
1

DATA INTEGRATION OVER HORIZONTALLY PARTITIONED DATABASES
IN SERVICE-ORIENTED DATA GRIDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HATİCE KEVSER SÖNMEZ SUNERCAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2010

Approval of the thesis:

DATA INTEGRATION OVER HORIZONTALLY PARTITIONED DATABASES

IN SERVICE-ORIENTED DATA GRIDS

submitted by HATİCE KEVSER SÖNMEZ SUNERCAN in partial fulfillment of the re-
quirements for the degree of Master of Science in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Dr. Fehime Nihan Kesim Çiçekli
Supervisor, Computer Engineering Dept., METU

Dr. Mahmut Nedim Alpdemir
Co-supervisor, TÜBİTAK-UEKAE İLTAREN

Examining Committee Members:

Prof. Dr. Müslim Bozyiğit
Computer Engineering Dept., METU

Assoc. Prof. Dr. Fehime Nihan Kesim Çiçekli
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ahmet Coşar
Computer Engineering Dept., METU

Dr. Cevat Şener
Computer Engineering Dept., METU

Ahmet Murat Özdemiray
Senior Researcher, TÜBİTAK-UEKAE İLTAREN

Date: 02.09.2010

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: HATİCE KEVSER SÖNMEZ SUNERCAN

Signature :

iii

ABSTRACT

DATA INTEGRATION OVER HORIZONTALLY PARTITIONED DATABASES
IN SERVICE-ORIENTED DATA GRIDS

Sunercan, Hatice Kevser Sönmez

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Fehime Nihan Kesim Çiçekli

Co-Supervisor : Dr. Mahmut Nedim Alpdemir

September 2010, 78 pages

Information integration over distributed and heterogeneous resources has been challenging

in many terms: coping with various kinds of heterogeneity including data model, platform,

access interfaces; coping with various forms of data distribution and maintenance policies,

scalability, performance, security and trust, reliability and resilience, legal issues etc. It is

obvious that each of these dimensions deserves a separate thread of research efforts. One

particular challenge among the ones listed above that is more relevant to the work presented

in this thesis is coping with various forms of data distribution and maintenance policies.

This thesis aims to provide a service-oriented data integration solution over data Grids for

cases where distributed data sources are partitioned with overlapping sections of various pro-

portions. This is an interesting variation which combines both replicated and partitioned data

within the same data management framework. Thus, the data management infrastructure

has to deal with specific challenges regarding the identification, access and aggregation of

partitioned data with varying proportions of overlapping sections. To provide a solution we

have extended OGSA-DAI DQP, a well-known service-oriented data access and integration

iv

middleware with distributed query processing facilities, by incorporating UnionPartitions op-

erator into its algebra in order to cope with various unusual forms of horizontally partitioned

databases. As a result; our solution extends OGSA-DAI DQP, in two points; 1 - A new oper-

ator type is added to the algebra to perform a specialized union of the partitions with different

characteristics, 2 - OGSA-DAI DQP Federation Description is extended to include some more

metadata to facilitate the successful execution of the newly introduced operator.

Keywords: Distributed Query Processing, Data Partitioning, Service-Oriented Data Grids,

Data Integration

v

ÖZ

SERVİS YÖNELİMLİ VERİ IZGARA ORTAMINDA YATAY BÖLÜNMÜŞ
VERİTABANLARI ÜZERİNDE VERİ ENTEGRASYONU

Sunercan, Hatice Kevser Sönmez

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Fehime Nihan Kesim Çiçekli

Ortak Tez Yöneticisi : Dr. Mahmut Nedim Alpdemir

Eylül 2010, 78 sayfa

Dağıtık ve heterojen kaynaklar üzerinde veri entegrasyonu bir takım zorlayıcı etkenleri de

beraberinde getirmektedir. Bunlara örnek olarak; veri modeli, platform, erişim arayüzleri gibi

çeşitli çoktürellik durumları, muhtelif veri dağıtım şekilleri, farklı bakım poliçeleri, ölçeklene-

bilirlik, performans, güvenlik ve güvenilirlik, dayanıklılık, yasallık vb. gibi durumların uy-

gun yönetilmesi verilebilir. Belirtilen etkenlerden, farklı veri dağıtım ve bakım poliçelerinin

yönetimlerinin bu çalışma ile en ilgili olduğu değerlendirilmektedir.

Tez kapsamında, veri kaynaklarının farklı oranlarda örtüşen dilimler içerecek şekilde bölüne-

rek dağıtıldığı veri ızgaraları için, servis-yönelimli veri entegrasyon çözümü aranmaktadır.

Bu ve benzeri ortamlar birebir kopyalanmış ya da bölünmüş verileri aynı veri yönetim çatısı

altında toplaması açısından ilgi çekici bir çeşitliliktir. Bu çeşitliliği kullanabilmek için, veri

yönetim altyapısı; farklı oranlarda örtüşen dilimli, bölünmüş veritabanlarında kimlikleştirme,

erişim ve yığılma gibi özgün sorunlara çözüm üretebilmelidir. Belirtilen duruma çözüm

üretmek adına; yatay bölünmüş veritabanlarının alışılmamış durumlarıyla başa çıkmak için,

iyi bilinen, servis-yönelimli, dağıtık sorgu işleme özellikli, veri erişim ve entegrasyon ara

vi

yazılımı olan OGSA-DAI DQP çatısının cebirsel yapısına; yeni bir operatör, UnionPartitions,

eklenmiştir. Sonuç olarak OGSA-DAI DQP çatısı iki yönüyle genişletilmiştir; 1-Bölünmüş

veritabanlarının farklı özelliklerdeki parçalarının özelleşmiş bir operatör ile birleşiminin sağ-

lanması için yeni bir operatör tipi eklenmesi, 2- OGSA-DAI DQP federasyon tanımlamasının

yeni tanıtılan operatörün çalışmasını kolaylaştırmak için daha fazla üstveri yönetecek şekilde

geniş- letilmesi.

Anahtar Kelimeler: Dağıtık Sorgu İşleme, Veri Bölümleme, Servis Yönelimli Veri Izgaraları,

Veri Entegrasyonu

vii

To my husband, Ömer...

viii

ACKNOWLEDGMENTS

I am deeply grateful to my supervisor Assoc. Prof. Dr. Fehime Nihan Kesim Çiçekli and

co-supervisor Dr. Mahmut Nedim Alpdemir, for their contribution to my education, showing

me the directions to follow in this study, giving their time and help constantly, and especially

for motivating me since the very beginning of my study.

I would like to thank to State Planning Organization under the Office of Prime Ministry

of Turkish Government and The Scientific and Technological Research Council of Turkey

(TÜBİTAK) for supporting the study.

I would like to thank my colleagues in TÜBİTAK-UEKAE İLTAREN Unit, who always sup-

ported me and shared their experiences liberally. I would also like to thank to Gülşah Kara-

duman and Doruk Bozağaç for sharing indispensable machines and test running schedule.

I would like to thank to my parents-in-law for their sincere affection and bringing up such a

tactful son and my sisters-in-laws for their geniality and understanding. Without their warmth

and familiarity; this study would not have been completed.

I would like to thank my parents for all their love, reinforcement, teachings and courage

throughout my whole life. I would like to thank my sister, Tuba, who has been one step ahead

of me to light my way; my brother, Ömer, who made life less obsessed and my little sister,

Ayşenur, who always had something to make me cheer. Without love and self-sacrifice of my

family, I should not have been the person I am now.

Finally; I owe my deepest thanks to my dear husband Ömer, for making his best to help

me study in every occasion and for insisting that I ignore him and study. His endless love,

patience, experiences, support and surprises always motivated me during this thesis.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xii

LIST OF FIGURES . xiii

CHAPTERS

1 INTRODUCTION . 1

1.1 Overview and Motivation . 1

1.2 Contributions . 4

1.3 Thesis Organization . 5

2 BACKGROUND INFORMATION AND RELATED WORK 6

2.1 Distributed Query Processing . 6

2.2 Distributed Query Processing in Service Oriented Data Grids 11

2.2.1 Open Grid Services Architecture - Data Access and Inte-
gration (OGSA-DAI) . 13

2.2.2 Open Grid Services Architecture - Distributed Query Pro-
cessing (OGSA-DQP) 14

2.2.3 Open Grid Services Architecture - Data Access and Inte-
gration - Distributed Query Processing (OGSA DAI DQP) 17

2.3 Database Partitioning . 18

2.4 Multi-Node Horizontal Partitioning in Distributed Environments . . 21

3 EXTENDING OGSA-DAI DQP TO SUPPORT
PARTITIONED DATABASES . 26

3.1 General Considerations on the Extension 26

x

3.2 Extending OGSA-DAI DQP . 29

3.2.1 Extending OGSA-DAI DQP Federation Description 29

3.2.2 Extending the Optimization Chain and Activities 30

3.3 New Operator Design . 32

4 THE DESIGN AND IMPLEMENTATION OF THE UNIONPARTITIONS
OPERATOR . 34

4.1 UnionPartitions as a Binary Operator 34

4.1.1 Locating the Binary UnionPartitions Operator in Query
Plan Tree . 35

4.1.2 The Execution of the Binary UnionPartitions Operator . . 42

4.2 UnionPartitions as an N-ary Operator 45

4.2.1 Locating N-ary UnionPartitions Operator Strictly in the
Query Plan Tree . 45

4.2.2 Locating the N-ary and Binary UnionPartitions Operators
in the Same Query Plan Tree 45

4.2.3 The Execution of the N-ary UnionPartitions Operator . . . 47

5 EXPERIMENTS and EVALUATIONS . 49

5.1 Data Preparation . 49

5.2 Test Environment Setup . 50

5.3 Experiment Design . 52

5.3.1 Effect of Data Size on Performance 54

5.3.2 Effect of Increasing Overlapping Sections Among Partitions 55

5.3.3 Effect of Increasing Operator Fan-In 56

5.3.4 Comparison of Binary and Hybrid Trees 58

5.3.5 Extension Scalability . 59

6 CONCLUSIONS AND FUTURE WORK 63

REFERENCES . 66

APPENDICES

A TEST DATA GENERATION FILE . 72

B DQP TEST MANAGER . 75

xi

LIST OF TABLES

TABLES

Table 4.1 Example Partition Information . 39

Table 4.2 Initial Partition Matrix . 39

Table 4.3 Updated Partition Matrix - 1 . 40

Table 4.4 Updated Partition Matrix - 2 . 41

Table 4.5 Updated Partition Matrix - 3 . 41

Table 4.6 Updated Partition Matrix - 4 . 42

Table 5.1 Schema for Users Tables . 50

Table 5.2 Schema for Projects Tables . 50

Table 5.3 Schema for Allocations Tables . 50

Table 5.4 Execution Times for Experiment 5.3.1 . 55

Table 5.5 Queries Used in Experiments; 5.3.2, 5.3.3 and 5.3.4 56

Table 5.6 Cardinality of Partitions when 50% Overlapping 58

Table 5.7 Updated Schema for Users Tables . 61

xii

LIST OF FIGURES

FIGURES

Figure 2.1 Query Processing Steps [1] . 7

Figure 2.2 OGSA-DAI Architecture [2] . 15

Figure 2.3 DQP Query Compiler Execution Interactions [3] 16

Figure 2.4 The use of horizontal partitioning along the database evolution [4] 24

Figure 3.1 Example Partition Information . 30

Figure 3.2 Default Optimization Chain of OGSA-DAI DQP 31

Figure 4.1 Pseudocode for Ordering Binary UnionPartitions Operator 37

Figure 4.2 An example to UnionPartitions Operator Tree 43

Figure 4.3 Pseudocode for Execution of Binary UnionPartitions Operator 44

Figure 4.4 An Example to UnionPartitionsNary Operator Tree 46

Figure 4.5 An Example to UnionPartitions Operator Tree with Hybrid Approach . . . 47

Figure 5.1 DQP Test Manager Main View . 53

Figure 5.2 Queries Used in Experiment 5.3.1 . 54

Figure 5.3 Query Execution Results For Experiment 5.3.1 55

Figure 5.4 Query Execution Results For Experiment 5.3.2 57

Figure 5.5 Query Execution Results For Experiment 5.3.3 59

Figure 5.6 Query Execution Results For Experiment 5.3.4 60

Figure 5.7 Query Used in Experiment 5.3.5 . 60

Figure 5.8 Query Execution Results For Experiment 5.3.5 62

Figure B.1 Example Query Execution . 75

xiii

Figure B.2 Example Query Execution Result . 76

Figure B.3 Example Query Execution Plan . 76

Figure B.4 Example Query Execution Test File . 77

xiv

CHAPTER 1

INTRODUCTION

1.1 Overview and Motivation

As the proliferation of information resources over the Internet has gained more and more

momentum in recent years, information integration has become both more crucial and chal-

lenging for a growing range of applications that aim at providing an integrated view over dis-

tributed and heterogeneous resources. The challenge has many dimensions: coping with var-

ious kinds of heterogeneity including data model, platform, access interface heterogeneities,

scalability, performance, security and trust, reliability and resilience, access control, audit-

ing and accounting, legal issues etc. Each of these dimensions deserves a separate thread

of research efforts; and indeed they did draw sufficient attention to cause the culmination of

a considerable amount of literature. One particular challenge among the ones listed above

that is more relevant to the work presented in this thesis is coping with various forms of data

distribution and maintenance policies.

Looking from an architectural point of view, information integration infrastructures follow

different approaches in how they treat the data sources and in how they produce the inte-

grated forms of data [1], [5]. Data warehousing approach[6], for instance, designates a single

information store for the integrated data and relies on periodic updates of that central store

from the source databases via pre-defined data transformation filters. As such, the data ware-

housing approach prioritizes high-performance requirements over other requirements such

as data ownership, high update frequency of source databases, flexibility etc. Mediator-

Wrapper approach [7], on the other hand, offers a dynamic data integration scheme where

source databases are accessed just before the integration via a standard wrapper and the in-

1

tegration process takes place on-the fly. As such, the Mediator-Wrapper approach aims at

meeting the requirements of a class of applications where the preservation of data ownership,

just-in-time integration and flexibility are essential [7]. The latter approach is of particular

interest for the work presented in this thesis.

In a typical data integration scenario over the internet, data source hosting and data provi-

sion enterprise spans multiple administrative domains. The relationships between those data

sources and methodologies to access and integrate data over them are not always straight

forward. For instance, the distributed data sources may be replicas or partitions of the same

database, rather than being logically distinct but related data segments with different schemas.

The case where the distributed data sources have replicated or partitioned data sections is of

particular importance for the study presented in this thesis. To be more specific, the problem

we have set out to solve was to handle cases where a database was distributed to multiple

independent administrative domains with the same data content initially (i.e. as replicas), but

where parts of those multiple copies evolved into overlapping partitions over time through

independent data insertions carried out within each administrative domain. In this scenario

the replicas are not generated to support more timely query execution, but rather as a conse-

quence of administrative policies. This may not be a particularly common case for distributed

database applications; however it is a practical requirement for our target application area

where a set of pre-defined simulation scenarios are distributed to multiple institutions and

users create new scenarios to their local set causing the local set to grow. This effectively

results in partitioned data with overlapping sections of various proportions (due to the initial

replication process).

Database partitioning is a relatively advanced topic in data management area, mostly to sup-

port applications that require high performance or high availability for large volumes of data

[8, 9, 10]. Mainstream commercial Database Management System (DBMS) vendors provide

solutions for various kinds of partitioning techniques such as range partitioning, list partition-

ing, hash partitioning or a combination of those. The selection of the appropriate technique

would depend on the characteristics of the data or the primary purpose of the partitioning.

Nevertheless, the available solutions are vendor dependent and normally require tightly con-

trolled operating environments both from an administrative point of view and from a run-time

execution constraints point of view. The work presented here aims at adding the capability

of handling partitioned data to a service oriented data integration middleware, in a Grid envi-

2

ronment where a more liberal operating environment is assumed for both data resources and

computational resources involved.

Service-oriented data integration middleware that operate in a Grid environment are still in

their infancy due to the requirement to cope with many challenges introduced by the char-

acteristics of the environment, as mentioned earlier in this chapter. One of the fundamental

challenges in a data integration context, for instance, is to cope with different modes of het-

erogeneities such as data model heterogeneity. Data to be integrated can exist in many forms

including object-oriented, relational or XML databases, or even in plain text files on the disk

of a computer. Service-oriented middleware are promising in their ability to compensate for

such heterogeneities by providing software layers that offer standard access interfaces and

protocols of interaction, leading to a flexible programming model. In fact, service oriented

architectures have been in the focus of many research activities that aim at tackling not only

the data model heterogeneity but other challenges mentioned above. One architectural speci-

fication that is of particular importance in the work presented in this thesis is the Open Grid

Services Architecture (OGSA) [11]. OGSA defines the components, interfaces and the func-

tionality required to implement a service-oriented Grid. As such, it specifies the properties of

the foundation layer in a multi-tier software infrastructure required to harness the resources

made available on the Grid through well-defined and uniform mechanisms [11]. Building

on that foundation OGSA-Data Access and Integration (DAI) - Distributed Query Processing

(DQP) has two main dimensions;

• Specifying standard interfaces for a Grid Data Service (GDS) to facilitate the construc-

tion of a platform independent and data model independent data access layer on the

Grid [2].

