

NON-FUNCTIONAL VARIABILITY MANAGEMENT

BY COMPLEMENTARY QUALITY MODELING

IN A SOFTWARE PRODUCT LINE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZGÜR GÜRSES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2010

ii

Approval of the thesis:

NON-FUNCTIONAL VARIABILITY MANAGEMENT

BY COMPLEMENTARY QUALITY MODELING

IN A SOFTWARE PRODUCT LINE

submitted by ÖZGÜR GÜRSES in partial fulfillment of the requirements for the

degree of Master of Science in Electrical and Electronics Engineering

Department, Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ġsmet Erkmen

Head of Department, Electrical and Electronics Engineering

Prof. Dr. Semih Bilgen

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members

Prof. Dr. Hasan Cengiz Güran

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Semih Bilgen

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Onur Demirörs

Informatics Institute, Information Systems Dept., METU

Müge Karaman Çolakoğlu, M.Sc.

ASELSAN A.ġ.

 Date: 14.09.2010

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name: Özgür GÜRSES

Signature :

iv

ABSTRACT

NON-FUNCTIONAL VARIABILITY MANAGEMENT

BY COMPLEMENTARY QUALITY MODELING

IN A SOFTWARE PRODUCT LINE

Gürses, Özgür

 M.S., Department of Electrical and Electronics Engineering

 Supervisor: Prof. Dr. Semih Bilgen

September 2010, 116 pages

Software product lines provide the opportunity to improve productivity, quality

and time-to-market of software-based systems by means of systematic reuse. So

as to accomplish systematic software reuse, elicitation of commonality knowledge

is to be upheld by the analysis and management of variability knowledge inherent

in domain requirements. Considerable effort is devoted to the management of

functional variability, often neglecting the impact of quality concerns originating

from non-functional requirements. In this thesis, a hybrid approach concentrating

on the modeling of quantitative as well as qualitative concerns on quality has

been proposed. This approach basically aims to support the domain design

process by modeling non-functional variability. It further aims to support

application design process by providing trade-off selection ability among quality

concerns to control functional features that belong to the same domain. This

approach is implemented and evaluated on an example domain to reveal its

benefits on non-functional variability.

Keywords: Software Product Lines, Variability Modeling, Non-functional

Requirements, Software Quality Attributes

v

ÖZ

YAZILIM ÜRÜN HATTINDA ĠġLEVSEL OLMAYAN DEĞĠġKENLĠĞĠN

BÜTÜNLEYĠCĠ KALĠTE MODELLEME ĠLE YÖNETĠMĠ

Gürses, Özgür

 Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

 Tez Yöneticisi: Prof. Dr. Semih Bilgen

Eylül 2010, 116 Sayfa

Yazılım ürün hatları, dizgeli yeniden kullanım aracılığıyla, yazılım tabanlı

sistemlerin verimini, niteliğini ve pazara sürüm süresini iyileĢtirmektedir.

Yazılımların sistematik biçimde yeniden kullanımını baĢarmak için ortaklık

bilgisinin belirlenmesi sürecinin, alan gereksinimlerinin doğasında yer alan

değiĢkenlik bilgisinin analiz ve yönetim faaliyetleriyle desteklenmesi

gerekmektedir. ĠĢlevsel değiĢkenlik yönetimi için önemli ölçülerde çaba

harcanmakta olup iĢlevsel olmayan gereksinimlere dayalı nitelik kaygılarının

etkisi çoğu kez yadsınmaktadır. Bu tez çalıĢmasında, hem nicel hem de nitel

kalite kaygılarının modellenmesi üzerine yoğunlaĢan karma bir yaklaĢım

önerilmiĢtir. Bu yaklaĢım, öncelikle iĢlevsel olmayan değiĢkenliği modelleyerek,

alan tasarım sürecini desteklemeyi amaçlamaktadır. Ayrıca, aynı alana özgü

iĢlevsel yetenekler üzerinde denetim sağlamak için, kalite kaygıları arasında

ödünleĢime dayalı seçim kabiliyeti sağlayarak, uygulama tasarım sürecini

desteklemeyi amaçlamaktadır. Bu yaklaĢım, iĢlevsel olmayan değiĢenlik

üzerindeki katkısını ortaya çıkarmak amacıyla örnek bir alan üzerinde uygulanmıĢ

ve değerlendirilmiĢtir.

Anahtar Kelimeler: Yazılım Ürün Hatları, DeğiĢkenlik Modelleme, ĠĢlevsel

Olmayan Gereksinimler, Yazılım Kalite Özellikleri

vi

In memory of

Barış Gürses

vii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Prof. Dr. Semih Bilgen for his

guidance, supervision and understanding as the study is evolved from an idea to

an implementation. Without his encouragement, this study would be harder to

accomplish.

I would like to thank committee members for their valuable contributions on the

thesis by means of their comments and discussions.

I owe my deepest appreciation to my mother Fatma Gürses, my father Salih

Gürses and my beloved sister Gözde Gürses for their perpetually unconditional

love and support.

I would like to thank my colleagues in ASELSAN Inc. for their support and

guidance throughout my study.

viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... v

ACKNOWLEDGEMENTS .. vii

TABLE OF CONTENTS .. viii

LIST OF FIGURES .. x

LIST OF TABLES .. xi

LIST OF ABBREVIATIONS... xii

CHAPTERS .. 1

1. INTRODUCTION ... 1

1.1. Purpose of the Study... 3

1.2. Outline .. 4

2. SOFTWARE PRODUCT LINES AND VARIABILITY MANAGEMENT 5

2.1. Overview .. 5

2.2. SPL Processes ... 6

2.2.1 DE Process ... 7

2.2.2 AE Process ... 8

2.3.Variability Management and Feature Modeling .. 10

2.3.1 Variability Management ... 10

2.3.2 Feature Modeling.. 11

2.3.3 Tool Support for Management and Analysis of Feature Models 17

2.3.4 Evaluation Criteria for Feature Models .. 18

2.3.4.1 Relative Permissibility Ratio (RPER) ... 19

2.3.4.2 Variability Factor (VF) .. 20

2.3.4.3 Commonality ... 21

2.3.4.4 Homogeneity ... 21

2.3.4.5 Degree of Orthogonality (DoO)... 22

2.3.4.6 Extra Constraint Representativeness (ECR) .. 23

2.3.4.7 Feature Interaction Problem Avoidance Percentage (FIPAP) 24

3. NON-FUNCTIONAL VARIABILITY MANAGEMENT AND QUALITY ATTRIBUTE

VARIABILITY MODELING .. 25

3.1. Non-functional Requirements ... 25

3.2. NFR Analysis ... 26

3.3. Non-functional Variability Management .. 26

3.3.1 Extended Feature Model (EFM) ... 28

ix

3.3.2 Definition Hierarchy ... 29

3.3.3 COVAMOF .. 30

3.3.4 Bayesian Belief Network .. 32

3.3.5 Goal-oriented Approaches .. 33

3.3.5.1 NFR Framework .. 33

3.3.5.2 Feature Softgoal Interdependency Graph (F-SIG) ... 34

3.3.5.3 Feature-Oriented NFR Analysis for SPL ... 36

3.3.6 Tool Support for Non-functional Feature Modeling ... 40

3.4. Discussion of the Literature .. 40

4. FEATURE MODELING OF METEOROLOGICAL MEASUREMENT AND LOGGING

SYSTEM DOMAIN ... 45

4.1. Introduction .. 45

4.2. Meteorological Measurement and Logging System (MMLS) .. 46

4.3. Feature Modeling of MMLS Domain ... 47

4.3.1. Feature Context Analysis ... 49

4.3.2. Feature Variability Identification ... 50

4.3.2.1. Structural Interdependencies ... 51

4.3.2.2. Implicit Interdependencies .. 61

4.4. Integrating Complementary Quality Modeling with Functional Feature Model of MMLS

Domain .. 67

4.4.1. Complementary Quality Modeling .. 67

4.4.2. 1
st
 Phase: Quantitative Quality Attribute Analysis... 71

4.4.2.1. Elementary Attribute Elicitation ... 72

4.4.2.2. Compound Attribute Elicitation .. 78

4.4.3. 2
nd

 Phase: Qualitative Quality Attribute (NFR Goal) Analysis.................................. 83

4.4.4. 3
rd

 Phase: Construction of the Complementary Quality Model 89

5. EVALUATION OF THE COMPLEMENTARY QUALITY MODELING APPROACH . 95

5.1. Introduction .. 95

5.2. Evaluation of Complementary Quality Modeling Approach .. 95

5.2.1. Evaluation in terms of FIPAP Criterion ... 97

5.2.2. Evaluation with respect to the Relation Between VF and ECR Criteria 98

5.2.3. Evaluation in terms of Commonality Criterion .. 100

5.2.4. Evaluation in terms of DoO Criterion .. 103

5.2.5. Evaluation in terms of RPER Criterion .. 105

6. CONCLUSION .. 107

REFERENCES ... 112

x

LIST OF FIGURES

FIGURES

Figure 2.1: SPL Processes (modified from [9]) .. 7

Figure 2.2: An instance of feature model [33] .. 14

Figure 2.3: Examples of dead features (Shaded features represent dead features)

