
1

WEIGHTED MULTI-VISIBILITY ANALYSIS ON DIRECTIONAL PATHS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÇAĞIL ŞEKER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

GEODETIC AND GEOGRAPHIC INFORMATION TECHNOLOGIES

DECEMBER 2010

Approval of the thesis:

WEIGHTED MULTI-VISIBILITY ANALYSIS ON DIRECTIONAL PATHS

submitted by ÇAĞIL ŞEKER in partial fulfillment of the requirements for the
degree of Master of Science in Geodetic and Geographic Information
Technologies Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Assoc. Prof. Dr. Mahmut Onur Karslıoğlu
Head of Department, Geodetic and Geographic Information Technologies

Prof. Dr. Vedat Toprak
Supervisor, Geological Engineering Department, METU

Examining Committee Members:

Assoc. Prof. Dr. Zuhal Akyürek
Civil Engineering Department, METU

Prof. Dr. Vedat Toprak
Geological Engineering Department, METU

Assoc. Prof. Dr. Mahmut O. Karslıoğlu
Civil Engineering Department, METU

Assoc. Prof. Dr. Şebnem Düzgün
Mining Engineering Department, METU

Dr. Cevat Şener
Computer Engineering Department, METU

Date:

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last Name: ÇAĞIL ŞEKER

Signature :

iii

ABSTRACT

WEIGHTED MULTI-VISIBILITY ANALYSIS ON DIRECTIONAL PATHS

Şeker, Çağıl

M.S., Department of Geodetic and Geographic Information Technologies

Supervisor : Prof. Dr. Vedat Toprak

December 2010, 155 pages

Visibility analysis is an important GIS tool that is used in a diverse array of

disciplines ranging from earth sciences to telecommunications.

Multi-visibility, as a cumulative type of visibility, combines many point-to-point

results into a multi-value array. Points, lines, or areas can be used as sources

or targets; and the combined values can be calculated in both ways. Through

multi-visibility, a special 2.5D visibility value surface can be constructed over a

digital elevation model. The effectiveness of multi-visibility can be increased with

weighted target zones. Other types of weighting criteria can be defined, such as

distance and angle.

Open source GIS tools offer a limited amount of support for that type of multi-

visibility analysis. In this study, a weighted multi-visibility methodology has

been developed which accepts a path as the source. The path can have a specific

direction to account for moving subjects that have a specific view angle based

on their direction. A software tool has been developed to apply the methodology

iv

in a practical and automated way. The tool was written in Python programming

language and can be run as a plugin to the open source Quantum GIS software.

The proposed weighted multi-analysis methodology and its software tool can be

used to assess the quality of visibility through the generation of value surfaces and

calculation of a combined quantitative visibility value for the full path.

Keywords: Visibility analysis, Multi-visibility, GIS, Digital elevation model

v

ÖZ

YÖNLÜ HATLARDA AĞIRLIKLI ÇOKLU-GÖRÜNÜRLÜK ANALİZİ

Şeker, Çağıl

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri

Tez Yöneticisi : Prof. Dr. Vedat Toprak

Aralık 2010, 155 sayfa

Görünürlük analizi, jeolojiden telekomünikasyona, geniş bir disiplinler dizisi

tarafından kullanılan önemli bir GIS aracıdır.

Çoklu-görünürlük, yığışımlı bir görünürlük türü olarak, birden çok noktadan-

noktaya sonucu, bir çoklu-değer dizisi içerisine birleştirmektedir. Nokta, hat,

veya alanlar, kaynak ve hedefler olarak kullanılabilmekte ve birleşik değerler her

iki yönde de hesaplanabilmektedir. Çoklu-görünürlük aracılığıyla, bir sayısal

yükseklik modeli üzerine özel bir 2.5B görünürlük değer yüzeyi oluşturulabilir.

Çoklu-görünürlüğün etkinliği ağırlıklı hedef bölgeleri ile yükseltilebilir. Uzaklık

ve açı gibi diğer ağırlıklandırma kriterleri de tanımlanabilir.

Açık kaynak GIS araçları bu tür çoklu-görünürlük analizi için sınırlı bir destek

sunmaktadırlar. Bu çalışmada, kaynak olarak bir hattı kabul eden, ağırlıklı bir

çoklu-görünürlük metodolojisi geliştirilmiştir. Yöne dayanan belirli görüş açıları

bulunan, hareket halindeki özneleri de dikkate almak için hatlar belirli yönlere

sahip olabilmektedir. Metodolojiyi pratik ve otomasyona dayalı bir şekilde

vi

uygulayabilmek için bir yazılım aracı geliştirilmiştir. Araç Python programlama

diliyle geliştirilmiştir ve açık kaynak Quantum GIS yazılımına eklenti olarak

çalıştırılabilmektedir.

Önerilen ağırlıklı çoklu-görünürlük metodolojisi ve ilgili yazılım aracının, değer

yüzeylerinin yaratılması ve tüm hat için bütünleşik nicel görünürlük değerinin

hesaplanması aracılığıyla, görünürlük kalitesinin değerlendirilmesinde kullanılması

mümkündür.

Anahtar Kelimeler: Görünürlük analizi, Çoklu-görünürlük, CBS, Sayısal yükseklik

modeli

vii

To
my family

and
my friend Oya

viii

ACKNOWLEDGMENTS

I would like to express my thanks to my advisor Prof. Dr. Vedat Toprak, for his

continuous guidance, valuable support and great patience. Without his support and

encouragement, this thesis would not even have been possible.

I would like to express my gratitude and love to my mother Ayşe and my brother

Ilgın, for their amazing moral support and for always being there for me.

I would also like to thank to my friends Hale, Serdar, Ayberk, Gökçe, and Güney,

for their understanding and friendship throughout this journey.

I would like to specially thank to my dear friend Oya Sertel, for her awesome

encouragement, valuable contributions and continuous moral support.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATION . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Assessment of Visibility on Paths 2

1.2 Purpose and Scope . 2

1.3 Summary of the Chapters 3

2 BACKGROUND . 4

2.1 Digital Elevation Models 4

2.1.1 Definition . 4

2.1.2 Available Digital Elevation Data 10

2.1.3 GeoTIFF Data Format 11

2.2 Visibility Analysis . 12

2.3 Previous Works . 14

3 METHODOLOGY . 20

3.1 Methodology Overview 20

3.2 Multi-Visibility for Paths 21

x

3.3 Weighted Targets . 30

3.4 Directional Visibility . 34

3.5 Combined Approach and Visualization 38

3.6 Flowchart . 38

4 SOFTWARE DEVELOPMENT 40

4.1 Development Platform . 40

4.2 Viewshed Comparison . 42

4.3 Software Features . 42

4.4 Implementation Details 45

4.5 Algorithmic Complexity 50

5 APPLICATION OF THE METHODOLOGY 52

5.1 Sample Region and Paths 52

5.2 Weighted Zones . 53

5.3 Calculation . 56

5.4 Results . 57

6 DISCUSSION . 77

6.1 Discussion of the Approaches 77

6.1.1 Multi-Visibility for Paths 77

6.1.2 Weighted Targets 78

6.1.3 Directional Visibility 79

6.2 Other Application Possibilities 79

6.3 Implementation Remarks 80

6.4 Presentation of the Results 82

7 CONCLUSIONS AND RECOMMENDATIONS 84

REFERENCES . 87

APPENDICES

A SOURCE CODE FOR THE SOFTWARE 92

A.1 init .py . 92

xi

A.2 vap.py . 93

A.3 vap io.py . 96

A.4 vap analyze.py . 107

A.5 ui results.ui . 122

A.6 ui input.ui . 124

A.7 dialogs.py . 145

xii

LIST OF TABLES

TABLES

Table 3.1 Comparison of multi-visibility analysis for different directions on

the same path . 38

Table 4.1 Development environment setup 41

Table 5.1 Software parameters for the test case 58

Table 5.2 Analysis results for the first path 75

Table 5.3 Analysis results for the second path 76

Table 5.4 Analysis results for the third path 76

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 A quadtree example . 6

Figure 2.2 Perspective view of a RSG terrain showing the grid 7

Figure 2.3 Perspective view of a RSG terrain showing points 7

Figure 2.4 Illustration of a TIN surface . 8

Figure 2.5 Construction of TIN surfaces 9

Figure 2.6 Comparison of Raster and TIN models 9

Figure 2.7 Six approximations of a geographic field 9

Figure 2.8 A sample raster representation 10

Figure 2.9 A sample GeoTIFF DEM map that has single valued pixels . . . 13

Figure 2.10 Viewshed cross section on a terrain 13

Figure 2.11 An example of one-way visibility situation 14

Figure 2.12 A viewshed example produced with the Global Mapper GIS

software . 15

Figure 3.1 A DEM map showing sample multi-visibility sources for points,

lines, and polygons . 21

Figure 3.2 An example rasterization process using Bresenham’s algorithm

on a DEM . 23

Figure 3.3 Eight discrete observer points and the viewsheds for the points 2

and 6 . 24

Figure 3.4 Some combination alternatives for a multi-visibility situation:

union, intersection, and symmetric difference 25

xiv

Figure 3.5 Visibility surface for the multi-visibility of 8 observers 26

Figure 3.6 Total viewshed example for a small area 27

Figure 3.7 A sample path on a terrain and its visibility surface 29

Figure 3.8 Inverse visibility count for the sample path 30

Figure 3.9 Sample weight zones defined as vector polygons and the

weighted visibility surface for the path 32

Figure 3.10 Relief shaded view of the weighted visibility surface 33

Figure 3.11 Weighted inverse visibility count for the sample path 33

Figure 3.12 Directional field of view for 60◦ of view angle 35

Figure 3.13 Directional field of view on a path with a constant view angle and

dynamic directions . 35

Figure 3.14 Directional visibility surfaces for a path shown in both directions 36

Figure 3.15 Relief shaded version of Figure 3.14(a) 37

Figure 3.16 Relief shaded version of Figure 3.14(b) 37

Figure 3.17 General flowchart for the methodology 39

Figure 4.1 A sample viewshed result calculated by Global Mapper 11 43

Figure 4.2 The sample single-point binary viewshed as calculated by the

implemented algorithm . 43

Figure 4.3 Overlap map showing the intersection area of the viewshed regions 44

Figure 4.4 The main interface and the marker position during an analysis

process . 46

Figure 4.5 A sample project view after an analysis 47

Figure 5.1 A satellite view of the Kovada Lake 52

Figure 5.2 DEM data for the sample region in grey-shade 54

Figure 5.3 Relief-shaded version of the sample region 54

Figure 5.4 Three sample paths based on the walking courses 55

Figure 5.5 The sample paths overlayed on top of the relief-shaded map . . . 55

Figure 5.6 Sample zones that were defined for the study 56

xv

Figure 5.7 Weight values for the sample zones 57

Figure 5.8 Visibility surface for the path 1-A 59

Figure 5.9 Visibility surface for the path 1-B 59

Figure 5.10 Visibility surface for the path 2-A 60

Figure 5.11 Visibility surface for the path 2-B 60

Figure 5.12 Visibility surface for the path 3-A 61

Figure 5.13 Visibility surface for the path 3-B 61

Figure 5.14 Visibility surface for the path 1-A overlayed over the shaded 3D

view of the actual terrain . 62

Figure 5.15 Visibility surface for the path 1-B overlayed over the shaded 3D

view of the actual terrain . 62

Figure 5.16 Visibility surface for the path 2-A overlayed over the shaded 3D

view of the actual terrain . 63

Figure 5.17 Visibility surface for the path 2-B overlayed over the shaded 3D

view of the actual terrain . 63

Figure 5.18 Visibility surface for the path 3-A overlayed over the shaded 3D

view of the actual terrain . 64

Figure 5.19 Visibility surface for the path 3-B overlayed over the shaded 3D

view of the actual terrain . 64

Figure 5.20 Visibility surface for the path 1-A in shaded 3D view 66

Figure 5.21 Visibility surface for the path 1-B in shaded 3D view 66

Figure 5.22 Visibility surface for the path 2-A in shaded 3D view 67

Figure 5.23 Visibility surface for the path 2-B in shaded 3D view 67

Figure 5.24 Visibility surface for the path 3-A in shaded 3D view 68

Figure 5.25 Visibility surface for the path 3-B in shaded 3D view 68

Figure 5.26 Weighted inverse visibility count for the path 1-A 69

Figure 5.27 Weighted inverse visibility count for the path 1-B 69

Figure 5.28 Weighted inverse visibility count for the path 2-A 70

Figure 5.29 Weighted inverse visibility count for the path 2-B 70

xvi

Figure 5.30 Weighted inverse visibility count for the path 3-A 71

Figure 5.31 Weighted inverse visibility count for the path 3-B 71

Figure 5.32 Profile diagram for the path 1-A 72

Figure 5.33 Profile diagram for the path 1-B 72

Figure 5.34 Profile diagram for the path 2-A 73

Figure 5.35 Profile diagram for the path 2-B 73

Figure 5.36 Profile diagram for the path 3-A 74

Figure 5.37 Profile diagram for the path 3-B 74

xvii

CHAPTER 1

INTRODUCTION

One of the most often used topographic relationships between two spatial locations

is their inter-visibility. Visibility in this sense, can either mean direct optical

visibility or in a general sense, detectability by any kind of electromagnetic signal

traveling through the medium.

Building on that basic premise, several types of visibility assessments can be carried

out. The usual method is to define a set of source or observer locations, and a set

of target locations. Either of these sets can be defined as distinct points, line-based

paths, or entire regions. Standard visibility analysis usually deals with point sources

and regional targets. The target area is usually given as a radius of a circular area

having the source location as its center point.

The resulting surface of visible area for a point source is usually called as a

“viewshed”. When the source set consists of more than one point, the analysis

becomes a “multi-visibility” or a “cumulative viewshed” analysis.

As a popular GIS technique, visibility analysis is more or less supported by many

professional tools in the field. However, open source, non-commercial GIS software

offer less solutions in this aspect compared to their commercial counterparts. Many

popular open source tools currently have no support even for a standard single point

visibility analysis.

1

1.1 Assessment of Visibility on Paths

One of the most common uses for a visibility analysis is when the source is a series

of lines; i.e., when it is a path. When the source set is a line-based path, since it

involves multiple (potentially infinite) points, it is a multi-visibility situation.

An important parameter for any kind of visibility analysis is the direction of sight.

It is usually expressed as an angular interval which restricts the target sets to the set

of points lying inside this interval, forming a field of view (FoV). Visibility along a

path usually indicates a sense of movement along that path. The direction of sight

along the path would usually change in accordance with the direction of path.

Another useful parameter for the assessment would be the ‘value’ or the ‘weight’

of visibility for the target locations. Not all of the target points may be of equal

importance to the viewer. Usually, it is desirable to define some kind of preference

for specific target locations through the use of a weighting system. This weighting

can be used to construct a weighted multi-visibility result.

Current popular GIS tools usually do not have direct solutions to these types of

non-binary directional visibility problems, making them difficult to use for many

practical applications.

1.2 Purpose and Scope

The aim of this study is to develop a unified visibility analysis methodology to

assess the ‘visibility value’ of directional paths. The methodology uses cumulative

viewsheds with weighted target sets to calculate quantitative visibility values as an

enhancement to the standard multi-visibility analysis. Moreover, the methodology

can be used to produce weighted visibility surfaces for the target areas and visibility

value profiles for the source paths. These visibility surfaces and visibility value

profiles are constructed from weighted cumulative counts of the target points.

2

For the automation of the process, an open source software tool has been developed

with the ability to calculate and display weighted multi-visibility results for both

the directional source paths and the target areas.

This study has been limited to vector based one dimensional paths and direct ground

level optical visibility on raster type topographic surfaces. Specific details such as

the Earth’s curvature, atmospheric conditions, error assessment, edge effects are not

included in the scope.

For the software tool, the raster paths were defined as vector poly-lines and the target

zones were given as vector polygons. The tool operates directly on the discrete

pixels of the raster data (corresponding to the given vectors) and does not perform

any interpolation or non-discrete analysis.

1.3 Summary of the Chapters

In this chapter, an overview of the problem and the proposed solution is given

along with the limits of this study. In Chapter 2, some of the core concepts of

visibility analysis is discussed like the digital elevation models and data formats.

Furthermore, a detailed analysis of visibility is provided along with the summaries

of some previous works on the subject.

The general methodology for the proposed solution is defined in Chapter 3. The

distinct approaches combined in the methodology is discussed in this chapter, and

then the visualization aspect of the results is examined.

Chapter 4 deals with the software development process and provides information

on the development platform, the algorithms used and the features implemented.

A test case for the methodology is provided in Chapter 5 where three different paths

around a lake are compared in both directions.

The discussion of the results and the implications are given in Chapter 6. Finally, a

commentary and final remarks for the study is provided in Chapter 7. That chapter

also discusses further research possibilities on the subject.

3

CHAPTER 2

BACKGROUND

Visibility information for a given area has always been an interest to researchers in

a number of diverse fields such as archeologists, city planners, tourism agencies,

forest managers, geological engineers, astronomers, and military analysts.

Due to the computational nature of the problem, visibility related information is

usually produced with the help of computers and specialized software. Therefore,

many of the approaches rely on some kind of digital elevation data to be ready.

Studies on computational visibility date far back to sixties and seventies since it is

one of the first interest areas of the GIS field. Consequently, there are many studies

from various disciplines incorporating visibility analysis into their researches.

2.1 Digital Elevation Models

2.1.1 Definition

Visibility analysis requires the availability of accurate relief (elevation) data of the

target area as the primary input. Elevation, being a typical geographic field, can be

defined and measured at an infinite selection of points for a bounded finite area.

When a geographic field is needed to be represented in a finite and discrete domain,

such as the memory of a computer, some kind of approximation is needed. In

geographical information systems, the preferred approximation is to store a finite

4

but logically chosen set of points along with an interpolation function to derive the

value for the remaining points. For elevation, this approximation is usually called

as a Digital Terrain Model (DTM) or a Digital Elevation Model (DEM) (DEM will

be preferred from here on).

Lee (1989) stated that “any digital representation of the continuous variation of

relief of the earth’s surface may be referred to as a Digital Elevation Model (DEM).”

A more formal, but more restrictive definition is given by Floriani and Magillo

(1993):

A natural terrain can be described as a continuous function
z = f (x, y), defined over a connected subset D of the x − y plane.
Thus, a Mathematical Terrain Model (MTM) can be defined as a pair
M ≡ (D, f).

A Digital Terrain Model (DTM) is defined as a planar subdivision Σ of
the domain D into a collection of planar regions R = {R1,R2, . . .Rm}

and by a family F of continuous functions z = fi(x, y), i = 1, 2, . . .m,
each defined on Ri and such that fi(x, y) = f j(x, y), for every
(x, y)εR∗i

⋂
R∗j (where R∗i denotes the closure of region Ri). Thus,

a DTM can be expressed as a pair M ≡ (ε, F). (Floriani and Magillo,
1993)

Although DEMs store third dimensional elevation data, they are not fully three

dimensional representations. Longley et al. (2005) define DEMs as 2.5D, since the

third dimension is treated as a single-valued function of two horizontal variables.

Elevation values in a DEM are usually defined as exact values. However, there are

usually known error limits for the data. Anile et al. (2003) defined a fuzzy DEM

(FDEM) that stored the elevation data as fuzzy upper and lower bounds to capture

the known error limits in the data itself.

Mark (1978) identified mathematical and image methods as the two main classes for

a DEM classification framework. Floriani and Magillo (1993) classified the DEMs

into two categories: Regular Square Grids (RSGs) and Polyhedral Terrain Models

(PTMs). A different type of categorization has been defined by de By and Kainz

(2001) with three groups: tessellations, vector representations, and their hybrids.

5

Tessellation is a partition of the field into areas or cells in a systematic way. An

important property of such cells is that they do not themselves record their specific

geographic references; it must be calculated from a base coordinate (de By and

Kainz, 2001). Usually, every cell in a tessellation would have a single value

representing the field state in that area.

Tessellations can be regular or irregular. A simple square-wise, triangular, or

hexagonal division of the area would constitute a regular tessellation. Regular

Square Grids (RSGs) are then, square-wise regular tessellations (Figure 2.2). An

example for the irregular tessellation would be the region quadtree (de By and

Kainz, 2001). Figure 2.1 shows a quadtree and Figures 2.2 and 2.3 show how the

regularly spaced points form a grid on a surface.

There are several ways a tessellation can be interpreted in terms of the cell values.

For example, the field value of a cell can either be a representation of the full cell

area, or just a single point inside that cell. The first option is usually not preferred

as it results in a discrete, non-continuous field. The second option requires the

specification of the point (center or one of the corners) and one or more good

interpolation functions for the intermediate points.

Vector representations (for example, contour line based methods) are not as widely

used as tessellations in its purest form. However, a hybrid of tessellations and vector

representations, known as the Triangular Irregular Network (TIN), is relatively

Figure 2.1: A quadtree example. In the diagram, a third level node in the tree and
its corresponding area inside the whole field are marked.(de Berg et al., 2008)

6

Figure 2.2: Perspective 3D view of a terrain with regular square grid superimposed.
(Konecny, 2003)

Figure 2.3: Perspective 3D view of a terrain defined by regular points. (Kaučič and
Žalik, 2002)

7

common in the industry. TIN was initially designed by Peucker et al. (1978) in

1978. TINs are a subgroup of Polyhedral Terrain Models according to Floriani and

Magillo (1993), since it defines a three dimensional polyhedral surface. Figure 2.4

shows the polyhedral surface of TIN with respect to the two dimensional surface.

In a TIN, a set of specially selected points with known elevation values are used

to divide the area into triangular cells. Although there are several ways to perform

the tessellation, an optimal approach is the delaunay triangulation (Figure 2.5).

A mathematical explanation for delaunay triangulation is given by de Berg et al.

