
QUANTUM MONTE CARLO METHODS FOR FERMIONIC SYSTEMS:
BEYOND THE FIXED-NODE APPROXIMATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NAZIM DUGAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

PHYSICS

AUGUST 2010



Approval of the thesis:

QUANTUM MONTE CARLO METHODS FOR FERMIONIC SYSTEMS:

BEYOND THE FIXED-NODE APPROXIMATION

submitted by NAZIM DUGAN in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Physics Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Sinan Bilikmen
Head of Department, Physics

Prof. Dr. Şakir Erkoç
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ABSTRACT

QUANTUM MONTE CARLO METHODS FOR FERMIONIC SYSTEMS:
BEYOND THE FIXED-NODE APPROXIMATION

Dugan, Nazım

Ph.D., Department of Physics

Supervisor : Prof. Dr. Şakir Erkoç

August 2010, 61 pages

Developments are made on the quantum Monte Carlo methods towards increasing the pre-

cision and the stability of the non fixed-node projector calculations of fermions. In the first

part of the developments, the wavefunction correction scheme, which was developed to in-

crease the precision of the diffusion Monte Carlo (DMC) method, is applied to non fixed-node

DMC to increase the precision of such fermion calculations which do not have nodal error.

The benchmark calculations indicate a significant decrease of statistical error due to the us-

age of the correction scheme in such non fixed-node calculations. The second part of the

developments is about the modifications of the wavefunction correction scheme for having

a stable non fixed-node DMC algorithm for fermions. The minus signed walkers of the non

fixed-node calculations are avoided by these modifications in the developed stable algorithm.

However, the accuracy of the method decreases, especially for larger systems, as a result of

the discussed modifications to overcome the sign instability.

Keywords: electronic structure calculations, quantum Monte Carlo, fermions
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ÖZ

FERMİYONİK SİSTEMLER İÇİN KUANTUM MONTE CARLO YÖNTEMLERİ:
SABİT DÜĞÜM YAKINLAŞTIRMASI ÖTESİ

Dugan, Nazım

Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Şakir Erkoç

Ağustos 2010, 61 sayfa

Kuantum Monte Carlo yöntemleri alanında, sabit düğüm yakınlaştırması kullanmadan fer-

miyon hesabı yapan difüzyon Monte Carlo (DMC) yönteminin hassasiyet ve kararlılığını

arttırıcı geliştirmeler yapıldı. Geliştirmelerin ilk bölümünde, difüzyon Monte Carlo yönteminin

hassasiyetini arttırmak için geliştirilmiş olan dalga fonksiyonu düzeltme tekniği, sabit düğümsüz

DMC yöntemine, hassasiyeti arttırma amacı ile uygulandı. Yapılan deneme hesaplarında,

dalga fonksiyonu düzeltme tekniği kullanılması sonucu istatistiksel hatalarda büyük düşüşler

olduğu görüldü. Geliştirmelerin ikinci bölümü, kararlı bir sabit düğümsüz DMC algorit-

ması geliştirmek amacı ile, dalga fonksiyonu düzeltme tekniği üzerinde yapılan bir takım

değişiklikler hakkındadır. Bu kararlı yöntemde, sabit düğümsüz hesaplarda oluşan eksi işaretli

yürüyücüler (walkers), açıklanan değişiklikler sayesinde engellendi. Ancak, bu yöntemle

elde edilen sonuçların doğruluğunun, özellikle büyük sistemlerde, eksi işaret kararsızlığını

engellemek için yapılan değişiklikler yüzünden azaldığı sonucuna ulaşıldı.

Anahtar Kelimeler: elektronik yapı hesapları, kuantum Monte Carlo, fermiyonlar
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CHAPTER 1

INTRODUCTION

Finding the solution of the Schrödinger equation for a physical system is the first step for in-

vestigating various properties of the ground state or any excited states of the system. Current

computational investigations in the nanoscience field demand accurate and large scale appli-

cable techniques for finding especially the ground state solution of the Schrödinger equation

for fermion systems. These mentioned two properties, high accuracy and large scale appli-

cability, are the two major tradeoffs for the electronic structure calculation methods. There

are highly accurate quantum chemistry methods [1, 2] lacking the large scale applicability

property beside linear scaling methods [3, 4] applicable to very large systems which are not

very accurate and not applicable to all kinds of systems. Density functional theory (DFT)

[5, 6] is popular in this field because of its balance between the accuracy and the applicability.

However, its accuracy is not enough for some systems where electron - electron correlation is

significant.

Quantum Monte Carlo (QMC) methods [7, 8] provide more accurate results for such solutions

of the Schrödinger equation and their application range is similar to DFT calculations. QMC

methods are not as popular as DFT since their usage are not as straightforward. They require

preliminary Hartree-Fock [9] or DFT calculations for trial wavefunction generation which

is essential for both the variational and the projector Monte Carlo. The approximate nodal

hypersurface of the trial wavefunction is used in the projector methods for the imposition of

the antisymmetry condition of the fermionic wavefunction. This technique which is called

as the fixed-node approximation [10] is currently a standard tool used in the projector QMC

calculations. Techniques for the imposition of the antisymmetry condition without using the

fixed-node approximation are being developed for many years and they are also the subject of

this thesis work. However, application of these exact methods are limited to systems having
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a few electrons because of the so called fermion sign problem arising from the antisymmetry

condition of the fermionic wavefunction.

Origin of the fermion sign problem will be discussed in the subsequent sections after an intro-

ductory information is given about the Schrödinger equation, statistical sampling techniques

and the QMC methods. The discussion in this thesis work is about the solutions of the time

independent Schrödinger equation to find the energy eigenvalues of the lowest lying anti-

symmetric eigenstates of nanoscale systems. The developments can be easily extended to

calculate expectation values other than the energy. However, extensions towards studying the

excited states or time-dependent solutions are not straightforward and they are not the subject

of this thesis work. A basic quantum mechanics knowledge with Dirac’s bracket notation

[11, 12] is assumed throughout the discussion.

1.1 Schrödinger Equation for Many Electron Systems

Nonrelativistics physics is described by the Schrödinger equation [13] in the atomic and

molecular scale. The evolution of the quantum mechanical wavefunction Ψ(x) is governed

by this complex wave equation:

i~ ∂tΨ(x, t) = − ~
2

2m
∇2Ψ(x, t) + V(x)Ψ(x, t) ΨGS , (1.1)

where x is a vector in the configuration space spanned by the system variables (individual

particle coordinates for the position space wavefunction) and V(x) is the physical potential

defining the system. The Planck’s constant ~ and the electron mass m (also the electron

charge e) will not shown in the equations hereafter since they have the numerical value of 1.0

when the atomic unit system [6] is used. The static wave solutions of the above equation in

which the physical system can be found are called as the eigenstates [Φi(x)] of the system. An

energy eigenvalue (Ei) is defined for the all eigenstates according to the eigenvalue equation

which is also called as the time independent Schrödinger equation:

Ĥ Φi(x) = Ei Φi(x) , (1.2)

where Ĥ is the Hamiltonian of the system. According to the Copenhagen interpretation [14,

2



15] of the quantum theory, the magnitude square of the complex wavefunction Ψ(x) gives the

probability distribution of the possible outcomes of the measurement process.

1.1.1 Expectation value of an observable

Quantum mechanics suggest that the outcome of a measurement process cannot be certainly

known before the measurement when the system is in any state with wavefunction Ψ(x).

However, as stated in the previous subsection, the wavefunction can be used to calculate

the probabilities of the outcomes. The most probable outcome of an observable Ô can be

calculated by the expectation value calculation as:

〈Ô〉 =
〈Ψ(x)|Ô |Ψ(x)〉
〈Ψ(x)|Ψ(x)〉 =

∫
Ψ∗(x)Ô Ψ(x)dx∫
Ψ∗(x)Ψ(x)dx

. (1.3)

The integrals in the above equation are over the range of the vector x and Ψ∗(x) is the complex

conjugate of the wavefunction Ψ(x). The denominator of the expectation value expression is

unity if the wavefunction Ψ(x) is normalized. When the Hamiltonian Ĥ of the system is

taken as the observable, the energy expectation value of the quantum state is calculated using

Eq. 1.3. The expectation value may be calculated for states which are not eigenstates of the

observable Ô. The observables of the quantum mechanics are represented by linear Hermitian

operators and consequently the calculated expectation values and the eigenvalues are real.

1.1.2 Variational principle

Eigenvalues ai of the Hamiltonian operator and many other observables are real numbers, one

of them, the ground state eigenvalue a0 having the lowest value:

a0 < a1 < a2 < a3 . . . (1.4)

The variational principle states that the expectation value of an observable Ô is always greater

than or equal to a0 if Eq. 1.4 holds:

〈Ô〉 =
〈Ψ(x)|Ô |Ψ(x)〉
〈Ψ(x)|Ψ(x)〉 ≥ a0 . (1.5)
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The proof of the above expression, which is given in Appendix A, uses eigenfunction decom-

position of the arbitrary state Ψ(x).

Variational principle is the basis for variational methods in which the ground state of the sys-

tem is found by minimizing the expectation value of an observable which is most of the time

the Hamiltonian of the system. The variational Monte Carlo method, discussed in Section

1.2.3, is such a variational method.

1.1.3 Indistinguishable particles and the antisymmetry condition

Quantum mechanical systems are composed of indistinguishable particles such as electrons.

Indistinguishability states that the probability distribution (the magnitude square of the wave-

function) should be conserved under any particle permutations. As a consequence, the physi-

cal system is not affected from the exchange of any two quantum particles of the same kind:

|Ψ(x1, x2, x3, ..., xn)|2 = |Ψ(x2, x1, x3, ..., xn)|2 , (1.6)

where xn denotes the individual particle coordinates. The indistinguishability property results

in two alternatives for the behavior of the wavefunction Ψ(x) under particle exchanges. The

wavefunction should either be totally conserved or it should be conserved with a change of

sign when any odd numbered indistinguishable particle permutations occur. This symmetry

of nature groups the elementary particles as bosons and fermions, bosons having conserved

(symmetric) wavefunctions and fermions having sign alternating (antisymmetric) wavefunc-

tions under the particle exchanges. The wavefunction being symmetric or antisymmetric de-

termines the statistics of the quantum particles: Bosons obey Bose-Einstein statistics and

fermions obey Fermi-Dirac statistics [16]. The Pauli exclusion principle which forbids any

two identical fermions sharing a quantum state is actually a result of the antisymmetry condi-

tion of the fermionic wavefunction. The connection of these dissociated statistics with particle

spins (discussed in next subsection) is established in the relativistic quantum theory [17].

Eigenstate spectrum of the Schrödinger equation for a specific system covers the all symmetric

and antisymmetric solutions. The ground state solution with the lowest eigenvalue is always

symmetric under particle permutations and therefore it can be occupied by bosons only. If the

particles in the system are fermions such as electrons, the antisymmetric ground state of the

4



system is actually an excited state when the all possible static solutions are considered. This

fact causes a challenge for the projector QMC methods which will be discussed in Section

1.2.7.

1.1.4 Spin and spatial parts of the wavefunction

Elementary particles have an extra degree of freedom in addition to the usual spatial degrees

of freedom. This intrinsic property is called as spin [18] since it has the unit of angular

momentum. The bosons and fermions discussed in the previous subsection differ also about

the spin issue, former having integer spin values (0, 1 ...) and latter having half integer spin

values (1/2, 3/2 ...).