• Providing a higher-level middleware layer that supports queries over multiple grid data

services combining data access with access to analysis services in a single framework

[12].

DQP dimension in OGSA-DAI DQP has come to posses two distinct properties [12]:

1. It supports low-cost data integration, in that it uses existing OGSA-DAI wrappers to ob-

tain access to networked resources, and in that there is no need to map source schemas

to a single global model.

3

2. It builds on parallel database technology, in which both pipelined and independent par-

allelism are used to generate initial results early and to increase throughput.

To maximize the benefit of the latter property, it is essential to exploit replicated and/or parti-

tioned data if available in the environment. With these properties, DQP dimension in OGSA-

DAI DQP provides the necessary framework for meeting our specific requirements mentioned

earlier (i.e. the case where a certain database was distributed to multiple administrative do-

mains with the same data content initially (i.e. as replicas), but where parts of those multiple

copies evolved into overlapping partitions in time through independent data insertions). How-

ever, as it stands, OGSA-DAI DQP did not have inherent support specialized to partitioned

or replicated databases. This thesis study aims to provide a solution to the management of

various unusual forms of horizontally partitioned databases.

1.2 Contributions

This thesis extends OGSA-DAI DQP to allow for the data resources to include horizontally

partitioned databases in such a way that access and integration logic required to handle the

partitioned data remains transparent to the query constructor (i.e. to the daily user who poses

data integration queries using OGSA-DQP). The extensions are essentially in two points;

• A new operator type is added to the algebra to perform a specialized union of the parti-

tions with different characteristics.

• OGSA-DAI DQP Federation Description is extended to include some more metadata

to facilitate the successful execution of the newly introduced operator.

Finally, we report our findings on the performance behavior of queries using the extensions.

Since the extensions are non-disruptive to the architecture and to the fundamental run-time

execution mechanisms of OGSA-DAI DQP, and since the overall run-time characteristics of

OGSA-DQP are already well-documented [12, 13], our performance experiments focus only

on the impact of our extensions.

4

1.3 Thesis Organization

This thesis is organized as follows: In Chapter 2, the work in literature related to the issues to

be facilitated to solve the marked problem (also possible sub-problems) in this thesis together

with an overview of the software architectures extended by this study is presented. Chapter 3

gives a more detailed picture of the problem and explains the preparations for the presented

solution. In Chapter 4; the solution proposed by this thesis to the target problem is given

and a new operator is presented. Chapter 5 contains the experimental results for the newly

proposed operator with sample test cases. Finally, we conclude the thesis and point to the

possible future extensions in Chapter 6.

5

CHAPTER 2

BACKGROUND INFORMATION AND RELATED WORK

2.1 Distributed Query Processing

The fact that the increasing number of Grid applications make use of huge amounts of data,

has led to the generation of middleware applications with high-level data management func-

tionalities like data derivation [14], replication [15], database access and management [16],

resource monitoring, discovery, management, security [17, 18], generic data access services

between client and DBMSs; OGSA-DAI [2], Spitfire [19] and query processing; OGSA-DQP

[12]. Distributed Query Processing is one of the main functionalities that provides seamless

and simultaneous read accesses to several databases which are possibly located on shared-

nothing computational systems. Systems with DQP facilities allow their clients to ask for

queries involving different resources at different sites. Although it may vary from system to

system, a typical DQP system provides the following functionalities [20]:

• Schema Integration: The schemas in each resource are integrated to form a global

schema for the large-scale view of the system-wide resources.

• Location Transparency: The clients are not bothered with the location of the resources

they are using. The queries are automatically directed to the locations of required

databases.

• Table Partitioning: A table can be decomposed into smaller parts and distributed over

the network. The system automatically handles table partitioning without bothering the

clients about the partitions and their locations.

• Multiple Vendor Support: A DQP system should be able to use resources from different

6

vendors, in a seamless way.

• Multiple Data Format Support: A DQP system should support clients to perform SQL

joins not-only on relational resources but also non-relational resources.

• Multiple Site Support: As the name implies, DQP allows the data to be delivered to

several resources.

• Administration Facilities: A reliable DQP system should also support its users with

global security and audit trails.

Supporting all the functionalities above is not a trivial task. So, the literature contains a wide

range of distributed query processing studies.

Figure 2.1 shows the architecture of a general query processing engine that is enhanced in

both centralized and distributed environments.

Figure 2.1: Query Processing Steps [1]

The input query to a query processing engine is usually in the form of SQL or OQL like query

languages. Upon receiving a query request from a client; first the parser module parses the

query and then converts it to an internal representation to be used throughout the query execu-

tion engine. Secondly; the query rewrite module takes the internal representation to optimize

the query in terms of shape (i.e. written form) like eliminating redundant predicates, simpli-

fying expressions and disclosing views. The optimizations related to the physical properties

7

of the systems are applied by the next module, query optimizer. The optimizer module is

mainly responsible for producing a query plan where the operators and the application order

of operators are defined. Query plans are generally represented as trees with nodes as opera-

tors and edges as communication links indicating the consumer/producer relationships. Each

node is responsible for carrying out one activity. In addition to producing a query plan, the

query optimizer also decides on the execution strategies of operators and the assignment of

operators to sites for execution in distributed environments. The query optimizer bases all

these decisions on a cost model, and selects the one with the low cost from alternative plans

as the output plan. As a fourth step, the plan refinement/query execution module takes in

the produced query plan to produce an executable query plan with transformations of expres-

sion evaluations and predicates. In some systems, this plan refinement module is combined

with the query optimizer module. Finally, the query execution engine, the component pro-

viding the implementation of every operator; comes into scene to handle the evaluation of

the query according to the produced query execution plan. In general, engines are based on

the iterator model [21], where each operator is implemented as iterators so that they have the

same interface. This model allows for connecting operators as consumers/producers one after

another and enhances pipelining of results from producer operators to consumer operators

without waiting for the completion of the execution of producer operators. During the phases

of parse, rewrite or optimization steps, the required information is provided from the catalog.

The database schema (e.g. table definitions, table views etc.), the partitioning schema (e.g.

partitioning information of tables) and physical information of resources (e.g. indices) are

the main elements of a catalog [1]. The literature contains several DQP systems using either

complete, partial or extended versions of these query processing steps.

Polar*, which is not service-based, is accepted to be the first study to employ distributed query

processing in a Grid environment [12]. It exploits Polar system, which is a parallel object

database server running on a shared-nothing parallel machine, with facilities of DQP by using

MPICH-G [MPI] (i.e. grid enabled MPI). The query compiler consists of the parser, logical

optimizer, physical optimizer, partitioner, scheduler and evaluator modules; and is responsible

for the generation and evaluation of efficient query execution plans for OQL queries with

two-step optimization paradigm in a distributed setting [22]. Pursuing the operator model of

parallelization, Polar*, enhances the use of exchange operators at locations where data input

needs repartitioning in order to be processed on multiple nodes. For a distributed environment,

8

the exchange operators in the query plan also indicate the sub-plans that will be executed

on separate nodes. The evaluator of Polar* is based on the iterator model [21], connecting

operators with interface functions of open(), next() and close().

There have been several other studies like GridDB [23], GridDB-Lite [24] and POQSEC

[25]; for pre-service-based grids enhancing database query languages to define application

requirements that will be processed over Grid middleware. GridDB [23] allows users to ac-

cess and manage process-centric grid services and use a DML to manage the parameters

and results of grid computations by providing a data-centric overlay upon process-centric

middleware. GridDB enables computational steering in order to change the batch-oriented

behavior of process-centric middleware to be able to access partial results [23]. GridDB-Lite

(also called STORM); mainly presents two tasks; extracting data effectively from distributed

databases and transferring that data from storages to evaluation nodes [24]. In executing

queries, GridDB-Lite uses the inspector/executor [26] model; where the inspector is respon-

sible for generating a schedule of data movement from storage sites to processors and the

executor is the one to apply that schedule and perform data movements. Upon getting a query

request;

1. Indexing is enhanced to determine the tuples to be gathered from each data source by

using data source service which provides a virtual dataset view of tables. Tuples are

categorized as select attributes (i.e. attributes satisfying select predicates), partition

attributes (i.e. attributes deciding on the partitioning of result among processors) and

result attributes (i.e. attributes returned as part of result) [Inpector Phase]

2. An unfiltered planning table is generated by using data source service. The table in-

cludes a unique ID for each tuple, select attribute values and partition attributes values.

[Inpector Phase]

3. This unfiltered planning table is converted to a filtered planning table by conducting

filtering service for the removal of tuples not satisfying the select attributes. [Inpector

Phase]

4. The filtered planning table is then passed to partition generation service to determine

the result tuple partitioning over processors. [Inpector Phase]

5. Partitioning information and filtering information are passed to data mover service to

9

compute communications schedule and perform data movement. [Executor Phase]

Although GridDB-Lite uses services in execution and it is actually service based, it is not web

services based; so the standard service interfaces are not used.

POQSEC (Parallel Object Query System for Expensive Computations) system [25]; deals with

the management of long-running queries that use a lot of computational resource in the grid.

The system takes SQL-like queries expressed in an application-oriented schema and converts

them to job descriptions that can be submitted for execution. By this way, the user is saved

from the complexity of details of job descriptions and their parallelization [25]. It makes use

of computational and data resources of pre-existing grid infrastructures; [27, 28], respectively.

This puts some restrictions on POQSEC, like full control of computational resources and pos-

sibilities of acquiring them that differentiate the system from stand-alone generic distributed

query processors discarding such anomalies. POQSEC consists of four components: query

coordinators, start-up drivers, executors and supervisors [25]. Upon getting a query request;

1. Query Coordinator first checks, whether further computational resource is required. If

not, the request is answered using the local database; else it separates the query into

sub-queries and submits to NorduGrid for parallel execution by providing the required

information (e.g. xRSL job scripts, computational resources requirements, startup pro-

cedures for computing elements and input/output of each sub-query).

2. In the computing elements (CE) of NorduGrid, start-up driver starts POQSEC modules

for execution initialization and supervisor selection. After then, start-up drivers start

executors.

3. Executors first subscribe to the selected supervisor and then execute the query on data

available at that CE. By the help of supervisors, the query coordinator follows the

execution of the submitted queries on computing elements (CE) available through Nor-

duGrid infrastructure [29].

For more information on additional distributed query processing arguments like optimization

strategies (adaptive, dynamic and parallel approaches), roadmaps in different network models

(e.g. server-client, peer-to-peer and multi-teer), execution strategies, execution engine models

etc., the reader is encouraged to refer to [1]. Due to concern of this thesis; the survey is

10

in general, narrowed to distributed query processing functionalities enhanced in a service-

oriented grid setting that will be detailed in the next section.

2.2 Distributed Query Processing in Service Oriented Data Grids

Ease of use, loose coupling, reusability, interoperability with applications, seamless integra-

tion and platform independence properties of web services and in turn a data grid infras-

tructure providing these; suits the needs of a distributed heterogeneous environment with

different applications, platforms, languages and databases. Service-oriented data grids sup-

port distributed-data-intensive applications with services of resource discovery, data transport,

management, modification and dataset replication over sites [30]. Our concern in this thesis

is on service-oriented data grids that are using the well-known web services paradigm as the

underlying infrastructure. The need for a service interface format for a platform indepen-

dent data grid environment that separates implementation details from service interfaces by

web-services paradigm has led to the emergence of architectural specification OGSA (Open

Grid Services Architecture) [11]. OGSA-DAI and OGSA-DQP, and after coalition of the two,

OGSA-DAI DQP; which are the base for this study (to be detailed in the following subsec-

tions) are well-known compliant of OGSA specification.

In addition to OGSA-DAI DQP system, there are several other service-based systems tar-

geting DQP facilities like; Web Service Management System (WSMS) [31], SkyQuery [32],

Garlic [33] and Kleisli [34]. WSMS [31] allows clients to query multiple web services simul-

taneously using an SQL-like interface in a seamless and integrated manner while benefiting

from pipelined parallelism. [31] defines a WSMS architecture to contain three components;

• Metadata Component: Responsible for the management of catalog data, registration of

web services and providing web services schemas

• Query Processing and Optimization Component: Responsible for the management of

the execution of queries by producing optimized query plans using the information

provided by the profiling and statistics component.

• Profiling and Statistics Component: Responsible for profiling web services character-

istics like; response times, data statistics of web service data.

11

In executing queries; WSMS benefit from pipelining parallelism by chaining web services

to form workflows where processed data is streamed through one web service to another. In

producing the query execution pipeline; the query processing and optimizer module considers

issues like precedence constraints between services, response time of each service, chunk size

of delivered data, etc. The queries handled by [31] are simple select-project-join queries over

web services by considering web services as virtual relations.

Although; SkyQuery [32] lacks generality and targets mainly astronomical federation data, it

is still a good application of service-oriented DQP. It uses a mediator-wrapper approach and

contains three components; Clients, Portal and SkyNodes. The Clients are the ones to meet

queries and they are responsible for passing the query requests to the Portal. Portal being the

mediator interposes between the Clients and the SkyNodes. SkyNodes, implementing wrap-

pers over DBMSs, join to federations by using the Registration service of the Portal. Upon

receiving the query from Client, Portal generates performance queries by decomposing the

query and then using the results of these performance queries, creates an optimized execution

plan to be sent to SkyNodes for evaluation. The plan contains a chain of queries ordered

according to execution turn among SkyNodes. During execution of the plan from one SkyN-

ode to other, partial results are not sent to Portal only the final result is sent to the Portal.

A SkyNode has four Web services interfaces; information service (i.e. provides astronomi-

cal constants of that SkyNode), meta-data service (i.e. provides schema information of DB),

query service (i.e. queries database) and cross match service (i.e. execute astronomy specific

cross-match queries) [32].

Garlic [33] and Kleisli [34] aims to support querying multiple distributed heterogeneous data

resources in a declarative manner using wrapper like modules over data resources. Upon

receiving an SQL query; federated server in Garlic [33] works with wrapper components

collaboratively to form an execution plan (i.e. a decomposition of the query into fragments)

using Garlic’s request-reply-compensate protocol. At request stage; the federated server asks

wrappers for the part of the query they can execute. After taking requests, each wrapper an-

swers by a reply the part that can be executed and the required information for execution. And

finally, receiving the replies, the federated server compensates for an execution plan. After

selecting an execution plan; the query fragments are sent to wrappers for execution. After

the completion of execution, each wrapper sends the results back to federated server which

combines results coming from all wrappers [33]. Kleisli resembles Garlic in using wrapper

12

like modules named data drivers that deal with the specifics of various data resources. OQL

queries accepted by Kleisli are first decomposed and then transformed for understanding of

data drivers that will lead the execution of sub-queries by the help of query optimization mod-

ule [34].

In the internet-scale query processing area; ObjectGlobe [35] takes interest by its similarity

of goals with OGSA-DQP system. ObjectGlobe favors moving the execution logic close to

data rather than moving whole data close to execution nodes. Being internet-wide scale, and

non-service-oriented, ObjectGlobe holds records of the query operators, additional evaluation

nodes and registries of data resources. The concepts and functionalities of ObjectGlobe, are

seen in a more generalized and service-based manner in OGSA-DQP.

This thesis is based on OGSA DAI DQP system; that is chosen for its generality, ease ap-

plicability, success in several projects (i.e. ADMIRE1, BIRN2, GEO Grid3, MESSAGE4,

BEinGRID5, LaQuAT6, Database Grid7, etc. [36]), SQL support, compactness, community

support and extendibility to be used for the purposes of this thesis.

In the following; a summary of each middleware, OGSA-DAI and OGSA-DQP, is presented

separately first. Then the variations in the new coalition OGSA-DAI DQP are explained.

2.2.1 Open Grid Services Architecture - Data Access and Integration (OGSA-DAI)

OGSA defines the capabilities for the functionality required to implement service-oriented

grid architecture by addressing the challenges of integration of services from distributed, het-

erogeneous and dynamic grid environments using Web services concepts and related tech-

nologies [11]. OGSA-DAI initiative on the other hand aims at making structured heteroge-

neous data (i.e. files, relational and XML databases) available to consumers on the grid, via

standard access interfaces in a service oriented setting. The data resources are wrapped via

grid service interfaces as defined in OGSA specification so that they can be accessible in a

standard way using Web Services technologies such as WSDL and SOAP. While allowing

1 http://www.admire-project.eu/
2 http://www.birncommunity.org/
3 http://www.geogrid.org/en/index.html
4 http://bioinf.ncl.ac.uk/message/
5 http://www.beingrid.eu/
6 http://laquat.cerch.kcl.ac.uk/
7 http://wiki.dbgrid.org/index.php

13

standard data access to heterogeneous data resources, OGSA-DAI also aims to support the

movement of processing logic near data rather than moving large volumes of data near pro-

cessing logic, to provide a convenient framework for grid-centric applications.

It is important to emphasize the central characteristics of OGSA-DAI compliant Grid Data

Services to indicate the underlying programming model used by OGSA-DAI and OGSA-

DQP. The interaction with a Grid Data Service is performed via a document oriented inter-

face, where the request is specified by an XML document called the perform document. A

perform document includes a sequence of activities. Activities represent well-defined tasks to

be completed at the server side and are the main behavioural building blocks of OGSA-DAI

Grid Data Service. The sequence of activities in the perform document specify an execution

model on the server side where activities are linked one after the other to form a workflow.

