

AN ADVANCED MACHINING PROCESS SIMULATOR FOR INDUSTRIAL

APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRE YEĞİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

DECEMBER 2010

Approval of the thesis:

AN ADVANCED MACHINING PROCESS SIMULATOR FOR

INDUSTRIAL APPLICATION

submitted by EMRE YEĞİN in partial fulfillment of the requirements for the
degree of Master of Science in Mechanical Engineering, Middle East Technical
University by,

Prof. Dr. Canan Özgen _______________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Suha Oral _______________
Head of Department, Mechanical Engineering Dept., METU

Asst. Prof. Dr. Melik Dölen _______________
Supervisor, Mechanical Engineering Dept., METU

Asst. Prof. Dr. A. Buğra Koku _______________
Co-Supervisor, Mechanical Engineering Dept., METU.

Examining Committee Members:

Prof. Dr. Engin Kılıç _____________________
Mechanical Engineering Dept., METU

Asst. Prof. Dr. Melik Dölen _____________________
Mechanical Engineering Dept., METU

Asst. Prof. Dr. A. Buğra Koku _____________________
Mechanical Engineering Dept., METU

Asst. Prof. Dr. Yiğit Yazıcıoğlu _____________________
Mechanical Engineering Dept., METU

Dr. Atilla Özgit _____________________
Computer Engineering Dept., METU

 Date: 14 / 12 / 2010

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last Name : Emre Yeğin

Signature :

iv

ABSTRACT

AN ADVANCED MACHINING PROCESS SIMULATOR FOR INDUSTRIAL

APPLICATIONS

Yeğin, Emre

M.S., Department of Mechanical Engineering

Supervisor: Asst. Prof. Dr. Melik Dölen

Co- Supervisor: Asst Prof. Dr. A. Buğra Koku

December 2010, 107 pages

Turning and milling are the main manufacturing techniques in industry. A great

deal of time and money is spent for machining operations. Although most of the

time, the tool path of a CNC machine tool is generated by a Computer Aided

Manufacturing (CAM) software package, to be sure that the result of the machining

operation will be as required, it is necessary to use a simulation software. There are

various machining simulation software packages available in the market. However,

they are not only expensive, but also specialized for only one of the before

mentioned machining techniques. Most of the companies in the industry are small

or medium scale ones and, it is not so easy for them to afford a specialized

simulation software for that purpose.

In this thesis, it is aimed to develop a software package, which will be used to

simulate advanced industrial machining processes, including turning and milling.

Dexel modeling, which is generated by ray casting, and sweep plane algorithm with

polygon clipping technique are used for visualization. For polygon clipping

v

technique, outer surfaces of the resultant workpiece are generated from planar

contours. The software is developed in C# programming language and DirectX

libraries are utilized for visualization purposes. With the aid of this software, it is

also aimed to visually confirm the validity of both mill and lathe NC-code, by

representing highly accurate 3D displayed results of these simulations.

Keywords: Machining simulation, ray casting, dexel modeling, polygon clipping,

surface generation

vi

ÖZ

ENDÜSTRİYEL UYGULAMALAR İÇİN İLERİ TALAŞLI İMALAT SÜREÇ

SİMÜLATÖRÜ

Yeğin, Emre

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Yard. Doç. Dr. Melik Dölen

Ortak Tez Yöneticisi: Yard. Doç. Dr. A. Buğra Koku

Aralık 2010, 107 sayfa

Tornalama ve frezeleme, endüstriyel uygulamalarda kullanılan başlıca talaşlı imalat

teknikleridir. Talaşlı imalat uygulamaları için çok yüklü miktarda zaman ve para

harcanmaktadır. Çoğu zaman sayısal kontrol verisi bir bilgisayar programı

tarafından yaratılıyor olsa da, işleme operasyonu sonucunun istenilen neticeyi

vereceğinden emin olmak için bir simülasyon programı kullanmak gerekir. Piyasada

birçok ticari talaşlı imalat simülasyonu yapan yazılım mevcuttur. Ancak, çok pahalı

olmakla birlikte, yukarıda bahsedilen işleme tekniklerinden birine yönelik olarak

hazırlanmış olmaktadırlar. Endüstriyel uygulamaları olan şirketlerin çoğu, küçük ve

orta ölçekli şirketlerdir ve bu firmalar için belirli bir işleme tekniğine yönelik

hazırlanmış bir simülasyon programı için bütçe ayırmak kolay olmamaktadır.

Bu tez kapsamında, aralarında tornalama ve frezelemenin de bulunduğu, ileri

endüstriyel talaşlı imalat süreçlerinin benzetiminde kullanılacak bir yazılım

paketinin geliştirilmesi amaçlanmıştır. İş parçasının ve kesici takımın etkileşimini

görselleştirmek için ışın göndeme metodu kullanarak oluşturulan dexel modeli ve

yüzey süpürme algoritması ile polygon kırpma teknikleri kullanılacaktır. Bu yazılım

paketinin geliştirilmesi için C# proglamlama dili, görselleştirme amacıyla ise

vii

DirectX kütüphanelerinden faydalanılacaktır. Bu yazılım sayesinde, yapılacak

benzetimlerin, yüksek hassasiyette 3 boyutlu görsel sonuçlarının sunulması ile,

freze ve torna NC kodlarının doğruluğu teyit edilebilecektir.

Anahtar Kelimeler: İşleme simülasyonu, ışın gönderme, dexel modelleme,

polygon kırpma, yüzey oluşturma

viii

To my wife

ix

ACKNOWLEDGMENTS

I would like to express my deepest gratitude and appreciation to my supervisor

Asst. Prof. Dr. Melik Dölen and my co-supervisor Asst. Prof. Dr. A.Buğra Koku for

giving me this great opportunity to get into the exciting world of numerical

controlled machining simulation modeling. I deeply appreciate your priceless

guidance, support, and motivation to share every bit of your knowledge and ideas

until the very end.

 In addition, my utmost and sincere thanks go to my wife, my mother-in-law, my

sister-in-law, and my parents for their extreme contribution in making me an

independent and confident person by their invaluable advices and guidance, and all

their unconditional love and support.

 I would like to express my appreciation to my friend Hasan Ali Hatipoğlu for his

precious support, guidance and encouragement throughout my study

I would like to thank to my friends Alper Uyanık and Ali Serkan İnkaya for their

excitement about my study and for their friendship and all the good times we had.

Finally, I would like to thank to Ercan Kiraz for being so generous by sharing his

work, which was very helpful for me to improve my study.

x

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... vi

ACKNOWLEDGMENTS ... ix

TABLE OF CONTENTS ... x

LIST OF TABLES .. xiii

LIST OF FIGURES... xiv

LIST OF ABBREVIATIONS ... xvi

CHAPTERS

1.INTRODUCTION ... 1

1.1 Motivation .. 4

1.2 Aim and Scope of This Study .. 5

1.3 Outline of the Study ... 6

2.LITERATURE SURVEY ... 7

2.1 Solid Modeling ... 7

2.2 Discrete Modeling .. 8

2.2.1 Z-buffer Algorithms ... 9

2.2.2 Surface Normal Algorithms ... 12

2.2.3 Voxel-based Algorithms .. 14

2.3 Polygon Clipping ... 15

3.NC CODE PARSING ... 16

3.1 Motion Types ... 17

3.1.1 Linear Motion .. 17

3.1.2 Rapid Motion ... 19

3.1.3 Circular Motion .. 19

4.TURNING SIMULATION ... 23

4.1 Introduction .. 23

4.2 Workpiece and Cutting Tool Definition .. 24

4.2.1 Pixel based technique ... 24

4.2.1.1 Workpiece Data Structure in pixel based technique 24

xi

4.3.1.2 Cutting Tool Data Structure in pixel based technique 26

4.3.2 Polygon Clipping technique ... 27

4.3.2.1 Workpiece Data Structure in polygon clipping technique 27

4.3.2.2 Cutting Tool Data Structure polygon clipping technique 29

4.4 Cutting Methodology ... 31

4.4.1 Cutting methodology in pixel-based technique ... 31

4.4.2 Polygon clipping technique and its application in the simulation 33

4.4.2.1 Introduction .. 33

4.4.2.2 Polygon Clipping .. 34

4.4.2.2.1 Basics .. 34

4.4.2.2.2 The algorithm .. 36

4.4.2.2.3 Selecting the result edges .. 42

4.4.2.2.4 Connecting the result edges to form the solution 46

4.4.2.2.5 Performance analysis... 47

4.4.2.2.6 Special cases .. 51

4.4.3 Polygon sweeping methodology .. 52

4.4.3.1 Introduction .. 53

4.4.3.2 Basics of Polygon Sweep ... 53

4.4.3.2 Polygon sweeping algorithm .. 54

4.4.4 Algorithm of Turning simulation with Polygon operations 57

4.5 Visualization Methodology .. 59

4.5.1 Visualization in the cross-section viewport ... 59

4.5.1.1 Visualization in the Cross-Section Viewport in pixel-based simulation 60

4.5.1.2 Visualization in the Cross-Section Viewport in polygon clipping based

simulation ... 60

4.5.2 Visualization in the 3D Model Viewport ... 61

4.5.2.1 Boundary vertices data generation in pixel-based simulation 62

4.5.2.2 Basics of 3D objects in DirectX ... 62

4.5.2.3 Mesh data generation .. 64

4.6 Features of the Program ... 66

4.6.1 System requirements .. 66

4.6.2 User interface ... 66

4.6.2.1 User interface in pixel-based simulation .. 66

4.6.2.2 User interface in polygon clipping based simulation 68

xii

4.7 Closure ... 70

5.MILLING SIMULATION .. 73

5.1 Introduction .. 73

5.2 Workpiece and Cutting Tool Definition .. 73

5.2.1 Dexel Data Structure .. 73

5.2.2 Ray Casting .. 74

5.3 Cutting Methodology ... 77

5.4 Visualization Methodology .. 79

5.5 User Interface ... 80

5.6 Closure ... 82

6.CASE STUDIES ... 83

6.1 Introduction .. 83

6.2. Turning simulation case study with pixel based technique 83

6.3. Turning simulation case studies with polygon clipping technique 86

6.3.1 Case study 1 ... 86

6.3.1 Case study 2 ... 88

6.3 Milling Simulation - Sample Application .. 90

7.CONCLUSIONS & FUTURE WORK ... 93

REFERENCES ... 100

APPENDIX A .. 104

NC PROGRAM LISTINGS ... 104

A.1 NC program used in Case Study 1 .. 104

A.2 NC Program used in Case Study 2 .. 105

A.3 NC Program used in Milling Simulation-Sample Application 106

xiii

LIST OF TABLES

TABLES

Table 3.1 Circular motion representations. .. 20

Table 4. 1 Workpiece data structure .. 28

Table 4. 2 Format of cutting tool vertex data file. ... 29

Table 4. 3 Cutting tool data structure. .. 30

Table 4. 4 Definition of workpiece and cutter matrices and modification of

workpiece matrix with the application of Boolean operation. 32

Table 4. 5 Algorithm for Boolean operations. ... 39

Table 4. 6 SweepEvent structure. ... 44

Table 4. 7 PolygonType, EdgeType, and BooleanOpType enums. 44

Table 4. 8 Routine to set inside and inOut flags of edges. 45

Table 4. 9 Sorting procedure to obtain connected vertices Polygon vertices. 47

Table 4. 10 Execution times of Boolean operations on the polygons shown in

Figures 4.11-4.14. Polygon 1 is composed of 94 vertices, polygon 2 is composed of

54 vertices. ... 48

Table 4. 11 Polygon Sweeping function. ... 56

Table 4. 12 Pseudo code of Turning Simulation algorithm. 59

Table 4. 13 Code snippet of scale factor. ... 61

Table 4. 14 Mesh generation algorithm. .. 65

Table 5. 1 Definition of Intersection function. ... 75

Table 5. 2 Cutting procedure. ... 78

Table 6. 1 Execution times and memory requirements in VirtualMachining for the

first example NC program .. 86

Table 6. 2 Execution times and memory requirements in CNCVerifier for the

second example NC program. .. 89

xiv

LIST OF FIGURES

FIGURES

Figure 1. 1 CSG tree to construct a complex object with simple geometric 2

Figure 1. 2 (a) Z-buffer technique [33], (b) Surface normal technique [34]. 3

Figure 1. 3 A torus shaped object, composed of voxels [34]. 4

Figure 3.1 Linear Motion [38]. .. 17

Figure 3.2 Circular Motion [38] ... 20

Figure 4. 1 Taking a cross-section of a cylindrical workpiece. 24

Figure 4. 2 Discretization of the workpiece cross-section. 25

Figure 4. 3 Converting workpiece into pixel matrix, then converting this pixel data,

into a Boolean matrix. .. 26

Figure 4. 4 Workpiece geometry .. 28

Figure 4. 5 Tool editor of the CNCSimulator .. 30

Figure 4. 6 Axes in turning operation. ... 33

Figure 4. 7 Boolean operations on polygons [21] .. 35

Figure 4. 8 Subdivision of edges of polygons at their intersection points [21] 36

Figure 4. 9 Types of intersection [21] .. 42

Figure 4. 10 Sweep-line technique [21] ... 42

Figure 4. 11 User interface of simple polygon clipping program for test purposes.

In the figure, the screen view of the program, with two arbitrary polygons, is shown.

The black one is the subject polygon, with 94 vertices. The red polygon is the

clipping polygon, with 54 vertices. .. 49

Figure 4. 12 Result of Boolean subtraction .. 49

Figure 4. 13 Result of Boolean Intersection ... 50

Figure 4. 14 Result of Boolean Union ... 50

xv

Figure 4. 15 Inclusion of overlapping edges in result of Boolean operations [21] .. 52

Figure 4. 16 Result of sweeping a line segment ... 54

Figure 4. 17 When swept polygon resides in the starting polygon 56

Figure 4. 18 Sweeping operations as applied on different tool polygons. 57

Figure 4. 19 Vertex definition of a polygon and its front face [18]. 63

Figure 4. 20 Turning simulation user interface for pixel based simulation. 67

Figure 4.21 Turning simulation user interface for polygon clipping based

simulation. .. 70

Figure 5. 1 The dexel data structure developed by Van Hook [18]. 74

Figure 5. 2 Cut procedure cases, Van Hook [18]. .. 78

Figure 5. 3 User interface of Milling Simulation. .. 81

Figure 6. 1 The workpiece is rotated to visualize it in 3D space. 84

Figure 6. 2 The results of the simulation as shown in solid mode. 85

Figure 6. 3 The result of the simulation in wireframe mode. 85

Figure 6. 4 (a) Result of simulation in 2D cross sectional view. (b) 3D object model

representation of the workpiece in CNCVerifier. .. 87

Figure 6. 5 Screen view output of the CNCSimulator. (a) 2D cross section of the

workpiece after simulation. (b) Isometric view of the workpiece. 88

Figure 6. 6 (a) Result of simulation in 2D cross sectional view. (b) 3D object model

representation of the workpiece in CNCVerifier. .. 89

Figure 6. 7 Screen view output of the CNCSimulator. (a) 2D cross section of the

workpiece after simulation. (b) Isometric view of the workpiece. 90

Figure 6. 8 The user interface for milling simulation before the simulation. 91

Figure 6. 9 Screen views after the completion of the milling simulation carried out

in (a) CNCVerifier (b) CNCSimulator ... 92

xvi

LIST OF ABBREVIATIONS

ABBREVIATIONS

BMP : Bitmap

CAD : Computer Aided Design

CAM : Computer Aided Manufacturing

CNC : Computer Numerical Control

CPU : Central Processing Unit

CSG : Constructive Solid Geometry

CT : Cutting Tool

CTP : Cutting Tool Polygon

Dexel : Depth element

DOF : Degree of Freedom

GDI+ : Graphic Design Interface

GPU : Graphics Processing Unit

GUI : Graphical User Interface

IGES : Initial Graphics Exchange Specification

ISO : International Organization for Standardization

METU : Middle East Technical University

NC : Numerical Control

OOP : Object Oriented Programming

PC : Polygon Clipping

Pixel : Picture Element

RAM : Random Access Memory

STEP : Standardized Exchange of Product

STL : Stereo-lithograph

WP : Workpiece

WPP : Workpiece Polygon

Voxel : Volume Element

 1

CHAPTER 1

INTRODUCTION

In today’s competitive industry, it is extremely important to use resources such as

time, machine, and labor, etc., in the most effective way. In a wide variety of

applications, the biggest proportion in industrial applications, are manufacturing

processes. There are several types of manufacturing processes, but without any

doubt, mechanical machining is the most widely applied one. Machining is a kind

of application in which

• A vast amount of capital is spent in equipment,

• Highly skilled man power is required

• In most of the cases, considerably raw material is processed.

Thus, to be considered as competitive and efficient, cost effective and accurate

applications are unavoidable. This demand becomes more and more important,

which increases opportunities to develop new techniques to increase the quality and

quantity of production for cheaper solutions. This trend could not be ignored in

education, especially in engineering studies. Simulation takes place not only in both

real industrial application but also in mechanical engineering studies. Moreover,

machining simulation is not an exception. Mechanical machining simulation is

widely studied and applied.

In the timeline of machining simulation’s development, there is a one to one

correspondence with the discoveries of the techniques used in computer graphics

techniques. Several techniques are developed since 80’s, and some of them

 2

successfully adapted in generation of sculptured surface simulation and modeling.