The fermionic wavefunction, for which the antisymmetry condition holds, should involve the

spin variables as well. Spin part of the wavefunction may be symmetric or antisymmetric

under the particle exchanges and the spatial part should be the inverse in order to have an

antisymmetric function in total. The spin and the spatial parts of the wavefunction may be

inseparable in some cases for which the antisymmetry condition of the total wavefunction is

the only criterion.

1.1.5 Electronic structure problem

Solving the time independent Schrödinger equation (Eq. 1.2) for a many electron system is

called in the literature as the electronic structure problem. Ground state or any excited state,

eigenvalue and eigenvector are obtained from the solution of Eq. 1.2. In the scope of this

thesis work, ground state solutions for fermion systems are studied which are indeed excited

states when the all possible solutions are considered as mentioned in Section 1.1.3.

The Hamiltonian function for a molecular system is composed of many terms:

Ĥ = −
∑

k

1
2Mk
∇2

k −
∑

i

1
2
∇2

i +
∑

k1 k2

Zk1Zk2

|Rk1 − Rk2 |
+

∑

i1 i2

1
|ri1 − ri2 |

−
∑

i k

Zk

|Rk − ri| . (1.7)

The index k is over the all nuclei and the index i is over the all electrons in the all terms

of the above expression. The first two terms are the kinetic energy terms of the nuclei and

5



the electrons respectively. The third term is the nucleus - nucleus potential energy term due

to the Coulomb interaction between the nuclei where Zk denote the nuclear charges and Rk

denote the position vectors of the nuclei. The fourth term is the equivalent potential energy

term for the Coulomb interaction between the electrons, ri being the position vectors of the

electrons. The last term is the potential energy term for the electron - nucleus interactions.

The summations in the all potential energy terms go over the all corresponding particle pairs

included in each term.

The above expression for the Hamiltonian should be substituted in Eq. 1.2 to find the solution

for the desired state. However, the exact solution of the electronic structure problem can be

found only for a few simple systems such as the hydrogen atom which has only one electron

and one nucleus. Therefore, some approximations should be made to reduce the complexity

of the problem.

The Born-Oppenheimer approximation [19] simplifies the Hamiltonian expression given in

Eq. 1.7 using the fact that the nuclear motions are very slow compared to the electron motions.

The nuclear motions are totally ignored in this approximation without losing much from the

accuracy for most of the condensed matter systems. The first term of Eq. 1.7 vanishes in

such a case and the third term becomes constant which can also be taken out in the solution

process. The Hamiltonian with such reductions is called as the electronic Hamiltonian:

Ĥe = −
∑

i

1
2
∇2

i +
∑

i1 i2

1
|ri1 − ri2 |

−
∑

i k

Zk

|Rk − ri| , (1.8)

for which the nuclear positions Rk are included as parameters in the last term which is treated

as an external potential for the electrons of the system. When the Born-Oppenheimer approx-

imation is facilitated, the electronic structure problem simplifies to the solution of Eq. 1.2

with the substitution of Eq. 1.8 for the Hamiltonian function. The nuclear positions Rk are

taken as variational parameters in the geometry optimization type calculations in which the

calculated eigenvalue result is minimized by varying the parameters Rk.

Analytical solutions of Eq. 1.2 is not possible for many electron quantum systems and thus

numerical techniques are commonly used to find the solution. A natural attempt for numer-

ically solving such an eigenvalue equation would be trying to diagonalize the Hamiltonian

operator after calculating the matrix elements using some basis functions. However, since
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the wavefunction is most of the time not separable into individual particle wavefunctions, the

Hamiltonian operator of the composite system is a higher dimensional object for which an

exact diagonalization procedure is not available. In the Hartree-Fock [6, 9] type approximate

methods, the wavefunction is assumed to be separable and Eq. 1.2 is decomposed into single

particle equations to simplify the problem.

An alternative technique for the solution of the electronic structure problem is calculating the

time evolution of an arbitrary initial wavefunction according to the time dependent Schrödinger

equation given in Eq. 1.1. Since the long time evolution process would yield the ground state

solution of the quantum system, the ground state eigenvalue and eigenstate can be calculated

using such an evolution. This technique can also be used for finding the solution for the

ground state of the fermion systems or for any other excited states if the symmetry of the

wavefunction for the desired state can be imposed on the time evolution process. The time

dependent Schrödinger equation is transformed into an integral equation for finding the time

evolution. However, calculations of the encountered integrals are very time consuming with

grid techniques since the dimensionality of the integrals are very high [20]. Statistical sam-

pling techniques reduce the computation times of such higher dimensional integrals many

orders of magnitude. The diffusion Monte Carlo method [7, 8, 21], which is the main subject

of this thesis work, is a genius statistical technique for finding the ground state eigenvalue

using an evolution in imaginary time. Quantum Monte Carlo methods, using statistical sam-

pling techniques for the solution of the electronic structure problem, will be discussed in the

next section with a special emphasis on the diffusion Monte Carlo method.

1.2 Quantum Monte Carlo

Investigations of the electronic structure properties of quantum many-body systems require

calculations along the multi-dimensional configuration spaces because of the inseparable

wavefunctions inherent to the quantum mechanical systems as discussed in the previous sec-

tion. Statistical sampling techniques are very useful for such investigations since a direct

calculation using the grid techniques requires exponential increase in the computation time

with increasing number of particles due to the multi-dimensional nature of the problem. An

historical account of the usage of the statistical techniques for this purpose is given in the

article of Metropolis [22] who is among the developers of the idea in the World War II years.

7



QMC [7, 8, 23, 24, 20, 25, 26] is a generic name for a variety of methods relying on the

statistical sampling of the wavefunction to overcome the exponential scaling problem in the

electronic structure calculations. Reviews of major QMC related articles in the literature are

given in the 2007 year book of Anderson[27]. Variational Monte Carlo (VMC) [7, 8, 28, 29],

Diffusion Monte Carlo (DMC) [7, 8, 21, 30], Green’s function Monte Carlo (GFMC) [7, 31]

and Path integral Monte Carlo (PIMC) [26, 32] are major QMC methods used for electronic

structure calculations. The common methods, VMC and DMC will be reviewed in the sub-

sequent sections after introductory information about the sampling techniques is given. The

DMC method will be discussed more broadly since the developments in this thesis work are

about this projector method.

1.2.1 Statistical sampling and the Metropolis algorithm

Selecting some representative points from a large population and generalizing the sample

calculations for the all population is called sampling. Random walk [33, 34] is a widely used

sampling technique and it is the basis for all QMC methods. This statistical technique is very

useful for calculations involving multi-dimensional functions for which direct calculation is

usually very exhaustive in terms of the computation effort. The Metropolis algorithm [7, 8,

33, 34, 35] is used for efficient samplings of arbitrary complex distribution functions. The

advantage of the Metropolis algorithm is that the normalization of the distribution D(x) is not

have to be known for the sampling process. It generates sample points by using a random walk

process according to a simple distribution T (x) such as uniform or Gaussian distributions.

The random walk steps are accepted or rejected according to a probability function calculated

using the two points, before and after the random walk step:

P(x→ x′) =
T (x← x′)D(x′)
T (x→ x′)D(x)

, (1.9)

where T (x→ x′) is the transition probability from the point x to another point x′ in the config-

uration space. The acceptance probability is taken as unity if the numerical value of the above

expression for the probability exceeds 1.0. When a symmetric function, such as a uniform or

a gaussian function, is used for the distribution T (x), the transition probabilities T (x → x′)

and T (x ← x′) become equal to each other and the probability expression simplifies to the

fraction D(x′)/D(x). Some number of initial walk steps depending on the step size should
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be ignored if the initial point is chosen randomly because of the possibility that the initial

points may be generated in a very low probability region of the configuration space. After

these thermalization steps the generated points are expected to be distributed according to the

distribution D(x).

1.2.2 Monte Carlo integration

Evaluation of the multi-dimensional integrals is a common application of the statistical sam-

pling technique described in the previous subsection. The Monte Carlo integration method

[33, 34] relies on the separation of the integrand in two parts:

I =

∫

Ω

D(x)R(x)dx , (1.10)

D(x) being a normalized distribution function defined in the integration interval Ω and R(x)

is the remaining part of the integrand. D(x) is sampled using the Metropolis algorithm and

the numerical value of the integral is found with a certain statistical error by calculating and

summing the values of R(x) at N points generated according to the distribution D(x), with an

overall division factor of N:

I =
1
N

N∑

i=1

R(xi) . (1.11)

The statistical error in the calculated result is inversely proportional to
√

N. Therefore the

result can be found with desired precision by increasing the number of sample points N. The

Monte Carlo integration technique is advantageous compared to deterministic grid techniques

for configuration spaces having dimensionality four or larger [34].

1.2.3 Variational Monte Carlo

VMC [7, 8, 28, 29] is a direct application of the Monte Carlo integration technique. It facil-

itates the variational principle (Section 1.1.2) which states that the energy expectation value

computed from an arbitrary trial wavefunction ΨT (x) is always greater than or equal to the

ground state eigenvalue E0:
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〈E〉 =
〈ΨT (x)|Ĥe|ΨT (x)〉
〈ΨT (x)|ΨT (x)〉 ≥ E0 . (1.12)

In the VMC method, the parameters of the trial wavefunction are optimized for finding the

ground state eigenstate and eigenvalue of the quantum system by a minimization of the energy

expectation value calculated using the Monte Carlo integration. The integrand is separated in

two parts as follows:

〈E〉 =

∫
Ψ∗T (x)Ĥe ΨT (x)dx∫

Ψ∗T (x) ΨT (x)dx
=

∫
|ΨT (x)|2[ΨT (x)−1Ĥe ΨT (x)]dx∫

|ΨT (x)|2dx
, (1.13)

where |ΨT (x)|2/
∫
|ΨT (x)|2dx is chosen as the positive definite probability distribution D(x),

according to which the sample points are generated. The remaining part of the integrand is

identified as R(x) and the integration is carried out according to the formula described in Eq.

1.11.

In order to increase the efficiency of the method the optimization can be carried out by the

minimization of the variance of the local energy:

EL(x) = ΨT (x)−1Ĥe ΨT (x) , (1.14)

for which the variational principle also holds. The global minimum value of the EL variance

is a known value (zero) as opposed to the global minimum of the energy expectation value,

making the variance optimization more advantageous. In addition, the variance optimiza-

tion is usually done with less number of iterations compared to the energy expectation value

optimization.

If the minimization of the energy or EL variance is carried out using a local optimization

routine such as the Newton’s method or conjugate gradients [36], the optimized parameter

set would most probably represent a local minimum, reducing the quality of the obtained

trial wavefunction. Therefore, global optimization procedures such as simulated annealing

[37] or genetic algorithms [38] should be facilitated in the VMC optimization of the trial

wavefunction.

VMC is most of the time used for wavefunction optimization before a DMC calculation [30].
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However, it is also used standalone to calculate the ground state properties of various quan-

tum systems [29] . When the fermions are studied with VMC, the antisymmetry condition

should be imposed on the trial wavefunction and this condition should be preserved during

the parameter optimization procedure. Slater determinants [39] are usually preferred for the

imposition of the fermion antisymmetry in the trial wavefunctions which are discussed in

Section 1.4.

