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ABSTRACT

MULTIPLE WINDOW DETECTORS

Sipahigil, Oktay

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Tolga Çiloğlu

September 2010, 70 pages

Energy or DFT detector using a fixed window size is very efficient when signal start time

and duration is matched with that of the window’s. However, in the case of unknown signal

duration, the performance of this detector decreases. For this scenario, a detector system

composed of multiple windows may be preferred. Window sizes of such a system will also be

fixed beforehand but they will be different from each other. Therefore, one of the windows will

better match the signal duration, giving better detection results. In this study,multiple window

detectors are analyzed. Their false alarm and detection probability relations are investigated.

Some exact and approximate values are derived for these probabilities. Arule of thumb

for the choice of window lengths is suggested for the case of fixed numberof windows.

Detectors with overlapping window structure are considered for the signals with unknown

delay. Simulation results are added for these types of detectors.

Keywords: Multiwindow Detection, Hypothesis Testing
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ÖZ

ÇOK PENCEREL̇I TESṖIT SİSTEMLEṘI

Sipahigil, Oktay

Yüksek Lisans, Elektrik ve Elektronik M̈uhendislĭgi Bölümü

Tez Yöneticisi : Doç. Dr. Tolga Çilŏglu

Eylül 2010, 70 sayfa

Sabit pencere uzunluğu ile çalışan, DFT veya enerji tespit sistemi, sinyalin başlangıç za-

manı ve uzunlŭgu pencereninkilere eşit olduğu zaman verimli çalışmaktadır. Fakat, sinyalin

uzunlŭgunun bilinmedĭgi durumda, tespit sisteminin performansı düşer. Bu durumda bir-

den fazla pencereden oluşan bir tespit sistemi tercih edilebilir. Bu sistemin pencere uzun-

lukları da dahäonceden belirlenir ancak pencereler farklı uzunluklara sahiptir. Bu sayede,

pencerelerden bir tanesi büyük oranda sinyal uzunlŭgu ile eşleşerek daha iyi tespit sonuçları

verir. Bu çalışmada çoklu pencere tespit sistemleri incelenmiştir. Yanlışalarm ve tespit

olasılıkları arasındaki ilişki araştırılmıştır. Bu olasılıklar için bazı kesin veyaklaşık dĕgerler

elde edilmiştir. Pencere sayısının belirlenmiş olduğu durumda, pencere uzunluklarının seçimi

için pratik bir kural önerilmiştir. Bilinmeyen bir gecikmeye sahip sinyaller içinörtüşmeli

pencere yapısına sahip tespit sistemleri incelenmiştir. Bu tipteki tespit sistemleri için benze-

tim sonuçları eklenmiştir.

Anahtar Kelimeler: Çok Pencereli Tespit, Hipotez Testi
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Detection Theory is one of the main branches of signal processing. This branch covers a

wide range of topics such as radar/sonar applications, digital communication receivers, image

analysis, document authentication and biometrics. The common problem in theseareas is to

determine whether the signal is present or not. Another concern is to estimatethe parameters

of the signal and extract some information. In most of the applications, parameter estimation

together with detection is essential and they must be performed simultaneously. One common

technique is the generalized likelihood ratio test (GLRT) which implements the detection and

estimation tasks together and its performance is asymptotically pleasing [1].

Many books were written about this subject. Some remarkable ones are [2,3, 4, 5, 6, 7, 8, 9,

10]. A concise review has been presented by Levy [10]:

“The three-volume treatise by Van Trees [2, 3, 4] remains an unavoidable

starting point, not only due to its completeness, but because of its outstanding

exposition of the signal space formulation of signal detection. However, because

of its emphasis on CT problems and on Bayesian detection, additional sources

are recommended. The book [5] presents a large number of examples where

detection problem symmetries can be exploited for designing UMPI tests. The

two-volume book by Kay [6, 7] analyses estimation and detection problems from

a digital signal processing view point and contains an excellent discussion of the

GLRT. Due to its strong emphasis on fundamental principles, Poor’s book [8] is

probably closest in style to the present text, but with a stronger Bayesian em-
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phasis than adopted here. Finally, Helstrom’s book [9], although quite advanced,

provides a very balanced treatment of Bayesian and non Bayesian view points.”

One of the main applications in detection theory is radar and sonar applications. In these

applications, the aim is to gather information about the environment. This aim is achieved

passively by just listening the environment or by transmitting a series of pulses and then col-

lecting the returned echoes. These echoes, after being detected and their parameters estimated,

give some information about the environment. In radar signal processing, a train of electro-

magnetic (EM) pulses are sent into the medium (air) and the reflected echoesare analyzed.

Similarly, in active sonar signal processing, acoustic pulses are used in underwater medium

and similar techniques are used in the analysis of the returned echoes. These are active sys-

tems, which means that some signals must be transmitted, this in turn makes the transmitter

exposed to hostile action. Other type of sonar systems utilize passive listeningof the ambient

noise and other noise sources, for instance due to the propeller of a ship. This way, the loca-

tion of the sonar system is not given away. Signal interception is also an important subject of

detection. Some of the areas of interception are reconnaissance, surveillance, and other intel-

ligence gathering activities [11]. In [12], interception of weak signal in non-Gaussian noise

is studied. Spectral correlation property of cyclostationary signals is used by the multi-cycle

and single-cycle detectors. This method accommodates unknown and changing noise level

and interference activity and is superior compared to the radiometer.

A huge amount of studies were done in radar signal processing. In [13], almost 700 references

were collected and grouped in different topics such as radar clutter modeling and constant

false alarm rate detection.

The main purpose of radar/sonar applications is to detect the presence of targets and extract

some information about their parameters. To achieve this, the radar/sonar transmitter sends

some predefined signals into the environment and receives the echoes returned from different

obstacles and targets in the medium. The predefined signal can be a pure frequency wave or its

amplitude, frequency or phase can be modulated [14]. The received echoes from these pulses,

most of the time, have different parameters than the original signal due to many factors such as

the ambient noise, reverberation effect, Doppler shifts caused by non-stationary targets and/or

receivers etc. Hence the receiver side must perform some processing to identify the signal as

a returned echo. In this process the parameters of the signal are generally the main concern.
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Some important performance affecting parameters are as follows:

Energy: The energy of the transmitted signal, in most cases, will be significantly reduced

by the attenuation in the medium. Hence the energy of the returned echo can bedrastically

reduced.

Envelope shape: The transmitted signal has a predefined envelope shape. Modification of

the envelope depends on the environment.

Phase and frequency: When the transmitted signals are tonals, they have phase and fre-

quency parameters. Usually phase is modeled as a random variable uniformly distributed in

the interval [0,2π). Transmitted and received signals differ in their frequencies when the rel-

ative distance between the target and the receiver/transmitter changes with time. This effect

is called as the Doppler effect. Since the observer does not know the relative velocity most of

the time, the frequency parameter in the received signal can be modeled as arandom variable.

Delay: The initial time of the returning echo depends on the relative location of the target

to the transmitter/reciever. Since most of the time the location of that target is not known

exactly, this parameter is also modeled as a random variable.

Echo Length: The returned signal length can also be random due to the signal elongation

upon reflection. In low resolution radar applications, the difference between the transmitted

and received lengths can be insignificant. Therefore, usually detectors are designed for fixed

signal lengths, matching the transmitted signal.

The main problem in these applications is to decide if the signal is present in the received

echo, when there is full or partial information about the parameters of the returned signal.

Different methods are employed to solve this problem. For instance, if the pulse shape is

known under additive noise, matched filters are used for maximum detection performance

[15], which is also the ”optimal” detector under same specified constraints.

When some parameters are unknown, a frequently used method is the energy detector (“ra-

diometer”) [16], which gives very good results in low SNR cases. The expressions for the
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performance of the energy detector is given in [17] when the energy parameter of the signal

is modeled as a random variable. Moreover, energy detectors also workwhen the unknown

signals are modeled as samples of a random process [18]. Properties ofthe energy detector

is covered in [19]. However, when SNR values are not low the performance increases by

utilizing the fully or partially known parameters. Unknown parameters are estimated before

or during the detection process. These estimated values approach to true values when SNR

increases [10]. Therefore these methods give better results than the energy detector when

SNR is high. The type of detectors differ according to the unknown parameters.

When for instance the frequency of the signal is modeled as random, DFT detectors have

near optimum performance. Performance of these detectors are analyzed in [20, 21]. In [22],

an optimum detector is derived for the unknown frequency and the performance is compared

with other detectors in literature.

In some applications, like counter-measure systems, the receiver may not have the full infor-

mation about the signal to be detected. In these cases the problem is harder, mainly because

there is less information. Even if there are some assumptions about the signalmodel, there

can be multiple possibilities. An extra complexity should be introduced to the detectors to

overcome this problem. As an example, for the random length case, one canuse multiple

window detectors. These multiple window detectors may be composed of energy detectors

as in [23]. Another approach for Bayesian detection of a rectangular pulse with unknown

duration is developed in [24].

There are also many works on the detection of signals when the noise is modeled as non-

Gaussian [25, 26, 27, 28]. In [29] and [30], signal detection underGaussian noise is performed

using higher order statistics. Knowledge of the correlation of noise samplesis not needed for

the suggested detector to work, and the detector is computationally simple. Optimalmethods

however depend on the covariance matrix of the noise and the performance of the detector

depends on how good the covariance matrix is estimated. In [31], effect of the incorrect

estimations are studied.

In a detection problem the performance of the detector is evaluated by its probability of de-

tection and probability of false alarm. These values can be estimated by performing Monte

Carlo simulations. If theoretical values can be calculated according to the given signal and

noise model, performance values will be known exactly. In calculations of the cumulative dis-
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tributions, characteristic functions or moment generating functions are mathematically useful

[32, 33]. If the closed forms are too complicated, then approximations may betried to be

found.

1.2 Scope

The aim of this work is to analyze the performances of the detectors suitable for given signal

models and to derive and analyze a detector having a good performance indetecting signals

with random length.

Signals are modeled as tones with random phase, random frequency andrandom length. Noise

is modeled as white Gaussian. With these models, the detector used to detect random length

signals is the multiple window detector. Analytical forms for probability of false alarms are

derived and an approximation is made for probability of detection.

All analysis are done in discete domain.

1.3 Outline

Chapter 2 gives definitions of some basic concepts used throughout the work. It introduces the

Neyman-Pearson criterion which helps to derive optimal detectors for given signal models.

Some properties of the receiver operating characteristic curve is introduced. This curve is

used to measure the performance of the detectors.