Below is the list of some techniques in the area:

• Solid modeling techniques

o Wire frame modeling

o Constructive Solid Geometry (CSG)

o Boundary representations

• Discrete modeling techniques

o Z-buffer algorithms

o Surface normal algorithms

o Voxel-based algorithms

In CSG, and geometric shape could be constructed as a composition of simpler

entities like sphere, cylinder, cube, etc. For the buildup of the object Boolean

operations, which are union, subtraction, and intersection, are used. In cases, where

CSG techniques used for machining simulation, subtraction is the Boolean

operation, applied to simulate material removal. In Figure 1.1 a simple example of

CSG methodology is depicted.

Figure 1. 1 CSG tree to construct a complex object with simple geometric

entities [32].

 3

Z-buffer techniques have been used in machining simulations early on. In these

techniques, object in Z direction is considered and modeled as a one dimensional

height elements and the cutting tool geometry is modeled, in a way to, crop height

elements of workpiece object. Surface normal techniques are also very similar to Z-

buffer techniques. The difference in surface normal technique is that, the workpiece

model contains normal vectors on the outer surface and cutting tool once again

crops these normal vectors. Surface normal technique lets user to see the amount of

gouing and overcut, if there will be any, as a result of machining operation. Figures

1.2 illustrates these two techniques.

(a)

(b)

Figure 1. 2 (a) Z-buffer technique [33], (b) Surface normal technique [34].

 4

With the increase in the computational capacity of computers, discretization in

simulations increased as well. In voxel based technique, 3D space is divided into

cubical elements, called voxel, and both workpiece and cutting tool are modeled

with voxels. To generate solid model of the object with shaded surfaces, marching

cubes algorithm, and its variances have been used. Later applications utilized the

benefit of optimization algorithms like octree, etc. to decrease the amount of data in

calculations, therefore to increase the simulation speeds. A voxelized object is

shown in Figure 1.3 to give some idea.

Figure 1. 3 A torus shaped object, composed of voxels [34].

1.1 Motivation

In the industry, mechanical machining is one of the mostly used techniques among

all existing ones. In the timeline of developments in machining, since 1940s and

‘50s, numerically controlled (NC) machines made a leap in the rates of production.

With the decrease in the cost of electronic components and other hardware, it

became affordable even for medium or small-scale companies to have NC

machines.

In early 1970s, with the development of high performance computers, automotive

and aerospace companies started to use Computer Aided Manufacturing (CAM)

software for the generation of tool path for NC machining. Early on, it was common

 5

to apply a trial machining with a dummy raw, which is both soft and easy to

machine. Yet it does not always assure the effectiveness of a NC code. Moreover, it

is slow and costly, due to decrease in the tool life, waste of machining time and

material.

Due to these difficulties and limitations, use of virtual machining software becomes

advantageous. Especially automotive and aerospace industries, manufacturing of

complex parts and dies require trustable NC code.

Many and different sources of errors may be contained in an NC program. It could

be in some cases a simple syntax error, or in some others an unwanted interaction of

cutting tool or spindle with work-holding fixtures and other parts of the machine.

To get rid of these unwanted cases, there is a need for debugging NC programs and

utilizing a computer program for that purpose is a wise approach.

Today, NC machining simulation and verification is carried out by the use software

packages. The main drawback of these packages is their high costs. Obviously, it

deserves to have a virtual machining software to avoid worse expenses due to an

erroneous NC program.

As a result, it is believed that, development of a virtual machining software is useful

for the related studies. Especially, to get benefit in educational studies, such a

software is necessary. It is thought that it will decrease the dependency on other

packages.

1.2 Aim and Scope of This Study

As a readily available NC simulation software CNCSimulator® [31] is used in

course ME440 - Numerically Controlled Machine Tools, at Mechanical Engineering

Department, METU. Due to reason that, CNCSimulator is not freeware and there is

no way to get the source code of the software for further development, in this thesis

study development of a similar and in some ways a more advanced virtual

machining software is aimed.

 6

In this study, it is aimed to develop a machining simulator to discover the errors of

an NC program, before it is run to manufacture a part in a milling and turning

machine. It is believed that, by this way, it will give the programmer, the confidence

of running an error-free NC program on a valuable NC machine.

The main focus is to model and simulate machining operation especially on an NC

lathe, and some simple cases in NC milling machine. To model the workpiece and

cutting tool, dexel modeling and sweep plane algorithms are used. Polygon clipping

technique, and afterwards generation of surfaces from contour data will be applied

to obtain satisfactory visual results. For the turning simulation a cut-plane of the

workpiece and cutting tool will be taken into consideration, and the 3D shaded view

of the workpiece will be generated. This capability does not exist in CNCSimulator.

For milling both dexel modeling and ray casting techniques are applied.

CNCVerifier is the name of the program, developed in this study. The program is

written in C# language and DirectX 9.0c libraries are used for visualization of 3D

objects. The program can depict the material removal by the interaction of cutting

tool with the workpiece.

1.3 Outline of the Study

The whole study can be divided into six chapters. The first one is introduction

chapter to give preliminary understanding about the study. The next one is literature

survey. In the literature survey chapter, past studies, especially solid modeling, and

special algorithms for virtual machining are discussed. In Chapter 4, turning

operation will be emphasized. Developed algorithm and mathematical explanation

of the algorithm and 3D modeling will be presented. The following chapter will be

dedicated for the milling simulation. For the milling simulation, first ray casting

and dexel modeling will be discussed. Explanation of the algorithms with the

methodology are presented in the chapters. Finally, conclusion and future work

chapter will conclude this thesis.

 7

CHAPTER 2

LITERATURE SURVEY

The main goal of NC code verification is straightforward. Given an NC program,

defining tool motion, and initial workpiece geometry, its purpose is to determine

whether the program can form the workpiece as expected or not.

To accomplish this goal, it is necessary to represent the cutting tool and workpiece

geometry before they place in the cutting operation. First, the part description has to

be made. The swept volume of the cutting tool must be calculated in the same way

of the workpiece and cutting tool so that, swept volume could be subtracted from

the workpiece geometry.

Given this brief information, a method for removing the swept volume of each

cutting tool motion from the workpiece model, must be provided. The tool

movements must be processed one by one, if it is required to do the simulation of

the workpiece at any time. Solid modeling and discrete modeling are the two major

modeling techniques used in simulating machining. In the next section, Solid

modeling technique will mentioned

2.1 Solid Modeling

Solid modeling is representation of complex surfaces by building up simple objects

as Boolean combinations of them. A very simple explanation of machining

operation would be subtraction of the tool movement envelopes from the

 8

workpiece. With the aid of machining simulation, an accurate model of the current

state of the workpiece geometry could be obtained, and there is also opportunity to

determine the material removed by each tool motion.

Solid modeling systems especially for NC simulation and verification were first

investigated by Voelcker and Hunt in [1] and [2], Frishdale in [3]. On the other

hand, using solid modeling to do simulation and verification has a down side.

Simulation requires performing intersections between surfaces which leads to very

computationally intensive operation [35]. In addition, in the case where the surfaces

are too complicated, no known algorithm for performing the intersection may be

utilized. Later work, in which discrete modeling was applied, addressed that

problem by trying to spatially subdivide the problem to reduce the amount of

intersection operation necessary. On the verification side, the comparison between

the finished workpiece and the desired part was nontrivial. Even if they are exactly

the same, floating point errors would most probably prevent that from being

realized. Thus, a method of measuring the proximity of the two surfaces was

needed, also requiring potentially expensive surface-based operations.

2.2 Discrete Modeling

Although solid modeling has the advantage of maintaining an exact representation

of the machining process, unfortunately it is computationally intensive. By trading

total accuracy for easier computation, one may have opportunity to obtain an

alternate approach. The general concept of discrete modeling could be defined as:

representing an object by an approximation constructed of points, triangle or any

other simple objects that could be dealt with easily. The part surface and/or the

workpiece are most of the time represented by a set of points, each having an

associated vector with the point. The advantage of this approach is that intersections

and other computations, involving points and vectors, becomes easier and fast.

Several researches, some of them are [4]-[16], proposed methods of NC simulation

and verification using discrete approximations. These proposals could be divided

 9

into three groups, Z-buffer algorithms, surface normal algorithms and voxel-based

algorithms.

2.2.1 Z-buffer Algorithms

An early approach to simulation was designed by Anderson [4] to detect whether

the tool holder hits the workpiece in three-axis machining. He set up a rectangular

array (each grid cell containing a height value) to represent the workpiece. For each

tool movement, the grid squares that fall under the tool’s path are checked against

the height of the tool and reduced in the case the tool cuts the remaining stock in the

corresponding square. This is closely related to the Z-buffer algorithm used for

graphics displays [36].

The amount of material removed could be approximated with this method, as can

the final shape of the workpiece. Which means that gouge and excess material could

be found. In this approach, a regular grid greatly simplifies the calculations, but

means that grid size is closely related to the accuracy of the simulation. Another

disadvantage is that material can only be removed from the top. This means that it is

not possible to simulate five-axis cutting and undercutting with the tool.

Wang [5], Van Hook[6], and Atherton [7] each updated the Z-buffer approach to

perform simulation and verification. Their methods allow a view direction to be

chosen. It is the direction in which the workpiece will store height values. Wang [5]

stored multiple Z values at each pixel, which allowed him to simulate five-axis

machining. Scan line operations allow quick determination of the cutting depths of

the tool movement at every single pixel. The resultant swept envelope Z-buffer

values are used to update the workpiece representation. Since the surface values

were originally used to create starting entries in the workpiece Z-buffer, comparing

the finished workpiece and the desired part is relatively easy to verify whether

desired workpiece geometry is obtained.

 10

Van Hook’s [6] approach is quite similar, except that a pixel image of the cutting

tool is precomputed. Likewise, it could be subtracted from the workpiece Z-buffer,

which finally gives the finished surface. Since the tool envelope image is

precomputed, the tool axis is kept fixed during machining, and thus the method is

limited to three-axis cutting operations. Atherton [37] extended this approach to

allow five-axis cutting.

All these approaches have common advantages. Due to the regular nature of the Z-

buffer grids, intersections with the tool envelopes are relatively simple and fast. The

values of the surface and the workpiece are obtained at each pixel, allowing easy

comparison of the final product to the desired part geometry. In addition, gouges

and excess material left behind could be determined easily. Finally, the amount of

material removed is easily computed.

However, they suffer from some drawbacks as well. The simulations are view-point

dependent so that they must be redone if an error does not show up in a given

viewing direction. The magnitude of a given error at a given pixel is variable which

depends on the orientation of the surface at that point. If the surface is nearly

parallel to the Z direction at the pixel position, the error value will not correctly

reflect the size of the gouge or bump for that location. In addition, the accuracy of

the simulation is also dependent on the size of the grid. To space samples on the

part surface evenly, pixels must be closer together when the surface normal is

nearly perpendicular to Z direction. Lastly, preparing the starting Z-buffer requires

determination of the intersection of lines in the Z direction at each pixel with part

surface. This is also referred to as the inverse point problem.

In the case of the parametric curved surfaces which are often used in part

descriptions, solving the inverse point problem often requires iterative methods to

get a valid answer; hence taking a fair bit of computational effort. For more

complex surfaces, it is likely to get errors, which may be introduced at this step.

Accuracy is a major problem for methods using a regular grid. Grid sizes have to be

based on the tightest spacing necessary all over the surface. This results in many

 11

unnecessary samples in areas where they are not actually needed. Drysdale and

Jerard [8] propose a method very similar to those above, but on the contrary with

variable spacing. Their approach includes choosing points on the part surface

combined with vectors at each point to represent the workpiece. In addition, they

showed how to determine the space allowable between points on the surface which

depends on the desired accuracy of the simulation, the size and shape of the cutting

tool, and the amount of the curvature of the local surface. Moreover, they generated

the sample points parametrically. This allowed them to avoid the inverse point

problem. When the axis of every tool movement is exactly the same, highly

efficient calculations could be performed by just picking the Z direction to coincide

with the tool axis. In other words, surface vectors only have to intersect the tool

bottom [9].

Although technically not exactly a Z-buffer, the point set was used in a similar

manner. As in Z-buffer approaches, each successive tool movement is intersected

with the surface vectors, to reduce the height when an intersection occurs. Though a

regular grid is no longer used, efficient computation was still achieved by placing

points into a grid of buckets (essentially a 2D hash table). Tool movements find the

buckets they intersect and perform intersection calculations just limited with the

vectors in those corresponding buckets.

This method sidesteps the inverse point problem by generating accurately placed

sample points on the surface, instead of by projecting points from a fixed grid. The

variable spacing also ensures that the number of points used to represent the surface

and workpiece is much enough and not excessive. On the downside, the variable

spacing makes material removal calculation more complicated than in the case of

regular spacing. Moreover, since Z aligned vectors are being used, error estimates

are affected by the angle between the surface normal and Z direction.

 12

2.2.2 Surface Normal Algorithms

Chappel [10] used the point-vector approach to surface representation just

described. However, in Chapel’s [10] work each vector uses the surface normal just

for orientation. Points were chosen on the part surface. At each surface point, the

surface normals are extended in both directions. The first surface normal is directed

into the part until another part or face is reached. And the second surface normal is

directed out of the part until another part, face or the end of the stock is reached.

The tool movement was simulated as a series of fixed tool positions, where cutting

is done by finding the intersection of the vectors and cylinder positions.

Consequently, interference and gouging were reported. It is possible to simulate 3-,

4-, and 5- axis machining with this method. However, Chapel netiher discussed how

surface points are selected, nor how tool positions were chosen.

 Oliver and Goodman [11] took this approach, and brought it further. They also

considered the surface normal at each point on the surface as the vector to be cut.

The point selection is done visually by selecting an orientation for the surface. The

pixels are then projected onto the part surface, whereupon the normal is calculated

and used as a normal vector. Simulation proceeds as previously described. By using

surface normals, it becomes easier to simulate five-axis machining. Moreover, the

error at each point is now more accurate. On the other hand, once again by picking

their points using a view-based method, they experienced problems due to the grid

accuracy, the view direction selected, and the inverse point problem.

Jerard and Drysdale [12] extended their point set approach to use normal vectors in

order to simulate five-axis machining. Points are still on the surface, but they are

spaced evenly to guarantee the accuracy of the simulation, thereby avoiding the

inverse point problem. At the same time this approach ensures that there are just

enough points needed to simulate at the desired accuracy and no more.

Their contribution also addressed the issue of localization for five-axis simulations.

The problem here is that in this case normals pointing in all directions over the

 13

surface instead of in a single direction. Hence, two-dimensional bucketing does not

work correctly. A point may reside in one -bucket, yet its normal cuts through

several. [12] suggests two methods for dealing with this issue.

The first method (called the short normal method) is to use a relatively short vector

at each surface point. Instead of having a long vector that extends till the ends of the

stock material, the vector this time is limited to a small distance above and below

the surface. In this case, once again it becomes possible the points to be placed into

buckets. When a tool envelope is compared to the bucket boundaries, the short

normal length is used to expand the envelope to guarantee getting all points that

might intersect with the tool trajectory.

The second approach (average normal method) uses a set of preselected directions

to be utilized as normals. Each direction is associated with a bucket set. Each point

uses the normal whose direction is closest among available ones to its own normal

and is put into the bucket set for that direction. Cutting is then performed for each

direction. This approach takes advantage of working with parallel vectors while

reducing the errors result since the real normals are close to the chosen direction.

Actually the direction vector is an average of the surface normals of the points they

represent. Also, even though the cutting process is repeated over and over, the time

required does not increase since each point is only placed into a single bucket set. In

other words, the number of intersections performed does not increase.

One final discrete modeling method was proposed by Ozair [13, 14]. He applied the

common technique of approximating surfaces by triangles to NC verification. By

doing this, fewer primitives could be used in very flat regions. While surface points

must be close to each other to prevent the tool from sticking down into the surface

without detection, only three are enough to define a triangle to represent the same

region. Triangle representation is very useful when the subjected region is a flat

one, yet this representation suffers when the surface is highly curved in various

places, since the cost of performing intersections is much higher. One other

deficiency of the method is that the excess material could no longer be effectively

 14

tracked. Also a gouge is associated with a triangle, so that if the corner of a large

triangle is nicked, the whole region is flagged as gouge.

2.2.3 Voxel-based Algorithms

Jang et al [15] proposed a voxel-based model. In their study they aimed to develop a

voxel-based simulator for multi-axis computer numerical control (CNC) machining.

The developed simulator displays the machining process in which the initial

workpiece is incrementally converted into finished part. The voxel representation

was used to model the changing state of the in-process workpiece. The voxelized

tool swept volumes are subtracted from the workpiece. They consider that, voxel

operation simplified the Boolean operation and material removal volumes. It was

quite simple to determine the material removal rate, because the material removal

was the number voxels removed. They use that simplified case to adjust the feed

rate adaptively.

Yau et al [16] used an adaptive voxel representation for multi-axis solid machining.

They use adaptive octree to develop a multi-axis simulation procedure. Their

objective to develop an algorithm in which during the machining process takes

place at any time, it could be possible to visualize the state of the workpiece and to

verify the correctness of the cutting route. It was possible to adjust the resolution of

the voxel size, which affects the level of approximation on the model. They use

some implicit functions to represent various cutter geometries. They also intended

(by the use of these implicit functions) to determine the contact points of the cutter

with speed and accuracy. They aimed to allow the user to conduct error analysis and

compare between the generated cutting model and the original computer aided

design (CAD) data.

 15

2.3 Polygon Clipping

Polygon overlay, which is also known as polygon clipping (PC), Boolean

operations determine the spatial coincidence of two polygons. Polygon overlay

techniques are generally used in by field scientists to extract relationships between

spatial attributes, stored as layers in a geophysical data model. A Boolean operation

on the polygons could also be used to visualize changes in parties of a machining

simulation. Especially, due to simplicity of turning simulation, it is possible to

assume both workpiece and cutting tool as polygons in a 2D plane.

