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ABSTRACT

ELLIPTIC CURVE PAIRING-BASED CRYPTOGRAPHY

Kırlar, Barış Bülent

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ersan Akyıldız

September 2010, 87 pages

In this thesis, we explore the pairing-based cryptography on elliptic curves from the theoreti-

cal and implementation point of view. In this respect, we first study so-called pairing-friendly

elliptic curves used in pairing-based cryptography. We classify these curves according to their

construction methods and study them in details.

Inspired of the work of Koblitz and Menezes, we study the elliptic curves in the form y2 = x3−

c over the prime field Fq and compute explicitly the number of points #E(Fq). In particular,

we show that the elliptic curve y2 = x3 − 1 over Fq for the primes q of the form 27A2 + 1

has an embedding degree k = 1 and belongs to Scott-Barreto families in our classification.

Finally, we give examples of those primes q for which the security level of the pairing-based

cryptographic protocols on the curve y2 = x3−1 over Fq is equivalent to 128-, 192-, or 256-bit

AES keys.

From the implementation point of view, it is well-known that one of the most important part

of the pairing computation is final exponentiation. In this respect, we show explicitly how the

final exponentiation is related to the linear recurrence relations. In particular, this correspon-

dence gives that finding an algoritm to compute final exponentiation is equivalent to finding
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an algorithm to compute the m-th term of the associated linear recurrence relation. Further-

more, we list all those work studied in the literature so far and point out how the associated

linear recurrence computed efficiently.

Keywords: Elliptic Curves, Pairing-Based Cryptography, Complex Multiplication, Linear Re-

currence Relation
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ÖZ

ELİPTİK EĞRİ EŞLEME TABANLI KRİPTOGRAFİ

Kırlar, Barış Bülent

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ersan Akyıldız

Eylül 2010, 87 sayfa

Bu tezde, eliptik eğriler üzerindeki eşleme tabanlı kriptografiyi teorik ve uygulama açısından

inceliyoruz. Bu bağlamda, ilk olarak eşleme tabanlı kriptografide kullanılan, adına eşlemeye

uygun denilen elliptik eğrileri çalışıyoruz. Bu eğrileri oluşturulma yöntemlerine göre sınıflan-

dırıyor ve detaylı olarak açıklıyoruz.

Koblitz ve Menezes’in yaptıkları çalışmadan esinlenerek, boyutu asal q olan sonlu cisim

Fq üzerinde tanımlı y2 = x3 − c biçimindeki eliptik eğrileri çalışıyoruz ve bu eğrilerin Fq

üzerindeki nokta sayılarını net olarak hesaplıyoruz. Bunun yanısıra, boyutu q = 27A2 + 1

biçiminde olan Fq üzerinde tanımlı y2 = x3 − 1 eliptik eğrisinin gömme derecesinin k = 1

olduğunu ve yapmış olduğumuz sınıflandırmada bu eğrinin Scott-Barreto ailesinin bir üyesi

olduğunu gösteriyoruz. Son olarak, eşleme tabanlı kriptografik protokollerde kullanılan y2 =

x3 − 1 eğrisinin üzerinde tanımlı olduğu Fq cisminin boyutunu temsil eden q = 27A2 + 1

biçimindeki asallara, güvenlik seviyesi 128-, 192- ya da 256-bitlik AES anahtarlarına denk

olacak şekilde örnekler veriyoruz.

Uygulama açısından, eşleme hesaplamanın en önemli bölümlerinden birisi de son üs alma
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işlemidir. Bu bağlamda, son üs alma işeminin, lineer yineleme bağıntısıyla nasıl bağlantılı

olduğunu gösteriyoruz. Bunun yanısıra, son üs almayı hesaplayan bir algoritma bulmanın,

ilgili lineer yineleme bağıntısının genel terimini hesaplayan algoritmayı bulmaya karşılık

geldiğini veriyoruz. Ayrıca, şimdiye kadar literatürde çalışılmış bütün işleri listeliyor ve ilgili

lineer yineleme bağıntısının etkili bir biçimde nasıl hesaplandığını ifade ediyoruz.

Anahtar Kelimeler: Eliptik Eğriler, Eşleme Tabanlı Kriptografi, Karmaşık Çarpım, Lineer

Yineleme Bağıntısı
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CHAPTER 1

INTRODUCTION

Over the last years, bilinear pairings, the Weil and Tate pairings derived from certain elliptic

curves of embedding degree k with k ≤ 50, have been used widely to implement pairing-

based cryptographic protocols. Although, the Weil pairing was initially proposed in [12]

as a suitable construction for the realisation of such protocols, it is now usually accepted

that the Tate pairing is preferable for its greater efficiency. Efficient computation of the Tate

pairing on supersingular elliptic curves and certain ordinary curves that are equally suitable

for pairing-based schemes have been suggested in [6, 4, 36]. In fact, ordinary curves offer

more flexibility for the choice of security parameters [6, 74]. The Weil and Tate pairings are

efficiently computed by using the Miller’s algorithm [73].

More recently, the cryptography researchers are focused on shortening the loop length in

Miller’s algorithm, which was initiated by Duursma-Lee [28] and extended by Barreto et al.

[3] to supersingular abelian varieties using the Eta pairing approach. The ate pairing, which

is introduced in [44] for elliptic curves, is then generalized to hyperelliptic curves in [41].

Recently, several variants of the above pairings were introduced by shortening the loop length

in Miller’s algorithm. Those are so-called generalized pairings [96], optimized pairings [68],

the R-ate pairing [63] and optimal pairings [90].

Elliptic curves with small embedding degree and large prime-order subgroup have a great

interest for implementing pairing-based cryptographic systems. Such curves, which is so-

called ”pairing-friendly” are rare and thus require specific constructions. Cryptosystems such

as one-round three party key exchange [49], identity-based encryption [12] and short signature

schemes [13] require pairing-friendly elliptic curves. The interest in recent times is to explore

various methods of constructing pairing-friendly curves with prescribed embedding degrees.
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The first work for constructing pairing-friendly elliptic curves is described by Miyaji, Nakaba-

yashi and Takano [74]. They constructed elliptic curves of prime order and embedding degree

k ∈ {3, 4, 6}. Such curves are now called MNT curves and the size of the field q is approx-

imatelly the same as the subgroup order r. Extensions of the MNT method in the sense of

constructing elliptic curves of near-prime order were investigated by Scott and Barreto [82]

and more recently by Galbraith, McKee and Valença [37]. Later, several methods have been

proposed to construct curves with arbitrary k by Cocks and Pinch [22] and Dupont, Enge and

Morain [26], respectively. In general, these methods only achieve ρ = log q/ log r ≈ 2. The

Cocks-Pinch method is extented by Scott and Barreto [82] and independently Brezing and

Weng [17] which is due originally the work of Barreto, Lynn and Scott [5].

The other component of pairing-based cryptography is so-called the final exponentiation. This

is done by raising the output of pairing value to the power of (qk−1)/r to get a unique value in

the group of r-th roots of unity Gr,q,k that is the subgroup of the cyclotomic subgroup Φk(q) in

the extension fields F∗
qk . It is well-known that pairing-based cryptographic protocols require

these components.

In recent years, there have been several studies on compressing the elements of certain sub-

groups of some field extensions. The compression methods fall into two categories in these

work. They either use the trace representation of elements or a rational parametrization of

algebraic torus. We only consider the trace representation in this work.

In 1994, the first proposal is given by Smith and Skinner using the Lucas sequences. They

showed that the elements of a subgroup Gr,q,2 whose order r divides Φ2(q) = q + 1 in F∗
q2

could be identified by their traces over Fq. In other words, the elements of Gr,q,2 can be

uniquely identified up to conjugation using the characteristic polynomials over Fq. Morever,

they showed that exponentiation in Gr,q,2 can be efficiently performed using the trace repre-

sentation. Their construction provides a compression factor 2. Gong and Harn [40] showed

that the elements of a subgroup Gr,q,3 whose order r divides Φ3(q) = q2 + q + 1 in F∗
q3 could

be identified with a compression factor 3/2. They also obtained an efficient exponentiation

for the compressed form of those elements. Brouwer, Pellikaan and Verheul [18] obtained a

compression factor 3 by representing the elements of a subgroup Gr,q,6 whose order r divides

Φ6(q) = q2 − q + 1 in F∗
q6 . However, they did not give an algorithm to exponentiate the

elements of Gr,q,6 in compressed form.
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In 2000, Lenstra and Verheul [64] showed that the elements of subgroup Gr,q,6 whose order r

dividing Φ6(q) = q2 − q + 1 in F∗
q6 can be uniquely represented by their traces over Fq2 . They

gave a very efficient exponentiation algorithm in Gr,q,6 with a compression factor 3. Verheul

et al. in [16] obtained a precise formulation for representations of elements in extension fields

of arbitrary degree. In 2004, Giuliani and Gong [38] obtained a compression factor 5/2 in a

subgroup Gr,q,10 of order r dividing Φ10(q) = q4 − q3 + q2 − q + 1 in F∗
q10 using the fifth order

characteristic sequences over Fq2 . They obtained an algoritm to exponentiate the compressed

form of elements in G and also proposed more efficient algorithm in [39].

More recently, Shirase et al. [85] considered that the elements of subgroup Gr,q,6 whose order

r dividing q−
√

3q+1 in F∗
q6 where q = 3t for some odd t and they showed that those elements

in Gr,q,6 can be uniquely represented (up to conjugation) with a compression factor 6 over Fq.

They also presented an algorithm for exponentiation of those elements. In 2009, using the

same trick in [85], Karabina [54] observed that the elements of order dividing q ±
√

3q + 1 in

F∗
q6 where q = 3t for some odd t and the elements of order dividing q ±

√
2q + 1 in F∗

q4 where

q = 2t for some odd t can be uniquely represented by their traces over Fq with a compression

factor 6 and 4, respectively. He presented five exponentiation algorithms for compression

factor 4 and six exponentiation algorithms for compression factor 6. Morever, he compared

those exponentiation algorithms.

This thesis is organized as follows. In Chapter 2, we review the mathematical backgrounds

about finite fields and elliptic curves over finite fields. In Chapter 3, we discuss basic facts

used in elliptic curve pairing based cryptography. In Chapter 4, we give the complex multi-

plication (CM) method and show how to use it to construct pairing friendly elliptic curves of

varies embedding degree. In Chapter 5, we describe the final exponentiation and show how

it is related to the linear recurrence relations. Moreover, we list all those work studied in the

literature so far. We conclude and give some future work in Chapter 6.
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CHAPTER 2

MATHEMATICAL BACKGROUNDS

In this chapter, we are going to give the mathematical backgrounds which is necessary for the

rest of the thesis. In this respect, basic facts about finite fields and elliptic curves over finite

fields have been given.

2.1 Finite Fields

For every prime p and any positive integer n, there exists a unique (up to isomorphism) finite

field with pn elements. This field is denoted by Fpn and can be constructed as follows:

(1) Fp : For every prime p, a finite field with p elements denoted by Fp may be identified

by integers modulo p, that is, Fp � Z/ < p >= {0, 1 · · · , p − 1}. One can perform the

operations (addition and multiplication) on Fp using the usual operation on integers,

followed by reduction modulo p. On the other hand, inversion can be done using the

extended Euclidean algorithm for integers.

(2) Fpn : Given any prime p and n ∈ Z+, there exists an irreducible monic polynomial

p(x) over Fp[x] of degree n [65, Theorem 2.5]. Then a simple algebraic extension

Fp[x]/ < p(x) > of Fp can be identified by Fp(α) ⊂ Fp, the algebraic closure of Fp.

This extension Fp(α) � Fpn has exactly pn elements and every element of the extension

field Fpn can be uniquely represented by the polynomial
∑n−1

i=0 ciα
i, where ci ∈ Fp. The

operations on Fpn are performed by using the polynomial operations with modulo p(x)

reduction. As in the prime field case, extended Euclidean algorithm for polynomials

can be used to compute the inversion in Fpn . It is well-known that any finite field F is

isomorphic to Fpn for some prime p and n ∈ Z+, where p is the characteristic of F and

4



n is the degree of F over its prime subfield [65, Theorem 2.2].

2.2 The Density of Prime Numbers

In the literature, the density of prime numbers has a long history, going back to Gauss and

Legendre. They first conjectured prime number theorem in the late 18th century, indepen-

dently.

Theorem 2.2.1 (Prime Number Theorem) Let π(N) be the number of primes less than or

equal to N. Then

π(N) ∼
N

log N
.

That is, π(N) is asymptotically equal to N/ log N as N → ∞.

In particular, Gauss conjectured an equivalent form of the prime number theorem by defining

the function

Li(N) :=
∫ N

2

dt
log t

,

which was a good approximation to π(N).

In the beginning of 20th century, Hardy and Littlewood [42] developed a number of con-

jectures, one of these, Conjecture F, concerned the density of prime numbers of the form

f (x) = ax2 + bx + c. This conjecture says that there are infinitely many primes of the form

f (x) = ax2 + bx + c provided that a ∈ Z+, b, c ∈ Z, gcd(a, b, c) = 1, a + b and c are not both

even, and the discriminant D = b2 − 4ac is not a square. Furthermore, it predicts the number

of such primes less than or equal to N, which is asymptotically given by

π( f )(N) ∼
ε ·C
√

a

√
N

log N

∏
(

p
p − 1

).

Here, the product is taken over the common odd prime divisors p of a and b, ε is 1 if a + b is

odd and 2 if a + b is even, and

C =
∏

prime l≥3
l-a

(
1 −

χ2(D)
l − 1

)
,

where the quadratic character χ2 is a homomorphism from F∗l to C∗ such that χ2
2 = 1.
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In the middle of 20th century, Bateman and Horn [8] has come up with another conjecture

which generalizes the conjecture of Hardy and Littlewood. Namely, let f1, · · · , fk be polyno-

mials in one variable with integral and positive leading coefficients. Let h1, · · · , hk be their

degrees, respectively. Let f be the product of these polynomials f = f1 · · · fk. Suppose

each of these polynomials is irreducible over the field of rational numbers and they are pair-

wise relatively prime. Let π( f )(N) denote the number of positive integers n between 1 and N

such that f1(n), · · · , fk(n) are all primes. Then Bateman-Horn conjecture says that π( f )(N) is

asymptotically given by

π( f )(N) ∼
C( f1, · · · , fk)

h1h2 · · · hk

∫ N

2

dt
(log t)k ,

where

C( f1, · · · , fk) =
∏

p

{
(1 −

1
p

)(1 −
N( f )(p)

p
)
}
,

the product being taken over all primes and N( f )(p) being the number of solutions of the

congruence

f (n) = f1(n) f2(n) · · · fk(n) ≡ 0 (mod p),

where 1 ≤ n ≤ N.

The following example gives a conjectural density of prime numbers in the form f (A) =

27A2 + 1 that we used in Section 4.6.4.3. In particular, it shows that there are infinitely many

such primes.

Example 2.2.2 Let π( f )(N) denote the number of primes in the form f (A) = 27A2 + 1 for

1 ≤ A ≤ N. Bateman and Horn conjecture [8] indicates

π( f )(N) ∼
1
2

∏
prime l

l-3

(
1 −

χ2(−3)
l − 1

) ∫ N

2

dA
log A

.

By using the computation in [84, Table 2], it can be checked that

π( f )(N) ∼ 0.560366375
∫ N

2

dA
log A

.

We would also like to note that according to Hardy and Littlewood [42, Conjecture F], this

value π(N) is asymptotically given by

π( f )(N) ∼ 0.323527677
√

N
log N

.
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2.3 Trace and Norm

Definition 2.3.1 Let q = pn with prime p, and let k be a positive integer. Let σ be the

Frobenius automorphism of Fqk over Fq defined by σ(α) = αq for α ∈ Fqk . Then trace of α

with respect to Fq is defined by

TrFqk /Fq(α) =

k−1∑
i=0

σi(α) =

k−1∑
i=0

αqi

and norm of α with respect to Fq is defined by

NFqk /Fq(α) =

k−1∏
i=0

σi(α) =

k−1∏
i=0

αqi
.

2.4 Characters and Jacobi Sums

Definition 2.4.1 A multiplicative character χ on Fq, where q = pn, is a map from F∗q to the

nonzero complex numbers C∗ that satisfies

χ(αβ) = χ(α)χ(β) f or all α, β ∈ F∗q.

The trivial character denoted by χtriv is given by χtriv(α) = 1 for all α ∈ F∗q. Given a character

χ : F∗q → C∗, χ−1 denote the inverse of χ in F∗q, which is also a character and in fact χ−1 = χ;

namely χ−1(x) = χ(x) for all x ∈ F∗q. It is convenient to extend the domain of definition of a

character χ from F∗q to Fq by setting χ(0) = 1, i f χ is trivial

χ(0) = 0, i f χ is nontrivial

With this definition, it is clear that we have

∑
α∈Fq

χ(α) =

 q, i f χ is trivial

0, i f χ is nontrivial

Definition 2.4.2 Let χ and ψ denote the multiplicative characters on Fq. The Jacobi sum

J(χ, ψ) is defined by

J(χ, ψ) =
∑
α∈Fq

χ(α)ψ(1 − α).
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Since α −→ 1 − α is a permutation on Fq, we obtain that Jacobi sums have the symmetry

property

J(χ, ψ) = J(ψ, χ).

For the rest of this section, we give some basic facts related to the characters and Jacobi sums

that will be used in Section 4.6.4.3. The proof of the following can be found in [48, Theorem

8.3.1].

Proposition 2.4.3 Let χtriv be trivial character on Fq. Then for any character χ, we have the

following:

(a) J(χtriv, χtriv) = q.

(b) J(χtriv, χ) = 0.

(c) J(χ, χ) = −χ(−1).

In this thesis, we consider quadratic, cubic and sextic characters to compute the number of

points #E(Fq) of the elliptic curve y2 = x3 − c over Fq with q ≡ 1 (mod 3) in Section 4.6.4.3.

We now give some facts about these characters.

Let χi : F∗q → C∗ be characters for i = 2, 3 and 6, which are defined by

χ2(g j) = (−1) j, χ3(g j) = δ j and χ6(g j) = (−δ) j

respectively, where F∗q =< g > and δ = −1+i
√

3
2 .

We note that for the character χ2, we have

χ2(−1) = (−1)
q−1

2 =

 1, i f q ≡ 1 (mod 12)

−1, i f q . 1 (mod 12)

We need the following lemmas, where the proofs can be found in [92, Section 4.4].

Lemma 2.4.4 Let q ≡ 1 (mod 3) be prime and let x ∈ F∗q. Then

#{u ∈ F∗q | u2 = x} =

1∑
l=0

χ2(x)l,

and

#{u ∈ F∗q | u3 = x} =

2∑
l=0

χ3(x)l.
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Lemma 2.4.5 Let q ≡ 1 (mod 3) be prime. Then

∑
α∈Fq

χ2(α)l =

 q, if l ≡ 0 (mod 2)

0, if l . 0 (mod 2)

and ∑
α∈Fq

χ3(α)l =

 q, if l ≡ 0 (mod 3)

0, if l . 0 (mod 3)

Lemma 2.4.6 Let S = {(x, y) | x, y ∈ F∗q; x, y , 1; x , y}. Then the map

σ : (x, y)→
( x
y
,

1 − x
1 − y

)
is a permutation of S .

This lemma helps us to prove the following fact.

Proposition 2.4.7 |J(χ3, χ3)|2 = q.

Proof.
|J(χ3, χ3)|2 =

∑
a,0,1

χ3(a)χ3(1 − a)
∑

b,0,1

χ3(b)χ3(1 − b)

=
∑

a,0,1

∑
b,0,1

χ3(
a
b

)χ3(
1 − a
1 − b

)

=
∑
a=b

χ3(
a
b

)χ3(
1 − a
1 − b

) +
∑

(a,b)∈S

χ3(
a
b

)χ3(
1 − a
1 − b

)

= (q − 2) +
∑

(c,d)∈S

χ3(c)χ3(d)

= (q − 2) +
∑

d,0,1

χ3(d)
( ∑

c∈F∗q

χ3(c) − χ3(1) − χ3(d)
)

= (q − 2) +
∑

d,0,1

χ3(d)(0 − 1 − χ3(d))

= (q − 2) −
∑

d,0,1

χ3(d) −
∑

d,0,1

χ3(d)2

= (q − 2) + χ3(1) + χ3(1)2

= q

�

We need the following facts that the proofs can be found in [10, Chapter 2].
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Proposition 2.4.8 Let q > 2. If χ is a nontrivial character on Fq and χ2 is the quadratic

character on Fq, then

J(χ, χ2) = χ(4)J(χ, χ).