In Chapter 3, well known and commonly used results for binary hypothesistesting are sum-

marized. In Section 3.2 the signal is modeled as a single sample scalar. In the following

sections, complexity of the signal model is increased by adding a new random parameter in

each new section.

Chapter 4 is aimed to be the part that is original to this work. In Section 4.2, an approxima-

tion is done for the probability of false alarms for the DFT detector used to detect random

frequency signals. It is compared with the simulation results. In Section 4.3 detailed analy-

ses are done for multiple window detectors. Their false alarm and detection probabilities are

derived. The results of the derivations are compared with the simulation results.
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In Chapter 5, simulations are performed for specific scenarios in order todemonstrate some

inherent ideas for overlapping multiple windows. In Section 5.1, best window lengths are

found for the given example and a general formula is suggested. It is demonstrated that

increasing window length increases the performance for that specific example. In Section

5.2, it is shown by simulation that increasing overlap increases the detector performance.

In the last section, the detector is composed of both multiple windows and overlaps. For

a sequence of signals received continuously in time, detector performances are simulated.

Again, increasing overlaps and the number of windows showed an increase in performance.

In Chapter 6, some concluding remarks are made. In addition, this chapter contains some of

the future work planned.
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CHAPTER 2

REVIEW OF DETECTION CONCEPTS

2.1 Hypothesis Testing

Hypothesisis a set of probability distributions. Commonly, this set is indexed by a set of

parameters. A hypothesis is said to besimpleif it contains a single probability distribution.

A hypothesis is said to becompositeif it contains more than one probability distributions.

Hypothesis testingis a process of establishing the validity of a hypothesis [34]. If the problem

contains two competing hypotheses, then this problem is called binary hypothesis testing

problem.

We examine the binary hypothesis testing problem in this work. In this problem, the two

hypotheses are named asH0 andH1. H0 is called thenull hypothesisandH1 is called the

alternative hypothesis. In engineering literature,H0 is the set of distributions belonging to

noise data, therefore it is also callednoise only hypothesis. H1 is the set of distributions

belonging to the summation of signal and noise. This one is also calledsignal plus noise

hypothesis.

Let the probability distributions relevant to the problem be parametrized by theparameters in

the setX. Now we have a family of probability distributionsM = {Prx : x ∈ X}. LetX0 and

X1 be the two disjoint subsets ofX. The hypotheses can be formulated as [35].

H0 : x ∈ X0

H1 : x ∈ X1 (2.1)

The objective is to decide which one is true given some observations.

In the above formulation,X0 andX1 are needed to be disjoint, because otherwise, some

7



distributions would arise in both hypotheses leading to an unsolvable detectionproblem.

Simple hypothesis testingproblem consists of a family of probability distributionsM =

{Pr0,Pr1} and the hypotheses can be formulated as

H0 : Pr0

H1 : Pr1 (2.2)

Composite hypothesis testingdeals with more than one probability distribution for at least one

hypothesis.

The observation vector, that is the result of eitherH0 or H1, is a random vector. Let the ob-

servation be
˜
y taking values on the domainY. Notationally, the probability density functions

corresponding to the parametrized distributions are written asp
˜
y(y | x,Hi).

Choosing between the two hypothesis given an observation vector requires a method. This

method can be formulized by defining adecision functiond : Y → {0,1}. Then we can say:

d(y) = 0⇒ decideH0

d(y) = 1⇒ decideH1 (2.3)

d maps each observation to a hypothesis (by its index). So it partitionsY into two disjoint

sets

Yi = {y : d(y) = i} for i = 0,1 (2.4)

Every disjoint partitioning ofY into two sets corresponds to a decision function. We can call

D as the set of all decision functions.

The performance of a decision function for the binary hypothesis testing problem is evaluated

by two quantities. One is theprobability of detection(PD) which is the value of the probability

of decidingH1 when it is in fact the correct hypothesis. The other quantity is theprobability

of false alarm(PFA). It is the value of probability of decidingH1 when the correct hypothesis

is H0. The probability of detection is given as

PD(d) =
∫

Y1

p
˜
y(y | H1)dy (2.5)
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and the probability of false alarm is given as

PFA(d) =
∫

Y1

p
˜
y(y | H0)dy (2.6)

The ideal decision function, if it existed, would take decisions such that theresultant proba-

bilities bePD = 1 andPFA = 0. Such a decision function does not exist except in some rare

uninteresting cases for example whenH0 always produce 0 andH1 always produce 1. In this

cased(i) = i for i = 0,1 does not make any mistake.

What can be done is to choose ad ∈ D such thatPD is as close to 1 andPFA is as close to 0 as

possible.

We desire to choose an element ofD which is optimal in some appropriate sense. But, what

is optimal depends on the information available. According to the available information, we

can list three tests:

• Bayesian testsIn Bayesian tests, a-priori probabilities are known for the two hypothe-

ses. What is also known is the cost and benefit structure for all the possible outcomes

of the test.

• Minimax tests In minimax tests, a cost and benefit structure exists but a-priori proba-

bilities are unknown.

• Neyman-Pearson testsOnly the pdf’s of observations under each hypothesis is known

in Neyman-Pearson tests.

In this work, a cost structure will not be introduced, therefore only Neyman-Pearson tests will

be considered.

2.2 Neyman-Pearson Criterion

Neyman-Pearson philosophy is to choose a testd ∈ D that maximizesPD(d) with the con-

straint thatPFA(d) is less than or equal to a constant value.

LetDα = {d ∈ D : PFA(d) ≤ α}. Then,

dNP = arg
d∈Dα
maxPD(d) (2.7)
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Let

L(y) =
p

˜
y(y | H1)

p
˜
y(y | H0)

(2.8)

The result of (2.7) is given as

d(y) =



































1 if L(y) > λ

0 or 1 if L(y) = λ

0 if L(y) < λ

(2.9)

if the pdf’s are continuous, then the probability of occurance of case “L(y) = λ” is zero and

the thresholdλ is the solution to

PFA =

∫

{y:L(y)>λ}
p

˜
y(y | H0)dy (2.10)

A detailed proof is given in [10].

The test obtained in this sense is called thelikelihood ratio test (LRT).

In many cases, taking the logarithm of both sides in the test brings practical advantages in cal-

culations. Using the monotonic increasing property of the logarithm function,the following

test is equivalent to the one in (2.9).

d(y) =



































1 if ln L(y) > γ

0 or 1 if ln L(y) = γ

0 if ln L(y) < γ

(2.11)

whereγ = ln λ.

2.3 Receiver Operating Characteristic

For all decision functionsd there is a corresponding pair (PFA(d),PD(d)) ∈ [0,1] × [0,1]. Let

r : D→ [0,1] × [0,1]. The setr(D) contains all the achievable (PFA,PD) operating points.

A receiver operating characteristic(ROC) is a curve in [0,1] × [0,1] consisting of differ-

ent (PFA,PD) operating points [10]. It can also be calledROC curve. The ROC curve of a

Neyman-Pearson detector is a curve in [0,1]×[0,1] consisting of points (PFA(dNP,α),PD(dNP,α))

whenPFA = α is swept from 0 to 1. Ifλ is the LRT threshold, it is swept from 0 to∞. The

10



probability of detection and probability of false alarm can be written in terms ofλ as

PD(λ) =
∫ ∞

λ

pL(
˜
y)(L(y) | H1)dL(y)

PFA(λ) =
∫ ∞

λ

pL(
˜
y)(L(y) | H0)dL(y) (2.12)

We can list some properties of a ROC curve for a Neyman-Pearson detector, [10].

1. ROC curve is the upper boundary of the achievable operating points.

2. (0,0) and (1,1) are in ROC.

3. dPD
dPFA
= λ , whereλ is the threshold of the corresponding LRT. Sinceλ > 0 for PFA > 0,

this statement tells us that in order to increase the probability of detection, one needs to

increase the probability of false alarm as well. A critical question to be answered in the

detector design process is “whichPFA can be tolerated” in the detection problem.

4. ROC curve is concave.

5. PD ≥ PFA for all points on ROC.

An example of a ROC curve together with all the achievable operating points is given in

Figure 2.1.

Proof of 1 This is obvious. For a givenPFA, Neyman-Pearson detector gives the highestPD

among all the achievable decision functions.

Proof of 2 At the two end points whereλ = 0 andλ = ∞,

PD(0) = PFA(0) = 1 (2.13)

PD(∞) = PFA(∞) = 0 (2.14)

Proof of 3

dPD
dλ = −pL(

˜
y)(L(y) | H1)

dPFA
dλ = −pL(

˜
y)(L(y) | H0)



















⇒ dPD

dPFA
=

pL(
˜
y)(L(y) | H1)

pL(
˜
y)(L(y) | H0)

= λ (2.15)
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Figure 2.1: Receiver operating characteristic together with all the achievable operating points

Proof of 4 For the proof of 4, the reader may refer to [10].

Proof of 5 Let for P(1)
FA ≥ P(1)

D , the point (P(1)
FA,P

(1)
D ) be achieved by the decision functiond1.

Then define,

d2(y) =























1 if d1(y) = 0

0 if d1(y) = 1
(2.16)

With d2, the point (P(2)
FA,P

(2)
D ) = (P(1)

D ,P
(1)
FA) is achievable.
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CHAPTER 3

DETECTION OF SIGNALS UNDER NOISE

3.1 Introduction

In this chapter, an attempt is made to develop a consistent notation for the problem of detec-

tion of signals under noise. Sections from 3.2 upto 3.8 are discussed in manyradar signal

processing books such as [10], [7] and [36].

In section 3.6, approximation for detection probability is derived using the DFT detector

structure.

In radar applications, usually, the signal length is known. When the length isunknown how-

ever, it must be estimated before performing the detection. In section 3.7, such a detector is

derived.

3.2 Detection of a Positive Scalar in Gaussian Noise

This section deals with the detection of an unknown constant in Gaussian noise. This case is

the one dimensional case of the more general detection problem of known signals in noise.

The value of the scalar is unknown to the observer. However, a test independent of the pa-

rameter is derived. Since the test will not depend on the parameter, knowing its value is not

necessary for the decision function.

Let the signal be defined by its energy parameter, namely

s=
√

E (3.1)

whereE ≥ 0 is the energy of the single sample signal.
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Let the noise
˜
w be a zero mean Gaussian random variable with varianceσ2.

The observation
˜
y is given in two hypotheses as

H0 :
˜
y =

˜
w

H1 :
˜
y = s+

˜
w (3.2)

H0 is a simple hypothesis since it contains only one distribution which isN(0, σ2). H1 is

composite and it contains a family of distributionsN(
√

E, σ2) indexed by the parameterE.

