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ABSTRACT

MULTIPLE WINDOW DETECTORS

Sipahigil, Oktay
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Tolga Cgtu

September 2010, 70 pages

Energy or DFT detector using a fixed window size is vefiyceent when signal start time
and duration is matched with that of the window’s. However, in the caselofawn signal
duration, the performance of this detector decreases. For this sceaat@iector system
composed of multiple windows may be preferred. Window sizes of such@msysill also be
fixed beforehand but they will befiierent from each other. Therefore, one of the windows will
better match the signal duration, giving better detection results. In this stwdtyple window
detectors are analyzed. Their false alarm and detection probability rela@iennvestigated.
Some exact and approximate values are derived for these probabilitigsle Af thumb
for the choice of window lengths is suggested for the case of fixed nuofowindows.
Detectors with overlapping window structure are considered for the Isigvith unknown

delay. Simulation results are added for these types of detectors.

Keywords: Multiwindow Detection, Hypothesis Testing



Oz

COK PENCERELTESAT SISTEMLERI

Sipahigil, Oktay
Yuksek Lisans, Elektrik ve Elektronik Whendislgi Bolumi

Tez Yoneticisi : Dog. Dr. Tolga Cilglu

Eylul 2010, 70 sayfa

Sabit pencere uzunju ile ¢alisan, DFT veya enerji tespit sistemi, sinyalin baslangi¢ za-
mani ve uzunlgu pencereninkilere esit oldu zaman verimli calismaktadir. Fakat, sinyalin
uzunlyunun bilinmedji durumda, tespit sisteminin performangisér. Bu durumda bir-
den fazla pencereden olusan bir tespit sistemi tercih edilebilir. Bu sistemiepe uzun-
luklar da dahanceden belirlenir ancak pencereler farkli uzunluklara sahiptir. Badsy
pencerelerden bir tanesiijiik oranda sinyal uzunfu ile esleserek daha iyi tespit sonuclari
verir. Bu calismada coklu pencere tespit sistemleri incelenmistir. Yafdign ve tespit
olasiliklari arasindaki iliski arastiriimistir. Bu olasiliklar icin bazi kesiryaklasik dgerler
elde edilmistir. Pencere sayisinin belirlenmis @idadurumda, pencere uzunluklarinin segimi
icin pratik bir kural onerilmistir. Bilinmeyen bir gecikmeye sahip sinyaller igintismeli
pencere yapisina sahip tespit sistemleri incelenmistir. Bu tipteki tespit sistégmdrenze-

tim sonuglari eklenmistir.

Anahtar Kelimeler: Cok Pencereli Tespit, Hipotez Testi
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Detection Theory is one of the main branches of signal processing. Tmglb covers a
wide range of topics such as ragamar applications, digital communication receivers, image
analysis, document authentication and biometrics. The common problem iratiease’s to
determine whether the signal is present or not. Another concern is to estiraaitarameters

of the signal and extract some information. In most of the applications, pteagsimation
together with detection is essential and they must be performed simultaneonslgo@mon
technique is the generalized likelihood ratio test (GLRT) which implements thetigt@nd

estimation tasks together and its performance is asymptotically pleasing [1].

Many books were written about this subject. Some remarkable ones &4, 6, 7, 8, 9,

10]. A concise review has been presented by Levy [10]:

“The three-volume treatise by Van Trees [2, 3, 4] remains an unavoidable
starting point, not only due to its completeness, but because of its outstanding
exposition of the signal space formulation of signal detection. Howeeeguse
of its emphasis on CT problems and on Bayesian detection, additional source
are recommended. The book [5] presents a large number of examples whe
detection problem symmetries can be exploited for designing UMPI tests. The
two-volume book by Kay [6, 7] analyses estimation and detection problemms fro
a digital signal processing view point and contains an excellent discusktbe
GLRT. Due to its strong emphasis on fundamental principles, Poor’s [&jd& [

probably closest in style to the present text, but with a stronger Bayesian e



phasis than adopted here. Finally, Helstrom’s book [9], although quitenadua

provides a very balanced treatment of Bayesian and non Bayesian oiets.b

One of the main applications in detection theory is radar and sonar applicationsese
applications, the aim is to gather information about the environment. This ainhisvad
passively by just listening the environment or by transmitting a series ofgats#then col-
lecting the returned echoes. These echoes, after being detectediapdrtmmeters estimated,
give some information about the environment. In radar signal processimgin of electro-
magnetic (EM) pulses are sent into the medium (air) and the reflected eateanalyzed.
Similarly, in active sonar signal processing, acoustic pulses are usedl@nater medium
and similar techniques are used in the analysis of the returned echoe® arkeactive sys-
tems, which means that some signals must be transmitted, this in turn makes the transmitte
exposed to hostile action. Other type of sonar systems utilize passive listdriirigambient
noise and other noise sources, for instance due to the propeller of. arsiigpvay, the loca-
tion of the sonar system is not given away. Signal interception is also antiampgubject of
detection. Some of the areas of interception are reconnaissancellauceg and other intel-
ligence gathering activities [11]. In [12], interception of weak signalam+@Gaussian noise
is studied. Spectral correlation property of cyclostationary signals s lms¢he multi-cycle
and single-cycle detectors. This method accommodates unknown andrchangse level

and interference activity and is superior compared to the radiometer.

A huge amount of studies were done in radar signal processing. Jirelix®st 700 references
were collected and grouped infidirent topics such as radar clutter modeling and constant

false alarm rate detection.

The main purpose of radapnar applications is to detect the presence of targets and extract
some information about their parameters. To achieve this, the/sadar transmitter sends
some predefined signals into the environment and receives the echoesddrom diferent
obstacles and targets in the medium. The predefined signal can be agpurerfcy wave or its
amplitude, frequency or phase can be modulated [14]. The receiieé®from these pulses,
most of the time, have flerent parameters than the original signal due to many factors such as
the ambient noise, reverberatioffieet, Doppler shifts caused by non-stationary targetgoand
receivers etc. Hence the receiver side must perform some progéssdentify the signal as

a returned echo. In this process the parameters of the signal arelfyeties main concern.
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Some important performancéecting parameters are as follows:

Energy: The energy of the transmitted signal, in most cases, will be significantly eeduc
by the attenuation in the medium. Hence the energy of the returned echo daashieally

reduced.

Envelope shape: The transmitted signal has a predefined envelope shape. Modification of

the envelope depends on the environment.

Phase and frequency: When the transmitted signals are tonals, they have phase and fre-
qguency parameters. Usually phase is modeled as a random variableniyifiostributed in

the interval [Q2r). Transmitted and received signalster in their frequencies when the rel-
ative distance between the target and the rec#maesmitter changes with time. Thiffect

is called as the Dopplefiect. Since the observer does not know the relative velocity most of

the time, the frequency parameter in the received signal can be modelearaoe variable.

Delay: The initial time of the returning echo depends on the relative location of thettarg
to the transmittgreciever. Since most of the time the location of that target is not known

exactly, this parameter is also modeled as a random variable.

Echo Length: The returned signal length can also be random due to the signal elongation
upon reflection. In low resolution radar applications, thi@edénce between the transmitted
and received lengths can be insignificant. Therefore, usually desemtedesigned for fixed

signal lengths, matching the transmitted signal.

The main problem in these applications is to decide if the signal is present ie¢bved
echo, when there is full or partial information about the parameters ofetioened signal.
Different methods are employed to solve this problem. For instance, if the palge sh
known under additive noise, matched filters are used for maximum dete@rformpance

[15], which is also the "optimal” detector under same specified constraints.

When some parameters are unknown, a frequently used method is thg datrgtor (“ra-

diometer”) [16], which gives very good results in low SNR cases. Thmessions for the
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performance of the energy detector is given in [17] when the enengyer of the signal
is modeled as a random variable. Moreover, energy detectors alsonherk the unknown
signals are modeled as samples of a random process [18]. Propettiesesfergy detector
is covered in [19]. However, when SNR values are not low the perfocmancreases by
utilizing the fully or partially known parameters. Unknown parameters are estihizefore

or during the detection process. These estimated values approach taltres when SNR
increases [10]. Therefore these methods give better results thanetwgy efetector when

SNR is high. The type of detectorsi@ir according to the unknown parameters.

When for instance the frequency of the signal is modeled as random, BteCtdrs have
near optimum performance. Performance of these detectors are ahiay26, 21]. In [22],
an optimum detector is derived for the unknown frequency and thermpeafece is compared

with other detectors in literature.

In some applications, like counter-measure systems, the receiver magveathe full infor-
mation about the signal to be detected. In these cases the problem is hzaitdy because
there is less information. Even if there are some assumptions about the reigaeall, there
can be multiple possibilities. An extra complexity should be introduced to the deteoto
overcome this problem. As an example, for the random length case, oneseanultiple
window detectors. These multiple window detectors may be composed ofyethetiertors
as in [23]. Another approach for Bayesian detection of a rectangulae pvith unknown

duration is developed in [24].

There are also many works on the detection of signals when the noise is theder®n-
Gaussian [25, 26, 27, 28]. In[29] and [30], signal detection u@arssian noise is performed
using higher order statistics. Knowledge of the correlation of noise sanspies needed for
the suggested detector to work, and the detector is computationally simple. Omitiaids
however depend on the covariance matrix of the noise and the perfeemétice detector
depends on how good the covariance matrix is estimated. In [EEgteof the incorrect

estimations are studied.

In a detection problem the performance of the detector is evaluated by litakplity of de-
tection and probability of false alarm. These values can be estimated bymigrgoMonte
Carlo simulations. If theoretical values can be calculated according tobka gignal and

noise model, performance values will be known exactly. In calculationsafumulative dis-



tributions, characteristic functions or moment generating functions are matteally useful
[32, 33]. If the closed forms are too complicated, then approximations masieaeto be

found.

1.2 Scope

The aim of this work is to analyze the performances of the detectors suitate/én signal
models and to derive and analyze a detector having a good performagietating signals

with random length.