1.2.4 Diffusion process as random walk

The diffusion equation:

∂t f (x, t) = κ∇2 f (x, t) , (1.15)

describes the time evolution of the density function f (x, t), κ being a real constant. The

meaning of Eq. 1.15 can be clarified using a model problem in which an ensemble of hard

spheres moving on straight lines with constant velocities in empty space. Masses, radii and

speeds of the all spheres are taken as equal to each other for convenience. Each hard sphere

has a certain position xi and velocity vector vi at t = 0 instance. These hard spheres may

encounter during their motion and their velocity vectors change direction in these particle

collisions according to the momentum conservation rule. It would be very time consuming

to calculate the positions and velocities of the spheres at some later time t f because of the

collisions. However, if we are just concerned with the density function of the spheres at

a specific instance we can use Eq. 1.15 since the above described motion of spheres is a

diffusion process.

Finding the exact solution of Eq. 1.15 for an arbitrary initial density function f (x, 0) is mostly

very challenging. However, Eq. 1.15 can be solved in a simpler way with certain statistical

error using the stochastic process of random walk in which the spheres move randomly ac-

cording to a Gaussian distribution function without colliding each other. This random motion

is usually implemented by random walk steps whose direction are arbitrary and step sizes are

chosen randomly according to a Gaussian distribution function. The connection between the

Gaussian random walk and the diffusion equation is better observed if Eq. 1.15 is converted

to an integral equation [34]. The DMC method discussed in Section 1.2.5 is based on this

11



stochastic solution of the diffusion equation.

1.2.5 Diffusion Monte Carlo

The projector QMC methods [8, 23, 34, 40] find the ground state of the Schrödinger equation

by time evolving a starting wavefunction. The most common projector method DMC [7, 8,

21, 30] applies an evolution in imaginary time using a propagator valid for short times. The

DMC method relies on the fact that the form of the Schrödinger equation in imaginary time

(Wick rotation of time: τ = it) being a diffusion equation with a source term:

∂τΨ(x, τ) =
1
2
∇2Ψ(x, τ) − [V(x) − ER] Ψ(x, τ) , (1.16)

where ER, the reference energy, is an energy shift whose effect will be clarified below. Solu-

tion of the above equation can be written in terms of the eigenfunctions Φn as,

Ψ(x, τ) =

∞∑

n=0

cnΦn e−(En−ER)τ , (1.17)

where En’s are the corresponding eigenvalues and cn denote the overlap parameters:

cn = 〈Φn|Ψ(x, τ)〉 . (1.18)

In the long τ limit, the exponential factor causes the excited state components to die out faster

than the ground state component whose eigenvalue E0 is lower than the excited state eigen-

values. Consequently, the wavefunction becomes dominated by the ground state component

when the wavefunction is evolved sufficiently long in the imaginary time.

For short imaginary time intervals ∆τ, the evolution of the wavefunction can be calculated as,

Ψ(x, τ0 + ∆τ) =

∫
dx P(x, x0) W(x) Ψ(x0, τ0) , (1.19)

where the kinetic energy related term P is the diffusion kernel:
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P(x, x0) =

( 1
2π∆τ

)3N/2
exp

(
− (x − x0)2

2∆τ

)
, (1.20)

and the source related W term is defined as,

W(x) = exp
(
− [V(x) − ER]∆τ

)
. (1.21)

In the DMC method, the short time propagation of the wavefunction is iterated for a suffi-

ciently long time in order to find the ground state of the system. A starting wavefunction is

sampled with a certain number of points (also called as walkers) in the configuration space. In

each iteration, all walkers are subjected to a Gaussian random walk step due to the diffusion

kernel P as,

x′i = xi + ρi , (1.22)

where xi’s are the walker components in the configuration space and ρi’s are random numbers

chosen from a Gaussian distribution with mean zero and variance
√

∆τ . The walkers are also

subjected to a branching process due to the W term which can be approximated in the small

∆τ limit as

W(x) = 1 − [V(x) − ER]∆τ . (1.23)

Walker weights are multiplied by (W(x)+u), u being a uniform random number between zero

and unity. Alternatively, the walkers may be replicated by n walkers using the same criterion

as,

n = int(W(x) + u) . (1.24)

Replication process enables a more stable algorithm compared to the weight multiplication

which results in huge differences between walker weights. These two alternatives may be used

together in which walker weights are modified in a certain range and the walkers replicate or

die when their weights get out of this chosen range. An upper limit on the factor (W(x)+u) or
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on the replication number n would avoid instabilities especially in the beginning of the DMC

run. An illustration of the imaginary time evolution including the diffusion and the branching

processes are given in Figure 1.1 [8].

Figure 1.1: Illustration of the imaginary time evolution in DMC method. Adapted from [8].

Total number of walkers, which determines the normalization of the wavefunction, is altered

as a result of the branching process. The reference energy ER which is applied as an energy

shift in the imaginary time Schrödinger equation (Eq. 1.16) is used to satisfy the normalization

condition of the wavefunction. Numerical value of ER is modified as,

ER = 〈V〉 + α

∆τ

(
1 − N

N0

)
, (1.25)

in order to adjust the rate of the branching process in a way to keep the total number of walk-

ers constant. N and N0 are the current and desired number of walkers respectively and α is

a parameter determining the strength of the adjustments. The walker potential energy aver-

age 〈V〉 corresponds to the energy expectation value calculated from the walker distribution

Ψ(x, τ). This correspondence is seen by the integration of the eigenvalue equation (Eq. 1.2)

over the whole configuration space:

E
∫

Ψ(x, τ)dx =
∫

Ĥe Ψ(x, τ)dx

= −1
2

∫
∂Ω
∇Ψ(x, τ).dS +

∫
V(x)Ψ(x, τ)dx ,

(1.26)
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where divergence theorem is used in the first term of the second line. This term is about the

walker flow at the boundaries and it vanishes since the solution is carried out in the whole

configuration space. Therefore, the energy expectation value becomes:

E =

∫
V(x)Ψ(x, τ)dx∫

Ψ(x, τ)dx
= 〈V〉 . (1.27)

The energy expectation value calculation described above is valid only when the walker dis-

tribution represents an eigenvalue of the system and thus the variational principle is not valid.

However, absence of the variational principle does not pose a problem for the described pure

DMC procedure since the walker distribution is shown to evolve through the ground state

eigenstate in Eq. 1.17. A time average of the walker potential energy averages should be

taken after a sufficiently long thermalization period in order to compute the ground state

eigenvalue of the system.

In the DMC method the wavefunction of the quantum system is assumed to be a real valued

function even though it is in general complex valued. This assumption is valid for systems

investigated in the condensed matter area having time reversal symmetry [8] since the wave-

function for such systems can be written as a real valued function. Generalization of the DMC

method for treating complex wavefunctions is also possible [41].

The time evolution of the wavefunction in the DMC method is for the spatial part of the

wavefunction only. The effect of the spin variables should be included by some other means.

The fermion sign problem which will be discussed in Section 1.2.7 is about the treatment of

the spin variables for fermions.

1.2.6 Importance sampling DMC

Efficiency of the DMC method can be improved by the application of the importance sampling

transformation [7, 8, 42] on Eq. 1.1 via multiplication by a trial wavefunction ΨT (x):

ΨT (x) ∂τΨ(x, τ) =
1
2

ΨT (x)∇2Ψ(x, τ) − [V(x) − ER] Ψ(x, τ) ΨT (x) . (1.28)

Above equation can be organized as follows using the definition f (x, τ) = Ψ(x, τ) ΨT (x)
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together with the definitions of the local energy (Eq. 1.14) and the drift velocity vD(x) =

ΨT (x)−1∇ ΨT (x):

∂τ f (x, τ) =
1
2
∇2 f (x, τ) − ∇.[vD(x) f (x, τ)] − [EL(x) − ER] f (x, τ) . (1.29)

The diffusion kernel (Eq. 1.20) and the branching kernel (Eq. 1.21) should be modified as the

following for the importance sampling DMC simulation:

P(x, x0) =

( 1
2π∆τ

)3N/2
exp

(
− [x − x0 − ∆τ vD(x0)]2

2∆τ

)
, (1.30)

W(x) = exp
(
− [EL(x) − ER]∆τ

)
. (1.31)

For the P(x, x0) part, a Gaussian random walk as described in Eq. 1.22 is applied together

with a drift motion according to the vector ∆τ vD(x0). The DMC branching process described

in Section 1.2.5 due to the W(x) term is carried out wrt the local energy EL instead of the

potential energy function V .

The energy expectation value for the importance sampling DMC is calculated using the fact

that the walker distribution in this case converges to the mixed state ΨGS (x) ΨT (x), ΨGS (x)

being the ground state of the studied system. The ground state energy is calculated using the

mixed estimator [8]:

〈E〉 =
〈Ψ0(x)|Ĥe|ΨT (x)〉
〈Ψ0(x)|ΨT (x)〉 , (1.32)

which can be written in terms of the function f (x, τ) and the local energy EL(x) as:

〈E〉 = lim
τ→∞

∫
f (x, τ)EL(x)dx∫

f (x, τ)dx
. (1.33)

This expression for the energy is in a form suitable for Monte Carlo integration described in

Section 1.2.2 and it can be calculated using the walker distribution f (x, τ) as:
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〈E〉 =
1
N

∑

n

EL(xn) , (1.34)

where the sum is over the all walkers of total number N. The above sum should be time aver-

aged after a thermalization period which is necessary for the walker distribution’s convergence

to the mixed state ΨGS (x) ΨT (x).

The importance sampling transformation replaces the potential energy function V with the lo-

cal energy EL in the branching and the energy calculations of DMC. Usage of the local energy

in these processes is very advantageous compared to the potential energy function which has

large fluctuations and divergences. The fluctuation amount in EL depends on the quality of the

trial wavefunction ΨT (x) and it is several orders of magnitude less than the fluctuation amount

of the potential energy function when the trial wavefunction is not extremely bad. Therefore

the importance sampling transformation reduces the statistical error of the DMC method sev-

eral times and enables faster computations of large systems. Fermion trial wavefunctions used

in the QMC computations are discussed in Section 1.4.

1.2.7 Fermion sign problem (FSP) in DMC

The DMC method described in the previous section, in its pure form, cannot be used for

fermions since the lowest lying eigenstate of the Schrödinger equation is always symmet-

ric under identical particle permutations, describing boson statistics. The walker distribution

tends to the symmetric bosonic ground state having the lowest energy eigenvalue in the imag-

inary time evolution because of the exponential term in the Eq. 1.17:

Ψ(x, τ) =

∞∑

n=0

cnΦn e−(En−ER)τ . (1.35)

Consequently, a symmetric noise in the walker distribution arises and increases exponentially

fast even if the initial walker distribution does not have a symmetric component [40, 43]. The

DMC reference energy may be used to ensure the existence of a certain antisymmetric com-

ponent, causing an exponential increase in the total number of walkers which is not feasible

in terms of the computational effort. The exponential decrease of the signal to noise ratio

problem is still not resolved and the method is unstable.
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However, as stated in Section 1.1.4, the wavefunction is composed of spin and spatial parts

and the problem for fermions does not occur if the spin part of the wavefunction is fully

antisymmetric in which case the spatial part is symmetric, allowing a straight forward DMC

calculation. Unfortunately the ground states of the molecular systems have antisymmetric

spatial parts except a few simple cases such as the helium atom.

