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ABSTRACT 
 
 

THE APPLICATION OF DISAGGREGATION METHODS  
TO THE UNEMPLOYMENT RATE OF TURKEY 

 
 

Tüker, Utku Göksel 

M. Sc., Department of Statistics 

Supervisor: Assist. Prof. Dr. Ceylan Talu Yozgatlıgil 

 
 

September 2010, 97 pages 
 
 

Modeling and forecasting of the unemployment rate of a country is very 

important to be able to take precautions on the governmental policies. The 

available unemployment rate data of Turkey provided by the Turkish 

Statistical Institute (TURKSTAT) are not in suitable format to have a time 

series model. The unemployment rate data between 1988 and 2009 create a 

problem of building a reliable time series model due to the insufficient 

number and irregular form of observations. The application of disaggregation 

methods to some parts of the unemployment rate data enables us to fit an 

appropriate time series model and to have forecasts as a result of the 

suggested model. 

 

Key words: Disaggregation methods, time series data, interpolation 

approaches, regression based methods, modeling procedures. 
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ÖZ 
 
 

TÜRKĐYE ĐŞSĐZLĐK ORANI ÜZERĐNE 
DAĞITIM YÖNTEMLERĐ UYGULAMASI 

 
 

Tüker, Utku Göksel 

Yüksek Lisans, Đstatistik Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Ceylan Talu Yozgatlıgil 

 
 

Eylül 2010, 97 sayfa 
 
 

Bir ülkenin işsizlik oranını modellemek ve ileriye yönelik öngörülerde 

bulunmak, hükümet politikaları üzerine önlem almak açısından çok önemlidir. 

Türkiye Đstatistik Kurumu (TÜĐK) tarafından sağlanan işsizlik oranı verileri bir 

zaman serisi modeli kurmak için düzgün formda değildir. 1988 ile 2009 yılları 

arası işsizlik oranı verisi, yetersiz miktarda ve düzensiz yapıda gözlemlere 

bağlı olarak güvenilir bir zaman serisi modeli kurmak açısından sorun 

yaratmaktadır. Đşsizlik oranı verilerinin bir kısmına dağıtım yöntemleri 

uygulamak uygun zaman serisi modelini kurmamızı ve bu model için 

öngörüler elde etmemizi sağlayacaktır. 

 

Anahtar Kelimeler: Dağıtım yöntemleri, zaman serisi verileri, enterpolasyon 

yaklaşımları, regresyona dayalı yöntemler, modelleme prosedürleri.
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

In statistics, modeling is a vital issue in cases where a considerable and solid 

mechanism is desired to be realized. A model can tell how the population of 

the data sampled has behaved up to now or will behave in the future. The 

idea of modeling lies on the basis of data usage. By the use of observations 

in data representing the population, a mathematical model is constructed with 

some conditions assumed. These conditions include the reasons which affect 

the behavior of the data but can not be explained in a scientific manner. In 

statistics, these conditions are called assumptions. Actually, a statistical 

model is beyond a simple mathematical model because the assumptions 

being used somehow confirm that the data behavior fits the population 

behavior. 

 

A statistical model gives the historical and future behavior of the data. Each 

observation in the data is very important for the construction of a model. Few 

observations would also give us a model. However, would it be really reliable 

for statistical inference? Statisticians usually prefer to have enough 

observations to construct a model. More observations in a sample give more 

information about the population, since a sample is a representation of that 

population. With one observation there is nothing to say about the population. 

On the other hand, if the ninety percent of the observations in a population is 

taken as a sample, it will be more likely to get a realistic idea about the 

population. In statistics, the appropriate model to be fitted contains 

coefficients of explanatory variables that are determining the values taken by 

the dependent variable. These coefficients, known as parameters, are 
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estimated by means of observations in the sample. Each of the estimated 

coefficients corresponding to these parameters is named as an estimate. 

Estimates are the sample statistics and these sample statistics reveal 

meaningful estimates as long as they represent the population with enough 

information. There are different types of models in statistics such as linear 

regression models, logistic regression models and time series models. They 

give close fitted values obtained by sample statistics to the actual population 

observations once they are built with sufficient information. Sufficient 

information is provided by the sample size in hand selected. Linear and 

logistic regression models do not have to consider the time dependency 

unlike the time series models. Therefore, the existence of time dependency 

inevitably makes the sufficient number of sample observations much more 

crucial for time series models, because of the sequential structure they hold. 

 

The data to be used in building a time series model can be collected monthly 

or quarterly and the number of observations in the collected data may be 

enough. In the same way, the data may be collected annually with a large 

sample size and they could still not constitute a problem in building a model.  

However, it is not always easy to have sufficient number of observations. For 

example, a five-year-collected annual data creates a problem in model 

identification and specification. In such cases, it is better to look for some 

solutions in order to conduct a modeling analysis instead of refusing to build 

a model due to the existence of few observations.  

 

Today, the studies conducted on such cases in order to have adequate 

number of observations are known as “Time Series Disaggregation 

Methods”. Although these methods are generally used for deriving quarterly 

figures from annual ones, they can also be useful in deriving monthly 

observations from quarterly figures. While a direct derivation of monthly data 

from annual data is available, someone can obtain quarterly observations at 

first and then get the monthly ones as the latter step.  
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In this study, we have considered the data of “Unemployment Rate of 

Turkey” (prepared by the Turkish Statistical Institute (TURKSTAT)) between 

the years of 1988 and 2009. However, from 1988 to 1999, the data are 

available only for the months of April and October. From 2000 to 2004, the 

quarterly figures are observed. And from 2005 to 2009, the data are collected 

monthly up to September, 2009. The irregular structure of data in hand has 

led us to use some of the disaggregation methods and derive the quarterly 

figures via the use of annual ones so that we can build a reliable model 

through sufficient number of observations. 

 

One of the reasons of choosing the unemployment rate data of Turkey in our 

analysis comes from the importance of it for a country. A model estimation 

and having forecasts for the unemployment rate of a country may be helpful 

in taking precautions on governmental policies for the future. In literature it is 

likely to reach some studies focusing on the unemployment rate and its 

value. For instance, the study of Montgomery et al. (1998) is directly focused 

on forecasting the unemployment rate of U.S. Holden and Peel (1979) 

investigated the factors of unemployment rate in some countries. As another 

example, an analysis of how unemployment rate in European countries is 

affected by demographic and educational structure was conducted by Biagi 

and Lucifora (2008). Another reason for the idea of working on the 

unemployment rate data stems from the fact that it is an indicator of both 

economic and social structure of a country. Numerous papers support this 

ascertainment. On the economic side, it was stated by Barro (1977) that 

unemployment rate is considered to be a real economic variable of a country. 

Jackman et al. (1990) pointed out that increase in unemployment rate is a 

governmental problem and governments should build up new policies to 

tackle this issue. Another point that researchers believe is that 

unemployment plays role in migration. According to a study by Da Vanzo 

(1978), unemployed people together with people not satisfied with their jobs 

are much more likely to migrate compared to ones having active job. Similar 

to Da Vanzo (1978), McCormick (1997) studied the relation between regional 
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unemployment and migration in the UK and finds out that unemployed people 

migrate to places with relatively high employment rates. One other scope that 

we face as an impact of unemployment is crime. In a study by Cantor and 

Land (1985), they made an effort to understand the link between crime and 

unemployment. In this study, seven indexes of crime rates were investigated 

to see whether unemployment leads to crime. Results revealed that being 

unemployed motivates crime. Many articles declare that the most common 

drawbacks resulting from unemployment are mental and psychological 

problems. Linn et al. (1985) and Kessler et al. (1988) reported that 

unemployed people are more likely to have the symptoms of depression and 

anxiety. Study by Clark and Oswald (1994) worked on the hypothesis that 

people may choose to be unemployed owing to the attractive aids from 

governments in Britain. Study ends in rejecting the hypothesis as well as 

stating that unemployment has more severe effects than divorce or marital 

separation. As it is understood from research examples above, 

unemployment is a very leading factor in economic and social life. Due to this 

fact discovering the structure of unemployment and being able to forecast it 

is very crucial. Therefore my intention to analyze unemployment rate is 

clarified. 

 

The studies on time series disaggregation methods are very new in the 

literature and have few or no case conducted in Turkey. Although the study 

made by Sürmeli (1979) is comprised of mostly mathematical disaggregation 

methods, the method including a statistical model based approach that is 

examined has a drawback. The newer and developed related series 

approaches were not available when the Sürmeli conducted his study. In 

addition, the analysis he conducted is on solely the disaggregation methods 

and has no use of model identification, estimation and selection process 

being applied on real data. That is why the analyses that have been made in 

this thesis study are thought to have substantial contributions to the literature. 
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The organization of this thesis study has been made by mentioning the 

history of disaggregation methods in chapter two. Then we have given some 

idea about the basic time series concepts and the theoretical background of 

the disaggregation methods applied in the third chapter by dividing it into two 

sections. After that, we have applied some disaggregation methods in order 

to obtain the disaggregated data in the first section of chapter four. In the 

second section of the same chapter, we have focused on modeling 

procedures through the use of generated data and had forecasts of the 

models built. Finally, we have finished our study by presenting the 

conclusions that we have reached through what we have done in chapter 

five. 
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CHAPTER 2 

 

 

HISTORICAL BACKGROUND 

 

 

 

2.1. History of Disaggregation Methods 

 

The history of time series disaggregation methods dates back to 1962. Either 

mathematical or statistical procedures have been developed since then. 

While the mathematical procedures are generally focusing on smoothing 

procedures, the statistical ones use model based approaches in the process 

of obtaining disaggregated data.  

 

The first step to disaggregation methods was taken by Friedman (1962). 

Friedman claimed that the unobserved observations to be disaggregated 

would be estimated by the use of related variables and the observations in 

hand. However, the estimated observations given by the method he 

suggested did not meet some restrictions. These were called accounting 

restrictions. To illustrate, the consumption of food in a country is a flow 

variable, i.e. the sum of monthly disaggregated data should give the annual 

consumption of that year. If this restriction is not met, the disaggregated data 

is no longer valid for a model to be built. Hence, the method suggested by 

Friedman was incomplete. 

 

Afterwards, these restrictions were given importance and taken into account 

by ongoing studies. Lisman and Sandee (1964) proposed a method of linear 

interpolation which was considering the trend and the seasonal components 

of a time series and providing the disaggregated data with the help of matrix 

calculations. This method was satisfying the accounting restrictions stated as 
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well, but was not giving the disaggregated observations for the first and last 

year due to its application. Moreover, there were methods applying least 

squares approaches for getting disaggregated data. Boot et al. (1967) and 

Denton (1971) suggested methods based on minimization criterion of the 

differences between higher frequency (disaggregated) observations. 

Nevertheless, in the simulation study conducted by Kladroba (2005), the 

least squares methods had very high expenditure and uncertainty in addition 

to the incompatible results they gave. 

 

In addition to these disaggregation procedures, there have been many 

studies generating sub-annual values via the help of only aggregated data. 

The methods of Cohen et al. (1971), Harvey and Pierse (1984), Al-Osh 

(1989) and Gomez and Maravall (1994) can be given as illustrations of such 

studies. These methods were criticized due to not using related variables, 

because they were using just some mathematical calculations and failing to 

involve more information than the aggregated data. Thus, there was a 

tendency to use more “statistical” criteria in disaggregation methods. Balmer 

(1975) interpreted the procedures using both mathematical and statistical 

criteria through the use of related series suggested by Vangrevelinghe (1966) 

and Ginsburgh (1973). These methods were using adjustment of the series 

interpolated with related series. However, Balmer stated that these methods 

should be improved in their estimation technique unless the uncorrelatedness 

assumption presented in the residuals is satisfied.  

 

The most popular univariate regression-based related series approach 

applied today was proposed by Chow and Lin (1971) and its extensions 

(Chen, 2007). The method of Chow and Lin (1971) uses indicators in 

disaggregation process without ignoring the accounting restrictions. This fact 

and the effective results given by Chow/Lin method have a considerable 

effect on its popularity. Then, Fernandez (1981) and Litterman (1983) had 

considerable contributions on the development of this method. According to 

the study of Miralles et al. (2003) on the performance of the Chow/Lin 
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method, the estimates revealed by the procedure were robust. Together with 

this, the studies on the accuracy of estimates had also been suggested 

through the methods of Fernandez (1981) and Litterman (1983), since these 

procedures are distinct from the one of Chow/Lin in the assumption that they 

are making for the error terms while generating the disaggregated series.  

Nevertheless, Guerrero (2003) pointed out that these methods are not away 

from subjectivity in using autocorrelation structure of the time series data. 

Moreover, he added that Guerrero (1990) and Wei and Stram (1990) do not 

have such a drawback and found solutions with paying attention to the 

autocorrelation structure of the data. These methods were using an ARIMA 

based approach to obtain disaggregated series with the help of related 

series. Nonetheless, in Tour Europe, La Defense, Paris (OECD/Eurostat 

Workshop); these time series procedures were said to have problem in 

recovering the seasonal pattern generally by Di Fonzo (2003). That is why 

regression based methods are still widely used today.  

 

Generally, there are three types of time series disaggregation methods; 

namely, linear interpolation approaches, model based approaches and least 

squares methods. Model based ones are divided into two: regression based 

and ARIMA based procedures. The linear interpolation and least squares 

approaches are mathematical procedures which are known as smoothing 

procedures, whereas the model based approaches pay attention to statistical 

criterion together with the mathematical procedures. In a general picture, we 

can classify the time series disaggregation methods as follows; 

 

A) Linear Interpolation Approaches 

- Lisman/Sandee (1964) 

B) Model Based Approaches 

B1) Regression Based Approaches 

- Chow/Lin (1971) 

- Fernandez (1981) 

- Litterman (1983) 
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B2) ARIMA Based Time Series Procedures 

- Al-Osh (1989) 

- Guerrero (1990) 

- Wei/Stram (1990) 

C) Least Squares Methods 

- Boot/Feibes/Lisman (1967) 

- Denton (1971) 

 

Because there are so many disaggregation methods, either mathematical or 

statistical; the question of which methods should be used inevitably arises. 

The procedures which are not getting use of related series approach have a 

drawback of generating high-frequency observations being far away to 

involve more information compared to the low-frequency (aggregated) 

observations (Miralles et al., 2003). As stated, the least squares methods 

were also found to be ineffective in providing disaggregated data close to 

actual values in the study of Kladroba (2005) although they had very high 

expenditure and uncertainty. Moreover, a least square procedure would most 

probably fail to generate a realistic disaggregated data for a series having 

seasonal component, because it gives quarterly figures close to each other 

due to using a minimization procedure through annual values.   

 

Although ARIMA based procedures use statistical criterion, they were said to 

have problem in recovering the seasonal pattern. Therefore, it will not be 

wise to apply these procedures for seasonal series in the process of 

disaggregation. 

 

The choice of methods used in this analysis was made by considering the 

appropriateness of the data structure as stated before. After the inspection of 

unemployment rate data of Turkey, the seasonal pattern in the series was 

suspected. Therefore, we did not prefer to use a method of least squares and 

time series procedures. Even though, the mathematical procedures fail to 

give disaggregated data involving more information than the aggregated 
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data, we chose to apply the one being most popular among all and having 

low expenditure, namely; Lisman/Sandee (1964). Another reason why the 

preference has been made on the method of Lisman/Sandee among all 

mathematical procedures results from the fact that the seasonal pattern is 

taken into account during the process of generating disaggregated series. 

Moreover, for a model based approach, the method suggested by Chow/Lin 

(1971), Fernandez (1981) and Litterman (1983) had been preferred to be 

applied. Actually, the methods of Fernandez (1981) and Litterman (1983) are 

slightly different than the one proposed by Chow/Lin (1971). They are all the 

same except the distribution assumption of the error terms. Therefore, the 

one which gave the most reasonable results had been chosen.  
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

 

In this chapter, first section gives general information about the basics of a 

stationary time series in addition to the procedures used in a time series 

analysis. Then, in the second section, the details of disaggregation methods 

used in the study are presented. 

 

3.1. Basic Time Series Concepts 

 

A time series is a set of observations generated sequentially in time which 

are statistically dependent observations. It not only is a function of time but 

also may be a function of its past observations. Each observation in a time 

series is crucial in realizing the major objectives of the time series analysis 

such as identification, estimation, diagnostic checks and forecasting and past 

observations would have effect on the series itself. A time series analysis 

aims modeling the stochastic mechanism that generates the observed series 

at first and then having forecasted future values based on history via the 

constructed model. 

 

In modeling a time series, four cases can be observed; 

- The series is dependent on an error term, 

- The series is dependent on both an error term and the past 

observations of it, 

- Or the series depends on both its past observations and an error term, 

- Or the series depends on both its past observations and an error term 

together with the past observations of it. 