Signals are modeled as tones with random phase, random frequenendoch length. Noise
is modeled as white Gaussian. With these models, the detector used to dedeot tangth
signals is the multiple window detector. Analytical forms for probability of falleeras are

derived and an approximation is made for probability of detection.

All analysis are done in discete domain.

1.3 Outline

Chapter 2 gives definitions of some basic concepts used throughoubtkeltwntroduces the
Neyman-Pearson criterion which helps to derive optimal detectors fengiignal models.
Some properties of the receiver operating characteristic curve is igdduThis curve is

used to measure the performance of the detectors.

In Chapter 3, well known and commonly used results for binary hypothestisig are sum-
marized. In Section 3.2 the signal is modeled as a single sample scalar. Irldmeni
sections, complexity of the signal model is increased by adding a newmapdmameter in

each new section.

Chapter 4 is aimed to be the part that is original to this work. In Section 4.Z)@oxdma-
tion is done for the probability of false alarms for the DFT detector used taidetedom
frequency signals. It is compared with the simulation results. In Section #a8eatkanaly-
ses are done for multiple window detectors. Their false alarm and detectibahjlities are

derived. The results of the derivations are compared with the simulatiohsies
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In Chapter 5, simulations are performed for specific scenarios in orcglnmnstrate some
inherent ideas for overlapping multiple windows. In Section 5.1, best winéagths are
found for the given example and a general formula is suggested. |n®mrated that
increasing window length increases the performance for that specédiomg. In Section
5.2, it is shown by simulation that increasing overlap increases the detesaformance.
In the last section, the detector is composed of both multiple windows and jpserkor
a sequence of signals received continuously in time, detector perfoesane simulated.

Again, increasing overlaps and the number of windows showed an secie@erformance.

In Chapter 6, some concluding remarks are made. In addition, this chapitairts some of

the future work planned.



CHAPTER 2

REVIEW OF DETECTION CONCEPTS

2.1 Hypothesis Testing

Hypothesiss a set of probability distributions. Commonly, this set is indexed by a set of
parameters. A hypothesis is said todimpleif it contains a single probability distribution.

A hypothesis is said to beompositéf it contains more than one probability distributions.
Hypothesis testinig a process of establishing the validity of a hypothesis [34]. If the problem
contains two competing hypotheses, then this problem is called binary hgpotlesting

problem.

We examine the binary hypothesis testing problem in this work. In this probleswib
hypotheses are named Hg andH;. Hg is called thenull hypothesisand H; is called the
alternative hypothesisin engineering literaturehlg is the set of distributions belonging to
noise data, therefore it is also calledise only hypothesisH; is the set of distributions
belonging to the summation of signal and noise. This one is also csilal plus noise

hypothesis

Let the probability distributions relevant to the problem be parametrized hyatteeneters in
the setX. Now we have a family of probability distribution®l = {Pr, : X € X}. Let Xy and

X1 be the two disjoint subsets &f. The hypotheses can be formulated as [35].

Ho: x € Xo

Hi:xe X1 (2.2)
The objective is to decide which one is true given some observations.
In the above formulationXy and X1 are needed to be disjoint, because otherwise, some

7



distributions would arise in both hypotheses leading to an unsolvable detpobioiem.

Simple hypothesis testingroblem consists of a family of probability distributionsl =

{Pro, Pr1} and the hypotheses can be formulated as

Ho . Pro

Hy: Pn (22)

Composite hypothesis testidgals with more than one probability distribution for at least one

hypothesis.

The observation vector, that is the result of eithigror Hy, is a random vector. Let the ob-
servation bg taking values on the domaiyf. Notationally, the probability density functions

corresponding to the parametrized distributions are writtemy @s| X, Hi).

Choosing between the two hypothesis given an observation vectoresguimethod. This

method can be formulized by defininglacision functiord : ¥ — {0, 1}. Then we can say:

o(y) = 0 = decideHg
0(y) = 1 = decideH; (2.3)

0 maps each observation to a hypothesis (by its index). So it partitioiméo two disjoint

sets

Yi={y:o(y)=i} fori=0,1 (2.4)

Every disjoint partitioning ofY into two sets corresponds to a decision function. We can call

D as the set of all decision functions.

The performance of a decision function for the binary hypothesis testotggm is evaluated
by two quantities. One is theobability of detectiorfPp) which is the value of the probability
of decidingH; when it is in fact the correct hypothesis. The other quantity igteability
of false alarm(Pga). It is the value of probability of decidingl; when the correct hypothesis

is Ho. The probability of detection is given as

Po@) = | pyly I Ho)dy (2.5)



and the probability of false alarm is given as

Pea(0) = fy py(y | Ho)dly (2.6)

The ideal decision function, if it existed, would take decisions such thattwdtant proba-
bilities bePp = 1 andPga = 0. Such a decision function does not exist except in some rare
uninteresting cases for example whegalways produce 0 anid; always produce 1. In this

caseo(i) =i fori = 0,1 does not make any mistake.

What can be done is to choose a ID such thatPp is as close to 1 anBga is as close to 0 as

possible.

We desire to choose an elementbfvhich is optimal in some appropriate sense. But, what
is optimal depends on the information available. According to the availablematoon, we

can list three tests:

e Bayesian testdn Bayesian tests, a-priori probabilities are known for the two hypothe-
ses. What is also known is the cost and benefit structure for all théjpeossitcomes

of the test.

e Minimax tests In minimax tests, a cost and benefit structure exists but a-priori proba-

bilities are unknown.

e Neyman-Pearson test©nly the pdf’s of observations under each hypothesis is known

in Neyman-Pearson tests.

In this work, a cost structure will not be introduced, therefore onlyri@y-Pearson tests will

be considered.

2.2 Neyman-Pearson Criterion

Neyman-Pearson philosophy is to choose adestD that maximizesPp(d) with the con-
straint thatPra(0) is less than or equal to a constant value.

LetD, = {0 € D : Pra(d) < a}. Then,

onp = arg QD‘E‘XPD(D) (2.7)



Let

|_( ) = M (2 8)
= 6T Ho) '
The result of (2.7) is given as
1 if L(y) > 2
oay)=12 0orl ifL(y)=2 (2.9)
0 if L(y) <A

if the pdf’s are continuous, then the probability of occurance of caég “= 1" is zero and

the thresholdt is the solution to

Pea = f By (y | Ho)dly (2.10)
y:Ly)>4)
A detailed proof is given in [10].
The test obtained in this sense is calledltkelihood ratio test (LRT.)

In many cases, taking the logarithm of both sides in the test brings pradicaitages in cal-
culations. Using the monotonic increasing property of the logarithm funadtienfollowing

test is equivalent to the one in (2.9).

1 if InL(y)>7y
oy)=4 Oorl ifinL(y)=7y (2.11)
0 if InL(y) <y

wherey = In A.

2.3 Receiver Operating Characteristic

For all decision functions there is a corresponding pakPga(0), Pp(?)) € [0, 1] x [0, 1]. Let
v: D — [0, 1] x [0, 1]. The set(D) contains all the achievabl®ga, Pp) operating points.

A receiver operating characteristi(ROC) is a curve in [01] x [0, 1] consisting of diter-
ent (Pra, Pp) operating points [10]. It can also be callB®DC curve The ROC curve of a
Neyman-Pearson detector is a curve ifl|x[0, 1] consisting of points®ra(dnpe), Po(ONPe))

whenPga = @ is swept from 0 to 1. If1 is the LRT threshold, it is swept from 0 to. The

10



probability of detection and probability of false alarm can be written in termisasf

Po) = [ Pup(LO) | L)

Pea() = [ Pup(L0) | Ho)AL(Y) (2.12)
We can list some properties of a ROC curve for a Neyman-Pearson def&6io

1. ROC curve is the upper boundary of the achievable operating points.

2. (0,0)and (11) are in ROC.

3. 353\ = 1, wherea is the threshold of the corresponding LRT. Sirce O for Pga > 0,
this statement tells us that in order to increase the probability of detectiongends to
increase the probability of false alarm as well. A critical question to be amesive the

detector design process is “whi€lga can be tolerated” in the detection problem.
4. ROC curve is concave.

5. Pp = Pga for all points on ROC.

An example of a ROC curve together with all the achievable operating poinigda M

Figure 2.1.

Proof of 1 This is obvious. For a giveRga, Neyman-Pearson detector gives the higiRgst

among all the achievable decision functions.

Proof of 2 At the two end points wherg¢ = 0 andA = oo,

Pp(0) = Pra(0) = 1 (2.13)

Pp(c0) = Pra(e0) =0 (2.14)

Proof of 3

- = bl (2.15)

%2 = —pLy)(LY) | H) _ dPo PLy(L(Y) [ H1)
9 = —pLy(Ly) [ Ho) | 9P PLyp(LOy) [ Ho)

11



Figure 2.1: Receiver operating characteristic together with all the adhéegperating points
Proof of 4 For the proof of 4, the reader may refer to [10].

Proof of 5 Let for P(Fﬁ > P(Dl), the point P(FQ, P(Dl)) be achieved by the decision function

Then define,

1 if0y(y)=0
02(y) = (2.16)
0 if ouy) =1

With 95, the point P, P2 = (PY), Py is achievable.
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CHAPTER 3

DETECTION OF SIGNALS UNDER NOISE

3.1 Introduction

In this chapter, an attempt is made to develop a consistent notation for tHermrobdetec-
tion of signals under noise. Sections from 3.2 upto 3.8 are discussed in nawdaysignal

processing books such as [10], [7] and [36].

In section 3.6, approximation for detection probability is derived using th& Détector

structure.

In radar applications, usually, the signal length is known. When the lengttkisown how-
ever, it must be estimated before performing the detection. In section 817 asietector is

derived.

3.2 Detection of a Positive Scalar in Gaussian Noise

This section deals with the detection of an unknown constant in Gaussian fbis case is
the one dimensional case of the more general detection problem of kigmaissin noise.
The value of the scalar is unknown to the observer. However, a tegiendent of the pa-
rameter is derived. Since the test will not depend on the parameter, kndwivalue is not

necessary for the decision function.
Let the signal be defined by its energy parameter, namely

s= VE (3.1)
whereE > 0 is the energy of the single sample signal.
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Let the noisay be a zero mean Gaussian random variable with variafce

The observatioly is given in two hypotheses as

Ho:y=

=

S+w (3.2)

Hi:y

Ho is a simple hypothesis since it contains only one distribution whicN'(8, o). Hj is

composite and it contains a family of distributioN§ VE, o2) indexed by the parameté&:.