The workflows are also a way of optimization for OGSA-DAI service communications by

reducing the amount of SOAP level data transfers, which is known to be relatively inefficient

due to infrastructure and formatting overheads (e.g. verbose XML encoding, marshaling / un-

marshaling etc.). Querying, transformation, integration and data delivery are examples of the

tasks that can be achieved via activities. The activities are also extensible to include more tasks

for uses of different applications with different requirements. Simple intermediary, persistent

intermediary, redirector, coordinator and network assembly are the five different common use

scenarios of OGSA-DAI [37]. Figure 2.2 summarizes the architecture of OGSA-DAI in a

schematic way.

2.2.2 Open Grid Services Architecture - Distributed Query Processing (OGSA-DQP)

OGSA-DQP is service-based, fully compliant to the externally visible interfaces of a standard

Grid Data Service since it is developed using the OGSA-DAI’s extensibility points. By using

OGSA-DAI as a base, it benefits from homogeneous access to heterogeneous resources and

offers an opportunity to be used as a high-level on-the-fly data integration service. OGSA-

DQP supports SQL queries over distributed relational database resources and encapsulates

compilation, optimization and evaluation (execution) of those queries inside the processing

logic of constituent services [12].

Through the higher level layering of its constituent services over OGSA-DAI Data Services,

14

Figure 2.2: OGSA-DAI Architecture [2]

OGSA-DQP implements wrapper-mediator architecture; in that it acts as a mediator over data

sources wrapped with OGSA-DAI services. OGSA-DAI is extended and two services are

created to produce OGSA-DQP; coordinator and evaluator. The Coordinator service is the

main entry point for the functionalities provided by OGSA-DQP, where a query is compiled,

optimized and scheduled for evaluation by evaluator services. To provide the basis for a better

understanding of our extensions to OGSA-DQP we present a summary of the main processing

pipeline inside the Coordinator Service and its interaction with the Evaluator Services. For a

more detailed account the reader is referred to [12, 13, 38, 39, 40].

Figure 2.3 illustrates a graphical representation of the sequence of the processing steps. Upon

receiving an SQL query; OGSA-DQP first validates the query and then Parser parses the val-

idated query to produce an abstract syntax tree (AST). After that Type Checker gets this AST

to check the type elements of the tree and outputs an annotated abstract syntax tree (AAST)

that contains the type information. Then, as the last step on the way to query plan building,

15

Figure 2.3: DQP Query Compiler Execution Interactions [3]

Translator takes AAST to produce an internal data structure (flattened data structure) to be

used throughout the optimization.

After the conversion of SQL query to an internal data structure, creation of the query plan

tree starts. Coordinator accomplishes this optimization in three blocks: Logical Optimization,

Physical Optimization and Parallel Optimization. At the logical optimization step, a single

non-distributed query plan is produced using the logical properties of data sources (e.g. table

schema information). Upon taking the logical algebra produced, Physical Optimizer updates

the plan according to the physical properties of data sources (e.g. indexing information, row

size).

To exemplify, Logical Optimizer is the one to produce the join operation, whereas Physical

Optimizer is the one to update the join operation to be a more specific join (e.g. Theta-

Join, HashJoin or HashNestedLoops). After these optimization steps; the Parallel Optimizer

(Scheduler) generates plan partitions while considering the parallelization over parallelizable

operators (e.g. joins) and assigns these plan partitions to evaluators according to the proper-

ties of nodes (e.g. belonging networks). And then, as the last step to the evaluation, XML

Translator converts these plan partitions to XML fragments.

The Coordinator Service sends each query plan partition to an Evaluator Service as specified

by the scheduler. An Evaluator service includes the implementation logic for the execution of

the query operators. Upon taking a fragment (or a partition) of the query execution tree from

the coordinator service, an evaluator evaluates that query fragment by executing the algebraic

16

operators involved in it. The Evaluator services effectively form a coarse-grained execution

tree where the root is the coordinator and each node is a query plan partition encapsulated by

an evaluator service. As the query evaluation starts, the results of the query execution begin to

flow bottom up as blocks of data tuples, from the leaf data sources, through the intermediate

evaluator services up to the coordinator. In other words, a data flow machine dynamically

forms results by acquiring and consuming resources during the query execution and is teared

down at the end disposing the consumed resources.

2.2.3 Open Grid Services Architecture - Data Access and Integration - Distributed

Query Processing (OGSA DAI DQP)

By release 3.2.1, OGSA-DQP is written from scratch and it is included in OGSA-DAI releases

making deployment of DQP system much easier. The new version of the distributed query

processor in OGSA-DAI still preserves the aims in its previous releases; but the architecture

and the execution flow of queries are changed considerably.

Although, Coordinator service still exists and serves for the coordination of the execution

steps of a requested query like, parsing, type checking, translating, optimizing and query

plan partitioning; the management and the implementation of these steps have been changed.

They are now more configurable, adaptable and extendible according to the specific project

needs and environment [41]. Like the previous version; the schema of the virtual database

is constructed before any query is executed. The considerable difference in the execution

of a query is seen in the optimization step; where now an optimization chain is defined and

given to the system as an XML configuration file. After the initial query plan is produced

by the steps (e.g. parsing, type checking etc.) up to optimization; it is guided through that

ordered optimization chain. Each element in the chain gets the query plan and produces a new

optimized one according to its task. For example; the task for ProjectPushDownOptimizer is

to find the project operators that can be pushed down in the query plan and then to update the

query plan accordingly.

The partitioning is similar to the previous releases; each operator is assigned to an Evaluation

Node, according to the needs of the query operator and resources available on the evaluation

nodes. Separate evaluator services are removed and the evaluation logic of the query plan

operators is located inside the whole system. That is; when the OGSA-DAI DQP system is

17

installed on a site; that site can be used freely as the coordinator, evaluator and wrapper for a

data resource without any additional installation.

The execution logic of operators in query plans is adapted to activities that are widely used in

OGSA-DAI. The optimized and evaluation node annotated query plan; is converted into mul-

tiple workflows (i.e. chain of activities) by the help of the builder classes of the corresponding

operators. The corresponding executor activity of an operator in the query plan is given in the

same file with the optimization chain; DQPCompilerConfig.xml. The workflows are then sent

to the specified OGSA-DAI servers and executed in a parallel way [41], [42].

The study for this thesis started when OGSA-DAI and OGSA-DQP were two separate middle-

ware. Therefore we made our implementation based on the architecture of separate OGSA-

DQP middleware, initially. After their merge and combination to a single middleware; we

updated the implementation to be in harmony with the new version. Being users that have

developed applications using both data access and distributed query facilities of these two

different versions; we can honestly say that the new version offers more friendly, understand-

able, extendible and adaptable interfaces.

2.3 Database Partitioning

A partition (fragment or segment) is a split of a database or its comprising elements (e.g.

indexes etc.) into separate pieces. Each partition of the database may have its own storage

characteristics independently from others. Partitioning; while providing administrators with

the freedom to manage the partitions separately; gives a non-partitioned database view for

the client side when working with SQL commands [8]. Partitioning is generally used for

increasing manageability, scalability, performance, availability and security of a database.

The mentioned characteristics of databases are affected from several reasons like; hardware

strength (manageability, performance and scalability), database maintenance time, capturing

database statistics, network failures (availability), effective database design and query rewrites

(performance) etc. Partitioning data is one of the good strategies to enhance the encountered

problems by possibly increasing the controllability of the mentioned characteristics.

• Manageability; refers to the control of data in the database and it can be taken as a

measure of quality of handling generally space, memory and processor constraints in

18

databases [9]. The larger the database; the larger the likeliness of problems with these

constraints occurring. For example; for an application producing data on a daily basis;

when it is time to load data, the addition of a single partition is faster compared to the

update of an entire table [8]. Another good example is backup operations of databases.

When the backup of a portion of data is required, it is easier to backup the partitions

containing the requested data rather than backing up the whole non-partitioned table.

• Scalability; refers to the ability of a database to continue its function without any per-

formance penalty when the number of users or database size increases. By partitioning

the database to several smaller parts; the total number of client requests to the database

will also be divided over partitions.

• Performance; refers to the quality of services received from a database like; querying,

updating or index creating. Parallelization of requests to a partitioned database may

increase the performance that can be achieved by operating over different partitions

simultaneously. It is also possible for some requests with queries on partitioning keys

to eliminate the redundant processing of data on unrelated partitions.

• Availability; refers to the 7/24 active operation of databases. Partitioning not only

divides data but also divides the possibility of failures emerging from a single ta-

ble/database over several tables/databases. So; when a problem occurs at a partition;

the queries unrelated with the failed partition would continue to be answered success-

fully. The term five nines is used to describe highly available systems; since hundred

percent availability of a database is not accepted to be a reality [10].

• Security; the confidential parts of data are separated and stored at the required partitions

only. This prevents the access of confidential data to unauthorized users.

Although partitioning can be used to accomplish a number of various objectives, the most

common goal is to reduce the amount of data reads for particular SQL operations to reduce

the overall response times. There are two major forms of partitioning;

Horizontal Partitioning The height of a table is divided horizontally such that; disjoint data

sets with rows as elements are produced that can be accessed individually (one par-

tition) or collectively (one-to-all partitions) [43]. All the attributes of the table exist

in all the partitions. That is, schemas for all the partitions are exactly the same with

19

the original non-partitioned database. Horizontal partitioning has two sub-partitioning

schemes; primary and derived. In primary partitioning, the partitioning attributes are

selected from the attributes of the local relation (table), whereas derived partitioning

uses predicates based on foreign relations (tables) in fragmenting the relation (table)

in question. Derived partitioning is meaningful if and only if there is a relationship

between the local and referenced relations [44]. Horizontal data partitioning is used as

a major technique used in the design of data warehouses. An example for horizontal

partitioning is dividing a sold items market database with 12 months of historical data,

into 12 distinct partitions, where each partition contains the data for a single month.

During the construction of horizontal partitions; the selection operator is used together

with a partitioning scheme. The reconstruction of the non-partitioned database from

partitions is possible with the union operator.

Vertical Partitioning The width of a table is divided into several partitions vertically; pro-

ducing partitions with different columns but with all rows of the table. The exception to

column differentiation is primary keys that exist in all the partitions to be used during

the reconstruction of the non-partitioned database. An example vertical partitioning

is the division of a large video database with large BLOB data into partitions to put

frequently accessed columns on one side and rarely accessed BLOB data on the other

side [43]. During the construction of vertical partitions, the projection operator is used

together with a partitioning scheme. The reconstruction of the non-partitioned database

from partitions is possible with the join operator.

The correctness of a partitioning technique is checked by the three rules: [45]

• Completeness; each data item in relation R; should also exist in at least one of the

partitions of the relation R; R1, R2, ..., Rn.

• Reconstruction; there exists an operator that reconstructs the original relation from the

fragments.

• Disjointness; each data item of relation R, occurs only in one relation. Tuple is the

data item for horizontal partitions and attribute is the data item for vertically partitions.

There is an exception for this rule; when vertical partitioning, is in question with the

obligation of carrying the primary key columns to all partitions.

20

There are various studies on database partitioning with various issues like; physical parti-

tioning techniques, allocation of partitions, replication of partitions, on-the-fly partitioning

techniques for query processing, migration of data among partitions, etc. over both relational

and object-oriented database management systems. Due to the concern of this thesis, the re-

search is narrowed to distributed horizontal partitioning schemes of relational databases that

are detailed in the following section.

2.4 Multi-Node Horizontal Partitioning in Distributed Environments

The mainstream commercial DBMS vendors provide solutions with data definition language

(DDL) support for various kinds of partitioning techniques such as range partitioning, list

partitioning, hash partitioning, etc. [46]. These methods in general form a mapping between

the rows and the partitions that are created. The created partitions are either put on a single

machine (single-node partitioning) or on several machines (multi-node partitioning) [4] de-

pending on the application requirements. Multi-node data partitioning is generally considered

in order to increase the quality of services in a data grid by locating data near to the location

where it is used most. The well-known forms in physically designing partitions, used by most

commercial vendors supporting horizontal partitioning are as follows:

• Range Partitioning: This partitioning technique is used to assign rows to partitions

according to a predefined logical range on values of selected partitioning columns like

start/end/transaction dates.

• Hash Partitioning: This partitioning technique separates rows using a hash function

that is applied on the values of partitioning columns like primary keys.

• List Partitioning: This partitioning technique decomposes data matching the values of

selected partitioning columns with a predefined list of column values.

• Round-Robin Partitioning; This partitioning technique allows data to be evenly dis-

tributed over partitions. This partitioning scheme is good for queries scanning relations

as a whole whereas; not effective for point or range queries due to the random distribu-

tion of data.

• Composite Partitioning: Several of the single (one level) partitioning techniques above

21

can be applied one after another to form a composite partitioning on the table. For

example; after creating partitions of a table with range partitioning; hash partitioning

can be applied on the current partitions to form further new partitions [8, 43, 4].

From an academical point of view; the literature contains studies for horizontal data partition-

ing in several contexts: centralized traditional databases (RDBMS or OODBMS), distributed

databases, parallel databases and relational data warehouses [4]. Centralized databases con-

sider the problem of horizontal partitioning as selecting both the set of relations that should

be decomposed and the most beneficial fragments associated with that selected relations, in

an effective way in order to minimize the total querying costs compared to non-partitioned

case. Distributed and parallel databases; in addition to the fragmentation process in central-

ized databases, also considers the allocation and possibly replication of fragments to sites.

The design of decomposition, allocation and replication of fragments has important impacts

on the query processing [4].

For horizontally decomposition problem, several query-driven approaches have been pro-

posed to develop partitioning techniques that are categorized as: predicate-based, affinity-

based and cost-based [47]. Predicate-based algorithms consider the set of predicates used by

the most frequently asked queries in forming the partitions of a relation [44, 43]. Affinity-

based algorithms try to improve predicate-based algorithms by producing sets of high-affinity

predicates based on the total access frequencies of queries. Partitions are formed by the

conjunction of the selected predicates [48]. Cost-based algorithms uses a cost model that

associates each proposed partitioning scheme with a cost [49]. Other than the well-known

decomposition procedures given above some further partitioning studies are; heuristics based

[50], knowledge based [51], lattice-structures based [52], partitioning by reference [53] etc.

Another track in the studies of horizontal partitioning arose with the distribution of partitions

over multi-nodes. While providing some facilities like shareability, availability, reliability,

performance, etc.; distributed database environments also carry with their complexity, cost,

security, integrity control, heterogeneity, etc. Data allocation and replication are the next is-

sues after decomposing a non-partitioned relation into fragments in a distributed environment

setting. In [54], the replication of data is analyzed in a service-oriented architecture using

OGSA-DAI middleware to have a highly available system considering possible failures of

some nodes. In [55], two closely related problems, query optimization and data allocation are

22

explored in a combined fashion to develop a strategy to minimize both of the problem costs.

As a last but not the least important problem of issues studied in the literature for horizontal

partitioning in distributed environments is migration and query processing. Migration is the

change in the partition assignment of a row by an update on the values of partitioning columns.

The problem is important especially for databases with high-availability requirements. The

partitioning strategies may effect and possibly trigger the migration problem. For example;

since names of people are less prone-to-change compared to the currency balances of peo-

ple; it is wiser to partition data according to names rather than the currency balances where

migration would be inevitable. An example of the migration problem in query-intensive,

high-available applications is [56] which presents two policies: one with central controller

regulating the migration according to the query loads of other servers and the other with let-

ting individual servers to regulate their data by selecting a partner for migration to balance

query loads.

Distributed query processing (DQP) as mentioned in Section 2.1, is rather a broad and an

advanced issue that has been explored considerably. DQP has been dealt with several aspects

for horizontally partitioned relational databases in a distributed environment. Efficient query

processing algorithms for costly operators especially for join, have been developed. In [57],

three models (minimal response time, minimal total execution cost and hybrid of two) have

been formalized for use in join operations of fragmented relations in order to minimize the

elapsed time perceived by the user. In [58]; local and remote semi-join strategies are intro-

duced in order to decrease the communication costs involved when joining the distributed

partitions, and a mathematical model for remote semi-joins (i.e. for the semi-joins taking

part in an arbitrary site) is developed. In [59], set queries (queries involving set operations)

are considered with horizontally partitioned database systems and a mathematical model is

developed together with solution strategies. Additionally; there are studies that horizontally

partition the data on the fly for query processing independent from the partitioning of the

actual data. For example; in [60], according to the functional dependencies, the horizontal

partitioning of relations has been considered in the execution of cyclic queries. In [61] join

ordering, which is an important factor in queries with multi-joins, has been analyzed with

horizontally-hash partitioned relations in order to reduce costs of repartitioning of relations

during query processing. Figure 2.4 shows the use of horizontal data partitioning throughout

the database evolution [4].

