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ABSTRACT 

 

DETERMINATION OF DYNAMICALLY EQUIVALENT FE MODELS  

OF AIRCRAFT STRUCTURES BY USING MODAL TEST DATA 

 

Karaağaçlı, Taylan 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat Özgüven 

Co-Supervisor: Dr. Erdinç N. Yıldız 

 

September 2010, 162 pages 

 

 Reliable flutter analysis of aircraft structures is a major requirement to determine 

safe flight envelops. Dynamically equivalent finite element model of an aircraft 

structure correlating well with experimental modal is a major requirement for a 

reliable flutter analysis. Currently available model updating techniques require 

enormous time and engineering work to achieve appropriate finite element models 

of aircraft structures. The method developed within the scope of this thesis work 

aims to remove important disadvantages of common model updating procedures. In 

doing this, the method starts with a simple finite element mesh obtained by 

connecting measurement points, used in the Ground Vibration Test of an aircraft 

structure, with 3 D Euler-Bernoulli beam elements.  Initial estimates of the geometric 

and material properties are determined by solving structural identification equations 

derived from the mass and stiffness orthogonality of experimental modes. By using 

those initial estimates, an initial finite element model is constructed. Starting from 

this initial finite element model, structural identification equations are updated and 

solved iteratively by using experimental natural frequencies and eigenvectors of the 
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updated finite element model representing the same mode shapes with measured 

normal modes. Iterations are continued until eigen solution of the updated finite 

element model closely correlates with experimental modal data.  

The applicability of the method is illustrated on a scaled aircraft model and a real 

aircraft structure. The results are quite satisfactory but the method requires further 

improvements to achieve a much better correlation level in case of real aircraft 

structures. 

Keywords: Model Updating, Structural Identification, Structural Dynamics, Finite 

Element Method, Dynamically Equivalent Finite Element Models of Aircraft 

Structures. 
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ÖZ 

 

MODAL TEST VERİLERİ KULLANILARAK UÇAK YAPILARININ  

DİNAMİK EŞDEĞER SONLU ELEMANLAR MODELİNİN BELİRLENMESİ 

 

Karaağaçlı, Taylan 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. H. Nevzat Özgüven 

Ortak Tez Yöneticisi: Dr. Erdinç N. Yıldız 

 

Eylül, 2010 162 sayfa 

 

Uçak yapılarının güvenli uçuş zarflarının belirlenmesinde güvenilir çırpıntı analizi 

büyük önem taşımaktadır. Uçak yapılarının, deneysel modal veriler ile örtüşen 

dinamik eşdeğer sonlu elemanlar modelinin elde edilmesi güvenilir çırpıntı analizi 

için en temel gereksinimdir.  Var olan model güncelleme teknikleri, uçak yapılarının 

uygun sonlu elemanlar modelinin elde edilmesi için azımsanmayacak miktarda 

zamana ve mühendislik çalışmasına gerek duymaktadır. Bu tez çalışması 

kapsamında geliştirilen yöntem, sık kullanılan model güncelleme yöntemlerinin 

önemli dezavantajlarını ortadan kaldırmayı amaçlamaktadır. Bunun için, geliştirilen 

yöntem öncellikle uçak yapılarının yer titreşim testlerinde kullanılan ölçüm 

noktalarını üç boyutlu Euler-Bernoulli elemanları ile birleştirerek basit bir sonlu 

elemanlar ağı oluşturmaktadır. Başlangıç sonlu elemanlar modelinin geometrik ve 

malzeme özellikleri, deneysel modal verilerin kütle ve esneklik matrislerine göre 

ortogonallik özelliğinden türetilen yapısal denklemlerin çözümlerinden elde 

edilmektedir. Elde edilen başlangıç sonlu elemanlar modelinde yer alan ve deneysel 

mod şekilleriyle örtüşen eigen vektörleri, deneysel olarak belirlenen doğal frekanslar 
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ile birlikte yapısal denklemlerin yeniden oluşturulmasında kullanılırlar. Bu yapısal 

denklemlerin çözümleri, güncellenmiş geometrik ve malzeme özelliklerinin 

belirlenmesinde ve sonlu elemanlar modelinin güncellenmesinde kullanılırlar. Model 

güncelleme süreci, sonlu elemanlar modeli deneysel veriler ile yeterince iyi bir 

şekilde örtüşene kadar sürdürülür.  

Geliştirilen yöntemin uygulanabilirliği, küçük ölçekli bir uçak modeli ve gerçek bir 

uçak yapısı üzerinde test edilmiştir. Sonuçlar başlangıç için tatmin edici olmak ile 

birlikte, yöntemin gerçek uçaklara uygulanmasında daha iyi sonuçlar elde edilmesi 

için iyileştirmelere ihtiyaç duyulmaktadır.  

Anahtar Kelimeler: Model Güncelleme, Yapısal Özelliklerin Belirlenmesi, Yapısal 

Dinamik, Sonlu Elemanlar Yöntemi, Uçak Yapılarının Dinamik Eşdeğer Sonlu 

Elemanlar Modeli. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1. OBJECTIVES OF THE THESIS 

The objective of this thesis work is to develop a new method to determine 

dynamically equivalent finite element (FE) models of real aircraft structures directly 

from experimental modal data such that eigenvalues and eigenvectors of the 

resultant FE model correlate well with their experimental counterparts. Such an FE 

model is mainly used in flutter analysis to determine safe flight envelops of aircraft 

structures. A reliable flutter analysis is possible only with an FE model correlating 

well with the relevant aircraft structure in terms of its modal properties. 

In literature, there are numerous techniques proposed to correct FE models of 

various aerospace structures by using experimental modal data, and the common 

name used for them is the ’Model Updating Methods’. Basically, model updating 

methods are classified in two groups: direct and indirect model updating techniques. 

Each technique brings its own advantages and drawbacks. As a result, no general 

method to update mathematical models of all types of structures has been 

developed yet. 

The most important disadvantages of the common direct and indirect model 

updating algorithms can be stated as follows: 

 Certain direct updating methods take experimental normal modes as reference 

to correct analytical mass and stiffness matrices of the relevant structure. Other 

direct methods assume that analytical mass matrix is the most accurate data 

and correct experimental mode shapes and stiffness matrix with respect to it. In 

any case, the original coordinate connectivity of the FE model is lost and 
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resulting mass and stiffness matrices become fully populated. When 

connectivity in the stiffness matrix is lost, physically meaningless off-diagonal 

stiffness elements appear for the degrees of freedom (dofs) among which no 

direct connection is present. This leads to spurious modes in the eigen solution 

of the FE model. Moreover, in case of an aircraft structure with free-free 

boundary conditions, the semi-definiteness of its stiffness matrix is degraded 

and rigid body modes are lost. Such an FE model may be suitable to study 

effects of structural modification on mode shapes and natural frequencies of a 

real structure but it cannot be used to carry out flutter or divergence type 

aeroelastic analyses. 

 In case of complex aerospace structures such as aircraft structures, 

measurement dofs of experimental normal modes are usually at least an order 

of magnitude less than total dofs of the FE model. Moreover, experimental 

modal matrix consists of mode shapes only within the frequency range of 

interest. Therefore experimental modal matrix is highly truncated. As a result, 

direct updating methods using test data to correct mass and stiffness matrices 

may be satisfactory only for FE models of relatively simple structures with small 

number of dofs. Otherwise, experimental normal modes have to be expanded to 

the size of the FE model. But this is not recommended because expansion 

procedure adds extra error to the measured modes already degraded with 

experimental error. This is something that reduces success of the relevant 

direct updating methods. 

 Methods using analytical mass matrix to correct test data and analytical 

stiffness matrix also bring similar challenges. First of all, the assumption of a 

perfectly accurate analytical mass matrix is always questionable especially for 

complex structures. Secondly, because of the truncated nature of the measured 

modes, analytical mass matrix has to be reduced to the measurement dofs to 

correct test data. But reduction procedures add extra error to the analytical 

mass matrix already ruined with simplifying engineering assumptions. 

 Most common indirect model updating techniques make adjustments on 

individual elements of the interested FE model in an iterative and controlled way 

instead of unconstrained adjustments of spatial matrices as in case of direct 

updating techniques. This way, important drawbacks of direct methods 

mentioned above such as loss of coordinate connectivity are solved. But of 
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course, indirect algorithms bring their own challenges. Maybe the most 

important challenge is that FE counterparts of almost all of the measures modes 

must appear in the initial FE model to guarantee convergence to an FE model in 

good correlation with modal test data. This dictates construction of a relatively 

accurate initial FE model. If the model updating is accomplished by the design 

team of the owner company of the aircraft structure, such an accurate FE model 

will already be available. But if the updating procedure is carried out by a 

subsidiary company that makes certain modifications on the aircraft structure, 

the construction of an appropriate initial FE model from scratch turns into a 

tedious work requiring detailed studies of the blueprints and investment of 

considerable engineering work hour. 

 An accurate initial FE model necessitated by indirect methods is usually 

achieved by a very detailed FE modeling procedure that duplicate morphology 

of the real aircraft structure as much as possible. This leads to a relatively 

complex FE model with enormous number of structural parameters. 

Determination of the FE parameters most appropriate among many others for a 

fast and efficient updating scheme is not easy and it is usually accomplished by 

a trained analyst. Although today’s commercial optimization softwares such as 

GENESIS © simplify the job of an analyst considerable amount in updating of 

FE models of complex structures, the updating procedure is not fully automatic 

yet and still necessitates engineering judgments of an experienced analyst. 

The contribution of this thesis can be summarized as follows: 

 It introduces a new approach to determine dynamically equivalent FE models of 

real aircraft structures from experimental modal data by eliminating 

disadvantages of the state-of-the art model updating procedures mentioned 

above. 

 First of all, the method starts with an FE mesh that consists of beam elements 

connecting measurement points used in the modal test of a real aircraft 

structure. In doing so it tries to find an answer to the following questions: Is it 

really a must to conduct the model updating with the conventional FE mesh that 

duplicates the morphology of a real structure as close as possible? Or can an 

FE mesh built up by simply connecting measurement points serve the purpose 

as well? If it is so, the tedious work required to develop an accurate initial FE 

model will be eliminated. 
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 Obviously, the initial FE model consists of an ‘empty’ mesh, i.e. geometric and 

material properties are not assigned yet. At this stage, the method converts 

mass and stiffness orthogonality equations of experimental normal modes into 

appropriate ‘Structural Identification Equations’ to determine initial estimates of 

geometric and material properties. Solving these equations and assigning initial 

estimates of the structural parameters to the FE mesh, an initial FE model is 

completely determined. 

 Finally, eigenvectors of that initial FE model corresponding to measured normal 

modes are used along with experimentally obtained natural frequencies in order 

to reconstruct structural identification equations. Solution of those equations 

give updated geometric and material properties. Updated properties are used to 

obtain an updated FE model whose eigenvectors are to be used in the next 

iteration. Iterations are continued until eigen solution of the updated FE model 

closely correlates with experimentally measured modal data. 

As explained above, in this study, a noble method of considerable mathematical 

elegance is developed to determine dynamically equivalent FE models of aircraft 

structures from modal test data by overcoming important drawbacks of existing 

model updating approaches.  

 

1.2. LITERATURE SURVEY 

More than 40 years has passed since the first studies related to direct updating of 

aerospace structures had appeared in literature. One of the important examples of 

early model updating procedures was proposed by Berman and Flannelly [1] under 

the name of the ‘Theory of Incomplete Models’. In this work, a pseudo inverse 

solution procedure was proposed to correct analytical mass matrix of a structure by 

using experimental normal modes. The corrected mass matrix was combined with 

measured modes to construct an incomplete stiffness matrix. By using simulated 

experiments, Berman and Flannelly showed that corrected mass matrix and 

incomplete stiffness matrix can be used to predict effects of simple structural 

modifications on modal properties of the relevant structure.  

Later, Thoren [2] proposed a method by which spatial matrices are calculated in a 

manner to satisfy relevant orthogonality conditions together with measured normal 

modes. 
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On the other hand, Collins et al. [3] proposed a statistical method to modify mass 

and stiffness characteristics of an FE model.  

In following years, Berman [4] used a modified version of his Incomplete Model 

Method to determine dynamic equations of motion of a helicopter transmission 

gearbox from shake test data. 

After these preliminary studies, Baruch and Itzhack [5] published an original work 

that takes analytical mass matrix as reference to orthogonalize measured modes 

and correct the analytical stiffness matrix by using a least square solution procedure 

with Lagrange multipliers. 

Later Berman and Nagy [6] made use of the Lagrange Multipliers Method to correct 

analytical mass and stiffness matrices by taking experimental mode shapes as 

reference. They applied this method successfully to the payload of an aerospace 

structure. 

A year later, Sidhu and Ewins [7] proposed a method to determine error of the 

analytical mass and stiffness matrices using analytical and experimental modal data. 

Baruch [8] proposed to take analytical stiffness matrix as reference in order to 

correct analytical mass matrix and experimental modal data. 

Ceasar [9] made an overview of the Lagrange Multipliers Method studied by Berman 

and Baruch. In his work, he discussed applicability of the method to real structures 

and proposed some improvements. 

Gypsin [10] applied the Error Matrix Method to localize FE modeling inaccuracies. 

Choudhury et al. [11] published a new direct updating approach to identify spatial 

matrices by using frequency response function (FRF) data instead of modal data. A 

very similar work using FRF data was published also by Mastroddi et al. [12]. 

A recent contribution to direct updating methods came from Carvalho et al. [13]. This 

work has several advantages: Firstly, it does not need any model reduction or 

expansion, and secondly it is capable of preventing the appearing of spurious 

modes in the frequency range of interest. 

Parallel to the developments of direct model updating procedures, numerous 

publications have been made in the area of indirect model updating techniques: 
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One of the early studies of indirect updating algorithms was proposed by Fox and 

Kapoor [14]. In this work, fist order sensitivities of modal data with respect to 

selected design parameters were used to correlate analytical model with 

experimental data. This preliminary work led a common indirect updating procedure, 

namely the ‘Inverse Eigen Sensitivity Method’. 

Lee and Parker [15] published a work studying design sensitivities to improve 

correlation between analytical and test modes.  

Göge [16] made use of Inverse Eigen Sensitivity Method to update FE model of a 

commercial aircraft structure. 

Kozak [17] revised and compared state-of-the art model updating techniques and 

applied Inverse Eigen Sensitivity Method to correct FE model of a fighter aircraft. 

Besides, Kozak et al. [18] proposed an indirect model updating method using 

miscorrelation index sensitivity. 

Studies related to structural identification and model updating methods are not 

restricted to the publications mentioned above. In literature, there is enormous work 

relevant to the subject and it is practically impossible to address all of them in this 

thesis work. Interested readers may start to do research with afore mentioned 

publications and extend their knowledge with a more detailed literature survey. 

 

1.3. SCOPE OF THE THESIS 

The content of chapters and appendices are summarized below: 

Chapter 2 is dedicated to explain theories of some important direct updating 

methods that inspired development of the structural identification approach of this 

thesis work. 

Chapter 3 is dedicated to the explanation of the structural identification method 

developed during this thesis work. 

In Chapter 4, the computer code based to the theory introduced in Chapter 3 and 

developed to determine dynamically equivalent FE models of aircraft structures is 

explained. 
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In Chapter 5, theory introduced in Chapter 3 is applied to determine FE model of a 

model aircraft structure designed and used by GARTEUR (Group for Aeronautical 

Research and Technology in Europe) and also to determine FE model of a real 

fighter aircraft structure. 

Chapter 6 is dedicated to discussion, conclusions and recommendations for future 

work.  

As explained in Chapter 3, FE formulations of a 3-D Euler-Bernoulli beam element 

play an important role in the development of the structural identification method 

introduced in this thesis work. But in literature, although relatively simple 

formulations of 2-D Euler Bernoulli beam elements are available [19-20], it is difficult 

to find a complete formulation of 3-D Euler-Bernoulli beam elements. For that 

reason, appendices A, B, C and D explain step by step how to develop FE 

formulations of 3 D Euler-Bernoulli beam elements from scratch. 
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CHAPTER 2 

 

THEORY OF COMMONLY USED DIRECT UPDATING 

METHODS 

 

 

2.1. METHODS OF REFERENCE BASIS IN DIRECT MODEL UPDATING 

Analytical model of a real engineering structure may contain considerable error 

coming from different error sources [6] such as “inappropriate theoretical 

assumptions, inaccuracies in estimated material properties and insufficient or 

incorrect modeling details” etc. On the other hand, experimental natural frequencies 

and mode shapes also are affected by various error sources. Some of these [6] are 

“inexact equipment calibration, excessive noise, equipment malfunction, 

inappropriate transducer locations, operation in a region of nonlinearity as well as 

the use of inappropriate modal identification algorithms”. 

Since both the mathematical model and the experimental data are erroneous, if they 

are combined together, they cannot comply with the basic theoretical requirements 

such as mass and stiffness orthogonality of normal modes. In order to satisfy those 

theoretical requirements in an optimum way, possibly some of the analytical data or 

the experimental data can be taken as ‘reference’ and can be used to correct the 

remaining data. 

In literature, there are basically three methods of reference basis suggested and 

used in direct updating of analytical models of engineering structures. All these 

methods are studied below in detail. 

 

 



9 

 

 

2.1.1. Direct Updating Methods Using Measured Modes as Reference 

Berman and Flannelly’s work [1], in which the ‘Theory of Incomplete Models of 

Dynamic Structures’ is introduced, is one of the early examples of direct updating 

methods that make use of the measured modes to correct analytical mass matrix of 

a structure. In this example, correction of the mass matrix starts with the following 

relation: 

      0uMu s
xc

Tr
x     sr   (2.1) 

where  r
xu  are the experimental normal modes and  cM  is the unknown mass 

matrix reduced to the size of the experimental normal modes. 

If there are N  measured modes, equation (2.1) can be converted into 2/)1N(N   

independent linear equations having the mass elements as unknowns with products 

of the elements of the normal modes as coefficients. 

It is possible that certain mass elements may be known or assumed to be zero or to 

have some definite value. If they are zero, the corresponding terms are dropped 

from the equation. If they are to be restricted to a particular value, the corresponding 

terms are placed on the right hand side of the equation. If any of the generalized 

modal masses, im , are known, equation (2.1) for sr   can be used and set equal to 

im . Also, the total mass of the structure may be considered to be known. With all 

these additional equations, equation (2.1) can be put into the following form: 

     RmA   (2.2) 

where  m  is a vector made up of the unknown elements of  cM , and  A  is a 

matrix formed by the coefficients of equation (2.1) and of equations derived from the 

other conditions mentioned above. 

Unfortunately, since a very limited number of normal modes can be determined from 

a modal test, usually the number of equations within (2.2) turns out to be less than 

the number unknowns. This means that there may be found infinite number of mass 

distributions that will make the modes orthogonal. But, in order to make physically 

meaningful predictions about the dynamic behavior of a structure and especially to 
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predict the effects of structural modification on the modal properties of that structure, 

it is a must to determine a mass matrix that reflects the true inertial properties of the 

real structure. This reveals the necessity for a relatively accurate analytical mass 

matrix. The analytical mass matrix cannot satisfy the orthogonality conditions of the 

measured normal modes but if it is used within equation (2.2), it will be possible to 

determine a corrected mass matrix that satisfies the mass orthogonality of the 

measured modes. 

By defining analytical estimates of the unknown elements of the mass matrix as 

 Am , equation (2.2) can be reformulated as follows: 

            AA mARmmA   (2.3) 

At this stage a weighting matrix  W  may be introduced by the analyst. Each 

element of  W  will be a measure of the analyst’s confidence in the corresponding 

approximation. Inserting the identity    WW 1  into equation (2.3), the following 

expression is obtained: 

                 AA
1 mARmmWWA    (2.4) 

Using the pseudo inverse     1WA , the solution of equation (2.4) is found as 

follows: 

                 AA
11 mmARWAWm 

  (2.5) 

This solution is the one of the infinite number of possible solutions having the 

smallest weighted sum of squares of the difference between m  and  Am . 

Actually, the solution of (2.5) gives a rather general method of correcting the mass 

matrix; because it allows the analyst to decide which elements are to be allowed to 

vary and it makes it possible to introduce supplementary linear constraints. But in a 

subsequent study [21], Berman introduces a less general but much simpler method 

to correct the analytical mass matrix of a structure. The derivation of the corrected 

mass matrix starts with the following mass orthogonality relation. 

          IMM x
T

x    (2.6) 
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where  M  is the )nxn(  analytical mass matrix,  x  is the  nxm  mass normalized 

experimental modal matrix. Here, n  represents the number of measurement dofs 

and )n(m   represents the number of identified modes. The most important term 

 M  indicates the mass change required to satisfy the orthogonality condition (2.6). 

Equation (2.6) can be written alternatively as follows: 

             x
T

xx
T

x MIM   (2.7) 

In order to obtain the optimum solution, an error function equivalent to the norm of 

the correction matrix  M  is defined as follows: 

      11 NMN    (2.8) 

where     2/1MN   is the weighing matrix. 

Defining a Lagrange Multiplier ij  for each element in equation (2.8), the following 

Lagrangian function may be written: 

              
 


m

1i

m

1j
ijx

T
xx

T
xij MIM  (2.9) 

Differentiating equation (2.9) with respect to each element of  M  and equating 

these values to zero, the following matrix equation is obtained: 

            0MMM2 T
x

T
x

11    (2.10) 

Taking the correction matrix to the left hand side of the equation: 

           MM2/1M T
x

T
x   (2.11) 

where    is a )mxm(  square matrix of ij . 