[expanded on [33]] .. 15

Figure 2.4: Examples of false optional features (Shaded features represent false optional

features) [expanded on [33]] ... 16

Figure 3.1: Requirements Correlations Taxonomy (expanded on [20]) 27

Figure 3.2: Instance of EFM (adapted from [33]) ... 29

Figure 3.3: Sample NFR Graph for NFR Goals in CAGS Domain (adapted from [10]) 39

Figure 4.1: Basic MMLS System Architecture .. 49

Figure 4.2: Feature Diagram for MMLS Domain – Uppermost Level 50

Figure 4.3: Feature Diagram for System Management... 53

Figure 4.4: Feature Diagram for System Setup .. 54

Figure 4.5: Feature Diagram for System Maintenance ... 57

Figure 4.6: Feature Diagram for Information Delivery .. 58

Figure 4.7: Feature Diagram for Peripheral Retrieval .. 59

Figure 4.8: Feature Diagram for Hardware Components ... 61

Figure 4.9: Complementary Quality Modeling Process ... 70

Figure 4.10: Hardware Interaction Based on Data Transmission Rates 75

Figure 4.11: Extended Feature Diagram of Data Storage Units 76

Figure 4.12: Extended Feature Diagram of Sensors ... 77

Figure 4.13: Extended Feature Diagram of Displays ... 78

Figure 4.14: Extended Feature Diagram of Printer .. 78

Figure 4.15: Extended Feature Diagram of Hardware Components 82

Figure 4.16: NFR Goal Integrated Feature Diagram of MMLS Domain – Uppermost

Level ... 84

Figure 4.17: NFR Graph for Resource Utilization ... 85

Figure 4.18: NFR Graph for Accuracy ... 86

Figure 4.19: NFR Graph for Availability ... 87

Figure 4.20: NFR Graph for Cost of Ownership .. 88

xi

LIST OF TABLES

TABLES

Table 4.1: Implicit Interdependencies of MMLS Model .. 63

Table 4.2: Implicit Interdependencies Between Resource Utilization NFR Goal and

System Log Management Feature Group ... 86

Table 4.3: Mapping Between Quantitative and Qualitative QAs 89

Table 4.4: Traceability Between Range of Quantitative QA Values and Levels of

Qualitative QAs .. 91

Table 4.5: Specification of Excludes Relationships .. 92

Table 4.6: Effect of Qualitative QAs on Functional Feature Configurations 93

Table 5.1: Calculated Parameters of VF and ECR Criteria as per Model 100

Table 5.2: Calculated Parameters of Commonality as per Model 101

Table 5.2 (cont‟d) .. 102

Table 5.3: Calculated Parameters of DoO for Model-2 and Model-3 104

xii

LIST OF ABBREVIATIONS

AE Application Engineering

CASE Computer Aided Software Engineering

COTS Commercial-off-the Shelf

COVAMOF ConIPF Variability Modeling Framework

DE Domain Engineering

DoO Degree of Orthogonality

DRT Data Refreshment Time

ECR Extra Constraint Representativeness

EFM Extended Feature Model

FIPAP Feature Interaction Problem Avoidance Percentage

FODA Feature Oriented Domain Analysis

FORM Feature Oriented Reuse Method

FR Functional Requirement

F-SIG Feature Softgoal Interdependency Graph

HW Hardware

MMLS Meteorological Measurement and Logging System

MTBF Mean Time Between Failures

NFR Non-functional Requirement

PER Permissibility Ratio

PL Product Line

PW Password

RPER Permissibility Ratio

RE Requirements Engineering

RSEB Reuse-Driven Software Engineering Business

SIG Softgoal Interdependency Graph

SIMPLE Structured Intuitive Model of Product Line Economics

SPL Software Product Lines

SPLE Software Product Line Engineering

SW Software

TCO Total Cost of Ownership

QA Quality Attribute

UML Unified Modeling Language

VM Variability Management

1

CHAPTER 1

CHAPTERS

1. INTRODUCTION

Development of large scale software systems has been a great challenge

compelling software developers and software researchers for years. As the

software systems demanded become large in scale, it becomes more and more

inefficient to develop them from scratch or as a single component. The Software

Product Line (SPL) concept has been proposed to build these software systems

from several components that can be reused for the development of different

software systems with different requirements providing the developers the chance

to manage the configuration, in other words the commonality and variability

properties of each product developed different from others in the end.

There have been many studies based on the conceptual scope, phases,

development and applicability of SPL during the last two decades. As the basic

requisite of conceptual development of SPL, domain analysis poses its

importance since the construction of variable applications can be realized on a

well-defined, mature domain. This reveals the vitality of commonality and

variability analysis of the domain being developed as well. Most of the recent

studies rely on the expressive and comprehensibility power of features which is a

kind of a common language with the ease to understand and agree on by all

stakeholders. This is the main reason where the paradigm of Feature Modeling in

SPL stems from. In recent studies, the expressive power of the Feature Modeling

paradigm is particularly used for modeling variability in terms of characteristics

of possible variant products.

2

Since main considerations for the features of a domain simply originate from the

requirements of that domain, there is a need for a clear understanding and explicit

elicitation of the requirements involved. There is a strong connection between the

requirements and features of a domain. This brings the need for a competent

analysis of requirements of a domain if the key to realize this task is feature

modeling.

As for analysis of requirements for the sake of explicit description and elicitation

of requirements, classification of requirements as Functional and Non-functional

helps for further identification. As a basic definition, a functional requirement

(FR) is the one that would allow the user or customer to perform some kind of

function on the product. A non-functional requirement (NFR) is some kind of a

constraint or a restriction on the product that must be taken into account during

the design of the solution. These constraints and restrictions may somehow limit

users as a result of the interaction involved.

In spite of the complex and vague nature of NFRs, subsequent to their elicitation,

somehow these requirements have to be projected on the problem domain.

Furthermore as a result of this projection, they have to be incorporated in design

abstractions in the form of quality attributes (non-functional features) with

suitable approaches for the sake of taking them in account during domain analysis

phase. Similar to the experiences with approaches for functional features, quality

attributes (QAs) – derived from NFRs - inspire the need of variability

management due to the probable need for different levels of their involvement in

design decisions. Furthermore, there are complex relationships among different

types and levels of QAs in addition to the relationships between functional

features and QAs. In order to resolve this variability originating from the hard-to-

quantify nature of QAs, trade-offs among each of them has to be managed in a

systematic way.

3

In order to achieve a satisfactory analysis of a domain, the effect of QAs should

never be disregarded. On the contrary, their potential for contribution to

variability has to be incorporated to modeling of features in a controlled and

systematic fashion.

1.1. Purpose of the Study

In this thesis study, a comprehensive survey of literature is realized regarding two

main issues; namely the variability concept and modeling of QAs. Furthermore

modeling of QA issue is broadened with the answers on how QAs are elicited

from respective requirements (technically named as NFRs), and how these

elicited QAs are represented in proper models.

Inspiring from two approaches for modeling the QAs in the scope of SPL, namely

Extended Feature Modeling (EFM) and Feature-Oriented NFR Analysis;

Complementary Quality Modeling Approach is proposed and implemented in

conjunction with functional feature model which are constructed on the same

illustration example developed for this study.

For a competent and concrete evaluation of the results of the implementation,

some metrics are gathered from the literature which try to answer the questions

regarding the contribution of QA modeling to the variability concern of domains

to be analyzed.

Specifically, Relative Permissibility Ratio (RPER), Variability Factor (VF),

Commonality, Degree of Orthogonality (DoO), Extra Constraint

Representativeness (ECR) and Feature Interaction Problem Avoidance Percentage

(FIPAP) metrics are considered for evaluating the proposed techniques for QA

modeling.

4

1.2. Outline

This thesis document includes six chapters. Chapter-2 defines the basic concepts

and sub-processes of SPL dealing with details of the variability and its

management in the concept of SPL in addition to some evaluation criteria for the

variability assessment of feature models.

Chapter-3 introduces the NFR management concept emphasizing on QA

variability management with details and discussions on state-of-art modeling

approaches proposed in the literature.

Based on comparisons and assessments realized between these approaches, an

approach inspired from a synthesis of EFM and Feature-Oriented NFR Analysis

approaches is implemented. Comprehensive discussion on the development

process and assessment of these approaches on the selected illustration example is

presented in Chapter-4.

In Chapter-5, first, evaluations based on the criteria introduced in Chapter-2 are

realized solely on functional feature model developed for this study; afterwards

similar evaluations are realized for not only the functional feature model extended

with qualitative QAs but also the functional feature model extended with

Complementary Quality Modeling approach as the proof of concept. Towards the

end of Chapter-5, a detailed comparative discussion based on the evaluations for

each model is provided.

As the conclusion of the work, Chapter-6 assesses the whole material in terms of

its benefits, drawbacks and contributions to the literature. Besides, possible future

work is suggested within the context of this chapter.

5

CHAPTER 2

2. SOFTWARE PRODUCT LINES AND VARIABILITY

MANAGEMENT

In this chapter, first, an overview of the literature on SPL development process is

given. The scope, capabilities, and applications of the process with its sub-phases

are summarized. Then one of the fundamental principles of SPL concept,

variability management, is introduced with an overview of Feature Modeling

approach and the state of art Computer Aided Software Engineering (CASE) tools

serving for systematic construction of variability models.

2.1. Overview

SPL is defined as a collection of software-based systems sharing common set of

features which are supposed to be managed efficiently in a well defined domain.

Various and specific needs of any particular market segment or mission are aimed

to be satisfied. The developed systems are aimed to be originated from a common

set of core assets in a prescribed way. [1]

The key issue in SPL is software reuse. Similar to mathematicians using the same

formulas to solve different problems or physicists using the same laws to explain

different phenomena, software system designers are to use these same software-

based systems or modules sharing common set of features for the development of

various software-based systems feeding the needs of any particular market. [3]

6

Software reuse serves the potential to increase productivity, improve quality, and

reduce risk during the design and development of the software-based systems. But

the reuse of software sub-systems or modules is not enough, since the concept of

how software is developed based on reuse is usually ignored. This limits the

success that software reuse can meet.

In order to get rid of these limits, reuse should be supported with requirements

engineering in which the application is to be analyzed for reuse before writing its

specifications for reuse. The process is also to be supported with how reusable

specifications are retrieved and validated. For further support, domain analysis

can serve for the identification of user requirements for reuse. During the design

and development phase of software assets, the process has to be supported

systematically by the practices above.

2.2. SPL Processes

SPL development consists of two processes that run in parallel, namely, product

line engineering based on core asset development (which can also be included in

the context of domain engineering (DE)) and application engineering (AE) the

aim of which is individual product development. [1]

The DE process includes activities for analyzing systems in a domain and helps in

the creation of reference architectures and reusable components. The AE process

includes the activities for developing applications using the artifacts (i.e. domain

model, domain architecture) created by DE. [2]

7

Figure-1 below illustrates how DE and AE work together in parallel.

Figure 2.1: SPL Processes (modified from [9])

2.2.1 DE Process

The process in which the development of the product line (PL) architecture is

realized can be regarded as DE phase. DE aims to collect, organize and store

recent information and experience acquired during building systems or parts of

systems in a specific domain in the form of reusable assets. Furthermore, DE

aims to provide an appropriate way to reuse the assets while building new

systems. [2]

DE consists of three main steps namely as domain analysis, (domain)

architectural design and domain implementation. During domain analysis sub-

process, the application scope of the whole PL is analyzed with the contribution

of requirement analysis for the PL. [9]

For the development of core assets in a SPL, it requires basically the domain

analysis which identifies commonality and manages variability within. In the

study of domain analysis paradigm, several modeling approaches and analysis

techniques are proposed.

Feature oriented domain analysis (FODA) [5] has been established to identify

commonalities and variabilities in a domain in terms of product features where

the feature can be defined as an abstract communication medium between the

customer and the developer having a common meaning for both parties which

8

defines product characteristics. FODA uses this medium in order to identify

commonality and variability effectively among different products in a domain.

