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ABSTRACT

EMERGENCE OF VERB AND OBJECT CONCEPTS THROUGH LEARNING
AFFORDANCES

Dağ, Nilgün

M.Sc., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Sinan Kalkan

Co-Supervisor : Asst. Prof. Dr. Erol Şahin

September 2010, 56 pages

Researchers are still far from thoroughly understanding and building accurate compu-

tational models of the mechanisms in human mind that give rise to cognitive processes

such as emergence of concepts and language acquisition. As a new attempt to give an

insight into this issue, in this thesis, we are concerned about developing a computa-

tional model that leads to the emergence of concepts. Specifically, we investigate how

a robot can acquire verb and object concepts through learning affordances, a notion

first proposed by J. J. Gibson in 1986. Using the affordance formalization framework

of Şahin et al. in 2007, a humanoid robot acquires concepts through interactions in

an embodied environment.

For the acquisition of verb concepts, we take an alternative approach to the literature,

which generally links verbs to specific behaviors of the robot, by linking them to

specific effects that different behaviors may generate. We show how our robot can

learn effect prototypes, represented in terms of feature changes in the perception vector

of the robot, through demonstrations made by a human supervisor. As for the object
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concepts, we use the affordance relations of objects to create object concepts based on

their functional relevance. Additionally, we show that the extracted effect prototypes

corresponding to verb concepts can also be utilized to discover stable and variable

properties of objects which can be associated to stable and variable affordances.

Moreover, we show that the acquired concepts provide a suitable basis for communi-

cation with humans or other agents, for example to understand and imitate others’

behaviors or for goal specification tasks. These capabilities are demonstrated in simple

interaction games on the iCub humanoid robot platform.

Keywords: concepts, object categorization, affordances, language embodiment and

grounding, language acquisition
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ÖZ

NESNE VE FİİL KAVRAMLARININ SAĞLARLIKLARI ÖĞRENME YOLUYLA
ORTAYA ÇIKMASI

Dağ, Nilgün

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Sinan Kalkan

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Erol Şahin

Eylül 2010, 56 sayfa

Bilim adamları insan zihnindeki kavramların oluşması veya dil edinimi gibi bilişsel

süreçlere yol açan mekanizmaları iyice anlayabilmekten ve bunlara uyan modeller ya-

pabilmekten hala çok uzaklar. Bu konuda yeni bir çalışma olarak, bu tezde, kavram-

ların oluşmasını inceleyen hesaplamalı bir model geliştirmekle ilgileniyoruz. Spesifik

olarak, bir robotun fiil ve nesne kavramlarını 1989’da J. J. Gibson tarafından öne

sürülen bir kavram olan sağlarlıkları öğrenme yoluyla nasıl edinebileceğini araştırıyoruz.

Sahin ve arkadaşları tarafından 2007’de öne sürülen sağlarlık formalizasyon sistem-

ini kullanarak, insansı bir robot çevresiyle etkileşime geçerek kavramlar oluşturuyor.

Fiil kavramlarını oluştururken, fiilleri robot hareketlerinin doğurabileceği farklı etk-

ilerle ilişkilendirerek, fiilleri robotun farklı hareketlerine bağlayan genel literatürden

farklı bir yol izliyoruz. Robotumuzun etki prototiplerini, algı vektöründeki niteliklerin

değişimleri cinsinden, bir insan yönetiminde nasıl öğrenebileceğini gösteriyoruz. Nesne

kavramları için ise, nesnelerin fonksiyonel benzerliklerine dayalı kavramlar oluşturmak

için objelerin sağlarlık bağıntılarını kullanıyoruz. Bunlara ek olarak, fiil kavramlarına

karşılık gelen protiplerimizin objelerin değişen ve sabit kalan özelliklerini keşfetmeye
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de yarayayabileceğini gösteriyoruz. Son olarak, oluşturulan kavramların başkalarının

hareketlerini anlama ve taklit etme veya hedef belirleme görevleri gibi işlerde, insanlar

ve diğer ajanlar arasındaki iletişim için uygun bir temel sağlayabileceğini gösteriyoruz.

Bu yetenekleri iCub insansı robot platformunda basit etkileşim oyunları ile gösteriyoruz.

Anahtar Kelimeler: kavramlar, nesnelerin sınıflandırılması, sağlarlıklar,dili cisimleştirme

(ing. embodiment) ve temellendirme (ing. grounding), dil edinimi
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CHAPTER 1

INTRODUCTION

Despite the big effort put by researchers from different disciplines (psychologists, neu-

roscientists, cognitivists, roboticists and philosophers), it is still a big challenge to fully

understand the mechanisms that allow humans to form concepts and associate them

with words and in general, language. In this thesis, we construct a computational

model for investigating how a humanoid robot can form verb (i.e., the concepts corre-

sponding to verbs in a language) and object concepts (i.e., the concepts corresponding

to nouns in a language) by interacting with the objects in the environment.

From the point of psychology and neuroscience, concepts should be represented in

sensorimotor space of the agents, i.e., they should be grounded in perception and

action [2, 3, 4]. From the view point of robotics [5, 6, 7, 8, 9], the notion of affordances

is a suitable basis to investigate the complex and dynamic nature of the real world. To

put these together, we propose a framework in which a robot utilizes affordances to

develop verb and object concepts through interactions in an embodied environment.

Furthermore, we propose to associate verb concepts to specific effects generated by

different behaviors, as opposed to the common literature in which verbs are linked

to specific behaviors of the robot. Additionally, we show how object concepts can be

linked to categories that are formed based on objects’ functional similarities instead

of solely relying on their appearances.

The term concept is defined by psychologists [2] as the information associated with

its referent and what the referrer knows about it. For example, the concept of a car

is all the information that we know about cars. This concept includes not only how

a car looks like (i.e., that a car has a set of wheels, doors and windows with a certain
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(a) (b)

Figure 1.1: (a) Different behaviors through which one can push an object. (b) Chairs

that are perceptually different yet functionally equivalent2.

spatial configuration) but also how it sounds, how it feels when we touch its various

parts and what we can do with a car and how we can do what we can do with a car.

Based on this definition, we can call concepts as abstractions of similar experiences; or,

in more developmental terms, we can say that concepts are categories, or generaliza-

tions, in the sensorimotor space that is shaped by the experiences of the agent. Such

abstractions not only (1) allow agents to make generalizations and transfer acquired

abilities based on these generalizations, but also (2) give labels (or, names, words) to

the abstractions to be able to communicate about them. Giving names or labels to

abstractions, or concepts, means basically the emergence of language.

One objective of this thesis is the development of concepts represented by verbs and

nouns in language in a robot to enable simple forms of communication with humans. In

order to carry out a command such as “pick an apple”, the robot needs to understand

what it means to “pick” an object, as well as what “an apple” is. We aim to develop a

computational model for the sensorimotor grounding of concepts in robots and relate

them to verbs and nouns in language to create a shared world model over which

communication can occur on the iCub humanoid robot platform.

It is tempting to associate the concept of a verb with a category that covers all the

interactions that are generated by the execution of a particular behavior. If we want

the robot to lift a particular object, the verb lift can trigger the lift behavior in the

robot to accomplish our goal.

2Images are taken with permission from http://www.clker.com. Last access date: 24.09.2010.
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However, such an association provides a limited coverage for all the meanings that

the verb lift should convey. First, the robot can probably lift an object with different

behaviors, such as lift-with-right-arm and lift-with-left-arm on a humanoid robot (for

example, Figure 1.1(a) shows six different behaviors that can be used by humans to

push an object towards right). Second, the execution of the particular behavior may

fail on some objects, such as the failure to lift a heavy object. Third, in certain cases,

a seemingly contradictory behavior such as pressing, may also lift an object that is

placed on a lever to accomplish lifting.

An alternative is to associate verbs with effect categories. Such an association imposes

that the concept being conveyed by the verb is the request for a certain effect be

generated through the use of an appropriate behavior. In this sense, when we ask the

robot to lift an object, we specify the goal as the elevation of object position in the

vertical axis and leave the choice of the particular behavior to the robot itself. This

is referred to as goal emulation in the literature as a form of imitation characterized

by the replication of the observed end effect [10], and is observed in infants after 12

months [11].