H0 =
{

N(0, σ2)
}

H1 =
{

N(
√

E, σ2) : E > 0
}

(3.3)

A short hand notation may be as follows.

H0 : E = 0

H1 : E > 0 (3.4)

In order to find the decision function optimum in the Neyman-Pearson sense,one first has to

find the likelihood ratio defined as in (2.8). The likelihood ratio can be written as

L(y) =
p

˜
y(y | H1)

p
˜
y(y | H0)

=

1√
2πσ2

exp
(

− (y−
√

E)2

2σ2

)

1√
2πσ2

exp
(

− y2

2σ2

)

=

1√
2πσ2

exp
(

− y2−2
√

Ey+E
2σ2

)

1√
2πσ2

exp
(

− y2

2σ2

)

= exp
( −E

2σ2

)

exp













√
Ey

σ2













(3.5)

According to (2.9), the optimum decision function results as 1 if the following is true.

exp
( −E

2σ2

)

exp













√
Ey

σ2













> λ (3.6)

whereλ is some value.
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The test given in (3.6) can be rewritten by using the monotonic increasing property of the

logarithm function. Therefore the following is true

ln L(y) =
−E

2σ2
+

√
Ey

σ2
> γ (3.7)

whereγ = ln λ.

Decision test using log-likelihood ratio is

y >
σ2γ
√

E
+

√
E

2

⇒y > τ (3.8)

Threshold of the testτ is defined asτ = σ
2γ√
E
+
√

E
2 . The Neyman-Pearson optimal detector

decidesH1 if (3.8) is satisfied. Otherwise it decidesH0.

The threshold value has to be determined from the false alarm constraint ofthe detector.

The distributions for the random variable
˜
z =

˜
y used in the test is already known for both

hypotheses. The probabilities of false alarm and detection can easily be calculated.

PFA(τ) = Pr
{

˜
z> τ | H0

}

=

∫ ∞

τ

p
˜
z(z | H0)dz

=

∫ ∞

τ

1
√

2πσ2
exp

(

− z2

2σ2

)

dz

=

∫ ∞

τ/σ

1
√

2π
exp

(

−z2

2

)

dz

= Q
(

τ

σ

)

(3.9)

PD(τ) = Pr
{

˜
z> τ | H1

}

=

∫ ∞

τ

p
˜
z(z | H1)dz

=

∫ ∞

τ

1
√

2πσ2
exp













− (z−
√

E)2

2σ2













dz

=

∫ ∞

τ−
√

E
σ

1
√

2π
exp

(

−z2

2

)

dz

= Q













τ

σ
−
√

E
σ













= Q
{

Q−1(PFA) −
√

SNR
}

= 1−Q
{√

SNR−Q−1(PFA)
}

(3.10)
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where

Q(x) =
1
√

2π

∫ ∞

x
exp

(

−u2

2

)

du (3.11)

is the Gaussian-Q function and

SNR=
E

σ2
(3.12)

is the signal to noise ratio.

Summary The detection problem in this section can be summarized as below.

H0 :
˜
y ∼ N(0, σ2)

H1 :
˜
y ∼ N(

√
E, σ2) (3.13)

The decision function that is optimal in the Neyman-Pearson sense:

dNP(y) =























1 if y > τ

0 if y < τ
(3.14)

where

τ = σQ−1(PFA) (3.15)

The ROC curve belonging todNP is given as

PD = 1−Q
{√

SNR−Q−1(PFA)
}

(3.16)

with

SNR=
E

σ2
(3.17)

Since the thresholdτ is determined only by the false alarm constraint, it does not depend

on the energy parameter. Therefore, the decision function that is optimal inthe Neyman-

Pearson sense, is also independent of the energy. Tests that are optimal for all values of signal

parameters are calleduniformly most powerful(UMP). The test in this section is UMP. For

many detection problems however, no UMP test exists, [10].
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3.3 Detection of a Known Vector in White Gaussian Noise

This section deals with the detection of a complex vector in white complex Gaussiannoise.

The vector is assumed to be known upto a scalar factor. In other words, the shape of the signal

is known but the energy is unknown. Energy in this case is a deterministic parameter but its

value is not available to the observer. A UMP test which does not depend on this parameter

is derived.

In order to detach the energy from the shape of the signal, the shape is defined as a normalized

vector. For a signal length ofN, the shape of the signala ∈ CN is a column vector with unit

energy. Namely,

‖a‖2 = 1 (3.18)

where‖a‖ =
√

a∗a is the 2-norm of the vectora. a∗ is the complex conjugate transpose ofa.

Now the signals ∈ CN can be defined as

s=
√

E a (3.19)

whereE ≥ 0 is the energy.

Note that callingE as the energy of the signal is valid since

‖s‖2 = a∗aE = ‖a‖2E = E (3.20)

Let the noise vector
˜
w be anN-dimensional circularly symmetric complex Gaussian vector

with distributionCN(0, σ2I N) whereI N is theN-by-N identity matrix.

This problem can be solved by projecting theN-dimensional signal and theN-dimensional

noise into a one dimensional space. This projection should keep the signal energy as much

as possible while reducing most of the noise power. It turns out that the projected direction

coincides with the direction of the signal itself. Filter implementation of this projectionis

calledmatched filterin literature.

Let

φ0 =
s
‖s‖ (3.21)
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With φ0 defined as above, let

{

φ0,φ1, . . . ,φN−1
}

(3.22)

be an orthonormal set inCN. One can find such a set by the Gram-Schmidt algorithm. Since

the set isN dimensional, it forms a basis forCN.

Then forH0,

˜
y =

˜
w

=

N−1
∑

n=0

〈

˜
w,φn

〉

φn

=
〈

˜
w,φ0

〉

φ0 +

N−1
∑

n=1

〈

˜
w,φn

〉

φn (3.23)

and forH1,

˜
y = s+

˜
w

= ‖s‖φ0 +

N−1
∑

n=0

〈

˜
w,φn

〉

φn

=
{

‖s‖ + 〈

˜
w,φ0

〉

}

φ0 +

N−1
∑

n=1

〈

˜
w,φn

〉

φn (3.24)

Here,〈x, y〉 = y∗x is the inner product of the vectorsx andy.

The term
∑N−1

n=1
〈

˜
w,φn

〉

φn appears in both hypotheses, therefore it can be regarded as a nui-

sance parameter. It can be discarded from the observation. One can easily show

N−1
∑

n=1

〈

˜
w,φn

〉

φn =

N−1
∑

n=1

〈

˜
y,φn

〉

φn (3.25)

regardless of the hypothesis. Therefore we can discard all projections of the observation

vector except ontoφ0. That is observe only

˜
y =

〈

˜
y,φ0

〉

=

〈

˜
y,

s
‖s‖

〉

= a∗
˜
y (3.26)

With the above discussion detection problem is reduced to the following one dimensional

problem.

H0 :
˜
y =

˜
w

H1 :
˜
y = ‖s‖ +

˜
w (3.27)
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where
˜
w =

〈

˜
w, s
‖s‖

〉

.

But again, Im{
˜
y}, which is equal to Im{

˜
w}, is the same for both hypotheses since‖s‖ is always

real. It can be discarded as well. Only the real part is observed. The problem is moreover

reduced to

H0 :
˜
y′ = Re{

˜
w}

H1 :
˜
y′ = ‖s‖ + Re{

˜
w} (3.28)

where
˜
y′ = Re

{

˜
y
}

= Re
{

a∗
˜
y
}

.

Since Re{
˜
w} is the real part of a linear combination of Gaussian random variables it is also

Gaussian.

For H0,

E{
˜
y′} = E

{

Re{
˜
w}}

= Re
{

E{φ∗0 ˜
w}

}

= Re
{

φ∗0 E{
˜
w}

}

= 0 (3.29)

var{
˜
y′} = var

{

Re{
˜
w}}

= var

{

φ∗0 ˜
w +

˜
w∗φ0

2

}

=
‖φ0‖2 var{

˜
w} + ‖φ0‖2 var{

˜
w∗}

4

=
σ2

2
(3.30)

For H1,

E{
˜
y′} = E

{‖s‖ + Re{
˜
w}}

= ‖s‖ + E
{

Re{
˜
w}}

= ‖s‖ (3.31)

var{
˜
y′} = σ

2

2
(3.32)
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The distributions for both of the hypotheses are now known. The reduced problem is exactly

the same as the one solved in section 3.2 with the same energy parameter. The variance

however must be replaced by the half of it. Note that the reduced problem does not depend

on the shape of the signal but depends on its energy. This means, whatever shape is used for

transmission, if the observer knows the normalized shape, the detection performance stays the

same.

Since the modified detection problem in this section is the same with the one in section 3.2

with variance replaced by the half of it, we can find the relation between the threshold and the

false alarm probability by replacingσ byσ/
√

2 in equation (3.15).

Summary The detection problem in this section can be summarized as below.

H0 :
˜
y ∼ CN

(

0, σ2I N

)

H1 :
˜
y ∼ CN

(√
Ea, σ2I N

)

(3.33)

The decision function that is optimal in the Neyman-Pearson sense:

dNP(y) =























1 if Re
{

a∗y
}

> τ

0 otherwise
(3.34)

where

τ =
σ
√

2
Q−1(PFA) (3.35)

The ROC curve belonging todNP is given as

PD = 1−Q
{√

2 SNR−Q−1(PFA)
}

(3.36)

where

SNR=
E

σ2
(3.37)

It can also be preferred to implement this detector without normalizing the signal. In this case

however, threshold calculation would depend on the signal energy whichmay not be known

beforehand.
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3.4 Detection of a Known Vector in Colored Gaussian Noise

This section deals with the detection of a complex vector in colored complex Gaussian noise.

The signal is defined as in section 3.3 withE as the energy anda as the normalized shape

vector.

Let the noise vector
˜
v be anN-dimensional circularly symmetric complex Gaussian vector

with distributionCN(0,Γ) whereΓ is theN-by-N covariance matrix.

This problem can be solved in two steps. The first is to whiten the noise by applying a

whitening transformation to the obsevation vector. Then the resultant transformed vector can

be projected on the signal as discussed in section 3.3.

Let the sets{λ0, λ1, . . . , λN−1} and
{

φ0,φ1, . . . ,φN−1
}

be the collections of eigenvalues and

normalized eigenvectors ofΓ respectively. In other words, they satisfy

‖φi‖ = 1 and Γφi = λiφi for all i = 0,1, . . . ,N − 1 (3.38)

We need to whiten the noise. Let the transformation matrixT be defined as

T = Λ−1/2
Φ
∗ (3.39)

whereΛ is an N-by-N diagonal matrix withith diagonal element equal toλi andΦ is an

N-by-N matrix with ith column equal toφi .