Furthermore it provides a basis for developing, parameterizing and configuring

various reusable assets. [1]

FODA is extended into Feature Oriented Reuse Method (FORM) to support

architectural design and object-oriented component development for the

incorporation into marketing perspective and exploration of analysis and design

issues using this perspective.

Several other attempts have also been made for the extension of FODA. Reuse-

Driven Software Engineering Business (RSEB) [6], a method based on Unified

Modeling Language (UML) notations with the feature model of FODA, was

proposed to be used for reuse in object-oriented software engineering. [1] UML

[7] has many advantages in providing greater insights into understanding and

managing commonality and variability. Using UML notation, the functional

requirements view is represented through a use case model, the static model view

through a class model, and the dynamic model view through a collaboration

model and a state chart view.

In following the domain analysis, SPL architecture is designed which provides the

framework for reusable components. Reusable components are designed in the

last step of DE, namely during domain implementation. [9]

2.2.2 AE Process

The process in which the development of individual projects over the PL is

realized can be regarded as the AE phase. AE aims to develop software products

using DE artifacts which guide developers throughout the selection of proper

architecture model and existing components. [2]

9

AE consists of three main phases, namely, product requirement analysis, product

design and product implementation during which component integration is

realized.

During product requirement analysis, the requirements on each respective product

are specified individually in relation with the domain requirement analysis

performed in DE. Feature analysis for each respective product is realized. As the

feature analysis is performed, product features are selected with the help of

customer requirements and domain model artifacts. These features are used for

the definition of product configuration that is composed of software components.

The architecture of each respective product is derived with the help of SPL

architecture. Finally in product implementation phase, product-specific

components are implemented. These components are tailored to constitute a

software product on the selected domain architecture model. Components are

tailored especially for the enhancement of their adaptability through the interfaces

in order to realize their integration with others to form the desired final software

product.

During definition of partial involvement of any component in overall

functionality of the system, there exists a trade-off between the size and

functionality of it. Granularity of the components poses its importance in the

sense of flexibility and maintainability such that large components reuse more

software but are harder to compose and maintain whereas small components

might embed too little functionality. [4] According to Chung et al. [8], as software

components become larger, their reuse value greatly increases whereas the ease of

adapting and integrating them decreases. Therefore a comprehensive effort during

the design of the components is needed for the sake of fine-tuning the level of this

granularity. Experience gained during the application phase and FRs engineered

during domain engineering phase are the main inputs for defining this measure.

10

Components need to be designed in a substitutable way such that a component

could be replaced by another regardless of either at design time or run-time. This

provides flexibility during the development of the whole system when AE is of

concern.

In order to enhance the reusability effectiveness of a component, a significant

effort has to be provided for the thorough documentation, testing and verification

facilities of each.

2.3.Variability Management and Feature Modeling

2.3.1 Variability Management

Variability Management (VM) is one of the fundamental concepts in SPLE as the

main purpose of SPL is to support variants (different choices) of products by not

only taking into account the commonalities but also the variabilities extracted

from the domain. For the sake of development and production of a wide range of

variant systems from a defined domain, during DE phase, variability has to be

explicitly elicited from the requirements thereafter by defining, representing,

exploiting, implementing, evolving, in other words managing it throughout all

sub-phases of SPLE in all sets of software artifacts constituted from requirements

such as architectures and components. [25] As of the most critical sub-phases of

VM, variability is said to be defined during DE and to be exploited during AE by

configuring appropriate variants.[24]

SPLE offers the differentiation flexibility and diversifiability of end products. As

the dependencies, restrictions, relations between different variabilities are

managed systematically, this ability of flexibility in terms of diversifiability is

guaranteed to be enhanced as the dynamics of diversifiability are kept under

control. In order to achieve this enhancement, systematic identification and

11

management of variability has to be supported with appropriate approaches,

techniques and tools. [26]

Variability subject involved in any domain has to be represented by proper

abstractions namely by variation points. These are the points where differences

exist in the final systems. They are the source of different feature possibilities

namely the variants existent in the domain to be satisfied. [24][25]

In order to represent variability in a domain, modern approaches use features as

basic concept for variability representation.

2.3.2 Feature Modeling

Feature Modeling paradigm was first introduced to the literature in the context of

the Feature-Oriented Domain Analysis (FODA) Method by Kang et al. [5] in

1990. The paradigm takes advantage of the features as they are externally visible

characteristics that can be utilized to differentiate one product from the others.

Additionally, Feature Modeling helps in scoping of product-line by selection of

features which are desired to be supported by the PL and which are not. [28] In a

poorly scoped product-line domain, relevant requirements as derivation points for

features may not be implemented or some implemented requirements may never

be used, leading to redundant complexity in addition to development and

maintenance costs. [32]

Stemming from the commonality and variability insight of PLs, features as the

external visible characteristics of products are easier to identify than the

conceptual abstractions (i.e. functions, objects, components, aspects etc.) derived

from internal viewpoints. This further supports the participation of all

stakeholders during not only production but also development of software

modules.

12

Lee et al. [1] define Feature Modeling as “the activity of identifying externally

visible characteristics of products in a domain and organizing them into a model

called a feature model”. During this activity, features are arranged hierarchically,

based on relations specified between parent features (variation points as features)

and respective child features (variants as sub-features). There exists several

notations for the expressions of relations between the features. The notation

proposed by Czarnecki et al. [21] seems to be the most comprehensive and the

one that is widely used. These parent-to-child relationships can be specified as

follows:

 Mandatory – parent feature requires all its mandatory child features

 Optional – parent feature may include any number of optional child

features

 Alternative – parent feature requires exactly one feature from a group of

alternative child features

 Or – parent feature requires at least one feature from a group of or child

features

It should be noted that a child feature can appear in a product if only its parent

feature is included.

These relationships are regarded as structural interdependencies by Jarzabek et al.

[20] as they are explicitly defined interdependencies. On the contrary,

interdependencies such as relationships of requires or excludes and correlations

between features are regarded as implicit interdependencies (also regarded as

cross-tree constraints [33]) that are implicit modeling abstractions. A selection of

a specific feature may require the selection of any other specific variant, similarly,

a selection of a specific variant may avoid the selection of any other specific

feature as well, so called “Requires Relationship” and “Excludes Relationship”

respectively. Main difference between structural and implicit interdependencies

can be specified as follows; structural interdependencies are explicit modeling

abstractions for guidance especially for feature selection (especially during AE)

13

and they somehow may be visible to customers, whereas implicit

interdependencies have an obscure nature and usually they are not visible to some

stakeholders (i.e. customers). Pohl et al. [24] defines this difference as external

variability and internal variability respectively. Some stakeholders (application

engineers and especially customers) do not need to take the implicit one into

consideration whereas the domain expert designing feature model has to realize

these connections between features. In this respect, implicit interdependencies

should be utilized in the models in a controlled manner such that augmenting the

usage rate of these dependencies leads to visual complexity as the perception of

all relationships thoroughly gets harder.

Not only during the construction of domain architecture but also during building

the applications, the utilization of feature diagrams is inevitable. Basically feature

diagrams are graphical representations of feature models.

In feature diagrams, the relationships between features are structured in a

hierarchical tree format in order to form a suitable feature model and facilitate the

feature selection process. These trees are constituted of nodes and directed edges

in which nodes are mapped to features and directed edges are used to reveal

interrelationships between these features.

During the usage of features for the modeling of variability, the perceptual

advantage of graphical notation is utilized in most of the feature modeling

approaches as well. Beginning with the emerge of feature diagram concept with

FODA, a diversity of graphical feature modeling notations are proposed so far,

examples of which are compiled with a comprehensive and comparative

discussion by Metzger and Heymans. [35] Originating from FODA, commonly

and widely used basic notations for Feature Diagrams can be observed in Figure

2.2 below in which structural and implicit relations are defined among features

and their respective sub-features.

14

Figure 2.2: An instance of feature model [33]

As an apparent instance for co-utilization of both structural and implicit

interdependencies, with respect to the Figure 2.2 above which demonstrates the

supported features of a software to be loaded in a mobile phone; all the phones

possess support for calls in addition to display support for only one of either

basic, colour or high resolution screens. Moreover, the software may optionally

possess support for a GPS and one or both of camera and MP3 multimedia

facilities. In terms of implicit interdependencies; inclusion of camera support

feature in a product automatically implicates high resolution screen support into

the product configuration whereas including GPS feature support automatically

precludes basic resolution screen support out of the product configuration and

vice versa.

Consequently, using this graphical demonstrative power of features, the notion of

Feature Diagrams is widely accepted in state of art Feature Modeling approaches.

As clearly specified in [33], there are some issues to be taken into account during

the construction of implicit interdependencies (a.k.a. cross-tree constraints).

15

A feature model is defined to be void if it represents no products. In relation to

this specification, main reason that drives a feature model to void is the wrong

usage of cross-tree constraints such that a feature model without any cross-tree

constraints can never be void.

Another possible outcome of misusage of cross-tree constraints is the dead

features as such features cannot be included in any of products due to wrongly

defined interrelationships including structural ones. These relationships are

needed to be avoided as they give wrong idea regarding the expression of the

domain. Examples of such situations are demonstrated in Figure 2.3 below. [33]

Figure 2.3: Examples of dead features (Shaded features represent dead

features) [expanded on [33]]

With relevance to dead features issue, one other outcome of wrong cross-

constraint usage is the false optional features. False optional features are the ones

that are included in all of the products although they are not modeled as

mandatory features in the feature model. [33]

16

Figure 2.4: Examples of false optional features (Shaded features represent

false optional features) [expanded on [33]]

Constraints (namely the implicit interdependencies) between features are

essentials for the establishment of a substantial feature model due to the need of

following facilitations: the modeler (possibly the domain expert constructing

domain architecture) may desire to state that a feature F1 requires a feature F2 to

perform its functionality properly leading to a situation that if application

engineer selects F1 for an application, F2 has to be selected as well. In a similar

manner, the domain engineer may desire to state that if a feature F1 can not

perform its functionality with the presence of feature F2 leading to a restriction for

the application engineer to select F2 if feature F1 is selected previously. In the

light of variability modeling, all these possibilities of relationships are classified

by Pohl et al. [24] to be among variant-to-variant, variation point-to-variation

point and variant-to-variation point as conventions included in the concept of

Orthogonal Variability Model where variation points can be regarded as features

and variants as sub-features.