(2008).

The reference points form the corners of triangles in a TIN and the value for a cell

has to be calculated by an interpolation method. One way of doing this interpolation

would be to define the cell as a triangular plane in a three dimensional space and

calculate the elevations on that plane surface accordingly. The points in a single TIN

plane do not necessarily have the same elevation values (Maloy and Dean, 2001).

TIN model allows more efficient context-based distribution of measurement points.

Areas with more irregular surfaces (such as ridges, peaks etc.) can be defined with

more data points as opposed to relatively smooth areas which can be defined with

only a couple of data points.

Longley et al. (2005) listed six different approximate representations of a

geographic field as represented in Figure 2.7.

Figure 2.4: Illustration of a polyhedral surface constructed from sample points of a
TIN. (de Berg et al., 2008)

8

Figure 2.5: Construction of TIN surfaces from sample points. The last one shows
optimal Delaunay Triangulation. (de By, 2001)

Figure 2.6: Comparison of (a)raster and (b)TIN data models of the same terrain.
(Maloy and Dean, 2001)

Figure 2.7: Six Approximate Representations of a Geographic Field. (A) Regularly
spaced sample points. (B) Irregularly spaced sample points. (C) Rectangular cells.
(D) Irregularly shaped polygons. (E) Irregular network of triangles (TIN). (F)
Polylines representing contours. (Longley et al., 2005)

9

Out of all the options, Regular Square Grid (RSG) is, by a good margin, the most

popular method; mostly due to the simplicity of the geo-referencing and the relative

easiness of its digital representation (Figure 2.8). RSGs are sometimes also called

as raster formats because of the similarity of its grids to the pixels in a computer

display. In this sense, cells in a raster grid are often called as pixels.

For visibility analysis, although TINs allow faster and more efficient algorithms to

be constructed, RSGs are again the preferred DEM method. This can be attributed

to the relative simplicity of the constructed algorithms and the wider availability

of RSG map data. Maloy and Dean (2001) found out that raster based visibility

analysis was generally equal or better than the TIN based visibility analysis in terms

of agreement with the field survey results. However the TINs in that study were

produced using the same rasters, resulting in a regular spaced point structure for the

TIN.

2.1.2 Available Digital Elevation Data

Almost all available digital elevation data is stored and distributed in a raster-based

(RSG) format. One of the main distributers for digital elevation maps is U.S.

Geological Survey (USGS) with its seamless data distribution system.

Figure 2.8: A sample raster representation with regular grids that use gray intensity
to represent relative elevations. (de By, 2001)

10

USGS elevation data consists of National Elevation Data (NED) (Gesch et al.,

2002) and Shuttle Radar Topography Mission (SRTM) (van Zyl, 2001). NED

is available in 1, 1/3, and 1/9 arc second resolutions (USGS, 2010a). SRTM is

available in 1 arc second resolution for the US data and 3 arc second resolution for

the global data (USGS, 2010b).

NED data is a combination of many data sources and is available in ArcGRID,

GeoTIFF, BIL and GridFloat formats with accompanying textual metadata.

Measured Root Mean Square Error (RMSE) value for the overall absolute vertical

accuracy was published as 2.44 meters.

SRTM dataset were collected by a radar system using the interferometric synthetic

aperture radar technique covering 80% of the Earth’s surface in 2000. The main

difference of SRTM from NED is that the elevation from SRTM is canopy based

(i.e., DTM) whereas the elevation from NED is ground based (i.e., DEM). The

vertical relative height error of SRTM is specified to be less than 10 meters at 90%

confidence level.

There is also another relatively new global elevation data available from Advanced

Space-borne Thermal Emission and Reflection Radiometer (ASTER) project called

ASTER-GDEM (NASA JPL, 2010b). It is comprised of 22,600 1◦-by-1◦ tiles.

ASTER GDEM is distributed in GeoTIFF file format with grids of 30 meters.

RMSE estimation is 20 meters for vertical data and 30 meters for horizontal data at

95% confidence (NASA JPL, 2010a).

USGS also developed a special transfer file format for elevation data called Spatial

Data Transfer Standard (SDTS) that includes spatial data, attribute, geo-referencing,

data quality report, data dictionary, and other supporting metadata (USGS, 2010c).

2.1.3 GeoTIFF Data Format

GeoTIFF (OSGeo, 2010) has become one of the most popular data formats for

storing raster image files with accompanying geographic information. GeoTIFF

is an open, public domain, and non-proprietary format and it was developed at

11

NASA-JPL (Jet Propulsion Laboratory) with input from industry, starting from

1994. GeoTIFF is currently maintained by the Open Source Geospatial Foundation

(http://osgeo.org).

GeoTIFF is based on the popular image format TIFF (version 6.0), which is a tag-

based file format for storing and transferring raster type images. It is one of the

few formats in the public domain that supports tiling, compression, and extensions

for geographic metadata. GeoTIFF implements the geographic meta-data using the

existing TIFF tagging mechanisms.

GeoTIFF supports two pixel value conventions. The pixel values are either the value

of single point postings for the upper left corner of a pixel, or they are the average

value for the whole of a pixel area. In this study, single valued GeoTIFF DEMs that

have the upper left corner as their reference point are used. The reference corners

for the pixels of such a DEM are illustrated in Figure 2.9

2.2 Visibility Analysis

Visibility analysis deals with the inter-visibility between points on a DEM (Figure

2.10). This is usually accomplished by a line-of-sight (LOS) between two points

and is available within many GIS applications. Elevation offsets for both the target

and the source can also be defined in a visibility analysis.

A natural extension to LOS is the ability to calculate visibility from a single source

point to a set of target points. This creates a binary surface over the terrain showing

visible locations; i.e., a viewshed of the source point. The viewshed can also be

interpreted as an answer to the question, “where can the source be seen from?”.

There may be situations or interpretations of visibility where the source can see

the target, but it can not be seen from the target, as illustrated in Figure 2.11. An

example viewshed can be seen in Figure 2.12.

An angular range can also be defined for the source, or observer point. Then, only

the target cells falling into the defined field of view should be considered for the

analysis. This property can be used to specify a direction of view for the observer.

12

Figure 2.9: A sample GeoTIFF DEM map that has single valued pixels with a
reference corner of upper left.

Figure 2.10: Viewshed cross section on a terrain, modified from De Floriani and
Magillo (2003). Three points on the terrain are shown. Point 1 is on a local horizon
and defines the start of the non-visible terrain section. Point 2 is at the non-visible
section, while point 3 is at the visible section. The diagram also shows how the line
of sights from the observer to the local horizon points define the limits of the visible
and non-visible sections on the terrain.

13

Another common parameter is the restriction of the set of target cells. For example,

a set of towers would form a set of individual and possibly unrelated cells. On the

other hand, an areal target, like a lake, can be thought as the set of cells composing

the lake. Similarly, a path-like target is a set of cells lying on the path. Target data

can be provided as a vector layer of points, lines, or polygons. Another possibility

is to use the elevation values of the raster data for a selection criteria, or to provide

another raster map for that purpose.

One of first visibility calculation examples can be seen in the work by Travis et al.

(1975). In that study, a computer program called VIEWIT has been developed that

were able to calculate visibility, slope, and aspect data for an elevation map. Other

early pioneering works were by Felleman (1979), Tomlin (1983), and Yoeli (1985).

2.3 Previous Works

Franklin and Ray (1994) investigated three algorithmic approaches to calculate

visibility on raster based terrains which were called R3, R2, and Xdraw. R3,

which has a cubic algorithmic time, was defined as the most accurate method for

visibility analysis. To calculate the visibility of a point, R3 only uses the information

previously calculated for the immediate preceding points. Several enhancements to

R3 were described in order to decrease the complexity to squared times, namely

R2 and Xdraw algorithms. These more efficient algorithms rely on the order of the

points for analysis and introduce some approximations that reduce the accuracy of

the results. R2 is a relatively complex algorithm and calculates the line-of-sights

Figure 2.11: An example of one-way visibility situation (Fisher, 1996a).

14

Figure 2.12: A viewshed example produced with the Global Mapper GIS software.

for only the perimeter points. The inner points use the closest line-of-sight passed

through them for their calculation. Xdraw, proceeds by successive rectangular rings

going outwards. Each ring only uses the information in the inner ring. Xdraw

is the fastest of the three proposed algorithms; however it is also the one with

the least accuracy. The main problem with Xdraw is that the visibility of a point

may be affected by a remote unrelated point through the carrying of successive

interpolations. While no comparison data was presented in the paper for Xdraw,

the agreement between R3-Interpolated and R2 was given to be 98.8% while the

computation time was reduced from n3 to n2.

For the software tool developed for this thesis, the visibility computations between

a source and a target location are done by the use of the R3 algorithm mentioned in

Franklin and Ray (1994). Although this algorithm is slower than the other proposed

methods, it is preferred because of the high level of accuracy it provides. The

calculation speed has turned out to be at acceptable levels for the purposes of this

study as can be seen in Chapter 6.

Wheatley (1995) was one of the first researches that worked on the “cumulative

viewshed analysis” problem which is one of the cornerstones of this thesis. In

15

that study, the relationships of inter-visibility between related archeological sites

within an area have been investigated. The source set was consisting of the selected

sites, while the target set was the entire region. In that sense, it was a multiple

point source multi-visibility analysis. The visibility surfaces were gathered for two

different site sets using the map algebra functions of IDRISI GIS package. Also,

the inter-visibility information between the sites was produced. In order to test

the statistical significance of the results, a one-sample Kolmogorov-Smirnov test

was undertaken for each area. The test showed that one of the archeological sites

tested (the Stonehenge barrows) had statistically significant inter-visibility among

the barrows.

Fisher (1996a) proposed alternative viewshed functions in order to deal with specific

queries such as forest-fire observation, visual impact of a new structure, and route

determination. The alternative methods involve the categorization of targets as local

and global horizons. Local horizon for an observer is the farthest point before the

first invisible point. Global horizon is where the land surface meets the skyline.

The offset between a line-of-sight (LOS) and these horizons can be used to answer

these problematic queries. Also, an error modeling was performed based on the

spatially autocorrelated simulations using DEM errors. A local offset viewshed can

be transformed to a binary viewshed with a given vertical offset. This offset can be

the rise of smoke for forest fire observation problem. Local and global offsets can

also be helpful in determining the maximum allowed height of a proposed building

for some given locations. Concealment of a target which can be defined in terms

of its visibility against the skyline can also be analyzed using the global offset

viewsheds. Another advantage of these new functions, are that they can answer

the height limits for visibility situations without the need for a recalculation.

Nackaerts et al. (1999) studied the effects of errors in the DEM map to the viewshed

results. They compared a 10m contour interval topographic map of ancient city

of Sagalassos in Turkey with a DEM interpolated from the 50 m interval digitized

maps to investigate the error characteristics. The results showed that error was

distributed with a mean error of 0 m and a standard deviation of 10 m. For

viewpoints ancient watch tower locations were used with a 10 m height and 5 km

16

view radius. The authors applied Monte Carlo simulation method based on the error

distribution data to produce different sets of simulated DEMs, and then calculated

ordinary Boolean viewsheds on these maps. Every cell value in the viewshed got

multiple binary values from different simulations and the combination of these

values gave a probabilistic visibility value for the cell. As probabilistic data is more

difficult to use than a Boolean viewshed, the authors also presented a method to

produce a binary viewshed from a probabilistic viewshed. That method allowed

them to map different probabilistic visibility threshold values for binary viewsheds

with corresponding user’s and producer’s accuracy values.

Bishop (2003) reviewed GIS-based (2.5D) and 3D visual assessment studies. The

first tools for visibility have been developed during the seventies. It is noted that

some of the features of those early attempts were seldom found in contemporary

GIS. Several studies involving visual quality, impact analysis, moving objects, and

atmospheric haze were discussed. Moreover, studies dealing with the extensions to

binary viewsheds and the movement on paths were summarized. Finally, 3D-based

visibility analysis studies were presented and they were proposed as an alternative

to GIS-based approaches in visual impact and quality analysis.

Ervin and Steinitz (2003) investigated the distinction between what is visible and

what is seen. The secondary measurements of the viewshed were discussed; such

as its total area, longest reach, roughness measure of its perimeter, the presence and

number of islands, and the aspect ratio of its major and minor axes. Also, more

human related aspects of visibility, like psychology and cultural perception were

discussed. The authors emphasized the value of path-based visibility for landscape

planners and designers and stated the need to develop specific methods for it. This

methodology was partly inspired by that specific recommendation.

Caldwell et al. (2003) used the the Complete Inter-visibility Database (CID) which

stores pre-computed viewsheds for every point on a raster map to aid visibility

related decision-making process. Two types of products were described: descriptive

metrics and tactical decision aids. Descriptive metrics included cumulative

visibility, slope of cumulative visibility, fragmentation, core area visibility, and

ratio of cumulative visibility to core area visibility. Tactical decision aids included

17

percentage of a target that was visible and the least/most visible routes. The CID

generation for a 466×336 pixels elevation map took approximately 44 hours on a

multi-computing architecture having 13 processors.

Kim et al. (2004) studied the optimal site selection problem in terms of total

viewshed ratio which is usually absent in current GIS software. The aim of the

optimal site selection is to find the best observer locations that when combined,

give the largest viewshed area possible. They studied a version of that problem

where the number of observer points is fixed (v). Then, optimal site selection is

a combinatorial problem with a computational complexity of O(nv), which has a

very high computation time restricting its applications in any practical situation. To

overcome this problem, the authors proposed two methods. First is using a small

number of candidate sites rather than searching for all the possible locations. The

second is to use a number of heuristic algorithms with relatively small computation

times. For heuristic algorithms, they applied three different approaches that were

originally used for location-allocation type problems: swap algorithm, genetic

algorithm, and simulated annealing algorithm. On a 40x40 pixel sample DEM

map, these two methods cut down the computation time two orders of magnitude

but at the cost of a 10% loss in total viewshed area. While the simulated annealing

produced the best results, the gains over swap approach was only marginal and the

relative computational cost was too high.

Wu et al. (2006) analyzed the perception of visual quality through the use of several

impact factors in GIS. Their method extensively used the visibility information

with distance factors to weight the visual quality perception at a given source

location. The eight features affecting the quality were determined as: pasture, other

vegetation, shore, creek, road, building, slope, and sea. Also, the height of mapped

surfaces were superimposed over the ground DEM layer to include the buildings,

canopy, etc. Distance factor was taken as 1/d. A table of factor indices were

constructed which was the basis for the methodology. Visual quality coefficients

for the factors were generated with the help of regression modeling techniques and

opinions of human observers about the photos of various landscape locations in the

18

area. Finally, all of the study area has been assigned a visual quality score based on

the spatial interpolation of the sample locations by the use of kriging method.

Although the method used by Wu et al. (2006) employed many different factors,

the results were for single point locations and it focused on the perception of

scenic beauty only. The method in this thesis aims for a more general and simpler

methodology that is more suitable for movement on directional paths and also that

can be used for many other application areas aside from the perception of beauty.

Riggs and Dean (2007) studied the error sources contributing to viewshed analysis.

They compared a field surveyed viewshed with GIS software generated predicted

viewsheds by the use of a survey-generated TIN surface which was converted to

raster data and a USGS 10m DEM data. They categorized the errors as DEM errors,

spatial resolution related errors, and algorithm based errors. The effects of errors

in the DEM data were analyzed by the addition of pseudo-random spatially auto-

correlated noise surfaces. This showed that substantial errors in viewshed results

can be caused by relatively small errors in the source DEMs. The accuracy of

predicted viewsheds as compared to the field survey viewshed was shown to be

at best 85%. The agreement between GIS software was between 89% and 93%

on visible regions. The lack of documentation describing the assumptions and the

processes for major GIS viewshed tools was stated as a problem. The authors also

remarked that floating-point arithmetic in computers is inherently imperfect leading

to some errors in the computational results. A surprising finding was the failure

of TIN-based analysis approaches in producing more accurate results which was

attributed to the weakness of algorithms for TIN surfaces.

Lu et al. (2008) studied the problem of finding the least visible path (LVP) on

a terrain which is a type of least cost path planning with visibility as the cost

surface. They proposed a new method that considered the visibility correlation of

adjacent points. Path based visibility were calculated using accumulative total of

the visibility indices of the path points. The new method provided a path with fewer

points in the terrain that can see the path than the traditional method.

19

CHAPTER 3

METHODOLOGY

3.1 Methodology Overview

The methodology developed in this study incorporates three different approaches

into standard visibility analysis. These approaches can be named as multi-visibility

for paths, weighted targets, and directional visibility. Although these approaches

have been individually researched in some degree before, this study aimed to use

them in a more collaborative way in order to visually and quantitatively assess the

quality of visibility along a path, or the ‘visibility value’ of a path.

A supportive idea to the methodology is to automate the process as much as

possible using GIS based software tools. Since the available free and open source

tools provided limited solutions in this aspect, a new, more unified tool has been

developed for this study. Software development process is described in detail in

Chapter 4.

Although the steps should be applicable to any type of DEM data, this study focuses

on the raster based (RSG) terrain models. Furthermore, the source and targets for

the analysis are restricted to the set of grid points, or the cells on the raster map.

All inter-pixel locations use the value of the nearest pixel locations. Otherwise, the

computation needs for such inter-pixel positions and related interpolations would

considerably slow down the speed of calculation.

Simple binary visibility forms the basis for the analysis. All further enhancements

sit on that foundation. For the software, an accurate algorithm that finds whether

20

two points are inter-visible or not is created in the first place. The software is

developed as a plugin to the open source and free Quantum GIS package. Although

it can readily calculate line of sight profiles by the use of other plugins, Quantum

GIS currently does not have the ability to calculate full binary viewsheds.

3.2 Multi-Visibility for Paths

Multi-visibility, or cumulative visibility, simply combines many simple binary

visibility results from a set of points. It can be called as the multiple-source version

of a viewshed. The source set can be multiple distinct points, lines, or areas as seen

in Figure 3.1. When the source set is a line or an area, a suitable set of points on the

line or inside the area can be chosen as the source points. The suitable set of points

can be any set that reasonably defines the line or area and depends on the specific

goals of the study.

For raster data, one reasonable way of choosing source points would be to select

all points corresponding to the underlying raster pixel locations. This kind of

operation is usually called as the ‘rasterization’ of a vector data. Rasterization uses

specific algorithms to find the correct raster positions matching with the continuous

vector lines or areas. It is used extensively in the computer graphics field. One of

the most popular rasterization algorithms is known as the Bresenham’s algorithm

(Bresenham, 1965). An example rasterization process on a DEM map can be seen

in Figure 3.2. The cells in this DEM have point-type values located on their top-

(a) (b) (c)

Figure 3.1: A DEM map showing sample multi-visibility sources for points (a),
lines (b), and polygons (c).

21

left corners. Therefore, the rasterization algorithm selects the cells based on their

top-left corner locations.

The source set for this study consists of one dimensional vector lines representing

a real path on the terrain. The vector can be constructed on the middle line of a

path having a specific width. The vector path was treated as a multi-point set of

source points selected by the rasterization algorithm. Then, the binary viewsheds

calculated for the selected cells on the line can be combined in a number of ways.

Some of the combination alternatives can be illustrated with an example source set

consisting of 8 discrete points (Figure 3.3). One simple combination alternative

would be the set union of the visible points. In the set union, all the visible points

of all the source viewsheds can be seen in a unified way as seen in Figure 3.4(a).

Another alternative is using the set intersection on the sets and display only the

visible points that exist in both viewsheds (Figure 3.4(b)). If we are interested in

the locations that can be seen from only one of the observers but not both, we can

use the symmetric difference (i.e., set union minus the set intersection) of two sets

(Figure 3.4(c)).

Although these set operations can be useful for certain types of selection queries,

they are usually ineffective in answering aggregate questions. For example, if we

are interested in how many cells are affected by any kind of overlap for these 8

sample points, we can use the set intersection on every pair and then perform a

set union on these intersections to get the overlapped cells. But this would be

an unnecessarily complicated operation. Instead, let’s assume we have a visibility

count (Ci) for every cell indicating how many times that particular cell was seen.

Then, a simple selection operation with Ci > 1 would give us the correct result.

There are many situations that can take advantage of visibility counts. It can also

be used to calculate a quantitative measure of overlap for a given configuration by

a simple addition of the visibility counts of the cells. However, one of the biggest

advantage aggregation provides is the opportunity to display the counts as a pseudo-

surface overlayed on the actual map. These types of aggregate surfaces can be called

as visibility surfaces.

22

(a) Sample DEM cells (b) A vector line

(c) DEM cell corners selected by the rasterization
process

(d) DEM cells describing the selected corners

Figure 3.2: An example rasterization process using an optimized Bresenham’s
algorithm on a DEM having top-left-corner based point-type cells.

In this study, visibility counts and visibility surfaces were used for the multi-

visibility operations. A visibility surface for the given 8 observers can be seen in

Figure 3.5. Since there were only 8 observers (and only 5 viewsheds that overlap in

maximum), the surface has not much detail for this example.

When every cell position in a DEM map is taken both as an observer and as a

target, a total viewshed is produced (Figure 3.6). Total viewshed can be useful in

analyzing the general visibility characteristics of an area. It also usually reveals

very rich details about visibility that were otherwise hidden. However, boundary

effects should be taken into account when assessing total viewsheds.

When the source set is a line, the values accumulated for each target cell can be

interpreted in different ways, besides “how many times it has been seen”. If the

line is considered as an object, the question would transform into “how much of the

target can see a part of me?”. Another possibility would be to see the line as a

designated path for a point type observer. This time, the question would be “how

23

(a) Sample points

(b) Point 2 viewshed

(c) Point 6 viewshed

Figure 3.3: Eight discrete observer points (a) and the viewsheds for the point 2 (b)
and point 6 (c) within 1 km radius of the observers. White cells indicate the visible
areas.