The issue of what a noun concept such as strawberry represents is also subject to

debate. Studies in neuroscience and psychology suggest that objects are processed

through two different pathways, one involving the Object Recognition (OR) system

categorizing an object based on its visual (or distal) appearance, the other involving

their functional properties, or affordances. The categorization of objects based on

their visual appearances is a well-studied and hot topic in computer vision. However,

such approaches often fail to capture the essence of a concept such as chair which may

appear in very different forms (see Figure 1.1(b) for some examples) and are beyond

the focus of our study.

We argue that an object can be defined by its affordances, i.e. all the affordance

relations that it is part of. For instance, the concept of strawberry consists of all

affordance relations that can be obtained from it such as: (1) eating (behavior) it

would create a sweet sensation (effect) on the tongue, (2) power grasping (behavior)

it would create a wet and squashed sensation on the hand (effect), etc. Such groupings

can be acquired by trying out the robot’s full behavioral repertoire on an object.

3



1.1 Contributions of the Thesis

This thesis has the following contributions:

• We use the notion of affordances to investigate how a robot can develop object

and verb concepts through interactions in an embodied environment.

• We argue that a verb is linked not to a specific behavior of the robot, but to a

specific effect that different behaviors may generate.

• We show how demonstrations made by a human (can be viewed as an example

of social learning) allow the robot to learn an effect prototype represented in

terms of changes in the perception vector of the robot.

• We investigate how the affordance relations of objects can be used to create

object concepts based on objects’ functional relevance.

• The acquired concepts are represented in the robots own sensorimotor space

which means they are grounded in perception and action.

• We discuss that acquired concepts can lead the robot to discover stable and

variable properties of objects which can be associated to stable and variable

affordances.

• We demonstrate that acquired verb concepts can be used by the robot as a basis

for understanding and imitating others’ behaviors or for goal specification tasks

through simple interaction games on iCub humanoid robot platform.

The work presented in this thesis has appeared in the following publications:

• Akgün B., Dağ N., Bilal T., Atıl I., Şahin E. (2009). Unsupervised Learning

of Affordance Relations on a Humanoid Robot. International Symposium on

Computer and Information Sciences.

• Dağ, N., Atıl, I., Kalkan, S., and Şahin, E. (2010). Learning affordances for

categorizing objects and their properties. International Conference on Pattern

Recognition.
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• Atıl, I., Dağ, N., Kalkan, S., and Şahin, E. Affordances and Emergence of Con-

cepts. Tenth International Conference on Epigenetic Robotics. Örenäs Slott,

Sweden, November, 5-7, 2010

• Dağ, N., Atıl, I., Kalkan, S., and Şahin, E. Emergence of Object and Verb

Concepts through Affordances. Cognitive Processing, Special Issue on “ Cog-

nitive Robotics - Perception-Action-Interaction: Systems and Architectures ”

(submitted)

1.2 Outline of the Thesis

In chapter 2, called “background and literature survey”, we first present the literature

on formation of concepts and the relation between perception, action and language.

Next, we examine the notion of affordances, affordance formalization and how this

formalization can be used for deriving verb and object concepts. Then, recent work on

formation of verb and object concepts is summarized. Finally, we discuss background

on curvature based feature extraction methods from which we benefit to extract shape

related information from objects in the experiments.

In chapter 3, called “experimental setup and methods”, we describe our experimental

setup i.e., the iCub humanoid robot platform and SwissRanger SR4000 camera. Next,

we introduce the objects used in the experiments and the features extracted from

the range data. Finally, we discuss the methods used for deriving verb and object

concepts, specifically for learning affordance relations, extracting effect prototypes

and categorizing objects.

In chapter 4, called “acquired concepts”, we present the verb and object concepts ac-

quired using methods introduced in chapter 3. We show that verb concepts can be

used as a basis for understanding and imitating others’ behaviors or for goal speci-

fication tasks on the iCub robot platform. Next, object concepts acquired through

categorization based on objects’ affordances are presented. As a final remark, we show

our results can lead the robot to discover stable and variable affordances of objects.

In the final chapter, called “discussion”, we discuss the results of the thesis and de-

scribe sevaral ways the work in this thesis can be improved.
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CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

In this chapter, we first present the literature on formation of concepts and the relation

between perception, action and language. Next, we examine the notion of affordances,

affordance formalization and how this formalization can be used for deriving verb and

object concepts. Then, recent work on formation of verb and object concepts is

summarized. Finally, we discuss background on curvature based feature extraction

methods from which we benefit to extract shape related information from objects in

the experiments.

2.1 Concept Formation, Perception, Action, Language

In 1950s, Alan Turing claimed [12] that if a human engaging in non-verbal communi-

cation with a computer behind a curtain cannot decide whether the responder behind

the curtain is a computer or not, then we can claim that we have built a computer

(program) that is artificially intelligent. This test, which is now known as the Turing

test, has set the vision for much of the artificial intelligence research and was also sub-

ject to philosophical debates. In 1980s, J. Searle criticized the test through a thought

experiment, known as the Chinese Room [13]. He argued that the ability to merely

deceive a human being behind a curtain does not necessarily entail that the program

is intelligent, or cognitive. Searle claimed that, as long as the program is not aware

of the meanings of the symbols that it is manipulating, it is not reasonable to talk

about intelligence.
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Later, Harnad [14] argued that the gap between the symbols and their meanings

cannot be closed by an external programmer and that this would be equivalent to

”learning Chinese from the Chinese dictionary”. Instead, he pointed out the sym-

bol grounding problem, arguing that the symbols should be grounded in the sensory

projections of the objects and the events in the environment. Harnad discusses three

kinds of symbolic representations and their grounding as:

(1) ”iconic representations” , which are analogs of the proximal sensory
projections of distal objects and events, and (2) ”categorical representa-
tions” , which are learned and innate feature-detectors that pick out the
invariant features of object and event categories from their sensory pro-
jections. [...] Higher-order (3) ”symbolic representations” , grounded in
these [...] symbols, consist of symbol strings describing category member-
ship relations (e.g., ”An X is a Y that is Z”).

The symbol grounding problem becomes more apparent for robots. Unlike computers,

the robots have the means of physical interaction with the environment and are more

likely to have similar sensory-motor experiences to humans. Nevertheless, the sensory-

motor experiences that they experience are and will be different from ours, and the

issue of how they can develop a shared set of symbols to represent the basic concepts

of a language remains to be an open question.

The term concept is defined by the psychologists, as the information associated with

its referent and what the referrer knows about it [2]. For example, the concept of a

car is the information that we know about it. The issue of how concepts are acquired

is still controversial among researchers.

As a solution to symbol grounding problem, an approach called embodied cognition,

has been proposed by researchers [2, 3, 4]. This view argues that cognitive processes

can not be abstract and should be deeply rooted in the sensorimotor experiences of an

agent. These sensorimotor experiences are distributed over different modalities such

as auditory, visual, and tactile information. According to this view, basic properties

of cognition can be outlined as follows [2]:

• Cognition is embodied: Mental processes can not be thought independently of

the hardware on which they are implemented; i.e., human brain and body [3].
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Therefore, cognition is determined by the experiences of a body with particular

physics and a sensorimotor system.

• Cognition is situated: Cognitive activity takes place in the context of a real

world environment.

• Cognition is grounded in sensorimotor activities: Concepts develop along with

perception and action. Observation unaccompanied by action is not sufficient

for cognitive processes.

• Cognition is flexible and variable: Concepts should be dynamically represented

in order to adapt to the present situation and context.

• Cognition automatically activates motor information: Seeing or hearing words

about a particular concept automatically activates corresponding motor proc-

cesses [2, 15].

• Cognition is for action [16]: The purpose of perceptual and cognitive processes

is to guide for appropriate behaviors given context.

There are also neuroscientific evidences which support the embodied view of cognition.

Rizzolatti et al. [17] discovered a group of neurons, called mirror neurons, which

fire when a monkey performs an behavior as well as when it observes someone else

executing the same behavior. This finding can be interpreted as that the monkey’s

ability to perform a behavior plays a role in his understanding of the meaning of the

same behavior. This “behavior understanding” interpretation of mirror neurons (i.e.

the brain internally reproduces/simulates the observed behaviors) goes hand in hand

with the “object understanding” view of psychologists who suggest that the concept

of an object should activate an online simulation of the past interactions with that

object [2].