23

Figure 2.4: The use of horizontal partitioning along the database evolution [4]

RUPAGATION, is a well-defined study on replica management. Although, the target prob-

lems and the initial environment of this thesis and system RUPAGATION [62] are completely

in different spots; discussing it will clear the separation of this thesis study from such replica

consistency models. RUPAGATION deals with keeping distributed replicas of a database

consistent throughout the update requests in a service-oriented data grid environment. The

system is based on OGSA-DAI middleware and implements both primary replica consistency

model (where data updates are applied first on the primary replica and then propagated to

the secondary replicas) and two-phase commit protocol (where the updates are applied as a

whole in all the replicas if and only if all the replicas are available and ready). The interesting

service of RUPAGATION, replica update propagation service (RUP), consists of; replica up-

date manager, update construction, update applier and update transfer modules. The update

construction module is responsible for producing update sets for each update request coming

from the secondary replica sites. The update applier module is called by the replica update

manager and is responsible for performing updates on the requested data resource. The update

transfer module is used in transmitting update sets to other replica sites. The replica update

manager is responsible for managing the status information about the local replica and noti-

fying the consistency service above the RUP service layer about the received and produced

update sets at the local replica. The experimental results of RUPAGATION show that, keeping

replica sites consistent in a distributed environment is feasible when updates are collected and

24

committed at once that is when update sets are big enough to commit. Update sets with single

update requests seems to take a considerable amount of time compared to non-replicated case

due to the inefficient transmission protocol under, SOAP.

Recent studies [42] provide examples of using DQP to integrate horizontally partitioned data

via views, we understand that the integration process described in those examples deals with

disjoint partitions only. Besides, the integration is achieved through a union query that con-

structs the view as a static DQP resource, which inevitably limits the flexibility of the overall

data integration environment since those views have to be created as part of the environment

setup. Another possible alternative approach to integrate partitioned data is to use SQLBag

activity of OGSA-DAI, which accesses multiple data resources by posing the same query

against them and merges the results. Similar to the views approach SQLBag activity solu-

tion can deal with disjoint partitions only. That is, to our knowledge, there exist no study on

the target problem of this thesis; on horizontal partitions of RDBMS that are replicated and

distributed to several shared-nothing nodes once and then emerged to have overlapping data

sections with possibly different data updates of different applications without propagation in

course of time in a distributed service-oriented setting.

25

CHAPTER 3

EXTENDING OGSA-DAI DQP TO SUPPORT

PARTITIONED DATABASES

3.1 General Considerations on the Extension

In some environments; the data is distributed by replication to different points for easy ac-

cess from different locations by possibly different applications to decrease the communica-

tion overheads and increase the number of clients being served. The applications may operate

on different replicas of data. So, any updates or insertions to data may reside in one replica

whereas the other replicas remain unchanged. The distributed database management systems

(DDBMS) has several strategies to solve this problem generally by maintaining consistency

between replicas. For the environments where the installation of a DDBMS is problematic,

costly or even almost impossible (e.g. scientific studies working with independent databases

on heterogeneous systems); the management of the partitions and accessing the last updated

version of data with a single interface to all partitions are issues to be resolved. In grid envi-

ronments where heterogeneity is an issue to be handled; the management of replicas is more

complex and keeping all replicas 100% synchronous simultaneously is not that efficient [63].

When the overhead of replica consistency is considered, propagating update operations among

replicas may be discarded in some systems with the requirements of high data replica count

and frequent data update requests. So for such systems; although some data will continue to

exist exactly the same for some replicas, replicas will no longer stay as replicas. They will

be more like as a configuration of multi node partitioned database with possibly partial repli-

cated data. A similar problem is the migration problem of multi-node partitioned databases.

As mentioned in Chapter 2.4, migration problems occur when an update operation requires

data movement from one partition to another due to changing properties of data according to

26

the partitioning criteria. Although less likely to occur; multi-node partitioned systems with

data updates causing migration problems frequently, may discard to migrate data from one

partition to another in order to eliminate the migration overhead involved with the updates or

keep the position of data constant. Then the partitions will grow or shrink separately; which

will again cause the partitions to have separate or intersecting data records referring to the

same real world entity with different field values and update timestamps. We call the state

of two partitions (i.e. items that were previously replicas, but emerged to be non-migrated

data), which both partitions have tuples with common primary key values representing the

same real world entity with possibly different values other than the primary keys, as overlap-

ping. On the other hand, if the partitions have nothing in common, that is there are no tuples

with common primary key values (i.e. primary keys group), they are called as disjoint. The

problem this thesis targets is retrieving the most up to-date data from multi-node horizontally

partitioned relational databases in a service oriented environment enhancing the well-known

OGSA compliant middleware in an effective manner. Actually, the problem can be seen as

a special case of OGSA-DAI DQP usage in accessing and integrating databases with homo-

geneous schema. The service-oriented architecture OGSA-DAI DQP; allows access to each

horizontal database partition as if they are completely different, separate databases and the

client has to be informed of the partitioning. Thus the client has to manage the overlapping

data in all these partitions either by writing long queries to extract the lastly updated data

or executing the same query for different partitions for several times. This process can be

painful when complex queries involving join operations are considered. Such operations may

also cause the processing of possibly the same data (due to replicated data in different parti-

tions) several times. Also the benefits of having horizontally partitioned data may not be used

in executing queries. Additionally, different from DDBMSs, since the selected environment

and the underlying middleware are service-oriented, we do not require the partitions of tables

or databases reside on the same DBMS trademark. That is; it does not matter whether the

partitions are kept heterogeneously or homogeneously for this thesis.

In this thesis; some assumptions have been made about the properties of the partitioned data

in order to be able to concentrate on the real problem and to define the scope of the problem.

Some of these assumptions can be removed with small efforts without changing the vision of

the study. The assumptions about the environment are as follows:

1. Uniqueness of Primary Keys: The primary keys are unique throughout the partitions.

27

This means; no two different real world entity may be referred by using the same pri-

mary key, throughout the partitions. Each world entity has its own primary key value.

2. Timestamp Knowledge: All the tables in databases have a constraint on having a times-

tamp column that is updated according to the update times of the rows. The column

information (name, position in tuple etc.) of timestamp is known.

3. Identical Schemas: The names of the columns and tables are identically same in all the

partitions. This assumption can be removed easily by producing different identifiers

using IP number, database name, etc. like the action for identical table name resolution

of OGSA-DAI DQP system in gathering schemas [3].

4. Partitioning Information: The overlapping/disjoint properties between partitions are

mostly known. If the information is not available; the partitions are accepted as over-

lapping. To remove the assumption; the incomplete information of disjoint/overlapping

can be gathered by executing queries on partitions of a table/database several times and

producing related histograms on primary keys of partitions.

Throughout the thesis, partition will refer to a single partition of a horizontally partitioned

relational table. If other type of partitioning (vertical, hybrid, etc.) is implied; it will be

explicitly stated. As a solution; in order to preserve the main flow of the execution of OGSA-

DAI DQP system mentioned in the related work section; a new algebraic operator with two

different implementations based on the partitioning information is proposed to handle the

update problem between partitions on-the-fly, when data on partitions are accessed. The main

concern of the new operator is both allowing clients to ease the integration of the partitioned

tables involved in the queries in a seamless manner and eliminate not up to date data as early

as possible to decrease unnecessary data movements. The new operators are designed as

binary and n-ary in terms of the number of inputs; UnionPartitions and UnionPartitionsNary.

In the query plan; UnionPartitions (i.e. both versions, binary and n-ary) are located above

the scanning operators for the partitions of the corresponding tables that are involved in the

query execution. So, the inputs to UnionPartitions (i.e. both versions; binary and n-ary) can

be scan, projection, rename or UnionPartitions operators depending on the requested query.

28

3.2 Extending OGSA-DAI DQP

3.2.1 Extending OGSA-DAI DQP Federation Description

Some additional information is needed about tables involving in a query like whether they are

partitioned or not and if partitioned with which partition they are overlapping/disjoint. Since

MySQL1 is not capable of supporting this type of information, the mediator of the system

(i.e. OGSA-DAI DQP services) is slightly manipulated to load partitioning information from

a given XML file. So after populating OGSA-DAI DQP system with the information of the

schemas of the resources, the partitioning information of the concerned tables are added to the

data dictionary to be used during query processing. An example of a partitioning information

file that should be located for the use of OGSA-DAI DQP system is illustrated in Figure 3.1.

The tags in the partitioning XML file are organized as follows;

• partitionInfo: This tag represents the root element of the document under which parti-

tioned tables will be defined.

• partitionedTable: This tag represents a partitioned table. The name attribute stands for

the title to be used in queries to refer to the partitions as a whole.

• partition: Each partition of a partitioned table is represented by this tag. The name

attribute stands for the title of the partition (i.e. table name for that partition), resource

attribute stands for the title of the resource name deployed on OGSA-DAI DQP system

and finally; id attribute stands for the identification of the partition.

• disjoint: The concern of complete separateness between two partitions is represented

by this tag. The id attribute refers to the identification of the partition that is disjoint

with the current partition.

• overlap: The concern of overlapping between two partitions is represented by this tag.

The id attribute refers to the identification of the partition that is overlapping with the

current partition.

The partitioning information is used in order to determine the ordering and inputs of the newly

proposed UnionPartitions operator; when the query requires the involvement of a partitioned
1 MySQL 5.0.15

29

<partitionInfo>

<partitionedTable name = "Partitioned_users1">

<partition name="users1" resource="usersP1" id="1">

<disjoint id="2"/>

<overlap id="3"/>

</partition>

<partition name="users1" resource="usersP2" id="2">

<disjoint id="1"/>

<overlap id="3"/>

</partition>

<partition name="users1" resource="usersP3" id="3">

<overlap id="1"/>

<overlap id="2"/>

</partition>

</partitionedTable>

<partitionedTable name = "Partitioned_users2">

<partition name="users2" resource="usersP1" id="1">

<disjoint id="2"/>

<overlap id="3"/>

</partition>

<partition name="users2" resource="usersP2" id="2">

<disjoint id="1" />

<overlap id="3" />

</partition>

<partition name="users2" resource="usersP3" id="3">

<overlap id="1" />

<overlap id="2" />

</partition>

</partitionedTable>

</partitionInfo>

Figure 3.1: Example Partition Information

table. The state of partitioning properties of all partitions in an environment setting (e.g.

federation, grid) is called as a partitioning configuration. For example; disjointness of all

partitions, the overlapping of all partitions, etc.

3.2.2 Extending the Optimization Chain and Activities

As mentioned in section 2.2.3, OGSA-DAI DQP middleware transposes the generated logical

query plan through an Optimization Chain in order to optimize, schedule and fragment the

query plan and thus, to convert it from a centralized plan to a multi-node evaluation plan.

The optimization chain contains an ordered sequence of optimisers. In the general sense; an

optimizer is a functionality that takes in the query plan from the anterior optimiser and outputs

a modified query plan according to its assigned task to the posterior optimiser. There are also

items that are not optimizers but reside in the optimization chain in order to perform several

tasks during plan processing. For example, VisualiseOptimiser does not modify the query

plan, instead renders the received query plan to a DOT file.

30

<optimisationChain>

<optimiser class="uk.org.ogsadai.dqp.lqp.optimiser.QueryNormaliser" />

<optimiser class="uk.org.ogsadai.dqp.lqp.optimiser.select.SelectPushDownOptimiser" />

<optimiser class="uk.org.ogsadai.dqp.lqp.optimiser.rename.RenamePullUpOptimiser" />

<optimiser class="uk.org.ogsadai.dqp.lqp.optimiser.project.ProjectPullUpOptimiser" />

<optimiser class="uk.org.ogsadai.dqp.lqp.optimiser.join.JoinOrderingOptimiser" />

<optimiser class="uk.org.ogsadai.dqp.lqp.optimiser.join.JoinAnnotation" />

<optimiser class="uk.org.ogsadai.dqp.lqp.optimiser.project.groupby.

InsertProjectAfterGroupByOptimiser" />

<optimiser class="uk.org.ogsadai.dqp.lqp.optimiser.project.pushdown.

ProjectPushDownOptimiser" />

<optimiser class="uk.org.ogsadai.dqp.lqp.optimiser.project.redundant.

RemoveRedundantProjectOptimiser" />

<optimiser class="uk.org.ogsadai.dqp.lqp.optimiser.partitioner.PartitioningOptimiser" />

<optimiser class="uk.org.ogsadai.dqp.lqp.optimiser.implosion.TableScanImplosionOptimiser">

<property name="selectOnly.resource" value="SomeResource" />

</optimiser>

<optimiser class="uk.org.ogsadai.dqp.lqp.optimiser.join.FilteredTableScanOptimiser">

<property name="bigtable.min.size" value="1000" />

<property name="table.size.ratio" value="10" />

<property name="table.to.filter" value="Resource4_faculty" />

</optimiser>

</optimisationChain>

Figure 3.2: Default Optimization Chain of OGSA-DAI DQP

Like activities, the optimization chain is one of the extendibility points of OGSA-DAI DQP

middleware. The order, type and implementation of the optimisers can be changed, optimisers

can be removed and new optimisers can be added as far as the modified chain produces rea-

sonable query plans. Figure 3.2 shows the default optimization chain defined in OGSA-DAI

DQP.

In order to insert the UnionPartitions operator to the required locations in the query plan, a

new optimiser HorizontalPartitionsOptimiser is produced and located to be applied between

ProjectPullUpOptimiser and JoinOrderingOptimiser in the optimizer chain. The default op-

timization chain is seen in Figure 3.2. The location for the new optimizer is selected in such a

way that; the renaming, selection and projection operators are ordered and located beforehand

and the optimization of the join-ordering is not issued yet, in case it is effected from the output

size of the UnionPartitions operator.

Via the UnionPartitions operator, the partitioning information of a table is hidden from the

user; that is, the client sees all the partitions of a table as a single table and therefore it queries

the partitions of a table as a whole. In the execution of the optimizer chain, after the execution

of ProjectPullUpOptimizer; the query plan contains a single scan operator representing all

the partitions of the same table. After taking this query plan; HorizontalPartitionsOptimiser,

31

searches for the scan operators accessing horizontally partitioned tables. Upon finding them;

a separate scan operator is created for each of the partitions of that table. At this point;

if the UnionPartitions operator is selected to be binary; the problem of ordering of these

scan operators arises. If the UnionPartitions operator is selected to be n-ary, input operators

are streamed separately without any concern of operator ordering. Both conditions will be

detailed in the following chapter.

Each operator in the query plan has an associated builder class responsible for building ac-

tivities for that operator. The builder classes are applied in the order of the given query

plan. The query plans partitioned from the centralized query plan are submitted to builder

classes for the analyses and production of activities. The builder classes, take in a query

plan and produce an activity pipeline of the operators in that query plan. After the produc-

tion of activity pipelines for each of the query plan partition, they are executed either locally

or remotely according to their previously assigned scheduling properties. For the execution

of UnionPartitions and UnionPartitionsNary operators, two builder classes HorizontalPar-

titionsUnionBuilder and HorizontalPartitionsUnionNaryBuilder are created and associated

with those newly created operators for production and configuration of the related activities,

TupleUnionPartition and TupleUnionPartitionNary. These activities, are the main activities

behind the execution of UnionPartitions and UnionPartitionsNary operators, which will be

detailed in the next chapter.

3.3 New Operator Design

From a conceptual point of view, the UnionPartitions operator can be defined as a relational

operator that takes at least two partitions of a relational table and outputs a relation containing

up-to-date tuples which are identified based on the primary key values. Although there is no

restriction on the algebraic operators accepted by the UnionPartitions operator as input; they

are generally select, project, rename or UnionPartitions operator.

Unlike the basic content-neutral relational operators, the new UnionPartitions operator is

content-specific in that it requires the timestamp of a tuple; since it is designed to manage

partitions or replicas of tables (possibly containing overlapping data) based on their update

times. It is primitive in that it performs one single operation (i.e. discriminating against

32

timestamps and primary key values) and leaves other primitive operations like projection (i.e.

timestamp column projection) to other formerly implemented primitive operators. It provides

a virtual view of disjoint/overlapping partitions of a relation, allows clients to write queries

over this view and guarantees the result to contain safe data in terms of timeliness by mak-

ing comparisons among partitions. The UnionPartitions operator is implemented and used in

three forms:

• Binary: Takes in tuples coming from two input operators and outputs tuples like any

other binary operator. During the selection of up-to-date tuples; BKDR hashing func-

tion is enhanced for tuples coming from left and right tuples. Right tuples wait for the

completion of hashing of left tuples. The tuple matching and output production starts

only after the receipt of all tuples from the left input.

• Strict N-ary: Takes in tuples from n inputs simultaneously and locates the received

tuples into separate hash tables while at the same time checks for the timeliness of

tuples.

• Hybrid: Actually, it is not a separate operator implementation, it is the behaviour of

the system using binary and n-ary operators together in the same tree. As mentioned,

the optimiser HorizontalPartitionsOptimiser is responsible for updating the query plan

by inserting UnionPartitions operator to the required locations according to the binary,

n-ary or hybrid behaviour choice defined in a separate file. If this hybrid behaviour is

selected; then internally overlapping, externally disjoint sets are constructed using the

partitions of the table. Then elements of each set is combined to form binary trees of

the UnionPartititons operator. Finally, the trees from each set are combined to form

an n-ary UnionPartitions tree. Since the inputs are disjoint, the output production is

possible as soon as the tuples are received from the inputs.

The details of these three forms are given in Chapter 4.