Ho = {N(0.?)]
Hy = {N(VE.o?) : E >0} (3.3)

A short hand notation may be as follows.

Ho:E=0

Hi:E>0 (3.4)

In order to find the decision function optimum in the Neyman-Pearson sensdirst has to
find the likelihood ratio defined as in (2.8). The likelihood ratio can be written as

py(y | Ha)

L) = py(y | Ho)

1 (y- VE)?
s exp- 05

2
ool 2]
1 y?—2VEy+E
V2no? eXp(_ 202 )

ore=d exp(—zy—;)
exp(z_TrEz) exp(%’] (3.5)

According to (2.9), the optimum decision function results as 1 if the followinguis.tr

exp(%)exp(%’] > A (3.6)

whereA is some value.
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The test given in (3.6) can be rewritten by using the monotonic increasomepy of the

logarithm function. Therefore the following is true

InL(y) = Z_T“EZ + g >y (3.7)
wherey = In A.
Decision test using log-likelihood ratio is
,. 7y E
VE 2
SY>T (3.8)

Threshold of the test is defined ag = % + % The Neyman-Pearson optimal detector

decidedH; if (3.8) is satisfied. Otherwise it decidék.
The threshold value has to be determined from the false alarm constrénet détector.

The distributions for the random variatie= y used in the test is already known for both

hypotheses. The probabilities of false alarm and detection can easilycoéated.
Pra(r) = Pr{z> 7| Ho}
- [ etz oz
= f T ex —i dz
- T V27T0'2 p 20-2
= — exp(——) dz

-Q(%) (3.9)

(0o

= ” 1 exp(_ ﬂ) dz

202

= Q{Q_l(PFA) - m}
=1- Q{VSNR- Q*(Pra)} (3.10)
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where

QX = L foo exp(—u—z) du (3.11)
V2r Jx 2 '
is the Gaussian-Q function and
SNR= = (3.12)
g

is the signal to noise ratio.

Summary The detection problem in this section can be summarized as below.

Ho:y~ N(0,c?)
Hi:y~ N(VE,o?) (3.13)

The decision function that is optimal in the Neyman-Pearson sense:

1 ify>t
one(y) = (3.14)
0 ify<r
where
7= 0Q (Pra) (3.15)
The ROC curve belonging fnp is given as
Pp = 1- Q{ VSNR- Q"!(Pra)] (3.16)
with
SNR= Ez (3.17)
g

Since the threshold is determined only by the false alarm constraint, it does not depend
on the energy parameter. Therefore, the decision function that is optintla¢ iNeyman-
Pearson sense, is also independent of the energy. Tests that ard fiptatiaalues of signal
parameters are callathiformly most powerfullUMP). The test in this section is UMP. For

many detection problems however, no UMP test exists, [10].
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3.3 Detection of a Known Vector in White Gaussian Noise

This section deals with the detection of a complex vector in white complex Gaussita

The vector is assumed to be known upto a scalar factor. In other woedsh@pe of the signal
is known but the energy is unknown. Energy in this case is a deterministoneaer but its
value is not available to the observer. A UMP test which does not depettdoparameter

is derived.

In order to detach the energy from the shape of the signal, the shagmieddes a normalized
vector. For a signal length &, the shape of the signale CN is a column vector with unit

energy. Namely,

lall® = 1 (3.18)
whereljal| = Varais the 2-norm of the vecta. a* is the complex conjugate transposesof
Now the signak e CN can be defined as

s= VEa (3.19)
whereE > 0 is the energy.
Note that callinge as the energy of the signal is valid since

IS = a"aE = |lal’E = E (3.20)

Let the noise vectow be anN-dimensional circularly symmetric complex Gaussian vector
with distributionCN(0, o2l ) wherel y is theN-by-N identity matrix.

This problem can be solved by projecting tRedimensional signal and thd-dimensional
noise into a one dimensional space. This projection should keep the sigrgyeas much
as possible while reducing most of the noise power. It turns out that thegped direction
coincides with the direction of the signal itself. Filter implementation of this projedtion

calledmatched filteiin literature.

Let

17



With ¢, defined as above, let

{#0. b1, In-1) (3.22)

be an orthonormal set iiN. One can find such a set by the Gram-Schmidt algorithm. Since

the set iSN dimensional, it forms a basis f@iV.

Then forHp,

<
Il
z

1

(W, ¢n) #1,

0
N-1

= (W bo) B0 + D (W, br) (3.23)
n=1

>
Il

and forHy,

y=s+w

N-1

= lslgo + ), (W. #n) ¢y
n=0

N-1

= {lIsll + (w. o}}do + Y (W. b0 bn (3.24)

n=1

Here(X,y) = y*X is the inner product of the vectoxsandy.

The termzr'}';ll (W, ¢, ¢, appears in both hypotheses, therefore it can be regarded as a nui-

sance parameter. It can be discarded from the observation. Onasihnséiow

N-1 N-1
<W, ¢n> o= Z <¥7 ¢n> n (3.25)
n=1 n=1

regardless of the hypothesis. Therefore we can discard all projsatibthe observation

vector except ontgg. That is observe only

y = (y. o) = <y, ﬁ> =a'y (3.26)

With the above discussion detection problem is reduced to the following onensiiomal

problem.

I
o
<
I
=

Hity=Isl+w (3.27)

s
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wherew = (w, 5.

But again, Inty}, which is equal to Irfu}, is the same for both hypotheses siiigieis always
real. It can be discarded as well. Only the real part is observed. fdidem is moreover

reduced to

Ho :

<

= Re{w}

Hy:y = lisll + Re{w} (3.28)
wherey = Refy} = Re{a'y}.

Since Réw} is the real part of a linear combination of Gaussian random variables itds als

Gaussian.
ForHp,
Ely'} = E{Relw}}
= Re{Elgpw}|
= Re{d; Elw)]
-0 (3.29)
varly'} = var{Re{w}}
_var {¢;‘3w + w*¢o}
2
_ lioll? vartw} + il variw*}
B 4
2
a
=5 (3.30)
ForHa,
Ely'} = E{llsl + Relw}}
= lIsll + E{Refw}}
= sl (3.31)
0_2
varly'} = > (3.32)
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The distributions for both of the hypotheses are now known. The relducbdlem is exactly
the same as the one solved in section 3.2 with the same energy parameter. ridheeva
however must be replaced by the half of it. Note that the reduced proldesrbt depend
on the shape of the signal but depends on its energy. This means, arstiape is used for
transmission, if the observer knows the normalized shape, the detectiompence stays the

same.

Since the modified detection problem in this section is the same with the one in se@tion 3
with variance replaced by the half of it, we can find the relation between tasitbld and the

false alarm probability by replacing by o/ V2 in equation (3.15).

Summary The detection problem in this section can be summarized as below.

Ho . ).,/ ~ CN(O,O'2|N)
Hy:y ~CN(VEa o?ly) (3.33)

The decision function that is optimal in the Neyman-Pearson sense:

1 if Refa'y} >t
onp(y) = (3.34)
0 otherwise

where

7= % Q(Pa) (3.35)
The ROC curve belonging e is given as
Po = 1- Q{V2SNR- Q(Pra)} (3.36)
where
SNR= E2 (3.37)
g

It can also be preferred to implement this detector without normalizing thelsigrtais case
however, threshold calculation would depend on the signal energy wiaghnot be known

beforehand.
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3.4 Detection of a Known Vector in Colored Gaussian Noise

This section deals with the detection of a complex vector in colored complexsfaaumise.
The signal is defined as in section 3.3 wihas the energy and as the normalized shape

vector.

Let the noise vectoy be anN-dimensional circularly symmetric complex Gaussian vector

with distributionCAN (0, T") whereT is theN-by-N covariance matrix.

This problem can be solved in two steps. The first is to whiten the noise Hyiagp@
whitening transformation to the obsevation vector. Then the resultantdramesd vector can

be projected on the signal as discussed in section 3.3.

Let the setqg, A1,...,An-1} and{¢q, @1, ..., Pdn_1} be the collections of eigenvalues and

normalized eigenvectors dfrespectively. In other words, they satisfy

l#ill=1 and T'¢, = 4i¢; foralli=0,1,...,N-1 (3.38)

We need to whiten the noise. Let the transformation mdtrbe defined as

T =A@ (3.39)

whereA is anN-by-N diagonal matrix withi!" diagonal element equal t§ and® is an

N-by-N matrix with i column equal ta;.

T is a whitening transformation matrix sinceyf= Ty,

Elw} = E{Ty}
= E{A 20"y}
= A2 E{y)

=0 (3.40)
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var{w} = E{Tvy'T"}
= E(A" Y20 gy DAY
= A V20" Efyv*j DA Y2
= A2 TodA Y2
= A 20" OAD DA /2
— AL2pAA-12

= Iy (3.41)

If we transform the observations By the problem becomes

HoZ

w

yl
Hy:y =Ts+w (3.42)

wherey” = Ty andw ~ CN(0, I n).

But this is the exact problem introduced in section 3.3 with unity variancer Aféstransfor-
mation, the resultant normalized shape becomes

Ta A Y?®ra

[ = = 3.43
ITall  |IA-Y2®3|| ( )
and the observation vector

y =Ty = A 2@y (3.44)

The tested variable in equation (3.34) then becomes

a' Al

Re{a”y'} = Re{ ————— 3.45
1= Rl e ) (349

Summary The detection problem in this section can be summarized as below.

Ho:y ~CN (0,T)
Hi:y~CN(VEar) (3.46)

The decision function that is optimal in the Neyman-Pearson sense:
a'®A 1 }
.