 12 

For the first one, the series is known to follow a white noise process, WN. 

These series are accepted to be stationary and independently and identically 

distributed. The details of this process will be presented later on.

 

In the second case the time series follows a moving average model, MA. 

Such series have constant mean and variances. The observations are not 

affected by their past. 

 

In the third case, the behavior of the series changes due to the values 

observed for the past observations of the series. The model of such series is 

known as autoregressive model, AR.  

 

The last one corresponds to autoregressive moving average process, ARMA. 

This process is actually a combination of moving average and autoregressive 

processes. The details of this process can be seen later on as well. 

 

For an observed time series { }t
Y , there are four main functions; namely, 

Mean Function:  

 ( )t t
E Y µ=  (3.1.1) 

Variance Function:  

 2 2
[( ) ] ( ) 0

t t t t
E Y Var Yµ σ− = = ≥  (3.1.2) 

Autocovariance Function: 

 
,

[( )( )] ( , )
t t s s t s t s

E Y Y Cov Y Yµ µ γ− − = =  (3.1.3) 

Autocorrelation Function: 

 ,

,
2 2

( , )
( , )

( ) ( )

t st s
t s t s

t s t s

Cov Y Y
Corr Y Y

Var Y Var Y

γ
ρ

σ σ
= = =  (3.1.4) 

for , 0, 1, 2,...t s = ± ±  

 

Mean and variance of a series are given by (3.1.1) and (3.1.2), respectively. 

They are both expected to be constant at the first step of a time series 

analysis. The covariance and its derivative correlation within the series are 
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obtained by (3.1.3) and (3.1.4). These functions are also expected to give 

results being independent of time. However, someone can ask why these 

expectations are needed. The answer lies in the common assumption of a 

time series analysis known as stationarity. 

 

The most vital and common assumption in time series is stationarity. When 

the probabilistic properties of any time series process do not change with 

time, then the series is said to be stationary. There are two types of 

stationarity: 

- Strict Stationarity 

- (Covariance or Weak) Stationarity 

 

The stationarity concept to be mentioned in this study corresponds to the 

latter. A time series is said to be (covariance) stationary if its first and second 

order moments are unaffected by a change of time origin. That is, for a 

stationary time series the following conditions are true; 

 ( ) ( )
t t t h t h

E Y E Yµ µ µ− −= = = = ,  

 2 2 2
( ) ( )

t t t h t h
Var Y Var Yσ σ σ− −= = = = ,  

 
, , | |

( , ) ( , )
t s t s t h s h t h s h t s

Cov Y Y Cov Y Yγ γ γ− − − − −= = = = ,  

 2

, | | 0
( , )

t t t t t t
Cov Y Y γ γ γ σ−= = = =   

for , , 0, 1, 2...t s h = ± ±  

 

On the other hand, a time series is said to be strictly stationary if its statistical 

properties are unaffected by a change of time origin including the joint 

distribution of that time series. 

 

The observations of a stationary time series generally follow a stable 

movement and are spread among a horizontal mean line. The unexpected 

shifts or outliers are not seen for such series. These properties make the 

model identification and model estimation procedures easy and hence the 
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forecasts to be made for the future observations become much more close to 

real values and reliable as opposed to those of nonstationary series. 

 

In addition to these, partial autocorrelation function is also used in a time 

series analysis procedure and denoted as; 

 
1 2 ( 1)

( , | , ,..., )
t t h t t t h hh

Corr Y Y Y Y Y φ− − − − − = . (3.1.5) 

By partial autocorrelation function, the effect of intervening values presented 

in autocorrelation function is eliminated and direct correlation between 
t

Y  and 

t h
Y −  is given. 

 

Partial autocorrelation function given in (3.1.5) and the autocorrelation 

function given in  (3.1.4) are used in model identification procedure of a time 

series analysis. 

 

3.1.1. White Noise Process 

 

As pointed out before, a series following a WN process only depends on an 

error term and it is denoted as; 

 t t
Y ε=   

where 
. . .

2
~ ( , )

i i d

t
N ε εε µ σ . The white noise process is the simplest time series 

model. A white noise process is composed of sequential, identical and 

independent random variables t
ε  with a constant mean and variance. For a 

white noise process, 

 ( ) ( )
t t

E Y E εε µ= = ,  

 2
( ) ( )

t t
Var Y Var εε σ= = ,  

 ( , ) 0
t t h

Cov Y Y − =  

and  

 
1, 0

( , )
0, 0

t t h

h
Corr Y Y

h
−

=
= 

≠
  

are true. 
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3.1.2. ARMA (Box – Jenkins, Autoregressive and Moving Average) 

Models 

 

Autoregressive moving average models were first provided by George E. P. 

Box and Gwilym Jenkins. That is why autoregressive moving average models 

are also known as Box-Jenkins Models in the literature. A Box-Jenkins Model 

involves the past observations of both the series and the error terms. It is a 

model reflecting the properties of both autoregressive and moving average 

models. In other words, an ARMA model is a combination of AR and MA 

models. 

 

General representation of an ARMA( ,p q ) model is; 

 2 2

1 2 1 2
(1 ... ) (1 ... )

p q

p t q t
B B B Y c B B Bφ φ φ θ θ θ ε− − − − = + − − − −   

where p  is the order corresponding to the AR term, whereas q is the one 

that corresponds to MA term. Moreover, 
t

ε  is a 0-mean white noise process 

and c  is the constant term of the model. Here B  is the backshift operator 

and defined as; 

 h

t t h
B Y Y −= . 

- When 0p = ; the model is a MA( q ) model. 

- When 0q = ; the model is an AR( p ) model. 

 

MA models are always stationary, whereas this is not always the case for AR 

and ARMA models. Hence, there are stationarity conditions to be checked for 

these models. 

 

On the other hand, AR models are always invertible. Invertibility is a concept 

in time series that provides the uniqueness of the autocorrelation functions of 

processes. That is, the autocorrelation functions of distinct invertible models 

are different from each other. Moreover, invertibility is also important in 

forecasting procedures. In general, forecast errors become smaller for 

invertible models. 
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MA models show cut-off property in their autocorrelation functions and 

exponential/oscillating decay in their partial autocorrelation functions as 

opposed to AR models. In AR models, the case is vice versa. 

 

When neither p nor q is equal to 0, the ARMA model shows both cut-off and 

exponential/oscillating decay properties in its both autocorrelation and partial 

autocorrelation functions, since an ARMA model is actually a combination of 

AR and MA models. 

 

3.1.3. Model Identification 

 

The first step in model identification is taken by the use of time series plots. A 

time series plot can give us an idea about the stationarity of the series. If the 

observations lie among a horizontal mean line and do not spread widely 

among this line, then the series most probably has a constant mean and a 

homoskedastic variance. Because the time series plots can not be a proof of 

stationarity, the latter step in the progress is to look at the correlogram of the 

series at zero level. 

 

A correlogram shows the significance and the movement of the lags of the 

series through its autocorrelation and partial autocorrelation functions. 

Hence, a correlogram is very helpful in model identification in giving an idea 

about the order of an ARMA model. Moreover, one can understand if the time 

series in hand is non-stationary by looking at the correlogram of that series. If 

the lags of autocorrelation function show slow linear decay and there is a 

significant spike at the first or second lag of the partial autocorrelation 

function while the other lags are within the white noise bands, then the 

nonstationarity is the case for the series. In addition to this, one can also test 

the nonstationarity of a series through some statistical procedures known in 

literature as “unit root tests”. The most common unit root tests used today are 

Augmented Dickey-Fuller Test proposed by Dickey and Fuller (1981), PP 

Test by Phillips-Perron (1988) and KPSS Stationarity Test by Kwiatkowski-
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Phillips-Schmidt-Shin (1992). The basic difference between these tests 

comes from their estimated test equations.  

 

When nonstationarity is the case, differencing or detrending-procedures are 

applied to the series to provide stationarity. If the stationarity is satisfied, the 

model estimation can be conducted. If the correlogram shows the basic 

characteristics of a MA model, the order of MA term is decided based on the 

autocorrelation function. If the AR model is more appropriate via looking at 

the correlogram, the order of AR term is identified by the partial 

autocorrelation function. In addition, the order of MA and AR terms of an 

ARMA model is also determined this way through the use of correlogram. 

 

In addition to the specification of ARMA model orders through the 

correlogram, there are also other order identification tools used in time series 

analyses such as the minimum information criterion (MINIC) and the 

extended sample autocorrelation function (ESACF). 

 

3.1.4. Model Estimation 

 

In model estimation, assumptions play a vital role so that the model to be 

estimated is statistically reliable. In a zero mean ARMA model as; 

 2 2

1 2 1 2
(1 ... ) (1 ... )

p q

p t q t
B B B Y B B Bφ φ φ θ θ θ ε− − − − = − − − −   

where 
t

ε  is a zero mean white noise process, there are three main 

assumptions, such as; 

 ( , ) 0
i j

Cov ε ε =  for i j≠  (3.1.6) 

 2
( , ) ( )

i i i
Cov Varε ε ε σ= =  (3.1.7) 

 2
~ (0, )

i
Nε σ  (3.1.8) 

 

These assumptions actually come from the properties of a white noise 

process that is considered for error terms. A white noise process is 

comprised of independent and identically distributed observations. Therefore, 
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these observations should be uncorrelated and homoskedastic as well. This 

fact corresponds to (3.1.6) and (3.1.7). The normality assumption in (3.1.8) 

plays an important role in the step of model parameter estimation, since the 

significance of the parameter estimates is decided based on the t-statistics 

calculated. 

 

After constructing each reasonable model, these assumptions should be 

checked cautiously. These assumption check procedures are also known as 

diagnostic checks and comprised of several tests. 

 

3.1.5. Diagnostic Checks 

 

Jarque-Bera (1981) Normality Test 

 

The normality of the error terms can be checked with Jarque-Bera Test. The 

null hypothesis for this test is;  

0
H : Error terms are normally distributed. 

The test statistic for Jarque-Bera Test is given by; 

 
2 2

2

(2)

( 3)
[ ] ~

6 24

s k
JB n χ

−
= + ɺ ,  

where s  is the skewness coefficient and k  is  the kurtosis coefficient; 

 
3

3
2 2

( )

[ ( )]

i

i

E
s

E

ε

ε
= ,  

 
4

2 2

( )

[ ( )]

i

i

E
k

E

ε

ε
= .  

 

The rejection of null hypothesis brings the result of nonnormal distribution for 

the error terms and thus the model built becomes invalid. Either a 

transformation on the series or another model trial for the series can be the 

solution for such cases. 
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Serial L-M Correlation Test (Breusch (1978) – Godfrey (1978) Test) 

 

For an AR( p ) model as; 

 
1 1 2 2

...
t t t p t p t

y y y yφ φ φ ε− − −= + + + +  for 0,1,2,...,t n= , (3.1.9) 

the uncorrelatedness assumption made for the error terms can be checked 

by the Serial L-M Correlation Test. For this test, an artificial regression model 

is defined and it is given by; 

 
0 1 1 1 1 2 2

..... .....
t t p t p t t r t r t

y y uε γ γ γ ρ ε ρ ε ρ ε− − − − −= + + + + + + + + ,  

where 
t

u  is the error term of this artificial regression model with zero mean 

and constant variance. Here, r is the order of serial correlation that we want 

to test. The null hypothesis to be tested is defined as; 

 
0 1

: ... 0
r

H ρ ρ= = = . (3.1.10) 

The test statistic of this null hypothesis is calculated by; 

 

2

2
~ ( , )

(1 )
( )

a

stat

a

R
rF F r n p r

R
n p r

= − −
−

− −

, (3.1.11) 

where 2

aR  is the coefficient of determination obtained from the artificial 

regression model. 

 

When the probability of the F-statistic calculated in (3.1.11) is greater than 

the specified significance level, the null hypothesis in (3.1.10) is failed to be 

rejected. This result brings the decision that no lag of the error term 
tε  has a 

correlation with the error term itself up to the order r. Hence, the 

uncorrelatedness of the error terms is satisfied. On the other hand, if any 

correlation exists among the error terms, transformation can handle it. 

Otherwise, the model should be changed. 

 

White Heteroskedasticity Test (White (1980) Test, with no cross terms) 

 

For the AR( p ) model stated in (3.1.9), heteroskedastic error terms can be 

checked by White Heteroskedasticity Test.  
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This test also requires an artificial regression model; 

 2 2 2

0 1 1 1 1 2
...... ......t t p t p p t p t p ty y y y uε γ γ γ γ γ− − + − −= + + + + + + + ,  

with the same error term tu  assumed in Serial L-M Correlation test. The null 

hypothesis is defined as; 

 2 2

0
: ( ) ( | )t tH Var E yε ε σ= =

ɶ

.  

So the null hypothesis can actually be converted to; 

 
0 1 2 2

H : .... 0
p

γ γ γ= = = = .  

The test statistic for this null hypothesis is calculated as; 

 

Re
Re2

~ (2 , 2 1)
Re Re

2 1

stat

SS g
MS gp

F F p n p
SS s MS s

n p

= = − −

− −

  

where ReSS g is the sum of squares of regression and ReSS s is the sum of 

squares of residuals. In addition, ReMS g  and ReMS s are the mean of these 

functions, respectively. 

 

When the null hypothesis is not rejected at the significance level specified, 

the decision that the variance of the error terms is constant is made. This 

leads homoskedasticity assumption to come true. 

 

- If any two assumptions are not satisfied, the models constructed are 

not reliable for statistical inference.  

- If the first two assumptions are satisfied but the third one is not, then 

autoregressive conditional heteroskedasticity (ARCH) models or other 

heteroskedastic models can be constructed. 

 

3.1.6. Autoregressive Conditional Heteroskedasticity (ARCH) Models 

 

The bases of ARCH models were first taken by Engle in 1982. These models 

are widespread in modeling, when the error terms are found to be 

uncorrelated but have non-constant variance. The general idea of ARCH 

models is to model the error variance. That is, any built model having 
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heteroskedastic errors is not altered at all, however a solution for explaining 

the variance of error terms with a model is tried to be obtained. For an 

assumption of AR( p ) model with heteroskedastic errors; 

 
1 1

...
t t p t p t

Y Y Yφ φ ε− −= + + + , (3.1.12) 

the conditional mean of 
t

Y  given that all the lags of it are known is given by; 

 
1 1 1

( | ,..., ) ...
t t t p t p t p

E Y Y Y Y Yφ φ− − − −= + + .  

That is, the fitted model of AR( p ) process reveals a mean equation of; 

 
1 1
ˆ ˆˆ ...

t p t p
Y Yµ φ φ− −= + + .  

Nevertheless, the existence of non-constant variance of error terms in 

(3.1.12) brings the false inferences about the predicted and forecasted 

values of 
t

Y . Therefore, Engle put forward the assumption that the error 

terms have the following form. 

 
t t t

aε σ= .  

Here, 
t

a  is assumed to be the zero-mean white noise errors with variance 1 

and independent of the lags of 
t

ε . For time t, the conditional variance of 
t

ε  

assuming that all the lags up to order k is known is provided by; 

 
2 2

1

2 2 2

0 1 1

( ) ( | ,..., ) ,

... ,

t t t t k t

t t k t k

Var Eε ε ε ε σ

σ θ θ ε θ ε

− −

− −

= =

= + + +
 (3.1.13) 

where θi>0 for i=0,1,…to have a nonnegative variance. The error variance is 

dependent on the lags of 
t

ε  and takes values according to time change, 

therefore in (3.1.13) is named as the variance equation or the autoregressive 

conditional heteroskedasticity model of order k. Since ( )
t

Var ε  gives the 

optimal forecast of 2

tε , we can define the relationship below as well. 

 2 2 2

0 1 1
ˆ ˆ ˆˆ ˆ ˆ...

t t k t k
ε θ θ ε θ ε− −= + + + .  

By this relationship, it is not wrong to say that the residuals of AR( p ) model 

follow an AR( k ) model. So, as to understand if there exists an ARCH effect 

in the residuals up to order k, the null hypothesis 

 
0 1 2

: ... 0
k

H θ θ θ= = = =  
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can be tested by ARCH-LM test. The rejection of 
0

H  leads us to infer that 

ARCH effect is observed up to the th
k  lag of residuals. Thus, the next step 

becomes to fit an ARCH( k ) model in order to explain the variance of error 

terms t
ε . 

 

3.1.7. ARIMA/SARIMA ((Seasonal) Autoregressive Integrated Moving 

Average) Models 

 

ARIMA/SARIMA models are non-stationary models. A regular difference of 

order d is needed to make the series stationary. That is why, they are also 

said to be integrated of order d.  