33

CHAPTER 4

THE DESIGN AND IMPLEMENTATION OF THE

UNIONPARTITIONS OPERATOR

4.1 UnionPartitions as a Binary Operator

Since the ordering of some of the operators (e.g. join) in a binary query plan tree may effect

the response time of a query dramatically, query optimization techniques have to arrange the

inputs of the operators in an efficient manner. There is the need to arrange the inputs of

the UnionPartitions operator, while changing the intermediate query plan produced by the

OGSA-DAI DQP system to deal with the horizontally partitioned tables. This need arises

from two reasons:

• The partitions of a table have relational properties of being overlapping or disjoint;

therefore the early involvement of overlapping partitions in a UnionPartitions process

may decrease the amount of data carried to upper operators.

• The environment that the operator being used is distributed where it is important to

minimize data transmissions between operators.

The literature does not contain any striking study on the ordering of the binary operators

UnionAll and Union, which are somewhat resembling the UnionPartitions operator. The re-

lated work primarily focuses on the ordering of the Join operator, since it is the most time-

consuming, widely used binary operator by database applications. The operator UnionParti-

tions, that is introduced in this thesis, is a new operator; therefore there is not any ordering

algorithm yet. In order to develop an ordering algorithm for the UnionPartitions (binary case)

operator, several studies on the ordering of Join operator have been studied [64, 65, 66, 67].

34

The ordering problem for the UnionPartitions operator, may resemble to the join ordering

problem in some respect, if the pre-mentioned problem dimensions and assumptions are con-

sidered. This section explains the details of the binary UnionPartitions operator.

4.1.1 Locating the Binary UnionPartitions Operator in Query Plan Tree

In the join-ordering problem, the search space increases rapidly as the number of relations in

the join increases; because of the commutative and associative property of join operator [64].

The general problem of join-ordering on the number of relations has NP-Hard [64, 66, 67, 68]

problem characteristics; therefore, query optimizers try to find not the most optimal but the

possible best order by reducing search spaces using some heuristics and limitations on the

join tree structures. Similarly, UnionPartitions is an associative and commutative operator

in which the number of possible processing trees increases by the number of partitions for

the table participating in the query. OGSA-DAI DQP system provides the decomposition

of the query plan for execution in different evaluators enhancing the pipelined and indepen-

dent parallelism during the processing of the operators. As a result, the search space of the

UnionPartitions tree is limited to a bushy-like tree which is well-known for its opportunity of

independent parallelism [67].

A deterministic algorithm considering the following rules is developed to form a correspond-

ing bushy-like tree structure for a given partition configuration in a bottom-up fashion;

• Give precedence to overlapping partitions in selecting inputs for the UnionPartitions

operator in order to eliminate outdated data formerly.

• Push UnionPartitions operators with inputs of overlapping partitions downwards and

the ones with inputs of disjoint partitions upwards in the partitioning operator tree, as

possible as it is, in order to reduce redundant data transmissions.

• Give precedence to the formation of sub-trees with overlapping properties over the

formation of sub-trees with lower heights.

• Select the sub-tree with the lowest height as the left child of the UnionPartitions oper-

ator, in order to execute the UnionPartitions operator as soon as possible.

The concept of the operator tree segment is introduced in the ordering of UnionPartitions

35

operators. An operator tree segment, shortly called a cell for convenience, is defined in terms

of an operator tree, a list of partition ids used in that operator tree, a list of partition ids that

are overlapping with the partitions in the list of used partitions and the height of the operator

tree in this cell. A list of cells is called a partition matrix. Figure 4.1 gives the pseudocode of

the algorithm for the ordering of binary UnionPartitions operators.

First of all, a list of initial cells(i.e. the initial partition matrix), including a cell for each

partition of the partitioned table is created. In an initial cell;

• Operator Tree; is either a scan operator over a partition or a project operator or rename

operator with input of scan/project/rename operator. This operator tree is formed ac-

cording to the unary operators (that should be pushed down) above the scan operator of

partitioned table in the query plan received by the HorizontalPartitionsOptimiser.

• Used Partitions; contains only the id of the current partition.

• Overlapping Partitions; contains the partitions that are overlapping with the current

partition.

• Height of cell’s operator tree; is given to be 0.

According to the query requested for execution; there may be project operators just before the

scan operators in the initial query plan received by the HorizontalPartitionsOptimiser. Since

projection is a way of reducing the amount of data carried to upper operators; project operators

are generally pushed down on the query plan tree. If such a case is under consideration; during

the initial cell list construction; an appropriate project operator is created in addition to the

creation of the scan operator on a partition in order to decrease the amount of data flowing

up. Since, the UnionPartitions operator needs the primary key values of tuples during the

elimination of outdated data, the optimizer attaches the primary keys as projected parameters

for the newly created projection operators. This situation also holds for the rename operators

encountered. The elimination process is explained in Section 4.1.2

36

(1) Operator buildBinaryUpTree (Operator scanWholePartitionedTable) {

(2) partitionMatrix = createInitialPartitionMatrix(scanWholePartitionedTable);

(3) while (partitionMatrix.size > 1) {

(4) findBestFellows(partitionMatrix) -> < C_1, C_2 >

(5) // Remove C_1, C_2 from Partition Matrix

(6) // Combine cells C_1, C_2 to C_new

(7) // Add C_new to partitionMatrix

(8) }

(9) }

(1) < C_1, C_2 > findBestFellows(partitionMatrix) {

(2) int minHeight, overlapListCount, cardinality = -1

(3) int minDisHeight, disCardinality = -1

(4) Cell cell, cellFellow, disCell, disCellFellow = null

(5) for (i = 0 -> partitionMatrix.size) {

(6) // Find best fellow cell (C_fellow) for cell i (C_i) in partitionMatrix

(7) findBestFellowCellToUp(partitionMatrix, C_i) -> C_fellow;

(8) // Calculate height, overlapListCount and cardinality of the cell

(9) // produced by combining <C_i, C_fellow>, as temporary values; tmpHeight,

(10) // tmpOvListCount and tmpCardinality

(11) if (C_i DISJOINT C_fellow) {

(12) if (minDisHeight > tmpHeight || (tmpHeight == minDisHeight &&

(13) disCardinality > tmpCardinality) || minDisHeight == -1) {

(14) // Assign C_i -> disCell, C_fellow -> disCellFellow

(15) // Assign tmpHeight -> minDisHeight, tmpCardinality -> disCardinality

(16) }

(17) } else if (minHeight > tmpHeight || (tmpHeight == minHeight &&

(18) ((overlapListCount < tmpOvListCount) ||

(19) (overlapListCount == tmpOvListCount && cardinality > tmpCardinality)) ||

(20) minHeight == -1) {

(21) // C_i -> cell, C_fellow -> cellFellow

(22) // Assign tmpHeight -> minHeight, tmpOvListCount -> overlapListCount

(23) // Assign tmpCardinality -> cardinality

(24) }

(25) }

(26) return <cell, cellFellow>;

(27) }

Figure 4.1: Pseudocode for Ordering Binary UnionPartitions Operator

37

After the initial partition matrix is prepared, it is searched to find two cells, C1 and C2, which

will combine best based on the rules given above. During the selection of C1 and C2, first the

binary combinations of overlapping cells are checked. If it is not available, then disjoint cells

are checked. Two cells with the following properties are considered respectively;

• The lowest combined tree height, in order to preserve the bottom-up approach and

bushiness.

• The highest combined overlapping list, in order to minimize both the transmission cost

and timestamp matching operation costs of overlapping data.

• The lowest combined relation sizes, in order to minimize the transmission cost of tuples

that will be carried among middle-layer UnionPartitions operators up to the root.

Upon finding, C1 and C2, a new cell is formed with the following fields:

• Operator tree: The root of the operator tree is the UnionPartitions operator whose

inputs are previously selected cells; C1 and C2. The cell with the lowest cardinality is

selected to be the left input in order to output result tuples as soon as possible during

the execution of the UnionPartitions operator which is detailed in Section 4.1.2.

• Used partitions: Set-union of the used partitions lists of C1 and C2.

• Overlapping list: Set-union of the overlapping lists of C1 and C2.

• Height: maxHeight (C1, C2) + 1

Next, the newly created cell is inserted to the list of cells(i.e. the partition matrix) and previous

cells, C1 and C2, are removed. This cell combination process continues until there is a single

cell, with the operator tree root UnionPartitions is left in the partition matrix. Then, a project

operator is created to remove the unrequested fields from the resulting tuples (i.e. possibly the

timestamp or primary key fields) and located above the root UnionPartitions operator. Finally,

the resulting operator tree with the root project operator takes the place of project/scan/rename

operator over the corresponding partitioned table in the query plan.

Consider the following example on the ordering of the UnionPartitions operator, for a sim-

ple scan query on a table with 5 partitions. Assume that the following relationships (i.e.

38

overlapping or disjoint) between partitions occur (where unmentioned relationships between

partitions means they are disjoint);

Table 4.1: Example Partition Information

Partition Identifier List of Overlapping Partitions Cardinality (x1000 tuples)
P1 P3 , P4 30
P2 P5 30
P3 P1 , P4 60
P4 P1 , P3 40
P5 P2 25

The algorithm performs the following steps to produce a UnionPartitions operator tree:

1. Initially, the partition matrix in Table 4.2 will be produced. A row of the partition matrix

is called a cell. The cells contain information about sub-trees that will be considered as

inputs during the creation of UnionPartitions operators. The list of used partitions will

be enhanced to refer to cells. For instance, the cell with the used partitions list of P1,

P3 will be referred as P1P3.

Table 4.2: Initial Partition Matrix

Operator Tree List of Used
Partitions

List of
Overlapping
Partitions

Operator
Tree Height Cardinality

π (σ P1) P1 P3 , P4 0 30
π (σ P2) P2 P5 0 30
π (σ P3) P3 P1 , P4 0 60
π (σ P4) P4 P1 , P3 0 40
π (σ P5) P5 P2 0 25

2. Next, a best fellow cell is seeked for each of the cell in the partition matrix. The fellow

cells are firstly seeked from the list of overlapping partitions. If the cell is to be a disjoint

one or the overlapping partitions are already used up then other disjoint partitions are

considered to find a fellow cell. For example, the cell P1 has two overlapping partitions;

P3 and P4. The algorithm will consider both partitions as the best candidate fellow of

P1 and select the one with the lowest tree height, the highest overlapping list size and

the lowest cardinality. Tree heights (0) and overlapping list sizes (2) of cells P3 and P4

39

are equal. So, P4 will be selected as the best fellow for cell P1 for its low cardinality,

and we will represent this fellowship as P1-P4. Similarly; the following fellowships

will be produced; P2-P5, P3-P1, P4-P1 and P5-P2.

3. Then, the best fellowship is selected from the candidate fellowships according to the

lowest combined tree height, the highest total of overlapping lists and the lowest total

of cardinalities.

• P1-P4; Height 1; Overlap lists total size 4; Total record size 70

• P2-P5; Height 1; Overlap lists total size 2; Total record size 55

• P3-P1; Height 1; Overlap lists total size 4; Total record size 90

• P4-P1; Height 1; Overlap lists total size 4; Total record size 70

• P5-P2; Height 1; Overlap lists total size 2; Total record size 55

4. As a result, P1-P4 fellowship is selected for its lowest height. The cells P1 and P4 are

removed from the partition matrix and a new cell is produced. Since cardinality(P1)<

cardinality(P2), P1 is selected as the left child of the UnionPartitions operator which is

then assigned to be the operator tree of the newly created cell. The new cell is added to

the partition matrix to form Table 4.3.

Table 4.3: Updated Partition Matrix - 1

Operator Tree List of Used
Partitions

List of
Overlapping
Partitions

Operator
Tree Height Cardinality

π (σ P2) P2 P5 0 30
π (σ P3) P3 P1 , P4 0 60
π (σ P5) P5 P2 0 25

UP(π(σ P1)) (π (σ P4)) P1, P4 P3 1 70

5. The algorithm then iterates over the steps 1-4 until there is a single cell left in the

partition matrix. The rest of the iterations are given below;

Iteration:

Candidate Fellowships:

• P2-P5; Height 1; Overlap lists total size 2; Total record size 55

• P3-P1P4; Height 2; Overlap lists total size 3; Total record size 130

40

• P5-P2; Height 1; Overlap lists total size 2; Total record size 55

• P1P4-P3; Height 2; Overlap lists total size 3; Total record size 130

The fellowship of P2-P5 is selected, cells P2 and P5 are removed and a new cell is

added to the partition matrix.

Table 4.4: Updated Partition Matrix - 2

Operator Tree List of Used
Partitions

List of
Overlapping
Partitions

Operator
Tree Height Cardinality

π (σ P3) P3 P1 , P4 0 60
UP(π(σ P1)) (π (σ P4)) P1, P4 P3 1 70
UP(π(σ P5)) (π (σ P2)) P2, P5 - 1 55

Iteration:

Candidate Fellowships:

• P3-P1P4; Height 2; Overlap lists total size 3; Total record size 130

• P1P4-P3; Height 2; Overlap lists total size 3; Total record size 130

• P5P2-P3; Height 2; Overlap lists total size 2; Total record size 115

The fellowship of P3-P1P4 is selected, cells P3 and P1P4 are removed and a new cell

is added to the partition matrix.

Table 4.5: Updated Partition Matrix - 3

Operator Tree List of Used
Partitions

List of
Overlapping
Partitions

Operator
Tree Height Cardinality

UP (π(σ P5)) (π (σ P2)) P2, P5 - 1 55
UP
(π (σ P3))
(UP(π(σ P1)) (π (σ P4)))

P1, P3, P4 - 2 130

Iteration:

Candidate Fellowships:

• P5P2-P1P3P4; Height 3; Overlap lists total size 0; Total record size 185

41

• P1P3P4-P5P2; Height 3; Overlap lists total size 0; Total record size 185

The fellowship of P5P2-P1P3P4 is selected, cells P5P2 and P1P3P4 are removed and a

new cell is added to the partition matrix;

Table 4.6: Updated Partition Matrix - 4

Operator Tree
List of
Used
Partitions

List of
Overlapping
Partitions

Operator
Tree
Height

Cardinality

UP
(UP (π(σ P5)) (π (σ P2)))
(UP (π (σ P3))
(UP(π(σ P1)) (π (σ P4))))

P1, P2, P3,
P4, P5

- 3 185

So for this sample partition configuration, the ordered UnionPartitions operator tree is the

operator tree of the single cell left in the partition matrix. Figure 4.2 visualizes the operator

tree.

4.1.2 The Execution of the Binary UnionPartitions Operator

The algorithm for the execution of the UnionPartitions operator is rather similar to the Union

operator with changes at points where UnionPartitions handles the update properties of tuples.

The implementation for the Union operator mainly uses hashing for implementing different

union types (Union, Intersect, Except, Union All [No hashing used]).

The algorithm for the execution of the UnionPartitions operator is encapsulated inside an ac-

tivity (TupleUnionPartition) like any other operator. During processing, TupleUnionPartition

first looks whether the inputs to UnionPartitions are disjoint or overlapping from the type of

UnionPartitions. If they are disjoint, the two inputs are consumed in separate threads simulta-

neusly and passed to the parent operator. Since inputs are used up in an interleaving manner,

the output results are not ordered according to any field or input.

If the partition type is overlapping, TupleUnionPartition (activity for UnionPartitions oper-

ator) takes its left-hand side tuples, creates a hash table using primary key values and then

uses the right-hand side tuples for matching. The matching process can start only after the

42

Figure 4.2: An example to UnionPartitions Operator Tree

completion of hashing of the left input tuples. The primary key values of the tuples are used

in hashing as a whole (i.e. if exist, values of composite keys are concatenated). During the

matching process, when two tuples from two inputs representing the same entity is found, the

timestamp of the tuples are checked to get the most recently updated record for that entity.

According to that result of timestamp check, the older one is removed from the hashed list

and the newer one is passed to the output stream. Since no two tuples with exactly same

primary-key values can be received from the same input stream (among left stream or among

right stream), the newer tuple can be output without waiting for a match from the other or the

current stream. This is an advantage for the binary case of the UnionPartitions operator, since

by outputing results earlier pipelined partitioning is enhanced. The disadvantage of the binary

UnionPartitions operator is that, as the number of partitions increases, the path of tuples from

leaf node (Scanning Operator) to the root node (root UnionPartitions Operator) also increases.

As a result; there may occur redundant data transmissions, especially when all partitions are

43

disjoint.

The hash function used is the BKDR hash function which is defined in [69]. It uses a set of

seeds forming a pattern like 31...31...31 in distributing the data evenly. The reason for using a

hash-based algorithm is the opportunity of O(1) + O(n) access time, where O(n) is for going

over tuples matching the same hash key. Actually it is possible to reduce the O(n), linear

probing cost, by using a second different hash function (which may introduce new hashing

costs) or using a couple of search algorithms when the data is sorted (not feasible when data

is not sorted in a distributed environment). The projection of tuples which is, the removal of

fields that are unrequested by the query-initiator, but carried up to the UnionPartitions root

operator due to their roles in execution (e.g. unrequested timestamp field) and in identification

(e.g. unrequested primary keys) of tuples, is realized on tuples by the projection operator

located above the root UnionPartitions operator. The pseudocode for the execution algorithm

is given in Figure 4.3.