1 ifRe{————
{||A—1/2c1>*a||y

one(Y) = (3.47)

0 otherwise
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where

r= QP (3.48)
The ROC curve belonging e is given as
Po = 1-Q{ V2SNR- Q*(Pa)} (3.49)
where
SNR = ||A"Y2@*a)|’E (3.50)

To the contrary of the case in section 3.3, the probability of detection in thésdegsends on

the signal shape.

Let Amin = Min{Ao, A1, ..., An-1}. If the shape of the signal is defined as below
a= > a6 (3.51)
{i:Ai=Amin}

for some complex constantssuch thaty’y;. , }|ci|2 = 1, then signal to noise ratio will be

=Amin
maximized. In the above equatiofy,is a column vector of all zeros except tifeelement
which is one. This means that if signal is nonzero only at those samples ndigdvariance

is minimum, then SNR is maximum.

Some examples of ROC curves are plotted fdfedent SNR values in Figure 3.1. In order
to read lowPga region, x-axis may be preferred to be log-scaled. Figure 3.2 plots the same

curves in log scale.

When the covariance matrIxis a diagonal matrix with all the diagonal elements being equal,
the detection problem in this section becomes exactly the same as the probletioin 3¢3.
Since the SNR values in both cases would then result in the same values,GheuR@ plots

given in this section also applies to the section 3.3.

3.5 Detection of a Signal with Random Phase

In this section, a random phase will be added to signal definition. Thesghamnodeled
as a uniformly distributed random variable. This parameter however is @&téebout in the

Bayesian formulation leaving a test independent of its realization.
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Probability of Detection, PD

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Probability of False Alarm, PFA

Figure 3.1: Performance of the decision function given in (3.47) foersd\ENR values.

Let the signal be defined as
s= VEaé" (3.52)

where

e E > 0is the energy of the signal.
e ac CNis a column vector of the shape of the signal satisfyjaif = 1.

e @ which is uniformly distributed in the interval [@r) is the phase of the signal.

Let the noise vectaw be anN-dimensional circular symmetric complex Gaussian vector with

distributionCA (o, o2l N).
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Probability of Detection, PD

10 10° 107 10 10 10
Probability of False Alarm, PFA

Figure 3.2: Performance of the decision function given in (3.47) foersd\sNR values. The
Pea axis is in log-scale.

We can findpy(y | H1) by conditioning on the parametér

21
Py TH) = [ pyly 0= 0 H)pO)

=f2nﬁexp{ = (v- \/_aele) (v- \/Eaejg)}%de
o o

- ﬁ% fozjr exp{—(j (y'y - VEy'ae” - VEa'ye ¥ + E)} do

- ﬂNizN exp{—y*);_: E} % fOZH exp{ ZE (yrael + a'ye” 19)} dg

- ﬂNiZN exp{—y*i/;zr E} % f()z” exp{g (laylel®9) + |a*y|e‘j(9‘¢))} do

= n.N;L.ZN exp{—y*);_: E}% 02”6 { \/_l il cosf — ¢)}

- eXp{—y*); E}fo(z‘/f'f*y'] (3.53)



where
2

To(X) = 1 f excost—9) gy (3.54)
2n
0
is the modified Bessel function of the first kind. Also in the above equatida®qual to the

phase of the complex numbaty.

Now, the likelihood ratio can be written as:

py(y | Hi)

Py(y | Ho)

- ,-2N exp{ v y+E)}IO(2\/EIa*y|)

L(y) =

o2

,,N(,.zN eXp{_ _}

- exp{——}] (2‘/_'& y') (3.55)

o2

Decision test using log-likelihood ratio is

InL(y) = - E In{[ (2‘/E|2a*y|)}>

:In{]o(igfy')}>y+%
a g

Iy (@) > exp(y + E) (3.56)

o2

T is a monotonically increasing function. Therefore we can rewrite the relati(156) as

2VElay] __ E
— y >Iol{exp(y+ ;)}

o

slay| > 1 (3.57)

_ o? -1 E ; H
wherer = 2(@ {exp(y + ;)} is a threshold to be found from false alarm constraint.

The distribution fora®y is Gaussian, therefore the distribution for the random variabie

|a*y| is the Rice distribution.

ForHgp
E{ay}=0 (3.58)
var{a‘y} = |lall* var{y} = o (3.59)
Pz(z| Ho) = g eXp(;—Zzz) (3.60)



and forH;

E{a'y} = VE&’ (3.61)
var{a'y} = o2 (3.62)
2z Z+E 2zVE
Pz| H1) = — eXp(— 3 )Io( > ) (3.63)
g g (o
The false alarm and detection probabilities can be calculated as
2z -7
Pra(r) = f—z exp(—z) dz
g g
2
= exp(%) (3.64)
a
Po(r) = f2_§ exp(—Zz +2E)I0(22\2/E) dz
a a a
VEE V272
=Q (— (3.65)
g a
where
P 2, a2
Q,(a.b) = f xexp(—x e )Io (@) dx (3.66)
b
is the first order Marcum Q function. [37]
Summary The detection problem in this section can be summarized as below.
Ho iy ~ CN (0.07Iy)
Hi:y~CN(VEae? o?ly) giveng =0 (3.67)
The decision function that is optimal in the Neyman-Pearson sense:
1 iflayl>r
onp(y) = (3.68)

0 otherwise

where
T= \/—O'Zln Pra (369)
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The ROC curve belonging fnp is given as

Po = Q;( V2SNR v-2InPga) (3.70)
where
SNR= EZ (3.71)
a

Figure 3.3 plots the ROC curves belonging to the decision function. If thisgfiglcompared
with Figure 3.2 it can be seen that for random phase case, the probabil@iection is lower.
This is expected since in this case, less is known about the signal to beedetdigher SNR

is needed for the same detection performance.

Probability of Detection, PD

10 10" 10°° 10 10 10
Probability of False Alarm, PFA

Figure 3.3: Performance of the decision function given in (3.70) foersd\ENR values.

3.6 Detection of a Signal with Random Phase and Frequency

Leta e CN be the normalized envelope of the signal. Let the signal be defined as

sh= VE an @) forn=0,1,...,N-1. (3.72)
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where

E > 0 is the energy of the signal.

an Is then-th element of.

w defined in the interval [@r) with probability density functiorp,(.) is the radial

frequency of the signal.

6 which is uniformly distributed in the interval [@r) is the phase of the signal.

The frequency and phase are independent.
In vector notation, the signal can be represented as
s= VEA{(w) €* (3.73)

where

e A(N) is anN-by-N diagonal matrix witm-th diagonal element being equaldg
e &(w) is a column vector. Its-th element is defined as
&nlw)=€e" forn=0,1,...,N-1 (3.74)
Let the noise vectow be anN-dimensional circular symmetric complex Gaussian vector with
distributionCA (0, 0?1 ).

By adapting equation (3.53) to the definition of the signal in this section

1 (y'y +E) 2VE

£ (WA ) (3.75)

If py(y | Hq) is calculated by conditioning og
21
By | H) = fo By (Y | & = @ H1)Py(w) do
1 (y'y+E)) (% _ (2VE
= ZNg2N exp{— o2 j; To o2
The likelihood ratio is equal to

L(y) = exp{-— | fo 2”10(20—2@
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J P (w) dw (3.76)

E(w)A"Y ) P (w) dw (3.77)



The decision test may depend on thresholding the likelihood in (3.77). Thgratien how-
ever is dificult to compute and the resultant test may be dependent on the value gy ener

which is not desired.

In order to overcome thesefitulties, another approach, tgeneralized likelihood ratio test
(GLRT) will be used. In this approach, estimates of the unknown variaskesised when

finding the likelihood ratio.
If MAP estimate is used for the random variahle

o= argmax{py(yla) le)pw(a))}

e[0,27)

= arg ax{;N exp{_(yy—:E)} (2\/_
0' a

1,e[0,27)

o)

= arg max{]o[ 2vE ) pg,(w)} (3.78)

1,e[0.,27)

Let ‘W be a subset of [@x). If the probability density ofw is uniform in ‘W and zero

]} (3.79)

otherwise, then,

o = arg max{f 0( 2vE

Using the monotonically increasing propertyff,

. {ZVE
© = argmaxq ——
weW o

)

The test using generalized likelihood ratio is written as:
Py w=d,Hi)
py(y | Ho)
(&
o2

(3.80)

Loyl w=0) =

= exp{—%}]o
(&
2

: )>/l
. )>/lexp{(§2}
>.ro (/lexp{E})

> ﬁ 7t (/l exp{(TE})

EWAY|>1 (3.81)

ﬁ]o

2\/‘
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_ o -1 E\); .
wherer = %= 75" (1exp| 5 ) is a threshold to be found from false alarm constraint.

In order to perform (3.81) numericall}y must be sampled. LeéX’ be a scalar such that

N > N. LetKn ={k:k=0,1,...,N =1, 2rk/N’ € W}. If W is uniformly sampled at N

points, that isuy = 2,(}—" then the test becomes
2rk
kg;l{gx & (W)A*y >T (3.82)

Note that ¢* (%K) Ay” is the value of thek-th bin of theN’-point discrete Fourier transform
(DFT) of the vectorA™y. If N’ is not equal toN, zero padding is applied first to the end of
the signal. Also note that that (3.82) is an approximation to (3.81) and it geterdio the

generalized likelihood ratio test & is increased.

At this point, for simplicity of calculations, the envelope of the signal can lzseh as rect-

angular. Namely,

1
an=— forn=0,1,...,N-1 3.83
N (3.83)

In this case, the detector can be modified as not to include the additional mult{%i.er
. [ 27k
3 (W)y

The probability of false alarm of the test in (3.84) cannot be evaluated gedléorm for

Namely the modified test becomes

max
keXr

> 7/ (3.84)

wherer’ = VNr is the new threshold.