Proposition 2.4.9 Let χ3 be a cubic character on Fq, where q ≡ 1 (mod 3). Then χ3(2) = 1

if and only if q = x2 + 27y2 for some integers x and y.

Now, we will give an important fact which is proved in [48, Proposition 8.3.4].

Proposition 2.4.10 Let q ≡ 1 (mod 3) be a prime. Then

J(χ3, χ3) = −1 (mod 3)

in the ring Z[δ] = Z[x]/ < x2 + x + 1 >, where δ = −1+i
√

3
2 is the complex cube root of unity.

2.5 Elliptic Curves over Finite Fields

Let Fq be a finite field with q = pn. Then the algebraic closure of Fq is given by Fq =
⋃

i≥1 Fqi .

An elliptic curve E over Fq, denoted by E(Fq), is defined to be the set of solutions in the

projective plane P2(Fq) of a homogeneous fuction F in the form

F(X,Y,Z) = Y2Z + a1XYZ + a3YZ2 − X3 − a2X2Z − a4XZ2 − a6Z3,

where a1, a2, a3, a4, a6 ∈ Fq. For the rest of the thesis, we take E(Fq) = E. We require the

curve E to be a non-singular. In other words, the partial derivatives ∂F
∂X ,

∂F
∂Y and ∂F

∂Z shoud

not vanish simultaneously at any point on the curve. The curve E has exactly one point with

coordinate Z equal to zero, namely (0 : 1 : 0). This point is so called point at infinity and

denoted by∞.

For convenience, by using the affine coordinates x = X/Z and y = Y/Z, we get the affine

version of the Weierstrass equation as follows

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, (2.1)

where the coefficients ai are in the field Fq. Then, the elliptic curve is the set of points

(x, y) ∈ A2(Fq) = Fq × Fq that satisfy the affine equation (2.1) together with ∞. The curve
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E has an additive group structure determined by the fact that ∞ is an identity element and

P,Q,R ∈ E : P + Q + R = ∞ if and only if R lies in the line joining P to Q in the projective

space. The group operation in this group structure is usually called chord-and-tangent rule.

It is clear from the definition that the set of Fqk -rational points of E is a subgroup of E for any

k ≥ 1. This subgroup is denoted by E(Fqk ). In fact, E(Fqk ) consists of all solutions of (2.1) in

Fqk × Fqk together with∞.

Two elliptic curves E1(Fq) and E2(Fq) are isomorphic over Fq, denoted by E1(Fq) � E2(Fq),

if there exist u, r, s, t ∈ Fq, u , 0 such that the change of variables, so called admissible

change of variables,

(x, y) 7−→ (u2x + r, u3y + u2sx + t)

transforms the equation E1 into the equation E2. If E is an elliptic curve over Fq with char-

acteristic p > 3, then it can be shown that this curve E isomorphic to the curve given by

so-called Weierstrass equation

E : y2 = x3 + ax + b, a, b ∈ Fq,

where ∆ = −16(4a3 + 27b2) , 0 in Fq. By using the chord-and-tangent rule, we now give the

explicit formula for the addition of two points in the curve E defined over Fq of characteristic

p > 3. Let P = (x1, y1) and Q = (x2, y2) be the points on E with P,Q , ∞ and Q , −P. Then

• If P , Q, then P + Q = (x3, y3), where
x3 = (

y2 − y1

x2 − x1
)2 − x1 − x2

y3 = (
y2 − y1

x2 − x1
)(x1 − x3) − y1

• If P = Q, then 2P = (x3, y3), where
x3 = (

3x2
1 − a
2y1

)2 − 2x1

y3 = (
3x2

1 − a
2y1

)(x1 − x3) − y1

Similarly, one can simplify the Weierstrass equation for curves over Fq of characteristic p =

2, 3 and get similar formula as above (see [86, Appendix A]).

Let E be an elliptic curve defined over Fq. The number of points in E(Fq), called the order of

the elliptic curve over Fq, is denoted by #E(Fq). The trace of the Frobenius or simply trace
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of a curve is the value t satisfying #E(Fq) = q + 1 − t. The elliptic curve E(Fq) is said to be

supersingular if the characteristic p of Fq divides t, otherwise it is called ordinary. In other

words, the curve E(Fq) is supersingular if t ≡ 0 (mod p). The following fact improves the

above bound on the size of E(Fq), whose proof is given in [86, Chapter V].

Theorem 2.5.1 (Hasse) Let E be an elliptic curve defined over Fq. Then,

|t| ≤ 2
√

q.

We now give a useful result that enables one to compute #E(Fqk ) from #E(Fq), that the proof

can be found in [86, Chapter V].

Theorem 2.5.2 (Weil) Let E be an elliptic curve over Fq, and let t = q + 1 − #E(Fq). Let

φq : E → E be the Frobenius map given by (x, y) 7→ (xq, yq). Write the characteristic

polynomial of φq as x2 − tx + q = (x − α)(x − β) in C[x]. Then

#E(Fqk ) = qk + 1 − (αk + βk)

for all k ≥ 1.

The characteristic polynomial of the Frobenius map x2 − tx + q allows us to introduce the

following recurrence relation {Vn}, which is so-called Lucas sequence [87],

Vn = tVn−1 − qVn−2

with the initial condition V0 = 2 and V1 = t = α + β = q + 1 − #E(Fq). Then Vk = αk + βk

and therefore #E(Fqk ) = qk + 1 − Vk. The Lucas sequence {Vn} can be efficiently computed in

[50] depending on the relations

Vn+m = VnVm − qmVn−m

V2n = V2
n − 2qn

for n,m ∈ Z. We shall quote the algorithm from [50] and discuss comprehensively in Section

5.2.1.

Example 2.5.3 Let E be the elliptic curve given by

y2 = x3 − 1
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over F19. There are 28 points which are listed as follows:

(1, 0) (2, 8) (2, 11) (3, 8) (3, 11) (4, 5) (4, 14)

(6, 5) (6, 14) (7, 0) (8, 6) (8, 13) (9, 5) (9, 14)

(10, 7) (10, 12) (11, 0) (12, 6) (12, 13) (13, 7) (13, 12)

(14, 8) (14, 11) (15, 7) (15, 12) (18, 6) (18, 13) ∞

Therefore, the trace of Frobenius t = V1 = 19 + 1− #E(F19) = −8. We can easily compute the

number of points of E over F192 by using the Lucas sequence {Vn}, that is,

#E(F192) = 192 + 1 − V2,

where V2 = V1 · V1 − q · V0 = 28 · 28 − 19 · 2 = 26, thus we get #E(F192) = 336.

2.6 Torsion Points on Elliptic Curves

Let E be an elliptic curve over Fq and for any integer r > 0, let E[r] = {P ∈ E | rP = ∞}. E[r]

is a subgroup of E containing all r-torsion elements of E.

It is not difficult to show that there exists k ∈ Z+ such that E[r] ⊂ E(Fqk ). The following

theorem gives the group structure of E[r] (see [92, Section 3.2]).

Theorem 2.6.1 Let E be an elliptic curve over Fq of characteristic p, and let r ∈ Z+. If p - r,

then E[r] � Zr×Zr. If p | r, write r = pnr
′

with p - r
′

, then E[r] � Zr′ ×Zr′ or E[r] � Zr×Zr′ .

2.7 The Embedding Degree

Theorem 2.7.1 (Balasubramanian-Koblitz[2]) Let E be an elliptic curve defined over Fq and

suppose that E(Fq) has a subgroup < P > of order r with gcd(r, q−1) = 1. Then E[r] ⊂ E(Fqk )

if and only if r | qk − 1.

Definition 2.7.2 Let E be an elliptic curve defined over Fq. Let < P > be a cyclic subgroup

of E(Fq) of order r. Then the embedding degree of < P > is the smallest positive integer k

such that E[r] ⊂ E(Fqk ).
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Remark 2.7.3 If gcd(r, q − 1) = 1, then by Balasubramanian and Koblitz, the embedding

degree k is nothing but the smallest k such that r | qk − 1.

When we talk about the embedding degree of a curve E(Fq), we mean the embedding degree

of the subgroup of E(Fq) of order r, where r is the largest prime divisor of #E(Fq).

2.8 Curve Endomorphisms

Let E be an elliptic curve over Fq, with q = pn. Then an endomorphism δ of E over Fq

is a rational map δ : E → E in the sense of algebraic varieties and it is furthermore a

group homomorphism. The characteristic polynomial of an endomorphism δ is defined to be

the least degree monic polynomial f (x) ∈ Z[x] such that f (δ)(P) = ∞ for all P ∈ E. The

set of all endomorphisms of E over Fq, denoted by End(E), forms a ring under addition and

multiplication (corresponds to composition), which is called the endomorphism ring of E over

Fq (see [30, Section 3.1]).

There is a special endomorphism of E over Fq, called the Frobenius map φq : E → E which

is defined by φq(x, y) = (xq, yq) and φq(∞) = ∞. The Frobenius endomorphism φq has the

property that φq(E(Fqm)) = E(Fqm) for any m ≥ 1 with φm
q = idE on E(Fqm). It follows from

Hasse’s theorem that the characteristic polynomial of φq is given by

f (x) = x2 − tx + q,

where t = q + 1 − #E(Fq) is the trace of the Frobenius φq (see [92, Section 4.2]).

2.9 The Elliptic Curve y2 = x3 − c

We will now give some property of the elliptic curves E : y2 = x3 − c over Fq with prime q,

which help us to compute the explicit formula for the number of points #E(Fq) when q ≡ 1

(mod 3) in Section 4.6.4.3. It is well-known that #E(Fq) = q + 1, when q ≡ 2 (mod 3) (see

[92, Proposition 4.31]).

Let E be the elliptic curve given by the equation

y2 = x3 − c
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over Fq with q ≡ 1 (mod 3). This curve has the endomorphism ring isomorphic to the ring

Z[δ] = Z[x]/ < x2 + x + 1 >, where δ = −1+i
√

3
2 is the complex cube root of unity. Morever,

the corresponding generator of the endomorphism ring δ : E → E is given by the map

(x, y) 7→ δ(x, y) = (βx, y), where β is a primitive cube root of unity in F∗
q2 .

The elements τ = a + bδ in Z[δ] with a, b ∈ Z are called Eisenstein integers, and τ is ordinary

complex conjugate of τ. One can check that τ = a + bδ2 = (a − b) − bδ and N(τ) = ττ =

a2 + b2 − ab, where N : Z[δ] → Z is the norm function. In fact, Z[δ] is a Euclidean

domain under this norm function [48, Proposition 1.4.2]. The units of Z[δ] are Z[δ]∗ =

{±1,±δ,±δ2} =< −δ >� Z6 (see [48, Proposition 9.1.1]).

In the isomorphism End(E) � Z[δ], the Frobenius endomorphism φq corresponds to the en-

domorphism `τ determined by the left multiplication of τ = a+bδ in Z[δ]. This τ is unique up

to complex conjugation and `τ has the characteristic polynomial x2− (2a−b)x+ (a2 +b2−ab).

It follows from Hasse’s theorem #E(Fq) = q + 1 − t that

t = Tr(τ) = τ + τ = 2a − b,

q = N(τ) = ττ = a2 + b2 − ab.

Since all representations of q are in the form q = N(uτ) and q = N(uτ), where u ∈ Z[δ]∗,

there is exactly 12-representations producing q = a2 + b2 − ab. Therefore, all possible traces

corresponding to these representations of q are the following:

±(2a − b), ±(a − 2b), ±(a + b)

Since q = a2 +b2−ab ≡ 1 (mod 3), we may restrict the congruences for a and b to six classes

: a ≡ 0 (mod 3) and b . 0 (mod 3), a ≡ 1 (mod 3) and b . 2 (mod 3), a ≡ 2 (mod 3) and

b . 1 (mod 3). We also would like to note that there is an algorithm to compute a, b ∈ Z

such that q = a2 + b2 − ab = N(τ), where τ = a + bδ ∈ Z[δ] (see [94]).
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CHAPTER 3

PAIRING-BASED CRYPTOGRAPHY

In this chapter, we first discuss the basic facts used in pairing-based cryptosystems and then

we focus ourselves on the elliptic curves and study the Weil and Tate pairings (and its deriva-

tives) used in these systems. For a more detailed background, one can refer to the Chapter IX

and X of [11].

3.1 Bilinear Pairings

Definition 3.1.1 Let (G1,+) and (G2,+) be abelian groups of order n. Let (G3, .) be a cyclic

group of order n. A bilinear pairing is an efficiently computable map e : G1 × G2 −→ G3

which satisfies the following additional properties:

1. (bilinearity) For all P,R ∈ G1 and all Q, S ∈ G2, we have e(P + R,Q) = e(P,Q)e(R,Q)

and e(P,Q + S ) = e(P,Q)e(P, S ).

2. (non-degeneracy) For all P ∈ G1, with P , IdG1 , there is some Q ∈ G2 such that

e(P,Q) , IdG3 . For all Q ∈ G2, with Q , IdG2 , there is some P ∈ G1 such that

e(P,Q) , IdG3 .

The following fact which is related to the properties of bilinear pairings can be easily verified.

Lemma 3.1.2 Let e : G1 ×G2 −→ G3 be a bilinear pairing. Let P ∈ G1 and Q ∈ G2. Then

1. e(P, IdG2) = e(IdG1 ,Q) = IdG3

2. e(−P,Q) = e(P,−Q) = e(P,Q)−1
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3. e(aP, bQ) = e(bP, aQ) = e(P,Q)ab for all a, b ∈ Z.

3.2 Security of Pairings

We now give the bilinear Diffie-Hellman problem (BDHP) that has been widely studied in

recent years. Security of some applications of bilinear pairings in cryptography is based on

the hardness of the BDHP, which was first stated in [12].

Let (G1,+) and (G2, ·) be cyclic groups of prime order n. Let P ∈ G1, G1 =< P > and

e : G1 ×G1 → G2 be a bilinear map.

Discrete Logarithm Problem (DLP):

On G1: Given P in G1, find a ∈ Z∗n such that Q = aP in G1.

On G2: Given e(P, P) in G2, find a ∈ Z∗n such that Q = e(P, P)a in G2.

Diffie-Hellman Problem (DHP):

On G1: Given P, aP, bP in G1, for some (unknown) a, b ∈ Z∗n, compute abP in G1.

On G2: Given e(P, P), e(P, P)a, e(P, P)b in G2, for some (unknown) a, b ∈ Z∗n, compute

e(P, P)ab in G2.

Bilinear Diffie-Hellman Problem (BDHP): Given P, aP, bP, cP in G1, for some (unknown)

a, b, c ∈ Z∗n, compute e(P, P)abc in G2.

The BDHP is no harder than the DHP on G1 and G2. Namely, if we can solve the DHP on G1,

we could find abP, and compute e(abP, cP) = e(P, P)abc. Thus we would solve the BDHP.

Similarly, if we can solve the DHP on G2, we could apply this problem to e(P, P), e(P, P)c,

and e(P, P)ab, which would solve the BDHP.

The DHP on G1 and G2 can be reduced to the DLP on G1 and G2. It is also assumed that

the DLP on G1 and G2 are hard to solve. The bilinear property has many applications and it

was first used for DLP in [70]. For instance, choosing G1 = E(Fq) and G2 ⊂ F∗
qk with k an

embedding degree, defines bilinear pairing which we discuss later.

In the literature, there are a lot of different cryptographic protocols based on bilinear pairings

that the security of them depends on the BDHP and its versions [27]. However, we present

three fundamental of those protocols.
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3.3 Pairing-Based Cryptographic Protocols

3.3.1 Joux’s One Round Three Party Key Agreement Protocol

Key agreement, one of the fundamental cryptographic primitives, is required when two or

more parties want to share a message securely. Three party key agreement in a single round

proposed by Joux [49] was the first application of bilinear pairings in cryptography.

Protocol:

Let (G1,+) and (G2, ·) be cyclic groups of prime order n. Let P ∈ G1, G1 =< P > and

e : G1×G1 → G2 be a bilinear map. Consider three parties A, B,C with secret keys a, b, c ∈ Zn

• A broadcasts aP to both B,C

• B broadcasts bP to both A,C

• C broadcasts cP to both A, B

• A computes e(bP, cP)a

• B computes e(aP, cP)b

• C computes e(aP, bP)c

• Common agreed key is e(P, P)abc

3.3.2 Short Signatures

Digital signatures are the most important cryptographic primitive for the daily life. Short

signatures are needed in environments with space and bandwidth constraints. So far, the best

known shortest signature [13] is obtained by using the Digital Signature Algorithm (DSA)

over a finite field Fq. The length of the signature is approximately 2 log q. On the other hand,

when the following pairing-based protocol is used, the length of the signature is about ρ log r,

where ρ = log q/ log r and r is the largest prime divisor of the number of the points of the

elliptic curve. For example, if one uses RSA signature 1024 bit modulus, ECDSA signature is

320 bit long for the same security level. However, short signature provides the same security

level only for 160 bits for the best choice. This case corresponds finding a suitable elliptic

18



curve E(Fq), for which r is close to q and it is a general problem to find such suitable elliptic

curves having this property that we shall discuss in Chapter 4.

Protocol:

Let (G1,+) and (G2, ·) be cyclic groups of prime order n. Let P ∈ G1, G1 =< P > and

e : G1 ×G1 → G2 be a bilinear map. Let H : {0, 1}∗ → G∗1 be a cryptographic hash function.

• Key Generation : Pick a random c ∈ Z∗n and compute cP. The secret key is c and the

public key is cP.

• Sign : Given a secret key c and a message m ∈ {0, 1}∗, compute the signature σ =

cH(m) ∈ G1.

• Verify : Given a public key cP, a message m and a signature σ, verify e(P, σ) =

e(cP,H(m)).

3.3.3 Identity-Based Cryptosystems

This was firstly suggested by Shamir in [83] that a public key encryption scheme can be run

with the identity of the receiver. In other words, for Identity-Based (ID-based) encryption

provides the simplification of certificate management in e-mail systems. By this way, man-

agement of keys and certificates gets more and more easier. The most used ID-based cryp-

tosystem was proposed by [12] in 2001. The main advantage of ID-based crytosystems is to

eliminate the need for certificates. Moreover, ID-based cryptosystems remove the certificate

lookup, lifecycle management and certificate revocation lists.

Protocol:

Let (G1,+) and (G2, ·) be cyclic groups of prime order n. Let P ∈ G1, G1 =< P > and e :

G1 ×G1 → G2 be a bilinear map. Let l be the length of the message m. Let H1 : {0, 1}∗ → G∗1

and H2 : G2 → {0, 1}l be the cryptographic hash functions.

• Key Generation : Pick a random s ∈ Z∗n and compute sP. For a given string ID ∈

{0, 1}∗, compute sH1(ID). The master key is s, the public key is S = sP and the private

key is d = sH1(ID).
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• Encrypt : Choose a random a ∈ Z∗n, then the ciphertext for the message m to be

C = 〈aP,m ⊕ H2(e(H1(ID), S )a)〉.

• Decrypt : Compute V ⊕ H2(e(d,U)) = m for given C = 〈U,V〉.

3.4 Divisors on Elliptic Curves

The divisor group of an elliptic curve E, denoted by Div(E), is the free abelian group genera-

ted by the points of E. Therefore, a divisor D ∈ Div(E) is a formal sum given by

D =
∑
P∈E

nP(P)

with nP ∈ Z and nP = 0 except for finitely many P ∈ E. The degree of a divisor D is defined

by

deg(D) =
∑
P∈E

nP.

The support of a divisor D, supp(D), is the set of points P ∈ E for which nP , 0.

The divisors of degree zero form a subgroup of Div(E), that is denoted by

Div0(E) = {D ∈ Div(E) | deg(D) = 0}.

Let Fq(E) denote the field of rational functions on E. Let f ∈ Fq(E) be non-zero. Then the

divisor of the function f is div( f ) =
∑

P∈E ordP( f )(P), where ordP( f ) is the multiplicity of f

at P. It is a well-known fact that deg(div( f )) = 0. A divisor D is called principal if D = div( f )

for some non-zero f ∈ Fq(E). This is denoted by

Prin(E) = {D ∈ Div(E) | D = div( f ), f , 0, f ∈ Fq(E)}.

Prin(E) is a subgroup of Div0(E) since for all non-zero rational functions f , g ∈ E, div( f g) =

div( f ) + div(g) and div( f /g) = div( f ) − div(g).

Two divisors D and D
′

are equivalent (denoted by D ∼ D
′

) if D
′

= D + div( f ) for some

nonzero f ∈ Fq(E).

