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ABSTRACT 

OPTIMUM DESIGN OF IRREGULAR 3-D STEEL FRAMES USING ANT 
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                                Co-Supervisor: Prof. Dr. Turgut Tokdemir 

 

August 2010, 185 pages 

 

 

 

Steel space frames having irregular shapes when subjected to lateral loads caused 

by wind or earthquakes undergo twisting as a result of their unsymmetrical 

topology. As a result, torsional moment comes out which is required to be resisted 

by the three dimensional frame system. The members of such frame are generally 

made out of steel I sections which are thin walled open sections. The simple beam 

theory is not adequate to predict behavior of such thin-walled sections under 

torsional moments due to the fact that the large warping deformations occur in the 

cross section of the member. Therefore, it is necessary to consider the effect of 

warping in the design of the steel space frames having members of thin walled 

steel sections is significant. In this study the optimum design problem of steel 

space frames is formulated according to the provisions of LRFD-AISC (Load and 

Resistance factor design of American Institute of Steel Construction) in which the 

effect of warping is also taken into account. Ant colony optimization and harmony 

search techniques two of the recent methods in stochastic search techniques are 

used to obtain the solution of the design problem. Number of space frame 
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examples is designed by the algorithms developed in order to demonstrate the 

effect of warping in the optimum design. 

Keywords: optimum structural design, combinatorial optimization, stochastic 

search techniques, ant colony optimization, minimum weight, steel space frame, 

warping effect 
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ÖZ 

DÜZENSİZ ÜÇ BOYUTLU ÇELİK ÇERÇEVELERİN KARINCA KOLONİ 
OPTİMİZASYONU VE HARMONİ ARAMA YÖNTEMLERİ İLE OPTİMUM 

BOYUTLANDIRILMASI 
 
 
 
 

Aydoğdu, İbrahim 

Doktora, Mühendislik Bilimleri Bölümü 

                              Tez Yöneticisi          : Prof. Dr. Mehmet Polat Saka 

                              Ortak Tez Yöneticisi: Prof. Dr. Turgut Tokdemir 

 

Ağustos 2010, 185 sayfa 

 

 

Düzensiz şekle sahip çelik uzay çerçeveler rüzgar veya depremden oluşan yatay 

yüklerin etkisinde kaldıklarında simetrik olmayan topolojilerinden dolayı burulma 

dönmesine maruz kalırlar. Bunun sonucunda oluşan burulma momentlerine üç 

boyutlu çerçevenin karşı koyması gerekir. Genel olarak bu tür çerçevelerin 

elemanları I şeklinde, açık ve ince cidarlı kesitlerden yapılır. Basit kiriş teorisi 

burulma momentine maruz ince cidarlı kesitlerin davranışını elemanların 

kesitlerinde çarpılmadan dolayı oluşan büyük şekil değiştirmeleri nedeniyle 

belirlemeye yeterli değildir. Bundan dolayı ince cidarlı kesitlerden oluşan çelik 

uzay çerçevelerin boyutlandırılmasında çarpılmanın göz önüne alınması gerekir. 

Bu çalışmada çelik uzay çerçevelerin optimum boyutlandırılması problemi LRFD-

AISC (Yük ve Direnç Faktörü Tasarımı - Amerikan Çelik Konstrüksiyon 

Enstitüsü) kurallarına göre çarpılma etkisi göz önüne alınarak formüle edilmiştir. 

Optimum boyutlandırma probleminin çözümü de stokastik arama yöntemlerinin 

yeni iki metodu olan karınca kolonisi ve harmoni arama teknikleri ile elde 

edilmiştir. Çarpılmanın optimum   boyutlandırmadaki etkisini göstermek 
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için  geliştirilen algoritma ile uzay çerçeve sistemleri boyutlandırılmıştır. 

Anahtar kelimeler: Optimum yapı tasarımı, kombinasyönel optimizasyon, 

stokastik arama teknikleri, karınca kolonisi optimizasyonu, harmoni arama 

minimum ağırlık, uzay çelik çerçeve, çarpılma etkisi 
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CHAPTER 1  

INTRODUCTION 

1.1 Optimization  

Optimization is a branch of mathematics where the maximum (or the minimum) 

of a function is sought under number of constraints if there are any. Optimization 

techniques determine the best alternative among the available options while 

satisfying the required limitations. In nature animals or plants use optimization 

instinctually in such a manner that minimizes the path for finding foods or 

maximize energy for hunting. Human beings also use optimization several stages 

of their lives. The importance of optimization is permanently increasing in today’s 

world due to limitations in available resources and increase in human population. 

Optimization plays important role in the large variety of fields such as applied 

mathematics, computer science, engineering and economics.  

1.2 Optimization Problem 

General optimization problems have three elements which are required to be 

identified in order to construct its mathematical model. The first one is design 

variables. The second is the objective function and the third is constraints. 
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1.2.1 Design variables 

A design variable in an optimization problem is a quantity change of which 

affects the outcome of the problem. In structural engineering problems cross 

sectional dimensions of structural member such as width, height and thickness can 

be selected as design variables because when their values change behavior of the 

structure chance. Design variables can be divided to two categories; continuous 

and discrete design variables.  Continuous variable is a variable that can take any 

value in its range. For example, a depth of a built-up steel beam can have any 

value between its upper and lower bounds. Hence in the optimum design problem 

of a built up steel beam the depth can be treated as continuous design variable. On 

the other hand, discrete design variables can only take certain values from a list of 

values. The optimum design of steel frames requires selecting steel profiles from 

available list in practice which contains only list of sections that are discrete. 

Number of bolts in the connection is also required to be an integer number. This is 

also a typical example of discrete variable, if number of bolts in the optimum 

design of beam column connection is taken as design variable. Although 

optimization problems with discrete design variables are more suitable for 

engineering design problems, they are more difficult to handle than the 

optimization problems with continuous design problems. 

1.2.2 Objective function 

Objective function is a function of design variables that determines the quality of 

a solution. In other words objective function determines effectiveness of the 

design under consideration. Optimization problem becomes either minimization 

or maximization problem depending on the objective of a problem. For example, 

if in a structural design problem deflection of a beam is required to be as small as 

possible, it is then necessary to maximize the stiffness of the beam. In this 

problem the objective function is required to be maximized. On the other hand, if 

the aim is to design a structure using the least amount of steel then the objective 
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becomes minimizing the weight of the structure. Such problems are called 

minimization problems. 

1.2.3 Constraints 

In optimization problem generally values of the design variables can not be 

selected arbitrarily. Solutions of the optimization problems have to satisfy some 

restrictions in the optimization problem. These restrictions are called as 

constraints. Constraints may be categorized in two groups in structural 

optimization problems which are behavior constraints and size constraints. Size 

constraints are the limitations that make sure that values of the design variables 

are assigned only with in a certain range. For example in a beam cross section 

design problem, height and width variables are limited to their upper and lower 

values. Such constraints are called as side constraints. In contrast to side 

constraints, behavior constraints impose restraints on the behavior or performance 

of the system. For instance in structural optimization problem, displacements are 

required to be not larger than certain limits in order to satisfy the serviceability 

conditions. Furthermore each member of a structure should have sufficient 

strength to be able to resist the internal forces which develop under the external 

loads. Hence displacement limitations and strength limitation which are taken 

from design code specifications are called behavior constraints. 

1.2.4 Mathematical modeling of the optimization problem 

After definition of the elements of optimization problem, mathematical modeling 

of the optimization problem is expressed as follows: 

Find values of design variables  n
T xxxX ,,, 21   (1.1) 
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in order to minimize, ),...,,( 21 nxxxf    (1.2) 

subject to  
 

0),,,(,....0),,,(,0),,( 21212211  nnicnn xxxgxxxgxxxg   

0),,,(,....0),,,(,0),,( 21212211  nnecnn xxxhxxxhxxxh   

(1.3) 

where, n is the total design variables in optimization problem, 

 n
T xxxX ,,, 21   is the vector of design variables,  ),...,,( 21 nxxxf is the 

objective function, 0),,( 21 nxxxg    is the inequality constraints and 

0),,( 211 nxxxh  is the equality constraints. 

1.2.5 Optimization Techniques 

The techniques available to find the solution of optimization problems may be 

traced back to the days of Lagrange, Cauchy and Newton [1].  The contributions 

of Newton and Leibnitz to calculus provided a development of differential 

calculus methods of optimization. The calculus of variations related to the 

minimization of a function goes back to Bernoulli, Euler, Lagrange, and 

Weirstrass [1]. The method of optimization for constrained problems involving 

addition of unknown multipliers invented by Lagrange [1]. The first application of 

the steepest descent method to solve unconstrained minimization problems was 

made by Cauchy. Despite these early contributions, it is noticed that until the 

middle of the twentieth century there is little improvisations in optimization. After 

the middle of the twentieth century emergence of high-speed digital computers 

made the implementation of the numerical optimization procedures possible and 

stimulated further research on new methods. As a result of extended research large 
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amount of new numerical optimization techniques are developed which made it 

possible to find optimum solutions of various engineering problems. In 1947, 

Dantzig [2] developed the simplex method for linear programming problems. In 

1957, Bellman [3] developed the principle of optimality for dynamic 

programming problems. These developments pave the way to improvement of the 

methods of constrained optimization by Kuhn and Tucker [4]. Kuhn and Tucker 

expressed the conditions for the optimal solution of programming problems. This 

work laid the foundations for a great deal of numerical methods for solving the 

nonlinear programming problems. 

During the early 1960s Zoutendijk and Rosen [5] suggested method of feasible 

directions which obtains the solution of nonlinear programming problems where 

the objectives function and the constraints are nonlinear. In the l960s, Duffin, 

Zener, and Peterson [6] developed the well-known technique of geometric 

programming which have ability of solving complex optimization problems. 

Carroll [7], Fiacco and McCormick [8] presented penalty function method for 

nonlinear programming problems. These techniques were applied to determine the 

solution of wide variety of engineering design problems and it is observed that 

while they were efficient in finding the solution of some of these design problems, 

they were not performing well in some others. Furthermore, in large size design 

problems they exhibited convergence difficulties. Their success was dependent 

upon the type of optimization problem. It is observed that none of these newly 

developed techniques were powerful enough to determine the optimum solution of 

any general nonlinear programming problem. These methods were particularly 

non-efficient in finding the solutions of nonlinear programming problems where 

the design variables are required to be selected from a discrete set. In practice 

when formulated as programming problem large number of engineering design 

optimization problems turn out to be discrete programming problems. 

The stochastic search techniques developed by Dantzig and Charnes has provided 

an efficient tool for solving discrete programming problems [9-28]. Genetic 
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algorithm, evolutionary strategies, simulating annealing, tabu search, ant colony 

optimization and particle swarm optimization algorithms are some of the 

stochastic search techniques that are also used to develop structural optimization 

algorithms [29]. These techniques are nontraditional search and optimization 

methods and they very suitable and robust obtaining the solution of discrete 

optimization problems. 

1.3 Structural optimization 

In recent years, importance of the structural optimization has increased rapidly 

due to demand for economical and reliable structures. Structural optimization 

deals with finding the appropriate cross sectional properties of structural members 

such that the structure has the minimum cost and the response of the structure to 

external loads are within the limitations specified by design codes.  

1.3.1 Mathematical modeling of structural optimization 

Mathematical modeling of a structural optimization problem can be stated as in 

the following.  

Find cross-sectional area vectors  ng21
T A,,A,AA   (1.4) 

in order to minimize,  
 


ng

1k

mk

1i
iikng21 LA)A,...,A,A(W    (1.5) 

subject to 0g,....0g,0g n21     (1.6) 
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where, ng is the total numbers of member groups in the structural system, mk is 

the total number of members in group k, kA is the cross sectional area of members 

in group k, iL is the length of member  i, i is the specific gravity of an element i, 

and n21 g,.....,g,g  are the  constraint functions. Constraint functions are described 

by design codes such as LRFD-AISC [30], TS648 [31]. According to LRFD-

AISC design code constraint functions can be expressed as:  

1. Strength Constraints. It is required that each frame member should have 

sufficient strength to resist the internal forces developed due to factored 

external loading. 

2. Serviceability constraints. Deflection of beams and lateral displacement of 

the frame should be less than the limits specified in the code. 

3. Geometric constraints. Sections that are to be selected for columns and 

beams at each beam-column connection and column-column connection 

should be compatible so that the connection can be materialized.  Detailed 

information of these constraints will be given in the next chapter. 

 

1.3.2 Methods of Structural optimization 

There are large amount of methods developed that may be used to determine the 

solution of optimum design problems [8-29]. These can be collected under two 

broad categories. The fists one is the analytical methods and the second is the 

numerical optimization techniques.   
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1.3.2.1 Analytical methods 

Analytical methods are usually used for finding minimum and maximum values 

of a function by using classical mathematical tools such as theory of calculus and 

variational methods. In structural engineering these methods are used in studies of 

optimal layouts or geometrical forms of structural elements [32]. These methods 

find the optimum solution as the exact solution of system of equations which 

expresses the conditions for optimality. Although analytical methods are good 

tools for fundamental studies of single structural components, they are not suitable 

to determine the optimum solution of large scale structural systems.  

1.3.2.2 Numerical Optimization Methods  

Numerical optimization methods that are used to develop optimum structural 

design algorithms are summarized in the following:   

Mathematical programming 

Mathematical programming attempts to determine the minimum or maximum of a 

function of continuous variables under certain constraint functions. Mathematical 

programming techniques are generally classified as linear programming and 

nonlinear programming. In linear programming the objective function and the 

constraint consist of linear functions of design variables. In nonlinear 

programming methods either the objective function and/or constraints are 

nonlinear functions of design variables. Nonlinear programming techniques 

initiate the search for optimum from an initial point and move along the gradient 

of the objective function in order to achieve reduction in the value of the objective 

function while satisfying the constraints. Although mathematical programming 

techniques show good performance in small size optimization problems, they are 

weak and present convergence difficulties in the large scale optimization 

problems [33].  
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Optimality criteria method 

Optimality criteria method is a rigorous mathematical method that is introduced 

by Prager and Shield [34]. This method consists of two complimentary main parts. 

The first part is Kuhn-Tucker conditions of nonlinear programming and the 

second one is Lagrange multipliers. Optimality criteria method is based on the 

assumption that some characteristic will be attained at the optimum solution. The 

well-known application of optimality method is the fully stressed design 

technique. It is assumed that, in an optimum design, each member of a structure is 

fully stressed at least one design loading condition. Optimality criteria methods 

have been used effectively in structural optimization problems because they 

constitute an adequate compromise in order to obtain practical and efficient 

solutions. [35-37]. Optimality criteria method is applied as two step procedure. In 

first step, an optimality criteria is derived either using Kuhn-Tucker conditions or 

using an intuitive one such as the stipulation that the strain energy density in the 

structure is uniform. In the second step an algorithm is developed to resize the 

structure for the purpose of satisfying this optimality criterion. Again a rigorous 

mathematical method may be used to satify the optimality criterion, or one may 

devise an ad-hoc method which sometimes works and sometime does not work. In 

optimality criteria methods the design variables are considered to be having 

continuous values. However, with some alteration these methods can also be used 

in solving discrete optimization problems. 

1.4 Stochastic search methods 

The stochastic search algorithms developed recently has provided an efficient tool 

for solving large scale problems [9-28]. These stochastic search algorithms make 

use of the ideas taken from the nature and do not require gradient computations of 

the objective function and constraints as is the case in mathematical programming 



 
10

based optimum design methods. The basic idea behind these techniques is to 

simulate the natural phenomena such as immune system, survival of the fittest, 

finding shortest path, particle swarm intelligence and the cooling process of 

molten metals into a numerical algorithm. These methods are nontraditional 

search and optimization methods and they are very efficient and robust methods 

obtaining the solution of large size optimization problems. They use probabilistic 

transition rules not deterministic rules. Large number of optimum structural 

design methods based on these effective, powerful and novel techniques is 

developed in recent years [38-52]. Some of the stochastic search methods are 

summarized in the following. 

1.4.1 Genetic algorithm 

Genetic algorithm is one of the famous stochastic search algorithms developed 

from evolutions theory such as crossover, inheritance, selection and mutation. 

Genetic algorithms are famous in evolutionary algorithms that categorized as 

global search heuristics. Theory of this method depends on the principle of 

Darwin’s theory of survival fittest. This can be summarized that any individual 

animal or plant which succeeds in reproducing itself is "fit" and will contribute to 

survival of its species, not just the "fittest" ones, though some of the population 

will be better adapted to the circumstances than others [53, and 54]. Genetic 

algorithm are constituted three main phases [55]. These are,  

 coding and decoding variables into strings; 

 evaluating the fitness of each solution string; 

 Applying genetic operators to generate the next generation of 

solution strings.  

Genetic algorithms can be used for wide range of optimization problems, such as 

optimal control problems, transportation problems, economical problems, 

structural engineering problems, etc. This technique can be used in structural 
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optimization problems involving both discrete and continuous variables. Genetic 

algorithms have been so effective and robust method in solving both constrained 

and unconstrained optimization problems. Therefore this technique one of 

possible optimization method applied for structural engineering problems. 

1.4.2 Evolutionary strategies 

 The evolution strategies (ES) were first developed by Rechenberg [56] and 

Schwefel [57] in 1964 at Technical University of Berlin as an experimental 

optimization technique. These algorithms were originally developed for 

continuous optimization problems. This optimization technique is based on ideas 

of adaptation and evolution has very complex mutation and replacement 

functions. Initial populations consisting of μ parent individuals are randomly 

generated in evolution strategies algorithm. It then uses recombination, mutation 

and selection operators to attain a new population. 

Rajasekaran et al [58] used the evolutionary strategies for the solution of optimum 

design of large scale steel space structures. It is reported in this study that 

evolutionary strategies algorithms show good performance in finding the optimum 

design of large size structures. Ebenaua et al [59] and Hasançebi et al [60] also 

presented studies about optimum design of large scale structures by using the 

evolutionary strategies method. In these studies, it is shown that the evolutionary 

strategies methods are efficient methods in order to determine the optimum 

solutions of large scale structures. Hence, it is concluded that the evolutionary 

strategies method is one of the robust optimization methods for structural 

optimization problems. 

 



 
12

1.4.3 Simulating annealing 

Simulated annealing (SA) is one of the commonly used stochastic search 

techniques for the structural optimization problem. This algorithm was invented 

by S. Kirkpatrick et al in 1983 [61]. Name of the simulating annealing algorithm 

comes from annealing in metallurgy. This technique involves controlled cooling 

and heating processes of a material in order to expand the size of its crystals and 

decrease their defects. The heat causes the atoms to leave from their initial 

positions (a local minimum of the internal energy) and move randomly through 

states of higher energy; the slow cooling gives the atoms enough time to find 

positions that minimize a steady state is reached. Simulating Annealing algorithm 

starts with initial design which is randomly created. Then initial value of the 

temperature is set. New structure designs are generated in the close neighbor of 

the current structure design. Objective function values of new structure designs 

are calculated and temperature is decreased. This process is repeated when the 

system is frozen in an optimum state at a low temperature. There are many 

publications about simulated annealing algorithm for structural optimization 

problems. In 1991 and 1992, Balling [62, 63] used simulated annealing method 

for the discrete optimum design of three dimensional steel frames. Topping [64], 

Hasançebi and Erbatur [65 and 66] used this algorithm for optimum design of 

+truss systems. It can be concluded that this method is efficient tool for structural 

optimization problems.  

1.4.4 Particle Swarm Optimization Method 

Particle swarm optimization is one of the stochastic optimization technique based 

algorithm to find a solution to an optimization problem in a search space or model 

and predict social behavior in the presence of objectives. This method is first 

described in 1995 by James and Russell C. Eberhant [24] inspiring social behavior 

of bird flocking or fish schooling. 
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Particle swarm optimization algorithm can be summarized as follows. Initially 

populations of individuals known as particles are selected randomly. These 

particles generate structure designs by using random guesses. Then an iterative 

process is initiated in order to improve these structure designs. Particles iteratively 

calculate the value of the objective function of structure and the location where 

they had their best design is stored. Best structure design is defined as the local 

best or the best particle. Best particle, its design and location can be also seen 

from its neighbors. This information guides the movements in the design space. In 

the past fifteen years, there are many studies on particle swarm optimization 

method. Fourie and Groenwold [67] published a paper about particle swarm 

optimization method for optimum design of structures with sizing and shape 

variables. Perez and Behdinan [68] presented a study about optimum design 

algorithm for pin jointed steel frames problems which is based on particle swarm 

optimization method. It is reported from studies that particle swarm optimization 

method shows effective performance in structural design optimization. 

1.4.5 Tabu Search 

Tabu search is one of the stochastic search methods introduced by Glover [69] in 

1989. This method uses a neighbor search procedure. New solution 'x  is obtained 

by moving iteratively from a solution x  in the neighborhood of x . This procedure 

is continued by the time that one of the some stopping criteria is satisfied. Tabu 

search method modifies the neighborhood structure of each design as the search 

progresses in order to search the regions of the unused design space. The solutions 

admitted to N * (x), the new neighborhood, are determined through the use of 

memory structures. “The search then progresses iteratively by moving from a 

solution x to a solution x' in N * (x) “[70]. 