 

An ARIMA( , ,p d q ) model is in general form as; 

 2 2

1 2 1 2
(1 ... )(1 ) (1 ... )

p d q

p t q t
B B B B Y B B Bφ φ φ θ θ θ ε− − − − − = − − − −   

and a regular difference of order d  make the series a stationary ARMA( ,p q ) 

process. 

 

A SARIMA( , ,p d q ) x ( , ,P D Q ) model with seasonal period s is; 

 1 1

1 1

(1 ... )(1 ) (1 ) (1 ... )

(1 ... )(1 ... )

p d s D s Ps

p P

t tq s Qs

q Q

B B B B B B
Y

B B B B

φ φ
ε

θ θ

− − − − − − Φ − − Φ
=

− − − − Θ − − Θ
  

and a regular difference of order d makes the series a stationary seasonal 

ARMA( ,p q ) process and a seasonal difference of order D  makes this 

process a stationary ARMA( ,p q ) process. To be able to use this model, the 

series must show a periodic behavior. 

 

As seen these two models differ from each other in one way, namely, the 

seasonal component.  

 

As a SARIMA/ARIMA process is converted into a stationary ARMA process, 

the model identification and estimation processes are the same for an 

ordinary ARMA process. 
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3.1.8. Model Selection 

 

If these assumptions are satisfied, the best model of all reasonable models 

estimated is chosen through information criteria. The most commonly used 

criteria are; 

- Akaike’s Information Criterion (AIC) 

- Schwarz Bayesian Information Criterion (SBIC) 

 

In general, the model with the minimum information criterion is preferred; 

therefore it is better to decide on a model by looking at both of the results 

given by these information criteria. 

 

3.2. Time Series Disaggregation Methods 

 

The inexistence of sub-annual values creates the problem of information loss 

about the population when they are needed to be used in the process of 

statistical modeling, since annual figures may not reflect the intra-year 

behavior of a series. To illustrate, unemployment rate may show periodical 

rise and fall in different times of a year in Turkey, however the sole annual 

observations may fail to reflect this seasonal behavior. In addition to this, the 

existence of sub-annual figures rather than only annual values means more 

observations in a sample and more observations give a better representative 

model for a population. Besides the statistical perspective, monthly or 

quarterly observations could be helpful in making decisions for vital cases. 

For example, sub-annual unemployment rate observations in a country may 

be needed in order to take sudden precautions in a year as governmental 

policy. Instead of building a model only with the annual figures, the 

interpolation methods and the procedures using indicator variables can be 

applied in the disaggregation of sub-annual values. The values to be 

disaggregated can be either quarterly or monthly. This study focuses on the 

implementation of methods in obtaining the quarterly figures.  
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The methods to be applied strictly rely on the structure of the data in hand. 

This structure is usually named as accounting restrictions or consistency 

conditions. For illustration, the annual value of a variable being interested can 

be the sum of monthly values of that year or the mean of quarterly figures 

may reveal the annual observation. This structural behavior of the data in 

hand should be reflected to the disaggregated series so that the accounting 

restrictions are met. The general picture of the data being utilized in the 

literature separates the structures into three as; flow, stock and index. 

 

The flow variables are the ones corresponding to the first illustration and the 

index variables fall into the latter group. On the other hand, the case of stock 

variables are seen when the annual value is directly equal to the observation 

of a specific month or quarter of that year. It is easy to decide on that the 

structure of the unemployment rate data is index while the averages of sub-

annual values expose the aggregated annual values. 

 

For a given sample size of n and the variable of annual observations t
y , the 

relationship between 
t

y  and the quarterly observations 
it

x  for 1,2,3,4i =  can 

be defined as; 

 t it
y Cx= ,  

where the dimensions of t
y , it

x  and C  are nx1, 4nx1 and nx4n, respectively. 

The selection of matrix C  needs caution so as to satisfy the accounting 

restrictions. The structure of the aggregated data specifies the components 

of the matrix C  as follows: 

 

For the flow variable; 

 

1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1

C

 
 
 
 

=  
 
 
 
 

⋯

⋯

⋱ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋱

⋯

.  
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For a stock variable having only the observation of the second quarter;  

 

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

C

 
 
 
 

=  
 
 
 
 

⋯

⋯

⋱ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋱

⋯

.  

And for the index variable; 

 

1 1 1 1

4 4 4 4

1 1 1 1

4 4 4 4

1 1 1 1

4 4 4 4

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

C

 
 
 
 

=  
 
 
 
  

⋯

⋯

⋱ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋱

⋯

. (3.2.1) 

 

This matrix is known as the aggregation matrix, since the high-frequency 

observations are aggregated to the low-frequency values with the help of C . 

The aggregation matrix can be written in simple form as; 

 C I q= ⊗   

where I  is a nxn identity matrix, q  is a 1x4 vector determined by the 

structure of variable being interested and ⊗  is the notation of Kronecker 

product. 

 

For the flow variable; 

 [ ]1 1 1 1q = .  

For the stock variable having only the observation of the second quarter; 

 [ ]0 1 0 0q = .  

For the index variable; 

 [ ]1 4 1 4 1 4 1 4q = .  
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Just like the aggregation matrix, the inverse relation between the annual and 

sub-annual values can be constructed with a matrix of disaggregation, H , 

such that; 

 
it t

x Hy= . (3.2.2) 

It is the intention of the interpolation methods to seek this proper 

disaggregation matrix. The following part gets use of a commonly used 

interpolation method; Lisman/Sandee (1964) method. 

 

3.2.1. The Method of Lisman/Sandee (1964) 

 

For an index variable, the aggregation matrix was stated in (3.2.1). Not 

surprisingly, the inverse relationship between the annual and sub-annual 

figures can be sustained by the disaggregation matrix; 

 

'

'

1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
4

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1

H C

 
 
 
 

= = 
 
 
 
 

⋯

⋯

⋱ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋱

⋯

(3.2.3) 

since the equation (3.2.2) reveals, 

 [ ]
'

1 1 1 1it n n n n
x y y y y y y y y= ⋯ . (3.2.4) 

Thus, the accounting restriction for index variables is met. Nonetheless, it is 

straightforward to utilize this disaggregation matrix, because the trend 

component and the seasonal behavior in the series are not taken into 

consideration with it. At the end of each year, there is a jump of values from 

the last quarter of that year to the first quarter of the succeeding year. 

 

Lisman/Sandee (1964) proposed to implement a weighted structure placed in 

the quarterly figures instead of using the matrix in (3.2.3). That is, the jumps 

between the last quarter of the preceding year and the first quarter of the 

succeeding year are being coped with the help of weighted means of same 

quarters for the successive three years. The method does not directly discard 
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the components in (3.2.4) but employ them in generating the disaggregated 

data. When these components are assumed to be the elements of a 4nx1 

vector τ  as in (3.2.4) such that; 

 

11

21

31

41

1

2

3

4

it

n

n

n

n

τ

τ

τ

τ

τ

τ

τ

τ

τ

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

⋮   

and 

 
it t

yτ =  for 1, 2,3, 4i =  & 1, 2,...,t n=   

a quarter i  of a year t  is suggested to be derived from the weighted mean of 

, 1i t
τ − , 

it
τ  and 

, 1i t
τ + . In matrix notation; a generalization for a given year, say 

t=2, can be presented as follows; 

 

11 12 13

1

21 22 23

2 2

31 32 33

3

41 42 43

i

i i

i

w w w

w w w
x

w w w

w w w

τ

τ

τ

 
  
  =   
    

 

. (3.2.5) 

In order to maintain a reasonable symmetry and smoothness for the 

disaggregated data, the weight coefficients can be defined as; 

 11 43 21 33 31 23 41 13

12 42 22 32

, , , ,

,

w w a w w b w w c w w d

w w e w w f

= = = = = = = =

= = = =
  

so that (3.2.5) becomes 

 
1

2 2

3

i

i i

i

a e d

b f c
x

c f b

d e a

τ

τ

τ

 
  
  =   
    

 

. (3.2.6) 

The existence of six unknowns defined in the disaggregation matrix brings 

the need of six independent equations so that the system can be solved. 



 28 

Basically, three issues determine these needed equations, namely; 

accounting restriction, trend component and seasonal behavior. 

 

The mean of sub-annual values to be generated should exactly give the 

annual figure for a year according to the accounting restriction. For quarters 

of second year, the following four equations can be written; 

 
12 11 12 13

x a e dτ τ τ= + + , (3.2.7) 

 
22 21 22 23

x b f cτ τ τ= + + , (3.2.8) 

 
32 31 32 33

x c f bτ τ τ= + + , (3.2.9) 

 
42 41 42 43

x d e aτ τ τ= + + . (3.2.10) 

In order not to violate the accounting restriction, 

 

4

2 4

1

2 2 2

1

4
4

i

i
i

i

x

y x y=

=

= ⇒ =
∑

∑  (3.2.11) 

is needed to be satisfied. 

 

The sum of (3.2.7), (3.2.8), (3.2.9) and (3.2.10) gives:  

 
4

2 2 1 2 3

1

4 ( ) 2( ) ( )
i

i

x y a b c d e f a b c dτ τ τ
=

= = + + + + + + + + +∑ ,  

and for 1,2,3,4i =  and 1,2,3t = , 

 
t it t

yτ τ= = . (3.2.12) 

The only way to meet the accounting restriction in (3.2.11) is to assume  

 2e f+ =  (3.2.13) 

and 

 0a b c d+ + + = . (3.2.14) 

It is not surprising to obtain (3.2.13), since it comes from (3.2.12). Moreover, 

the quarters in the first and third years have no effect all alone in determining 

the figures of the second year. That is why (3.2.14) is being reached. 

 



 29 

When the trend component in the annual series is considered, three more 

independent equations can be obtained. The subtraction of (3.2.7) from 

(3.2.8) gives; 

 
22 12 1 2 3

( ) ( ) ( )x x b a f e c dτ τ τ− = − + − + − . (3.2.15) 

In the same way, the difference of (3.2.8) and (3.2.9) reveals; 

 
32 22 1 3

( ) ( )x x c b b cτ τ− = − + − . (3.2.16) 

If a difference of δ  is assumed to exist between successive years, the 

following equation becomes true; 

 
1 1t t t t

y y δ τ τ δ− −− = ⇒ − = .  

For a difference of δ  between successive years, the successive quarterly 

values to be generated are assumed to have a difference of 
4

δ  due to the 

smoothness satisfied. This can be proved easily as; 

4

, 1

1

1

( )

4

it i t

i
t t

x x

y y
−

=
−

−

− =
∑

 

4 3 2 1 4, 1 3, 1 2, 1 1, 1 1
( ) ( ) 4( )t t t t t t t t t tx x x x x x x x y y− − − − −⇒ + + + − − − − = −  

4 4, 1 3 3, 1 2 2, 1 1 1, 1 1
( ) ( ) ( ) ( ) 4( )t t t t t t t t t tx x x x x x x x y y− − − − −⇒ − + − + − + − = −  

1
4 4( )t tk k k k k y y −⇒ + + + = = −  

, 1
( )it i tk x x δ−⇒ = − =  

, 1 1, 1, 2, 2, 3, 3, , 1
( ) ( ) ( ) ( ) ( )it i t it i t i t i t i t i t i t i tx x x x x x x x x x− − − − − − − −⇒ − = − + − + − + −  

1,
( )

4
it i t

x x
δ

−⇒ − =  

  

Then, (3.2.15) can be restated as; 

 
22 12 2

( ) ( )
4

x x b a f e c d a b c d
δ

τ δ= − = − + − + − + − + −   

and (3.2.16) turns into; 

 
32 22

2 ( )
4

x x b c
δ

δ= − = − .  

Therefore, the following three independent equations are maintained; 

 0b a f e c d− + − + − = , (3.2.17) 

 0.25a b c d− + − = , (3.2.18) 

 0.125b c− = . (3.2.19) 
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Now that there is only one equation left to be claimed, the seasonal behavior 

of the annual series plays a role in acquiring it. For an assumption of regular 

seasonal movement existing in the annual figures, the following equality can 

hold; 

 
1 1t t t t

y y y y+ −− = − . (3.2.20) 

That is, { }t
y  are assumed to follow a cyclical movement. If this movement is 

considered as a sine curve and the quarters of any year, say 
2

y , are 

assumed to be lying on this curve symmetrically; 

 

12

22

32

42

sin( )
8

3sin( )
8

5sin( )
8

7sin( )
8

x r

x r

x r

x r

π

π

π

π

=

=

=

=

 

becomes true where r  is the amplitude of the sine curve. Therefore, 
12 32

x x=  

and 
22 42

x x= . By (3.2.12) and (3.2.20), the following equality holds; 

 
1 1t t t t

τ τ τ τ+ −− = − . 

Considering the seasonal behavior, the subtraction of (3.2.7) from (3.2.8)

turns into when the difference of 
1t t

τ τ +−  is assumed to be ξ ; 

 

22 12 1 2 3

22 12 2 2 2

22 12 2

2

( ) ( ) ( )

( )( ) ( ) ( )( )

( ) ( )

3sin( ) sin( ) ( ) ( )
8 8

0.541 ( )

x x b a f e c d

x x b a f e c d

x x b a f e c d a b c d

r r b a f e c d a b c d

r a b c d

τ τ τ

τ ξ τ τ ξ

τ ξ

π π τ ξ

ξ

− = − + − + −

⇒ − = − − + − + − −

⇒ − = − + − + − + − − +

⇒ − = − + − + − + − − +

⇒ = − − +

(3.2.21) 

Therefore, a relationship between r and ξ  can give us a solution for the sixth 

equation needed. In order to satisfy the accounting restriction, the average of 

the quarterly figures should give the annual value. Under the assumption of a 

sine curve followed by the quarter values of years, the quarters of year 
t

y  for 

1t =  take values as follows. 
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11

21

31

41

sin( )
8

3sin( )
8

5sin( )
8

7sin( )
8

x r

x r

x r

x r

π

π

π

π

−=

−=

−=

−=

 

Therefore, the relationship below can be built: 

 

4 4

2 1

1 1

2 1 2 1
4

3 32[ sin( ) sin( )] 2[ sin( ) sin( )]
8 8 8 8

4 4

1.307

0.765

i i

i i

x x

y y

r r r r

r

r

τ τ ξ

π π π π
ξ

ξ

ξ

= =

−

− = − = =

− −+ +
⇒ − =

⇒ =

⇒ =

∑ ∑

 

By using this relationship and (3.2.21), our sixth equation can be derived. 

 

0.541 ( )

0.541(0.765) ( )

0.414

r a b c d

a b c d

a b c d

ξ

ξ ξ

= − − +

⇒ = − − +

⇒ − − + =

 (3.2.22) 

With these six independent equations, six unknowns can be found and the 

matrix in (3.2.6) can be constructed. Thus, the generation of quarterly figures 

becomes nothing but a matrix calculation. 

 

3.2.2. The Method of Chow/Lin (1971) 

 

After the interpolation methods and the approaches acquiring the 

disaggregated data by only mathematical calculations were criticized due to 

the lack of statistical criteria utilization, the ongoing studies started to be 

focusing on the use of indicator variables in the process of disaggregation. 

The most common method using the related series approach was put 

forward by Chow and Lin in 1971. The method they proposed was on behalf 

of constructing a relationship between the annual observations and the set of 

observed high frequency related series and after that using this relationship 

in generating the sub-annual figures. That is, the indicator variables are being 
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regressed on the disaggregated data through the help of annual 

observations. 

 

Once the related series are determined, the sub-annual figures can be 

explained by the observed m indicator variables such that; 

 X Z aβ= +  

where X  is the 4nx1 vector of quarterly data to be disaggregated, Z  is the 

4nxm vector of indicators and β  is their mx1 vector of coefficients. a  is 

assumed to be the error terms distributed with zero mean and constant 

variance. By the use of aggregation matrix, the following statement becomes 

true; 

 Y CX CZ Caβ= = + . 

The annual figures are known and the related series are observed. The 

estimation of β  is the necessary part. Chow/Lin estimates the coefficient 

vector through the generalized least squares and finds β̂  as the linear 

unbiased estimator with minimum variance such that; 

 ' ' ' 1 1 ' ' ' 1ˆ ( ( ) ) ( )Z C CVC CZ Z C CVC Yβ − − −=  

where V  is the variance-covariance matrix of a . The estimation of the β  

coefficient vector leads the estimated vector of disaggregated series to; 

 ' ' 1ˆ ˆˆ ( ) ( )X Z VC CVC Y CZβ β−= + − . 

The error terms were said to have constant mean and variance. In addition to 

this, the method defines two distinct assumptions for the distribution of the 

error terms a . The first assumption is that the error terms are uncorrelated 

within themselves. In this case, the variance matrix of the error terms 

becomes; 

 2

1 0 0 0

0 1 0 0

0 0 0

0 0 0 1

aV σ

 
 
 
 =
 
 
  

⋯

⋯

⋱ ⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯

. 
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Nevertheless, this theoretical assumption is rarely met by the real data. 