Theorem 3.4.1 [86, Corollary 3.3.5] Let D =
∑

P∈E nP(P) be a divisor. Then D is principal

if and only if deg(D) = 0 and
∑

P∈E nPP = ∞.
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The divisor class group (or Picard group) Pic0(E) of E is the quotient of the group of degree

zero divisors Div0(E) by the principal divisors Prin(E), i.e,

Pic0(E) = Div0(E)/Prin(E).

It is well-known that for every divisor D ∈ Div0(E), there is a unique point Q ∈ E such

that D ∼ (Q) − (∞) [86, Proposition 3.3.4]. This gives a one-to-one correspondence between

Pic0(E) and the group of points of E.

Let P,Q ∈ E. Suppose the line between P and Q (tangent line if P = Q) has an equation

L(x, y) = 0. By Bezout’s theorem, this line L intersects E at a third point R = (xR, yR). Then

the divisor of L is div(L) = (P) + (Q) + (R) − 3(∞). The vertical line V(x) = (x − xR) passes

through the points R and S = P + Q. Then div(V) = (R) + (S )−2(∞). Therefore, the equation

S = P + Q corresponds to div(L/V) = (P) + (Q) − (S ) − (∞).

If D =
∑

P∈E nP(P) ∈ Div(E) and f ∈ E is a non-zero rational function such that supp(D) ∩

supp(div( f )) = ∅, then the value of f at D is defined to be the following element in Fq:

f (D) =
∏
P∈E

f (P)nP .

Theorem 3.4.2 (Weil reciprocity) Let f and g be nonzero functions on a curve E over Fq.

Suppose that supp(div( f )) ∩ supp(div(g)) = ∅. Then f (div(g)) = g(div( f )).

3.5 Weil Pairing

Let E be an elliptic curve defined over Fq of characteristic p with the identity element∞. Let

r be a large prime satisfying r | #E(Fq) which is coprime to p. Let k the embedding degree,

i.e., the smallest positive integer such that r | qk − 1. Then E[r] ⊂ E(Fqk ) when k > 1 and thus

E[r] � Zr × Zr.

Let P,Q ∈ E[r] and let R, S ∈ E(Fqk ) such that S < {R, P + R, P + R − Q,R − Q}. Let

D = (P + R) − (R) and D
′

= (Q + S ) − (S ). Then by Theorem 3.4.1, the divisors rD, rD
′

are

in the form rD = div( fP) and rD
′

= div( fQ) for some rational functions fP , 0, fQ , 0 on the

curve E over Fq. Let µr be the group of r-th roots of unity in F∗
qk . Let

er : E[r] × E[r]→ µr ⊂ F∗qk
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be the map given by

er(P,Q) =
fP(D

′

)
fQ(D)

=
fP(Q + S )/ fP(S )
fQ(P + R)/ fQ(R)

.

This map so-called Weil pairing is well-defined and has the properties given below.

Theorem 3.5.1 (Properties of Weil Pairing) Let E be an elliptic curve defined over Fq. Then,

the Weil pairing er satisfies the following properties :

1. (identity) er(S , S ) = 1 for all S ∈ E[r]

2. (alternation) er(S ,T ) = er(T, S )−1 for all S ,T ∈ E[r]

3. (bilinearity) er is bilinear in each variable; er(S +T, P) = er(S , P)er(T, P) and er(S ,T +

P) = er(S ,T )er(S , P) for all S ,T, P ∈ E[r]

4. (non-degeneracy) If er(S ,T ) = 1 for all S ∈ E[r] with S , ∞, then T = ∞ and if

er(S ,T ) = 1 for all T ∈ E[r] with T , ∞, then S = ∞

5. (compatibility) For all S ,T ∈ E[r], er(α(S ), α(T )) = er(S ,T )degα, for any nonzero

endomorphism α : E → E

6. If E[r] =< P > ⊕ < R >, then er(P,R) = ξ is a primitive r-th root of unity.

We now briefly outline Miller’s algorithm (Algorithm 1) [72, 73] for computing the Weil

pairing er(P,Q) in a polynomial time, efficiently. This algorithm aims to construct rational

functions f and g associated to the point P and Q and evaluate at divisors D
′

= (Q + S ) − (S )

and D = (P + R) − (R), respectively. The functions fP and fQ can be efficiently computed by

double and add procedure. This idea is to define function fi, where 1 ≤ i ≤ r and fr = fP or

fQ, recursively. These functions are computed by the following way :

f1 =
VP+R

LP,R
, fi+ j = fi · f j ·

LiP, jP

ViP+ jP
, f2i = f 2

i ·
TiP

V2iP
,

where VP is the vertical line at P, TR is the tangent line at R and LP,Q is the line passing

through the points P and Q.

Example 3.5.2 Let E be the elliptic curve given by

y2 = x3 − 4
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over F5. Since 5 ≡ 2 (mod 3), #E(F5) = 5 + 1 = 6. These points form an additive group

structure, that is, E(F5) =
{
(0, 1), (0, 4), (2, 2), (2, 3), (4, 0),∞

}
.

Let < P = (0, 1) > be the subgroup of E(F5) of order r = 3. Then < P >= E(F5)[3] =
{
P =

(0, 1), 2P = (0, 4), 3P = ∞
}
. If we give these points as inputs to the Weil Pairing, the output

will be 1 since they are linearly dependent. Therefore, we must find the other 3-torsion points

to apply Weil pairing. Since this curve is a supersingular elliptic curve with embedding degree

k = 2 that we shall discuss in Section 4.5.2, E(F52) contains all 9 points of E[5]. Therefore,

Weil pairing exist and nontrivial in the field extension F52 . Note that χ2(−2) , 1 in F5, so

we can write F52 = F5[α], where α2 + 2 = 0. Although the distortion map of this curve is

given by δ(x, y) = (x, αy), this does not give us the other 3-torsion points in F52 . However

E[3] =
{
(0, 1), (0, 4), (1, 2α), (1, 3α), (2 +α, 2α), (2 +α, 3α), (2 + 4α, 2α), (2 + 4α, 3α),∞

}
. We

compute the Weil pairing e3(P,Q) = e3((0, 1), (1, 2α)). In order to do this, we first randomly

select the points R and S to be not in E[3]. Let R = (2, 2) and S = (3, α). Using the point

addition formulas, we find P + R = (2, 3) and Q + S = (3, 4α). We now comprehensively

describe how Miller’s algorithm works for fP(Q + S ) and fP(S ):

1. We compute f1 =
VP+R

LP,R
=

x − 2
x − 2y + 2

at the point Q+S and S that gives us f1(Q+S ) =

α and f1(S ) = 4α.

2. We compute f2 = f 2
1 ·

TP

V2P
=

( x − 2
x − 2y + 2

)2
·

y − 1
x

at the point Q + S and S that gives

us f2(Q + S ) = 4 + 4α and f2(S ) = 4 + α.

3. We compute f3 = f1 · f2 ·
L2P,P

V3P
at the point Q + S and S . Since 3P = ∞ and −2P = P,

we discard the denominator and L2P,P = VP in this case. Therefore, f3 = f1 · f2 · VP =( x − 2
x − 2y + 2

)3
·

y − 1
x
· x and then f3(Q + S ) = 1 + 2α and f3(S ) = 1 + 3α.

Thus we have found f3(Q + S ) = fP(Q + S ) = 1 + 2α and f3(S ) = fP(S ) = 1 + 3α, simulta-

neously.

On the other hand, fQ(P + R) and fQ(R) are computed using the same procedure above. It

can be verified that fQ(P + R) = 3 + 4α and fQ(R) = 3 + α. Finally, we have

e3(P,Q) =
fP(Q + S )/ fP(S )
fQ(P + R)/ fQ(R)

= 2 + 4α,

that gives us (2 + 4α)3 = 1 as expected.
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Algorithm 1: Miller’s algorithm for Weil pairing

Input: P ∈ E[r] and r = (rt · · · r0)2

Output: fr(Q) = fP(Q)

Step 1 : f1 ← VP+R(Q)/LP,R(Q)

Step 2 : f ← f1

Step 3 : Z ← P

Step 4 : for i← t − 1 to 0 do

Step 5 : f ← f 2 · TZ(Q)/V2Z(Q)

Step 6 : Z ← 2Z

Step 7 : if ri = 1 then

Step 8 : f ← f · f1 · LZ,P(Q)/VZ+P(Q)

Step 9 : Z ← Z + P

Step 10 : end if

Step 11 : end for

Step 12 : return fP(Q)

3.6 Simplified Weil Pairing

Lynn [67] simplifies the Weil pairing by setting R = ∞ or S = ∞. If we choose R = ∞, we

can compute the Weil pairing as

er(P,Q) =
fP(Q + S )/ fP(S )

fQ(P)

where fP and fQ are rational functions with div( fP) = r(P) − r(∞) and div( fQ) = r(Q +

S ) − r(S ), respectively. In this case, we are careful to build the fuction fQ, since we never

divide it by itself. Therefore, we have to choose the lines, tangents and verticals in the special

form when we use each Miller’s loop. For the equations of lines and tangents, we choose

the unit coefficient of variable y. For the equation of verticals, we choose the unit coefficient

of variable x. After doing this particular construction for the function fQ, we can check that

fQ(∞) = 1 so as to simplify the Weil pairing as claimed. If we choose S = ∞, we can compute

the Weil pairing as

er(P,Q) =
fP(Q)

fQ(P + R)/ fQ(R)

where fP and fQ are rational functions with div( fP) = r(P+R)−r(R) and div( fQ) = r(Q)−r(∞),

respectively. We apply the same procedure in the previous case to be able to obtain fP(∞) = 1.
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On the other hand, Miller [73] gives the following fact by choosing S = −R and R = ∞. An

alternative proof of it can be found in [20].

Theorem 3.6.1 Let E be an elliptic curve over Fq. Let P,Q ∈ E[r] with P,Q , ∞, and let

P , Q. Then

er(P,Q) = (−1)r fP(Q)
fQ(P)

3.7 Tate Pairing

Let E be an elliptic curve defined over Fq of characteristic p with the identity element∞. Let

r be a large prime satisfying r | #E(Fq) which is coprime to p. Let k be the embedding degree,

i.e., the smallest positive integer such that r | qk − 1. Then E[r] ⊂ E(Fqk ) when k > 1 and thus

E[r] � Zr × Zr. For every P ∈ E(Fqk ) and integer s, let fs,P be a function with divisor

div( fs,P) = s(P) − (sP) − (s − 1)(∞),

where the function fs,P is called a Miller function.

Let P ∈ E(Fqk )[r] and let Q ∈ E(Fqk ). We think of Q as representing an equivalence class in

E(Fqk )/rE(Fqk ). Consider the divisor D = (Q + R)− (R) with a random point R ∈ E(Fqk ) such

that R < {∞, P,−Q, P − Q}. Since supp(D) ∩ supp(div( fr,P)) = ∅ due to the choice of R, we

have fr,P(D) , 0, and so fr,P(D) ∈ F∗
qk . Let

〈·, ·〉r : E(Fqk )[r] × E(Fqk )/rE(Fqk )→ F∗qk/(F∗qk )r

be the map given by

〈P,Q〉r = fr,P(D) = fr,P(Q + R)/ fr,P(R).

This map so-called Tate pairing [35] is well-defined and has the properties given below:

Theorem 3.7.1 (Properties of Tate Pairing) Let E be an elliptic curve defined over Fq with

characteristic p. Let r be a large prime satisfying r | #E(Fq) which is coprime to p. Let k be

the embedding degree. Then, the Tate pairing satisfies the following properties :
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1. (bilinearity) For all P, P1, P2 ∈ E(Fqk )[r], and Q,Q1,Q2 ∈ E(Fqk )/rE(Fqk ),

〈P1 + P2,Q〉r = 〈P1,Q〉r 〈P2,Q〉r

〈P,Q1 + Q2〉r = 〈P,Q1〉r 〈P,Q2〉r .

2. (non-degeneracy) For all P ∈ E(Fqk )[r] with P , ∞, there is some Q ∈ E(Fqk )/rE(Fqk )

such that 〈P,Q〉r , 1. Similarly, for all Q ∈ E(Fqk ) with Q < rE(Fqk ) there is some

P ∈ E(Fqk )[r] such that 〈P,Q〉r , 1.

In the definition of the Tate pairing, the quotient group F∗
qk/(F∗qk )r is the set of equivalence

classes of elements of F∗
qk where the relation is given by a ≡ b if and only if there exists

c ∈ F∗
qk such that a = bcr. This means that the Tate pairing is only defined up to a multiple by

an r-th power in F∗
qk . However, for most applications in cryptography, it is necessary to get a

unique element associated to this equivalence class. Since r | qk − 1, it is not difficult to show

that the map ξ 7→ ξ
qk−1

r gives an isomorphism F∗
qk/(F∗qk )r � µr, where µr is the group of r-th

roots of unity in F∗
qk . In particular,

τ(P,Q) = fr,P(D)(qk−1)/r

gives a unique element in µr, and τ(P,Q) is called the reduced Tate pairing. Here, raising the

output fr,P(D) to the power of (qk − 1)/r is known as the final exponentiation that we shall

comprehensively discuss in Chapter 5.

We now briefly outline Miller’s algorithm (Algorithm 2) for the Tate pairing in a polynomial

time, efficiently. The Tate pairing is computed by a function fr,P = fr at the divisor D =

(Q + R) − (R) using double and add method in the following way:

f1 = 1, fi+1 = fi ·
LiP,P

V(i+1)P
, f2i = f 2

i ·
TiP

V2iP
,

where VP is the vertical line at P, TR is the tangent line at R and LP,Q is the line passing

through the points P and Q.

Example 3.7.2 Let E be an elliptic curve given by

y2 = x3 − 4

over F5. As we discussed in Example 3.5.2, since 3 | 52 − 1 and E(F5) contains all 9 points

of E[3], the Tate pairing exists and nontrivial in F52 . We compute the Tate pairing 〈P,Q〉3 =
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〈(0, 1), (1, 2α)〉3. In order to do this, we first choose the points R = Q = (1, 2α) such that the

divisor D = (Q + R) − (R). We now comprehensively describe how Miller’s algorithm works

for f3,P(2Q) and f3,P(Q):

1. We first set f1 = 1.

2. We compute f2 = f 2
1 ·

TP

V2P
=

y − 1
x

at the point 2Q and Q that gives us f2(2Q) = 4 + 3α

and f2(Q) = 4 + 2α.

3. We compute f3 = f2 ·
L2P,P

V3P
at the point 2Q and Q. Since 3P = ∞ and −2P = P, we

discard the denominator and L−P,P = VP in this case. Therefore, f3 = f2 ·VP =
y − 1

x
· x

and then f3(2Q) = 4 + 3α and f3(Q) = 4 + 2α.

Thus we have found f3(2Q) = f3,P(2Q) = 4+3α and f3(Q) = f3,P(Q) = 4+2α, simultaneously.

Finally, we have

τ(P,Q) =
( f3,P(2Q)

f3,P(Q)

)(52−1)/3
= (2 + α)8 = 2 + 4α,

that gives us (2 + 4α)3 = 1 as expected.

Algorithm 2: Miller’s algorithm for Tate pairing

Input: P ∈ E[r] and r = (rt · · · r0)2

Output: fr(Q) = fr,P(Q)

Step 1 : f ← 1

Step 2 : Z ← P

Step 3 : for i← t − 1 to 0 do

Step 4 : f ← f 2 · TZ(Q)/V2Z(Q)

Step 5 : Z ← 2Z

Step 6 : if ri = 1 then

Step 7 : f ← f · LZ,P(Q)/VZ+P(Q)

Step 8 : Z ← Z + P

Step 9 : end if

Step 10 : end for

Step 11 : return fr,P(Q)
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3.8 Simplified Tate Pairing

The following theorem which is due to Barreto, Kim, Lynn and Scott [4, 6], Lynn [67] gives

a simple form of the Tate pairing when the embedding degree k > 1.

Theorem 3.8.1 Let E be an elliptic curve over Fq. Let P ∈ E(Fq) be a point of order r. Let k

be the embedding degree. If k > 1, then

τ(P,Q) = fr,P(Q)(qk−1)/r

is a bilinear, non-degenerate map, where fr,P is a rational function with div( fr,P) = r(P)−r(∞).

3.9 Construction of One Variable Non-Degenerate Pairings

It is a problem how to get practical and useful one parameter non-degenerate bilinear map

out of the Weil and Tate pairings. In this section, we shall give such constructions. Let E be

an elliptic curve defined over Fq of characteristic p with the identity element ∞. Let r be a

large prime satisfying r | #E(Fq) which is coprime to p. Let k be the embedding degree. Then

E[r] ⊂ E(Fqk ) and thus E[r] � Zr × Zr. Let P ∈ E[r] ∩ E(Fq), and consider the cyclic group

G1 =< P >⊂ E(Fq)[r]. For the Weil and Tate pairings (and its derivatives), it is important

how to choose Q to be used in the second component G2. There are two methods for such

choices, so far: Distortion maps and twist curves.

3.9.1 Distortion Maps

For supersingular curves, there is always so-called a distortion map, φ : E(Fq) → E(Fqk ),

which is easy to compute. This allows us to choose G1 =< P >, G2 = φ(P) = Q together

with Weil/Tate pairing to produce a non-degenerate bilinear map e : G1 ×G2 → G3 such that

e(P,Q) = f (P, φ(Q)). We note that distortion maps are all known for supersingular curves.

Therefore, we can construct efficient pairing for supersingular curves.

Example 3.9.1 If q = 3 (mod 4) and E : y2 = x3 + ax for any a ∈ F∗q, then a distortion map

is of the form φ : E(Fq)→ E(Fq2); φ(x, y) = (−x, iy), where i is a square root of -1.
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Example 3.9.2 If q = 2 (mod 3) and E : y2 = x3 + b for any b ∈ F∗q, then a distortion map is

of the form φ : E(Fq)→ E(Fq2), φ(x, y) = (ξx, y), where ξ is a primitive cube root of unity.

3.9.2 Twist Curves

In the case of ordinary curves however, there is no distortion map. To produce such G2, one

looks at the twist E
′

of E over Fq. The twist E
′

can be constructed as follows : Let E be an

elliptic curve given by the equation

E : y2 = x3 + ax + b

over Fq, where q = pn and p > 3. Let v be a quadratic non-residue in Fq. Then the twist of

the curve is defined by the equation

E
′

: y2 = x3 + v2ax + v3b

over Fq. It is clear that E
′

is independent that the choice of quadratic non-residue v up to

isomorphism.

For the elliptic curve E(Fq) with embedding degree k = 2d, we can consider the twist E
′

(Fqd )

of E(Fqd ), where d ≥ 1 for E[r] ⊂ E(Fqk ). It is easy to show that the map φd : E
′

(Fqd ) →

E(Fqk ); φd(x, y) = (v−1x, v−3/2y) is well-defined. This allows us to choose G2 = φd(Q
′

) = Q

together with Weil/Tate pairing to produce a non-degenerate bilinear map e : G1 ×G2 → G3

such that e(P,Q) = f (P, φd(Q
′

)), where Q
′

∈ E
′

(Fqd ) of order multiple of r. So, if one

has a suitable ordinary elliptic curve with even embedding degree, by this method scalar

multiplication of input point can be performed in Fqd instead of Fqk .

3.10 Eta and Ate Pairing

Eta and Ate pairings are the derivatives of the Tate pairing. The Eta Pairing was introduced

in the supersingular curves by Barreto et al. in [3]. The Ate pairing was introduced by Hess,

Smart and Vercauteren [44]. They also carried out the concept of the Eta pairing to ordinary

curves and call it the twisted Ate pairing. In this case, the conditions stated in [3, Theorem 1]

are in fact automatically satisfied.
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Let E be an elliptic curve defined over Fq of characteristic p with the identity element ∞.

Let r be a large prime satisfying r | #E(Fq) which is coprime to p. Let k be the embedding

degree. Let P ∈ E(Fq)[r] and Q ∈ E(Fqk )[r] but Q < E(Fq)[r]. Let G1 =< P >⊆ E(Fq)[r] and

G2 =< Q >⊆ E(Fqk )[r]. Let E
′

be the twist curve of E over an extension field of Fq of degree

d. Then we may choose the point Q arising from the isomorphism φd : E
′

→ E, that is,

Q = φd(Q
′

), where Q
′

is an Fqk/d -rational point of order r on the twist curve E
′

. Let T = t− 1,

where t is the trace of Fobenius and λ = (t − 1)k/d (mod r), where λ is a primitive d-th root

of of unity modulo r. Let µr be the group of r-th roots of unity in F∗
qk .