In the next paragraphs, we will first present studies which experimentally and theoret-

ically examine the relationship between language, action and perception. Afterwards,

a number of computational models for grounding language and meaning in the senso-

rimotor capabilities of robots will be summarized.
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From a theoretical perspective, [4, 18] propose a system called Indexical Hypothesis

(IH) which supports the view that sentence comprehension is achieved by a senso-

rimotor simulation of actions or situations referred by the sentences. Instead of the

arbitrary, amodal and abstract symbols [19], perceived words are first mapped to per-

ceptual symbols (first proposed by [20]) which are modal and not arbitrarily related

to their referents. These symbols are then used to derive affordances. Since per-

ceptual symbols are not arbitrarily related to their referents, new affordances can be

derived from them. If the affordances derived from these symbols are mesh-able (can

be smoothly integrated or combined as action plans) then sentence comprehension is

successful.

Also, Glenberg et al.[4] experimentally validate the existence of an action-sentence

compatibility effect (ACE) which relate sentence comprehension to bodily action.

When participants were required to make an action towards the opposite of the di-

rection referred in the sentences they are told, the response times were slower. This

was explained by the inference of sentence comprehension mechanisms with the ones

responsible for making movements to support the view that language is grounded in

bodily actions.

Roy et al. [21] propose a computational model called CELL (Cross-channel Early

Lexical Learning) which addresses the problem of speech segmentation (i.e. discov-

ering words from fluent speech), jointly with the problem of associating words to

co-acquired semantic categories. The model takes spoken utterances together with

their corresponding visual contexts as input and returns the speech-to-category map-

pings by statistically modelling the consistent structure across sensory data. Whereas

this work regards the agent as a passive observer, the work by Sagita et al. [22] also

take into account the action capabilities of the agent. Their model explores how com-

positionality of semantics1 can be acquired through interactions between the linguistic

and behavioral processes.

From an evolutionary perspective, [23] investigates how language, a living, complex

adaptive system, can originate, evolve and adapt among artificial agents. Within an

1 Here, “compositionality” refers to the ability of humans to understand sentences from the
meanings of their components and the way in which these components are put together. Compositional
semantics can be used to derive meaning of unknown sentences using already sentences whose meanings
are already known[22].
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experimental setup called “Talking Heads”, they show that agents are able to originate

language-like communication while playing grounded language games.

Along with sensorimotor grounding, i.e., the ability to link perceptual representations

to symbols, grounding transfer, i.e., the ability to acquire new higher-order grounded

symbols from grounded ones, is also a crucial mechanism for successfully grounding

language in agents. Cangelosi et al. [24] propose a model that addresses both senso-

rimotor grounding and grounding transfer. Their hypothesis propose that the agents

can acquire new sensorimotor capabilities by using basic words (already grounded in

their sensorimotor system) to express new categories.

In [25], Steels et al. emphasize the role of social learning for concept formation.

They designed three experiments in which SONY AIBO robot acquires visual data

while interacting with a human in a complex real world environment. The human

supplies words to the robot in order to pair words with the view of the objects. The

experiments differ in the amount of information the mediator supplies to the robot.

The results show the crucial role of social learning on category formation when results

are evaluated in terms of their relevance to human categories.

[26] gives a review of different approaches used by various computational models for

the problem of language acquisition. The models are discussed in terms of their

approach to learning from the standpoint of generative, statistical, embodied and

social cognition, developmental and the cultural evolution stances. In conclusion,

they propose to form a synthesis of discussed approaches using the notion of learning

biases.

2.2 Affordances

The notion of affordances, first introduced by J.J. Gibson [27], is a suitable framework

for investigating the co-development of action, perception and language.

Gibson defined affordances of the environment as [27]:

. . . what it offers the animal, what it provides or furnishes, either for good
or ill. The verb to afford is found in the dictionary, but the noun affordance
is not. I have made it up. I mean by it something that refers to both the
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environment and the animal in a way that no existing term does. It implies
the complementarity of the animal and the environment.

For example, a bottle affords graspability affordance for a human but not for a dog.

Likewise, a chair affords sittability affordances for a human and hideability affordance

for a cat.

Affordances are defined to be dependent both on the agent, the environment and the

specific context[27]:

. . . an affordance is neither an objective property nor a subjective property;
or both if you like. An affordance cuts across the dichotomy of subjective-
objective and helps us to understand its inadequacy. It is equally a fact of
the environment and a fact of behavior. It is both physical and psychical,
yet neither. An affordance points both ways, to the environment and to
the observer.

Moreover, affordances are invoked based on the online visual information and do not

involve object recognition. For example, we do not need to recognize and label a

“chair” in order to sit on it, rather it is a set of features of the object such as shape,

height or carrying capacity that we need to consider.

There are some formalizations of affordances [28, 29, 30, 31] but the one proposed by

Şahin et al.[32] is more suitable to be used in robot control. Therefore, in our work,

we use their formalization, where an affordance is represented as a relation between

an entity (e), a behavior (b) and an effect (f):

a = (e, b, f). (2.1)

In this relation, entity e is the raw perceptual appearance of the scene. It encapsulates

the perceptual representation of an agent at different complexity levels, ranging from

raw sensory data to the features extracted from the environment. However, within

the context of this thesis, we confine the use of entity to a single object for simplicity.

Behavior represents the physical embodiment of the agents interaction encoding the

internal representation that defines a unit of action that can often take parameters

for the initiation and online control. Finally, effect is defined as the change generated

in the environment due to the execution of the behavior.
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For instance, a robot applying its lift-with-right-hand behavior on a blue-pen to gen-

erate a lifted effect can be represented with a relation instance as:

(blue-pen, lift-with-right-hand, lifted), (2.2)

where the terms blue-pen, lift-with-right-hand, and lifted are merely placeholders for

the related perceptual and proprioceptive representations. However, a single relation

instance provides little predictive ability over the future experiments, such as whether

the application of the same behavior on a red-pen or a blue-desk will generate the same

effect or not. Only after interacting with other objects, such as a green-pen, one can

join the relation instances together as:

(

 blue-pen

green-pen

 , lift, lifted). (2.3)

This relation can then be compacted by a mechanism that operates on the class to

produce the (perceptual) invariants of the entity equivalence class as:

(<*-pen>, lift, lifted), (2.4)

where <*-pen> denotes the derived invariants of the entity equivalence class. In this

particular example, <*-pen> means “pens of any color” that can be lifted upon the

application of lift behavior. Such invariants create a general affordance relationship,

enabling the robot to predict the effect of the lift behavior applied on a novel object,

like a red-pen. Such a capability offers great flexibility to a robot. When needed, the

robot can search and find objects that would provide support for a desired affordance.

We argue that the creation of equivalence classes over the three components of the

relation provides a mechanism for creating abstract categories that can be linked to

concepts represented by verbs and nouns.

Recently, the concept of affordances has been used in [5, 6, 7, 8, 9], which develop

systems to control agents which are capable of predicting outcomes of their behaviors,

making plans to achieve a specific goal, recognizing others’ behaviors, interacting with

other agents and learning by imitation. In this study, we also make use of affordances

but for a different purpose, namely to investigate the emergence of verb and object

concepts.
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2.2.1 Stable and Variable Affordances

It is suggested that two neural pathways are involved in processing the informa-

tion from the visual cortex [33]. The dorsal stream, commonly referred to as the

“where/how” stream, is involved in guiding behaviors to spatial locations by com-

municating with regions that control eye and hand movements. The ventral stream,

commonly referred as the “what” stream, is involved in recognition, identification and

categorization of visual stimuli.

It is claimed that these two streams process two kinds of affordances of the objects

[34]; i.e., the stable and variable affordances.

Here, variable affordances are defined as the affordances that emerge from tempo-

rary characteristics of objects, such as the current handle orientation or position of

an object. These affordances depend on the context and therefore, proposed to be

integrated to the cognitive processes online, when a behavior is intended.