Therefore, a second case is being put forward for the error terms. It argues 

that an AR(1) model can reflect the behavior of the series; 

 
1 1t t ta aφ ε−= + . 

Then, the variance-covariance matrix of the error terms turns into; 

 

2 4 1

4 2

2 2 4 3

4 1 4 2

1

1

1

n

n

n
a

n n

V

ρ ρ ρ

ρ ρ ρ

σ ρ ρ ρ

ρ ρ ρ

−

−

−

− −

 
 
 
 =
 
 
 
 

⋯

⋯

⋱ ⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯

. (3.2.23) 

When the error terms neither are uncorrelated nor follow an AR(1) process, 

two variants of the Chow/Lin method can be utilized; Fernandez (1981) and 

Litterman (1983). 

 

3.2.3. The Method of Fernandez (1981) 

 

The method of Fernandez is based on the same steps conducted in the 

approach of Chow/Lin. It sets the relationship between the observed related 

series and the annual figures and finds the disaggregated series through this 

relationship. The method estimates the vector of coefficients β  by 

generalized least squares, nevertheless the difference comes from the 

assumption that the error terms follow a random walk model instead of a 

white noise or an AR(1) model. 

  

Fernandez criticized the method of Chow/Lin in two aspects. The variance-

covariance matrix in (3.2.23) is dependent on an unknown parameter ρ  and 

the estimation of ρ  can be achievable through applying the method of 

ordinary least squares to the residuals only when adequate number of 

observations is available. In addition to this drawback, the AR(1) model 

proposed by Chow/Lin may fail to cope with the serial correlation existing in 

the residuals. Because of these two probable conditions, Fernandez claimed 

that the residuals may follow a model as; 
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1t t ta a ε−= +  (3.2.24)  

where tε  are the zero mean white noise error terms. By using this equation; 

 ( ) ( )1 1 1t t t t t tX X Z Z a aβ− − −− = − + −  (3.2.25) 

becomes true. In order to sustain the equality (3.2.24), a matrix D is defined 

such that; 

 

1 0 0 0 0

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

D

 
 − 
 −

=  
 
 −
 

− 

⋯

⋯

⋯

⋮ ⋮ ⋱ ⋱ ⋮ ⋮

⋯

⋯

 (3.2.26) 

so that Da ε=  is satisfied. Hence, the equation (3.2.25) can be rewritten as 

follows; 

 DX DZ Daβ= + . 

Since we have only the annual figures in hand, we need to utilize the 

relationship between the indicator variables and the annual figures and this 

relationship can be set up with the equation below; 

 1
( )Y CX CZ CD Daβ −= = + . 

The only thing that is needed to be found is the estimate of coefficient matrix. 

The generalized least squares method gives an estimator for β  as; 

 ' ' ' 1 ' 1 1 ' ' ' 1 ' 1ˆ ( ( ( ) ) ) ( ( ) )Z C C D D C CZ Z C C D D C Yβ − − − − −=  

with the solution for the disaggregated data; 

 ' 1 ' ' 1 ' 1ˆ ˆˆ ( ) ( ( ) ) ( )X Z D D C C D D C Y CZβ β− − −= + − . 

 

3.2.4. The Method of Litterman (1983) 

 

When a white noise, an AR(1) or a random walk processes are not suitable 

for the sub-annual residuals and do not remove the serial correlation among 

the annual residuals, the method proposed by Litterman may be valuable in 

the process of disaggregation. Litterman found that the serial correlation 

existing in the annual residuals may be the result of that they follow an 
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ARIMA(1,1,0) model. The relationship between the sub-annual figures and 

the indicator variables is just the same as in the other two regression-based 

methods and can be written as; 

 X Z aβ= + . 

However, the error term a  in this equation are thought to be fitted through an 

ARIMA(1,1,0) model. That is; 

 
1 2

( 1)t t t ta a aφ φ ε− −= + − +  (3.2.27) 

can be true for this case. The equation (3.2.27) can be expressed in a 

following open form; 

 
1t t ta a K−= + , 

 
1t t tK Kφ ε−= + .  

As seen, the method of Litterman (1983) is actually an improved version of 

the method of Fernandez (1981) and the equation (3.2.27) brings the sole 

difference between them. The relationship between ta  and tK can be built by 

the same matrix D  in equation (3.2.26). In addition to this, the relationship 

between tK  and tε  can be defined with the matrix below. 

 

1 0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

φ

φ

φ

φ

 
 − 
 −

Ω =  
 
 −
 

− 

⋯

⋯

⋯

⋮ ⋮ ⋱ ⋱ ⋮ ⋮

⋯

⋯

. 

Hence, the relationship between the observed related series and the annual 

figures is; 

 1 1
( )Y CX CZ CD Daβ − −= = + Ω Ω . 

Litterman estimates the β  coefficient through the generalized least squares 

method as well. 

 ' ' ' ' 1 ' 1 1 ' ' ' ' 1 ' 1ˆ ( ( ( ) ) ) ( ( ) )Z C C D D C CZ Z C C D D C Yβ − − − − −= Ω Ω Ω Ω .  

Therefore, the solution for the disaggregated series is obtained by; 

 ' ' 1 ' ' ' 1 ' 1ˆ ˆˆ ( ) ( ( ) ) ( )X Z D D C C D D C Y CZβ β− − −= + Ω Ω Ω Ω − .  
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So as to generalize the regression based methods, Chow/Lin (1971), 

Fernandez (1981) and Litterman (1983) are all utilizing the same structure of 

relationship between the annual figures and the observed related series and 

maintain the disaggregated series through the help of this relationship. The 

only difference that they are being distinct is the assumptions made on the 

distribution of the annual residuals.  

 

The appropriate specification of the error distribution gives the best 

disaggregated data. In addition, the choice of indicator variables becomes 

also vital in these methods, since it would not be surprising to be witness of 

disaggregated series being distant from actual values when any unrelated 

series is expected to be the explanatory variable of the annual figures. 
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CHAPTER 4 

 

 

ANALYSES 

 

 

 

This chapter is separated into two sections. The generation of quarterly 

figures is conducted in the first one. After obtaining the disaggregated series, 

modeling procedure and the forecasts of these models are presented in the 

second section. 

 

4.1. Disaggregation of Quarterly Figures 

 

This section focuses on one mathematical procedure; Lisman/Sandee and 

three regression-based methods; Chow/Lin, Fernandez and Litterman. While 

the application of the method of Lisman/Sandee is given in the first part of 

this section, disaggregation procedure with the regression-based methods is 

done in the second part. 

 

4.1.1. Disaggregation of Unemployment Rate of Turkey with the Method 

of Lisman/Sandee (1964) 

 

The system of equations being used in the method of Lisman/Sandee was 

stated before together with why and how these equations are derived. In this 

section of the study, the method is applied to the unemployment rate data of 

Turkey. 

 

The derivation of equations actually includes the main part of the method. 

The only thing left for generating the disaggregated series is to solve these 
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equations and to get into matrix calculations. (3.2.13), (3.2.14), (3.2.17), 

(3.2.18), (3.2.19) and (3.2.22) can be represented in matrix form;

 

1 1 1 1 0 0 0

0 0 0 0 1 1 2

1 1 1 1 1 1 0

1 1 1 1 0 0 0.25

0 1 1 0 0 0 0.125

1 1 1 1 0 0 0.414

a

b

c

d

e

f

     
     
     
     − − −

=     
− −     

     −
     

− −     

. 

The coefficient matrix on the left-most side is full rank, since it comes from six 

independent equations for six unknowns. Therefore, the inverse of this matrix 

becomes helpful in generating these six unknowns and reveals the following 

equation system; 

 

0.25 0 0 0.5 0.5 0.25 0

0.25 0 0 0 0.5 0.25 2

0.25 0 0 0 0.5 0.25 0

0.25 0 0 0.5 0.5 0.25 0.25

0 0.5 0.5 0 0 0.5 0.125

0 0.5 0.5 0 0 0.5 0.414

a

b

c

d

e

f

     
     −     
     − −

=     
− −     

     −
     

−     

. 

So, we get 0.291a = , 0.041b = − , 0.166c = − , 0.084d = − , 0.793e = , 1.207f =  

and the matrix in (3.2.6) becomes; 

 

0.291 0.793 0.084

0.041 1.207 0.166

0.166 1.207 0.041

0.084 0.793 0.291

− 
 − − 
 − −
 
− 

. 

The utilization of this matrix gives the disaggregated series 
it

x . For 

illustration, the quarters of year 1989 can be obtained by; 

 

1,1989

1988

2,1989

1989

3,1989

1990

4,1989

0.291 0.793 0.084

0.041 1.207 0.166

0.166 1.207 0.041

0.084 0.793 0.291

x
y

x
y

x
y

x

−   
    − −     =     − −
      

−  

. 

In the same way the quarters of 1990 is got through; 
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1,1990

1989

2,1990

1990

3,1990

1991

4,1990

0.291 0.793 0.084

0.041 1.207 0.166

0.166 1.207 0.041

0.084 0.793 0.291

x
y

x
y

x
y

x

−   
    − −     =     − −
      

−  

. 

All the annual figures and the disaggregated series for the unemployment 

rate of Turkey are presented in Appendix A and Appendix B.  

 

As stated before, not all the unemployment rate data of Turkey are observed 

for quarters except from 2000 to 2008. However, the line graph of these 

years clearly exposes the seasonal structure existing in the series as below. 

 
 
 

 
 
Figure 1. Actual Quarterly Values of the Unemployment Rate of Turkey between 2000 
and 2008 
 
 
 
The method of Lisman/Sandee considers the seasonal pattern in the 

derivation of equations; hence it is expected to see the seasonal structure in 

the generated disaggregated series as well. Nonetheless, the seasonality is 

not caught by the series and this is most probably due to the smooth 

structure achieved by the application of the method. The time series plot of 
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the generated series from year 1989 to 2007 and the comparison of actual 

observations and the disaggregated data are the following. 

 
 
 

 
 
Figure 2. Disaggregated Series (Lisman/Sandee) between 1989 and 2007 
 
 
 
Table 1. A Comparison of Disaggregated Series (Lisman/Sandee) and Actual Quarterly 
Values of Unemployment Rate of Turkey  between 2000 and 2007 
 

Year Quarter 
Disaggregated 
Series 

Actual 
Values Difference 

2000 1 6.67 8.25 -1.58 

2000 2 6.13 6.12 0.01 

2000 3 6.22 5.53 0.69 

2000 4 6.94 6.25 0.7 

2001 1 7.66 8.49 -0.83 

2001 2 8.12 6.73 1.39 

2001 3 8.61 7.82 0.79 

2001 4 9.11 10.4 -1.3 

2002 1 9.76 11.55 -1.79 

2002 2 10.39 9.32 1.07 

2002 3 10.66 9.56 1.11 

2002 4 10.57 11.05 -0.48 

2003 1 10.5 12.32 -1.81 

2003 2 10.59 10.03 0.56 

2003 3 10.58 9.41 1.18 

2003 4 10.49 10.33 0.16 
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Table 1 (continued) 
 

Year Quarter 
Disaggregated 
Series 

Actual 
Values Difference 

2004 1 10.38 12.45 -2.07 

2004 2 10.3 9.28 1.03 

2004 3 10.26 9.47 0.79 

2004 4 10.25 9.99 0.26 

2005 1 10.26 11.66 -1.4 

2005 2 10.25 9.17 1.08 

2005 3 10.2 9.44 0.76 

2005 4 10.11 10.64 -0.54 

2006 1 9.96 11.95 -1.99 

2006 2 9.83 8.84 0.99 

2006 3 9.84 9.14 0.7 

2006 4 9.99 9.64 0.35 

2007 1 10.12 11.68 -1.56 

2007 2 10.19 9.23 0.96 

2007 3 10.32 9.68 0.64 

2007 4 10.51 10.48 0.04 

 
 
 
4.1.2. Disaggregation of Unemployment Rate of Turkey with the 

Regression Based Methods 

 

In this part, three regression based methods stated before are applied to the 

annual series. Since the application of the methods was not easily realizable 

without software, a time series disaggregation program, ECOTRIM, has been 

utilized in the process of generation and the higher frequency observations 

have been obtained.  

 

In the specification of related series, the kinds of economic activities of gross 

national product in constant prices (1987 base) by production were 

examined. These activities were agriculture, industry, trade, government 

services, GDP (in purchasers’ value) and the GNP (in purchasers’ value). 

They were all obtained from the database of the Turkish Statistical Institute; 

however, unlike the unemployment rate data, the quarterly observations of 

these variables were available from years 1988 to 2006. Therefore, the 

regression based methods were applied to the annual data of the 
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unemployment rate for these years. Many combinations of these variables 

were tried as related series through the program and all three regression 

based methods were applied to each of these combination groups. While 

arranging the groups of indicator variables, the following cases were 

considered: 

- The variables GDP (in purchasers’ value) and GNP (in purchasers’ 

value) were slightly different from each other, therefore only one of 

them was chosen to be the candidate of any combination. 

- While deciding on the group of variables as related series, the 

disaggregated data obtained for each combination were compared to 

the actual quarter values of unemployment rate data of Turkey, i.e. 

from the first quarter of 2000 to last quarter of 2006, since the quarters 

of the years until 2000 are not observed. The comparison of the 

disaggregated data and the actual values was based on the sum of 

squared distances. The combination group with the minimum sum of 

squared distances was chosen to be the related series. 

- First, all the variables were assumed to be the indicators. Then, the 

variables having the same kind of movement were inspected and got 

into combination groups separately. For instance, GNP (in purchasers’ 

value) and trade follow the same kind of movement and thus, they 

were generally not used together  in the combination groups. 

- In this manner, different numbered groups of variables were 

constructed and a general table was obtained. 

 

In Table 2, the first combination includes all the variables and in this group 

gnp and trad seem to have same movement. Therefore, for the second and 

third combination group, they were tried separately and gnp was found to be 

more effective than trad. After inferring this result, the combination groups 

with three variables were built. While the variable ind does not have the same 

seasonal behavior as in gnp and trad, it was also tried in combination four 

like it is distinct from them. Nonetheless, the trad and gnp became much 

effective than ind and among all, the sixth group, the one with gnp, gave the 
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best result. For the next step, the groups of two were constructed. Since trad 

and gnp were more likely to reveal better results compared to ind, agr was 

utilized with them, respectively. As expected, gnp exposed better results. 

Then, gs was combined with gnp and the minimum sum of squared distance 

for this case was less than that of eighth group. In order not to fail in 

choosing the best combination group, the effectiveness of gs-trad and gs-ind 

were also examined as well. Surprisingly, the combination of gs and trad 

brought about better estimates than gs and gnp. Although each of gnp, trad 

and ind gave small sum of squared distances on their own in the last three 

groups, none of them were decided to be the better than group ten. All in all, 

the desired results and the best disaggregated series were obtained as the 

variables trade and government services were used as related series.  