17

As a consequence of conjunction in between these structural and implicit

interdependencies, in terms of scalability of the variability knowledge involved in

the model, there is an important need of control over trade-off among the

structural and implicit interdependencies. This is due to the fact that the structural

one is the driving force for variability whereas the implicit one put essential limits

around variability as the rules it defines are used to verify consistency and

completeness of not only the features but also the entire model.

2.3.3 Tool Support for Management and Analysis of Feature Models

Being the most widely used variability modeling and management mechanisms,

the support of CASE tools is required by Feature Modeling approaches for the

systematic management of the modeling knowledge. They need the visual

expression ability during the development and usage of this knowledge and select

them as a variability mechanism in the end.

A number of feature modeling tools have been proposed and reported in the

literature: XFeature [27], FeaturePlugin: Feature Modeling Plug-in (also known

as fmp) [28] , FeatureIDE [29], Captain Feature [30] and the commercial tool

pure::variants from pure-systems GmbH [31].

Different from the feature modeling tools referenced above, a framework named

FAMA (Feature Model Analyzer) is proposed [40] in order to realize automated

analysis of feature models. The framework is available to be implemented on

Eclipse Platform [41]. As long as a feature model expressed in XML is provided

to the tool, analysis of the feature model can be performed with the help of the

most widely used solvers (i.e. SAT, CSP and BDD) in the literature. These

solvers are utilized to analyze feature models which are expressed in the form of

either of Boolean Satisfiability Problem (SAT), Constraint Satisfaction Problem

(CSP) or Binary Decision Diagram (BDD). The reasoners included in the

framework implementation are capable to answer many of questions related with

18

the characteristics inherent in the feature model. Two of the primary facilities

upheld by the tool are providing the total number of possible products of a feature

model and the total number of products that contain a specific feature.

In the context of the goals and scope of the present study, it can be observed in

Chapter 5 that FAMA is utilized for evaluating the benefits of the proposed QA

modeling approach. FAMA provides essential parameters needed by several types

of evaluation criteria specific to different models of comparison.

2.3.4 Evaluation Criteria for Feature Models

Various methods and approaches are being implemented on the basis of Feature

Modeling fundamentals. In order to make an assessment regarding any approach

and its implementation, especially in terms of its variability related contributions,

some evaluation criteria have to be defined.

First of all, in order to have a general idea about the complexity and flexibility of

a feature model, the number of potential products has to be measured. It is usually

accepted that the more the number of potential products derived from a model, the

more its complexity and flexibility. A huge number of potential products may

constitute a more flexible SPL while leading to more complexity. This measure

can be assessed with respect to a Feature Model with or without the relations and

dependencies defined between the features. As the relations (i.e. requires or

conflicts) are taken into account, the number of potential products is expected to

be decreased, which is more realistic in terms of evaluating the complexity and

flexibility of the feature model. Below, some specific metrics considered relevant

in this context will be reviewed.

19

2.3.4.1 Relative Permissibility Ratio (RPER)

As an indicator of how well a variability modeling approach fits the need of

attaining more permissible systems, Kasikci and Bilgen [38] proposed

permissibility ratio (PER). PER is defined, as in expression (1), as the ratio of the

number of systems that are acceptable as valid systems by the experts and users of

the domain (Na), to the total number of possible systems that can be generated

using the particular modeling approach (Nt).

)1(
t

a

N

N
PER

Since it requires too much effort to determine the true number of acceptable valid

systems by the users and experts (Na) and due to the difficulty in defining

common means of filtering rules to specify Na, PER is utilized by the criterion of

relative PER (RPER). As defined in expression (2) below, RPER is obtained by

the ratio of PER of two different variability modeling approaches. RPER is

meaningful under the following restrictions:

 the same set of criteria is used by the experts and users for the validation

of acceptable systems which leads to the same values of Na for different

variability modeling approaches,

 the models of comparison need to express the variability in terms of the

same modeling artifact, namely the features,

 the variability items (i.e. number of features – leaf nodes – in feature

model) utilized for the specification of acceptable systems are the same

RPER is obtained as the ratio of the number of possible systems that can be

generated using the particular modeling approach where constraints and

relationships between the artifacts are taken into account.

20

)2(,
AModeltobelongedproductsofNumber

BModeltobelongedproductsofNumber

Nt

Nt

PER

PER
RPER

A

B

B

A
BA

As RPERA,B gets closer to zero, the variability modeling capability of model B is

said to represent actual realizable systems more accurately.

2.3.4.2 Variability Factor (VF)

In relevance to the discussion above, the variability of a Feature Model is strictly

related with the relations and dependencies defined amongst the features in the

model. During the description of a Feature Model in terms of relationships

between the features, the variability of the model can be said to be described

concurrently and indirectly. In other words, the variability depends on relations

and its types as these relations restrict the number of potential products. In order

to have a measure regarding the variability of a model, as defined by Benavides et

al. [13], the Variability Factor (VF) quantifies the ratio of the number of potential

products with the feature relations defined to the number of potential products

without the feature relations defined as illustrated in (3). This factor has the range

of values from 0 to 1 and the more it is close to 1, the more the Feature Model is

said to have variability. The value of this factor gives the Feature Model

developer the idea regarding the degree of variability that the model possesses.

Besides, this factor exhibits the flexibility of the feature model.

Alternatively, for the calculation of VF, the denominator can be assumed to

converge to 2
n
, where n denotes the number of leaf node features such that the

most flexible feature model would be the one that has all its features as optional.

[33]

)3(
][

][

definedrelationswithoutproductsofNumber

definedrelationswithproductsofNumber
VF

21

2.3.4.3 Commonality

It is harder to have an assessment regarding the overall commonality measure of a

Feature Model. However, inspiring from the metric utilized by Fernandez-

Amoros et al. [32], it is possible to make an assessment regarding the

commonality of a feature which can be measured by having the ratio of the

number of possible products having a specific feature to the number of the total

number of all potential products, wherein the relations between the features are all

defined.

Similar to the approach above, Benavides et al. [33] extend the calculation by

evaluating with regards to not only a single feature but also a configuration of

features (additionally defining the features not to be selected). In reference to (4)

below, the evaluation is performed by calculating the number of products that

employs a specific feature or a specified feature configuration divided by the

number of all potential products derived from the feature model.

)4(
][

productsallofNumber

ionconfiguratspecifiedwithproductsofNumber
yCommonalit

The metric spans the values from 0 to 1. The value of this metric can be utilized

for the prioritization of the order of the features that are going to be developed

since most common features forms the backbone of the referenced PL domain and

needs to be developed prior to others. [13]

2.3.4.4 Homogeneity

Conceptually relevant to the commonality measure discussed above, Clements et

al. [34] proposed the homogeneity metric implemented on their general-purpose

business model called Structured Intuitive Model of Product Line Economics

22

(SIMPLE). It supports the estimation of the costs and benefits in a PL

development organization. The homogeneity metric is proposed to reveal an

indication of the degree to which a PL is homogenous (i.e. how similar are the

SPL products), considering the fact that not every product exhibits the same

commonality.

For instance a more homogenous feature model possesses less unique features in

a product whereas a less homogenous one possesses more unique features

keeping in mind that unique features can be included in only one product. [33]

The metric has the range of values from 0 to 1, where 0 implies that all the

products are unique. As the homogeneity converges to 1, the products are said to

be more similar with each other. Inspiring from the equations defined in [33] and

[34], homogeneity can be calculated by (5) below where FU stands for the number

of unique features in one product, and NP stands for the total number of different

products represented by the feature model:

 51
NP

yHomogeneit FU

The metric helps for the assessment of PL scoping such that as the evaluation on

homogeneity of the products derived from a PL is performed, the degree of reuse

among the products in the PL can be derived. This would provide an anticipation

and comparison for the levels of component reuse in different PLs.

2.3.4.5 Degree of Orthogonality (DoO)

Czarnecki and Kim [36] introduce the DoO, defined as the ratio between the

number of products evaluated by including the effects of all dynamics of the

whole feature model (i.e. all the constraints among whole features of the feature

model are taken into account) and the number of products in a sub-tree including

23

the effects of local dynamics (i.e. only local constraints in the sub-tree are

considered during the calculation of products derived from the sub-tree) as

referenced in (6).

 6
]int[sconstralocalwithtreeSubofproductsofNumber

ModelFeatureofproductsofnumberTotal
DoO

This metric has the range of values from 0 to infinity. A high DoO implies that

decisions about feature selections can be realized locally without taking their

influence on choices in other parts of the feature hierarchy into account.

2.3.4.6 Extra Constraint Representativeness (ECR)

Mendonca et al. [37] define ECR as the ratio of the number of variables

possessing implicit interdependencies (repeated variables counted once) to the

total number of variables in the feature tree as referenced in (7) below.

 7
]int[

featuresofnumberTotal

sconstratreecrossininvolvedfeaturesofNumber
ECR

The metric encompasses the values between 0 and 1. This measure gives an idea

regarding the usage intensity of cross-tree constraints with regards to structural

ones. Moreover, the measure can be regarded as the utilization ratio of implicit

interdependencies to structural ones. In the light of this idea, as discussed in

Section 2.3.2 Feature Modeling, while opining on scalability of the variability

knowledge involved in the model, this measure would give an idea for the sake of

acquiring a comparison and trade-off exercise between these two essentials of

variability modeling.

24

2.3.4.7 Feature Interaction Problem Avoidance Percentage (FIPAP)

In a fashion similar to the evaluation of ECR, Kasikci and Bilgen [38] proposed a

metric to measure how better a variability modeling approach avoids problems

stemming from feature interactions. As the number of features in a model

increase, if the relationships of excludes are not defined sufficiently and

appropriately among the features, coexistence of some features may hinder the

proper operation of the product. Therefore, it can be deduced that the more

exclude relationships exist in a feature model, better the modeling approach is in

avoiding Feature Interaction Problems. As defined in (8), relative FIPAP of

model A with respect model B is measured based on the exclusion relationship

numbers for model A (EnA) and model B (EnB).

 8100, x
En

EnEn
A

A

AB
BA

25

CHAPTER 3

3. NON-FUNCTIONAL VARIABILITY MANAGEMENT AND

QUALITY ATTRIBUTE VARIABILITY MODELING

3.1. Non-functional Requirements

The specifications and approaches mentioned so far address formation of

components regarding only functional properties or requirements of software

systems. As the common drawback of recent approaches, there exist a lack of

traceability from NFRs to design and implementation. Not only to ensure

confidence in the system but also to achieve successful configuration of

components, the effect of non-functional properties - also specified as extra-

functional properties or quality attributes in the literature as well - has to be taken

into account.