Many efficient algorithms exist for polygon clipping. Most of them are limited to

certain types of polygons. For example, Andereev [24] and Sutherland and

Hodgman [25] algorithms require convex clip polygons while the algorithm by

Liang and Barsky [26] requires a rectangular clip polygon.

For more complicated polygons (i.e. concave polygons with holes and self-

intersections) less solutions exist. Moreover, some of the solutions need complex

and specific data structures. Study of Weiler [27] suffer from complexity. Geiner

and Hormann [28] propose a new algorithm for polygon clipping. Their algorithm is

easy to implement, and treats degeneracy, which occurs when a vertex of a polygon

lies on an edge of the other. Liu et al. [29] proposed some optimization for Greiner

and Hormann’s algorithm. Unfortunately, their solution also suffers for degeneracy.

Vatti [30] has also a clipping algorithm. Which is based on plane sweep paradigm.

Another algorithm developed by Martinez et al [21] is faster and more efficient

even if it is also based on plane sweep. In this study, for the polygon clipping

technique, the algorithm developed by Martinez et al [21] is base.

 16

CHAPTER 3

NC CODE PARSING

NC program is the code that designates the whole sequence of a specific machining

operation to be performed on a CNC machine tool [39]. NC-codes have been

initially designed for CNC machine tools although they are also applicable for the

robot manipulators. In fact, the NC code can be changed to describe the end-

effector trajectory to carry out the task with the given tolerance.

The NC code developed in this study includes information about the end-effector

orientation, motion type, manipulator’s operation modes and orbit (a.k.a. the

"pace"), as well as the coordinates. This NC code consists of line (i.e. blocks) each

representing information about a segment of the motion. Sub-program/subroutines

can be used for trajectories with repetitive features. G-codes defines the motion type

and the operation mode. In this study, the G codes that are used are as follows:

• G0 - rapid linear motion;

• G1 - Rectilinear motion;

• G2/G3 - circular motion,

• G17, G18, G19 - selection of the working plane in the circular motion;

• G90 / G91 - absolute and incremental coordinate mode;

• G100 - specification of the local coordinate frame.

In the NC code, tool coordinates X, Y, Z [mm], and various functions M and

feedrate F [mm/min] can be defined in addition to the G-codes. M98, M99 M

function references a subprogram and subroutine respectively while M30 calls the

 17

end of the subprogram. Furthermore, the N word is used to mark the start of a

subroutine and the name of the subroutine to be called is defined by the P-word,

which is used in cooperation with M98 function. In addition, D (sec) defines the

dwell function. For the task which needs to maintain its pose during the specific

time interval, for example the spot-welding operation, it is important to use the D-

word. Modal coding has been made use of the efficiency of the code and the

easiness to follow it. In this scheme, any change is observed in the modes fixed by

the G codes or the coordinates being specified until new mode or coordinate is

entered.

3.1 Motion Types

Manipulators are able to fulfill various motion types like rectilinear, circular, helical

and parabolic motions. However, in this study, rapid, linear and circular motion are

just performed for the simplicity.

3.1.1 Linear Motion

In linear motion, the user sets the constant feed rate and the tool moves to the

destination at that feed rate. In this mode, all axes work in harmonization and tool

moves the same amount in each axis as shown in Figure 3.1. The linear motion is

designated as G1 Xxf Yyf Zzf Ff where xf, yf, zf are the coordinates of the

end-point (in absolute or incremental mode) and f is the feedrate (mm/min) set by

the user.

Figure 3.1 Linear Motion [38].

 18

Note that at the start of each control cycle a linear interpolation is required to

produce position commands to the controller. Firstly, the travel (Euclidian) distance

should be calculated as

d x x y y z z (3.1)

Similarly, the time required to reach destination becomes

t
60d

f (3.2)

Therefore, the number of commands to be generated along this linear trajectory can

be calculated as

 (3.3)

where T is the sampling rate of the control unit. The increments at each axis

becomes

∆x
x x

N (3.4a)

∆y
y y

N (3.4b)

∆z
z z

N (3.4b)

Similarly, the coordinates of the tool at a particular time (kT) can be expressed as

x k x k∆x (3.5a)

y k y k∆y (3.5b)

z k z k∆z (3.5c)

 19

3.1.2 Rapid Motion

The rapid motion is utilized to move the tool from one point to another at the

maximum speed. The difference between the linear motion is that feedrate is not

required in rapid motion. Rapid motion is designated as G0 Xxf Yyf Zzf.

Unlike point-to-point motion in formal G0 (of RS-274D); here, all axes work in

harmonization and tool moves the same amount in each axis as illustrated in Figure

3.1. The difference is that feedrate is selected automatically as the maximum

feedrate (fmax) which can be achieved by the mechanism.

3.1.3 Circular Motion

The last interpolator motion, circular motion, differs by means of algorithm and

definition. User has to define the working plane since circle should lie on a plane

and also it is important to define the direction of rotation in order to draw the

correct section of the circle. The block of the NC code consists of the information of

the working plane, direction of rotation, the coordinates of the destination, the

radius or the coordinates of the circle and the feedrate. There are two alternative

definitions for circular motion. The representation options are presented in Table

3.1. In this table, X, Y and Z are the coordinates of the destination point, R is the

radius of the circle and I, J, K are the distance from the center to the starting point.

I, J, K values are used as a set of two keywords. I and J keywords are used for

defining the center of the arc in XY Plane. Similarly, J, K is used for arcs in YZ

plane and I, K are used for arcs in ZX plane. The sign of radius should be given

different if the arc is designated with R. Radius should be designated as –R for the

arc angles larger than 180°, as shown in Figure 3.2 with motion from A to D.

Radius should be defined as R for smaller arc angles like motion from A to B. For

the other cases, the incremental distance from center to starting point should be

given as shown in Figure 3.2. In this case, the incremental distance on X-axis is

identified as i, the incremental distance on Y axis is identified as j and the distance

on Z axis is defined as k.

 20

Table 3.1 Circular motion representations.

XY Plane G17 G 2
3 Xx Yy Rr

Iı Jj Ff

ZX Plane G18 G 2
3 Xx Zz Rr

Iı Kk Ff

YZ Plane G19 G 2
3 Yy Zz Rr

Jj Kk Ff

Complete Circle G 2
3

G17 Iı Jj
G18 Iı Kk
G19 Jj Kk

 Ff

Figure 3.2 Circular Motion [38]

The last important definition is the working plane. G17, G18 and G19 are used for

determining the working plane and they are used for motion on XY plane, ZX plane

and YZ plane respectively.

The circulars motion calculations differ from the linear one by definition. If the

parameter incremental distance to the center is known, radius of the circle can be

calculated by Eqn. (3.5) and center coordinates are computed by Eqn. (3.6). If only

the parameter radius is known while the center coordinates are not given, the center

 21

position is achieved by geometric operations. If the center coordinates and radius of

the circle is given, the angle of the starting point of the arc, θs, and the angle of the

final point of the arc angle θf, is calculated by Eqn. (3.7a) respectively for XY, ZX

and YZ planes.

222 kjir ++=
(3.5)

kzzjyyixx scscsc +=+=+= (3.6)

 θ atan
x x
y y , θ atan

x x
y y

θ atan
x x
z z , θ atan

x x
z z

θ atan
y y
z z , θ atan

y y
z z

(3.7a)

(3.7b)

(3.7c)

Position commands can be generated after all of the unknowns are computed.

Firstly, the travel distance should be calculated to carry out this computation. The

travel distance is the length of the arc. To compute the arc length, the sweep angle

of the arc should be computed by Eqn. (3.8). Then the arc length, l, is found by Eqn.

(3.9).

sft θθθ −= (3.8)

rl t ⋅=θ (3.9)

Similarly, time required to complete the arc becomes

f
lt ⋅

=
60

 (3.10)

Therefore, the number of commands to be generated along this circular trajectory

can be calculated as

 (3.11)

 22

where T is the sampling rate of the control unit. Since the trajectory is circular,

increments should be projected into angles and the angular increments can be found

by

N
tθθ =Δ

(3.12)

Similarly, the angle values at a particular time (kT) can be expressed as

kk s ⋅Δ+= θθθ)((3.13)

Finally, the coordinates of the tool at a particular time (kT) can be expressed as in
Eqn. (3.14) which shows the procedures for circular motions in XY, ZX and YZ

planes respectively.

0 cos 0 sin

0 cos] 0 sin]

0 cos] 0 sin]

(3.14a)

(3.14b)

(3.14c)

 23

CHAPTER 4

TURNING SIMULATION

4.1 Introduction

Turning simulation feature of the program aims to simulate a turning operation with

the given parameters. For that purpose, a specially designed graphical user interface

(GUI) is used to input parameter and data input and to observe the simulation

output.

In the turning simulation, it is appropriate to consider workpiece (WP) as a

cylindrical part. Length and diameter of the workpiece are given to define

workpiece geometry in the cutting operation. For the turning simulation, two

separate techniques are applied. The first one depends on an approach which will be

based on pixel operations of the workpiece and cutter is considered as matrices with

Boolean values which will be generated as a result of investigation of pixel values

of their geometries on the screen. Subtraction operation is then conducted.

Due to simplicity of geometric features in turning operation, both workpiece and

cutting tool could be considered as polygons. The second approach is derived from

this idea. Polygon clipping technique is applied to obtain desired geometry

throughout the simulation. The result of that interaction will dynamically affect the

workpiece geometry and will be used for the generation of 3D model of the

workpiece.

 24

4.2 Workpiece and Cutting Tool Definition

In this part, cutting and workpiece tool data structure is mentioned in detail. Since

both pixel-based and polygon based data are used, definitions are made separately.

4.2.1 Pixel based technique

In pixel-based technique, workpiece and cutting tool (CT) are modeled as a

pixilated 2D region. In the following section workpiece data structure is discussed

in detail. Later cutting tool data structure is explained which is similar to

workpiece’s structure.

4.2.1.1 Workpiece Data Structure in pixel based technique

A geometric model is discretized by dividing it into finite number of elements.

Thus, a fully continuous geometry is represented by a piecewise continuous

geometry by a finite number of nodal quantities. This approach can be effectively

used for turning simulation, and provides considerably fast simulation speeds.

First, a cylindrical workpiece is symmetric in the axial direction. If a cut of such a

cylinder from its axis is taken, the resultant geometry will look like a rectangle.

Figure 4.1 illustrates the idea to obtain that rectangle.

Figure 4. 1 Taking a cross-section of a cylindrical workpiece.

 25

Because the part is axi-symmetric, by utilizing this feature, the part is cut across its

axis, and only the section, shown in red, is used for calculations. If our resolution is

limited by the screen resolution, it is sufficient to discretize the workpiece section

according to that resolution. That is, the ultimate resolution in the screen, is the

resolution it generates. This is the resolution of the screen device. If a shape is

discretized to the screen resolution, the size of a single pixel is going to give us the

minimum meaningful change in the process. Therefore, the simulator generates

cutter movements according to that principle. As can be seen in Figure 4.2, the

rectangular cross section is filled with some equally spaced black dots, which

represents the dimensions of a pixel on the screen.

Figure 4. 2 Discretization of the workpiece cross-section.

The pixelized cross-section of the workpiece is somewhat similar to a Boolean

matrix, in which Boolean value indicate pixels with black dots, and false values

denote empty pixels. The data structure of the workpiece can be considered as a two

dimensional matrix with Boolean values. The construction of workpiece Boolean

matrix is shown in Figure 4.3. Since the data structure of the workpiece is a

Boolean matrix, the cutting tool data must be in the same format to apply

appropriate Boolean operations for the purpose of subtracting the cutting tool from

the workpiece.

 26

Figure 4. 3 Converting workpiece into pixel matrix, then converting this pixel data,

into a Boolean matrix.

4.3.1.2 Cutting Tool Data Structure in pixel based technique

For the definition of cutting tool, a novel approach is proposed in this thesis. To

make the input conversion as simple as possible, the cutting tool is also represented

as a Boolean matrix. In fact, the cutting tool input file is a bitmap (bmp) file. As

mentioned before, bmp file is a file, which directly holds the coordinates and color

values of pixels in a picture. If a cutting tool is drawn as a bmp file, it can directly

 27

be taken as an input to the program and can be converted into a matrix of Boolean

type. For this purpose, a Bitmap (bmp) object is created in the program and pixel

values are read. A matrix having the dimensions of the bmp width and height

values, is produced. Then black colored pixels are considered as true values in the

matrix while white colored pixels are regarded as false. As in the workpiece case,

any line in the matrix is converted into BitArray data types to keep things

simpler. After that, both of the inputs of the program are in the format of

BitArray Vectors. It is easy to update the status of the workpiece during the

cutting operation, as explained in the next section.

4.3.2 Polygon Clipping technique

To apply polygon clipping technique in machining simulation first it is necessary to

define workpiece and cutting tool as polygons. In the following sections this

procedure is explained in detail.

4.3.2.1 Workpiece Data Structure in polygon clipping technique

In this case, both the workpiece and cutting tool are represented as polygons. These

polygons characterize their boundaries. A polygon is defined as an ordered list of

vertices in our case. The number of vertices determines the number of edges on the

polygon.

For the workpiece, the geometry starts out as a simple rectangle with four vertices.

In the developed software, the workpiece dimensions are taken as vertex

coordinates. The length input is used to define the width of the rectangle, where the

diameter input defines height of the rectangle. Thus, a rectangular polygon is

created with the vertex parameters as shown in Figure 4.4.

 28

Figure 4. 4 Workpiece geometry

As shown in the Figure 4.4, vertices are defined with half of the diameter There is a

symmetry about the axis of rotation. That feature, allows to make the calculations

for one the half. Note that since the turning operation is applied mostly for

cylindrical parts, the resultant vertex values could be rotated around the axis to get

the final object. This will be explained later in the section, where 3D object

generation is discussed. In the developed software, a special data structure is

generated for the workpiece which keeps some specific geometric features of the

workpiece. Table 4.1 shows that corresponding data structure.

Table 4. 1 Workpiece data structure

struct Workpiece
{
 double Length;
 double Diameter;
 PointD[] PointDArray;
 PointF[] PointFArray;
 PointF[] ClampedZoneF;
 PointD[] ClampedZoneD;
}

In the data structure of the workpiece, length and diameter values are in double

precision. Due to the nature of the polygon clipping technique, the geometric

calculations (like intersection of two line segments) are calculated frequently. In C#

and DirectX, default Point, and Vector data types are composed of single precision

coordinate values. Because of this lack of precision; specific Point and Vector data

types are generated in the program. PointD, Vector2D, and Vector3D value types

are developed for this purpose to coordinate values, that are in double precision.

Vertex1(0,- Diameter /2)

Vertex1(0,0)

Vertex1(0, Diameter /2)

Vertex1(0,0)

Axis of rotation

 29

PointDArray variable holds vertex data of the workpiece. PointFArray variable is

used to hold single point precision equivalents, which has to be generated for the

visualization. As mentioned before, DirectX and C# graphics design interface

(GDI+) work with single precision floating point values. That is why, the

PointDArray items are converted into PointF values and they are stored in

PointFArray of the workpiece structure.

ClampedZoneD, and ClampedZoneF members of the workpiece data structure define

the portion of the workpiece which has to be away from the machined part. In the

simulation, if there is a cutter interaction with clamped zone, a warning is issued to

the user. Since it implies a crash of the cutting tool with the chuck in the real cutting

operation.

4.3.2.2 Cutting Tool Data Structure polygon clipping technique

Cutting tool is also modeled as a polygon. The cutting tool geometry is defined by

the data retrieved from a library of common cutting tool geometries used in turning

operations. The interpreted NC code includes the tool number and the related

cutting tool geometry is called by the software from the library.

Actually cutting tool geometry is defined by a text file. This text file has an

extension, which is the tool number. This notation is recognized by the software. In

the text file the vertices of the cutting tool are given as Z and X coordinate pairs. A

sample cutting tool data is shown in Table 4.2.

Table 4. 2 Format of cutting tool vertex data file.

Vertex1,Z Vertex1,X Vertex2,Z Vertex2,X Vertexn,Z Vertexn,X

 30

As can be seen in Table 4.2, the coordinate pairs define vertices of the polygon,

which determines the boundary. As shown in Figure 4.5, in the CNCSimulator there

is a tool editor, in which the tool geometries can be edited.

The cutting tool data structure is shown in Table 4.3. It is very similar to workpiece

data structure. The only difference is that instead of length and diameter parameters,

the width and height of the tool’s bounding box is kept as double precision

members. These values are used in the calculations for the determination of screen

output in the 2D viewport during the simulation. As will be mentioned later, even

the workpiece and cutting parameters and dimensions change, the 2D viewport

adjusts the scaling dynamically to provide best visibility.

Figure 4. 5 Tool editor of the CNCSimulator

Table 4. 3 Cutting tool data structure.

struct CuttingTool

{

 List<PointD> PointDList;

 PointF[] PointFArray;

 31

Table 4.3 (continued)

 double BoundingBoxWidth;

 double BoundingBoxHeight;

}

4.4 Cutting Methodology

Cutting methodology for pixel-based technique and polygon-based technique are

completely different. In the next section pixel-based technique is explained. In the

following section polygon-based technique will be discussed in detail.

4.4.1 Cutting methodology in pixel-based technique

As we have both workpiece and cutting tool have Boolean matrices format, one can

apply logical operations to generate updated workpiece data. An example of this

simple logic is shown in Table 4.4.

Note that in C# there is a data type, which is called BitArray. With the usage of

BitArray data type, it becomes much more simpler and faster to make Boolean

operations in a program. A BitArray manages a compact array of bit values which

are represented as Booleans where true indicates that the bit is on (1) and false

indicates the bit is off (0) [17].