On the other hand, stable affordances rather emerge from the invariant characteristics

of objects, for example standard size or shape. They are assumed to encode infor-

mation on the most frequent interactions between the human and the object, such as

canonical orientation, the grasp type associated with the object or other functional

properties. Therefore, it is likely that stable affordances may incorporate into object

representation.

Given properties of stable and variable affordances, it is important for an agent to

extract stable and variable properties of objects itself. The prototypes used for rep-

resenting verb concepts in our study, can be utilized by the robot to determine what

aspects of the object can a certain behaviour change. When such analysis is done for

all the behaviours in the repertoire of the robot, then the union of these represen-

tations would allow the robot to figure out which aspects of a given object can be

changed, and which aspects can’t. We claim that the aspects that can be changed can

be associated with the variable affordances, whereas the rest can be associated with

the stable affordances.
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2.3 Literature on Concepts

Humans’ ability to categorize objects and events in the environment is a crucial prop-

erty for creating an understanding of the world and communicating with each other.

If we were to treat every one of our sensorimotor experiences uniquely, an infinite

number of words would be needed to label them and communication would be impos-

sible. Therefore, we need to develop mechanisms that can group similar experiences

together. In the next two sections, we describe our view of what concepts repre-

sented by verbs and nouns in language should refer to and summarize recent work on

formation of these concepts.

2.3.1 Verb Concepts

Although the literature mostly identifies verbs as words that define behaviors directly

performed by the agent (e.g., [22, 24]), this view sometimes can be insufficient as one

will have to associate a different verb for each push behavior in figure 1.1.

Alternatively, we take the approach of associating verbs to each effect that can be

achieved on the entities. This association can be realized by generalizing over be-

haviors first to find the behaviors leading to similar effects and then linking verbs

with these generalizations. We represent each verb with a prototype that reflects

characteristics of the feature changes in the perception vector of the robot.

Similarly, [35] proposes a system to store behaviors as a representation of their effects

and effects as a representation of feature changes. They designed an experiment in

which a robot throwed balls against a pyramid of ten cans. A Bayesian Network is

trained to learn the correlation between the hit point and number of cans thrown

off. The behavior, parameterized by the hit point coordinates in this context, is

represented by effects i.e. number of thrown off cans. This work is parallel to our

study in that they also represent effects as feature changes but generalization over

behaviors or effects is not pursued for deriving verb concepts.

Kozima et al. [6] propose a model to examine the emergence of mirror system in

humans. They argue that the role of mirror system is to perform effect-based imitation.
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Their work also generalize over behaviors based on their effects but is only aimed for

imitation purposes.

In [36, 37], Cohen et al. propose a maps-for-verbs framework to describe the semantics

of action words, i.e., verbs. First, they experimentally prove that semantics of the

words that humans choose to utter relies on the dynamical movement of objects in

the situation. In their experiments, children were required to describe some movies.

When the parameters that were used to generate dynamical movements in the movies

and distributions of words that were mainly used by children to describe movies was

compared, a strong dependence was observed. Using this finding, they choose to

represent verbs based on the dynamics of before, during and after phases of interaction

between whole bodies. Maps were constructed as a trajectory using relative velocity

versus distance and energy transfer versus time characteristics of the interactions

through the mentioned phases. These maps constitute for verbs. This study diverge

from ours in that they emphasize the dynamic aspects of the motion generated by

actions and associate verbs with action words rather than effects generated by them.

Similar to the view of [37], Marocco et al. [38] propose a model that associates

action words with the dynamical properties of interactions with the objects. They

made experiments with the iCub robot simulator in which the robot is controlled

by a recurrent artificial neural network that runs Back-Propagation-Through-Time

algorithm. When the neural network is trained by parameters from interactions with

different objects, the neural network generates categories that maps to the rolling one

instead of a sphere, the sliding one rather than a cube and the fixed one rather than a

cylinder. This shows that words learned by the robot relies on the dynamical aspects

of the interaction with the objects rather than appearance of interacted objects.

2.3.2 Object Concepts

One can take object concepts (i.e., concepts represented by nouns) as (1) perceptually

different sets of features (i.e., appearance-based categorization) or (2) functionally

different sets of features (i.e., function-based categorization) based on what nouns

and adjectives refer to. It is known that adults utilize both kinds of mechanisms for

categorizing objects [39]; yet, for the current study, we are interested in approach (2)
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since it is developmentally more relevant.

In [39], Borghi et al. analyzed the role of perceptual and functional similarity of objects

in category formation. Neural networks were used to group the stimuli by pressing

a button in one of two categories which may have been formed by perceptually very

similar, moderately similar or different objects depending on the task. In their setup,

they used a 5 layer neural network to simulate the nervous system of an artificial

organism. The input consisted of three main components: visual input units connected

to the first of the three hidden layers, task demand units connected to the second

hidden layer and the proprioceptive inputs connected directly to the output. The

output layer encoded the actions performed by the organism. Their results can be

summarized as follows:

• In the hidden layers closer to the sensory input, which do not have specific

information on the action to perform, perceptual properties of objects are used

as a cue for forming categories.

• In the upper hidden layers of the network, where action information incorporates,

category formation is based on functional properties.

• If the task demand requires the organism to put together perceptually dissimilar

objects, task information overrides perceptual similarity.

• Nonetheless, if there is a congruence between perceptual similarity and the task

to perform, i.e. the objects in the same category based on the task are percep-

tually similar, the categorization task is facilitated.

• The results are consistent with the distinction between primary (based on per-

ceptual similarity) and secondary categorisation (based on functional require-

ments) first proposed by Barsalou [40].

Nolfi et al. [41] used tactile information retrieved from touch sensors of a 3-segment

arm for categorizing objects. They used evolutionary methods to classify sphere or

cubic objects with a fitness function defined as the sum of number of phases in which

individuals correctly classify the current object. The arm of successfully evolved agents

that were able to follow the surface of the objects to decide whether it is curvilinear
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or not. The results show that classification of objects does not rely on observable

features of the environment but rather emerges from the overall interaction between

the control system of the agent and the environment.

Sun et al. [42] used object categories to improve the scalability of affordance learning.

They proposed a new probabilistic and graphical affordance learning model called

Category-Affordance (CA) model. As opposed to direct perception phenomena, this

approach first organizes visual inputs into categories and defines relationships between

affordances and these categories. Then the categorization of a new input determines

its affordances.

2.4 Feature Extraction Methods

In this section, we give a background on the curvature based feature extraction meth-

ods which are used in our experiments to extract shape related information from

range images (see section 3.3). We also reviewed other methods based on surface nor-

mals, principle component analyses, point sets and texture representations. A brief

summary of those methods can be found in appendix A.

2.4.1 Curvature Based Feature Extraction Methods

The term curvature is used as a measurement of the deviation of a geometric object

from being flat2. In this subsection we first describe the terms normal and principle

curvatures, which are used to calculate mean and gaussian curvatures of a surface.

Then these curvature values are used to define three measures of curvedness; namely

surface type, shape index and degree of curvedness.

2.4.1.1 Normal and Principle Curvatures

The normal curvature of a point on a surface is defined as the curvature of any curve

that is at the intersection of the surface and other planes which contain the normal

vector at the given point. The principle curvatures(k1 and k2), the minimum and

2 http://en.wikipedia.org/wiki/Curvature
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maximum valued normal curvatures at that point, are useful indicators of shape as

they can be interpreted as the measure of bending in different directions at the given

point. (see figure 2.1)

Figure 2.1: Principle curvatures3.

2.4.1.2 Mean and Gaussian Curvatures

Mean(H) and Gaussian(K) curvatures are calculated by geometric mean and cross

product of principle curvatures, respectively.

H =
k1 + k2

2
, (2.5)

K = k1 × k2. (2.6)

2.4.1.3 Surface Type

Based on the signs of Mean and Gaussian curvatures, [1] classifies surfaces into eight

discrete categories as shown in table 2.1.

2.4.1.4 Shape Index

The shape index, is a continuous measure of shape information defined in the range

[−1; 1] and calculated using principle curvatures with the formula given in equation

3Image is taken with permission from http://commons.wikimedia.org/wiki/File:Minimal_

surface_curvature_planes-en.svg. Last access date: 22.09.2010.
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Table 2.1: Eight surface types, based on the signs of H and K curvatures [1].