Substituting equation (2.11) into equation (2.7), the matrix of Lagrange multipliers is 

found to be: 

                         1

x
T

xx
T

x

1

x
T

x MMIM2


  (2.12) 
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Finally substituting equation (2.12) into equation (2.11) the correction matrix is 

obtained as below: 

                                MMMIMMM T
x

1

x
T

xx
T

x

1

x
T

xx 


 (2.13) 

After the correction of the mass matrix, the next step is the determination of an 

appropriate stiffness matrix. In order to determine the stiffness matrix of the relevant 

structure, Berman and Flannelly [1] starts with the following eigenvalue problem: 

       0uMK r2
r       P2,1r   (2.14) 

where  K  is the stiffness matrix, r  are the natural frequencies and P  is the total 

number of dofs of the analytical model. 

Combining the eigenvalue problem given in (2.14) with the mass orthogonality 

relation        


r
T mUMU  , it can be shown that: 

                   MuuM
m

MUm/UMK
Trr

P

1r r

2
rT

r
2
r 




   (2.15) 

The expression of the stiffness matrix given in (2.15) contains summations of simple 

products of the individual eigenvectors of the system,   Trr uu . Each of these 

products is a PxP  square matrix of rank 1. When P number of these matrices are 

summed as indicated and since  ru s are linearly independent, the resulting 

stiffness matrix will be of rank P  and thus nonsingular. At this point Berman and 

Flannelly [1] ask the following critical question: By using the first )P(N   incomplete 

experimental modes  r
xu  of the relevant structure together with the corrected mass 

matrix  cM , is it possible to predict effects of structural modification on the modal 

parameters of that structure ? To find the answer, they construct an ‘incomplete’ 

stiffness matrix by using ‘incomplete’ experimental modes within expression (2.15) 

as below: 

         c

Tr
x

r
xc

)P(N

1r r

2
r

inc MuuM
m

K 





  (2.16) 

It must be noted that the incomplete stiffness matrix is of order P  but of rank N . 

This means that it is a rank deficient, singular matrix and cannot be inverted. 
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However, this matrix can be used together with the corrected mass matrix to solve 

the eigenvalue problem of the relevant structure within the frequency range of 

interest as follows: 

             s
xc

Tr
x

r
x

)P(N

1r r

2
rs

xinc
1

c uMuu
m

uKM 




 
  (2.17) 

       









Ns0

N,2,1su
uKM

s
x

2
ss

xinc
1

c


 (2.18) 

Berman and Flannelly [1] claim that the incomplete model that consists of the 

corrected mass matrix and the incomplete stiffness matrix is a very convenient tool 

to predict effects of mass and stiffness changes on the natural frequencies and 

mode shapes of a structure. 

For example, if the mass matrix of a structure is modified by an amount  M , the 

eigenvalue problem of the modified structure turns out to be: 

          r2
r

r
inc

1

c uuKMM 


 (2.19) 

The solution of the above eigenvalue problem gives the natural frequencies and 

mode shapes of the modified structure. 

On the other hand, the effect of a modified stiffness matrix on the eigenvalues and 

eigenvectors cannot be found as straightforward as in the case of the mass matrix. If 

the stiffness matrix is changed by an amount  K , Berman shows that it is possible 

to determine the corresponding incomplete version of the ‘modified’ stiffness matrix 

with the following expression: 

      
     

       c

Tr
x

r
xc

N

1r

N

1s sr

s
x

r
x

incinc
MuuM

mm

uKu
KKK 

 


  (2.20) 

By using simple case studies [1], Berman proves that the expression given in (2.20) 

can be used in the eigenvalue problem of a structure to obtain a good approximation 

of its ‘new’ natural frequencies and mode shapes as follows: 

          r2
r

r

inc

1
c uuKKM   (2.21) 
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To conclude, ‘The Theory of Incomplete Models’ introduced by Berman and 

Flannelly [1] seems to be a useful tool to predict the effects of the structural 

modifications on the mode shapes and natural frequencies of a structure. But, the 

method has several disadvantages that restrict its applicability to relatively complex 

structures. One such disadvantage is that the size of the mass matrix cannot be 

more than dofs of the incomplete measured modes, because there is no complete 

stiffness matrix to expand measured mode shapes. Another disadvantage is that the 

method necessitates an accurate initial mass matrix which is not easy to determine. 

Moreover, the method does not provide a complete FE model that can be used in 

force-response analyses. 

 

2.1.2. Direct Updating Methods Using Analytical Mass Matrix as Reference  

This section is dedicated to illustrate a common direct updating method developed 

by Baruch and Itzhack [5]. The objective of this method is to correct experimental 

modal matrix and analytical stiffness matrix of a structure by taking mass matrix as 

reference. 

Correction of the experimental normal modes to satisfy the orthogonality with 

respect to the analytical mass matrix starts with the definition of an error function: 

         
   













n

1i

m

1k

n

1j

2x
jk

c
jkijxc nN  (2.22) 

where  nxmx  and  nxmc  are the mass normalized measured and corrected modal 

matrices respectively. Moreover, the matrix  N  is a weight function determined from 

the analytical mass matrix  M   of the relevant structure as follows: 

    2/1MN   (2.23) 

The corrected modal matrix must satisfy the following orthogonality condition: 

       IM c
T

c   (2.24) 

As a result, the error function given in expression (2.22) is subject to the mass 

orthogonality constraint by using Lagrange multipliers as below: 
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          IM c
T

cc   (2.25) 

where  c  is a matrix of Lagrange multipliers and 

            
   













m

1l

m

1i

n

1j

n

1k
il

c
kljk

c
jilic

T
cc mIM  (2.26) 

In equation (2.26), the term il  is the Kronecker delta function.  

To minimize  , its partial derivatives with respect to c
ij  are equated to zero: 

               0M2M2 Tcxc
c





 (2.27) 

Rearranging the terms of equation (2.27), the following equality is obtained: 

        xcc I   (2.28) 

Equation (2.28) reveals the physical significance of the Lagrange multipliers matrix 

 c : It represents the difference between the measured and corrected mode 

shapes. 

Finally, from equation (2.28) the corrected modal matrix turns out to be: 

         1
cxc I   (2.29) 

Substituting equation (2.29) into the mass orthogonality equation (2.24), the 

following equation is obtained, from which the Lagrange multipliers matrix  c  can 

be solved: 

           2/1

x
T

xc MI   (2.30) 

Finally, solving the Lagrange multipliers matrix  c  from equation (2.30) and 

substituting it into equation (2.28) the corrected modal matrix is obtained as below: 

           2/1

x
T

xxc M


  (2.31) 
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Once the experimental normal modes are corrected, Baruch and Itzhack [5] make 

use of them to correct the analytical stiffness matrix of the structure of interest as 

follows: 

It is required that the corrected stiffness matrix satisfies the following equality 

constraints: 

         
 2

rccc MK   (2.32) 

   Tcc KK   (2.33) 

To determine the optimum correction in which the corrected stiffness matrix deviates 

from the analytical stiffness matrix at a minimum level, the following error function is 

defined: 

      1
c

1
K NKKN

2
1    (2.34) 

where  K  is the analytical stiffness matrix and  N  is the same weight function given 

by equation (2.23). 

To incorporate the equality constraints given in equations (2.32) and (2.33) into the 

error function, the following Lagrange function is introduced: 

                   T
ccK

2
rcccKK KKMK2  

  (2.35) 

where  K  and  K  are the Lagrange multipliers matrices. 

In order to determine the corrected stiffness matrix, the Lagrange function is 

differentiated with respect to the unknown elements of the stiffness matrix and is 

equated to zero. The solution of those equations gives the following stiffness matrix: 

                                   MKMKMMKKK T
cc

T
cc

T
cc

T
ccc  

         MM T
c

2
rc  

   (2.36) 

To conclude, the direct updating method proposed by Baruch and Itzhack [5] proves 

to be useful to correct experimental normal modes and analytical stiffness matrix in 

a manner to satisfy the orthogonality conditions and the eigenvalue problem. Of 
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course, the method has several drawbacks: First of all, it requires relatively accurate 

initial estimates of the spatial matrices.  Secondly, the corrected stiffness matrix 

usually becomes fully populated and as a result, the connectivity characteristic of 

the FE model is lost.  

 

2.1.3. Direct Updating Methods Using Analytical Stiffness Matrix as Reference  

After a technical comment [22] of Berman about the mass reference based updating 

method of Baruch et al. [5], Baruch [8] published another work in which the stiffness 

matrix is taken as reference to correct experimental modes and analytical mass 

matrix of a structure. 

In the stiffness matrix reference based updating, Baruch [8] suggests to correct the 

analytical stiffness matrix by using static test data.  This data consists of a measured 

static load matrix  
gxf

F and a measured static displacement matrix  
gxf

G . In case 

of an unconstrained (free-free) structure,  
gxf

G is obtained by constraining the 

structure in a statically determined way. 

In a real structure, all the displacements of  
gxf

G  cannot be measured. In order to 

supply missing displacements, Guyan’s Expansion [23] is used. 

Due to experimental and analytical errors, the force and displacement matrices may 

not be compatible. Maxwell-Betti Reciprocal Theorem requires that: 

       FGGF T
cc

T   (2.37) 

where  gxfcG is the corrected displacement matrix. 

In order to determine the corrected displacement matrix, the following error function 

is defined: 

   GG
2
1

cG   (2.38) 

Minimization of the above error function subject to the constraint given in equation 

(2.38) yields the corrected displacement matrix a below: 
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                   GFFGFFF2/1GG TT1T
c 


 (2.39) 

Correction of the stiffness matrix using static test data starts with the following error 

function: 

   KK
2
1

cK   (2.40) 

where  
gxg

K and  
gxgcK  are the analytical and corrected stiffness matrices of the 

physically ‘constrained’ structure. 

The corrected matrix has to satisfy the following constraints: 

     FGK cc    (2.41) 

   Tcc KK   (2.42) 

By using Lagrange multipliers to incorporate the constraints into the error function, a 

new Lagrange function is obtained. Minimization of this function with respect to 

 
gxgcK yields [8]: 

                             




 

 T
c

1

c
T

cc
TT

c

1

c
T

ccc GGGG2/1IFKGGGGKK

                        Tc

1

c
T

cc
T

c

1

c
T

cc GGGFGKGGGG2/1I







    (2.43) 

The corrected stiffness matrix of the physically unconstrained (free-free) structure is 

determined as follows: 

         T

gxngxgcnxgnxnc KK   (2.44) 

where  
nxg

 is the equilibrium matrix in which the vectors include a unit load in any 

one of the degrees of freedom of the constrained structure and the reactions of the 

constrained structure caused by unit load. 

If the measurement dofs are less than the analytical dofs, the experimental mode 

shapes have to be expanded to the size of the spatial matrices. This can be 
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accomplished by using analytical stiffness matrix of the relevant structure in Guyan’s 

Expansion.  

Corrected normal modes must fulfill the following requirement: 

       
 2

rcc
T

c K   (2.45) 

Similar to the procedure followed in previously studied direct updating methods, an 

error function is defined as follows: 

        xcL   (2.46) 

where     2/1
cKL  is the weight function. 

Minimization of the error function with respect to  c  with the constraint equation 

(2.45) yields: 

                  









 2

r

2/12
rxc

T
x

2
r

2
rxc K 


 (2.47) 

The corrected mass matrix must fulfill the following requirements: 

         cc
2
rcc KM  

  (2.48) 

   c
T

c MM   (2.49) 

In order that the corrected mass matrix gets as close as possible to the given 

analytical mass matrix, the following error function is introduced: 

          1
c

1
M LMML

2
1    (2.50) 

By substituting constraints equations (2.48) and (2.49) into the error function with 

Lagrange multipliers and minimizing that new error function with respect to  cM , the 

corrected mass matrix is obtained as: 

                       


MMKKMMM T
c

22
rcc

T
c

22
rcc 




  

                          c
T

c

22
rc

T
c

22
rccc

T
c

42
rcc KMKKK 










  (2.51) 
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Similar to other reference based updating algorithms, stiffness matrix reference 

based method also requires relatively accurate initial estimates of the analytical 

mass and stiffness matrices. As a result, it is concluded that a mathematical model 

updated by using methods of reference basis is only suitable to study the effect of 

small structural modifications on the mode shapes and natural frequencies of a real 

structure.  

 

2.2. FREQUENCY RESPONSE FUNCTION BASED METHODS IN DIRECT 

MODEL UPDATING 

Experimental data used in modal updating usually consists of mode shapes and 

natural frequencies. Actually, those parameters are extracted from the measured 

frequency response functions (FRFs) throughout a modal analysis. So, using FRFs 

directly (without extracting modal data) in a modal updating process seems to be a 

promising approach to correct analytical model of a real structure. 

Choudhury et al. [11] propose such a method that makes use of measured FRFs to 

determine mass and stiffness matrices of a structure. This method starts with the 

governing equations of motion of an N  dofs undamped structure in frequency 

domain as follows: 

         )(FXMK 2   (2.52) 

where  M  and  K  are the unknown mass and stiffness matrices, respectively, and 

  F  and   X  are the force and displacement terms, respectively. 

 By the way, FRF matrix of a structure relates the applied forces to the dynamic 

response as follows: 

     )(F)()(X   (2.53) 

where     is the receptance (FRF) matrix. 

Combination of equations (2.52) and (2.53) gives rise to the following relation: 

       12 MK)(


  (2.54) 
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Considering only one column of the receptance matrix equation (2.54) can be 

written a follows: 

         mm
2 MK   (2.55) 

where  m  is a null vector except the m th element which is unity. Here m  

corresponds to the column number of     used in equation (2.55). 

Let us evaluate equation (2.56) at 2 different frequencies 1  and 2 :  

           m1
2

1mm1 MK   (2.56) 

           m2
2

2mm2 MK   (2.57) 

Taking the transpose of equation (2.56): 

           MK T
m1

2
1

T
m

T
m1   (2.58) 

 Post multiplying both sides of equation (2.58) by   m2 : 

                    m2
T
m1

2
1m2

T
mm2

T
m1 MK   (2.59) 

Also premultiplying both sides of equation (2.57) by   T
m1 : 

                    m2
T
m1

2
2m

T
m2m2

T
m1 MK   (2.60) 

Subtracting equation (2.60) from (2.59): 

              2
2

2
12mm1mmm2

T
m1 M   (2.61) 

Substituting equation (2.61) into equation (2.59) the following expression is 

obtained: 

               2
2

2
12mm

2
21mm

2
1m2

T
m1 K   (2.62) 

Theoretically, by using experimentally obtained receptance data in equations (2.61) 

and (2.62) it is possible to determine unknown stiffness and mass matrices of a 

structure. But the applicability of the method to complex engineering structure is 

questionable for several reasons: First of all, the mass and stiffness matrices are 
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restricted to the measurement dofs. Secondly, inappropriate choices of frequency 

points and excessive experimental error may result ill conditioned equations which 

will lead to erroneous mass and stiffness matrices. 
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CHAPTER 3 

 

THEORY 

 

 

3.1. INTRODUCTION 

The theory introduced herein is developed to achieve dynamically equivalent finite 

element (FE) models of real aircraft structures. Here, the challenging part is that the 

eigenvalues and eigenvectors of the FE model must correlate well with their 

experimental counterparts, i.e. natural frequencies and mode shapes of the 

interested aircraft. 

Dynamically equivalent FE model of an aircraft structure has a crucial role in various 

aeroelastic problems such as the flutter phenomenon. Flutter is “a self-exciting and 

destructive vibration where aerodynamic forces on an object couple with the 

structure’s natural mode of vibration to produce rapidly increasing periodic motion” 

[25]. A new aircraft design or a modified aircraft structure have to be processed with 

an appropriate flutter analysis to determine the safe flight envelops within which no 

flutter phenomenon will occur. 

The ‘reliability’ of the flutter analysis is highly dependent on the degree of correlation 

between the modal properties of the FE model and their experimental counterparts. 

In order to achieve a good correlation between the mathematical model and the 

experimental data, different techniques have been developed within the last 40 

years and they created a specific branch of the vibration discipline, namely the 

‘Model Updating’. 

In TÜBİTAK-SAGE, a recent work accomplished by Kozak [17] has investigated the 

most common model updating techniques and applied one of them, namely the 

‘Inverse Eigen Sensitivity Method’, to update the FE model of a real aircraft 
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structure. But Kozak’s research has shown that currently available model updating 

methods demand considerable time and effort. Challenges encountered at different 

levels of a model updating procedure led TÜBİTAK-SAGE to look for alternative 

approaches in determining the FE model of a real aircraft structure.  

The theory developed herein has evolved with the motivation to obtain a superior 

technique purified from the weak sides of the currently used model updating 

techniques. Of course in doing so, the theory brings its own challenges and 

constraints. Consequently, this theory is not a final speech but rather an introductory 

work that collates finite element and modal analysis backgrounds within a different 

perspective to obtain the dynamically equivalent FE model of a real aircraft 

structure. 

 

3.2. CONSTRUCTION OF THE FINITE ELEMENT MESH 

Widely used indirect model updating methods such as the ‘Inverse Eigen Sensitivity 

Method’ are iterative procedures that necessitate the construction of an initial FE 

model. In order to guarantee convergence, the FE counterparts of the experimental 

mode shapes must already appear in that initial model with a sufficient correlation. 

With this requirement, the determination of an appropriate initial FE model becomes 

a challenge. If the model updating is accomplished by the design team of the owner 

company of the aircraft structure, such a detailed FE model will be already available. 

But if the updating procedure is carried out by a subsidiary company that makes 

certain modification on the aircraft structure, the construction of an appropriate initial 

FE model from scratch turns out to be a tedious work requiring detailed studies of 

the blueprints and investment of considerable engineering work. In order to 

eliminate this difficulty, the theory starts with an FE mesh constructed by connecting 

measurement points of the aircraft structure of interest with beam elements without 

assignment of any geometric or material properties. Measurement points are 

nothing but the acceleration locations used in the ‘Ground Vibration Test’ (GVT) 

carried out to extract the modal properties of the relevant aircraft.  

In the usual way of meshing an aircraft structure, beam elements are laid along the 

physical load paths, i.e. spars and ribs of the wing. Moreover, the skin of the aircraft 

is modeled by shell elements. Geometric properties of beam and shell elements 

such as beam cross sections, shell thicknesses imitate the properties of the spars, 
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ribs and the skin of the real structure as much as possible. Although the initial FE 

model obtained with this approach is more likely to correlate with the experimental 

modal data, it requires detailed investigation of the blueprints followed by 

considerable FE modeling effort. On the other hand, an FE mesh built by connecting 

GVT measurement points with beam elements is very straightforward. With this 

approach, measurement points turn out to be the nodes of the FE mesh. The 

resulting FE model includes much less degrees of freedom (dofs) than an FE model 

obtained from the conventional procedure explained above. 

As a result, the theory developed herein aims to find an answer to the following 

questions: Is it really a must to conduct the model updating with the conventional FE 

mesh that duplicates the morphology of the real structure? Or can an FE mesh built 

up by simply connecting GVT measurement points serve the purpose as well?  

The theory has suggested a simple FE mesh but it did not explain yet how to obtain 

initial estimates of the geometric and material properties that will be assigned to 

each finite element. As explained in detail in the subsequent sections, the initial 

estimates of the geometric and material properties are going to be determined from 

the mass and stiffness orthogonality equations of the experimental mode shapes. 

 

3.3. DETERMINATION OF THE MASS NORMALIZED EXPERIMENTAL 

NORMAL MODES 

In the determination of the mode shapes and natural frequencies of a real aircraft 

structure, the first step is the ‘Ground Vibration Test’ (GVT). In a GVT, an aircraft 

structure is suspended on soft supports to achieve free-free boundary conditions. 

Then, several electrodynamic shakers are attached to critical points to be able to 

excite all of the modes within the frequency range of interest. Vibration 

measurement is usually accomplished by accelerometers placed on the wing, 

vertical and horizontal stabilizers, fuselage, pylons and external stores of the aircraft 

structure. In a GVT test, depending on the size of the aircraft structures, number of 

accelerometers used varies between 100 and 200 for fighter aircrafts and increases 

up to 1000 for civil aircrafts. After the experimental setup is constructed, the aircraft 

structure is excited within the frequency range of interest by using one of the 

numerous excitation signals such as stepped sine, pseudo-random, true random 

etc., each having its own particular advantages and drawbacks. In phase separation 
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technique an appropriate signal analyzer is used to determine the discrete Fourier 

transforms of the input and output signals (i.e. force and acceleration) and the ratio 

of these transforms gives the ‘Frequency Response Functions’ (FRFs) of the aircraft 

structure during test. FRFs obtained from the modal test are processed by one of 

the appropriate modal analysis techniques such as the ‘Least-Squares Method’, 

‘Rational Fraction Polynomials Method’ etc. to extract the mode shapes and natural 

frequencies of the aircraft structure. Another technique is the phase resonance, 

which is also called normal modes, where only one mode is excited at a time and 

modal parameters are extracted directly during testing. 

Modal analysis methods are classified under two main categories: time domain and 

frequency domain modal analysis methods. Frequency domain modal analysis 

techniques are basically curve fitting techniques that fit a predefined mathematical 

model to the experimentally obtained FRFs of a structure. 

For structurally damped linear elastic systems, the analytical expression of a 

receptance FRF can be stated as follows: 


 


n

1r r
2
r
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r
ik

ik
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H  (3.1) 

 

where ikH  is the receptance FRF between the measurement points i  and k , r  is 

the natural frequency of the rth mode, r  is the rth modal damping and r
ikA  is the 

modal constant of the rth mode. 

A real structure has infinitely many dofs and vibration modes. But practically, only a 

limited number of modes within a frequency range of interest can be determined. To 

be able to determine relevant vibration modes accurately, the effects of the out of 

range modes on the FRFs have to be represented by appropriate residual terms in 

the analytical model as follows: 
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where R
ikM  and R

ikK  are the mass and stiffness residuals that represent the 

cumulative effects of the lower and higher out of range modes, respectively. 