For every P ∈ E(Fqk ) and integer s, let fs,P be a rational fuction with divisor

div( fs,P) = s(P) − (sP) − (s − 1)(∞),

where the function fs,P is called a Miller function. For s = λ,

η : G1 ×G2 → µr

(P,Q) 7→ η(P,Q) = fλ,P(Q)(qk−1)/r

defines a well-defined, bilinear, non-degenerate pairing which is called the reduced Eta pair-

ing. For s = T ,

α : G1 ×G2 → µr

(P,Q) 7→ α(P,Q) = fT,P(Q)(qk−1)/r

defines a well-defined, bilinear, non-degenerate pairing which is called the reduced Ate pair-

ing.

Recently, the variants of the Eta and Ate pairings have been suggested which shorten the loop

length in Miller’s algorithm. Those are so-called generalized pairings [96], optimized pairings

[68], the R-ate pairing [63] and optimal pairings [90].

We now consider the generalized versions of the Eta and Ate pairings by Zhao, Zhang and

Huang [96]:

• generalized Eta pairing: ηc(P,Q) = fλc mod r,P(Q)(qk−1)/r, o < c < k,

• generalized Ate pairing: αc(P,Q) = fT c mod r,P(Q)(qk−1)/r, o < c < k.
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In these definitions, the loop length may be shortened as the original pairings for certain

choice of c.

Example 3.10.1 ([77]) We consider Barreto-Naehrig curves [7] for k = 12 that we shall

discuss more precisely in the following chapter. These curves are parameterized by the poly-

nomial t(x) = 6x2+1, r(x) = 36x4+36x3+18x2+6x+1 and q(x) = 36x4+36x3+24x2+6x+1.

Barreto and Naehrig have shown that these curves parameterized by (t, r, q) have a twist of

degree 6. Therefore, we can consider

λ = (t − 1)k/d = (6x2)2 ≡ 36x4 (mod r)

For positive values of x, the length of λ is about the same as the length of r. Therefore, using

the Eta pairing does not give any advantage. However, if we use generalized Eta pairing for

c = 4, we obtain λ4 = −λ since λ is a primitive sixth root of unity. In this case, we have

−λ ≡ −36x4 ≡ 36x3 + 18x2 + 6x + 1 (mod r) and thus the length of −λ is about 3/4 of the

length of r. This yields a faster pairing than the Tate pairing.

For negative values of x, we obtain λ ≡ −36x3 − 18x2 − 6x − 1 (mod r) that the length is

about 3/4 of the length of r. Therefore, the Eta pairing works faster than the Tate pairing.

Example 3.10.2 ([96]) We consider the family of elliptic curves with embedding degree k =

22 introduced by Murphy and Fitzpatrick [76]. These curves are parameterized by the poly-

nomial t(x) = −x16 + 1 and r(x) = x20 − x18 + x16 − x14 + x12 − x10 + x8 − x6 + x4 − x2 + 1. We

have T = t − 1 ≡ −x16 (mod r) such that the length of T is about the same as the length of r.

Therefore, using the Ate pairing does not give any advantage. However, if we use generalized

Ate pairing for c = 7, we obtain T 7 ≡ x2 (mod r). Therefore, the length of T 7 is about 1/10

of the length of r. This yields a faster pairing than the Tate pairing.
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CHAPTER 4

PAIRING-FRIENDLY ELLIPTIC CURVES

One of the most important method to find suitable elliptic curves for pairing-based crypto-

graphic protocol is the complex multiplication (CM) method. In this chapter, we discuss this

method and show how to use it to construct pairing friendly elliptic curves of varying em-

bedding degrees. We also classify these curves according to their construction methods and

study them in details. Furthermore, we focus our attention to the elliptic curves of the form

y2 = x3 − c over Fq and compute explicitly their number of points #E(Fq). In particular, we

show that the elliptic curve y2 = x3 − 1 over Fq for the primes q of the form 27A2 + 1 has an

embedding degree k = 1 and belongs to Scott-Barreto families in our classification.

4.1 Complex Multiplication

We will briefly explain the complex multiplication (CM) method to construct elliptic curves

with a specified number of points. This method was first introduced by Atkin and Morain

in [1]. For a detailed discussion, one can look at [11, 47]. The CM method, which was

originally devised for use in primality testing, constructs a curve with endomorphism ring

End(E) isomorphic to the ring of integers in a quadratic imaginary field Q(
√
−D). This is done

as follows: Let q be a prime. According to the Theorem 2.5.1 (Hasse Theorem), Z = 4q − t2

has to be positive. Therefore, there is a unique factorization of Z of the form Dy2, where

D, y ∈ Z and D is square free (i.e. contains no square factors). Consequently, we get so-called

the CM equation

Dy2 = 4q − t2.

The number D is called a CM discriminant for the prime q. For every such D, there exists

a Hilbert class field polynomial HD(x) ∈ Z[x] for which the computation of HD(x) will be
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discussed in Section 4.3. One can consider the Hilbert polynomial HD(x) as a polynomial in

Fq[x], and finds a root j0 ∈ Fq. This j0 is the j-invariant of the curve to be constructed.

• If j0 , 0, 1728, the elliptic curve constructed by CM method will have the form

y2 = x3 + 3mc2x + 2mc3,

where m = j0/(1728 − j0) and c ∈ F∗q. In this case, suppose E and E
′

have the same j-

invariant but are not isomorphic over Fq, then E
′

is the quadratic twist of E. If #E(Fq) =

q + 1 − t, then #E
′

(Fq) = q + 1 + t. In particular, if E is given by

E : y2 = x3 + ax + b,

then E
′

can be given by

E
′

: y2 = x3 + ac2x + bc3,

where c is a quadratic nonresidue in Fq. In order to decide the order of E, one can

generate a random point P of E and check if (q + 1− t)P = ∞. If not, the order must be

q + 1 + t.

• If j0 = 0, the curve has the form y2 = x3 + b for some b. In this case, one can try

different values of b until a curve with the correct order is found. Lynn [67, Section

6.17] enumerate all possible orders which are coming from the quadratic, cubic and

sextic degree twist.

• If j0 = 1728, the curve has the form y2 = x3 + ax for some a. In this case, one can

try different values of a until a curve with the correct order is found. Lynn [67, Section

6.17] enumerate all possible orders which are coming from the quadratic and quartic

degree twist.

The most time consuming part of the CM method is the construction of the Hilbert polyno-

mial, as it requires high precision floating point complex arithmetic. The library packages

providing arbitrary precision floating point numbers may not include routines for complex

arithmetic. Therefore, one should consider a few basic facts which are given in [67, Section

5.12] to implement complex numbers using such a library.

Remark 4.1.1 Savas et al. [80] proposed a variant of the CM method to overcome the high

computational requirements of the construction of the Hilbert polynomial. As opposed to the
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CM method described above, this variant does not start with a specific q but start with a

CM discriminant D ≡ 3 (mod 8). In this variant, Hilbert polynomials can be constructed by

using the precomputation phase and stored for later use.

Remark 4.1.2 Konstantinou et al. [60] considered a variant of the CM method for construct-

ing elliptic curves of prime order using Weber polynomials. They have shown that Weber poly-

nomials in this case do not have roots in Fq but do have in the extension field Fq3 . They have

also presented a set of transformations for mapping the roots of Weber polynomials in Fq3 to

the roots of their corresponding Hilbert polynomials in Fq. Moreover, they have shown how a

new class of polynomials, with degree equal to their corresponding Hilbert counterparts, can

be used instead of Weber polynomials in the CM method, efficiently.

4.2 Generalized Pell Equation

We now describe how to solve Pell-type equations that will be used in some construction of

pairing-friendly curves. A generalized Pell equation is an equation of the form

x2 − Dy2 = N, (4.1)

where D is not a square. In order to find integer solutions of (4.1), we first find the minimal

positive integer solution (U,V) of the Pell equation given by

x2 − Dy2 = 1.

This is done by computing the continued fraction expansion of
√

D (see [67, Section 4.17]).

Then we find a so-called fundamental solution (x0, y0) of (4.1) using one of the technique

described by Matthews [69] or Robertson [79]. If a solution exists, then we have a family of

solutions (xi, yi) for i ∈ Z to (4.1) given by

xi + yi
√

D = (x0 + y0
√

D)(U + V
√

D)i

4.3 Hilbert Polynomials

The simplest way to compute the j-invariant of the resulting curve is to construct the Hilbert

polynomial HD(x) using the complex floating point arithmetic. In order to this, we adopt the

method proposed in [1].
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The only input for the construction of the Hilbert polynomial HD(x) is the CM discriminant

D. The Hilbert class polynomial HD(x) for a given negative value of discriminant D is defined

by

HD(x) =
∏

(x − j(τ)) (4.2)

for a set of values of τ lying in the upper half (positive imaginary part) of the complex plane

in the form

τ =
−b +

√
D

2a
,

where a, b, c ∈ Z satisfying the following conditions: (i) b2 − 4ac = D, (ii) |b| ≤ a ≤
√
|D|/3,

(iii) a ≤ c, (iv) gcd(a, b, c) = 1 and (v) if |b| = a or a = c then b ≥ 0. The quadratic form

f (x, y) = ax2 + bxy + cy2 denoted by the 3-tuple of integers [a, b, c] that satisfy the above

conditions is a primitive (no common factor coefficients) reduced positive definite binary

quadratic form of discriminant D. Here, τ is the root of f (x, 1) = 0. The quantity j(τ) in (4.2)

is called class invariant and is defined as follows: Let z = e2iπτ and h(τ) = ∆(2τ)/∆(τ), where

∆(τ) = z
(
1 +

∑
n≥1

(−1)n(zn(3n−1)/2 + zn(3n+1)/2))24
.

Then

j(τ) =
(256h(τ) + 1)3

h(τ)
.

Let hD be the degree or class number of HD(x). Then following [1], one can set the high

precision for floating point arithmetic as follows:

10 +

(
hD

bhD/2c

)
π
√

D
∑
τ

1
a
,

where the sum running over all the same set of the values of τ as the product in (4.2).

Cohen gives the algorithms to compute the Hilbert class polynomial [23, Algorithm 7.6.1] and

reduced form of discriminant D [23, Algorithm 5.3.1]. In particular, one will need a single

root of the Hilbert polynomial over a finite field so as to generate elliptic curves using the CM

method. The following states that the Hilbert polynomial have roots modulo prime q under

certain conditions

Theorem 4.3.1 ([60]) A Hilbert polynomial HD(x) with degree hD has exactly hD roots mod-

ulo q if and only if the equation 4q = t2 + Dy2 has integer solutions and q does not divide the

discriminant of the polynomial HD(x).
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In this respect, a procedure to find a root of the Hilbert polynomial modulo prime q is de-

scribed by Lynn in [67, Section 5.8].

4.4 Generating Pairing-Friendly Elliptic Curves

Definition 4.4.1 ([33]) Let E be an elliptic curve over Fq with characteristic p and let k be

the embedding degree. Then, E is called pairing-friendly if the following conditions hold:

(1) For a prime r dividing #E(Fq), r ≥
√

q

(2) k < log2(r)/8

This definition is analogous to the elliptic curves having small embedding degree and a sub-

group of large prime-order r. The bound on the subgroup of order r is deduced from the work

by Luca and Shparlinski [66] that the curves having small embedding degree are abundant if

r <
√

q and quite rare if r >
√

q.

The classification of supersingular elliptic curves have been proposed in [70]. These curves

have embedding degree at most 6 over any finite field. Therefore, a supersingular curve is

always pairing-friendly if it has a large prime-order subgroup.

In order to achieve higher security levels and different embedding degrees, one must construct

pairing-friendly ordinary elliptic curves. There are number of methods in the literature for

constructing such curves, all of which do the following:

(1) Fix the embedding degree k, and then compute integers t, r, q such that there is an

elliptic curve E(Fq) having trace of the Frobenius t and a subgroup of prime order r.

(2) Use the CM method to find the equation of the elliptic curve E(Fq).

The difficult part of such methods is finding t, r and q in Step (1). In this respect, an ordinary

elliptic curve with these properties can be constructed if and only if the following conditions

hold:

(1) q is prime or a prime power with gcd(q, t) = 1.

36



(2) Dy2 = 4q − t2 for some sufficiently small positive D and some integer y.

(3) r is prime such that r | q + 1 − t.

(4) r | qk − 1, and r - qi − 1 for 1 ≤ i < k.

We will generally take q to be a prime number. If we find the integers q, t, and r satisfying

above conditions, it is guaranteed that there exists an ordinary elliptic curve E over Fq with

embedding degree k and a subgroup of order r. In condition (2), having sufficiently small D

is necessary for us to be able to find the equation of such a curve by using the CM method.

If we use the condition (3) to write q + 1 − t = hr for some h, then the CM equation can be

rewritten by

Dy2 = 4hr − (t − 2)2,

where h is the cofactor of the pairing-friendly curve. Condition (4) is equivalent to E having

embedding degree k and then gives us the following fact which is crucial for the construction

of prime order curves with embedding degree k. The proof can be found in [5, 33].

Lemma 4.4.2 Let E be an elliptic curve over Fq with #E(Fq) = q + 1 − t = hr, where r is

prime and t is the trace of E. Then, E has embedding degree k with respect to r if and only if

r | Φk(t − 1), where Φk is the kth cyclotomic polynomial .

4.4.1 Families of Pairing-Friendly Elliptic Curves

In Section 4.4, we have shown that how to construct pairing-friendly elliptic curves by finding

t, r, q satisfying some conditions. From the implementation point of view, it is very important

to construct curves of specified bit size. Therefore, Freeman, Scott and Teske [33] describe

the families of pairing-friendly elliptic curves for which the curve parameters t, r, q are given

as polynomials t(x), r(x), q(x) with respect to parameter x. This parametrization have been

used by several different authors in the literature. Some of them are Miyaji, Nakabayashi

and Takano [74], Barreto, Lynn and Scott [5], Scott and Barreto [82], Brezing and Weng [17]

and Cocks and Pinch [22]. Their definition of a family of pairing-friendly curves forms the

implicit ideas in these works.

The constructed polynomials will need to have some property that q(x), the sizes of a field, is

a prime power (in general prime) and r(x), order of a subgroup, is a prime or a small cofactor
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times a prime. However, it is so difficult to show the polynomials q and r take an infinite

number of primes. We note that not even known x2 + 1 takes an infinite number of primes.

Freeman, Scott and Teske [33] give the following definition which is motivated by the fact: if

f (x) ∈ Z[x], then a famous conjecture of Bouniakowski and Schinzel (see [62, page 323]) says

that a nonconstant f (x) takes an infinite number of prime values if and only if f has positive

leading coefficient, f is irreducible and gcd({ f (x) | x ∈ Z}) = 1. We note that Bateman

and Horn conjecture [8] gives the expected density of such prime values as we discussed in

Section 2.2.

Definition 4.4.3 ([33]) Let f (x) be a polynomial with rational coefficients. then we say that

f represents primes if the following conditions are satisfied:

(1) f (x) is nonconstant.

(2) f (x) has positive leading coefficient.

(3) f (x) is irreducible.

(4) f (x) ∈ Z for some x ∈ Z.

(5) gcd({ f (x) | x, f (x) ∈ Z}) = 1.

Definition 4.4.4 ([33]) A polynomial f (x) ∈ Q[x] is integer-valued if f (x) ∈ Z for every

x ∈ Z.

Definition 4.4.5 ([33]) Let t(x), r(x), and q(x) be nonzero polynomials with rational coeffi-

cients.

(1) For a given integer k > 0 and square-free integer D ∈ Z+, the triple (t, r, q) parame-

terizes a family of elliptic curves with embedding degree k and discriminant D if the

following conditions are satisfied:

(i) q(x) = p(x)d for some d ≥ 1 and primes p(x).

(ii) r(x) is nonconstant, irreducible, integer-valued and it has positive leading coeffi-

cient.
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(iii) r(x) divides q(x) + 1 − t(x).

(iv) r(x) divides Φk(t(x) − 1).

(v) The equation Dy2 = 4q(x) − t(x)2 has infinitely many integer solutions (x, y).

(2) For (t, r, q) as in (1), if x0 is an integer and E is an elliptic curve over Fq(x0) with trace

t(x0), then we say E is a curve in the family (t, r, q).

(3) A family (t, r, q) is ordinary if gcd(t(x), q(x)) = 1.

(4) A family (t, r, q) is complete if there is some y(x) ∈ Q[x] such that Dy(x)2 = 4q(x) −

t(x)2; otherwise we say that the family is sparse.

Definition 4.4.6 ([33]) Let t(x), r(x), and q(x) be nonzero polynomials with rational coeffi-

cients. The triple (t, r, q) parameterizes a potential family of curves with embedding degree k

and discriminant D if conditions (ii) − (v) of (1) in Definition 4.4.5 are satisfied.

By using condition (2) in Definition 4.4.5, we can write the number of points of E(Fq(x)) by

h(x)r(x) = q(x) + 1 − t(x),

where h(x) is the cofactor of the family of the pairing-friendly curves. In practice, h(x) = 1 is

the ideal case, eventhough it is so hard to achieve. Therefore, Freeman, Scott and Teske [33]

define a parameter ρ that represents the closeness of the constructed curves to the ideal case.

Definition 4.4.7 ([33]) (i) Let E be an elliptic curve over Fq, and suppose that E has a

subgroup of order r. The ρ-value of E (with respect to r) is

ρ(E) =
log q
log r

.

(ii) Let t(x), r(x), q(x) ∈ Q[x], and suppose that (t, r, q) represents a family of elliptic curves

with embedding degree k. The ρ-value of (t, r, q) is

ρ(t, r, q) = lim
x→∞

log q(x)
log r(x)

=
deg q(x)
deg r(x)

.
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4.5 Supersingular Elliptic Curves

The elliptic curve E defined over Fq is said to be supersingular if the characteristic p of Fq

divides t, where t = q+1−#E(Fq). Waterhouse [93, Theorem 4.1] showed that the number of

points of supersingular elliptic curves are of the form q+1− t, where t2 ∈ {0, q, 2q, 3q, 4q}. By

using the factorizations of qk − 1, it is easy to see that supersingular curves have embedding

degrees k ∈ {1, 2, 3, 4, 6}. These curves are defined on prime fields p ≥ 5 only for k =

2 [70] and constructed by making use of [61, Theorem 13.12]. The representatives of the

isomorphism classes for supersingular curves over Fq of characteristic 2 and 3 have been

determined by Menezes and Vanstone [71] and Morain [75], respectively.

The only known general method to construct supersingular elliptic curves is reduction of CM

curves in characteristic zero that an explicit procedure will be discussed in Section 4.5.2.

Since supersingular elliptic curves with k = 2 is the only possible embedding degree over

prime fields, we also consider non-prime fields Fq that q will be of the form 2n, 3n and p2

for large primes p. These choices are because of the efficiency reasons. However, the fields

Fq must be larger when q = 2n or 3n than when q = p or p2 as a result of the index calculus

method for discrete logarithm computation in finite fields of small characteristic given by

Coppersmith [25].

We also discuss the minimal embedding field for non-prime fields following the work of Hitt

[45] and Benger et al. [9]. It means that the fields of which the pairings take their values.

For pairing-based cryptographic applications, it is widely believed that supersingular curves

are ”weak” curves depending on the Menezes-Okamoto-Vanstone (MOV) attack [70] and

Frey-Rück (FR) attack [35]. However, Koblitz and Menezes argue about saying no known rea-

sonable security advantage between nonsupersingular curve and supersingular curve having

the same embedding degree. On the other hand, supersingular curves have also the distortion

maps which gives an advantage for cryptographic applications [91].

In this section, we give the classification of supersingular elliptic curves relative to their em-

bedding degrees.
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4.5.1 Embedding Degree k = 1 Curves

Let E be a supersingular elliptic curve over Fq with embedding degree k = 1. Then it is

shown by Menezes, Okamoto and Vanstone in [70] that q = pn with even n. In this case,

t = ∓2
√

q, and therefore #E(Fq) = q + 1 ∓ 2
√

q. By using Lemma 4.4.2, the subgroup of

order r must divide both #E(Fq) and Φ1(q) = q − 1. It follows from this fact that r is a factor

of gcd(#E(Fq), q − 1) =
√

q ∓ 1. Therefore, such curves must have ρ ≥ 2 by Definition 4.4.7.

If q = 2n with even n, supersingular elliptic curves having embedding degree k = 1 are listed

in Table 4.1, where ω ∈ Fq and TrFq/F2(ω) = 1 [71].