There seems to be no consensus about the nature of NFRs and the way to

document them in requirements specifications. Jacobson, Booch and Rumbaugh

defined NFR as “A requirement that specifies system properties, such as

environmental and implementation constraints, performance, platform

dependencies, maintainability, extensibility, and reliability. A requirement that

specifies physical constraints on a functional requirement.” [12] Glinz concludes

his study regarding the definition of NFR as “an attribute of or a constraint on a

system.” where he defines specific quality requirements being attributes of the

system with instances of Reliability, Usability, Security, Availability, Portability,

26

Maintainability etc.[11]. Depending on the context and the application of the

system, the set of NFR instances can be extended.

3.2. NFR Analysis

As it is the phase during which requirement analysis for the systems is realized,

the domain analysis in SPL development has to consider both FRs and NFRs.

Reasons why NFR analysis during SPL development is necessary can be

specified as follows: First of all, different software applications sharing common

functional properties may require different levels of NFRs such as reliability,

security, privacy, performance, etc. Besides, if NFR analysis is not realized

properly, redundant efforts on design and implementation of some NFR aspects

may have negative effect on other NFRs of the product such as higher cost of

development and maintenance.

It is also more difficult than FRs to analyze and define NFRs due to very vague

nature of them together with their variations involved. Besides, most NFRs are

closely tied with FRs leading to considerable difficulty to distinguish them from

each other. Furthermore, non-functional variations, details of which are to be

considered during feature analysis, arise from NFR tradeoffs making them more

confused.

3.3. Non-functional Variability Management

Variability is a significant concept in SPLE that has to be managed

systematically. There are many different methods and notations focused on

functional variability. Despite the complexity of non-functional variability

management in SPL due to the ambigious nature of QAs (non-functional

27

features), success in feature-oriented approaches for functional variability

modeling has guided recent studies, to be reviewed below, through similar

approaches in non-functional variability modeling.

In extension to Section 2.3.2 Feature Modeling, during analysis of features as the

indispensable phase of DE, the concept of variability modeling needs to be

broadened with the QA concerns. As a natural consequence of that, in course of

defining relations (i.e. structural and implicit interdependencies) between features

in a feature model, non-functional features are to be separated from functional

ones, treated in a different way, due to their distinctive nature in terms of their

interplay among each other and with functional features. From RE point of view,

with expansion on what Jarzabek et al. [20] proposes as classification of

interdependencies involved among all functional features and QAs, Correlation

Taxonomy of Requirements is illustrated in Figure 3.1 below.

Figure 3.1: Requirements Correlations Taxonomy (expanded on [20])

It should be noted that, during the construction of interrelationships among whole

set of features; QAs involved in structural interdependency are proposed to

possess OR and AND relations and structural interdependency between a

functional and non-functional feature takes explicit contribution form. Besides,

implicit interrelation between a functional feature and non-functional feature is to

have the correlation relationship which is in the form of either positive or

negative (i.e. the choice of a sorting algorithm (functional feature) may influence

time performance (QA) in a positive or negative way). As an extension on

Jarzabek et al.‟s taxonomy, implicit interdependencies among NFRs has to be

taken into account during domain analysis since QAs involved in a domain model

28

encapsulates inexplicit interplays among each other that needs to be observed and

controlled. These interplays are possibly in the form of positive and negative

impact among each other that we can name as “Implicit Contribution”.

The need for a proper representation technique for the illustration of variability

modeling of non-functional features makes the usage of feature model diagrams

indispensible in such a domain where it is considerably difficult to capture all the

information.

Below an overview of non-functional variability modeling approaches with the

particular usage of feature model technique is presented with comparisons.

3.3.1 Extended Feature Model (EFM)

Benavides et al. [13] proposed an extension on classical feature models with

extra-functional features and improvement on previously proposed vague

notations with the help of allowing relations amongst attributes. Attribute is

specified as any characteristic of a feature that can be measured in a defined

attribute domain. In relevance to these specifications, extra-functional feature

(non-functional feature) is specified as the relation between one or more attributes

of a feature. Attributes can be utilized to specify extra-functional information

such as cost, speed, RAM memory or development time required to fortify the

features as referenced in Figure-3.2 below. These attributes can hold values of a

specified range belonged to a discrete or continuous domain (i.e. integer or real

number domains). EFMs can also offer complex constraints among attributes and

features such as “If attribute A1 of F1 is lower than a value X, then feature F2 can

not be part of the product.” [33] which can be modeled in the form of implicit

interdependencies amongst features.

29

Figure 3.2: Instance of EFM (adapted from [33])

Additionally, a notation inspired from Streitferdt et al. [42] is adopted for the sake

of illustrating how attributes decorate several features. It should be noted that the

parent features are decorated with functional expressions that are dependent on

the attribute values of their child features.

As several attributes are added to features, feature models can be utilized with

optimization operations in order to select a set of features that either maximizes or

minimizes any value of a given feature attribute. [33]

An algorithm based on Constraint Programming with some definition of rules is

proposed in the study which details these relations between the attributes of the

classical functional feature model. Furthermore filtering rules are defined for the

limitation of potential products of the model having the desired configuration of

the user. Besides, validation and optimization rules are defined in the algorithm in

order to find out the best products with control over previously specified

constraints regarding the derived NFRs. [13]

3.3.2 Definition Hierarchy

Kuusela and Savolainen [14] proposed a definition hierarchy method for the

organization of requirements into definition hierarchy where requirements for

30

different products are demonstrated in the same hierarchy. Different from the

contemporary design methods, the method analyzes the requirements in two

categories as design objectives and design decisions instead of emphasizing only

on FRs based on customer‟s needs.

The hierarchy is structured on a logical AND tree in which the topmost nodes are

design objectives (i.e. architectural drivers, other QAs the system has to achieve)

with the remaining nodes left as design decisions. Each node in the definition

hierarchy has a priority that reflects the importance of it with a clear intention of

its parent. The hierarchy is organized in a way that an edge between a design

objective and a design decision indicates that the requirement is (partially)

satisfied by design decisions.

Definition Hierarchy method aids the designer in management of requirements

and their interrelations by resolving the requirement conflicts and inconsistencies

with the definition of design decisions and objectives. It helps the designer on the

way of finding missing requirements by reverse-tracing the hierarchy tree.

Besides if a requirement is considered to be ambigious, it is easier to define it

more accurately by adding new nodes of design objectives on the suspected sub-

tree.

3.3.3 COVAMOF

Most of the contemporary software variability modeling methods aims to

represent variation points as the primary entity with a clear hierarchical

organization. The framework for modeling variability in software product

families named as COVAMOF (ConIPF Variability Modeling Framework) [15]

aims to represent dependencies by modeling their relations as well. The

framework uses the CVV (COVAMOF Variability View) for modeling of the

artifacts on all abstraction layers of the product family with Variation Point View

and Dependency View capabilities. The CVV captures the variability with the

31

help of variation points and dependencies. Each variation point in the view is

associated with an artifact (i.e. feature tree, feature, architecture or a C header

file) in SPL. Five types of variation points (i.e. optional, alternative, optional

variant, variant and value) are specified in the view. These variation points

include a description and information regarding its state (i.e. open or closed), the

rationale behind binding, how the mechanism is to be realized.

As for the dependencies, three types of associations of variation points are

specified in CVV. Predictable associations are used for the representation of

variation points whose impact on the validity of the dependency can be

determined prior to selection of the variants.

Directional associations are used for the representation of variation points, where

dependency can only specify if the variant selection affects the validity of the

dependency either positively or negatively but not definitely. Unknown

associations represent variation points where the impact of variant selection on

validity of the dependency is unknown.

Types of dependencies are distinguished to three as logical, numerical and

nominal. Logical dependencies define a function valid providing the validity of

dependency for the selection of variants of the associated variation points.

Numerical dependencies specify a numerical value, which depends on the

selection of the variants among the associated variation points. Nominal

dependencies define a set of categories, where the binding of all variation points

in association with dependencies map to one of each.

32

3.3.4 Bayesian Belief Network

As a feature diagram alone lacks the facility to help the designers select the best

configuration of variants on the way to achieve the required QAs, Zhang et al.

[16] proposed a Bayesian Belief Network (BBN) based approach to quality

prediction and assessment for an SPL. Similar to Definition Hierarchy

framework, BBN simply aims to represent and model the impact of functional

variants (especially design decisions) explicitly on system QAs. These impacts

originate from the interrelationships among variants (design decisions) and QAs.

The examples of the interrelationships can be specified as the impact of one

variant on many QAs, the impact of one QA on many variants, or impact of

variants on each other in a competitive or synergetic fashion.

Impacts of the variants are represented as domain experts‟ knowledge and

experiences derived from the development of similar projects on the same SPL. In

addition to the analysis of relationship between the variants and the QAs, the

BBN approach also deals with the uncertainity involved in the design decisions.

The uncertainity is due to the risk that any configuration of the variants may lead

to either high or low quality in terms of attributes and design decisions.

BBN model is structured around variables as QAs and design decisions which are

represented as nodes in the model. These nodes are annotated with definitions.

Directed edges in the tree model are used to relate a variant with one another (i.e.

a design decision to a QA). Conditional probability is used for the quantification

of the conceptual relationships between the variants or design decisions and QAs,

value of which designates the domain expert‟s belief in how much a specific

design decision has the impact on any given QA. The approach basically tries to

enhance the comprehension of the impact of design decisions on QAs on the way

to reveal more rational decisions.

33

3.3.5 Goal-oriented Approaches

Majority of software variability modeling methods are too design oriented,

dealing too much with features and aiming relatively more on revealing

architecture definition. The requirements are usually structured in definition

hierarchies or feature models. This poses complexity during application as it

necessitates a fairly large domain experience. During the requirement analysis

process of SPL (i.e. analysis and selection process of variants), traditional SPL

approaches pose problems when it is the case to deal with NFRs.

The goal-based model is introduced to the literature in order to solve these

problems faced during the elicitation of NFRs. The model simply aims to model

non-functional concerns explicitly and represent the intentionality of the system

by relating the goals with traditional features. The goal is defined as the purpose

of the system under development, having two types as hard goals and softgoals.

Hardgoals are used for the satisfaction of functional features in a model whereas

softgoals are used for the satisfaction of QAs required. The hardgoals and

softgoals are dependent on each other in a way that the scope of variability in a

model is defined by analysis of hardgoals but softgoals helps the designers to

manage this variability in a most efficient way with exact definitions of quality

criteria. [17]

3.3.5.1 NFR Framework

Mylopoulos et al. [18] proposed a goal-based visual variability analysis technique

for explicitly modeling variants of different set of requirements for each product

of a product family, in opposition to the case for only one product. Two sub-

models are proposed as the functional goal model (dealing with goals and

functional tasks) and the softgoal model (dealing with conditions and criteria that

the system is to meet) derived from NFRs and QAs. Both of the sub-models are

structured as AND/OR trees in which QAs are represented as soft-goals having

34

their operationalizations included in the functional goal sub-model as tasks.