 
 
 
Table 2. A Comparison of Regression-Based Methods for the Combination Groups of 
Economic Activities 
 

 
Sum of Squared Distances of 

Methods 
Decision 

Combination Fernandez 
AR(1) 
Min SSR 

Litterman 
Min SSR 

Minimum 
Sum of 
Squared 
Distance Method 

1. gnp-gs-ind-agr-trad 200.68 229.89 202.91 200.68 Fernandez 
2. gs-ind-agr-trad 354.13 760.28 331.73 331.73 Litterman 
3. gnp-gs-ind-agr 200.95 160.32 213.84 160.32 AR(1) 
4. gs-ind-agr 437.26 520.41 537.31 437.26 Fernandez 
5. gs-agr-trad 383.96 620.05 467.06 383.96 Fernandez 
6. gnp-gs-agr 353.80 420.58 462.83 353.80 Fernandez 
7. trad-agr 276.45 621.72 489.22 276.45 Fernandez 
8. gnp-agr 257.36 413.69 470.35 257.36 Fernandez 
9. gnp-gs 19.09 20.31 20.36 19.09 Fernandez 
10. gs-trad 15.17 26.83 13.16 13.16 Litterman 
11. gs-ind 21.67 29.62 16.22 16.22 Litterman 
12. trad 15.23 46.41 13.80 13.80 Litterman 
13. gnp 17.67 44.76 22.55 17.67 Fernandez 
14. ind 22.05 39.29 16.98 16.98 Litterman 

 
 
 
Table 3 and Figure 3 show how the actual observations differ from the 

disaggregated data. 
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Table 3.  A Comparison of Disaggregated Series (Litterman) and Actual Quarterly 
Values of Unemployment Rate of Turkey  between 2000 and 2006 
 

Year Quarter 
Disaggregated 
Series 

Actual 
Values Difference 

Squared 
Distance 

2000 1 8.04 8.25 -0.21 0.05 

2000 2 6.49 6.12 0.37 0.14 

2000 3 5.1 5.53 -0.43 0.18 

2000 4 6.34 6.25 0.09 0.01 

2001 1 8.35 8.49 -0.14 0.02 

2001 2 8.14 6.73 1.41 1.98 

2001 3 7.49 7.82 -0.33 0.11 

2001 4 9.52 10.4 -0.89 0.79 

2002 1 10.83 11.55 -0.71 0.51 

2002 2 10.48 9.32 1.16 1.34 

2002 3 9.39 9.56 -0.16 0.03 

2002 4 10.67 11.05 -0.38 0.14 

2003 1 11.74 12.32 -0.58 0.34 

2003 2 10.85 10.03 0.82 0.68 

2003 3 9.17 9.41 -0.24 0.06 

2003 4 10.4 10.33 0.07 0.01 

2004 1 11.26 12.45 -1.19 1.42 

2004 2 10.33 9.28 1.06 1.12 

2004 3 9.17 9.47 -0.3 0.09 

2004 4 10.43 9.99 0.43 0.19 

2005 1 11.55 11.66 -0.11 0.01 

2005 2 10.34 9.17 1.17 1.36 

2005 3 8.89 9.44 -0.55 0.3 

2005 4 10.04 10.64 -0.61 0.37 

2006 1 11.26 11.95 -0.68 0.47 

2006 2 9.87 8.84 1.03 1.06 

2006 3 8.56 9.14 -0.58 0.34 

2006 4 9.93 9.64 0.29 0.09 
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Figure 3. Disaggregated Series (Litterman) and Actual Quarter Values of 
Unemployment Rate of Turkey between 2000 and 2006 
 
 
 
The details about the values disaggregated for each combination groups of 

variables are presented in Appendix C. 

 

4.2. Modeling Processes 

 

Now that, there are two different series generated by the methods of 

Lisman/Sandee and Litterman, these series can be modeled separately as in 

parts 4.2.1. and 4.2.2. 

 

4.2.1. Modeling the Disaggregated Data Generated by Method of 

Lisman/Sandee 

 

For the data generated by the method of Lisman/Sandee, we first examined if 

any transformation is needed to be applied to the series. According to the 

results of Box-Cox in Table 4, AIC and SBC give the minimum values when 
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lambda is 1. Therefore, no transformation is needed for the series. Our next 

step is to get a general idea about the structure of the series through the time 

series plot. 

 
 
 
Table 4. Box-Cox Results of Disaggregated Series (Lisman/Sandee) 
 

LAMBDA     LOGLIK      RMSE         AIC         SBC 
1.0     67.0291    0.009930    -122.058    -108.074 
0.5     63.4034    0.010354    -114.807    -100.822 
0.0     58.1302    0.011005    -104.260     -90.276 
-0.5     51.4023    0.011900     -90.805     -76.82 
-1.0     43.5045    0.013088     -75.009     -61.025 

 
 
 

 
 
Figure 4. Time Series Plot of Disaggregated Series (Lisman/Sandee) 
 
 
 
By the time series plot of unemployment rate data, the series has neither an 

exact trend nor a seasonal component. However, the observations do not 

spread among a horizontal mean line. Therefore, this visual inspection can 

give a clue about nonstationarity for the series. 
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Figure 5. Correlogram of Disaggregated Series (Lisman/Sandee) 
 
 
 
As seen in Figure 5, the autocorrelation function of the series shows a linear 

decay and only the first lag of partial autocorrelation function is out of 

significance boundaries with a significant spike. This kind of movements in 

the correlogram is widespread for nonstationary processes. 

 
 
 
Table 5. Augmented Dickey-Fuller Test Results on Disaggregated Series 
(Lisman/Sandee) 
 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.075438  0.7212 

Test critical values: 1% level  -3.525618  
 5% level  -2.902953  
 10% level  -2.588902  
     
     

*MacKinnon (1996) one-sided p-values.  
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According to the unit root test results in Table 5, it is also for sure that the 

series is nonstationary. A probability of 0.7212 leads us fail to reject the 

existence of a unit root for the series.  

 
A regular difference will most probably be a solution of making the series 

stationary. It will be better to look at the correlogram and the unit root test of 

the differenced series for the next step in order to understand whether a 

regular difference to be taken will cope with the nonstationarity. 

 
 
 

 
 
Figure 6. Correlogram of Differenced Disaggregated Series (Lisman/Sandee) 
 
 
 
Table 6. Augmented Dickey-Fuller Test Results on Differenced Disaggregated Series 
(Lisman/Sandee) 
 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.516956  0.0102 

Test critical values: 1% level  -3.525618  
 5% level  -2.902953  
 10% level  -2.588902  
     
     

*MacKinnon (1996) one-sided p-values.  
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The autocorrelation function and partial autocorrelation function of the 

differenced series do not show any behavior of a standard nonstationary 

series. Moreover, the Augmented Dickey-Fuller Test supports the stationarity 

of the differenced series as well (Table 6, p-value=0.0102). Therefore, the 

correlogram of the new series constructed by a regular difference of the 

original series can be used in model identification. There is significance for 

the first two lag of the autocorrelation function of the new series, DIF, since 

they are both out of significance boundaries. Whereas the partial 

autocorrelation function shows cut off after lag 3. Both functions have a 

movement of oscillating decay. Therefore, an ARMA(3,2) model can be fitted 

to this new series. 

 
 
 
Table 7. First Model for Differenced Disaggregated Series (Lisman/Sandee) 
 

     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     DIF(-1) 1.926344 0.113061 17.03802 0.0000 

DIF(-2) -1.347228 0.200037 -6.734885 0.0000 
DIF(-3) 0.376727 0.112017 3.363113 0.0013 
MA(2) -0.813464 0.090360 -9.002511 0.0000 

     
     R-squared 0.873808 Mean dependent var 0.029028 

Adjusted R-squared 0.868240 S.D. dependent var 0.269466 
S.E. of regression 0.097813 Akaike info criterion -1.757576 
Sum squared resid 0.650575 Schwarz criterion -1.631095 

Log likelihood 67.27274 Durbin-Watson stat 2.013678 
     
     

 
 
 
The table above shows the parameter estimates and their significance of the 

fitted ARMA(3,2) model for the series, DIF. The probability column at the end 

corresponds to the p-values of the t-statistics calculated for each parameter 

in the model. At a significance level of 0.05, all of the parameter estimates 

are statistically significant. However, the intercept and the MA(1) term have 

been dropped of the model, since their effects to the model were 

insignificant. 
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Once the model is constructed, the next thing that should be considered is to 

check the assumptions made at the beginning of the analysis. For error 

terms, it was accepted that they are normally distributed. In addition, a 

homoskedastic (constant) variance and uncorrelatedness within the error 

terms were also considered as true. These three assumptions are very vital 

in validation of the suggested model. 
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Figure 7. Jarque-Bera Normality Test Results for Residuals of First Model 
 
 
 
The Jarque-Bera Test Statistic has a p-value of 0.200083, which is the proof 

of a normal distribution of error terms at a significance level 0.05. Also, we 

have conducted the Shapiro-Wilk Test and the normality of error terms is not 

violated (p-value=0.126). Hence, it can be concluded that there is no doubt 

about the normality assumption made on the error terms. 

 
 
 
Table 8. Bresuch-Godfrey Serial Correlation LM Test Results for Residuals of First 
Model 
 

Breusch-Godfrey Serial Correlation LM Test:  
     
     F-statistic 0.973216 Probability 0.428463 

Obs*R-squared 3.399201 Probability 0.493370 
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The p-value corresponding to F-statistic above is 0.428463. It is greater than 

0.05. The existence of a serial correlation between the error terms is 

rejected. The uncorrelatedness assumption is satisfied as well. 

 
 
 
Table 9. White Heteroskedasticity Test Results for Residuals of First Model 
 

White Heteroskedasticity Test:  
     
     F-statistic 6.129263 Probability 0.000039 

Obs*R-squared 26.01647 Probability 0.000221 
     
     

 
 
 
However, the result of the White Heteroskedasticity Test is not as expected. 

The p-value of the F-statistic is strictly less than the alpha level 0.05 and the 

assumption that the error terms have a constant variance is rejected.  

 
 
 
Table 10. ARCH Test Results for Residuals of First Model 
 

ARCH Test:    
     
     F-statistic 4.075121     Probability 0.000512 

Obs*R-squared 25.76599     Probability 0.002231 
     
          
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CONSTANT 0.004565 0.002403 1.899874 0.0629 

RESID^2(-1) -0.063426 0.134922 -0.470095 0.6402 
RESID^2(-2) 0.110939 0.131460 0.843896 0.4025 
RESID^2(-3) 0.288637 0.130012 2.220080 0.0307 
RESID^2(-4) 0.560409 0.135853 4.125103 0.0001 
RESID^2(-5) 0.229370 0.152738 1.501726 0.1391 
RESID^2(-6) 0.015741 0.135906 0.115820 0.9082 
RESID^2(-7) -0.178948 0.130038 -1.376114 0.1746 
RESID^2(-8) -0.228237 0.131249 -1.738963 0.0878 
RESID^2(-9) -0.182381 0.134542 -1.355573 0.1810 
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The variance of the series may not be constant, but can be modeled. That is, 

an ARCH model can explain the behavior of the variance for the series. In 

order to decide if there is an ARCH effect in the residuals, a test is conducted 

as in Table 10. The F-statistic gives a p-value of 0.000512. Thus, an ARCH 

effect is seemed to exist in the residuals. When the p-values of the squared 

residuals are considered, the effect is not observed after the fourth lag. 

Therefore an ARCH(4) model can be considered as the variance equation. 

 
 
 
Table 11. Second Model for Differenced Disaggregated Series (Lisman/Sandee)  
 

     
      Coefficient Std. Error z-Statistic Prob.   
     
     DIF(-1) 1.635243 0.072188 22.65260 0.0000 

DIF(-2) -1.116942 0.072823 -15.33773 0.0000 
DIF(-3) 0.269038 0.051189 5.255772 0.0000 
MA(2) 0.013286 0.172565 0.076994 0.9386 

     
      Variance Equation   
     
     CONSTANT 0.000507 0.000499 1.016882 0.3092 

RESID(-1)^2 0.006232 0.035798 0.174080 0.8618 
RESID(-2)^2 1.035630 0.518839 1.996053 0.0459 
RESID(-3)^2 -0.012337 0.023709 -0.520337 0.6028 
RESID(-4)^2 0.159248 0.183411 0.868257 0.3853 

     
     R-squared 0.843598     Mean dependent var 0.029028 

Adjusted R-squared 0.823738     S.D. dependent var 0.269466 
S.E. of regression 0.113131     Akaike info criterion -2.436044 
Sum squared resid 0.806319     Schwarz criterion -2.151461 
Log likelihood 96.69759     Durbin-Watson stat 1.683987 

     
     

 
 
 
Although, the MA(2) term in the mean equation has a p-value of 0.9386 

which is greater than 0.05 significance level, the model fitted representing 

mean and variance equation seems appropriate. 
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Figure 8. Correlogram of Residuals for Second Model 
 
 
 
In Figure 8, the lags of the correlogram for the standardized residuals are all 

within the significance boundaries. Therefore, the error terms represented by 

these residuals follow a white noise process. Most probably the residuals 

have no more ARCH effect, nevertheless, checking this through ARCH test 

will make the things more clear. 

 

According to the ARCH test in Table 12, there is no remaining ARCH effect in 

the residuals (p-value=0.914878). The p-values corresponding to the lags of 

squared residuals also support this result. 
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Table 12. ARCH Test Results for Residuals of Second Model 
 

ARCH Test:    
     
     F-statistic 0.426682     Probability 0.914878 

Obs*R-squared 4.256296     Probability 0.893748 
     
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CONSTANT 1.218361 0.429888 2.834137 0.0065 

STD_RESID^2(-1) 0.049999 0.135377 0.369334 0.7134 
STD_RESID^2(-2) -0.048306 0.136410 -0.354123 0.7247 
STD_RESID^2(-3) -0.010491 0.136124 -0.077070 0.9389 
STD_RESID^2(-4) 0.129538 0.135621 0.955148 0.3438 
STD_RESID^2(-5) -0.178764 0.129045 -1.385283 0.1718 
STD_RESID^2(-6) -0.016554 0.131406 -0.125979 0.9002 
STD_RESID^2(-7) -0.107418 0.131680 -0.815749 0.4183 
STD_RESID^2(-8) 0.050883 0.139123 0.365745 0.7160 
STD_RESID^2(-9) -0.027459 0.138000 -0.198976 0.8430 

     
     

 
 
 

 
 
Figure 9. Actual-Fitted-Residual Graph for the Second Model 
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According to Figure 9, the fitted values are close to the actual values and the 

second model seems to have been fitted well. The mean equation for the 

series is as follows; 

 
1 2 3 2

1.635 1.117 0.269 0.013
t t t t t t

DIF DIF DIF DIF ε ε− − − −= − + + + . 

 

While the variance equation is; 

 2 2 2 2 2

1 2 3 4
0.001 0.006 1.036 0.012 0.159

t t t t t
σ ε ε ε ε− − − −= + + − + . 

 

Model 3 for the Differenced Disaggregated Series (Lisman/Sandee) 

 

As stated, the MA(2) term in the second model built before seemed 

insignificant. Omitting that term would give a better model as well. Therefore, 

it is advantageous to attempt in fitting an ARIMA(3,1,0) model, too. 

 
 
 
Table 13. Third Model for Differenced Disaggregated Series (Lisman/Sandee) 
 

     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     DIF(-1) 1.700811 0.104227 16.31833 0.0000 

DIF(-2) -1.368697 0.159507 -8.580768 0.0000 
DIF(-3) 0.499471 0.103869 4.808656 0.0000 

     
     R-squared 0.858604 Mean dependent var 0.029028 

Adjusted R-squared 0.854505 S.D. dependent var 0.269466 
S.E. of regression 0.102784 Akaike info criterion -1.671593 
Sum squared resid 0.728960 Schwarz criterion -1.576731 

Log likelihood 63.17733 Durbin-Watson stat 1.749639 
     
     

 
 
 
All the coefficients of the ARIMA(3,1,0) model is statistically significant, so 

the important thing is to examine the diagnostic checks for this model. 
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Figure 10. Jarque-Bera Normality Test Results for Residuals of Third Model 
 
 
 
The p-value of the Jarque-Bera Test Statistic is 0.042643. Even if it is slightly 

less than the significance level of 0.05, the normality assumption of the error 

terms is not satisfied. Even if the homoskedasticity and the uncorrelatedness 

assumptions made will be satisfied by White Heteroskedasticity and Serial 

Correlation LM tests, respectively, the existence of nonnormal error terms 

makes the results of the t-statistics calculated and the model constructed 

invalid. Therefore, there is no need to look at the other diagnostic checks. 

This model is totally invalid and statistically unreliable. 

 

Model 4 for the Disaggregated Series (Lisman/Sandee)  

 

In the second model constructed, the nonstationarity seemed to be emerging 

from heteroskedastic variance of the series. If the same steps made in that 

model are also applied to the original series, a new valid model can be 

obtained too. Without taking a regular difference for the series of 

unemployment rate of Turkey, an ARMA(3,2) model can be fitted. 

 

However when an ARMA(3,2) model with an intercept is fitted for the series, 

it is concluded that the intercept and MA(2) term are statistically insignificant 
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in explaining the unemployment rate. Therefore, the final model constructed 

has become an ARMA(3,1) process without an intercept as below. 

 
 
 
Table 14. Fourth Model for Disaggregated Series (Lisman/Sandee) 
 

     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     UR(-1) 2.049548 0.112246 18.25947 0.0000 

UR(-2) -1.500723 0.209753 -7.154726 0.0000 
UR(-3) 0.452259 0.112484 4.020666 0.0001 
MA(1) 0.876660 0.060143 14.57623 0.0000 

     
     R-squared 0.995264 Mean dependent var 8.565068 

Adjusted R-squared 0.995058 S.D. dependent var 1.387469 
S.E. of regression 0.097539 Akaike info criterion -1.763886 
Sum squared resid 0.656461 Schwarz criterion -1.638381 

Log likelihood 68.38183 Durbin-Watson stat 2.008468 
     
     

 
 
 
All the terms in the model seem significant. Now that the model is 

appropriate, the diagnostic checks become important for the next step. 
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Figure 11. Jarque-Bera Normality Test Results for Residuals of Fourth Model 
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By looking at the Jarque-Bera Test Statistic and its p-value, it can be said 

that the distribution of the error terms is normal. A Shapiro-Wilk Test also 

reveals a normal distribution (p-value=0.082). Thus, the normality 

assumption made on the error terms in the model is not violated. 