Degertekin et al used tabu search method to develop an optimum design algorithm 

for steel frames [71-75]. Hasançebi et al [60] applied tabu search method for 

optimum design of design of real size pin joints structures. Similar to 
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aforementioned stochastic search methods tabu search method is popular among 

researches for structural optimization problems.  

1.4.6 Ant colony optimization  

Ant colony algorithm is inspired from natural behavior of ants. This technique is 

one the robust techniques for structural optimization problems. Detailed 

information about this algorithm will be given in the following chapters.  

1.4.7 Harmony search  

Harmony search algorithm is one of the recent stochastic search algorithms 

adopted from composition of musical harmony. This algorithm was inspired by 

the observation of music improvisation. Trying to find a pleasing harmony in a 

musical performance is analogous to finding the optimum solution in an 

optimization problem. The aim of the musician is to procedure a piece of music 

with harmony. Similarly a designer intends to determine the best design in a 

structural optimization problem under the given objective and limiting constraints. 

Both have the same target; to determine the best. This method is also an efficient 

method for structural optimization problems. Detailed information about this 

algorithm is also provided in the following chapters.  
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1.5 Literature survey of structural optimization 

The early studies of structural optimization problems utilized mathematical 

programming aalgorithms such as integer programming, branch and bound 

method and dynamic programming or optimality criteria method [76-78]. In some 

of these algorithms the design requirements of structural optimization problem are 

implemented from design codes. Among these Saka [79] has presented a study 

about optimum design of pin jointed steel structures with optimality criteria 

algorithm where the design requirements were imposed from Allowable Stress 

Design of American Institute of Steel Construction (ASD-AISC). In 1990, 

Grierson and Cameron [80] introduced SODA (Structural optimization design) 

that was the first structural optimization package software for practical structure 

design. This software considered the design requirements from Canadian Code of 

Standard Practice for Structural Steel Design (CAN/CSA-S16-01 Limit States 

Design of Steel Structures) and obtained optimum desogn of steel frames by using 

available set of steel sections. 

C.M. Chan and Grierson [81] and C.M. Chan [82] pubished a study about the 

design of tall steel building frameworks with optimization technique based on the 

optimality criteria method where areas are of member sections selected from the 

standard steel sections. This method considers the inter storey drift, strength and 

sizing constraints in accordance with building code and fabrications requirements. 

Soegiarso and Adeli [83] developed an algorithm for the minimum weight design 

of steel moment resisting space frame structures with or without bracing by using 

the optimality criteria method according to LRFD-AISC design code. Constraints 

functions for moment resisting frames derived from the LRFD-AISC design code 

are highly nonlinear and implicit functions of design variables. In this study, the 

steel moment resisting space frame is subjected to the dead, live and wind loads 

computed according to the Unified Building Code. The algorithm is performed in 

optimum structural design problems of four large high-rise steel building 
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structures. Arora [84] published comprehensive review of the methods for discrete 

structural optimization problems.  

The emergence of stochastic search optimization techniques has opened a new era 

in obtaining the solution of discrete optimization problems. In literature there are 

many studies have been done for structural optimization problems by using 

stochastic search techniques [11, 14-18, 24, 26-28, 61, 85 and 86] and these 

methods show good performance in structural optimization problems. Ant colony 

optimization algorithm (ACO) introduced by Marco Dorigo [9, 22, 87-90] is one 

of the stochastic search methods that locate the optimum solution of combinatorial 

optimization problems. This method is inspired from the behavior of ants in 

finding the shortest path from the nest of a colony to food source. This method is 

firstly used in the solution of well known traveling salesman problem (TSP). In 

2000, ant colony optimization algorithm is applied optimization problem of  

structural system [93]. In 2004, study about ant colony optimization method for 

optimum design of truss systems problems was introduced by Camp and Bichon 

[94]. Camp and Bichon [95] also presented a study ant colony optimization 

method for optimum design of frame structures problems in 2005.  Another recent 

addition to these techniques is the harmony search algorithm. This method is first 

developed by Geem [25, 96-101]. Harmony search algorithm is based on the 

musical performance process that takes place when a musician searches for a 

better state of harmony. Harmony search method is widely applied in structural 

design optimization problems since its emergence [102]. These applications have 

shown that harmony search algorithm is robust, effective and reliable optimization 

method [33]. 

1.6 Irregular Frames and the effect of warping 

Steel buildings are preferred in residential as well as commercial buildings due to 

their high strength and ductility particularly in regions which are prone to 
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earthquakes. Some of these buildings have irregular shapes due to architectural 

considerations. Such three dimensional buildings when subjected to lateral loads 

caused by wind or earthquakes undergo twisting as a result of their unsymmetrical 

topology. This occurs due to the fact that the resultant of lateral loads acting on 

the building does not pass through the shear center of the structure. As a result, 

torsional moment comes out which is required to be resisted by the three 

dimensional framing system. The members of steel frames are generally made out 

of steel I sections which are thin walled open sections. The simple beam theory is 

not adequate to predict behavior of such thin-walled sections under torsional 

moments. The large warping deformations occur in the cross section of the 

member due to the effect of torsional moments. This causes plane sections to warp 

and plane sections do not remain plane. Therefore normal stresses develop in 

addition to shear stresses in the member. Computation of these additional stresses 

can easily be carried out by using the theory derived by Vlasov [103]. The 

simplicity of this theory is that it includes additional terms in simple bending 

expressions to accommodate the effect of warping. This expression requires the 

computation of the sectorial coordinate and warping moment of inertia of thin 

walled open section. 

1.7 Literature survey on structural optimization that 

considers effect of warping 

In 1961, Vlasov developed a theory which simplifies the computation of stresses 

caused by warping of thin walled sections. Attard [104] carried out investigation 

on the nonlinear analysis of thin-walled beams including warping effect. Gotluru 

et al [105] and Chu et al [106] studied the effect of warping on thin walled cold 

formed steel members. Tso [107], Trahair and Yong Lin Pi [108-110] presented a 

study on the nonlinear elastic analysis torsion of thin walled steel beams. 

However, these studies analyze the effect of warping on the basis of the element. 

Al-Mosawi and Saka [112] developed shape optimization algorithm for cold-



 
18

formed thin-walled steel sections that considers the effect of warping. This study 

also considers only single element. Saka et al later presented study on the 

optimum spacing design of grillage system considering the effect of warping. This 

study one of the few studies which investigate the effect of warping at the level of 

structure. However, grillage systems are small scale structures. Therefore, this 

study is not adequate to give information about the effect of warping for large 

scale structures.  

 

1.8 Scope of the thesis 

The main goal of this study is to investigate the effect of warping for optimum 

design of irregular steel space frames. Ant colony optimization and harmony 

search algorithms are the selected optimization methods in order to solve the 

optimization problem formulated. In this thesis, chapters are arranged as in the 

following. In the first chapter, general definition about optimization, elements of 

optimization problems, some optimization methods that are used in structural 

optimization problems are discussed briefly. Besides these, a literature survey on 

the optimum design of frame structures and the effect of warping is included in a 

historical order. In the second chapter, the matrix displacement method for 3-D 

frames and the theory of the effect of warping are described. In addition to these, a 

computer program written in FORTRAN which has the feature of analysis of 3-D 

frames excluding or including effect of warping is tested considering number of 3-

D frames. The results obtained from this computer program are verified with 

those attained using the software STRAND7 [113]. The design of steel members 

that are subjected to axial force as well as bending moments according to design 

code LRFD-AISC [30] is described in the Chapter 3. In the fourth chapter, 

optimization methods of harmony search and ant colony optimization that are 

used in thesis are explained.  Besides, performance these methods are tested with 
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other optimization methods using some sample mathematical optimization 

problems. Mathematical problem of structural optimization problem, harmony 

search and ant colony optimization algorithms for structural optimization 

problems and improvements in harmony search and ant colony optimization 

algorithms are described in the Chapter 5. The last two parts of this study are 

allocated for design examples and conclusions, respectively. In the Chapter 6, six 

design examples two of which are regular steel space frames and four of which 

are irregular steel space frame are designed by the ant colony optimization and 

harmony search algorithms developed and the results obtained are presented. The 

last chapter, Chapter 7 contains the conclusions of the study. 
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CHAPTER 2 

MATRIX DISPLACEMENT METHOD FOR 3-D 

IRREGULAR STEEL FRAMES  

2.1 Introduction 

High-rise steel buildings are sometimes given irregular shapes and unsymmetrical 

floor plans so that they posses impressive images. Such three dimensional 

structures undergo twisting as a result of their unsymmetrical topology when they 

subjected to lateral loads. This occurs due to fact that the resultant of lateral forces 

acting on building does not passing trough to shear center of the structure. As a 

result, torsional moment that comes out due to this eccentricity is required to be 

resisted by the three dimensional frame system.  The members of such frames are 

generally made out of steel W sections that are thin walled open sections with 

relatively small torsional rigidity. Consequently, when these members subjected 

to torsional moments, large warping deformations occurs in the cross sections 

these members. Plane sections does nor remain plane and normal stresses develop 

at cross sections of these members in addition to shear stresses. It is shown in the 

literature that the values of these stresses are significant and they are required to 

be considered in predicting the realistic behavior of thin walled members [114].  

In this chapter, firstly the classical matrix displacement method for 3-D frames is 

described and later it is extended to cover the inclusion of the effect of warping. A 

computer program is coded in FORTRAN which has the feature of analysis of 3-

D frames excluding or including effect of warping. The program written is tested 
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considering number of 3-D frames the results obtained are verified with those 

attained using the software STRAND7 [113]. 

2.2 Matrix displacement method for 3-D frames 

In matrix displacement method, a 3-D frame considered to be system consists of 

connecting one-dimensional elements to each other at joints as shown in figure 

2.1. The joint coordinates are defined according to the XYZ Cartesian system 

which is called global axis system. There are six degree of freedoms located in a 

joint of 3-D frame. These are the usual three translations ( 321 ,, ddd ) along   X, 

Y, and Z axes and three rotations ( 654 ,, ddd ) about these axes shown Figure 

2.1. Therefore, the displacement vector of any joint i , can be represented in a 

vector form as    654321 ddddddDi   in the global axis. The corresponding 

loading vector applied on joint i  is demonstrated as   654321 PPPPPPPi  . In 

this vector; 321 ,, PPP  are forces acting on joint i  along   X, Y, and Z axis 

respectively and 654 ,, PPP  are moments acting on this joint along   X, Y, and Z 

axis, respectively. 

 

 

Figure 2.1 3-D frame 
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Figure 2.2 Joint end displacements, end forces and end moments in frame   

members 

When structure is subjected to external forces, joint displacements and end forces 

occur in its members. Joint displacements and end forces are defined in local axis 

as shown in Figure 2.2. In this figure, first end forces and moments of the member 

k , are represented as vector   654321 FFFFFFFk   where; 321 ,, FFF  are 

the axial force, shear forces y and z axis respectively and 654 ,, FFF  are end 

moments of the first end of the member k . The member end displacement vector 

in the first end of member k  is described as    654321 uuuuuuU k  in the local 

coordinate system. Consequently, six joint displacement and six end forces 

develop at each end of the member. 

2.2.1 Relationship between member end forces and member end 

displacements 

The relationship between member end forces and member end deformations is 

described as follows. 
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    iii UkF   (2.1) 

where;  ik  is the stiffness matrix of member i , in the local coordinate system. 

Member stiffness matrix has twelve rows and twelve columns for 3-D space 

frames systems. Each row of this matrix can be obtained by assigning unit value 

to the each degree of freedom, while restraining the remaining degree of 

freedoms, respectively. When unit value is assigned to the degree of freedom, i , 

twelve end forces and end moments are obtained which constitutes the thi  column 

of the stiffness matrix. By assigning unit value to all the degree of freedoms as 

shown in Figure 2.3, the member stiffness matrix shown in (2.2) below is 

obtained. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure 2.3 Member forces and moments for degree of freedoms; (a) u1=1 and 

u7=1, (b) u2=1 and u8=1, (c) ) u3=1 and u9=1, (d) u4=1 and u10=1, (e) 

u5=1 and u11=1, (f) u6=1 and u12=1. 
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(2.2) 

 

2.2.2 Coordinate transformation 

The joint displacements in the local axis and the joint displacements in the global 

axis are related to each other given below. This relation is obtained by carrying 

out coordinate transformations between the local and global axis. 

    iii DBU   (2.3) 

where, iB  is coordinate transformation matrix obtained from multiplication of the 

     zyx BBB ,,  matrices.      zyx BBB ,,  matrices are called the transformation 

matrices corresponding to the rotation about  x, y, z local axis, respectively. These 

matrices are obtained as described in the following. 
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Rotation of about x axis 

 

Figure 2.4 Rotation of about x axis 

 

Consider that x axis is rotated amount of  . In this case the coordinates of point A 

are related to each other as expressed in the following. 





sincos

sincos

YZBDADABz

ZYBCOCOBy

Xx











 
(2.4) 

by writing equations (2.4) in matrix form: 
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Z
Y
X

z
y
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

cossin0
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001
 (2.5) 
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Hence, transformation matrix corresponding to the rotation   about x axis is 

obtained as; 

 






















cossin0
sincos0

001

xB  (2.6) 

Rotation of about y axis 

 

 

Figure 2.5 Rotation of about y axis 

 

For this case y axis is rotated by the amount of   the coordinates of point A in 

both x, z and X, Z axis are related as:     
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In 


AED  sinZSinADEDBC 


,   

In 


ODC  CosXCosODOC 


.  

It follows that: 





SinYCosZBDADABz

Yy
SinZCosYBCOCOBx










 
(2.7) 

by writing equations (2.7) in matrix form; 
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z
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x
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cos0sin
010

sin0cos
 (2.8) 

Hence, transformation matrix corresponding to the rotation   about y axis is 

obtained as; 

 














 






cos0sin
010

sin0cos

yB  (2.9) 
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Rotation of about z axis 

 

Figure 2.6 Rotation of about z axis 

 

In this case the coordinates of point A are related to each other as expressed in the 

following. 

In 


AED  SinYSinAEEDED 


, CosYAD 


  

In 


ODE  CosXCosOEOC 


,  CosXOECEBD 


cos  

It follows that: 

Zz
YXBDADABy

YXEDOCOBx













sincos

sincos

 (2.10) 
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by writing write equations (2.10) in matrix form; 


















































Z
Y
X

z
y
x

100
0cossin
0sincos




 (2.11) 

Hence, transformation matrix corresponding to the rotation   about z axis is 

obtained as; 

 

















100
0cossin
0sincos




yB  (2.12) 

When      zyx BBB ,,  matrices are multiplied, coordinate transformation matrix 

shown in (2.13) is obtained. 

 































 




















100
0cossin
0sincos

cos0sin
010

sin0cos

cossin0
sincos0

001








B  

 B


























sinsinsincoscossincossinsincoscossin
cossinsinsincoscoscoscossincossinsin

sincossincoscos
 

(2.13) 
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Figure 2.7 Coordinate transformation from local axis to global axis   

 

It is apparent from Equation (2.13) that terms of the coordinate transformation 

matrix depend on angles , , and  .   angle is not related to the joint coordinates 

of a space frame member. Therefore, value of   angle is entered manually in the 

program. Whereas,  and   angles are related to joint coordinates, so that joint 

coordinates of space frame member should be known in order to calculate the 

coordinate transformation matrix. It is possible to re-write the coordinate 

transformation matrix in terms of length of space frame members by using 

relationship between ,   angles and joint coordinates as explained in the 

following. 
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The length of a space frame member as shown Figure 2.8 is calculated as follows. 

     222 zyxlAB   

   22
111 zxlBA   

(2.14) 

When the terms cos , cos , sin , sin  are written in terms of the length of 

element. 

1

)(
l
xCosCos 

 ,
1

sin)(
l
zSin 

  

l
lCos 1 ,

1l
zSin 

  
(2.15) 

Where, x , y  and z  terms are shown in Figure 2.8. When these terms are 

substituted in to the coordinate transformation matrix, following expression is 

obtained. 

 *B            

           








































1

1

1

1

1

1
cossincoscossin

cossincoscossin

ll
yzxl

l
l

ll
zlyx

ll
yzxl

l
l

ll
yxzl

l
z

l
y

l
x

 
(2.16) 

 



 
33

 
Figure 2.8 Calculation of the length of an element 

The coordinate transformation matrix described in (2.16) represents 

transformations at one end of the space frame member. The complete 

displacement transformation matrix for the degree of freedom of both ends of the 

frame member has twelve columns and twelve rows as shown in (2.17). 

 















































333231

232221

131211

333231

232221

131211

333231

232221

131211

333231

232221

131211

000000000
000000000
000000000

000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000

bbb
bbb
bbb

bbb
bbb
bbb

bbb
bbb
bbb

bbb
bbb
bbb

B

 

(2.17) 

where; jib ,  i=1, 2, 3 and j=1, 2, 3 are the terms of the coordinate transformation 

matrix  described as follows. 
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         

         
1

33
1

32
1

31

1
23

1
22

1
21

131211

sincos,
sin

,cossin

cossin,
cos

,cossin

,,






















































yzxbbzyxb

yzxbbzxzb

zbybxb

 
(2.18) 

 

Space frame members along the Y-Axis 

It is apparent from relationship (2.14) that for a frame member along Y-axis, 

0 yx , lz   and .01 l  This causes division by zero in the expressions 

given (2.18) which makes them unstable as shown in (2.19). In order eliminate 

this discrepancy displacement transformation matrix is required to be re-

constructed. These special matrices are given in (2.20) and (2.21). When x axis of 

space frame member is along to +Y axis, transformation matrix of (2.20) is used. 

when x axis of space frame member is along to -Y axis, transformation matrix of 

(2.21) is used. Directions of these members are shown in Figures 2.9 and 2.10. 

Detailed derivations of these cases are given in [115]. 

 B























0
00

0
0

0
00

0
0

010
 (2.19) 
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Figure 2.9 Local coordinates of vertical member in +Y direction 

 

 

 

 

 

 

 
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
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
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

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



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


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
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



































sin0cos000000000
cos0sin000000000

010000000000
000sin0cos000000
000cos0sin000000
000010000000
000000sin0cos000
000000cos0sin000
000000010000
000000000sin0cos
000000000cos0sin
000000000010

B
 

(2.20) 
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Figure 2.10 Local coordinates of vertical member in -Y direction 

 

 
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
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
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











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(2.21) 

 

2.2.3 Relationship between external loads and member end forces 

The relationship between member end forces and member end deformations at 

joint i  is given as     iii UkF  . This equation can be generalized as 

    UkF  for the whole frame when all the members are included in the above 

expression. In this equation, dimension of vectors  F  and  U  is m6  where, m  

is total number of joints in the space frame. Stiffness matrix  k  in that equation is 
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obtained by collecting the local stiffness matrices of frame members. This matrix 

has dimension of ( mm *6*6  ). When this equation is expanded to include all the 

members in the frame, it follows that     DBU  . In this expression, the 

dimension of matrix  B  is ( m6 m6 ) and the dimension of the displacement 

matrix  D  is also ( 16 m ). 

When an elastic frame is subjected to external loads, frame joints are displaced 

and frame members are deflected. In this case, work done by the external loads 

acting on frame joints is equal to the strain energy stored in frame members on 

due to the law of conservation of energy. It follows that: 

       UFDP TT
2
1

2
1

  (2.22) 

where;  P  is the external load vector,  D  is the joint displacements vector,  F  

is the vector of member end forces, and  U  is the vector of member end 

displacement. Remembering from (2.22) that     DBU  , it follows that  

              BFPDBFDP TTTT 
2
1

2
1  (2.23) 

Transpose of equation (2.23) yields ;  

     FBP T  (2.24) 

This equation represents the relationship between the external load vector and 

member end forces.  TB  in this equation is the transpose of the displacement 

transformation matrix  B .  
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2.2.4 Overall stiffness matrix 

The external load vector  P  can be related to joint displacement vector  D  

using the relationships     DBU   and    UkF  . When these expressions are 

substituted in (2.24);  

          DKDBkBP T   (2.25) 

is obtained. Here,  K  is called overall stiffness matrix of the structure in global 

coordinate system. This matrix is constructed by carrying out triple matrix 

multiplication shown in (2.25). It is apparent that the overall stiffness matrix can 

be obtained by collecting the contributions of each member to this matrix.  

        ii

Tm

i
i

m

i
iS BkBKK 




11

 (2.26) 

where, m is the number of members in space frame. Overall stiffness matrix of a 

structure is diagonally symmetric. Therefore, it is sufficient to structure to the half 

of this matrix. In the coding of the computer program Compact Storage Scheme is 

used to store the overall stiffness matrix.  In this scheme, only non-zero terms in 

the lower triangle part of the matrix are stored. 3-D frame shown in Figure 2.11 

consist of four fixed support four joints and eight members. Since each joint has 

six degree of freedom, structure stiffness matrix has 24 columns and 24 rows. 

When the overall stiffness matrix is stored as two dimensional arrays, n the 

computer memory, 576 locations are required. However, if compact storage 

scheme is used, the total number of locations required is decreased to 264.  

Therefore, 54% of memory saving is achieved. In Figure 2.12, each box 

represents the contribution of matrices of members. Terms of stiffness matrix in 

global axis for each member are added to their place in structure stiffness matrix. 