K(i, j) > 0 K(i, j) = 0 K(i, j) < 0
H(i, j) < 0 Peak Ridge Saddle Ridge
H(i, j) = 0 Undefined Flat Minimal Surface
H(i, j) > 0 Pit Valley Saddle Valley

2.7. Different shapes represented by different values of shape index can be seen in

figure 2.2.

S =
2
π
tan−1

(
k2 + k1

k2 − k1

)
. (2.7)

Shape Index
-1 +1

Figure 2.2: Surfaces represented by different values of the shape index.

2.4.1.5 Degree of Curvedness

Another measure of shape of a surface is the degree of curvedness and is given by

equation 2.8.

R =

√
k2

1 + k2
2

2
. (2.8)
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CHAPTER 3

EXPERIMENTAL SETUP AND METHODS

In this chapter, we describe our experimental setup i.e., the iCub humanoid robot

platform and SwissRanger SR4000 camera. Next, we introduce the objects used in

the experiments and the features extracted from the range data. Finally, we discuss the

methods used for deriving verb and object concepts, specifically for learning affordance

relations, extracting effect prototypes and categorizing objects.

3.1 The iCub Humanoid Platform

The iCub [43] is a fully open source humanoid robot designed for cognitive and devel-

opmental robotics research (see figure 3.1). It has the dimensions of a 3.5 years old

child and has capability of actuating 53 degrees of freedom on its hands, arms, torso

and legs.

Simple behaviors such as push-left, push-right and push-forward have been imple-

mented on the iCub platform and used for testing the learned verb concepts.

3.2 SwissRanger SR4000 Camera

SwissRanger SR4000 (shown in figure 3.2) is a time-of-flight range camera capable of

capturing depth of scenes with a resolution of 176×144 at 30fps. It provides three

kinds of information (as three 176×144 images): the range data, the amplitude of

the signal and the confidence of the signal. This information is used for segmenting

background and extracting features from the object of interest in the scene.
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Figure 3.1: The iCub humanoid robot platform.

Figure 3.2: SwissRanger SR4000 time-of-flight range camera.

3.3 Data and Features

We acquired the range data using SwissRanger 4000 camera. Our setup had a low-

amplitude background which allowed us to make a clean segmentation of the objects.

In the experiments, objects of different sizes (big, medium, small) and of different
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Figure 3.3: On the left, the objects used in the experiments are shown. On the right,
range images corresponding to different objects are given. A portable handle is used
to assign orientation to cylinders and boxes.

shapes (ball, cylinder, box) are used (shown in figure 3.3). We perform simple be-

haviors, namely push-right, push-left, push-forward, rotate 45◦, rotate 90◦ and lift on

these objects.

The behaviors are performed by a human similar to the ones applied by our robot.

Note that these interactions could have been carried out using the iCub as well.

We have preferred to have a human in place, due to two practical reasons. First,

the development of interaction behaviors on the robot has to be done manually and

was time consuming. Second, we wanted to minimize the wearing out of the robot.

Moreover, for interactions that are as primitive as the ones used in this study, the use

of the robot would not have changed our results. We used the robot only during the

testing and the demonstration phase using only the three behaviors mentioned in the

previous section.

From the segmented range data, we extract the following shape, size, position and

orientation related features (17 elements in total):

• 3D position of the object (3 values).

• Shape of the object (10 values). Shape indexes, as described in section 2.4.1.4,

are calculated at each data point excluding edge pixels. Then, a histogram of

these values is created using linear interpolation. The number of bins of this his-

togram, 10, is experimentally determined based on the histogram’s capability to

represent shapes of objects used in the experiments. Figure 3.4 shows histograms
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corresponding to objects with different shapes, namely a box, a cylinder and a

sphere. We note that, in addition to their capability to discriminate between dif-

ferent shapes, shape indexes also decouple shape information from orientation,

unlike histograms of surface normals (see section A.1).
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(a) box
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(c) sphere

Figure 3.4: Shape index histograms corresponding to objects with different shapes.

• 3D orientation of the object (1 value). As pointed out by [44], the problem of

predicting 3D orientation from images is not trial. Therefore, we choose to train

an SVM classifier (see section ) which estimates the orientation of the objects.

The input to the classifier is the distances between the extreme points of the top

view of the object along the eight different orientations (0, 45, 90, 135, 180, 225,

270, 315, shown by different colors in figures 3.5(e) and 3.5(f)). The system is

able to achieve an accuracy of over 97% to predict one of the discretized eight

directions.

• Size of the object along X, Y and Z axises (3 values). We apply a transformation

on objects in order to recover from the predicted orientation to calculate the

sizes.

We want to note that, although we used the described feature detectors in our ex-

periments, our methods to derive verb and object concepts would not be affected if

another set of features were used because our methods are unsupervised. To put it

another way, an agent with another set of feature detectors could still use our methods

to derive concepts represented in its own sensorimotor space.
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(a) Data points of a box. (b) Data points of a sphere.

(c) Top view of the box. (d) Top view of the sphere.

(e) Data points along eight direc-
tions.

(f) Data points along eight direc-
tions.

Figure 3.5: Sub-figures (a) and (b) show the data points from the view point of the
camera corresponding to a box and a sphere object, respectively. We transform these
points to obtain a top view image of the objects; (c) and (d). The sizes of the objects
along eight different directions, shown with different colors in (e) and (f), are used
as inputs to a learning method that predicts one specific orientation.

The features extracted from the object before the behavior are called the initial fea-

tures whereas the features extracted after the behavior are called the final features.

The difference between the final and the initial features defines the effect features.

These initial and effect features correspond to entity (e) and effect (f) in our affor-

dance formulation, respectively. (see equation 2.1).
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3.4 Affordance Learning Model

Effect Space

Rolled 

right
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Push forward :
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Rolled 
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Place left: *

Push left : *

Rotate 90◦:

*
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****
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Figure 3.6: Labeled clusters in the effect space.

In order to learn an affordance relation, we assume that clusters in the effect space are

labeled by a human supervisor. Figure 3.6 shows the effect clusters derived as a result

of such a labeling for our data. Note that the effects arisen from different behaviors

can be assigned to same clusters. Using these labels, we first find relevant features for

each behavior using the ReliefF feature selection algorithm [45] presented in appendix

C. Then, Support Vector Machine classifiers (see appendix B) are trained for each

behavior to map the relevant initial features to the effect clusters. These SVM’s are

then used to predict which effect cluster a new object can yield to for a given behavior

to be applied on the object (see figure 3.7).

In our experiments, we used a threshold of 80% for the feature selection algorithm;

i.e. features that are at least as 80% relevant as the most relevant feature to the

behavior were selected to be input to the SVM Classifiers. Consequently, trained

SVM’s were able to achieve an accuracy of 99% for predicting affordance classes of

new samples. This result shows the robustness of our affordance learning schema to

predict affordances of objects.
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Behavior

Initial Features Final Features

Labeled by a

human supervisor 

Final – Initial  =   Effect Features

SVM

Initial Features

Class Labels

extracted 

effect prototype   

class i

Predicted effect 

Learning                                        Prediction

Figure 3.7: Clusters in the effect space are used for training an SVM, which allows
predicting the effects of an behavior on a new object.

3.5 Effect Prototype Extraction

In this section, we describe how we derive the condensed representations of verb con-

cepts, called effect prototypes, given labeled effect clusters in the effect space (figure

3.6).

Figure 3.8 shows distribution of effect features for different effect categories. We

observe that, most of the time, an effect category has a consistent increase or decrease

effect on some features of the object while leaving others unchanged. We utilize this

information to prototypically represent different effects.
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Examining the change of feature elements across all effect categories, we observe four

different characteristics; feature elements that increase consistently, decrease consis-

tently, stay constant or change in an unpredictable way. Therefore, we represent an

effect prototype using labels ‘+’, ‘-’, ‘0’, ‘*’, corresponding to increase, decrease, no

change and unpredictable change in the feature element, respectively. In addition to

these labels, we also include mean and variance of the changes in the representation to

quantify the changes. As a result, we define an effect prototype as a string consisting

of labels ‘+’, ‘-’, ‘0’, ‘*’, together with two vectors corresponding to mean and variance

of the observed changes.