To be able to use BitArrays as data storage type in the program, it is necessary to

convert Boolean matrices into a 1-dimensional vector of BitArrays. Then one can

apply special C# BitArray functions, logical “AND” and logical “NOT” on the

BitArrays to make Boolean operations easier.

 32

Table 4. 4 Definition of workpiece and cutter matrices and modification of

workpiece matrix with the application of Boolean operation.

1 1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1

1 1
1 1
1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1

0 0 1 1
0 0 1 1
0 0 1 1

0 0 0 0

1 1 0 0
1 1 0 0
1 1 0 0

1 1 1 1

Another requirement is that the workpiece position through the cutting operation is

intact but it will only be affected by the cutting tool movements. On the other hand,

the cutting insert will keep its by geometry all the time, provided that no tool wear

is observed. Hence, only the position of the tool will change in time. Thus in the

program, the tool matrix is displaced according to the position registered.

Another important feature of the developed program is that positional increments

are as small as the pixel size on the screen. Thus, any cutter movement extracted

from the cutter location (CL) data file is divided into portions. The size of these

portions has to be same as the size of a pixel. To do so, if say a movement is

composed of X and Z axis components, in the cutting space coordinates shown in

Figure 4.6, in the case where the amount of movement component on one of the

axis is more than the other component, the bigger amount is considered to find the

amount of increment. In other words, if in one step X component of the move

vector is 5 mm and Z component is 30 mm, then the both X and Z components are

divided into 30 to get at most 1 mm increments. Of course, this amount is correct, if

we have the pixel size as much as 1 mm. The program recursively applies the

subtraction of cutter from the workpiece to simulate the turning operation.

 33

Figure 4. 6 Axes in turning operation.

4.4.2 Polygon clipping technique and its application in the simulation

Due to nature of turning operation, workpiece and CTPs as generated before are

candidates to be applied some Boolean operations on them to simulate the

machining operation. In the following section, Polygon Clipping operations and

their application in the case of cutting simulation will be discussed in detail.

4.4.2.1 Introduction

First of all, it would be appropriate to explain the main idea behind performing the

simulation with only polygons. At the beginning there exist two polygons, which

are defined in terms of vertex values. The polygon, which represents cross-section

of a rotating workpiece, is considered as stationary object in the simulation.

Because there is no benefit of that rotation for neither simulation quality nor the

calculation complexity. The only change occurring in the vertex data during the

simulation is due to the clipping at workpiece polygon (WPP) with cutting tool

polygon (CTP).

On the other hand, the CTP is not a stationary polygon. It replicates the interpreted

movements defined in the NC code. Thus, the coordinate values of the cutting tool

 34

is transformed continuously during the simulation as a whole. However, unlike

WPP, the relative positions of the coordinate values of the CTP kept fixed. They are

only subjected to the same transformation.

The simulation is conducted first in 2D with the above mentioned polygons and

then the obtained data is transformed into 3D. The polygon clipping lies at the heart

of the technique. The CTP is swept in ZX plane and hence the resultant swept

polygon is used to clip WPP.

In this section, first the polygon clipping technique will be explained. How the CTP

is swept, will be discussed. At the end, application of this operations into the

turning simulation will be elaborated.

4.4.2.2 Polygon Clipping

Before discussing cutting methodology of the developed software, it would be

better to give some insights about polygon clipping technique. As mentioned in the

literature survey section, polygon clipping techniques have been utilized in

computer graphics applications since the emergence of the computer graphics

technology. The method considered in this thesis is developed by Martinez, et. al.

[21].

4.4.2.2.1 Basics

A common way to represent a polygon is to list its vertices in counter-clockwise

order: v0; v1; v2; . . . ; vn. The ordered list of edges v0v1; v1v2; . . . ; vnv0 defines the

boundary of the polygon.

Depending on the type of operation result of a Boolean operation on two polygons

is composed of those portions of the boundary for each polygon that lie (or do not

lie) inside the other polygon. For example, Fig. 4.7 shows the results of different

 35

Boolean operations on two polygons called P and Q. Therefore, the computation of

a Boolean operation could be considered as finding these intersecting portions.

Once found, they must be connected to form the resultant polygon.

Figure 4. 7 Boolean operations on polygons [21]

Suppose that the edges of two polygons are divided into line portions at their

intersection points as shown in Fig. 4.8. In that case, the boundaries of the polygons

intersect at endpoints of those newly generated line portions. The problem of

computing the resultant boundary of a Boolean operation on the polygons finding

those related edges of each polygon that lie (or do not lie, which depends on the

executed Boolean operation) inside the other polygon. At the end, once these edges

are found, they have to be connected to generate the resultant polygon. The

approach for computing Boolean operations on polygons can be described as

follows:

(1) First, subdivide the edges of the polygons at the points where they intersect

each other.

(2) Select those subdivided line portions that lie inside the other polygon (or

that do not lie, which is determined according to the type of the Boolean

operation)

(3) Join the edges, selected in Step 2 and sort them in an appropriate order to

form the resultant polygon.

To apply the prescribed algorithm above, the plane sweep technique is used to

efficiently to implement this approach.

 36

Figure 4. 8 Subdivision of edges of polygons at their intersection points [21]

4.4.2.2.2 The algorithm

In this section, the algorithm for computing Boolean operations on polygons, is

described. To be able to subdivide the edges of the polygons, it is necessary to find

their intersection points. This task can be efficiently carried out by using the

following principle: consider that the plane is swept with an infinite length vertical

line. At every moment, the edges that intersect with the vertical sweep-line are

ordered from bottom to top and are stored in a data structure, which is called S.

Then, it can be shown that:

(1) The status of S does not change, unless it reaches to an endpoint or an

intersection point of the edges.

(2) Intersection between two edges can occur, if and only if these edges are

adjacent along S. The classical algorithm for computing the intersection

points between a set of segments is based on this principle given by

Preparata and Shamos [22].

The algorithm used in the developed software also employs this approach

efficiently to find the intersection points between the edges of the polygons.

Furthermore, the information available during the plane sweep is facilitated to

subdivide the edges and decide on the edges to be included in the result of the

Boolean operation.

 37

To elaborate this algorithm; a vertical line is used to sweep the plane from left to

right. The sweep-line status, S, is composed of the ordered sequence for the edges

of both polygons intersecting the vertical sweep-line. As mentioned before, S will

only change at the end points of the edges:

• When the left end point of an edge is reached to the edge must be added to

S, and it must take its proper location on the list.

• When the right end point is reached the edge must be removed from S, and S

must be reordered to reflect necessary change in it.

In this thought process, every edge of polygons is composed of endpoints, which

are called events. They are called events due to the fact that they cause a change in

the S. To store those events, the event-point set is formed by the endpoints of the

edges on the polygons. This set changes dynamically as when an edge is

subdivided, two new endpoints appear. That is why, in the developed software both

for S and for event-point set (called Q) are List variables. Unlike arrays, number of

elements of a list can be dynamically changed during runtime. The elements of a list

can be removed, or a new element can be inserted at any moment. Also, it is

possible to copy the elements of a list into an array, if necessary. The algorithm

implements the event-point set using a priority queue which stores the endpoints

sorted from left to right.

The algorithm to compute Boolean operations on two polygons is shown in Table

4.5. To facilitate the object oriented programming (OOP) features of C# language, a

specific class is created to define a polygon clipping object. It has several functions

and data members. Some data types like structures and some enumerations are

defined for the sake of simplicity. This class is called as

ClippingProcessorClass. Once an instance of that class is created its functions

are used to operate on it. To apply a Boolean operation on two polygons, the class

instance object awaits to be called by its fncMain function. This function takes

three parameters, two lists of vertices and Boolean operation type. Then clipping

function is called internally.

 38

Before going into details of the algorithm on clipping function, an important data

structure, which is an event is necessary. In ClippingProcessorClass, any edge

and endpoint of a polygon is defined by a structure called SweepEvent. SweepEvent

structure and its members are shown in Table 4.6. Three important enumerations are

PolygonType, EdgeType, and BooleanOpType. Their members are shown in Table

4.7.

The Boolean operation takes place in that clipping function. First of all, the priority

queue is filled with the endpoints of the edges. After that these endpoints, which

will be called as events there after that point, are sorted with respect to their X

coordinate values. Thus, the events are processed (from left to right) as described.

When an event, which is the left endpoint of an edge, is found, it is inserted into the

sweep line status (S). It is further processed if the associated edge resides in the

other polygon. Details are explained in section 4.4.2.2.3. Consequently, the event is

removed from the priority queue Q. Whether any intersection occurs with its

neighbors along S must also be processed. For that purpose,

fncFindIntersectionOf2LineSegments function is run. If any intersection is

found, the function returns the number of intersections. If no intersections are

found, function returns null. Note that it is also necessary to check whether the

adjacent edges are overlapping. Overlapping edges are special cases and they must

be dealt with. Details on how overlapping edges are dealt will be given in section

4.4.2.2.6.2. When a right endpoint is found, both the event itself is removed from

the Q, and its associated edge is removed from S. Now, its two neighbors along S

become adjacent and they need to be tested for possible intersection. Finally, the

removed edge is considered for inclusion in the result of the Boolean operation.

As mentioned before, the procedure fncFindIntersectionOf2LineSegments is

used to detect a possible intersection between two edges. In the case where the

edges belong to the same polygon or they only intersect at only one of their

endpoints no extra processing is required. Otherwise, if the edges belong to

different polygons and they intersect at least at one point then they have to be

 39

subdivided into segments. When an edge is subdivided, the data structures Q and S

are need to be updated to reflect the new status. This is done with the procedure

called fncIntersectionProcessor. Fig. 4.9 shows the types of intersections that

may occur between two line segments. An intersection (depending on the kind)

leads to a subdivision of the edge. In the procedure

fncFindIntersectionOf2LineSegments, the intersection routine described in

Schneider and Eberly [23] for detecting a possible intersection between two edges is

used.

At this point, it would be beneficial to give an example on, how an edge is

subdivided, and how it is reflected in S. As shown in Fig. 4.10, when the vertical

sweep-line reaches to the point p1, S is composed of edges (q2q3, q1q2). Then, the

left endpoint of p1p2 is processed, and p1p2 is located in S (S = {q2q3, q1q2, p1p2}).

p1p2 intersects with its neighbor q1q2 at point i, so that p1p2 and q1q2 must be

subdivided into edges p1i, ip2, q1i and iq2. Similarly Q has to be updated to include

the endpoints of these newly created edges. S will also change to S = {q2q3, iq2, p1i}.

After that, it is time to process the left endpoint of p0p1, and p0p1 is inserted into S

where (S = {q2q3, iq2, p1i, p0p1}). In the next section, the methodology on how an

edge is selected to be included in the result polygon will be discussed.

Table 4. 5 Algorithm for Boolean operations.

object[] fncMain(PointD[] subjectPolygon, PointD[] clipPolygon,
 BooleanOpType operationType)
//Input: A point array for subject polygon, a point array for
// clipping polygon, type of boolean operation
//Return: An object array, includes a list of points and a list
// of point arrays.
{
 Set subject polygon and clipping polygon with sweepevent
 data types;

//Call fncClippingFucntion to obtain returning values
 return fncClippingFunction(operationType);
}
//Input: Boolean operation type.
//Return: An object Array, includes a list of points and a list
// of point arrays.
object[] fncClippingFunction(BooleanOpType operationType)
{

 40

Table 4.5 (continued)

//Insert the endpoints of the edges of polygons into priority
//queue Q
Q.Events.Add (SubjectPoly);
Q.Events.Add (ClippingPoly);
Q.Sort();
//Loop as long as priority queue is not empty
while (Q.Count > 0)
{
 //Get the first event in the queue
 event = Q.Events[0];
 if(event.left_endpoint)
 {
 //Add the event to the Sweep Line Status
 S.Add(event);
 S.Sort();

pos = S.IndexOf(event);
fncSetInsideOtherPolygonFlag(event, pos);
If(event intersects with previous or next event
in S)
{
 Subdivide event and previous event;
}
else if (event and previous or next event in S
overlaps)
{
 Change edge type parameters of events;
}

 }
else
{

pos = S.IndexOf(event.other);
Q.Remove(event);
event = S.Events(pos);
switch(operationType)
{
 case Intersection:
 if(event.Type == EventType.NORMAL &&
 event.InsideOtherPoly == true)) ||
 event.Type == Type.SAME_TRANSITION)
 result.Add(event);
 break;
 case Union:
 if((event.Type == EventType.NORMAL &&
 event.InsideOtherPoly == false)) ||
 event.Type == Type.SAME_TRANSITION)
 result.Add(event);
 break;
 case Subtraction:
 if(event.Type == Type.DIFF_TRANSITION)

 41

Table 4.5 (continued)

 result.Add(event);
 else if(event.Type ==

 EventType.NORMAL &&
 ((event.PolygonType ==
 PolygonType.SUBJECT &&

 event.InsideOtherPoly ==
 false) ||
 (event.PolygonType ==
 PolygonType.CLIPPING &&
 event.InsideOtherPoly ==
 true)))
result.Add(event);

 break;
}
S.Remove(pos);
next = S.next(pos);
prev = S.prev(pos);
If(prev and next event intersects)
{
 Subdivide prev and next event;
}
else if (prev and next overlaps)
{
 Change edge type parameters of events;
}

 }
}
Sort result data;
return result;

}

 42

Figure 4. 9 Types of intersection [21]

Figure 4. 10 Sweep-line technique [21]

4.4.2.2.3 Selecting the result edges

When the sweep-line reaches to the right endpoint of an edge (let’s call it e) the

algorithm is requested to decide whether e belongs to the result of the Boolean

operation. The crucial thing at that point is to determine whether e lies inside the

other polygon or not. In the fncClippingFunction, one computes if e lies inside

 43

the other polygon; when e is first inserted into S. This computation is done by

reading the three flags of information from the edge that precedes e in S. In Table

4.8 the algorithm of this procedure fncSetInsideFlag procedure is presented.

Those three flags from the preceding edge that has to be read are as follows;

• pl: indicates whether the edge belongs to the subject or clipping polygon.

• inOut: indicates the inside/outside behavior of the polygon that the event

belongs. For that purpose, some if statements are checked as:

o If the previous event in S belongs to the same polygon, the inOut

flag of the current event is set negation of the inOut flag of the

previous event.

o If the previous event is S belongs to the other polygon, the inOut

flag of the current event is set equal to the inside flag of the previous

event.

• inside: indicates if the edge is inside the other polygon. To determine this

flag, once again some if conditions are checked as follows:

o If the previous event in S belongs to the same polygon, the inside

flag is set equal to the inside flag of the previous ones.

o If the previous event in S, belongs to the other polygon, the inside

flag of the current event is set negation of the inOut flag of the

previous event.

However, in the case of both overlapping and vertical edges, there is a special case,

which does not let the above procedure to yield correct result. Owing to the fact that

a vertical edge does not imply any inOut relation for the polygon it belongs. Also in

the case of an overlapping edge, whose EdgeType parameter must be else than

NORMAL, there is possibility to set its index randomly because there is no way to put

two edges in an order in neither Q nor in S. This ambiguity requires to be dealt with

a more tedious, but achievable way. In that case, all the events, which are non-

vertical, in the S up to current event, are counted to determine the number of events

belonging to the subject and to the clipping polygons. If the number of events with

the same polygon type is odd, the inOut flag is set to false. If the number of events

with the different polygon type is odd, the inside flag is set to true.

 44

Table 4.7 shows the algorithm of the routine, fncSetInsideFlag, that computes

the inOut and inside flags of a left endpoint event call le. As mentioned before, le

is compared with its immediate predecessor call ple in the S. If ple is null then le is

simply the first event in S and it means that all the flags can be trivially set to false.

In the priority queue Q, events that share the same X coordinate, have to be

processed from bottom to top to apply correctly the above mentioned routine. If two

endpoints share the same point on the sweep plane, the right endpoints have to be

processed before the left ones. If two left endpoints share the same point, It is

necessary to check the position of the edges in the S, which has to be sorted in the

ascending order.

Table 4. 6 SweepEvent structure.

public struct SweepEvent
{
 PointD p; //Coordinate of the point
 bool left; //Flag, whether the endpoint is the left one of
 //the edge
 PointD other; //Coordinate of the other endpoint of the edge
 PolygonType Pl; //Polygon type of the edge
 bool inOut; //inOut flag of the edge
 bool inside; //inside flag of the edge
 EdgeType Type; //EdgeType of the edge. Possible values are
 //NORMAL, SAME_TRANSITION,
 //DIFFERENT_TRANSITION, and NON_CONTRIBUTING
 int ID; //a specific integer id number, which is used to find
 //the edge in the queues
 double M; //Slope of the edge (y=Mx+N)
 double N; //N in line equation (y=Mx+N)
 double Y; //Y coordinate value of the edge, in the curren x
 //coordinate of the vertical sweep line
 bool Vertical; //Flag, whether the edge is a vertical one.
}

Table 4. 7 PolygonType, EdgeType, and BooleanOpType enums.

enum PolygonType
{
 CLIPPING, //Clipping Polygon
 SUBJECT //Subject Polygon

 45

Table 4.7 (Continued)

}

enum EdgeType
{
 NORMAL, //The edge type is normal

NON_CONTRIBUTING, //The edge will not be considered in the
 //result
SAME_TRANSITION, //The edge has the same inOut flag with the

 //edge with which it overlaps
DIFFERENT_TRANSITION //The edge has opposite inOut flag of
 //the edge with which it overlaps

}

enum BooleanOpType
{
 INTERSECTION, //Intersection type of boolean operation
 SUBTRACTION, //Subtraction type of boolean operation
 UNION //Union type of boolean operation
}

Table 4. 8 Routine to set inside and inOut flags of edges.