The objective of the modal analysis techniques is to calculate the modal constants 

r
ikA , the natural frequencies r , the damping coefficients r  and the residual terms 

R
ikM  and R

ikK  of each FRF by minimizing the following error function defined between 

the measured and analytical FRFs: 

 

)(H)(H
~

)(E ikikik   (3.3) 

 

where ikH
~

 are the measured FRFs. 

Theoretically, the FRF matrix of n  dof FE model of a structure is expressed in terms 

of its eigenvectors and eigenvalues as follows: 

        T

nxn

1

nxn

22
rnxnnxn

)(H 



 






 (3.4) 

 

where    is the mass normalized modal matrix, and  j1 r
2
r

2
r  . 

Unfortunately, the size of the experimental FRF matrix cannot be nxn  due to 

practical reasons. In order that the experimental FRF matrix has n  columns, the 

structure must be excited at each measurement point separately. This is practically 

impossible. Moreover in order that the experimental FRF matrix includes n  rows, all 

of the dofs corresponding to the FE model of the real structure have to be 

measured. This is not feasible as well. So the experimental FRF matrix of a real 

structure turns out to be truncated as below: 
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 (3.5) 
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where m )n(  is the number of excitation points and p )n(  is the number of 

measurement dofs. 

The sth column of the experimental FRF matrix can be expressed as follows: 
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 (3.7) 

 

 sA  is the experimentally obtained modal constant matrix of a real structure and it is 

obtained from a single column (sth column) of the FRF matrix given in equation (3.5). 

According to equation (3.4), the sth column of the experimental FRF matrix can also 

be written as follows: 
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where  
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Here r
i  is the thi  element of the thr  mode shape vector. 

Comparing equations (3.7) and (3.9), the following equality holds: 
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Consider the first column of the right hand side matrix in equation (3.10). It is 

nothing but the first mode shape vector of the real structure. In order to obtain the 

mass normalized mode shape, the column must be divided by 1
s . But 1

s  is not a 

directly available experimental data. Only the left hand side matrix of equation (3.10) 

is directly available. The key parameters that are used to extract the mass 

normalized mode shapes lay in the ths  row of the modal constant matrix as follows: 
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Modal constants given in equation (3.11) are the parameters of the point FRF 

)(Hss   and 1
s , 2

s etc. can be calculated by simply taking the square root of those 

parameters as follows: 
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The mass normalized modes are simply calculated by dividing each column of the 

right hand side matrix of equation (3.9) with the relevant parameter from the 

equation (3.12). As a result, the following expression is obtained: 
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Although the size of the theoretical modal matrix corresponding to the FE model is 

nxn , the experimental modal matrix is highly truncated. The number of rows, p , of 

the experimental modal matrix corresponds to the number of measurement dofs. 

Measurement dofs are less than the actual dofs of the FE model, because rotational 

dofs cannot be measured. It is also not practical to take measurement along all of 

the translational dofs that appear in an FE model. The number of columns, N , of the 

experimental modal matrix corresponds to the number of the modes that appear in 

the frequency range of interest and it is much less than the total number of modes of 

an n  dofs FE model.  

The theory developed herein aims to use experimental modal matrix to derive the 

necessary equations to obtain the initial estimates of geometric and material 

properties mentioned in section 3.2. In order to use in the mass and stiffness 

orthogonality equations of the FE model of an aircraft structure, truncated 

experimental modes have to be expanded to the size of the FE model. This is the 

subject of the next section. 

 

3.4. EXPANSION OF THE EXPERIMENTALLY MEASURED NORMAL 

MODES TO THE SIZE OF THE FE MODEL 

In section 3.2, an FE mesh obtained by connecting GVT measurement points with 

beam elements is suggested for aircraft structures. However the geometric and 

material properties need to be determined. The necessary equations to obtain the 
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initial estimates for properties can be derived from the mass and stiffness 

orthogonality relations of the experimental normal modes. 

Consider the following mass and stiffness orthogonality equations: 

 

       IMT   (3.14) 

 

       
 2

r
T K   (3.15) 

 

where  M  and  K  are the global mass and stiffness matrices,  I  is the identity 

matrix and  
 2

r  is the diagonal matrix including squares of the natural 

frequencies. 

For an n  dof FE model, the mass normalized modal matrix    will be an nxn  

square matrix. However, the experimental modal matrix corresponding to that FE 

model will be highly incomplete as explained in the previous section. In order to use 

them in equations (3.14) and (3.15), experimental normal modes have to be 

expanded to the size of the eigenvectors of the FE model. 

The ‘Guyan’s Expansion’ [23] is a simple and reliable technique to be used for the 

expansion of the experimental normal modes. This method predicts the unmeasured 

(slave) dofs of the experimental normal modes by using the force-displacement and 

connectivity relations between the primary (measurement) and slave coordinates. 

Mathematically, these relations are expressed in terms of a transformation matrix, 

between the primary and slave coordinates, determined from the stiffness matrix of 

the FE model. Unfortunately, the theory developed herein starts with an ‘empty’ 

mesh and seemingly there is no stiffness matrix to be used. In order to overcome 

this dilemma in which an unknown (stiffness matrix) is required in its own solution 

procedure, the following critical question is asked: to obtain the transformation 

matrix, is it really necessary to use the stiffness matrix of the true FE model or a 

stiffness matrix of some other FE model with the same mesh can be used? This 

idea will be clarified by the following example: 
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Consider the FE model of a wing like structure with free-free boundary conditions as 

shown in Figure 3.1. The FE model consists of 16 nodes and 24 Euler-Bernoulli 

beam elements resulting 96 dofs. Moreover, the beam elements are divided into 

three groups of geometric properties as given in Table 3.1. 

 

 

Figure 3.1. FE model of a wing like structure 

 

In the modal test of the wing like structure illustrated in Figure 3.1, reliable 

measurements can only be taken along the z-axis of its global coordinate frame. 

Accordingly, in order to examine the idea of using an FE model with the same mesh 

but arbitrary geometric and material properties in Guyan’s expansion of the 

experimental normal modes, the first 10 eigenvectors of the FE model are truncated 

by extracting their components along the z direction. Those truncated eigenvectors 

are called simulated-experimental normal modes because they simulate the 

incompleteness of the real experimental normal modes but they are free from 

experimental errors. 

Similar to the case of a real aircraft wing, it is assumed that geometric and material 

properties are not known for the wing like structure studied herein. And its FE mesh 

is constructed by connecting measurement points with beam elements. In order to 

construct a stiffness matrix to be used in Guyan’s expansion of the simulated-

experimental normal modes, two arbitrary case studies of the geometric properties 

are proposed in Table 3.2. The first case study assumes that all beam elements 

have square cross sections of unit area which leads to a relatively flexible structure. 
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And the second case is obtained by scaling the unit area of the previous case study 

one million times that leads to a very stiff structure. 

 

Table 3.1. Beam element properties of the wing like structure 

GROUP 
NO 

GEOMETRIC PROPERTIES    MATERIAL PROPERTIES 

A 
(mm2) 

Ix 
(mm2) 

I1  
(mm4) 

I2  

(mm4) 
I12 

(mm4) 
Je 

(mm4) 
E 

 (MPa) 


(ton/mm3)


1 50.0 10.4 104.2 416.7 0.0 286.1 7.0E+04 2.8E-09 0.3

2 10.0 2.4 3.3 20.8 0.0 10.0 7.0E+04 2.8E-09 0.3

3 2.0 0.4 0.2 0.7 0.0 0.5 7.0E+04 2.8E-09 0.3

 

Table 3.2. Properties of arbitrary stiffness matrices used in Guyan’s expansion 

CASE STUDY 
GEOMETRIC PROPERTIES   

A (mm2) Ix (mm2)  I1  (mm4) I2 (mm4) I12 (mm4) Je (mm4)

Flexible 1.0E+00 1.7E-01 8.3E-02 8.3E-02 0.0E+00 1.4E-01 

Stiff 1.0E+06 1.7E+05 8.3E+10 8.3E+10 0.0E+00 1.4E+11

 

According to the Guyan’s Expansion Method, a global stiffness matrix is partitioned 

to separate elements corresponding to the primary and slave coordinates as follows: 

 

  









ppps

spss

KK

KK
K  (3.16) 

Then a transformation matrix is obtained as below: 

 

     
  













I

KK
T sp

1
ss  (3.17) 
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Finally, experimentally measured mass normalized normal modes can be expanded 

into the FE model size by using the transformation matrix given in equation (3.17) as 

follows: 

 

     
pxN

t
xnxpnxNx T   (3.18) 

 

where  
pxN

t
x  is the truncated experimental mass normalized modal matrix and p  

is the number of primary (measurement) coordinates. 

Consequently, the simulated-experimental normal modes of the wing like structure 

described in Figure 3.1 are expanded to the size of the FE model by using two 

different arbitrary stiffness matrices whose geometric properties are introduced in 

Table 3.2. The estimated components of the first five eigenvectors corresponding to 

  and   dofs (rotational dofs about the global x and y axes respectively) are 

compared to their true values appearing in the original FE model in Figures 3.2 to 

3.6. Within the frequency range of interest, the eigenvector components related to 

the remaining slave coordinates are all zero and so are their estimates. For that 

reason, they are not shown here to avoid redundant graphics. 

One of the interesting observations related to Figures 3.2 to 3.6 is that   

components of the eigenvectors are estimated much better than   components. 

Actually,   corresponds to the deflection slope of the ‘constant’ cross section 

beams lying along the y axis as shown in Figure 3.1, and   corresponds to the 

deflection slope of the variable cross section beams. But the arbitrary stiffness 

matrices proposed to expand the simulated-experimental modes are derived by 

assuming uniform cross section for the entire FE mesh. This assumption that does 

not overlap with reality for the beams lying along x axis degrades the   estimates of 

the experimental normal modes. Of course, this fact will affect the quality of the 

rotational dof estimates, when the method is applied to real aircraft structures. 
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Figure 3.2. Estimates of the rotational components of the 1st elastic mode of the 
wing like structure 
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Figure 3.3. Estimates of the rotational components of the 2nd elastic mode of the 
wing like structure 
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Figure 3.4. Estimates of the rotational components of the 3rd elastic mode of the 
wing like structure 
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Figure 3.5. Estimates of the rotational components of the 4th elastic mode of the 
wing like structure 
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Figure 3.6. Estimates of the rotational components of the 5th elastic mode of the 
wing like structure 

 

Another observation related to Figures 3.2 to 3.6 is that changing the order of 

magnitude of the geometric properties the same amount, as in the case of flexible 

and stiff FE models of Table 3.2, does not affect the estimates of the slave 

eigenvector components. Of course, if all of the geometric properties of beam 

elements of the flexible FE model would not be scaled the same amount to obtain 

the stiff FE model, estimates of the slave components would be somewhat different.  

Another factor that will degrade estimates of the slave dofs is the experimental error. 

In literature, it is claimed that 15 % error [24] in each measured modal displacement 

is quite usual. Hence, in order to simulate this amount of error, truncated normal 

modes are polluted within a ± 7.5 % error band. Estimates of the slave dofs obtained 

from pure and erroneous truncated normal modes using the arbitrary stiffness matrix 

of the flexible FE model of Table 3.2 are compared in Figures 3.7 to 3.11. Obviously, 

there is not a dramatic deviation within the predictions of the rotational components 

of the normal modes. 
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Figure 3.7. Slave dofs determined from pure and noisy truncated normal modes (1st 
elastic mode) 
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Figure 3.8. Slave dofs determined from pure and noisy truncated normal modes (2nd 
elastic mode) 
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Figure 3.9. Slave dofs determined from pure and noisy truncated normal modes (3th 
elastic mode) 
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Figure 3.10. Slave dofs determined from pure and noisy truncated normal modes 
(4th elastic mode) 
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Figure 3.11. Slave dofs determined from pure and noisy truncated normal modes 
(5th elastic mode) 

 

At this stage of the theory, an empty FE mesh and a useful approach to expand 

experimental normal modes to the size of the FE model are available. The next step 

is the derivation of the necessary equations to determine the geometric and material 

properties of the FE model.  

 

3.5. DERIVATION OF THE STRUCTURAL IDENTIFICATION 

EQUATIONS FROM MASS AND STIFFNESS ORTHOGONALITY OF 

EXPERIMENTAL NORMAL MODES 

Once the experimental normal modes are expanded to the size of the FE model, the 

next step is the derivation of the ‘structural identification equations’ from mass and 

stiffness orthogonality relations of normal modes.  

Consider an n  dofs FE model with k  elements. The global mass and stiffness 

matrices can be expressed in terms of the element mass and stiffness matrices as 

follows: 
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   



k

1e
nxnenxn

kK  (3.19) 

 

   



k

1e
nxnenxn

mM  (3.20) 

 

where  ek  and  em  are the element stiffness and mass matrices respectively. 

The actual size of each element matrix is mxm , m  being the dof of an element. On 

the other hand, the size of the global mass and stiffness matrices is nxn  and mn   

because the global matrices encompass the physical information of the entire FE 

model. 

During the assembly process described in equations (3.19) and (3.20), relevant cells 

of a null stiffness matrix of size nxn  are filled with none zero terms of a specific 

element stiffness matrix. This way, an element stiffness matrix is augmented to the 

size of the global stiffness matrix. The same thing is valid for each element mass 

matrix. 

Substituting the right hand sides of equations (3.19) and (3.20) into equations (3.14) 

and (3.15) yields: 

 

       



k

1e
e

T Im  (3.21) 

 

        



k

1e

2
re

T k 
  (3.22) 

 

Equations (3.21) and (3.22) can be further expanded as follows: 
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           rs
s

k21

Tr mmm    (3.23) 

           rs
2
r

s
k21

Tr kkk    (3.24) 

 

where rs  is the Kronecker delta function. 

Expanding equations (3.23) and (3.24), it is possible to write  

 

                  rs
s

k

Trs
2

Trs
1

Tr mmm    (3.25) 

 

                  rs
2
r

s
k

Trs
2

Trs
1

Tr kkk    (3.26) 

 

Since the individual element matrices in equations (3.25) and (3.26) are sparse, i.e. 

augmented to the size nxn , they can be condensed as follows: 

 

           
1mx

s
emxme

T

xm1
r
e1nx

s

nxne

T

xn1
r mm   (3.27) 

 

           
1mx

s
emxme

T

xm1
r
e1nx

s

nxne

T

xn1
r kk   (3.28) 

 

where  
mxmem  and  

mxmek  are the element matrices expressed in the global 

coordinate frame.  
1mx

r
e  represents the part of the thr  eigenvector  

1nx

r  

corresponding to the dofs of the element of interest. 

 
mxmem  and  

mxmek  are obtained by transforming element matrices from the local 

coordinate frame of an element to the global coordinate frame as described below: 
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       e
l
e

T
emxme TmTm   (3.29) 

       e
l
e

T
emxme TkTk   (3.30) 

 

where  
mxm

l
em  and  

mxm

l
ek  are the element matrices in the local coordinate frame 

of an element, and  eT  is the transformation matrix of a specific element that 

transforms matrices from the local (element) coordinates to the global coordinates. 

Substituting equations (3.29) and (3.30) into equations (3.27) and (3.28) yields 

following expressions: 

 

                s
ee

l
e

T
e

Tr
e

s
ee

Tr
e TmTm   (3.31) 

 

                s
ee

l
e

T
e

Tr
e

s
ee

Tr
e TkTk   (3.32) 

 

Before substituting equations (3.31) and (3.32) into equations (3.23) and (3.24) one 

last arrangement is necessary as shown below: 

 

                      s
ee

l
e

Tr
ee

s
ee

l
e

T
e

Tr
e TmTTmT   (3.33) 

 

                      s
ee

l
e

Tr
ee

s
ee

l
e

T
e

Tr
e TkTTkT   (3.34) 

 

Right hand sides of equations (3.33) and (3.34) can be put in more compact forms 

with the following definition: 
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     r
ee

rl
e T   (3.35) 

 

By using the above definition in equations (3.33) and (3.34), and substituting them 

into equations (3.23) and (3.24), the following equations are obtained: 

 

                  rs
sl
k

l
k

Trl
k

sl
2

l
2

Trl
2

sl
1

l
1

Trl
1 mmm    (3.36) 

 

                  rs
2
r

sl
k

l
k

Trl
k

sl
2

l
2

Trl
2

sl
1

l
1

Trl
1 kkk    (3.37) 

 

For a 3 D Euler-Bernoulli beam element, the size of the element matrices  l
em  and 

 l
ek  is 12x12 and their complete parametric representations are given in the 

Appendix D. For the sake of simplicity, the element matrices of a 2 D Euler-Bernoulli 

beam model without axial dof (see Figure 3.12) are given here just to explain the 

derivation of the structural identification equations. However, the original formulation 

is obtained for 3 D Euler-Bernoulli beam elements, and this formulation is used in 

the case studies presented in this thesis. 

Two-noded beam element shown in Figure 12 has 4 dofs and its element matrices 

are given as follows: 

 

 


























22

22

3
l
e

L4L6L2L6

L612L612

L2L6L4L6

L612L612

L

EI
k  (3.38) 
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 


























22

22
l
e

L4L22L3L13

L22156L1354

L3L13L4L22

L1354L22156

420

AL
m  (3.39) 

 

On the other hand  rl
e  vector given in equations (3.36) and (3.37) is given below: 

 

   T
2211

rl
e vv   (3.40) 

 

where v  and   represent the translational and rotational dofs at the element nodes, 

respectively. 

 

Figure 3.12. 2 D Euler-Bernoulli beam model without the axial dof 

 

 

Substituting expressions (3.38), (3.39) and (3.40) into equations (2.36) and (2.37) 

the following equations are obtained: 

 

 

A, I, L, E,  

y

x

v1 v2 

1 2 
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      rsk
rs
k2

rs
21

rs
1 AaAaAa    (3.41) 

 

      rs
2
rk

rs
k2

rs
21

rs
1 EIbEIbEIb    (3.42) 

 

where rs
ea  and rs

eb  are the coefficients from the mesh properties and the 

experimental mode shapes. 

It can easily be seen that the coefficients rs
ea  and rs

eb  can be calculated by using the 

experimental mass normalized modes expanded to the size of the FE model as 

shown in equation (3.18) and the element matrices given in expressions (3.38) and 

(3.39). 

In case of 3 D Euler-Bernoulli beam elements, equations (3.41) and (3.42) take the 

following forms: 

 

            rs

kelement

kx
rs
kk

rs
k

2element

2x
rs
22

rs
2

1element

1x
rs
11

rs
1 AIbAaAIbAaAIbAa 

  


    
 (3.43) 

 

              
  


  

2element

2e
rs
22

rs
2

1element

1e
rs
1112

rs
112

rs
111

rs
11

rs
1 GJgEAcGJgEIfEIeEIdEAc  

    rs
2
r

kelement

ke
rs
kk

rs
k GJgEAc 

  
  (3.44) 

 

Equations (3.43) and (3.44) can be put into the following compact forms: 

 

    mmm bxA   (3.45) 
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    kkk bxA   (3.46) 

 

where  mA  and  kA  are the coefficient matrices that consist of rs
ea , rs

eb  and 

rs
e

rs
e gc   terms, respectively.  mx  and  kx  are the unknown vectors which consist 

of the product of the geometric and material properties as illustrated in equations 

(3.43) and (3.44). 

Equations (3.43) and (3.44) are called the ‘Structural Identification Equations’ within 

the context of this thesis study. 

The number of equations within (3.45) and (3.46) is determined by the number of 

the experimentally determined normal modes. If N  experimental modes have been 

extracted in the frequency range of interest, 2/)1N(N   number of independent 

equations can be written for each set of equations (3.45) and (3.46). 

In case of the complex structures such as a real aircraft structure, the number of 

equations turns out to be much less than the number of unknowns due to the limited 

number of experimentally obtained mode shapes in the frequency range of interest. 

In this case, the number of unknowns can be reduced by grouping similar beam 

elements with the assumption that elements within the same group have the same 

geometric and material properties.  

Reducing the number of unknowns below the number of equations, initial estimates 

for the unknown system parameters can ‘theoretically’ be calculated as follows: 

 

     mmm bAx   (3.47) 

 

     kkk bAx   (3.48) 

 

where  mA  and  kA  are the pseudo inverses of  mA  and  kA  respectively. 
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Studies have shown that experimental errors and errors introduced during the 

expansion of the experimental modes may give rise to ill conditioned coefficient 

matrices  mA  and  kA . Another source of ill conditioning is the order of magnitude 

difference between the values of unknown parameters. The way of manipulating 

coefficient matrices to be able to derive relatively accurate initial estimates of the 

structural parameters will be studied in Chapter 5. 

 

3.6. ITERATIVE SOLUTION PROCEDURE 

After determining the initial estimates of the products of geometric and material 

properties by solving equations (3.45) and (3.46), mesh only FE model of the aircraft 

structure is completed by using the elastic and inertial estimates obtained. Due to ill 

conditioned feature of the structural identification equations, eigen solution of the 

initial FE model will not perfectly correlate with the experimental modes. To improve 

correlation, the following algorithm is applied: 

Step 1: 

Solve the eigenvalues and eigenvectors of the initial FE model.  

Step 2: 

By using the ‘Modal Assurance Criterion’ (MAC) [24] which gives degree of 

proportionality between analytical and measured normal modes, extract 

eigenvectors of the FE model corresponding to the measured mode shapes and 

reconstruct coefficient matrix of equation (3.46) by using those eigenvectors to 

reduce ill conditioning. 