N’ > N. This is because wheld’ > N, the samples of the DFT vector become correlated. A
rough approximation however is the false alarm value wkea N. Letyy = f*(z”Wk)y be the

value ofk-th bin of theN-point DFT ofy. The approximation to probability of false alarm

2rk
f*(W)y > 7' Ho}

¢ (W)y
~ 1—Pr{[y < 7" for k € Kn | Ho}

=1- [ ] Priign < 7' | Ho} (3.85)
qu(N

can be calculated as

Pea = Pr{kg}](gx

=1- Pr{kmax

SN

ST,|HO}

The last line in (3.85) is true because elementg afe” independent random variables Ifty.
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Pr{l«l < 7’ | Ho} is known from the previous section. Therefore

_2
Pea ~1- | | {l—exp(—Tz)}
o
kG'KN

72 IKnl
=1- {1 - exp(?)} (3.86)

where|Kn| is the number of elements of the &, or in other words the number of DFT
frequency bins that are inside the expected frequency range of tied.Sldnis approximation

is equal to the exact value whéii = N.

Figure 3.4 shows the fierence between the rough approximation and simulation results for
N’ = 4N.

10 T T
' Approximation

=l : — B8 — Simulation

Probability of False Alarm, PFA

5 6 7 8 9 10 11 12
Threshold values

Figure 3.4: Approximation for probability of false alarm whidh= 4N

3.7 Detection of a Signal with Random Phase, Frequency and Lgth

Let the signal lengthN be a random variable taking values from the {§e®, ..., M} for a

positive integerM. According to this length, the enveloggN) € CM of the signal is a
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column vector with first\ elements nonzero. The other elements are bound to be zero. Also,

in order to keep it independent of the total signal energy, it is normalthatljs
la(N)I? = 1 (3.87)
Now, then-th element of the signale CM can be defined as
Sn= VE a(N) @™  forn=0,1,...,M-1 (3.88)

where

E > O is the energy of the signal.

an(N) is then-th element ofa(N).

w defined in the interval [@r) with probability density functiorp,(.) is the radial

frequency of the signal.

@ which is uniformly distributed in the interval [@r) is the phase of the signal.

The frequency, phase and length are all independent of each other.
In vector notation, the signal can be represented as
s= VEA(N) é(w) € (3.89)

where

e A(N) is anM-by-M diagonal matrix witm-th diagonal element being equalag(N).
e &(w) is a column vector. Its-th element is defined as

Enlw)=€e¥" forn=0,1,....M-1 (3.90)

Note that callinge as the energy of the signal is valid since

sl = e 0" (w)A*(N) VE VEA(N)é(w)e
= Ella(N)I?
=E (3.92)
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Let the noise vectow be anM-dimensional circularly symmetric complex Gaussian vector

with distributionCAN/(0, o2l ).

By adapting equation (3.53) to the definition of the signal in this section

1 W'y +E)) . (2VEE (@A (N
Py(y lw=w,N=NHi)= VY exp(— = )Io( Oa_)z (3.92)

Let W be a subset of [@7) and91 be a subset dL*. If the probability densities af andN
are uniform in'W and91 respectively and zero otherwise, then, using a similiar procedure in

obtaining (3.80)

(@ N) = arg max{i¢" (@)A" (N)y) (3.93)
Ne)t

The test derived from the generalized likelihood ratio is similiar to (3.81):

max{i§" (@A (NI} > 7 (3.94)
NeN

wherer is a threshold to be found from false alarm constraint.

3.8 Detection of a Signal with Random Phase, Frequency, Lerngand Delay

Let the delay time of the signdlbe a random variable taking values from the{8et, . . ., dmax}
for a positive integednax. Let the signal lengthN be a random variable taking values from
the sef{1,2, ..., Nmax for a positive integeNmax. Let the length of the observation vector be
M. Let M > dmax + Nmax- According to delay and length, the enveladd, N) CM of the
signal is a column vector withl elements starting from the:th element being nonzero. The
other elements are bound to be zero. Also, in order to keep it indepewidet total signal

energy, it is normalized, that is
lla(d, NI = 1 (3.95)
Now, then-th element of the signale CM can be defined as
sh= VE an(d,N) €™ forn=0,1,....M -1 (3.96)

and in vector notation where

e E > 0is the energy of the signal.
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e an(d, N) is then-th element ofa(d, N).

e o defined in the interval [@r) with probability density functiorp,(.) is the radial

frequency of the signal.

e @ which is uniformly distributed in the interval [@r) is the phase of the signal.

The frequency, phase, length and delay are all independent obdaah
In vector notation, the signal can be represented as
s= VEA(N) £(w) & (3.97)

where

e A(d, N) isanM-by-M diagonal matrix witm-th diagonal element being equalag(IN).
e £(w) is a column vector. Ite-th element is defined as

&nlw)=€e" forn=0,1,...,M -1 (3.98)

Let the noise vectow be anM-dimensional circularly symmetric complex Gaussian vector

with distributionCA (0, o2 ).

Let ‘W, © and 91 be subsets of [@r), Z* U {0} andZ* respectively. If the probability
densities ofy, d andN are uniform inW, © and9t respectively and zero otherwise, then,

using a similiar procedure in (3.80)

~

(@.N.d) = arg max{&"(w)A"(d. N)yl} (3.99)

de®
Ned

The test derived from the generalized likelihood ratio is similiar to (3.81):

max{l§” (w)A™(d, N)yl} > = (3.100)
de®
Nedt

wherer is a threshold to be found from false alarm constraint.
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CHAPTER 4

FURTHER ANALYSIS ON ROC CURVES

4.1 Introduction

The previous chapter suggested the detector to be used with random gitadrequency
as the DFT detector. In the first of the following sections, an approximatialone for
the probability of detection for the DFT detector. Noise is assumed to be whitelariy
symmetric complex Gaussian. Simulations show that when signal SNR incrpestesbility

of detection approximation approach to its exact value.

In the other section, signal lenght is defined as random. The multiple windmetdeis
used in this case. The exact values for the probability of false alarmseaireed and an

approximation for the probability of detection is compared with the simulation results

4.2 Detector for a Signal with Random Phase and Frequency

Probability of detection can be approximated as if the estimated value of theefreggcomes
from the closest DFT bin. One may expect this approximation will approatitetorue value

when SNR is high.

In this section, an approximation is derived for the probability of detectioheesummary is
given. The signal model and the detection problem used in this sectionnedéfi section
3.5.

In section 3.5, the relation between the probability of detection and the thdeddyoends on

the expected value and the variancagfunderH;. With the signal frequency being random,
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we can make use of the same relation by observing the expected value aratiimee of
\/_.g-‘ (%X)y. zis the value of th&'th DFT bin scaled by 1VN. If we replacey by its

definition,

2- £ | 2H)[(Tewe + ] @)

The expected value dfis

Elg=¢ (Z”k) RPN

N/
o N-1
\/_el Zej(w—zl\"r—k>n (42)
n=0
By [38] and with few adjustments
VEE’ if w= 2£k
E{Z} = 0\ sin(N (w - X (4.3)
_\/Eel 7o) = (i( ;k)) otherwise
Sin 5 (a) — W))

The variance of is equal tar?.

Using the result of the previous section, when radial frequency of igralksis w and the

detector structure is DFT,

(\/E \/2_72) _ 2rk 21k

|fw:Wforsomeke{k:We"W}

Po(r) = 2E Sin(N (w - Qk)) V2r2
Ql( . K

] otherwise

(4.4)

Therefore, performance decreases when frequency of the ssgiaalaway from the closest
DFT bin. However, when the distance between the frequency and autartieFT bin is
more thang; N,, then the neighbour DFT bin becomes the closest bin. Therefore, venaitey
value of the frequency is, there will always be a DFT bin that is closerﬁéaﬂihe worst case
for the performance will occur when the signal frequency is at the middieambins, namely
w= 2,3—" + §7. The performance will be best when frequency is at an exact DFThaimgly,
w= ZI({—" For all possible frequencies, the detector performance will stay betthese two

values. Now, if we assume that the maximum value always comes from the bis thasest
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Figure 4.1: Probability of detection approximation vs. signal frequencthisDFT detector.
Signal length is 16, DFT length is 24, energy of the signal is 10, detectiestibid is 3.2.

to the actual frequency, the probability of detection can be approximatesl approximated

probability of detection versus signal frequency can be observed imd-#y1.

With the above assumption, we can integrate the frequencies around thst tlimsto find the

probability of detection for random signal frequency. Mathematically,

dw (4.5)

Summary The detection problem in this section can be summarized as below.

Ho 1y ~ CN(0.07Iy)

Hy:y ~ CN (VEAE(w)e”, o?In)  giveng = ¢ andy = w (4.6)
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The decision function based on GLRT:

1 if max & (%()A*y >T
oG(y) = N (4.7)
0 otherwise
For the special case whén,, = % forn=0,1,...,N -1,
2 KNl
Pra(t) = 1 - {1 - exp(F)} (4.8)
w (N 2rk
N’ sin(5 (w— &¢ N
Por) ~ o le VZSNR _(21( Zﬂz) L (4.9)
) N sm(ﬁ w — —)) g
-
where
SNR= £ (4.10)

The simulated results together with the approximation is plotted in Figure 4.2. Irgtive fi
it can be seen that simulation results are always greater than the approrsnaticce some
detections arise from DFT binsftiérent from signal frequency. Another fact that approxima-

tions approach to the exact values for increasing SNR can also be gberfigure.

4.3 Detector for a Signal with Random Phase and Length

Consider a case where only phase and length of the signal are randgnal iS defined
as in (3.89) except the frequency is deterministic in this case. This caselyzaa further
to find the probability of false alarm and approximate probability of detectitwe. rféason to
choose the frequency as nonrandom is to simplify the analysis. For thel@Egtor detecting
random frequency signals, previous results are used to extend thits ries deterministic

frequency.

The generalized likelihood ratio test for random phase and length is gsren
max{l¢™ (w)A"(N)yl} > 7 (4.11)

That is calculate and threshg§i (w)A*(N)y| for each possibl@&l. If one of them exceeds the
threshold, decidéd,, else deciddéHy. The detector structure may be visualized as in Figure

4.3 where dierent length windows are working in parallel with the start time as 0.
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Figure 4.2: Probability of detection approximation for DFT detectors gived.®) together
with simulation results.