//Input : A SweepEvent and the index number of event in S
void fncSetInsideFlag(SweepEvent event, int index)
{
 if (index == 0)
 {
 event.inside = false;
 event.inOut = false;
 }
 else
 {
 if (Previous event in S is vertical or EdgeType of
 previous event is not Normal)
 {
 for each event in S up to index do
 {
 Count events with the same polygon type;
 }
 Set inside and inOut flags;
 }
 else
 {

if (event and previous event in S belong to the
same polygon)
{

event.inside = S.Events[index – 1].inside;

 46

Table 4.8 (continued)

 event.inOut = !S.Events[index – 1].inOut;
 }
 else
 {
 event.inside =!S.Events[index – 1].inOut;
 event.inOut = S.Events[index – 1].inside;
 }
 }
 }
}

4.4.2.2.4 Connecting the result edges to form the solution

The result of a Boolean operation on two polygons results in a set of polygons.

There is possibility to have an empty set for the result in some cases. In the previous

sections, it was described how to find the edges of the subject and clipping

polygons. Now, it will be shown, how these edges can be sorted and connected to

form the resultant polygons. For that purpose, a specific sorting algorithm is

generated. fncResultPolygonSort procedure is utilized for that purpose. The

algorithm is shown in Table 4.9. The difficulty of the problem comes from the

nature of the sweep plane algorithm. To apply this algorithm, it is necessary to set

the endpoint with smaller X coordinate value as left endpoint and the one with the

higher X coordinate value as right endpoint. The natural result of this approach is

that every edge is defined as if it is a vector directing to the right hand side at the

plane. That situation does not lead to a closed polygon. For that reason, in the

procedure, endpoints of the edges are checked for coincidence. Once a coincidence

is observed, the endpoints of that edge are swapped. This process is repeated until

the starting point of the polygon is reached.

There are some cases, result of clipping results more than one closed polygon. In

such cases, procedure can suffer an infinite loop while trying to find a line segment

to connect to the last one. This is considered as an indication of multiple cycles by

 47

the procedure so that looping infinitely is prevented. A new cycle starts and the

previous process is repeated, until all the edges are put into a polygon.

Table 4. 9 Sorting procedure to obtain connected vertices Polygon vertices.

//Input : A reference SweepEvent list
//Return : List of SweepEvent lists
List<List<SweepEvent>> fncResultPolySort(ref List<SweepEvent>
 incomingList)
 {
 //
 while (incomingList is not complete)
 {
 If(check for cycles)
 Set parameters for cycles;

for each event in the incomingList do
{

if (successive events are in order)
 Add event to result;
else if(successive events having one
endpoint mating)
 Swap endpoints of event;
 Add event to result;

 }
 If(A chain is closed)
 break while loop and start another chain;
 }

 Add each cycle to the result;
 return result;
 }

4.4.2.2.5 Performance analysis

In this section the performance of the presented algorithm is analyzed as described

in [21]. The following notation will be adapted: let n be the total number of edges of

the polygons involved in the Boolean operation and k be the number of intersections

that take place in between the polygon edges. The algorithm starts out with inserting

all the endpoints of the edges on priority queue Q, which takes O(n log(n)). Then the

 48

plane sweep starts and all the events are processed in the cycle from left to right.

Let us analyze the cycle body:

• The lines, where S is manipulated with additions, removals, and where an

event is searched in S are operations on S. S holds at most n edges and can

be considered as a dictionary, so these lines take each O(log(n)).

• If the event is not a vertical one (or if it not an overlapping one)

fncSetInsideFlag routine runs in time O(log(n)) since this is the time

needed to determine the immediate predecessor of the event in S—the

routine used to set the inside and inOut flags runs in time O(1).

• The function fncFindIntersectionOf2LineSegments takes O(log(n + k))

time, because after an intersection test, which uses constant time, four

insertions on Q can be done, and Q has an O(n + k) size.

• Line, where an event is retrieved from Q, runs in constant time, and

removing an event from Q takes O(log(n + k)).

• Finally, the inclusion of an edge in the result polygons takes O(log(n)).

Before implementing developed algorithm (i.e. application of Boolean operation on

polygons) a test program is first developed. Algorithm and its performance is first

tested in that small program and then the method is placed inside simulation

program. As an example in Figures 4.11 - 4.14 show a sample case, where 2

considerably complex polygons with 94 and 54 vertices are examined with all three

Boolean operations, (subtract, intersect, and union). Execution times of these three

operations are given in Table 4.10.

Table 4. 10 Execution times of Boolean operations on the polygons shown in

Figures 4.11-4.14. Polygon 1 is composed of 94 vertices, polygon 2 is composed of

54 vertices.

Boolean operation Execution time (ms)

Subtraction 296.8

Intersection 281.2

Union 312.5

 49

Figure 4. 11 User interface of simple polygon clipping program for test purposes.

In the figure, the screen view of the program, with two arbitrary polygons, is shown.

The black one is the subject polygon, with 94 vertices. The red polygon is the

clipping polygon, with 54 vertices.

Figure 4. 12 Result of Boolean subtraction

 50

Figure 4. 13 Result of Boolean Intersection

Figure 4. 14 Result of Boolean Union

 51

4.4.2.2.6 Special cases

In this section, special cases (and how they are treated) will be discussed. As will be

shown they are treated in a simple, effective way.

4.4.2.2.6.1 Vertical edges

Vertical edges are special since their two endpoints are placed at the same X

coordinate. This causes an ambiguity in the sorting algorithms. However, it is

possible to process them in the algorithm as “normal edges” as long as the

following rules applied:

(1) The lower endpoint of a vertical edge, has to be considered as its left

endpoint and the upper endpoint as its right endpoint.

(2) To order the sweep-line status (S), the lower endpoint of the edge must be

considered as the one that intersects the sweep line. S is ordered by the Y

coordinate at which edges intersect the sweep-line. Thus, a vertical edge

takes its place in S according to its lower endpoint. If a non-vertical edge

shares the same Y coordinate with a vertical edge, the non-vertical one is

placed before the vertical one in S.

4.4.2.2.6.2 Overlapping edges

When two edges overlap, they are subdivided so that their overlapping portions

become an edge of each polygon. This situation is illustrated in Figure 4.9 as the

last type of intersection. It should be possible for the algorithm, to select at most

one of these two “equal edges” while constructing the result of the Boolean

operation. Unfortunately, the methods explained in section 4.4.2.2.3 to select the

result edges does not work for overlapping edges. That is why, those two “equal

edges” representing an overlapping portion, need a special processing, next.

 52

When overlapping between two edges is detected, one of the edges representing the

overlapping fragment is labeled as NON_CONTRIBUTING. This is done by changing

the edge type parameter of the event. The meaning of this change is that the edge

will not be considered for inclusion in the result of the Boolean operation. Hence

other edge is labeled as SAME_TRANSITION or DIFFERENT_TRANSITION depending

on the overlapping edges having the same inOut flags. Depending on the Boolean

operation, the edge will be included in the result if its label is the one checked in the

statement. Those edges that are labeled as SAME_TRANSITION are only included in

the result of union and intersection operations. On the other hand, the edges labeled

as DIFFERENT_TRANSITION are only included in the result of set theoretic

subtraction operation. Fig. 4.15 shows, how overlapping fragments are included in

the Boolean operations, depending on the inOut flags of the overlapping edges and

on the type of Boolean operation.

Figure 4. 15 Inclusion of overlapping edges in result of Boolean operations [21]

4.4.3 Polygon sweeping methodology

A new method which is derived from polygon union is developed to sweep a

polygon on the plane it lies. In this section this new method is discussed in detail.

 53

4.4.3.1 Introduction

In the previous sections, Boolean operations and their application on polygons are

discussed. To make good use of polygon clipping, it is necessary to have a polygon

to be clipped. The turning operation, as discussed earlier, is simplified by

subtracting CTP from WPP throughout the operation. However, to be able to do this

efficiently, the CTP must clip the WPP recursively. The number of steps could be a

matter of precision. Better and more elegant way would be to apply this clipping by

first generating swept polygon, and then subtracting the resulting polygon from the

WPP.

In the developed software, the NC code is interpreted and cutter location data is

obtained. This data consists of the tool location in space at specific times. The main

parameter while generation this data is the sampling time, which is a property of the

machine’s controller (i.e. CNC unit).

Once the NC code is interpreted and the cutting locations are obtained accordingly,

it becomes possible to use that data to sweep cutting tool with the vectors obtained

by subtracting two successive position data from each other. This approach along

with the algorithm applied to sweep a polygon on the plane where the polygon lies,

are completely new ones.

4.4.3.2 Basics of Polygon Sweep

Polygon sweeping technique in this study, is actually an extension of Boolean union

operation on the same polygon itself. The methodology could be summarized as

follows:

• A polygon could be considered as a collection of line segments.

• A line segment, when swept on a plane it lies, generates a quadrilateral,

unless the sweeping direction is parallel to the segment’s direction. This is

shown in Figure 4.16.

 54

• If one applies the sweeping, to all the line segments of the polygon, and

performs the Boolean union operation, the result will be the swept of

polygon.

• The special case occurring only when the swept distance is small such that

the final position of the polygon intersects with the first position of the

polygon. How this special case is treated, will be discussed in the next

sections.

The swept quadrilaterals are then added to each other to obtain the final polygon.

The algorithm elaborated in next section.

4.4.3.2 Polygon sweeping algorithm

As in the case of Polygon Clipping case, the object oriented programming is

facilitated in polygon sweeping. A specific class is generated to operate on polygon

sweeping objects.

sweep direction

Line segment,

subjected to

sweep ,

at initial

position Line segment,

subjected to

sweep,

at final

position

Swept region

Figure 4. 16 Result of sweeping a line segment

 55

Polygon sweeping class has a Main function in which the operation takes place. In

the Table 4.11, the pseudo code of that function is presented. In the fncMain

procedure, first two vertex arrays are defined. One of them is to hold the polygon

vertex data when polygon is at its initial position. The second one is used to store

the vertex data of the polygon when it is in the final position. To start polygon

sweep, one of the edges of the polygon is selected. The two endpoints of the line

segment is transformed by the sweep vector. Thus, a quadrilateral is defined with

the four vertices at hand. At that point, a special case occurs when the slope of the

line segment is exactly the same as the sweep vector. When a line is intended to be

swept with a vector parallel to it, this sweeping operation will not generate any

quadrilateral at the end. Thus, before running the code for a line to be swept, it is

necessary to check whether its slope is equal to the slope of the sweep vector. In

that case, there is no need to sweep that segment it would not contribute to the

result.

At this point, it is compulsory to check whether the sweep vector brings the polygon

out of its bounds. In the case where the sweep polygon does not move the initial

polygon completely out of its bounds the second special case, which is illustrated in

Figure 4.17, occurs. When a polygon, (even after sweeping is applied) still stays

within its bounds, only sweeping its boundary line segments would yield a wrong

result. To overcome this, the program checks whether this case occurs. If such a

situation is discovered, the quadrilateral, which was obtained by sweeping the first

line segment is subjected to the union operation with the polygon when it is in its

final position. Actually, this situation usually takes place in machining simulation

because the circular interpolation and small sampling time causes very small

sweeping vectors.

 56

Table 4. 11 Polygon Sweeping function.

//Input : Two double values dx, and dy, list of points
// incomingPoly
//Return : Point array
PointD[] fncMain(double dx, double dy, List<PointD> incomingPoly)
{
 Set a point array at initial posisition;
 Set a point array at final position;

 double slope = dy / dx;

 Sweep a segment of input polygon;

 if (dx and dy values are smaller than width and height of
 input polygon’s bounding box)
 {

Add swept line segment to the polygon at final
position;

}

 for each remaining line segments in the input polygon do
 Sweep line segment;
 Add swept segment to previous one;
 return result;
}

Polygon at final

position

Polygon at initial

position

Sweep vector

Swept area

Figure 4. 17 When swept polygon resides in the starting polygon

 57

Before implementing polygon sweeping algorithm into the simulation software, a

small program is developed. In that program, which is composed of only a plain

windows form, swept region by a polygon is shown. The data is represented as a

polygon, which is extracted from tool geometry available in standard tool library.

Several trials which includes special cases, are conducted. The algorithm gave the

expected result. In Figure 4.18, some sample screen outputs for arbitrary sweeping

operations, applied on different cutting tool boundary polygons are shown.

Figure 4. 18 Sweeping operations as applied on different tool polygons.

4.4.4 Algorithm of Turning simulation with Polygon operations

By applying Boolean operations on polygon, modifications on polygons can be

achieved. For instance, by applying polygon sweep algorithm, it is possible to

simulate cutting tools motion in 2D. At that point, whole algorithm will be

emphasized to give a clear idea.

Turning simulation starts with first processing on NC code. Two possible ways to

give this data to the program is either by manual input by writing code on the editor

at the right hand side or by loading NC code data by browsing for an appropriate

file on the hard drives. The first method requires user to write the code line by line.

The format of NC code is standard (RS274B) ISO format. Four parameters that user

can adjust are:

• Sampling time

• Maximum speed

 58

• Diametral or radial coordinates

• Tool home position

These parameters naturally affect the result of NC code interpretation. Another

important parameter (as set by the user), is the dimensions of the workpiece. After

setting these parameters, the user inputs the NC code either by typing or by loading

file. Then the algorithm starts to interpret the NC code. When finished, the

generation of simulation data commences. The interpreted NC code is read line by

line and the algorithm checks for the tool changes and tool motions. When a tool

change is encountered, the related tool number in the library is called and the new

tool geometry data is loaded. After that point the new data is processed, until a new

cutting tool is asked by the code to be called.

When the processed code line is associated with a tool motion then the sweep vector

for the current vertices of cutting tool is sent to polygon sweeping algorithm. This

data is processed and another vertices data is returned by the polygon sweeping

algorithm. At that point, enough data is available to apply Boolean subtraction

operations on the WPP by subtracting swept CTP data. Therefore, these polygon

data are sent to clipping processor object. At the end clipped WPP is obtained. In

this stage, some specific algorithms are executed to generate 3D mesh data.

Generation of the mesh data will be the subject of the next section.

After the production of all the data, the program is ready to generate visual results.

With the instruction of the user, the program starts visualizing the simulation. In

Table 4.12 pseudo code of the turning simulation algorithm is presented.

 59

Table 4. 12 Pseudo code of Turning Simulation algorithm.

//Input : Two double values as workpiece length and diameter,
// A point to set cutting tool home position, Two double
// values, one for sampling time and other for maximum
// speed, and an array of NC code strings
void Turning(double workpieceLength, double workpieceDiameter,
 PointD cutterHome, double samplingTime,

 double maxSpeed, string[] ncCode)
{
 Set workpiece;
 for each NC code in ncCode[] do
 {
 Read ncCode;

Set dx, dz;
 Set cutting tool and sweep it by dx, and dz;
 Clip workpiece by swept cutting tool;
 Rotate workpiece array about z axis and generate mesh
 data;
 }
}

4.5 Visualization Methodology

For the visualization of the turning, two viewports in the user interface, are used.

The upper one is to show cross-sectional view of the operation. The below one is

expected to demonstrate the 3D model of the workpiece.

4.5.1 Visualization in the cross-section viewport

Since clipping algorithms are completely different than each other, pixel-based and

polygon clipping techniques have their own visualization procedures for 2D output.

On the contrary, for 3D they share the same algorithm. In the next section, these

algorithms will be discussed.

 60

4.5.1.1 Visualization in the Cross-Section Viewport in pixel-based simulation

In DirectX, every pixel on the screen is defined as a vertex. Vertices could be draw

independently or they could be grouped in a buffer and then they can be fed into

graphics hardware (GPU) at once.

In the developed program, the cross-sectional view is generated by directly reading

workpiece and cutting tool matrices. If a node in the matrix is true, the related

program procedure adds a vertex into the vertex buffer. After completion of vertex

buffer creation, the buffer is send to Direct3D device. To generate a view in

DirectX, the program firstly needs to have necessary reference namespaces loaded

in the project. At the beginning of the project, DirectX, DirectX.Direct3D and

DirectX.DirectInput namespaces are added to the project to be able to utilize

DirectX facilities. Then a DirectX device object has to be defined. After defining

this object, it is possible to use it for any rendering operation on it.

In the user interface, the existing viewports for visualization, are controlled by the

created device. The viewports are refreshed continuously to reflect changes in the

current state of the view. The function called Render is used for this purpose. For

the upper viewport, a vertex buffer type of stream source is defined. This definition

is directly taken by the device and the data is sent to the frame buffer of the

graphics hardware. In this way, DirectX is used as a communication interface

between the program and graphics hardware.

4.5.1.2 Visualization in the Cross-Section Viewport in polygon clipping based

simulation

Visualization in the cross section viewport in the second technique involves the

display at boundary polygons for both the workpiece and CTPs during the

simulation. This is easily achieved by storing polygon vertices for in an array and

when it is requested by the user, the polygons are drawn on the viewport surface by

the GDI+ functions.

 61

To be able to get the most of the viewport a scaling factor is applied to the polygon

drawn. This factor is calculated by

• Maximum and minimum X coordinate values, traveled by the cutter as

defined by the NC code.

• Maximum and minimum Z coordinate values, traveled by the cutter in the

NC code.

• Dimensions of the cutting tool.

• Dimensions of the workpiece.

• Dimensions of the viewport, in which 2D view is generated.

In Table 4.13, the formula of the scale factor is presented.