Step 3: 

Solve for  kx  from the reconstructed versions of equations (3.46), by using a non-

linear least square solver with lower and upper bounds to avoid the divergence 

problem.   

Step 4: 

After obtaining the updated parameters in Step 3, update the FE model stiffness 

matrix and go to Step 2. Use the previous solutions as initial guess for the non-linear 
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least square solver. Continue until eigenvalues and eigenvectors converge to their 

experimental counterparts. 

The stiffness orthogonality equations of the initial FE model are not perfectly 

satisfied with the initial FE parameters because the right hand side vector consists 

of the experimental natural frequencies. This makes it possible to use an iterative 

algorithm. But in case of the mass orthogonality equations, the right hand side 

vector consists of zeros and ones.  Consequently, mass orthogonality equations 

derived from the eigenvectors of the initial FE model are perfectly satisfied with the 

initial FE properties and cannot be subjected to an iterative solution procedure. 

This completes the theoretical part of the thesis study. Of course application of the 

technique suggested herein is not straight forward when it is applied to real complex 

aircraft structures. The obstacles that arise during the application of the theory to 

real structures and experiences gained in the way of eliminating those obstacles will 

be studied in detail in Chapter 5. 
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CHAPTER 4 

 

IMPLEMENTED SOFTWARE 

 

 

4.1. INTRODUCTION 

The theory introduced in Chapter 3 can be converted to a useful engineering tool by 

an appropriate software design. Actually, this is the most efficient way of testing and 

improving the theory by means of various case studies. With this motivation, a 

detailed code has been developed in MATLAB© (R2007a) which is a very suitable 

programming tool for preliminary software design. One of the reasons of choosing 

MATLAB is that it provides lots of built in functions that implement various 

mathematical tools. Least square equation solver, matrix inversion function, 

eigenvalue problem solver etc. are several examples of MATLAB’s functions that 

have been used to develop the computer code of this thesis work. Another reason of 

using MATLAB is that it provides a variety of graphical post processing tools for the 

visualization of the software outputs.  

The computer algorithm is summarized below: 

1. Read experimental mode shapes from an input file.  

2. Read the FE mesh information of the relevant aircraft structure from another 

input file. 

3. Construct an arbitrary stiffness matrix by assigning arbitrary geometric and 

material properties to the empty FE mesh.  

4. Expand the experimental normal modes to the size of the FE model by using the 

arbitrary stiffness matrix in Guyan’s Expansion.  
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5. Combine the expanded experimental modes together with the experimental 

natural frequencies and element group information to construct the structural 

identification equations.  

6. Determine the initial estimates of the geometric and material properties from the 

structural identification equations. 

7. Obtain an initial FE model by assigning initial estimates of the structural 

properties to the finite elements. 

8. Compare the experimental mode shapes with their FE counterparts by using 

‘Modal Assurance Criterion’ (MAC) [24]. Compare also experimental natural 

frequencies with the corresponding eigenvalues of the FE model. 

9. If the correlation is not good enough, reconstruct the stiffness orthogonality 

equations by using FE counterparts of the experimental mode shapes. 

10. Determine the updated FE parameters from the solution of the updated 

equations. 

11. Update the FE model and compare the measured and analytical modes once 

again. If the correlation is sufficient stop the analysis. Otherwise return to step 9. 

The subsequent sections of this chapter are dedicated to the detailed explanations 

of the input files and important subroutines of the implemented software. 

 

4.2. INPUT FILES 

The software developed within the scope of this thesis work makes use of 3 

fundamental input files. The function of each input file is explained below in detail:  

 fem_input_unit_structure_name.txt :  One of the main purposes of this input 

file is to supply the FE mesh information to the software. The other purpose is to 

provide ‘arbitrary’ geometric and material properties to the Euler-Bernoulli beam 

elements of the FE mesh. Consequently, it becomes possible to construct an 

arbitrary stiffness matrix that shall be used in the Guyan’s Expansion of the 

experimental normal modes as previously explained in section 3.4 of Chapter 3. 

In case studies of this thesis work, arbitrary geometric properties are generated 

by assuming that each beam element of the FE mesh has a square cross 
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section of unit area. The term ‘unit’ that appears in the name of the input file 

stands for the ‘unit area’. Of course, some other users may come up with a 

much better definition to generate arbitrary FE properties. 

In the first case study of Chapter 5, a scaled aircraft model designed and used 

by GARTEUR (Group for Aeronautical Research and Technology in Europe) is 

investigated in details. For this case study, the input file explained above takes 

the following name: ‘fem_input_unit_garteur.txt’. A portion of that input file is 

illustrated in Figure 4.1.  

 freqs_n_groups_structure_name.txt : This input file supplies the numerical 

values of the experimental natural frequencies and the number of experimental 

mode shapes that will be used in the derivation of the structural identification 

equations. Moreover, it indicates which beam element belongs to which 

‘element group’.  

Element group concept is based on the assumption that elements within the 

same group have the same geometric and material properties. If FE properties 

of each element are assumed to be different from the properties of other finite 

elements, the number of unknowns within the structural identification equations 

(3.43) and (3.44) may exceed the number of equations. On the other hand, 

assuming that elements within a neighborhood have identical FE properties 

helps to reduce the number of unknowns below the number of equations and 

this makes it possible to obtain a unique solution from the structural 

identification equations. 

A portion of the input file used in the first case study of Chapter 5 is shown in 

Figure 4.2. 

 real_test_modes_structure_name.txt : This input file simply consists of the 

mass normalized experimental mode shapes. 
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Figure 4.1. fem_input_unit_garteur.txt input file used in the structural identification 
of the GARTEUR structure 
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Figure 4. 2. freqs_n_groups_real_garteur_04groups.txt input file used in the 
structural identification of the GARTEUR structure 
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4.3. FLOW CHART OF THE SOFTWARE DEVELOPED 

The flowchart of the software developed is shown in Figure 4.3. The function of each 

subroutine appearing in the flowchart is explained below: 

 test_modes_read.m - This is a preprocessor subroutine that reads 

experimental mode shapes from an input file in .txt format.  

 test_freq_n_group_read.m - This is another preprocessor subroutine that 

reads and stores experimental natural frequencies and group information of 

each element from an input file in .txt format. 

 fem_prop_read.m - This subroutine reads all necessary information 

(geometric, material etc…) to create global mass and stiffness matrices of an 

FE model. 

 fem.m - This subroutine determines the global mass and stiffness matrix as well 

as the eigenvalues and eigenvectors of an FE model.  

 expand.m - This subroutine is used to expand experimental normal modes to 

the size of the FE model of the relevant structure. 

 struct_ident_eqns_gen.m - The main purpose of this subroutine is to generate 

structural identification equations by using the experimental normal modes (or 

the FE counterparts of the experimental modes) expanded to the size of the FE 

model and the experimental natural frequencies. 

 model_update.m - This subroutine runs an iterative algorithm until the updated 

FE model correlates well with the experimental data. The flow chart of this 

subroutine is illustrated in Figure 4.4. 
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Figure 4.3. Flow chart of the software developed 
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Figure 4.4. Flow chart of the model_update.m subroutine 
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CHAPTER 5 

 

CASE STUDIES 

 

 

5.1. INTRODUCTION 

The theory developed herein has been applied to the experimental data used in 

Kozak’s thesis study [17], in order to show the structural identification and model 

updating skills obtained by the method developed in this thesis. 

In this chapter, the theory introduced in Chapter 3 is challenged by the following two 

case studies: 

In the first case study, the method is applied to a scaled aircraft model designed and 

used by GARTEUR (Group for Aeronautical Research and Technology in Europe). 

The case study starts with the definition of the ‘ideal GARTEUR structure’. This ideal 

structure is simply the FE model of the GARTEUR’s scaled aircraft constructed by 

Euler-Bernoulli beam elements. The first 10 elastic modes of this ideal structure are 

treated as the experimental mode shapes extracted from a fictitious ideal modal test 

(simulated experiment) and they are free from any experimental error. This way, first 

of all, the effect of the modal truncation on the method developed in this study is 

investigated in detail. Then the modal data is further truncated in terms of the 

rotational dofs and some of the translational dofs. As a result, the combined effects 

of the modal truncation and the lack of measurement capabilities on the applicability 

of the method are discussed in detail. Finally, the method is applied to the real 

experimental data of the GARTEUR structure. 

In the second case study, under the light of the experiences obtained from the case 

study of the GARTEUR structure, the method is applied to derive the FE model of a 

real aircraft structure from its experimental data. 
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5.2. SCALED AIRCRAFT MODEL 

5.2.1. Description of the Experimental Setup 

The outline of the experimental setup is summarized below, yet the reader is 

referred to Kozak [17] for more detailed information about the modal test and 

analysis procedures. 

The test structure studied herein is the duplicate in dimensions of the ‘SM-AG 19 

Test-Bed’ designed by GARTEUR. But there are some differences between the 

structure manufactured at TÜBİTAK-SAGE and the original test bed: Firstly, in the 

TÜBİTAK-SAGE’s version of the test bed, the wing-fuselage, fuselage-vertical 

stabilizer, vertical-stabilizer and horizontal-stabilizer are joined by welding although 

bolted joints are used in the original structure. Secondly, the viscoleastic tape 

covering the surface of the wing in the original test bed does not appear in the 

TÜBİTAK-SAGE’s test structure.  

The test bed manufactured by TÜBİTAK-SAGE is shown in Figure 5.1. The 

dimensions of the test bed are also illustrated in Figure 5.2. 

 

 

Figure 5.1. Scaled aircraft model tested at TÜBİTAK-SAGE 

 

The GARTEUR test structure has been hanged with elastic cords to simulate free-

free boundary conditions. Its modal test has been carried out by using piezoelectric 

type accelerometers (see Figure 5.1) and a modal impact hammer. A total of 12 
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accelerometers, 36 impact points and 66 measurement dofs have been used 

throughout the tests [17]. The excitation and measurement points as well as the 

global coordinate system are shown in Figure 5.3.  

Data acquisition details of the modal test are given in Table 5.1.  

In order to extract the experimental normal modes and natural frequencies, 

POLYMAX modal analysis software of LMS has been used. As a result, the first 10 

mass normalized elastic mode shapes with 66 measurement dofs and 

corresponding 10 natural frequencies have been obtained from the modal analysis 

software. This is the experimental data to which the method developed in Chapter 3 

will be applied in the subsequent sections in order to derive the FE model of the 

GARTEUR test structure. 

 

 

 

Figure 5.2. The dimensions of the SM-AG 19 test bed (all dimensions are in mm) 
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Figure 5.3. Measurement and excitation points of the SM-AG 19 test bed 

 

 

Table 5.1. Data acquisition details of the modal test carried the for SM-AG 19 test 
bed 

Data Acquisition Frontend LMS SCADAS III 

Max. Capacity of the Accelerometers (g) 50 

Max. Capacity of the Modal Hammer (N) 240 

Accelerometer Saturation Potential (V) 5 

Modal Hammer Saturation Potential (V) 2 

Windowing Type  Force-Exponential  

Frequency Resolution (Hz) 1/1024 

Data Acquisition Time  per Hit  (s) 10.24 

Number of Samples per Degree of Freedom 5 

Modal Analysis Software  LMS POLYMAX 
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5.2.2. Definition of the Ideal GARTEUR Structure 

The ideal GARTEUR structure is a hypothetical test structure used to study different 

aspects of the structural identification method developed in this thesis work. This 

ideal structure is basically an FE model constructed by connecting the measurement 

points of the SM-AG 19 test bed, introduced in the previous section, with Euler-

Bernoulli beam elements. It consists of 43 beam elements, 44 nodes and 264 dofs. 

Its FE mesh is illustrated in Figure 5.4.  

 

 

Figure 5.4. FE mesh of the ideal GARTEUR structure 

 

The geometric properties of the FE model are calculated from the dimensions of the 

real SM-AG 19 test bed shown in Figure 5.2 and they are tabulated in Table 5.2.  

The material properties are given in Table 5.3. 

The first 10 elastic modes of the ideal GARTEUR structure are treated as the 

‘experimental data’ obtained from a ‘fictitious’ modal test free from any experimental 

error. These simulated-experimental mode shapes include also the rotational dofs 

although in a real modal test, only some of the translational dofs can be measured. 

It is assumed that the 10 simulated-experimental mode shapes mentioned above 

and corresponding natural frequencies are the only experimental information 
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available to obtain the FE model of the ideal GARTEUR structure. Using the mass 

and stiffness orthogonality of that truncated modal data, it is possible to derive the 

structural identification equations to determine initial estimates of the geometric and 

material properties of the FE model. 

 

Table 5.2. Geometric properties of the ideal GARTEUR structure 

SUBSTRUCTURE 

GEOMETRIC PROPERTIES 

A (mm2) Ix (mm2) I1 (mm4) I2 (mm4) I12 (mm4) Je (mm4) 

WING 1.00E+03 8.42E+02 8.33E+03 8.33E+05 0.00E+00 3.12E+04

FUSELAGE 7.50E+03 2.08E+03 1.41E+07 1.56E+06 0.00E+00 4.94E+06

VERTICAL 
STABILIZER 

1.00E+03 8.42E+02 8.33E+03 8.33E+05 0.00E+00 3.12E+04

HORIZONTAL 
STABILIZER 

1.00E+03 8.42E+02 8.33E+03 8.33E+05 0.00E+00 3.12E+04

 

Table 5.3. Material properties of the ideal GARTEUR structure 

MATERIAL PROPERTIES* 

E (MPa) (ton/mm3) 

7.0E+04 2.8E-09 0.3 

 

The reason of starting the case study with such a simulated test data instead of a 
real test data can be explained as follows: Manipulating an ideal test data to make it 
look like a real test data in a step by step fashion offers the opportunity of 
developing a deeper understanding of the relative effects of the truncation and 
experimental errors on the structural identification equations. For example, studying 

 

___________________________________________________________________ 

* In FE analysis, lengths are usually expressed in mm. As a result, in order to obtain eigenvalues in 
rad/s and eigenvectors in appropriate units, material properties have to be expressed in units other 
than SI units. 
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the sole effect of modal truncation reveals important features of the structural 

identification equations that are impossible to determine when the experimental 

error is introduced. This makes it possible to take precautions against experimental 

error by reformulating coefficient matrices of the equations. As a result, a more 

robust technique is obtained. This will be illustrated in detail in the subsequent 

sections. 

 

5.2.3. Investigation of the Structural Identification Equations Derived from the 

Simulated-Experimental Data of the Ideal GARTEUR Structure 

According to a simulated modal test scenario, it is assumed that the first 10 elastic 

modes of the ideal GARTEUR structure with 264 ‘measurement’ dofs including 

‘rotational’ dofs is the only experimental data to determine the FE model of that 

structure. It is also assumed that the determination of the geometric and material 

properties of the different components such as the wing, the vertical stabilizer etc. 

from the blueprints requires enormous time and effort as in the case of the real 

aircraft structures and it has to be avoided. This makes it impossible to obtain an 

initial FE model required by a standard model updating procedure. As a result, all 

these circumstances constitute an appropriate basis to make use of the method 

developed in Chapter 3 to derive an accurate FE model of the ideal GARTEUR 

structure correlating well with the experimental data. 

Following the theory introduced in Chapter 3, first of all, an empty FE mesh is 

constructed by connecting the measurement points of the ideal GARTEUR structure 

as shown in Figure 5.4. The FE mesh consists of 43 beam elements, 44 nodes and 

264 dofs. Each element having 7 unknown parameters in terms of the product of the 

geometric and material properties such as A , xAI , 1EI  etc., 43 elements will 

introduce 301 unknowns to be determined in order to obtain the complete mass and 

stiffness matrices of the FE model. Unfortunately, using only the first 10 elastic 

modes of the ideal GARTEUR structure, it is possible to determine 10(11)/2 = 55 

structural identification equations from the stiffness orthogonality and another 55 

equations from the mass orthogonality. To be able to solve the problem, the number 

of unknown terms must be reduced below the total number of equations. This is 

accomplished by grouping similar elements together with the assumption that 

elements within the same group have the same geometric and material properties. 

For this initial case study, only 4 element groups shall be used as shown in Table 
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5.4. Consequently, the number of unknowns shall be reduced to 28 and the 

structural identifications equations (3.43) and (3.44) shall be transformed into the 

following forms: 
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Table 5.4. Element groups of the ideal GARTEUR structure 

GROUP NO STRUCTURAL COMPONENT  

1 WING 

2 FUSELAGE 

3 VERTICAL STABILIZER 

4 HORIZONTAL STABILIZER 

 

It must be noticed that even if the assumption of the identical element properties 

may be tolerable for this relatively simple GARTEUR problem, it may cause 

convergence problems of the FE model of a real aircraft structure. This will be 

studied later in this Chapter. 

The stiffness orthogonality equations are naturally decoupled from the mass 

orthogonality equations and they must be solved separately. As seen in equation 

(5.1), the mass orthogonality equations possess the following two unknowns per 

element group: A  and xAI . Similarly, the stiffness orthogonality equations given 
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in (5.2) possess the following 5 unknowns per element group: 1EI , 2EI , 12EI , eGJ   

and EA . 

45 out of 55 stiffness orthogonality equations are obtained from the ‘cross 

orthogonality’ of the 10 elastic modes of the ideal GARTEUR structure as shown in 

equation (5.3). The remaining 10 equations are obtained from the ‘self orthogonality’ 

of the individual normal modes (see equation 5.4). The same thing is valid also for 

the mass orthogonality equations. 
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From a detailed investigation of the ‘cross’ and ‘self’ orthogonality equations, several 

important conclusions are obtained as follows: 

A linear least square solution of 45 ‘cross orthogonality’ equations out of 55 stiffness 

orthogonality equations for 4 x 5 = 20 unknown parameters gives the ‘trivial’ (zero) 

solution. The same thing is valid also for the mass orthogonality equations. So, it is 

deduced that only the ‘cross orthogonality’ equations are not sufficient to determine 

the geometric and material properties of the ideal GARTEUR structure.  

If the cross orthogonality equations given in (5.3) are accompanied by anyone of the 

10 self orthogonality equations given in (5.4), the products of the structural 

parameters are ‘exactly’ determined. Exact solutions are special only to the case 

study of the ideal GARTEUR structure for the following reasons: 
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 Elements within the same group given in Table 5.4 have exactly the same 

geometric and material properties. This will never happen in case of a real 

aircraft structure. 

 Structural identification equations have been derived directly from the eigen 

solution of the ideal GARTEUR structure. The eigen solution is free from any 

experimental error and the eigenvectors are not truncated in terms of the 

rotational dofs. In a real problem, experimental error and the truncated nature of 

the experimental normal modes will degrade the structural identification 

equations. All these problems will be studied in this Chapter. 

Obviously, the self orthogonality equations play the key role in the solution of the FE 

parameters of the ideal GARTEUR structure and they will be investigated in a more 

detailed way below: 

The coefficient matrix of the 10 self orthogonality equations related with the stiffness 

orthogonality of the ideal GARTEUR structure is shown in Tables 5.5 and 5.6. The 

most prominent feature of the coefficient matrix is that coefficients of certain 

structural parameters are extremely large and coefficients of some other parameters 

are extremely small. The physical interpretation of this phenomenon is based on the 

two useful definitions: ‘active’ and ‘passive’ parameters as explained below: 

Self orthogonality equations related to the stiffness orthogonality are derived from 

the following relations: 

      2
r

rTr K        101r   (5.5) 

This expression is very similar to the general potential energy expression written for 

discrete systems as below: 

    qKq
2
1

PE T  (5.6) 

where  q  are the generalized coordinates of the relevant structure. 

Comparing equations (5.5) and (5.6), it is deduced that      rTr K   term derived 

from the thr  mode of the ideal GARTEUR structure is proportional to its thr  modal 

strain energy. Accordingly, coefficients of the self orthogonality equations given in 
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(5.4) show the degree of contribution of a structural parameter to the strain energy 

of the relevant mode of vibration.  

 

Table 5.5. Columns 1 to 10 of the coefficient matrix* of the self orthogonality 
equations derived from the stiffness orthogonality of the ideal GARTEUR structure 

EQUATION 
NO 

WING FUSELAGE 

rsc1  rsd1  rse1  rsf1  rsg1  rsc2  rsd2  rse2  rsf2  rsg2  

1 0 21335 0 3 0 0 0 0 0 0 

2 11 142098 2 -775 1 0 0 2 0 3 

3 237 294062 290 9069 69450 0 0 179 0 30 

4 2 28110 48 -111 237450 1 0 7 0 0 

5 58 163123 10 935 166639 0 0 18 0 9 

6 41 1262941 1 -432 182 16 0 0 0 0 

7 1222 101001 6338 -7641 3803 0 0 2668 0 262 

8 408 1760 20169 610 2803 358 1 8 0 0 

9 10288 1489382 285 -3677 48 0 0 112 0 18 

10 9 452 245 -86 12 0 0 156 0 18 

 

Table 5.6.  Columns 10 to 20 of the coefficient matrix of the self orthogonality 
equations derived from the stiffness orthogonality of the ideal GARTEUR structure 

EQUATION 
NO 

VERTICAL STABILIZER HORIZONTAL STABILIZER 

rsc3  rsd3  rse3
rsf3

rsg3  rsc4  rsd4  rse4  rsf4  rsg4

1 0 0 0 0 0 0 0 0 0 0 

2 0 24932 0 0 0 3 66 0 0 0 

3 0 265363 0 0 14 22 2005 0 0 0 

4 1 0 0 0 0 0 6 0 0 0 

5 0 132216 0 0 0 11 1153 0 0 0 

6 0 0 0 0 0 0 2 0 0 0 

7 0 29550 0 0 1674 1 1623 0 0 0 

8 2 0 4 0 0 0 12 0 0 0 

9 0 917887 0 0 898 17 44327 0 0 0 

10 0 1630 0 0 792830 0 193 31 0 0 

___________________________________________________________________ 

*Coefficient matrix given in Tables 5.5 and 5.6 has been obtained by scaling up the actual coefficient 

matrix with 107 to clearly compare order of magnitude of coefficients. 
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To get a better understanding, the coefficients of the first self orthogonality equation 

illustrated at Tables 5.5 and 5.6 may be observed. The largest coefficient of the first 

equation belongs to the 1EI  parameter of the FE elements of the wing and the 

coefficients of all other structural parameters are nearly zero. This indicates that 1EI  

is the only ‘active’ parameter that contributes to the strain energy of the first mode 

and all other FE parameters remain ‘passive’. 