 
 
 
Table 15. Bresuch-Godfrey Serial Correlation LM Test Results for Residuals of Fourth 
Model 
 

Breusch-Godfrey Serial Correlation LM Test:  
     
     F-statistic 0.897959 Probability 0.470430 

Obs*R-squared 3.797642 Probability 0.434084 
     
     

 
 
 
Breusch-Godfrey Serial Correlation LM Test gives a p-value of 0.470430. 

There is not any serial correlation between the residuals up to the order four. 

Hence, the uncorrelatedness assumption of the error terms is also satisfied. 

 
 
 
Table 16. White Heteroskedasticity Test Results for Residuals of Fourth Model 
 

White Heteroskedasticity Test:  
     
     F-statistic 1.844998 Probability 0.103785 

Obs*R-squared 10.48539 Probability 0.105644 
     
     

 
 
 
In a surprising manner, the table above gives a homoskedastic variance for 

the error terms. However, it was expected that the homoskedasticity of the 

error terms was not going to be satisfied and a new ARCH model was going 

to be constructed in explaining the variance of the series. In order to be sure 

about if the series have homoskedastic variance, an ARCH test should be 

conducted for the residuals. 
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Table 17. ARCH Test Results for Residuals of Fourth Model 
 

ARCH Test:    
     
     F-statistic 4.525266     Probability 0.000184 

Obs*R-squared 27.51636     Probability 0.001148 
     
          
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CONSTANT 0.004375 0.002297 1.904567 0.0622 

RESID^2(-1) -0.091993 0.132736 -0.693051 0.4912 
RESID^2(-2) 0.105289 0.129656 0.812067 0.4203 
RESID^2(-3) 0.311328 0.127269 2.446226 0.0177 
RESID^2(-4) 0.572769 0.133633 4.286129 0.0001 
RESID^2(-5) 0.243736 0.150975 1.614414 0.1123 
RESID^2(-6) 0.072734 0.133705 0.543989 0.5887 
RESID^2(-7) -0.210398 0.127141 -1.654838 0.1038 
RESID^2(-8) -0.222696 0.129389 -1.721144 0.0910 
RESID^2(-9) -0.222164 0.132297 -1.679280 0.0989 

     
     

 
 
 
The ARCH test above gives that there is an ARCH effect in residuals up to 

order 4. Even though, White Heteroskedasticity Test did not say so, an 

ARCH(4) model is needed to be built as the variance equation of the series. 

 
 
 
Table 18. Fifth Model for Disaggregated Series (Lisman/Sandee) 
 

     
      Coefficient Std. Error z-Statistic Prob.   
     
     UR(-1) 2.355516 0.099959 23.56482 0.0000 

UR(-2) -2.054731 0.198538 -10.34929 0.0000 
UR(-3) 0.700076 0.102568 6.825459 0.0000 
MA(1) 0.324845 0.107363 3.025683 0.0025 

     
      Variance Equation   
     
     CONSTANT 0.001849 0.001066 1.734654 0.0828 

RESID(-1)^2 -0.016802 0.057448 -0.292481 0.7699 
RESID(-2)^2 0.693774 0.509771 1.360952 0.1735 
RESID(-3)^2 -0.019031 0.030630 -0.621324 0.5344 
RESID(-4)^2 0.231886 0.313261 0.740233 0.4592 
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Table 18 (continued) 
 

     
     R-squared 0.994225     Mean dependent var 8.565068 

Adjusted R-squared 0.993503     S.D. dependent var 1.387469 
S.E. of regression 0.111833     Akaike info criterion -2.305869 
Sum squared resid 0.800430     Schwarz criterion -2.023483 
Log likelihood 93.16420     Durbin-Watson stat 1.669578 

     
     

 
 
 
The ARCH(4) model built as the variance equation is appropriate. The 

residuals of this equation should not include an ARCH effect, if the 

appropriateness of this model is the case. Therefore it would be better to look 

at the results of an ARCH test in order to see if there is still an ARCH effect 

left in the residuals. 

 
 
 
Table 19. ARCH Test Results for Residuals of Fifth Model 
 

ARCH Test:    
     
     F-statistic 0.732389     Probability 0.677443 

Obs*R-squared 6.962295     Probability 0.641045 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CONSTANT 0.679737 0.292809 2.321437 0.0241 

STD_RESID^2(-1) 0.119645 0.133186 0.898332 0.3730 
STD_RESID^2(-2) 0.095126 0.134310 0.708259 0.4818 
STD_RESID^2(-3) 0.044260 0.135066 0.327690 0.7444 
STD_RESID^2(-4) 0.160035 0.118147 1.354539 0.1812 
STD_RESID^2(-5) -0.004440 0.119547 -0.037142 0.9705 
STD_RESID^2(-6) 0.018420 0.118630 0.155275 0.8772 
STD_RESID^2(-7) -0.053842 0.118691 -0.453634 0.6519 
STD_RESID^2(-8) 0.068666 0.117927 0.582273 0.5628 
STD_RESID^2(-9) -0.174235 0.117719 -1.480086 0.1447 

     
     

 
 
 
There is no ARCH effect in the remaining residuals just as expected. 



 61 

 
 
Figure 12. Correlogram of Residuals for Fifth Model 
 
 
 
In addition, all the lags of the standardized residuals of the variance equation 

are inside the significance boundaries as given in Figure 12 above. They are 

following a white noise process as assumed. 

 

The actual values and fitted values in Figure 13 are much closer for this 

model rather than the results of second model fitted. However, discrete 

results like information criteria imply better idea about which model is more 

meaningful, hence they should be examined cautiously. 
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Figure 13. Actual-Fitted-Residual Graph for the Fifth Model 
 
 
 
The mean equation for the series is as follows; 

1 2 3 1
2.356 2.055 0.7 0.325

t t t t t t
UR UR UR UR ε ε− − − −= − + + + . 

While the variance equation is; 

2 2 2 2 2

1 2 3 4
0.002 0.017 0.694 0.019 0.232

t t t t t
σ ε ε ε ε− − − −= − + − + . 

 

Model Selection and Forecasts 

 

For the series generated by the method of Lisman/Sandee, three main 

models, second, third and fifth models, have been fitted. However, the 

diagnostics of the third model have led us not to use the fitted equation for 

statistical inferences. Therefore, it should be reasonable to use either the 

second or the fifth model. Both of the models include same number of 

parameters. Considering the parsimony, the model with smaller information 

criteria would give better forecasts. When the second model and the fifth 

model are compared, the former is better; since both Akaike and Schwarz 

Information Criteria corresponding to this model are smaller. Therefore, it is 
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much reasonable to rely on the forecasts of the second model. The forecasts 

of quarters for the next three years and the available actual values 

corresponding to these quarters are given below. 

 
 
 
Table 20. A Comparison of Forecasts of Second Model (Lisman/Sandee) and Actual 
Values of Unemployment Rate of Turkey for the Quarters of Years from 2008 to 2010 
 

Year Quarter Forecasts 
Actual 
Values Distance 

2008 1 10.7 11.88 1.18 

2008 2 10.82 9.17 1.66 

2008 3 10.87 10.18 0.69 

2008 4 10.87 12.64 1.77 

2009 1 10.83 16.12 5.29 

2009 2 10.79 13.61 2.82 

2009 3 10.77 13.43 2.66 

2009 4 10.77 NA NA 

2010 1 10.78 NA NA 

2010 2 10.79 NA NA 

2010 3 10.8 NA NA 

2010 4 10.8 NA NA 

 
 
 
4.2.2. Modeling the Disaggregated Data Generated by Method of 

Litterman 

 

As in part 4.2.1., the results of Box-Cox in Table 21 give the minimum AIC 

and SBC values when lambda is 1. Therefore, we have applied no 

transformation for our series generated by the method of Litterman.  

 
 
 
Table 21. Box-Cox Results of Disaggregated Series (Litterman) 
 

LAMBDA     LOGLIK       RMSE       AIC        SBC 
1.0     -39.5682    0.16390     91.136    105.121 
0.5     -45.0577    0.17960    102.115    116.1 
0.0     -52.7680    0.20294    117.536    131.52 
-0.5     -62.2999    0.23667    136.600    150.584 
-1.0     -73.2018    0.28708    158.404    172.388 
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According to Figure 14, the unemployment rate of Turkey; UR, generated by 

the method of related series, has a regular seasonal movement. The trend 

component is not so obvious, thus the correlogram of this series would be 

helpful in deciding surely in the existence of it. The series seems stationary at 

first sight. The observations follow a stable movement among a horizontal 

mean line without any extreme candidate. 

 
 
 

 
 
Figure 14. Time Series Plot of Disaggregated Series (Litterman) 
 
 
 

 
 
Figure 15. Correlogram of Disaggregated Series (Litterman) 
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Due to the existence of seasonal component in the series, the autocorrelation 

and partial autocorrelation functions of the correlogram have lags reflecting 

this periodical movement. It is generally easier in autocorrelation function to 

specify the period of the seasonality by looking at the lags compared to those 

of partial autocorrelation function. The n*4th lags of autocorrelation function 

seem to be affected by seasonality. Therefore, a 4th degree seasonal 

difference is expected to eliminate the seasonal effect in the series. It would 

be better for the next step to look at the time series plot and the correlogram 

of this new series to be generated by taking seasonal difference. 

 
 
 

 
 
Figure 16. Time Series Plot of Seasonally Differenced Disaggregated Series 
(Litterman) 
 
 
 
There is no sign of seasonality left in the new series, URD4, after the 

seasonal difference was taken. The inspection that the seasonal period is 4 

has really come true. However, just a visual inspection with a time series plot 

is not enough. The correlogram should also be checked. 
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Figure 17. Correlogram of Seasonally Differenced Disaggregated Series (Litterman) 
 
 
 
The autocorrelation function shows no lags with regular periodical 

movements. Therefore, the seasonal period that is assumed as 4 has been 

supported through this correlogram as well. 

 

As the seasonal component and its period are determined, the model to be 

built can be specified. The model will be a SARIMA model, nevertheless, the 

order of autoregressive (and/or moving average) and seasonal 

autoregressive (and/or moving average) terms in the model are still unknown. 

Let our model be in the following form; 

 1 1

1 1

(1 ... )(1 ) (1 ) (1 ... )

(1 ... )(1 ... )

p d s D s Ps

p P

t tq s Qs

q Q

B B B B B B
Y

B B B B

φ φ
ε

θ θ

− − − − − − Φ − − Φ
=

− − − − Θ − − Θ
. (4.2.1) 

 

First, the orders of regular and seasonal differences, d  and D  respectively, 

should be determined. In order to decide these orders, the Augmented 

Dickey-Fuller unit root test results in Table 22 can be helpful. In single mean 

results, regular difference is unnecessary for the series; whereas it seem that 

a seasonal difference would handle with a seasonal unit root. That is, the 

difference orders in the model can be thought as 0d =  and 1D = . 
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Table 22. Augmented Dickey-Fuller Test Results on Disaggregated Series (Litterman) 
 

Augmented Dickey-Fuller Unit Root Tests  

Type Lags Tau Pr<Tau F Pr>F 

Single Mean 1 -3.6 0.008 6.48 0.0057 

  4 -2.86 0.0552 4.1 0.0859 

 
 
 

The correlogram of the original series, UR, can be used in determining the 

orders of autoregressive and moving average terms for the SARIMA model 

denoted in (4.2.1). However, n*4th lags should be neglected in deciding the 

order because the original series is not seasonally adjusted and its lags in 

the autocorrelation function still reflects the seasonal movement. Considering 

this, the autocorrelation function in Figure 15 shows oscillating decay and the 

partial autocorrelation function has significant spikes at many lags. However, 

when the seasonal effect in the partial autocorrelation is taken into 

consideration, the existence of many lags out of boundaries may be the 

result of the periodical movement. The first cut-off in the partial 

autocorrelation function seems after first lag, and an order of p=1 can be 

inferred for the autoregressive term in the SARIMA model. 

 

The correlogram of the differenced series, URD4, can be used in the 

specification of the orders of seasonal autoregressive and seasonal moving 

average terms. The oscillating decay in the autocorrelation function and the 

cut-off property in the partial autocorrelation function for the series URD4 are 

the indicators for the existence of an order for the seasonal autoregressive 

term in the model. The first two lags of the partial autocorrelation function 

shows significance and then, a cut off is observed, therefore the order of 

seasonal autoregressive term can be considered as P=2. 

 

Since no regular difference is taken and one seasonal difference has become 

sufficient, the model to be fitted can be defined as SARIMA(1,0,0)X(2,1,0) 

with seasonal period of 4 and presented in general form as; 

 4 4 8

1 1 2
(1 )(1 )(1 ) t tB B B B Yφ ε− − − Φ − Φ = . (4.2.2) 
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If the equation (4.2.2) is written in open form as follows; 
4 5 8 9 12 13

1 1 1 1 2 1 1 2 1 2 1 2
(1 ( 1) ( 1) ( ) ( ) ) t tB B B B B B B Yφ φ φ φ ε− − Φ + + Φ + − Φ −Φ + Φ −Φ + Φ − Φ =  

the lags of 1, 4, 5, 8, 9, 12 and 13 of the series UR become the explanatory 

variables of the model. A model with an intercept can be built by these 

determining variables. 

 
 
 
Table 23. Model Fitted for Disaggregated Series (Litterman) 
 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     UR(-1) 1.140823 0.046915 24.31690 0.0000 

UR(-5) -0.376911 0.071839 -5.246642 0.0000 
UR(-8) 0.877458 0.059871 14.65580 0.0000 
UR(-9) -0.792624 0.059947 -13.22205 0.0000 
UR(-12) 0.153877 0.050457 3.049689 0.0034 

     
     R-squared 0.955169     Mean dependent var 8.495000 

Adjusted R-squared 0.952130     S.D. dependent var 1.613250 
S.E. of regression 0.352966     Akaike info criterion 0.830014 
Sum squared resid 7.350512     Schwarz criterion 0.998677 
Log likelihood -21.56045     Durbin-Watson stat 1.603576 

     
     

 
 
 
A constant term and 4th and 13th lags of the series did not have significant 

effect in explaining the model. Therefore, the inclusion of these terms in the 

model was unnecessary and we have fitted the model above. Although it is 

not a SARIMA model, it is an AR(12) model constructed through the help of 

SARIMA model structure. Not all the 12 lags of the AR model are significant, 

but these 5 lags are the ones having contribution in the explanation of the 

original series. It is essential that the diagnostic checks of this model are 

made so that the model built is statistically meaningful. 

 

According to Figure 18, the Jarque-Bera Test Statistic reveals a normal 

distribution for the error terms in the model at 0.05 significance level. The 
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normality assumption made for the error terms is not violated. (Also, Shapiro-

Wilk; p-value=0.733). 
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Figure 18. Jarque-Bera Normality Test Results for Residuals of The Model (Litterman) 
 
 
 
Table 24. Bresuch-Godfrey Serial Correlation LM Test Results for Residuals of The 
Model (Litterman) 
 

Breusch-Godfrey Serial Correlation LM Test:  
     
     F-statistic 1.049288     Probability 0.404563 

Obs*R-squared 6.772329     Probability 0.342416 
     
     

 
 
 
The F-statistic calculated in Breusch Godfrey Serial Correlation LM Test has 

a probability of 0.404563 and this p-value is greater than the specified error 

rate 0.05. An existence of correlation between error terms is deniable. The 

uncorrelated error terms create no problem for the model. 

 

In Table 25, a p-value of 0.594466 results in the rejection of heteroskedastic 

variance for the error terms and the constant variance assumption made has 

been satisfied. 
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Table 25. White Heteroskedasticity Test Results for Residuals of The Model 
(Litterman) 
 

White Heteroskedasticity Test:  
     
     F-statistic 0.838286     Probability 0.594466 

Obs*R-squared 8.740273     Probability 0.556917 
     
     

 
 
 
Table 26. ARCH Test Results for Residuals of The Model (Litterman) 
 

ARCH Test:    
     
     F-statistic 1.124024     Probability 0.366128 

Obs*R-squared 10.09489     Probability 0.342858 
     
          
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CONSTANT 0.094553 0.056387 1.676863 0.1005 

RESID^2(-1) -0.166439 0.149052 -1.116648 0.2701 
RESID^2(-2) -0.055849 0.151722 -0.368100 0.7145 
RESID^2(-3) 0.001691 0.150309 0.011248 0.9911 
RESID^2(-4) 0.081603 0.146040 0.558772 0.5791 
RESID^2(-5) 0.320035 0.137359 2.329922 0.0244 
RESID^2(-6) 0.215084 0.144737 1.486035 0.1442 
RESID^2(-7) -0.129389 0.148359 -0.872139 0.3878 
RESID^2(-8) 0.059100 0.150033 0.393910 0.6955 
RESID^2(-9) -0.066575 0.149377 -0.445685 0.6580 

     
     

 
 
 
Even if all the assumptions made for the error terms in the model have not 

been violated, the residuals still need to be controlled for the existence of an 

ARCH effect. The homoskedastic variance of the error terms is supported by 

the probability of the F-statistic calculated in ARCH test, since it is 

considerably greater than the specified significance level, 0.05. 