For example, end joint numbers of member 5 are 1 and 3. If first end of this 

member is accepted as lower number, terms of member stiffness matrix in 
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global are  added  to boxes numbered  (1,1) , (3,1) and (3,3) in the structure 

stiffness matrix. In the same way, terms of stiffness matrix for member 8 will be 

added to boxes numbered (2,2) , (4,2) and (4,4) in the overall stiffness matrix. It 

can be clearly seen from Figure 2.12 that, no terms are added in box numbered 

(4,1). Therefore, terms of this box are equal to zero and these terms are not 

required to be stored in computer memory. In addition, upper triangle terms of the 

structure stiffness matrix are not required to be stored. This small example clearly 

shows the advantage of using compact storage scheme for storing the overall 

stiffness matrix in the computer memory. 

 

 

Figure 2.11 8 members 3-D frame 
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Figure 2.12 Position of stiffness matrix terms for 8 members 3-D frame 

 

2.2.5 Member end conditions 

In some cases, beams of steel frames are connected to columns with hinge 

connections where bending moment transfer is not possible. In such a case, value 

of the bending moment is equal to zero at that joint. Therefore end displacements 

and end forces should be recalculated by equating bending moment to the zero at 

the hinged joint. Consequently, member stiffness matrix for a member having a 

hinge connection at one end is not same as the one which is rigidly connected to 

columns. In general, there can be 4 types of members in a steel frame. These 

members depending on the end conditions are tabulated in Table 2.1 and 

described in the following. 
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Table 2.1 Type of hinge conditions 

Member Type Type of Ends 

Type 1 Both ends are moment resisting 

Type 2 First end is hinged 

Type 3 Far end is hinged 

Type 4 Both ends are hinged 

 

Type 1: Frame member both ends are moment resisting 

Stiffness and transformation matrices for that condition were given in (2.2) and 

(2.17)  

Type 2: Frame member having a hinge connection at its first end  

 

Figure 2.13 3-D frame member having a hinge connection at its first end 

 

It is clear from Figure 2.13 that when first the end of a frame member is hinged 

the bending moment about z axis becomes zero at that joint ( 0ziM ).  This 

condition yields the following Equation (2.27). 
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 0
2646
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
   (2.27) 

In Equation (2.27), if  zi  equality is substituted in to stiffness equations following 

equations are obtained. 
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(2.28) 
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After simplification, the relationships between end forces and displacements are 

obtained as follows. 
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(2.29) 

When these are expressed in a matrix form, following stiffness matrix is obtained 

for a frame member having a hinge at its first end. 
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(2.30) 

Displacement transformation matrix of a frame member having a hinge at its first 

end is given in the following (2.31). Only difference between this matrix and 

displacement transformation matrix for type 1 given in (2.17) is that all terms in 

line parallel to zi  be equal to zero. Since zi  term, representing rotation on 

hinged joint is eliminated from stiffness equations. Transformation matrix for that 

case becomes in the following.  

 















































333231

232221

131211

333231

232221

131211

232221

131211

333231

232221

131211

000000000
000000000
000000000

000000000
000000000
000000000
000000000000
000000000
000000000
000000000
000000000
000000000

bbb
bbb
bbb

bbb
bbb
bbb

bbb
bbb

bbb
bbb
bbb

B

 

(2.31) 

where, 3,2,13,2,1,  jib ji  terms are given in (2.18). Transformation matrix of 

vertical member in +Y direction is given in the following. 
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 
































































sin0cos000000000
cos0sin000000000

010000000000
000sin0cos000000
000cos0sin000000
000010000000
000000000000
000000cos0sin000
000000010000
000000000sin0cos
000000000cos0sin
000000000010

B

 

(2.32) 

Similarly, transformation matrix of vertical member in -Y direction is given in the 

following. 

 








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

sin0cos000000000
cos0sin000000000
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000000000sin0cos
000000000cos0sin
000000000010

B

 

(2.33) 

Type 3: Frame member having a hinge connection at its second end 

When second end of a frame member is hinged, as shown in Figure 2.13, bending 

moment about z axis will be zero at that joint ( 0zjM ).  From this equation 

rotation about z axis of that end of frame member ( zj ) is obtained as follows. 
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Figure 2.14 3-D frame member having a hinge connection at its second end 

 

Substituting zj in (2.1), following equations are obtained 
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After simplification, the relationships between end forces and displacements are 

obtained. 
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When they are written in matrix form, following equation system is obtained.  

 
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

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(2.37) 

Displacement transformation matrix for a frame member having a hinge 

connection at its second end is given in (2.38). Difference between this matrix and 
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transformation matrix given in (2.17) is that all terms, corresponding to zj , term 

is equal to zero. Because, zj  is eliminated from the equation system given in 

(2.36). Therefore, displacement transformation matrix changes to the following 

form.  

 


















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

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

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

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
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
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333231
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333231

232221

131211

bbb
bbb

bbb
bbb
bbb

bbb
bbb
bbb

bbb
bbb
bbb

B

 

(2.38) 

For a frame member along the +Y axis displacement transformation matrix has 

the following form. 

 
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
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


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
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010000000000
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000000000sin0cos
000000000cos0sin
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

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


B

 

(2.39) 

If the frame member is along the -Y axis displacement transformation becomes.  
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 
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B (2.40)

 

Type 4: Frame member having a hinge connections at both ends  

 

 

Figure 2.15 3-D frame member having a hinge connections at both ends  

When both ends of a frame member are hinged, member becomes an axial 

member. It only transfer axial forces. In this 

case, iv , jv , i , j , xiM , xjM , yiM , yjM , ziM  and zjM  terms become equal to 

zero. Thus, relationships between end forces and joint displacements are reduced 

to those given in the following (2.41). 
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when these equations are written in matrix form, the following stiffness matrix is 

obtained. 
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(2.42)

The displacement transformation matrix for this case is given in (2.43). In this 

displacement transformation matrix all terms corresponding to 

zjziyjyixjxijiji vv  and,,,,,,, ,   are equal to zero. Consequently the 

displacement transformation takes the following form.  
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(2.43)
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When the member along the +Y axis displacement transformation matrix 

becomes. 

 


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For a frame member along –Y axis displacement transformation matrix has 

following form. 

 
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(2.45)
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2.2.6 General steps for 3-D frame analysis 

Frame analysis steps in this program are described as follows: 

Firstly input data is read from program. These data consists of modulus of 

elasticity, shear module, section properties, member end joint numbers, member 

group numbers, joint coordinates and frame forces. The structure stiffness matrix 

 sK  and the load vector  P  are calculated in Equation (2.25) by using these 

values. Then, Equation system, given in (2.25) (    DKP  ), is solved and joint 

displacements in global coordinates (     PKD 1 ) are obtained. By then, the 

vector member end forces and moments are calculated by using      DBkF   

equality. Consequently, in addition to joint displacements and joint rotations in 

global X, Y, Z coordinates, axial forces,  shear forces in local y, z axis and 

moments x, y, z coordinates are obtained by using the frame analysis program. 

Computer Program written in FORTRAN for analyzing 3-D frames is tested and 

results are compared to package program STRAND 7 in numerical example that 

are shown in section 2.4.1. 

 

2.3 The effect of warping in thin walled members 

Warping effect occurs due to a twisting moment. When a twisting moment acts on 

thin walled beam as shown in Figure 2.16, the horizontal fibers of the beam along 

x axis, which are located on top and bottom surface on the beam, rotate. As a 

result of this rotation, particles located top and bottom surfaces of the beam move 

along z axis from their initial position in space. Therefore, the top and bottom 

surfaces of the beam do not remain plane and become warped. If the far 
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end of the beam is rigidly fixed, warping of beam is restrained. This restraint 

causes same longitudinal strains and stresses. The presence of the longitudinal 

stresses occur by applying part of the work done by twisting moment. The 

twisting moment develops shear and normal stresses associated with the St. 

Venant Twist and flexural twist. The twisting moment acting on the section 

consist of two parts. 

wSV TTT   (2.46) 

 
Figure 2.16 Warping effect of thin walled beam 

 

where, SVT  is the St. Venant torsional moment and  wT  is the flexural twist. These 

torsional moment components can be expressed in terms of twisting as follows: 

dz
dGJTsv


     ,       2

2

dz
dEIT ww


    (2.47) 

Substituting these equations into (2.46), following differential equation is 

obtained (2.48).  
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2

2

dz
dEI

dz
dGJT w


  (2.48) 

In case of distributed torque along the beam: 

3

3

2

2

dz
dEI

dz
dGJ

dz
dTt w


  (2.49) 

Dividing both sides by wEI  the following equation is obtained. 

02  ıı
z

ııı
z   (2.50) 

where,
wEI

GJ
2  

The general solution of this equation  is: 

DCzzBzAz  )cosh()sinh(   (2.51) 

Where A, B, C, D are constants which are obtained from homogeneous solution of 

the differential equation (2.50). Consequently, relationship between the torsional 

moment and the twisting angle is demonstrated with equation (2.51). In order to 

use this relationship in matrix displacement method, torsional stiffness matrix 

needs to be constructed.  
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Torsional stiffness matrix 

The total torque acting on a member is a vector that acts longitudinal direction of 

a member [115]. In Figure 2.17, xiM   and xjM  are the St. Venant tornional 

moments, and xi  and xj  are the resulting displacement parameters. The St 

Venant torque is a vector that acts in the same direction as these end-torsional 

moments. However, warping torque wT  vector does not act in the same direction. 

For thin walled members the warping torque can be represented in terms of the 

pair of bending moments, and these moments can be represented as a vector that 

acts in the direction of Y axis (see Figure 2.18). These moments ( wiM  and wjM  ) 

are called as bi moment. General definition of a bi moment is a pair equal but 

opposite bending moments acting in two parallel planes. The resulting 

displacement parameters of the warping torque ( wi  and wj )  can be represented 

as vector which are the first derivative of  the resulting displacement parameters 

of the St Venant torque ( xi  and xj ). Relationship between the resulting 

displacement parameters ( xi , xj , wi  and wj ) and torsional moments ( xiM , 

xjM , wiM  and wjM  ) can be represented as equilibrium given as follows. 

   

   
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
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
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



2,21,2

2,11,1

 (2.52) 

where,  ijTS   is the torsional stiffness matrix. Terms of this matrix are calculated 

in the following 
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Figure 2.17 Beam element subjected to the torsion 

 

 

 

Figure 2.18 Twisting torque acting on beam element 

 

Let consider a beam which is subjected to the torsion given in the Figure 2.17.  

Following boundary conditions is applied to Equation (2.49) in order to obtain the 

terms of torsional stiffness matrix of the beam. 



 
57

First boundary condition ( 0001  wjwixjxi  ): After applying 

these boundary conditions, end moments are obtained as in the following: 

2)cosh()cosh(2
)sinh(




lll
l

EI
GJGJMM

w
xjxi 

  (2.50) 

and  

2)cosh()cosh(2
1)cosh(





lll

lGJMM wjwi 
  (2.51) 

Second boundary condition ( 0100  wjwixjxi  ): If these 

boundary conditions are applied, following end moments are obtained: 

2)cosh()cosh(2
1)cosh(





lll

lGJMM xjxi 
  (2.52) 

2)cosh()cosh(2
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 (2.53) 
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



lll
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
 (2.54) 

If Equations (2.50), (2.51), (2.52), (2.53) and (2.54) are written in matrix form, 

following equation system is obtained. 
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where; 

2)cosh()cosh(2
)sinh(

1 


lll
lGJT


  (2.56) 

2)cosh()cosh(2
1)cosh(

2 



lll

lGJT


  (2.57) 

2)cosh()cosh(2
)cosh()sinh(

3 



lll
lllGJT





 (2.58) 

2)cosh()cosh(2
)sinh(

4 



lll

llGJT





 (2.59) 

By then, these terms are added to the local stiffness matrix which has twelve rows 

and twelve columns as shown in (2.2). This brings the total number of degrees of 

freedom to seven at a joint of space frame. These degrees of freedoms are the 

usual three translations along   X, Y, and Z axes, three rotations about the global 

axes and additional warping deformation. Consequently, the member stiffness 

matrix in local coordinate system has fourteen rows and fourteen columns which 

is shown in (2.60). Three dimensional frames are analyzed takes into account 

warping effect by using this stiffness matrix. At the end of the analysis, in 

addition to the member end forces and end moments, which are obtained from 

without warping case, bi-moments are obtained. 
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(2.60)

 

2.4 Numerical examples 

2.4.1 Numerical example eight member 3-D frame 

Eight member 3-D frame is selected as an example problem. This frame, whose 

load conditions and geometry are shown in Figure 2.19, is firstly analyzed by 

using developed algorithm. Input data of this algorithm for this frame is 

demonstrated at Table 2.2 
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Figure 2.19 Eight member 3-D frame 

 

Table 2.2 Input data of eight member 3-D frame 

4 8 1 4 5 1 2.08e8 0.7885e8                 
1 2 2 4 3 4 1 3 1 5 2 6 3 7 4 8         
1 1 1 1 1 1 1 1 1                
0 0 0 0 0 0 0 0                 
1 1 1 1 1 1 1 1                 

0.09 6.75e-4 6.75e-4 1.14e-2                     
0 4 4 0 4 0 4 4 4 4 4 0 0 0 4 0 0 0 4 0 4 4 0 0 

1 1                       
2                        
1 0 0 -100 0 0 0                  
3 0 0 -100 0 0 0                  
4                        
1 0 1 0 0                    

-25 -25 0 4                     
2 0 1 0 0                    

-25 -25 0 4                     
3 0 1 0 0                    

-25 -25 0 4                     
4 0 1 0 0                    

-25 -25 0 4                     
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Joint displacements and rotations obtained from thesis program are tabulated in 

Table 2.3 and members end forces and end moments are shown in Table 2.4. 

Table 2.3 Joint displacements of eight member 3-D frame 

 

Table 2.4 Member end forces of eight member 3-D frame 

DISPLACEMENTS OF JOINTS   

JOINT 
 NO 

X-DISP 
(m) 

Y-DISP 
(m) 

Z-DISP 
(m) 

THETA-X  
(Radian) 

THETA-Y 
 (Radian) 

THETA-Z 
 (Radian) 

1 0.90319E-06 -0.12404E-04 -0.27672E-02 -0.57910E-03 0.79385E-09 -0.16082E-03 

2 0.90088E-06 -0.30957E-04 -0.27546E-02 -0.25475E-03 0.84763E-09 -0.16082E-03 

3 -0.90095E-06 -0.12404E-04 -0.27673E-02 -0.57910E-03 0.83961E-09 0.16082E-03 

4 -0.90327E-06 -0.30957E-04 -0.27546E-02 -0.25475E-03 0.82861E-09 0.16082E-03 

MEMBER FORCES 

MEM. 
 NO. 

END 
 NO. 

FX 
(kN) 

FY 
(kN) 

FZ 
(kN) 

MX 
(kN-m) 

MY 
(kN-m) 

MZ 
(kN-m) 

1 1 0.5825E02 0.7213E01 -0.2502E-04 0.3290E-04 0.4818E-04 -0.6346E02 

1 2 -0.5825E02 0.9279E02 0.2502E-04 -0.3290E-04 0.5190E-04 -0.1077E03 

2 1 0.8322E01 0.5000E02 0.1133E-03 0.1172E-03 -0.2247E-03 0.2221E02 

2 2 -0.8322E01 0.5000E02 -0.1133E-03 -0.1172E-03 -0.2284E-03 -0.2221E02 

3 1 0.5825E02 0.7213E01 -0.2639E-04 0.4064E-04 0.5317E-04 -0.6346E02 

3 2 -0.5825E02 0.9279E02 0.2639E-04 -0.4064E-04 0.5241E-04 -0.1077E03 

4 1 0.8322E01 0.5000E02 0.1217E-03 0.1067E-03 -0.2418E-03 0.2221E02 

4 2 -0.8322E01 0.5000E02 -0.1217E-03 -0.1067E-03 -0.2295E-03 -0.2221E02 

5 1 0.5721E02 0.4175E02 -0.8322E01 -0.1782E-03 0.2221E02 0.6346E02 

5 2 -0.5721E02 -0.4175E02 0.8322E01 0.1782E-03 0.1108E02 0.1035E03 

6 1 0.1428E03 0.5825E02 -0.8322E01 -0.1903E-03 0.2221E02 0.1077E03 

6 2 -0.1428E03 -0.5825E02 0.8322E01 0.1903E-03 0.1108E02 0.1253E03 

7 1 0.5721E02 0.4175E02 0.8322E01 -0.1885E-03 -0.2221E02 0.6346E02 

7 2 -0.5721E02 -0.4175E02 -0.8322E01 0.1885E-03 -0.1108E02 0.1035E03 

8 1 0.1428E03 0.5825E02 0.8322E01 -0.1860E-03 -0.2221E02 0.1077E03 

8 2 -0.1428E03 -0.5825E02 -0.8322E01 0.1860E-03 -0.1108E02 0.1253E03 
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 This frame also is analyzed by using package program STAND7. Displacements 

and rotations of joints obtained from STRAND7 are tabulated in Table 2.5 and 

end forces and end moments of frame members are shown in Table 2.6.  It is 

apparent from the tables that there is no considerable difference between results 

obtained by the program developed and these found by STAND7 program results. 

There are small differences observed between these results, since STRAND7 

program consider the shear effect for analyzing frames. However, this effect is not 

important in example problems. Therefore, absolute difference between results is 

around 10-3-10-5. In addition, sign differences are seen between values because of 

the difference in sign convention. 

 

Table 2.5 Joint displacements of eight member 3-D frame obtained by STRAND7 

  
DX 
(m) 

DY 
(m) 

DZ 
(m) 

RX 
(Radian) 

RY 
(Radian) 

RZ 
(Radian) 

Node1 0 0 -0.0028 -0.5794E-03 0 -0.16057E-03 
Node2 0 0 -0.0028 -0.2548E-03 0 -0.16057E-03 
Node3 0 0 -0.0028 -0.5794E-03 0 0.16057E-03 
Node4 0 0 -0.0028 -0.2548E-03 0 0.16057E-03 
Node5 0 0 0 0 0 0 
Node6 0 0 0 0 0 0 
Node7 0 0 0 0 0 0 
Node8 0 0 0 0 0 0 
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Table 2.6 Member end forces of eight member 3-D frame obtained by STRAND7  

  
FX 

(kN) 
FY 

(kN) 
FZ 

(kN) 
MX 

(kN-m) 
MY 

(kN-m) 
MZ 

(kN-m) 
Beam1:End1 -58.2514 7.2116 0 0 0 63.4638 
Beam1:End2 -58.2514 -92.7884 0 0 0 -107.69 

Beam2:End1 -8.3216 50 0 0 0 -22.2066 

Beam2:End2 -8.3216 -50 0 0 0 -22.2066 

Beam3:End1 -8.3216 50 0 0 0 -22.2066 

Beam3:End2 -8.3216 -50 0 0 0 -22.2066 

Beam4:End1 -58.2514 7.2116 0 0 0 63.4638 

Beam4:End2 -58.2514 -92.7884 0 0 0 -107.69 

Beam5:End1 -57.2116 -8.3216 41.7486 0 22.2066 -63.4638 

Beam5:End2 -57.2116 -8.3216 41.7486 0 -11.0799 103.5306 

Beam6:End1 -142.788 -8.3216 58.2514 0 22.2066 -107.69 

Beam6:End2 -142.788 -8.3216 58.2514 0 -11.0799 125.3159 

Beam7:End1 -57.2116 8.3216 41.7486 0 -22.2066 -63.4638 

Beam7:End2 -57.2116 8.3216 41.7486 0 11.0799 103.5306 

Beam8:End1 -142.788 8.3216 58.2514 0 -22.2066 -107.69 

Beam8:End2 -142.788 8.3216 58.2514 0 11.0799 125.3159 

 

A computer program is coded in FORTRAN based on the matrix displacement 

method above. The program reads the input data which is includes the geometrical 

information of the frame as well as cross sectional properties of the W sections 

adopted for the beams and columns of the frame. Furthermore, the loading of the 

frame is also read. Two numerical examples are considered to demonstrate the 

effect of warping in behavior of frame. First example is two-bay, two-storey three 

dimensional, irregular frame shown in Figure 2.20, second example is a 468 

member twenty storey three dimensional, irregular frame shown in Figures 2.21 

and 2.22 
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2.4.2 Two-bay two-storey three dimensional irregular frame 

Two-bay, two-storey three dimensional, irregular frame shown in Figure 2.20 is 

considered to demonstrate the effect of warping. The dimensions of the frame are 

shown in same figure. The frame consists of 21 members that are collected in 2 

independent groups. In this frame the W310x86 section is assigned to columns 

and the W250x67 section is selected for beams. The frame is subjected to wind 

loading -50 KN at Z direction. 

At the end of the analysis joint displacements are demonstrated in tables 2.7 and 

2.8; member end forces are demonstrated in table 2.9 and 2.10. 