Variability is represented through different OR paths of the functional goal

model. Sub-models are related with each other through the correlation links

defined by the NFR framework. [19]. The method offers to support the selection

of a particular variant (represented in the functional goal sub-model) based on QA

criteria, after the relations between two sub-models are established.

3.3.5.2 Feature Softgoal Interdependency Graph (F-SIG)

Many goal-oriented analysis techniques are based on QA analysis in a single

system development. The goal-oriented analysis simply helps the designers to

derive and represent QAs explicitly, specify the contributions from functional

features to QAs and correlations among QAs, measure design decision impacts on

QAs and finally selecting best design alternative satisfying certain QAs. On the

other hand, being the extension of FODA, feature-oriented reuse method (FORM)

is a well known domain analysis method to model common and variant

requirements for PLs.

In Feature Softgoal Interdependency Graph (F-SIG) method, similar to goal-based

visual variability analysis method [20], goal-based approach is aimed to be

extended to a PL context by taking the advantage of QA analysis capability of

goal-based approach. This approach is blended with PL domain analysis

capability of FODA. The principal objective of the approach is to provide design

model representing the interdependencies between variant features and QAs. In

order to realize this objective, Softgoal Interdependency Graph (SIG) proposed by

Chung et al. [19] is used to analyze NFRs by specifying softgoals and linking the

interdependencies among variant features and softgoals. Similar to goal-based

model, these linkages are established by means of correlation links defined in

NFR framework. The approach is formed out to be F-SIG in the end.

35

Similar to some other QA variability modeling approaches such as COVAMOF

and BBN, the F-SIG framework aims to aid the developers in assessing the

impact of variant features on QAs required by the system. These impacts can be

regarded as the restrictions to be defined on the behavioural requirements arising

from the selected variant features. Against the difficulty in capturing the

definitions and restrictions on QAs due to their vague nature, using softgoal

concept in goal-oriented analysis assists the designers during feature modeling.

In the approach, interdependency is classified as structural and implicit. Structural

interdependency is any explicit relation defined for features in the form of

mandatory, optional, alternative and OR; for QAs in the form of only OR or AND

all of which are imposed by modeling technique proposed by Czarnecki and

Eisenecker [21]. Implicit interdependency is any correlation between features and

QAs in the form of negative or positive as imposed by NFR framework proposed

by Chung et al.[19].

F-SIG approach uses QA softgoal and claim softgoal types by discarding

operationalizing goal, all of which are basic artifacts of SIG approach proposed

by Chung et al.[19]. It is claimed that some features are regarded as they already

include the role of operationalizing softgoals which are supposed to have

contributions to QA softgoals.

The framework developed around F-SIG can help the designers in analyzing the

interrelationships between design decisions and QAs. It does not include enough

quantitative data to clearly address the best design decisions for any stated QAs in

addition to a lack of tool support for the decision process.

36

3.3.5.3 Feature-Oriented NFR Analysis for SPL

Peng et al. [10] extended the goal-based models simply by materializing the

NFRs in a way that NFR goals are linked with real-world context to aid realizing

non-functional variability analysis over a whole domain.

The method elaborated in the context of the approach involves four major phases

specified as following:

1. Feature Context Construction: As the starting point of all phases, a feature

context model is constructed on an initially built functional feature model.

Feature context construction is realized by modeling the real-world context

from which non-functional concerns are derived in the form of execution

scenarios, intents of human, events, social concepts etc.

2. Non-functional Variability Identification: Before identification of non-

functional variability, goal presence analysis is realized. Some NFRs that are

always desired by stakeholders are already included in almost every model,

but context-specific NFRs has to be elicited with the help of NFR templates as

heuristics for the goal-presence analysis.

Being the product of goal presence analysis, non-functional goals are further

analyzed into sub-goals with different levels. Against one of the primal

handicaps of other QA variability modeling approaches (including goal-

oriented approaches), the method takes a chance to propose optionality at PL

level by specifying three levels for each NFR goal as low, medium and high.

Higher level NFRs always replace lower ones. But if an higher level NFR

conflicts with another NFR, the lower levels are to be reserved as well.

Concept of conflicts between NFRs on the level of operationalizations is a

significant part of the variability analysis, since non-functional variations arise

from tradeoffs of these conflicting NFRs.

For each of these NFR levels, operationalizations are further specified to set

up relations in the form of conflicts and dependencies. Besides, the

operationalizations are further evaluated for all NFR levels considering the

37

possibilities of their satisfiability such that if an operationalization is

evaluated to be unsatisfiable, then it should be removed. Besides the

operationalizations define the presence of NFR levels or their relations such

that; if all operationalizations of an NFR level are removed, then it should be

removed or if all operationalizations of an NFR level are partially satisfiable,

then it should be adjusted to be optional.

During integration of operationalizations into conventional feature models, as

of the bridges between the NFR levels and functional features, there emerges

the need for definition for two types of operationalizations, namely dynamic

operationalizations that can be regarded as a sub-feature of the affected

functional feature and static operationalizations that can be regarded as

restrictions on the affected functional feature. Besides, for the instances of

dynamic operationalizations affecting multiple functional features are defined

as crosscutting features, interactions with functional features of which are

required to be recorded.

3. NFR Integration: NFR-related operationalizations are involved/incorporated

into the feature model in parallel to modification on functional features based

on the relations with non-functional concerns.

4. NFR-oriented Decision Modeling: Finally, a feature decision tree model

with both functional and non-functional concepts is built where all NFR

conflicts, NFR dependencies, environmental dependencies and constraints are

taken into account. In decision model, only variability-related features are

involved.

The structure of the feature model produced by the approach is constructed on the

variation points of optional, alternative and OR features. Optionality as the basics

of variability is utilized differently in the approach of Peng et al. such that; in

conventional feature models, an optional functional feature is either included in

the model or not, whereas an NFR can never be excluded from the model. It is

38

intrinsically included in the model and it has to be represented explicitly for an

effective management of QAs. That is why the different levels for soft goals are

defined in their model.

Concept of cardinality is also involved in the model due to the need of

representation of numerous variants that can be chosen for a single variation point

of OR type. Cardinality is represented as [minimum number of variants …

maximum number of variants] in the feature model.

As an important intermediate product of the modeling process proposed by the

approach, NFR graphs are critical such that four important elements of the whole

process are encapsulated in. These are NFR goals with sub-goals, identified NFR

levels for each respective NFR sub-goals, suggested operationalizations for the

implementation of each NFR levels and required environmental conditions for

specification of operationalizations.

Four different types of relations between these elements are defined in the

concept of NFR graphs, specified as, (1) AND/OR decomposition of a goal to its

corresponding sub-goals, (2) relation between NFR goals and its corresponding

NFR levels, (3) AND/OR decomposition between NFR levels and its

corresponding operationalizations and (4) environmental dependencies between

operationalizations and environmental conditions (for the evaluation of

applicability of each operationalization). As an illustration of notations included

in an NFR graph, a sample NFR graph of Security and Usability modeled with

reference to Computer Aided Grading System (CAGS) domain is demonstrated in

Figure 3.3 below.

39

Figure 3.3: Sample NFR Graph for NFR Goals in CAGS Domain (adapted

from [10])

In terms of classification of interrelations amongst artifacts of NFR integrated

feature model, as illustrated in the Figure 3.3 above, structural interdependencies

can be realized in the form of AND/OR decomposition of goals to its sub-goals

and decomposition of NFR levels to its operationalizations.

The interplay between NFR sub-goals and their corresponding NFR levels can be

modeled in the form of either structural or implicit interdependencies since any

level of NFRs mutually excludes the other levels. Defining conflicts relationship

as an implicit interdependency for each of NFR levels belonging to the same sub-

goal has the same affect on variability with defining alternative relationship as a

structural interdependency between a sub-feature and its corresponding NFR

levels. From the variability point of view, they are considered to have the same

effect on the variability of the model. It would be better to use structural rather

than implicit interdependency for the sake of ease of perception and

understandability of the model.

40

Other instances of implicit interdependencies can be realized between NFR levels

and functional features in the form of relations between functional features and

either of static or dynamic operationalizations or crosscutting features. Besides,

there may exist relations amongst operationalizations no matter to which NFR

level they are belonged to. These relations are in the form of conflicts or

dependences (that can be regarded as excludes or requires relationships

respectively). One other implicit interdependency is defined as Environmental

Dependence specifying the relation between environmental condition (i.e.

required hardware or medium due to selected functional feature) and the

corresponding operationalization.

The concept of dependency among NFR goals, functional features and

environmental conditions is beneficial for the integration of non-functional

perspectives into the decision model.

3.3.6 Tool Support for Non-functional Feature Modeling

There is no generally accepted modeling tool for QA variability. COVAMOF,

Definition Hierarchy, EFM and Goal-based Models provide their own tools that

have been developed specifically for each design implementation; BBN uses a

commercial tool named Hugin for the automation of inferences and F-SIG uses

MS Visio for the representation of the models.[22]

3.4. Discussion of the Literature

In order to take the variability derived from NFRs under control, a detailed study

has to be provided at very beginning of DE particularly in Domain Analysis

phase. As individual products are under development, this study has to be

supported and extended with the experiences gained during Product Requirement

Analysis phase of AE by sustaining a two way feedback between respective sub-

processes of DE and AE.

41

But it is not that easy to represent NFRs clearly for their ease of perception during

the analysis of the domain and the development of applications. Besides, the

efforts and approaches fall short in providing an integrated feature modeling

framework to capture NFRs together with FRs.

As the outcomes of product‟s NFRs analysis can be stated as an important input

for the definition of product features; prior to design and configuration of the

product is completed, a consistent feature analysis has to be realized with proper

methods helping for elicitation of NFRs. Introducing NFRs to the feature model

ontology is expected to enrich the feature model ontology with description of

relations, constraints, restrictions among QAs and functional features.

