity requirement.  

This analysis shows clearly that Eq. (A.5) has only one solution, which is Eq. (A.15) and at 

any meridional location only one winding angle is possible to satisfy the semi-geodesic winding 

with desired preset slippage tendency.  
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APPENDIX B 

 

VARIATION OF WINDING ANGLE FOR SPHERICAL SHELLS 

OF REVOLUTION 

 

 

The variation of the winding angle of filament wound shells of revolution along the 

meridian is derived in [43] and given in the form;  

 




cos)1(

sin)1(cossin)1(
2

2222

RR

RRRRRfst

dx

d






   

(B.1)

 

For spherical shells of revolution or any general shell of revolution, the variation of the 

winding angle with respect to meridional coordinate  should be obtained. Therefore, first a 

relationship between 




d

d
and

xd

d
will be obtained.  

The term 




d

d
 can be derived as follows: Employing chain rule for 

xd

d
,  

dx

d

d

d

x






.

d

d
  (B.2) 

For a spherical shell of revolution Rθ and R  is equal to the radius of the sphere Rs and R is 

given by Rs .sin ;  

 
 
 

 
 sRRR  

sindsdx 

dRds 

  (B.3) 

Applying chain rule for 
xd

d
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



 sin

1

R

1

d

d

d

d

d

d

x

s

sx
 

(B.4) 

Therefore, substituting Eq. (B.3) into Eq. (B.4);  













 sin

1

sin

1

x sRd

d

Rd

d

d

d
 








sin

x
sR

d

d

d

d

 

(B.5) 

In Eq. (B.1), there appear 'R  and ''R , which are the derivatives of R with respect to x, 

axial coordinate. These derivatives also should be written with respect to the meridional coordinate. 

 
 
 
 

 
 
 sinsRR 




cos
d

d
sR

R





sin
d

d
2

2

sR
R



  (B.6) 

Employing chain rule for 
x

R

d

d
 and substituting Eq. (B.4) and Eq. (B.6);  





 sin

1

sRd

Rd

xd

d

d

Rd

xd

Rd
  





sin

cos

s

s

R

R

xd

Rd
  

cot
d

d


x

R
 (B.7)

 

2nd derivative of R with respect to x, axial coordinate can be calculated as follows;  

dx

d

Rd

dR

d

d

Rd

dR

dx

d

xd

Rd

ss

2 





















sin

1

sin

1
2

 

(B.8)

 

Again substituting Eq. (B.4) and Eq. (B.6);  
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







 sin

1

sin

cos

sin

1

sin

1
22

2

ssss RRd

dR

Rd

Rd

dx

d

Rd

dR

d

d





















 











 sin

1

sin

cos
cos

sin

1
sin

sin

1
2

ss

s
s

s
s RR

R
R

R
dx

d

Rd

dR

d

d





















 





 sin

1

sin

cos
1

sin

1
2

2

ss Rdx

d

Rd

dR

d

d





















 

 






2cot1
sin

1

sin

1













ss Rdx

d

Rd

dR

d

d
 

 


2

2

2

cot1
sin

1





sRdx

Rd
 (B.9)

 

Once terms in Eq. (B.1) are derived, 




d

d
can be obtained as follows;  

  
























cos)1(

sin)1(sin1
sinsinR

d

d

d

d
2

222

RR

RRRRRfst
R

x
ss

 

(B.10)

 

Substituting Eq. (B.7) and Eq. (B.9), 1
st
 and 2

nd
 derivative of R with respect to x, into Eq. 

(B.10) and simplifying;  









cos

sincot)cos.(sin

d

d
22 


fst

 









cos

sincot

d

d 

fst

 (B.11)

 

Unfortunately Eq. (B.11) cannot be explicitly integrated because   and α variables cannot 

be separated. Therefore, it has to be integrated numerically from an initial winding angle of α1 and 

the initial edge 1  to any meridional location   where the winding angle will be α. 
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APPENDIX C 

 

INFLUENCE OF MESH DENSITY ON FINITE ELEMENT 

MODEL UNDER FREE VIBRATION 

 

 

Simulations with different mesh densities are realized in order to investigate the influence 

of mesh density on finite element model under free vibration.  

Shell model is divided into 20, 50 and 70 segments in the meridional direction and natural 

frequency outputs are compared. For each case, 4 node quad elements are used and the global edge 

length is selected accordingly so that elements are close to a square shape. This lead to a greater 

mesh density as the number of the segments is increased.  

In order to investigate the effect of mesh size, the thickness and winding angle are selected 

as constant along the meridional and circumferential direction. For the same truncated conical shell 

geometry analyzed in Chapter 4, thickness and winding angle at the mid location of the shell in 

meridional direction are calculated as 0.2231039 mm and 29.08485
o
 respectively. Calculated 

thickness and winding angle values are assigned to each and every element on the shell model.  

The frequency output for three different mesh sizes are presented in Table C.1. From Table 

C.1, it can be seen that for all three mesh sizes, the calculated frequencies are almost the same. Only 

for n=0, 20 segment solution gives an output about 0.7% less than others.  

Table C.1 Comparison of different mesh densities for the finite element solution 

  FEM Output  Fundamental Frequencies [Hz] 

n 20 Segment 50 Segment 70 Segment 

0 685.54 689.19 690.20 

1 660.10 660.64 660.70 

2 566.38 566.54 566.59 

3 455.56 455.55 455.61 

4 359.86 359.83 359.89 

5 284.82 284.84 284.88 
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Considering the presented simulation results, it is concluded that division of the shell model 

into 50 segments in meridional direction is a good compromise between output quality and 

computational cost. 