 

 

Figure 2.20 Beam Element subjected to the torsion 
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Table 2.7 Displacements (excluding warping effect) 

JOINT  
NO X-DISP Y-DISP Z-DISP THETA-X THETA-Y THETA-Z 

1 -0.5786E-2 0.1579E-3 -0.6043E-1 -0.2055E-2 -0.3322E-2 0.1144E-2 
2 0.2783E-2 -0.1416E-3 -0.6036E-1 -0.2058E-2 -0.3320E-2 -0.3032E-3 
3 -0.5779E-2 0.7129E-2 -0.2894E-1 -0.3517E-2 -0.3318E-2 0.1325E-2 
4 0.2781E-2 -0.1166E-3 -0.2887E-1 -0.3735E-2 -0.3316E-2 -0.3420E-3 
5 -0.1473E-2 0.1226E-3 -0.3401E-1 -0.4537E-2 -0.3380E-2 0.9015E-3 
6 0.1050E-2 -0.1094E-3 -0.3394E-1 -0.4527E-2 -0.3151E-2 -0.3574E-3 
7 -0.1437E-2 0.7088E-2 0.1094E-2 -0.3515E-2 -0.6750E-3 0.4993E-3 
8 0.1028E-2 -0.7301E-4 0.9532E-3 -0.2506E-2 -0.1309E-2 -0.2823E-3 
9 -0.1380E-2 0.4530E-4 -0.1581E-1 -0.1577E-2 0.1286E-2 -0.1356E-3 

10 0.1000E-2 -0.3158E-4 -0.1574E-1 -0.1562E-2 0.1450E-2 -0.2389E-3 
 

Table 2.8 Displacements (including warping effect) 

JOINT 
NO X-DISP Y-DISP Z-DISP THETA-X THETA-W THETA-Y THETA-Z 

1 -0.5779E-2 0.1579E-3 -0.6041E-1 -0.2054E-2 0.1319E-3 -0.3324E-2 0.1143E-2 
2 0.2774E-2 -0.1416E-3 -0.6034E-1 -0.2057E-2 0.5547E-4 -0.3319E-2 -0.3025E-3 
3 -0.5773E-2 0.7125E-2 -0.2894E-1 -0.3516E-2 -0.4820E-3 -0.3301E-2 0.1323E-2 
4 0.2774E-2 -0.1166E-3 -0.2887E-1 -0.3734E-2 -0.3127E-3 -0.3310E-2 -0.3406E-3 
5 -0.1471E-2 0.1226E-3 -0.3400E-1 -0.4536E-2 -0.3722E-3 -0.3363E-2 0.9003E-3 
6 0.1048E-2 -0.1094E-3 -0.3393E-1 -0.4526E-2 -0.3304E-3 -0.3136E-2 -0.3562E-3 
7 -0.1436E-2 0.7085E-2 0.1094E-2 -0.3514E-2 -0.1043E-3 -0.6761E-3 0.4985E-3 
8 0.1025E-2 -0.7301E-4 0.9524E-3 -0.2506E-2 -0.2532E-3 -0.1309E-2 -0.2815E-3 
9 -0.1379E-2 0.4528E-4 -0.1581E-1 -0.1577E-2 0.3357E-3 0.1284E-2 -0.1355E-3 
10 0.9975E-3 -0.3157E-4 -0.1574E-1 -0.1562E-2 0.3370E-3 0.1446E-2 -0.2386E-3 

 

Table 2.9 Member end forces (excluding warping effect) 

Member 
 End 

FX 
(kN) 

FY 
(kN) 

FZ 
(kN) 

MX 
(kN-m) 

MY 
(kN-m) 

MZ 
(kN-m) 

  

(kPa) 
7 1.37E2 1.72E-3 1.45 -8.24E–3 -9.85 4.41 6.235E3 

13 -1.37E2 -1.72E-3 -1.45 8.24E–3 2.45 -4.40 4.124E3 
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Table 2.10 Member end forces (including warping effect) 

Member 
 End 

FX 
(kN) 

FY 
(kN) 

FZ 
(kN) 

MX 
(kN-m) 

MW 
(kN-m2) 

MY 
(kN-m) 

MZ 
(kN-m) 

  

(kPa) 
7 1.37E2 1.91E–2 1.45 -2.59E–2 -5.16E–2 -9.85 4.46 7.276E3 

13 -1.37E2 -1.91E–2 -1.45 2.59E–2 -3.85E–2 2.45 -4.36 4.839E3 
 

It is clearly seen from table 2.9 and table 2.10 that there is a 16% increases in the 

normal stress value for member 7 when the effect of warping is included in the 

analysis of the frame.  

 

2.4.3 468 Member twenty storey three dimensional irregular 

frame 

The three dimensional view and plan view of 20-story irregular steel frame shown 

in Figures 2.21 and 2.22 is taken from previous studies given in reference [114 -

116]. The frame consists of 210 joints and 460 members that are grouped into 13 

independent design groups. Frame sections assigned these groups are tabulated in 

Table 2.11 The frame is subjected to a uniformly distributed vertical load of 

4.79kN/m2 on each floor and wind load of 0.958kN/m2 along the Z axis.   

At the end of the analysis displacements and rotations are demonstrated in Figures 

2.23 and 2.24. Values of the stresses for critical members are tabulated in Table 

2.12. 
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Figure 2.21 3-D view of twenty-story, three-bay irregular frame 
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Table 2.11 Assigned sections for each group 

Group Number Assigned Section 
1 W310X97 
2 W310X38.7 
3 W610X101 
4 W530X85 
5 W530X92 
6 W310X38.7 
7 W250X101 
8 W310X129 
9 W310X158 

10 W360X196 
11 W360X216 
12 W360X237 
13 W360X262 

 

 

 

Figure 2.22 Plan view of twenty-story, three-bay irregular frame 
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Figure 2.23 Displacements of twenty-story, three-bay irregular frame 
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Figure 2.24 Rotations of twenty-story, three-bay irregular frame 
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Table 2.12 Stresses for twenty-story, three-bay irregular frame 

Without Warping With Warping 

Mem End P 
(MPa) 

Z 
(MPa) 

Y 
(MPa) 

Total 
(MPa) 

P 
(MPa) 

Z 
(MPa) 

Y 
(MPa) 

W 
(MPa) 

Total 
(MPa) 

Diff. 
% 

Diff. 
MPa 

258 1 1.17 49.1 2.61 52.8 1.16 105 .418 1.46 108 104.24 55.07 
258 2 1.17 124 0.364 126 1.16 68.9 1.95 1.59 73.6 -41.53 -52.28 
206 1 0.131 23.7 15.5 39.3 0.149 116 9.46 1.74 128 224.76 88.24 
206 2 0.131 150 12.3 162 0.149 57.7 11.6 1.73 71.2 -56.08 -90.91 
141 1 0.151 33.1 24.6 57.7 0.028 106 19.5 1.22 127 119.61 69.06 
141 2 0.151 135 20.9 156 0.028 62.9 21.4 1.21 85.5 -45.28 -70.72 
76 1 0.126 47.9 33.6 81.6 0.145 89.1 19 0.527 109 33.23 27.11 
76 2 0.126 108 29.2 137 0.145 67.3 21.2 0.458 89.1 -35.03 -48.03 
11 1 2.46 40.9 33.1 76.5 2.44 45.4 22.4 0.391 70.7 -7.52 -5.75 
11 2 2.46 47.1 29.1 78.6 2.44 42.7 24.1 0.722 70.0 -10.95 -8.60 

 

It is apparent from to Table 2.12 that effect of warping is significant in the 

computation of normal stresses. In addition, Figures 2.23 and 2.24 show that the 

effect of warping causes considerable changes in joint displacements and 

rotations. Hence it can be concluded that warping has a considerable effect in the 

behavior of the irregular frames. 
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CHAPTER 3 

DESIGN OF STEEL BEAM-COLUMN MEMBER 

ACCORDING TO LRFD-AISC INCLUDING EFFECT 

OF WARPING 

3.1 Introduction 

Steel members that are subject to axial force as well as bending moments are 

called beam columns. In this chapter, the design of beam-column members 

according to according to LRFD-AISC [30] the design code is explained. At the 

beginning, information about how to design frame members according to design 

specifications will be given. The design constraints that are required to be 

satisfied for a steel beam column so that the member can be considered safe are 

explained. 
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3.2 Design of steel beam-column members 

3.2.1 Design of steel beam-column members without considering 

the effect of warping 

Strength limitations of beam-column members for without considering the effect 

of warping specified in Chapter H in the LRFD-AISC design code. These 

limitations are described in the below [30].  

3.2.1.1 Members under combined forces and torsion 

Doubly and singly symmetric member in flexure and tension 

The interaction of flexure and tension in symmetric shapes is limited by Equations 

(H1-1a) and (H1-1b) in the LRFD-AISC design code [30], given in Equations 

(3.1) and (3.2).  
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where; 

uP required tensile strength, N 

nP  nominal tensile strength established in accordance with Chapter D in the 

LRFD-AISC, N 

uM  required flexural strength established in accordance with Chapter C in the 

LRFD-AISC, N-mm. 
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nM = nominal flexural strength established in accordance with Chapter F in the 

LRFD-AISC, N-mm. 

x = subscript of strong axis bending symbol  

y = subscript of weak axis bending symbol. 

 = t = resistance factor for tension (see section D1 in LRFD-AISC) 

b = resistance factor for flexure = 0.90. 

A more detailed analysis of the interaction of flexure and tension is permitted in 

lie of Equations (H1-1a) and (H1-1b) in the LRFD-AISC design code [30]. 

 

Doubly and singly symmetric members in flexure and compression 

Similarly, the interaction of flexure and compression in symmetric shapes shall be 

limited by Equations (3.1) and (3.2). 

where; 

uP = required compressive strength, N 

nP = nominal compressive strength established in accordance with Chapter E in 

the LRFD-AISC, N 

uM = required flexural strength established in accordance with Chapter C in the 

LRFD-AISC, N-mm 

nM = nominal flexural strength established in accordance with Chapter F in the 

LRFD-AISC, N-mm 

x = subscript of strong axis bending symbol. 

y = subscript of weak axis bending symbol. 

 = c = resistance factor for compression, = 0.85 

b = resistance factor for flexure = 0.90. 
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3.2.1.2 Calculation of required flexural strength 

Second order effects 

LRFD-AISC clause C1 imposes that second order  P  effects should be 

considered in the design of steel frames. “In structures designed on the basis of 

plastic analysis, the required flexural strength ( uM ) shall be determined from a 

second-order plastic analysis that satisfies the requirements of Section C2 in the 

LRFD-AISC. In structures designed on the basis of elastic analysis, uM  for 

beam-columns, connections, and connected members shall be determined from a 

second-order elastic analysis or from the following approximate second-order 

analysis procedure” [30]: 

ntntu MBMBM 21   (3.3) 

where; 

ntM = required flexural strength in member without considering lateral translation 

of the frame, N-mm 

ltM = required flexural strength in member considering only lateral translation of 

the frame, N-mm 

1
1
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1 













e

u

m

P
P

CB  
(3.4) 

21
c

y
ge

F
AP


  where, c  is the slenderness parameter, in which the effective K  in 

the plane of bending shall be determined in accordance with Section C2.1 in the 

LRFD-AISC [30], for the braced frame. 



 
76

E
F

r
lK y

c 
    

uP = required axial compressive strength for the member under consideration, N 

mC = a coefficient based on elastic first-order analysis assuming no lateral 

translation of the frame whose value shall be taken as follows: 

(a) For compression members not subject to transverse loading between their 

supports in the plane of bending, the value of mC  is calculated as: 

 











2

14.06.0
M
MCm  (3.5) 

where; 
2

1

M
M  is the ratio of the smaller to larger moments at the ends of that 

portion of the member un-braced in the plane of bending under consideration. 

21 / MM  is positive when the member is bent in reverse curvature, negative when 

bent in single curvature. 

(b) For compression members subjected to transverse loading between their 

supports, the value of mC  shall be determined either by rational analysis or by the 

use of the following values: 

For members whose ends are restrained. . . . . . . . . . . . . . . . . . . . mC =0.85 

For members whose ends are unrestrained. . . . . . . . . . . . . . . . . . mC =1.00 
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where; 

 uP = required axial strength of all columns in a story, N 

oh = lateral inter-story deflection, mm 

H = sum of all story horizontal forces producing oh , N 

L = story height, mm 

21
c

y
ge

F
AP


 , N 

where c  is the slenderness parameter, in which the effective length factor K in 

the plane of bending shall be determined in accordance with Section C2.2 in the 

LRFD-AISC [30], for the un-braced frame. 

3.2.1.3 Calculation of nominal tensile strength 

Design tensile strength 

The design strength of tension members nt P shall be the lower value obtained 

according to the limit states of yielding in the gross section and fracture in the net 

section [30]. 
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For yielding in the gross section: 

90.0t   

gyn AFP   
(3.7) 

For fracture in the net section: 

75.0t  

eun AFP   
(3.8) 

where; 

eA = effective net area, mm2 

gA = gross area of member, mm2 

yF = specified minimum yield stress, MPa 

uF = specified minimum tensile strength, MPa 

nP = nominal axial strength, N. 

3.2.1.4 Calculations of nominal compressive strength  

Effective length and slenderness limitations 

Effective length 

The effective length factor K  shall be determined in accordance with Section C2 

in LRFD-AISC [30]. 

Design by Plastic Analysis 

If the column slenderness parameter c  does not exceed 1.5 K , design by plastic 

analysis is permitted [30]. 

Design Compressive Strength for Flexural Buckling 

The design strength for flexural buckling of compression is nc P [30]: 
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85.0c  

crgn FAP   (3.9) 

For 5.1c ; 

ycr FF c )658.0(
2  (3.10) 

For 5.1c ; 

y
c

cr FF 







 2

877.0


 (3.11) 

where; 

E
F

r
lK y

c 
   (3.12) 

gA gross area of member, mm2 

yF specified yield stress, MPa 

E modulus of elasticity, MPa 

K effective length factor 

l laterally unbraced length of member, mm 

r governing radius of gyration about the axis of buckling, mm. 

3.2.1.5 Calculations of Nominal Flexural Strength  

Design for Flexure 

 “The nominal flexural strength is the lowest value obtained according to the limit 

stress of: (a) yielding; (b) lateral-torsional buckling; (c) flange local buckling; 

and (d) web local buckling” [30]. In order to calculate nominal strength of weak 

axis, only the limit state of yielding is required. Calculation of these limit states 

are described in the following. 
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Yielding 

The flexural design strength of beams, determined by the limit state of yielding, 

is nb M  [30]: 

90.0b  

pn MM   
(3.13) 

where; 

pM plastic moment (= yxxy M.ZF 51 for homogeneous sections), N-mm 

yM moment corresponding to onset of yielding at the extreme fiber from an 

elastic stress distribution ( SFy  for homogeneous section), N-mm. 

 

Lateral-Torsional Buckling 

This limit state is only applicable to members subject to major axis bending. The 

flexural design strength, determined by the limit state of lateral-torsional buckling, 

is nb M  [30]: 

b 0.90 

nM nominal strength determined as follows: 

Doubly Symmetric Shapes and Channels with rb LL   

The nominal flexural strength is [30]: 

  p
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  (3.14) 
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where; 

bL distance between points braced against lateral displacement of the 

compression flange, or between points braced to prevent twist of the cross section, 

mm. 

 

In the Equation (3.14), bC  is a modification factor for non-uniform moment 

diagrams where, when both ends of the beam segment are braced: 

 

CBAmax

max
b MMMM.

M.C
34352

512


  (3.15) 

where; 

maxM absolute value of maximum moment in the un-braced segment, N-mm 

AM absolute value of moment at quarter point of the un-braced segment, N-mm 

BM absolute value of moment at centerline of the un-braced beam segment, N-

mm 

CM absolute value of moment at three-quarter point of the un-braced beam 

segment, N-mm 

“ bC is permitted to be conservatively taken as 1.0 for all cases. For cantilevers or 

overhangs where the free end is un-braced, bC = 1.0” [23]. 

The limiting un-braced length for full plastic bending capacity, pL , shall be 

determined as follows [30]: 

yf
yp F

ErL 76.1  (3.16) 

The limiting laterally un-braced length rL  and the corresponding buckling 

moment rM  shall be determined as follows [30]: 
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where, 

xS section modulus about major axis, mm2 

E modulus of elasticity of steel (205 000 MPa) 

G shear modulus of elasticity of steel (77 200 MPa) 

LF smaller of ( ryf FF  ) or ywF  

rF compressive residual stress in flange; 69 MPa  

yfF yield stress of flange, MPa 

ywF yield stress of web, MPa  

yI moment of inertia about y-axis, mm4 

wC warping constant, mm6 

Equations (3.16) and (3.17) are conservatively based on bC = 1.0. 

Doubly Symmetric Shapes and Channels with bL > rL  

The nominal flexural strength is: 

pcrn MMM   (3.21) 

where, crM  is the critical elastic moment, determined as follows [30]: 
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(3.22) 

Flange Local Buckling 

The flexural design strength, determined by the limit state of flange local 

buckling, is nb M  [30] : 

b 0.90 

nM nominal strength determined as follows [30]: 

 

Doubly Symmetric Shapes and Channels with p   

pn MM   

 

Doubly Symmetric Shapes and Channels with rp    

 



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
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pr

r
rppbn MMMCM  

where, 

  with-thickness ratio, is equal to 
ft

b
2

 

 p limiting with-thickness ratio for compact sections, calculated from (Table 

B5-1) in the LRFD-AISC [30], described as follows: 
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y
p F

E38.0  (3.23) 

r limiting with-thickness ratio for non-compact sections, calculated from 

(Table B5-1) in the LRFD-AISC [30], described as follows: 

)69(
83.0


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y
r F

E  (3.24) 

Doubly Symmetric Shapes and Channels with  r  

SFMM crcrn   

where, crF critical stress, MPa. 

Web local buckling 

The flexural design strength, determined by the limit state of web local buckling, 

is nb M  [30] : 

b 0.90 

nM nominal strength determined as follows: 

Doubly symmetric shapes and channels with p   

pn MM   

Doubly symmetric shapes and channels with rp    
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where; 

  with-thickness ratio, is equal to 
wt
h  

p limiting with-thickness ratio for compact sections, calculated from (Table 

B5-1) in the LRFD-AISC [30], described as follows: 
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(3.25) 

r limiting with-thickness ratio for non-compact sections, calculated from 

(Table B5-1) in the LRFD-AISC [30], described as follows 


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74.0
170.5  (3.26) 

Doubly symmetric shapes and channels with  r  

For this case member is slender member and nominal strength is not calculated. 
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3.2.2 Strength constraints with considering the effect of warping 

Stress limitations of beam-column members with warping case are specified in 

AISC Design Guide Series number 9 (Torsional Analysis of Structural Steel 

Members) Equation (4.16a) [118]. It has the following form. 

0.1
9.085.0 21
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y

w
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by

crb
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cr
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FFFF
 (3.27) 

where; 

1crF  compressive critical stress for flexural or flexural-torsional member 

buckling from LRFD-AISC  Chapter E (
g

n
cr A

PF 1 ), MPa 

2crF  critical flexural stress controlled by yielding, lateral torsional buckling 

(LTB), web local buckling (WLB), or flange local buckling (FLB) from LRFD-

AISC specification Chapter F ( y
I

M
F

x

nx
cr 2 ), MPa 

a  normal stress due to axial load (
g

u
a A

P
 ), MPa 

bx  is normal stress due to bending about x axis ( y
I

M

x

ux
bx  ), MPa 

by  normal stress due to bending about y axis ( x
I

M

y

uy
by  ), MPa 

w  normal stress due to warping (





I
sM ww
)( ) where, wM  is bi-moment N-

mm2, wI  is  warping moment of inertia or warping constant mm6, )(s  sectorial 

coordinate of section or normalized warping constant mm2, yF  is yield stress 250 

MPa.  
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Detailed calculations of uP , uxM , uyM , nxM  and wM  terms were mentioned in 

section 3.2.1. Values of xI , yI , wI  and )(sw  terms for W shapes are determined 

from LRFD-AISC (Part 1 dimension and properties) [30]. 
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CHAPTER 4 

ANT COLONY OPTIMIZATION AND HARMONY 

SEARCH METHODS 

4.1 Introduction 

Ant colony optimization and harmony search methods are two of stochastic search 

techniques that are proved to be robust and efficient in finding the solution of 

structural optimization problems [33]. Ant colony optimization method was 

inspired from natural behavior of ants while they are spreading around in search 

of food. Once they find the food source the colony carries the food to their nest 

through the shortest distance between the food and their nest. Harmony search 

method was developed simulating music improvisation. Musician tries to carry 

out the perfect state of harmony during composition of a melody. Similarly, an 

optimizer also tries to find the optimum solution of the optimization problem 

under consideration. Both of these methods are robust techniques and widely used 

in large scale optimization problems [29, 86, 94, 114, 119 and 120].  

In this chapter, two metaheuristic optimization techniques among others; ant 

colony optimization method and harmony search algorithm are introduced. These 

optimization techniques are tested and compared with other optimization 

techniques in finding the solution of optimization problems in order to 

demonstrate their comparative performance.  
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4.2 Ant colony optimization  

The ant colony optimization algorithm (ACO), introduced by Marco Dorigo [87, 

90, 121 and 122], is one of the stochastic methods for solving optimization 

problems.  