Table 4. 13 Code snippet of scale factor.

double widthParam = maxXCoord + cuttingTool.BoundingBoxWidth;

If (maxYCoord > (workpiece.Diameter / 2)) then

double heigthParam = maxYCoord + workpiece.Diameter / 2

else if

 double heigthParam = workpiece.Diameter;

end if;

if (heigthParam / windowSize.Height) < (widthParam /

 windowSize.Width) then

 double scale = windowSize.Width / widthParam;

else if

 double scale = windowSize.Height / heigthParam;

end if;

4.5.2 Visualization in the 3D Model Viewport

For the creation of the 3D model, surfaces must be created. For this purpose, a

primitive (in DirectX) called triangle is employed. Any 3D surface can be defined

in terms of triangles. By combining triangles, even very complex surfaces could be

generated.

 62

In the next section, generation of 3D mesh data for pixel based simulation will be

discussed. Generation of the 3D mesh data depends on the existence of boundary

vertices on the workpiece. In polygon clipping technique, this data is readily

available. However in pixel based technique, the exiting data must be processed to

obtain boundary vertices. This will be discussed in the next section.

4.5.2.1 Boundary vertices data generation in pixel-based simulation

For the creation of 3D model of the workpiece, it is first necessary to extract the

boundary of the cross-section for the workpiece in the above viewport. For this

purpose, a simple search algorithm, which visits the workpiece data matrix, is

developed.

When a boundary node is obtained, it is added to a new data list. Then, this new

data list is analyzed whether successive nodes have similar coordinates as if they

are on a line. If so, they are skipped, until a node whose coordinates are out of the

trend. By doing so, boundary nodes are converted into vertices of boundary line

segments.

4.5.2.2 Basics of 3D objects in DirectX

As mentioned before, to generate a 3D object, one of several method in DirectX can

be used to generate a mesh. Meshes are collection of triangles .To create a mesh,

one needs to define vertices of the triangles and indices of those triangle. That is,

the DirectX processes three vertices data along with the given indices to create a

triangle.

To form a triangle, just having three vertices is not enough. In addition, vertex

normals of the vertices must be defined to apply. In DirectX, a 3D view can be

obtained with the application of light. For the calculation of amount of shading in a

surface, surface normal is a crucial parameter. To correctly define the normal of a

 63

polygon, three vertices must be given in clockwise order. The normal also defines

the front face of a polygon. An illustrative example of a DirectX polygon, which

also show vertices and normal of a surface, is shown in Figure 4.19.

Figure 4. 19 Vertex definition of a polygon and its front face [18].

Another important data, that has to be provided to generate triangular polygons, is

their indices. Index data is used to process vertices data in the correct order. As

mentioned before, if vertices are not provided in the correct order, some visual

artifacts may appear.

To avoid such problems and to utilize the capability of back face culling of DirectX;

all the vertices must be given in the correct order. That is done by the help of an

index array which keeps indices of the vertices in the order, in which vertices are

grouped to form triangles.

In the developed, program meshes are used to generate 3D model of the object. The

boundary data is converted to vertex data and then vertices are rotated about

workpiece axis, Z axis, With the indices data, they are put into a mesh form to

construct 3D view of the workpiece. In the next section, details about generation of

mesh vertices and indices will be discussed.

 64

4.5.2.3 Mesh data generation

In the turning simulation, 3D view of the workpiece is simply a cylindrical object.

The boundary data with the vertices, one obtains by the application of the

algorithms make it possible to easily generate 3D view of the workpiece. This is

done by running the algorithm given in the Table 4.14.

To generate mesh data, it is first necessary to have vertex data. To obtain vertices of

the workpiece, the following procedure is employed:

1. The boundary data of the workpiece is divided into segments first.

2. Every segment is composed of two vertex. These two vertices are rotated

around Z axis to obtain corners of the triangles, which will build the mesh

data (before rotating). Two vertices could be processed as follows:

a. If one of the vertices lies on the Z axis, this vertex is kept fixed

(during the rotation process). The other one is rotated.

b. If both of the vertices lie on the Z axis, then there is no need to

process this segment, as it will not generate any surfaces.

3. A special ordering algorithm is run to generate indices at the data.

Segments are called as stacks in the program’s notation. Three different stack types

are defined, Empty, Disc, and Normal. As explained before, a stack a vertex on Z

axis is a disc; no vertex on Z axis is normal and if both vertices are on z axis, it is

called empty stack. The algorithm considers a stack as a disc, whether Z coordinates

of both vertices are the same. Thus, a conical surface and an exact disc is treated

just like the same. In the algorithm, starting and ending vertices of a normal stack

could have same Z coordinates (but neither have x coordinate equal to zero). Even

in this case, the algorithm considers the stack as normal, and produces correct

results.

 65

Table 4. 14 Mesh generation algorithm.

// Input : An array of points for boundary vertices, maximum
// dimension of the visualization viewport as integer
// Output : Vertex buffer as PositionNormal vertex array
// Return : Index buffer array as unsigned short array
List<ushort[]> fncMeshDataGenerator (PointF[] boundaryVertices,

int maxDim,
out List<CustomVertex.
PositionNormal[]>
returningBuffer)

{
Generate stack list from boundaryVertices array;

for each stack in stack list do

 if(stack type is Disc)
 fncDiscMesh(stack);//Run disc stack function
 else if(stack type is Normal)
 fncNormalStack(stack);//Run normal stack function

return result;
}

// Input : A stack
// Output : A vertex buffer and an index buffer
fncDiscMesh (StackFloat tempStack, ref List<CustomVertex.
 PositionNormal> tempVertices, ref List<ushort>
 tempIndices)
{
 Set the the endpoint lies on the z axis as center point;
 Rotate other point about z axis;
 Save them in vertex buffer;
 Set index buffer array;
}

// Input : A stack
// Output : A vertex buffer and an index buffer
fncRegularSectionMesh (StackFloat tempStack,
 ref List<CustomVertex.PositionNormal>
 tempVertices, ref List<ushort>
 tempIndices)
{
 Rotate both endpoints about z axis;
 Save them in vertex buffer;
 Set index buffer array;
}

 66

4.6 Features of the Program

In this part as the name implies features of the developed software is presented. In

the first section development environment is mentioned briefly. Later user

interfaces which are specific to two separate methods are discussed in detail.

4.6.1 System requirements

The simulation program is written in C# language. .Net framework 3.5, and DirectX

9.0c are necessary to run the program. Operating system is Microsoft XP with

minimum Random Access Memory (RAM) of 2048 MBs.

4.6.2 User interface

User interface (UI) is where all user interaction takes place. Thus, it is aimed to

make UI as functional and easier as possible. In the first part UI of pixel-based

program and in the second part UI of polygon-based program are explained.

4.6.2.1 User interface in pixel-based simulation

In Turning simulation user interface window, there are two different viewports as

shown in Figure 4.20. In the upper viewport, cross-sectional view of both the

workpiece and insert (tool) are illustrated. In the bottom viewport, current state of

the part in 3D workspace is shown. It is possible to rotate, zoom and pan the view.

On the right hand side of viewports, workpiece dimensions can be defined by using

two numerical up/down controls. One for length of the workpiece, the other is for

radius of the workpiece. Where all dimensions are in mm. and it is possible to

define the dimensions with one decimal place.

 67

On the right hand side of the window, there are two buttons: The upper one is titled

“Load Files”. For the pixel based simulation, it is used to load parameter files

including cutter geometry. Cutter has to be in the format of a monochrome Bitmap

(bmp) file, in which only black and white pixels exist. The second file is to define

the cutter trajectory. When the files are correctly selected and loaded, the below

button, named “Start Process”, becomes active. Before the loading of the files, it is

inactive and the program does not run, before successfully retrieving necessary

data. The program immediately is executed when the user presses the “Start

Process” button. The data generation and 3D visualization occurs simultaneously in

the program.

Figure 4. 20 Turning simulation user interface for pixel based simulation.

 68

4.6.2.2 User interface in polygon clipping based simulation

A sample screen shot of the user interface is shown in Figure 4.21. In polygon

clipping based simulation case, in the user interface, once again there are two

viewports for the visualization. The upper one (#1) is used to perform the

simulation on the cross section of the cut. The lower one (#2), visualizes the 3D

model of the workpiece.

On the right hand side of the user interface, there is an NC code editor (#3). User

can type/edit the NC code line by line or load it from a file. In the NC code editor, it

is also possible to insert new line, delete a selected line, and sort the line numbers.

To do this, there is a context menu, that appears when the user right clicks on the

editor.

Machine settings are defined in the pane #4. There are two text boxes to set

sampling time (in sec), and maximum speed (mm/min). In pane 5 tool home

position is set. Once again two text boxes accept numerical values for initial X and

Z coordinates of the tool tip. In pane 6, there are two radio buttons. They are used to

switch between diametral and radial coordinates.

“Process Data in Editor” (#7) button is used to execute simulation with the current

code in the editor. When user presses this button, the program starts to interpret NC

code. As the name on “Clear editor” (8) button implies, this button clears the text in

editor. The progress bar (#9) shows the level of completion during the runtime

when the program works on the data for NC code interpretation and data generation

for visualization.

There are two radio buttons in pane #10. They are used to switch between

wireframe and solid views. Workpiece dimensions are set in two text boxes (#11)

where length and diameter are the two parameters here.

 69

“Load File” button (#12) is used to load an NC file from a folder. An open-file

dialog appears and user can browse thru the available directories to select a file.

After processing of the data in the file or in the editor, “Start Process” button (13)

becomes activated. Then, the user can utilize this button to start the simulation.

“Stop Process” button (#14) is used to stop simulation. Similarly “Reset view”

button (#15) is used to reset camera view. Camera view can be adjusted with some

keyboard input. Below is the list of keyboard keys, can be employed to adjust some

viewing operations:

• ‘A’ or ‘a’ : Moves camera right

• ‘Q’ or ‘q’ : Moves camera left

• ‘S’ or ‘s’ : Moves camera down

• ‘W’ or ‘w’ : Moves camera up

• ‘D’ or ‘d’ : Zooms in

• ‘E’ or ‘e’ : Zooms out

• ‘Z’ or ‘z’ : Rotates camera about -x direction

• ‘X’ or ‘x’ : Rotates camera about +x direction

• ‘C’ or ‘c’ : Rotates camera about –y direction

• ‘V’ or ‘v’ : Rotates camera about +y direction

• ‘B’ or ‘b’ : Rotates camera about +z direction

• ‘N’ or ‘n’ : Rotates camera about –z direction

Horizontal scroll bar (#16) can be used to adjust simulation speed. Main Menu

button (17) is used to return to the main menu. Finally, trackbar at the very bottom

(18), is employed to navigate through simulation. User can place the indicator to

navigate in the simulation.

 70

Figure 4.21 Turning simulation user interface for polygon clipping based

simulation.

4.7 Closure

In this chapter, two different simulation methods are devised, to simulate turning

operation in machining. The first technique was a pixel-based one. The workpiece,

along with the cutting tool were modeled as matrices with Boolean values.

Dimensions of the workpiece matrix is adjusted by the given length and diameter

data. On the other hand, the cutting tool is geometry is defined by a bitmap image

file. Color values of the pixels in the image file is checked to generate cutting tool

matrix. After generation of the workpiece and cutting tool matrices, the cutting tool

locations throughout the cutting operation, is extracted by the algorithm. The

algorithm took that location information and applied the transformation to the

cutting tool matrix. At every location of the cutting tool matrix, Logical XOR

operation is applied to the workpiece- and cutting tool matrices. After this logical

operation, the workpiece matrix is searched to get its boundary points. Once

boundary points are obtained, they are processed to extract significant boundary

 71

vertices. At the end, boundary vertices are rotated around the Z axis to generate

mesh data.

In the second technique, Boolean operations on polygons are utilized. The

workpiece- and cutting tool geometry are defined as polygons at the beginning. In

this method, a polygon is constructed as an ordered list of vertices. In this second

technique, cutting tool locations are retrieved by interpreting NC code. NC code is

either loaded from a file or typed by the user using the editor of the user interface.

The interpreted NC code is then used to transform vertices of the CTP in the space.

To generate clipping polygon, the boundary vertices of the cutting tool is swept on

ZX plane as defined in the NC code. For that purpose, a new sweeping algorithm is

developed. The result of the sweep is used to clip WPP. Clipped WPP is once again

rotated around Z axis and the 3D mesh data is formed.

There is a big difference in the quality of the results for two techniques. In the first

one, the simulation resolution is limited by the size of the generated matrices. The

size of matrices, which consist of the Boolean values, could be increased in that

case, there is a physical limit, imposed by the memory of the computer. Also,

simulation result is highly dependent on the success of search in the boundary

vertices. In some cases, serration effect could be encountered. That is, the search

algorithm finds it necessary not to skip some of intermediate points. This situation

increases the amount of stacks in the result meshing, which leads to a more complex

3D object. A more complex 3D object may cause difficulty in rendering.

The second technique, is on the other hand, works directly with boundary vertices.

Therefore, in that case no search algorithm is necessary. Smoothness in the circular

interpolation is a matter of sampling time, which is an adjustable parameter. The

developed program lets user to define NC code (so called G code) following RS

274D formalism. This lets user to develop an NC program in the runtime. The

simulation time is highly dependent to the sampling time. The computation speed is

an inverse proportional to the sampling time.

The algorithm developed using the polygon clipping technique is considered to be

more suitable for the turning simulation. The main reason that is the vertices data

 72

are processed throughout the calculations. This data simulates the real situation

successively and is very easy to be used in the generation of 3D model for the

workpiece object in the simulation. Due to those capabilities of the second

technique, it is considered as more effective and advantageous over the first one for

the turning simulation.

 73

CHAPTER 5

MILLING SIMULATION

5.1 Introduction

Milling simulation feature of the program aims to simulate a turning operation with

the given parameters. For that purpose, a specially designed GUI is used to make

parameter and data input and to observe the simulation. In the milling simulation,

the workpiece is considered as a rectangular block, and the cutter is defined as a flat

end mill.

5.2 Workpiece and Cutting Tool Definition

In this section, use of ray casting to create dexel data for both cutting tool and

workpiece is discussed in detail.

5.2.1 Dexel Data Structure

In this milling simulation process; a simple but fast technique, which depends on

dexel modeling, is used. This modeling technique was first proposed by Van Hook

[6]. His model is just adapted to C#, but the idea is somewhat similar.

To obtain real-time shaded NC milling display, an extended Z-buffer data structure

is used. In this data structure, each pixel is regarded as a rectangular solid extending

 74

along the Z axis, and consists of a near Z depth, a far Z depth a color and a pointer.

Since in C# cannot be used in managed safe code, another data type, called List is

used instead of pointers. In keeping with the convention of the names pixel and

voxel, this rectangular solid is called a dexel, or depth element. The dexels are

organized in an X by Y matrix called a dexel structure which corresponds to the

raster display frame buffer. Multiple dexels in a cell are maintained in near to far Z

order. The dexel structure developed by Van Hook [6] is shown in Figure 5.1. The

dexel structure is created by scan conversion of a surface data where scan

conversion is done by Ray Casting.

Figure 5. 1 The dexel data structure developed by Van Hook [18].

5.2.2 Ray Casting

Ray casting algorithm is first proposed by Roth [19]. In his definition, a ray is

simply a straight line in 3D space eminating from the camera model. It is best

defined in parameterized form as a point (X0, Y0, Z0) and a direction vector (Dx, Dy,

Dz). In this form, points on the line are ordered and accessed via a single parameter

t. For every value of t, a corresponding point (X, Y, Z) on the line is defined:

 75

.

.

.

(5.1)

A ray in a parallel view that passes through pixel (X, Y) in the screen is simply

represented as (X, Y, 0)(0, 0, 1). At this point the algorithm developed by Roth [19]

is left and a specific derivation is applied. For our case in 3D space, all the objects

have outer surfaces in the form of triangles. In the developed program, both the

workpiece and the cutter are formed by meshes. Meshes are as explained earlier in

Turning simulation chapter, are composed of vertices and indices data. In

CNCVerifier, the application of ray casting starts with extracting triangles vertex

data. For this purpose, specific commands of DirectX are used. They are

Mesh.LockVertexBuffer, and Mesh.LockIndexBuffer. Their definition are given

below.

• Mesh.LockVertexBuffer(Type typeVertex, LockFlags flags,

 params int[] ranks)

• Mesh.LockIndexBuffer(Type typeIndex, LockFlags flags,

 params int[] ranks)

The first one is to extract vertex data from the meshes. To put vertices in correct

order, index buffer data is read. For this purpose, at any pixel location in the display

frame (in our case simulation viewport) a parallel ray is cast through the viewer to

the object in the scene. The ray casting requires calculation of pixel data on the

display frame. Since the object must be a combination of triangles, it is necessary to

determine the intersections of rays with these triangles. The ray triangle intersection

is computed by DirectX with readily available function, Geometry.IntersectTri.

Its definition is given in Table 5.1.

Table 5. 1 Definition of Intersection function.

• Geometry.IntersectTri(Vector3 zero, Vector3 one, Vector3 two,

 Vector3 rayPos, Vector3 rayDir,

 out IntersectInformation hitLocation)

 76

The output of this function is a Boolean value, which is true or false. If the function

returns true value, it means that the ray intersects the triangle, and the hitLocation

variable has a value. Otherwise, it is understood that the triangle does not have an

intersection with the ray and hitLocation variable has a null value.

In fact, hitValue variable is IntersectInformation type.

IntersectInformation type has barycentric coordinates.

Bartcentric Coordinates [20]: In geometry, the barycentric coordinate system is a

coordinate system in which the location of a point is specified as the center of mass,

or barycenter, of masses placed at the vertices of a simplex (a triangle, tetrahedron,

etc). First, let us consider a triangle T defined by three vertices V1, V2, V3. Any

point P located on this triangle may then be written as a weighted sum of these three

vertices, i.e.