24

(a) Union of viewsheds for points 2 and 6

(b) Intersection of viewsheds for points 2 and 6

(c) Symmetric difference of viewsheds for points 2 and 6

Figure 3.4: Some combination alternatives for a multi-visibility situation: union (a),
intersection (b), and symmetric difference (c).

25

(a) Color shaded

(b) Relief shaded

Figure 3.5: Visibility surface for the multi-visibility of 8 observers.

26

(a) Real elevation of the area

(b) Total viewshed result

Figure 3.6: Total viewshed example for a small area that has 44x33 cells.

27

often can the observer see me?”. In this study, that last scenario has been taken into

account.

The path visibility surface is illustrated in Figure 3.7. The sample path is

approximately 4.9 km in length and the observer is assumed to be 2 m in height

above the ground level. The path covers 183 cells of the DEM map as given by

the Bresenham’s algorithm. In total, 19,705 unique (and cumulatively, 913,242)

target locations were analyzed for this example. The minimum value was 0 and the

maximum value was 69 with a mean of 14.06 and a standard deviation of 14.80.

The visibility surface can be seen to form virtual sharp ridges and peaks around the

real valley slopes and dips around the bottom of real valleys. Also, it usually forms

large virtual plains around locations having high elevations.

The aggregations up to this point have all been about the target cells. However,

we can also do the inverse, i.e., use a count for the source cells. These cumulative

values would indicate the number of target cells visible from each source cell. With

path-type sources, these inverse visibility counts indicate the amount of visible area

for every point on the path. An inverse visibility count example for a path was given

in Figure 3.8. The minimum value for the cumulative path counts was 673 and the

maximum value was 2,555 with a mean of 1,502.71 and a standard deviation of

499.32.

We can define a total path value, as the sum of all the inverse counts for the observer.

In the given example, total path value was 277,071. Since there are 183 cells on

that path, we can find an average path value for it; which would be 1,514.05 for this

particular example.

These two methods ensure that every target and every source cell can individually

be assigned a cumulative visibility value. In this study, both of these methods are

used together to analyze the visibility value of a path.

28

(a) Sample path

(b) Visibility surface of the path (color shaded)

Figure 3.7: A sample 4.9 km length path on a terrain (a) and its color shaded
visibility surface within a 1 km radius of the observer (b).

29

Figure 3.8: Inverse visibility count for the sample path displayed by corresponding
raster cells.

3.3 Weighted Targets

In the standard multi-visibility, cumulative values are calculated by a simple

addition of visibility counts. This is acceptable for the situations where we are

only interested in the counts or when the target cells all have equal importance.

However, when the visibility state of some locations are considered more important

than the others, this simple approach may not be powerful enough.

Through the definition of importance factors (or weights) for specific target zones,

multi-visibility can be greatly enhanced. Then, weights (Wi) for those zones may

be used to indicate the desirability of visibility for them. If we assign the weight

of 1 to the non-weighted cells, we can define more preferable or important cells by

giving them a weight such as Wi > 1. For less preferable or less important cells,

the weight would be defined such that 0 < Wi < 1. An ineffective cell can have a

weight with Wi = 0. Furthermore, we can define negative weights; the points that

30

are undesirable with Wi < 0. Such weighted visibility surfaces, in a more primitive

form, have been proposed even in the earliest works such as Travis et al. (1975).

The weights can also be defined for the source cells, but this scenario is not in

the scope of this study which focuses on the weights defined for the target cells.

Weights can be taken into account for just the target surface, for just the source

surface (which is a path in our case), or for both of them. For this study, weights

have been taken into account for both of them.

The resulting weighted visibility surface for the targets can be used to see the

weighted effects of seeing a particular target point from a particular path. Similarly,

the weighted inverse visibility surface (or count) for the path can be used to see the

important observer locations having more preferred views. Then, we can calculate

the weighted total path value and the weighted average path value quantitatively

for any path and compare different paths with each other.

A simple way to define weighted zones in a GIS environment would be to describe

them by vector polygons. In Figure 3.9(a), various weight zones are illustrated with

different weights. The visibility surface for our previous path was calculated with

the same parameters and a 2 km radius. But this time, the weight zones for the

targets were also taken into account. The results can be seen in Figure 3.9(b). The

resulting surface was clearly affected by the weight zones. Relief shaded version

that are shown in Figure 3.10 provide strong visual information about the weighted

(or preferred) visibility structure of the sample area. Minimum value for the surface

was -73, the maximum value was 345, and the total target cell number was 36,274

for this example.

In the weighted inverse visibility count, the weighted total path value was

1,068,425.6 and the weighted average path value was 5,838.39 for 183 observer

locations. The weighted inverse visibility surface is given in Figure 3.11.

31

(a) Weight zones

(b) Weighted visibility surface

Figure 3.9: Sample weight zones defined as vector polygons (a) and the weighted
visibility surface for the path with a radius of 2 km (b).

32

Figure 3.10: Relief shaded view of the weighted visibility surface given in Figure
3.9.

Figure 3.11: Weighted inverse visibility count for the sample path displayed by
corresponding raster cells.

33

3.4 Directional Visibility

Another parameter that can be included for every observer point is angular range of

the view, or field of view (FoV). Angular range can be defined with a direction of

sight and an angle of view (Figure 3.12). The direction of sight is the bisector of

the view angle.

When there are multiple observer locations as in a multi-visibility situation, the

direction and view angle information should be defined for all of the observers. If

the source set is a line, it would be reasonable to give a single direction and angle for

the set of points lying on that line. In our scenario, we assume a moving observer

on a given path. If we also assume that our observer has a fixed angle of view, we

can define an automated way of finding the field of view for every point on the path.

The directions for the points can be derived from the tangent line to the path at that

specific location. This requires a direction to be defined also for the path itself by

designating one of its end points as the origin point. The directions and the field

of views have been illustrated for a couple of sample points on a path going from

left to right in Figure 3.13. With directional visibility taken into account, the multi-

visibility surfaces of two opposite directions would differ from each other whenever

the view angle is smaller than 360◦.

In Figure 3.14, the effects of direction on the visibility surface is shown for our path

with a view angle of 60◦. The height of the observer has been increased to 20 meters

in order to have more visible targets and the distance limit was defined to be 1 km.

The difference can be seen more easily from the shaded versions of the surfaces as

illustrated in Figure 3.15 and Figure 3.16.

A more thorough comparison between the two directions is given in Table 3.1. The

table clearly shows there may be great differences in the multi-visibility analysis for

opposite directions of the same path. It can be said that the left to right direction

is about 18.70% more preferable (according to the average path values) than the

opposite one, assuming that more visibility value is being aimed and if edge effects

are not taken into account.

34

Figure 3.12: Directional field of view for 60◦ of view angle.

Figure 3.13: Directional field of view on a path with a constant view angle and
dynamic directions.

35

(a) Directional visibility surface from left to right

(b) Directional visibility surface from right to left

Figure 3.14: Directional visibility surfaces for a path shown in both directions (left
to right in (a) and right to left in (b)). The constant view angle for this particular
example was 60◦, the height of the observer was 20 meters, and the distance limit
was defined to be 1 km.

36

Figure 3.15: Relief shaded version of Figure 3.14(a).

Figure 3.16: Relief shaded version of Figure 3.14(b).

37

Table 3.1: Comparison of multi-visibility analysis for different directions on the
same path.

Left to Right Right to Left
Visibility Observer Visibility Observer
Surface Path Surface Path

Number of Cells 11,489 183 10,599 183
Minimum Value 0.0 67.0 0.0 24.0
Maximum Value 41.0 828.0 41.0 822.0
Mean Value 9.04 562.98 8.25 476.00
Standard Deviation 10.45 217.27 9.89 227.44
Total Path Value - 103,845.00 - 87,486.00
Average Path Value - 567.46 - 478.06

3.5 Combined Approach and Visualization

The approaches mentioned in this chapter have been combined in this study in

a supportive way to define a general methodology for path-based multi-visibility

analysis. The combined approach can be used to assess and compare the ’visibility

value’ of different paths for specific situations.

This methodology can be used to model observers with limited view angles and

ranges that are moving on directional paths on a terrain with weighted zones. The

weights can be modified to model different scenarios and preferences.

The resulting weighted visibility surfaces and weighted path value profiles can

be visualized at the same time. These can provide a visual perspective in the

assessment of the visibility properties for a given scenario.

Besides the visual outputs, quantitative results, such as the average path value, can

be used to formally analyze different models and to compare them with each other.

3.6 Flowchart

The general steps of the methodology are illustrated in Figure 3.17. The flowchart

includes two main loops: one over the source path, another over the target cells. A

38

third inner loop is also present for the calculation of the inter-visibility between two

locations as part of the specific algorithm for that.

Figure 3.17: General flowchart for the methodology.

39

CHAPTER 4

SOFTWARE DEVELOPMENT

4.1 Development Platform

As geographical information systems become more and more capable in their

features while finding wider application areas, available software development

options have been multiplied. Software developers are now able to choose from

many GIS libraries and host environments.

In a general sense, there are two main alternatives for desktop based GIS application

development. In the first one, a developer builds everything from scratch using

other third party libraries as necessary. There are many useful commercial and non-

commercial GIS libraries dealing with different aspects of the domain. Many GIS

applications also provide their software capabilities as a series of code libraries.

The other alternative is to use a host application that has a plugin mechanism, and

develop a software plugin for that host environment. The plugin, in this scenario,

can access to the user interface and features of its host application. This approach

simplifies development and makes the software easily available for the already

existing user base of the host platform.

In this study, the second approach was followed on the WindowsTM version of the

popular Quantum GIS software (http://www.qgis.org). Quantum GIS project was

founded in 2002 by Gary Sherman as a free and open-source software. Over the

years, it has become one of the most popular GIS tools with its many new features

and its ability to run on multiple platforms (Sherman, 2008). It provides a plugin

40

mechanism that supports extensions written in C++ and Python programming

languages. Python (http://www.python.org) was preferred for the development

of the plugin as its interpreted nature and advanced dynamic data manipulation

features proved to be highly useful in the development process.

Plugin development for Quantum GIS requires several libraries (Quantum GIS

Development Team, 2010). To match the development environment with the

dependencies of the host platform, version 2.5 of Python was installed with the

Win32 extensions as opposed to the latest version (2.7). A special Python module

named NumPy was used to handle array operations necessary on the raster data.

Since Quantum GIS uses Qt windowing toolkit from Nokia (http://qt.nokia.com),

special Python bindings of Qt was needed for the plugin. This binding has been

provided by the PyQt project (http://www.riverbankcomputing.co.uk). For the

geometry related operations such as polygon intersections, Quantum GIS provides

the necessary interfaces by the use of the Shapely (http://pypi.python.org/pypi/

Shapely) package for Python. As editor, free Komodo Edit software was used

as it could easily manage special whitespace requirements of Python. Another

important library used was GDAL/OGR Python bindings (http://www.gdal.org),

which handles many vector and raster data types including GeoTIFF. A list of

software used for the development can be seen in Table 4.1.

Table 4.1: Software setup for the development environment of the plugin.

Software Version Installation File
Quantum GIS 1.5.0 (Tethys) QGIS-OSGeo4W-1.5.0-14109-Setup.exe

Python 2.5.2 python-2.5.2.msi

PyWin32 214 pywin32-214.win32-py2.5.exe

PyQt 4.7.4-1 PyQt-Py2.5-gpl-4.7.4-1.exe

Komodo Edit 5.2.4 Komodo-Edit-5.2.4-4343.msi

NumPy 1.4.1 numpy-1.4.1-win32-superpack-python2.5.exe

GDAL/OGR 1.6.1 GDAL-1.6.1.tar.gz & gdalwin32exe160.zip

41

4.2 Viewshed Comparison

The algorithm used to calculate the inter-visibility between two points is based

on the R3 method of Franklin and Ray (1994) as mentioned in Section 2.3.

The accuracy of the whole methodology mostly depends on the accuracy of the

implementation of the R3 algorithm. To investigate this, a sample binary single-

point viewshed was calculated and then compared with the results obtained from

commercial Global Mapper 11 (http://www.globalmapper.com/) software.

An observer height of 100 meters and a distance limit of 4 kilometers were

used for the comparison viewshed for the same location (Easting: 312319.8057,

Northing: 4168645.815, Zone: 36N in UTM). As the output of Global Mapper

is in vector format, the raster output for the implementation was also converted

to vector representation for comparison. The viewshed area obtained from

Global Mapper (Figure 4.1) and the implementation (Figure 4.2) show similar

characteristics. Figure 4.3 shows the overlapped area and the non matching parts.

The viewshed areas were 22,578,750 m2 for Global Mapper and 21,741,875 m2 for

the implementation. The agreement between the two is 90.97% based on the ratio

of the intersection area to the union. This value is within the margin that Riggs and

Dean (2007) found (89%-93%) in their comparison of visibility calculations from

different GIS software. The small difference among the results can be attributed

to the specific assumptions made by different software like the value point of the

raster cells, whether discrete or continuous analysis has been done, the effect of the

floating-point calculations, etc.

4.3 Software Features

The main dialog of the plugin can be seen in Figure 4.4. The plugin works on the

loaded layers of Quantum GIS. Suitable DEM files from the current project is listed

to be chosen as the elevation layer. Also, a descriptive text for the analysis can be

given by the user. The other main inputs for the plugin are the source and target

selection areas.

42

Figure 4.1: A sample single-point binary viewshed result calculated by Global
Mapper 11 software.

Figure 4.2: The same sample single-point binary viewshed from Figure 4.1 as
calculated by the algorithm implemented for this study.

43

Figure 4.3: The overlap map showing the intersection area of the viewshed regions
from Global Mapper and the implementation. The overlapped area is 90.97% of the
union of results. The black regions are the overlapping parts and the white regions
are the differences. The DEM map has been replaced with a gray background for
better contrast.

In the source selection area, a path layer can be chosen. Only the line type vector

layers are listed here. The user should select a path in the layer by the selection tool

of the host application. The plugin can only operate on one path at the same time.

Observer height value can be also given here in the positive map units. The ends of

the selected path are marked with the letters ‘A’ and ‘B’ by clicking the “Display

A-B on map” button. The user then can select one of the end points as the starting

location of the path. A view angle can also be given in this area as degrees or by

selecting “No restriction” for 360◦ views.

Target selection area defines the target zone and the weighting criteria. A distance

limit for the observer can be given here in map units. A suitable polygon layer for

the weight zones can also be chosen. The decimal type attribute fields of the chosen

polygon layer are listed for the selection of the weight value field. A checkbox

allows the user to limit the targets only to the areas inside the polygons. Finally, a

44

distance factor can be entered here as an additional weighting effect. The distance

factor is used to diminish the weight by a value proportional to the distance of the

target from the observer. The formula used in the plugin was “w = wo/2(d/ f)”,

where w is the new weight, wo is the original weight, f is the distance factor, and d

is the distance in map units. Effectively, the weight is halved whenever the distance

reaches a new multiple of the distance factor.

Once all the information is entered, analysis can be started by clicking the

“Analyze” button. Through the analysis, a convenient blue circle is displayed along

the path indicating the current observer location as seen in Figure 4.4. When the

visibility analysis is complete, two new raster maps are created with the same

settings as the original DEM map. The calculated visibility surface and the path

profile are stored in these raster maps. The new layers are automatically loaded into

the current project. Also the calculated total and average path values are written in

a results file. A sample project result can be seen in Figure 4.5.

4.4 Implementation Details

The core of the visibility calculation in the plugin is the visibility function. The

visibility function simply calculates the visibility of a target from an observer

location. It accepts the locations that were given in the raster coordinate system

(i.e., pixel counts from the top-left corner of the raster data). The visibility function

is defined as:

1 def visibility(self, rObserver, rTarget):

2 (rObserverX, rObserverY) = rObserver

3 (rTargetX, rTargetY) = rTarget

4

5 lineIter = bresenham(0, rObserverX, rObserverY, rTargetX, rTargetY)

6 try:

7 lineIter.next()

8 except StopIteration:

9 return True

10

45

Figure
4.4:T

he
m

ain
interface

and
the

m
arkerposition

during
an

analysis
process.T

he
red

arrow
show

s
the

m
arkerforthe

currentobserver

location.

46

Fi
gu

re
4.

5:
A

sa
m

pl
e

pr
oj

ec
tv

ie
w

af
te

ra
n

an
al

ys
is

.

47

11 delta = max(abs(rTargetY - rObserverY), abs(rTargetX - rObserverX))

12

13 observerGroundElev = self.rasterIO.getValue(rObserverX, rObserverY)

14 observerElev = observerGroundElev + self.currentObsHeight

15 targetElev = self.rasterIO.getValue(rTargetX, rTargetY)

16

17 losElevStep = self.calculateStep(observerElev, targetElev, delta)

18 losElev = observerElev

19 for (x, y) in lineIter:

20 losElev += losElevStep

21 rValue = self.rasterIO.getValue(x, y)

22 if rValue > losElev:

23 return False

24

25 return True

This function starts with the calculation of the 2D line of sight (on the x-y plane)

using Bresenham’s algorithm to generate a Python iterator function. Bresenham’s

algorithm is defined by:

1 def bresenham(includeTarget, x0, y0, x1, y1):

2 steep = abs(y1 - y0) > abs(x1 - x0)

3 if steep:

4 x0, y0 = y0, x0

5 x1, y1 = y1, x1

6 reverse = x0 > x1

7 deltaX = abs(x1 - x0)

8 deltaY = abs(y1 - y0)

9 error = int(deltaX / 2)

10 y = y0

11 if y0 < y1:

12 yStep = 1

13 else:

14 yStep = -1

15 if reverse:

16 r = xrange(x0, x1-includeTarget, -1)

17 else:

18 r = xrange(x0, x1+includeTarget)

19 for x in r:

48

20 if steep:

21 yield (y, x)

22 else:

23 yield (x, y)

24 error -= deltaY

25 if error < 0:

26 y += yStep

27 error += deltaX

This function is optimized to use strictly integer-based calculations in order to

increase the processing speed. It uses an integer error value to determine the

discrete coordinate changes for the raster axes. This function also takes advantage

of the generator feature of the Python language which allows the lazy generation of

the raster pixels.

The visibility function then calculates the elevation change per pixel on the line of

sight. The elevation of the intermediate locations on the path is compared with the

elevation of line of sight on that location. If the elevation of the location exceeds

the elevation of line of sight, the point is blocking the sight and the function returns

false. Otherwise, if no intermediate pixel blocks the sight, the target is determined

as visible.

The methodology translates into two nested loops in the main algorithm for the

plugin. The outer loop iterate over the observers, while the inner loop iterate over

the targets for the current observer. The observers and targets are defined in the

discrete raster coordinate system. In the plugin code, the outer loop has been

implemented as two nested loops. The outer loop finds the straight line segments

of the path and the inner loop finds the observers in the current line segment.

The viewFieldFromSegment function uses geometry capabilities of Quantum GIS

to find the polygon that defines the view field based on the observer location and

the direction of the line segment. The main algorithm for the plugin can be listed

as:

1 for rSegmentCoordsF in rPathSegmentsIter:

2 rSegmentCoords = map(int, map(round, rSegmentCoordsF))

49

3 rSegmentPointsIter = bresenham(0, *rSegmentCoords)

4 for rObserver in rSegmentPointsIter:

5 totalObservers += 1

6 vObserver = mtp.toMapCoordinates(*rObserver)

7 rasterIO.addPathValue(rObserver, 0)

8 if not fullView:

9 viewFieldPolyGeo = viewFieldFromSegment(

10 rObserver, *rSegmentCoordsF)

11 rTargetPointsIter = rasterTargetGenerator(vObserver)

12 for rTarget in rTargetPointsIter:

13 visible = visibility(rObserver, rTarget)

14 weight, wasPolygon = findWeight(rTarget)

15 df = float(vapInput.distFactor)

16 dist = float(resolution *

17 math.sqrt(QgsPoint(*rObserver).sqrDist(*rTarget)))

18 if (not vapInput.limitPoly) or (wasPolygon):

19 if visible:

20 if df <> 0.0:

21 weight /= 2**(dist/df)

22 rasterIO.addValue(rTarget, weight)

23 rasterIO.addPathValue(rObserver, weight)

24 self.totalPathValue += weight

25 else:

26 rasterIO.addValue(rTarget, 0)

27

28 averagePathValue = totalPathValue / float(totalObservers)

4.5 Algorithmic Complexity

The name for the R3 algorithm that was defined by Franklin and Ray (1994) comes

from the time requirements of the algorithm based on the radius of visibility limit

of the observer. In this sense, R3 has a cubic time complexity of O(n3) when the

input size is controlled by the radius of visibility. If the radius is taken as r in pixel

counts, the target area (full view field) would have pi · r2 cells.

For every target cell, the intermediate cells from the observer to the target should

be analyzed for obstruction. Whenever an obstructing cell is found, the target

50

is marked as not visible. Although the precise cut point would be dependent

on the specific characteristics of the terrain, it can be assumed that half of the

intermediate cells would be checked on average for any target. The distance to the

target obviously would be different for every target. However, in any case, it can be

said that the intermediate cell checks will increase with the visibility radius of the

observer.

In total, the time complexity for a single observer visibility computation with R3

becomes O(n3) for a radius based input definition. This is valid only for a single

binary viewshed computation with R3 algorithm. For the multi-visibility situation,

the only change would be the number of observers. Since the number of observers

is an independent variable from the number of targets, the algorithmic complexity

can only be defined if the observer locations can also be defined in terms of the input

size (radius on this case). For example, a path length that is equal to the visibility

limit radius would result in a complexity value of O(n4).

51

CHAPTER 5

APPLICATION OF THE METHODOLOGY

5.1 Sample Region and Paths

Kovada Lake in Turkey has been selected as the test case for this study (Figure

5.1). Kovada Lake is located 30 km south of Egirdir, a district of Isparta province.