4.2.1 Natural behavior of ants 

Ant colony optimization technique is inspired from the way that ant colonies find 

the shortest route between the food source and their nest. Ethnologists have 

discovered that ants are able to find the shortest path between the food source and 

their nest, despite the fact that they are completely blind [78, 82, and 83]. They 

achieve this by depositing a chemical substance called pheromone which is 

secreted from ants. This behavior of ants in finding the shortest path between food 

source and their nest can be described as follows. First an ant will move randomly 

by itself. As the ant moves the pheromone is secreted from this ants along a path. 

Following ants will sense the pheromone and will be inclined to follow it. When 

the leading ant takes the shorter path, it will return to its nest quicker. Therefore; 

the ant will be able to return to the food source to collect more food and make 

more tour and secrete more amount of pheromone along its path. If the ant 

continues to take the shortest path, higher concentrations of pheromone will 

remain on the path and more ants will be inclined to follow the shorter path. 

Hence, all ants take the shorter path and the shortest path is found as shown in 

Figure 4.1. 
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Figure 4.1 Natural behavior of ants. 

4.2.2 Method 

The ant colony optimization algorithm is first proposed by Gambardella and 

Dorigo [121 and 122]. In this study, ant colony optimization algorithm is applied 

to the travelling salesman problem defined as follows. In this problem, it is 

required to find the shortest route for a salesman when he/she needs to visit 

among number of cities. Consider that a salesman has to visit city j from another 

city i and the distance between these two cities is known as ijd . Distances between 

for all possible cities form the distance matrix


d , whose dimensions are nn, 

where n is the number of cities to be visited in the travelling salesman problem. 
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By using these distances the amount of the visibility is ijv  calculated between the 

cities i and j is defined with the following formula: 

ij
ij d

v 1
  

(4.2) 

After calculation visibility and distance values, the initial pheromone amount is 

calculated. The initial pheromone amount, represented by the )0(ij or 0  

notations, is calculated in the equation below (4.3): 

nnLn
1

0   
(4.3) 

where, n is number of cities the salesman must visit and nnL  is the length of the 

tour created by the nearest-neighbor heuristic 

After calculation of the initial pheromone amount, m number of ants are placed 

their initial cities randomly. Then each ant chooses the next city which has the 

best probability. The probability )(tp k
ij  that ant k  will choose to travel from city i 

to city j at cycle t is formulated in the equation below (4.4): 




 n

allowedl
ij

ijk
ij

ta

ta
tp

)(

)(
)(  

(4.4) 

where )(taij  called the ant decision table, is described in the following equation: 



 
92

   
    






n

allowedl
ijij

ijij
ij

vt

vt
ta









)(

)(
)(  

(4.5) 

where )(tij  represents the pheromone amount on the path that connects city i to 

city j at cycle t.   and   are the parameters used to adjust of pheromone amount 

and visibility respectively. After all ants have selected their next cities, one 

iteration is completed. At the end of the each iteration, local update rule is 

applied. In the local update rule, the amount of pheromone on the path connecting 

these two cities is adjusted. This rule is represented by the following formula: 

)()( tt ijij    
(4.6) 

where,   is the parameter between 0 and 1 representing evaporation rate of the 

pheromone amount. After completing local update rule, the ant starts to select the 

next cities by using the aforementioned decision process. This procedure 

continues until all ants visit all the cities meaning one cycle is completed.  After 

each cycle m path is obtained (where m is the number of ants). Length of each 

path is calculated and global update scheme is applied. This rule is described in 

Equation below (4.7): 

ijijij tt  )()1(  
(4.7) 

where   is constant between 0 and 1 chosen so that )1(  represents the 

evaporation of pheromone amount between cycle t  and 1t  (the amount of time 

required to complete a cycle). ij   is the change in pheromone amount on the 

path connecting city i  to city j . Value of ij  is represented by the following 

formula: 
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



m

k

k
ijij

1

  (4.8) 

where k  represents any ant from 1 to m (where m is the number of ants) and k
ij  

is the change in pheromone amount added by ant k. Calculation of k
ij   term is 

described in Equation below (4.9): 

k

k
ij L

1
  

(4.9) 

where, kL is the length of the path chosen by ant k. 

After the global update, a new cycle is started. All ants return to their initial city 

and start to select their next path by using the foregoing decision process. This 

process continues until the termination a criterion which is generally taken as the 

maximum number of cycles is satisfied.   

 

4.3 Harmony search algorithm 

Harmony search algorithm is developed by using simulation of the improvisation 

process of a skilled musician. Musican has three alternatives in order to improve 

musical harmony. First one is that musician play any melody from his or her 

memory. Second one is that musician play something similar to aforementioned 

melody by just adjusting pitch slightly. Third one is that musician play a melody 

completely new. These chocies are simulated in three main parts in harmony 

search algorithm. These are consideration of harmony memory matrix (HMCR), 
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pitch adjusting (PAR) and randomly selection.  The steps of the algorithm are 

outlined in the following as given in [119]: 

 

4.3.1 Initialization of harmony memory matrix: 

Firstly harmony memory matrix H  is generated. Then it is filled with specified 

number  of solutions which is equal to harmony memory size( HMS ). This 

process is similar to a design population in genetic algorithm or evolutionary 

strategies. Each solution (harmony vector, iI ) consists of ng  member groups, 

and is represented in a separate row of the matrix; consequently the size of H  is 

ngHMS  . General form of harmony memory matrix are shown in 4.10 
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(4.10) 

where, j
ix  is the ith design variable of the jth solution vector and   is the harmony 

memory size. 

 

 



 
95

4.3.2 Evaluation of harmony memory matrix:  

HMS  solutions are then evaluated, and their objective function values are 

calculated.  If there are unfeasible solutions in harmony memory matrix, these 

solutions are discarded out of harmony memory matrix and new solutions 

generated randomly instead of these solutions. This process continues by the time 

that harmony memory matrix filled with feasible solutions. The solutions 

evaluated are sorted in the matrix in the increasing order of objective function 

values, that is )( 1I  )( 2I  … )( HMSI . 

4.3.3 Improvising a new harmony: 

A new solution  
ng

III  ,..,, 21
'I  is generated by selecting each design variable 

from either harmony memory or the entire discrete set. The probability that a 

design variable is selected from the harmony memory is controlled by a parameter 

called harmony memory considering rate ( HMCR ). To execute this probability, a 

random number ir  is generated between 0 and 1 for each variable iI . If ir  is 

smaller than or equal to HMCR , the variable is chosen from harmony memory. 

Otherwise, a random value is assigned to the variable from the entire discrete set 

Equation (4.11). 

 
  HMCRrif

HMCRrif
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i 
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









,..,1
,...,, 21

 (4.11) 

If a design variable attains its value from harmony memory, it is checked whether 

this value should be pitch-adjusted or not. In pitch adjustment, the value of a 

design variable is altered to its very upper or lower neighboring value obtained by 

adding ± bw to its current value where, bw  is arbitrary distance bandwidth. In 
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thesis algorithm value of bw  is taken as 1. Similar to HMCR  parameter, it is 

operated with a probability known as pitch adjustment rate ( PAR ).  If not 

activated by PAR , the value of the variable does not change Equation (4.12). 

PARrif
PARrif

I
I

I
i

i

i

i
i 











1

 (4.12) 

Improvising new Harmony memory process is illustrated in the Figure 4.2 

 

Figure 4.2 Improvising new harmony memory process. 

 

4.3.4 Update of harmony matrix:  

After generating the new solution vector, it is evaluated and its objective function 

value is calculated. If this value is better than that of the worst harmony vector in 

the harmony memory, it is replaced with the worst one in the harmony memory 
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matrix. The updated harmony memory matrix is then sorted in ascending order of 

the objective function value. 

 

4.3.5 Check stopping criteria: 

Steps 4.3.3 and 4.3.4 are repeated until the maximum number of iterations is 

reached. 

Aforementioned steps of the harmony search algorithm is illustrated as a 

flowchart given in Figure 4.3  
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Figure 4.3 Flowchart of harmony search algorithm. 
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4.4 Numerical Applications 

Firstly ant colony optimization method applied on travelling salesman problem. 

Then, three optimization problems are solved in order to compare the performance 

of ant colony optimization and harmony serach techniques in the following 

section. 

4.4.1 Travelling Salesman Problem 

In this example, a salesman has to visit all cities which are demonstrated in Figure 

4.4 and the salesman has to visit each city once. The ant colony optimization 

method is used in order to the find the shortest path between these cities. 

Distances between cities are known and these values are tabulated in Table 4.1.  

 

Figure 4.4 A simple travelling Salesman Problem [116] 
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By using Equation (4.2) visibility matrix ijv  between the cities is calculated and 

demonstrated in Table 4.2. For this problem, number of ants is defined as 5. The 

initial pheromone amount is calculated by using Equation (4.3) as: 

00333.0
605

11
0 




nnLn
 

 

Table 4.1 Distances between cities 

 A B C D E 

A  110 60 90 140 

B 110  70 160 100 

C 60 70  90 80 

D 90 160 90  130 

E 140 100 80 130  

 

Table 4.2 Visibility Matrix 

 A B C D E 

A  0.0091 0.0167 0.0111 0.0071 

B 0.0091  0.0143 0.0063 0.0100 

C 0.0167 0.0143  0.0111 0.0125 

D 0.0111 0.0063 0.0111  0.0077 

E 0.0071 0.0100 0.0125 0.0077  

 

At the beginning of the problem, five ants are placed in their initial cities as 

demonstrated in Figure 4.5. By then, probabilities are calculated for all possible 
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cities by using Equation (4.4). Then each ant selects their next city which has the 

best probability. For instance Ant 1 is placed in city A. Probabilities of B, C and 

D cities, where Ant 1 can possibly move to, are calculated for this ant. At the 

beginning of the problem, pheromone amount is equal to 0  which is the constant 

value for all paths.  Therefore; the city, which has the best probability for Ant 1, is 

city C since city C is the closest city to the city A. Hence, Ant 1 selects city C as 

its second city move to as demonstrated in Figure 4.6.  

 

 
Figure 4.5 Initial cities of ants at the beginning of the problem [123] 
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Figure 4.6 Selection of second city for Ant 1 [123] 

 
Figure 4.7 Position of ants at the end of first iteration [116] 
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            (a) Second iteration                                      (b) Third iteration 

 
(b) Fourth iteration 

Figure 4.8 Position of ants at the end of (a) second, (b) third and (c) fourth 

iterations [123] 

 

This selection process is carried out for the other four ants and when all finished 

one cycle of the method comes to an end. As previously described, at the end of 

the each iteration, the local update rule is applied. In that rule, pheromone values 

are lowered by using Equation (4.6). By then, all ants select the next cities. This 

procedure continues until all ants visit all the cities. After that length of each path 

is calculated and global update rule is applied by using Equation (4.7). All these 

calculations are tabulated in Table 4.3. 

After global update rule, ants return to the initial cities and a new cycle is started. 

This process continues until one of the foregoing termination criteria, which is 

mentioned above, is satisfied.   
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Table 4.3 Calculation of global updates 

Ant No: 1 2 3 4 5  
Path A.C.D.E.B B.D.C.A.E C.B.E.D.A D.E.A.B.C E.A.B.C.D  

Length 
(m) 380 450 390 450 410 Total 

BA,  - - - 0.002222 0.002439 0.004661 

CA,  0.002632 - - - - 0.002632 

EA,  - 0.002222 - - - 0.002222 

CB ,  - - - 0.002222 0.002439 0.004661 

DB ,  - 0.002222 - - - 0.002222 

EB ,  - - 0.002564 - - 0.002564 

AC ,  - 0.002222 - - - 0.002222 

BC ,  - - 0.002564 - - 0.002564 

DC ,  0.002632 - - - 0.002439 0.005071 

EC ,  - - - - - 0.002702 

AD ,  - - 0.002564 - - 0.004603 

CD ,  - 0.002222 - - - 0.002222 

ED ,  0.002632 - - 0.002222 - 0.004854 

AE ,  - - - 0.002222 0.002439 0.004661 

BE ,  0.002632 - - - - 0.002632 

DE ,  - - 0.002564 - - 0.002564 

 

4.4.2 Continuous Optimization Problem 1 

The first mathematical optimization problem is a minimization problem with two 

design variables and two inequality constraints, solved by Deb[124] and Geem 

[96].  Objective function and constraint functions of this problem are shown as 

follows. 
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Minimize, 22
21

2
2

2
1 )7()11()(  xxxxxf  

 

Subject to, 

0)5.2()05.0(84.4)( 2
2

2
11  xxxg  

084.4)5.2()( 2
2

2
12  xxxg  

where, ,60 1  x   ,60 2  x  

 

This problem is solved by using ant colony optimization (ACO) algorithm and 

obtained results are compared results in the literature.  All results are tabulated in 

Table 4.4. The minimum solution vector is obtained as x = [2.246826, 2.381865] 

with an objective function value equal to f(x) = 13.59085 by using Harmony 

Search algorithm [96]. Deb [124], who recently solved this problem using an 

efficient constraint handling method for the GA, found the best solution of 

function value f(x)=13.58958, however solution vector is not given. Minimum 

objective function value is founded f(x) = 13.5928 with a solution vector x = 

(2.2464, 2.3742) by using ACO approximately 10.000 iteration.  

 

Table 4.4 Optimum solutions of continuous optimization problem 1 

Optimal Design variables 
Methods 

1x  2x  

Objective Function value 
 

Deb Unavailable Unavailable  13.58958 
GA with PS (R=0.01) Unavailable Unavailable 13.59108 

GA with PS (R=1) Unavailable Unavailable 13.59085 
GA with TS=R Unavailable Unavailable 13.590845 

HS  2.24684 2.381865 13.59085 
ACO 2.2464 2.3742 13.5928 
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4.4.3 Continuous Optimization Problem 2 

Continuous optimization problem given above has five design variables and six 

inequality constraints, and has been solved by many researchers [57, 89, 124– 

126]. Objective function and constraint functions of this problem are illustrated as 

follows. 

Maximize 40792141293239.378356891.0357847.5)( 151
2
3  xxxxxf  

Subject to, 

0002205.00006262.00056858.0334407.85)( 5341521  xxxxxxxg  

92002205.00006262.00056858.0334407.85)( 5341522  xxxxxxxg  

900021813.00029955.00071317.05149.80)( 2
321523  xxxxxxg  

1100021813.00029955.00071317.05149.80)( 2
321524  xxxxxxg  

200021813.00029955.00047026.0300961.9)( 4331535  xxxxxxxg  

250021813.00029955.00047026.0300961.9)( 4331536  xxxxxxxg  

where, 10278 1  x , 4533 2  x , 4527  ix           ).5,4,3( i  

 

This problem is solved by using ant colony optimization (ACO) algorithm and 

obtained results are compared results in the literature. The best known objective 

function is obtained as f(x) =-31025.561 with a the optimum solution vector x = 

[78.0, 33.0, 27.0799, 45.0, 44.969] by using a modified particle swarm 

optimization algorithm as reported by Kennedy, Shi and Eberhart [24]. Geem [96] 

and Deb [124] also solved this problem using harmony search(HS) algorithm and 

genetic algorithm(GA) respectively and obtained the best solution with the 

objective function value of f(x) =- 30665.5. Homaifar et al.[125] and Coello [126] 

and  obtained the best solution with f(x) = -30005.7 and f(x) = -31020.859, 

respectively, using the  genetic algorithm based methods. Table 4.5 lists the 

optimum solution of this problem obtained by the ant colony optimization 

algorithm, and compares them with earlier results reported by Homaifar et al. 
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[125], Coello [126], Deb [124], Kennedy, Shi and Eberhart [24] and Geem[96]. 

The ant colony optimization algorithm found solution vector of x = [78.02, 33.07, 

30.14, 44.92, 36.44] with a function value of f(x) = -30639.443 after 10.000 

searches. 

Table 4.5 Optimum solutions of continuous optimization problem 1 

Optimum Design Variables 
Methods 

1x  2x  3x  4x  5x  
Objective 
Function 

Homifar et al. 80.39 35.07 37.05 40.33 34.33 -30005.70 
Coello  78.0495 33.007 27.081 45.00 44.94 -31020.86 

Shi berhart 78.0 33.0 27.0799 45 44.969 -31025.56 
HS [124] Un available Un available Un available Un available Un available -30665.50 
HS [96] 78.0 33.0 29.995 45 36.776 -30665.50 

ACO 78.02 33.07 30.14 44.92 36.44 -30639.44 

 

4.4.4 Welded cantilever beam design  

The welded rectangular cantilever beam shown in Figure 4.9 has been considered 

by many researchers [96, 127] to evaluate the performance of their algorithms. 

The design problem requires finding the cross sectional dimensions of the beam 

such that the total fabrication cost is the minimum under the given load (P). The 

design variables are the dimensions of the cross section as well as the required 

thicknesses and length of welds used in connecting the beam to the gusset plate. 

Accordingly the design variables are; 1xh   represents the weld thickness, 2xI   

is weld length, 3xt   is the depth of the beam and 4xb   is the width of the 

beam. 1x  and 2x  are the discrete design variables. These variables are represented 

as discrete set of terms whose started from lower boundary of the variable and 

ascended with times of 0.0064 to the upper boundary of the variable. The lower 

and the upper boundaries of each variable are given in mathematical model of 

problem written as follows. In this problem 7 constraints are defined. These are: 

constraints about shear stress in beam )( and normal stress due to 
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bending; critical buckling load )( cP ; deflection of beam and upper and lower 

bound limitations for beam and weld dimensions. 

I

t

P

L

h

b

t

 

Figure 4.9 Welded cantilever beam 

 

Mathematical model of this problem can be defined as follows: 

Minimize, 

)0.14(04811.010471.1)( 2432
2

1 xxxxxxf                                                                 
 

Subject to  

0)()( max1   xxg       →    Shear stress                                                                

0)()( max2   xxg     →    Normal stress due to bending                                     

0)( 413  xxxg              →     Side constraint 

05)0.14(04811.010471.0)( 243
2

14  xxxxxg     →   Side constraint                     
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0125.0)( 15  xxg        →    Side constraint 

0)()( max6   xxg      →    Displacement at the end node of the beam                                                       

0)()(7  xPPxg c          →    Lateral torsional buckling constraint                                  

 

Where, 

2''2'''2' )(
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Aforementioned design problem is solved by using simulating annealing, genetic 

algorithm, and ant colony optimization and harmony search methods. Solutions 

obtained from these methods are tabulated in Table 4.6. Solution obtained from 

particle swarm optimization method [127] is added in Table 4.6.                                                                      

 

Table 4.6 Optimum solutions for example 3 

Design 
variables 

Constraints 
Objective 
function 

Genetic 
Algorithm 

Simulating 
Annealing 
Algorithm 

 

Particle Swarm 
Optimization 

Method 

Ant Colony 
Optimization 

Algorithm 

Harmony 
Search 
Method 

1x  0.2489 0.2389 0.244369 0.2320 0.2220 

2x  6.1730 2.4802 6.217519 3.608 3.0510 

3x  8.1789 9.2299 8.291471 8.4416 9.5450 

4x  0.2533 0.2389 0.244369 0.2384 0.2630 

)(1 xg  -5758.60 -0.2881 -5741.1769 -274.01 -3240.01 

)(2 xg  -255.58 -5341.32 -0.0000007 -332.9 -8965.95 

)(3 xg  -0.0044 -0.001033 0.000000 -0.0064 -0.0410 

)(4 xg  -2.9829 -3.2383 -3.022954 -3.3425 -2.9356 

)(5 xg  -0.12390 -0.1139 -0.119369 -0.107 -0.0970 

)(6 xg  -0.2342 -0.2384 -0.234241 -0.234 0.1584 

)(7 xg  -618.82 -102.32 -0.000309 -2491.84 -2212.053 

)(xf  2.433116 1.9046 2.380956 1.834 2.2290 

 

It is apparent from the Table 4.6 that best solution is obtained by ant colony 

optimization method. Objective function value for this solution is 1.834 which is 

obtained after 5000 iterations. Objective function of the third best solution is 

obtained as 2.2290 by using harmony search method with 1000 iterations. 

Iteration number is an important parameter for optimization problems. Therefore, 

it cannot be said definitely that ant colony optimization method is the best method 

for this problem as the iteration number of this method is five times higher than 

the iteration number of the harmony search method. As a result, it can be stated 
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that both harmony search and ant colony optimization algorithms show 

performance in this example. 



 
112 

CHAPTER 5 

OPTIMUM DESIGN OF STEEL SPACE FRAMES 

5.1 Introduction 

Optimum design of steel frames problems is a challenging problem in structural 

engineering due to fact that structural designer has to assign sections from a 

discrete set of available sections list. In traditional methods, the designer assigns 

any one of these sections to any one of the member groups in the frame by using  

his/her experience or arbitrarily. After such an assignment it becomes important to 

analyze and design the frame to figure out whether the frame satisfies the 

constraints set by design codes or not. It is apparent that quite large number of 

combinations is possible for the member groups of a frame depending upon the 

total number of practically available sections [26]. “For example, for a frame 

where the members are collected in eight groups and assuming that the total 

number of available sections is 272, there are 2.996065x1019 possible 

combinations that require to be considered” [60]. Although the designer’s 

practical experience makes some reductions in these possible combinations, still 

an exhaustive search will need huge amount of computation time and effort to 

obtain the optimum solution. In some cases traditional methods may not even be 

practically possible. Therefore, optimization methods especially recent stochastic 

search methods are the efficient tools for the frame design problems. 