Some methods have been suggested for fermion systems having FSP in the last couple of

decades to overcome the exponential noise increase problem. However, no exact solution

of FSP could be developed and also NP Hardness of the problem was suggested [44]. An

approximate technique, called as the fixed-node approximation [10], is widely used for the

QMC applications involving more than a few fermions because of the absence of an exact

solution of FSP. This approximate technique and suggested exact methods will be discussed

in the next subsection.

1.2.8 Fixed-node approximation

Ground state of the Schrödinger equation for any fermion system has a nodal surface sepa-

rating positive and negative valued wavefunction regions as opposed to the bosonic ground

state which does not alternate sign. This nodal surface is a d×n−1 dimensional hypersurface

[45, 46] in the d × n dimensional configuration space where d and n denote the number of

spatial dimensions and the number of identical particles respectively. In the fixed-node DMC

[7, 8, 10], the nodal surface of the fermionic ground state wavefunction is determined by a

preliminary calculation and used as the boundary condition in the DMC computation. The

computation is carried out in a constant sign wavefunction region and the outgoing walkers

are killed or avoided in order to have a zero valued wavefunction on the nodal surface. The

fixed-node technique is in principle exact when the true nodal surface is known. However,

there is no general procedure for the determination of the d × n − 1 dimensional nodal hyper-

surface and thus an approximate nodal surface is used for which the calculated DMC result

has certain systematic error.

When the fixed-node technique is used in the pure DMC without using the importance sam-

pling transformation, the walkers that pass out of the nodal region should be killed in order to

keep the walkers inside. This procedure causes a small bias in the population control mech-

anism using the reference energy and also in the calculated expectation value result. In the
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importance sampling DMC this problem is avoided automatically to a great extent. In this

case, the drift velocity directs the walkers to the regions where the trial wavefunction has

large values and it pushes the walkers away from the nodal surface where the trial wavefunc-

tion vanishes. Therefore, the walkers are ideally trapped in the nodal region automatically.

However, a small amount of walkers may still go out because of the discretized time steps

used in the DMC calculations. Killing these outgoing walkers causes a small bias also for this

case and a better procedure to overcome this problem is to reject the walker moves that pass

through the nodal surface.

In the work of Manten and Luchow [47], the accuary of the fixed-node DMC with Hartree-

Fock trial wavefunctions is compared with coupled cluster calculations. The accuracies of

the two methods are found to be approximately same in this comparison. The fixed-node

approximation is currently a standard tool used in the QMC calculations of relatively larger

systems [30, 48, 49, 50, 51, 52]. Publicly available QMC codes such as CASINO [53] and

ZORI [54] facilitate this technique for making calculations on large molecular systems.

1.3 DMC Beyond the Fixed-node Approximation

The fixed-node DMC, described in the previous section, is a highly accurate tool for elec-

tronic structure calculations and it is widely used in nano scale applications demanding high

accuracy. However, the fixed-node technique is not exact because of the approximate nodal

surface of the trial wavefunction used for imposing the antisymmetry constraint. Solutions of

the node problem in the DMC method without using the fixed-node approximation are being

searched for many decades. Techniques and strategies beyond the fixed-node approximation

will be discussed below as separate titles.

1.3.1 Released-node technique

The released-node technique [55] is the first step towards an exact DMC method in which the

walkers are allowed to pass through the nodal surface and they get plus and minus signs as a

natural consequence of the sign alternating wavefunction [56]. Walker signs change according

to the sign of the trial wavefunction and minus signed walkers give negative weights in the

energy calculation. The wavefunction Ψ in the released-node technique is represented by the
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difference of two positive functions as:

Ψ = Ψ+ − Ψ− , (1.36)

where Ψ+ and Ψ− are sampled by plus and minus signed walkers respectively.

This basic extension of the fixed-node approximation is not stable since the walker distribu-

tion prefers the bosonic ground state instead of the desired antisymmetric function. The DMC

reference energy ER may be used to stabilize the difference of the number of plus and minus

signed walkers in order to avoid the diminishing of the antisymmetric contribution. However,

the plus and minus signed walker populations constantly increase in this case and these two

walker populations separately go to the bosonic ground state in the long τ limit. Alterna-

tively, the total population may be kept constant in which case the antisymmetric component

vanishes completely in the long run.

The fermionic ground state energy can still be extracted if a high quality trial wavefunction

is available. The plus and minus signed walker distributions are initialized in two different

nodal regions according to the trial wavefunction and the released-node technique is applied

with this initial configuration. The expectation value is calculated from the antisymmetric

component before it becomes insignificant beside the noise of the symmetric ground state

component. This technique, also called as transient estimate, is widely used to improve the

accuracy following a fixed-node DMC calculation. Some works that used the transient es-

timate method to calculate various properties of small systems are given in the references

[57, 58, 59, 60, 61, 62]. However, applicability of this method is limited because of the

instability inherit in its methodology.

1.3.2 Plus minus cancellation methods

A strategy to avoid the instability problem encountered in the released-node technique is de-

veloped by Arnow et al. [56] in which opposite signed walkers cancel each other when they

encounter in the random walk process [63, 64, 65]. The cancellation process does not cause

a biased expectation value result since the average future contribution of the two opposite

signed walkers vanishes after they share the same position. In practice, two walkers never

share the same position exactly and thus walkers in a close proximity cancel each other bring-
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ing some bias to the energy expectation value. In this way the cancellation process can be

used to stabilize the numbers of plus and minus signed walkers when the reference energy

is used to preserve a constant difference between the two population sizes. This strategy al-

lows stable and almost exact DMC calculations for small fermion systems. However, the

cancellation strategy does not work for systems including more than a few identical fermions

because of the increase in the dimensionality of the configuration space for which the walker

encounter rate is very low due to the sparsity of the walkers. The proximity threshold should

be increased very much for such higher dimensional configuration spaces to have an effective

cancellation process, bringing huge systematic error to the expectation value result. In or-

der to avoid the systematic error, the number of walkers should increase exponentially as the

number of configuration space dimension (number of identical particles) increases linearly.

This exponential scaling increase of the number of walkers and the computational effort may

be originating from the suggested NP Hard nature of the fermion sign problem [44].

1.3.3 Correlated walk of opposite signed walkers

The cancellations of opposite signed walkers described in the previous subsection can be

carried out in a more exact and efficient way by correlating the diffusion process of plus and

minus signed walkers [66, 67]. The diffusion process in this technique is carried out using

pairs of walkers composed of one plus and one minus signed walker and the Gaussian walk

vector of one member of the pair is obtained by reflecting the other member’s vector in the

perpendicular bisector of x1 − x2, the vector connecting the two walkers. In this way, the

random walk process for the paired walkers becomes equivalent to a 1D random walk and

their encounter probability increases several times depending on the dimensionality of the

configuration space [43].

Another advantage of the correlated walk process is that it allows exact cancellation of op-

posite signed walkers without need for a proximity threshold. The Gaussian random walk

vectors of the pair walkers coincide easily in the correlated walk case and this coincidence

is taken as the condition for the cancellation. There still comes a small bias because of the

discrete time steps but it can be made arbitrarily small by lowering the DMC time step value.
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1.3.4 Non-symmetric guiding functions and the fermion Monte Carlo

An enhancement on the correlated walk process described in the previous subsection was

developed by Kalos and Pederiva [67], using non-symmetric guiding functions in the impor-

tance sampling DMC. In this technique which is called as the fermion Monte Carlo (FMC),

two guiding function are used for the plus and the minus signed walkers separately for the

importance sampling process. These guiding functions are composed of one symmetric and

one antisymmetric function which are defined as:

Ψ±G(x) =

√
Ψ2

S (x) + c2Ψ2
A(x) ± cΨA(x) , (1.37)

where ΨS (x) and ΨA(x) are the symmetric and the antisymmetric functions respectively and

c is the mixing coefficient. When the importance sampling is applied with such different

guiding functions for the two walker populations, the cancellation rate and the stability of the

non fixed-node DMC can be increased. However, it was proven that the FMC algorithm has

certain population control bias due to the usage of the non symmetric guiding functions and

therefore it loses the exactness for increasing the stability [43]. Therefore, the fermion sign

problem is still unresolved and application of the exact cancellation methods to the relatively

large systems is not possible.

1.3.5 Using permutation symemtry

Quantum mechanical wavefunction of the identical particles repeats a pattern exactly or with

a sign inversion as discussed in Section 1.1.3. This property of the permutation symmetry

can be used to shrink the configuration space volume several times, increasing the encounter

rate of the opposite signed walkers. In this technique, the DMC computation is carried out

in a single permutation cell which is the repeating unit cell of the quantum mechanical wave-

function [63, 68]. The outgoing walkers are taken back to inside by the application of the

necessary particle permutations. This boundary condition as permuting back the outgoing

walkers represents a situation where the wavefunction values at the two sides of the bound-

ary are the same and therefore it is suitable for the symmetric boson wavefunctions. For the

fermion case, a sign inversion of the wavefunction occurs when the permutation cell boundary

is passed over and the appropriate action for the outgoing walker is permuting back as for the
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boson case and reversing the sign of the walker if an odd number of particle permutations are

needed to take the walker back inside the permutation cell.

The permutation cell choice is not unique for a given quantum system but it can be defined in

many ways. A simple definition applicable to all systems is sorting a certain space dimension

of the all identical particles [68]. A walker gets out of the permutation cell when the chosen

space dimensions of the particles become unsorted and it can be taken inside by re-sorting the

particles using appropriate particle permutations.

The above definition of the permutation cell with the sort operation on a space dimension

of the particles results in a constant sign permutation cell only for fermions interacting with

harmonic oscillator type potential function. However, in general, when this permutation cell

definition is used for the fermions, the wavefunction would change sign in a permutation cell

region. If a constant sign permutation region (like a nodal region) is desired, the nodal regions

of the DFT wavefunctions can be used since they have the permutation cell property as stated

in the Ceperley’s work on the wavefunction nodes [69].

1.3.6 Other Strategies towards the solution of FSP

Beside the strategies previously discussed, there are many articles in the literature suggesting

solutions to the fermion sign problem in the DMC method. These solution attempts mostly

combine some of the previously described strategies with some other tricks. Some of these

attempts are discussed here briefly.

Anderson et al. [63] developed a cancellation facilitating algorithm which uses the permuta-

tion symmetry to bound the simulation region. The cancellation regime of Arnow et al. [56]

is improved in this work: The accuracy of the cancellation regime is increased using overlaps

of the walker distribution functions and the cancellation rate is enhanced by some tricks such

as self cancellations and multiple cancellations. This work of Anderson et al. uses GFMC

method. However, their developments about the sign problem are applicable also to the DMC

method.

In the work of Bianchi et al. [70] the walkers are represented by Gaussian functions instead

of usual Dirac delta functions in order to improve the cancellation process of opposite signed

walkers. The Gaussian representation reduces the problem arising from the sparse walker
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distribution to some extent.

Mishchenko added a potential term to the Hamiltonian function to alter the eigenvalues of

the symmetric solutions of the Schrödinger equation [71] . The lowest lying state becomes

antisymmetric with the addition of the non local potential term A(1+π) where πΨ(x) = Ψ(−x)

and A is a constant. However, the method still needs the cancellations of opposite signed

walkers and it includes a complicated process for dynamically determining the nodal surface.