(1) execute () {

(2) Tuple left, right;

(3) HashTable hashTable;

(4) while ((left = receiveLeft()) != null) {

(5) // Add left tuple to hashTable

(6) }

(7) while ((right = receiveRight()) != null) {

(8) // Get matchList tuple right from hashTable

(9) for (i = 0 - > matchList.size) {

(10) if (matchList[i].PKValues == right.PKValues) {

(11) if (right.timestamp > matchList[0].timestamp) {

(12) // Output right tuple

(13) } else {

(14) // Output left tuple

(15) }

(16) // Remove left tuple from matchList

(17) }

(18) }

(19) }

(20) }

Figure 4.3: Pseudocode for Execution of Binary UnionPartitions Operator

44

4.2 UnionPartitions as an N-ary Operator

In addition to the binary version of the UnionPartitions operator, an n-ary version of the

UnionPartitions operator called UnionPartitionsNary is also implemented. HorizontalParti-

tionsOptimizer is configured to form binary, strict n-ary or hybrid UnionPartitions trees which

are mentioned in Chapter 3.

4.2.1 Locating N-ary UnionPartitions Operator Strictly in the Query Plan Tree

In order to form a strict n-ary tree, the HorizontalPartitionsOptimiser creates a single Union-

PartitionsNary operator for the corresponding partitioned table by using the partitions of the

table as inputs. Initially, a list containing an operator tree for each partition is created. The op-

erator trees (i.e. generally scan, project or rename operator as the root) in this list are assigned

as inputs to UnionPartitionsNary in the given order. The information of disjoint/overlapping

relationships between inputs are given to the UnionPartitionsNary operator separately to be

used in execution, during the elimination of outdated data. Since the inputs to the Union-

PartitionsNary operator do not contain any UnionPartitions or any other binary operator, the

approach is called as strict. For the example partition configuration given in Section 4.1.1, the

HorizontalPartitionsOptimiser will produce the operator tree in Figure 4.4 for n-ary approach.

4.2.2 Locating the N-ary and Binary UnionPartitions Operators in the Same Query

Plan Tree

The hybrid approach forms operator trees for partitioned tables using both UnionPartitions

and UnionPartitionsNary operators. The UnionPartitionsNary operator on its own may re-

quire a considerable amount of memory especially when large tables are considered, because

the elimination process of outdated data is carried out on one single node. In order to form

a hybrid tree, the HorizontalPartitionsOptimiser, separates the partitions of a table into in-

ternally overlapping, externally disjoint sub-sets. The partitions are separated in such a way

that; partitions belonging to a subset are overlapping with at least one other partition inside

the same sub-set and any two partitions belonging to different subsets are disjoint.

After forming these subsets, the partitions in each subset are processed to build up a binary

45

Figure 4.4: An Example to UnionPartitionsNary Operator Tree

UnionPartitions operator tree. The algorithm used to form these sub-trees is exactly same as

the one explained in Section 4.1.1.

Then, these externally disjoint sub-trees are given to the UnionPartitionsNary operator as dis-

joint inputs. Since the input streams of the UnionPartitionsNary operator are now all disjoint,

the execution of the UnionPartitionsNary operator will not contain hashing and matching pro-

cesses. This approach sometimes will produce same output trees with the binary case. For the

example given in Section 4.1.1, the hybrid approach would also produce the same output with

a different root operator. In this case since P2-P5 and P1-P3-P4 are externally disjoint, the

root operator would be UnionPartitionsNary operator. Additionally, if there were two more

partitions that are disjoint to all others, say P6 and P7, although the binary approach would try

to find a good place for them on the binary UnionPartitions tree, the hybrid approach would

simply locate them as the third and fourth inputs to root UnionPartitionsNary as in Figure 4.5.

46

Figure 4.5: An Example to UnionPartitions Operator Tree with Hybrid Approach

4.2.3 The Execution of the N-ary UnionPartitions Operator

The execution algorithm of the UnionPartitionsNary operator is encapsulated inside an activ-

ity (TupleUnionPartitionNary) like any other operator in OGSA-DAI DQP. The functionality

of UnionPartitionsNary is same as the functionality of the binary case, UnionPartitions; elim-

inating outdated tuples from incoming data streams. The difference comes from the number

of inputs a UnionPartitionsNary operator handles.

In the n-ary version, data from n inputs are gathered in a threaded way. For each of the inputs

a separate thread, one of two types; Reader or Transmitter is created. The type of a thread for

a corresponding input is related to the overlapping/disjoint characteristics of the data tuples

received from that input. Reader threads are created for inputs of overlapping data, whereas

Transmitter threads are created for inputs which are disjoint to all other inputs.

Reader threads pull data upon receipt and then send it to the main thread either for locating in a

hash table or discarding from the list of output tuples, according to the timestamp and primary

47

key values of the tuples. Note that, the primary keys are unique throughout the channel, due to

the basic rule of primary keys uniqueness throughout a single table in a database. As a result,

there is a separate hash table for each input stream carrying in overlapping data, in order main

thread not to process a tuple against tuples received from the same input channel and waste

time looking for a match in keys. As in the binary case, BKDR hash function is used in the

formation and querying of these hash tables.

Each Transmitter thread as the name implies, pulls data upon receipt from inputs and sends

data to the parent operator as the output of the UnionPartitionsNary operator. In this way, the

output data can be generated and sent to upper levels without waiting for the full completion

of the execution in the UnionPartitionsNary operator. Since the input data is processed by the

help of threads and hash tables, there is no order of data on the output.

Actually, two different thread sets, Reader (of overlapping inputs) and Transmitter (of dis-

joint) sets are formed. Upon completion of these two thread sets, the hash tables of the

overlapping inputs containing up-to-date tuples are sent as output to the parent operator of the

UnionPartitionsNary operator by projecting tuples to remove unrequested fields (i.e. possibly

columns of timestamp and primary keys) similar to the explained process in the binary case,

UnionPartitions. The idea of forming separate hash tables for each input stream is inspired

from the MJoin algorithm in [70]. However the application order of overlapping hash tables

is not considered, since different from join, UnionPartitions have to keep a tuple until it is

processed by all the overlapping inputs.

48

CHAPTER 5

EXPERIMENTS and EVALUATIONS

5.1 Data Preparation

For the purposes of this thesis, we needed chunks of controlled data that are organized un-

der tables to be partitioned and distributed over different databases located at different sites.

In order to be able to control tuple data (in terms of the number of tuples or number, type

and size of fields etc.); we used DBMonster [71] to produce the required data in a random

manner. DBMonster is a tool that is developed especially to test the performance of database

applications with variable database loads. It also helps in adjusting the database structure and

index usage for better functioning. The file given in Appendix A is used during the generation

of data. Three relations (tables) are produced with rather simple schemas which represent a

company database to indicate the allocation of employees to projects. The schemas are shown

in Tables 5.1, 5.2 and 5.3. In the tables, column types are given with the types in MySQL 1

and primary keys are italized.

After the generation of data, tuples in tables are written to heaps of files (corresponding to

each partition) in the form of SQL statements and databases are created in sites based on the

requirements of test cases that will be mentioned in Section 5.3. Finally, each database corre-

sponding to a partition in sites (i.e. a site may contain more than one database) is loaded with

the generated data using the prepared files and deployed as a DQP resource on to OGSA-DAI

DQP framework.

1 MySQL 5.0.15

49

Table 5.1: Schema for Users Tables

Column Name Column Type
userID bigint(20)
userName varchar(8)
email varchar(50)
timestamp timestamp

Average Row Size (K) 93.03

Table 5.2: Schema for Projects Tables

Column Name Column Type
projectID bigint(20)
description varchar(255)
timestamp timestamp

Average Row Size (K) 190.2

5.2 Test Environment Setup

During the implementation and evaluation phases of this thesis, we made use of the following

resources and software tools.

• Computational Resource: In order to have a realistic (or somewhat close to real) dis-

tributed environment, we facilitate five shared-nothing computers nicknames from T1

to T5 (i.e. to be used throughout this thesis). All the nodes are Intel(R) Xeon(R) CPI

X7350 64 bits, each with a 2.93 GHz CPU, 32 GB of RAM and link speed of 1Gbps.

All data sources are hosted at MySQL databases.

• Auxilary Software Tools: The versions of the following tools are selected according to

Table 5.3: Schema for Allocations Tables

Column Name Column Type
allocationID bigint(20)
userID bigint(20)
projectID bigint(20)
toDate timestamp
timestamp timestamp

Average Row Size (K) 77.0

50

the compatibility with the OGSA-DAI DQP2 framework.

– Globus Toolkit3: Globus Toolkit is an open-source technology for Grid envi-

ronments with software facilities of security, information infrastructure, resource

management, data management, communication, fault detection and portability.

Globus Toolkit is assembled of components that can be used independently or

jointly in developing applications [72]. Actually; the selection of the use of

Globus Toolkit depends on future expectations and studies that can be related to

more management on resources in a grid environment. For this thesis, the WSRF-

Compliant WS Java Container component of Globus Toolkit, Java WSCore, is

enhanced as a container to deploy OGSA-DAI DQP framework and resources.

Java WSCore contains an implementation of Web Services Resource Framework

(WSRF) and Web Service Notification (WSN) specifications. Java WSCore is in-

stalled on all the five nodes. Although this thesis is developed and tested using

Globus Toolkit, it does not use Globus Toolkit specific functions: Therefore the

study can easily be deployed and used with direct Tomcat installations.

– Tomcat4: Apache Tomcat is an open-source implementation for Java Servlet and

JavaServer Pages [73]. This thesis uses Tomcat for deployment of the Globus

Toolkit component, Java WSCore. Since Tomcat is a widely-used web container

for Java-based web-applications, OGSA-DAI DQP system also uses it and in turn

we used it to develop, deploy and use the extension. Tomcat container is installed

on all the five nodes.

– MySQL5: MySQL is an open-source relational database management system run-

ning as a server providing multiple storage engines (e.g. MyISAM, InnoDB),

grouping commit and supporting multi-users [74]. MySQL is used for the man-

agement of databases required for this thesis. MySQL is selected for its ease of

use, non-commercial support and settled development. But it is possible to use

different database management systems if appropriate drivers for JDBC connec-

tions exist. MySQL is installed on all the five nodes. According to the require-

ments of some test cases, a second MySQL DBMS is installed in addition to the

first one.
2 OGSA-DAI DQP 3.2.2
3 Globus Toolkit 4.0.8
4 Apache Tomcat 5.5.26
5 MySQL 5.0.15

51

– Software Client: In order to execute the queries for several times automatically,

an OGSA-DAI DQP software client, DQP Test Manager, is developed. A main

view for DQP Test Manager is given in Figure 5.1. DQP Test Manager allows

users to:

∗ Access and view pre-deployed DQP resources

∗ Execute queries one by one manually

∗ Execute a file of queries with execution properties defined in an XML file

∗ Visualize graphics and execution results related to the execution times of

queries

In order to acquire several measurements on OGSA-DAI DQP extended frame-

work and the newly introduced operator implementations, we required a software

to perform the executions one after another, collect the execution times and visu-

alise the results in a systematic way. In order to achieve this, DQP Test Manager

configured to accept query files in which total number of executions, number of

warm-up executions, graphics to be drawn etc. are defined using an XML schema.

Details for configuration of query execution test files and several other screenshots

are given in Appendix B.

Four of the computational nodes (T1, T2, T4 and T5) are used as database servers and OGSA-

DAI DQP services are located wrapping these databases. The OGSA-DAI DQP services in

these nodes are also used as evaluation services. The fifth node (T3) contains an OGSA-

DAI DQP service with a deployment of the DQP resource to where the queries are posed to

and a client to start the querying process. Several batch files are used in loading databases

and deploying OGSA-DAI DQP services and resources on to Globus Toolkit and Tomcat

containers.

5.3 Experiment Design

The performance of the extension is measured in a number of ways: variance in data size

of inputs, overlapping data proportion of partitions, number of partitions, number of over-

lapping partitions and extension scalability. Each of these five issues is performed as a test

case (experiment) by changing data values and partition configuration in a controlled way.

52

Figure 5.1: DQP Test Manager Main View

For these experiments, different datasets are generated arbitrarily using DBMonster [71] as

mentioned in Section 5.1. Each data set and partition configuration is explained in the related

experiment with details. The experiments are run for about 8-10 times and average execution

times are calculated. The execution time of a single query may deviate 0-6 seconds from

the corresponding average execution time. This deviation is generally very small with low

cardinalities (at level of milliseconds) and increases by the data size due to possible increase

in the rate of data flow over the network. Another issue to note here is that, test cases are

run over a network that is actively in use, i.e. the network rate is changeable. In order to

decrease the negative effect of the network rate in comparisons, the queries for a test case are

53

run successively, at a clear time of day when the network usage is average or low. Due to such

possible network changes, the test cases are to be explored on their own.

5.3.1 Effect of Data Size on Performance

In Figure 5.2, Partitioned-Scan-Query and Union All-Scan-Query are compared to see whether

there is a significant overhead incurred by the UnionPartitions operator. Partitioned-Scan-

Query is executed on partitioned tables using the new operator, and Union All-Scan-Query

is executed on the same partitions using UnionAll operator. The tables of partitions used

in these queries are completely disjoint and distributed to four different physically separated

computational resources. A total of 28 tables are generated for this experiment with names,

users1, users2, users4, users8, users16, users32, users64 where the postfix number in the table

names indicate the number of tuples in a single partition of the table in thousands. That is,

for table with name usersX, four tables are created disjointly with names usersX and tuple

sizes X thousand. So when a query is originated referring to a partitioned table, a total of 4X

thousand tuples are to be processed by the evaluators. The schema of the Users table is given

in Table 5.1.

Partitioned-Scan-Query

SELECT userID, username, email, timestamp FROM AllCompanyUsersX;

Union All-Scan-Query

(((SELECT userID, username, email, timestamp FROM P1_usersX)

UNION ALL

(SELECT userID, username, email, timestamp FROM P2_usersX))

UNION ALL

((SELECT userID, username, email, timestamp FROM P3_usersX)

UNION ALL

(SELECT userID, username, email, timestamp FROM P4_usersX)));

Figure 5.2: Queries Used in Experiment 5.3.1

The average execution times are given in Table 5.4 for exploration. As it can be observed

from Figure 5.3, the response times of both frameworks with and without the extensions are

very close. It is also observed that the overall trend for scalability with data size of both

operators is similar. This is also an indication that for strictly disjoint partitions the new

operator can be a safe replacement for the UnionAll operator, presenting a much simpler

query string as an advantage. But the replacements should be handled with care, since with

54

the increasing number of partitions, UnionPartitions may propose more overhead in building

up binary UnionPartitions trees.

Figure 5.3: Query Execution Results For Experiment 5.3.1

Table 5.4: Execution Times for Experiment 5.3.1

Number of Tuples (x1000)
1 2 4 8 16 32 64

Union All - Scan Query 3.20 4.73 7.13 10.43 19.69 36.94 61.92
Partitioned - Scan-Query 3.46 5.16 7.09 11.74 16.78 39.1 62.26

5.3.2 Effect of Increasing Overlapping Sections Among Partitions

This experiment is carried out to analyze the performance of the new operator with regard

to varying proportions of overlapping data sections in the partitions. To achieve that Scan-

Overlapping-Query given in Table 5.5 is executed several times with increasing overlapping

55

ratios between the partitions.

Table 5.5: Queries Used in Experiments; 5.3.2, 5.3.3 and 5.3.4

Query Name SQL Query Text

Scan-Overlapping-Query
SELECT userID,userName,email,timestamp
FROM CompanyUsersX;

Partitioned-FanIn-Query
SELECT userName,email,timestamp,userID
FROM PartitionFanInTestOvXPart;

Partition-Configuration-Query
SELECT userName,email,timestamp,userID
FROM SDTestSequentialBinXYTuple;

In the query, X stands for the overlapping ratio between the partitions (e.g. for X=25, Compa-

nyUsers25 represents four tables with names users25 on four different resources with overlap-

ping sections of 25 %). The schema of the Users table is given in Table 5.1. The overlapping

ratios between partitions are defined to range from a ratio of 25% overlapping to 100% over-

lapping (fully-replicated) by a step value of 25%. This experiment includes the elimination of

outdated data based on the comparison of the timestamp field in each tuple. Therefore Union

and Union All operators are not alternatives for the UnionPartitions operator because they

do not provide the functionality to handle overlapping partitions. The Union operator would

eliminate the duplicates comparing the whole tuple (based on a hash value calculated using

the whole tuple), whereas Union All operator would keep all the data without any concern for

duplicates.

The results in Figure 5.4 show that; the execution time for the query decreases as the over-

lapping ratios between the partitions increases. This decrease is an expected result regarding

the decreasing number of processed tuples, due to the elimination of outdated tuples by the

UnionPartitions operator, before they are delivered to the next upper operator in the query

plan tree.

5.3.3 Effect of Increasing Operator Fan-In

This test is held in order to check whether the number of partitions of a table effects the per-

formance of the binary UnionPartitions operator. In this test case, the number of records in

56

Figure 5.4: Query Execution Results For Experiment 5.3.2

each partition is adjusted based on the number of partitions participating in the query execu-

tion while the total data requested by the client is kept constant. Partitioned-FanIn-Query,

used in this experiment is given in Table 5.5. The X in the query represents the number of

partitions used in the query e.g PartitionFanInTestOv5Part refers to a table with 5 partitions.