In order to assign ‘+’, ‘-’, ‘0’ and ‘*’, labels to feature elements, we use unsuper-

vised clustering (namely, Robust Growing Neural Gas [46]) in the space of mean and

variance. This procedure can be summarized as follows:

1. A set of effects are collected.

2. The mean and variance of each element in this set of effects are computed.

3. Next, feature elements are grouped based on their mean and variance into four

clusters using unsupervised clustering (see figure 3.9).

4. Finally, ‘+’, ‘-’, ‘0’ and ‘*’, labels are assigned to the clusters based on what

they represent.

3.6 Object Categorization

We use affordances of objects, in order to categorize them by the fact that different

objects afford different behaviors (or similar behaviors with different effects). This

can be done by taking objects one by one and predicting the effects they can generate.

If the effects produced by objects due to the same behaviors are similar, then these

objects are also similar. Otherwise, i.e., if objects produce different effects due to the

same behaviors, the objects are dissimilar. Based on this, we make a categorization

of objects.

For this, we predict effect cluster of objects for each behavior in the repertoire of the
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(c) pushed left
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(d) rolled forward

Figure 3.8: The distribution of effect features for different effect clusters. In (a), we
see the effect corresponding to no change. As the sub-figure (b) shows, rotated 90◦

effect causes a consistent positive change on the forth feature, namely the orientation
of the objects, whereas other features are not affected significantly. Likewise, pushed
left effect, sub-figure (c), can be mainly characterized by a positive change in the
first feature (corresponding to x position) and rolled forward effect, sub-figure (d),
by a negative change in the second and third features (corresponding to the y and z
positions of the objects).

robot using our affordance learning model presented in section 3.4. Then, nominal k-

means clustering is performed in the < y1, . . . yi, . . . yn > space, where n is the number

of behaviors and yi is the predicted effect cluster for the ith behavior.
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Figure 3.9: Grouping of feature elements into four clusters in the mean-variance space.
This grouping is used for assigning ‘+’, ‘-’, ‘0’ and ‘*’, labels to feature elements.
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CHAPTER 4

ACQUIRED CONCEPTS

In this chapter, we present the verb and object concepts acquired using methods in-

troduced in chapter 3. We show that verb concepts can be used as a basis for under-

standing and imitating others’ behaviors or for goal specification tasks on the iCub

humanoid robot platform. Next, object concepts acquired through categorization

based on objects’ affordances are presented. As a final remark, we discuss how our

results can lead the robot to discover stable and variable affordances of objects.

4.1 Verb Concepts

As we discussed in section 2.3.1, verbs should correspond to a generalization of behav-

iors (called verb concepts) that achieve the same effect. For deriving verb concepts,

we find the effect categories in the effect space (figure 3.6) and represent them in a

compact way, which we call the effect prototypes. We claim that, for a robot, an effect

prototype can be the label for a verb concept which can be linked to a verb.

Using the method described in section 3.5, we extract effect prototypes for our data.

Figure 3.9 shows the results of clustering of feature elements in the mean-variance

space, that is performed to assign ‘+’, ‘-’, ‘0’ and ‘*’, labels to feature elements. As a

result of this clustering, we form the effect prototype strings, that corresponds to verb

concepts together with mean and variance vectors. The extracted prototype strings

are shown in table 4.1.

Now that the robot is able to extract verb concepts, it has an understanding of its

own and others’ behaviors in terms of feature changes their effect creates on the en-
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Table 4.1: Effect prototype strings that are extracted using the method introduced in
section 3.5. Note that each feature element has an associated mean and variance of
the change. θ stands for orientation.

Position Shape Orientation Size
(X-Y-Z)

Pushed Right +00 0000000000 0 000
Rolled Right +00 000000**00 0 000
Pushed Left -00 0000000000 * 000
Rolled Left -00 0000000*00 0 000
Pushed Forward 0-- 0000000000 0 000
Rolled Forward 0-- 0000000*00 0 000
No effect 000 0000000000 0 000
Rotated 45◦ 000 ***0000000 + **0
Rotated 90◦ 000 ***00000*0 + **0
Lifted 0+- 00*0000000 0 000

vironment. It can exploit this information as a basis for communication with humans

or other agents, for example to understand and imitate others’ behaviors or for goal

specification tasks (see figure 4.1). The robot’s ability to understand others’ behaviors

can be utilized to create a similar effect on objects with similar affordances. Further-

more, by supplying some task in terms of feature changes of the object, the robot can

pair the specified goal with one of his behaviors to achieve the goal on an object in the

environment. Next, we demonstrate these capabilities of the robot in simple imitation

games on the iCub humanoid robot platform.

Figure 4.1: A robot can utilize verb concepts in order to communicate with humans.
We show that the robot can understand and imitate others’ behavior or accomplish a
specified goal using verb concepts he has developed by simple interaction games2.

2Images are taken with permission from http://www.clker.com. Last access date: 24.09.2010.
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4.1.1 Interaction Games

The aim of the first game is to demonstrate that the robot can understand others’

behaviors in terms of the verb concepts that it has developed. In this scenario, iCub is

demonstrated a behavior executed on an object and is required to replicate the effect

on a new object. Subsequently iCub selects a behavior in its repertoire to emulate

the executed effect corresponding to a verb concept. Figure 4.3 shows scenes from two

sample runs of game. The steps of the game can be summarized as follows:

• In the demonstration phase, iCub records data before and after the interaction

corresponding initial features and final features. Then the effect is calculated by

subtracting final features from initial features.

• Next, iCub introduces a new object. Using the affordance learning model de-

scribed in section 3.4, he goes through all behaviors in his repertoire to infer the

effects he is able to create on this object.

• Among the qualified effects, iCub finds the effect that is closest to the demon-

strated one. This selection requires that a distance metric exists between the

effect categories. We use Mahalanobis distance3 in order to measure the distance

between the required effect and prototype of qualified effects. In this compari-

son, dimensions denoted by a ‘*’ in the prototype string are disregarded, as those

correspond to an unpredictable/inconsistent change in the feature elements. As

a result, Mahalanobis distance between the required effect fr and the prototype

of the cluster c+,−,0 is given by the equation 4.1 where S is the covariance matrix

the effect cluster:

D(fr, c
+,−,0) =

√
(fr − c+,−,0)T S−1 (fr − c+,−,0). (4.1)

• As a result, the behavior which results in the selected effect is executed on the

new object.

3 In order to measure the distance between a test point and a cluster, Euclidean distance assumes
that sample points in the cluster are distributed about the center of mass in a spherical manner which
may not be the case for clusters in our effect space (see figure 3.6). Whereas, Mahalanobis distance
returns a value proportional to the width of the given cluster in the direction of the test point.
Therefore, it gives a better estimation of the cluster’s distribution.
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Table 4.2 shows the derived confusion matrix between different effect clusters for our

data. We calculate distances by taking mean of one cluster and comparing it with

the distribution of the other using equation 4.1. As expected, for example, push right

effect is most similar to itself and then to rolled right effect which causes a similar

change in the same direction but with a different mean and variance. Likewise, rotated

45◦ is closer to rotated 90◦ effect than other effect, as both cause a variation in the

same, namely orientation, direction. The result that no effect is very distant to other

effects, can be caused by this effect cluster’s small variance in all directions.

Moreover, in a second scenario, we can make iCub to achieve a goal given in the form

of a verb concept representation. For instance, by providing a string + ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗, we may ask him to produce an effect which results in an increase in the

first feature, namely x position and disregard the rest. Note that in this context, ‘*’

has an interpretation “disregard the changes in this feature element” rather than the

interpretation of “an unpredictable effect”. Therefore, we slightly modify the equation

4.1 to allow for exclusion of the dimensions denoted by a ‘*’ in the given goal string.

Figures 4.4(a) and show iCub given two goal strings ∗ −− ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ and

+ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ respectively, which he successfully matches with the right

behavior.

4.2 Object Concepts

As pointed out in section 2.3.2, objects can be categorized based on appearance and

function. In this section, we show that function-based categorization forms categories

of objects based on their affordances and the formed categories can be linked to ‘object

concepts’ that we use in language.