Thom and Alavi developed a method in which the walkers reside in the discretized Slater

determinant space instead of the position space continuum [72]. The cancellations of opposite

signed walkers can be carried out more efficiently in a such discretized configuration space.

However, the sign problem is still not resolved for large systems and the exponential increase

in the number of walkers is still necessary for the exact solution.

In the auxiliary-field methods [73, 74], the interaction between the electrons are replaced

by an interaction between the electrons and a random potential. Therefore, the many-body

problem is reduced to a mean field problem which is easier to solve.

The recent method of Reboredo et al. [75] is based on the trial wavefunction optimization

during the fixed-node DMC calculation. In this scheme, the nodal surface and the calculated

result is improved iteratively.

These techniques and strategies discussed above increase the stability of the non fixed-node

DMC to some extent. However, none of them resolve the problem without introducing a

systematic bias in the computed result. Therefore, the DMC method is not applicable to large

fermion systems without using the fixed-node approximation.

1.4 Fermion Trial Wavefunctions

Quality of the trial wavefunction is an important factor affecting the accuracy and the preci-

sion of the expectation value results obtained by the QMC calculations. The form and the

parameters of the trial wavefunction directly determine the quality of a VMC calculation re-

sult. The pure DMC calculation result in principle does not rely on the trial wavefunction.

However, trial wavefunctions are used in importance sampling DMC to reduce the statistical

error of the calculation and their importance increase as the studied system becomes larger.
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The nodal hypersurface of the trial wavefunction is used in the fixed-node DMC for the impo-

sition of the antisymmetry condition and the quality of the trial wavefunction nodal surface is

essential for the accuracy of the obtained result. Most of the current fermionic QMC applica-

tions use importance sampling DMC with fixed-node approximation for which the quality of

the trial wavefunction and its nodal hyper surface determines the accuracy and the precision

of the calculated expectation value results.

The QMC methods of the all kinds require evaluation of the trial wavefunction value many

times during the computation. Therefore, a complicated trial wavefunction form would slow

down the computation significantly. Considering the tradeoff between the speed and the accu-

racy, the trial wavefunctions used in the QMC applications are usually composed of a single

Slater determinant and a symmetric Jastrow factor:

ΨT (x) = eJ(x) × D(x) . (1.38)

The Slater determinant D(x) is formed by one electron orbitals obtained from a Hartree-

Fock or DFT calculation. The Jastrow factor J(x) is responsible for the electron-electron and

electron-nucleus correlation effects and the cusp conditions. The parameters which are opti-

mized during the VMC computation reside in the Jastrow factor if a single Slater determinant

is used in the trial wavefunction and these parameters do not affect the nodal hypersurface

which is determined by the Slater determinant D(x). If an improvement of the nodal hyper-

surface is intended in the VMC optimization, a linear combination of Slater determinants is

used having coefficient parameters for each determinant.

The spin variables can be excluded from the trial wavefunction if a spin independent operator

is used in the expectation value calculation [76]. In such a case, the function D(x) can be

decomposed into two determinants, one for the up spin electrons and the other for the down

spin electrons:

D(x) = Du(x′)Dd(x′) , (1.39)

where the sub-indices u and d denote the up spin electrons and the down spin electrons re-

spectively and the vector x′ does not include the spin variables. Such a decomposition is
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advantageous since evaluation of the large determinant D(x) is harder than evaluations of two

smaller determinants and also a summation over the spin variables is no longer necessary.

The trial wavefunctions used in this thesis work are formed by slightly disturbing the exact

analytical solutions if they are available. When the exact solution is not known, a high quality

approximate wavefunction is found from the literature. Therefore, no preliminary Hartree-

Fock or DFT calculations are carried out before the QMC calculations carried out for testing

the developments discussed in the next chapter.
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CHAPTER 2

WAVEFUNCTION CORRECTION SCHEME FOR NON

FIXED-NODE DMC

A technique, called as the wavefunction correction scheme, was developed around three

decades ago to reduce the statistical error in the DMC calculations by Anderson and Frei-

haut [77]. This technique was used mostly in boson calculations and also once in a fixed-node

fermion calculation. However, the correction scheme did not become widespread in the QMC

community because of the problems about its large scale applicability. It reduces the stability

of the DMC method for relatively larger systems by introducing minus signed walkers in to

boson and fixed-node fermion calculations.

In this chapter of the thesis work, the application of the wavefunction correction technique to

the non fixed-node DMC method is discussed. The purpose of such an application is to reduce

the statistical error bars in such calculations. The correction scheme may find its application

in this type of QMC calculations since the non fixed-node DMC calculations already have

the large scale applicability problem as discussed in Section 1.2.7. A stable non fixed-node

algorithm which becomes possible with some modifications on the correction scheme will

also be discussed. The reasons of the accuracy reduction in the applications of this stable

algorithm will be investigated with some benchmark calculations.

2.1 Wavefunction Correction Scheme

The DMC method is modified for making corrections on a given trial wavefunction in the

wavefunction correction framework. The difference [Φ(x, τ)] between the true ground state

wavefunction Ψ(x, τ) and the trial wavefunction ΨT (x) is sampled in the correction scheme
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DMC calculations instead of the ground state wavefunction itself. This technique was used

as an efficiency improvement mostly in the DMC calculations of bosons by its developers

[77, 78, 79]. It was also used in the fixed-node DMC calculation of the water molecule which

has fermionic nature [79].

For comprehending the modifications on the DMC methodology due to the wavefunction

correction technique, it is necessary to substitute Φ(x, τ) + ΨT (x), the sum of the differ-

ence function and the trial wave function, for the wavefunction Ψ(x, τ) in the imaginary time

Schrödinger equation (Eq. 1.16):

∂τΦ(x, τ) =
1
2
∇2[Φ(x, τ) + ΨT (x)] − [V(x) − ER][Φ(x, τ) + ΨT (x)] , (2.1)

which can be simplified using the local energy EL(x) = ĤeΨT (x)/ΨT (x) as follows:

∂τΦ(x, τ) =
1
2
∇2Φ(x, τ) − [V(x) − ER]Φ(x, τ) − [EL(x) − ER] ΨT (x) . (2.2)

The wavefunction correction technique is illustrated in Figure 2.1. The difference function

ΨGS (x) − ΨT (x) which is plotted in this figure is sampled in the correction scheme DMC

calculations instead of the ground state wavefunction itself.

Figure 2.1: Dashed Line: Trial wavefunction ΨT (x), Solid Line: Ground state wavefunction
ΨGS (x), Dotted Line: Difference function ΨGS (x) − ΨT (x).
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2.1.1 Vacuum branchings

Eq. 2.2 is the same as Eq. 1.16 except the last term which is about the trial wavefunction

being corrected. In the correction scheme calculations, this extra term is included in the DMC

simulation as an extra source term and it is simulated by an extra branching process called

in our works as the vacuum branchings. A plus or minus signed walker may be added to the

walker population according to the position of the vacuum branching. These extra branchings

are carried out at arbitrary positions in the configuration space with a uniform distribution

in the original work of Anderson and Freihaut [77]. However, the vacuum branchings may

be applied in a more efficient way using the Metropolis algorithm [80]: Some number of

points are generated according to the function ΨT (x) using the Metropolis algorithm and the

branching factors are calculated with respect to the factor [EL(x) − ER] as follows:

W(x) = 1 − [EL(x) − ER]∆τ . (2.3)

The trial wavefunction ΨT (x) should be non negative for such an application of the vacuum

branchings and this condition is satisfied for the boson systems and also for the fixed-node

fermion calculations. Application of the vacuum branchings in the non fixed-node calcula-

tions will be discussed in the next section. The reference energy ER controls also the rate of

the vacuum branchings beside the usual walker branchings.

2.1.2 Amplitude ratio parameter

The amplitude of the trial wavefunction is an important factor of the correction scheme cal-

culations together with the stabilized value of the number of walkers which determines the

wavefunction amplitude in the usual DMC [80]. The ratio of the trial wavefunction amplitude

to the number of walkers from each sign (rn) determines the efficiency improvement observed

in the correction scheme calculations. When rn increases, the efficiency also increases since

the contribution of the walker population in the energy calculation and thus the variance of

the computation decreases. This parameter of the method can be increased when the trial

wavefunction gets closer to the true ground state wavefunction. However, rn value should be

determined with care since a full correction cannot be possible when its value becomes too

high. The value of the parameter should be set to the highest value allowing the full correction
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and this value can be guessed according to the quality of the trial wavefunction. Its value may

be further optimized using the fact that a bias in the expectation value starts to occur beyond

the optimum value. The optimization procedure will be illustrated with a plot in the Harmonic

fermions title of Section 2.2.4 which is about the benchmark calculations.

2.1.3 Expectation value calculation

Expectation value calculation of the DMC should be modified in the correction scheme cal-

culations. Necessary modifications are seen by integrating the eigenvalue equation (Eq. 1.2)

over the simulation region volume Ω after the substitution of Φ(x, τ) + ΨT (x) for the wave-

function Ψ(x) :

E
∫

Ω

[Φ(x, τ) + ΨT (x)] dΩ =

∫

Ω

Ĥe [Φ(x, τ) + ΨT (x)] dΩ ,

= −1
2

∫

Ω

∇2[Φ(x, τ) + ΨT (x)] dΩ

+

∫

Ω

V(x)[Φ(x, τ) + ΨT (x)] dΩ . (2.4)

Gathering the ΨT (x) terms together allows a compact expression having EL(x). The kinetic

energy term including Φ(x, τ) may be written as a surface integral using the divergence theo-

rem in order to clarify its meaning. The final expectation value expression becomes [80]:

〈E〉 =
−1

2

∫
∂Ω
∇Φ(x, τ).dS +

∫
Ω

V(x)Φ(x, τ)dΩ +
∫
Ω

EL(x)ΨT (x)dΩ∫
Ω

Φ(x, τ)dΩ +
∫
Ω

ΨT (x)dΩ
. (2.5)

The first integral of the numerator in the above equation is about the walker flow at the bound-

aries of the simulation region which vanishes for the boson calculations being carried out in

the all configuration space. For the fermion calculations in a nodal region or in a permuta-

tion cell, this term has a non vanishing contribution. The second integral of the numerator is

the summation of walker potential energies in the expectation value calculation of the usual

DMC. The last integral of the numerator is about the trial wavefunction being corrected which

can be calculated in the beginning of the calculation without respecting the ΨT (x) normaliza-

tion using the Monte Carlo integration technique described in Section 1.2.2. The value of the

ΨT (x) integral of the denominator is given as a parameter of the method and it determines the
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rn parameter mentioned previously together with the number of walkers. Also, the value of

the Monte Carlo integrarion calculated for the last term of the numerator is multiplied by this

given value of the integral
∫
Ω

ΨT (x)dΩ for the omitted normalization issue. The remaining

first integral of the denominator is just the number of walkers but it should be calculated as

the difference of the numbers of the plus and minus signed walkers since the minus signed

walkers are inherent in the correction scheme calculations due to the vacuum branchings.