T is a whitening transformation matrix since if
˜
w = T

˜
v,

E{
˜
w} = E

{

T
˜
v
}

= E
{

Λ
−1/2
Φ
∗
˜
v
}

= Λ−1/2
Φ
∗ E

{

˜
v
}

= 0 (3.40)
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var
{

˜
w
}

= E
{

T
˜
v
˜
v∗T∗

}

= E{Λ−1/2
Φ
∗
˜
v
˜
v∗ΦΛ−1/2}

= Λ−1/2
Φ
∗ E{

˜
v
˜
v∗}ΦΛ−1/2

= Λ−1/2
Φ
∗
ΓΦΛ

−1/2

= Λ−1/2
Φ
∗
ΦΛΦ

∗
ΦΛ

−1/2

= Λ−1/2
ΛΛ
−1/2

= I N (3.41)

If we transform the observations byT, the problem becomes

H0 :
˜
y′ =

˜
w

H1 :
˜
y′ = Ts+

˜
w (3.42)

where
˜
y′ = T

˜
y and

˜
w ∼ CN(0, I N).

But this is the exact problem introduced in section 3.3 with unity variance. After the transfor-

mation, the resultant normalized shape becomes

a′ =
Ta
‖Ta‖ =

Λ
−1/2
Φ
∗a

‖Λ−1/2Φ∗a‖
(3.43)

and the observation vector

y′ = Ty = Λ−1/2
Φ
∗y (3.44)

The tested variable in equation (3.34) then becomes

Re
{

a′∗y′
}

= Re

{

a∗ΦΛ−1
Φ
∗

‖Λ−1/2Φ∗a‖
y
}

(3.45)

Summary The detection problem in this section can be summarized as below.

H0 :
˜
y ∼ CN (0,Γ)

H1 :
˜
y ∼ CN

(√
Ea,Γ

)

(3.46)

The decision function that is optimal in the Neyman-Pearson sense:

dNP(y) =



























1 if Re

{

a∗ΦΛ−1
Φ
∗

‖Λ−1/2Φ∗a‖
y
}

> τ

0 otherwise

(3.47)
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where

τ =
1
√

2
Q−1(PFA) (3.48)

The ROC curve belonging todNP is given as

PD = 1−Q
{√

2 SNR−Q−1(PFA)
}

(3.49)

where

SNR= ‖Λ−1/2
Φ
∗a‖2E (3.50)

To the contrary of the case in section 3.3, the probability of detection in this case depends on

the signal shape.

Let λmin = min {λ0, λ1, . . . , λN−1}. If the shape of the signal is defined as below

a =
∑

{i:λi=λmin}
ci δi (3.51)

for some complex constantsci such that
∑

{i:λi=λmin}|ci |2 = 1, then signal to noise ratio will be

maximized. In the above equation,δi is a column vector of all zeros except theith element

which is one. This means that if signal is nonzero only at those samples whichnoise variance

is minimum, then SNR is maximum.

Some examples of ROC curves are plotted for different SNR values in Figure 3.1. In order

to read lowPFA region, x-axis may be preferred to be log-scaled. Figure 3.2 plots the same

curves in log scale.

When the covariance matrixΓ is a diagonal matrix with all the diagonal elements being equal,

the detection problem in this section becomes exactly the same as the problem in section 3.3.

Since the SNR values in both cases would then result in the same values, the ROC curve plots

given in this section also applies to the section 3.3.

3.5 Detection of a Signal with Random Phase

In this section, a random phase will be added to signal definition. The phase is modeled

as a uniformly distributed random variable. This parameter however is integrated out in the

Bayesian formulation leaving a test independent of its realization.

23



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of False Alarm, P
FA

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n,

 P
D

SNR = 0

3 dB

10 dB

Figure 3.1: Performance of the decision function given in (3.47) for several SNR values.

Let the signal be defined as

˜
s=
√

E a ej
˜
θ (3.52)

where

• E ≥ 0 is the energy of the signal.

• a ∈ CN is a column vector of the shape of the signal satisfying‖a‖2 = 1.

•
˜
θ which is uniformly distributed in the interval [0,2π) is the phase of the signal.

Let the noise vector
˜
w be anN-dimensional circular symmetric complex Gaussian vector with

distributionCN
(

0, σ2I N

)

.
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Figure 3.2: Performance of the decision function given in (3.47) for several SNR values. The
PFA axis is in log-scale.

We can findp
˜
y(y | H1) by conditioning on the parameter

˜
θ.

p
˜
y(y | H1) =

∫ 2π

0
p

˜
y(y |

˜
θ = θ,H1)p

˜
θ(θ) dθ

=

∫ 2π

0

1
πNσ2N

exp

{

− 1
σ2

(

y −
√

Eaejθ
)∗ (

y −
√

Eaejθ
)

}

1
2π

dθ

=
1

πNσ2N

1
2π

∫ 2π

0
exp

{

− 1
σ2

(

y∗y −
√

Ey∗aejθ −
√

Ea∗ye− jθ + E
)

}

dθ

=
1

πNσ2N
exp

{

−y∗y + E

σ2

}

1
2π

∫ 2π

0
exp















√
E

σ2

(

y∗aejθ + a∗ye− jθ
)















dθ

=
1

πNσ2N
exp

{

−y∗y + E

σ2

}

1
2π

∫ 2π

0
exp















√
E

σ2

(

|a∗y|ej(θ−φ) + |a∗y|e− j(θ−φ))














dθ

=
1

πNσ2N
exp

{

−y∗y + E

σ2

}

1
2π

∫ 2π

0
exp















2
√

E|a∗y|
σ2

cos(θ − φ)














dθ

=
1

πNσ2N
exp

{

−y∗y + E

σ2

}

I0













2
√

E|a∗y|
σ2













(3.53)
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where

I0(x) =
1
2π

2π
∫

0

excos(θ−φ) dθ (3.54)

is the modified Bessel function of the first kind. Also in the above equationsφ is equal to the

phase of the complex numbera∗y.

Now, the likelihood ratio can be written as:

L(y) =
p

˜
y(y | H1)

p
˜
y(y | H0)

=

1
πNσ2N exp

{

− (y∗y+E)
σ2

}

I0

(

2
√

E|a∗y|
σ2

)

1
πNσ2N exp

{

− y∗y
σ2

}

= exp
{

− E

σ2

}

I0













2
√

E|a∗y|
σ2













(3.55)

Decision test using log-likelihood ratio is

ln L(y) = − E

σ2
+ ln















I0













2
√

E|a∗y|
σ2



























> γ

⇒ ln















I0













2
√

E|a∗y|
σ2



























> γ +
E

σ2

⇒I0













2
√

E|a∗y|
σ2













> exp
(

γ +
E

σ2

)

(3.56)

I0 is a monotonically increasing function. Therefore we can rewrite the relationin (3.56) as

2
√

E|a∗y|
σ2

> I−1
0

{

exp
(

γ +
E

σ2

)}

⇒|a∗y| > τ (3.57)

whereτ = σ2

2
√

E
I−1

0

{

exp
(

γ + E
σ2

)}

is a threshold to be found from false alarm constraint.

The distribution fora∗y is Gaussian, therefore the distribution for the random variable
˜
z =

|a∗y| is the Rice distribution.

For H0

E
{

a∗y
}

= 0 (3.58)

var
{

a∗y
}

= ‖a‖2 var{y} = σ2 (3.59)

p
˜
z(z | H0) =

2z

σ2
exp

(

−z2

σ2

)

(3.60)
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and forH1

E
{

a∗y
}

=
√

Eejθ (3.61)

var
{

a∗y
}

= σ2 (3.62)

p
˜
z(z | H1) =

2z

σ2
exp

(

−z2 + E

σ2

)

I0













2z
√

E

σ2













(3.63)

The false alarm and detection probabilities can be calculated as

PFA(τ) =

∞
∫

τ

2z

σ2
exp

(

−z2

σ2

)

dz

= exp

(

−τ2
σ2

)

(3.64)

PD(τ) =

∞
∫

τ

2z

σ2
exp

(

−z2 + E

σ2

)

I0













2z
√

E

σ2













dz

= Q1















√
2E
σ
,

√
2τ2

σ















(3.65)

where

Q1(a,b) =

∞
∫

b

xexp

(

− x2 + a2

2

)

I0 (ax) dx (3.66)

is the first order Marcum Q function. [37]

Summary The detection problem in this section can be summarized as below.

H0 :
˜
y ∼ CN

(

0, σ2I N

)

H1 :
˜
y ∼ CN

(√
Eaejθ, σ2I N

)

given
˜
θ = θ (3.67)

The decision function that is optimal in the Neyman-Pearson sense:

dNP(y) =























1 if |a∗y| > τ

0 otherwise
(3.68)

where

τ =
√

−σ2 ln PFA (3.69)
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The ROC curve belonging todNP is given as

PD = Q1

(√
2 SNR,

√

−2 lnPFA

)

(3.70)

where

SNR=
E

σ2
(3.71)

Figure 3.3 plots the ROC curves belonging to the decision function. If this figure is compared

with Figure 3.2 it can be seen that for random phase case, the probability of detection is lower.

This is expected since in this case, less is known about the signal to be detected. Higher SNR

is needed for the same detection performance.

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of False Alarm, P
FA

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n,

 P
D

SNR = 0

3 dB

10 dB

13 dB

Figure 3.3: Performance of the decision function given in (3.70) for several SNR values.

3.6 Detection of a Signal with Random Phase and Frequency

Let a ∈ CN be the normalized envelope of the signal. Let the signal be defined as

˜
sn =

√
E an ej(

˜
ωn+

˜
θ) for n = 0,1, . . . ,N − 1. (3.72)
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where

• E ≥ 0 is the energy of the signal.

• an is then-th element ofa.

•
˜
ω defined in the interval [0,2π) with probability density functionp

˜
ω(.) is the radial

frequency of the signal.

•
˜
θ which is uniformly distributed in the interval [0,2π) is the phase of the signal.

The frequency and phase are independent.

In vector notation, the signal can be represented as

˜
s=
√

E A ξ(
˜
ω) ej

˜
θ (3.73)

where

• A(
˜
N) is anN-by-N diagonal matrix withn-th diagonal element being equal toan.

• ξ(
˜
ω) is a column vector. Itsn-th element is defined as

ξn(
˜
ω) = ej

˜
ωn for n = 0,1, . . . ,N − 1 (3.74)

Let the noise vector
˜
w be anN-dimensional circular symmetric complex Gaussian vector with

distributionCN
(

0, σ2I N

)

.