We achieve function-based categorization by predicting affordances of objects for dif-

ferent behaviors in the robot’s repertoire (using classifiers trained by our affordance

learning model described in section 3.4) and then performing unsupervised clustering

of vectors that describe the predicted affordance class of the objects corresponding to

different behaviors of the robot. (see section 3.6).

Fig. 4.5 shows categories that emerge as a result of our current setup. We see that the
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majority of the ball shaped objects used in the experiments have been gathered in one

cluster, namely cluster 2. This shows balls’ ability to roll as a result of push behaviors

make them easily distinguishable from boxes and cylinders when compared based on

their affordances. The other two clusters (cluster 1 and 3) are mostly composed of

box and cylinder shaped objects, whereas within these clusters objects are separated

in accordance with their sizes. This is the result of box and cylinder shaped objects’

similar affordances in response to push and rotate behaviors in the repertoire of the

robot. Instead, lift behavior, that is successfully executed on small objects but fails

for large objects, decides on the form of these clusters.

Moreover, as shown in table 4.2, the affordance-based categorization proposed in this

paper can perform surprisingly well on novel non-symmetrical objects. For example,

objects with complex shape features (e.g., the spray, the robot) can be categorized

correctly by the system.

As a result, three categories that correspond to balls, small sized box and cylinders

and large sized box and cylinders, emerge from our function-based categorization of

objects. This categorization can be further improved as more behaviors are added in

repertoire of the robot. More interestingly, a categorization based on both appearance

and functional properties of the objects can be performed which yield categories similar

to humans.

4.2.1 Stable and Variable Affordances

As noted in section 2.2.1, the aspects of objects that can be changed by manipu-

lation/behaviors of agent can be associated with the variable affordances, whereas

others can be associated to stable affordances. Therefore, it is important for an agent

to discover the relation between its behaviors and stable/variable properties of objects

by himself, considering stable and variable affordances are believed to be sub-served

by different neural pathways; namely dorsal and ventral streams. In this section, we

show that effect prototypes that represent verb concepts in our framework, can also

be utilized to infer these properties.

Table 4.1 displays the prototypes of different effects. We see that pushed left, right,
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Table 4.2: The detected categories of novel and non-symmetrical objects.

Object Object Range Category
name picture image

Lamp shade O.C. 1

Basketball O.C. 1

Dried-fruits box. O.C. 2

Telephone O.C. 3

Detergent O.C. 2

Robot O.C. 2

Tchibo jar O.C. 1

Spray O.C. 2

Loudspeaker O.C. 2

Helmet O.C. 1

Hybrid Object O.C. 2

Hybrid Object O.C. 2
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forward and rolled left, right and forward effects cause a consistent change in the

position of the objects whereas the rest of the feature vector is irrelevant for these

effects. On the other hand, for the rotate effects, the position, shape and the size of the

objects are irrelevant but there is considerable change in the estimated orientation of

the objects. Looking at these results, one can conclude that position and orientation

features of objects used in our experiments, can be changed by manipulation and are

therefore variable, whereas size or shape related features remain stable.

We should also note that properties of objects, such as size or orientation, should

not be directly referred to as stable and variable affordances, but rather should be

associated to an affordance relation between an agent and a specific object. For

example, although shape is a stable property of objects used in our experiments, it

may not be true for an object made of sponge. Likewise, position can be related to a

stable affordance in case of a situation where the agent is not able to move an object.
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(a) ∗ − − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ (b) + ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Figure 4.4: (a) iCub is given a goal task *--**************, meaning that the goal
is to produce a decrease in the second and third dimensions and the change in the
other dimensions can be ignored. iCub matches this goal with the pushed forward verb
concept and chooses to execute the push forward behavior accomplishing the specified
goal. (b) Similarly, iCub is given a goal +****************, meaning that iCub is
to produce an increase in the first dimension of the perceptual representation of the
object and the change in the other dimensions can be ignored. iCub matches this goal
with the pushed right verb concept and executes push right behavior to accomplish
the goal.
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O.C.1

O.C.2

O.C.3

Small Objects

Big Objects

Balls

Figure 4.5: Categories of the objects, i.e., object concepts. We see that the interactions
of iCub lead to three object concepts O.C.1, O.C.2 and O.C.3, which respectively
correspond to balls, big objects (including medium and big cylinders and cubes) and
small objects (both cylinders and cubes).
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CHAPTER 5

DISCUSSION

In this thesis, we used the notion of affordances to investigate how a humanoid robot

can develop verb and object concepts through interactions with the objects. The

acquired concepts are represented in the robot’s own sensorimotor space which means

they are grounded in perception and action.

We formalize the interaction of an agent with its environment as an affordance relation

between the object in the environment, the behavior of the agent and the generated

effect in the environment as a result of executing the behavior on the object. We

used an affordance learning model which enables the robot to predict the effects of

its behaviors applied on novel objects. As a next step, we argued that the creation of

equivalence classes over the components of the affordance relation provides a mech-

anism for creating abstract categories that can be linked to concepts represented by

verbs and nouns.

The literature generally links verbs to specific behaviors of the robot. Instead, we

proposed linking verbs with, what we call as, verb concepts, which are generalizations

over behaviors defined in the effect space of the behaviors. We made experiments

in which the robot learns the effect prototypes through demonstrations made by a

human supervisor. These prototypes represent effects in terms of feature changes

in the perception vector of the robot. We demonstrated, that the extracted verb

concepts can be utilized by the iCub humanoid robot in order to find the verb concept

corresponding to an observed behavior, or it can satisfy a goal given in the form of an

effect prototype corresponding to a verb concept.
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We also propose to categorize objects using the fact that objects producing similar

effects due to the same behaviors are similar and objects producing different effects

due to same behavior are dissimilar. We showed that object categories similar to

humans can emerge as a result of grouping the predicted affordance classes of objects

in an unsupervised manner. We link these categories to object concepts corresponding

to nouns in language. Additionally, we argued that acquired concepts can lead the

robot to discover stable and variable properties of objects which can be associated to

stable and variable affordances.

This thesis can be improved in several ways. One way is to incorporate dynamic

aspects of behaviors in our model which are known to be important for verb concepts

or semantics [36, 37]. Moreover, we can improve our model by integrating appearance

and function based categorizations for acquisition of object concepts in a developmental

manner similar to humans.
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APPENDIX A

Feature Extraction Methods

In this chapter, we present a number of methods that are used in literature to extract

features from range images.

A.1 Surface normal based methods

Figure A.1: Surface normals1.

The surface normal (nx, ny, nz) corresponding to a point represented by coordinates

(x, y, z) can be calculated using the first order partial derivatives as in equation A.1

[47, 48]:

(nx, ny, nz) =
∂z
∂x ×

∂z
∂y∣∣∣ ∂z

∂x ×
∂z
∂y

∣∣∣ . (A.1)

[49, 50] make use of the frequency histograms of normal vector angles in latitude

and longitude. These histograms are very robust for distinguishing between objects

with different shapes. However, this approach tightly couples orientation and shape

information and views of the same object from different orientations may result in

shifted histograms.
1Image is taken with permission from http://commons.wikimedia.org/wiki/File:Surface_

vectors.png. Last access date: 22.09.2010.
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A.2 Principal Component Analysis (PCA) based methods

Principle Component Analysis is a method to find a new basis for the data in which

variables co-vary as little as possible. In this new basis, initial principle components ac-

counts for large variances and assumed to correspond to important dynamics, whereas

succeeding components accounts for low variances corresponding to noise.

Studies by [51, 52] make use of principle components of the range data sets to accom-

plish different tasks. [51] constructs an eigenspace from the principal components of a

large number of range data sets to be used in the position and orientation estimation

of the robot. [52] shows that image modelling from a sequence of range images using

PCA is problematic due to missing data and tries to generalize it as a weighted least

squares problem.