In this chapter, firstly, a mathematical formulation of the optimum design problem 

of steel space frame according to LRFD-AISC is described. The solution of the 
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optimum design problem is obtained by using both ant colony optimization and 

harmony search algorithms.  

5.2 Discrete optimum design of space steel frames to LRFD- 

AISC 

The design of space steel frames necessitates the selection of steel sections for its 

columns and beams from a standard steel section tables such that the frame 

satisfies the serviceability and strength requirements specified by the code of 

practice while the economy is observed in the overall or material cost of the 

frame. When the design constraints are implemented from LRFD-AISC [30] the 

following discrete programming problem is obtained. 

5.2.1 The objective function  

The objective function is taken as the minimum weight of the frame which is 

expressed as follows. 








ng

r

t

s srmWMinimize
r

1 1
  (5.1) 

where, W is the weight of the frame, rm  is the unit weight of the steel section 

selected from the standard steel sections table that is to be adopted for group r, rt  

is the total number of members in group r, ng is the total number of groups in the 

frame, and sl  is the length of member s. 
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5.2.2 Constraints functions 

The design of steel frames according to LRFD-AISC necessitates aforementioned 

constraints to be met described as follows: 

1. Strength Constraints: It is required that each frame member has sufficient 

strength to resist the internal forces developed due to factored external 

loading. 

2. Serviceability Constraints: Deflection of beams and lateral displacement of 

the frame should be less than the limits specified in the code. 

3. Geometric Constraints: Steel sections that are selected for columns and 

beams at each beam-to-column connection and column-to-column 

connection should be compatible so that they can be connected to each 

other. 

These constraints are explained in detail in the following sections. 

5.2.2.1 Strength Constraints 

Without considering the effect of warping 

For the case where the effect of warping is not included in the computation of the 

strength capacity of  W-sections that are selected for beam-column members of 

the frame  the following inequalities given in Chapter H of LRFD-AISC is 

required to be satisfied.  
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or 
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where, nxM  is the nominal flexural strength at strong axis (x axis), nyM  is the 

nominal flexural strength at weak axis (y axis), uxM is the required flexural 

strength at strong axis (x axis) , uyM is the required flexural strength at weak axis 

(y axis), nP  is the nominal axial strength (tension or compression)  and uP is the 

required axial strength (tension or compression) for member i. ℓ represents the 

loading case. Detailed information about calculation of these terms were given in 

Chapter 3. 

Considering the effect of warping 

In the case where the effect of warping is included in the computation of strength 

capacity of W-sections that are selected for beam-column members of the frame,  

the following inequality which is suggested  in AISC Torsional Analysis of 

Structural Steel Members Design Guide  [118] (Equation 4.16.a) is required to be 

satisfied. This constraint has the following form. 

00.1
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
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    (5.4) 

where isg , is the strength constraint for member i, ai  is the largest stress 

occurring in the section due to the axial force,  ibx,  is the maximum stress 

occurring in the section due to bending about the major axis, iby,  is the 

maximum stress occurring in the section due to bending about the minor axis, yF  

is the yield stress and icrF ,  is the critical stress which is computed as described in 

Chapter E  of LRFD-AISC. Detailed information about calculations of these terms 

were given in Chapter 3. 
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5.2.2.2 Serviceability Constraints 

The lateral displacements and deflection of beams in steel frames are limited by 

the ASCE Ad Hoc Committee report [128], the accepted range of drift limits by 

first-order analysis is 1/750 to 1/250 times the building height H with a 

recommended value of H/400. The typical limits on the inter-story drift are 1/500 

to 1/200 times the story height. Based on this report the deflection limits 

recommended are proposed in [62 and 63] for general use which is repeated in 

Table 1. 

Table 5.1 Displacement limitations for steel frames 

  Item Deflection limit 
1 Floor  girder deflection for service live load L/360 
2 Roof girder deflection L/240 
3 Lateral drift for service wind load H/400 
4 Inter-story drift for service wind load h/300 

 

Deflection Constraints 

It is necessary to limit the mid-span deflections of beams not to cause cracks in 

brittle finishes that they may support due to excessive displacements. Deflection 

constraints are expressed by the following inequality.  

lcsmu
j

jl
dj nlnjg ,.......1,,....,101 




    (5.5) 

where, jl is the maximum deflection of thj  member under the thl  load case, u
j is 

the upper bound on this deflection which is defined in the code as span/360 for 

beams carrying brittle finishers, smn  is the total number of members where  

deflections limitations are to be imposed  and lcn  is the number of load cases. 
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Drift Constraints 

These constraints are of two types. One is the restriction applied to the top story 

sway and the other is the limitation applied on the inter-story drift.  

Top Storey Drift Constraints 

Top story drift limitation is expressed as in the  

 
kjtop

jltop

jtd nlnj
DriftLimit

g ,,1,,,101  


     (5.6) 

where is the height of the frame, jtopn  is the number of joints on the top story, lcn  

is the number of load cases,  
jltop  is the top story drift of the thj  joint under thl  

load case. Drift limit value is generally taken as H/400 where H is height of 

structure. 

Inter-Storey Drift Constraints 

In multi-story steel frames the relative lateral displacements of each floor is 

required to be limited. This limit is generally defined as that maximum inter-story 

drift which is generally specified as sxh /300 where sxh  is the story height.  

 
lcst

sx

jloh
idj nlnj

h
g ,.......1,,....,101

300/



     (5.7) 

where  stn  is the number of story, lcn is the number of load cases and   jloh is 

the story drift of the thj  story under thl  load case. 
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5.2.2.3 Geometric Constraints 

These constraints are needed to satisfy the practical requirements. It is apparent 

that column sections in a steel frame should have larger sections from top story to 

lower stories. It is not desired to have a bigger W-section for the upper column 

section. Such case requires special joint arrangements which is neither preferred 

in practice nor is economical. The same applies to the beam-column connections. 

The W-section selected for any beam should have flange width smaller or equal to 

the flange width of the W-section selected for the column to which the beam is to 

be connected.  These are named as geometric constraints and they are included in 

the design optimization model to satisfy practical requirements. Two types of 

geometric constraints are considered in the mathematical model. These are 

column-to-column geometric constraints and beam-to-column geometric 

limitations. 

Column-to-Column Geometric Constraints 

The depths and the unit weight of W sections selected for the columns of two 

consecutive stories should be either equal to each other or the one in the above 

story should be smaller than the one in the below story. These limitations are 

included in the design problem as in the following.  

cc
loweric

upperic
cdi nic

d
d

g ......101
)(

)(      (5.8) 

cc
loweri

upperi
cmi ni

W
W

g ......101
)(

)(      (5.9) 

where; ccn is the number of column to column geometric constraints defined in 

frame design problem, )(uppericW is the unit weight of W section selected for of 

column upper storey, )(lowericW is the unit weight of W section selected for of 

column lower storey, )(uppericd  is the depth of W section selected for of column 
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upper storey and )(lowericd  is the depth of W section selected for of column lower 

storey. 

 

Beam-to-Column Geometric Constraints 

If a beam is connected to flange of a column, the flange width of the beam should 

be less than or equal to the flange width of the column in the connection. If a 

beam is connected to the web of a column, the flange width of the beam should be 

less than or equal to  btd 2  of the column web dimensions in the connection 

where d is the depth of W section and bt  is the flange thickness of W section. 

These limitations are described as constraint functions in the Equations (5.10) and 

(5.11). 

 
    01

2
'





ibflibcl

ibfb
bci td

b
g     (5.10) 

or 

 
  01

ibfc

ibfbk
bbi b

b
g     (5.11) 

cbnib .......2,1  

where; nb is number of beam to column constraints defined in frame design 

problem, fbkb , fbkb'  and fcb are the flange width of the beam B1, the beam B2 and 

the column, respectively, cld is the depth of the column and flt  is the flange width 

of the column in Figure 5.1.  
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Figure 5.1 Beam-Columns Geometric Constraints 

 

5.3 Optimum Structural Design Algorithms  

5.3.1 Ant colony optimization based optimum design algorithm  

Ant colony optimization method is applied by Camp and Bichon for frame design 

problem in 2005 [94]. This method’s algorithm for frame design problem is 

described in the following steps. 

Step1: In first step, initial pheromone amount ( 0 ) is calculated by using 

following equation. 

min
0 W

1
  (5.12) 
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where; minW  is the minimum weight of the frame regardless of whether it satisfies 

the constraints or not. The minimum weight of the frame is calculated by 

assigning the smallest unit weight of the section to each member groups from 

section table list in LRFD-AISC [30]. 

Step2: After choosing initial parameters and initial pheromone amount, each ant 

in the colony is assigned to its first member groups of the frame. Then ants select 

a section from section table list for their groups. This selection is determined 

through a decision process. In that decision process, probabilities of all possible 

sections are calculated for each ant and each ant selects the section which has the 

best probability. Probabilities of sections are described as follows. 

   
   










 NofSec

allowedj
ijij

ijij
ij

vt

vt
tP

)(

)(
)(  (5.13) 

where, jiP ,  is the probability of section j for the group i at cycle t, ij  is the 

amount of pheromone, ijv  is called the value of visibility of section j for the group 

i calculated from the Equation (5.14), and   is the parameter which is used to 

arrange to the influence of pheromone amount and visibility. 

ij
ij w

v 1
  (5.14) 

where, jw  is the unit weight of section j for the group i. This process continues 

until all ants select sections for their first assigned group. After this process first 

tour is completed. 

Step3: At the end of the each tour the local update rule is applied. In the local 

update rule, pheromone amount of sections selected by ants is lowered in order to 

promote exploration in the search. This rule is shown as follows. 
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)()( tt ijij   (5.15) 

where,   is a parameter, called local update coefficient, whose value changes 

between from 0 to 1.  

Step4: After completing local update rule, ant starts to select new sections for 

next assigned group (i+1) by using decision process mentioned in step2. Then 

local update rule reapplied at the end of the tour. This procedure continues by the 

time that all ants select selections for their all assigned member groups. After this 

procedure one cycle is completed. At the end of the each cycle each ant has one 

design. In other words, as much as number of ant, designs of frame are obtained. 

All designs of frame are analyzed using the matrix stiffness method (detailed 

information given in Chapter 2) and internal forces and moments are calculated. 

These values are used for determining whether the frame design satisfies the 

design limitations according to the design code LRFD-AISC or not. If the frame 

design does not satisfy the design constraints, frame weight is penalized by the 

penalty function given in the Equation (5.16). 

  CWWp 1  (5.16) 

where, pW  penalized weight of frame is, C  is the total constraint violation and   

is the penalty coefficient.  For frame design problem, total constraints violation is 

defined as follows: 

  bccccdtdidds CCCCCCCC  (5.17) 

where, sC , dC , idC , tdC , cdC , cmC , bcC  and bbC  are the constraints violations for 

strength, deflection, inter-story drift, top story drift, column-to-column geometric 

and beam-to-column geometric constraints functions respectively. In general 

form, constraints violations can be expressed as: 
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where, )(xgi  is ith constraints function, x  is  the design group of frame, nc  and 

ng are the number of constraint functions and design groups defined in the 

optimization problem respectively. 

Step5: After calculating penalized weight one cycle is completed. At the end of 

the cycle global update scheme is applied. Generally two kinds of global update 

rule are used for optimization problems. These are ant system and rank ant 

system. In frame design problem, ranked ant system shows better performance 

than ant system. Therefore, global update rule with rank ant system is used for 

frame optimization problems. Global update rule with rank ant system is shown in 

the following Equation (5.17) [93]. 

 )()()()1()( tttnt r
ijijijij    (5.19) 

where, )(tij
  is the change in the amount of pheromone for the best ant in cycle 

t. This value is calculated in the Equation (5.20). )(tr
ij  is the summation of the 

change in the pheromone amount for ranked ants in cycle t. )(tr
ij is calculated 

by using the Equation (5.21).   is the global update coefficient and   is the 

number of the ranked ant. 
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1)(
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p
ij 
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where, )(tWp
 is penalized weight of frame design chosen by the  best ant.  


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where,   rank of the ant (between 1 and  ). )t(ij
 is the change in the 

pheromone amount of pheromone for ranked ant   in cycle t. This value is 

obtained as follows. 

 


 
p

ij W
t 1)(  (5.22) 

where, 
pW  is penalized weight of frame design selected by the ranked ant . 

After applying global update rule, new cycle is initiated. This process continues 

until one of the aforementioned termination criteria is satisfied.   

5.3.2 Improvements in ant colony optimization algorithm  

5.3.2.1 Static Ants 

In large size multistory structures too many geometric constraints are required to 

be defined. Unfortunately metaheuristic techniques exhibit difficulty of finding 

feasible designs that satisfy these constraints in their random search. In this study 

the same problem is also observed in the ant colony optimization algorithm. In 

order to eliminate this problem, static ant strategy is developed. In ant colony 

algorithm, certain number of ants is defined.  Some of these ants are assigned as 

static ant in static ant strategy.  In frame design problem, geometric limitations 

between column groups of two consecutive stories and between beam and column 

groups in the connection are mentioned in the section 5.2.2.3. If these limitations 

are needed to be satisfied within 100% of probability for each design,  some 

restrictions are required when ants assign sections for their design groups. Static 

ants use these restrictions and select sections for their design groups to ensure that 

the geometric constraints are satisfied. Static ants assign section according to 

following rules. Dependencies vector between member groups is defined at the 

beginning of the algorithm. If there are geometric constraints defined between two 
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groups, these groups are depended on each other. These dependencies between   

for all possible groups are stored in the dependencies vector. Static ants check 

dependencies vector and use reduced design space for depended groups in 

selection process. For example, when group number of upper storey column and 

lower storey column are set as 5 and 6 respectively, unit weight and depth of 

group 6  should be greater than group 5. Therefore, group 6 depends on group 5 

and assigned section number for group 6 should be greater than assigned section 

number for group 5 from static ants. As a result, geometric constraints are 

automatically satisfied for the static ants. However, static ants use reduced design 

space. This can bring stagnation and local convergence in the algorithm. 

Therefore, the number of static ants is limited in the algorithm. There are three 

strategies defined in order to determine the number of static ants for any cycle in 

the algorithm. In the first strategy the number of static ants is determined as 

constant number for all cycles. In second strategy, the number of static ants is 

lowered as a dynamic function depending on cycle. This dynamic function is 

represented in the following Equation (5.23).   

 
2

max
minmaxmax 5.0

)( 










t

tSSStS  (5.23) 

where, )(tS  is the static ant number in cycle t, maxS  and minS are the maximum 

and the minimum static ant numbers defined in the algorithm, and maxt is 

maximum cycle number. 

In the third strategy, the number of ants is lowered or increased with respect to 

whether ant having best design is static ant or not. If ant having the best design is 

the static ant, the number of static ants is increased; otherwise the number of ants 

is lowered. This strategy is represented as function in the following. 
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If )(tAntbest static ant, 1)1()(  tStS   

Else 1)1()(  tStS   
(5.24) 

where, )(tAntbest  is the ant  has the best weight in cycle t.   

Many tests have been done in order to carry out which strategy is better. It is 

concluded from tests that algorithm is stable when first or second strategy is used. 

Although good results are obtained in some test by using third strategy, 

sometimes stagnations are happen in the algorithm. Therefore third strategy is not 

used in this study. 

5.3.2.2 Scaling on pheromone amount 

This strategy was inspired by O. Hasançebi et al. [60]. It is observed from 

numerical experiments that pheromone amounts are concentrated on only a few 

sections for a design variable in the progressive cycles. On the contrary 

pheromone amounts of other sections go towards to zero selection probabilities 

owing to the effect of local update rule. This causes the algorithm convergence to 

a local optimum. When lower values of local update parameters are tried in order 

to overcome this problem, the algorithm cannot show the better performance. 

Since, when local parameter is set too low, algorithm is turned into a random 

search where convergence cannot be obtained. As a result of these experiments, 

scaling strategy is developed as a remedy to overcome this problem. Scaling 

strategy can be described as follows. First, it is determined that whether scaling 

procedure is required to or not in the algorithm. In order to make this decision, the 

ratio called pheromone concentration rate ( )(tpcr ) should be calculated. The 

pheromone concentration rate is the proportion of the sum of pheromone amount 

of pn  sections with the highest probability and the total pheromone amount of all 

section described in the following Equation (5.25). In this equation, pn  term 

represents number of selected top ranked sections obtained from Equation (5.26).  
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where, )(tpcri  is the pheromone concentration rate for design variable i in cycle t,  

nofsec is number the of sections defined in the optimization problem for each 

design variable. 

secnofn p   
(5.26) 

If the value of pheromone concentration rate is equal or greater than 0.95, scaling 

procedure will be performed. Otherwise the scaling procedure will continue 

without scaling. When scaling procedure is performed, pheromone amount is 

updated by the following Equation (5.27). 
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where, scaled
ij  is the scaled pheromone amount of section j for member group i, 

 avei  is average  pheromone amount for group i. Scaling procedure is performed 

for only one design group at each cycle which has the highest pheromone 

concentration rate due to the avoid from turning algorithm in to the random 

search. At the end of the scaling procedure more homogeneous pheromone 

distribution is obtained and section has zero selection probabilities regain chance 

to selection. 
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5.3.2.3 Dynamic local update coefficient 

Main reason to use local update rule in ant colony optimization algorithm is that 

to encourage the following ants in order to choose different sections. Thereby, 

dissimilar solutions are obtained and intensive search is carried out in each cycle. 

When the local update coefficient is taken as static, pheromone amount of 

selections is lowered evenly. This helps that some solutions dominate in the 

algorithm and can cause stagnation. As a remedy to overcome this problem 

dynamic local update coefficient strategy is developed by Hasançebi et al [60]. In 

this strategy, pheromone amount of each selection is reduced based on selection 

probability which are illustrated in Equations (5.28) and (5.29). 

)()( , tt ijjiij 


 (5.28) 

jiji P ,min, )1(1 


 (5.29) 

where, min  is the minimum local update coefficient defined in the problem. 

Value of the  parameter is set as within the range of 0.7-0.9 values. Dynamic local 

update strategy helps to set higher local update coefficient values for sections 

which have low selections probabilities. This increases selection probabilities of 

these selections for next cycles. 

 

5.3.3 Harmony search algorithm for frame design problem 

Harmony search algorithm for the frame design problem has exactly the same 

steps as the harmony search algorithm for mathematical problems explained in 

section 4.3 of the previous chapter. Steps of the harmony search algorithm for 

frame optimization problems are summarized as follows. 
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Step1: Optimization problem is stated mathematically that was described in 

Section 5.2. In addition, harmony search algorithm parameters are determined in 

this step. These parameters are:   the number of frame design stored in harmony 

memory called harmony memory size (HMS), harmony memory considering rate 

(HMCR), pitch adjusting rate (PAR), and maximum iteration number.  

Step2: Then the harmony memory matrix is filled with feasible frame designs 

which are generated randomly. 

Step 3: New frame design is generated based on the three main rules described in 

Section 4.3.3. 

Step 4: The weight and constraint violation value of the new frame design are 

calculated. If weight of the new frame design is lighter than the frame design 

having the heaviest weight in harmony memory and the new frame design is 

feasible, the new frame design is replaced with frame design the having heaviest 

weight in the  harmony memory. The updated harmony memory matrix is then 

sorted in ascending order of the weight of the frame. 

Step 5: Steps 4.2.3 and 4.2.4 are repeated until the maximum number of iterations 

is reached. 
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5.3.4 Improvements in the harmony search algorithm  

5.3.4.1 Harmony search with adaptive error Strategy (SHSAES) 

In regular harmony search method, the unfeasible solution vector is not allowed to 

put in harmony memory matrix. That causes some difficulties at the beginning of 

the algorithm. Adaptive error strategy is developed in order to overcome this 

problem.  In this strategy the candidate solution vectors that violate one or more 

design constraints slightly are also included in the harmony memory matrix in 

addition to feasible ones. Initially larger error value is selected and this value is 

adjusted during the design cycles according to the expression given below. 

 
  5.0

max

5.0
minmax

max)(
iter

iTolTolToliTol 
  (5.30) 

where, )(iTol  is the error value in iteration i, maxTol and minTol are the maximum 

and the minimum error values defined in the algorithm respectively, maxiter  is the 

maximum iteration number until which tolerance minimization  procedure 

continues. 

5.3.4.2 Standard Harmony Search with Penalty Function  

This strategy is an alternative strategy of the adaptive error strategy for harmony 

search algorithm. In this strategy candidate vector is included in the harmony 

memory matrix regardless of whether it satisfies the design constraints or not. 

However, this solution penalized with penalty function. Penalty function is 

exactly same as penalty function of ant colony algorithm which is described in 

Equations (5.16), (5.17) and (5.18). 
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CHAPTER 6 

DESIGN EXAMPLES 

6.1 Introduction 

Optimum design of six steel space frames is considered in this chapter. Both ant 

colony and harmony search based optimum design algorithms are used in order to 

investigate the effect of warping in the optimum design of space frames. The first 

design example is two-story, two bay irregular steel space frame which consists of 

21 members. The second design example is five-story, two bay regular steel space 

frame with 105 members. Third design example is three-story, three bay 132 

members irregular space frame. The fourth design example is twenty stories, 

three-bay steel space with irregular plan which consists of 460 members. The ten-

story four-bay steel space with 568 member sis selected as fifth design example. 