In the scope of SPL, variability is defined with the help of variation points. These

variation points can define decision points in conjunction with their possible

alternatives in the form of functional or non-functional (quality) aspects. These

decision points can form the basis of NFR-integrated variability models which

can provide comprehensive variability decision support for AE with both

functional and non-functional considerations. Right after the structural and

implicit interdependencies of any feature model are defined and model validation

is performed (i.e. the feature model is valid if at least one product can be derived

from it), FAMA can guide the designers towards a valid and complete feature

selection (decision model support with the help of the rules of relations defined

among the QAs and functional features) which would help in making evaluation

of the integrated feature model basically in terms of its variability.

During feature modeling, the control over these variation points is crucial since

identifying and understanding the dynamic semantics of systems is a requisite for

product design activities. Most of the time these points derived from NFRs are not

formally identified in a feature analysis with details and there exists no competent

mechanism to capture them explicitly. In order to have such applicable feature

models, the variation points derived from the analysis performed for NFRs are to

42

be explicitly identified within a feature model and are to be integrated suitably

with functional features. This is essential for Domain Architecture Design phase

of DE in extension with Product Design Analysis phase of AE.

The tendency to use feature diagrams in feature models as the basic aid for

modeling proves its competence as variability representation technique, not only

for the analysis of FRs but also for NFRs, since its usage is adopted by most of

the recent approaches.

During the literature review, state of art QA variability modeling approaches have

been assessed with respect to their potential contribution to variability model

development, taking their capability to reveal the interplay of QAs with functional

features into account.

As of being one of the QA modeling approaches, Definition Hierarchy

concentrates on analysis and classification of requirements which practices

especially on the problem domain leaving little effort for design activities in the

solution domain. Even design decisions are realized in parallel to the elicitation of

the requirements. There has to exist a balance of endeavor between these two

domains.

During variability modeling of QAs, COVAMOF emphasizes dependency

analysis between variation points. However, in order to determine the

applicability of design decisions on variation points, some restrictions or

conditions such as environmental dependencies on operationalizations of the

variants have to be taken into account.

As the impact of the variants are specified based on domain experts‟ belief

regarding the knowledge and experience derived from the development of similar

projects on the same SPL, BBN lacks objectivity and correctness for the instances

of immature SPLs with on-going development on their competence.

43

QA variability modeling approaches mentioned above remain short of responding

to the need of different levels of QA optionality at PL level except the approach

proposed by Peng et al.[10]. This need for modeling qualitative QA knowledge in

feature domains can be expressed with an example of cost requirement.

Concerning all product candidates to be derived from the same SPL domain, low

cost attribute can have a high level of priority for one family member whereas it

may have low priority in another. In addition to advantage of availability of

optionality at PL level, goal-based approach serves the opportunity to make trade-

off analysis between different QAs for the sake of satisficing different conflicting

NFRs with the help of operationalization analysis.

Besides, most of the QA variability modeling approaches mentioned so far fall

short of responding to the need of modeling QAs with a quantitative analysis,

except EFM approach proposed by Benavides et al. [13]. In the model, functional

features are decorated with attributes as characteristics of a feature that can be

measured such as availability, cost, latency, bandwidth etc. Furthermore, relations

between the attributes attached to several functional features or non-functional

features can be constructed.

Among the others, EFM approach of Benavides et al. [13] and Feature-Oriented

NFR Analysis method of Peng et al. [10] seem to complement each other for a

better variability analysis of non-functional features in terms of their facilitations

for quantitative and qualitative quality aspects respectively. Inspiring from what

Bartholdt et al. [23] propose in their study, qualitative and quantitative QAs can

be integrated to functional features in the same model. By establishing

interrelations between the artifacts of Feature-Oriented NFR Model and

quantitative QAs attached to functional features (inspiring from EFM approach),

the integration of functional features with non-functional features can be achieved

on the same model. Utilization of FAMA tool would help to deduce evaluations

on the integrated feature models in terms of its variability.

44

The basic and most important contribution of this QA integrated feature modeling

approach is that it gives domain designers the chance to elicit and expose the

quality knowledge hidden in the specifications of the requirements. Moreover, it

allows the product designers to manage these systematically elicited and modeled

quality knowledge in terms of its variability. In other words, the approach serves

the ability to control variants originating from qualitative and quantitative quality

aspects.

In the next chapter, an approach inspired from a synthesis of the aforementioned

quantitative and qualitative non-functional feature modeling approaches is

implemented on the same feature model, in accordance with the considerations

presented in this section.

45

CHAPTER 4

4. FEATURE MODELING OF METEOROLOGICAL

MEASUREMENT AND LOGGING SYSTEM DOMAIN

4.1. Introduction

In this chapter, with the aim of providing a proof of concept and detailed

illustration for feature modeling using the proposed Complementary Quality

Modeling Approach first, the standard feature model of the Meteorological

Measurement and Logging System (MMLS) domain, will be introduced together

with its SPL-oriented specifications for the modeling of the system.

Subsequently, the reasons why this sample domain is selected for feature

modeling will be provided in addition to the discussions regarding the experience

acquired during the design.

Afterwards, before all else, MMLS domain will be modeled in a conventional

feature modeling approach wherein non-functional features and quality concerns

are not peculiarly taken into account during variability modeling.

Towards the end of the chapter the conventional feature model developed priorly

is extended for the sake of supplementing variability modeling with QA concerns.

Variability modeling specifications, implementation details and experiences

obtained during the development of the model extended with QA aspects are

provided as well.

46

4.2. Meteorological Measurement and Logging System (MMLS)

As the primal objective of this study, the elicitation of variability knowledge

inherent in a domain is a prerequisite for the design of domain architecture and

implementation of the domain with suitable artifacts. For the purpose of efficient

exercise on variability concerns during development of a feature model, a

reference domain that is easily adaptable to SPL-oriented DE and adequate in

terms of diversifiability potential is a requisite.

Practicing on variability modeling of MMLS domain is preferred as it conforms

to the considerations outlined above. Based on its system specifications, basically,

MMLS aims to measure, log and display meteorological information necessary

for weather logging and forecasting applications. For this purpose, the system

embodies different types of sensors each of which are specialized on the type of

the information to be collected from the environment in various weather

conditions. Different types of sensors come along with different types of interface

specifications as they are procured of commercial-off-the shelf (COTS)

hardwares. As the system is assigned to exploit logging and displaying facilities

as well, a software configuration is required to collect the data transmitted from

several sensors with different electrical interface specifications in order to convert

this information for processing purpose followed by logging and displaying

functionalities. The system is required to offer different software configurations

as it needs to be compatible to work with different types of display units which

are to be procured as COTS hardwares similar to the case in sensor units. Besides,

the system needs to be configurable in order to transmit different types of

processed information to external systems, interface specification of which is

dependent on the system that MMLS is designed to be integrated with.

In the light of the basic system specifications summarized above, in the scope of

this study, the software to achieve aforementioned tasks is proposed to be a single

software configuration unit which is composed of different software components.

47

As the main purpose of the study, the variability knowledge to be elicited from

system requirements will be managed inside the internal structure of these

components in terms of different parts. These parts are some kind of problem

domain counterparts of modeling artifacts in solution domain, namely the

features. Based on feature decisions provided during AE phase, these parts are

assembled to form the desired configuration and constitute the required

components.

Besides, the study is concentrated solely on the dynamics of feature modeling

aspect of the reference domain of MMLS. The possible relations and interactions

with other phases of SPLE will be provided with discussions as well.

In the present work, the Feature Model together with its extension to quality

modeling aspects of MMLS domain is developed by the author to be used as the

proof of concept and revised by experienced engineers from Aselsan Inc. for its

consistency. Besides, during development of MMLS domain for SPL, experience

formerly gained in course of development of an MMLS software configuration

delivered to customer and built in a layered architecture within a non-SPL context

is utilized as guidance and inspiration. Similar set of requirements are used as the

driving force for the specification of features for software configuration needed

by all stakeholders (i.e. domain experts, application engineers and customer).

4.3. Feature Modeling of MMLS Domain

Prior to the construction of feature model of MMLS domain, fundamental tasks to

be achieved are needed to be outlined with the help of a comprehensive elicitation

of domain requirements. These tasks are to be achieved by any probable software

configuration produced during AE phase. Following the definition of these

fundamental tasks, different kinds of features are to be derived and augmented on

the basis of their respective root features where the emphasis is laid especially on

the variability concern.

48

In the light of these, any system produced from MMLS domain has to interact

with users in order to realize user-dependent functionalities. This brings the need

of Graphical User Interface composed of a number of components acting like a

bridge between the user and other components of the software assigned to realize

different functionalities of the system.

Besides, as can be deduced from the name of the domain, one of the main duties

to be achieved by any instance of MMLS domain is to realize the logging

facilities where a number of components control the communication between the

sources of data to be stored and the database acting as the main storage unit.

Additionally these components have to provide services to the Peripheral

Retrieval Components in order to realize the back-up facilities for the protection

of information on the database. Moreover, some of the components that can be

classified in this group have to realize some further maintenance tasks in order to

ensure the availability of the system.

The system needs to communicate with different types of sensors and display

units to collect and represent the measured data respectively. Therefore, the tasks

to be achieved by the system hardware interface has to be assigned to some

components that can be grouped under the definition of Peripheral Retrieval

Components, as referenced in Figure 4.1 below. Furthermore, these components

have to achieve interaction with a printer as it is to be included in any product

configuration.

Communication between these three types of component groups is to be

controlled and organized by System Management Components.

This classification of components eases the perception of the distribution of tasks

amongst the components of MMLS domain regarding their fundamental roles

outlined above.

49

Figure 4.1: Basic MMLS System Architecture

4.3.1. Feature Context Analysis

As a starting point for the definition of the scope and context of MMLS feature

model, the classes of component groups with reference to Figure-4.1 have to be

utilized. These groups are some kind of a classified compilation of solutions

developed from the requirements that any instance of MMLS domain has to meet.

For the sake of meeting these requirements, varieties of features can be defined

and extended on the grounds of each of these basic classes.

It must be noted that, during the construction of feature diagrams, all the

information derived from the expected capabilities of the system is not required to

be projected on the feature model. This is due to the fact that, basic need for the

construction of a feature model is to manage the variability information included

in a domain. Redundant usage of common features withinside a feature model

degrades the quality of a feature model considering its power to exploit variability

knowledge. Consequently, in the scope of this work, as introduced in the

following sections, variant features of the domain are included in the feature

50

model, in which the commonality knowledge is modeled inherently and indirectly

(discussions on proof of concepts are to be provided in Chapter 5).

4.3.2. Feature Variability Identification

In the discussions hereunder, the textual explanations on the feature model

structure are provided in addition to their representations on diagrams for the sake

of clarification.

As depicted in the feature diagram in Figure-4.2, the uppermost level of MMLS

Feature Diagram consists of six variation points, each of which are composed of a

group of features.