Table 4.1: Supersingular elliptic curves with k = 1 over F2n for even n

Curve n #E(Fq) Group Type

y2 + y = x3 n ≡ 0 (mod 4) q + 1 − 2
√

q Z√q−1 ⊕ Z√q−1

n ≡ 2 (mod 4) q + 1 + 2
√

q Z√q+1 ⊕ Z√q+1

y2 + y = x3 + ω n ≡ 0 (mod 4) q + 1 + 2
√

q Z√q+1 ⊕ Z√q+1

n ≡ 2 (mod 4) q + 1 − 2
√

q Z√q−1 ⊕ Z√q−1

If q = 3n with even n, supersingular elliptic curves having embedding degree k = 1 are listed

in Table 4.2, where γ ∈ Fq and
√
γ < Fq [75].

Table 4.2: Supersingular elliptic curves with k = 1 over F3n for even n

Curve n #E(Fq) Group Type

y2 = x3 − x n ≡ 0 (mod 4) q + 1 − 2
√

q Z√q−1 ⊕ Z√q−1

n ≡ 2 (mod 4) q + 1 + 2
√

q Z√q+1 ⊕ Z√q+1

y2 = x3 − γ2x n ≡ 0 (mod 4) q + 1 + 2
√

q Z√q+1 ⊕ Z√q+1

n ≡ 2 (mod 4) q + 1 − 2
√

q Z√q−1 ⊕ Z√q−1

If q = pn, with p ≥ 5 and even n, in order to construct supersingular elliptic curves with

embedding degree k = 1, we consider the following: we first set q
′

=
√

q and t = q
′

+

1 − #E(Fq′ ) = 0. Therefore #E(Fq′ ) = q
′

+ 1. This means that the elliptic curves E(Fq′ )

has embedding degree k = 2. The characteristic polynomial of q
′

-th power Frobenius map

is x2 + q
′

= (x + i
√

q′)(x − i
√

q′), where i =
√
−1. By Theorem 2.5.2, we can easily get
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the characteristic polynomial of the q-th power Frobenius map as (x + q
′

)2, and so #E(Fq) =

(q
′

+ 1)2 = q + 2
√

q + 1. It follows from this fact that E(Fq) has embedding degree k = 1. We

note that if q
′

is prime, then Fq is also the minimal embedding field for E.

For a supersingular elliptic curve E over Fq, where q = pn with even n that has embedding

degree k = 1, E has minimal embedding field Fq if #E(Fq) = q+1+2
√

q and ρ < 6(1− 1
log2 r ),

E has minimal embedding field Fq1/2 if #E(Fq) = q + 1 − 2
√

q and ρ < 4 [9, Proposition 3.6].

4.5.2 Embedding Degree k = 2 Curves

Supersingular elliptic curves with embedding degree k = 2 offers the most flexibility. In

other words, one can construct curves over prime fields with arbitrary subgroup of order r and

arbitrary ρ-value. In this case, r should divide Φ2(q) = q + 1 and therefore r, being a divisor

of #E(Fq) = q + 1 − t, divides t. This certainly holds if t = 0, and such supersingular curves

can be defined over both prime and non-prime fields..

The only supersingular elliptic curve in characteristic 2 and 3 is the curve with j-invariant

zero (see [21],[86, Section 5.4]). Explicitly, we will now give the trace-zero supersingular

curves for fields Fq of characteristic 2 and 3, respectively.

If q = 2n, there are 2 isomorphism classes of supersingular elliptic curves with embedding

degree k = 2 which are obtained by Menezes and Vanstone [71]. These curves are listed in

Table 4.3, where δ ∈ Fq with TrFq/F4(δ) , 0.

Table 4.3: Supersingular elliptic curves with k = 2 over F2n

Curve n #E(Fq) Group Type

y2 + y = x3 odd q + 1 Cyclic

y2 + y = x3 + δx even q + 1 Cyclic

If q = 3n, there are 4 isomorphism classes of supersingular elliptic curves with embedding

degree k = 2 which are obtained by Morain [71]. These curves are listed in Table 4.4, where
√
γ < F∗q with q = 3s.
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Table 4.4: Supersingular elliptic curves with k = 2 over F3n

Curve n #E(Fq) Group Type

y2 = x3 + x odd q + 1 Cyclic

y2 = x3 − x odd q + 1 Z((q+1)/2) ⊕ Z2

y2 = x3 − γx even q + 1 Cyclic

y2 = x3 − γ3x even q + 1 Cyclic

For a supersingular curve E over Fq, where q = pn, with k = 2, E has minimal embedding

field Fq2 if either ρ < 3(1 − 1
log2 r ) or n is prime and r > p + 1 [9, Proposition 3.5].

In order to construct supersingular elliptic curves over prime fields Fq with q ≥ 5, we combine

the work of Koblitz and Menezes [59, Section 7] and the work of Bröker [19, Section 3.4]. In

this respect, for a given subgroup of order r, if we choose any h such that q + 1 = hr is prime,

then we have the following curves over Fq with embedding degree k = 2:

(i) If q ≡ 3 (mod 4), y2 = x3 + ax for any a ∈ F∗q.

(ii) If q ≡ 5 (mod 6), y2 = x3 + b for any b ∈ F∗q.

(iii) If q ≡ 1 (mod 12), y2 = x3 + 3mc2x + 2mc3 for any c ∈ F∗q and m = j/(1728− j). Here,

j ∈ Fq is a root of the Hilbert class polynomial HD of Q(
√
−D), where D is the smallest

prime such that D ≡ 3 (mod 4) and χ2(−D) = −1 in Fq.

The most popular supersingular elliptic curves are given by the equations y2 = x3 + ax and

y2 = x3 + b. Their endomorphism rings are isomorphic to the ring of integers Z[i] and Z[δ],

respectively. These two curves have also the distortion maps, which are easy to compute.

In the sense of [91], the map (x, y) 7→ i(x, y) = (−x, iy) is a distortion map of the curve

y2 = x3 + ax, where i =
√
−1 ∈ Fq2 and the map (x, y) 7→ δ(x, y) = (βx, y) is a distortion map

of the curve y2 = x3 + b, where β , 1 ∈ Fq2 such that β3 = 1.

4.5.3 Embedding Degree k = 3 Curves

In [74, Theorem 4], Miyaji, Nakabayashi, and Takano showed that supersingular elliptic

curves having embedding degree k = 3 with respect to a subgroup of prime order r > 3
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only exist over Fq, where q = pn with even n, and t = ±
√

q. When the characteristic p > 3,

these curves are given by the following form [75]:

E(Fq) : y2 = x3 + γ,

where γ ∈ F∗q such that χ3(γ) , 1 in F∗q.

According to [74, Theorem 4], when we choose q = p2 where p ≡ 2 (mod 3), we obtain

a family of supersingular elliptic curves with k = 3, which are parameterized by the triple

(t, r, q). In this case, #E(Fp2) = p2 ± p + 1. If t = −p, then for some p = 3x − 1, we are

able to find curves of prime order since r(x) = (3x − 1)2 + (3x − 1) + 1 represents primes in

the sense of Definition 4.4.3. If t = p, we may find curves that the number of points of those

can be equal to 3 times a prime. Therefore, depending on the sign of t, we can summarize the

families of supersingular elliptic curves with embedding degree k = 3 in Table 4.5.

Table 4.5: Family of supersingular curves with embedding degree k = 3

t(x) r(x) q(x)

−3x + 1 9x2 − 3x + 1 (3x − 1)2

3x − 1 3 · (3x2 − 3x + 1) (3x − 1)2

If q = 2n with even n, supersingular elliptic curves having embedding degree k = 3 are given

in Table 4.6, where α, β ∈ Fq, 3√
δ < Fq such that TrFq/F2(δ−2α) = TrFq/F2(δ−4β) = 1 [71].

Table 4.6: Supersingular elliptic curves with k = 3 over F2n for even n

Curve n #E(Fq) Group Type

y2 + δy = x3 n ≡ 0 (mod 4) q + 1 +
√

q Cyclic

n ≡ 2 (mod 4) q + 1 −
√

q Cyclic

y2 + δy = x3 + α n ≡ 0 (mod 4) q + 1 −
√

q Cyclic

n ≡ 2 (mod 4) q + 1 +
√

q Cyclic

y2 + δ2y = x3 n ≡ 0 (mod 4) q + 1 +
√

q Cyclic

n ≡ 2 (mod 4) q + 1 −
√

q Cyclic

y2 + δ2y = x3 + β n ≡ 0 (mod 4) q + 1 −
√

q Cyclic

n ≡ 2 (mod 4) q + 1 +
√

q Cyclic
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If q = 3n with even n, supersingular elliptic curves having embedding degree k = 3 are given

in Table 4.7, where
√
γ < Fq and ω ∈ Fq with TrFq/F2(ω) = 1 [75].

Table 4.7: Supersingular elliptic curves with k = 3 over F3n for even n

Curve n #E(Fq) Group Type

y2 = x3 − x + ω n ≡ 0 (mod 4) q + 1 +
√

q Cyclic

n ≡ 2 (mod 4) q + 1 −
√

q Cyclic

y2 = x3 − γ2x + γ3ω n ≡ 0 (mod 4) q + 1 −
√

q Cyclic

n ≡ 2 (mod 4) q + 1 +
√

q Cyclic

For a supersingular elliptic curve E over Fq, where q = pn with even n that has embedding

degree k = 3, E has minimal embedding field Fq3 if #E(Fq) = q+1−
√

q and ρ < 10
3 (1− 1

log2 r ),

E has minimal embedding field Fq3/2 if #E(Fq) = q + 1 +
√

q and ρ < 4/3 [9, Proposition 3.8].

4.5.4 Embedding Degree k = 4 Curves

In [74, Theorem 3], Miyaji, Nakabayashi, and Takano showed that supersingular elliptic

curves having embedding degree k = 4 with respect to a subgroup of prime order r > 2

exists over Fq, only if q = 2n with odd n, and t = ±
√

2q. All possible such curves are listed

in Table 4.8 (see [71]).

Table 4.8: Supersingular elliptic curves with k = 4 over F2n for odd n

Curve n #E(Fq) Group Type

y2 + y = x3 + x n ≡ ±1 (mod 8) q + 1 +
√

2q Cyclic

n ≡ ±3 (mod 8) q + 1 −
√

2q Cyclic

y2 + y = x3 + x + 1 n ≡ ±1 (mod 8) q + 1 −
√

2q Cyclic

n ≡ ±3 (mod 8) q + 1 +
√

2q Cyclic

For a supersingular elliptic curve E over Fq, where q = 2n with odd n that has embedding

degree k = 4, E has minimal embedding field Fq4 if either ρ < 3
2 (1 − 1

log2 r ) or n is prime and

r > 5 [9, Proposition 3.2].
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4.5.5 Embedding Degree k = 6 Curves

In [74, Theorem 4], Miyaji, Nakabayashi, and Takano showed that supersingular elliptic

curves having embedding degree k = 6 with respect to a subgroup of prime order r > 3

exists over Fq, only if q = 3n with odd n > 1, and t = ±
√

3q. All possible such curves are

listed in Table 4.9 depending on δ ∈ Fq such that Tr(δ) = 1 (see [71]).

Table 4.9: Supersingular elliptic curves with k = 6 over F3n for odd n > 1

Curve n #E(Fq) Group Type

y2 = x3 − x + δ n ≡ 1 (mod 4) q + 1 +
√

3q Cyclic

n ≡ 3 (mod 4) q + 1 −
√

3q Cyclic

y2 = x3 − x − δ n ≡ 1 (mod 4) q + 1 −
√

3q Cyclic

n ≡ 3 (mod 4) q + 1 +
√

3q Cyclic

For a supersingular elliptic curve E over Fq, where q = 3n with odd n that has embedding

degree k = 6, E has minimal embedding field Fq6 if either ρ < 5
3 (1 − 1

log2 r ) or n is prime and

r > 7 [9, Proposition 3.3].

4.6 Ordinary Elliptic Curves

In the literature, there are three most general methods for constructing pairing-friendly or-

dinary elliptic curves that the name of those are MNT method, Cocks-Pinch method and

Dupont-Enge-Morain method. All these algorithms are based on the CM method. If we recall

that to construct families of pairing-friendly elliptic curves, we look for polynomials t(x), r(x)

and q(x) satisfying conditions given in Definition 4.4.5 and for which the CM equation

Dy2 = 4q(x) − t(x)2 = 4h(x)r(x) −
(
t(x) − 2

)2 (4.3)

has infinitely many solutions (x, y). Here, h(x) is a cofactor satisfying #E(Fq(x)) = h(x)r(x).

In this section, we classify pairing-friendly ordinary elliptic curves with respect to the their

constructing methods. We first explain the Algorithms how these methods work and give

corresponding family of curves examples. We also discuss the extension of these methods.
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4.6.1 The MNT Method

Miyaji, Nakabayashi and Takano (MNT) [74] were the first authors to propose ordinary ellip-

tic curves of prime order with prescribed embedding degree. In order to construct curves of

prime order, we set the cofactor h(x) = 1. We now describe MNT method which is also used

by Freeman [31].

We first fix the parameters D and k, then choose polynomials t(x) and r(x) to get a quadratic

polynomial in the right side of Eq. (4.3) so that we can make a substitution to transform the

equation into a generalized Pell equation X2 − DY2 = N. Such equations have only a finite

number of integral points by Siegel’s theorem [86, Theorem IX.4.3]. Therefore, pairing-

friendly ordinary elliptic curves constructed by using this method are so-called ”sparse fami-

lies”.

Algorithm 3: The MNT Method

Input: k ∈ Z+, square-free poitive integer D.

Output: primes q(x) and r(x), an elliptic curve E over Fq(x) with h(x)r(x) points of

embedding degree k.

Step 1 : Choose polynomials t(x) and h(x).

Step 2 : Choose r(x) an irreducible factor of Φk(t(x) − 1).

Step 3 : Compute q(x) = h(x)r(x) + t(x) − 1.

Step 4 : Find integer solutions (x, y) to CM equation Dy2 = 4h(x)r(x) −
(
t(x) − 2

)2.

Step 5 : If q(x) and r(x) are both prime, use CM method to obtain an elliptic curve E

over Fq(x) of h(x)r(x) points with embedding degree k.

4.6.1.1 MNT Curves for k = 3, 4, 6

Miyaji, Nakabayashi and Takano (MNT) [74] were the first authors to describe an explicit

construction of ordinary pairing-friendly elliptic curves. They showed how to obtain ordinary

elliptic curves with the embedding degrees k = 3, 4, 6.

Theorem 4.6.1 ([74]) Let E be an ordinary elliptic curve over Fq such that r = #E(Fq) = q +

1 − t is prime. Then all possible polynomial representations for embedding degree k = 3, 4, 6

are listed in Table 4.10.
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Table 4.10: Representation of MNT curves

k q(x) t(x)

3 12x2 − 1 −1 ± 6x

4 x2 + x + 1 −x or x + 1

6 4x2 + 1 1 ± 2x

Miyaji et al. prove the theorem for q > 64, the remaininig cases can be demonstrated via a

brute-force search. In all three cases, the right-hand side of the CM equation Dy2 = 4q(x) −

t(x)2 becomes quadratic with respect to x. Using linear change of variables, the CM equation

can be transformed into a generalized Pell equation which we give for all three cases as

follows:

(1) For k = 3, the CM equation transforms into the generalized Pell equation X2 − 3DY2 =

24 using the change of variables X = 6x ± 3.

(2) For k = 4, the CM equation transforms into the generalized Pell equation X2 − 3DY2 =

−8 using the change of variables X = 3x + 2 if t(x) = −x and X = 3x + 1 if t(x) = x + 1.

(3) For k = 6, the CM equation transforms into the generalized Pell equation X2 − 3DY2 =

−8 using the change of variables X = 6x ± 1.

Karabina and Teske [53, 55] show that for primes r, q > 64 there is an elliptic curve E over

Fq with embedding degree k = 6 and #E(Fq) = r if and only if there is an elliptic curve E

over Fr with embedding degree k = 4 and #E(Fr) = q. Luca and Shparlinski [66] give a

heuristic result which says MNT curves of prime order are sparse. On the other hand, specific

examples of cryptographic applications for MNT curves of 160-bit, 192-bit and 256-bit prime

order have been found by Page et al. [78].

4.6.1.2 Freeman Curves for k = 10

Freeman [31] discovered one example for a family of curves with k = 10. He uses the

following factorization obtained by Galbraith et al. [37]:

Φ10(u(x)) = (25x4 + 25x3 + 15x2 + 5x + 1)(400x4 + 400x3 + 240x2 + 60x + 11),
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where u(x) = 10x2 + 5x + 2. When taking r(x) to be the first factor, he obtains t(x) = u(x) + 1

and q(x) = r(x) + t(x) − 1. In other words,

t(x) = 10x2 + 5x + 3

r(x) = 25x4 + 25x3 + 15x2 + 5x + 1

q(x) = 25x4 + 25x3 + 25x2 + 10x + 3.

It follows from the polynomials that the CM equation becomes Dy2 = 15x2 + 10x + 3. Using

the substitution X = 15x + 5, one can transform the CM equation into the generalized Pell

equation X2 −15Dy2 = −20. For any D, the latter equation has an integer solution. This gives

a sparse family of curves with embedding degree k = 10 which is parameterized by (t, r, q).

4.6.2 Extensions of the MNT Method

Scott-Barreto [82] and Galbraith-McKee-Valença [37] extended the MNT method by choos-

ing a small constant cofactor h. Scott and Barreto [82] start with the equation (4.3), fix small

integers h and d. Then they substitute r and t by Φk(t − 1)/d and x + 1, respectively, to obtain

the equation in the form

Dy2 = 4h
Φk(x)

d
− (x − 1)2. (4.4)

It is easy to see that the right-hand side of (4.4) is quadratic with respect to x for k = 3, 4 or

6. Therefore, we can transform (4.4) into a generalized Pell equation by an appropriate linear

transformation of x. As a result, The MNT method can be extended to obtain pairing-friendly

ordinary curves of almost prime order with embedding degrees k = 3, 4 or 6.

Galbraith, McKee and Valença [37] give a complete characterization of curves with k = 3, 4

or 6 for cofactors 2 ≤ h ≤ 5. As in the prime-order case, the CM equations Dy2 = 4q(x)−t(x)2

are quadratic with respect to x, and it can be transformed into the generalized Pell equations.

Therefore, these family of curves are also sparse.

4.6.3 The Cocks-Pinch Method

Cocks and Pinch [22] propose a method to construct pairing-friendly ordinary elliptic curves

with arbitrary embedding degree. The Cocks-Pinch method is important due to the efficiency

of the algorithm. This method can be fully generalized to consruct families of curves with
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ρ < 2 by Brezing and Weng in [17] that we discuss in Section 4.6.4. Furthermore, Freeman

[32] and Freeman et al. [34] both generalized this method to construct pairing-friendly abelian

varieties of arbitrary dimension g ≥ 2.

Algorithm 4: The Cocks-Pinch Method to construct a curve for arbitrary k

Input: k ∈ Z+, a prime r such that k | r − 1, square-free poitive integer D and

χ2(−D) = 1 in Fr.

Output: a prime q, an elliptic curve E over Fq of embedding degree k with respect to r.

Step 1 : Choose a k-th rooth of unity z in Fr.

Step 2 : Let t
′

∈ Fr such that t
′

= z + 1.

Step 3 : Let y ∈ Z such that y ≡ y
′

(mod r) and y
′

= (t
′

− 2)/
√
−D.

Step 4 : Let t ∈ Z such that t ≡ t
′

(mod r) and q = (t2 + Dy2)/4.

Step 5 : If q is a prime integer and D < 1012, use the CM method to obtain an elliptic

curve E over Fq with trace t and embedding degree k.

The main idea in this method (Algorithm 4) is to force r to divide Dy2 + (t − 2)2 when y is

constructed. The CM equation 4q − t2 = Dy2 is satisfied with chosen q. When we write the

CM equation in the form Dy2 = 4(q + 1 − t) − (t − 2)2, we get 4(q + 1 − t) ≡ 0 (mod r).

Furthermore, the choice of t ensures that Φk(t − 1) ≡ 0 (mod r). In this method, in general

q ≈ r2. Therefore, pairing-friendly ordinary elliptic curves consructed by using this method

have ρ ≈ 2 which is less preferred in cryptographic applications. In fact, Vercauteren [90]

showed that for certain embedding degrees and certain discriminant D, there are no ordinary

elliptic curves with smaller ρ value.

Boneh et al. [14] showed that this method can be used to construct pairing-friendly curves

of composite order r with embedding degree k. However, Koblitz [58] proposed that it is

not convenient to use composite order curves in pairing-based protocols due to the security

weaknesses.