For simplicity of calculations, choose the envelope of the signal to be radenlamely,

1
AmFW forn=0,1,...,N-1 (4.12)

Now, the probability of false alarm will be analyzed. For this analysis, firs required
that the correlations between théfdrent lengths be known. Let the variablgszs, . .., zk-1

corresponding to dlierent lengthdNg < N; < ... < Nk_1 be defined as

2 = & (w)A"(No)y
21 =& (A (Ny)y

Zk-1 = & (w)A"(Nk-1)y (4.13)
whereK is the number of dferent lengths to be evaluated. In matrix notation,

*

z2=| A(No)§(w) A(N)é(w) ... A(Nk-1)§(w) | Y (4.14)

where * corresponds to complex conjugate transpose of the matrix.
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... .]|
o]
Figure 4.3: The detector multiple window structure.
If Wn(w) is anN-by-1 vector defined by ite-th element as
Win(w) = " forn=0,1,...,N-1 (4.15)

then,
TEWN(©) i Who(@) = W)
Z= ° ﬁW(Nl_NO)(w)ejNow \/ﬁw(Nl—No)(w)ejNow y’
0 0 —L W ( )ejN(Kfz)w
- YN Y (Nk-1=Ni-2) (W ]
(4.16)

Wherey’ is anNk_1-by-1 vector with elements equal to the firgt_1 elements og
For Hp, eachz is a zero mean complex Gaussian since it is a linear combinatign ©he
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covariance matrix of is then

I =E{zz'} = 02
LW @) O 0
o WWT\IO((,U) \/_W?Nl NO)(w)e—JNow 0
* 1 * — iNow 1 * i oW
Wia(@) TR Win-ng@)e ™ T Wi (@) e
EWip(@) E=Whp() = Who(w)
% 0 \/LN—lw(Nl—No)(w)ejNow ﬁW(Nl_NO)(w)eJNO‘“
| 0 0 =W NN (@)NE2 |
1 W* o (W)Wg(w) «/W W, (W)W o(w)
X TR Wi @Wio(@) 1 W, (0)W o (@) + /W i, -y @)W (o) ()
L 0 0
T Wi (@Who(w)
1 jNow
‘MW(Nl‘No)(“’)e i (4.17)
ﬁW(NH—Nm)(w)ejN(“)‘“ |
For another simplicity letv satisfy
o TR _2mka_2re _ 2rkkey (4.18)
No N1 N> Nk-1 '
for some integerkp, k, . . ., kx_1. Note that this assumption also implies
N1-No Nz2—-Ng Nik-1) = Nix-2)

for some integerka, k’l, LK

K-1*
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This choice of frequency allows the form of the covariance matrix to be simgtav,

[ Nog Ng No
1 x . Ne

N2
N N Ny
N1 N2 T Nk-1

_ 2 N N N
r=c? [N e 1 o JRE (4.20)

\/ No \/ Ny N 1
L Nk -1 Ni-1 Ng-1 "~

The inverse of this matrix is interesting:

Ny _ ¥NoNs 0 0
N1—No N1—No e
_ VNoNy Nt N _ YNiNp 0
1 N1-No  Ni-No ~ No—Ng N2—Ny T
ri-2lo _ VNN, Ny Np 0
0-2 N2—N1p N2—N1p N3—-Np °°°
Nk-1
0 0 0 e R
N1 _ YNoNy 0 0
N1—No N1—No :
CVNNL No L N _ VNI 0
N1—No N1—No N>—Njp N2—Ny e
_ VN1N2 N1 N3
=2 0 T Np-Np s L v R (4.21)
Nk-1
0 0 0 e e |

The inverse covariance matrix has nonzero elements only in the diagahlavear and upper

diagonals. With this result analytical forms for probability of false alarms lmamerived

easily.

The detector structure is composed of calculating and threshgl#iG@)A*(N)y| for each
possibleN. However, for computational reasons, one may choose to evaluatathat a few
specific length values. In the following subsections, probability of falseraia computed

for a specific number of window lengths.

For Ho, z is a circularly symmetric complex Gaussian random vector since it is the résult o
a linear transformation of the circularly symmetric complex Gaussian randotorve Its

covariance matrix and its inverse is given in (4.20) and (4.21) respBctive

The probability density function is

1 e
py(2) = ) exp(z'T'z) (4.22)
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Let the elements ¢ be represented in polar coordinates such that

z=re? fori=0,1,...,K-1 (4.23)

Letr and¢ be K-dimensional vectors withth element equal tg andg; respectively.

4.3.1 Pga calculation using two windows

Here, an analytical form for the probability of false alarm is derived mwitiee detector is
composed of two windows with fierent lengths. We start with writing the joint probability
density function for the magnitude and phase of the varighl@)A*(N)y|. Then by inte-
grating out the phase components, we are left with the marginal probabitisitdef the
magnitudes. Then by finding the cumulative distribution evaluated at the dekneshold,

we find a relationship between the threshold and the false alarm probability.

ForK = 2, the covariance matrix and its inverse is

0_2 0_2 H_(l)
Ir= . [ ’ (4.24)
a N_l a
1 N _ 1 vNoNy
rt=| Nt of o (4.25)
_ 1 VNNp 1 Ny '
2 N1-Np 2 N1-Np

Then, if we write the joint probability density function for the magnitudes arabph,

Pro(r. @) = ror1pgz (o€, r1el)

{ N]_ 2 N]_ 2 2 VNON]_

- ra— ry — lol1 COSEPo —
2N~ Ng) © ~ o2(Ng —Ng)' -~ o2(Ng — Ngy "L COSPo ¢1)}

(4.26)
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The marginal probability density function of the magnitudes are
n 21
Proi (Mo, 1) = ff Pr.o(r, ¢) dbodea
00
3 Ny B Ny > Ny 2
- a4n2 N; - Nor°”exp{ 72Ny —No) © 2(N; - No)rl}

ffeXp{ O'Z(Nl N )fofl COsfpo — ¢1)} deoddo
4

N N N 2+NgN
:—4—1ror1exp -— ! r5- = ! 1103 — SV o
o4 N1 - No 4(N1 — No) O'(Nl—N) a4(N1 — No)

(4.27)

We can now proceed the calculation®s as if o = 1. The real value can be achieved by

replacingr with /0. The probability of false alarm for a given thresheld

PFA(T) = Pr{ro >T,M1>7T | Ho}

=1-Pr{rg<7,r1 <7|Ho

AN, Ng 2 VNoN;
N1 N ffrorl exp{ N, No N1 o' }I ( Ny~ No Fori| drodrg

4N, _ N 2 No 2+vNgNy
=1- rie’t | rgexpd - Io SV k| drodr
Nl_NOfl fo p{ N1—No N1—N0 Ni—No %) ot
0 0

(4.28)

We can solve this integral by defining a new dummy variable as

2Ng
= 4.2
VN~ Ng© (4.29)

Then, integral inside becomes,

T

Ny 2 No 2+/NoN;
froexp{ N1—No N Ng' ! }IO(Nl—N rorl) dro

0

N1-Ng
N1 — Ng f { 1, No 2} ( [ 2N )
= uexpy —=u — riclo riul du
2N 2 N; - N N; - N
1 J 1 o 1 0
Nl 2Ng \/ 2N,
= N, [1 Q(\/Nl — Norl’T N No (4.30)
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Then,Pea(r) is

r 2N 2N
Pralr) =1~ 2fr1e—ff [l_ Q(\/Nl —ONorl’T\/Nl —1No)] n
0
I 2No 2N,
e [oneiol N d 4.31
€ +0f re 1Q( NN T Nl_NO) r (4.31)

_ 12 2Ng 2Ng \/ 2No \/ 2N,
=€ {Q(T\/Nl_NO’T\/Nl—NO) Q(T Nl_NO,T N7 — No (4.32)
Finally,
2 2 2N; 2Np \/ 2N \/ 2N;
P = T T B
e e {Q(T\/Nl—No’T\/Nl—No) Q(T Ni—No” "V Nz =N

(4.33)

Equation (4.33) gives the exact value for probability of false alarm fityywariance. For an

arbitrary variance, replaceby /o

2,2 T 2Ni 7 2Np T\/ 2No T\/ 2N,
P =g/ 1 — = -Q|— —
Fa(r) = € { +Q(UVN1—N0’U\/N1—NO) Q(a N:—No o V Nz — No

(4.34)

This is the proability of false alarm for a two window detector structure with wmtengths
equal toNp and N7 which satisfyN; > Ng. In figure 4.4, the theoretical result is compared

with the simulation results.
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Figure 4.4: Comparison of the theoretical false alarm with results from simula@iarame-
tersarer = 1, Ng = 16 andN; = 32.

4.3.2 Pga calculation using three windows

In the previous subsection, probability of false alarm for the two windowwaler was com-
puted exactly. In this section, an exact form is calculated for 3 windows. résultanfga

form however contains a single integral to be evaluated numerically.