The lake with the surrounding area of 6,534 hectares has been one of the national

parks of Turkey since 1970. The circumference of the lake is 20.6 km and there are

walking courses around the lake for hiking.

Figure 5.1: A satellite view of the Kovada Lake.

52

For the analysis, the DEM data of a sample region of 14.65×9.8 km around the

Kovada Lake has been used used. The map data is acquired from the General

Command of Mapping of Turkey (http://hgk.mil.tr) as GeoTiff files. The map

consists of 586×392 (229,712) pixels with a spatial resolution of 25 meters in both

vertical and horizontal dimensions. DEM data in two different color shadings can

be seen in Figure 5.2. The minimum elevation for the area is 420 meters and the

maximum elevation is 1,670 m with a mean of 1,160 meters. The topographical

characteristics of the region may be better understood through the use of a relief-

shaded map of the same area as given in Figure 5.3

The walking courses around the lake are good candidates for the sample paths.

Three such paths have been constructed based on the actual walking courses

(Figures 5.4 and 5.5). Although those three paths start from different areas, the

paths 1 and 2 meet somewhere along the road, and all the three paths finish on the

same general location where the walking courses meet. Total (2D) line lengths for

the path 1 (4,651 m.) and the path 2 (4,495 m.) are close to each other, while the

path 3 is covering a larger distance (7603 m.).

5.2 Weighted Zones

For the purposes of this study, a number of imaginary target zones have been defined

over the sample area as seen in Figure 5.6. These zones represent the interesting

targets that have been defined for the sample case. The target locations outside

of the zones would have a weight that is equal to 1 by default, while a value of

0 indicates non-visibility. First of all, we have our main interest: Kovada lake.

Obviously, a view of the lake would greatly affect the visibility value of a vantage

point in a positive way. Another important target may be one the hills on the west

side of the area which also has a positive impact on the visibility value. We can

also define some historical ruins in the area that have some value for the observers.

Moreover, a peculiarly beautiful forest scenery and fields at the northern side of the

lake can have their own weights.

53

Figure 5.2: DEM data for the sample region in grey-shade.

Figure 5.3: Relief-shaded version of the sample region.

54

Figure 5.4: Three sample paths based on the walking courses as shown over the
satellite view of the lake.

Figure 5.5: The sample paths around the Kovada lake overlayed on top of the relief-
shaded map of the area.

55

Figure 5.6: Sample zones that were defined for the study.

Targets with weights smaller than the default value of 1 will have a negative effect

on the visibility value of the observer. There are four such zones in the example: a

barren land, a construction site, a dumping ground, and a restricted zone. A weight

of zero would equate the visibility of the target with its non-visibility state. A

negatively weighted target would decrease the visibility value whenever it is visible.

The assigned weights for the sample zones are shown in Figure 5.7.

5.3 Calculation

The software developed for the methodology is used with the paths and target

zones defined in the previous section. For the observer height, 1.6 m is used

representing a walking person. The average fixed viewing angle for the observer in

this study is defined as 140◦ considering the comfortable field of view for a person.

Visibility calculation is limited to a radius of 4,000 m from the observing point for

the purposes of this study.

56

Figure 5.7: Weight values for the sample zones.

All the target points that fall inside the cross section of the field of view and circle

of distance limit are tested by the software for the visibility. Also, a distance factor

of 10,000 m is defined. This distance factor applies a degradation on the weight

of the target points such that the weights are halved every ten kilometers. These

additional parameters are summarized in Table 5.1.

The three sample paths are analyzed with the given parameters in both directions.

The original direction which runs from the northern side of the map to the meeting

point on the southern side is labeled as the direction ‘A’ while the opposite direction

becomes ‘B’. In total, six different analysis results are obtained for the test case.

5.4 Results

The visibility surfaces that have been constructed for the three sample paths in

the previous section are presented in Figures 5.8, 5.9, 5.10, 5.11, 5.12, and 5.13.

The dominant color in these color-shaded maps usually indicates the zero valued

57

Table 5.1: Software parameters for the test case.

Observer Height 1.6 m.
Directional View Angle 140◦

Distance Limit Radius 4,000 m.
Limited to Polygons No
Distance Factor 10,000 m.

locations (i.e., non-visible in most cases) and can be seen to define the borders of

the visibility surface.

It can be observed that some of the target zones did not have any effect on the result.

This happens when no points inside that zone are visible from any of the source

points. On the other hand, the effects of direction can clearly be seen. Higher

visibility values over the lake skews towards the end points of the paths. Since the

lake has a relatively higher weight, target locations inside that area usually dominate

the visibility surface. Also, it can be observed that the surface closely reflects the

reduction effect of the negatively weighted zones.

A 3D view of the terrain can provide an alternative view regarding the relation of

the visibility surface to the actual terrain. The visibility surfaces are overlayed on

the shaded 3D views of the actual terrain in Figures 5.14, 5.15, 5.16, 5.17, 5.18, and

5.19. This overlay map is constructed by the use of several modules from SAGA

GIS software (http://www.saga-gis.org).

It can be seen that, there are many segments on the paths that the visibility range

of the observer is severely diminishing. Another observation is that the view of the

lake is relatively uniform only for the paths 1-A and 3-B. The other path options

emphasize a smaller part of the lake in their course.

The unwanted sights of construction site and the dumping ground are seem to be

mostly present in the paths 1-B and 2-B, while the paths 3-A and 3-B are affected

only by the dumping ground. Other negatively weighted zones are not in any

considerable line of sights. Among the positively weighted zones, the forest scenery

is present mostly for the paths 1-A, 2-A, and 3-B.

58

Figure 5.8: Visibility surface for the path 1-A.

Figure 5.9: Visibility surface for the path 1-B.

59

Figure 5.10: Visibility surface for the path 2-A.

Figure 5.11: Visibility surface for the path 2-B.

60

Figure 5.12: Visibility surface for the path 3-A.

Figure 5.13: Visibility surface for the path 3-B.

61

Figure 5.14: Visibility surface for the path 1-A overlayed over the shaded 3D view
of the actual terrain.

Figure 5.15: Visibility surface for the path 1-B overlayed over the shaded 3D view
of the actual terrain.

62

Figure 5.16: Visibility surface for the path 2-A overlayed over the shaded 3D view
of the actual terrain.

Figure 5.17: Visibility surface for the path 2-B overlayed over the shaded 3D view
of the actual terrain.

63

Figure 5.18: Visibility surface for the path 3-A overlayed over the shaded 3D view
of the actual terrain.

Figure 5.19: Visibility surface for the path 3-B overlayed over the shaded 3D view
of the actual terrain.

64

Apart from the actual terrain, it is also informative to see the constructed visibility

surfaces in a 3D view. 3D views of the six surfaces can be seen in Figures 5.20, 5.21,

5.22, 5.23, 5.24, and 5.25. In these views, the complex patterns of the visibility

surface and the actual impact of an area on the path becomes apparent.

The raster paths which have accumulated weighted inverse visibility counts are

visualized in two ways in the test case. First way is to display a color shaded raster

path map on top of the actual terrain. These maps are shown for the test case in

Figures 5.26, 5.27, 5.28, 5.29, 5.30, and 5.31. To increase the contrast, a black

buffer is added for the paths. Obviously, the source path visibility values are much

higher in average than the values for the targets.

Second way is to display a 2D diagram of the visibility value profile of the paths

as in Figures 5.32, 5.33, 5.34, 5.35, 5.36, and 5.37. In these profile diagrams,

the horizontal axis is used to display the pixel counts along the (rasterized) path

directions. The vertical axis shows the weighted inverse visibility counts for the

corresponding pixels. This diagram can be used to assess the visibility values for

the different points along the path. It can be seen that the profiles for the paths

are not smooth curves and usually have very sharp dips and peaks. This indicates

a relatively quick changing (in terms of ‘value’) visual landscape for the observer

following those paths.

Quantitative results for the test case are given in Tables 5.2, 5.3, and 5.4. The tables

display the opposite directions of the same path side by side. Number of cells,

minimums, maximums, mean values, and standard deviations are calculated for the

target pixels (visibility surface) and the observer pixels (observer path). For the

paths, the total and average path values are also given. Finally, the total number of

visibility calculations for a direction and its total and average calculation times are

given.

The average calculation time for a two-point visibility was around 700 and 800

microseconds for this test case on a notebook computer with a 2.66 GHz CPU and

4 GB of RAM. The total operation times were around one hour for the first two

paths, and around one and a half hour for the third path. Total number of visibility

65

Figure 5.20: Visibility surface for the path 1-A in shaded 3D view.

Figure 5.21: Visibility surface for the path 1-B in shaded 3D view.

66

Figure 5.22: Visibility surface for the path 2-A in shaded 3D view.

Figure 5.23: Visibility surface for the path 2-B in shaded 3D view.

67

Figure 5.24: Visibility surface for the path 3-A in shaded 3D view.

Figure 5.25: Visibility surface for the path 3-B in shaded 3D view.

68

Figure 5.26: Weighted inverse visibility count for the path 1-A.

Figure 5.27: Weighted inverse visibility count for the path 1-B.

69

Figure 5.28: Weighted inverse visibility count for the path 2-A.

Figure 5.29: Weighted inverse visibility count for the path 2-B.

70

Figure 5.30: Weighted inverse visibility count for the path 3-A.

Figure 5.31: Weighted inverse visibility count for the path 1-A.

71

Figure 5.32: Profile diagram for the path 1-A. Horizontal axis represents the pixels
along the path starting from the meeting point. Vertical axis shows the weighted
cumulative value for the corresponding pixel.

Figure 5.33: Profile diagram for the path 1-B. Horizontal axis represents the pixels
along the path starting from the meeting point. Vertical axis shows the weighted
cumulative value for the corresponding pixel.

72

Figure 5.34: Profile diagram for the path 2-A. Horizontal axis represents the pixels
along the path starting from the meeting point. Vertical axis shows the weighted
cumulative value for the corresponding pixel.

Figure 5.35: Profile diagram for the path 2-B. Horizontal axis represents the pixels
along the path starting from the meeting point. Vertical axis shows the weighted
cumulative value for the corresponding pixel.

73

Figure 5.36: Profile diagram for the path 3-A. Horizontal axis represents the pixels
along the path starting from the meeting point. Vertical axis shows the weighted
cumulative value for the corresponding pixel.

Figure 5.37: Profile diagram for the path 3-B. Horizontal axis represents the pixels
along the path starting from the meeting point. Vertical axis shows the weighted
cumulative value for the corresponding pixel.

74

calculations were around 4.5 to 8 million. Python language is generally considered

to be slower in its computation speed than some other popular languages like the C.

However, due to the rasterization based approach to the visibility algorithm that is

used here, algorithm times remain within the usable and practical ranges.

If we ignore the edge effects, average path values provide a good quantitative

comparison option between the alternative paths. Path 1-A has an average value

of 14,540.59 while its opposite direction (1-B) value is 10,671.60. It can be said

that, path 1 is more preferable when traversed in the direction ‘A’. Similarly, path

2-A is more preferable to path 2-B (8,611.91 to 5,405.83). However, for path 3, the

preferred direction would be the ‘B’ direction (10,150.97 to 10,467.54). If different

paths are compared with each other in terms of their average values, path 1-A turns

out to be the best path for the purposes of the defined test case. If total visibility

values are more important than the averages, this time path 3 would be the preferred

one.

Table 5.2: Analysis results for the first path.

Direction ‘A’ Direction ‘B’
Visibility Observer Visibility Observer
Surface Path Surface Path

Number of Cells 78,012 165 105,849 165
Minimum Value -75.52 255.26 -210.48 9.97
Maximum Value 363.10 36,555.34 429.42 28,670.96
Mean Value 30.75 14,386.74 16.64 10,634.01
Standard Deviation 72.43 11,218.91 52.56 6,232.86
Total Path Value - 2,399,198.02 - 1,760,814.14
Average Path Value - 14,540.59 - 10,671.60
Visibility Calculations 4,514,688 5,141,182
Total Analysis Time 58 m 09.72 s 66 m 47.18 s
Average Time 772.97 µs 779.43 µs

75

Table 5.3: Analysis results for the second path.

Direction ‘A’ Direction ‘B’
Visibility Observer Visibility Observer
Surface Path Surface Path

Number of Cells 78,755 163 94,329 163
Minimum Value -17.96 105.79 -142.43 -82.53
Maximum Value 301.65 33,028.55 187.64 22,767.35
Mean Value 17.82 8,609.07 9.34 5,383.94
Standard Deviation 51.10 9,624.43 29.97 6,221.80
Total Path Value - 1,403,741.49 - 881,150.35
Average Path Value - 8,611.91 - 5,405.83
Visibility Calculations 4,466,160 5,075,769
Total Analysis Time 55 m 03.93 s 59 m 56.32 s
Average Time 739.77 µs ‘ 708.53 µs

Table 5.4: Analysis results for the third path.

Direction ‘A’ Direction ‘B’
Visibility Observer Visibility Observer
Surface Path Surface Path

Number of Cells 93,818 285 118,501 285
Minimum Value -144.56 3.92 -166.27 -596.02
Maximum Value 532.49 41,117.00 414.75 44,816.84
Mean Value 30.84 10,122.93 25.17 10,448.87
Standard Deviation 78.68 9,471.61 71.66 11,270.91
Total Path Value - 2,893,026.54 - 2,983,248.06
Average Path Value - 10,150.97 - 10,467.54
Visibility Calculations 7,242,022 7,891,451
Total Analysis Time 88 m 15.07 s 105 m 21.18 s
Average Time 731.16 µs 801.02 µs

76

CHAPTER 6

DISCUSSION

6.1 Discussion of the Approaches

The methodology developed in this study can be discussed in terms of the three

approaches it combines. The multi-visibility properties of the paths, the definition

of preference through the use of weighting systems, and the directional nature of

moving observers have all been instrumental in the usability of this methodology.

6.1.1 Multi-Visibility for Paths

Although the visibility in its standard form is usually understood as the binary

viewshed generation for a single point-type source, most useful and rich results

are provided by multi-visibility analyses. One dimensional linear paths can be

encountered for many types of multi-visibility cases. For example, a path can be

used to represent a river and multi-visibility can be applied to reveal the percent

of river that is visible from an area (an inverse visibility). These types of analyses

treat the path as a collection of points that form a whole. As opposed to that, in this

study, the path was treated as a sequential collection of positions (and directions)

for an observer which moves in time.

The combination for multiple visibility results were in the form of aggregations

over pixels. As discussed in the previous chapters, there are many type of set

operations that can be applied, but only an aggregation can provide non-binary

result maps. The aggregation has been used for both of the source and target pixels.

77

The cumulative results over the path reveal the overall quality of visibility from

that particular observer location. Contrarily, the cumulative results over the target

area are indications of the ratio of source path that has a visibility relationship with

a particular target pixel. In that sense, these two different aggregations provide

different but complementary information for the multi-visibility over a given case.

6.1.2 Weighted Targets

When the quality of a view or the visibility value of a location is considered, simple

accumulative counts are not enough for many situations. For this reason, weighted

target zones have been introduced in this study. The weighting system provides an

opportunity to define the preference or value characteristics of the area. Obviously,

the weights would only be applicable when the target is visible. Moreover, negative

weights are used to define the zones that are not really preferred.

Two kinds of weighting are used in this study. One is the weights attached to specific

target zones, and the other is the weighting effect of the defined distance factor.

Although, these weights provide a firm base for the modeling of specific test cases,

many different weighting criteria could also be defined. For example; the weights

that are proportional to the height of the targets, the weights that take the slope and

aspect into account, the weights that use the amount of sunlight, etc. Moreover,

specific weights could also be defined for the source points.

Another factor would be whether the weights applied to the source or target

aggregations, or for both. Applying the weights to the source path is usually

desired, because the visibility value of a path would be affected by it. In addition,

applying the weights to the target zones may also be desired, because it would

provide clear visual information on the areas that are most affecting the source path.

Therefore, these two approaches have been used at the same time in this study.

78

6.1.3 Directional Visibility

Since the study focuses on moving observers, the direction of movement should also

be included in the methodology. In the basic sense, two directions are possible for

a given path starting from one or the other end points. The direction of movement

can be linked to the viewing direction for an observer in most cases as it is done in

this study.

The direction is used to restrict the field of view for an observer in the methodology.

In order to do that, a fixed viewing angle is defined for the observer which is

assumed to be following the direction of the path. Although this approach can be a

simplification for many of situations, it provides a basic and automated mechanism

to include the direction in the analysis. It can be improved to include the speed

and behavioral patterns of specific observers. Also, through directional visibility,

opposite directions of the same path can be compared for the same test case.

6.2 Other Application Possibilities

Provided methodology can be used to assess a number of different situations. One

obvious use case is the tourism or sight-seeing related applications as investigated

in Chapter 5. In that case, visual preference of three paths have been compared in

both directions to find out the best alternative for the walking courses.

The path can also be taken as a river, a railway, or a highway as all of these can be

represented by paths. For example, the view from a boat following a river can be

analyzed using this methodology. Another example would be when trying to find

the best route for a new road construction near an ocean that would have the largest

(or longest in time) view of the water body. Sometimes it may be desirable to avoid

the view of certain areas or objects. The view of an industrial garbage area from

different paths can be compared to find out the best alternative.

The visibility can also be used in reverse for certain tasks. When a point is visible

from a certain location, the location would also be visible from that point (if the

79

observer height is also taken into account in the calculation). A reconnaissance type

of operation in a military setting might need to minimize the visibility of people on a

path from a set of watch towers. Finding the minimum visibility path in this setting

would involve a least-cost path analysis on the visibility surface. However, if the

alternative paths have already been defined, a comparison between them can be

done using the given methodology. In this case, the tower areas should be marked

with highly negative weight values.

Additionally, there may be a base station from where the observers should be

visible in maximum amount of time for logistical support. This situation can also

be modeled by defining positively weighted zones for the base stations. Another

example for this case is the mountain climbers following a predefined path that

are observed from the base camp by binoculars for safety. Naturally, it would be

desirable to be able to follow the climbers from the base camp in maximum amount

of time.

These are some of the use cases that the methodology defined in this study

can be applied without much change. By the addition of other variables or

enhancements, many more different scenarios can be analyzed or compared much

more realistically. Some of these possible enhancements are discussed in Chapter

7.

6.3 Implementation Remarks

As described in Chapter 5, the software was implemented as a plugin to Quantum

GIS host environment. This approach allowed the software to be used from any

Quantum GIS installment as the plugins can be downloaded from Internet using the

plugin manager of the host.

Python programming language provided fast development times, rich data types,

and powerful manipulation mechanisms. The only disadvantage of it was the slower

computation speed mostly due to its scripted nature. The speed was also restricted

80

by the use of R3 algorithm which has a cubic algorithmic complexity in time as

described in Franklin and Ray (1994).

Although slower, R3 algorithm provides the most accurate results by using all of the

data without any approximations. The use of other approximated algorithms can be

considered to increase the speed at the expense of accuracy. The approximated R2

and XDraw algorithms are also defined by Franklin and Ray (1994) for this purpose

which provides several order of magnitudes more speed. Izraelevitz (2003) tried to

avoid some of the drawbacks of the XDraw algorithm by introducing a new method

that is also fast but more accurate than the Xdraw.

Kaučič and Žalik (2002) compared several visibility algorithms including the R3,

R2, and XDraw in terms of speed and accuracy. According to that study, for a 100

pixel view radius, the error ratio for R2 is 0.1% and for XDraw is 2.56% compared

to the results for R3. However R2 and XDraw can provide a 30 to 90 times more

speed in terms of calculation time.

In order to increase speed, some optimizations were applied in the implementation

of the methodology. One such optimization is the cell-based approach used in the

algorithm. All the computations are done on the grid locations provided by the

resolution of the DEM, and not in between. To achieve this, the given vector path is

rasterized using the Bresenham’s algorithm and then the specific cell locations on

this rasterized path are followed by the software. The target areas are also handled in

a rasterized fashion further increasing the speed. Finally, the visibility computation

is carried out also in a discrete way without using interpolation or other surface

fitting methods on the in-between locations.

Another alternative for better efficiency in computation of visibility would be to

use distributed parallel computing as discussed by Ware et al. (1998). Due to

the independent nature of visibility algorithms such as R3, each target cell can

be independently analyzed in parallel with the other cells. This property makes

visibility analysis one of the most efficient candidates for distributed computing

as there may be as many as computing resources as there are cells in the target

area. However, it should be noted that many other more approximated fast visibility

81

algorithms are not really suitable for parallelization. These efficient algorithms

usually use the result of the previous calculations in the successive analyses and

must follow a specific order for the cells.

Although there is a small accuracy loss using discrete visibility calculations, it does

not affect the results too much as observed in the comparison study discussed in

Section 4.2. Furthermore, the effects of the errors in DEM data are much more

influential in the results as studied by Nackaerts et al. (1999).

The DEM resolution is also important for the accuracy discussion. Obviously,

more resolution (i.e., smaller cell sizes) provides increased accuracy. However

high resolution maps also need much more data space for storage and more time

for computations. De Floriani and Magillo (2003) provide and overview of the

effects of resolution in visibility analysis. The visibility results are usually affected

by the locations near the observer point as small errors in those locations cause

relatively high changes in the line-of-sight computations from the observer. One

possible solution would be to use the high resolution data near the observers and

gradually use lower resolutions while going further from the observer. However

such an approach would be highly complex in its implementation.

6.4 Presentation of the Results

The main outputs of this study is a weighted visibility surface, a weighted path

profile, and a total/average visibility value for the path. The software automatically

constructs the visibility surface and path profile as separate raster maps in the

current project. Also, a text file with the computed results and information is also

written.