4.6.4 Extensions of the Cocks-Pinch Method

The Cocks-Pinch Method is extended by using two principal methods for constructing com-

plete families, one due to Scott and Barreto [82] and the other due to Brezing and Weng [17]

which is due originally the work of Barreto, Lynn and Scott [5]. Both methods start to fix an

50



embedding degree k, choose an irreducible polynomial r(x) ∈ Z[x] such that K � Q[x]/(r(x))

is a number field containing the k-th roots of unity, and then choose the polynomial t(x) map-

ping to 1 + ζk, where ζk is the primitive k-th root of unity in K. At this point, the two methods

differ from each other:

Brezing-Weng method: if K contains
√
−D, then since r(x) = 0 in K, we can factor the CM

equation (4.3) in K as follows:(
t(x) − 2 + y

√
−D

)(
t(x) − 2 − y

√
−D

)
≡ 0 mod r(x)

Since t(x) 7→ 1 + ζk, it is now easy to see that if we choose y(x) to be a polynomial mapping

to (ζk − 1)/
√
−D in K, then the CM equation is automatically satisfied for any x, i.e., q(x) =(

t(x)2 + Dy(x)2
)
/4. If q(x) represents primes and r(x) has positive leading coefficient, then

(t, r, q) parameterizes a complete family of pairing-friendly elliptic curves.

Algorithm 5: Brezing and Weng Method

Input: D, k ∈ Z+, an irreducible polynomial r(x).

Output: a prime q(x), an elliptic curve E over Fq(x) of embedding degree k with

respect to r(x).

Step 1 : Let K be the number field Q[x]/(r(x)).

Step 2 : Let
√
−D, ζk ∈ K where ζk is the primitive k-th root of unity.

Step 3 : Choose t(x) to be a polynomial such that t(x) 7→ 1 + ζk.

Step 4 : Choose y(x) to be a polynomial such that y(x) 7→ (ζk − 1)/
√
−D.

Step 5 : Compute q(x) =
(
t(x)2 + Dy(x)2)/4 in Q[x].

Step 6 : If q(x) is a prime integer and r(x) is prime, use CM method to obtain an elliptic

curve E over Fq(x) with trace t(x), subgroup of order r(x) and embedding degree k.

Scott-Barreto Method: if we do not know K contains an element of the form
√
−D for some

small D, then we may apply this method. They choose t(x) and r(x) from above and search

the cofactors h(x) by computer so that the right-hand side of the CM equation (4.3) becomes

Dy2 = (ax + b)g(x)2.

In this equation, if a = 0, then we take D = b and y = g(x). If a > 0, we make the substitution

x 7→ Dz2−b
a for any D. If we set y = zg(x), the CM equation is automatically satisfied for any

z. If q(x) represents primes and r(x) has positive leading coefficient, (t, r, q) parameterizes a

complete family of pairing-friendly elliptic curves.

51



The success of both methods extremely depends on the choice of the number field K. The

simple choice of K is to be a cyclotomic field Q(ζl) for some l which is a multiple of k.

Here, we also define r(x) to be the l-th cyclotomic polynomial Φl(x). In the light of above, K

contains k-th roots of unity. It is easy to see that from the theory of cyclotomic fields that K

contains
√
−D with D ∈ Z+ under the following conditions

(
see [76] for more details

)
:


√
−1 ∈ K, if l ≡ 0 (mod 4),
√
−2 ∈ K, if l ≡ 0 (mod 8),√
(−1

p )p ∈ K, if p is odd prime and l ≡ 0 (mod p).

Therefore, we can choose cyclotomic fields to construct pairing-friendly ordinary elliptic

curves by using both methods. Freeman et al. [33] call these families ”cyclotomic families”.

It is also possible to construct those curves by defining K to be an extension of a cyclotomic

field using a non-cyclotomic polynomial. The first technique is done by evaluating the cy-

clotomic polynomial Φl(x) at some polynomial u(x). Φl(u(x)), being irreducible, does not

give any advantage since we just evaluate t, r and q at u(x). However, if Φl(u(x)) can be fac-

torized as r1(x)r2(x) with irreducible r1, we may choose the number field K = Q[x]/(r1(x))

which contains the l-th roots of unity. Here, u(x) maps to an l-th root of unity ζl in K. If
√
−D ∈ Q(ζl), then

√
−D ∈ K that enables us to use Brezing-Weng method, otherwise we

apply Scott-Barreto method. The second technique, due to Kachisa, Schaefer and Scott [52],

is done by finding a non-cyclotomic polynomial r(x) such that K = Q[x]/(r(x)) � Q(ζl). One

can find such a polynomial r(x) by computing the minimal polynomial of a randomly chosen

element in Q(ζl). For such r(x), the polynomial t(x) which maps to 1 + ζl in K can be found,

and then we can proceed as in the Brezing-Weng method.

Due to the rareness of nontrivial factorization of Φl(u(x)) for the first technique and the poly-

nomial q(x) usually not representing primes for the second technique, Freeman et al. [33] call

these families ”sporadic families”. Eventhough such families are rare, one may have better

ρ-values than elliptic curves constructed using a cyclotomic families. The most important

example was obtained by Barreto and Naehrig [7], who used the first technique to construct

curves of prime order with embedding degree k = 12.
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4.6.4.1 Cyclotomic Families

Barreto, Lynn and Scott [5] gave the first construction of these families by applying Algorithm

5. They construct families by taking the polynomial r(x) to be the k-th cyclotomic polynomial

Φk(x) in order to define the number field K. They also choose ζk 7→ x in K, where ζk is a

primitive k-th root of unity, so t(x) = 1 + ζk = 1 + x and using the fact that if 3 | k, then
√
−3 ∈ K. Brezing and Weng [17] give a more general construction by taking the polynomial

r(x) to be the l-th cyclotomic polynomial Φl(x) for some l which is a multiple of desired

embedding degree k and choosing various representations of ζk ∈ K.

Freeman, Scott and Teske [33, Theorem 6.1] state that the ρ-value of this family is

ρ(t, r, q) =
2 max{deg t(x), deg y(x)}

deg r(x)
.

We now give an example of a curve construction for k = 10 that are proposed by Brezing and

Weng [17]. They choose the number field K = Q[x]/(r(x)) by taking the polynomial r(x) to

be 20-th cyclotomic polynomial Φ20(x). Thus, the field K contains ζ10 and
√
−1. They also

choose
√
−1 7→ x5 and ζ10 7→ −x6 + x4 − x2 + 1 and using Algorithm 5, t(x) = ζ10 + 1 and

y(x) = x5 − x3 that give q(x) as required. In other words,

r(x) = Φ20(x) = x8 − x6 + x4 − x2 + 1

t(x) = −x6 + x4 − x2 + 2

q(x) =
1
4

(x12 − x10 + x8 − 5x6 + 5x4 − 4x2 + 4).

Since q(x) is irreducible and q(0) = 1, it represents primes in the sense of Definition 4.4.3.

Therefore, (t, r, q) represents a complete family of pairing-friendly elliptic curves with em-

beddind degree k = 10 and discriminant D = 1. The ρ-value of this family is 3/2 which is

better than the second family given in Table 4.11.

In Table 4.11, Freeman, Scott and Teske [33] extended the construction given by Brezing and

Weng for prime embedding degrees k > 2. They choose number field K to be a cyclotomic

field Q(ζ4k) defining r(x) = Φ4k(x), so it contains a fourth root of unity
√
−1 that provides to

choose D = 1. For these families, by using Magma [15], they also show that q(x) is irreducible

for all odd k < 1000.
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Table 4.11: Families with odd k < 1000 and D = 1

k t(x), r(x), q(x) ρ

t(x) = −x2 + 1

k r(x) = Φ4k(x) (k + 2)/ϕ(k)

q(x) = 1
4

(
x2k+4 + 2x2k+2 + x2k + x4 − 2x2 + 1

)
t(x) = x2 + 1

2k r(x) = Φ4k(x) (k + 2)/ϕ(k)

q(x) = 1
4

(
x2k+4 − 2x2k+2 + x2k + x4 + 2x2 + 1

)
t(x) = x + 1

4k r(x) = Φ4k(x) (k + 1)/ϕ(k)

q(x) = 1
4

(
x2k+2 − 2x2k+1 + x2k + x2 + 2x + 1

)

In Table 4.12, Freeman, Scott and Teske [33] extended the construction given by Murphy and

Fitzpatrick [76] for the embedding degree k = 24 to all k ∈ Z+ such that 3 | k. They choose

K to be a cyclotomic field containing an eight root of unity. Such fields contain
√
−2 that

provides to choose D = 2. For these families, by using Magma [15], they also show that q(x)

represents primes for all odd k < 1000 and 3 | k.

Table 4.12: Families with k < 1000, 3 | k, l = lcm(8, k) and D = 2

k t(x), r(x), q(x) ρ

odd t(x) = xl/k + 1

r(x) = Φl(x)

q(x) = 1
8

(
2(xl/k+1)2+(1−xl/k)2(x5l/24+xl/8−xl/24)2

)
(5k/6 + 4)/ϕ(k)

even (5k/12 + 2)/ϕ(k)

In Table 4.13, Freeman, Scott and Teske [33] extended the construction given by Brezing and

Weng [17] and Barreto, Lynn and Scott [5] for certain values of k to all k ∈ Z+ such that

18 - k. They choose K to be a cyclotomic field containing a cube root of unity. Such fields

contain
√
−3 that provides to choose D = 3. For these families, by using Magma [15], they

also show that q(x) is irreducible for all odd k ≤ 1000, except 18 - k. In particular, we have

ρ ≤ 2 for all k ≤ 1000 except for k = 4 and ρ < 2 for all 5 ≤ k ≤ 1000 except for k = 6 and

k = 10.
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Table 4.13: Families with k ≤ 1000, 18 - k, l = lcm(6, k) and D = 3

k t(x), r(x), q(x) ρ

t(x) = −xk+1 + x + 1

k ≡ 1 (mod 6) r(x) = Φ6k(x) (l/3 + 2)/ϕ(l)

q(x) = 1
3 (x + 1)2(x2k − xk + 1) − x2k+1

t(x) = xk/2+1 − x + 1

k ≡ 2 (mod 6) r(x) = Φ3k(x) (l/3 + 2)/ϕ(l)

q(x) = 1
3 (x − 1)2(xk − xk/2 + 1) + xk+1

t(x) = −xk/3+1 + x + 1

k ≡ 3 (mod 6) r(x) = Φ2k(x) (l/3 + 2)/ϕ(l)

q(x) = 1
3 (x + 1)2(x2k/3 − xk/3 + 1) − x2k/3+1

t(x) = x3 + 1

k ≡ 4 (mod 6) r(x) = Φ3k(x) (l/3 + 6)/ϕ(l)

q(x) = 1
3 (x3 − 1)2(xk − xk/2 + 1) + x3

t(x) = xk+1 + 1

k ≡ 5 (mod 6) r(x) = Φ6k(x) (l/3 + 2)/ϕ(l)

q(x) = 1
3 (x2 − x + 1)(x2k − xk + 1) + xk+1

t(x) = x + 1

k ≡ 0 (mod 6) r(x) = Φk(x) (l/3 + 2)/ϕ(l)

q(x) = 1
3 (x − 1)2(xk/3 − xk/6 + 1) + x

55



4.6.4.2 Sporadic Families of Brezing-Weng Curves

In the construction of number field K, Brezing and Weng consider only the cyclotomic poly-

nomials r(x). However, in some cases, non-cyclotomic polynomials on top of cyclotomic

extensions are more efficient.

The first technique is done by evaluating the cyclotomic polynomial Φl(x) at some polynomial

u(x). If Φl(u(x)) is irreducible, this does not give any advantage since we will just evaluate

t, r and q at u(x). However, if Φl(u(x)) can be factorized as r1(x)r2(x) with irreducible r1, we

may choose the number field K = Q[x]/(r1(x)) containing the l-th roots of unity. Here, u(x)

maps to an l-th root of unity in K. If
√
−D ∈ Q(ζl), then

√
−D ∈ K that enables us to use

Brezing-Weng method.

Galbraith, McKee and Valença [37] have analyzed the factorizations of Φl(u(x)) for l =

5, 8, 10 and 12 whenever u(x) is quadratic and Φl has degree 4. For l = 12, there are two

such u(x) that Barreto and Naehrig used one such factorization of Φ12(u(x)) for u(x) = 6x2 to

consruct pairing-friendly elliptic curves of prime order which we give below:

Example 4.6.2 (Barreto-Naehrig Curves for k = 12) Barreto and Naehrig [7] constructed

pairing-friendly elliptic curves of prime order for k = 12. They use the following factorization

discovered by Galbraith et al. [37]

Φ12(u(x)) = r(x)r(−x)

= (36x4 + 36x3 + 18x2 + 6x + 1)(36x4 − 36x3 + 18x2 − 6x + 1),

where u(x) = 6x2. By taking r(x) to be the first factor, they obtain t(x) = u(x) + 1 and

q(x) = r(x) + t(x) − 1. If K = Q[x]/(r(x)), then ζ12 7→ 6x2, and using
√
−3 = 2ζ2

12 − 1, they

compute y(x) = 6x2 + 4x + 1. In other words, they obtain

t(x) = 6x2 + 1

r(x) = 36x4 + 36x3 + 18x2 + 6x + 1

q(x) = 36x4 + 36x3 + 24x2 + 6x + 1.

It follows from the polynomials that the CM equation becomes Dy2 = 3(6x2 + 4x + 1)2.

A suitable curve can be found by choosing a value x0 such that q(x0) and r(x0) are both

prime. Then (t, r, q) parameterizes a complete family of curves with embedding degree k = 12,

discriminant D = 3, and ρ-value 1.
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If we use the other quadratic u(x) = 2x2 for factorizing Φ12(u(x)) = r(x)r(−x), we obtain

r(x) = 4x4 + 4x3 + 2x2 + 2x + 1. We also have ζ12 7→ 2x2 and
√
−3 = 2ζ2

12 − 1. Taking

these into consideration, we construct a degree four polynomial q(x) for embedding degree

12 which never takes integer values. Instead of this, one can consider ζ4 7→ (2x2)3 (mod r(x))

to get a pairing-friendly curves of embedding degree k = 4 as following example shows:

Example 4.6.3 ([33]) Let

t(x) = −4x3

r(x) = 4x4 + 4x3 + 2x2 + 2x + 1

q(x) =
1
3

(16x6 + 8x4 + 4x3 + 4x2 + 4x + 1).

Then (t, r, q) parameterizes a complete family of curves with embedding degree k = 4, dis-

criminant D = 3, and ρ-value 3/2.

Another example to construct curves of embedding degree k = 8 is given by Tanaka and

Nakamula [89] using the same idea.

Example 4.6.4 ([89]) Let

t(x) = −9x3 − 3x2 − 2x

r(x) = 9x4 + 12x3 + 8x2 + 4x + 1

q(x) =
1
4

(81x6 + 54x5 + 45x4 + 12x3 + 13x2 + 6x + 1).

Then (t, r, q) parameterizes a complete family of curves with embedding degree k = 8, dis-

criminant D = 1, and ρ-value 3/2.

The second technique for constructing non-cyclotomic polynomials that define a cyclotomic

field is given by Kachisa, Schaefer and Scott [52], following the work of Kachisa [51]. They

first choose an element α ∈ Q(ζl), and then set r(x) to be the minimal polynomial of α.

If α does not lie in a proper subfield of Q(ζl), which occurs in most cases, we have K =

Q[x]/(r(x)) � Q(ζl). In this case, we proceed as in the Brezing-Weng method.

Example 4.6.5 ([52]) Let k = l = 16. Then by setting α = −2ζ5
16 + ζ16 ∈ Q(ζ16), which has

minimal polynomial r(x), they get K = Q[x]/(r(x)) � Q(ζ16). When taking ζ16 7→
1

35 (2x5 +
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41x) in K and
√
−1 7→ − 1

7 (x4 + 24), they obtain t(x) and y(x) = − 1
35 (x5 + 5x4 + 38x + 120),

respectively. In other words, they obtain

t(x) =
1
35

(2x5 + 41x + 35)

r(x) = x8 + 48x4 + 625

q(x) =
1

980
(x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x + 3125).

The polynomial q(x) is irreducible. When x ≡ ±25 (mod 70), t(x) and q(x) represent integers

and q(x) represents primes. Then (t, r, q) parameterizes a complete family of curves with

embedding degree k = 16, discriminant D = 1, and ρ-value 5/4.

Kachisa, Schaefer and Scott [52] also give a complete families of curves with embedding de-

grees k = 18, 32, 36 and 40 corresponding to the ρ-values 4/3, 9/8, 7/6 and 11/8, respectively.

4.6.4.3 Scott-Barreto Families

In the method of Scott and Barreto [82], we again take the number field K as a cyclotomic field

such that
√
−D < K which is different from the previous one. If we choose any polynomial

t(x) and an irreducible polynomial r(x) such that r(x) | Φk(t(x) − 1), then Q[x]/(r(x)) defines

a cyclotomic field. We then search the cofactor h(x) by computer so that the right-hand side

of the CM Eq. (4.3) either a perfect square or a linear factor times a perfect square, i.e.,

Dy2 = (ax + b)g(x)2.

When we find such an h(x), we can set x to be the linear function of Dz2 that makes the

right-hand side of the CM Eq. (4.3) D times a square polynomial with respect to z.

We now give an example of the complete family of pairing-friendly curves that the proof can

be found in [33].

Example 4.6.6 ([33]) Let k = 6. Let

t(x) = −4x2 + 4x + 2

r(x) = 16x4 − 32x3 + 12x2 + 4x + 1

q(x) = 4x5 − 8x4 + 3x3 − 3x2 +
17
4

x + 1.
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Let D be a positive square-free integer and D - 2 · 3 · 5 · 911. Then (t(Dz2), r(Dz2), q(Dz2))

parameterizes a complete family of curves with embedding degree k = 6, discriminant D, and

ρ-value 5/4.

The following example is constructed by Koblitz and Menezes [59] that can be viewed as an

example of Scott-Barreto families.

Example 4.6.7 ([59]) Let l ∈ 2Z, and let D be a positive square-free integer. Let

t(x) = 2

r(x) = x

q(x) = Dl2x2 + 1.

Then (t, r, q) parameterizes a complete family of curves with embedding degree k = 1, dis-

criminant D, and ρ-value 2.

Koblitz and Menezes [59] discuss the family of curves of the form y2 = x3 − dx with D = 1.

They give two explicit elliptic curves; one of them is y2 = x3 − x if lx ≡ 0 (mod 4), the

other one is y2 = x3 − 4x if lx ≡ 2 (mod 4). Both curves have the special property that

E(Fq) � Z/(lx)Z × Z/(lx)Z. In addition to this, these curve have distortion maps. The

advantage of this construction is to have a lot of choice for x and l, which allows us to choose

r and q to be a special primes such as Solinas.

In [56], we discuss the family of elliptic curves of the form y2 = x3 − c with D = 3. In this

work, we give an explicit curve y2 = x3 − 1 over Fq with q = 27A2 + 1. We showed that this

curve has embedding degree k = 1, This was done by computing the number of points #E(Fq)

of the curve y2 = x3 − c, which we discuss now.