The last example is the twenty storeys, 1860-member irregular space steel frame. 

All examples are designed twice by each algorithm developed including and 

excluding warping deformations in order to investigate the effect of warping on 

the optimum designs. The modulus of elasticity and yield stress of the steel 

material are taken as 200GPa and 250MPa respectively. The complete W-section 

list given in LRFD-AISC [30] which consists of 272 sections are considered as a 

pool for design variables from which the algorithm presented has selected 

appropriate W-sections for the frame member groups. 
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6.2 Two- story, two-bay irregular steel space frame 

The two-story, two-bay irregular steel space frame has 21 members that are 

collected in two beam and three column design groups. The dimensions and 

member groupings in the frame are shown in the Figure 6.1. The frame is 

subjected to wind loading of 50kN along Z axis in addition to 20kN/m gravity 

load which is applied to all beams. The drift ratio limits are defined as 1 cm for 

inter storey drift 4 cm for top storey drift where H is the height of frame. 

Maximum deflection of beam members is restricted as 1.39 cm. 

 

 

Figure 6.1 Two-story, two bay irregular frame   
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Table 6.1 Design results of two-story, two bay irregular frame   

Group number Group type ACO without 
warping 

ACO with 
warping 

HS without 
warping 

HS with 
warping 

1 Beam W460X60 W460X52 W460X60 W530X66 
2 Column W360X32.9 W360X44 W310X28.3 W410X38.8 
3 Column W460X52 W410X60 W410X60 W410X60 
4 Column W460X68 W530X74 W460X60 W410X60 
5 Column W310X44.5  W460X52 W410X38.8 W310X38.7 

Minimum weight (kN) 48.68 53.42 46.63 51.78 
Maximum top storey drift (cm) 1.82 1.765 1.917 1.796 

Maximum inter- storey drift (cm) 0.95 0.998 0.956 0.932 
Maximum strength constraint ratio 0.921 0.969 0.992 0.988 

Maximum number of Iterations 10000 10000 10000 10000 
 

This irregular steel frame is designed by using harmony search and ant colony 

optimization algorithms considering warping and without considering warping 

cases. In these algorithms, following search parameters are used: number of ants = 

100, number of cycles = 100, controlling parameter of visibility ( ) = 0.40, 

minimum local update coefficient ( min ) = 0.7, strategy of changing in the number 

of static ant = constant, number of static ant = 30, number of ranked ant= 10,   

harmony memory size (HMS) = 20, pitch adjusting rate (PAR) = 0.3, harmony 

memory considering rate (HMCR) = 0.9, error strategy of harmony search = Not 

Used and maximum iteration number = 10000.  The minimum weights, maximum 

constraints values and steel sections of optimum designs obtained from each of 

these algorithms and cases are illustrated in Table 6.1. It is apparent from tables 

that consideration of the warping effect increases the minimum weight 9.74% in 

ant colony optimization algorithm and 11.04% in harmony search algorithms 

which are considerable amounts. Moreover, harmony search algorithm finds 

3.07% lighter frame for the case where warping is considered and 4.40% lighter 

frame for the case where warping is not considered with ant colony optimization. 

Design histories of these solutions are shown in Figure 6.2. 
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Figure 6.2 Design histories of two-story, two bay irregular frame   

6.3 Five-story, two-bay regular steel space frame 

The plan and 3D views of the five-story, two-bay steel frame shown in the Figures 

6.3 and 6.4 is a regular steel frame with 54 joints and 105 members that are 

grouped into 11 independent design variables. The frame is subjected to gravity 

loads as well as lateral loads that are computed as per ASCE 7-05 [129]. The 

design dead and live loads are taken as 2.88kN/m2 and 2.39kN/m2 respectively. 

The ground snow load is considered to be 0.755kN/m2 and a basic wind speed is 

105mph (65 m/s). The un-factored distributed gravity loads on the beams of the 

roof and floors are tabulated in Table 6.2. The following load combinations 
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are considered in the design of the frame according to the code specification. 

1.2D+1.6L+0.5S, 1.2D+0.5L+1.6S, 1.2D+1.6W+0.5L+0.5S where D is the dead 

load, L represents the live load, S is the snow load and W is the wind load. The 

drift ratio limits of this frame are defined as 1.33 cm for inter storey drift and 6.67 

cm for top storey drift. Maximum deflection of beam members is restricted as 

1.67 cm. 

 

Table 6.2 Beam gravity loading of the five-story, two bay steel frame 

Uniformly distributed load (kN/m) Beam Type 
Dead Load Live Load Snow Load 

Roof Beams 4.78 - 1.508 
Floor Beams 4.78 5.76 - 

 

 

Figure 6.3 Plan view of five-story, two bay steel frame 
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Figure 6.4 3D View of the five-story, two bay steel frame 

 

This regular steel frame is designed by using harmony search and ant colony 

optimization algorithms without considering warping and with considering 

warping. The ant colony algorithm and harmony search method parameters are 

selected as: number of ants = 100, number of cycles = 500, controlling parameter 

of visibility ( ) = 0.35, minimum local update coefficient ( min ) = 0.7, strategy of 

changing in the number of static ant = dynamic, the maximum number of static 

ant in the algorithm = 75, the minimum number of static ant in the algorithm = 5, 

number of ranked ant = 10,   harmony memory size (HMS) = 20, pitch adjusting 

rate (PAR) = 0.3, harmony memory considering rate (HMCR) = 0.9, error strategy 

of harmony search = penalty function method and maximum iteration number = 

50000.  The optimum designs, the maximum constraint values and steel sections 
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for member groups obtained from each of these runs are given in Table 6.3. 

Comparison of minimum weights of both cases and both algorithms clearly shows 

that even in regular steel space frames consideration of warping effect causes 8.4 

% increase in the minimum weight of the frame in the case of ant colony 

optimization algorithm, 10.49% increase in the case of harmony search algorithm. 

It is interesting to notice that ant colony optimization has obtained 6.86% lighter 

frame than harmony search algorithm when warping effects are considered and 

4.83% lighter frame when warping effects are not considered in this design 

example. Design histories of these runs are shown in Figure 6.5. 

 

Table 6.3 Design results of the five-story, two bay steel frame 

Group Number Group Type 
ACO 

without 
warping 

ACO with 
warping 

HS without 
warping 

HS with 
warping 

1 Beam W460X52 W460X52 W530X66 W360X44 
2 Beam W200X35.9 W360X44 W310X38.7 W310X38.7 
3 Column W200X35.9 W200X35.9 W200X35.9 W310X38.7 
4 Column W310X38.7 W360X72 W200X35.9 W310X60 
5 Column W360X57.8 W360X44 W360X44 W610X113 
6 Column W460X52 W310X52 W310X38.7 W530X66 
7 Column W310X86 W360X72 W360X72 W610X101 
8 Column W610X101 W760X161 W610X92 W1000X296 
9 Column W530X66 W530X74 W410X53 W610X82 

10 Column W460X89 W360X72 W360X72 W610X101 
11 Column W690X170 W760X161 W760X147 W1100X433 
Minimum weight(KN) 265.38 287.66 278.196 307.384 

Maximum top storey drift (cm) 4.983 4.83 4.837 3.362 
Maximum Inter-storey drift (cm) 0.569 0.604 1.333 0.475 

Maximum strength constraint ratio 0.886 0.969 0.979 0.977 
Maximum number of iterations 50000 50000 50000 50000 
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Figure 6.5 Design histories of the five-story, two bay steel frame 

6.4 Four-story, three bay 132 members space frame 

The third example shown in Figures 6.6, 6.7 and 6.8 is a three dimensional 

irregular steel frame that are taken from literature [130]. This frame consists of 70 

joints and 132 members that are grouped into 30 independent design groups. The 

frame is subjected to gravity loads and lateral loads, which are computed as per 

ASCE 7-05 [129] based on the following design values: a design dead load of 

2.88kN/m2, a design live load of 2.39kN/m2 and a ground snow load of 

0.755kN/m2. The un-factored distributed gravity loads on the beams of the roof 

and floors are tabulated in Table 6.4 and the un-factored lateral loads are given in 

Table 6.5. The load and combination factors are applied according to code 
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specification [33] as: Load case1: 1.4D, Load Case 2: 1.2D+1.6L+0.5S; Load 

Case 3: 1.2D+0.5L+1.6S;  Load Case 4: 1.2D+1.0E+0.5L+0.2S; where D 

represents dead load, L is live load, S is snow load and E represents earthquake 

load. In addition, top story drift constraints in x and y directions are restricted as 

the 3.89 cm. Inter-story drift is applied as the 1.14 cm to first storey 0.915 cm to 

other storey. Maximum deflection of beam members is restricted as 2.03 cm. 

 

 

Figure 6.6 3D view of four-story, three bay space frame 
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Figure 6.7 Side view of four-story, three bay space frame 

 

 

Figure 6.8 Plan view of four-story, three bay space frame 
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Table 6.4 Gravity loading on the beams of 132-member space frame 

 

 

Table 6.5 Lateral loading on the beams of 132-member space frame 

Earthquake Design Load Earthquake Design Load Floor Number (kN) Floor Number (kN) 
1 29.23 3 82.35 
2 55.28 4 110.15 

 

This space frame is optimized by using harmony search and ant colony 

optimization algorithms with and without considering warping. For the ant colony 

optimization and harmony search algorithms following search parameters are 

used: number of ants = 100, number of cycles = 500, controlling parameter of 

visibility ( ) = 0.40, minimum local update coefficient ( min ) = 0.7, strategy of 

changing in the number of static ant = dynamic, the maximum number of static 

ant in the algorithm = 75, the minimum number of static ant in the algorithm = 5, 

number of ranked ant = 10,   harmony memory size (HMS) = 30, pitch adjusting 

rate (PAR) = 0.3, harmony memory considering rate (HMCR) = 0.9, error strategy 

of harmony search = adaptive error strategy and maximum iteration number = 

50000.  The W sections obtained in the optimum designs and the corresponding 

maximum constraints values for each algorithm are given in the Table 6.6. The 

harmony search algorithm obtains the optimum design with weights as 560.71kN 

without considering warping, 617.36kN for considering the warping. The ant 

colony optimizations yielded the optimum designs with the minimum weights of 

568.24kN and 618.38kN without considering warping and considering warping 

cases respectively.  Comparison of these values reveals the fact that consideration 

 Uniformly distributed load,(kN/m) 
 

Beam Type 
Outer Span Inner Span 

Roof Beams 7.01 14.02 Load 
Case 1 Floor Beams 8.18 16.36 

Roof Beams 7.93 15.87 Load 
Case 2 Floor Beams 18.26 36.51 

Roof Beams 9.96  19.91 Load 
Case 3 Floor Beams 10.53 21.05 

Roof Beams 7.01 14.02 Load 
Case 4 Floor Beams 10.53 21.05 
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of warping effect causes 8.82 % increase in the minimum weight of the frame in 

the use of ant colony optimization algorithm, 10.10% increase in the use of 

harmony search algorithm. In addition, Harmony search algorithm produces 

optimum designs which are slightly lighter than the ones obtained by using ant 

colony algorithm for both cases. These differences are only 1.34 % for without 

considering warping case 0.16 % for considering warping case. Design histories 

of these runs are shown in Figure 6.9. 
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Figure 6.9 Design histories of the 132-member space frame 
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Table 6.6 Design results of the 132-member space frame 

Group 
Number Group Type ACO without 

warping 
ACO with 
warping 

HS without 
warping 

HS with 
warping 

1 Column W530X74 W310X158 W310X117 W610X155 
2 Column W460X52 W610X195 W460X144 W610X155 
3 Column W310X67 W760X134 W250X58 W690X125 
4 Column W460X74 W760X134 W360X110 W690X125 
5 Column W360X147 W460X82 W310X60 W250X67 
6 Column W360X147 W460X106 W460X89 W250X67 
7 Column W460X74 W610X101 W410X67 W310X86 
8 Column W760X134 W760X134 W410X114 W840X176 
9 Column W250X58 W360X162 W460X144 W360X147 

10 Column W250X58 W760X220 W840X176 W530X150 
11 Column W410X75 W530X182 W410X85 W460X177 
12 Column W530X138 W920X223 W610X155 W690X217 
13 Column W530X196 W310X86 W360X72 W250X89 
14 Column W610X217 W690X125 W530X165 W610X92 
15 Column W460X158 W310X74 W200X59 W360X72 
16 Column W460X158 W460X82 W360X91 W690X140 
17 Column W410X60 W410X149 W460X82 W460X128 
18 Column W610X92 W760X161 W840X176 W760X173 
19 Column W610X82 W610X155 W310X60 W360X147 
20 Column W610X82 W610X155 W460X82 W690X217 
21 Column W530X101 W310X74 W310X74 W460X74 
22 Column W530X101 W460X113 W610X101 W760X134 
23 Column W410X75 W460X128 W310X86 W460X113 
24 Column W410X75 W760X147 W310X117 W760X161 
25 Column W410X60 W250X80 W250X58 W250X89 
26 Column W460X106 W250X80 W460X74 W760X147 
27 Column W690X125 W530X74 W460X74 W460X74 
28 Column W690X125 W460X52 W410X53 W460X52 
29 Beam W250X80 W310X74 W410X100 W410X67 
30 Beam W610X92 W460X106 W690X125 W610X125 

Minimum weight(KN) 568.24 618.38 560.714 617.36 
Maximum top storey drift (cm) 3.24 3.25 3.54 3.5 

Maximum Inter-storey drift (cm) 0.883 0.621 0.857 0.935 
Maximum strength constraint ratio 0.986 0.974 0.964 0.989 

Maximum number of iterations 50000 50000 50000 50000 
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6.5 Twenty-story, 460 members irregular space frame 

The three dimensional, side and plan views of 20-story irregular steel frame are 

shown in Figures 6.10, 6.11 and 6.12. This frame is first taken from [114]. The 

frame consists of 210 joints and 460 members that are grouped into 13 

independent design variables.  The frame is subjected to a uniformly distributed 

vertical load of 4.79kN/m2 on each floor and wind load of 0.958kN/m2 along the 

Z axis.  The loading of this frame is shown in Figures 6.11 and 6.12. The drift 

ratio limits of this problem are defined as 1.22 cm for inter storey drift and 24.4 

cm for top storey drift. Maximum deflection of beam members is restricted as 

2.03 cm. 
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Figure 6.10 3D view of twenty-story, irregular steel frame 
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Figure 6.11 Side view of twenty-story, irregular steel frame 
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Figure 6.12 Plan view of the twenty-story, irregular steel frame 

 

Optimum design of twenty-story, irregular steel frame problem is solved by using 

harmony search and ant colony optimization algorithms with and without 

considering warping. For the ant colony optimization and the harmony search 

algorithms, following search parameters are used: number of ants = 100, number 

of cycles = 750, controlling parameter of visibility ( ) = 0.30, minimum local 

update coefficient ( min ) = 0.7, strategy of changing in the number of static ant = 

dynamic, the maximum number of static ant in the algorithm = 75,  the minimum 

number of static ant in the algorithm = 5, number of ranked ant = 10,   harmony 

memory size (HMS) = 30, pitch adjusting rate (PAR) = 0.3, harmony memory 

considering rate (HMCR) = 0.9, error strategy of harmony search = adaptive error 

strategy and maximum iteration number = 75000.  The designation of W-Sections 

and the maximum constraint values in the optimum designs obtained by each 

algorithm are given in Table 6.7. The minimum weights determined by ant colony 

optimization algorithm are 3191.15kN and 3589.73kN without considering 
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warping and considering warping cases respectively. The harmony search 

algorithm produces the optimum designs with weights of 2943.81kN without 

considering warping case and 3452.697kN for considering warping case.  It is 

concluded from table that consideration of warping effect causes 12.50% increase 

in the minimum weight of the frame in the case of ant colony optimization 

algorithm and 17.29 % increase in the case of harmony search algorithm. These 

increases are higher than increases of previous examples because of the fact that 

the frame has irregular shape and it is taller than the previous frames. 

Consequently torsional moments become more vigorous. In this design example, 

the harmony search algorithm shows better performance than ant colony 

optimization algorithm. In the case where the effect of warping is considered 

harmony search algorithm reaches 3.96% lighter frame than the ant colony 

optimizer and 7.7 % lighter frame in the case where the effect of warping is not 

considered. Design histories of all the runs are shown in Figure 6.13. 

 

Table 6.7 Design results of the twenty-story, irregular steel frame 

Group number Group type ACO without 
warping 

ACO with 
warping 

HS without 
warping 

HS with 
warping 

1 Beam W610X92 W610X140 W690X125 W690X125 
2 Beam W310X28.3 W610X101 W460X82 W530X92 
3 Beam W760X196 W760X147 W690X125 W610X113 
4 Column W460X68 W610X101 W610X101 W610X113 
5 Column W530X66 W610X101 W460X89 W460X97 
6 Column W310X202 W360X162 W690X125 W690X125 
7 Column W360X237 W360X162 W760X134 W760X134 
8 Column W360X237 W360X162 W760X134 W760X134 
9 Column W610X262 W610X217 W760X134 W760X134 
10 Column W760X314 W610X262 W760X161 W840X226 
11 Column W760X314 W690X265 W760X173 W1000X249 
12 Column W760X314 W690X265 W1000X222 W1000X249 
13 Column W840X329 W690X265 W1000X272 W1000X272 

Minimum weight (kN) 3191.15 3589.73 2943.811 3452.697 
Maximum top storey drift (cm) 17.9 19.41 19.64 19.37 

Maximum inter- storey drift (cm) 1.133 1.11 1.21 1.2 
Maximum strength constraint ratio 0.983 0.876 0.844 0.895 

Maximum number of Iterations 75000 75000 75000 75000 



 
149 

2800

3200

3600

4000

0 10000 20000 30000 40000 50000 60000 70000
Iteration

W
ei

gh
ts

 (k
N)

ACO without warping
ACO with warping
HS without warping
HS with warping

 

Figure 6.13 Design histories of the twenty-story, irregular steel frame 

 

6.6 Ten-story, four-bay steel space frame 

The three dimensional, side and plan views of ten-story four-bay steel frame   

shown in Figures 6.14 and 6.15 is taken from previous study [114]. This frame 

has 220 joints and 568 members which are collected in 25 independent design 

variables. Inner roof beams, outer roof beams, inner floor beams and outer floor 

beams of this frame are subjected to 14.72kN/m, 7.36kN/m, 21.43kN/m and 

10.72kN/m vertical loads respectively. The un-factored lateral loads of this frame 

are given in the Table 6.8. The drift ratio limits of this frame are defined as 0.914 
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cm for inter storey drift and 9.14 cm for top storey drift. Maximum deflection of 

beam members is restricted as 1.69 cm. 

 

 

 

Figure 6.14 3-D view of ten-storey, four-bay steel space frame 
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Figure 6.15 Side view of ten-storey, four-bay steel space frame 

 

 

 
Figure 6.16 Side view of ten-storey, four-bay steel space frame 
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Table 6.8 Horizontal forces of ten-storey, four-bay steel space frame 

Windward Leeward  Storey 
No: (lb/ft) (kN/m) (lb/ft) (kN/m) 
1 12.51 0.1825 127.38 1.8585 
2 28.68 0.4184 127.38 1.8585 
3 44.68 0.6519 127.38 1.8585 
4 156.86 2.2886 127.38 1.8585 
5 167.19 2.4393 127.38 1.8585 
6 176.13 2.5698 127.38 1.8585 
7 184.06 2.6854 127.38 1.8585 
8 191.21 2.7897 127.38 1.8585 
9 197.76 2.8853 127.38 1.8585 

10 101.9 1.5743 127.38 1.8585 

 

Optimum designs of this regular steel frame is found by using harmony search 

and ant colony optimization algorithms with and without considering warping 

effects. The following search parameters are selected for the ant colony optimizer 

and harmony search method: number of ants = 100, number of cycles = 500, 

controlling parameter of visibility ( ) = 0.40, minimum local update coefficient 

( min ) = 0.7, strategy of changing in the number of static ant = dynamic, the 

maximum number of static ant in the algorithm = 75, the minimum number of 

static ant in the algorithm = 5, number of ranked ant = 10,   harmony memory size 

(HMS) = 50, pitch adjusting rate (PAR) = 0.3, harmony memory considering rate 

(HMCR) = 0.9, error strategy of harmony search = adaptive error strategy and 

maximum iteration number = 50000.  The minimum weights, maximum 

constraints values and W-sections designations of optimum designs obtained for 

each of these algorithms are illustrated in Table 6.9. The lightest weights of this 

regular frame are obtained as 1899.3kN and 2079.2kN by using ant colony 

optimization algorithm, 1987.2kN and 2107.77kN by using harmony search 

algorithm for without considering warping and considering cases respectively. It 

is apparent from results that even in regular steel space frames consideration of 

warping effect causes 9.47 % increase in the case of ant colony optimization 

algorithm, 6.07 % increases in the case of harmony search algorithm. These 

increases are more than increases of second example. In addition, ant colony 

optimization algorithm attained 4.63 % and 3.75 % lighter frames than harmony 
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search algorithm without and with considering warping effects respectively. 