By adapting equation (3.53) to the definition of the signal in this section

p
˜
y(y |

˜
ω = ω,H1) =

1
πNσ2N

exp

{

− (y∗y + E)

σ2

}

I0













2
√

E

σ2

∣

∣

∣ξ∗(ω)A∗y
∣

∣

∣













(3.75)

If p
˜
y(y | H1) is calculated by conditioning on

˜
ω

p
˜
y(y | H1) =

∫ 2π

0
p

˜
y(y |

˜
ω = ω,H1)p

˜
ω(ω) dω

=
1

πNσ2N
exp

{

− (y∗y + E)

σ2

}∫ 2π

0
I0













2
√

E

σ2

∣

∣

∣ξ∗(ω)A∗y
∣

∣

∣













p
˜
ω(ω) dω (3.76)

The likelihood ratio is equal to

L(y) = exp
{

− E

σ2

}

∫ 2π

0
I0













2
√

E

σ2

∣

∣

∣ξ∗(ω)A∗y
∣

∣

∣













p
˜
ω(ω) dω (3.77)
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The decision test may depend on thresholding the likelihood in (3.77). The integration how-

ever is difficult to compute and the resultant test may be dependent on the value of energy

which is not desired.

In order to overcome these difficulties, another approach, thegeneralized likelihood ratio test

(GLRT) will be used. In this approach, estimates of the unknown variablesare used when

finding the likelihood ratio.

If MAP estimate is used for the random variable
˜
ω

ω̂ = arg
ω∈[0,2π)
max

{

p
˜
y(y |

˜
ω = ω,H1)p

˜
ω(ω)

}

= arg
ω∈[0,2π)
max















1
πNσ2N

exp

{

− (y∗y + E)

σ2

}

I0













2
√

E

σ2

∣

∣

∣ξ∗(ω)A∗y
∣

∣

∣













p
˜
ω(ω)















= arg
ω∈[0,2π)
max















I0













2
√

E

σ2

∣

∣

∣ξ∗(ω)A∗y
∣

∣

∣













p
˜
ω(ω)















(3.78)

Let W be a subset of [0,2π). If the probability density of
˜
ω is uniform inW and zero

otherwise, then,

ω̂ = arg
ω∈W
max















I0













2
√

E

σ2

∣

∣

∣ξ∗(ω)A∗y
∣

∣

∣



























(3.79)

Using the monotonically increasing property ofI0,

ω̂ = arg
ω∈W
max















2
√

E

σ2

∣

∣

∣ξ∗(ω)A∗y
∣

∣

∣















= arg
ω∈W
max

∣

∣

∣ξ∗(ω)A∗y
∣

∣

∣ (3.80)

The test using generalized likelihood ratio is written as:

LG(y |
˜
ω = ω̂) =

p
˜
y(y |

˜
ω = ω̂,H1)

p
˜
y(y | H0)

> λ

⇒ exp
{

− E

σ2

}

I0













2
√

E

σ2

∣

∣

∣ξ∗(ω̂)A∗y
∣

∣

∣













> λ

⇒I0













2
√

E

σ2

∣

∣

∣ξ∗(ω̂)A∗y
∣

∣

∣













> λexp
{ E

σ2

}

⇒2
√

E

σ2

∣

∣

∣ξ∗(ω̂)A∗y
∣

∣

∣ > I−1
0

(

λexp
{ E

σ2

})

⇒
∣

∣

∣ξ∗(ω̂)A∗y
∣

∣

∣ >
σ2

2
√

E
I−1

0

(

λexp
{ E

σ2

})

⇒
ω∈W
max

∣

∣

∣ξ∗(ω)A∗y
∣

∣

∣ > τ (3.81)
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whereτ = σ2

2
√

E
I−1

0

(

λexp
{

E
σ2

})

is a threshold to be found from false alarm constraint.

In order to perform (3.81) numerically,W must be sampled. LetN′ be a scalar such that

N′ ≥ N. LetKN′ = {k : k = 0,1, . . . ,N′ − 1, 2πk/N′ ∈ W}. If W is uniformly sampled at N

points, that isωk =
2πk
N′ , then the test becomes

k∈KN′
max

∣

∣

∣

∣

∣

∣

ξ∗
(

2πk
N′

)

A∗y

∣

∣

∣

∣

∣

∣

> τ (3.82)

Note that “ξ∗
(

2πk
N′

)

A∗y” is the value of thek-th bin of theN′-point discrete Fourier transform

(DFT) of the vectorA∗y. If N′ is not equal toN, zero padding is applied first to the end of

the signal. Also note that that (3.82) is an approximation to (3.81) and it gets closer to the

generalized likelihood ratio test asN′ is increased.

At this point, for simplicity of calculations, the envelope of the signal can be chosen as rect-

angular. Namely,

an =
1
√

N
for n = 0,1, . . . ,N − 1 (3.83)

In this case, the detector can be modified as not to include the additional multiplier1√
N

.

Namely the modified test becomes

k∈KN′
max

∣

∣

∣

∣

∣

∣

ξ∗
(

2πk
N′

)

y

∣

∣

∣

∣

∣

∣

> τ′ (3.84)

whereτ′ =
√

Nτ is the new threshold.

The probability of false alarm of the test in (3.84) cannot be evaluated in closed form for

N′ > N. This is because whenN′ > N, the samples of the DFT vector become correlated. A

rough approximation however is the false alarm value whenN′ = N. Let ŷk = ξ
∗(2πk

N )y be the

value ofk-th bin of theN-point DFT of y. The approximation to probability of false alarm

can be calculated as

PFA = Pr

{

k∈KN′
max

∣

∣

∣

∣

∣

∣

ξ∗
(

2πk
N′

)

y

∣

∣

∣

∣

∣

∣

> τ′ | H0

}

= 1− Pr

{

k∈KN′
max

∣

∣

∣

∣

∣

∣

ξ∗
(

2πk
N′

)

y

∣

∣

∣

∣

∣

∣

≤ τ′ | H0

}

≈ 1− Pr
{|ŷk| ≤ τ′ for k ∈ KN | H0

}

= 1−
∏

k∈KN

Pr
{|ŷk| ≤ τ′ | H0

}

(3.85)

The last line in (3.85) is true because elements of ˆy are independent random variables forH0.
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Pr{|ŷk| ≤ τ′ | H0} is known from the previous section. Therefore

PFA ≈ 1−
∏

k∈KN

{

1− exp

(

−τ2
σ2

)}

= 1−
{

1− exp

(

−τ2
σ2

)}|KN |
(3.86)

where|KN| is the number of elements of the setKN, or in other words the number of DFT

frequency bins that are inside the expected frequency range of the signal. This approximation

is equal to the exact value whenN′ = N.

Figure 3.4 shows the difference between the rough approximation and simulation results for

N′ = 4N.
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Figure 3.4: Approximation for probability of false alarm whenN′ = 4N

3.7 Detection of a Signal with Random Phase, Frequency and Length

Let the signal length
˜
N be a random variable taking values from the set{1,2, . . . ,M} for a

positive integerM. According to this length, the envelopea(
˜
N) ∈ C

M of the signal is a
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column vector with first
˜
N elements nonzero. The other elements are bound to be zero. Also,

in order to keep it independent of the total signal energy, it is normalized,that is

‖a(
˜
N)‖2 = 1 (3.87)

Now, then-th element of the signal
˜
s ∈ CM can be defined as

˜
sn =

√
E an(

˜
N) ej(

˜
ωn+

˜
θ) for n = 0,1, . . . ,M − 1 (3.88)

where

• E ≥ 0 is the energy of the signal.

• an(
˜
N) is then-th element ofa(

˜
N).

•
˜
ω defined in the interval [0,2π) with probability density functionp

˜
ω(.) is the radial

frequency of the signal.

•
˜
θ which is uniformly distributed in the interval [0,2π) is the phase of the signal.

The frequency, phase and length are all independent of each other.

In vector notation, the signal can be represented as

˜
s=
√

E A(
˜
N) ξ(

˜
ω) ej

˜
θ (3.89)

where

• A(
˜
N) is anM-by-M diagonal matrix withn-th diagonal element being equal toan(

˜
N).

• ξ(
˜
ω) is a column vector. Itsn-th element is defined as

ξn(
˜
ω) = ej

˜
ωn for n = 0,1, . . . ,M − 1 (3.90)

Note that callingE as the energy of the signal is valid since

‖
˜
s‖2 = e− j

˜
θξ∗(

˜
ω)A∗(

˜
N)
√

E
√

EA(
˜
N)ξ(

˜
ω)ej

˜
θ

= E‖a(
˜
N)‖2

= E (3.91)
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Let the noise vector
˜
w be anM-dimensional circularly symmetric complex Gaussian vector

with distributionCN(0, σ2I M).

By adapting equation (3.53) to the definition of the signal in this section

p
˜
y(y |

˜
ω = ω,

˜
N = N,H1) =

1
πMσ2M

exp

(

− (y∗y + E)

σ2

)

I0













2
√

E|ξ∗(ω)A∗(N)y|
σ2













(3.92)

LetW be a subset of [0,2π) andN be a subset ofZ+. If the probability densities of
˜
ω and

˜
N

are uniform inW andN respectively and zero otherwise, then, using a similiar procedure in

obtaining (3.80)

(ω̂, N̂) = arg
ω∈W
N∈N
max

{|ξ∗(ω)A∗(N)y|} (3.93)

The test derived from the generalized likelihood ratio is similiar to (3.81):

ω∈W
N∈N
max

{|ξ∗(ω)A∗(N)y|} > τ (3.94)

whereτ is a threshold to be found from false alarm constraint.

3.8 Detection of a Signal with Random Phase, Frequency, Length and Delay

Let the delay time of the signal
˜
d be a random variable taking values from the set{0,1, . . . ,dmax}

for a positive integerdmax. Let the signal length
˜
N be a random variable taking values from

the set{1,2, . . . ,Nmax} for a positive integerNmax. Let the length of the observation vector be

M. Let M ≥ dmax+ Nmax. According to delay and length, the envelopea(
˜
d,

˜
N) ∈ CM of the

signal is a column vector with
˜
N elements starting from the

˜
d-th element being nonzero. The

other elements are bound to be zero. Also, in order to keep it independentof the total signal

energy, it is normalized, that is

‖a(
˜
d,

˜
N)‖2 = 1 (3.95)

Now, then-th element of the signal
˜
s ∈ CM can be defined as

˜
sn =

√
E an(

˜
d,

˜
N) ej(

˜
ωn+

˜
θ) for n = 0,1, . . . ,M − 1 (3.96)

and in vector notation where

• E ≥ 0 is the energy of the signal.
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• an(
˜
d,

˜
N) is then-th element ofa(

˜
d,

˜
N).