In order to derivePga for three windows, first a general form for the joint probability density
function is written for 3 or more windows. Then the marginal probability derfsitgtion is
found for the magnitudes. A general form for the probability of falsemalsrfound for 3 or

more windows. This general result is used for the spekifie 3 case.

a7



The general joint probability density function fir> 3,

K-1
Pro(r. @) = (n fk) Pz ([foe”ﬁ"rle”’1 ... rK_leWK*l]T)
k=0
K-1 K-1 K2
1 Nk N1 ( Nk-1 N1 ) 2
= — re[expd - r2— + r
nK(kﬂ Nk—Nk_l][Q ] p{ Ny — No © Z Nk— N+ Nies - i) ©
K-1
Nk - VNk_1N
KL (2 -2y LKy 1 cos@y — dk1) (4.35)
Nk-1 — Nk-2 = N — N1

The probability density function of the magnitudes are found by integratindh@uphase

components.

o 2
p[(r)zf...fpz,?(r,¢)d¢od¢1...d¢;<_1
0o 0

K-1 K-1 K-2
1 Nk N1 5 Nk-1 Ni+1 2
= — re|expd - r2 - r2
N1 2 j-” jnex 2K_1 N1l o cosg )
Nk_1 — N, K1 ) ) p 24 N~ Nis kMk-1 k= Pk-1

dpodpy . .. dpk-1

K-1 K-1 K-2

N Ni ( N-1 N1 ) 2

= 2K —_ re|expd - r + r
[ N Nk_l][n ‘ p{ N —No © 24 \Ne— Nt Niea — Ni) &

k=1 k=0 k=1
K-1
Nk-1 2 } ( VNk-1Ng )
_— Ty To|2—————ririe 4.36
Nk_1 — Nk—2 7% O N = Nieg Ot (4.36)

The probability of false alarm for a given threshelds

Pea(r) = Prirk >t fork=0,1,...,K-1| Hg}

=1-Prirc<t fork=0,1,...,K 1] Ho}

() - [T

K-2
Ni ( Nk-1 Nis+1 ) 5 Nk-1 >
X exps — g — + Me — r
p{ N1 2N Nt N ) N N

K-1
VNk_1 Nk

X HIO (Zerrk 1) drodry...drg-1 (4.37)
1 Nk — Ni_1

The above is the general form for the probability of false alarm for detecontaining 3

or more windows. For the specific case when detector has 3 windowsulk centaining a
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single integral can be found. F&r= 3,

N N T T T

1 2

P =1-8 rorar

Fa(7) N1—N0N2—N1fff012
0 0 0

N1 2 No N 2 N 2
XeXp{ N - No'© (Nl— No « Np— Nl)rl N — Ny 2

VNoN VNN
x To 2¢r0r1 Iol2 1 2r1r2 drodridro
N1 — Ng N2 — N;
T T

00
\/N]_Nz 2N0 2Nl
Io|2 1- dr,d
X o( N, N 12 Q \/Nl_Norl,T Ny — N | dradr2
T
4N, 2 2Ng \/ 2Nq
=1- 11—
Nz—lerle 1[ Q(\/Nl—Norl’T Nl—NO)]
0

.
> exps — rs— r5¢72ol2 riro| drodr
sz p{ Np— Ni ' Np— N 2 0 12| dradrg
0

N2 — Np

r 2N 2N,
—1-2 T 1- Q| [0 A/
frle 1{ Q( N1—Norl’T N1 — No
0
2N; \/ 2N,
1_
Q(\/Nz—NlrLT N2_N1)

The above relation is for unity variance. For an arbitrary variance,

X

drqy (438)

T/

2N 2N
Pralr) =1~ zfrle_ri [1_ Q( VN: —ONorl’clr VN: —1No)]

0

/ 2Nq T / 2No
1- Q( Np — Nll'l, ; Ny — Nl]] drl (439)

This is the probability of false alarm for a detector containing 3 windows.guré 4.5, the

X

theoretical result is compared with the simulation results.

4.3.3 Pga calculation using four windows

Here probability of false alarm is calculated for number of windows beingletp 4. The
integrations first forg and then fork_; are performed in the general form fir> 3. Then
the specific case whaf = 4 is written as a double integral form. This has to be numerically

computed.
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Figure 4.5: Comparison of the theoretical false alarm with results from simula@iarame-
tersarer = 1, Ng = 16,N; = 32 andN, = 64.

ForK >4

K-1 T T (K-1
Pea(r) = 1- 25 l[ )f f( rk}
s Nk — Nk 1)y lk:l
K-2
N-1 Ni1 ) 2 Nk -1 2
X ex re— r
p{ Np - kZ: (Nk — Nk-1 Nk+1 ~N¢/ K Ng_g—Ng_p X1
“1

xdry...drg_q

(4.40)
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eSS IRE
kez Nik= Nia 0 k=l
K-3
{ N2 o ( T \ )2 Nk-3 rzz}
2

A \N= Nt Ner =N/ 8 Neo—Ngg

x{ﬁfo 2mrkrk 1)}[1 Q(\/T m)}

k=2
A N N
K-1 2 K-1 2
X | reeiexp{———m— 2 - — 2= ¢
‘of K p{ Nk_1—Nk_2 2 Ng_1 - Nk K_l}
VNk_2oN
on(Z&r —1lk- 2) dri-1
Nk-1 — Nk-2

X dl’l .. drK_z

(4.41)
K-2 T T (K=2
_ Nk
=1-2%7? f f r
[ Nk — Nk—l] K
k=2 2 0 k=1
K-3
N> ( Nk-1 Nis1 ) > Nk—2 5
X exp{ — re— + re— ———= ¢
P N2 — Ng = \Nk = Nicz - Niez = Nk Ni-2 — Nk_3 K72
K-2
Ni_
X Ig|2 LK e )
k3 Nk — Ny
2Np \/ 2Nq
1_
% Q(\/Nl_NO T N1—No]]
[ 2Nk_2 \/TK—:L]]
X [1— — K2, T ————————
{ Q( Nk1—Ngo - Nk-1 — Nk-2
X dl‘l .. dI’K_z (4.42)

ForK = 4 and for an arbitrary variance,

T/oT/o

Pea(7) = 1—4ffr1r2exp{—
0 0

re— r _
No—N; T Np—Nj 2 N, — Nj

No [ 2N N, ot [ 2N
1- — 1- o, — drqdr
% Q(\/Nl—NOrl’a\/Nl—NO)H Q(\/Ng—NZZO'\/Ng—Nz 16r2

(4.43)

N2 2 N2 2} Io (2 NlNZ I’lrz)

In figure 4.6, the theoretical result is compared with the simulation results.
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Figure 4.6: Comparison of the theoretical false alarm with results from simula@iarame-
tersarer = 1, Ng = 16,N; = 32,N> = 64 andN3 = 96.

4.3.4 Approximation for probability of detection

An approximation can be made for probability of detection with the assumptior\ttisit

equal to the actual signal length.

The assumption here is that the observer system knows the possible faaliles signal
length. For example it knows that the signal length will be onBloE 16,N; = 32,N, = 64
or N3 = 96 with equal probability. The detector is also composed of 4 windows withetine s
lengths in this example. If it is assumed that when a detection occurs, thisideteames
from the window with the length equal to the signal’s length, calculation of thbaility of
detection is easy. One can expect that this assumption is true for most of thetienehe

signal power is much higher than the noise power.

Let

z=1& (w)A*(N)y] (4.44)
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For Hy, 272/0? is noncentral chi-square distributed with 2 degrees of freedom and wfith n

centrality parameter2/o2.

Pp(1) ~ Pr{g > 7| Hl}
=1-Pr{z<7|Hi}
=1-Pr{2Z/0? < 2:%/0? | Hy}

= 1-F2(2r?/0% 2SNR) (4.45)

where Fz(., 1) is the cumulative distribution function of a noncentral chi-square distributio

of 2 degrees of freedom with non-centrality parametet.ofFhe SNR definition i€ /o2.

In Figure 4.7, the approximation is compared with the simulation results. As sa®@rtlie
figure, for high SNR, the approximation is closer to the actual value sin@sthmeation value
of the length is more likely to be correct. The actual value of the probabilitgtE#aion must
be higher than the approximated value since there is always a possibility ofideteom the

other windows. The figure illustrates this idea.

When due to computational reasons, the window count in the detector is &ssiltithe
possible lengths of the signal, then probability of detection may be approxiragged by
assuming the length estimate (which equals to one of the windows in the detetharpise

that gives the highest detection result individually.
For H1, and for signal lengtiNs,
Efg] = £ @A (N) VEA(Né(w)e”

NeE ., .. -
——e if N> Ng

= — (4.46)
NE . .
—el?  otherwise
\J Ns

Using previous results,

N.E V22| . -
Ql( iy T) if N> N
No2 o

(4.47)

Pp(7) =
() 9 2NE V272
H\N N2 o

] otherwise
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Figure 4.7: Comparison of the approximated probability of detection and simulasults.
Parameters ar@ = 1, Ngp = 16,N; = 32, N, = 64 andN3 = 96.

Let Ni(Ns) = maxN : N < Ng} andN;(Ns) = min{N : N > Ng}. That isN; is the window
with length closest tdNg but less thariNg andN; is the window with length closest s but
higher thanNs. Now, using the assumption that the length estimate is the window that gives

the highest detection result individually,

R e e (448)

When signal length is uniformly distributed in a domain

Pp(7) ~ le[ \/02? \/max( Nll(\:\l)’ NrIZIN))’ \/02?] pn(N) dN (4.49)
RIE

Figure 4.8 shows the approximation given in (4.49) together with simulatiort.rdsgure

4.9 shows the performance of some multiple window detectors together.
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0.9

T

Probability of Detection, PD

10 10 10" 10 10
Probability of False Alarm, PFA

Figure 4.8: Comparison of simulation results with approximation for probabilietéction
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Figure 4.9: Comparison of multiple window detectors for SNIRdB
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Summary The detection problem in this section can be summarized as below.

Ho iy ~ CN(0.0%1w)
Hity~ CN(\/EA(N)g(w)ei",UZ| M) giveng = § andN = N (4.50)
The decision function based on GLRT:

1 if max{lg"(w)A*(N)yl} > 7

o6(y) = (4.51)

0 otherwise

The probability of false alarm for a given threshold is given in the preygubsections.

For the special case whé,, = % forn=0,1,...,N-1, the probability of detection for

a given threshold is approximated as

2
PD(T)%le[g \/maX(N'(N) N ) \/CZTTJ pn(N) dN (4.52)
N

N " N¢(N)
where

SNR= E (4.53)
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CHAPTER 5

SIMULATIONS FOR MULTIPLE WINDOWS

5.1 Brute Force Method of Finding Best Window Length

In Section 3.7, the detector structure based on GLRT for signals withmaptase, frequency
and length is given. In Section 4.3, probability of false alarm and probalidtgction are
analyzed. When using a detector composed of multiple windows, with windowt dess
than the number of possible signal length values, the question of which setogtiptimally
choose for the detector remains unknown. In this section, some simulat®psréormed to
estimate the optimal window lengths for soméealient cases. This is performed foffdrent
number of windows and it is shown by simulation that for the given examplagnvthe
lengths are chosen as optimal, as the number of windows increase thk jprabrability of

detection increases.