Theorem 4.6.8 Let q ≡ 1 (mod 3) be a prime, c ∈ F∗q and let χ2, χ3 and χ6 be quadratic, cubic

and sextic characters on F∗q, respectively. Let E be the elliptic curve given by the equation

y2 = x3 − c.

over Fq. Write q = a2 + b2 − ab, where a, b are integers and a + b ≡ 1 (mod 3), where

a ≡ 1 (mod 3), b ≡ 0 (mod 3). Then,
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(i) If q ≡ 1 (mod 4) and χ3(2) = 1, then

#E(Fq) =



q + 1 − (2a − b), i f χ6(c) = 1

q + 1 + (2a − b), i f χ3(c) = 1 and χ6(c) , 1

q + 1 + (a + b) or
q + 1 + (a − 2b),

i f χ2(c) = 1 and χ6(c) , 1

q + 1 − (a + b) or
q + 1 − (a − 2b),

i f χ2(c) , 1 and χ3(c) , 1

(ii) If q ≡ 1 (mod 4) and χ3(2) , 1, then

#E(Fq) =



q + 1 + (a − 2b) or
q + 1 + (a + b),

i f χ6(c) = 1

q + 1 − (a − 2b) or
q + 1 − (a + b),

i f χ3(c) = 1 and χ6(c) , 1

q + 1 − (2a − b) or
q + 1 + (a + b) or
q + 1 + (a − 2b),

i f χ2(c) = 1 and χ6(c) , 1

q + 1 + (2a − b) or
q + 1 − (a + b) or
q + 1 − (a − 2b),

i f χ2(c) , 1 and χ3(c) , 1

(iii) If q . 1 (mod 4) and χ3(2) = 1, then

#E(Fq) =



q + 1 + (2a − b), i f χ6(c) = 1

q + 1 − (2a − b), i f χ3(c) = 1 and χ6(c) , 1

q + 1 − (a + b) or
q + 1 − (a − 2b),

i f χ2(c) = 1 and χ6(c) , 1

q + 1 + (a + b) or
q + 1 + (a − 2b),

i f χ2(c) , 1 and χ3(c) , 1

(iv) If q . 1 (mod 4) and χ3(2) , 1, then

#E(Fq) =



q + 1 − (a − 2b) or
q + 1 − (a + b),

i f χ6(c) = 1

q + 1 + (a − 2b) or
q + 1 + (a + b),

i f χ3(c) = 1 and χ6(c) , 1

q + 1 + (2a − b) or
q + 1 − (a + b) or
q + 1 − (a − 2b),

i f χ2(c) = 1 and χ6(c) , 1

q + 1 − (2a − b) or
q + 1 + (a + b) or
q + 1 + (a − 2b),

i f χ2(c) , 1 and χ3(c) , 1
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Proof of Theorem 4.6.8. Using the facts given in [92, Section 4.4], the number of points of

the elliptic curve y2 = x3 − c over Fq can be expressed in terms of the characters and Jacobi

sums as follows:

#E(Fq) = #{x, y ∈ Fq | y2 = x3 − c} + #{∞}

=
∑

m,n∈Fq
m=n−c

#{y2 = m}.#{x3 = n} + 1

=
∑

m∈Fq

1∑
j=0

χ2(m) j
2∑

l=0

χ3(m + c)l + 1

=

1∑
j=0

2∑
l=0

∑
m∈Fq

χ2(c) jχ2(c−1m) jχ3(c)lχ3(c−1m + 1)l + 1.

Using the change of variables c−1m = −t in the first summation on the right and by Proposition

2.4.3 and Proposition 2.4.8 in Section 2.4, we get

#E(Fq) =

1∑
j=0

χ2(−c) j
2∑

l=0

χ3(c)l
∑
t∈Fq

χ2(t) jχ3(1 − t)l + 1

=

1∑
j=0

χ2(−c) j
2∑

l=0

χ3(c)lJ(χ j
2, χ

l
3) + 1

=

1∑
j=0

χ2(−c) j[J(χ j
2, χtriv) + χ3(c)J(χ j

2, χ3) + χ3(c)2J(χ j
2, χ

2
3)
]
+ 1

= J(χtriv, χtriv) + χ3(c)J(χtriv, χ3) + χ3(c)2J(χtriv, χ
2
3)

+ χ2(−c)
[
J(χ2, χtriv) + χ3(c)J(χ2, χ3) + χ3(c)2J(χ2, χ

2
3)
]
+ 1

= q + 1 + χ2(−c)
[
χ3(c)J(χ2, χ3) + χ3(c)2J(χ2, χ

2
3)
]

= q + 1 + χ2(−c)
[
χ3(4c)J(χ3, χ3) + χ3(4c)J(χ3, χ3)

]
= q + 1 − α − α

where

α = −χ2(−c)χ3(4c)J(χ3, χ3) ∈ Z[δ].

If we choose α = a + bδ, then α = a + bδ2 = (a−b)−bδ. Therefore, Tr(α) = 2a−b. It follows

from Proposition 2.4.7 that we obtain

N(α) = a2 + b2 − ab = χ2(−c)χ2(−c)χ3(4c)χ3(4c)J(χ3, χ3)J(χ3, χ3)

= χ2(−c)χ2(−c)−1χ3(4c)χ3(4c)−1|J(χ3, χ3)|2

= q
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By using Proposition 2.4.10, we can write

α = −χ2(−c)χ3(4c)J(χ3, χ3) ≡ χ2(−c)χ3(4c) (mod 3)

≡ χ2(−1)χ3(2)2χ2(c)χ3(c) (mod 3).

Lemma 4.6.9 Let α = x + yδ ∈ Z[δ].

(1) If α ≡ 1 (mod 3), then x ≡ 1, y ≡ 0 (mod 3) and x + y ≡ 1 (mod 3).

(2) If α ≡ −1 (mod 3), then x ≡ 2, y ≡ 0 (mod 3) and x + y ≡ 2 (mod 3).

(3) If α ≡ δ (mod 3), then x ≡ 0, y ≡ 1 (mod 3) and x + y ≡ 1 (mod 3).

(4) If α ≡ −δ (mod 3), then x ≡ 0, y ≡ 2 (mod 3) and x + y ≡ 2 (mod 3).

(5) If α ≡ δ2 (mod 3), then x ≡ 2, y ≡ 2 (mod 3) and x + y ≡ 1 (mod 3).

(6) If α ≡ −δ2 (mod 3), then x ≡ 1, y ≡ 1 (mod 3) and x + y ≡ 2 (mod 3).

Proof. Suppose α ≡ 1 (mod 3), so α − 1 = 3(u + vδ) for some u and v in Z. We have

(x − 1) + yδ = 3u + 3vδ.

Therefore, x ≡ 1 (mod 3), y ≡ 0 (mod 3) and x + y ≡ 1 (mod 3). This proves (1). The proofs

of (2) − (6) are similar. �

If q ≡ 1 (mod 4) and χ3(2) = 1, then χ2(−1)χ3(2)2χ2(c)χ3(c) = 1 (mod 3) when χ6(c) = 1.

Hence, α ≡ 1 (mod 3). Lemma 4.6.9 yields α = a + bδ with a ≡ 1, b ≡ 0 (mod 3) and

a + b ≡ 1 (mod 3). This proves part of part (i) of Theorem 4.6.8. The other parts are proved

similarly. This completes the proof of Theorem 4.6.8. �

Let E be the elliptic curve given by the equation

y2 = x3 − 1 (4.5)

over Fq with q = 27A2 + 1 and D = 3. It follows from Proposition 2.4.9 and Theorem 4.6.8

(i) that E has an embedding degree 1. For the efficient and secure implementation, prime q

should be choosen specifically so that the arithmetic on Fq is fast and the discrete logarithm

problem (DLP) on F∗q is secure. Taking these into accounts and following [59], we must

choose A = rh such that r and q = 27A2 + 1 are prime. In order to maximize efficiency, we

look for the following:
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• r and q should have the approximate bit lengths in Table 4.14 that corresponds to the

desired security level.

• r should be a Solinas prime, i.e, a sum or difference of a small number of powers of 2.

• q should be a special prime that is proposed in [43].

Table 4.14: Minimum bit lengths of r and q

security level in bits 80 128 192 256

minimum bits of prime subgroup of order n 160 256 384 512

minimum bits of the field Fp 1024 3072 8192 15360

We now give examples considering [59, Section 4]. In our examples, the bit lengths of r and

q are equal to or just a little bit more than the minimum values given in Table 4.14 for the

corresponding security level. We produce these examples using Maple 12.

Example 4.6.10 For 128-bits of security, let r be the prime 2258 − 260 + 1 and let h = 21424.

Then, q = 27 · (r · h)2 + 1 = 27 · (23364 − 23167 + 23107 + 22968 − 22909 + 22848) + 1 is prime.

Example 4.6.11 For 192-bits of security, let r be the prime 2384 − 2218 + 1 and let h = 23985.

Then, q = 27 · (r · h)2 + 1 = 27 · (28738 − 28573 + 28406 + 28355 − 28189 + 27970) + 1 is prime.

Example 4.6.12 For 256-bits of security, let r be the prime 2514 − 2114 + 1 and let h = 27482.

Then, q = 27 · (r · h)2 + 1 = 27 · (215992 − 215593 + 215479 + 215192 − 215079 + 214964) + 1 is prime.

4.6.4.4 Variable Discriminants D in Cyclotomic Families

Freeman, Scott and Teske [33] introduced a new method to construct a family of curves with

variable CM discriminant D. The examples given by Brezing and Weng method and some

other methods assumed that the CM discriminant D is fixed. Most examples given by Brezing

and Weng [17] and all of those given by Barreto, Lynn and Scott [5] require that D = 3.

Although, elliptic curves with D = 3 are convenient for cryptographic applications, they have

the unusual property of having an automorphism group of order 6 that is believed to help a

future discrete logarithm attack [57]. From this point of view, cryptographers would like to

have families of elliptic curves with variable D.
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Theorem 4.6.13 ([33]) Suppose that (t, r, q) parameterizes a complete potential family of

elliptic curves with embedding degree k and discriminant D. Let y(x) ∈ Q[x] such that

Dy(x)2 = 4q(x)− t(x)2. Let t, r and q be even polynomials and y be an odd polynomial. Define

t
′

, r
′

, q
′

and y
′

to be polynomials such that

t(x) = t
′

(x2), r(x) = r
′

(x2), q(x) = q
′

(x2), y(x) = x · y
′

(x2),

Let a be a positive integer satisfying the followings:

(1) aD is square-free,

(2) r
′

(ax2) is irreducible,

(3) y
′

(ax2) is an integer for some integer x.

Then the triple
(
t
′

(ax2), r
′

(ax2), q
′

(ax2)
)

parameterizes a complete potential family of elliptic

curves with embedding degree k, discriminant aD and ρ-value equal to ρ(t, r, q).

The difficult part in obtaining a family of curves is in this method to show that q
′

(ax2) repre-

sents primes. In particular, Freeman, Scott and Teske [33] claim that they have often found

that gcd({q(x) | x, q(x) ∈ Z}) > 1. Their first application of Theorem 4.6.13 is to construct the

following two examples which improve the first two examples in Table 4.11, respectively.

Example 4.6.14 Let k be odd. Let

t(x) = 1 + (−1)(k+1)/2xk+1

r(x) = Φ4k(x)

q(x) =
1
4

(
x2k+2 + x2k + 4(−1)(k+1)/2xk+1 + x2 + 1

)
.

Then (t, r, q) parameterizes a complete potential family of pairing-friendly curves with em-

bedding degree k, discriminant D = 1, and ρ-value (k + 1)/ϕ(k).

Example 4.6.15 Let k be odd. Let

t(x) = 1 − (−1)(k+1)/2xk+1

r(x) = Φ4k(x)

q(x) =
1
4

(
x2k+2 + x2k − 4(−1)(k+1)/2xk+1 + x2 + 1

)
.
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Then (t, r, q) parameterizes a complete potential family of pairing-friendly curves with em-

bedding degree 2k, discriminant D = 1, and ρ-value (k + 1)/ϕ(k).

They apply Theorem 4.6.13 to both examples to obtain a complete family of curves with

variable D. In Example 4.6.14, the polynomial r(x) is equal to Φ4k(x) = Φk(−x2) for odd k.

Using the fact given in [33] that

(i) Φk(ax2) is irreducible when k ∈ Z+ and a is a square-free integer with a - k,

(ii) r(x) = r
′

(ax2) = Φk(−ax2) is irreducible for any square-free a such that a - k,

(iii) y(x) = y
′

(ax2) is an integer for some x,

(iv) Using the substitution x2 7→ ax2, the new q(x) is obtained by

qa(x) =
1
4

(
ak+1x2k+2 + akx2k + 4(−a)(k+1)/2xk+1 + ax2 + 1

)
.

It follows from above that one obtains a potential family of elliptic curves with discriminant

D = a for any positive square-free integer a such that a - k. In order to obtain a family of such

curves, it remains only to check that qa(x) represents primes or not. This was done in [33] by

using the following facts:

(i) f (ax2) is irreducible when f (x) =
∑d

i=0 aixi ∈ Z[x] is irreducible and a is a square-free

integer such that a - a0addisc f (x),

(ii) disc f (x2) =
(
disc f (x)

)2.

They conclude that if k ≡ 3 (mod 4) and k < 1000, then for any square-free integer a with

a - disc q(x), the polynomial qa(x) is irreducible. According to the authors, q
′

(ax2) represent

primes for k ≡ 3 (mod 4), a ≡ 3 (mod 4) for square-free a. This certainly would give us a

family of pairing-friendly elliptic curves with discriminant a.

Freeman, Scott and Teske [33] applied Theorem 4.6.13 to produce more examples incuding

Example 4.6.15.
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4.6.5 The Dupont-Enge-Morain Method

Dupont, Enge and Morain [26] propose a new method to construct pairing-friendly ordinary

elliptic curves with arbitrary embedding degree as in the Cocks and Pinch method. In this new

method, their approach is to compute t and r simultaneously using resultants, but the Cocks

and Pinch method first fixes an r and then computes the parameters t and q which satisfy CM

equation.

Algorithm 6: The Dupont-Enge-Morain Method to construct a curve for arbitrary k

Input: k ∈ Z+, square-free positive integer D

Output: a prime q, an elliptic curve E over Fq of embedding degree k with respect to r.

Step 1 : Compute the resultant Rk(a) =Resx
(
Φk(x − 1), (x − 2)2 + a

)
∈ Z[a].

Step 2 : Choose a ∈ Z such that Rk(a) is prime and set r = Rk(a).

Step 3 : Choose y ∈ Z such that a = Dy2 and test Rk(Dy2) is prime.

Step 4 : Compute g(x) = gcd
(
Φk(x − 1), (x − 2)2 + Dy2) ∈ Fr[x].

Step 5 : Let t
′

be a root of g(x) ∈ Fr[x].

Step 6 : Let t ∈ Z such that t ≡ t
′

(mod r) and q = (t2 + Dy2)/4.

Step 7 : If q is a prime integer and a = Dy2 with D < 1012, use CM method to obtain

an elliptic curve E over Fq with trace t and embedding degree k.

The main idea behind on the Dupont-Enge-Morain method is to use the following well-known

property of resultants: if f and g be polynomials over a field K, then Res( f , g) = 0 if and ony

if f and g have a common root in K. For a more detailed background of resultants, one can

refer to [62, 65].

When computing Res
(
Φk(x − 1), (x − 2)2 + a

)
, we obtain a single variable polynomial Rkwith

respect to a of degree ϕ(k). If we choose a = Dy2 with y ∈ Z such that r = Rk(Dy2) is an odd

prime, then r ≡ 1 (mod k) (see [33, Lemma 4.5]). This property implies that Φk(x) splits into

distinct linear factors in Fr[x]. Since g(x) | Φk(x − 1), the polynomial g(x) has a root t
′

∈ Fr.

Let t ∈ Z be the lift of t
′

∈ Fr. Then the computed values of t and r satisfies r | Φk(t − 1)

and r | Dy2 + (t − 2)2. If q = (t2 + Dy2)/4 is prime integer, CM equation holds. By using the

CM method, we obtain an elliptic curve E with q + 1− t ≡ 0 (mod r). As in the Cocks-Pinch

method, in general q ≈ r2. Therefore, pairing-friendly ordinary elliptic curves consructed

using by this method have ρ ≈ 2.
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The Cocks-Pinch method and the Dupont-Enge-Morain method are both efficient for con-

structing curves with arbitrary embedding degree. The only significant difference between

these two methods is that while one can choose the subgroup size r arbitrarily in the Cocks-

Pinch method, r is a value of the polynomial Rk(a) of degree φ(k) in the Dupont-Enge-Morain

method. Thus, the possible subgroup more restricted for the Dupont-Enge-Morain method.

In the light of above, Freeman et al. [33] recommend using the Cocks-Pinch method for

cryptographic applications.

4.6.6 Extension of the Dupont-Enge-Morain Method

In [29], Drylo extended the Dupont-Enge-Morain Method by choosing Dy2 = f (x) with

f (x) = g(x)h(x)2, where g(x), h(x) ∈ Q[x] and deg g(x) ≤ 2. Let r(x) ∈ Q[x] be an irreducible

factor of Rk( f (x)), which can be efficiently found using Berlekamp’s algorithm. Let K =

Q[x]/(r(x)). Then we assume that t
′

(x) = gcd
(
Φk(x−1), (x−2)2 + f (x)

)
, which is an element

of K. Let t(x) be the lift of t
′

(x) in Q[x] with deg(t(x)) < deg(r(x)). Let q(x) =
(
t(x)2+ f (x)

)
/4.

Then the triple (t, r, q) parameterizes a potential family of curves with embedding degree k.
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CHAPTER 5

EFFICIENT EXPONENTIATION IN PAIRING-BASED

CRYPTOGRAPHY

One of the important components in pairing computations is the final exponentiation. In this

chapter, we show how this computation can be done by using the linear recurrence relations.

Moreover, we list all those work studied in the literature so far.

5.1 The Final Exponentiation

The final exponentiation (qk − 1)/r needed by the Tate pairing (and its derivatives) has been

efficiently computed for supersingular elliptic curves with embedding degree k = 2, 4, 6 in

[4]. Later, this is carried out in [67] as we explain now : Assume that the Tate pairing (and

its derivatives) value obtained by the Miller’s algorithm is a. We will now exponentiate a by
qk−1

r . To do this, we first write

qk − 1 =
∏
d|k

Φd(q).

Since k is the embedding degree, r has to divide cyclotomic polynomial Φk(q) (not to smaller

degree of it). We compute b = ac, where

c =
∏

d|k,d<k

Φd(q).

Since Φk(q)
r is an integer, we obtain the output bΦk(q)/r using a standard exponentiation algo-

rithm [24, Chapter 9]. We note that this method is faster than the previous approach given for

supersingular elliptic curves in [4].

Example 5.1.1 Let Fq2 = F(α) � Fq[x]/ < x2 − δ >. Then we can write an element a ∈ Fq2

in the form a = u + αv, where u, v ∈ Fq and α2 = δ. It is clear that q2 − 1 = Φ2(q)Φ1(q) and
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r | Φ2(q) = q + 1. We have

b(q+1)/r = (aq−1)(q+1)/r =
(u − αv
u + αv

)(q+1)/r
.

Since

b =
u − αv
u + αv

=
u2 − v2

u2 + v2 − α
2uv

u2 + v2 ,

the field element b becomes ”unitary” (see [46, 81]). In other words, bb = 1, where b is the

conjugate of b in Fq2 . Then, we compute b(q+1)/r using a standard exponentiation algorithm

to obtain a(q2−1)/r. As a result, we have effectively halved the size of the final powering using

this approach.

Remark 5.1.2 For k = 2d, the final exponent can be written by

qk − 1
r

= (qd − 1)
(qd + 1)
Φd(q)

Φd(q)
r

.

After raising to the power of qd − 1, the field element becomes unitary. This property gives us

two important implications:

(i) squaring of unitary elements is significantly cheaper than squaring of non-unitary ele-

ments.

(ii) for unitary elements, any future inversions can be implemented by simple conjugation.

5.2 Compression in Finite Fields

We first describe a method to represent elements of cyclotomic subgroups in Fqk with fewer

bits. This is so called compressed form of those elements in Fqk . A cyclotomic subgroup

Gr,q,k in Fqk is defined to be a subgroup of prime order r with r | Φk(q) and r - k. We now

show that the relatioships between coefficients of minimal polynomials for the elements of a

cyclotomic subgroup Gr,q,k and the corresponding linear recurrence relation. For more details,

we refer the reader to look at [16].

Let α be an element of a cyclotomic subgroup Gr,q,k, where k ≥ 2. Let

fα(x) = xn − a1xn−1 + · · · + (−1)n−1an−1x + (−1)nan
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be the minimal polynomial of α over Fqd for some d dividing k with n = k/d > 1. Then

an = 1. It is clear that for 1 ≤ i ≤ n, ai’s are the elementary symmetric functions in variables

α, αq, . . . , αqn−1
, namely

a1 =

n−1∑
i=0

αqi
, a2 =

∑
i< j

αqi+q j
, . . . , an =

n−1∏
i=0

αqi
.

The polynomial fα(x) allows us to introduce the n-th order linear recurrence relation {si}

which is defined by

st = a1st−1 − a2st−2 + · · · − (−1)nst−n, t ≥ n.

The sequence {si} of elements in Fqd with fixed initial conditions

si = TrFqn/Fq(αi) = αi + αiq + . . . + αiqn−1

for i = 0, · · · , n − 1 is called the n-th order characteristic sequence over Fqd generated by α.

For any integer m, the minimal polynomial of αm is

fαm(x) = xn − a1,mxn−1 + · · · + (−1)n−1an−1,mx + (−1)n,

whose roots are αmqi
for i = 0, · · · , n − 1. Hence, we may represent αm (and its conjugates)

by the set {a1,m, a2,m, · · · , an−1,m}, where the elements are written by

ai,m =
∑

0≤ j1≤···≤ ji≤n−1

αm(q j1 +q j2 +···+q ji ).