The raster maps can be visualized in many ways according to the specific goals of

the study. It may be desirable to present the visibility surface in a color-shaded

map over a 3D terrain. Another possibility is to construct contour maps with

specific intervals to better understand the change of visibility values over the terrain.

Furthermore, special queries can be applied to select out the specific portions of the

82

surface according to the values. The same arguments can be made for the path

profiles as they are also given as raster maps.

83

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

Visibility analysis has become one of the most used geospatial tools in recent years.

As the quality of the digital elevation data and the available computational power

increased, more and better uses for visibility have been found.

In this study, a combination of different approaches is applied to the standard

visibility analysis in order to develop a visibility assessment system for the

observers moving on directional paths. Through the use of weighted target zones,

the visibility values which indicate the visual desirability of different paths are

compared. Conversely, visibility effects of different target zones are also compared

with respect to the specific source paths. The directional limitations of the field of

view of observers are also been taken into account in an automated way in order to

define a unified approach.

The resulting weighted visibility value surfaces for targets and weighted visibility

value profiles for source paths provide an easy to understand, intuitive insight

into the effects of visibility and visual quality on the scenarios being analyzed.

Quantitative results further enhance this information with mathematically comparable

data.

The conclusions derived from this study is summarized in the list below:

• Visibility surfaces provide a useful mechanism to understand the multi-

visibility characteristics over a terrain.

• Weighted zones can be used to query for different visual preferences.

84

• Automation of some characteristics should be used to improve the practicality

of visibility studies such as the automated calculation of the viewing angles

on the paths.

• For quantitative comparison of different paths, total and average aggregations

over weighted counts provide a good starting point.

• For larger data sets, some kind of approximation method should be applied in

order to reach practical computation speeds.

• Open source public GIS software need to be enhanced with further visibility

capabilities in order to be useful in this area.

Further research is possible for many of the aspects of this study. For example, a

more general moving observer analysis can be introduced taking into account the

speed, time, and the independent direction of view of different observers. Many real

life scenarios (for example, a passenger in a tour bus) would need more parameters

in this area.

The involvement of the enhanced visibility queries as discussed in the works of

Fisher (1996a) can also be useful for some test cases. These enhanced queries rely

on the availability of local and global offset visibility computations which can also

be used in a weighting system.

Another research possibility is the improvement of the weighting system to better

simulate real test cases. The visual effect of a target may be affected by different

factors, such as the atmospheric conditions, lighting, the speed of the observer, the

type of the target, etc. These types of studies usually deal with the visual impact of

an object on an area. Hence, different objects such as the buildings and towers can

also be incorporated into the study.

Error assessment and modeling can also be applied in order to reveal the effects of

the DEM errors on the results. This can be used as an additional weighting criteria

when constructing the visibility surfaces.

Further research can also be conducted on the algorithms used for the visibility

computations. Several approximated algorithms exist as mentioned in Section

85

2.3, which provide acceptable levels of accuracy while being less computationally

expensive.

The approaches used in this study can also be combined with least-cost analysis

methods. The path with the highest average or total visibility value can be computed

and displayed for a given terrain. However, this type of calculations would be highly

expensive in terms of computational resources.

86

REFERENCES

Anile, M., Furno, P., Gallo, G., and Massolo, A. (2003). A fuzzy approach to

visibility maps creation over digital terrains. Fuzzy Sets and Systems, 135(1):63–

80.

Bishop, I. (2003). Assessment of visual qualities, impacts, and behaviours, in

the landscape, by using measures of visibility. Environment and Planning B:

Planning and Design, 30(5):677–688.

Bresenham, J. (1965). Algorithm for computer control of a digital plotter. IBM

Systems Journal, 4(1):25–30.

Caldwell, D., Mineter, M., Dowers, S., and Gittings, B. (2003). Analysis

and visualization of visibility surfaces. In Proceedings of the International

Conference on GeoComputation, pages 751–763. GeoComputation International

Steering Group.

de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. (2008).

Computational Geometry: Algorithms and Applications. Published by Springer-

Verlag, third edition.

de By, R. A., editor (2001). Principles of Geographic Information Systems.

Published by The International Institute for Aerospace Survey and Earth Sciences

(ITC), second edition.

de By, R. A. and Kainz, W. (2001). Geographic information and spatial data types.

In de By, R. A., editor, Principles of Geographic Information Systems, chapter 2,

pages 37–66. Published by The International Institute for Aerospace Survey and

Earth Sciences (ITC), second edition.

De Floriani, L. and Magillo, P. (2003). Algorithms for visibility computation

on terrains: a survey. Environment and Planning B: Planning and Design,

30(5):709–728.

87

Ervin, S. and Steinitz, C. (2003). Landscape visibility computation: Necessary, but

not sufficient. Environment and Planning B: Planning and Design, 30(5):757–

766.

Felleman, J. (1979). Landscape Visibility Mapping: Theory and Practice. Published

by the School of Landscape Architecture, State University of New York, College

of Environmental Science and Forestry.

Fisher, P. (1994). Stretching the viewshed. In Proceedings of the Symposium on

Spatial Data Handling, pages 725–738. International Society of Photogrammetry

and Remote Sensing (ISPRS).

Fisher, P. (1996a). Extending the applicability of viewsheds in landscape planning.

PE & RS: Photogrammetric Engineering & Remote Sensing, 62(11):1297–1302.

Fisher, P. (1996b). Reconsideration of the viewshed function in terrain modelling.

Geographical Systems, 3:33–58.

Floriani, L. D. and Magillo, P. (1993). Algorithms for visibility computation on

digital terrain models. In Proceedings of the SIGAPP Symposium on Applied

Computing, pages 380–387. Association for Computing Machinery (ACM).

Franklin, W. and Ray, C. (1994). Higher isn’t necessarily better: Visibility

algorithms and experiments. In Proceedings of the Symposium on Spatial Data

Handling, pages 751–763. International Society of Photogrammetry and Remote

Sensing (ISPRS).

Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., and Tyler, D. (2002).

The National Elevation Dataset. PE & RS: Photogrammetric Engineering &

Remote Sensing, 68(1):5–11.

Izraelevitz, D. (2003). A fast algorithm for approximate viewshed computation. PE

& RS: Photogrammetric Engineering & Remote Sensing, 69(7):767–774.

Kaučič, B. and Žalik, B. (2002). Comparison of viewshed algorithms on regular

spaced points. In Proceedings of the SIGGRAPH Spring Conference on Computer

Graphics, pages 177–183. Association for Computing Machinery (ACM).

88

Kim, Y., Rana, S., and Wise, S. (2004). Exploring multiple viewshed analysis using

terrain features and optimisation techniques. Computers & Geosciences, 30(9-

10):1019–1032.

Konecny, G. (2003). Geoinformation: Remote Sensing, Photogrammetry and

Geographic Information Systems. Published by Taylor & Francis Inc, first

edition.

Lee, J. (1989). Coverage and Visibility Problems on Topographic Surfaces. PhD

thesis, University of Western Ontario.

Llobera, M. (2003). Extending GIS-based visual analysis: The concept of

visualscapes. International Journal of Geographical Information Science,

17(1):25–48.

Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W. (2005).

Geographical Information Systems and Science. Published by John Wiley &

Sons Inc, second edition.

Lu, M., Zhang, J., Lv, P., and Fan, Z. (2008). Least visible path analysis in raster

terrain. International Journal of Geographical Information Science, 22(6):645–

656.

Maloy, M. and Dean, D. (2001). An accuracy assessment of various GIS-based

viewshed delineation techniques. PE & RS: Photogrammetric Engineering &

Remote Sensing, 67(11):1293–1298.

Mark, D. (1978). Concepts of data structure for digital terrain models. In

Proceedings of the Digital Terrain Models (DTM) Symposium, pages 24–31.

American Society of Photogrammetry & American Congress on Surveying and

Mapping (ASP-ACSM).

Nackaerts, K., Govers, G., and Orshoven, J. (1999). Accuracy assessment of

probabilistic visibilities. International Journal of Geographical Information

Science, 13(7):709–721.

NASA JPL (2010a). ASTER Global Digital Elevation Map (GDEM). http://

asterweb.jpl.nasa.gov/gdem.asp. [last accessed on 14-March-2010].

89

NASA JPL (2010b). ASTER Global Digital Elevation Map (GDEM) access and

download. http://asterweb.jpl.nasa.gov/gdem-wist.asp. [last accessed on 14-

March-2010].

OSGeo (2010). GeoTIFF official information and revision 1.0 specification. http:

//trac.osgeo.org/geotiff/. [last accessed on 23-January-2010].

Peucker, T., Fowler, R., Little, J., and Mark, D. (1978). The triangulated irregular

network (TIN). In Proceedings of the Digital Terrain Models (DTM) Symposium,

pages 516–540. American Society of Photogrammetry & American Congress on

Surveying and Mapping (ASP-ACSM).

Quantum GIS Development Team (2010). Quantum GIS coding and compilation

guide version 1.5 ‘tethys’. http://download.osgeo.org/qgis/doc/manual/qgis-1.

5.0_coding-compilation_guide_en.pdf. [last accessed on 01-August-2010].

Riggs, P. and Dean, D. (2007). An investigation into the causes of errors and

inconsistencies in predicted viewsheds. Transactions in GIS, 11(2):175–196.

Sherman, G. E. (2008). Desktop GIS: Mapping the Planet with Open Source Tools.

Published by Pragmatic Bookshelf, first edition.

Tomlin, C. (1983). Digital Cartographic Modeling Techniques in Environmental

Planning. PhD thesis, Yale University.

Travis, M., Elsner, G., Iverson, W., and Johnson, C. (1975). VIEWIT: Computation

of seen areas, slope, and aspect for land-use planning. USDA Forest Service,

General Technical Report, (PSW-11).

USGS (2010a). National Elevation Dataset (NED). http://ned.usgs.gov/. [last

accessed on 11-May-2010].

USGS (2010b). Shuttle Radar Topography Mission (SRTM). http://srtm.usgs.

gov/. [last accessed on 11-May-2010].

USGS (2010c). Spatial Data Transfer Standard (SDTS). http://mcmcweb.er.usgs.

gov/sdts/. [last accessed on 12-May-2010].

van Zyl, J. (2001). The Shuttle Radar Topography Mission (SRTM). Acta

Astronautica, 48(5-12):559–565.

90

Ware, J., Kidner, D., and Rallings, P. (1998). Parallel distributed viewshed analysis.

In Proceedings of the Symposium on Advances in Geographic Information

Systems, pages 151–156. Association for Computing Machinery (ACM).

Wheatley, D. (1995). Cumulative viewshed analysis: a GIS-based method for

investigating intervisibility, and its archaeological application. Archaeology and

Geographical Information Systems: A European Perspective, pages 171–185.

Wu, Y., Bishop, I., Hossain, H., and Sposito, V. (2006). Using gis in landscape

visual quality assessment. Applied GIS, 2(3):18–18.

Yoeli, P. (1985). The making of intervisibility maps with computer and plotter.

Cartographica: The International Journal for Geographic Information and

Geovisualization, 22(3):88–103.

91

APPENDIX A

SOURCE CODE FOR THE SOFTWARE

In this chapter, source codes for the software implementation of the methodology

are given. The codes are presented without any artificial line wraps and with line

breaks using the syntax of the Python language. The files with the extensions of

‘.py’ are Python files. File extensions of ‘.ui’ indicates the Qt XML files used to

defining GUI windows. The syntax is highlighted using bold text style according to

the keywords of the Python and XML languages for easier readability. Appropriate

comments have been added in code syntax throughout the source code to explain

specific parts.

A.1 init .py

This file is loaded with the plugin module by Quantum GIS in the beginning. It

contains basic information like name and description.

1 # -*- coding: utf-8 -*-

2

3 VERSION = "1.0"

4

5 #**

6 #

7 # The information about this plugin can be found in the ’vap.py’ file...

8 #

9 #**

10

11 def name():

92

12 return "Visibility Analysis for Paths"

13

14 def description():

15 return "This plugin calculates weighted multi-visibility surfaces and "+\

16 "path value profiles for the directional paths"

17

18 def version():

19 return VERSION

20

21 def qgisMinimumVersion():

22 return "1.5"

23

24 def authorName():

25 return "Cagil Seker"

26

27 def classFactory(iface):

28 from vap import VAP

29 return VAP(iface)

A.2 vap.py

This file holds the main class for the plugin. The initialization routine that prepares

the plugin GUI resides here.

1 # -*- coding: utf-8 -*-

2

3 #**

4 #

5 # Visibility Analysis for Paths - version 1.0

6 # ---

7 # This software works as a plugin for the Quantum GIS software v1.5+.

8 # It has been developed as supplementary to the thesis titled

9 # "Weighted Multi-Visibility Analysis on Directional Paths".

10 #

11 # Copyright (C) 2010 Cagil Seker (cagils@gmail.com)

12 #

13 # This source is free software; you can redistribute it and/or modify it under

14 # the terms of the GNU General Public License as published by the Free

93

15 # Software Foundation; either version 2 of the License, or (at your option)

16 # any later version.

17 #

18 # This code is distributed in the hope that it will be useful, but WITHOUT ANY

19 # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

20 # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more

21 # details.

22 #

23 # A copy of the GNU General Public License is available on the World Wide Web

24 # at <http://www.gnu.org/copyleft/gpl.html>. You can also obtain it by writing

25 # to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,

26 # MA 02111-1307, USA.

27 #

28 #**

29

30 from PyQt4.QtCore import *

31 from PyQt4.QtGui import *

32 from qgis.core import *

33 from qgis.gui import *

34

35 import resources_rc

36 import dialogs

37 import vap_io

38

39 from . import VERSION

40

41

42 # Visibility Analysis Plugin (VAP) main class

43 class VAP:

44

45

46 def __init__(self, iface):

47 """Initializes the plugin while QGIS is starting"""

48

49 self.iface = iface

50 self.canvas = iface.mapCanvas()

51

52

53 def initGui(self):

54 """Initializes the GUI after __init__ while QGis is starting"""

94

55

56 self.mainDialog = dialogs.MainDialog(self.iface.mainWindow(),

57 self.canvas)

58

59 # create the main action and bind run method

60 self.action = QAction(QIcon(":/VAP_icon.png") , "Visibility Analysis",

61 self.iface.mainWindow())

62 self.action.setWhatsThis("Performs visibility analysis for a DEM "+\

63 "raster layer")

64 self.action.setStatusTip("Visibility Analysis Plugin")

65 QObject.connect(self.action, SIGNAL("triggered()"), self.run)

66

67 # add VAP to the QGIS interface

68 self.iface.addToolBarIcon(self.action)

69 self.iface.addPluginToMenu("&Visibility Analysis", self.action)

70 self.iface.registerMainWindowAction(self.action, "F7")

71

72

73 def unload(self):

74 """Unloads the plugin from the QGIS. This is called when the plugin

75 is unloaded from the plugins menu and while QGIS is closing."""

76

77 # remove VAP from the QGIS interface

78 self.iface.removePluginMenu("&Visibility Analysis", self.action)

79 self.iface.removeToolBarIcon(self.action)

80 self.iface.unregisterMainWindowAction(self.action)

81 # remove the key binding

82

83

84 # this is called when the plugin starts

85 def run(self):

86 """Runs the plugin"""

87

88 self.mainDialog.initDialog()

89 self.mainDialog.show()

95

A.3 vap io.py

This file mainly stores the helper methods and classes that deal with the input and

output operations for data files and map layers.

1 # -*- coding: utf-8 -*-

2

3 #**

4 #

5 # The information about this plugin can be found in the ’vap.py’ file...

6 #

7 #**

8

9 from __future__ import with_statement

10

11 from PyQt4.QtCore import *

12 from PyQt4.QtGui import *

13 from qgis.core import *

14 from qgis.gui import *

15

16 import osgeo.gdal as gdal

17 import osgeo.gdalconst as gdalconst

18

19 import numpy

20 import os

21 import math

22

23 from string import rfind

24

25

26 def getLayers(filterMethod):

27 """Returns the sorted list of (LayerId, MapLayer) tuples

28 filtered by the filterMethod."""

29

30 layersDict = QgsMapLayerRegistry.instance().mapLayers()

31 # this returns a dictionary

32 layers = sorted(layersDict.items(), key=lambda k: k[1].name())

33

34 filteredLayers = filter(filterMethod, layers)

96

35 return filteredLayers

36

37

38 def layerFilterRaster(layer):

39 return layer[1].type() == QgsMapLayer.RasterLayer

40

41

42 def layerFilterVector(layer):

43 return layer[1].type() == QgsMapLayer.VectorLayer

44

45

46 def layerFilterAll(layer):

47 return True

48

49

50 def layerFilterPoly(layer):

51 return (layer[1].type() == QgsMapLayer.VectorLayer) and \

52 (layer[1].geometryType() == QGis.Polygon)

53

54

55 def layerFilterLine(layer):

56 return (layer[1].type() == QgsMapLayer.VectorLayer) and \

57 (layer[1].geometryType() == QGis.Line)

58

59

60 def drawAB(pathLayer, dialog):

61 if pathLayer.wkbType() != QGis.WKBLineString:

62 return False

63 if pathLayer.selectedFeatureCount() != 1:

64 return False

65

66 selFeat = pathLayer.selectedFeatures()

67 path = selFeat[0]

68 pathPoints = path.geometry().asPolyline()

69 firstPoint = pathPoints[0]

70 lastPoint = pathPoints[-1]

71

72 dialog.charMark1 = CharMarker(dialog.canvas, "A", True, firstPoint)

73 dialog.charMark2 = CharMarker(dialog.canvas, "B", True, lastPoint)

74

97

75 return True

76

77 # The class to mark the A and B characters on the path

78 class CharMarker(QgsMapCanvasItem):

79

80

81 def __init__(self, canvas, char, withBox = True,

82 initPos = QgsPoint(0.0, 0.0)):

83 QgsMapCanvasItem.__init__(self, canvas)

84

85 self.deleted = False

86 self.font = QFont()

87 self.font.setPointSize(8)

88 self.qRect = QFontMetricsF(self.font).boundingRect("."+char+".")

89 self.qRect.moveCenter(QPointF(0.0, 0.0))

90 self.char = char

91

92 self.withBox = withBox

93 self.setVisible(False)

94 self.setPosition(initPos)

95

96

97 def delete(self):

98 self.deleted = True

99 self.setVisible(False)

100

101

102 def setPosition(self, pos):

103 self.mapPos = pos

104 self.canvasPos = self.toCanvasCoordinates(pos)

105 self.setPos(self.canvasPos)

106 self.setVisible(True)

107

108

109 def paint(self, painter, option, widget):

110 if not self.deleted:

111 if self.withBox:

112 pen = QPen(QColor(0, 0, 0))

113 pen.setWidth(1)

114 painter.setPen(pen)

98

115 painter.setOpacity(0.7)

116 painter.fillRect(self.qRect, QColor(0, 255, 0))

117 painter.setOpacity(1)

118 painter.drawRect(self.qRect)

119

120 painter.setFont(self.font)

121 painter.drawText(self.qRect, Qt.AlignCenter, self.char)

122

123

124 def boundingRect(self):

125 return self.qRect

126

127

128 def updatePosition(self):

129 self.setPos(self.toCanvasCoordinates(self.mapPos))

130

131 # The class to mark the currently analyzed location

132 class XMarker(CharMarker):

133

134

135 def __init__(self, canvas, resolution, initPos = QgsPoint(0.0, 0.0)):

136 QgsMapCanvasItem.__init__(self, canvas)

137

138 self.deleted = False

139 self.canvas = canvas

140 self.resolution = resolution

141

142 self.calculateRect()

143

144 self.setVisible(False)

145 self.setPosition(initPos)

146

147

148 def calculateRect(self):

149 scale = int(self.calculateScale())

150 if scale % 2 != 0:

151 scale += 1

152 radius = math.sqrt(2) * scale

153 outScale = int(scale + radius + 10)

154 if outScale % 2 != 0:

99

155 outScale += 1

156 self.qRectPixel = QRectF(QRect(0, 0, scale, scale))

157 if scale < 10:

158 outScale = 24

159 self.qRect = QRectF(QRect(0, 0, outScale, outScale))

160 self.qRect.moveCenter(QPointF(int(scale/2), int(scale/2)))

161

162

163 def paint(self, painter, option, widget):

164 if not self.deleted:

165 self.calculateRect()

166

167 #penBorder = QPen(QColor(200, 0, 0))

168 #penBorder.setWidth(2)

169

170 brushPixel = QBrush(QColor(0, 220, 0))

171 brushOuter = QBrush(QColor(0, 0, 200))

172

173 painter.setOpacity(0.3)

174 painter.setBrush(brushOuter)

175 painter.setPen(Qt.black)

176 painter.drawEllipse(self.qRect)

177

178 painter.setOpacity(0.8)

179 painter.setBrush(brushPixel)

180 painter.setPen(Qt.NoPen)

181 painter.drawRect(self.qRectPixel)

182

183

184 def calculateScale(self):

185 zoom = self.canvas.scale()

186 dpi = self.canvas.mapRenderer().outputDpi()

187 dpm = float(dpi) * 100.0 / 2.54

188 scale = int(dpm / float(zoom) * self.resolution)

189 return scale

190

191 # This class is a simple storage for the input data

192 class VapInput(object):

193

194

100

195 def __init__(self):

196 self.elevationLayer = None

197 self.pathLayer = None

198 self.obsHeight = 0.0

199 self.startPoint = "A"

200 self.viewAngle = 360.0

201 self.distLimit = 100

202 self.polyLayer = None

203 self.weightAttrIndex = None

204 self.weightAttrName = ""

205 self.limitPoly = False

206 self.distFactor = 0.0

207 self.descText = ""

208

209 # This class handles the input/output type of operations

210 class RasterIO(object):

211

212 # open and prepare the elevation raster layer

213 def __init__(self, rasterLayer, dialog):

214 self.rasterLayer = rasterLayer

215 self.layerPath = str(self.rasterLayer.source())

216

217 srcBasename, srcExtension = os.path.splitext(self.layerPath)

218 self.outFileName = srcBasename + "_cva" + ".tiff"

219 self.pathFileName = srcBasename + "_path" + ".tiff"

220

221 self.dialog = dialog

222

223 # use GDAL library to open raster data

224 self.sourceDataset = gdal.Open(self.layerPath, gdal.GA_ReadOnly)

225 if self.sourceDataset is None:

226 return None

227

228 self.rasterXSize = self.sourceDataset.RasterXSize

229 self.rasterYSize = self.sourceDataset.RasterYSize

230 bandCount = self.sourceDataset.RasterCount

231

232 band = self.sourceDataset.GetRasterBand(1)

233

234 # read all of the band in a NumPy type of array

101

235 self.data = band.ReadAsArray(0, 0, self.rasterXSize, self.rasterYSize)

236

237 # construct empty arrays for the output layers

238 self.cumulativeArray = \

239 numpy.zeros(shape=(self.rasterYSize, self.rasterXSize),

240 dtype=float)

241 self.cumulativeArray.fill(-99999)

242 self.pathCumulativeArray = \

243 numpy.zeros(shape=(self.rasterYSize, self.rasterXSize),

244 dtype=float)

245 self.pathCumulativeArray.fill(-99999)

246

247 self.gdalDriver = self.sourceDataset.GetDriver()

248

249 # read a specific coordinate from the DEM layer

250 def getValue(self, x, y):

251

252 value = self.data[y, x] # math matrix notation is row number first!