•
˜
ω defined in the interval [0,2π) with probability density functionp

˜
ω(.) is the radial

frequency of the signal.

•
˜
θ which is uniformly distributed in the interval [0,2π) is the phase of the signal.

The frequency, phase, length and delay are all independent of eachother.

In vector notation, the signal can be represented as

˜
s=
√

E A(
˜
d,

˜
N) ξ(

˜
ω) ej

˜
θ (3.97)

where

• A(
˜
d,

˜
N) is anM-by-M diagonal matrix withn-th diagonal element being equal toan(

˜
N).

• ξ(
˜
ω) is a column vector. Itsn-th element is defined as

ξn(
˜
ω) = ej

˜
ωn for n = 0,1, . . . ,M − 1 (3.98)

Let the noise vector
˜
w be anM-dimensional circularly symmetric complex Gaussian vector

with distributionCN(0, σ2I M).

Let W, D andN be subsets of [0,2π), Z+ ∪ {0} andZ
+ respectively. If the probability

densities of
˜
ω,

˜
d and

˜
N are uniform inW, D andN respectively and zero otherwise, then,

using a similiar procedure in (3.80)

(ω̂, N̂, d̂) = arg
ω∈W
d∈D
N∈N

max
{|ξ∗(ω)A∗(d,N)y|} (3.99)

The test derived from the generalized likelihood ratio is similiar to (3.81):

ω∈W
d∈D
N∈N

max
{|ξ∗(ω)A∗(d,N)y|} > τ (3.100)

whereτ is a threshold to be found from false alarm constraint.
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CHAPTER 4

FURTHER ANALYSIS ON ROC CURVES

4.1 Introduction

The previous chapter suggested the detector to be used with random phase and frequency

as the DFT detector. In the first of the following sections, an approximation isdone for

the probability of detection for the DFT detector. Noise is assumed to be white circularly

symmetric complex Gaussian. Simulations show that when signal SNR increases, probability

of detection approximation approach to its exact value.

In the other section, signal lenght is defined as random. The multiple window detector is

used in this case. The exact values for the probability of false alarms are derived and an

approximation for the probability of detection is compared with the simulation results.

4.2 Detector for a Signal with Random Phase and Frequency

Probability of detection can be approximated as if the estimated value of the frequency comes

from the closest DFT bin. One may expect this approximation will approach tothe true value

when SNR is high.

In this section, an approximation is derived for the probability of detection and a summary is

given. The signal model and the detection problem used in this section is defined in section

3.5.

In section 3.5, the relation between the probability of detection and the threshold depends on

the expected value and the variance ofa∗y underH1. With the signal frequency being random,
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we can make use of the same relation by observing the expected value and thevariance of

˜
z = 1√

N
ξ∗

(

2πk
N′

)

y.
˜
z is the value of thek’th DFT bin scaled by 1/

√
N. If we replace

˜
y by its

definition,

˜
z= ξ∗

(

2πk
N′

) 











√
E

N
ξ(ω)ejθ +

1
√

N ˜
w













(4.1)

The expected value of
˜
z is

E
{

˜
z
}

= ξ∗
(

2πk
N′

)
√

E
N
ξ(ω)ejθ

=

√
Eejθ

N

N−1
∑

n=0

ej
(

ω− 2πk
N′

)

n (4.2)

By [38] and with few adjustments

E
{

˜
z
}

=







































√
Eejθ if ω =

2πk
N′

√
Eejθ

N
ej N−1

2

(

ω− 2πk
N′

) sin
(

N
2

(

ω − 2πk
N′

))

sin
(

1
2

(

ω − 2πk
N′

)) otherwise
(4.3)

The variance of
˜
z is equal toσ2.

Using the result of the previous section, when radial frequency of the signal isω and the

detector structure is DFT,

PD(τ) =











































Q1















√
2E
σ
,

√
2τ2

σ















if ω =
2πk
N′

for somek ∈ {k :
2πk
N′
∈ W}

Q1

















√
2E
σ

sin
(

N
2

(

ω − 2πk
N′

))

N sin
(

1
2

(

ω − 2πk
N′

)) ,

√
2τ2

σ

















otherwise

(4.4)

Therefore, performance decreases when frequency of the signalis far away from the closest

DFT bin. However, when the distance between the frequency and a particular DFT bin is

more thanπkN′ , then the neighbour DFT bin becomes the closest bin. Therefore, whatever the

value of the frequency is, there will always be a DFT bin that is closer thanπk
N′ . The worst case

for the performance will occur when the signal frequency is at the middle of two bins, namely

ω = 2πk
N′ ±

π
N′ . The performance will be best when frequency is at an exact DFT bin,namely,

ω = 2πk
N′ . For all possible frequencies, the detector performance will stay between these two

values. Now, if we assume that the maximum value always comes from the bin that is closest
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Figure 4.1: Probability of detection approximation vs. signal frequency for the DFT detector.
Signal length is 16, DFT length is 24, energy of the signal is 10, detection threshold is 3.2.

to the actual frequency, the probability of detection can be approximated. This approximated

probability of detection versus signal frequency can be observed in Figure 4.1.

With the above assumption, we can integrate the frequencies around the closest bin to find the

probability of detection for random signal frequency. Mathematically,

PD(τ) ≈ N′

2π

π
N′

∫

− πN′

Q1

















√
2E
σ

sin
(

N
2

(

ω − 2πk
N′

))

N sin
(

1
2

(

ω − 2πk
N′

)) ,

√
2τ2

σ

















dω (4.5)

Summary The detection problem in this section can be summarized as below.

H0 :
˜
y ∼ CN

(

0, σ2I N

)

H1 :
˜
y ∼ CN

(√
EAξ(ω)ejθ, σ2I N

)

given
˜
θ = θ and

˜
ω = ω (4.6)
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The decision function based on GLRT:

dG(y) =



























1 if
k∈KN′
max

∣

∣

∣

∣

∣

∣

ξ∗
(

2πk
N′

)

A∗y

∣

∣

∣

∣

∣

∣

> τ

0 otherwise

(4.7)

For the special case whenAn,n =
1√
N

for n = 0,1, . . . ,N − 1,

PFA(τ) ≈ 1−
{

1− exp

(

−τ2
σ2

)}|KN |
(4.8)

PD(τ) ≈ N′

2π

π
N′

∫

− πN′

Q1

















√
2 SNR

sin
(

N
2

(

ω − 2πk
N′

))

N sin
(

1
2

(

ω − 2πk
N′

)) ,

√
2τ2

σ

















dω (4.9)

where

SNR=
E

σ2
(4.10)

The simulated results together with the approximation is plotted in Figure 4.2. In the figure

it can be seen that simulation results are always greater than the approximations, since some

detections arise from DFT bins different from signal frequency. Another fact that approxima-

tions approach to the exact values for increasing SNR can also be seen inthe figure.

4.3 Detector for a Signal with Random Phase and Length

Consider a case where only phase and length of the signal are random. Signal is defined

as in (3.89) except the frequency is deterministic in this case. This case is analyzed further

to find the probability of false alarm and approximate probability of detection. The reason to

choose the frequency as nonrandom is to simplify the analysis. For the DFTdetector detecting

random frequency signals, previous results are used to extend the results for deterministic

frequency.

The generalized likelihood ratio test for random phase and length is givenas

N∈N
max

{|ξ∗(ω)A∗(N)y|} > τ (4.11)

That is calculate and threshold|ξ∗(ω)A∗(N)y| for each possibleN. If one of them exceeds the

threshold, decideH1, else decideH0. The detector structure may be visualized as in Figure

4.3 where different length windows are working in parallel with the start time as 0.
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Figure 4.2: Probability of detection approximation for DFT detectors given in(4.9) together
with simulation results.

For simplicity of calculations, choose the envelope of the signal to be rectangular. Namely,

An,n =
1
√

N
for n = 0,1, . . . ,N − 1 (4.12)

Now, the probability of false alarm will be analyzed. For this analysis, firstit is required

that the correlations between the different lengths be known. Let the variables
˜
z0,

˜
z1, . . . ,

˜
zK−1

corresponding to different lengthsN0 < N1 < . . . < NK−1 be defined as

˜
z0 = ξ

∗(ω)A∗(N0)
˜
y

˜
z1 = ξ

∗(ω)A∗(N1)
˜
y

...

˜
zK−1 = ξ

∗(ω)A∗(NK−1)
˜
y (4.13)

whereK is the number of different lengths to be evaluated. In matrix notation,

˜
z =

[

A(N0)ξ(ω) A(N1)ξ(ω) . . . A(NK−1)ξ(ω)
]∗

˜
y (4.14)

where * corresponds to complex conjugate transpose of the matrix.
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Figure 4.3: The detector multiple window structure.

If WN(ω) is anN-by-1 vector defined by itsn-th element as

WN,n(ω) = ejωn for n = 0,1, . . . ,N − 1 (4.15)

then,

˜
z =























































1√
N0

WN0(ω) 1√
N1

WN0(ω) . . . 1√
NK−1

WN0(ω)

0 1√
N1

W(N1−N0)(ω)ejN0ω . . . 1√
NK−1

W(N1−N0)(ω)ejN0ω

...
...

...
...

0 0 . . . 1√
NK−1

W(NK−1−NK−2)(ω)ejN(K−2)ω























































∗

˜
y′

(4.16)

where
˜
y′ is anNK−1-by-1 vector with elements equal to the firstNK−1 elements of

˜
y

For H0, each
˜
zi is a zero mean complex Gaussian since it is a linear combination ofy. The
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covariance matrix of
˜
z is then

Γ = E
{

˜
z
˜
z∗

}

= σ2

×























































1√
N0

W∗
N0

(ω) 0 . . . 0

1√
N1

W∗
N0

(ω) 1√
N1

W∗
(N1−N0)(ω)e− jN0ω . . . 0

...
...

...
...

1√
NK−1

W∗
N0

(ω) 1√
NK−1

W∗
(N1−N0)(ω)e− jN0ω . . . 1√

NK−1
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(NK−1−NK−2)(ω)e− jN(K−2)ω


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1√
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WN0(ω) 1√
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WN0(ω)
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N1

W(N1−N0)(ω)ejN0ω . . . 1√
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NK−1

W(NK−1−NK−2)(ω)ejN(K−2)ω























































= σ2
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




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




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




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


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











(4.17)

For another simplicity letω satisfy

ω =
2πk0

N0
=

2πk1

N1
=

2πk2

N2
= . . . =

2πk(K−1)

NK−1
(4.18)

for some integersk0, k1, . . . , kK−1. Note that this assumption also implies

ω =
2πk′1

N1 − N0
=

2πk′2
N2 − N1

= . . . =
2πk′K−1

N(K−1) − N(K−2)
(4.19)

for some integersk′0, k
′
1, . . . , k

′
K−1.
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This choice of frequency allows the form of the covariance matrix to be simpler. Now,

Γ = σ2


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(4.20)

The inverse of this matrix is interesting:

Γ
−1 =

1
σ2
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(4.21)

The inverse covariance matrix has nonzero elements only in the diagonal and lower and upper

diagonals. With this result analytical forms for probability of false alarms canbe derived

easily.