The sum of the two integrals in the denominator of Eq. 2.5 may vanish causing problem in

the energy calculation. This condition holds for fermions when the computation is carried out

in a region where the antisymmetric wavefunction has equally positive and negative valued

regions. Therefore, a suitable permutation cell which prevents this condition should be chosen

for fermion systems. This issue applies to the calculation method discussed in Section 2.2

where appropriate permutation cells are chosen to prevent the mentioned problem.

2.2 Usage of the Correction Scheme in Non Fixed-Node DMC

The wavefunction correction technique described in the previous section is applied to the

non fixed-node DMC as the main subject of this thesis study. The reduction of the statistical

error in the non fixed-node DMC due to the correction scheme is investigated on some simple

benchmark systems. The discussion of this section can also be found with a narrower context

in the work of Dugan et al. [80].

The application of the wavefunction correction scheme to the non fixed-node DMC is similar

to the boson case or the fixed-node fermion case. The fixed-node approximation is not fa-

cilitated for an exact treatment of the fermion nodes and some of the techniques described in

Section 1.3 are used for increasing the stability of the calculations. Importance sampling is not

facilitated in the benchmark calculations for better observing the sole effect of the correction

scheme.

The computation region is restricted in a permutation cell as discussed in Section 1.3.5 and

the outgoing walkers are permuted back with a sign inversion if an odd numbered permuta-

tions are applied. The permutation cell is chosen to be a positive valued nodal region of the

trial wavefunction to avoid the problem mentioned in the last paragraph of the Section 2.1.3.

The nodal regions of the trial wavefunctions should have permutation cell property for such
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a choice to be valid and thus the trial wavefunctions are chosen considering this property in

the benchmark computations. Minus signed walkers arise inevitably because of the vacuum

branchings and the sign inversions at the permutation cell boundary. Therefore, the cancella-

tion process of opposite signed walkers is facilitated in the correlated random walk process

described in Section 1.3.3.

2.2.1 Algorithm details

I Initialization : Equal amounts of plus and minus signed walkers are initialized in a pos-

itive valued permutation cell randomly or according to the trial wavefunction using the

Metropolis algorithm.

II Diffusion : Walker pairs are formed in each time step by finding the nearest unpaired

minus signed neighbor of every plus signed walker. The plus singed walker takes a

Gaussian random walk step according to Eq. 1.22 to simulate the effect of the diffusion

kernel given in Eq. 1.20. The Gaussian random walk vector of the corresponding minus

signed walker is found by reflecting the plus walker’s Gaussian vector in the perpendic-

ular bisector of the vector connecting the pair walkers.

III Cancellation : Walker pairs are removed from the population when the Gaussian walk

vectors of the pair members coincide in the diffusion step.

IV Branching : Walkers of the both signs are subjected to the usual DMC branching accord-

ing to Eq. 1.23 for simulating the effect of the branching kernel given in Eq. 1.21. When

a minus signed walker reproduces in the branching process, the resulting new walker also

has minus sign. The replication number n given in Eq. 1.24 does not exceed the upper

limit 2 to avoid the branching instabilities.

V Vacuum Branchings : Certain number of points are generated in the chosen permutation

cell in each time step using the Metropolis algorithm according to the distribution ΨT (x)

which is positive definite in the simulation region. Extra branchings are carried out at

these generated points with branching factors calculated linearly proportional to [EL(x)−
ER].

VI Adjustment of the Reference Energy : The DMC reference energy ER is adjusted in each

time step to keep the numbers of the plus and minus signed walkers equal to each other:
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ER = 〈E〉 + α
N+ − N−

∆τ
, (2.6)

where 〈E〉 is the calculated energy expectation value, α is a parameter which determines

the strength of the adjustment and N+, N− are the numbers of plus and minus signed

walkers respectively.

VII Expectation value Calculation : The energy expectation value is calculated in each time

step according to Eq. 2.5. The difference in the net number of walkers (N+ - N−) is

calculated after the diffusion step for the flow term related to the surface integral and the

other integrals are calculated as stated in Section 2.1.3. The cancellation process does

not effect the net number of walkers since it eliminates one plus and one minus signed

walker together.

The algorithm described above is applied for some time steps for thermalization and a

time average of the expectation value is taken after the thermalization steps for desired

number of time steps.

The method have been implemented using the object oriented C++ programming lan-

guage. GNU Scientific Library (GSL) was used for the uniform and Gaussian random

number generation processes. The implementation is distributed under GNU Public Li-

cense (GPL) agreement and it can be requested from the current author.

2.2.2 Parameters

There are certain parameters of the method described in the previous subsection. Some of

these parameters are inherited from the pure DMC method and there are two extra parameters

necessary for the wavefunction correction scheme.

Parameters inherited from the pure DMC:

I Time step interval (∆τ) : Determines the step size of the Gaussian random walk since it

appears in the diffusion kernel (Eq. 1.20) and also affects the branching process according

to Eq. 1.23. There is a time step error in the DMC method since it is devised for ∆τ→ 0

limit. Normally, a time step extrapolation is carried out after the DMC calculations
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for some different values of ∆τ. However, in our benchmark calculations we omit this

extrapolation step since the time step errors for the chosen values of ∆τ are much smaller

compared to the statistical error values.

II Thermalization and data collection steps : Number of time steps for the thermalization

and the data collection processes. The thermalization steps should be long enough to

allow the walkers getting distributed according to the desired ground state wavefunction.

The number of data collection steps should be determined according to the expected

precision of the calculated expectation value result. It should be decided considering the

fact that the statistical error value of the DMC run is inversely proportional to the square

root of the number of data collection steps.

III Initial number of walkers (N+,N−) : The numbers of plus and minus signed walkers

initially created for the DMC run. The reference energy keeps N+ and N− equal to

each other during the computation. However, these numbers may increase or decrease

together, according to the cancellation rate of the opposite signed walkers.

IV ER adjustment strength (α) : Determines the strength of the reference energy adjust-

ments. A small population control error arises if this parameter value is set to a very

large value and large population fluctuations occur if its value is too small. This param-

eter value should be set to an intermediate value considering these problems associated

with the two extremes.

Parameters for the correction scheme:

1. Amplitude ratio (rn) : ΨT amplitude is defined as
∫

ΨT (x)dΩ for which the trial wave-

function ΨT is positive in the simulation region Ω. The value of this integral is given

as a parameter and it determines the ratio parameter rn, described in Section 2.1.2, to-

gether with the stabilized value of the number of walker from each sign. ΨT amplitude

value should be adjusted in such a way that the ratio rn should have the largest value

allowing a full correction of the trial wavefunction as discussed in Section 2.1.2 and

analyzed in harmonic fermions benchmark calculations.

2. Number of vacuum branching points (Nvb) : Determines the number of points generated

using the Metropolis algorithm for the vacuum branching process. Exact value of this
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parameter does not affect the computation significantly. Its value is taken equal to the

initial number of walkers in the benchmark calculations.

2.2.3 Statistical error analysis

The expectation value for each benchmark system is calculated for certain times (n) using

the methodology described in the previous subsections. The mean value Ē of these separate

calculation results are taken as the final expectation value:

Ē =
1
n

n∑

i=1

Ei , (2.7)

where Ei are the individual calculation results. The statistical error of the mean is calculated

using the formula:

σ =

√√
1

n(n + 1)

n∑

i=1

(Ei − Ē)2 . (2.8)

The error calculated using the above formula is inversely proportional to the square root of

the number of sample points n.

2.2.4 Benchmark computations

The method described in the previous subsections is applied to some simple systems for

benchmarking. These calculation results are given below in separate titles.

Harmonic fermions

Harmonic fermions are preferred in the first application since their analytical solutions are

known. Two fermion systems are studied for which the Hamiltonian function is as follows:

Ĥ = −1
2

(∇2
1 + ∇2

2) +
1
2
ω2 (r2

1 + r2
2) , (2.9)
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where ω is a constant which has the numerical value of 0.03 in the all calculations and r1, r2

are the position vectors of the two fermions.

The trial wavefunctions used in the correction process are chosen as

ΨT = eε1
ω
2 (r2

1+r2
2)(x2 + ε2 y2

2 − x1 − ε2 y2
1) , (2.10)

where x, y are the particle coordinate components in two separate space dimensions and ε1,

ε2 are free parameters. This function gives the true antisymmetric ground state for the used

Hamiltonian function in ε1 → 1, ε2 → 0 limit, regardless of the number of space dimensions

(number of dimensions in which the fermions make harmonic oscillation). The parameter ε1

is used to distort the exponential function in ΨT and the parameter ε2 is used to distort the

nodal hyper surface, preserving the permutation cell property of the nodal region. Such a node

distortion is not possible when there is only one space dimension in the harmonic fermions

system studied. A positive valued nodal region of the trial wavefunction is chosen as the

simulation region to avoid the instability due to the denominator of the expectation value

expression Eq. 2.5. The outgoing walkers are permuted back to inside with a sign inversion

when necessary.

Harmonic fermion calculations are carried out for up to 4 space dimensions. The parameter

values discussed in the Section 2.2.2 are adjusted suitably considering the guidelines given in

that section. Value of the time step parameter ∆τ is set to 0.003 in dimensionless units. 6000

time steps are taken for the thermalization and the data is collected for 5000 time steps. The

computation for each case is carried out for 16 different seeds of the random number gen-

erator for calculating the mean and the statistical error as described in Section 2.2.3. DMC

simulations are initialized with 500 walkers from each sign and the stabilized values of pop-

ulation sizes are given for each space dimension in Table 2.1 which shows the computation

results for harmonic fermions. The reference energy adjustment parameter α is given the

value 0.00001. The amplitude ratio parameter (rn) values are adjusted to have optimum val-

ues for each computation separately. Nvb, the number of points for the vacuum branchings

are set to the constant value of 500 as the initial number of walkers from each sign.

Computations are also carried out without using the correction scheme for a comparison of

the computational efforts of the two cases. DMC without any corrected trial wavefunctions
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is used for these comparison calculations. Same permutation cells that used in the correction

scheme computations are used where outgoing walkers are treated in the same way. Corre-

lated walk of opposite signed walkers with the cancellation process is also facilitated in the

comparison case computations. Computation times of the two cases for calculating the re-

sults with certain statistical error values are compared. The accuracies of the two cases are

the same since neither of the methods have any systematic error other than the time step er-

ror. The implementations and the used external libraries are also the same for the two cases

except the wavefunction correction related parts which do not exist in the comparison case

calculations. Therefore, the computation time to achieve a certain precision is a reasonable

comparison issue.

Computation results for the correction scheme harmonic fermion calculations (Ec) are given

in Table 2.1 together with the comparison of the computation times with the usual DMC com-

putations (rt). Efficiency improvements can be seen from these rt ratios of the comparison

case computation times to the correction scheme computation times. Significant decreases in

the computation times are observed for the all studied space dimensions when the correction

scheme is used.