 (5.2)

Where , , and are the area coordinates. These are subjected to the constraint

1 (5.3)

If the Geometry.IntersectTri returns true, then it turns out that it is easy to

determine the point of intersection with the data included in hitLocation. To

calculate intersection point, the U and V data of hitLocation can be utilized:

 (5.4)

Any point on the triangle can be represented by the barycentric coordinate (U, V).

The U parameter controls how much gets blended into the result, and the V

parameter controls how much gets weighted into the result. Lastly, 1-U-V can be

calculated to determine the weight of into the result.

 77

Armed with the information given above, and embedded functions in DirectX

libraries, it becomes easy to determine intersection calculations. Every single

triangle is intersected with a bunch of rays surrounding a triangle. Both screen X,

and Y coordinates, and Z coordinates (indicating the intersection point’s depth

along the ray) is determined from the intersection information.

All these intersection information is collected into a matrix having the dimensions,

exactly the same as the simulation viewport. Since the number of intersections

could vary, the data stored in that matrix is a list which gives the flexibility to add

or remove points later in the simulation. The procedure is the same for both objects

in the simulation, workpiece and cutter. When applied, the above methodology

yields matrices which contains coordinate values of intersection points in Z axis

with a color value combined.

5.3 Cutting Methodology

Cutting methodology in the developed program is unique for a system, which

utilizes dexel data structure. This procedure was first explained in Van Hook’s

study [18]. The cutting procedure consists of three nested loops that step through

each Y and X tool dexel, and subtract it from each block dexel in the list. In order to

subtract an object with internal voids, a fourth loop can be added to step through the

linked list of dexels in the tool. This capability would provide CSG subtraction

operation. However it is unnecessary in CNC milling display where the tool is a

convex object. The offsets in X and Y from the tool dexel to the block dexel along

with the Z offset of the tool are three degrees of freedom (DOF) in the cutting

procedure. For more than three degrees of freedom, the tool dexel structure is

recreated from a transformed tool surface description. Since the tool is typically

small in proportion if compared to the entire scene, and the recreation is equivalent

to scan conversion, 5-axis milling can be effectively displayed. In the cutting

function, the cases shown in Figure 5.2 are checked. The cutting procedure pseudo-

code is given in Table 5.2.

 78

Figure 5. 2 Cut procedure cases, Van Hook [18].

Table 5. 2 Cutting procedure.

Procedure cut(cutter_x_min, cutter_y_min, cutter_x_max,

cutter_y_max)

{

 Structure cutter_dexel{cutter_near_z, cutter_far_z,

 cutter_color}

structure workpiece_dexel{workpiece_near_z, workpiece_far_z,

 workpiece_color}

for cutter_y = cutter_y_min to cutter_y_max {

 for cutter_x = cutter_x_min to cutter_x_max {

CASE 1: if cutter_dexel =empty;

 next cutter_x;

CASE 8: if workpiece_dexel =empty;

next cutter_x;

CASE 2: if cutter_far_z < workpiece_far_z {

 If cutter_far_z < workpiece_near_z

 next cutter_x;

CASE 3: else if cutter_near_z < workpiece_near_z

 workpiece_near_z = cutter_far_z;

CASE 5: else

 add workpiece_dexel;

 }

 79

Table 5.2 (continued)

 else {

CASE 7: if cutter_near_z > workpiece_far_z

 next workpiece_dexel;

CASE 6: else if cutter_near_z > workpiece_near_z

 workpiece_far_z = cutter_near_z;

CASE 4: else delete workpiece_dexel;

 next workpiece_dexel;

 }

 }

}

 }

}

5.4 Visualization Methodology

For the visualization before the ray casting (as mentioned in Chapter 2) a Direct 3D

device is created. Direct3D camera is also defined and light is applied in the scene.

The 3D models of the cutter and workpiece is generated by constructing meshes

with the user defined dimension data. At the beginning, as default values,

dimensions of the workpiece are 200.0 mm width, 200.0 mm length, 100.0 mm

height and the dimensions of the cutting tool is 10.0 mm radius and 100.0 mm

length. As these values are changed, their generated views also change before ray

casting.

After ray casting is done, the dimensions of the workpiece are kept as they were

before the ray casting performed. The dimensions of the cutting tool can be adjusted

even after the ray casting executed. As mentioned in Chapter 2, the view after ray

casting is just generated by a vertex buffer. As every element in the scene is just an

ordinary vertex with only a color value.

Only exception is cutting tool. Even after ray casting cutting tool is still in mesh

form and still a 3D object. The one shown in the view is just a dummy cutting tool.

 80

For the calculations, a ray casted cutting tool is used. However for visualization, a

cutting tool mesh is still shown to simulate the operation better. This also gives the

opportunity to hide cutting tool whenever required for some reason.

5.5 User Interface

The user interface of milling is shown in Fig. 5.3. In milling simulation user

interface, the main viewport is where all the simulation and cutting operation takes

place. In this viewport, before ray casting starts, user can make any viewing

operations, like zooming, rotating or panning etc. It is important to make necessary

adjustments to obtain a good viewing point before the machining starts. Because, in

ray casting technique, after the viewing direction and point is chosen, all the

calculations are done for this viewing direction.

On the right side of the simulation viewport, there is a number of group boxes and

buttons for specific operations. The one at the top (#1) is “Move Cutter group box.

It includes three text boxes, labeled as “dX”, “dY”, “dZ”, and a checkbox

“Absolute”. The purpose of this group box is to make a single cutter movement and

see the result. When the check box is checked, labels of text boxes appear as X, Y,

and Z. Conversely, when unchecked they return to their default appear dX, dY, and

dZ. Default state of the check box is unchecked in which the cutting tool makes an

incremental movement set by values dX, dY, and dZ. However when the check box

is checked, cutting tool moves to the coordinates set by the user in the X, Y, and Z

boxes. Since the simulation is just for three-axis milling; thus inputting only

translation of the cutter is sufficient.

 81

Figure 5. 3 User interface of Milling Simulation.

Below the “Move Cutter” group box, “Workpiece Dims” group box (#2) is located.

As the name implies, in this group box, dimensions of the workpiece is defined. The

width of the workpiece refers to the length in the X direction is shown in Figure

5.3. The height is the length in Z direction, and the length is the depth into the

viewing direction which is Y direction. All the dimensions are in mm. Just under

the “Workpiece Dims” group box, “Cutter Dims” group box (#3) is located. In this

one, the diameter and the length of the cutter is defined. In addition, there are three

to set the initial location of the cutting tool in the workspace. When their value are

changed, cutting tool moves to the new coordinate. The values set in these three

boxes are absolute coordinates.

When the “Open CL File” button (#4) is clicked, an open file dialog box appears.

The format of CL file should be in “csv” (comma separated value) file format. If a

CL file is loaded successfully, the “Start” button becomes active. The button is used

1

2

3

4
5
6

7

Z
Y

X

 82

to run the loaded CL file. The cutter performs movements according to CL file data.

Under “Start” button, “Hide Cutter” button (#6) is located, which gives user the

option to hide the cutter, maybe for some more visibility. The last button is labeled

as “Main Menu” (#7). When pressed program returns to main menu to switch

between turning and milling user interfaces.

5.6 Closure

It is worth mentioning about the limitations of the milling simulation with dexel

model. Developed program applies the technique derived by Van Hook [6] and

Roth [19]. Their approach is adapted to utilize the capabilities of a 3D graphics

hardware managed by DirectX and ease of a managed programming language C#.

Although the performance characteristics and programming simplicity of these two

approaches developed by [6] and [19] are considered as convincing, they have still

some limitations which cannot be avoided because of the nature of the methods.

Firstly, the view of the final part at the completion of the cutting operation cannot
be redisplayed from another viewing angle. The machined part exists only as an
image without any object-space surface description. Although the voxel-based view
transforms can be applied, the quality of results are associated with voxel data is
generally lower than that expected of solid model display. Shading for a new view
by calculating new surface normals based on the dexel structure is much less
accurate than the surface descriptions of the tool and its path. However, since the
milling display runs in real-time, a new view can be generated by running the path
from a different viewpoint (or running a path from multiple viewpoints in different
image windows at the same time). Of course, this will bring extra load on the
processor and will affect the running speed of the simulation. The view of the final
part at the completion of the simulation is a image-resolution model that does not
provide any information regarding tolerancing. This simulation will not entirely
replace the object-space intersection calculations as done in general purpose
machining verification software (or test runs on the actual milling machine).
However, it will limit expensive operations to verify the paths visually and
encourage interactive experiment and optimization for better use production
resources.

 83

CHAPTER 6

CASE STUDIES

6.1 Introduction

Sample applications are done for turning and milling cases. For both simulations,

results are compared to the results of CNCSimulator [31] software. For the

simulations a PC with given configuration below is used.

• CPU: Intel Core2 T7400 @2.16GHz

• RAM: 2 GB DDR2

• Graphics Card: ATI X1600 256 MB DD2 Ram

6.2. Turning simulation case study with pixel based technique

In this application, turning simulation of a part with the given dimension below is

performed. One of the cutting tool available in the library is selected for the

simulation.

• Workpiece Length = 150 mm

• Workpiece Diameter = 50 mm

In the user interface, the parameters are defined as described above. To feel the 3D

view, the workpiece is rotated little bit and presented in Figure 6.1. Another feature

of the program in turning mode is that the 3D view of the workpiece can be viewed

 84

as wireframe-solid modes. The radio buttons on the right-hand side of the user

interface, are used for that purpose.

Figure 6. 1 The workpiece is rotated to visualize it in 3D space.

The next step is to press “Start” button. After that, the simulation starts immediately

with maximum processing and visualizing speed. The machining operation is

simultaneously shown in both viewports. The part program consists of around 50

lines of movement and the simulation takes about 2 seconds. The result of the

loaded part program and its output as solid and wireframe models are shown in

Figures 6.2 and 6.3.

 85

Figure 6. 2 The results of the simulation as shown in solid mode.

Figure 6. 3 The result of the simulation in wireframe mode.

 86

6.3. Turning simulation case studies with polygon clipping
technique

6.3.1 Case study 1

To test the capabilities of CNCVerifier, same NC code is run on both CncSimulator

and developed software. Some machine and workpiece parameter settings, used in

the simulation, are given as below:

• Sampling time = 0.5 sec

• Maximum speed = 500 mm/min

• Workpiece length = 100 mm

• Workpiece diameter = 50 mm

Data for the first example, in the NC program file format, is presented in Appendix

A1. Memory Requirements and time for the execution of the calculations in Virtual

Machining with different sampling times for the first example NC program are

given in Table 6.1

Table 6. 1 Execution times and memory requirements in VirtualMachining for the

first example NC program

Sampling Time Execution time Memory requirement

1 sec 3 sec 40 MB

0.5 msec 8 sec 52 MB

0.25 msec 17 sec 90 MB

Simulation results are shown in Figure 6.4 and in Figure 6.5 for both programs

respectively.

 87

(a)

(b)

Figure 6. 4 (a) Result of simulation in 2D cross sectional view. (b) 3D object model

representation of the workpiece in CNCVerifier.

 88

(a) (b)

Figure 6. 5 Screen view output of the CNCSimulator. (a) 2D cross section of the

workpiece after simulation. (b) Isometric view of the workpiece.

Results show that CNCVerifier gives perfectly shaded 3D model of the workpiece

at the end of the simulation. CNCSimulator does not produce a realistic 3D model.

The view in the isometric viewport of CNCSimulator could not be zoomed or

rotated. On the contrary, the object in 3D viewport of the CNCVerifier could be

zoomed, panned, and rotated freely. Furthermore, it is possible to view that model

in wireframe mode.

Simulation times are almost the same for both of the software packages. In both

programs, it is possible to adjust simulation speed and both programs highlight

current NC code during the simulation. Visual quality makes CNCVerifier more

advantageous to get more out of the simulation results.

6.3.1 Case study 2

In the second application another NC program is employed which is loaded and run

on both programs. Machine and workpiece settings are the same as the first

 89

example. In Appendix A2, content of the NC program is presented. Once again

sampling time is set to three different values to see the performance of

CNCVerifier. The execution time of the NC program interpreting and all other

calculations, with the memory requirements are given in Table 6.2.

Table 6. 2 Execution times and memory requirements in CNCVerifier for the

second example NC program.

Sampling Time Execution time Memory requirement

1 sec 3 sec 37 MB

0.5 msec 5 sec 40 MB

0.25 msec 10 sec 57 MB

Simulation results are shown in Figure 6.6 and in Figure 6.7 for both programs

respectively. As shown from the figures, both programs yields the same result.

(a)

(b)

Figure 6. 6 (a) Result of simulation in 2D cross sectional view. (b) 3D object model

representation of the workpiece in CNCVerifier.

 90

(a) (b)

Figure 6. 7 Screen view output of the CNCSimulator. (a) 2D cross section of the

workpiece after simulation. (b) Isometric view of the workpiece.

6.3 Milling Simulation - Sample Application

For milling simulation a block of dimensions listed below is machined with a flat

end mill with 18 mm. in diameter. The NC code for this study is given in Appendix

A3.

• Workpiece Width = 100 mm

• Workpiece Length = 100 mm

• Workpiece Height = 20 mm

Figure 6.8 shows the GUI before the simulation has started. As mentioned before,

since there is no way to change the viewing direction after simulation starts, it is

crucial to arrange the viewing direction in the scene to have a good understanding

about the simulated CNC. The viewing direction is set as shown in Figure 6.8 to get

a similar viewing angle that CNCSimulator provides. The capability of setting

viewing angle in CNCVerifier does not exist in CNCSimulator. Also in

CNCSimulator neither dimensions in Z direction are represented in scale nor the

shading is natural. In other words, surfaces emit same amount of light and have

same color gradient even if they have different normals with respect to the looking

 91

and lighting direction. Simulation result of CNCVerifier is shown in Figure 6.9 (a)

and simulation result of CNCSimulator is shown in Figure 6.9 (b).

Figure 6. 8 The user interface for milling simulation before the simulation.

 92

(a)

(b)

Figure 6. 9 Screen views after the completion of the milling simulation carried out

in (a) CNCVerifier (b) CNCSimulator

 93

CHAPTER 7

CONCLUSIONS & FUTURE WORK

The goal of this study was to develop a machining process simulator for milling and

especially for turning operations. The lack of visual quality and inability of further

development, existing programs limit the flexibility in the current studies. For

instance, CNCSimulator is such a program. To overcome these limitations,

CNCVerifier is developed.

For the simulation of turning operation, two separate techniques, pixel-based and

polygon clipping techniques, are applied. In pixel-base technique, for workpiece

and cutting tool, BitArray matrices were used. As a special data type in C#,

BitArrays are very suitable to use in such Boolean applications. Their use made it

easy to execute subtraction of cutting tool from the workpiece matrix by applying

Logical “AND” operation. During the simulation, the cutting tool matrix is

translated in space with respect to tool movements defined by the loaded part

program.

Cutting tool is loaded to the program as a bmp picture file. It is converted into a

Boolean matrix first and then another conversion took place to generate BitArray

matrix. The workpiece is defined exactly the same way the cutting tool is done. The

updated workpiece matrix is sent to a search algorithm to extract boundary points

first, and then boundary points are inspected for their contribution to boundary line

segments. If any is realized then boundary points are considered as endpoints of

those boundary lines. This last operation is quite important, and the success of it

 94

affects the performance of the simulation a lot. It is mainly because, the 3D

generation of the workpiece is done as follow:

1. It is considered that there is a boundary line segment in between any two

boundary points.

2. To obtain the 3D view of the workpiece, this boundary line is revolved

about workpiece’s Z-axis.

3. For the generation of this 3D model, mesh modeling is done using

DirectX routines.

4. More the number of boundary segments, more the number of triangles in

the mesh.

5. The rotation angle defines the number of triangles in the mesh. When the

rotation angle gets smaller, the number of triangles in the mesh increases

proportionally. The rotation angle is the slices in a full circle. The

number of slices is defined as 36 at the beginning of the program as a

default value, which corresponds a 10° rotation angle.

6. After making necessary calculations, mesh vertices and mesh indices are

found and as a result, workpiece mesh is defined.

7. Finally, workpiece is shown in the 3D viewport of the user interface.

Because of the limitations in the boundary points search algorithm, for some cases it

has been discovered that more than expected boundary segments are generated in

the calculations which affects both the performance of the simulation and the

quality of the final 3D view of the workpiece.

The current methodology applied for the definition of cutting tool and its geometry

is a pictorial one. This affects the results of the simulation. The current format of

the part program only allows utilizing a single cutting tool for the simulation.

All above mentioned limitations or drawbacks could be eliminated with the

application of the below listed solutions which are thought to be studied as future

work.

 95

1. The search algorithm for boundary line segments could be improved. It is

considered that a better search algorithm would improve the performance of

the simulation which will yield decreased simulation times. In addition, a

better search algorithm will eliminate unnecessary line segments, which will

affect visual quality of the resultant workpiece in the better way.

2. A better cutting tool definition methodology could be developed. As

explained in turning simulation chapter, polygon clipping methodology is

considered to give better results. As a future work, this methodology is

planned to be applied to obtain satisfactory results.

3. The part program could be in the format of standard ISO G code format.

This would make the generated program to become a general purpose

simulation media for the outputs of common CAM software.

4. Simulation resolution could be increased by increasing the matrix sizes.

There is an upper bound, due to physical memory limitations, but any

increase in matrix sizes would result in higher accuracy in the simulation.

This will also increase the quality of the visual output, it will further

decrease simulation speed.

The second technique applied for turning simulation was polygon clipping

technique. In this case, workpiece and cutting tool are considered as polygons and

they are modeled in that way. Polygon data is defined as an ordered list of vertices.