Of course, all of the structural parameters do not have the same order of magnitude. 

For example, 1EI  of the fuselage is 103 times larger than 1EI  parameter of the wing. 

The above interpretation of the structural identification equations can be questioned 

as follows: The coefficients of the fuselage parameters given in Tables 5.5 and 5.6 

may be smaller than the wing parameters, but if those coefficients are multiplied with 

their corresponding structural parameters, it may be revealed that the fuselage and 

the wing both contribute an equal amount to the stain energy of the first mode. 

Actually, this is not true, because if the structural parameters of a component such 

as the fuselage get larger, the component becomes stiffer and coefficients of those 

parameters get smaller such that in the limit, the product of the parameters with 

their own coefficients become zero. To demonstrate this, all the coefficients given in 

Tables 5.5 and 5.6 are multiplied with their corresponding structural parameters 

shown in Table 5.2 and results are illustrated in Tables 5.7 and 5.8. 

The most active parameters contributing to the strain energies of the first 10 elastic 

modes of the ideal GARTEUR structure are determined from Tables 5.5 and 5.6, 

and the results are shown in Table 5.9. 

Observation of the Table 5.9 shows that 1EI , eGJ  parameters of the wing and of the 

vertical stabilizer are the most important parameters governing the modal strain 

energies of the ideal GARTEUR structure for the first 10 elastic modes.  

Although the coefficients of the passive FE parameters appearing in the self 

orthogonality equations are nearly zero, when those equations are solved together 

with the cross orthogonality equations, nearly all of the unknown parameters of the 

FE model are determined accurately. Unfortunately, good estimates of the passive 

parameters that do not appear in Table 5.9 are possible only for the ideal 

GARTEUR structure because the structural identification equations are derived from 

the pure and complete eigenvectors of the FE model. 
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Table 5.7. Products of the FE parameters of the wing and fuselage with their 
coefficients appearing in the self orthogonality equations related to the stiffness 
orthogonality 

EQN 
NO 

WING FUSELAGE 

EAc rs
1 11 EId rs  21 EIers  121 EIf rs

e
rs GJg1 EAcrs

2  12 EId rs  22 EIers  122 EIf rs  e
rsGJg2

1 0 1245 0 0 0 0 0 0 0 0 

2 0 8289 12 0 0 0 2 24 0 97 

3 2 17154 1693 0 15184 0 11 1956 0 1025 

4 0 1640 281 0 51914 0 20 76 0 0 

5 0 9515 59 0 36433 0 5 200 0 302 

6 0 73672 4 0 40 1 38 0 0 0 

7 9 5892 36970 0 832 0 1 29182 0 9053 

8 3 103 117654 0 613 19 93 86 0 0 

9 72 86881 1663 0 10 0 30 1226 0 606 

10 0 26 1427 0 3 0 0 1702 0 605 

 

Table 5.8. Products of the FE parameters of the vertical and horizontal stabilizers 
with their coefficients appearing in the self orthogonality equations related to the 
stiffness orthogonality 

EQN 
NO 

VERTICAL STABILIZER HORIZONTAL STABILIZER 

EAc rs
3  13 EId rs  23 EIers

123 EIf rs
e

rs GJg3 EAc rs
4 14 EId rs

24 EIers  124 EIf rs  e
rs GJg4  

1 0 0 0 0 0 0 0 0 0 0 

2 0 1454 0 0 0 0 4 0 0 0 

3 0 15480 0 0 3 0 117 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 

5 0 7713 0 0 0 0 67 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 

7 0 1724 0 0 366 0 95 0 0 0 

8 0 0 21 0 0 0 1 0 0 0 

9 0 53543 0 0 196 0 2586 0 0 0 

10 0 95 0 0 173339 0 11 184 0 0 

 

In reality, coefficient matrix will be degraded by the experimental error and the 

truncated nature of the experimental normal modes. As a matter of fact, coefficients 

of the passive parameters shall be more error prone than coefficients of the active 

parameters and no valuable information will be determined for the passive terms of 

the structural identification equations from the real experimental data. But this is not 
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a very important problem because the correlation between the FE model and the 

experimental data of an aircraft structure is highly dependent on the accurate 

estimates of the active parameters.  

 

Table 5.9. Active parameters of the structural identification equations  

MODE NO 

ACTIVE PARAMETERS 

WING FUSELAGE 
VERTICAL 

STABILIZER 
HORIZONTAL 
STABILIZER 

1 1EI  - - - 

2 1EI  - 1EI  - 

3 eGJEI ,1  - 1EI  - 

4 eGJEI ,1  - - - 

5 eGJEI ,1  - 1EI  - 

6 1EI  - - - 

7 eGJEIEI ,, 21 2EI  1EI  - 

8 2EI  - - - 

9 1EI  - 1EI  1EI  

10 - - eGJ  - 

 

Since in reality, the coefficient matrix of the cross orthogonality equations are more 

error sensitive than the coefficient matrix of the self orthogonality equations, it would 

be useful to be able to extract accurate estimates of the active parameters given in 

Table 5.9 directly from the self orthogonality equations. Although there are less self 

orthogonality equations than unknowns, by using the pseudo inverse of the 

coefficient matrix, it is possible to obtain a unique solution as explained below: 

Consider the following linear matrix equation in which the number of equations m  is 

less than the number of unknowns n : 

      1mxmxn bxA   (5.7) 

Multiplying both sides of the equation (5.7) by the transpose of the coefficient matrix  

 A  the following expression is obtained: 

          1mx
T
nxmmxn

T
nxm bAxAA   (5.8) 
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Then taking the inverse of the matrix product at the left hand side of the equation 

(5.8), a unique solution for the unknown terms  x  is obtained as follows: 

           1mx
T1T bAAAx


  (5.9) 

The pseudo inverse of the coefficient matrix  A  is then defined as: 

        T1T AAAA
   (5.10) 

When the number of equations is greater than the number of unknowns, pseudo 

inverse is equivalent to the least square solution procedure. But in the reverse case, 

the interpretation of the pseudo inverse also changes as follows: 

Consider the first self orthogonality equation derived from the first elastic mode of 

the ideal GARTEUR structure as below: 

    2
1

11
4

11
4

11
1

11
1

11
1

11
1

11
1 xgcgfedc   (5.11) 

The pseudo inverse solution of equation (5.11) is given below: 

 

 
     

 T11
4

11
4

11
1

11
1

11
1

11
1

11
1211

1

211
1

211
1

2
1 gcgfedc

gdc
x 

 




 


  (5.12) 

 

Expression given in (5.12) indicates that the solution corresponding to each 

unknown term is weighted by the coefficient of that unknown given in equation 

(5.11). As a result, while an ‘active’ parameter with a greater coefficient is getting a 

higher credit, the solution turns out to be trivial for a ‘passive’ parameter with zero 

coefficient.   

As shown in Tables 5.5 and 5.6, the only active parameter in the first equation is 1EI  

parameter of the wing elements and this is the only non-zero solution predicted by 

the pseudo inverse solution mentioned above. The estimates of all other parameters 

turn out to be zero. 
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Pseudo inverse solution of the self orthogonality equations related to the stiffness 

orthogonality of the ideal GARTEUR structure is very interesting: All of the active 

parameters given in Table 5.9, except 1EI  of the horizontal stabilizer, are very 

accurately estimated. On the other hand, either poor estimates or the trivial solution 

is obtained for the passive FE parameters.  

By using the pseudo-inverse solution of the active parameters (see Table 5.9) 

obtained from the 10 self orthogonality equations and by assigning large arbitrary 

values for the passive FE parameters (except EI12 parameters that must be taken 

zero with the assumption of symmetric beam element cross sections), it is possible 

to derive a stiffness matrix for the FE model of the ideal GARTEUR structure. Since 

the 10 self orthogonality equations related to the ‘mass orthogonality’ still gives 

exact solution for the A  and xAI parameters, the mass matrix of the FE model is 

perfectly determined. The comparison of the eigenvectors of the resultant FE model 

with the simulated-experimental modal data via ‘Modal Assurance Criterion’ (MAC) 

is given in Figure 5.5. The natural frequencies of the FE model are compared with 

the simulated-experimental natural frequencies in Table 5.10. 

 

Figure 5.5. MAC matrix between the simulated-experimental modes and 
eigenvectors of the FE model of the ideal GARTEUR structure identified from the 
self orthogonality equations in case of the 4 element groups 
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Table 5.10. Comparison of the simulated-experimental natural frequencies and 
natural frequencies of the FE model of the ideal GARTEUR structure identified from 
the self orthogonality equations in case of the 4 element groups 

Simulated-
Experimental 

Modes 

Simulated-
Experimental 

Natural 
Frequencies (Hz)

Corresponding 
Modes of the 
Identified FE 

Model  

Natural 
Frequencies of 
the Identified 

FE Model (Hz) 

Difference in 
the Natural 

Frequencies 
(%) 

1 5.61 1 5.61 0.00 

2 15.82 2 15.93 0.67 

3 36.51 3 36.86 0.95 

4 36.96 4 36.96 0.01 

5 37.09 5 37.61 1.41 

6 43.22 6 43.22 -0.01 

7 46.16 7 49.61 7.46 

8 54.81 8 54.75 -0.10 

9 60.98 9 62.29 2.14 

10 67.03 10 67.26 0.33 
 

 

Obviously, the FE model derived from the solution of the self orthogonality equations 

is in good correlation with the simulated-experimental modes of the ideal GARTEUR 

structure except modes 3 and 5. However, by using the iterative procedure 

mentioned in Chapter 3, it is possible to achieve a much better FE model.   

Two important notices to avoid misinterpretation of the results obtained in this 

subsection are given below: 

  In the subsequent sections, it will be shown that pseudo-inverse solution of the 

self orthogonality equations does not give good estimates of all active FE 

parameters in the case of real test data as in the case of ideal GARTEUR 

structure. As a result, in a real problem, self orthogonality equations must be 

solved together with cross orthogonality equations.  

 In case of a real test data, accurate estimates of the active FE parameters may 

be obtained, but estimates of passive parameters are usually very poor. In such 

a case, the general approach (introduced first time in this section) to construct a 

FE model is to assign arbitrary large values (several orders of magnitude 

‘larger’ than values of the active parameters) to the passive parameters. Since 

the modes of interest are insensitive to the values of passive structural well with 

the experimental data. 
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5.2.4. Solutions of the Structural Identification Equations in Case of Large 

Number of Element Groups 

So far, the structural identification equations have been derived by dividing elements 

of the FE model of the ideal GARTEUR structure into 4 groups. This is not a realistic 

assumption in case of a real aircraft structure. For that reason, the performance of 

the structural identification equations reconstructed for different group numbers is 

studied below: 

By using 10 simulated-experimental normal modes, it is possible to derive 55 

structural identification equations from the stiffness orthogonality and another 55 

equations from the mass orthogonality as mentioned previously. In case of the 

stiffness orthogonality equations, each element group brings 5 unknown 

parameters, and so the ideal GARTEUR structure can be divided into maximum 11 

element groups in order to keep the number of unknowns below the number of 

equations. 

By dividing the wing of the ideal GRTEUR structure into more and more groups, 

structural identification equations have been reconstructed for 5, 6, 7, 8 and 9 

groups cases. As a result, up to the 6 element groups, FE parameters are nearly 

perfectly determined. MAC comparison of the eigenvectors of the identified FE 

model with the simulated-experimental normal modes for the 6 element groups is 

shown in Figure 5.6. Moreover, natural frequencies of the FE model compared to 

the corresponding simulated-experimental natural frequencies are illustrated in 

Table 5.11.  

On the other hand, starting from the 7 element groups, solution of the 55 structural 

identification equations related to the stiffness orthogonality does not give 

sufficiently accurate estimates of certain critical FE parameters such as eGJ  of the 

wing elements and it becomes impossible to determine an initial FE model accurate 

enough to converge to a much better FE model by using the iterative solution 

procedure explained in Chapter 3.  

For element groups greater than 4, pseudo-inverse solution of the self orthogonality 

equations does not give accurate results and determination of an initial FE model 

becomes impossible once again.  

It is concluded that constructing and solving structural identification equations for 

different group definitions may be a good practice to check reliability of the initial FE 
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parameter estimates. But one must be careful in increasing number of element 

groups because it may degrade initial estimates of certain active structural 

parameters.  

 

 

 

Figure 5.6. MAC matrix between the simulated-experimental modes and 
eigenvectors of the identified FE model of the ideal GARTEUR structure in case of 
the 6 element groups 
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Table 5.11. Comparison of the natural frequencies of the FE model with the 
simulated-experimental natural frequencies of the ideal GARTEUR structure in case 
of the 6 element groups 

Simulated-
Experimental 

Modes 

Simulated-
Experimental 

Natural 
Frequencies (Hz)

Corresponding 
Modes of the 
Identified FE 

Model  

Natural 
Frequencies of 
the Identified 

FE Model (Hz) 

Difference in 
the Natural 

Frequencies 
(%) 

1 5.61 1 5.61 0.00 

2 15.82 2 15.83 0.02 

3 36.51 3 36.54 0.08 

4 36.96 4 36.94 -0.05 

5 37.09 5 37.10 0.03 

6 43.22 6 43.22 0.00 

7 46.16 7 46.12 -0.08 

8 54.81 8 54.62 -0.34 

9 60.98 9 61.49 0.83 

10 67.03 10 67.03 0.00 

 

5.2.5. Reduction of the Coefficient Matrix of the Stiffness Orthogonality 

Equations 

Up to this point, the structural identification equations related to the stiffness 

orthogonality have been derived by introducing 5 unknown terms per element group 

as shown in equation (4.2). But, definitions of the ‘active’ and ‘passive’ parameters 

introduced early in this section have shown that experimental normal modes and 

natural frequencies of a structure within the frequency range of interest are more 

sensitive to certain parameters than others. Accordingly, for the ideal GARTEUR 

structure, it has been shown that using relatively accurate estimates for the active 

parameters and arbitrary values for the passive parameters several order of 

magnitude larger than values of active parameters, it is possible to construct a quite 

‘good’ initial FE model that can be updated to converge to a much better FE model 

correlating well with the experimental data. All these observations eventually raised 

the following critical question: Is it possible to reformulate the structural identification 

equations related to the stiffness orthogonality in a manner to reduce the number of 

unknowns down to the number of the active parameters? This reduction is important 

for the following reason: When the structural identification equations are derived 

from the real experimental data, coefficients of the passive structural parameters are 

degraded in a manner to frustrate solutions of the active parameters. Solutions of 
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the reduced structural identification equations of the ideal GARTEUR structure are 

studied below: 

In case of the 4 element groups, mass orthogonality equations does not necessitate 

any reduction because there are 55 equations to solve only for 8 unknowns and 

solutions are very accurate. On the other hand, the coefficient matrix of the stiffness 

orthogonality equations are reduced by removing all the columns that belong to the 

finite elements of the fuselage and horizontal stabilizer, and also the coefficients of 

the EA  and 12EI terms that belong to the finite elements of the wing and vertical 

stabilizer. As a result, the number of unknowns is reduced from 20 to 6. Solutions of 

the reduced structural identification equations give very accurate estimates of the 6 

active parameters. By using the active parameter estimates and arbitrary large 

numbers for the passive parameters, an initial FE model is constructed. The MAC 

comparison of that initial FE model with the simulated-experimental modes is given 

in Figure 5.7. Moreover, natural frequencies of the FE model compared to the 

corresponding simulated-experimental natural frequencies are illustrated in Table 

5.12. 

 

Figure 5.7. MAC comparison of the simulated-experimental modes with the 
eigenvectors of the initial FE model derived from the reduced stiffness orthogonality 
equations of the ideal GARTEUR structure in case of the 4 element groups 
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Table 5.12. Comparison of the simulated-experimental natural frequencies with the 
natural frequencies of the initial FE model derived from the reduced stiffness 
orthogonality equations of the ideal GARTEUR structure in case of the 4 element 
groups 

Simulated-
Experimental 

Modes 

Simulated-
Experimental 

Natural 
Frequencies (Hz)

Corresponding 
Modes of the 

Initial FE Model 

Natural 
Frequencies of 
the Initial FE 
Model (Hz) 

Difference in 
the Natural 

Frequencies 
(%) 

1 5.61 1 5.67 0.98 

2 15.82 2 16.05 1.44 

3 36.51 3 37.05 1.48 

4 36.96 4 37.11 0.40 

5 37.09 3 37.05 -0.09 

6 43.22 6 43.63 0.94 

7 46.16 9 73.42 59.05 

8 54.81 10 74.69 36.27 

9 60.98 7 61.96 1.60 

10 67.03 8 67.31 0.41 

 

Obviously, the initial FE model does not correlate well with the simulated- 

experimental data of the ideal GARTEUER structure. But, by using the iterative 

procedure explained in Chapter 3 it is possible to force that initial model to converge 

to an FE model that correlates perfectly with the simulated-experimental data. The 

history plots of the wing and vertical stabilizers are shown in Figures 5.8 and 5.9. 

The MAC comparison of the eigenvectors of the converged FE model with the 

simulated-experimental modes is given in Figure 5.10. Moreover, natural 

frequencies of the converged FE model are compared with the corresponding 

simulated-experimental natural frequencies in Table 5.13. It must be noticed that to 

improve readability of the history plots, structural parameters shown in Figures 5.8 

and 5.9 have been normalized with the parameters calculated in the last iteration. 

The superscript ‘ * ’  in *
1EI , *

2EI  and *
eGJ  parameters indicates that they have been 

subjected to the afore mentioned normalization. 

Comparison of Figures 5.7 and 5.10 as well as Tables 5.12 and 5.13 shows that the 

iterative solution procedure explained in Chapter 3 proves to be very successful. 
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Figure 5.8. History plots of the structural parameters that belong to the wing 
elements of the FE model of the ideal GARTEUR structure in case of the 4 element 
groups 
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Figure 5.9. History plots of the structural parameters that belong to the vertical 
stabilizer elements of the FE model of the ideal GARTEUR structure in case of the 4 
element groups 
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Figure 5.10. MAC comparison of the simulated-experimental modes with the 
eigenvectors of the updated FE model of the ideal GARTEUR structure in case of 
the 4 element groups 

 

Table 5.13. Comparison of the simulated-experimental natural frequencies with the 
natural frequencies of the updated FE model of the ideal GARTEUR structure in 
case of the 4 element groups 

Simulated-
Experimental 

Modes 

Simulated-
Experimental 

Natural 
Frequencies (Hz)

Corresponding 
Modes of the 
Updated FE 

Model  

Natural 
Frequencies of 

the Updated 
FE Model (Hz) 

Difference in 
the Natural 

Frequencies 
(%) 

1 5.61 1 5.61 -0.11 

2 15.82 2 15.71 -0.70 

3 36.51 3 36.21 -0.82 

4 36.96 4 37.03 0.18 

5 37.09 5 37.04 -0.12 

6 43.22 6 43.19 -0.09 

7 46.16 7 46.18 0.04 

8 54.81 8 54.81 0.00 

9 60.98 9 61.07 0.14 

10 67.03 10 67.03 0.00 
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The solution of the reduced stiffness orthogonality equations in case of 5 and higher 

element groups does not give accurate estimates for all of the active parameters as 

in the case of the 4 element groups. Especially, for eGJ  parameters of the wing 

elements very poor estimates are obtained. As a result, an initial FE model derived 

from the structural identification equations of element groups greater than 4 cannot 

converge to an FE model correlating well with the experimental data. 

 

5.2.6. Determination of the FE Model of the Ideal GARTEUR Structure from 

the Simulated-Experimental Normal Modes Truncated in Terms of the 

Measurement Dofs 

The ideal GARTEUR structure concept was very useful in developing a deep 

understanding of the structural identification and model updating theory developed 

within the scope of this thesis study. But, the eigenvectors used in the derivation of 

the structural identification equations were including all of the 264 dofs of the ideal 

GARTEUR structure and they were free from any experimental error. However, the 

real test data brings extra challenges to the theory developed herein, for the 

following reasons: 

 A real structure has infinitely many dofs and a very limited number of them can 

be measured during a modal test. For example, the experimental mode shapes 

determined from the modal test of the SM-AG 19 test bed described in section 

5.2.1 consist of 66 measurement dofs. 

 In a real modal test, rotational dofs cannot be measured. The 66 measurement 

dofs mentioned above are only composed of the translational dofs. 

 Real modal test data includes experimental error. 

Before applying the theory to a real test data, the effect of the truncated nature of 

the experimental modes on the solutions of the structural identification equations will 

be studied as follows:   

The ideal GARTEUR structure is an FE model that consists of 43 elements, 44 

nodes and 264 dofs as mentioned previously in this chapter. The FE mesh has been 

constructed by connecting measurement points of the real test setup introduced in 

section 5.2.1 with Euler-Bernoulli beam elements. Accordingly, nodal points of the 



84 

 

FE model coincide with the measurement points of the real test setup. As a result, in 

order to simulate the truncation of the real mode shapes in terms of measurement 

dofs, it is sufficient to truncate the simulated-experimental modes of the ideal 

GARTEUR structure in terms of rotational dofs and some of the translational dofs 

that could not been measured in the real modal test. This way, the dofs of the 

simulated-experimental modes are reduced from 264 to 66. Finally, the new modal 

test scenario is obtained as follows: 

The first 10 elastic modes of the ideal GARTEUR structure that consist of 66 

measurement dofs and corresponding natural frequencies are the only experimental 

data available to derive the FE model of the ideal GARTEUR structure.  