 
The acceptance of all assumptions made before modeling inevitably emerges 

the expectation of a white noise process for the error terms. The correlogram 

below shows the significance boundaries for the lags of standardized 
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residuals. None of the lags exceeds these boundaries which meets the 

expectation that the error terms are following a white noise process. 

 
 
 

 
 
Figure 19. Correlogram of Residuals for The Model (Litterman) 
 
 
 
According to Figure 20, the fitted values have caught the seasonal movement 

and seemed to have been fitted very well. The actual values are so close to 

those of the fitted model. This model is the best one among all the models 

fitted throughout the analysis. 
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Figure 20. Actual-Fitted-Residual Graph for The Model (Litterman) 
 
 
 
Table 27. A Comparison of Forecasts of The Model (Litterman) and Actual Values of 
Unemployment Rate of Turkey for the Quarters of Years from 2007 to 2010 
 

Year Quarter Forecasts 
Actual 
Values 

Forecast 
Error 

2007 1 11.14 11.68 0.53 

2007 2 9.98 9.23 0.75 

2007 3 8.68 9.68 1 

2007 4 10.04 10.48 0.43 

2008 1 11.41 11.88 0.46 

2008 2 10.15 9.17 0.98 

2008 3 8.87 10.18 1.31 

2008 4 10.32 12.64 2.31 

2009 1 11.63 16.12 4.49 

2009 2 10.41 13.61 3.2 

2009 3 9.07 13.43 4.36 

2009 4 10.47 NA NA 

2010 1 11.82 NA NA 

2010 2 10.49 NA NA 

2010 3 9.13 NA NA 

2010 4 10.56 NA NA 
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As seen, the forecasts of this model start from the first quarter of 2007. Since 

every quarterly observations of the related variables were available from 

1988 to 2006, it was not possible to generate the disaggregated data after 

2006. The quarterly disaggregated data are obtained only for this time 

interval. That is why, it is not surprising to think that the remarkable 

increasing behavior of the original series has not been caught by this model 

and the forecast errors grow larger year by year. 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

Aim of this thesis study is firstly to apply some selected time series 

disaggregation methods to a real data in order to generate quarterly figures 

from annual ones. Since higher number of observations would be better 

representative of the population, the study focuses on this purpose as the 

first step. Then, some reasonable models are built and forecasts for these 

generated data are obtained as the latter step.  

 

As the data in our thesis study, we have considered the unemployment rate 

of Turkey provided by the Turkish Statistical Institute from 1988 up to 2009.  

However, the data are not collected based on regular time intervals. All of the 

quarterly observations of the data were available from 2000 to 2008, whereas 

up to 2000, just two values corresponding to the months of April and October 

were provided. Moreover, the first three quarters in 2009 were not usable in 

the study owing to the lack of last quarter. So far, the data used in this 

irregular form and results obtained by this data are suspicious. 

 

As disaggregation methods, one mathematical and three statistical 

procedures were examined and applied to the data. The mathematical 

method was the method of Lisman/Sandee and the statistical ones were 

regression-based methods of Chow/Lin, Fernandez and Litterman. 

 

For selecting the indicator variables to be utilized in statistical methods, the 

economic activities of gross national product in constant prices (1987 base) 

by production were studied on and several combination groups of these 
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activities were built. Then, the generated series provided through the 

regression-based methods for these groups of combinations were compared 

to the actual quarterly figures. 

 

According to the comparison of results, the closest disaggregated series to 

the actual observations were maintained by the method of Litterman when

the economic activities, trade and government service, were used as the 

indicator variables. 

 

The series obtained by the procedure of Lisman/Sandee did not show any 

seasonal behavior, whereas the method of Litterman gave series exposing a 

seasonal structure as in the original series. 

 

For these two separate series, different kinds of models have been fitted. 

Since the series are distinct from each other in their structure, the final 

models constructed for these were also different. While an ARCH model 

defined the behavior of the series generated by the method of 

Lisman/Sandee, an AR model inferred by the help of SARIMA model was 

fitted for the series provided by the procedure of Litterman. 

 

The model fitted to the disaggregated series of Lisman/Sandee gave high 

forecast errors when compared to the actual observations. On the other 

hand, the forecasts of the model fitted to the disaggregated series of 

Litterman were not that bad, since the first six forecasted quarter values can 

be accepted as close. However, for the other succeeding forecasted values, 

the forecast errors are greater. Although the results say so, it should also be 

considered that the forecasting procedure reveals good results in short run 

predictions. Also, the effect of the economic crises that we have on the 

unemployment rate cannot be predicted before. The use of other explanatory 

variables and considering structural dynamic models may help us to predict 

this kind of huge crisis before. Although good forecasts with small errors 

have not been realized, our main purposes have been achieved by obtaining 
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quarterly series from 1988 to 2006 using disaggregation methods and then, 

modeling the series using univariate time series models. 

 

Therefore, for our study, it is not wrong to say that the results of Litterman 

were more preferable than that of Lisman/Sandee. The series of Litterman 

both caught the seasonal structure and gave better forecasts when 

compared to the series of Lisman/Sandee. If the actual observations had not 

followed a seasonal behavior, the considerable superiority of the method of 

Litterman over the method of Lisman/Sandee may not have been noticeable 

as in this study. That is, for a nonseasonal series, the method of 

Lisman/Sandee can be as efficient as the regression-based methods. Just 

like the method of Lisman/Sandee, least square methods and ARIMA 

procedures could give good results due to the structure of the series as well. 

Thus, time series disaggregation methods should be wisely pondered 

according to the observed series in hand and it is essential that the decision 

of which of these methods should be applied is given this way. 

 

This study is thought to have contributions to the literature, especially for 

Turkey, because this study is comprised of both disaggregating and modeling 

procedures unlike the other studies conducted in Turkey. In addition, 

selected disaggregation methods were applied to the unemployment rate 

data of Turkey for the first time and the generated data have been 

maintained close to the observed actual values. For the future studies, 

anyone who wants to work with Turkish unemployment rate data can use the 

data that we generated. Moreover, other disaggregation methods can also be 

tried to see whether it is possible to generate closer quarterly, or even 

monthly, values. However, considering the forecasts in this study, it will be 

better to focus on the forecasting procedures in a more detailed manner such 

that an intervention analysis can be conducted to be able to see the effect of 

economical crisis on the series. 
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APPENDIX A 
 

 

ANNUAL FIGURES OF THE UNEMPLOYMENT RATE OF TURKEY 
 
 
 
Table 28. Unemployment Rate of Turkey between 1988 and 2008 
 

Year 
Unemployment 
Rate (in %) 

1988 8.45 
1989 8.57 
1990 7.99 
1991 8.20 
1992 8.49 
1993 8.93 
1994 8.55 
1995 7.63 
1996 6.62 
1997 6.82 
1998 6.87 
1999 7.66 
2000 6.49 
2001 8.37 
2002 10.35 
2003 10.54 
2004 10.30 
2005 10.20 
2006 9.90 
2007 10.28 
2008 10.97 
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APPENDIX B 
 

 

DISAGGREGATED SERIES ACCORDING TO METHODS  
AND 

 ACTUAL QUARTER VALUES OF UNEMPLOYMENT RATE OF TURKEY 
 
 
 
Table 29. Disaggregated Series and Actual Values between 1988 and 2009 
 

Year Quarter Lisman/Sandee Litterman Actual Values 

1988 1 NA 9 NA 

1988 2 NA 8.66 NA 

1988 3 NA 7.65 NA 

1988 4 NA 8.49 NA 

1989 1 8.59 9.28 NA 

1989 2 8.68 8.9 NA 

1989 3 8.62 7.7 NA 

1989 4 8.42 8.41 NA 

1990 1 8.15 8.83 NA 

1990 2 7.94 8.25 NA 

1990 3 7.89 7.04 NA 

1990 4 8.01 7.85 NA 

1991 1 8.11 8.88 NA 

1991 2 8.16 8.51 NA 

1991 3 8.22 7.17 NA 

1991 4 8.3 8.24 NA 

1992 1 8.37 8.95 NA 

1992 2 8.43 8.59 NA 

1992 3 8.52 7.52 NA 

1992 4 8.64 8.89 NA 

1993 1 8.83 9.97 NA 

1993 2 9.01 9.38 NA 

1993 3 9.02 7.79 NA 

1993 4 8.86 8.58 NA 

1994 1 8.74 9.36 NA 

1994 2 8.69 9.06 NA 

1994 3 8.52 7.53 NA 

1994 4 8.25 8.24 NA 

1995 1 7.98 8.76 NA 

1995 2 7.76 8.04 NA 

1995 3 7.52 6.48 NA 
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Table 29 (continued) 
 

Year Quarter Lisman/Sandee Litterman Actual Values 

1995 4 7.26 7.23 NA 

1996 1 6.9 7.78 NA 

1996 2 6.55 6.77 NA 

1996 3 6.44 5.39 NA 

1996 4 6.59 6.54 NA 

1997 1 6.76 7.63 NA 

1997 2 6.82 6.94 NA 

1997 3 6.85 5.64 NA 

1997 4 6.85 7.06 NA 

1998 1 6.79 8.05 NA 

1998 2 6.74 6.67 NA 

1998 3 6.84 5.46 NA 

1998 4 7.1 7.29 NA 

1999 1 7.53 8.7 NA 

1999 2 7.89 7.9 NA 

1999 3 7.84 6.7 NA 

1999 4 7.39 7.36 NA 

2000 1 6.67 8.04 8.25 

2000 2 6.13 6.49 6.12 

2000 3 6.22 5.1 5.53 

2000 4 6.94 6.34 6.25 

2001 1 7.66 8.35 8.49 

2001 2 8.12 8.14 6.73 

2001 3 8.61 7.49 7.82 

2001 4 9.11 9.52 10.4 

2002 1 9.76 10.83 11.55 

2002 2 10.39 10.48 9.32 

2002 3 10.66 9.39 9.56 

2002 4 10.57 10.67 11.05 

2003 1 10.5 11.74 12.32 

2003 2 10.59 10.85 10.03 

2003 3 10.58 9.17 9.41 

2003 4 10.49 10.4 10.33 

2004 1 10.38 11.26 12.45 

2004 2 10.3 10.33 9.28 

2004 3 10.26 9.17 9.47 

2004 4 10.25 10.43 9.99 

2005 1 10.26 11.55 11.66 

2005 2 10.25 10.34 9.17 

2005 3 10.2 8.89 9.44 

2005 4 10.11 10.04 10.64 
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Table 29 (continued) 
 

Year Quarter Lisman/Sandee Litterman Actual Values 

2006 1 9.96 11.26 11.95 

2006 2 9.83 9.87 8.84 

2006 3 9.84 8.56 9.14 

2006 4 9.99 9.93 9.64 

2007 1 10.12 NA 11.68 

2007 2 10.19 NA 9.23 

2007 3 10.32 NA 9.68 

2007 4 10.51 NA 10.48 

2008 1 NA NA 11.88 

2008 2 NA NA 9.17 

2008 3 NA NA 10.18 

2008 4 NA NA 12.64 

2009 1 NA NA 16.12 

2009 2 NA NA 13.61 

2009 3 NA NA 13.43 
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APPENDIX C 
 

 

DISAGGREGATED SERIES OF ECONOMIC ACTIVITY GROUPS 
ACCORDING TO REGRESSION BASED METHODS 

 
 
 
 
 
Table 30. gnp-gs-ind-agr-trad 

 
Year Quarter Fernandez AR(1) Min SSR Litterman Min SSR Actual Values 
2000 1 9.50 9.30 9.61 8.25 
2000 2 8.34 8.93 8.33 6.12 
2000 3 1.38 0.88 1.59 5.53 
2000 4 6.74 6.85 6.44 6.25 
2001 1 10.35 10.04 10.52 8.49 
2001 2 9.95 10.55 9.82 6.73 
2001 3 3.70 3.66 3.80 7.82 
2001 4 9.49 9.25 9.36 10.40 
2002 1 12.99 12.82 13.07 11.55 
2002 2 12.37 12.65 12.53 9.32 
2002 3 5.50 5.37 5.63 9.56 
2002 4 10.53 10.54 10.15 11.05 
2003 1 13.81 13.67 13.99 12.32 
2003 2 12.53 12.88 12.60 10.03 
2003 3 5.49 5.37 5.62 9.41 
2003 4 10.34 10.24 9.95 10.33 
2004 1 13.10 12.93 13.10 12.45 
2004 2 12.33 12.75 12.55 9.28 
2004 3 5.69 5.46 5.94 9.47 
2004 4 10.07 10.04 9.60 9.99 
2005 1 13.35 12.98 13.64 11.66 
2005 2 12.68 13.25 12.78 9.17 
2005 3 4.98 4.74 5.11 9.44 
2005 4 9.81 9.84 9.29 10.64 
2006 1 12.78 12.67 12.88 11.95 
2006 2 12.52 12.89 12.86 8.84 
2006 3 4.77 4.67 4.86 9.14 
2006 4 9.54 9.38 9.02 9.64 

 
 
 
 
 



 86 

 
 
 
 
 
 
 
Table 31. gs-ind-agr-trad 

 
Year Quarter Fernandez AR(1) Min SSR Litterman Min SSR Actual Values 
2000 1 10.72 12.19 10.72 8.25 
2000 2 8.55 9.76 8.51 6.12 
2000 3 -0.30 -3.63 0.10 5.53 
2000 4 7.00 7.65 6.64 6.25 
2001 1 11.23 11.95 11.33 8.49 
2001 2 10.01 11.06 9.86 6.73 
2001 3 2.11 -0.35 2.39 7.82 
2001 4 10.15 10.83 9.91 10.4 
2002 1 13.90 14.99 13.89 11.55 
2002 2 12.64 13.42 12.79 9.32 
2002 3 3.81 1.05 4.14 9.56 
2002 4 11.04 11.93 10.56 11.05 
2003 1 14.64 15.62 14.75 12.32 
2003 2 12.77 13.67 12.83 10.03 
2003 3 3.65 0.70 4.00 9.41 
2003 4 11.10 12.17 10.58 10.33 
2004 1 14.18 15.48 14.07 12.45 
2004 2 12.40 13.07 12.65 9.28 
2004 3 3.86 0.72 4.33 9.47 
2004 4 10.76 11.92 10.14 9.99 
2005 1 14.39 15.26 14.62 11.66 
2005 2 12.50 13.10 12.65 9.17 
2005 3 3.14 0.02 3.48 9.44 
2005 4 10.78 12.43 10.06 10.64 
2006 1 14.07 15.77 14.01 11.95 
2006 2 12.45 12.85 12.79 8.84 
2006 3 2.87 -0.13 3.18 9.14 
2006 4 10.22 11.12 9.63 9.64 
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Table 32. gnp-gs-ind-agr 
 

Year Quarter Fernandez AR(1) Min SSR Litterman Min SSR Actual Values 
2000 1 9.50 8.73 9.63 8.25 
2000 2 8.35 8.34 8.50 6.12 
2000 3 1.37 2.36 1.30 5.53 
2000 4 6.74 6.52 6.53 6.25 
2001 1 10.35 10.05 10.40 8.49 
2001 2 9.95 10.01 10.00 6.73 
2001 3 3.70 4.50 3.69 7.82 
2001 4 9.49 8.93 9.40 10.40 
2002 1 12.98 12.56 13.06 11.55 
2002 2 12.37 12.47 12.53 9.32 
2002 3 5.49 6.39 5.48 9.56 
2002 4 10.53 9.97 10.31 11.05 
2003 1 13.81 13.43 13.99 12.32 
2003 2 12.53 12.53 12.68 10.03 
2003 3 5.48 6.53 5.45 9.41 
2003 4 10.35 9.68 10.05 10.33 
2004 1 13.10 12.53 13.09 12.45 
2004 2 12.33 12.63 12.55 9.28 
2004 3 5.69 6.76 5.74 9.47 
2004 4 10.08 9.26 9.81 9.99 
2005 1 13.34 12.88 13.51 11.66 
2005 2 12.68 13.07 12.88 9.17 
2005 3 4.97 5.98 4.92 9.44 
2005 4 9.82 8.88 9.50 10.64 
2006 1 12.78 11.99 12.92 11.95 
2006 2 12.52 13.04 12.82 8.84 
2006 3 4.77 5.80 4.72 9.14 
2006 4 9.54 8.79 9.16 9.64 
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Table 33. gs-ind-agr 
 