253

254 return value

255

256 # add a value to the visibility count for the targets

257 def addValue(self, xy, value):

258 (x, y) = xy

259 oldValue = self.cumulativeArray[y, x]

260 if oldValue == -99999:

261 oldValue = 0

262 self.cumulativeArray[y, x] = oldValue + value

263

264 # add a value to the visibility count for the path

265 def addPathValue(self, xy, value):

266 (x, y) = xy

267 oldValue = self.pathCumulativeArray[y, x]

268 if oldValue == -99999:

269 oldValue = 0

270 self.pathCumulativeArray[y, x] = oldValue + value

271

272 # create the raster map on the file system for output

273 def createRasterLayer(self):

274 fileName = self.outFileName

102

275

276 while (os.path.isfile(fileName)):

277 base, ext = os.path.splitext(fileName)

278 i_under = rfind(base,"_")

279 if i_under == -1:

280 fileName = base + "_1" + ext

281 continue

282 if i_under+1 == len(base):

283 fileName = base + "1" + ext

284 continue

285 rest = base[i_under+1:]

286 try: # to see if this is a number...

287 num = int(rest)

288 except ValueError: # if not, treat it as part of the name

289 fileName = base + "_1" + ext

290 continue

291

292 fileName = base[:i_under+1] + str(num+1) + ext

293 continue

294

295 self.targetDataset = None

296 try:

297 self.targetDataset = self.gdalDriver.CreateCopy(fileName,

298 self.sourceDataset,0)

299 except IOError, e:

300 err = str(type(e)) + " : " + str(e)

301 self.dialog.showError(err)

302 return False

303

304 # write the output array onto the file

305 self.targetDataset.GetRasterBand(1).WriteArray(self.cumulativeArray)

306

307 self.targetDataset = None

308

309 layerName, ext = os.path.splitext(os.path.basename(fileName))

310

311 rOutLayer = QgsRasterLayer(fileName, layerName)

312 self.outLayer = rOutLayer

313

314 rOutLayer.setDrawingStyle(QgsRasterLayer.SingleBandGray)

103

315 rOutLayer.setTransparency(255)

316 rOutLayer.setNoDataValue(-99999)

317 #(min, max) = rOutLayer.computeMinimumMaximumEstimates(1)

318 stats = rOutLayer.bandStatistics(1)

319 rOutLayer.setMinimumValue(1, stats.minimumValue)

320 rOutLayer.setMaximumValue(1, stats.maximumValue)

321 rOutLayer.setUserDefinedGrayMinimumMaximum(True)

322 rOutLayer.setColorShadingAlgorithm(QgsRasterLayer.UserDefinedShader)

323 rOutLayer.setContrastEnhancementAlgorithm(

324 QgsContrastEnhancement.StretchToMinimumMaximum, True)

325

326 #rOutLayer.setColorShadingAlgorithm(QgsRasterLayer.ColorRampShader)

327 #lst = [(0, QColor(0,255,0)), (255, QColor(255,255,0))]

328 #shader = rOutLayer.rasterShader()

329 #func = shader.rasterShaderFunction()

330 #shader.setColorRampType(QgsColorRampShader.INTERPOLATED)

331 #shader.setColorRampItemList(lst)

332

333 registry = QgsMapLayerRegistry.instance()

334 registry.addMapLayer(rOutLayer)

335

336 return True

337

338 # create the raster map for the path on the file system

339 def createPathRasterLayer(self):

340 fileName = self.pathFileName

341

342 while (os.path.isfile(fileName)):

343 base, ext = os.path.splitext(fileName)

344 i_under = rfind(base,"_")

345 if i_under == -1:

346 fileName = base + "_1" + ext

347 continue

348 if i_under+1 == len(base):

349 fileName = base + "1" + ext

350 continue

351 rest = base[i_under+1:]

352 try: # to see if this is a number...

353 num = int(rest)

354 except ValueError: # if not, treat it as part of the name

104

355 fileName = base + "_1" + ext

356 continue

357

358 fileName = base[:i_under+1] + str(num+1) + ext

359 continue

360 self.pathDataset = None

361 try:

362 self.pathDataset = self.gdalDriver.CreateCopy(fileName,

363 self.sourceDataset, 0)

364 except IOError, e:

365 err = str(type(e)) + " : " + str(e)

366 self.dialog.showError(err)

367 return False

368

369 # write the array map onto the file

370 self.pathDataset.GetRasterBand(1).WriteArray(self.pathCumulativeArray)

371

372 self.pathDataset = None

373 #self.sourceDataset = None

374

375 layerName, ext = os.path.splitext(os.path.basename(fileName))

376

377 rOutLayer = QgsRasterLayer(fileName, layerName)

378 self.outPathLayer = rOutLayer

379

380 rOutLayer.setDrawingStyle(QgsRasterLayer.SingleBandPseudoColor)

381 rOutLayer.setTransparency(255)

382 rOutLayer.setNoDataValue(-99999)

383 #(min, max) = rOutLayer.computeMinimumMaximumEstimates(1)

384 stats = rOutLayer.bandStatistics(1)

385 rOutLayer.setMinimumValue(1, stats.minimumValue)

386 rOutLayer.setMaximumValue(1, stats.maximumValue)

387 rOutLayer.setUserDefinedGrayMinimumMaximum(True)

388 rOutLayer.setColorShadingAlgorithm(QgsRasterLayer.PseudoColorShader)

389 rOutLayer.setContrastEnhancementAlgorithm(

390 QgsContrastEnhancement.StretchToMinimumMaximum, True)

391

392 registry = QgsMapLayerRegistry.instance()

393 registry.addMapLayer(rOutLayer)

394

105

395 return True

396

397 # determine the suitable file name for the outputs

398 def findResultsFile(self):

399 srcBasename, srcExtension = os.path.splitext(self.layerPath)

400 fileName = srcBasename + "_results" + ".txt"

401

402 while (os.path.isfile(fileName)):

403 base, ext = os.path.splitext(fileName)

404 i_under = rfind(base,"_")

405 if i_under == -1:

406 fileName = base + "_1" + ext

407 continue

408 if i_under+1 == len(base):

409 fileName = base + "1" + ext

410 continue

411 rest = base[i_under+1:]

412 try: # to see if this is a number...

413 num = int(rest)

414 except ValueError: # if not, treat it as part of the name

415 fileName = base + "_1" + ext

416 continue

417

418 fileName = base[:i_under+1] + str(num+1) + ext

419 continue

420

421 self.outTextFileName = fileName

422

423

424 def writeResultsFile(self, results):

425 f = open(self.outTextFileName, "w")

426 with f:

427 f.write(results)

428

429 return

106

A.4 vap analyze.py

This file holds the Analyzer class that is responsible for the main visibility analysis

operations.

1 # -*- coding: utf-8 -*-

2

3 #**

4 #

5 # The information about this plugin can be found in the ’vap.py’ file...

6 #

7 #**

8

9 import vap_io

10 from qgis.core import *

11 from qgis.gui import *

12 from itertools import izip

13 import time

14 from PyQt4.QtCore import *

15 from PyQt4.QtGui import *

16 import math

17

18 import dialogs

19

20 # create and start the analyzer

21 def startAnalyzer(dialog, vapInput):

22 analyzer = Analyzer(dialog, vapInput)

23 analyzer.start()

24 return

25

26

27 # a helper method to generate a list in successive pairs

28 # used for path segments

29 def pairWise(list):

30 listIter = iter(list)

31 first = listIter.next()

32 for second in listIter:

33 yield first, second

34 first = second

107

35

36

37 # rotates a point on a coordinate system by an angle

38 def rotatePoint(x, y, angleD):

39 # if angle is positive and y-axis is positive on the upside direction,

40 # then this rotates the point clock-wise

41 # angle should be between -180 and 180 degrees

42 if angleD < -180.0 or angleD > 180.0:

43 return None

44

45 if angleD == 0.0:

46 return x, y

47

48 angleRad = abs(angleD) * math.pi / 180.0

49

50 if(angleD > 0.0):

51 xr = x * math.cos(angleRad) - y * math.sin(angleRad)

52 yr = x * math.sin(angleRad) + y * math.cos(angleRad)

53 else:

54 xr = x * math.cos(angleRad) + y * math.sin(angleRad)

55 yr = -x * math.sin(angleRad) + y * math.cos(angleRad)

56

57 return xr, yr

58

59

60 # Bresenham’s rasterization algorithm. Optimized for performance

61 def bresenham(includeTarget, x0, y0, x1, y1):

62 steep = abs(y1 - y0) > abs(x1 - x0)

63 if steep:

64 x0, y0 = y0, x0

65 x1, y1 = y1, x1

66 reverse = x0 > x1

67 deltaX = abs(x1 - x0)

68 deltaY = abs(y1 - y0)

69 error = int(deltaX / 2)

70 y = y0

71 if y0 < y1:

72 yStep = 1

73 else:

74 yStep = -1

108

75 if reverse:

76 r = xrange(x0, x1-includeTarget, -1)

77 else:

78 r = xrange(x0, x1+includeTarget)

79 for x in r:

80 if steep:

81 yield (y, x)

82 else:

83 yield (x, y)

84 error -= deltaY

85 if error < 0:

86 y += yStep

87 error += deltaX

88

89

90 # The main class for the analyzer

91 class Analyzer(object):

92

93

94 # get the input variables

95 def __init__(self, dialog, vapInput):

96 self.dialog = dialog

97 self.vapInput = vapInput

98

99 self.extent = self.vapInput.elevationLayer.extent()

100 self.width = self.vapInput.elevationLayer.width()

101 self.height = self.vapInput.elevationLayer.height()

102 self.resolution = self.vapInput.elevationLayer.rasterUnitsPerPixel()

103

104 if self.vapInput.viewAngle == 360.0:

105 self.fullView = True

106 else:

107 self.fullView = False

108

109 self.mtp = QgsMapToPixel(self.resolution, self.height,

110 self.extent.yMinimum(), self.extent.xMinimum())

111

112 self.path = self.vapInput.pathLayer.selectedFeatures()[0]

113 self.pathPoints = self.findPathPoints(self.path)

114 self.currentObsHeight = self.vapInput.obsHeight

109

115

116 self.rasterIO = vap_io.RasterIO(self.vapInput.elevationLayer, dialog)

117

118 self.notFinished = True

119

120

121 # main method for the visibility analysis

122 def start(self):

123 self.dialog.setStatus(\

124 "Visibility analysis process has been started...")

125 self.dialog.showProgressBar(0)

126 t0 = time.time()

127 self.totalPathValue = 0

128 self.totalObservers = 0

129 self.totalTargets = 0

130

131 # get the segments iterator from the path

132 rPathSegmentsIter = self.rasterSegmentGenerator(self.pathPoints)

133

134 viewAngle = self.vapInput.viewAngle

135

136 # get the polygons iterator from the weight zone layer

137 polyListIter = self.polyGenerator(self.vapInput.polyLayer)

138 self.polyList = list(polyListIter)

139

140 # prepare the mark for the observer location

141 observerMark = vap_io.XMarker(self.dialog.canvas, self.resolution)

142

143 # outer loop 1 for every line segment of the path...

144 for rSegmentCoordsF in rPathSegmentsIter:

145

146 # transform the coordinates into integer cell coordinates

147 rSegmentCoords = map(int, map(round, rSegmentCoordsF))

148

149 # use the Bresenham to find the cells along the segment

150 rSegmentPointsIter = bresenham(0, *rSegmentCoords)

151

152 # outer loop 2 for every cell along the segment...

153 for rObserver in rSegmentPointsIter:

154 self.totalObservers += 1

110

155 self.showMark(rObserver, observerMark)

156

157 # ’v...’ = map coordinates

158 # ’r...’ = integer raster coordinates

159 # ’...F’ = floating raster coordinates

160 vObserver = self.mtp.toMapCoordinates(*rObserver)

161 self.rasterIO.addPathValue(rObserver, 0)

162

163 if not self.fullView:

164 # calculate the view field polygon for the direction

165 self.viewFieldPolyGeo = self.viewFieldFromSegment(

166 rObserver, *rSegmentCoordsF)

167

168 # generate all of the target points for the current cell

169 rTargetPointsIter = self.rasterTargetGenerator(vObserver)

170

171 # inner loop for every target cell...

172 for rTarget in rTargetPointsIter:

173 if self.dialog.progress.wasCanceled():

174 self.dialog.progress.reset()

175 observerMark.delete()

176 del observerMark

177 self.dialog.setStatus("")

178 return -1

179 self.totalTargets += 1

180 qApp.processEvents(QEventLoop.AllEvents)

181

182 # calculate visibility between observer and target

183 visible = self.visibility(rObserver, rTarget)

184

185 # find the weight of the target and whether

186 # it is a polygon

187 weight, wasPolygon = self.findWeight(rTarget)

188

189 # calculate distance factor

190 df = float(self.vapInput.distFactor)

191 dist = float(self.resolution *

192 math.sqrt(QgsPoint(*rObserver).sqrDist(*rTarget)))

193

194 if (not self.vapInput.limitPoly) or (wasPolygon):

111

195 if visible:

196 if df <> 0.0:

197 weight /= 2**(dist/df)

198 # add the weighted counts

199 self.rasterIO.addValue(rTarget, weight)

200 self.rasterIO.addPathValue(rObserver, weight)

201 self.totalPathValue += weight

202 else:

203 # not visible

204 self.rasterIO.addValue(rTarget, 0)

205

206 self.dialog.progress.reset()

207 t1 = time.time()

208 self.timeDiff = t1 - t0

209

210 observerMark.delete()

211 del observerMark

212 self.dialog.setStatus("")

213

214 # create the output files

215 self.rasterIO.createRasterLayer()

216 self.rasterIO.createPathRasterLayer()

217 self.sourceDataset = None

218 self.rasterIO.findResultsFile()

219

220 # calculate the average path value

221 averagePathValue = self.totalPathValue / float(self.totalObservers)

222

223 timeDiffStr = str("%.2f" % self.timeDiff)

224 self.resultsStr = "Results for Weighted Multi Visibility Analysis on "\

225 "Directional Paths (WMVADP)\n"\

226 "==\n"\

227 "Descriptive Text: " + self.vapInput.descText + "\n"\

228 "Elevation Map: " + self.vapInput.elevationLayer.name() + ""\

229 " (" + self.vapInput.elevationLayer.source() + ")\n"\

230 "Path Layer: " + self.vapInput.pathLayer.name() + ""\

231 " (" + self.vapInput.pathLayer.source() + ")\n"\

232 "Observer Height: " + str(self.vapInput.obsHeight) + "\n"\

233 "Starting Point: ’" + self.vapInput.startPoint + "’\n"\

234 "View Angle: " + str(self.vapInput.viewAngle) + "\n"\

112

235 "Distance Limit: " + str(self.vapInput.distLimit) + "\n"\

236 "Polygon Layer: " + self.vapInput.polyLayer.name() + ""\

237 " (" + self.vapInput.polyLayer.source() + ")\n"\

238 "Weight Attribute: " + self.vapInput.weightAttrName + "\n"\

239 "Limit to Polygons: " + str(self.vapInput.limitPoly) + "\n"\

240 "Distance Factor: " + str(self.vapInput.distFactor) + "\n"\

241 "--\n"\

242 "Total Path Value: " + str(self.totalPathValue) + "\n"\

243 "Observer Point Count: " + str(self.totalObservers) + "\n"\

244 "Target Points Analyzed: " + str(self.totalTargets) + "\n"\

245 "Average Path Value: " + str(averagePathValue) + "\n"\

246 "Analysis Time: " + timeDiffStr + " seconds \n"\

247 "Output Layer for the Targets: " + \

248 self.rasterIO.outLayer.name() + "\n"\

249 "Output Layer for the Path: " + \

250 self.rasterIO.outPathLayer.name() + "\n"\

251 "Results Text File : " + self.rasterIO.outTextFileName + "\n"\

252 "--\n"

253

254 self.rasterIO.writeResultsFile(self.resultsStr)

255 self.showResults()

256 return

257

258

259 # show the results dialog

260 def showResults(self):

261 self.resultsDialog = dialogs.ResultsDialog(self.dialog)

262 self.resultsDialog.initDialog()

263 self.resultsDialog.editResults.setText(self.resultsStr)

264 self.resultsDialog.show()

265

266 return

267

268

269 # This helper method is used for the view field polygon

270 # generation. The border lines of the map area

271 # are numbered and we use these numbers to find out

272 # which borders should be included in the view field

273 def findLineNo(self, p):

274 corner = 0

113

275 line = None

276 if int(p.x()) == self.width:

277 line = 1

278 if int(p.y()) == 0:

279 line = 2 # skip corner

280 elif int(p.y()) == 0:

281 line = 2

282 if int(p.x()) == 0:

283 line = 3 # skip corner

284 elif int(p.x()) == 0:

285 line = 3

286 if int(p.y()) == self.height:

287 line = 0 # skip corner

288 elif int(p.y()) == self.height:

289 line = 0

290

291 return line

292

293

294 # calculate the view field using the current segment and

295 # observer location...

296 # we use a new coordinate system with the origin at

297 # the observer for the rotation calculations

298 def viewFieldFromSegment(self, rObserver, x0, y0, xp, yp):

299 x, y = rObserver

300

301 # if the start and finish are same...

302 if x0 == y0 and xp == yp:

303 return None

304

305 if xp-x0 == 0.0:

306 range = -10 if yp < y0 else 10

307 ypFar = yp + range

308 xpFar = xp

309 x = x0

310 elif yp-y0 == 0.0:

311 range = -10 if xp < x0 else 10

312 ypFar = yp

313 xpFar = xp + range

314 y = y0

114

315 else:

316 a = (yp-y0) / float((xp-x0))

317 b = yp-a*float(xp)

318

319 if abs(xp-x0) > abs(yp-y0):

320 y = a * x + b

321 range = -10 if xp < x0 else 10

322 xpFar = xp + range

323 ypFar = a * xpFar + b

324 else:

325 x = (y - b)/a

326 range = -10 if yp < y0 else 10

327 ypFar = yp + range

328 xpFar = (ypFar - b) / a

329

330 x0, y0 = x, y

331 txp, typ = xpFar-x0, ypFar-y0

332 rtxp, rtyp = txp, typ

333 angle = self.vapInput.viewAngle

334 rotateAngle = angle

335 if angle > 180.0:

336 rotateAngle = angle - 360.0

337 rtxp, rtyp = -rtxp, -rtyp

338

339 # find the limits of the view field based on the angle

340 txv1, tyv1 = rotatePoint(rtxp, rtyp, rotateAngle/2.0)

341 txv2, tyv2 = rotatePoint(rtxp, rtyp, -rotateAngle/2.0)

342

343 tborders = QgsRectangle(-x0, -y0, self.width-x0, self.height-y0)

344 tXLimit1, tYLimit1, tXLimit2, tYLimit2 = None, None, None, None

345 borderPoint1, borderPoint2 = None, None

346

347 # check for the overflows...