In the following subsections, some examples are given and simulations rdoenped for

detectors dierent number of windows. In the last subsection, result are compared.

5.1.1 Best window length (single window)

The example consists of detecting a signal of 13 dB SNR with random lengtiy timkeger
values and uniformly distributed between 8 and 128. The detector strustilme one given

in Section 4.3 and rewritten here for convenience.

max{l&™ (w)A"(N)yl} > (5.1)

Simulations are performed for a probability of false alarm range fron§ &®1. Using brute

force, Pp vs. Pga were plotted for all possible detector according to window length. The

57



results can be seen in Figure 5.1. The red line marks theFpeda curve. The result of
this simulation says that when the designer is constrained to use only a sindzwfior the
detector, hisshe must choose a window with length 73. This number is somehow close to the

midpoint of the interval of possible signal lengths, that3$2 = 68

09

0.8f
Window length = 73

0.7

0.6

Probability of Detection (PD)
o
(63}

SNR =13 dB

0.1 Signal Length lower bound = 8
Signal Length upper bound = 128
0 " o '_4 I—2
10 10 10 10

Probability of False Alarm (PF A)

Figure 5.1: Best window length in terms of probability of detection. The datectmmposed
of a single window. Signal length is uniformly distributed between 8 and 128.

5.1.2 Best window lengths (two windows)

This subsection gives the results of the simulations similiar to the previouscsiamseith
multiple window detector having two windows. Detection performances for sgimeow
combinations are simulated and the best pair is noted. Not all window combinatiene
simulated in order to keep simulation run time low. The simulated pairs are the oheseha
not close to each other by some number. The results can be seen in FRutd&é red line
again marks the be®p-Pra curve. The result of this simulation says that when the designer
is constrained to use only two windows for the detectofsie must choose the lengths of the

windows as 34 and 95. These numbers are somehow close to the numbes®8= 38 and
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8+ 3%&8 = 98. The numbers suggested are the one fourth and three fourth of thalnte
[8,128].

91 window lengths = 34 and 95
0.8
0.7
0.6
0.5

0.4

Probability of Detection (PD)

0.3 J

0.2 i
SNR =13dB

Signal Length lower bound = 8
Signal Length upper bound = 128
0 -8 I—6 I—4 -
10 10 10 10
Probability of False Alarm (PF A)

2

Figure 5.2: Best window lengths in terms of probability of detection. The tmtéx com-
posed of two windows. Signal length is uniformly distributed between 8 aBd 12

5.1.3 Best window lengths (three windows)

This subsection gives the results of the simulations similiar to the previouscéioinsewith
multiple window detector having three windows. The bestPga curve is given in Figure

5.3. The result of this simulation says that when the designer is constrained tmly three
windows for the detector, fighe must choose the lengths of the windows as 21, 58 and 104.
These numbers are somehow close to the numbevrs;“%“—8 = 28, 8+ BLE”S = 68 and

8 + 5%3 = 108. The numbers suggested are the one sixth, three sixth and five sixth of

interval [8 128].

In the three subsections, some values are suggested which are in semelesa to optimal

window lengths. The general formula for this suggestion is given below.
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0.9 window lengths = 21, 58 and 104

0.8

0.7

-
.
c
o
5 0.6 k
(0]
o
2 o5 1
o
2
= 04 b
Q
©
Qo
2 03 b
o

0.2 i

SNR =13 dB
01} Signal Length lower bound =8 |
Signal Length upper bound = 128
0 -8 l—6 l—4 l—2
10 10 10 10

Probability of False Alarm (PFA)

Figure 5.3: Best window lengths in terms of probability of detection. The tEtéxcom-
posed of three windows. Signal length is uniformly distributed between 828d

Let the signal length is a uniform random variable in the interadb]. For a detector withK

windows, the window lengthisly, Ny, ..., Nx_1 can be chosen as
b-a
Ne=a+(@k+1)—~ fork=01..,K-1 (5.2)

that is divide the interval intoR equal sections and set the window lengths to the end of 1st,

3rd, 5th, etc. sections.

This may be thought as a rule of thumb for the choice of window lengths andyiwél a

performance that is somehow close to optimal.

5.1.4 Comparison of dfferent length windows

In order to compare the best results for detectors havifigrdnt number of window$p vs.
Pra curves are plotted together as solid lines in Figure 5.4. The performanttefeuggested

values of the window lengths are given as dotted lines.
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three windows
09| best: (21,58, 104)
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Figure 5.4: Comparison of performances of detectors wifieidint number of windows.

As seen from the figure, as a simulation result, for this example, when theamaiindows
is increased the performance of the detector increases. Anothelisg¢lelformula suggested

in equation (5.2) gives close to optimal results.

5.2 Performance with Respect to Overlap Amount

When the signal length is a uniformly distributed random variable, the suitaidetdr is a
multiple window detector. When the delay is also random, the GLRT detector isosmd of
overlapping windows in order to evaluate and threshold for each delay limhis section,

for a given example, it is shown that performance increases with inogeagerlap.

The detectors give the best performance when the detector window leoigitides with
the signal. When the delay time of the signal is unknown, in order to guar#mae®ne
window will match the signal, one must “slide” the windows one sample for eacipke in
the analysis interval. This way if window length and signal length are the sameeyindow

will match the signal. In this case the overlap amount is one sample less than ¢l wh
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window length. With computational considerations one may decrease tHaaanount. In
this case, according to signal delay there may be no windows matching tla¢zigoone will
cover most of it if the overlap is high enough. For instance when the qvierls0 percent of

the window, then for the worst case, a detection window will cover 75gueraf the signal.

Overlap of windows may be visualized as in Figure 5.5.

R EEEEE—
overlap amount

Figure 5.5: Structure of windows in overlapping window detector.

The simulation is performed for a 13 dB signal with length 16. Single windowctlatgwith

different overlaps are used. The plots for Bievs Pra curves are given in Figure 5.6.

5.3 Simulations for a Nonconfined Analysis Interval

In a real life application, the receiver receives a sequence of signtitlse and usually their
initial time cannot be known exactly. The detector in this case consists dappang win-
dows in a continuous basis. When the signal length is also random, thent#otodenust
contain multiple windows. The detector will work continuously for each samgxeived.
When enough samples come to fill a particular window of detector, the detatilobe

performed for that window. This process will go on for a nonconfined timtexval.

When the detector is composed of overlapping multiple windows in a noncdrifiterval,
the traditional definition of probability of false alarm may not be suitable. Miefinmay be

specific to an application. One definition can be as follows:
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Figure 5.6: Relation between window overlaps and detection performance

Let there be no signal in the run time of the detector. Under this condition déatbe alarm
interval be defined as the set of samples contained in all the windows in alietection is
made. Then the probability of false alarm may be defined as the ratio of theenwiéle-
ments of false alarm interval to total run time when run time goes to infinity. The atimiv
behind this definition is to give more cost to the longer windows. In anoth@rcagion, for

example, the costs for each window may be the same, arfteaedit definition may be given.

In this framework, (where the signals are received as a sequence)séwthat a particular
signal is detected, then this means that at least one of the windows integsibetirsignal

must give a detection.

With these definitions for signal detection and probability of false alarm, sam@ations
were performed for dierent detectors containingftiirent overlaps and fierent number of

windows. The results are given in Figures 5.7, 5.8 and 5.9.
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Figure 5.7: Performance for overlapping single window detector
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Figure 5.8: Performance for overlapping two window detector
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Figure 5.9: Performance for overlapping three window detector
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CHAPTER 6

CONCLUSION

In this thesis, binary hypothesis testing for signals of unknown length elay dnder Gaus-
sian noise is investigated. Detection performancesfédmdint scenarios under noise are ana-
lyzed. When the length parameter is unknown, a multiple-window detectords \Wdgen the
delay time is also unknown, overlapping windows are used. The perfeeadrihis detector

is analyzed. Simulation results are added.

When multiple windows were used for the random length case, performasrease is noted.
This performance increase however depends on the domain of the lemgthgier. When the
shortest and the longest possible signal lengths are very close totbachaosingle window
detector structure may be preferred. When these two ends are farhowesyer, multiple

window structure greatly increases the performance. The structure @fitlidows and how

many to use depends on the specific scenario and available computatian powe

6.1 Results

For signals with random length, if window lengths are chosen as their optahas, multiple

window detectors give a better performance when their number of windoisicreased. A
rigourious proof for this statement is not given, but generally it is betideebe true. The
GLRT detector derived for the random length case, and the resultsvefsionulations support

this idea.

For signals with random initial times, overlapping windows are used. Simulag@ves clear
results that increasing overlaps gives better performance. This idemssstent with the

derived GLRT detector for random delay.
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In order to find simple detectors having analytical forms, GLRT detect@slarived. In
GLRT detectors, signal parameters are estimated and the estimated valusgdia the
detector as if they are the actual values. By this procedure detectiorsamaion are per-
formed at the same time. Noise paremeters however are assumed to be kroughadlut the
work. When the noise parameters are unknown, those parameters \&sio liee estimated.
For example, the cell averaging constant false alarm method is a good netdjdst thresh-
olds adaptively according to changing noise parameters [40]. Howestmating the noise

parameters when they are unknown is out of the scope of this work.

6.2 Future Work

For a given detector, estimating the probability of false alarms for very smalais by simu-
lation usually takes very long time. The reason is that one needs to repexptrément for
many times to see thdtects of that very small pfa value. Therefore theoretical false alarm
calculations are critical for properly setting the threshold values and/&unating the perfor-
mance of the detector. Some of the future work will be about those probatfifi&yse alarm

calculations.

For the detector derived for the random length case, probability ofdédsm calculations for
lengths greater than 4 contain a number of integrals to be numerically computextk will

be carried to simplify the forms for the relations.

There does not exist theoretical probability of false alarm and detecticalations for the
overlapping window detectors. Exact forms or some approximations wilidebti be calcu-

lated.

For the multiple window detectors, a formula is suggested to set window lengiiiseto
a performance close to optimal. A work will be carried out to find an optimal mettiod

choosing the window lengths.
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