Table 2.1: Correction scheme computation results for two harmonic fermions. d: space di-
mension, ε1,ε2: disturbance parameter values, Ec: calculated energy expectation value using
the correction scheme, EGS : true value of the fermionic ground state energy, ET : trial wave-
function energy (all energies are given in dimensionless units), Nw: stabilized number of
walkers from each sign, rn: ratio of the trial wavefunction normalization to the number of
walkers from each sign, rt: ratio of the comparison case computation time to the correction
scheme computation time.

d ε1 ε2 Ec EGS ET Nw rn rt

1 0.964 0.00 0.34644(31) 0.34641 0.34677 195 14.4 2.7
2 1.000 0.05 0.51978(62) 0.51962 0.52205 495 5.7 5.5
3 1.000 0.05 0.6932(11) 0.69282 0.70143 520 4.6 8.8
4 1.000 0.05 0.8660(10) 0.86603 0.87473 1556 1.9 4.8

Images for the trial wavefunction (top image) and its difference from the true fermionic wave-

function (middle image) is given in Figure 2.2 for the 1D computation whose configuration

space is two dimensional. Average walker distribution during the correction scheme DMC

computation (bottom image) is also given. Walker distribution is calculated in a single per-
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Figure 2.2: Wavefunction plots for correction scheme DMC computation of the two harmonic
fermions in 1D. TOP: Trial wavefunction. MIDDLE: Difference between the true fermionic
ground state and the trial wavefunction. BOTTOM: Average walker distribution during the
DMC computation.

mutation cell and it is reflected to the other cell with a sign inversion in order to generate a

plot for the all configuration space. Minus signed walkers give negative weights when the

average is calculated. Walker distribution fits well with the difference function as expected

when the correction scheme is used.

The effect of the amplitude ratio parameter (rn) on the statistical error values and also on

the computation results are investigated by doing the 1D harmonic fermion calculation with

various values of this parameter. These computation results are plotted in Figure 2.3 to give an

intuition about the optimization procedure of the parameter rn. The statistical error decreases

as expected when the rn value increases. The calculated energy expectation value fluctuates

around the true value until the rn value of 14.4 and a deviation from the true value occurs after

this point which is chosen as the optimum value of the rn parameter.
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Figure 2.3: Calculated energy expectation value versus normalization ratio parameter rn for
harmonic fermions in 1D.

Helium atom lowest triplet state

As a physical example, the wavefunction correction technique is used to calculate the non-

relativistic energy expectation value of the lowest triplet state of the Helium atom (1s2s 3S)

without using the fixed-node constraint. This particular state is chosen since it has antisym-

metric spatial wavefunction causing the sign problem. The electronic Hamiltonian function

(Eq. 1.8) is used and the trial wavefunction is chosen as a Slater determinant taken from the

work of Emmanouilidou et al. [81]:

ΨT = e−(2r1+αr2)(1 − α r2) − e−(2r2+αr1)(1 − α r1) , (2.11)

where r1 and r2 are the electron nucleus distances for the two electrons of the system and the

numerical value of the parameter α is chosen as 0.65.

The nodal surface of the studied state of the Helium atom is well known as r1 = r2 surface

[45] which does not match with the nodal surface of the trial wavefunction (Eq. 2.11) used in
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the calculation. Trial wavefunction cross section is plotted in Figure 2.4 for r1 = 2 r2 surface.

A node crossing is seen in this plot proving that the nodal surface of Eq. 2.11 extends out

of the true nodal surface. Such node crossings always exist for the surfaces r1 = k r2 with

positive k values.

Figure 2.4: He atom 1s2s 3S state trial wavefunction (Eq. 2.11) cross section on r1 = 2 r2
surface. Node crossing is seen at r2 = 0.5 a.u.

DMC time step ∆τ is chosen as 0.0005 atomic time units and the data is collected for 80000

time steps after 6000 thermalization steps. Initial number of plus and minus signed walkers

and the number of points for the vacuum branchings are set to 500. The reference energy

adjustment parameter is chosen as 2 × 10−6. The amplitude of the trial wavefunction is set to

2600 and the number of walkers of each sign is stabilized around 520, giving the rn value as

5.0.

The non-relativistic true energy expectation value for this state is -2.1752 Hartrees [82] and

the energy expectation value of the used trial wavefunction is -2.1548 Hartrees. Current cor-

rection scheme calculation gives the result as -2.1767(63) Hartrees for which the true value

is in the statistical error interval. Same kind of comparison is made for the He atom as in the

case of the harmonic fermions and the computation time of the correction scheme calculation

is 4.2 times shorter than the computation time to achieve the same precision with the compar-

ison case calculation without any trial wavefunctions. Fixed-node DMC calculation using the

nodes of the used trial wavefunction gives the energy value as -2.1626(8) Hartrees confirming

the deviation of the trial wavefunction nodal surface from the true nodal surface r1 = r2.
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Hydrogen molecule

The last computation used for benchmarking is carried out for the Hydrogen molecule. As in

the case of the helium atom, the lowest lying state with antisymmetric spatial wavefunction

is studied. In fact, this state of the Hydrogen molecule is not a bound state since there is a

repulsive force between the two nuclei for all separation distances d. However, a single point

energy calculation can still be carried out for a chosen separation of the nuclei which was

chosen as d = 3.0 a.u. in the current calculation.

The trial wavefunction is chosen as a Slater determinant formed by the hydrogenic ground

state orbitals around the two nuclei:

ΨT = e−(r11+r22)/d − e−(r12+r21)/d , (2.12)

where ri j denote distances between ith electron and jth nucleus. The energy expectation value

of this trial wavefunction is calculated as −0.9646 Hartrees using Monte Carlo integration

technique. ∆τ, thermalization steps and data collection steps parameter values are chosen

as the same values as the He atom calculation case. Initial number of walkers from each

sign (N+,N−) and the parameter Nvb are set to 400. ΨT amplitude is set to 2000 and the

population sizes are stabilized around 437 giving an rn value of 4.6. The energy expectation

value for the studied state is calculated as −0.9699(38) Hartrees using the non fixed-node

correction scheme DMC which is slightly lower than the trial wavefunction energy. The

computation time is roughly 33 minutes which is 3.5 times shorter than the computation using

the non fixed-node calculation without wavefunction correction technique to achieve the same

precision.

2.2.5 Discussion about the benchmark calculation results

Application of the wavefunction correction scheme to the non fixed-node DMC reduces the

statistical error of the method significantly. Benchmark computations on the harmonic fermions,

helium atom and the hydrogen molecule show that the computation time for calculating the re-

sult within a certain statistical error value decreases several times when the correction scheme

is used. Improvement of the precision depends on the ratio of the trial wavefunction ampli-
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tude to the number of walkers and this parameter of the method can be increased when the

trial wavefunction gets closer to the true fermionic wavefunction. Therefore, quality of the

trial wavefunction is an important factor affecting the precision improvements observed in

the correction scheme calculations. The mentioned ratio parameter value should be set to the

highest value allowing a full correction which can be guessed considering the quality of the

trial wavefunction. This parameter value can be optimized using the fact that a deviation in

the calculated expectation value starts to occur beyond the optimum value of the parameter.

The nodal surfaces of the used trial wavefunctions deviate from the true surfaces for the all

cases except the harmonic fermions calculation in 1D for which a permutation cell preserv-

ing node distortion is not possible. The correction scheme calculations yield the true energy

expectation value despite the wrong nodal surfaces which proves the applicability of the wave-

function correction scheme for the non fixed-node QMC calculations. This discussion does

not apply to the hydrogen molecule calculation for which the true value of the calculated state

is not available.

The fixed-node DMC is applicable to large systems since it eliminates the minus signed walk-

ers by constraining the computation in a nodal region. This advantage of the fixed-node ap-

proximation disappears with the usage of the correction scheme because of the arising minus

signed walkers as a result of the vacuum branchings. However, the wavefunction correction

technique is suitable for non fixed-node DMC computations since the minus signed walk-

ers are already needed for plus-minus cancellation methods. Correction scheme improves

the large scale applicability for such calculations as opposed to the case for the fixed-node

calculations.

Benchmark computations are carried out without using the importance sampling transforma-

tion in order to better observe the sole effect of the wavefunction correction technique. Im-

portance sampling may be facilitated in the correction scheme calculations as described in the

references [78, 79]. However, the guiding function should allow the walkers’ passage from

the boundaries of the chosen permutation cell for the application of the current boundary con-

ditions when the fixed-node constraint is relaxed. A slightly modified form of the corrected

trial wavefunction which does not vanish on the nodal surface of the original function may be

used as the guiding function.
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2.3 Stable Non Fixed-Node Algorithm Using Correction Scheme

Some modifications on the wavefunction correction scheme are discussed in this section to-

wards the development of a DMC algorithm which does not suffer from the instabilities due to

the fermion sign problem. These developments do not resolve the sign problem but they serve

as a different viewpoint towards the solution and understanding the nature of the problem.

2.3.1 Downwards shift of the trial wavefunction

In the original form of the wavefunction correction scheme, the trial wavefunction is cor-

rected both in the positive and negative directions depending on the sign of the difference

ΨGS (x) − ΨT (x). Therefore, minus signed walkers are indispensable for the correction pro-

cess in the negative direction. Negative directional corrections can be avoided by a certain

amount downwards shifting of the trial wavefunction ΨT (x) which is illustrated in Figure 2.5.

Figure 2.5: Downwards shift of the trial wavefunction ΨT (x). Dashed Line: Shifted trial
wavefunction Ψs

T (x), Solid Line: Ground state wavefunction ΨGS (x), Dotted Line: Differ-
ence function ΨGS (x) − Ψs

T (x).

The difference function ΨGS (x) − Ψs
T (x) becomes positive definite as seen in the figure if the

shift amount is sufficient. Necessary shift amount for having a positive definite difference

function reduces as the quality of the trial wavefunction increases.

The shifting of the trial wavefunction may be position dependent using a shift function S (x):

Ψs
T (x) = ΨT (x) − S (x) . (2.13)
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A position dependent shift is advantageous compared to a constant shift as ΨT (x) − c, since

the irrelevant vanishing parts of the trial wavefunction are also shifted in the constant shift

case. Those irrelevant parts are not altered when the shift function is chosen as:

S (x) =

√
a exp(−b d2) + Ψ2

T (x) , (2.14)

where a and b are adjustable parameters. Ψ2
T term causes a downwards shift proportional to

the magnitude of the trial wavefunction and the exponential factor is necessary to avoid the

negative directional corrections about the approximate nodal surface. The variable d should

reflect in some manner, the distance of the vector x from the approximate nodal surface of

ΨT .

Figure 2.6: Position dependent shift of the trial wavefunction. Dashed Line: Shifted trial
wavefunction Ψs

T (x), Solid Line: Ground state wavefunction ΨGS (x).

In Figure 2.6, a trial wavefunction with such a position dependent shift is plotted together

with the ground state wavefunction. The difference ΨGS (x) − Ψs
T (x) is positive definite and

the irrelevant parts of the trial wavefunction are not shifted as seen in the figure.