A.3 Image descriptor based methods

A.3.1 Scale Invariant Feature Transform (SIFT)

Scale Invariant Feature Transform (SIFT) algorithm, originally proposed in [53] and

refined in [54], uses local image descriptors sampled at different locations in order

to achieve efficient object recognition. The features extracted from SIFT algorithm

are invariant to image scaling and rotation. They are also partially invariant to illu-

mination and 3D camera viewpoint changes. The algorithm first identifies potential

key-points in the Gaussian scale space of the image and then eliminates some of them

in order to decide on actual key-points. Next, a consistent orientation is assigned to

each key-point using the peak of the orientation histogram formed considering a region

around the point. Finally, a 128 element descriptor is calculated for each key-point

which is proved to be highly distinctive for performing object or scene matching.

SIFT has other variations such as PCA-SIFT (Principal Components Analysis applied

to SIFT descriptors)[55], GLOH (Gradient Location and Orientation Histogram)[56]

and SURF(Speeded-Up Robust Features)[57] which show similar performance on de-

scriptor matching for object recognition.
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A.3.2 2.5 SIFT

The general SIFT algorithm is actually intended to be used with 2D intensity images.

2.5 SIFT algorithm, presented in [58, 59] adapts the general SIFT algorithm to be

effectively used with range images. They derive feature descriptors based on shape

index histograms and range gradient orientations of key-point locations. Additionally,

using range image normals, they assign a consistent canonical local slant and local tilt

in order to facilitate invariance to 3D rotational changes.

A.4 Image Moments

Affine image moment invariants can be useful for representing shape from 3D point

clouds. Given the central moment µpq of order (p+ q) as:

µpq =
∫ ∫

G
(x− xt)p(y − yt)qdxdy, (A.2)

where (xt, yt) is the center of gravity for the object G, one can define the affine image

moment invariants measuring the area, distribution of the points around the center,

symmetry of the shape (and more) (see [60] for details).

A.5 Methods inspired from texture representation

Textures are repetitive patterns in images. Their extraction, representation and clas-

sification is a long-studied topic in computer vision [61]. Range data processing ap-

proaches might benefit from the study of texture. Below, we list a set of approaches

and metrics which might be easily transformed to range data (by changing gray levels

with depth information, for example):

• First-order statistical methods:

Assume that G is the number of gray levels, and hi is the number of pixels

in an image with gray level i, and the normalized histogram Hi is defined as

Hi = hi/N .

– Mean gray level:
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µ =
G−1∑
i=0

iHi. (A.3)

– Gray level standard deviation:

σ =

√√√√G−1∑
i=0

(i− µ)2Hi. (A.4)

– Coefficient of variation:

Coefficient of variation is a measure of relative dispersion:

cv =
σ

µ
. (A.5)

– Skewness:

Skewness γ1 is a measure of the symmetry of the (gray level) histogram:

γ1 =
1
σ3

G−1∑
i=0

(i− µ)3Hi. (A.6)

– Kurtosis:

Kurtosis γ2 is a measure of whether the histogram is peaked or flat relative

to a normal distribution:

γ2 =
1
σ4

G−1∑
i=0

(i− µ)4Hi − 3. (A.7)

– Energy:

Energy measures the non-uniformity of the histogram:

e =
G−1∑
i=0

H2
i . (A.8)

– Entropy:

Entropy measures the uniformity of the histogram:

s = −
G−1∑
i=0

HilogHi. (A.9)

• Second-order statistical methods: Second-order methods rely on gray-level

relations between pixels. The methods depend on cij which is the number of

pixels having gray level j displaced h (a constant given by the user) relative to a

point having gray level i. Cij is the normalized version of cij , i.e., Cij = cij/Nh.

Given Cij , we can define the following second-order features:

51



– Energy or Angular Second Moment:

Homogeneity (in gray level) in the image can be measured with:

ε =
G−1∑
i=0

G−1∑
j=0

C2
ij . (A.10)

– Entropy:

Randomness of the image can be measured with:

S = −
G−1∑
i=0

G−1∑
j=0

CijlogCij . (A.11)

– Contrast:

Local variations of gray levels, i.e., coarseness of texture, can be measured

with:

C = −
G−1∑
i=0

G−1∑
j=0

(i− j)2Cij . (A.12)

– Homogeneity:

Monotonicity in gray levels can be defined as:

H = −
G−1∑
i=0

G−1∑
j=0

Cij

1 + |i− j|
. (A.13)

– Auto-correlation:

Gray-level linear dependencies:

ρ =
G−1∑
i=0

G−1∑
j=0

(i− µx)(j − µy)Cij

σxσy
. (A.14)

– Diagonal Moment:

The difference in correlation for both high and low gray levels:

D =
G−1∑
i=0

G−1∑
j=0

|i− j|(i+ j − µx − µy)Cij . (A.15)

See [61] for more details and for more complicated features.
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APPENDIX B

Support Vector Machine (SVM) Classifier

Support Vector Machines, introduced by Vladimir Vapnik in 1998 [62], are methods

used for statistical classification and regression analysis, i.e., given a set of labelled

training instances, they build a model in order to predict which class a new sample

will fall into.

Figure B.1: Support vector machines use nearest instances on each side, called support
vectors, to find a maximum margin hyper-plane in the feature space2.

SVM classifiers first perform a nonlinear mapping of the data into a high-dimensional

feature space, in which data is assumed to be linearly separable, using kernel functions.

Since linear algorithm in the range space of kernel function is equivalent to the non-

linear algorithm in the input space, calculations are still performed in the input space

and therefore are still efficient ( see kernel trick [63]). In the next step, the optimal

hyper-plane (or hyper-planes for multi-class classification) in the high-dimensional

2Image is taken with permission from http://commons.wikimedia.org/wiki/File:Svm_max_sep_

hyperplane_with_margin.png. Last access date: 22.09.2010.
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feature space that separates classes is found. SVM’s try to find the maximum-margin

hyperplane, that maximizes the distance from it to the nearest data point on each

side. These nearest data points in the training set are called the support vectors.

(B.1). Then, a class label of a new instance is predicted based on location of the

instance with respect to the hyperplane in the feature space.

In our implementation we use LIBSVM[64], an integrated software for support vector

classification.
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APPENDIX C

Relief and ReliefF Algorithms for Feature Selection

In real-world problems, data can potentially be represented by many features, although

only a few of them are relevant to the task at hand. For example, in an experiment,

objects may be represented by different features related to color, size, shape or texture

of the object, whereas only size related features may be relevant for a task such as

grasping. Feature selection methods can help to speed up learning algorithms by

reducing number of dimensions and can improve quality by eliminating irrelevant and

noisy features.

The Relief algorithm, first proposed by Kira and Rendell[65], is a statistical method

which returns a weight vector which estimates quality of features based on their dis-

criminative power between instances that are near each other. Unlike other methods

which assume that features are independent, this method is also applicable to domains

with strong dependencies between features.

Algorithm 1 Pseudo code for Relief[66]
Input: For each training instance a vector of attribute values and the class value.

Output: The vector W of estimations of the qualities of attributes.

set all weights W [A] := 0.0;

for i = 1 to m do

randomly select an instance Ri;

find nearest hit H and nearest miss M ;

for A = 1 to a do

W [A] := W [A]− diff(A, Ri, H)/m+ diff(A, Ri, M)/m;

end for

end for

Relief algorithm is given in algorithm 1. For an instance Ri, the algorithm finds item
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(1) nearest neighbor from the same class (nearest hit H), item (2) nearest neighbor

from the different class (nearest miss M). Then, for each feature A, its weight W [A] is

decreased by the difference between the values of the attribute A for instance Ri and

its nearest hit H (i.e. diff(A;Ri;H)). Also each weight is increased by the difference

between the values of the attribute A for instance Ri and its nearest miss M . (i.e.

diff(A;Ri;M)). This procedure is repeated m times, a parameter defined by the user.

Relief can be used for evaluating weights of features with nominal and numerical

values. However, it cannot deal with noisy, incomplete and multi-class data sets.

ReliefF algorithm[45] is an extension of Relief to address these problems.

ReliefF algorithm is similar to Relief, however it searches not only one but k of its

nearest neighbors from the same class (nearest hits) and k nearest neighbors from

each of the different classes (nearest misses). The weight of each feature is updated

considering the average of all k hits and misses. This algorithm can also deal with

missing data by probabilistically estimating missing values.

In our experiments, we use ReliefF implementation of WEKA[67], an open source

software with a large collection of machine learning algorithms.
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