348 if txv1 > 0.0:

349 tXLimit1 = tborders.xMaximum()

350 elif txv1 < 0.0:

351 tXLimit1 = tborders.xMinimum()

352

353 if tyv1 > 0.0:

354 tYLimit1 = tborders.yMaximum()

115

355 elif tyv1 < 0.0:

356 tYLimit1 = tborders.yMinimum()

357

358 if txv2 > 0.0:

359 tXLimit2 = tborders.xMaximum()

360 elif txv2 < 0.0:

361 tXLimit2 = tborders.xMinimum()

362

363 if tyv2 > 0.0:

364 tYLimit2 = tborders.yMaximum()

365 elif tyv2 < 0.0:

366 tYLimit2 = tborders.yMinimum()

367

368 if tXLimit1 is None:

369 borderPoint1 = QgsPoint(float(0.0+x0), float(tYLimit1+y0))

370 if tYLimit1 is None:

371 borderPoint1 = QgsPoint(float(tXLimit1+x0), float(0.0+y0))

372 if tXLimit2 is None:

373 borderPoint2 = QgsPoint(float(0.0+x0), float(tYLimit2+y0))

374 if tYLimit2 is None:

375 borderPoint2 = QgsPoint(float(tXLimit2+x0), float(0.0+y0))

376

377 # find the coordinates of the view field at the intersections

378 if borderPoint1 is None:

379 tcoef1 = tyv1 / float(txv1)

380 if tcoef1 >= 1.0:

381 txBorder1 = tYLimit1 / tcoef1

382 if abs(txBorder1) >= abs(tXLimit1):

383 tyBorder1 = tXLimit1 * tcoef1

384 borderPoint1 = QgsPoint(float(tXLimit1+x0), tyBorder1+y0)

385 else:

386 borderPoint1 = QgsPoint(txBorder1+x0, float(tYLimit1+y0))

387 else:

388 tyBorder1 = tXLimit1 * tcoef1

389 if abs(tyBorder1) >= abs(tYLimit1):

390 txBorder1 = tYLimit1 / tcoef1

391 borderPoint1 = QgsPoint(txBorder1+x0, float(tYLimit1+y0))

392 else:

393 borderPoint1 = QgsPoint(float(tXLimit1+x0), tyBorder1+y0)

394

116

395 if borderPoint2 is None:

396 tcoef2 = tyv2 / float(txv2)

397 if tcoef2 >= 1.0:

398 txBorder2 = tYLimit2 / tcoef2

399 if abs(txBorder2) >= abs(tXLimit2):

400 tyBorder2 = tXLimit2 * tcoef2

401 borderPoint2 = QgsPoint(float(tXLimit2+x0), tyBorder2+y0)

402 else:

403 borderPoint2 = QgsPoint(txBorder2+x0, float(tYLimit2+y0))

404 else:

405 tyBorder2 = tXLimit2 * tcoef2

406 if abs(tyBorder2) >= abs(tYLimit2):

407 txBorder2 = tYLimit2 / tcoef2

408 borderPoint2 = QgsPoint(txBorder2+x0, float(tYLimit2+y0))

409 else:

410 borderPoint2 = QgsPoint(float(tXLimit2+x0), tyBorder2+y0)

411

412 cornersList = [QgsPoint(self.width, self.height),

413 QgsPoint(self.width, 0), QgsPoint(0, 0), QgsPoint(0,

414 self.height)]

415 p1Line = self.findLineNo(borderPoint1)

416 p2Line = self.findLineNo(borderPoint2)

417 if p2Line < p1Line:

418 p2Line += 4

419 if (p2Line == p1Line) and (angle > 180.0): # angle looped over

420 p2Line += 4

421

422 cornersList.extend(cornersList)

423 vfCorners = cornersList[p1Line:p2Line]

424

425 originPoint = QgsPoint(float(x0), float(y0))

426

427 # construct the view field boundary coordinates

428 viewField = [originPoint, borderPoint1] + vfCorners + \

429 [borderPoint2, originPoint]

430

431 # transform to map coordinates

432 viewFieldOnMap = map(self.mtp.toMapCoordinates,

433 [p.x() for p in viewField], [p.y() for p in viewField])

434

117

435 # construct the view field polygon

436 viewFieldPolyGeo = QgsGeometry.fromPolygon([viewFieldOnMap])

437

438 return viewFieldPolyGeo

439

440

441 # get the center point of a map location

442 def getPointCenter(self, vPoint):

443 x = vPoint.x()

444 y = vPoint.y()

445 res = self.resolution

446 return QgsGeometry.fromPoint(QgsPoint(x+res/2.0, y-res/2.0))

447

448

449 # get the boundary rectange of a map cell

450 def getPointRectPoly(self, vPoint):

451 x = vPoint.x()

452 y = vPoint.y()

453 res = self.resolution

454 points = [QgsPoint(x, y), QgsPoint(x+res, y), QgsPoint(x+res, y-res),

455 QgsPoint(x, y-res)]

456 return QgsGeometry.fromPolygon([points])

457

458

459 # depending on the polygon intersection

460 # find the weight of the target location

461 def findWeight(self, rPoint):

462 vPoint = self.mtp.toMapCoordinates(*rPoint)

463 #pointCenter = self.getPointCenter(vPoint)

464 #pointRectPoly = self.getPointRectPoly(vPoint)

465 for poly in self.polyList:

466 polyGeom = QgsGeometry(poly.geometry())

467 if polyGeom.intersects(QgsGeometry.fromPoint(vPoint)):

468 weight = self.getWeightFromPoly(poly)

469 return weight, True

470

471 weight = 1

472 return weight, False

473

474

118

475 # read the weight value from the polygon

476 def getWeightFromPoly(self, poly):

477 index = self.vapInput.weightAttrIndex

478 atMap = poly.attributeMap()

479 (weight, result) = atMap[index].toDouble()

480 if not result:

481 return None

482 return weight

483

484

485 def showMark(self, rPoint, mark):

486 mark.setPosition(self.mtp.toMapCoordinates(*rPoint))

487 self.dialog.canvas.update()

488 qApp.processEvents(QEventLoop.AllEvents)

489

490

491 # generates path segments in order

492 def rasterSegmentGenerator(self, pathPoints):

493 pathSegmentsG = pairWise(pathPoints)

494

495 for segmentStart, segmentEnd in pathSegmentsG:

496 rSegmentStartX, rSegmentStartY = \

497 self.getRasterCoordsFromPoint(segmentStart)

498 rSegmentEndX, rSegmentEndY = \

499 self.getRasterCoordsFromPoint(segmentEnd)

500 yield (rSegmentStartX, rSegmentStartY, rSegmentEndX, rSegmentEndY)

501

502

503 # generates polygons for weight zones

504 def polyGenerator(self, polyLayer):

505 #polyLayer.featureCount()

506 vProvider = polyLayer.dataProvider()

507 vProvider.select(vProvider.attributeIndexes(),

508 QgsRectangle(), True, True)

509 currentPolygon = QgsFeature()

510 while vProvider.nextFeature(currentPolygon):

511 yield QgsFeature(currentPolygon)

512

513

514 # this method generates all of the map cells.

119

515 # can be used to calculate total viewsheds

516 def rasterTotalTargetGenerator(self):

517 rXStart, rYStart = 0, 0

518 rXEnd, rYEnd = self.width-1, self.height-1

519

520 for y in xrange(rYStart, rYEnd+1):

521 for x in xrange(rXStart, rXEnd+1):

522 yield (x, y)

523

524

525 # generate the target locations for the current observer

526 # targets are based on the radius, map boundaries,

527 # and the view field at that location

528 def rasterTargetGenerator(self, vObserver):

529 radius = self.vapInput.distLimit

530 res = int((radius/self.resolution) / 2)

531 center = QgsGeometry.fromPoint(vObserver)

532 circle = center.buffer(radius, res)

533 if not self.fullView:

534 viewField = self.viewFieldPolyGeo

535 areaIntersection = circle.intersection(viewField)

536 else:

537 areaIntersection = circle

538

539 # areaIntersection is the polygonal area

540 # of the intersection of view circle and view field

541 if areaIntersection is None:

542 return

543 bound = areaIntersection.boundingBox()

544

545 xMin, yMax = bound.xMinimum(), bound.yMaximum()

546 xMax, yMin = bound.xMaximum(), bound.yMinimum()

547 rTopLeftFloat = self.mtp.transform(xMin, yMax)

548 rBottomRightFloat = self.mtp.transform(xMax, yMin)

549 rXStart, rYStart = int(round(rTopLeftFloat.x())),

550 int(round(rTopLeftFloat.y()))

551 rXEnd, rYEnd = int(round(rBottomRightFloat.x())),

552 int(round(rBottomRightFloat.y()))

553

554 if rXStart < 0:

120

555 rXStart = 0

556 if rYStart < 0:

557 rYStart = 0

558 if rXEnd > self.width - 1:

559 rXEnd = self.width - 1

560 if rYEnd > self.height - 1:

561 rYEnd = self.height - 1

562

563 for y in xrange(rYStart, rYEnd+1):

564 for x in xrange(rXStart, rXEnd+1):

565 vPoint = self.mtp.toMapCoordinates(x, y)

566 #pointRectPoly = self.getPointRectPoly(vPoint)

567 #pointCenter = self.getPointCenter(vPoint)

568 if areaIntersection.intersects(QgsGeometry.fromPoint(vPoint)):

569 yield (x, y)

570

571

572 # get the points that construct a vector path

573 def findPathPoints(self, path):

574 pathPoints = path.geometry().asPolyline()

575 if self.vapInput.startPoint == "B":

576 pathPoints.reverse()

577 return pathPoints

578

579

580 def calculateStep(self, start, end, delta):

581 return (end-start)/float(delta)

582

583

584 def getRasterCoordsFromPoint(self, point):

585 rPointFloatF = self.mtp.transform(point)

586 rPointXF, rPointYF = rPointFloatF.x(), rPointFloatF.y()

587 return rPointXF, rPointYF

588

589

590 # this method calculates the visibility of a target

591 # from an observer location, both given in

592 # raster coordinates

593 def visibility(self, rObserver, rTarget):

594 (rObserverX, rObserverY) = rObserver

121

595 (rTargetX, rTargetY) = rTarget

596

597 lineIter = bresenham(0, rObserverX, rObserverY, rTargetX, rTargetY)

598 try:

599 lineIter.next()

600 except StopIteration:

601 return True

602

603 delta = max(abs(rTargetY - rObserverY), abs(rTargetX - rObserverX))

604

605 observerGroundElev = self.rasterIO.getValue(rObserverX, rObserverY)

606 observerElev = observerGroundElev + self.currentObsHeight

607 targetElev = self.rasterIO.getValue(rTargetX, rTargetY)

608

609 losElevStep = self.calculateStep(observerElev, targetElev, delta)

610 losElev = observerElev

611 for (x, y) in lineIter:

612 losElev += losElevStep

613 rValue = self.rasterIO.getValue(x, y)

614 if rValue > losElev:

615 return False

616

617 return True

A.5 ui results.ui

This XML file is the Qt windowing toolkit file for the results window. It was

produced graphically by the Qt Designer software.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ui version="4.0">

3 <class>Results</class>

4 <widget class="QDialog" name="Results">

5 <property name="geometry">

6 <rect>

7 <x>0</x>

8 <y>0</y>

9 <width>678</width>

122

10 <height>595</height>

11 </rect>

12 </property>

13 <property name="windowTitle">

14 <string>Dialog</string>

15 </property>

16 <layout class="QVBoxLayout" name="verticalLayout_2">

17 <item>

18 <widget class="QTextEdit" name="editResults"/>

19 </item>

20 <item>

21 <layout class="QHBoxLayout" name="horizontalLayout">

22 <item>

23 <spacer name="horizontalSpacer">

24 <property name="orientation">

25 <enum>Qt::Horizontal</enum>

26 </property>

27 <property name="sizeHint" stdset="0">

28 <size>

29 <width>40</width>

30 <height>20</height>

31 </size>

32 </property>

33 </spacer>

34 </item>

35 <item>

36 <widget class="QPushButton" name="buttonClose">

37 <property name="text">

38 <string>Close</string>

39 </property>

40 </widget>

41 </item>

42 </layout>

43 </item>

44 </layout>

45 </widget>

46 <resources/>

47 <connections/>

48 </ui>

123

A.6 ui input.ui

This XML file is the Qt windowing toolkit file for the main window. It was produced

graphically by the Qt Designer software.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ui version="4.0">