The execution times for queries over 1 to 8 partitions are observed. For this case, 36 tables are

created and distributed to nodes T1, T2, T4 and T5. The number of records in each partition

with change in partition count is given in Table 5.6.

The result of query executions is given in Figure 5.5. It is seen that, as the number of partitions

increases, the execution time for the query also increases upto a point (here, 4 Partitions).

After that, the execution time starts to drop as the number of partitions increases. First of

all, this is is due to the fastly decreasing number of tuples pulled from each partition to keep

the total data size constant. By decreasing the data pulled from each partition, the output

production overhead of UnionPartitions operators in the tree is also decreased, since it waits

57

Table 5.6: Cardinality of Partitions when 50% Overlapping

Partition Count Partition Cardinality
1 163.800
2 109.200
3 81.900
4 65.520
5 54.600
6 46.800
7 40.950
8 36.400

less for the completion of hashing left tuples. Secondly, it is seen that the query plan benefits

from pipelined and independent parallelism more.

5.3.4 Comparison of Binary and Hybrid Trees

This test is held in order to check the effect of locating UnionPartitions operator by Horizon-

talPartitionsOptimiser using binary and hybrid approaches. For this test case, eight partitions

are overlapped as binary. Each partition overlaps with only one other partition; such that 4

different internally overlapping, externally disjoint sets are produced.

The query used for this experiment is given in Table 5.5 with name Partition-Configuration-

Query. The XY in the query represents the number of tuples used in the query e.g SDTest-

SequentialBin40Tuple refers to a table with 8 partitions with 40 thousand tuples each. For

this case, 168 overlapping tables (i.e. 21 tables for each partition) are created and for each of

nodes; T1, T2, T4 and T5, 2 partitions are assigned.

The execution times for queries over 8 partitions with different configurations are observed

and results are given in Figure 5.6. It is observed from the results that the hybrid approach is

slightly superior to the binary approach, about 10 %. But the difference betwen the two seems

to increase with the increases in data size.

58

Figure 5.5: Query Execution Results For Experiment 5.3.3

5.3.5 Extension Scalability

This experiment is performed to find out whether the UnionPartitions operator hinder the

existing scalability level of the OGSA-DAI DQP for more complex and realistic queries in-

volving join operators. Since the UnionPartitions operator can be considered as a replacement

for Union or UnionAll operators, it is expected that the behaviour of the framework will not

change. However, here we present our test results to make sure that the reader is also informed

about the fact that this theoretically expected outcome has been achieved by our implementa-

tion in practice.

The test is carried out by executing the Partitioned-Join-Query given in Figure 5.7. A total of

30 tables are generated for this experiment with names, usersX, projectsX and allocationsX,

where X ∈ {’0’, ’25’, ’50’, ’75’, ’100’}. The postfix number in the table name represents the

overlap ratio of the partitions for this table. Each partition contains 128 thousand tuples. That

is, if the overlap ratio between two partitions is about 25% then, the primary keys of 32000

59

Figure 5.6: Query Execution Results For Experiment 5.3.4

tuples in each of the partitions are common and represent the same real-world object. The

schemas that are common for all user tables, all project tables and all allocation tables used in

this experiment are given in Table 5.7, Table 5.2 and Table 5.3 respectively.

The results of the executed query are given in Figure 5.8. As the results indicate, the execution

Partitioned-Join-Query

SELECT companyUsersX.userID, companyUsersX.userName, companyUsersX.email,

companyUsersX.reminderType , companyUsersX.status,

companyProjectsX.projectID, companyProjectsX.code,

companyProjectsX.description, companyAllocationsX.toDate

FROM companyUsersX,companyProjectsX, companyAllocationsX

WHERE companyUsersX.userID=companyAllocationsX.userID and

companyProjectsX.projectID=companyAllocationsX.projectID;

Figure 5.7: Query Used in Experiment 5.3.5

60

Table 5.7: Updated Schema for Users Tables

Column Name Column Type
userID bigint(20)
userName varchar(8)
email varchar(50)
timestamp timestamp
reminderType bigint(20)
status varchar(150)

Average Row Size (K) 378.6

time for the join query decreases with a comparable trend to that of the previous query that

did not involve a join operator. The slight fluctuation at the second ratio is likely to be caused

by the increased rate of data flow over the network. It is evident that I/O cost is an important

reason of such unexpected distortions. It is also known that the network is one of the primary

costs for the queries in OGSA-DAI DQP because of the overhead of SOAP messages, which

is explained in [12].

61

Figure 5.8: Query Execution Results For Experiment 5.3.5

62

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis targeted the problem of handling cases where a database was distributed to multi-

ple independent administrative domains with the same data content initially (i.e. as replicas),

but where parts of those multiple copies have evolved into overlapping partitions over time

through independent data insertions carried out within each administrative domain.

As a solution, we presented an extension to the well-known data access and integration mid-

dleware, OGSA-DAI DQP, by incorporating the UnionPartitions operator into its algebra in

order to cope with various unual forms of horizontally partitioned databases. The solution

proposed extends OGSA-DAI DQP in two aspects:

1. A new operator type is added to the algebra to handle the specialized union of parti-

tions with different characteristics. The new operator type is implemented and used

by the corresponding new optimizer (HorizontalPartitionsOptimiser) with three differ-

ent approaches; binary, strict n-ary and hybrid. The new operator has the following

functionalities:

• handles horizontally partitioned tables by supporting the user with an abstract

table that stands for whole partitions

• saves the user from writing long query expressions (involving joins and unions)

for partitioned tables distributed over different systems with different databases

• by being associative and commutative, the order of the application of the operator

is not important in terms of the result. However the execution time is possibly

affected.

• gets the latest updated data for the overlapping partitions of the table

63

2. OGSA-DAI DQP Federation Description is extended to include some more metadata

to facilitate successful execution of the newly introduced operator.

The approach presented in the thesis ensures that:

1. the modifications to the framework are done through explicitly specified extension

points (i.e optimisers, activities), using well-defined mechanisms.

2. the extensions are non-disruptive to the internal behavioral characteristics of the frame-

work, so they maintain its scalability level.

3. the extensions preserve the external APIs of OGSA-DAI DQP, so that the standard

OGSA-DAI interaction patterns remain unchanged for external clients.

4. the new integration procedure is fully encapsulated into a new operator; thus the expan-

sion of the integration capabilities is achieved through the extension of the algebra of

OGSA-DAI DQP.

In order to illustrate the capabilities and performance of the extensions, several experiments

are held and the results are reported. These results indicate that the new operator provides a

convenient way of handling the mentioned requirements in regard to overlapping partitions,

exhibiting reasonable performance characteristics.

The drawback of the presented approach is the need for the provision of additional metadata

about the partitioning scheme of the data sources. Considering that this metadata is prepared

once during the initial setup of the data integration environment, we argue that this require-

ment is relatively tolerable. Having said that, since the proposed metadata seeks to indicate

some properties that can change over time (e.g. an overlapping partition may become disjoint)

the need for keeping them up-to-date is an issue.

As future extensions, we aim at addressing these drawbacks and improving the algorithm of

the new operator. First of all, to ensure that the metadata regarding the partition information

is fully exploited, partitioning information and histograms could be produced and updated

periodically in an automatic manner throughout query executions. As such, overlapping ratios

between the partitions can be known beforehand, so that a more efficient algorithm for the

ordering of the binary UnionPartitions operator can be developed. The algorithm then, would

64

consider using the most overlapping partitions (i.e. the partitions that have the highest amount

of total overlapping ratio with the other partitions) in the first place to decrease the number

of tuples flowing up the query processing tree. Clearly, such a capability would eliminate a

part of the drawback stated above, but it requires new extensions to the activity workflows of

OGSA-DAI services.

As a second future extension, the algorithm for the production of the bushy-like UnionPar-

titions operator trees can be improved to use more accurate data such that the output car-

dinalities of UnionPartitions operators can be calculated using several other parameters like

overlapping ratios of inputs rather than only summing up. During the selection of inputs to

a UnionPartitions operator, the decision of low-height trees to low-cardinality trees or vice

versa should be decided based on some other heuristics. For example; rather than always

preferring low-cardinality trees over low-height trees; a threshold determined based on some

experiments can be employed to prefer low-height trees over low-cardinality trees in some

cases.

Finally, since SOAP calls are not that efficient, the approaches here can be tried with better

transfer protocols other than SOAP like in [75].

65

REFERENCES

[1] D. Kossmann, “The state of the art in distributed query processing,” ACM Computing
Surveys (CSUR), vol. 32, no. 4, pp. 422–469, 2000.

[2] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N. Hong, B. Collins, N. Hard-
man, A. Hume, A. Knox, M. Jackson, et al., “The design and implementation of Grid
database services in OGSA-DAI,” Concurrency and Computation: Practice and Expe-
rience, vol. 17, no. 2-4, pp. 357–376, 2005.

[3] OGSA-DQP, “Ogsa-dqp query compiler design internal document.”
http://www.ogsadai.org.uk/documentation/ogsa-dqp_3.2/devdoc/

QueryCompilerDesign.doc, accessed on 01/01/2009.

[4] L. Bellatreche, “Horizontal Data Partitioning: Past, Present and Future,” Handbook of
Research on Innovations in Database Technologies and Applications: Current and Fu-
ture Trends, 2009.

[5] A. Hameurlain, F. Morvan, and M. El Samad, “Large Scale Data Management in
Grid Systems: a Survey,” in IEEE International Conference on Information and
Communication Technologies: from Theory to Applications (ICTTA), Damas - Syrie,
07/04/2008-11/04/2008, (http://www.ieee.org/), p. (electronic medium), IEEE, avril
2008. (Conférencier invité).

[6] S. Gatziu and A. Vavouras, “Data Warehousing: concepts and mechanisms,” Informatik
(Zeitschrift der Schweizerischen Informatikorganisationen) 0, vol. 1, 1999.

[7] G. Wiederhold, “Mediators in the architecture of future information systems,” Com-
puter, vol. 25, no. 3, pp. 38–49, 1992.

[8] Oracle, “Partitioning with oracle database 11g release 2.” http://www.oracle.com/
technology/products/bi/db/11g/pdf/twp_partitioning_11gr2_2009_09.

pdf, accessed on 12/07/2010.

[9] Oracle, “Oracle9i database manageability.” http://www.oracle.com/technology/
products/manageability/database/pdf/Oracle9iManageabilityBWP.pdf,
accessed on 12/07/2010.

[10] C. S. Mullins, “Achieving the five nines of database availability.” http://www.
craigsmullins.com/dbta_038.htm, accessed on 12/07/2010.

[11] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “The physiology of the grid: An
open grid services architecture for distributed systems integration,” in Open Grid Service
Infrastructure WG, Global Grid Forum, vol. 22, pp. 1–5, Edinburgh, 2002.

[12] S. Lynden, A. Mukherjee, A. C. Hume, A. A. A. Fernandes, N. W. Paton, R. Sakel-
lariou, and P. Watson, “The design and implementation of ogsa-dqp: A service-based

66

distributed query processor,” Future Gener. Comput. Syst., vol. 25, no. 3, pp. 224–236,
2009.

[13] M. N. Alpdemir and D. Fitzgerald, “Experience on performance evaluation with ogsa-
dqp,” in In Proceedings of the UK e-Science All Hands Meeting, 2005. CoreGRID TR-
0113 12, 2005.

[14] M. W. Ian Foster, Jens Vöeckler and Y. Zhao, “The virtual data grid: A new model and
architecture for data-intensive collaboration,” in Conference on Innovative Data Systems
Research, 2003.

[15] I. Foster, A. Iamnitchi, M. Ripeanu, A. Chervenak, E. Deelman, C. Kesselman,
W. Hoschek, P. Kunszt, H. Stockinger, K. Stockinger, et al., “Giggle: A framework for
constructing scalable replica location services,” in Conference On High Performance
Networking and Computing, pp. 1–17, IEEE Computer Society Press, 2002.

[16] S. Fiore, A. Negro, S. Vadacca, M. Cafaro, M. Mirto, and G. Aloisio, “Advanced grid
database management with the greic data access service,” in Parallel and Distributed
Processing and Applications, vol. 4742/2007 of Lecture Notes in Computer Science,
(Berlin), pp. 683–694, Springer Berlin / Heidelberg, 2007.

[17] “Globus toolkit software.” http://www.globus.org, accessed on 12/07/2010.

[18] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor - a hunter of idle workstations,”
in Proceedings of the 8th International Conference of Distributed Computing Systems,
vol. 43, pp. 104–111, 1988.

[19] W. Bell, D. Bosio, W. Hoschek, P. Kunszt, G. McCance, and M. Silander, “Project
spitfire-towards grid web service databases,” tech. rep., 2002.

[20] A. Umar, Third Generation Distributed Computing Environments. Nge Solutions, 2004.

[21] G. Graefe, “Query evaluation techniques for large databases,” ACM Computing Surveys,
vol. 25, no. 2, pp. 73–169, 1993.

[22] J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. A. A. Fernandes, and R. Sakellariou,
“Distributed query processing on the grid,” in GRID ’02: Proceedings of the Third Inter-
national Workshop on Grid Computing, (London, UK), pp. 279–290, Springer-Verlag,
2002.

[23] D. Liu and M. Franklin, “GridDB: A data-centric overlay for scientific grids,” 2004.

[24] S. Narayanan, T. Kurc, U. Catalyurek, and J. Saltz, “Database support for data-driven
scientific applications in the grid,” vol. 13, pp. 245–272, 2003.

[25] R. Fomkin and T. Risch, “Framework for querying distributed objects managed by a grid
infrastructure,” in Data Management in Grids, pp. 58–70, Springer-Verlag, 2006.

[26] J. H. Saltz, G. Agrawal, C. Chang, R. Das, G. Edjlali, P. Havlak, Y.-S. Hwang, B. Moon,
R. Ponnusamy, S. D. Sharma, A. Sussman, and M. Uysal, “Programming irregular ap-
plications: Runtime support, compilation and tools,” Advances in Computers, vol. 45,
pp. 105–153, 1997.

[27] SweGrid, “Swegrid - the swedish grid initiative.” http://www.snic.vr.se/
projects/swegrid, accessed on 12/07/2010.

67

[28] NorduGrid, “Nordugrid middleware, the advance resource connector.” http://www.
nordugrid.org/middleware/, accessed on 12/07/2010.

[29] R. Fomkin and T. Risch, “Managing long running queries in Grid environment,” in On
the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops, pp. 99–110,
Springer, 2004.

[30] S. Venugopal, R. Buyya, and K. Ramamohanarao, “A taxonomy of data grids for dis-
tributed data sharing, management, and processing,” ACM Computing Surveys (CSUR),
vol. 38, no. 1, p. 3, 2006.

[31] U. Srivastava, K. Munagala, J. Widom, and R. Motwani, “Query optimization over web
services,” in VLDB ’06: Proceedings of the 32nd international conference on Very large
data bases, pp. 355–366, VLDB Endowment, 2006.

[32] T. Malik, A. S. Szalay, T. Budavari, and A. R. Thakar, “Skyquery: A web service ap-
proach to federate databases,” in Proc. 1st Biennial Conference on Innovative Database
Systems Research (CIDR), 2003.

[33] V. Josifovski, P. Schwarz, L. Haas, and E. Lin, “Garlic: a new flavor of federated query
processing for db2,” in SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD interna-
tional conference on Management of data, (New York, NY, USA), pp. 524–532, ACM,
2002.

[34] S. B. Davidson, J. Crabtree, B. Brunk, J. Schug, V. Tannen, C. Overton, and C. Stoeckert,
“K2kleisli and gus: Experiments in integrated access to genomic data sources,” IBM
Systems Journal, vol. 40, pp. 512–531, 2001.

[35] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, S. Seltzsam, and
K. Stocker, “ObjectGlobe: Ubiquitous query processing on the Internet,” 2001.

[36] OGSA-DAI, “Projects using ogsa-dai.” http://www.ogsadai.org.uk/

applications/index.php, accessed on 12/07/2010.

[37] M. Antonioletti, M. Atkinson, N. Chuehong, A. Hume, M. Jackson, K. Karasavvas,
J. M. Schopf, T. Sugden, and E. Theocharopoulos, “Grid enabling your data resources
with ogsa-dai,” 2007.

[38] M. Alpdemir, A. Mukherjee, A. Gounaris, A. Fernandes, N. Paton, P. Watson, and
J. Smith, “An Experience Report on Designing and Building OGSA-DQP: A Service
Based Distributed Query Processor for the Grid,” 2003.

[39] M. Alpdemir, A. Mukherjee, A. Gounaris, N. Paton, A. Fernandes, R. Sakellariou,
P. Watson, and P. Li, “Using OGSA-DQP to support scientific applications for the grid,”
2005.

[40] M. Alpdemir, A. Mukherjee, A. Gounaris, N. Paton, P. Watson, A. Fernandes, and
D. Fitzgerald, “OGSA-DQP: A service for distributed querying on the grid,” 2004.

[41] “Ogsa-dai dqp.” http://ogsa-dai.sourgeforge.net/documentation/

ogsadai3.2.2/ogsadai3.2.2-gt/DPPart.html, accessed on 01/03/2009.