For turning simulation with polygon clipping, an NC code interpreter is

incorporated into the software. For that purpose, an NC code editor is added to the

user interface and user was able to load NC files or type them in the editor. The

code is processed by the algorithm and cutting tool location data is generated.

Polygon clipping algorithm is applied in the steps listed below:

1. Workpiece and cutting tool boundary polygons are defined. For this

purpose, workpiece dimensions are assigned as X and Z coordinate values of

a rectangular polygon, and cutting tool data is retrieved from a tool library.

2. Before the application of clipping, the amount of cutting tool travel, in a

single step, is applied as a transformation to the CTP by sweeping it. For the

 96

sweeping, a new approach is developed. The result of that sweeping

operation was also a polygon.

3. After that polygon clipping algorithm is executed and, WPP is clipped with

CTP.

4. At the end the data available was a modified list of vertices and there were

no need for any search algorithms. The data was sent to mesh data

generation procedures.

5. Finally, not only 2D polygons of workpiece and cutting tool are drawn, but

also 3D model of the workpiece is generated successfully.

Most of the difficulties and drawbacks of the pixel-based simulation technique are

eliminated by polygon clipping technique. For turning simulation, the results

obtained in CNCVerifier are much better than CNCSimulator. The program

execution time, NC code definition and other user friendly features of

CNCSimulator are replicated in CNCVerifier. The feature, which makes

CNCVerifier more advanced than CNCSimulator, is its capability of generating 3D

model of the workpiece. The model is shaded perfectly and it was possible to apply

any viewing operations. It is also possible to render the workpiece in wireframe

form.

For future work, the below listed subjects could be studied for the improvement of

CNCVerifier.

1. Algorithms could be revised to increase simulation speeds.

2. In the current state, tools are just called from a library. An editor could be

added for the generation of new tools.

3. Actually, mesh data generated in the program could be easily converted into

stereolithography (STL) format. If any need arises in the future, it could be

implemented to the algorithm to obtain a universally recognized copy of

machined workpiece geometry.

For the milling simulation, dexel data structure is constructed. For the construction

of dexel data structure, ray casting is applied on the 3D boundary surfaces of both

 97

cutting tool and workpiece. Ray casting operation is done with the steps listed

below.

1. All the screen pixel coordinates with respect to screen coordinate axes

defined the X and Y coordinates of the rays. A suitable Z coordinate, away

enough from surfaces of both workpiece and cutting tool objects, is

determined to use as the starting point of the ray.

2. From these starting points, rays are casted parallel to the viewing direction

targeting the objects.

3. The intersection points are collected in a matrix, in which lists of

intersection points and other surface characteristics like color are hold.

4. The procedure is repeated for both workpiece and cutting tool.

5. After ray casting, the view on the screen is refreshed with the intersection

points having the same visual characteristics of the objects. But from that

point on, the viewing direction has to be kept.

6. The loaded part program is applied as in the turning simulation case.

7. The intersection points’ Z coordinates which are stored in the dexel structure

of the workpiece, are updated as a result of comparison of them with cutting

tool’s dexel data structure.

8. The procedure is repeated for any movement of the cutting tool.

9. The result is shown immediately on the screen inside the simulation

viewport.

Dexel data structure is very easy to handle and the calculations are in the order of

O(n). On the other hand, there are some drawbacks associated with this

methodology:

1. The viewing direction is fixed. It has to be adjusted carefully before the

simulation starts, to get the best visual output as a result of the simulation.

2. All the calculations have to be repeated to make the simulation from another

viewing direction.

 98

3. The resolution of the simulation is exactly the same of the screen resolution.

There is no way to analyze the specific features of the machined object

during or after the simulation.

4. There is no way to determine the volumetric material removal rate with this

method. In future, it might be aimed to improve the capabilities of this

program to make mechanistic analysis where current methodology won’t let

it be done.

5. In the current phase of the program, there is no way to make five-axis

milling simulation.

6. The user interface is not adequate to provide functionality to the user.

7. Only the available option is to use flat end mill as cutting tool.

8. The part program format does not let the user to define NC data in the

format of G codes.

To eliminate most of the deficiencies, in the below list, some alternative solutions

are listed for future study on this subject.

1. With the application of a new data structure, all the drawbacks or limitations

sourced by dexel modeling could be eliminated. For example, polygon

clipping technique could be implemented in the milling simulation, too. For

this purpose, the 3D models of the workpiece and cutting tool can be sliced

by planar surfaces and the boundary generated by the slicing could be used

as polygons. These polygons could be clipped and the resultant contours

could be utilized to generate surface. If this approach could be realized, it is

assumed that, the listed limitations below are tend to be resolved.

a. Viewing direction limitation. Because the final view would be

generated by the surface built on the polygons, it will be possible to

view the final part from any direction.

b. It will not be necessary to repeat the calculations in any change of

the viewing direction.

c. The resolution will not be affected by the screen resolution. Only the

factor that will affect the accuracy will be the precision of the

 99

calculations and the floating-point number representation errors due

to machine epsilon.

d. The current polygon clipping algorithm used for turning simulation,

gives the intersection of two polygons. This data is actually the

material removed by the cutter in the sense of machining. Thus, by

the application of polygon clipping, it is possible to determine the

volumetric material remove rate. This will add mechanistic analysis

to the program.

2. The user interface could be improved for more functionality. The

arrangement of the buttons could be re-emphasized.

3. A cutting tool generation module could be integrated to the program. This

will let the user to define new cutting tools, like ball end mill, slot mill, etc.

Although it is not within the scope of this study, some other features could be added

the developed program in the future. These are listed as follows:

1. Other machining techniques could be integrated to the program.

2. The simulation results, if generated in surface format, could be saved in one

of the universally recognized file formats like Initial Graphics Exchange

Specification (IGES) format, STandardized Exchange of Product (STEP)

format, STL format, etc. Thus, it would be reused for some specific

purposes, like comparing it for verification.

3. Machine simulation could be done. For this purpose machine models should

be prepared and loaded into the program. Also fixtures and clamping

devices could be added to the model.

4. The simulation could be integrated with verification.

5. Tool path optimization could be done according to the result of verification

routines.

6. Machining parameters input could be improved, if material removal rate

could be calculated during the simulation.

7. Dynamic system model would be added as well.

 100

REFERENCES

[1] H.B. Voelcker and W.A. Hunt., “The Role of Solid Modeling in Machining-
 Process Modeling and NC Verification”, SAE technical Paper 810195,
 1981.

[2] W.A. Hunt, and H.B. Voelcker, “An Exploratory Study of Automatic
 Verification of Programs for Numerically Controlled Machine Tools”,
 Production Automation Project Tech Memo No.34, University of Rochester,
 Jan 1982.

[3] R. Frishdale, K.P. Cheng, D. Duncan, and W. Zucker, “Numerical Control
 Part Program Verification System”, Proceedings of Conference on
 CAD/CAM Technology in Mechanical Engineering, MIT Press, Mar 1982.
 pp. 236-254.

[4] R.O. Anderson, “Detecting and Eliminating Collisions in NC Machining”,
 Computer Aided Design, Vol. 10, No 4, 1978. pp. 231-237.

[5] W.P. Wang and K.K. Wang, “Geometric Modeling for Swept Volume of
 Moving Solids”, IEEE Comuter Graphics & Applications, Vol 6, No 6,
 1986. pp. 8-17.

[6] T.Van Hook, “Real-Time Shaded NC Milling Display”, Computer Graphics
 (proc. SIGGRAPH), Vol 20, No 4, Aug 1986. pp. 15-20.

[7] P.R. Atherton, C. Earl, and C. Fred, “A Graphical Simulation System for
 Dynamic Five-Axis NC Verification”, Proc. Autofact. SME, Dearborn,
 Mi., Nov 1987. pp. 2-1 – 2-12.

[8] Robert L. Drysdale, Robert B. Jerard, Barry Schaudt, and Ken Hauck,
 “Discrete Simulation of NC Machining”, Algorithmica, No 4, 1989. pp.
 33-60.

[9] Robert B. Jerard, Robert L. Drysdale, and Ken Hauck, “Geometric
 Simulation of Numerical Control Machining”, ASME International
 Computers in Engineering Conference. San Fransisco, 1988.

[10] I.T. Chappel, “The Use of Vectors to Simulate Material Removal by
 Numerically Controlled Milling”, Computer Aided Design, Vol 15,
 No 3, May 1983. pp 156-158.

 101

[11] J.H. Oliver and E.D. Goodman, “Color Graphic Verification of NC Milling
 Programs for Sculptured Surface Parts”. First Symposium on Integrated
 Intelligent Manufacturing. ASME Winter Annual Meeting, Anabein, Ca.
 1986.

[12] Robert B. Jerard, S.Z. Hussaini, Robert L. Drysdale, and Barry Schaudt,
 “Approximate Methods for Simulation and Verification of Numerically
 Controlled Machining Programs”, Visual Computer, No 5, 1989.

pp 329-348.

[13] Robert L. Drysdale, Jerome L. Quinn, Kamran Ozair, and Robert B. Jerard,
“Discrete Surface Representations for Simulation, Verification, and
Generation of Numerical Conrol Programs”, Proceedings of NSF Design
and Manufacturing Systems Conference. 1991.

[14] Kamran Ozair, NC Machining Simulation and Verification Using Triangles

Rather than Points. Honors Thesis, Dartmouth College, 1990.

[15] D. Jang, K. Kim, and J. Jung, “Voxel-Based Virtual Multi-Axis Machining”,

The International Journal of Advanced Manufacturing Tehnology, Volume
16, No 10, pp. 709-1713

[16] Hong T. Yau, Tsou S. Lee, and Yu C. Tong, “Adaptive NC Simulation for

Multi-axis Solid Machining”, Computer-Aided Design & Applications,
 Vol. 2, Nos. 1-4, 2005, pp. 95-104.

 [17] Microsoft Developers Network,

http://msdn.microsoft.com/en-us/library/system.collections.bitarray.aspx,
last visited on August 2010.

[18] DirectX 9.0 for Managed Code, Microsoft 2005.

[19] Roth D. Scott, “Ray Casting for Modeling Solids”, Journal, Computer

Graphics and Image Processing, Vol. 18, No. 2, 1980, pp. 109—144.

[20] Barycentric Coordinate System,

http://en.wikipedia.org/wiki/Barycentric_coordinate_system_%28mathemati
cs%29, last visited on September 2010.

[21] Francisco Martinez, Antonio Jesus Rueda, Francisco Ramon Feito, “A new
algorithm for computing Boolean operations on polygons”, Computers &
GeoSciences, Volume 35, issue 6, 2008, pp. 1177-1185.

[22] Preparata, F., Shamos, M., Computational Geometry an Introduction,

Springer, New York, 1985, 398 pp.

[23] Schneider, P.J., Eberly, D.H., Geometric Tools for Computer Graphics,

Elsevier Science, San Francisco, 2003, 1060 pp.

 102

[24] Andereev, R.D., “Algorithm for clipping arbitrary polygons”, Computer
Graphics Forum 8 (2), 1989, pp. 183–191.

[25] Sutherland, I.E., Hodgeman, G.W., “Reentrant polygon clipping”,

Communications of the Association for Computing Machinery, 1974, 17
(1), pp. 32–42.

[26] Liang, Y.D., Barsky, B.A., “An analysis and algorithm for polygon

clipping”, Communications of the Association for Computing Machinery,
1983, 26 (11), pp. 868–877.

[27] Weiler, K., “Polygon comparison using a graph representation”, Proceedings

of the 7th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), Seattle, Washington, USA, 1980, pp. 10–18.

[28] Greiner, G., Hormann, K., ”Efficient clipping of arbitrary polygons”,

Association for Computing Machinery — TransactionsonGraphics 17 (2),
1998, pp. 71–83.

[29] Liu, Y.K., Wang,X.Q., Bao,S.Z., Gombôi, M.,Zâlik, B., “An algorithm for

polygon clipping, and for determining polygon intersection sand unions”,
Computers&Geosciences, 33, 2007, pp. 589–598.

[30] Vatti, B.R., “A generic solution to polygon clipping”, Communications of

the Association for Computing Machinery, 35 (7), 1992, pp. 56–63.

[31] CNCSimulator, http://www.cncsimulator.com/, last visited: December 8,

2010.

[32] CSG Tree, http://en.wikipedia.org/wiki/Constructive_solid_geometry, last

visited: December 8, 2010.

[33] Maeng, S.R., Baek, N., Shin, S.Y., Choi, B.K., “A Z-map update method for

linearly moving tools”, Computer Aided Design, Volume 35, No.11, 2003,
pp 995-1009.

[34] Karunakaran, K.P., Shringi, R., Singh, “Virtual Machining”, Modern

Machine Tools, Vol 1 No. 3, 2004, pp. 62-68.

[35] Quinn, J.L., “Accurate Verification of Five-Axis Numerically Controlled

Machining”, Ph.D. Thesis, Dartmouth College, United States, May 1997.

[36] Catmull, E., “A hidden-surface algorithm with anti-aliasing”, ACM

SIGGRAPH Computer Graphics, Vol. 12 Issue 3, Aug. 1978, pp.6 6-11.

[37] Atherton, P.R. “A scan-line hidden surface removal procedure for

constructive solid geometry”, Computer Graphics, Vol. 17 Number 3, 1983,
pp. 73-82.

 103

[38] Dölen, M., “Lecture Notes on ME440: Numerically Controlled Machine
Tools”, METU, Mechanical Engineering Department, 2010

[39] Chapra, Steven C. and Canale, Raymond P. “Numerical Methods for

Engineers”, Mc Graw Hill, 2002.

 104

APPENDIX A

NC PROGRAM LISTINGS

A.1 NC program used in Case Study 1

N10 T26 M03
N20 G00 X54 Z100
N30 S2000 F300 M8
N40 G01 X-2
N50 G00 X0 Z102
N60 G00 X50
N70 G01 Z0.5
N80 G00 Z12 X52 M09
N90 T21
N100 G00 X0 Z102 M08
N110 G01 Z50 F100
N115 G00 Z102 M09
N120 T09
N130 G00 X52 Z40 M08
N140 G01 X32
N150 G00 X52
N160 G00 Z37
N170 G01 X32
N180 G00 X52
N190 G00 Z34
N200 G01 X32
N210 G00 X52
N220 G00 Z31
N230 G01 X30
N240 G00 X52
N250 G00 Z28
N260 G01 X30
N270 G00 X52
N280 G00 Z25
N290 G01 X30
N300 G00 X52
N310 G00 Z22

 105

N320 G01 X30
N330 G00 X52
N340 G00 Z19
N350 G01 X30
N360 G00 X52
N370 G00 Z16
N380 G01 X30
N390 G00 X52
N400 G00 Z13
N410 G01 X30
N420 G00 X52
N430 T2
N435 G00 X40 Z100
N440 G03 X50 Z95 I0 K-5
N441 G00 X52
N442 G00 Z14
N443 G00 X40
N444 G01 X40 Z13
N445 G03 X50 Z8 I0 K-5
N450 T23
N455 G00 X40 Z103
N470 G01 X36 Z98
N480 G01 Z82
N481 G01 X38 Z80
N482 G01 Z62
N483 G01 X36 Z60
N484 G01 X30
N485 G00 Z100 M09
N490 T24
N500 G00 Z34 X52 M08
N510 G00 X34
N520 G01 X30
N530 G01 Z40
N540 G03 X40 Z45 I5 K0
N550 G02 X50 Z50 I0 K5
N555 G01 Z51
N600 M30

A.2 NC Program used in Case Study 2

N05 T2
N10 G00 X27 Z105
N20 G01 Z100 F200 S1500 M03 M08
N30 G01 X-2
N40 G00 X4 Z104 M09
N50 G00 X28 Z104
N55 T1

 106

N60 G00 X26
N70 G01 Z31.732 M08
N80 G01 X27 Z32.732
N90 G00 Z106 M09
N100 G00 X24
N110 G01 Z32.172 M08
N120 G01 X25 Z33.172
N130 G00 Z106 M09
N140 G00 X22
N150 G01 Z50.472 M08
N160 G01 X23 Z51.472
N170 G00 Z106 M09
N180 G00 X20
N190 G01 Z54.472 M08
N200 G01 X21 Z55.472
N210 G00 Z106 M09
N220 G00 X18
N230 G01 Z58.472 M08
N240 G01 X19 Z59.472
N250 G00 Z106 M09
N260 G00 X16
N270 G01 Z62.472 M08
N280 G01 X17 Z63.472
N290 G00 Z106 M09
N300 G00 X14
N310 G01 Z66.472 M08
N320 G01 X15 Z67.472
N330 G00 Z106 M09
N340 G00 X12
N350 G01 Z98.828 M08
N360 G01 X13 Z99.828
N370 G00 X7.5 Z101 M08
N390 G01 X10 Z98
N400 G01 Z70
N410 G01 X20 Z50
N420 G01 Z35
N430 G02 X25 Z30 I5 K0
N440 G01 Z0
N460 G00 X28 Z6 M09
N470 G00 Z100
N520 M30

A.3 NC Program used in Milling Simulation-Sample Application

N01 G21 G90 G0 X-30 Y50 T15 S1200 M3
N02 G0 X-9.0 Z-8.0
N03 M8

 107

N04 G17 G2 I59.0 J0 F400.0
N05 G0 Z5.0
N06 X25.0 Y65.0
N08 G1 Z-8.0
N09 Z5.0
N10 G0 X75.0
N11 G1 Z-8.0
N12 Z5.0
N13 G0 Y35.0
N14 G1 Z-8.0
N15 G2 X25.0 Y35.0 I-25.0 J15.0
N16 G1 Z5.0
N17 G0 X-30.0 Y50.0 M9
N18 Z0 M5
N19 M30