As explained in Chapter 3, the first step of the structural identification is the 

construction of an FE mesh by connecting measurement points with Euler-Bernoulli 

beam elements as given in Figure 5.4. The resultant FE mesh consists of 264 dofs. 

In order to derive the structural identification equations, the simulated-experimental 

modes have to be expanded from 66 to 264 dofs. This can be accomplished by 

using the Guyan’s Expansion. But the Guyan’s Expansion requires the global 

stiffness matrix of the FE model. This means that the stiffness matrix is required to 

be used by its own solution procedure. In order to solve this dilemma, an arbitrary 

stiffness matrix sharing the same connectivity as the actual stiffness matrix will be 

used. This brings the definition of the ‘unit GARTEUR structure’. Unit GARTEUR 

structure is an FE model having the same mesh as the actual FE model but the 

entire beam elements consist of square cross sections of unit area. Using the 

stiffness matrix of the unit GARTEUR structure, it is possible to derive the 

transformation matrix dictated by the Guyan’s Expansion method. The 66 

measurement dofs of the pseudo-experimental modes are then expanded to the 

size of the FE model.  

The rotational dofs of the wing elements calculated from the Guyan’s Expansion of 

the truncated simulated-experimental modes are compared to the original rotational 

dofs of the ideal GARTEUR structure for the first 6 elastic modes in Figures 5.11 to 

5.13. Observation of Figures 5.11 to 5.13 shows that slave coordinates cannot be 

determined exactly by using the Guyan’s Expansion even if the simulated-

experimental modes are free from any experimental error. Errors appearing in the 

estimates of the slave coordinates will also affect the accuracy of the structural 

identification equations in a negative sense as discussed below: 
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Figure 5.11. Comparison of the rotational dofs of the wing elements calculated from 
the Guyan’s Expansion with the original rotational dofs about the global x-axis of the 
ideal GARTEUR structure 
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Figure 5.12. Comparison of the rotational dofs of the wing elements calculated from 
the Guyan’s Expansion with the original rotational dofs about the global y-axis of the 
ideal GARTEUR structure 
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Figure 5.13. Comparison of the rotational dofs of the wing elements calculated from 
the Guyan’s Expansion with the original rotational dofs about the global z-axis of the 
ideal GARTEUR structure 
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In case of 4 and higher element groups, solution of the 55 mass orthogonality 

equations derived from the simulated-experimental modes were always exact up to 

this point. But, if the mass orthogonality equations are constructed from the 

‘expanded’ simulated-experimental modes, the accuracy of the A  and xAI  

parameter estimates drop considerably. In order to improve the accuracy of the 

parameter estimates, a supplementary equality constraint is imposed to the least 

square solution of the mass orthogonality equations. That equality constraint is a 

single equation dictating that the sum of the masses of the entire element groups is 

equated to the total mass of the ideal GARTEUR structure. Formulation of such an 

equation is not difficult for a real aircraft structure as well, because during a GVT it is 

possible to measure the total mass of the aircraft structure. 

Least square solution of the mass orthogonality equations supported with the mass 

equality constraint mentioned above improves the accuracy of A  parameter 

estimates up to 6 element groups case. The xAI  parameters cannot be estimated 

accurately but this is not a significant problem, because those parameters do not 

play a critical role in the determination of the global mass matrix. On the other hand, 

pseudo-inverse solution of 10 self orthogonality equations does not give sufficiently 

accurate estimates for A  parameter of each element group even in the case of 4 

element groups. 

In the light of the studies mentioned above, regarding the mass orthogonality 

equations, it is concluded that expansion of the simulated-experimental modes 

degrade parameter solutions considerably. To improve the accuracy of the 

parameter estimates, the least square solution of the mass orthogonality equations 

must be accompanied with the mass equality constraint. Mass orthogonality 

equations formulated for element groups larger than 6 do not give good results and 

pseudo-inverse solution of the self orthogonality equations is not an alternative 

solution technique even in case of 4 element groups. 

Study of the stiffness orthogonality equations derived from the ‘expanded’ 

simulated-experimental modes also leads up to several important conclusions as 

stated below: 

If the coefficients of passive structural parameters are kept within the coefficient 

matrix, solutions of certain active parameters given in Table 5.9, especially eGJ  of 

the wing cannot be determined. But if the coefficient matrix is reduced by removing 
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the coefficients of the passive parameters as done in the previous section, active 

parameters are determined more accurately. This observation justifies the following 

hypothesis mentioned in the previous sections: Coefficients of passive structural 

parameters are more prone to errors coming from the expansion of truncated 

experimental modes.  

Solutions of stiffness orthogonality equations formulated for element groups larger 

than 4 cannot predict all of the active parameters. Similarly, the pseudo-inverse 

solution of the self orthogonality equations does not give accurate estimates for 

active parameters even in the case of 4 element groups. 

As a result, in the case of 4 element groups, it is possible to derive an initial FE 

model from the solutions of the mass and stiffness orthogonality equations. MAC 

comparison of that initial model with the simulated-experimental modes is shown in 

Figure 5.14. Comparison of the natural frequencies of the initial FE model with the 

simulated-experimental natural frequencies is illustrated in Table 5.14. 

 

Figure 5.14. MAC comparison of the expanded simulated-experimental modes with 
the eigenvectors of the initial FE model derived from the reduced stiffness 
orthogonality equations of the ideal GARTEUR structure in case of the 4 element 
groups 
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Table 5.14. Comparison of the simulated-experimental natural frequencies with the 
natural frequencies of the initial FE model derived from truncated simulated-
experimental modes in case of the 4 element groups 

Simulated-
Experimental 

Modes 

Simulated-
Experimental 

Natural 
Frequencies (Hz)

Corresponding 
Modes of the 

Initial FE Model 

Natural 
Frequencies of 
the Initial FE 
Model (Hz) 

Difference in 
the Natural 

Frequencies 
(%) 

1 5.61 1 5.75 2.48 

2 15.82 2 16.65 5.22 

3 36.51 6 40.97 12.21 

4 36.96 4 31.27 -15.41 

5 37.09 3 31.16 -15.98 

6 43.22 7 44.25 2.37 

7 46.16 5 34.26 -25.78 

8 54.81 8 55.82 1.85 

9 60.98 9 71.17 16.70 

10 67.03 12 128.12 91.13 
 

Starting from that initial FE model and using the iterative algorithm explained in 

Chapter 3, a very accurate FE model correlating well with the simulated-

experimental data is obtained. History plots of the wing and vertical stabilizer 

parameters throughout the updating procedure are shown in Figures 5.15 and 5.16.  

The MAC comparison of the updated FE model with the simulated-experimental 

data is given in Figure 5.17. Comparison of the natural frequencies of the updated 

FE model with the simulated-experimental natural frequencies is shown in Table 

5.15. 
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Figure 5.15. History plots of the structural parameters that belong to the wing 
elements of the FE model derived from the truncated simulated-experimental modes 
in case of the 4 element groups 
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Figure 5.16. History plots of the structural parameters that belong to the vertical 
stabilizer elements of the FE model derived from the truncated simulated-
experimental modes of the ideal GARTEUR structure in case of the 4 element 
groups 
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Figure 5.17. MAC comparison of the expanded simulated-experimental modes with 
the eigenvectors of the updated FE model derived from the reduced stiffness 
orthogonality equations of the ideal GARTEUR structure in case of the 4 element 
groups 

 

Table 5.15. Comparison of the simulated-experimental natural frequencies with the 
natural frequencies of the updated FE model derived from the truncated pseudo-
experimental modes in case of the 4 element groups 

Simulated-
Experimental 

Modes 

Simulated-
Experimental 

Natural 
Frequencies (Hz)

Corresponding 
Modes of the 
Updated FE 

Model  

Natural 
Frequencies of 

the Updated 
FE Model (Hz) 

Difference in 
the Natural 

Frequencies 
(%) 

1 5.61 1 5.54 -1.35 

2 15.82 2 15.66 -1.01 

3 36.51 3 34.56 -5.35 

4 36.96 4 37.02 0.16 

5 37.09 5 37.04 -0.12 

6 43.22 6 42.75 -1.10 

7 46.16 7 46.19 0.07 

8 54.81 8 54.81 0.00 

9 60.98 9 61.51 0.86 

10 67.03 10 67.03 0.00 
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5.2.7. Determination of the FE Model of the GARTEUR Structure from the Real 

Experimental Data 

So far, by using the ‘ideal GARTEUR structure’ concept, quite a lot of knowledge 

has been gained about the method of the structural identification developed in this 

thesis work. Now, it is the right time to apply the method to the ‘real GARTEUR 

structure’. 

The real experimental data obtained from the modal test of the GARTEUR structure 

consists of the first 10 elastic mode shapes and corresponding natural frequencies 

as mentioned in section 5.2.1. Each mode shape includes 66 measurement dofs. 

Using this experimental data, mass and stiffness orthogonality equations have been 

formulated for different number of element groups starting from 4 and going up to 9. 

Important results are stated below: 

 Relatively accurate initial estimates of the active FE parameters can only be 

obtained in case of 4 element groups.  

 Least square solution of the mass orthogonality equations has to be solved 

with an equality constraint that dictates the total mass of the FE model to be 

equal to the total mass of the real GARTEUR structure. 

 Coefficient matrix of the stiffness orthogonality equations has to be reduced 

by eliminating coefficient of the passive structural parameters. Otherwise, 

active structural parameters cannot be determined accurately. 

 Self and cross orthogonality equations have to be solved altogether because 

this gives much better results than the pseudo-inverse solution of the self 

orthogonality equations. 

The MAC comparison of the eigenvectors of the initial FE model with the real 

experimental mode shapes is shown in Figure 5.18. Moreover, eigenvalues of that 

initial FE model are compared to the experimental natural frequencies in Table 5.16. 
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Figure 5.18. MAC comparison of the real experimental modes with the eigenvectors 
of the initial FE model derived from the reduced stiffness orthogonality equations of 
the GARTEUR structure in case of the 4 element groups 

 

Table 5.16. Comparison of the experimental natural frequencies of the GARTEUR 
structure with the natural frequencies of the initial FE model in case of the 4 element 
groups 

Experimental 
Modes 

Experimental 
Natural 

Frequencies (Hz)

Corresponding 
Modes of the 

Initial FE Model 

Natural 
Frequencies of 
the Initial  FE 
Model (Hz) 

Difference in 
the Natural 

Frequencies 
(%) 

1 5.65 1 5.11 -9.49 

2 15.73 2 14.09 -10.45 

3 36.79 5 37.77 2.66 

4 37.51 3 32.43 -13.53 

5 37.65 4 32.47 -13.75 

6 43.73 6 39.62 -9.39 

7 50.32 8 110.95 120.48 

8 55.00 12 185.73 237.69 

9 60.66 7 68.93 13.64 

10 68.23 19 306.35 349.00 
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After the application of the iterative solution procedure, an ultimate FE model 

correlating well with the experimental data is achieved. The history plots of the 

structural parameters of the wing and vertical stabilizer elements throughout the 

iteration procedure are shown in Figures 5.19 and 5.20. 
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Figure 5.19. History plots of the structural parameters that belong to the wing 
elements of the FE model derived from the real experimental data of the GARTEUR 
structure in case of the 4 element groups 

 



97 

 

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

iteration number

E
I 1*

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

iteration number

E
I 2*

0 50 100 150 200 250 300 350 400
0

5

10

15

20

iteration number

G
J e

*

 

Figure 5.20. History plots of the structural parameters that belong to the vertical 
stabilizer elements of the FE model derived from the real experimental data of the 
GARTEUR structure in case of the 4 element groups 

 

The MAC comparison of the eigenvectors of the updated FE model with the 

experimental mode shapes is given in Figure 5.21. Moreover, natural frequencies of 

the updated FE model are compared with the experimental natural frequencies in 

Table 5.17.  

Detailed comparisons of the experimental mode shapes with the eigenvectors of the 

updated FE model are also illustrated in Figures 5.22 to 5.25. 
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Figure 5.21. MAC comparison of the real experimental modes with the eigenvectors 
of the updated FE model of the GARTEUR structure in case of the 4 element groups 

 

 

Table 5.17. Comparison of the experimental natural frequencies of the GARTEUR 
structure with the natural frequencies of the updated FE model in case of the 4 
element groups 

Experimental 
Modes 

Experimental 
Natural 

Frequencies (Hz)

Corresponding 
Modes of the 
Updated FE 

Model  

Natural 
Frequencies of 

the Updated 
FE Model (Hz) 

Difference in 
the Natural 

Frequencies 
(%) 

1 5.65 1 5.61 -0.71 

2 15.73 2 14.51 -7.74 

3 36.79 3 35.26 -4.15 

4 37.51 4 37.58 0.17 

5 37.65 5 37.59 -0.15 

6 43.73 6 43.48 -0.57 

7 50.32 7 50.33 0.02 

8 55.00 8 55.01 0.01 

9 60.66 9 61.08 0.69 

10 68.23 10 68.23 0.00 
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Figure 5.22. Detailed comparison of the experimental mode shapes of the 
GARTEUR structure with the eigenvectors of the updated FE model in case of the 4 
element groups (elastic modes 1 to 3) 
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Figure 5.23. Detailed comparison of the experimental mode shapes of the GARTEUR 
structure with the eigenvectors of the updated FE model in case of the 4 element groups 
(elastic modes 4 to 6) 
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Figure 5.24. Detailed comparison of the experimental mode shapes of the 
GARTEUR structure with the eigenvectors of the updated FE model in case of the 4 
element groups (elastic modes 7 to 9) 
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Figure 5.25. Detailed comparison of the experimental mode shapes of the 
GARTEUR structure with the eigenvectors of the updated FE model in case of the 4 
element groups (elastic mode 10) 

 

 

5.2.8. Increasing the Number of Groups During the Model Updating 

Procedure 

In the previous section, it has been observed that ‘initial’ estimates of the active FE 

parameters cannot be obtained accurately if the structural identification equations 

are constructed by introducing more than 4 finite element groups. This was mainly 

due to the experimental error and truncated nature of the experimental normal 

modes. Then, during the iterative procedure as well, structural identification 

equations have been reconstructed with 4 element groups. 

Actually, in the iterative procedure, stiffness orthogonality equations are 

reconstructed from the FE counterparts of the experimental modes. As a result, 

experimental error and error due to the Guyan’s Expansion are eliminated. For that 

reason, during the model updating phase, structural identification equations can be 

constructed by dividing finite elements into more than 4 groups. This is important 
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because dividing finite elements into 4 groups is not realistic in case of a real aircraft 

structure. Increasing element groups will bring extra flexibility to the iterative solution 

procedure and hopefully, a much better correlation between the ultimate FE model 

and the experimental data will be obtained for a real aircraft structure.  

Before going into the case study of the real aircraft structure, the idea of using more 

element groups in the iterative solution procedure has been tested for the 

GARTEUR structure as follows: 

Since using more than 4 element groups do not improve ‘initial’ estimates of the 

active FE parameters, the iterative procedure has been initiated with the same initial 

FE model derived in section 5.2.7. Hence, the MAC comparison of the initial FE 

model with the experimental data is already given in Figure 5.18. Similarly, the 

comparison of the natural frequencies of the initial model is given in Table 5.16. 

However, during the updating procedure of the FE model, structural identification 

equations have been formulated by dividing wing elements into 4 groups instead of 

a single group. The group definitions of the fuselage, vertical and horizontal 

stabilizers were not changed. As a result, the iterative solution procedure has been 

accomplished with a total of 7 groups instead of 4. The results are quite satisfactory. 

The MAC comparison of the ultimate FE model with the experimental mode shapes 

is given in Figure 5.26. Moreover natural frequencies of the updated model are 

compared to the experimental natural frequencies in Table 5.18. The detailed 

comparisons of each eigenvector with the corresponding experimental mode shape 

are shown in Figures 5.27 to 5.30. 
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Figure 5.26. MAC comparison of the real experimental modes with the eigenvectors 
of the updated FE model of the GARTEUR structure in case of using 7 element 
groups in the iterative solution procedure 

 

Table 5.18. Comparison of the experimental natural frequencies of the GARTEUR 
structure with the natural frequencies of the updated FE model in case of using 7 
element groups in the iterative solution procedure 

Experimental 
Modes 

Experimental 
Natural 

Frequencies (Hz)

Corresponding 
Modes of the 
Updated FE 

Model  

Natural 
Frequencies of 

the Updated 
FE Model (Hz) 

Difference in 
the Natural 

Frequencies 
(%) 

1 5.65 1 6.27 10.95 

2 15.73 2 15.70 -0.21 

3 36.79 3 36.79 0.00 

4 37.51 4 37.57 0.17 

5 37.65 5 37.59 -0.16 

6 43.73 6 43.73 0.00 

7 50.32 7 50.32 0.00 

8 55.00 8 55.01 0.01 

9 60.66 9 60.67 0.01 

10 68.23 10 68.23 0.00 
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Figure 5.27. Detailed comparison of the experimental mode shapes of the 
GARTEUR structure with the eigenvectors of the updated FE model in case of using 
7 element groups during the iterative solution procedure (elastic modes 1 to 3) 
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Figure 5.28. Detailed comparison of the experimental mode shapes of the 
GARTEUR structure with the eigenvectors of the updated FE model in case of using 
7 element groups during the iterative solution procedure (elastic modes 4 to 6) 
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Figure 5.29. Detailed comparison of the experimental mode shapes of the 
GARTEUR structure with the eigenvectors of the updated FE model in case of using 
7 element groups during the iterative solution procedure (elastic modes 7 to 9) 
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Figure 5.30. Detailed comparison of the experimental mode shapes of the 
GARTEUR structure with the eigenvectors of the updated FE model in case of using 
7 element groups during the iterative solution procedure (elastic mode 10) 

 

5.3. REAL  AIRCRAFT STRUCTURE 

In this second case study, the method developed in Chapter 3 is applied to 

determine FE model of a real aircraft structure by using measured modes obtained 

from its Ground Vibration Test (GVT).  

The application of the method starts with an FE mesh constructed by connecting 

measurement points of the aircraft structure with 3 D Euler-Bernoulli beam elements 

as shown in Figures 5.31 and 5.32. The FE mesh consists of 232 beam elements, 

144 nodes and 864 dofs. 

GVT of an aircraft structure is accomplished for different configurations such as 

empty aircraft, aircraft filled with fuel, aircraft loaded with a munition etc. The 

experimental data used in this case study consists of the first 10 measured mode 

shapes using 101 measurement dofs and corresponding natural frequencies of the 

empty aircraft configuration.   
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Figure 5.31. Top view of the FE mesh of a real aircraft structure obtained by 
connecting its GVT measurement points 

 

 

Figure 5.32. Side view of the FE mesh of a real aircraft structure obtained by 
connecting its GVT measurement points 
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After constructing an FE mesh of the aircraft structure, the next step is to determine 

initial estimates of geometric and material properties of the FE model. To do so, first 

of all, 10 measured modes are expanded to the size of the FE model by using 

Guyan’s Expansion with an arbitrary stiffness matrix. The arbitrary stiffness matrix is 

obtained with the same approach used in the case study of the GARTEUR’s scaled 

aircraft model: All beam elements are assigned geometric properties of a square 

cross section of unit area and material properties of aluminum.  

By using 10 measured modes, it is possible to construct at most 55 structural 

identification equations from the mass orthogonality and another 55 equations from 

the stiffness orthogonality. As a result, as previously done in case study of the 

GARTEUR’s scaled  aircraft model, elements of the FE model are classified into 4 

groups with the assumption that elements within the same group have the same 

geometric and material properties. This reduces the number of unknowns below the 

number of equations. Element group definitions are given in Table 5.19. 

 

Table 5.19. Element groups of the FE model of the real aircraft structure 

GROUP NO STRUCTURAL COMPONENT  

1 WING 

2 HORIZONTAL STABILIZER 

3 VERTICAL STABILIZER 

4 FUSELAGE 

 

After deriving structural identification equations, mass orthogonality equations are 

accompanied with an equality constraint that equates total mass of the FE model to 

the total mass of the aircraft structure measured during its GVT. Moreover, 

coefficients of the  gxAI  terms (subscript g stands for group number) are 

eliminated from equations and only  gA  parameters remain as unknowns to be 

determined.  
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On the other hand, stiffness orthogonality equations are reduced by eliminating 

columns of the coefficient matrix that belong to  gEA ,  g12EI  and  geGJ  

parameters. If coefficients of those parameters are included in the stiffness 

orthogonality equations, physically meaningless, negative parameter estimates 

appear in the solution. Moreover, it degrades solutions of the active parameters, 

namely  g1EI , and  g2EI . 

Solutions of the mass orthogonality equations give only estimates of  gA  

parameters, but in order to construct the mass matrix, estimates of  gxAI  are also 

required. In the case study of the GARTEUR’s scaled aircraft model, it was 

observed that   gxAI  are not required to be as accurate as  gA  parameters. As 

a result, rough estimates of  gxAI were determined by calculating  gxI  terms from 

estimates of cross sectional areas  gA . Estimates of  gA terms were calculated by 

assigning density of aluminum to the estimates of  gA  parameters. In case of a 

real aircraft structure, the same approach is used to obtain estimates of  gxAI  

parameters and the global mass matrix of the initial FE model is completely 

determined. 