The detector structure is composed of calculating and thresholding|ξ∗(ω)A∗(N)y| for each

possibleN. However, for computational reasons, one may choose to evaluate that only at a few

specific length values. In the following subsections, probability of false alarm is computed

for a specific number of window lengths.

For H0,
˜
z is a circularly symmetric complex Gaussian random vector since it is the result of

a linear transformation of the circularly symmetric complex Gaussian random vector
˜
y. Its

covariance matrix and its inverse is given in (4.20) and (4.21) respectively.

The probability density function is

p
˜
z(z) =

1
πK det(Γ)

exp
(

z∗Γ−1z
)

(4.22)
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Let the elements of
˜
z be represented in polar coordinates such that

˜
zi =

˜
r ie

j
˜
φi for i = 0,1, . . . ,K − 1. (4.23)

Let
˜
r and

˜
φ beK-dimensional vectors withi-th element equal to

˜
r i and

˜
φi respectively.

4.3.1 PFA calculation using two windows

Here, an analytical form for the probability of false alarm is derived when the detector is

composed of two windows with different lengths. We start with writing the joint probability

density function for the magnitude and phase of the variable|ξ∗(ω)A∗(N)y|. Then by inte-

grating out the phase components, we are left with the marginal probability density of the

magnitudes. Then by finding the cumulative distribution evaluated at the desired threshold,

we find a relationship between the threshold and the false alarm probability.

For K = 2, the covariance matrix and its inverse is

Γ =





















σ2 σ2
√

N0
N1

σ2
√

N0
N1

σ2





















(4.24)

Γ
−1 =





















1
σ2

N1
N1−N0

− 1
σ2

√
N0N1

N1−N0

− 1
σ2

√
N0N1

N1−N0

1
σ2

N1
N1−N0





















(4.25)

Then, if we write the joint probability density function for the magnitudes and phases,

p
˜
r ,

˜
φ(r ,φ) = r0r1p

˜
z0,

˜
z1

(

r0ejφ0, r1ejφ1
)

=
1
σ4π2

N1

N1 − N0
r0r1

× exp

{

− N1

σ2(N1 − N0)
r2
0 −

N1

σ2(N1 − N0)
r2
1 −

2
√

N0N1

σ2(N1 − N0)
r0r1 cos(φ0 − φ1)

}

(4.26)
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The marginal probability density function of the magnitudes are

p
˜
r0,

˜
r1(r0, r1) =

2π
∫

0

2π
∫

0

p
˜
r ,

˜
φ(r ,φ) dφ0dφ1

=
1
σ4π2

N1

N1 − N0
r0r1 exp

{

− N1

σ2(N1 − N0)
r2
0 −

N1

σ2(N1 − N0)
r2
1

}

×
2π

∫

0

2π
∫

0

exp

{

− 2
√

N0N1

σ2(N1 − N0)
r0r1 cos(φ0 − φ1)

}

dφ0dφ0

=
4
σ4

N1

N1 − N0
r0r1 exp

{

− N1

σ2(N1 − N0)
r2
0 −

N1

σ2(N1 − N0)
r2
1

}

I0

{

2
√

N0N1

σ2(N1 − N0)
r0r1

}

(4.27)

We can now proceed the calculation ofPFA as ifσ = 1. The real value can be achieved by

replacingτ with τ/σ. The probability of false alarm for a given thresholdτ is

PFA(τ) = Pr{r0 > τ, r1 > τ | H0}

= 1− Pr{r0 ≤ τ, r1 ≤ τ | H0}

= 1− 4N1

N1 − N0

τ
∫

0

τ
∫

0

r0r1 exp

{

− N1

N1 − N0
r2
0 −

N1

N1 − N0
r2
1

}

I0

(

2
√

N0N1

N1 − N0
r0r1

)

dr0dr1

= 1− 4N1

N1 − N0

τ
∫

0

r1e−r2
1

τ
∫

0

r0 exp

{

− N1
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r2
0 −

N0

N1 − N0
r2
1

}

I0

(

2
√

N0N1

N1 − N0
r0r1

)

dr0dr1

(4.28)

We can solve this integral by defining a new dummy variable as

u =

√

2N1

N1 − N0
r0 (4.29)

Then, integral inside becomes,

τ
∫

0

r0 exp

{
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N1 − N0
r2
0 −

N0
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r2
1

}
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2
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)

dr0
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2N1

τ

√

2N1
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∫

0

uexp
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−1
2
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r2
1
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
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
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




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


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(4.30)
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Then,PFA(τ) is

PFA(τ) = 1− 2

τ
∫

0

r1e−r2
1






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√
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dr1 (4.31)

By [39],
τ
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(4.32)

Finally,

PFA(τ) = e−τ
2
+ e−τ
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

(4.33)

Equation (4.33) gives the exact value for probability of false alarm for unity variance. For an

arbitrary variance, replaceτ by τ/σ

PFA(τ) = e−τ
2/σ2














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
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√
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√
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






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









(4.34)

This is the proability of false alarm for a two window detector structure with window lengths

equal toN0 andN1 which satisfyN1 > N0. In figure 4.4, the theoretical result is compared

with the simulation results.
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Figure 4.4: Comparison of the theoretical false alarm with results from simulation. Parame-
ters areσ = 1, N0 = 16 andN1 = 32.

4.3.2 PFA calculation using three windows

In the previous subsection, probability of false alarm for the two window detector was com-

puted exactly. In this section, an exact form is calculated for 3 windows. The resultantPFA

form however contains a single integral to be evaluated numerically.

In order to derivePFA for three windows, first a general form for the joint probability density

function is written for 3 or more windows. Then the marginal probability densityfunction is

found for the magnitudes. A general form for the probability of false alarm is found for 3 or

more windows. This general result is used for the specificK = 3 case.
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The general joint probability density function forK ≥ 3,

p
˜
r ,

˜
φ(r ,φ) =


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
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(4.35)

The probability density function of the magnitudes are found by integrating out the phase

components.

p
˜
r (r ) =
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(4.36)

The probability of false alarm for a given thresholdτ is

PFA(τ) = Pr{rk > τ for k = 0,1, . . . ,K − 1 | H0}

= 1− Pr{rk ≤ τ for k = 0,1, . . . ,K − 1 | H0}

= 1− 2K
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The above is the general form for the probability of false alarm for detectors containing 3

or more windows. For the specific case when detector has 3 windows, a result containing a
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single integral can be found. ForK = 3,

PFA(τ) = 1− 8
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The above relation is for unity variance. For an arbitrary variance,

PFA(τ) = 1− 2
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dr1 (4.39)

This is the probability of false alarm for a detector containing 3 windows. In figure 4.5, the

theoretical result is compared with the simulation results.

4.3.3 PFA calculation using four windows

Here probability of false alarm is calculated for number of windows being equal to 4. The

integrations first forr0 and then forrK−1 are performed in the general form forK ≥ 3. Then

the specific case whenK = 4 is written as a double integral form. This has to be numerically

computed.
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Figure 4.5: Comparison of the theoretical false alarm with results from simulation. Parame-
ters areσ = 1, N0 = 16,N1 = 32 andN2 = 64.

For K ≥ 4

PFA(τ) = 1− 2K−1
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(4.40)
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= 1− 2K−1
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= 1− 2K−2
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For K = 4 and for an arbitrary variance,

PFA(τ) = 1− 4
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(4.43)

In figure 4.6, the theoretical result is compared with the simulation results.
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Figure 4.6: Comparison of the theoretical false alarm with results from simulation. Parame-
ters areσ = 1, N0 = 16,N1 = 32,N2 = 64 andN3 = 96.

4.3.4 Approximation for probability of detection

An approximation can be made for probability of detection with the assumption thatN̂ is

equal to the actual signal length.

The assumption here is that the observer system knows the possible valuesfor the signal

length. For example it knows that the signal length will be one ofN0 = 16,N1 = 32,N2 = 64

or N3 = 96 with equal probability. The detector is also composed of 4 windows with the same

lengths in this example. If it is assumed that when a detection occurs, this detection comes

from the window with the length equal to the signal’s length, calculation of the probability of

detection is easy. One can expect that this assumption is true for most of the timewhen the

signal power is much higher than the noise power.

Let

˜
z= |ξ∗(ω)A∗(N̂)

˜
y| (4.44)
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For H1, 2
˜
z2/σ2 is noncentral chi-square distributed with 2 degrees of freedom and with non-

centrality parameter 2E/σ2.

PD(τ) ≈ Pr
{

˜
z> τ | H1

}

= 1− Pr
{

˜
z≤ τ | H1

}

= 1− Pr
{

2
˜
z2/σ2 ≤ 2τ2/σ2 | H1

}

= 1− Fχ2(2τ2/σ2,2 SNR) (4.45)

where Fχ2(., λ) is the cumulative distribution function of a noncentral chi-square distribution

of 2 degrees of freedom with non-centrality parameter ofλ. The SNR definition isE/σ2.

In Figure 4.7, the approximation is compared with the simulation results. As seen from the

figure, for high SNR, the approximation is closer to the actual value since theestimation value

of the length is more likely to be correct. The actual value of the probability of detection must

be higher than the approximated value since there is always a possibility of detection from the

other windows. The figure illustrates this idea.

When due to computational reasons, the window count in the detector is less than all the

possible lengths of the signal, then probability of detection may be approximatedagain by

assuming the length estimate (which equals to one of the windows in the detector) isthe one

that gives the highest detection result individually.

For H1, and for signal lengthNs,
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(4.46)

Using previous results,
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(4.47)
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Figure 4.7: Comparison of the approximated probability of detection and simulation results.
Parameters areσ = 1, N0 = 16,N1 = 32,N2 = 64 andN3 = 96.

Let Nl(Ns) = max{N : N ≤ Ns} andNr(Ns) = min{N : N > Ns}. That isNl is the window

with length closest toNs but less thanNs andNr is the window with length closest toNs but

higher thanNs. Now, using the assumption that the length estimate is the window that gives

the highest detection result individually,

PD(τ) ≈ Q1
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(4.48)

When signal length is uniformly distributed in a domainN,

PD(τ) ≈
∫
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N(N) dN (4.49)

Figure 4.8 shows the approximation given in (4.49) together with simulation result. Figure

4.9 shows the performance of some multiple window detectors together.
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Figure 4.8: Comparison of simulation results with approximation for probability ofdetection
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Summary The detection problem in this section can be summarized as below.