3 <class>Dialog</class>

4 <widget class="QDialog" name="Dialog">

5 <property name="geometry">

6 <rect>

7 <x>0</x>

8 <y>0</y>

9 <width>431</width>

10 <height>563</height>

11 </rect>

12 </property>

13 <property name="windowTitle">

14 <string>Dialog</string>

15 </property>

16 <property name="autoFillBackground">

17 <bool>true</bool>

18 </property>

19 <widget class="QGroupBox" name="grpSource">

20 <property name="geometry">

21 <rect>

22 <x>10</x>

23 <y>120</y>

24 <width>411</width>

25 <height>151</height>

26 </rect>

27 </property>

28 <property name="font">

29

30 <pointsize>10</pointsize>

31 <weight>75</weight>

32 <bold>true</bold>

33

34 </property>

124

35 <property name="autoFillBackground">

36 <bool>true</bool>

37 </property>

38 <property name="title">

39 <string>Source Selection</string>

40 </property>

41 <property name="flat">

42 <bool>false</bool>

43 </property>

44 <property name="checkable">

45 <bool>false</bool>

46 </property>

47 <widget class="QComboBox" name="cmbPathLayer">

48 <property name="geometry">

49 <rect>

50 <x>140</x>

51 <y>30</y>

52 <width>251</width>

53 <height>22</height>

54 </rect>

55 </property>

56 <property name="font">

57

58 <pointsize>8</pointsize>

59 <weight>50</weight>

60 <bold>false</bold>

61

62 </property>

63 </widget>

64 <widget class="QLabel" name="labPathLayer">

65 <property name="geometry">

66 <rect>

67 <x>20</x>

68 <y>30</y>

69 <width>91</width>

70 <height>21</height>

71 </rect>

72 </property>

73 <property name="font">

74

125

75 <pointsize>8</pointsize>

76 <weight>50</weight>

77 <bold>false</bold>

78

79 </property>

80 <property name="text">

81 <string>Path Layer:</string>

82 </property>

83 </widget>

84 <widget class="Line" name="line">

85 <property name="enabled">

86 <bool>true</bool>

87 </property>

88 <property name="geometry">

89 <rect>

90 <x>110</x>

91 <y>30</y>

92 <width>20</width>

93 <height>111</height>

94 </rect>

95 </property>

96 <property name="frameShadow">

97 <enum>QFrame::Sunken</enum>

98 </property>

99 <property name="orientation">

100 <enum>Qt::Vertical</enum>

101 </property>

102 </widget>

103 <widget class="QLabel" name="labObsHeight">

104 <property name="geometry">

105 <rect>

106 <x>20</x>

107 <y>60</y>

108 <width>91</width>

109 <height>21</height>

110 </rect>

111 </property>

112 <property name="font">

113

114 <pointsize>8</pointsize>

126

115 <weight>50</weight>

116 <bold>false</bold>

117

118 </property>

119 <property name="text">

120 <string>Observer Height:</string>

121 </property>

122 </widget>

123 <widget class="QLineEdit" name="editObsHeight">

124 <property name="geometry">

125 <rect>

126 <x>140</x>

127 <y>60</y>

128 <width>81</width>

129 <height>20</height>

130 </rect>

131 </property>

132 <property name="font">

133

134 <pointsize>8</pointsize>

135 <weight>50</weight>

136 <bold>false</bold>

137

138 </property>

139 </widget>

140 <widget class="QLabel" name="labStartPoint">

141 <property name="geometry">

142 <rect>

143 <x>20</x>

144 <y>90</y>

145 <width>91</width>

146 <height>21</height>

147 </rect>

148 </property>

149 <property name="font">

150

151 <pointsize>8</pointsize>

152 <weight>50</weight>

153 <bold>false</bold>

154

127

155 </property>

156 <property name="text">

157 <string>Starting Point:</string>

158 </property>

159 </widget>

160 <widget class="QLabel" name="labViewAngle">

161 <property name="geometry">

162 <rect>

163 <x>20</x>

164 <y>120</y>

165 <width>91</width>

166 <height>21</height>

167 </rect>

168 </property>

169 <property name="font">

170

171 <pointsize>8</pointsize>

172 <weight>50</weight>

173 <bold>false</bold>

174

175 </property>

176 <property name="text">

177 <string>View Angle:</string>

178 </property>

179 </widget>

180 <widget class="QLineEdit" name="editViewAngle">

181 <property name="geometry">

182 <rect>

183 <x>140</x>

184 <y>120</y>

185 <width>81</width>

186 <height>20</height>

187 </rect>

188 </property>

189 <property name="font">

190

191 <pointsize>8</pointsize>

192 <weight>50</weight>

193 <bold>false</bold>

194

128

195 </property>

196 <property name="alignment">

197 <set>Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter</set>

198 </property>

199 </widget>

200 <widget class="QLabel" name="label">

201 <property name="geometry">

202 <rect>

203 <x>224</x>

204 <y>118</y>

205 <width>16</width>

206 <height>16</height>

207 </rect>

208 </property>

209 <property name="font">

210

211 <weight>50</weight>

212 <bold>false</bold>

213 <kerning>true</kerning>

214

215 </property>

216 <property name="text">

217 <string>o</string>

218 </property>

219 </widget>

220 <widget class="QFrame" name="frame">

221 <property name="geometry">

222 <rect>

223 <x>139</x>

224 <y>87</y>

225 <width>221</width>

226 <height>27</height>

227 </rect>

228 </property>

229 <property name="frameShape">

230 <enum>QFrame::Box</enum>

231 </property>

232 <property name="frameShadow">

233 <enum>QFrame::Sunken</enum>

234 </property>

129

235 <property name="midLineWidth">

236 <number>0</number>

237 </property>

238 <widget class="QPushButton" name="buttonAB">

239 <property name="geometry">

240 <rect>

241 <x>106</x>

242 <y>3</y>

243 <width>108</width>

244 <height>20</height>

245 </rect>

246 </property>

247 <property name="font">

248

249 <pointsize>8</pointsize>

250 <weight>50</weight>

251 <bold>false</bold>

252

253 </property>

254 <property name="text">

255 <string>Display A-B on map</string>

256 </property>

257 <property name="default">

258 <bool>false</bool>

259 </property>

260 <property name="flat">

261 <bool>false</bool>

262 </property>

263 </widget>

264 <widget class="QRadioButton" name="rbStartPointA">

265 <property name="geometry">

266 <rect>

267 <x>7</x>

268 <y>4</y>

269 <width>41</width>

270 <height>17</height>

271 </rect>

272 </property>

273 <property name="font">

274

130

275 <weight>50</weight>

276 <bold>false</bold>

277

278 </property>

279 <property name="text">

280 <string>A</string>

281 </property>

282 </widget>

283 <widget class="QRadioButton" name="rbStartPointB">

284 <property name="geometry">

285 <rect>

286 <x>57</x>

287 <y>4</y>

288 <width>41</width>

289 <height>17</height>

290 </rect>

291 </property>

292 <property name="font">

293

294 <weight>50</weight>

295 <bold>false</bold>

296

297 </property>

298 <property name="text">

299 <string>B</string>

300 </property>

301 </widget>

302 </widget>

303 <widget class="QCheckBox" name="cb360">

304 <property name="geometry">

305 <rect>

306 <x>240</x>

307 <y>121</y>

308 <width>151</width>

309 <height>20</height>

310 </rect>

311 </property>

312 <property name="font">

313

314 <pointsize>8</pointsize>

131

315 <weight>50</weight>

316 <bold>false</bold>

317

318 </property>

319 <property name="text">

320 <string>No restriction (360o view)</string>

321 </property>

322 </widget>

323 </widget>

324 <widget class="QGroupBox" name="grpTarget">

325 <property name="geometry">

326 <rect>

327 <x>10</x>

328 <y>290</y>

329 <width>411</width>

330 <height>181</height>

331 </rect>

332 </property>

333 <property name="font">

334

335 <pointsize>10</pointsize>

336 <weight>75</weight>

337 <bold>true</bold>

338

339 </property>

340 <property name="autoFillBackground">

341 <bool>true</bool>

342 </property>

343 <property name="title">

344 <string>Target Selection</string>

345 </property>

346 <property name="flat">

347 <bool>false</bool>

348 </property>

349 <widget class="Line" name="line_2">

350 <property name="enabled">

351 <bool>true</bool>

352 </property>

353 <property name="geometry">

354 <rect>

132

355 <x>110</x>

356 <y>30</y>

357 <width>20</width>

358 <height>141</height>

359 </rect>

360 </property>

361 <property name="frameShadow">

362 <enum>QFrame::Sunken</enum>

363 </property>

364 <property name="orientation">

365 <enum>Qt::Vertical</enum>

366 </property>

367 </widget>

368 <widget class="QLabel" name="labDistLimit">

369 <property name="geometry">

370 <rect>

371 <x>20</x>

372 <y>30</y>

373 <width>91</width>

374 <height>21</height>

375 </rect>

376 </property>

377 <property name="font">

378

379 <pointsize>8</pointsize>

380 <weight>50</weight>

381 <bold>false</bold>

382

383 </property>

384 <property name="text">

385 <string>Distance Limit:</string>

386 </property>

387 </widget>

388 <widget class="QLineEdit" name="editDistLimit">

389 <property name="geometry">

390 <rect>

391 <x>140</x>

392 <y>30</y>

393 <width>81</width>

394 <height>20</height>

133

395 </rect>

396 </property>

397 <property name="font">

398

399 <pointsize>8</pointsize>

400 <weight>50</weight>

401 <bold>false</bold>

402

403 </property>

404 </widget>

405 <widget class="QLabel" name="labPolyLayer">

406 <property name="geometry">

407 <rect>

408 <x>20</x>

409 <y>60</y>

410 <width>91</width>

411 <height>21</height>

412 </rect>

413 </property>

414 <property name="font">

415

416 <pointsize>8</pointsize>

417 <weight>50</weight>

418 <bold>false</bold>

419

420 </property>

421 <property name="text">

422 <string>Polygon Layer:</string>

423 </property>

424 </widget>

425 <widget class="QComboBox" name="cmbPolyLayer">

426 <property name="geometry">

427 <rect>

428 <x>140</x>

429 <y>60</y>

430 <width>251</width>

431 <height>22</height>

432 </rect>

433 </property>

434 <property name="font">

134

435

436 <pointsize>8</pointsize>

437 <weight>50</weight>

438 <bold>false</bold>

439

440 </property>

441 </widget>

442 <widget class="QLabel" name="labWeightAttr">

443 <property name="geometry">

444 <rect>

445 <x>20</x>

446 <y>90</y>

447 <width>91</width>

448 <height>21</height>

449 </rect>

450 </property>

451 <property name="font">

452

453 <pointsize>8</pointsize>

454 <weight>50</weight>

455 <bold>false</bold>

456

457 </property>

458 <property name="text">

459 <string>Weight Attribute:</string>

460 </property>

461 </widget>

462 <widget class="QComboBox" name="cmbWeightAttr">

463 <property name="geometry">

464 <rect>

465 <x>140</x>

466 <y>90</y>

467 <width>251</width>

468 <height>22</height>

469 </rect>

470 </property>

471 <property name="font">

472

473 <pointsize>8</pointsize>

474 <weight>50</weight>

135

475 <bold>false</bold>

476

477 </property>

478 </widget>

479 <widget class="QLabel" name="labLimitPoly">

480 <property name="geometry">

481 <rect>

482 <x>20</x>

483 <y>120</y>

484 <width>91</width>

485 <height>21</height>

486 </rect>

487 </property>

488 <property name="font">

489

490 <pointsize>8</pointsize>

491 <weight>50</weight>

492 <bold>false</bold>

493

494 </property>

495 <property name="text">

496 <string>Limit to Polygons:</string>

497 </property>

498 </widget>

499 <widget class="QCheckBox" name="cbLimitPoly">

500 <property name="geometry">

501 <rect>

502 <x>140</x>

503 <y>120</y>

504 <width>70</width>

505 <height>21</height>

506 </rect>

507 </property>

508 <property name="font">

509

510 <pointsize>8</pointsize>

511 <weight>50</weight>

512 <bold>false</bold>

513

514 </property>

136

515 <property name="text">

516 <string/>

517 </property>

518 </widget>

519 <widget class="QLabel" name="labDistFactor">

520 <property name="geometry">

521 <rect>

522 <x>20</x>

523 <y>150</y>

524 <width>91</width>

525 <height>21</height>

526 </rect>

527 </property>

528 <property name="font">

529

530 <pointsize>8</pointsize>

531 <weight>50</weight>

532 <bold>false</bold>

533

534 </property>

535 <property name="text">

536 <string>Distance Factor:</string>

537 </property>

538 </widget>

539 <widget class="QLineEdit" name="editDistFactor">

540 <property name="geometry">

541 <rect>

542 <x>140</x>

543 <y>150</y>

544 <width>81</width>

545 <height>20</height>

546 </rect>

547 </property>

548 <property name="font">

549

550 <pointsize>8</pointsize>

551 <weight>50</weight>

552 <bold>false</bold>

553

554 </property>

137

555 </widget>

556 <widget class="QLabel" name="label_2">

557 <property name="geometry">

558 <rect>

559 <x>227</x>

560 <y>150</y>

561 <width>171</width>

562 <height>21</height>

563 </rect>

564 </property>

565 <property name="font">

566

567 <pointsize>8</pointsize>

568 <weight>50</weight>

569 <bold>false</bold>

570 <kerning>true</kerning>

571

572 </property>

573 <property name="text">

574 <string>map units (’0’ to disable)</string>

575 </property>

576 </widget>

577 </widget>

578 <widget class="QLabel" name="iconVAP">

579 <property name="geometry">

580 <rect>

581 <x>10</x>

582 <y>10</y>

583 <width>41</width>

584 <height>41</height>

585 </rect>

586 </property>

587 <property name="layoutDirection">

588 <enum>Qt::LeftToRight</enum>

589 </property>

590 <property name="frameShape">

591 <enum>QFrame::Panel</enum>

592 </property>

593 <property name="frameShadow">

594 <enum>QFrame::Sunken</enum>

138

595 </property>

596 <property name="text">

597 <string/>

598 </property>

599 <property name="pixmap">

600 <pixmap resource="resources.qrc">:/VAP_icon.png</pixmap>

601 </property>

602 <property name="scaledContents">

603 <bool>false</bool>

604 </property>

605 <property name="margin">

606 <number>4</number>

607 </property>

608 </widget>

609 <widget class="QLabel" name="labelTitle">

610 <property name="geometry">

611 <rect>

612 <x>60</x>

613 <y>10</y>

614 <width>361</width>

615 <height>41</height>

616 </rect>

617 </property>

618 <property name="palette">

619 <palette>

620 <active>

621 <colorrole role="WindowText">

622 <brush brushstyle="SolidPattern">

623 <color alpha="255">

624 <red>85</red>

625 <green>85</green>

626 <blue>255</blue>

627 </color>

628 </brush>

629 </colorrole>

630 <colorrole role="Text">

631 <brush brushstyle="SolidPattern">

632 <color alpha="255">

633 <red>85</red>

634 <green>0</green>

139

635 <blue>127</blue>

636 </color>

637 </brush>

638 </colorrole>

639 </active>

640 <inactive>

641 <colorrole role="WindowText">

642 <brush brushstyle="SolidPattern">

643 <color alpha="255">

644 <red>85</red>

645 <green>85</green>

646 <blue>255</blue>

647 </color>

648 </brush>

649 </colorrole>

650 <colorrole role="Text">

651 <brush brushstyle="SolidPattern">

652 <color alpha="255">

653 <red>85</red>

654 <green>0</green>

655 <blue>127</blue>

656 </color>

657 </brush>

658 </colorrole>

659 </inactive>

660 <disabled>

661 <colorrole role="WindowText">

662 <brush brushstyle="SolidPattern">

663 <color alpha="255">

664 <red>120</red>

665 <green>120</green>

666 <blue>120</blue>

667 </color>

668 </brush>

669 </colorrole>

670 <colorrole role="Text">

671 <brush brushstyle="SolidPattern">

672 <color alpha="255">

673 <red>120</red>

674 <green>120</green>

140

675 <blue>120</blue>

676 </color>

677 </brush>

678 </colorrole>

679 </disabled>

680 </palette>

681 </property>

682 <property name="font">

683

684 <pointsize>10</pointsize>

685 <weight>75</weight>

686 <bold>true</bold>

687

688 </property>

689 <property name="frameShape">

690 <enum>QFrame::NoFrame</enum>

691 </property>

692 <property name="frameShadow">

693 <enum>QFrame::Plain</enum>

694 </property>

695 <property name="lineWidth">

696 <number>1</number>

697 </property>

698 <property name="text">

699 <string>Weighted Multi-Visibility Analysis on Directional Paths</string>

700 </property>

701 </widget>

702 <widget class="QPushButton" name="buttonAnalyze">

703 <property name="geometry">

704 <rect>

705 <x>346</x>

706 <y>531</y>

707 <width>75</width>

708 <height>23</height>

709 </rect>

710 </property>

711 <property name="sizePolicy">

712 <sizepolicy hsizetype="Fixed" vsizetype="Fixed">

713 <horstretch>0</horstretch>

714 <verstretch>0</verstretch>

141

715 </sizepolicy>

716 </property>

717 <property name="text">

718 <string>Analyze</string>

719 </property>

720 <property name="flat">

721 <bool>false</bool>

722 </property>

723 </widget>

724 <widget class="QPushButton" name="buttonHelp">

725 <property name="geometry">

726 <rect>

727 <x>90</x>

728 <y>531</y>

729 <width>75</width>

730 <height>23</height>

731 </rect>

732 </property>

733 <property name="text">

734 <string>Help</string>

735 </property>

736 </widget>

737 <widget class="QComboBox" name="cmbElevationLayer">

738 <property name="geometry">

739 <rect>

740 <x>150</x>

741 <y>70</y>

742 <width>251</width>

743 <height>22</height>

744 </rect>

745 </property>

746 <property name="font">

747

748 <pointsize>8</pointsize>

749 <weight>50</weight>

750 <bold>false</bold>

751

752 </property>

753 </widget>

754 <widget class="QLabel" name="labElevationLayer">

142

755 <property name="geometry">

756 <rect>

757 <x>20</x>

758 <y>70</y>

759 <width>111</width>

760 <height>21</height>

761 </rect>

762 </property>

763 <property name="font">

764

765 <pointsize>10</pointsize>

766 <weight>75</weight>

767 <bold>true</bold>

768

769 </property>

770 <property name="text">

771 <string>Elevation Map:</string>

772 </property>

773 </widget>

774 <widget class="Line" name="divisor">

775 <property name="geometry">

776 <rect>

777 <x>10</x>

778 <y>90</y>

779 <width>411</width>

780 <height>31</height>

781 </rect>

782 </property>

783 <property name="orientation">

784 <enum>Qt::Horizontal</enum>

785 </property>

786 </widget>

787 <widget class="QPushButton" name="buttonAbout">

788 <property name="geometry">

789 <rect>

790 <x>10</x>

791 <y>531</y>

792 <width>75</width>

793 <height>23</height>

794 </rect>

143

795 </property>

796 <property name="text">

797 <string>About</string>

798 </property>

799 </widget>

800 <widget class="Line" name="divisor_2">

801 <property name="geometry">

802 <rect>

803 <x>10</x>

804 <y>517</y>

805 <width>411</width>

806 <height>16</height>

807 </rect>

808 </property>

809 <property name="orientation">

810 <enum>Qt::Horizontal</enum>

811 </property>

812 </widget>

813 <widget class="QLabel" name="labDescText">

814 <property name="geometry">

815 <rect>

816 <x>20</x>

817 <y>490</y>

818 <width>111</width>

819 <height>21</height>

820 </rect>

821 </property>

822 <property name="font">

823

824 <pointsize>10</pointsize>

825 <weight>75</weight>

826 <bold>true</bold>

827

828 </property>

829 <property name="text">

830 <string>Descriptive Text:</string>

831 </property>

832 </widget>

833 <widget class="Line" name="divisor_3">

834 <property name="geometry">

144

835 <rect>

836 <x>10</x>

837 <y>466</y>

838 <width>411</width>

839 <height>31</height>

840 </rect>

841 </property>

842 <property name="orientation">

843 <enum>Qt::Horizontal</enum>

844 </property>

845 </widget>

846 <widget class="QLineEdit" name="editDescText">

847 <property name="geometry">

848 <rect>

849 <x>150</x>

850 <y>489</y>

851 <width>251</width>

852 <height>21</height>

853 </rect>

854 </property>

855 </widget>

856 </widget>

857 <resources>

858 <include location="resources.qrc"/>

859 </resources>

860 <connections/>

861 </ui>

A.7 dialogs.py

This file deals with the dialog related operations of the plugin. Event handling for

the GUI and input construction for the analysis are done here.

1 # -*- coding: utf-8 -*-

2

3 #**

4 #

5 # The information about this plugin can be found in the ’vap.py’ file...

145

6 #

7 #**

8

9 import time

10

11 from PyQt4.QtCore import *

12 from PyQt4.QtGui import *

13 from qgis.core import *

14 from qgis.gui import *

15

16 import qgis.utils

17

18 from . import VERSION

19 from ui_input import Ui_Dialog

20 from ui_results import Ui_Results

21 import vap_io

22 import vap_analyze

23

24

25 class MainDialog(QDialog, Ui_Dialog):

26

27

28 def __init__(self, mainWindow, canvas):

29 flags = Qt.WindowTitleHint | Qt.WindowSystemMenuHint |\

30 Qt.FramelessWindowHint

31 QDialog.__init__(self, mainWindow, flags)

32 self.setupUi(self)

33 self.canvas = canvas

34 self.mainWindow = mainWindow

35

36

37 def show(self):

38 QDialog.show(self)

39

40

41 def reject(self):

42 self.disconnectSignals()

43 self.clearAB()

44 QDialog.reject(self)

45

146

46

47 def accept(self):

48 self.disconnectSignals()

49 QDialog.accept(self)

50

51

52 def connectSignals(self):

53 QObject.connect(self.cmbPolyLayer, SIGNAL("currentIndexChanged(int)"),

54 self.updateFieldsCombo)

55 QObject.connect(self.cmbPathLayer, SIGNAL("currentIndexChanged(int)"),

56 self.clearAB)

57 QObject.connect(self.buttonAB, SIGNAL("clicked()"), self.redrawAB)

58 QObject.connect(self.buttonHelp, SIGNAL("clicked()"), self.showHelp)

59 QObject.connect(self.buttonAbout, SIGNAL("clicked()"), self.showAbout)

60 QObject.connect(self.buttonAnalyze, SIGNAL("clicked()"),

61 self.analyzeClicked)

62 QObject.connect(self.cb360, SIGNAL("stateChanged()"),

63 self.cb360Changed)

64

65

66 def disconnectSignals(self):

67 QObject.disconnect(self.cmbPolyLayer,

68 SIGNAL("currentIndexChanged(int)"), self.updateFieldsCombo)

69 QObject.disconnect(self.cmbPathLayer,

70 SIGNAL("currentIndexChanged(int)"), self.clearAB)

71 QObject.disconnect(self.buttonAB, SIGNAL("clicked()"), self.redrawAB)

72 QObject.disconnect(self.buttonHelp, SIGNAL("clicked()"), self.showHelp)

73 QObject.disconnect(self.buttonAbout, SIGNAL("clicked()"),

74 self.showAbout)

75 QObject.disconnect(self.buttonAnalyze, SIGNAL("clicked()"),

76 self.analyzeClicked)

77 QObject.disconnect(self.cb360, SIGNAL("stateChanged()"),

78 self.cb360Changed)

79

80

81 def initDialog(self):

82 """Initializes all the components of the main dialog."""

83

84 self.disconnectSignals()

85 self.buttonAnalyze.setDefault(True)

147

86 self.cmbElevationLayer.clear()

87 demLayers = vap_io.getLayers(vap_io.layerFilterRaster)

88 for key, layer in demLayers:

89 self.cmbElevationLayer.addItem(layer.name(), key)

90

91 self.cmbPathLayer.clear()

92 pathLayers = vap_io.getLayers(vap_io.layerFilterLine)

93 for key, layer in pathLayers:

94 self.cmbPathLayer.addItem(layer.name(), key)

95

96 self.editObsHeight.setText("0")

97

98 self.rbStartPointA.setChecked(True)

99

100 self.editViewAngle.setText("120")

101 self.cb360.setChecked(False)

102

103 self.editDistLimit.setText("100")

104

105 self.cmbPolyLayer.clear()

106 polyLayers = vap_io.getLayers(vap_io.layerFilterPoly)

107 for key, layer in polyLayers:

108 self.cmbPolyLayer.addItem(layer.name(), key)

109

110 self.cbLimitPoly.setChecked(False)

111

112 self.editDistFactor.setText("0")

113

114 if self.cmbPolyLayer.count():

115 self.updateFieldsCombo(self.cmbPolyLayer.currentIndex())

116 else:

117 self.cmbWeightAttr.clear()

118

119 self.editDescText.setText("")

120

121 self.connectSignals()

122

123 self.abFound = False

124

125

148

126 def updateFieldsCombo(self, index):

127 """Updates the list of attributes for the weight attribute

128 combobox when a new polygon layer is selected."""

129

130 curPolyLayer = self.getLayerFromCombo(self.cmbPolyLayer, index)

131

132 if curPolyLayer is not None:

133 polyFields = curPolyLayer.dataProvider().fields().items()

134 else:

135 return

136

137 self.cmbWeightAttr.clear()

138 for key, field in polyFields:

139 if field.type() == QVariant.Double:

140 self.cmbWeightAttr.addItem(field.name() + " (" +

141 field.typeName() + ")", key)

142

143

144 def cb360Changed(self):

145 if self.cb360.isChecked():

146 self.editViewAngle.setDisabled(True)

147 else:

148 self.editViewAngle.setDisabled(False)

149

150

151 def redrawAB(self):

152 self.clearAB()

153 pathLayer = self.getLayerFromCombo(self.cmbPathLayer)

154 if not vap_io.drawAB(pathLayer, self):

155 self.showError(\

156 "Path error: can not find the selected path on the path layer.")

157 else:

158 self.abFound = True

159

160

161 def showHelp(self):

162 qgis.utils.showPluginHelp()

163

164

165 def showAbout(self):

149

166 aboutMessage = QString("Visibility Analysis for Paths " + VERSION +\

167 "\nby Cagil Seker (cagils@gmail.com) @2010")

168 QMessageBox.about(self, "About VAP", aboutMessage)

169

170

171 def showError(self, errorMessage):

172 QMessageBox.critical(self, "Error", errorMessage)

173

174

175 def showInfo(self, infoMessage):

176 QMessageBox.information(self, "Information", infoMessage)

177

178

179 def setStatus(self, message):

180 self.mainWindow.statusBar().showMessage(message)

181

182

183 def clearAB(self):

184 try:

185 self.charMark1.delete()

186 self.charMark2.delete()

187 del self.charMark1

188 del self.charMark2

189 except AttributeError:

190 None

191

192 self.abFound = False

193

194

195 def analyzeClicked(self):

196 if not self.inputCheckDialog():

197 return

198

199 vapInput = self.constructInput()

200

201 #self.accept()

202 #self.clearAB()

203

204 vap_analyze.startAnalyzer(self, vapInput)

205 self.clearAB()

150

206

207

208 def showProgressBar(self, range):

209 self.progress = QProgressDialog("Visibility analysis in progress...",

210 "Stop", 0, range, self)

211 self.progress.setWindowModality(Qt.NonModal);

212 self.progress.reset()

213 self.progress.show()

214

215

216 def updateProgressBar(self, value):

217 self.progress.setValue(value)

218

219

220 def inputCheckDialog(self):

221 cmbList = [self.cmbElevationLayer, \

222 self.cmbPathLayer, self.cmbPolyLayer, self.cmbWeightAttr]

223 if [cmb.count() for cmb in cmbList].count(0):

224 self.showError("Please select suitable layers / fields"+\

225 " for the plugin.")

226 return False

227

228 if self.getLayerFromCombo(self.cmbElevationLayer).bandCount() != 1:

229 self.showError("Please select an elevation layer that has "+\

230 "only one band.")

231 return False

232

233 try:

234 obsHeight = float(self.editObsHeight.text())

235 except ValueError:

236 self.showError("Observer height must be a number.")

237 return False

238

239 if not self.cb360.isChecked():

240 try:

241 viewAngle = float(self.editViewAngle.text())

242 if viewAngle < 5 or viewAngle > 350:

243 self.showError("Viewing angle must be between 5 and 355.")

244 return False

245 except ValueError:

151

246 self.showError("Viewing angle must be a number.")

247 return False

248

249 try:

250 distLimit = float(self.editDistLimit.text())

251 if distLimit < 0:

252 self.showError(\

253 "Distance limit (radius) must be a positive number.")

254 return False

255 except ValueError:

256 self.showError("Distance limit must be a number.")

257 return False

258

259 try:

260 distFactor = float(self.editDistFactor.text())

261 if distFactor < 0:

262 self.showError(\

263 "Distance factor must be a positive multiplier for the weight.")

264 return False

265 except ValueError:

266 self.showError("Distance factor must be a number.")

267 return False

268

269 if not self.abFound:

270 self.showError("Path error: please first display A-B endpoints.")

271 return False

272

273 return True

274

275

276 def constructInput(self):

277 input = vap_io.VapInput()

278

279 input.elevationLayer = self.getLayerFromCombo(self.cmbElevationLayer)

280 input.pathLayer = self.getLayerFromCombo(self.cmbPathLayer)

281 input.obsHeight = float(self.editObsHeight.text())

282 input.startPoint = "B" if self.rbStartPointB.isChecked() else "A"

283 if self.cb360.isChecked():

284 input.viewAngle = 360.0

285 else:

152

286 input.viewAngle = float(self.editViewAngle.text())

287 input.distLimit = float(self.editDistLimit.text())

288 input.polyLayer = self.getLayerFromCombo(self.cmbPolyLayer)

289 input.weightAttrIndex = int(self.getItemDataFromCombo(\

290 self.cmbWeightAttr))

291 input.weightAttrName = str(self.getItemTextFromCombo(\

292 self.cmbWeightAttr))

293 input.limitPoly = self.cbLimitPoly.isChecked()

294 input.distFactor = float(self.editDistFactor.text())

295 input.descText = str(self.editDescText.text().toLocal8Bit())

296

297 return input

298

299

300 def getItemDataFromCombo(self, cmb, index=None):

301 if not index:

302 index = cmb.currentIndex()

303 return cmb.itemData(index).toString()

304

305

306 def getItemTextFromCombo(self, cmb, index=None):

307 if not index:

308 index = cmb.currentIndex()

309 return cmb.itemText(index)

310

311

312 def getLayerFromCombo(self, cmb, index=None):

313 layerId = self.getItemDataFromCombo(cmb, index)

314 return QgsMapLayerRegistry.instance().mapLayer(layerId)

315

316

317 def selectOutputFile(self):

318 """Opens the file save dialog for output file selection by the user"""

319

320 # open the file save dialog for output file.

321 # currently only TIFF files are supported

322 outFileName = QFileDialog.getSaveFileName(self,

323 "Save raster file", ".", "GTiff (*.tif *.tiff *.TIF *.TIFF)")

324

325 if outFileName.isEmpty():

153

326 return

327

328 if not outFileName.toLower().endsWith(".tiff"):

329 if not outFileName.toLower().endsWith(".tif"):

330 outFileName += ".tiff"

331

332 # display the selected file in the field

333 return outFileName

334

335

336 class ResultsDialog(QDialog, Ui_Results):

337

338

339 def __init__(self, mainWindow):

340 flags = Qt.WindowTitleHint | Qt.WindowSystemMenuHint

341 QDialog.__init__(self, mainWindow, flags)

342 self.setupUi(self)

343 self.mainWindow = mainWindow

344

345

346 def show(self):

347 QDialog.show(self)

348

349

350 def reject(self):

351 self.disconnectSignals()

352 QDialog.reject(self)

353

354

355 def accept(self):

356 self.disconnectSignals()

357 QDialog.accept(self)

358

359

360 def connectSignals(self):

361 QObject.connect(self.buttonClose, SIGNAL("clicked()"), self.accept)

362

363

364 def disconnectSignals(self):

365 QObject.disconnect(self.buttonClose, SIGNAL("clicked()"), self.accept)

154

366

367

368 def initDialog(self):

369 self.disconnectSignals()

370 self.editResults.setText("")

371 self.connectSignals()

155