Finally, the global stiffness matrix of the initial FE model is constructed by using 

estimates of the active structural parameters  g1EI  and  g2EI  determined from the 

stiffness orthogonality equations and by assigning arbitrary values to passive 

structural parameters several orders of magnitude larger than active terms. 

MAC comparison of the eigenvectors obtained from the initial FE model with those 

measured experimentally is given in Figure 5.33. Moreover, percentage differences 

between natural frequencies found from the initial FE model and experimental ones 

are given in Table 5.20.  

Unfortunately, starting with this initial FE model, the iterative solution procedure 

does not converge to an FE model correlating well with experimental data. However, 

by changing initial estimates of active structural parameters with a trial and error 

procedure, it is possible to obtain a much better initial FE model. MAC comparison 

of the eigenvectors obtained from that ‘new’ initial FE model with those measured 

experimentally is given in Figure 5.34. Moreover, percentage differences between 
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natural frequencies found from the ‘new’ initial FE model and experimental ones are 

given in Table 5.21.  

 

Figure 5.33. MAC comparison of experimental modes of a real aircraft structure with 
eigenvectors of its initial FE model in case of 4 element groups 

 

 

Table 5.20. Comparison of natural frequencies of a real aircraft structure with 
natural frequencies of its initial FE model in case of 4 element groups 

Experimental 
Modes 

Corresponding Modes of the 
Initial FE Model  

MAC number
Difference in the Natural 

Frequencies (%) 

1 1 0.92 -8.39 

2 4 0.90 47.28 

3 2 0.53 -12.40 

4 5 0.89 45.68 

5 6 0.59 38.67 

6 5 0.78 20.05 

7 7 0.52 63.99 

8 1 0.66 -57.84 

9 2 0.63 -50.20 

10 9 0.69 48.08 
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Figure 5.34. MAC comparison of experimental modes of a real aircraft structure with 
eigenvectors of its ‘new’ initial FE model in case of 4 element groups 

 

 

Table 5.21. Comparison of natural frequencies of a real aircraft structure with 
natural frequencies of its ‘new’ initial FE model in case of 4 element groups 

Experimental 
Modes 

Corresponding Modes of the 
Initial FE Model  

MAC number
Difference in the Natural 

Frequencies (%) 

1 1 0.94 0.05 

2 2 0.92 0.76 

3 4 0.86 0.04 

4 3 0.97 -10.29 

5 4 0.71 -9.55 

6 5 0.92 -17.54 

7 16 0.52 181.64 

8 1 0.65 -53.95 

9 6 0.42 -16.62 

10 4 0.32 -44.38 

Starting with the ‘new’ initial FE model mentioned above, the iterative solution 

procedure achieves an FE model whose first 4 modes correlate well with 
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experimental data. MAC comparison of that updated FE model with measured 

modes is given in Figure 5.35. Moreover, percentage differences between natural 

frequencies of the updated FE model and experimental natural frequencies are 

given in Table 5.22.  

 

 

Figure 5.35. MAC comparison of experimental modes of a real aircraft structure with 
eigenvectors of its updated FE model in case of 4 element groups 

 

Table 5.22. Comparison of natural frequencies of a real aircraft structure with 
natural frequencies of its updated FE model in case of 4 element groups 

Experimental 
Modes 

Corresponding Modes of the 
Updated FE Model  

MAC number
Difference in the Natural 

Frequencies (%) 

1 1 0.93 -9.44 

2 2 0.84 -5.43 

3 3 0.80 2.89 

4 4 0.91 1.58 

History plots of the structural parameters during the iterative solution procedures are 

given in Figures 5.36 to 5.38. Finally, detailed comparison of the first 4 modes of the 

updated FE model with the corresponding experimental modes are given in Figures 

5.39 to 5.42. 
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Figure 5.36. History plots of the structural parameters that belong to the wing 
elements of the FE model derived from experimental data of a real aircraft structure 
in case of 4 element groups 

 

It is concluded that the method developed herein is a promising technique to 

determine FE models of real aircraft structures but it requires further improvements 

because correlation of the first 4 elastic modes is not sufficient for a reliable flutter 

analysis. Detailed discussion of the results, important conclusions and various 

recommendations for future work to improve the method are given in Chapter 6.  
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Figure 5.37. History plots of the structural parameters that belong to the horizontal 
stabilizer of the FE model derived from experimental data of a real aircraft structure 
in case of 4 element groups 
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Figure 5.38. History plots of the structural parameters that belong to the vertical 
stabilizer of the FE model derived from experimental data of a real aircraft structure 
in case of 4 element groups 
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Figure 5.39. Detailed comparison of the 1st elastic experimental mode shape of a 
real aircraft structure with the 1st elastic mode shape of the updated FE model in 
case of 4 element groups 
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Figure 5.40. Detailed comparison of the 2nd elastic experimental mode shape of a 
real aircraft structure with the 2nd elastic mode shape of the updated FE model in 
case of 4 element groups 
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Figure 5.41. Detailed comparison of the 3rd elastic experimental mode shape of a 
real aircraft structure with the 3rd elastic mode shape of the updated FE model in 
case of 4 element groups 
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Figure 5.42. Detailed comparison of the 4th elastic experimental mode shape of a 
real aircraft structure with the 4th elastic mode shape of the updated FE model in 
case of 4 element groups 
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CHAPTER 6 

 

DISCUSSION, CONCLUSIONS AND 
RECOMMENDATIONS FOR FUTURE WORK 

 

 

6.1. DISCUSSION 

The theory developed in this thesis work aimed to overcome important 

disadvantages of the state-of-the art model updating techniques used to determine 

FE models of real aircraft structures correlating well with experimental modal data. 

One such disadvantage stems from the requirement of a relatively accurate initial 

FE model of the aircraft structure to guarantee convergence to an ultimate FE model 

in good correlation with measured modes. The general trend to satisfy such a 

requirement is to construct a very detailed, complex initial FE model that duplicates 

morphology of a real aircraft as much as possible. Of course, this approach requires 

enormous time and engineering work which makes it a real disadvantage. To 

overcome this problem, may be for the first time, the following critical question that 

attacks the aforementioned prejudice about the complexity level of an initial FE 

model was asked: Is it really a must to conduct the model updating with the 

conventional FE mesh that duplicates the morphology of a real aircraft structure? To 

find an answer, the method developed in this thesis work used a very simple FE 

mesh constructed by connecting measurement points used in the Ground Vibration 

Test (GVT) of an aircraft structure with 3 D Euler Bernoulli beam elements. This 

approach became successful to some extend as discussed in the subsequent 

sections. 

Another disadvantage of currently available model updating techniques is related to 

their iterative updating procedure. Most common indirect model updating methods 

such as the Inverse Eigen Sensitivity Method makes use of sensitivities of 

experimental mode shapes and natural frequencies with respect to FE parameters 

to correct analytical models of aircraft structures. Sensitivity analysis is 
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accomplished by giving small perturbations to structural parameters which result 

some changes in natural frequencies and components of normal modes. The ratio of 

those changes to perturbations of FE parameters gives a measure of sensitivity of 

modal parameters to structural parameters. With that perturbation approach, the 

sensitivity analysis becomes a black box that avoids the analyst to develop a deeper 

understanding about the physical mechanism that makes modal properties more 

sensitive to certain FE parameters than others. At this point, the method developed 

herein opens that black box by converting mass and stiffness orthogonality relations 

of experimental normal modes into appropriate structural identification equations 

that relate FE parameters of an aircraft structure to the experimental natural 

frequencies. In the first case study of Chapter 5 related with the GARTEUR’s scaled 

aircraft model, it is shown that each self orthogonality equation derived from the 

stiffness orthogonality of a mode shape is proportional to a physical quantity, namely 

the strain energy of that mode shape. Coefficient of each structural parameter in a 

self orthogonality equation is a measure of contribution of that parameter to the 

strain energy of the relevant mode. Parameters with large coefficients are called 

‘active’ parameters. On the other hand, parameters with small coefficients are called 

‘passive’ structural parameters. Modal properties are more sensitive to active 

parameters than passive structural parameters. Obviously, structural identification 

equations developed in this thesis work are more useful than perturbation method to 

see the big picture and to choose the most appropriate design parameters in order 

to correct FE model of a real aircraft structure.  

The method of this thesis work also shows that structural identification equations 

mentioned above are very useful both in the initial estimates of FE parameters and 

in the subsequent updating procedure of those parameters to obtain an ultimate FE 

model correlating well with experimental data.  

Although the method developed herein has several advantages over currently 

available model updating methods, it is not perfect. It brings its own challenges and 

drawbacks. All these problems are discussed in the next section. 

 

6.2. CONCLUSIONS 

Considering the theory introduced in Chapter 3 and results of the case studies given 

in Chapter 5, the following conclusions are obtained: 
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 Application of the theory introduced in Chapter 3 to the scaled aircraft model 

developed by GARTEUR gave the opportunity to determine and solve practical 

problems that stem from experimental error and error due to expansion of the 

truncated measured modes. As a result, the method has been improved further 

and by using only the first 10 measured elastic modes of the GARTEUR’s 

scaled aircraft model, dynamically equivalent FE model of that structure 

correlating well with experimental modal data has been obtained successfully. 

 The method of this thesis work showed that it is possible to obtain FE model of a 

real aircraft structure correlating well with experimental data by using a much 

simpler FE mesh than conventional method based on duplicating morphology of 

a real aircraft structure. In the second case study of Chapter 5, an FE model 

whose first 4 elastic modes correlating well with the first 4 measured modes of a 

real aircraft structure has been successfully obtained. 

 Of course, correlation of the first 4 elastic modes is not sufficient for reliable 

aeroelastic analysis of an aircraft structure. For the time being, there are several 

problems that avoid correlation of more than 4 modes: First of all, structural 

identification equations used to determine initial estimates of structural 

parameters are derived from truncated experimental mode shapes. 

Experimental error and error introduced during the expansion of measured 

modes to the size of the FE model considerably degrade solutions of structural 

identification equations. As a result, relatively rough estimates of structural 

parameters are obtained. With these rough parameter estimates, at least in the 

case study of Chapter 5, it was not possible to obtain an initial FE model 

including FE counterparts of all first 10 measured modes of a real aircraft 

structure. Secondly, in order to reduce number of unknown parameters below 

limited number of structural identification equations, FE parameters have been 

classified into few groups with the assumption that elements within the same 

group have the same geometric and material properties. This assumption is not 

very realistic for a real aircraft structure and it imposes too much constraint on 

the correction of the FE parameters. As a result, achieving a much better 

correlation becomes a challenge. 

In any way, it has to be remembered that the method developed herein 

successfully obtained FE model of a real aircraft structure whose first 4 elastic 

modes correlating well with experimental modal data. In doing this, much less 
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effort has been spent than common model updating procedures. For that 

reason, the theory developed herein merits to be studied and improved further 

because if appropriate improvements can be achieved, it is a promising method 

that may replace common model updating techniques in near future. 

Accordingly, some important recommendations for future work to improve the 

method are given in the next section. 

 

6.3. RECOMMENDATIONS FOR FUTURE WORK 

In the method developed herein, structural identification equations used to 

determine initial estimates of FE parameters are derived from experimental normal 

modes expanded the size of the FE model. Currently, the expansion procedure is 

accomplished by using Guyan’s expansion with an arbitrary stiffness matrix. Of 

course, this is not an exact method and it introduces some error to the structural 

identification equations degrading accuracy of initial estimates of FE parameters. As 

an alternative approach, unmeasured degrees of freedom (dofs) of an aircraft 

structure such as rotational dofs can be estimated by fitting surface splines to the 

measured dofs. Smooth surface splines may result more accurate estimates of 

slave coordinates compared to the Guyan’s Expansion that does guarantee 

smoothness of the expanded experimental mode shapes. This approach worth to be 

studied because it may improve accuracy of the structural identification equations 

and hopefully a much better initial FE model may be obtained for an aircraft 

structure. This is important because an accurate initial FE model has a very 

important role on the determination of an ultimate FE model correlating well with 

experimental data. 

Another important recommendation aims to bring some relaxation to the approach 

that divides FE elements into few element groups and that forces elements within 

the same group to have the same geometric and material properties. In the current 

approach, element group are fixed at the beginning of the iterative procedure and 

they are not changed throughout the iterations. As an alternative approach, a 

dynamic group definition that changes throughout the iterative procedure several 

times may be used. This may bring extra flexibility to the updated FE parameters 

and eventually a much better correlation between FE model and experimental data 

may be obtained. 
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 A final recommendation will be made to improve the iterative procedure. In the 

current iterative algorithm, structural identification equations obtained from the 

stiffness orthogonality are constructed by using FE counterparts of experimental 

mode shapes. Unfortunately, in case of a real aircraft structure initial FE model may 

not include FE counterparts of all experimental modes at a good correlation level. In 

such a case, substituting expanded experimental modes with eigenvectors 

representing the same mode shape at a poor correlation level may improve iterative 

procedure.  
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APPENDIX A 

 

VARIATIONAL PRINCIPLES IN STRUCTURAL 

MECHANICS 

 

 

A.1. INTRODUCTION 

The static and/or dynamic equilibrium equations of large and complex structures 

such as an aircraft structure cannot be solved exactly. Therefore, in order to solve 

complex engineering problems, an approximate solution procedure called ‘the finite 

element (FE) method’ has been developed in the last century. In a structural 

mechanical sense, the FE method divides an intricate structural domain into simpler 

subdomains i.e. finite elements and seeks an approximate solution of the governing 

equilibrium equations over each subdomain. Assembly of the subdomain solutions 

finally gives rise to the global solution for the entire structure. 

Since the focal point of this thesis study is the development and investigation of a 

novel method to derive the FE model of a real aircraft structure, it is very meaningful 

to introduce the general procedure followed in the derivation of FE formulation of 

engineering structures. 

The development of the FE method starts with the derivation of the equilibrium 

equations of an engineering structure by an appropriate variational principle. For 

that reason, Appendix A is dedicated to the introduction of two fundamental 

variational principles: ‘Minimization of Total Potential Energy’ and ‘Hamilton’s 

Principle’. 
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A.2. MINIMIZATION OF TOTAL POTENTIAL ENERGY 

‘Minimization of Total Potential Energy’ is a variational principle that applies only to 

elastic (linear or nonlinear) continua. Its mathematical formulation starts with the 

following implicit definition of the strain energy function at a point in a structure: 

ij

0
ij

U




  (A.1) 

where 0U  is the strain energy, ij  are the stress components and ij  are the strain 

components. 

Reformulating equation (A.1), the definition of the strain energy can be put in an 

explicit form as follows: 




 ij

0 ijij0 dU  (A.2) 

For linear elastic bodies, the integral expression of equation (A.2) is evaluated as 

follows: 

ijij0 ijij 2

1
d

ij 


 (A.3) 

The total strain energy of a linear elastic structure over its entire volume is then 

expressed as below: 

 
V ijijV 0 dV

2

1
dVUU  (A.4) 

The total strain energy is nothing but the internal reaction of a structure to the 

externally applied body and surface forces. And the potential energy of the external 

body and surface traction forces is given as follows: 

 
S iiV ii dSutdVufV  (A.5) 

where if  are the components of the total body force per unit volume, it  are the 

components of the total surface traction force per unit surface and iu  are the 

components of the displacement field. 
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The total potential energy of a linear elastic body in 3 D is defined as: 

VU   (A.6) 

Hence, 

 
S iiV iiV ijij dSutdVufdV

2

1
 (A.7) 

‘Minimization of Total Potential Energy’ or ‘The Principle of Stationary Potential 

Energy’ states that a linear elastic structure subjected to body and surface traction 

forces deforms in a manner to minimize its total potential energy. 

Mathematically, minimum total potential energy of a linear elastic structure is 

achieved by equating the first variation of its total potential energy to zero as follows: 

0  (A.8) 

More explicitly, 

0VU   (A.9) 

Hence, 

0dSutdVufdV
S iiV iiV ijij    (A.10) 

Equation (A.10) is a general expression applicable to the linear structures with any 

degree of complexity (in the elastic region) and is used to derive the static 

equilibrium equations, the solution of which gives the deformation field of the 

relevant structure. 

Engineering structures are not always subjected to the static loading. In case of the 

dynamic problems, dynamic equilibrium equations have to be derived. This is 

accomplished by the application of another variational principle called ‘Hamilton’s 

Principle’ which is the subject of the next section. 
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A.3. HAMILTON’S PRINCIPLE 

The main assumption of the ‘Hamilton’s Principle’ is that an ideal conservative linear 

elastic structure can be characterized by two energy functions: the kinetic energy K  

and the potential energy  . 

The definition of the potential energy   of a linear elastic body has been already 

given within the expression (A.7). The definition of its kinetic energy K  is given as 

follows: 

 






V

ii dV
t

u

t

u

2

1
K  (A.11) 

where   is the density and iu  are the components of the displacement field. 

Before introducing ‘Hamilton’s Principle’, a final definition, namely ‘Lagrangian’ of an 

elastic body has to be given: 

KL  (A.12) 

Hamilton’s Principle states that the deformation history of a linear elastic structure 

between times 1t  and 2t  develops in a manner to minimize the time integral of its 

Lagrangian. 

Mathematically, the time integral of the Lagrangian L  of a linear elastic body 

subjected to dynamic loads is minimized by equating its first variation to zero as 

follows: 

0dtL
2

1

t

t
   (A.13) 

More explicitly, 

   
















2

1

t

t V S iiV iiV ijiji2
i

2

0dtdSutdVufdVdVu
t

u
 (A.14) 

Equation (A.14) is a general expression applicable to conservative linear structures 

with any degree of complexity (in the elastic region) and is used to derive the 

dynamic equilibrium equations, the solution of which gives the deformation history of 

the relevant structure. 
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APPENDIX B 

 

FREE VIBRATION EQUATIONS OF A 3 D EULER-

BERNOULLI BEAM ELEMENT 

 

 

B.1. INTRODUCTION 

The sort of the structural analysis required for any type of engineering structure 

defines also the approach used in the finite element (FE) modeling of that structure. 

For example, if the flutter analysis of an aircraft structure is required, a FE model 

consisting of beam and shell elements proves to be sufficient. But if the concern was 

the stress analysis of aircraft components subjected to aerodynamic loads, the FE 

model prepared for the flutter analysis would not be useful. In such a case, FE 

models of the individual components isolated from the whole aircraft structure by 

relevant free body diagrams would be necessary. And this time, each FE model 

would possess a few thousands of degree of freedom and it would consist of solid 

elements instead of beam and shell elements. 

The objective of this thesis study is to investigate whether it is possible to derive a 

stick (beam) FE model of an aircraft structure directly from experimental data for 

flutter analysis. For that reason the general procedure of FE formulation of 

engineering structures will be explained over a specific element type, namely the 3 

D Euler-Bernoulli beam element. 

Before giving the solution i.e. the FE formulation of a 3 D Euler- Bernoulli beam 

element, a clear problem statement is to be given first. For that reason, Appendix B 

is dedicated to derive the dynamic equilibrium equations of a 3 D Euler-Bernoulli 

beam element by applying Hamilton’s Principle introduced in Appendix A. 
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B.2. POTENTIAL AND KINETIC ENERGIES OF A 3 D EULER-

BERNOLLI BEAM ELEMENT 

The total potential energy expression for a linear elastic structure is given as follows: 

 
S iiV iiV ijij dSutdVufdV

2

1
 (B.1) 

In this thesis study, the eigenvalue problem for free vibration of aircraft structures is 

under consideration. In the free vibration study, the body forces and the surface 

traction forces are discarded from the total potential energy expression and total 

potential energy is expressed as follows: 

 
V ijij dV

2

1
 (B.2) 

In the Euler-Bernoulli beam theory, the deformation of beam elements under 

bending loads is studied and the main assumption of the theory is that plane cross 

sections remain plane and normal to the longitudinal axis after bending. In the most 

general case, a beam element can carry axial and torsional loads as well as bending 

loads. So the total potential energy of a beam element can be expressed as follows: 

tba UUU   (B.3) 

where aU , bU  and tU  are the components of the stain energy due to the axial, 

bending and torsional loads respectively. 

The axial strain energy of a linear elastic beam element is given as: 

 
V

a
xx

a
xxa dV

2

1
U  (B.4) 

where a
xx  and a

xx  are the stress and strain components along the x-axis 

(longitudinal axis) due to axial loads, respectively. 

The stain a
xx  is related to the axial deformation u  of a beam element as follows: 

x

ua
xx 


  (B.5) 
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Within the scope of this thesis study only the structures made of isotropic materials 

will be considered, so the constitutive law for an isotropic material is: 

a
xx

a
xx E   (B.6) 

where E  is the elastic modulus. 

Replacing equations (B.5) and (B.6) into (B.4), the strain energy due to the axial 

loading takes the form: 
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where L  is the length and A  is the cross sectional area of the beam element. 

The bending stain energy of a linear elastic beam element is given as follows: 
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b
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b
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where b
xx  and b

xx  are the stress and strain components along the longitudinal axis 

due to the bending loads. 

The stain b
xx  is related to the radii of curvature of a beam element in its xy and xz 

planes as follows: 
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where xy  and xz  are the radii of curvature in the xy and xz planes respectively. 

On the other hand, the transverse deflections of a beam element are related to the 

radii of curvature as shown below: 
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where v  and   are the transverse deflections in the xy and xz planes of the local 

coordinate frame of the beam element. 

In case of small deformations, the denominators of the right hand side expressions 

of (B.10) and (B.11) are close to one. As a result, the relations (B.10) and (B.11) are 

reduced to: 
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Replacing (B.12) and (B.13) into (B.9), the bending stain expression turns out to be: 
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Using the constitutive law given in (B.6) and evaluating the bending stain energy 

expression given in (B.8) with relation (B.14): 
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Expanding the expression in the parenthesis of (B.15): 
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Evaluating the area integrals within (B.16), the bending strain energy turns out to be: 
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where 1I  and 2I  are the second moment of areas about the z and y axes 

respectively and 12I  is the product moment of area in the yz plane. 