Design histories of these runs are shown in Figure 6.17. 

 

Table 6.9 Design results of the ten-storey, four-bay steel space frame 

Group number Group type ACO without 
warping 

ACO with 
warping 

HS without 
warping 

HS with 
warping 

1 Column W250X38.5 W360X64 W130X23.8 W200X26.6 
2 Column W200X86 W310X86 W310X86 W200X59 
3 Column W610X174 W840X176 W840X193 W840X210 
4 Beam W310X23.8 W310X28.3 W310X23.8 W360X39 
5 Beam W410X38.8 W410X38. W310X44.5 W410X38.8 
6 Column W690X140 W610X285 W460X144 W1100X390 
7 Column W920X201 W690X217 W840X210 W1000X272 
8 Column W840X193 W1000X222 W1000X222 W1000X272 
9 Beam W460X106 W610X113 W460X106 W310X44.5 

10 Beam W610X153 W760X161 W690X152 W610X101 
11 Column W460X128 W610X153 W460X113 W1000X249 
12 Column W460X113 W310X107 W530X123 W610X153 
13 Column W690X170 W690X170 W760X173 W760X220 
14 Beam W360X64 W460X74 W460X60 W410X67 
15 Beam W250X89 W360X101 W610X92 W610X113 
16 Column W360X122 W410X132 W200X86 W690X125 
17 Column W410X114 W310X107 W460X113 W610X101 
18 Column W610X92 W360X91 W460X106 W610X113 
19 Beam W410X38.8 W410X53 W250X32.7 W410X53 
20 Beam W410X46.1 W460X68 W410X53 W410X53 
21 Column W360X72 W310X67 W200X59 W310X97 
22 Column W200X71 W250X58 W250X67 W310X52 
23 Column W460X60 W310X67 W310X60 W360X57.8 
24 Beam W310X28.3 W250X44.8 W200X35.9 W250X32.7 
25 Beam W310X28.3 W310X32.7 W310X38.7 W410X38.8 
Minimum weight(KN) 1899.3 2079.2 1987.2 2107.77 

Maximum top storey drift (cm) 7.85 6.49 7.14 7.53 
Maximum inter-storey drift (cm) 0.901 0.911 0.909 0.895 

Maximum strength constraint ratio 0.991 0.956 0.942 0.906 
Maximum number of iterations 50000 50000 50000 50000 
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Figure 6.17 Design histories of the ten-storey, four-bay steel space frame 

 

6.7 Twenty-story, 1860–member, steel space frame 

The three dimensional and plan views of twenty-story, 1860-member steel space 

frame are illustrated in Figures 6.18 and 6.19. The frame has 820 joints and 1860 

members which are collected in 86 independent design variables. The member 

grouping of columns is illustrated in Figure 6.19. The frame is subjected to 

gravity loads as well as lateral loads that are computed according to ASCE 7-05 

[129]. The design dead and live loads are taken as 2.88kN/m2 and 2.39kN/m2 

respectively. Basic wind speed is considered as 85mph (38 m/s). The following 

load combinations are considered in the design of the frame according to 
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code specification [33]: 1.2D+1.3WZ+0.5L+0.5S and 1.2D+1.3WX+0.5L+0.5S 

where D is the dead load, L represents the live load, S is the snow load and WX, 

WZ are the wind loads in the global X and Z axis respectively. Drift ratio limits 

for this example are taken as 0.75 cm for inter storey drift where h is the storey 

height and 15 cm for top storey drift where H is the height of structure. Maximum 

deflection of beam members is restricted as 1.67 cm. 

 

 



 
156 

 

Figure 6.18 3-D view of twenty-storey, 1860 member steel space frame 
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(a) Plan view of 1-4th storey 

 

 

(b) Plan view of 5-8th storey 
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(c) Plan view of 5-8th storey 

       

(d) Plan view of 13-16th storey           

  

(e) Plan view of 17-20th storey  

Figure 6.19 Plan views of twenty-storey, 1860 member steel space frame 
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Optimum design problem of this irregular steel frame is solved by using harmony 

search and ant colony optimization algorithms considering warping and without 

considering warping cases. In these algorithms, following search parameters are 

used: number of ants = 200, number of cycles = 400, controlling parameter of 

visibility ( ) = 0.30, minimum local update coefficient ( min ) = 0.7, strategy of 

changing in the number of static ant = constant, number of static ant = 150, 

number of ranked ant= 20,   harmony memory size (HMS) = 50, pitch adjusting 

rate (PAR) = 0.3, harmony memory considering rate (HMCR) = 0.9, error strategy 

of harmony search = adaptive error strategy and maximum iteration number = 

80000.  The minimum weights, maximum constraints values and W-section 

designations of the optimum designs obtained from each of these algorithms are 

illustrated in Table 6.10. It is apparent from tables that the consideration of the 

warping effect increases the minimum weight of the frame 28.76% in the case of 

the ant colony optimization algorithm, 25.70% in the case of the harmony search 

algorithm. These amounts are the highest differences among all examples because 

geometric shape of the frame is more irregular and the frame is the tallest among 

all. Moreover, harmony search and ant colony algorithms find optimum designs 

whose weights are quite close to each other. The differences are only 0.98 % in 

the case where the effect of warping is not considered (ant colony optimization 

algorithm is better) and 1.42 % in the case where the effect of warping is 

considered (harmony search algorithm is better). Design histories of these 

solutions are also shown in Figure 6.20. 
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Table 6.10 Design results of the twenty-storey, 1860 member steel space frame 

Group number Group type ACO without 
warping 

ACO with 
warping 

HS without 
warping 

HS with 
warping 

1 Beam W250X80 W310X38.7 W250X58 W360X44 
2 Beam W410X85 W310X38.7 W410X53 W360X44 
3 Column W250X80 W410X53 W410X67 W410X85 
4 Column W360X79 W250X32.7 W460X60 W250X32.7 
5 Column W360X79 W760X484 W310X67 W530X138 
6 Column W250X131 W1000X321 W690X125 W1000X272 
7 Column W410X114 W530X92 W610X82 W530X85 
8 Column W410X114 W1000X494 W530X101 W1100X343 
9 Column W200X71 W760X173 W250X73 W410X85 

10 Column W200X71 W250X38.5 W310X60 W250X44.8 
11 Column W410X114 W1100X499 W530X123 W1100X499 
12 Column W250X131 W1100X499 W690X125 W1000X314 
13 Column W530X123 W840X193 W610X113 W530X101 
14 Column W410X114 W1100X499 W610X113 W1100X499 
15 Column W360X72 W1100X390 W530X74 W1000X321 
16 Column W460X74 W410X60 W410X85 W460X144 
17 Column W460X128 W1100X499 W760X134 W1100X499 
18 Column W460X144 W1100X499 W690X152 W1000X314 
19 Column W610X125 W840X226 W690X125 W760X185 
20 Column W410X114 W1100X499 W690X152 W1100X499 
21 Column W360X72 W1100X499 W530X92 W1100X499 
22 Column W760X147 W1000X249 W760X196 W1000X272 
23 Column W610X285 W1100X499 W760X173 W1100X499 
24 Column W610X82 W310X79 W920X238 W410X67 
25 Column W460X193 W610X195 W530X101 W530X196 
26 Column W200X71 W460X97 W360X44 W360X57.8 
27 Column W360X39 W200X71 W360X44 W200X71 
28 Column W410X67 W310X143 W460X52 W250X73 
29 Column W360X72 W1100X499 W610X101 W1100X499 
30 Column W760X147 W1000X249 W760X196 W1000X314 
31 Column W610X285 W1100X499 W1000X272 W1100X499 
32 Column W610X92 W360X79 W920X238 W460X74 
33 Column W460X193 W610X372 W1000X249 W1100X433 
34 Column W250X89 W690X140 W460X68 W610X153 
35 Column W360X39 W760X134 W530X92 W530X85 
36 Column W610X101 W840X251 W610X82 W1000X412 
37 Column W360X44 W250X58 W200X31.3 W690X152 
38 Column W360X44 W360X57.8 W250X38.5 W250X101 
39 Column W360X72 W610X82 W250X32.7 W250X49.1 
40 Column W360X72 W1100X499 W690X152 W1100X499 
41 Column W760X147 W1100X433 W920X201 W1100X343 
42 Column W610X285 W1100X499 W1000X272 W1100X499 
43 Column W610X92 W530X92 W920X238 W530X85 
44 Column W460X193 W1100X499 W1000X249 W1100X499 
45 Column W360X91 W690X140 W610X92 W1100X499 
46 Column W360X39 W1000X314 W610X92 W610X92 
47 Column W610X101 W920X342 W610X92 W1100X433 
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Table 6.10 Cont. 
48 Column W360X44 W690X240 W530X92 W1100X433 
49 Column W360X44 W530X66 W460X68 W610X113 
50 Column W360X72 W610X307 W610X101 W1100X390 
51 Column W360X72 W1100X499 W690X152 W1100X499 
52 Column W760X147 W1100X499 W920X201 W1100X499 
53 Column W920X342 W1100X499 W1100X343 W1100X499 
54 Column W610X92 W920X201 W920X238 W760X185 
55 Column W460X193 W1100X499 W1000X249 W1100X499 
56 Column W410X100 W1100X499 W610X101 W1100X499 
57 Column W410X114 W1100X343 W610X113 W610X92 
58 Column W610X101 W1100X433 W610X101 W1100X499 
59 Column W410X75 W1100X499 W530X92 W1100X433 
60 Column W360X44 W610X174 W530X85 W690X192 
61 Column W360X110 W1100X433 W610X101 W1100X390 
62 Column W360X72 W1100X499 W690X152 W1100X499 
63 Column W760X147 W1100X499 W920X201 W1100X499 
64 Column W920X342 W1100X499 W1100X343 W1100X499 
65 Column W610X92 W920X201 W920X238 W840X193 
66 Column W460X193 W1100X499 W1000X249 W1100X499 
67 Column W410X114 W1100X499 W610X101 W1100X499 
68 Column W690X125 W1100X343 W610X125 W920X238 
69 Column W610X101 W1100X433 W610X125 W1100X499 
70 Column W310X67 W360X44 W310X67 W410X100 
71 Column W200X71 W410X53 W410X53 W360X44 
72 Column W200X71 W530X150 W410X75 W610X155 
73 Column W410X75 W1100X499 W530X92 W1100X499 
74 Column W360X44 W1000X314 W610X113 W1000X296 
75 Column W530X123 W1100X499 W610X125 W1100X499 
76 Column W360X72 W1100X499 W690X152 W1100X499 
77 Column W760X147 W1100X499 W920X201 W1100X499 
78 Column W920X342 W1100X499 W1100X343 W1100X499 
79 Column W610X92 W920X201 W920X238 W1100X343 
80 Column W610X341 W1100X499 W1000X249 W1100X499 
81 Column W410X149 W1100X499 W1000X249 W1100X499 
82 Column W690X125 W1100X343 W760X173 W1100X343 
83 Column W610X101 W1100X433 W760X173 W1100X499 
84 Column W410X67 W920X223 W610X125 W840X299 
85 Column W360X72 W760X134 W530X66 W530X85 
86 Column W460X82 W920X289 W410X75 W1000X494 

Minimum weight(KN) 5570.1 7172 5624.55 7069.9 
Maximum top storey drift (cm) 8.56 3 9.54 2.1 

Maximum inter-storey drift (cm) 0.461 0.15 0.462 0.15 
Maximum strength constraint ratio 0.937 0.9 0.819 0.956 

Maximum number of iterations 80000 80000 80000 80000 
 



 
162 

4000

5000

6000

7000

8000

9000

10000

0 10000 20000 30000 40000 50000 60000 70000 80000
Iteration

W
ei

gh
ts

 (k
N)

ACO without warping
ACO with warping
HS without warping
HS with warping

 

Figure 6.20 Design histories of the twenty-storey, 1860 member steel space frame 

6.7 Discussion 

In this chapter, six design examples are presented. Among these design examples 

two of the frames are selected as regular space frames while the remaining four 

have irregular plans. The reason of selecting some of the frames with symmetrical 

plans was to find out whether the consideration of the effect of warping in their 

optimum design is important or not. Furthermore the effect of frame heights to the 

warping is also investigated. The minimum weights obtained from these examples 

with and without considering effect of warping by using ant colony optimization 

and harmony search methods are tabulated in Table 6.11. Relative differences 

among these weights are also shown in Figures 6.21 and 6.22. It is concluded 
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that from Table 6.11 that the effect of warping causes considerable amount of 

increases in the optimum weight of the frame both for regular and irregular 

structures. This increase varies approximately between 9% and 29% which clearly 

indicates that the effect of warping should be considered in the optimum design of 

steel frames where the frame members are made out of thin walled sections. It is 

interesting to notice that even in frames with symmetrical plans the increase in the 

optimum weight is around 9%. Another clear conclusion is the height of the 

frames. In the first and third example where the number of storey is less than five, 

the effect of warping causes around 10% increase in the optimum weight of the 

frame. However, these increase rises up to 15 % and 25 % in fourth and last 

examples respectively where the number of storey is twenty.  Both in the second 

and fifth examples the effect of warping causes around 10% increase in the 

optimum weight of frame, despite of the fact that number of storey of these 

frames is different. Hence in the design of tall frames the effect of warping is 

more serious and needs to be taken in to account in the design process.   As far as 

the efficiency of both metaheuristic techniques is considered it is difficult to make 

apparent conclusion. In the first, third and fourth design examples harmony search 

algorithm performs better than ant colony optimization algorithm. However in the 

second and fifth design examples, ant colony optimization algorithm presents 

better performance than harmony search method. In the last example, results 

obtained from these algorithms are close to each other. This is due to the 

stochastic nature of these algorithms. The values selected for the parameters of the 

algorithms have an effect in the performance of these techniques. One conclusion 

can be made regarding this matter that before deciding the optimum design 

several runs are required to be made with different values of the algorithm 

parameters to find out which set of values give better result. 
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Table 6.11 Comparison of the minimum weights (kN) of all design examples   

Examples 
ACO 

without 
warping 

ACO 
with 

warping 

HS 
without 
warping 

HS  
with 

warping 

% 
difference 
warping 
causes  
(ACO) 

% 
difference 
warping 
causes 
(HS) 

% 
difference 
between 
methods 
without 
warping 

% 
difference 
between 
methods 
without 
warping 

1st example 48.68 53.42 46.63 51.78 9.74 11.04 4.40 3.17 
2nd example 265.38 287.66 278.196 307.384 8.40 10.49 4.83 6.86 
3rd example 568.24 618.38 560.714 617.36 8.82 10.10 1.34 0.17 
4th example 3191.15 3589.73 2943.811 3452.697 12.49 17.29 8.40 3.97 
5th example 1899.3 2079.2 1987.2 2107.77 9.47 6.07 4.63 1.37 
6th  example 5570.1 7172 5624.55 7069.9 28.76 25.70 0.98 1.44 
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Figure 6.21 The effect of warping in the optimum design of six steel space frames 
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Figure 6.22 Comparison of the effect of warping with respect height of frame 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

In this thesis, the effect of warping in the optimum design of steel space frame is 

investigated. This second order torsional effect causes considerable stress increase 

in thin walled members. This effect even becomes vigorous in tall steel buildings 

that have unsymmetrical plans. Considering this fact and that the frame members 

in steel buildings are generally made out of thin walled sections, it becomes 

apparent that carrying out an optimum design in such buildings without 

considering the effect of warping in steel structures does not yield realistic results. 

This thesis involves in developing an optimum design algorithm for steel space 

frames based on recent metaheuristic techniques of combinatorial optimization so 

that effect of warping in the optimum design can be investigated.  For this reason, 

a computer program is developed which has the capability of carrying out analysis 

of space frames under various loading cases provided that steel sections for its 

members are assigned from W-section list. The program has also ability of 

carrying out design checks specified in LRFD-AISC. Furthermore it also has the 

capability of using two metaheuristic combinatorial optimization techniques by 

which it is possible to determine the optimum W-section designation for the frame 

members so that the weight of the frame is the minimum and it satisfies all the 

design limitations described in the steel design code. 

 

The optimum design of steel frames requires selection of steel profiles from the 

available list for the frame members. This selection should be carried out such that 



 
167 

the design code specifications are to be satisfied and the cost or the weight of the 

frame is the minimum. Hence in the formulation of the optimum design problem 

of steel space frames the sequence numbers of W-sections given in LRFD-AISC 

are treated as design variables. The design limitations that consist of serviceability 

and strength constraints are implemented from LRFD-AISC. Evaluation of 

strength constraints necessitates the P  analysis of the frame which is an 

iterative process and quite time consuming. Instead LRFD-AISC suggests a short 

way to determine the magnified values of bending moments. This is included in 

the program developed as described in the design code. The design problem 

obtained formulated in this way turns out to be a discrete combinatorial 

optimization problem. The recent metaheuristic techniques based on natural 

phenomena are proven to be effective in finding the solutions of such problems.  

For this reason, the harmony search and ant colony optimization algorithms are 

selected to determine the solution of the optimum design problem. Although it is 

shown in the literature that these methods are efficient in finding the solution of 

discrete optimization problems, in some cases particularly in large scale design 

problems they may perform not as expected. In the thesis some improvements are 

suggested for both of these techniques which enhanced their convergence rate as 

well as finding better results.  

 Six design examples considered in order to determine the effect of warping in the 

optimum design of steel space frames revealed one fact clearly.  In the optimum 

design of steel space frame where the frame members are made out of thin walled 

sections the effect of warping should be considered within its analysis and the 

design of its members. It is found that even in frames where floor plan is 

symmetrical and does not change from one storey to another the minimum weight 

is almost 10% heavier than the optimum design where the effect of warping is not 

considered. This increase even rises in steel space frames where the floor plan is 

unsymmetrical and the overall shape of the frame is irregular. This clearly 

indicates that ignoring the effect of warping in the optimum design of steel space 

frames does not yield realistic results. Furthermore, the height of frame is another 



 
168 

factor which plays an important role in making the effect of warping more serious. 

Particularly in tall and irregular steel space frames consideration of the effect of 

warping yield 25% increase in the minimum weight of the frame. This clearly 

shows that the effect of warping should certainly be considered in the optimum 

design of such frames. Two of the metaheuristic techniques namely ant colony 

optimization and harmony search methods both are effective in finding the 

optimum solution of the design problem. In some design examples harmony 

search method found lighter optimum frames while in some other ant colony 

optimization method reached better optimum frames. Hence it is difficult to 

conclude that one technique out performs another. Both techniques require 

selection of values for their parameters initially and their performance is very 

much dependent upon these initial values as well as type of the optimum design 

problem under consideration. It is necessary to carry out several runs to find out 

which set of these parameters can find better solution. This is why in some design 

problems one technique performs better while in some others the other can reach a 

better solution. There are some suggestions for the automation of the parameters. 

However, this topic is currently under investigation and research is being carried 

out in order to find out how these parameters can be left to the algorithm so that 

depending on the design problem they can be automatically adjusted during the 

design cycles.  Consequently it is not possible with the results obtained in this 

study to come up with conclusion which states that among two metaheuristic 

techniques used one is better than the other.  

7.1 Recommendations for future work 

 In this study, only W shapes of LRFD-AISC are used. However, in some 

applications especially in large size structures the available steel profiles may not 

be sufficient to produce the optimum design under the design constraints specified 

by the design code and steel build up members may be required to be used. The 

design algorithm developed can be extended to cover the built up sections. 
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Dimensions of these sections such as the depth, flange width and thickness, web 

thickness can also be taken as design variables in the optimum design of space 

frame problems. This adds another practical future to the optimum design 

algorithm developed. 

It is possible to carry out enhancements in the ant colony optimization and 

harmony search algorithm in order to improve their performance. It is shown that 

the performance of these techniques is dependent upon the initial values selected 

for their parameters. Both algorithm can be improved to have adaptive scheme 

where these parameters are decided and adjusted within the algorithms themselves 

during the design process so that they have better convergence rate. 

Although the minimum weight is an important target to take as an objective 

function in the optimum design of steel frames, it is known that the minimum 

weight design is not the minimum cost design. In steel structures the cost is 

closely related with the weight in transportation and erection of steel members, 

the member connections such as beam-to-column connection and welding is not 

related to the weight. Therefore the objective function in the developed algorithm 

can be extended to include the cost of steel frame.  

Both ant colony optimization and harmony search algorithms are found to be 

capable of finding solutions of large scale tall steel space frames. However they 

both have some disadvantages.  For example, ant colony optimization has a good 

performance at the beginning of the search but then in later stages it faces 

stagnation. On the other hand, the harmony search algorithm finds it difficult to 

fill the harmony memory matrix with feasible solutions particularly in the case of 

geometric constraints at the initial stages of the design cycles but once the 

harmony memory matrix is filled then its performance becomes much better 

towards the final stages of the design iterations. If these techniques are combined 

together in order to develop a hybrid optimization technique, it may give better 

results in frame optimization problems. 
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Shear cores and shear walls are used in the tall building to provide greater 

stiffness to the building in resisting the lateral loads. These members also decrease 

the effect of warping. It is interesting to study the effect warping in the optimum 

design of tall building  having shear core or shear wall.  
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