Year Quarter Fernandez AR(1) Min SSR Litterman Min SSR Actual Values 
2000 1 11.13 11.30 11.74 8.25 
2000 2 8.81 9.14 9.12 6.12 
2000 3 -1.16 -1.73 -1.92 5.53 
2000 4 7.19 7.26 7.03 6.25 
2001 1 11.35 11.66 11.71 8.49 
2001 2 10.24 10.52 10.39 6.73 
2001 3 1.51 0.96 0.90 7.82 
2001 4 10.39 10.36 10.49 10.40 
2002 1 14.15 14.45 14.56 11.55 
2002 2 12.74 13.13 13.03 9.32 
2002 3 3.12 2.53 2.47 9.56 
2002 4 11.36 11.27 11.31 11.05 
2003 1 14.87 15.13 15.40 12.32 
2003 2 12.95 13.25 13.25 10.03 
2003 3 2.89 2.35 2.15 9.41 
2003 4 11.45 11.44 11.36 10.33 
2004 1 14.50 14.77 14.89 12.45 
2004 2 12.44 12.89 12.74 9.28 
2004 3 3.04 2.50 2.40 9.47 
2004 4 11.20 11.02 11.16 9.99 
2005 1 14.57 14.84 15.14 11.66 
2005 2 12.56 12.94 12.79 9.17 
2005 3 2.36 1.75 1.60 9.44 
2005 4 11.32 11.28 11.28 10.64 
2006 1 14.53 14.75 15.09 11.95 
2006 2 12.38 12.94 12.65 8.84 
2006 3 2.12 1.52 1.37 9.14 
2006 4 10.59 10.40 10.51 9.64 
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Table 34. gs-agr-trad 
 

Year Quarter Fernandez AR(1) Min SSR Litterman Min SSR Actual Values 
2000 1 10.89 11.65 11.47 8.25 
2000 2 8.64 9.42 8.91 6.12 
2000 3 -0.68 -2.42 -1.37 5.53 
2000 4 7.11 7.32 6.95 6.25 
2001 1 11.22 11.98 11.53 8.49 
2001 2 10.09 10.76 10.22 6.73 
2001 3 1.89 0.34 1.36 7.82 
2001 4 10.29 10.42 10.38 10.40 
2002 1 13.97 14.78 14.33 11.55 
2002 2 12.62 13.41 12.88 9.32 
2002 3 3.54 1.89 2.98 9.56 
2002 4 11.25 11.30 11.20 11.05 
2003 1 14.69 15.46 15.17 12.32 
2003 2 12.82 13.50 13.09 10.03 
2003 3 3.33 1.69 2.68 9.41 
2003 4 11.32 11.51 11.22 10.33 
2004 1 14.29 15.12 14.64 12.45 
2004 2 12.34 13.18 12.60 9.28 
2004 3 3.50 1.85 2.94 9.47 
2004 4 11.06 11.04 11.01 9.99 
2005 1 14.41 15.19 14.94 11.66 
2005 2 12.45 13.20 12.66 9.17 
2005 3 2.82 1.05 2.15 9.44 
2005 4 11.13 11.37 11.07 10.64 
2006 1 14.28 15.12 14.80 11.95 
2006 2 12.30 13.23 12.52 8.84 
2006 3 2.57 0.83 1.91 9.14 
2006 4 10.47 10.44 10.39 9.64 
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Table 35. gnp-gs-agr 
 

Year Quarter Fernandez AR(1) Min SSR Litterman Min SSR Actual Values 
2000 1 10.73 10.90 11.42 8.25 
2000 2 8.60 8.85 8.95 6.12 
2000 3 -0.46 -1.00 -1.37 5.53 
2000 4 7.10 7.21 6.96 6.25 
2001 1 11.03 11.27 11.46 8.49 
2001 2 10.08 10.28 10.27 6.73 
2001 3 2.14 1.64 1.40 7.82 
2001 4 10.24 10.29 10.36 10.40 
2002 1 13.80 14.05 14.29 11.55 
2002 2 12.53 12.82 12.87 9.32 
2002 3 3.80 3.25 3.01 9.56 
2002 4 11.25 11.26 11.21 11.05 
2003 1 14.54 14.74 15.14 12.32 
2003 2 12.75 12.97 13.10 10.03 
2003 3 3.59 3.08 2.71 9.41 
2003 4 11.28 11.38 11.21 10.33 
2004 1 14.12 14.38 14.59 12.45 
2004 2 12.25 12.57 12.60 9.28 
2004 3 3.75 3.21 2.96 9.47 
2004 4 11.07 11.03 11.04 9.99 
2005 1 14.21 14.42 14.85 11.66 
2005 2 12.41 12.65 12.70 9.17 
2005 3 3.09 2.52 2.18 9.44 
2005 4 11.10 11.22 11.08 10.64 
2006 1 14.11 14.35 14.75 11.95 
2006 2 12.21 12.60 12.53 8.84 
2006 3 2.85 2.29 1.95 9.14 
2006 4 10.45 10.38 10.38 9.64 
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Table 36. trad-agr 
 

Year Quarter Fernandez AR(1) Min SSR Litterman Min SSR Actual Values 
2000 1 10.41 11.54 11.54 8.25 
2000 2 8.32 9.57 8.97 6.12 
2000 3 0.27 -2.47 -1.53 5.53 
2000 4 6.97 7.32 6.97 6.25 
2001 1 10.76 11.90 11.60 8.49 
2001 2 9.80 10.86 10.27 6.73 
2001 3 2.85 0.43 1.20 7.82 
2001 4 10.09 10.30 10.42 10.40 
2002 1 13.41 14.66 14.42 11.55 
2002 2 12.32 13.59 12.93 9.32 
2002 3 4.55 1.95 2.80 9.56 
2002 4 11.10 11.19 11.22 11.05 
2003 1 14.18 15.36 15.26 12.32 
2003 2 12.53 13.62 13.14 10.03 
2003 3 4.33 1.77 2.51 9.41 
2003 4 11.12 11.43 11.26 10.33 
2004 1 13.79 15.06 14.72 12.45 
2004 2 12.10 13.45 12.65 9.28 
2004 3 4.45 1.85 2.78 9.47 
2004 4 10.86 10.82 11.05 9.99 
2005 1 13.95 15.13 15.00 11.66 
2005 2 12.14 13.36 12.71 9.17 
2005 3 3.83 1.05 1.98 9.44 
2005 4 10.89 11.27 11.12 10.64 
2006 1 13.80 15.02 14.88 11.95 
2006 2 11.95 13.43 12.59 8.84 
2006 3 3.57 0.85 1.74 9.14 
2006 4 10.30 10.33 10.41 9.64 
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Table 37. gnp-agr 
 

Year Quarter Fernandez AR(1) Min SSR Litterman Min SSR Actual Values 
2000 1 10.28 10.75 11.44 8.25 
2000 2 8.30 8.94 8.97 6.12 
2000 3 0.43 -0.93 -1.42 5.53 
2000 4 6.96 7.20 6.97 6.25 
2001 1 10.61 11.21 11.48 8.49 
2001 2 9.79 10.30 10.29 6.73 
2001 3 3.04 1.81 1.35 7.82 
2001 4 10.04 10.17 10.37 10.40 
2002 1 13.28 13.89 14.32 11.55 
2002 2 12.25 13.01 12.89 9.32 
2002 3 4.75 3.39 2.95 9.56 
2002 4 11.10 11.09 11.22 11.05 
2003 1 14.06 14.59 15.17 12.32 
2003 2 12.49 13.06 13.12 10.03 
2003 3 4.53 3.23 2.66 9.41 
2003 4 11.08 11.28 11.22 10.33 
2004 1 13.65 14.31 14.61 12.45 
2004 2 12.05 12.88 12.62 9.28 
2004 3 4.63 3.28 2.91 9.47 
2004 4 10.85 10.72 11.05 9.99 
2005 1 13.80 14.38 14.88 11.66 
2005 2 12.12 12.75 12.72 9.17 
2005 3 4.04 2.60 2.12 9.44 
2005 4 10.86 11.09 11.10 10.64 
2006 1 13.67 14.23 14.78 11.95 
2006 2 11.89 12.82 12.55 8.84 
2006 3 3.78 2.35 1.90 9.14 
2006 4 10.28 10.23 10.39 9.64 
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Table 38. gnp-gs 
 

Year Quarter Fernandez AR(1) Min SSR Litterman Min SSR Actual Values 
2000 1 7.74 7.16 8.25 8.25 
2000 2 6.68 6.51 6.79 6.12 
2000 3 4.83 5.50 4.50 5.53 
2000 4 6.71 6.79 6.42 6.25 
2001 1 8.28 7.85 8.49 8.49 
2001 2 8.46 8.31 8.44 6.73 
2001 3 7.18 7.83 7.01 7.82 
2001 4 9.58 9.51 9.55 10.40 
2002 1 10.87 10.44 11.06 11.55 
2002 2 10.56 10.42 10.67 9.32 
2002 3 9.04 9.66 8.88 9.56 
2002 4 10.91 10.86 10.77 11.05 
2003 1 11.64 11.14 11.98 12.32 
2003 2 10.95 10.76 11.08 10.03 
2003 3 8.92 9.62 8.65 9.41 
2003 4 10.65 10.65 10.45 10.33 
2004 1 11.24 10.82 11.46 12.45 
2004 2 10.40 10.32 10.52 9.28 
2004 3 8.85 9.46 8.66 9.47 
2004 4 10.69 10.58 10.55 9.99 
2005 1 11.22 10.67 11.68 11.66 
2005 2 10.58 10.43 10.63 9.17 
2005 3 8.63 9.33 8.35 9.44 
2005 4 10.38 10.38 10.16 10.64 
2006 1 11.07 10.55 11.49 11.95 
2006 2 10.13 10.10 10.09 8.84 
2006 3 8.34 9.02 8.06 9.14 
2006 4 10.08 9.95 9.98 9.64 
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Table 39. gs-ind 
 

Year Quarter Fernandez AR(1) Min SSR Litterman Min SSR Actual Values 
2000 1 7.06 6.70 7.53 8.25 
2000 2 6.19 6.26 6.20 6.12 
2000 3 6.02 6.23 5.86 5.53 
2000 4 6.70 6.77 6.37 6.25 
2001 1 7.56 7.42 7.69 8.49 
2001 2 8.00 8.07 7.89 6.73 
2001 3 8.39 8.57 8.42 7.82 
2001 4 9.54 9.44 9.50 10.40 
2002 1 10.12 9.97 10.22 11.55 
2002 2 10.05 10.19 10.07 9.32 
2002 3 10.26 10.40 10.30 9.56 
2002 4 10.96 10.83 10.80 11.05 
2003 1 10.87 10.66 11.10 12.32 
2003 2 10.47 10.52 10.53 10.03 
2003 3 10.13 10.37 10.05 9.41 
2003 4 10.69 10.61 10.49 10.33 
2004 1 10.59 10.41 10.73 12.45 
2004 2 9.90 10.12 9.94 9.28 
2004 3 9.95 10.14 9.92 9.47 
2004 4 10.75 10.52 10.59 9.99 
2005 1 10.47 10.22 10.88 11.66 
2005 2 9.98 10.14 9.91 9.17 
2005 3 9.89 10.09 9.79 9.44 
2005 4 10.47 10.35 10.23 10.64 
2006 1 10.40 10.09 10.77 11.95 
2006 2 9.49 9.82 9.29 8.84 
2006 3 9.56 9.76 9.47 9.14 
2006 4 10.17 9.95 10.10 9.64 
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Table 40. trad 
 

Year Quarter Fernandez AR(1) Min SSR Litterman Min SSR Actual Values 
2000 1 7.51 6.30 7.95 8.25 
2000 2 6.41 6.27 6.49 6.12 
2000 3 5.43 6.67 5.03 5.53 
2000 4 6.60 6.72 6.48 6.25 
2001 1 8.12 7.14 8.29 8.49 
2001 2 8.18 8.04 8.18 6.73 
2001 3 7.71 9.09 7.36 7.82 
2001 4 9.49 9.21 9.67 10.40 
2002 1 10.59 9.59 10.90 11.55 
2002 2 10.40 10.25 10.44 9.32 
2002 3 9.61 10.93 9.22 9.56 
2002 4 10.79 10.61 10.82 11.05 
2003 1 11.38 10.32 11.72 12.32 
2003 2 10.75 10.51 10.83 10.03 
2003 3 9.48 10.93 9.05 9.41 
2003 4 10.55 10.41 10.56 10.33 
2004 1 11.02 10.10 11.25 12.45 
2004 2 10.27 10.32 10.24 9.28 
2004 3 9.39 10.62 9.06 9.47 
2004 4 10.51 10.15 10.63 9.99 
2005 1 11.07 9.93 11.41 11.66 
2005 2 10.32 10.21 10.35 9.17 
2005 3 9.21 10.59 8.81 9.44 
2005 4 10.22 10.09 10.25 10.64 
2006 1 10.85 9.70 11.18 11.95 
2006 2 9.93 9.94 9.93 8.84 
2006 3 8.87 10.26 8.47 9.14 
2006 4 9.97 9.72 10.04 9.64 
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Table 41. gnp 
 

Year Quarter Fernandez AR(1) Min SSR Litterman Min SSR Actual Values 
2000 1 7.69 6.35 8.23 8.25 
2000 2 6.64 6.21 6.82 6.12 
2000 3 5.00 6.70 4.38 5.53 
2000 4 6.63 6.70 6.52 6.25 
2001 1 8.23 7.19 8.48 8.49 
2001 2 8.40 7.99 8.50 6.73 
2001 3 7.38 9.08 6.85 7.82 
2001 4 9.49 9.23 9.66 10.40 
2002 1 10.75 9.63 11.14 11.55 
2002 2 10.55 10.22 10.66 9.32 
2002 3 9.26 10.93 8.69 9.56 
2002 4 10.83 10.61 10.89 11.05 
2003 1 11.56 10.35 12.01 12.32 
2003 2 10.92 10.47 11.09 10.03 
2003 3 9.12 10.92 8.49 9.41 
2003 4 10.56 10.42 10.57 10.33 
2004 1 11.17 10.13 11.48 12.45 
2004 2 10.43 10.27 10.47 9.28 
2004 3 9.03 10.62 8.52 9.47 
2004 4 10.56 10.16 10.72 9.99 
2005 1 11.20 9.98 11.61 11.66 
2005 2 10.54 10.15 10.67 9.17 
2005 3 8.82 10.59 8.22 9.44 
2005 4 10.26 10.09 10.32 10.64 
2006 1 11.03 9.75 11.47 11.95 
2006 2 10.09 9.91 10.16 8.84 
2006 3 8.51 10.25 7.93 9.14 
2006 4 9.99 9.71 10.06 9.64 
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Table 42. ind 
 

Year Quarter Fernandez AR(1) Min SSR Litterman Min SSR Actual Values 
2000 1 7.07 6.47 7.41 8.25 
2000 2 6.20 6.35 6.18 6.12 
2000 3 6.05 6.44 5.85 5.53 
2000 4 6.64 6.70 6.52 6.25 
2001 1 7.58 7.35 7.57 8.49 
2001 2 8.00 8.12 7.91 6.73 
2001 3 8.44 8.81 8.35 7.82 
2001 4 9.47 9.22 9.67 10.40 
2002 1 10.09 9.79 10.24 11.55 
2002 2 10.10 10.38 9.99 9.32 
2002 3 10.32 10.65 10.18 9.56 
2002 4 10.87 10.57 10.97 11.05 
2003 1 10.87 10.51 11.05 12.32 
2003 2 10.50 10.61 10.47 10.03 
2003 3 10.19 10.66 9.98 9.41 
2003 4 10.61 10.38 10.67 10.33 
2004 1 10.58 10.27 10.68 12.45 
2004 2 9.99 10.44 9.80 9.28 
2004 3 10.00 10.39 9.86 9.47 
2004 4 10.62 10.09 10.85 9.99 
2005 1 10.52 10.14 10.68 11.66 
2005 2 10.01 10.34 9.88 9.17 
2005 3 9.92 10.31 9.76 9.44 
2005 4 10.36 10.02 10.49 10.64 
2006 1 10.42 9.85 10.65 11.95 
2006 2 9.53 10.12 9.29 8.84 
2006 3 9.59 9.98 9.44 9.14 
2006 4 10.07 9.67 10.24 9.64 

 