It follows from the equation above ai,m = an−i,−m. The Newton’s Formula [65] tells us

that for any i ∈ {1, · · · , n − 1}, we can efficiently obtain {a1,m, a2,m, · · · , ai,m} from the set

{sm, s2m, · · · , sim} and vice-versa using the following equalities:

sim = a1,ms(i−1)m − a2,ms(i−2)m + · · · − (−1)iiai,m

ai,m = i−1((−1)i+1sim + · · · + ai−1,msm
)

In this section, our goal is to obtain shorter representation of αm. Thus, we now descibe two

significant cases:

(1) If k = 2l is even, then α ∈ Fq2l has order dividing ql + 1. This implies that αmql
= α−m.
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Therefore, for i = 1, · · · , n − 1, we have

an−i,m = ai,−m

=
∑

0≤ j1≤···≤ ji≤n−1

α−m(q j1 +q j2 +···+q ji )

=
∑

0≤ j1≤···≤ ji≤n−1

αmql(q j1 +q j2 +···+q ji )

= aql

i,m

Hence, we may represent αm (and its conjugates) by the set {a1,m, · · · , a(n−1)/2,m}.

(2) If k = 2l with d | l, then we have an−i,m = aql

i,m for i = 1, · · · , n − 1 from the previous

result. Since d | l, i.e., n = k/d is even, we obtain aql

i,m = ai,m and the result follows.

Hence, we may represent αm (and its conjugates) by the set {a1,m, · · · , an/2,m}.

Lemma 5.2.1 [16] Let k = de, with e > 1. Then for any element α of a cyclotomic subgroup

Gr,q,k and for any integer m, αm can be represented using the following number of elements in

Fqd : 
e − 1, if de is odd

e−1
2 , if d is even and e is odd
e
2 , if e is even

5.2.1 Compression Factor 2

Let α be any element of Gr,q,2 in F∗
q2 and let

fα(x) = x2 − a1x + 1

be the minimal polynomial of α over Fq. The polynomial fα(x) allows us to introduce the 2nd

order linear recurrence relation {si} which is defined by

st = a1st−1 − st−2, t ≥ 2.

For any integer m, the minimal polynomial of αm over Fq is

fαm(x) = x2 − a1,mx + 1,

where a1,m = sm = TrFq2/Fq(αm) = αm + αmq. The sequence {a1,m} which is so called Lucas

sequence is defined by the following recurrence relations:

a1,0 = 2, a1,1 = a1, a1,u+1 = a1a1,u − a1,u−1.
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In [88], Smith and Skinner showed that the elements of Gr,q,2 in F∗
q2 could be identified by

{a1,m} only 1/2 as many as in the ordinary case. More precisely, the elements of Gr,q,2 can be

uniquely determined by their traces over Fq. This construction yields a compression factor 2.

The Lucas sequence {a1,m} can be efficiently computed in Algorithm 1 depending on the

relations

a1,u+v = a1,ua1,v − a1,u−v

a1,2u = a2
1,u − 2

for u, v ∈ Z.

Algorithm 7: Compute Lucas Sequence

Input: a1 ∈ Fq and m =
∑t

j=0 m j2 j ∈ Z+ with mt = 1

Output: (a1,m, a1,m+1)

Step 1 : (a1,y, a1,y+1)← (2, a1)

Step 2 : for j← t to 0 do

Step 3 : if m j = 1 then

Step 4 : a1,y ← a1,ya1,y+1 − a1, a1,y+1 ← a2
1,y+1 − 2

Step 5 : else

Step 6 : a1,y ← a2
1,y − 2, a1,y+1 ← a1,ya1,y+1 − a1

Step 7 : end if

Step 8 : end for

Step 9 : return (a1,y, a1,y+1)

Algorithm 7 is left-to-right scanning one. It was developed right-to-left scanning algorithm in

[95], which requires more temporary memories.

5.2.2 Compression Factor 3/2

Let α be any element of Gr,q,3 in F∗
q3 and let

fα(x) = x3 − a1x2 + a2x − 1

be the minimal polynomial of α over Fq. For any integer m, the minimal polynomial of αm

over Fq is

fαm(x) = x3 − a1,mx2 + a1,−mx − 1
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where a1,m = sm = TrFq3/Fq(αm) = αm + αmq + αmq2
.

In [40], Gong and Harn showed that the elements of Gr,q,3 in F∗
q3 could be identified by

{a1,m, a1,−m} with a compression factor 3/2. They also obtained an efficient exponentiation

algoritm for the compressed form of those elements depending on the relations

a1,u+v = a1,ua1,v − a1,u−va1,−v + a1,u−2v

a1,2u = a2
1,u − 2a1,−u.

for u, v ∈ Z.

5.2.3 Compression Factor 3

Let α be any element of Gr,q,6 in F∗
q6 and let

fα(x) = x3 − a1x2 + a2x − 1

be the minimal polynomial of α over Fq2 . It follows from the fact that the conjugates over Fq2

of α ∈ Fq6 are α, αq2
and αq4

. Therefore, we obtain a1 = TrFq6/Fq2 (α) = αm + αmq2
+ αmq4

.

The conjugates of α ∈ Gr,q,6 are also α, αq−1 and α−q since q2 ≡ q− 1 (mod (q2 − q + 1)) and

q4 ≡ −q (mod (q2 − q + 1)). This implies that a2 = ααq2
+ ααq4

+ αq2
αq4

= aq
1. Therefore,

the minimal polynomial of α over Fq2 can be rewritten by

fα(x) = x3 − a1x2 + aq
1x − 1.

For any integer m, the conjugates of αm are the roots of the polynomial

fαm(x) = x3 − a1,mx2 + aq
1,mx − 1

over Fq2 . The latter polynomial is fully determined by {a1,m}.

Lenstra and Verheul introduced XTR [64] cryptosystem. Using the above procedure, they

showed that the elements of Gr,q,6 in F∗
q6 could be identified by {a1,m} over Fq2 with a com-

pression factor 3.

The XTR exponentiation {a1,m} can be efficiently computed in Algorithm 8 (see [64, Algo-

rithm 2.3.7]) using the following relations

a1,u+v = a1,ua1,v − aq
1,va1,u−v + a1,u−2v

a1,2u = a2
1,u − 2aq

1,u.
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for u, v ∈ Z.

Algorithm 8: Compute XTR exponentiation

Input: a1 ∈ Fq2 and m =
∑t

j=0 m j2 j ∈ Z+ with mt = 1

Output: (a1,2m, a1,2m+1, a1,2m+2)

Step 1 : (a1,y−1, a1,y, a1,y+1)← (3, a1, a2
1 − 2aq

1)

Step 2 : for j← t to 0 do

Step 3 : if m j = 1 then

Step 4 : a1,y−1 ← a2
1,y − 2aq

1,y,

Step 5 : a1,y ← a1,y+1a1,y − aq
1,ya1 + aq

1,y−1

Step 6 : a1,y+1 ← a2
1,y+1 − 2aq

1,y+1

Step 7 : else

Step 8 : a1,y−1 ← a2
1,y−1 − 2aq

1,y−1

Step 9 : a1,y ← a1,y−1a1,y − aq
1,yaq

1 + aq
1,y+1

Step 10 : a1,y+1 ← a2
1,y − 2aq

1,y

Step 11 : end if

Step 12 : end for

Step 13 : return (a1,y−1, a1,y, a1,y+1)

5.2.4 Compression Factor 5/2

Giuliani and Gong [38] considered that the elements of Gr,q,10 in F∗
q10 and showed that those

elements could be identified by {a1,m, a2,m} over Fq2 with a compression factor 5/2. They

obtained an algoritm to exponentiate the compressed form of those elements in [38] and also

proposed more efficient algorithm in [39].

5.2.5 Compression Factor 4 and 6

Let q = 3t for any odd integer t, i.e., t = 2l + 1. Then
√

3q = 3l+1 is an integer and

q2 − q + 1 = (q +
√

3q + 1)(q −
√

3q + 1).

Shirase et al. introduced improved version of XTR [85]. They considered that the elements

of Gr,q,6 with r | q −
√

3q + 1 in F∗
q6 and showed that those elements can be uniquely repre-
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sented {a1,m} (up to conjugation over Fq) with a compression factor 6. They also obtained an

exponentiation algorithm of those elements by using an analogue of XTR algorithm and the

following equalities

a1,m = TrFq6/Fq(αm) = αm + αmq + · · · + αmq5

b1,m = TrFq6/Fq2 (αm) = αm + αmq2
+ αmq4

where a1,m = b1,m + bq
1,m. If a1,m is given, then b1,m can be obtained efficiently using the

following polynomial

x2 − a1,mx + a
√

3q
1,m .

In fact, b1,m and bq
1,m are the roots of the above polynomial.

Later, using the same trick in [85], Karabina [53] showed that the elements of Gr,q,6 with

r | q ∓
√

3q + 1 in F∗
q6 , where q = 32l+1 can be uniquely represented by their traces over Fq

with a compression factor 6. He presented six exponentiation algorithms and compared them.

The first works directly using the following polynomial

f (x) = x6 − a1,mx5 + (at
1,m + a1,m)x4

− (a2
1,m + at

1,m + 2)x3 + (at
1,m + a1,m)x2

− a1,mx + 1,

where t = ∓3l+1 is the trace of the Frobenius. This algorithm is 59% faster than the algorithm

proposed by Shirase et al. in [85].

He also achieved compression factor 4 for the subgroups Gr,q,6 with r | q ∓
√

2q + 1 in F∗
q4 ,

where q = 2t for some odd t, i.e. t = 2l + 1. He presented five exponentiation algorithms for

compression factor 4 and compared them. His first algoritm works directly with the polyno-

mial

f (x) = x4 + a1,mx3 + at
1,mx2 + a1,mx + 1,

where t = ∓2l+1.

5.2.6 Compression Factor 7/3

We consider the elements of Gr,q,14 in F∗
q14 and showed that any positive power m of those ele-

ments could be identified by {a1,m, a2,m, a3,m} over Fq2 with a compression factor 7/3. Namely,
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let α be any element of Gr,q,14 in F∗
q14 and let

fα(x) = x7 − a1x6 + a2x5 − a3x4 + ap
3 x3 − ap

2 x2 + ap
1 x − 1

be the minimal polynomial of α over Fq2 . For any integer m, the minimal polynomial of αm

over Fq2 is

fαm(x) = x7 − a1,mx6 + a2,mx5 − a3,mx4 + ap
3,mx3 − ap

2,mx2 + ap
1,mx − 1,

where

a1,m = sm = TrFq14/Fq2 (αm) =

6∑
i=0

αmq2i
,

a2,m = TrFq14/Fq2

(
αm(q2+1) + αm(q4+1) + αm(q6+1)

)
=

∑
0≤i< j≤6

αmq2i+mq2 j
,

and

a3,m = TrFq14/Fq2

(
αm(q4+q2+1) + αm(q6+q2+1) + αm(q8+q2+1) + αm(q8+q4+1) + αm(q10+q2+1)

)
=

∑
0≤i< j<k≤6

αmq2i+mq2 j+mq2k
.

We have the following recurrence relations related to the sequences {a1,m}, {a2,m} and {a3,m},

but we could not find yet any efficient polynomial time algorithm to compute the m-th term

of these sequences.

Lemma 5.2.2 For all integers u and v, we have the following:

(1) a1,2u = a2
1,u − 2a2,u

(2) a2,2u = a2
2,u + 2ap

3,u − 2a1,ua3,u

(3) a3,2u = a2
3,u − 2ap

1,u + 2a1,uap
2,u − 2a2,uap

3,u

(4) a1,3u = a3
1,u − 3a1,ua2,u + 3a3,u

(5) a1,u+v = a1,ua1,v − a1,u−va2,v + a1,u−2va3,v − a1,u−3vap
3,v + a1,u−4vap

2,v − a1,u−5vap
1,v + a1,u−6v

(6) a2,u+v = a2,ua2,v − ap
3,va2,u−v − ap

1,va2,u−2v + (a1,u−2va1,u−v − a1,2u−3v)ap
2,v + a1,u−va1,u−4v +

a1,u−2va1,u−3v − 2a1,2u−5v + (a1,2u−4v − a1,u−va1,u−3v)ap
1,u − a1,ua1,va1,u+v + a1,va1,2u+v +

a1,ua1,u+2v − 2a1,2u+2v + a2
1,u+v
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(7) a3,u+v = a3,ua3,v − ap
1,va3,u−v + a1,u−2va2,u−v + (2a1,u+v − a1,ua1,v)a2,u+v − a1,u+va2,ua2,v +

(a1,va1,u+2v − a1,u+3v)a2,u + (a1,ua1,2u+v − a1,3u+v)a2,v − a1,u−va1,2u−3v + a1,3u−4v + 2a1,u ·

a1,2u+3v + 2a1,va1,3u+2v + 2(a1,u+v − a1,ua1,v)a1,2u+2v + a1,ua1,va2
1,u+v − a1,ua1,u+va1,u+2v −

a1,va1,u+va1,2u+v + a1,u+2va1,2u+v − 3a1,3u+3v − a3
1,u+v

Proof.

a2
1,u = (

6∑
i=0

αuqi
)2 = (

6∑
i=0

α2uqi
) + 2(

∑
0≤i< j≤6

αu(qi+q j)) = a1,2u + 2a2,u

a2
2,u = (

∑
0≤i< j≤6

αu(qi+q j))2

= a2,2u + 2
( ∑

0≤i< j<k≤6

(αu(2qi+q j+qk) + αu(qi+2q j+qk) + αu(qi+q j+2qk))

+ 3
∑

0≤i< j<k<l≤6

(αu(qi+q j+qk+ql))
)

= a2,2u + 2
( 6∑

i=0

αuqi
∑

0≤i< j<k≤6

αu(qi+q j+qk) −
∑

0≤i< j<k<l≤6

αu(qi+q j+qk+ql)
)

= a2,2u + 2a1,ua3,u − 2ap
3,u,

which prove (1) and (2). The rest can be similarly proven. �

5.3 Compressed Pairings

The compressed reduced Tate pairing (and its derivatives) ε(P,Q) is defined by Tr(τ(P,Q)) =

Tr( fr,P(D)(qk−1)/r) in [82]. This corresponds to the first elementary symmetric function of the

minimal polynomial for any elements of the cyclotomic subgroup Gr,q,k in F∗
qk . It is convenient

to extend the definition ε(P,Q) to Tr( fr,P(D)i(qk−1)/r) for i = 1, · · · k−1 by considering Lemma

5.2.1, which provides an advantage to compute pairing values represented more than one

element. This is done by using the Newton’s Identity.

Some pairing-based cryptographic protocols have been used to take a profit from compressed

pairings. The classical example is the BLS short signature scheme that was given in Section

3.3.2. We will now give the modified signature scheme for compressed pairings as follows

[82]: Let (G1,+) and (G2, ·) be cyclic groups of prime order n. Let P ∈ E(Fqk ) such that

G1 =< P > and let e : G1 × G1 → G2 be a bilinear map. Let H : {0, 1}∗ → G∗1 be a

cryptographic hash function.
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• Key Generation : Pick a random c ∈ Z∗n and compute cP. The secret key is c and the

public key ξ is the x coordinate of the point cP.

• Sign : Given a secret key c and a message m ∈ {0, 1}∗, compute S = cH(m) ∈ E(Fqk ).

The signature σ is the x coordinate of the point S = cH(m), which is an element of Fqk .

• Verify : Given a public key ξ, a message m and a signature σ, verify τ(P,±S ) =

τ(±cP,H(m)) or τ(P,±S ) = τ(±cP,H(m))−1.

In order to verify BLS signature scheme, one can simply check whether Tr(τ(P,±S )) =

Tr(τ(±cP,H(m))) using the property that any pairing value is unitary.
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CHAPTER 6

CONCLUSION

It is well-known that there are bilinear, non-degenerate maps such as Weil, Tate, Eta and Ate.

One of the most important thing is to use these pairings in cryptography. For this, we have to

choose those elliptic curves so called pairing-friendly, where the cryptographic protocols are

secure.

In this thesis, we studied these curves from the theoritical and implementation point of view.

In particular, we focused our attention to the elliptic curves of the form y2 = x3 − c over Fq

and computed the number of points of these elliptic curves. Furthermore, we showed that the

elliptic curve y2 = x3 − 1 over Fq for the primes q of the form 27A2 + 1 has an embedding

degree k = 1 and we gave examples of those primes q providing the security equivalent to

128-, 192-, or 256-bit AES keys.

From the implementation point of view, the final exponentiation is the most important part for

pairing computation. In this respect, we showed explicitly how the final exponentiation is re-

lated to the linear recurrence relations, and studied the work done in the literature. Moreover,

for the embedding degree k = 7d with even d, we developed several recurrence relations;

however, we could not get any polynomial time algoritm to compute the m-th term of them.

This is left as an open problem for which we hope to study in the future.

79



REFERENCES

[1] A.O.L. Atkin, F. Morain, Elliptic curves and primality proving. Mathematics of Com-
putation 61, 29-68 (1993)

[2] R. Balasubramanian, N. Koblitz, The improbability that an elliptic curve has subexpo-
nential discrete log problem under the Menezes-Okamoto-Vanstone algorithm. J. Cryp-
tol. 11(2), 141-145, (1998)

[3] P.S.L.M. Barreto, S. Galbraith, C. O hEigeartaigh, M. Scott, Efficient pairing computa-
tion on supersingular abelian varieties. Des. Codes Cryptogr. 42(3), 239-271 (2007)

[4] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, M. Scott, Efficient algorithms for pairing-based
cryptosystems, Advances in Cryptology - Crypto 2002. Lecture Notes in Computer Sci-
ence, vol. 2442 (Springer-Verlag, 2002), pp. 354-368

[5] P.S.L.M. Barreto, B. Lynn, M. Scott, Constructing elliptic curves with prescribed em-
bedding degrees, Security in Communication Networks - SCN 2002. Lecture Notes in
Computer Science, vol. 2576 (Springer, Berlin, 2002), pp. 263-273

[6] P.S.L.M. Barreto, B. Lynn, M. Scott, On the selection of pairing-friendly groups, Se-
lected Areas in Cryptography - SAC 2003. Lecture Notes in Computer Science, vol.
3006 (Springer-Verlag, 2004), pp. 17-25

[7] P.S.L.M. Barreto, M. Naehrig, Pairing-friendly elliptic curves of prime order, Selected
Areas in Cryptography - SAC 2005. Lecture Notes in Computer Science, vol. 3897
(Springer, Berlin, 2006), pp. 319-331

[8] P.T. Bateman, R.A. Horn, A heuristic asymptotic formula concerning the distribution of
prime numbers. Math. of Comp. 16, 363-367 (1962)

[9] N. Benger, M. Charlemagne, D. Freeman, On the security of pairing-friendly abelian
varieties over non-prime fields, Pairing-Based Cryptography - Pairing 2009. Lecture
Notes in Computer Science, vol. 5671 (Springer, Berlin, 2009), pp. 52-65

[10] B.C. Berndt, R.J. Evans, K.S. Williams, Gauss and Jacobi Sums, (Wiley-Intersci-ence,
New York, 1998)

[11] I.F. Blake, G. Seroussi, N.P. Smart, Elliptic curves in cryptography (London Mathemat-
ical Society Lecture Note Series 265, Cambridge Univ. Press, 1999)

[12] D. Boneh, M. Franklin, Identity-based encryption from the Weil pairing. SIAM J. of
Computing, 32(3), 586-615 (2003). An extended abstract of this paper appears in Ad-
vances in Cryptology - Crypto 2001. Lecture Notes in Computer Science, vol. 2139
(Springer-Verlag, 2001), pp. 213-229

[13] D. Boneh, B. Lynn, H. Shacham, Short Signature from the Weil Pairing, Advances in
Cryptology - Asiacrypt 2001. Lecture Notes in Computer Science, vol. 2248 (Springer-
Verlag, 2001), pp. 514-532

80



[14] D. Boneh, K. Rubin, A. Silverberg, Finding composite order ordinary elliptic curves
using the Cocks-Pinch method. J. Number Theory, 2010, to appear.

[15] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language. J.
Symb. Comput. 24(3-4), 235-265 (1997)

[16] W. Bosma, J. Hutton, E. Verheul, Looking beyond XTR, Advances in Cryptology -
Asiacrypt 2002. Lecture Notes in Computer Science, vol. 2501 (Springer-Verlag, 2002),
pp. 46-63

[17] F. Brezing, A. Weng, Elliptic curves suitable for pairing based cryptography. Des. Codes
Cryptogr. 37, 133-141 (2005)

[18] A. Brouwer, R. Pellikaan, E. Verheul, Doing more with fewer bits, Advances in Cryptol-
ogy - Asiacrypt 1999. Lecture Notes in Computer Science, vol. 1716 (Springer-Verlag,
1999), pp. 321-332
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