H0 :
˜
y ∼ CN

(

0, σ2I M

)

H1 :
˜
y ∼ CN

(√
EA(N)ξ(ω)ejθ, σ2I M

)

given
˜
θ = θ and

˜
N = N (4.50)

The decision function based on GLRT:
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0 otherwise
(4.51)

The probability of false alarm for a given threshold is given in the previous subsections.

For the special case whenAn,n =
1√
N

for n = 0,1, . . . ,N−1, the probability of detection for

a given threshold is approximated as
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where

SNR=
E

σ2
(4.53)
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CHAPTER 5

SIMULATIONS FOR MULTIPLE WINDOWS

5.1 Brute Force Method of Finding Best Window Length

In Section 3.7, the detector structure based on GLRT for signals with random phase, frequency

and length is given. In Section 4.3, probability of false alarm and probabilitydetection are

analyzed. When using a detector composed of multiple windows, with window count less

than the number of possible signal length values, the question of which lengths to optimally

choose for the detector remains unknown. In this section, some simulations are performed to

estimate the optimal window lengths for some different cases. This is performed for different

number of windows and it is shown by simulation that for the given examples, when the

lengths are chosen as optimal, as the number of windows increase the overall probability of

detection increases.

In the following subsections, some examples are given and simulations are performed for

detectors different number of windows. In the last subsection, result are compared.

5.1.1 Best window length (single window)

The example consists of detecting a signal of 13 dB SNR with random length taking integer

values and uniformly distributed between 8 and 128. The detector structureis the one given

in Section 4.3 and rewritten here for convenience.

N∈N
max

{|ξ∗(ω)A∗(N)y|} > τ (5.1)

Simulations are performed for a probability of false alarm range from 10−8 to 1. Using brute

force, PD vs. PFA were plotted for all possible detector according to window length. The
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results can be seen in Figure 5.1. The red line marks the bestPD-PFA curve. The result of

this simulation says that when the designer is constrained to use only a single window for the

detector, he/she must choose a window with length 73. This number is somehow close to the

midpoint of the interval of possible signal lengths, that is128+8
2 = 68

10
−8

10
−6

10
−4

10
−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of False Alarm (P
FA

)

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n 

(P
D

)

SNR = 13 dB
Signal Length lower bound = 8
Signal Length upper bound = 128

Window length = 73

Figure 5.1: Best window length in terms of probability of detection. The detector is composed
of a single window. Signal length is uniformly distributed between 8 and 128.

5.1.2 Best window lengths (two windows)

This subsection gives the results of the simulations similiar to the previous subsection with

multiple window detector having two windows. Detection performances for somewindow

combinations are simulated and the best pair is noted. Not all window combinations were

simulated in order to keep simulation run time low. The simulated pairs are the ones that are

not close to each other by some number. The results can be seen in Figure 5.2. The red line

again marks the bestPD-PFA curve. The result of this simulation says that when the designer

is constrained to use only two windows for the detector, he/she must choose the lengths of the

windows as 34 and 95. These numbers are somehow close to the numbers 8+ 128−8
4 = 38 and
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8 + 3128−8
4 = 98. The numbers suggested are the one fourth and three fourth of the interval

[8,128].
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Figure 5.2: Best window lengths in terms of probability of detection. The detector is com-
posed of two windows. Signal length is uniformly distributed between 8 and 128.

5.1.3 Best window lengths (three windows)

This subsection gives the results of the simulations similiar to the previous subsections with

multiple window detector having three windows. The bestPD-PFA curve is given in Figure

5.3. The result of this simulation says that when the designer is constrained touse only three

windows for the detector, he/she must choose the lengths of the windows as 21, 58 and 104.

These numbers are somehow close to the numbers 8+ 128−8
6 = 28, 8+ 3128−8

6 = 68 and

8 + 5128−8
6 = 108. The numbers suggested are the one sixth, three sixth and five sixth of

interval [8,128].

In the three subsections, some values are suggested which are in some sense close to optimal

window lengths. The general formula for this suggestion is given below.
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Figure 5.3: Best window lengths in terms of probability of detection. The detector is com-
posed of three windows. Signal length is uniformly distributed between 8 and128.

Let the signal length is a uniform random variable in the interval [a,b]. For a detector withK

windows, the window lengthsN0,N1, . . . ,NK−1 can be chosen as

Nk = a+ (2k+ 1)
b− a
2K

for k = 0,1, . . . ,K − 1 (5.2)

that is divide the interval into 2K equal sections and set the window lengths to the end of 1st,

3rd, 5th, etc. sections.

This may be thought as a rule of thumb for the choice of window lengths and willgive a

performance that is somehow close to optimal.

5.1.4 Comparison of different length windows

In order to compare the best results for detectors having different number of windows,PD vs.

PFA curves are plotted together as solid lines in Figure 5.4. The performance forthe suggested

values of the window lengths are given as dotted lines.
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Figure 5.4: Comparison of performances of detectors with different number of windows.

As seen from the figure, as a simulation result, for this example, when the number of windows

is increased the performance of the detector increases. Another resultis the formula suggested

in equation (5.2) gives close to optimal results.

5.2 Performance with Respect to Overlap Amount

When the signal length is a uniformly distributed random variable, the suitable detector is a

multiple window detector. When the delay is also random, the GLRT detector is composed of

overlapping windows in order to evaluate and threshold for each delay time.In this section,

for a given example, it is shown that performance increases with increasing overlap.

The detectors give the best performance when the detector window lengthcoincides with

the signal. When the delay time of the signal is unknown, in order to guaranteethat one

window will match the signal, one must “slide” the windows one sample for each sample in

the analysis interval. This way if window length and signal length are the same,one window

will match the signal. In this case the overlap amount is one sample less than the whole
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window length. With computational considerations one may decrease the overlap amount. In

this case, according to signal delay there may be no windows matching the signal but one will

cover most of it if the overlap is high enough. For instance when the overlap is 50 percent of

the window, then for the worst case, a detection window will cover 75 percent of the signal.

Overlap of windows may be visualized as in Figure 5.5.

Figure 5.5: Structure of windows in overlapping window detector.

The simulation is performed for a 13 dB signal with length 16. Single window detectors with

different overlaps are used. The plots for thePD vs PFA curves are given in Figure 5.6.

5.3 Simulations for a Nonconfined Analysis Interval

In a real life application, the receiver receives a sequence of signalsin time and usually their

initial time cannot be known exactly. The detector in this case consists of overlapping win-

dows in a continuous basis. When the signal length is also random, then the detector must

contain multiple windows. The detector will work continuously for each sample received.

When enough samples come to fill a particular window of detector, the detectionwill be

performed for that window. This process will go on for a nonconfined timeinterval.

When the detector is composed of overlapping multiple windows in a nonconfined interval,

the traditional definition of probability of false alarm may not be suitable. Definition may be

specific to an application. One definition can be as follows:
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Figure 5.6: Relation between window overlaps and detection performance

Let there be no signal in the run time of the detector. Under this condition, let the false alarm

interval be defined as the set of samples contained in all the windows in whicha detection is

made. Then the probability of false alarm may be defined as the ratio of the number of ele-

ments of false alarm interval to total run time when run time goes to infinity. The motivation

behind this definition is to give more cost to the longer windows. In another application, for

example, the costs for each window may be the same, and a different definition may be given.

In this framework, (where the signals are received as a sequence) if we say that a particular

signal is detected, then this means that at least one of the windows intersecting that signal

must give a detection.

With these definitions for signal detection and probability of false alarm, some simulations

were performed for different detectors containing different overlaps and different number of

windows. The results are given in Figures 5.7, 5.8 and 5.9.
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Figure 5.7: Performance for overlapping single window detector
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Figure 5.8: Performance for overlapping two window detector
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Figure 5.9: Performance for overlapping three window detector
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CHAPTER 6

CONCLUSION

In this thesis, binary hypothesis testing for signals of unknown length and delay under Gaus-

sian noise is investigated. Detection performances of different scenarios under noise are ana-

lyzed. When the length parameter is unknown, a multiple-window detector is used. When the

delay time is also unknown, overlapping windows are used. The performance of this detector

is analyzed. Simulation results are added.

When multiple windows were used for the random length case, performance increase is noted.

This performance increase however depends on the domain of the length parameter. When the

shortest and the longest possible signal lengths are very close to each other, a single window

detector structure may be preferred. When these two ends are far awayhowever, multiple

window structure greatly increases the performance. The structure of the windows and how

many to use depends on the specific scenario and available computation power.

6.1 Results

For signals with random length, if window lengths are chosen as their optimal values, multiple

window detectors give a better performance when their number of windowsare increased. A

rigourious proof for this statement is not given, but generally it is believed to be true. The

GLRT detector derived for the random length case, and the results of some simulations support

this idea.

For signals with random initial times, overlapping windows are used. Simulationsgave clear

results that increasing overlaps gives better performance. This idea is consistent with the

derived GLRT detector for random delay.
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In order to find simple detectors having analytical forms, GLRT detectors are derived. In

GLRT detectors, signal parameters are estimated and the estimated values areused in the

detector as if they are the actual values. By this procedure detection and estimation are per-

formed at the same time. Noise paremeters however are assumed to be known throughout the

work. When the noise parameters are unknown, those parameters also have to be estimated.

For example, the cell averaging constant false alarm method is a good methodto adjust thresh-

olds adaptively according to changing noise parameters [40]. However, estimating the noise

parameters when they are unknown is out of the scope of this work.

6.2 Future Work

For a given detector, estimating the probability of false alarms for very small values by simu-

lation usually takes very long time. The reason is that one needs to repeat theexperiment for

many times to see the effects of that very small pfa value. Therefore theoretical false alarm

calculations are critical for properly setting the threshold values and for evaluating the perfor-

mance of the detector. Some of the future work will be about those probabilityof false alarm

calculations.

For the detector derived for the random length case, probability of falsealarm calculations for

lengths greater than 4 contain a number of integrals to be numerically computed.A work will

be carried to simplify the forms for the relations.

There does not exist theoretical probability of false alarm and detection calculations for the

overlapping window detectors. Exact forms or some approximations will be tried to be calcu-

lated.

For the multiple window detectors, a formula is suggested to set window lengths togive

a performance close to optimal. A work will be carried out to find an optimal methodof

choosing the window lengths.
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