Finally the torsional stain energy of a linear elastic beam element is given as follows: 
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where, xy , xz , xy  and xz  are the torsional shear stresses and strains, 

respectively. 

Analogous to the axial loading, the torsional stain energy can be expressed in terms 

of rotational displacement about longitudinal axis of the beam element as follows: 
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where G  is shear modulus, eJ  is equivalent polar moment of area and   is 

rotational displacement about x axis of the beam element. 

Combining the terms within (B.7), (B.17) and (B.19), the total potential energy of a 3 

D Euler-Bernoulli beam element can be written as: 
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The kinetic energy expression of a 3 D Euler-Bernoulli beam element is very 

obvious and does not require lengthy derivations as in case of the total potential 

energy: 
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where xI  is the moment of inertia per unit mass about the x axis. 

As the potential and kinetic energy terms of a 3 D Euler-Bernoulli beam element 

have been derived, the free vibration equations shall be derived by using ‘Hamilton’s 

Principle’ in the following section. 
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B.3. FREE VIBRATION EQUATIONS OF A 3 D EULER-BERNOULLI 

BEAM ELEMENT 

The general Lagrangian expression for engineering structures is given as below: 

 KL  (B.22) 

In free vibration problem of a 3 D undamped linear elastic beam element made of 

isotropic material, the Lagrangian expression is stated by substituting (B.20) and 

(B.21) into (B.22) as follows: 
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Hamilton’s Principle states that: 
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Since the Lagrangian in (B.23) is a lengthy expression, evaluation of (B.24) has to 

be accomplished by dividing it into its components: 

   2

1

2

1

t

t

t

t
0dtKdtL  (B.25) 

Total potential energy   can be further divided into its components as follows: 
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The first term in equation (B.27) can be evaluated as follows: 
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Expression (B.28) is further evaluated by using integration by parts to obtain the 

variational operators outside of the partial derivatives and the following expression is 

obtained: 
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The second term in equation (B.27) related with the axial strain energy can be 

expressed as follows: 
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Applying integration by parts and arranging terms, (B.30) is translated into the 

following expression: 
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The third term of equation (B.27) is expanded as follows: 
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Applying integration by parts twice to (B.32) in order to get variational operators 

outside of the partial derivatives and arranging the terms, the following expression is 

obtained: 
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Finally, the last term in equation (B.27) related with the torsional strain energy is 

evaluated as follows: 
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Applying integration by parts and arranging the terms, (B.34) takes the form: 
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If expressions (B.29), (B.31), (B.33) and (B.35) are combined within the same 

expression it will be noticed that multipliers of variations of common parameters like 

u , v  etc. can be combined within common parentheses. Besides, according to 

the variational calculus, the first variations of dependent parameters indicate 

arbitrary changes of those parameters, yet left hand side of the equation (B.27) 

always has to be equal to zero. The only way to satisfy equation (B.27) under any 

circumstance is to equate terms within the common parentheses mentioned above 

to zero as follows: 
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Equations from (B.36) to (B.39) are the governing equilibrium equations of the free 

vibration problem of the 3 D Euler-Bernoulli beam element. Solutions of those 

equations give nothing but the translational and rotational displacements of the 

beam element as a function of time and position in its local coordinate frame. 

Equation (B.27) does not only introduce dynamic equilibrium equations but also 

initial and boundary conditions as follows: 
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APPENDIX C 

 

WEIGHTED-INTEGRAL AND WEAK FORMULATIONS 

OF FREE VIBRATION EQUATIONS OF A 3 D EULER-

BERNOULLI BEAM ELEMENT 

 

C.1. INTRODUCTION 

The free vibration equations derived in Appendix B for a 3 D Euler-Bernoulli beam 

element cannot be solved exactly for complex engineering structures such as an 

aircraft structure. For that reason, approximate solutions of the displacement fields 

are to be sought over the entire problem domain. In case of linear differential 

equations such as free vibration equations of a beam element, an approximate 

solution can be expressed as follows: 

)x()x(c)x(U)x(u 0

N

1j
jjN  



 (C.1) 

where NU  is the N-parameter approximate solution, j  and 0  are approximation 

functions (ex: simple polynomials) and jc  are unknown coefficients to be 

determined. 

N unknown coefficients within an approximate solution requires the derivation of N 

linearly independent equations. One of the techniques used to derive those 

equations is called the ‘method of weighted residuals’ in which differential equations 

are translated into weighted integral statements. Weighted integral statements of 

governing differential equations are further manipulated to obtain ‘weak forms’ of the 

differential equations. Appendix C is dedicated to the explanation and derivation of 

weighted integral statements and weak forms of the free vibration equations of a 3 D 
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Euler-Bernoulli beam element. Thus, the last step before the introduction of finite 

element formulations for beam elements will be accomplished. 

 

C.2. THE METHOD OF WEIGHTED RESIDUALS 

Consider the following general differential equation: 

f)u(A            in   (C.2) 

where A  is a differential operator (linear or nonlinear), u  is the dependent variable 

and f  is the known function of the independent variables. 

The function u  has to satisfy boundary conditions associated with the differential 

equation (C.2) as well as the equation itself. 

In the method of weighted residuals, the solution u  is approximated as given in the 

expression (C.1). Substituting NU  into equation (C.2) and replacing f  to the left 

hand side of the equation, the following expression is obtained: 

0fcAf)U(AR 0

N

1j
jjN 










 



 (C.3) 

where R , the residual of the approximation, is non-zero. 

In the method of weighted residuals, sufficient number of algebraic equations of 

unknown parameters jc  are derived by requiring the residual R  to vanish in a 

weighted integral sense as follows: 

0d)c(R ji 


             )N,...,2,1i(   (C.4) 

where i  are the weight functions and   is the problem domain. 

It is important to notice that the set of the weight functions  i  must be linearly 

independent in order that algebraic equations within (C.4) are linearly independent 

as well. 
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The method of weighted residuals takes different names according to the kind of the 

weight functions that it uses, such as ‘Galerkin Method’, ‘Least-Squares Method’ etc. 

Several weighted residual methods are introduced in the following subsections. 

 

C.2.1. The Petrov-Galerkin Method 

The weighted-residual method is called the ‘Petrov-Galerkin Method’ when the 

weight functions i  are not equated to approximating functions i  i.e. ii  . In 

this method, weighted integral statements of (C.4) can be arranged as follows: 

  
 













 d)(Afcd)(A 0ij

N

1j
ji  (C.5) 

Equations (C.5) can be expressed in a more compact form as follows: 

ij

N

1j
ij FcA 



 (C.6) 

In the Petrov-Galerkin Method the coefficient matrix is not symmetric: 

jijiij Ad)(AA  


 (C.7) 

 

C.2.2. The Galerkin Method 

The weighted-residual method is called the ‘Galerkin Method’ when the weight 

function i  is taken to be equal to the approximation function i . In this method, 

weighted integral statements of (C.4) are arranged as follows: 

  
 













 d)(Afcd)(A 0ij

N

1j
ji  (C.8) 

As in the case of Petrov-Galerkin Method, in the Galerkin Method as well the 

coefficient matrix is not symmetric: 

jijiij Ad)(AA  


 (C.9) 
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C.2.3. The Least-Squares Method 

In the ‘Least-Squares Method’, algebraic equations in (C.4) are derived by 

minimizing the integral of the square of the residual as follows: 

0d)c(R
c j

2

i







 (C.10) 

Evaluating partial derivatives of )c(R j
2 , the set of equations (C.10) takes the form: 

0dR
c

R

i







 (C.11) 

Comparison of (C.11) with (C.4) shows that: 

i
i c

R




  (C.12) 

If A  is a linear operator, )(A ii   and weighted integral statements of (C.4) are 

written as follows: 

  
 













 d)(Af)(Acd)(A)(A 0ij

N

1j
ji  (C.13) 

In case of the Least-Squares Method, the coefficient matrix turns out to be 

symmetric but it involves the same order of differentiation as in the governing 

differential equation (C.2): 

jijiij Ad)(A)(AA  


 (C.14) 

 

C.2.4. The Collocation Method 

In the ‘Collocation Method’, algebraic equations in (C.4) are determined by forcing 

the residual to vanish identically at N  selected points )z,y,x(X iiii   in the domain 

  as follows: 

  0c,XR j
i                         )N,...,2,1i(   (C.15) 
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Actually, the Collocation Method is nothing but a special case of the method of 

weighted residuals with )XX( i
i  , where )X(  is the Dirac delta function 

defined as follows: 




 )(fdX)X()X(f  (C.16) 

According to the definition given in (C.16), weighted integral statement of the 

governing differential equation (C.2) turns out to be: 




 0dX)c,X(R)XX( j
i  (C.16) 

Obviously, weighted residual methods are sufficient to derive necessary number of 

algebraic equations among coefficients jc . Consequently, the approximate solution 

NU  of the governing differential equation (C.4) can be determined. But, those 

methods require that approximation functions i  must have non-zero derivatives up 

to the order appearing in the original differential equation (C.4). Moreover, since 

weighted integral statements do not include any of the specified boundary conditions 

(essential or natural) approximate solution NU  is required to satisfy all specified 

boundary conditions of the problem. However, if the weight functions i  are chosen 

to be equal to approximation functions i , then half of the derivatives can be shifted 

from i  to i  by using integration by parts. The resulting form of the integral 

statements is called the ‘weak form’. Several advantages of the weak form over the 

weighted integral statements can be stated as follows [19]: First, it requires weaker 

continuity of the approximation functions i , second it always results a symmetric 

coefficient matrix, and third the natural boundary conditions of the problem are 

included in the weak form, and therefore the approximate solution NU  is required to 

satisfy only the essential boundary conditions of the problem. Those relaxations 

brought to the weighted integral statements play crucial role in the development of 

finite element models of a problem. For that reason, next section is dedicated to the 

derivation of weak forms of free vibration equations of a 3 D Euler-Bernoulli beam 

element. 
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C.3. WEAK FORMS OF THE FREE VIBRATION EQUATIONS OF A 3 D 

EULER-BERNOULLI BEAM ELEMENT 

Free vibration equations of a 3 D Euler-Bernoulli beam element derived in Appendix 

B are given as follows: 
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The weighted integral statement of equation (C.17) is given as follows: 
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The weak form of the integral statement in (C.21) is obtained as: 
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The weighted integral statement of equation (C.18) is written as follows: 
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The weak form of the integral statement (C.23) is obtained by using integration by 

parts as follows: 
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Similarly, the weak forms of the differential equations (C.19) and (C.20) are found to 

be: 
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The finite element formulation of a 3 D Euler-Bernoulli beam element is based on 

the weak formulations given in equations (C.22), (C.24), (C.25) and (C.26) and it is 

the subject of Appendix D. 
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APPENDIX D 

 

FINITE ELEMENT FORMULATION OF A 3 D EULER-

BERNOULLI BEAM ELEMENT 

 

 

D.1. INTRODUCTION 

Appendix D is dedicated to derive the finite element model of a 3 D Euler-Bernoulli 

beam element starting from the weak forms of the free vibration equations 

introduced in Appendix C. 

As shown in Appendix B, there are four free vibration equations in terms of the 

displacement degrees of freedom u , v  and   as well as the rotational degree of 

freedom   about x axis of the beam. Approximate solution of each equation will be 

obtained separately and finally all solutions are going to be superposed to determine 

the finite element model of an Euler-Bernoulli beam element in 3 D. 

 

D.2. FINITE ELEMENT MODEL RELATED TO AXIAL DISPLACEMENT 

OF AN EULER-BERNOULLI BEAM 

The free vibration equation related with the displacement field u  of an Euler-

Bernoulli beam element is stated as follows: 
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The weighted integral statement of equation (D.1) in weak form is given as: 
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where   are the weight functions. 

Examination of the boundary terms within (D.2) indicates that the essential boundary 

conditions involve the specification of u  and the natural boundary conditions involve 

the specification of axial forces at the end points of the Euler-Bernoulli beam 

element. 

Secondary variables within the boundary terms of (D.2) can be put in more compact 

form as follows: 
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where e
1uQ  and e

2uQ  are called ‘generalized forces’. 

Substituting left hand side terms of (D.3) and (D.4) and replacing boundary terms to 

the right hand side of the equation (D.2), the weak form turns out to be: 
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The weak form (D.5) requires that the interpolation (i.e. approximation) function of 

the beam element be continuous with non zero derivatives wrt variable x up to order 

one. So the approximation function e
hu  must be differentiable wrt x at least once and 

satisfy the following essential boundary conditions: 

)t(u)t,0(u e
1

e
h  ,      )t(u)t,L(u e

2
e
h   (D.6) 

Since there are two conditions stated in (D.6), a two parameter polynomial must be 

selected for the approximate solution e
hu : 
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Primary nodal variables (i.e. generalized displacements) )t(ue
1  and )t(ue

2  are 

related to the unknown coefficients )t(ce
1  and )t(ce

2  as follows: 

)t(c)t(u e
1

e
1   (D.8) 
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Equalities (D.8) and (D.9) can be put in a matrix form as: 
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Inverting matrix equation to express )t(ce
i  in terms of )t(ue

1  and )t(ue
2 , and 

substituting the result into (D.7), the approximate solution can be stated as follows: 
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Expression (D.11) can be put in a more compact form with the following definitions: 
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Substituting (D.12) and (D.13) into (D.11), approximation function takes the form: 
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e
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where )x(He
1  and )x(He

2  are in general called ‘shape functions’ or ‘interpolation 

functions'. 

The finite element model related only with the axial displacement u  of the Euler-

Bernoulli beam is obtained by substituting e
hu  for u  and )x(He

j  for the weight 

function   into the weak form (D.5). 

Two algebraic equations obtained for the finite element model are as follows: 
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Equations (D.15) and (D.16) can be put into the following matrix form: 
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where e
1u  and e

2u  are the acceleration terms. 

Evaluating integral terms within the matrix expressions, equation (D 17) yields: 
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In case of free vibration, there are no nodal forces acting on the boundaries of the 

beam element, so the right hand side of equation (D.18) turns out to be zero as 

follows: 
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The first and second matrix expressions at the left hand side of equation (D.19) 

have very important physical meanings: they are the mass and stiffness matrices of 

the Euler-Bernoulli beam related with the displacement field u  (i.e. axial 

displacement) within its local coordinate frame. Obviously, mass and stiffness 

matrices represent inertial and elastic properties of the beam element in its axial 

direction. 
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Linear ordinary differential equations expressed (D.19) can be solved with relevant 

initial conditions for boundary terms )t(ue
1  and )(2 tue  as a function of time. 

Replacing those boundary displacements in (D.14) gives an approximate solution for 

the free vibration response of the beam element in its axial direction. 

The power of the finite element model becomes more obvious when a large 

problem, domain for example an aircraft structure, is divided into sub domains i.e. 

finite elements. This way, governing differential equation (D.1) is solved 

approximately for each finite element as explained above and the global solution is 

obtained by simply assembling finite element solutions. 

It is important to note that boundary solutions )t(ue
1  and )t(ue

2  of a finite element 

model obtained from (D.19) are exact solutions, i.e. they satisfy governing 

differential equation (D.1) exactly. Consequently, if a problem domain is divided into 

more and more finite elements, number of boundary points will accordingly increase 

and exact solutions will be obtained at more and more discrete positions within the 

problem domain. In the finite element modeling terminology, the boundary points of 

a finite element are called ‘nodes’. Within the same terminology, dividing the global 

problem domain into finite elements is called ‘meshing’. 

Classical approximate solution techniques such as the ‘Rayleigh-Ritz method’ seek 

an approximate solution covering the entire problem domain which cannot be 

achieved in case of complex engineering structures such as an aircraft structure. 

Consequently, the problem domain is to be divided into simpler subdomains as in 

the case of the finite element method. This way, approximate solutions can be 

obtained over each sub domain no matter how complex the entire structure. Then, 

finite element solutions can be easily assembled to obtain the global solution over 

the entire problem domain. This is the major advantage of the finite element method 

over classical solution techniques. 

 

D.3. FINITE ELEMENT MODEL RELATED TO AXIAL ROTATION OF AN 

EULER-BERNOULLI BEAM 

The free vibration equation related to the rotational displacement field   of an 

Euler-Bernoulli beam element is stated as follows: 
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Equation (D.20) is very analogous to the governing free vibration equation for the 

displacement field u  given in the previous section. For that reason, the lengthy 

derivation procedure will not be repeated here. As a result, the finite element 

formulation of the free vibration problem of an Euler-Bernoulli beam for the rotational 

displacement field   in its local coordinate frame is stated as follows: 
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D.4. FINITE ELEMENT MODEL RELATED TO THE TRANSVERSE 

DISPLACEMENTS FIELDS OF AN EULER-BERNOULLI BEAM 

The free vibration equations related with displacement fields v  and   of an Euler-

Bernoulli beam are given as follows: 
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The weighted integral statements of equations (D.22) and (D.23) in weak form are 

obtained as follows: 
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Secondary variables or generalized forces within the boundary terms of equations 

(D.24) and (D.25) can be put in a more compact form as follows: 
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Arranging the terms of (D.24) and (D.25) according to the definitions given in (D.26) 

to (D.33), weighted integral terms can be expressed as follows: 
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The weak forms (D.34) and (D.35) require that the interpolation (i.e. approximation) 

function of the beam element be continuous with non zero derivatives up to order 

two. So the approximation functions e
hv  and e

h  must be differentiable at least twice 

and satisfy the following essential boundary conditions of a beam element: 
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where e
h  and e

h  are approximation functions of rotational degrees of freedom   

and   about the y and z axes respectively. 

Since there is a total of four conditions for each of the displacement fields v  and   

of a beam element, four parameter polynomials must be selected for the 

approximation functions e
hv  and e

h  as follows: 
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Primary nodal variables (i.e. generalized displacements) are related to the unknown 

coefficients )t(ce
j  as follows: 
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Equalities (D.40) to (D.47) can be put into matrix form as follows: 
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Inverting matrix equations (D.48) and (D.49) and substituting the results into (D.38) 

and (D.39), approximate solutions are expressed as below: 
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)x(He
j  are nothing but the shape functions of the approximate solutions )t(ve

h  and 

)t(e
h . 

The finite element model related with axial displacement v  and   of the Euler-

Bernoulli beam is obtained by substituting e
hv  and e

h  for v  and  , respectively, 

and also )x(He
j  for the weight function  , in the weak forms (D.34) and (D.35): 
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Evaluating integral terms in the equations (D.56) and (D.57), the following linear 

ordinary differential equations are obtained for free vibrations of a beam element: 
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D.5. ELEMENT MASS AND STIFFNESS MATRICES OF A 3 D EULER-

BERNOULLI BEAM 

Finite element formulations of a 3 D Euler-Bernoulli beam element given in 

equations (D.19), (D.21), (D.62) and (D.63) are assembled together within the 

following matrix equation: 
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l
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l
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where  l
em  and  l

ek  are element mass and stiffness matrices of a 3 D Euler-

Bernoulli beam in its local coordinate frame and  eq  is the vector of nodal 

displacements. 

The explicit forms of element mass and stiffness matrices are given in Tables D.1 

and D.2 respectively. And the displacement vector  eq for element e  is defined as 

follows: 

   Te
2

e
2

e
2

e
2

e
2

e
2

e
1

e
1

e
1

e
1

e
1

e
1e vuvuq   (D.65) 

 

D.6. ASSEMBLY OF ELEMENT MATRICES INTO GLOBAL MASS AND 

STIFFNESS MATRICES  

The finite element model of a complex engineering structure is constructed by 

assembling element matrices into global mass and stiffness matrices as follows: 

1. The structure of interest is divided into k  appropriate elements with a total of 

n dofs. This process is called meshing. 

2. Mass and stiffness matrices of each element in local coordinates are 

transformed into the global coordinate frame by an appropriate 

transformation matrix as shown below: 

        mmxemxm
l
e

T

mxmemxme TmTm   (D.66) 

        mmxemxm
l
e

T
mxmemxme TkTk   (D.67) 



160 

 

where  em  and  ek  are the element mass and stiffness matrices, 

respectively, expressed in the global coordinate frame, and  eT  is the 

element transformation matrix. Subscript m  indicates the degree of freedom 

of an individual element. If it is a beam element with 2 nodes, m  is equal to 

12 as shown in (D.65). 

3. Before the assembly operation, element matrices must be expanded into the 

size of the finite element model, i.e. mxm  mass and stiffness matrices must 

be expanded into sparse matrices of size nxn  where n  is the total degree of 

freedom of the entire structure. All of the cells of the expanded element 

matrices turn out to be zero except those corresponding to the degrees of 

freedom of the relevant element. Actually, the difference between mxm  and 

nxn  forms of element matrices is not mathematical but morphological. 

Finally, sparse element matrices are assembled by using simple matrix 

addition as follows: 
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where  M  and  K  are global mass and stiffness matrices, and  em  and 

 ek are sparse element matrices expresses in the global coordinate frame of 

the structure of interest. 

4. After obtaining the global mass and stiffness matrices of a finite element 

model, the free vibration equation is expressed as follows: 

       0qKqM   (D.70) 

The solution of equation (D.70) with appropriate initial conditions gives unknown 

coefficients necessary to determine approximate solutions of the displacement fields 

u , v ,   and   for each element of the entire structure. 
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Table D.1. Element Stiffness Matrix of a 3 D Euler-Bernoulli Beam 
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Table D.2. Element Mass Matrix of a 3 D Euler-Bernoulli Beam 
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