2.3.2 Vacuum branchings at walker positions

The minus signed walkers still arise due to the vacuum branching process described in the

Section 2.1.1 despite the downwards shifting of the trial wavefunction to avoid the negative

directional corrections. However, the minus signed walkers may be avoided in the vacuum

branching process if these extra branchings are carried out at the walker positions instead of

the random points generated according to the trial wavefunction using the Metropolis algo-
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rithm. Instead of creating a minus signed walker, the walker on which the extra branching is

being made is killed in this case. The branching factors for such an application are calculated

as:

W(x) = 1 − [EL(x) − ER]∆τ Ψs
T (x)/Dw(x, τ) . (2.15)

The rescaling factor Ψs
T (x)/Dw(x, τ) is necessary since the extra branchings are carried out ac-

cording to a distribution other than the trial wavefunction Ψs
T (x). The division factor Dw(x, τ)

is the instantaneous value of the walker distribution at the position of the branching which can

be calculated as a density of walkers calculation at the close neighborhood of the branching

position. The density of walkers calculation is carried out as counting the walkers in a cer-

tain cubical box having the same dimensionality as the configuration space, centered at the

branching position. This density measure works very well for small dimensional configura-

tion spaces and it enables the vacuum branchings to be carried out without any need for the

minus signed walkers. However, as the dimensionality of the configuration space increases,

the dimensions of the box in which the walkers are counted should also increase in order to

have a non vanishing probability of some walkers being counted in the box. For relatively

large systems, the dimensions of the box becomes comparable to the dimensions of the rel-

evant configuration space where the physical wavefunction has significantly non zero values

and the density measure consequently becomes imprecise. For better describing the problem

about the mentioned density measure, the formula for the length of a dimension of the chosen

box (lbox) is given below to have a volume which is 1/1000 of the volume of the relevant

configuration space which is assumed to be box shaped for convenience:

lbox =
l

d×n√1000
, (2.16)

where l is the length of a dimension of the relevant configuration space. As an example, the

numerical value of the ratio lbox/l becomes 0.9332 when the configuration space dimension

(d × n) is 100.

An alternative density calculation technique, which would better work for higher dimensional

configuration spaces, is to use the average distance between certain number of walkers in

the close neighborhood of the branching position. However, tests with such a density mea-
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sure shows that it does not give results with sufficient precision even for small systems and

therefore not suitable.

The mentioned problem about the density measure is indeed originated from the fact that the

walker distribution becomes very sparse as the dimensionality of the configuration space in-

creases. The sparsity of the walker distribution, therefore, avoids the large scale applicability

of the stable method described in this section.

2.3.3 Two permutation cells and two reference energies

A technique to avoid the minus signed walkers in the vacuum branching process was dis-

cussed in the previous subsection. However, the minus signed walkers arise also due to the

sign inversions at the permutation cell boundaries as described in Section 1.3.5. These sign

inversions are avoided by making the calculation in two permutation cells (instead of a sin-

gle permutation cell) related to each other with a single permutation of identical particles (or

any odd numbered permutations). When such a simulation region is chosen, all the outgoing

walkers are taken inside by the appropriate particle permutations without any sign inversions.

However, the antisymmetry condition of the fermionic wavefunction in this case should be

imposed in a different manner since the avoided process of sign inversions at the permuta-

tion cell boundaries had previously served for the antisymmetry imposition in the method

described in Section 2.2.

The antisymmetry is imposed in the two permutation cells calculation by normalizing the

wavefunction separately in the two cells using two reference energies. The sums
∫

Ψs
T (x) dΩ1+

N1 and
∫

Ψs
T (x) dΩ2 + N2 are kept constant at different values (The normalization value in

the second cell is the multiplication inverse of the normalization value in the first cell as re-

quired by the antisymmetry.) in the two cells via adjustments of the reference energies E1
R, E2

R

separately. N1 and N2 in the above expressions denote the number of walkers in the first and

second cells respectively. These walkers have all plus signs since the minus signed walkers

are avoided with the techniques described in the previous and current subsections.

Using two separate reference energies in the two cells corresponds to introducing a position

dependent reference energy ER(x) in Eq. 1.16. Therefore, the stable method described in

this section is not exact even if an accurate density measure could have been devised for
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the application of the vacuum branchings at walker positions as described in the previous

subsection.

2.3.4 Harmonic fermion calculations using the stable algorithm

The stable DMC algorithm described in previous subsections is used to calculate the ground

state eigenvalues of the harmonic fermions discussed in Section 2.2.4. The purpose of these

calculations is to test the effects of the density measure and the usage of two reference energies

on the accuracy of the results. Trial wavefunction given in Eq. 2.10 is used as ΨT also in

these calculations. Ψs
T is generated according to the formula given in Eq. 2.13 using the shift

function S (x) of Eq. 2.14.

The calculation is initially carried out for one space dimension to test the effect of two ref-

erence energy usage. The density measure as counting the walkers in a certain cubical box

is accurate enough for such a small dimensional system and thus the sole effect of the two

reference energies is tested with this 1D calculation. The disturbance parameters ε1 and ε2

of the trial wavefunction (Eq. 2.10) are given the values 0.9238 and 0.0 respectively. The

parameters a and b of the shift function S (x) are set to the values 1.0 and 0.1 respectively.

The distance d in S (x) expression is measured from the origin of the coordinate system. ∆τ is

set to 0.001 and α is set to 0.00001. The numbers of walkers in each cell is kept constant at

500 and the values of
∫

Ψs
T (x) dΩ integrals are given the values −83.6 and −916.4 in the two

cells to satisfy the antisymmetry condition of the wavefunction. The length of a dimension of

the cubical box is set to 0.77 dimensionless units (d.u.) for the density of walkers calculation.

The ground state energy eignvalue is calculated as 0.3465(11) d.u. using the stable correction

scheme DMC algorithm with shifted trial wavefunction in 280000 time steps. The calculated

value is very close to the true value which is 0.34641 d.u. for the 1D harmonic fermions (see

Table 2.1). The values of the two reference energies deviate from each other significantly

during the computation. However, the time averages of them are 0.34892 and 0.35179 d.u.

for E1
R and E2

R which are close to each other. Therefore, two reference energy usage does not

cause a significant bias for the 1D calculation. Average walker distribution during this com-

putation is compared with the expected walker distribution (ΨGS − Ψs
T ) in Figure 2.7. The

comparison shows that the shape of the walker distribution fits with the expected distribution

in general. However, it is not as accurate as the calculation results of Section 2.2 which was
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plotted in Figure 2.2.

Figure 2.7: Wavefunction plots for two harmonic fermions in 1D. Horizontal axes x1, x2 are
the positions of the two fermions. TOP: Difference between the true fermionic ground state
and the shifted trial wavefunction (Φ = ΨGS − Ψs

T ). BOTTOM: Average walker distribution
during the DMC computation (Dw).

As the next step, the harmonic fermion calculation is repeated in 10 space dimensions (20

dimensional configuration space) in order to test the accuracy reductions due to the density

measure in higher dimensional configuration spaces. The value of the parameter a of S (x)

function is reduced to 0.001 since a larger value is not suitable for such a high dimensional

configuration space. The length of a dimension of the cubical box is set to 10.47 d.u. in

the density of walkers calculation, to keep the walker counting probability the same as the

1D case. This length value for a dimension of the cubical box is very large since the rele-

vant configuration space dimension is about 14 d.u. Therefore, a precise density of walkers

calculation is not expected. All the other parameters have the same values as in the case of

the 1D calculation. The ground state eigenvalue is computed as 1.9185(34) in 80000 time

steps using the algorithm described in this section. There was no instability problem during
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the calculation of this higher dimensional system. However, the accuracy of the result is not

very good since it deviates from the true value which is 1.9053 for the studied two harmonic

fermions in 10D. This bias in the calculated result is expected since the density measure was

very imprecise for this higher dimensional calculation.
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CHAPTER 3

CONCLUSIONS

Some developments on the DMC method, which is used to find the ground state solutions of

the Schrödinger equation, are discussed in this thesis work. The context of the developments is

divided in to two parts both related to the wavefunction correction scheme DMC calculations:

The first part of the developments (Section 2.2) are about the application of the wavefunction

correction scheme to the non fixed-node DMC in order to reduce the statistical error bars

obtained in a certain amount of computation time. The non fixed-node DMC method used

in the calculations does not have the nodal systematic error encountered in the fixed-node

DMC calculations. However, it is unstable due to the fermion sign problem and consequently

its application to relatively large systems is not possible. The developments of the first part

does not affect the stability of the non fixed-node DMC but they are aimed to shorten the

computation times of the non fixed-node calculations in their current application range. The

benchmark computation results indicate that computation times to achieve a certain precision

decreases several times when the correction scheme is used in the non fixed-node DMC.

Therefore, the objective of the developments of the first part is achieved successfully. Also, it

should be noted that, the wavefunction correction technique introduces minus signed walkers

to the boson and fixed-node fermion calculations and thus it reduces the stability of such DMC

calculations. This problem does not arise in the non fixed-node DMC framework since the

minus signed walkers and the instability are already inherit in such calculations.

In the second part of the developments, discussed in Section 2.3, some modifications on the

original wavefunction correction scheme are studied with a purpose of having a stable non

fixed-node DMC algorithm. These developments avoid the minus signed walkers in such

calculations by converting the plus - minus cancellation process in to a density of walkers
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calculation. Both of these processes suffer from the sparsity of the walker population in

higher dimensional configuration spaces when relatively larger systems are considered. The

necessity for the density of walkers calculation in the new developments reduces the accuracy

of the DMC calculations, especially for large systems, since an accurate density calculation

is not possible for a very sparse walker distribution. However, the developed method is stable

and it is useful for understanding the nature of the fermion sign problem. Since a sparse walker

distribution is the main cause of the problem in the new developed method as in the case of

the plus - minus cancellation methods, it becomes apparent that an exact fermion calculation

is not possible in the DMC framework without fully generating the wavefunction. In other

words, the statistical sampling techniques, which are very successful for boson calculations,

become inefficient when the antisymmetry condition of the fermions is desired to be imposed

on the wavefunction exactly.
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APPENDIX A

PROOF OF THE VARIATIONAL PRINCIPLE

The variational principle which states that the expectation value of an observable Ô, repre-

sented by a linear and Hermitian operator, is larger than or equal to the ground state eigenvalue

a0:

〈Ô〉 =
〈Ψ(x)|Ô |Ψ(x)〉
〈Ψ(x)|Ψ(x)〉 ≥ a0 , (A.1)

can be proven using the eigenfunction decomposition of the arbitrary state Ψ(x) as:

Ψ(x) =
∑

i

ci fi(x) , (A.2)

where fi(x) are the orthanormal eigenfunctions of Ô and ci are the overlap coefficients defined

as:

ci = 〈 fi(x) | Ψ(x)〉 . (A.3)

Substituting the Ψ(x) expression given in Eq. A.2 in Eq. A.1 gives:

〈Ô〉 =
〈∑i ci fi(x)|Ô |∑ j c j f j(x))〉
〈∑i ci fi(x)|∑ j c j f j(x))〉 . (A.4)

Using the eigenvalue equation Ô fi(x) = ai fi(x) and the linearity, Eq. A.4 becomes:

〈Ô〉 =
〈∑i ci fi(x)|∑ j c j a j f j(x))〉
〈∑i ci fi(x)|∑ j c j f j(x))〉 . (A.5)
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The orthanormality of the eigenfunctions is used to convert the above expression into the

simple form:

〈Ô〉 =

∑
i, j c∗i c j a j δi j∑

i, j c∗i c j δi j
=

∑
i c∗i ci ai∑

i c∗i ci
=

∑
i |ci|2 ai∑

i |ci|2
. (A.6)

Using the fact that the eigenvalues ai are greater than or equal to the ground state eigenvalue

a0, the above equality is converted to an inequality:

〈Ô〉 ≥
∑

i |ci|2 a0∑
i |ci|2

. (A.7)

The constant a0 can be taken out of the sum, yielding:

〈Ô〉 ≥ a0
∑

i |ci|2∑
i |ci|2

= a0 , (A.8)

which proves Eq. A.1.
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