68

[42] B. Dobrzelecki, “Integrating distributed data sources with ogsa-dai dqp and views.”
EPCC, The University of Edinburgh - UK e-Science, All-Hands Meeting, www.
ogsadai.ork.uk/archieves/presentations/ahm09-dqp-views.pdf, accessed
on 01/08/2010.

[43] R. Schumacher, “Improving database performance with partitioning.” http://dev.
mysql.com/tech-resources/articles/performance-partitioning.html, ac-
cessed on 12/07/2010.

[44] S. Ceri, M. Negri, and G. Pelagatti, “Horizontal data partitioning in database design,”
in SIGMOD ’82: Proceedings of the 1982 ACM SIGMOD International Conference on
Management of Data, (New York, NY, USA), pp. 128–136, ACM, 1982.

[45] O. M. T. and V. P, Principles of Distributed Database Systems: Second Edition. Prentice
Hall, 1999.

[46] S. Agrawal, “Integrating vertical and horizontal partitioning into automated physical
database design,” in In Proceedings of ACM SIGMOD, pp. 359–370, ACM Press, 2004.

[47] L. Bellatreche, K. Boukhalfa, and P. Richard, “Data partitioning in data warehouses:
Hardness study, heuristics and oracle validation,” in Data Warehousing and Knowledge
Discovery, vol. 5182/2008 of Lecture Notes in Computer Science, (Berlin), pp. 87–96,
Springer Berlin / Heidelberg, 2008.

[48] K. Karlapalem, S. B. Navathe, and M. Ammar, “Optimal redesign policies to support
dynamic processing of applications on a distributed relational database system,” Infor-
mation Systems, Vol, vol. 21, pp. 353–367, 1996.

[49] M. Unwalla, “A mixed transaction cost model for coarse grained multi-column partition-
ing in a shared-nothing database machine,” Information Systems, vol. 19, no. 2, p. 193,
1994.

[50] H. Ma, K.-D. Schewe, and Q. Wang, “A heuristic approach to cost-efficient derived
horizontal fragmentation of complex value databases,” in ADC ’07: Proceedings of the
eighteenth conference on Australasian database, (Darlinghurst, Australia, Australia),
pp. 103–111, Australian Computer Society, Inc., 2007.

[51] D.-G. Shin and K. B. Irani, “Fragmenting relations horizontally using a knowledge-
based approach,” IEEE Transactions on Software Engineering, vol. 17, no. 9, pp. 872–
883, 1991.

[52] S. Pramanik and S. Jung, “Description and identification of distributed fragments of
recursive relations,” IEEE Transactions on Knowledge and Data Engineering, vol. 8,
no. 6, pp. 1002–1016, 1996.

[53] G. Eadon, E. I. Chong, S. Shankar, A. Raghavan, J. Srinivasan, and S. Das, “Sup-
porting table partitioning by reference in oracle,” in SIGMOD ’08: Proceedings of the
2008 ACM SIGMOD international conference on Management of data, (New York, NY,
USA), pp. 1111–1122, ACM, 2008.

[54] J. Chidambaram, C. Prabhu, P. Narasimha Rao, R. Wankar, C. Aneesh, and A. Agarwal,
“A methodology for high availability of data for business continuity planning / disaster
recovery in a grid using replication in a distributed database,” in TENCON 2008 - 2008
IEEE Region 10 Conference, pp. 1 –6, 19-21 2008.

69

[55] R. Blankinship, A. R. Hevner, and S. B. Yao, “An iterative method for distributed
database design,” in VLDB ’91: Proceedings of the 17th International Conference on
Very Large Data Bases, (San Francisco, CA, USA), pp. 389–400, Morgan Kaufmann
Publishers Inc., 1991.

[56] T. Wang, B. Yang, A. Huang, Q. Zhang, J. Gao, D. Yang, S. Tang, and J. Niu, “Dynamic
data migration policies for query-intensive distributed data environments,” in Advances
in Data and Web Management, vol. 5446/2009 of Lecture Notes in Computer Science,
pp. 63–75, Springer Berlin / Heidelberg, 2009.

[57] D. J. Reid, “Minimizing the response time of executing a join between fragmented rela-
tions in a distributed database system,” Mathematical and Computer Modelling, vol. 25,
no. 1, pp. 59 – 75, 1997.

[58] A. Segev, “Optimization of join operations in horizontally partitioned database systems,”
ACM Transactions on Database Systems (TODS), vol. 11, no. 1, pp. 48–80, 1986.

[59] B. Gavish and A. Segev, “Set query optimization in distributed database systems,” ACM
Transactions on Database Systems (TODS), vol. 11, no. 3, pp. 265–293, 1986.

[60] Y. Kambayashi and M. Yoshikawa, “Query processing utilizing dependencies and hori-
zontal decomposition,” in SIGMOD ’83: Proceedings of the 1983 ACM SIGMOD inter-
national conference on Management of data, (New York, NY, USA), pp. 55–67, ACM,
1983.

[61] D. Shasha and T. Wang, “Optimizing equijoin queries in distributed databases where
relations are hash partitioned,” ACM Transactions on Database Systems, vol. 16, no. 2,
pp. 279–308, 1991.

[62] V. Ciglan and L. Hluchý, “Content Synchronization in Replicated Grid Database Re-
sources,” in Third International IEEE Conference on Signal-Image Technologies and
Internet-Based System, 2007. SITIS’07, pp. 379–386, 2007.

[63] D. Dullmann, W. Hoschek, J. Jaen-Martinez, A. Samar, B. Segal, H. Stockinger, and
K. Stockinger, “Models for replica synchronisation and consistency in a data grid,” Au-
gust 7-9 2001.

[64] M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and randomized optimization
for the join ordering problem,” The VLDB Journal, vol. 6, no. 3, pp. 191–208, 1997.

[65] Y. E. Ioannidis and Y. C. Kang, “Left-deep vs. bushy trees: an analysis of strategy spaces
and its implications for query optimization,” SIGMOD Record, vol. 20, no. 2, pp. 168–
177, 1991.

[66] G. Moerkotte, Building Query Compilers (Under Construction) September 19,
2006. http://pi3.informatik.uni-mannheim.de/ moer/querycompiler.pdf, accessed on
09/05/2010.

[67] A. Aljanaby, E. Abuelrub, and M. Odeh, “A survey of distributed query optimization,”
The International Arab Journal of Information Technology, vol. 2, no. 1, pp. 48–57,
2005.

[68] W. Scheufele, “Algebraic query optimization in database systems.” PhD Thesis, Univer-
sität Mannheim, 15/02/1999.

70

[69] B. Kernighan and D. Ritchie, The C programming language. 1988.

[70] V. S., N. J., and B. J., “Maximizing the output rate of multi-way join queries over stream-
ing information sources,” in Proceedings of the 29th VLDB Conference, 2003.

[71] “Dbmonster,” http://dbmonster.kernelpanic.pl/, accessed on 01/08/2010.

[72] I. Foster, “Globus toolkit version 4: Software for service-oriented systems,” 2005.

[73] “Apache tomcat,” http://tomcat.apache.org/, accessed on 01/08/2010.

[74] “Mysql,” http://www.mysql.com/, accessed on 01/08/2010.

[75] A. Gounaris, C. Yfoulis, R. Sakellariou, and M. D. Dikaiakos, “A control theoretical
approach to self-optimizing block transfer in web service grids,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 3, no. 2, pp. 1–30, 2008.

71

APPENDIX A

TEST DATA GENERATION FILE

The following file is used, during the generation of test data by ’dbMonster’; ;

<?xml version="1.0"?>

<!DOCTYPE dbmonster-schema PUBLIC "-//kernelpanic.pl//DBMonster Database Schema DTD 1.1//EN"

"http://dbmonster.kernelpanic.pl/dtd/dbmonster-schema-1.1.dtd">

<dbmonster-schema>

<name>Test</name>

<table name="test.users" rows="296132">

<key databaseDefault="true">

<generator type="pl.kernelpanic.dbmonster.generator.MaxKeyGenerator">

<property name="columnName" value="userID"/>

</generator>

</key>

<column name="userName" databaseDefault="false">

<generator type="pl.kernelpanic.dbmonster.generator.StringGenerator">

<property name="allowSpaces" value="true"/>

<property name="excludeChars" value=""/>

<property name="maxLength" value="8"/>

<property name="minLength" value="0"/>

<property name="nulls" value="0"/>

</generator>

</column>

<column name="email" databaseDefault="false">

<generator type="pl.kernelpanic.dbmonster.generator.StringGenerator">

<property name="allowSpaces" value="true"/>

<property name="excludeChars" value=""/>

<property name="maxLength" value="50"/>

<property name="minLength" value="0"/>

<property name="nulls" value="0"/>

</generator>

</column>

<column name="reminderType" databaseDefault="false">

<generator type="pl.kernelpanic.dbmonster.generator.NumberGenerator">

<property name="maxValue" value="127"/>

<property name="minValue" value=""/>

<property name="nulls" value="0"/>

<property name="returnedType" value="integer"/>

<property name="scale" value="0"/>

</generator>

</column>

<column name="timestamp" databaseDefault="false">

<generator type="pl.kernelpanic.dbmonster.generator.DateTimeGenerator">

<property name="endDate" value="2004-01-01 02:00:00.07 +0200"/>

<property name="nulls" value="10"/>

<property name="returnedType" value="timestamp"/>

72

<property name="startDate" value="1999-01-01 02:00:00.0 +0200"/>

</generator>

</column>

</table>

<table name="test.projects" rows="0">

<key databaseDefault="true">

<generator type="pl.kernelpanic.dbmonster.generator.MaxKeyGenerator">

<property name="columnName" value="projectID"/>

</generator>

</key>

<column name="code" databaseDefault="false">

<generator type="pl.kernelpanic.dbmonster.generator.StringGenerator">

<property name="allowSpaces" value="true"/>

<property name="excludeChars" value=""/>

<property name="maxLength" value="20"/>

<property name="minLength" value="0"/>

<property name="nulls" value="0"/>

</generator>

</column>

<column name="description" databaseDefault="false">

<generator type="pl.kernelpanic.dbmonster.generator.StringGenerator">

<property name="allowSpaces" value="true"/>

<property name="excludeChars" value=""/>

<property name="maxLength" value="255"/>

<property name="minLength" value="0"/>

<property name="nulls" value="0"/>

</generator>

</column>

<column name="timestamp" databaseDefault="false">

<generator type="pl.kernelpanic.dbmonster.generator.DateTimeGenerator">

<property name="endDate" value="2006-01-01 02:00:00.07 +0200"/>

<property name="nulls" value="10"/>

<property name="returnedType" value="timestamp"/>

<property name="startDate" value="2004-11-01 02:00:00.0 +0200"/>

</generator>

</column>

</table>

<table name="test.allocations" rows="0">

<key databaseDefault="true">

<generator type="pl.kernelpanic.dbmonster.generator.MaxKeyGenerator">

<property name="columnName" value="allocationID"/>

</generator>

</key>

<column name="userID" databaseDefault="false">

<generator type="pl.kernelpanic.dbmonster.generator.ForeignKeyGenerator">

<property name="columnName" value="userID"/>

<property name="fastMode" value="false"/>

<property name="nulls" value="0"/>

<property name="tableName" value="test.users"/>

</generator>

</column>

<column name="projectID" databaseDefault="false">

<generator type="pl.kernelpanic.dbmonster.generator.ForeignKeyGenerator">

<property name="columnName" value="projectID"/>

<property name="fastMode" value="false"/>

<property name="nulls" value="0"/>

<property name="tableName" value="test.projects"/>

</generator>

</column>

<column name="toDate" databaseDefault="false">

<generator type="pl.kernelpanic.dbmonster.generator.DateTimeGenerator">

<property name="endDate" value="2015-01-17 13:24:13.127 +0200"/>

<property name="nulls" value="10"/>

73

<property name="returnedType" value="timestamp"/>

<property name="startDate" value="2009-02-01 02:00:00.0 +0200"/>

</generator>

</column>

<column name="timestamp" databaseDefault="false">

<generator type="pl.kernelpanic.dbmonster.generator.DateTimeGenerator">

<property name="endDate" value="2009-01-17 13:24:13.127 +0200"/>

<property name="nulls" value="10"/>

<property name="returnedType" value="timestamp"/>

<property name="startDate" value="2006-02-01 02:00:00.0 +0200"/>

</generator>

</column>

</table>

</dbmonster-schema>

74

APPENDIX B

DQP TEST MANAGER

In order to show the capabilities of DQP Test Manager, which is used as a client in testing ex-

tensions performed on OGSA-DAI DQP System, example screenshots are given in following

figures; B.1, B.2 and B.3.

Figure B.1: Example Query Execution

75

Figure B.2: Example Query Execution Result

Figure B.3: Example Query Execution Plan

Although, single query executions over data resources, partitioned or not, is possible via

DQP Test Manager; it is mainly written for executing queries one after another in order that

measurements can be performed automatically. An XML file containing queries and some

other parameters related with the executions is provided to DQP Test Manager. An example

test file is provided in Figure B.4. An overview of the file is as explained. Several graphs

can be defined in a test file. Each graph consists of several query sets which in turn contains

several SQL queries related to an issue to be executed one after another. For each graph, in

addition to providing parameters of id, name, xAxisName, yAxisName and elements of query

76

<graphs>

<graph id ="1" name="Comparision for Union All and UnionPartitions (Binary)

- DisjointScanQuery / Increasing Data Size"

xAxisName="number of Tuples(x1000)" yAxisName="time (seconds)">

<querySet id = "1" name="UnionPartitions(Binary) - DisjointScanQuery" warmUpCount="2">

<query id = "1" execTime="10" sql="SELECT userID, userName, email, timestamp FROM SDTest1Tuple;"/>

<query id = "2" execTime="10" sql="SELECT userID, userName, email, timestamp FROM SDTest2Tuple;"/>

<query id = "3" execTime="10" sql="SELECT userID, userName, email, timestamp FROM SDTest4Tuple;"/>

<query id = "4" execTime="10" sql="SELECT userID, userName, email, timestamp FROM SDTest8Tuple;"/>

<query id = "5" execTime="10" sql="SELECT userID, userName, email, timestamp FROM SDTest16Tuple;"/>

<query id = "6" execTime="10" sql="SELECT userID, userName, email, timestamp FROM SDTest32Tuple;"/>

</querySet>

<querySet id = "2" name="UnionPartitions(Binary) - DisjointScanQuery" warmUpCount="2">

<query id ="1" execTime="10"

sql="(((SELECT userID, userName, email, timestamp FROM userP1_users1)

UNION ALL (SELECT userID, userName, email, timestamp FROM userP2_users1))

UNION ALL ((SELECT userID, userName, email,timestamp FROM userP3_users1)

UNION ALL (SELECT userID, userName, email,timestamp FROM userP4_users1)))"/>

<query id ="2" execTime="10"

sql="(((SELECT userID, userName, email, timestamp FROM userP1_users2)

UNION ALL (SELECT userID, userName, email, timestamp FROM userP2_users2))

UNION ALL ((SELECT userID, userName, email,timestamp FROM userP3_users2)

UNION ALL (SELECT userID, userName, email,timestamp FROM userP4_users2)))"/>

<query id ="3" execTime="10"

sql="(((SELECT userID, userName, email, timestamp FROM userP1_users4)

UNION ALL (SELECT userID, userName, email, timestamp FROM userP2_users4))

UNION ALL ((SELECT userID, userName, email,timestamp FROM userP3_users4)

UNION ALL (SELECT userID, userName, email,timestamp FROM userP4_users4)))"/>

<query id ="4" execTime="10"

sql="(((SELECT userID, userName, email, timestamp FROM userP1_users8)

UNION ALL (SELECT userID, userName, email, timestamp FROM userP2_users8))

UNION ALL ((SELECT userID, userName, email,timestamp FROM userP3_users8)

UNION ALL (SELECT userID, userName, email,timestamp FROM userP4_users8)))"/>

<query id ="5" execTime="10"

sql="(((SELECT userID, userName, email, timestamp FROM userP1_users16)

UNION ALL (SELECT userID, userName, email, timestamp FROM userP2_users16))

UNION ALL ((SELECT userID, userName, email,timestamp FROM userP3_users16)

UNION ALL (SELECT userID, userName, email,timestamp FROM userP4_users16)))"/>

<query id ="6" execTime="10"

sql="(((SELECT userID, userName, email, timestamp FROM userP1_users32)

UNION ALL (SELECT userID, userName, email, timestamp FROM userP2_users32))

UNION ALL ((SELECT userID, userName, email,timestamp FROM userP3_users32)

UNION ALL (SELECT userID, userName, email,timestamp FROM userP4_users32)))"/>

</querySet>

<xAxisAttributes>

<axisVal>1</axisVal>

<axisVal>2</axisVal>

<axisVal>4</axisVal>

<axisVal>8</axisVal>

<axisVal>16</axisVal>

<axisVal>32</axisVal>

</xAxisAttributes>

</graph>

</graphs>

Figure B.4: Example Query Execution Test File

77

sets to be executed; a set of labels to be used for the x-axis should be supported. For each

query set, other than id and name parameters and query elements; a warmUpCount parameter

for specifying the count of execution before noting down the execution times, that is the

count of throw-away executions should be provided. The query is the element where queries

are defined. In addition to id and sql text parameters, each query is also associated with an

execution count (execTime) parameter.

78