Some of these features are variation points as well, in which at least two features

are present (to be specified afterwards); some of them are the variants (a.k.a the

leaf nodes of the feature tree) to be included directly in a product configuration.

Figure 4.2: Feature Diagram for MMLS Domain – Uppermost Level

As demonstrated in the diagram, all the variation points in the uppermost level are

modeled as mandatory feature groups, such that any instance of MMLS product

configurations has to possess System Management, System Setup, System

Maintenance, Information Delivery, Peripheral Retrieval and Hardware

Component facilities with any combinations of their respective variants. In

consistency with the definition of basic MMLS System Architecture provided in

Section 4.3.1 Feature Context Analysis; these feature groups substantially reflect

51

the content of their counterparts in the solution domain as classified groups of

components.

As mentioned in Section 2.3.2 Feature Modeling and referenced in Figure 3.1,

interrelationships among the functional features are classified as structural and

implicit interdependencies. The rest of the feature model detailed below the

uppermost level is basically composed of these two types of feature relationships.

For the ease of their representation, the two classes of interdependencies are

handled separately in the following sections with their constitution rationale

provided.

4.3.2.1. Structural Interdependencies

In this section, MMLS feature model is examined in terms of its structural

relationships in between feature groups and their respective sub-features. As

referenced in Section 2.3.2 Feature Modeling, four types of relations are utilized

in the model, namely mandatory, optional, alternative and OR relations. It should

be noted that, unless otherwise specified, all OR-relations implies a selection of at

least one feature rather than none out of all variants in the feature group hold by

the parent node.

System Management is the principal feature group of the model. Literally, upper

layer functionalities; management of security, maintenance, logging facilities;

operational management of user interface and hardware interfaces in addition to

sustaining the communication in between all these features are to be handled

within this group of functions. For instance, the process in which a measured data

is collected, delivered to processor following with transmission to external

systems or displayers through hardware interfaces is managed by this group of

functions. In addition to these facilities, basic functions such as „Initialize

System‟ and „Shut-down System‟ are not included in the model since they are

52

treated as commonality points due to their non-contributory nature with respect to

variability concern.

Apart from these functional capabilities, as demonstrated in Figure 4.3, three

variation points, namely, Authentication, System Log Management and Failure

Management are incorporated as sub-feature groups into the feature model

together with their variant contributions. Authentication feature group is modeled

as optional whereas System Log Management and Failure Management feature

groups are modeled as mandatory. The rationale behind modeling Authentication

feature group as optional is to leave the decision of possessing a system with extra

security precautions to the user. Authentication serves two alternatives as

Hardware-based and Password-based Authentication facilities meaning that no

such system configuration exists which supports both types of authentication.

HW-based Authentication is to be handled by one of the most conventional form

of its utilization such that as long as this function is selected, a USB Security Key

is needed to initialize the system. PW-based Authentication serves two optional

functions: a reminder that notifies the user periodically to change the system

authentication PW and a facility to save a master-key attached to the standard

authentication password which assures a two-fold security for authentication.

System Log Management feature group holds two optional features with OR-

relation: history track facilities for System Setup Information and Operational

Information (i.e. log-in – log-out information, changes in the status of system SW,

measured data exchanges between sensors and external systems).

Finally, Failure Management feature group holds two levels of failure

management facilities: Unit-level and Module-level. In Unit-level Failure

Management, a low level of fault detection is utilized such that status knowledge

of replaceable units (i.e. sensors) are monitored with the help of data

communicated through the interfaces. Module-layer Failure Management is a

higher level of fault detection mechanism that monitors failures possible to

emerge between the HW-components in terms of their inter-accessibility. As

53

Module-layer Failure Management mechanism encompasses all functionalities of

Unit-Level Failure Management, these two options are modeled as alternative to

each other in the feature model.

Figure 4.3: Feature Diagram for System Management

System Setup is another uppermost-level feature group included in the feature

model. Similar to the case in System Management feature group, the functions

incorporated under this group are filtered out in terms of their contribution to

variability of the overall feature model. Primary mission that could be classified

under this group is the realization of any type of system setup functionalities such

as setting the type of transmission channel or setting the time and date of the

operating system. For this reason, they are not incorporated into the feature model

considering their lack of contribution to variability concern.

As depicted in Figure 4.4, System Setup feature group offers four variation points

namely Set/Change Data Recording Frequency, Set/Change Data Transmission

Frequency, Set Resolution and Set Sensor Parameters which are interrelated

through OR-relationship with each other. Set Sensor Parameters feature offers the

capability of setting the internal parameters (i.e. initialization and offset values) of

some specific sensor types. Set/Change Data Recording Frequency and

54

Set/Change Data Transmission Frequency features provide the ability to adjust

the frequency levels of transmission to data storage and display units respectively.

Any product instance of MMLS domain is in compliance with 800x600

resolution. As for Set Resolution feature, system offers to switch from this default

resolution to any of the selected resolution alternatives. Depending on the type of

display units included in system configuration (i.e. this feature is meaningful as

long as Monitor Keyboard Drawer is included in the HW-configuration - to be

detailed later in Section 4.3.2.2 Implicit Interdependencies), system offers at least

one of any two resolution alternatives: 1280x1024 and 1024x768. These features

are modeled through OR-relation with each other, since Set Resolution feature

serves the ability to switch between any resolution scales included in product

configuration.

Figure 4.4: Feature Diagram for System Setup

As a precaution against probable failures to emerge during the normal operation

of the system, feature model is decorated with a number of variants classified

under different feature groups with a System Maintenance parent feature on top,

as portrayed in Figure 4.5. System Maintenance includes three feature groups, by

name, System Test, Database Maintenance and Store/Restore Database Back-up.

55

System Test feature group includes three types of tests related by OR-relation

with their parent node, namely, Start-up Test, On-line Test and Off-line Test.

Basically, Start-up test is performed for checking mission readiness, On-line Test

ascertains the persistence of system performance, Off-line test acts as the

inspector to specify the defective component in cases of system failure.

In relation with Failure Management Levels (to be clarified in Section 4.3.2.2

Implicit Interdependencies), main capabilities of these testing types are mentioned

as follows:

Start-up Test offers the following facilities:

 Controls and reports sensor status

 Initiates as soon as the system is powered

 Can be stopped and bypassed at any time

On-line Test offers the following facilities:

 Detects the existence of a unit-level fault, is more efficient if followed by

Off-line Test in order to specify the specific location of a fault in an HW

component (for instance On-line test detects a failure related with the

transmission from any specific sensor or printer, but it is the off-line test

that detects the failure is whether caused by the module which processes

the signal or the source is defective)

 Controls and reports status of communication with sensors or other basic

HW components (i.e. data storage unit) such that the test detects a failure

if only no signal is received from the signal source

 Is continuous, initiates with start-up and runs until system shut-down

without the need of operator intervention and can not be stopped or

bypassed

56

Off-line Test offers the following facilities:

 Performs more comprehensive test on different HW modules (i.e. PCBs,

processors etc.) with the help of fault diagnosis algorithms, in addition to

unit-level facilities provided by On-line Test

 Controls and reports operating status of supply voltages, processor and

database and data transfer lines in addition to units (i.e. sensors or printer)

 Executes with the initiative of the user

Any failure in database is not desired in order to avoid sudden loss of information

especially for the cases that backed-up version of it is not available. In order to

realize these preventive facilities, following operational capabilities are modeled

under the Database Maintenance feature group with OR-relation among each

other; Database Clean-up clears all the data stored in the database for a fresh start

to logging (especially beginning time of logging is of concern), Store/Restore

Back-up Database to store/restore data to/from any type of back-up media in

order to either observe previously loaded data or continue to logging over and

transfer the data contained in the database to selected type of back-up medium. As

part of Store/Restore Back-up Database feature group, three types of storage

media is available for the purpose of backing-up the information contained in

database so as to prevent data loss due to any failure in database. These storage

media types, namely USB, DVD and CD are modeled as an alternative to one

another such that none of them is permitted to co-exist with the other due to its

redundant usage.

System logging works in accordance with First In First Out (FIFO) rationale. As

soon as the system reaches its maximum logging capacity (as restricted by means

of the data recording hardware), most recent data is overwritten on the latest data.

Keeping this in mind, if preventing the system from loss of critical recorded data

is of concern, Database Clean-up and Store/Restore Database Back-up features

are requisite for the desired product configuration. Apart from these, System SW

Update is served as optional function for any case of failure in the system SW.

57

Figure 4.5: Feature Diagram for System Maintenance

Information Delivery feature group consists of functionalities that are particularly

related with the forms of information transmission to user, most common example

of which is to provide visual information by means of any selected visual

fashions. Based on the variety of these visual resources, features are classified

under the variation points of Graphical User Interface (GUI) and information

delivery on printed material. These two facilities are indispensable elements of

any MMLS domain, therefore they are modeled as mandatory variation points. By

means of GUI, delivery of statistical information through graphics (i.e. charts,

measured value vs. time plots), maintenance screen as for monitoring detailed

system status and data transmission screen for observing the status of delivered or

received messages (i.e. measured sensor data) through the interfaces is served as

variants. Owing to the presence of the printer in the configuration, options of

print-out capabilities for either textual statistics or graphical statistics are

available as variants.

58

Figure 4.6: Feature Diagram for Information Delivery

Peripheral Retrieval is another feature group that holds the variants of hardware

interface types to ensure the communication not only within the sub-units of the

MMLS but also with external systems. As of features to be classified under

Peripheral Retrieval feature group but not to be reflected on the feature model due

to commonality; any instance of MMLS domain provides the capability to let the

user edit the settings for its interface and realize overall communication both

inside and outside its borders.

System communicates with the aid of either RS422, RS232 or VGA interfaces

leading to mandatory relation with its parent node. To be detailed later in Section

4.3.2.2 Implicit Interdependencies, types of sensors and display units included in

the configuration implicitly specifies the presence of either of these three types of

interfaces. Printing Interfaces offered are available for a wide spectrum of printer

types which contributes the system a high standard of modularity and integrability

with COTS printer products. In order to broaden this spectrum, MMLS feature

model is designed to support integrability with former versions of printing

interface types (i.e. Serial Port and Parallel Port) but also contemporary versions

(i.e. USB Port and Ethernet/LAN). It must be noted that these four types of

printing interfaces are connected to their parent feature through alternative-

relation since only one type of printer interface per product configuration is

supported by the MMLS domain.

59

Figure 4.7: Feature Diagram for Peripheral Retrieval

Different from the feature groups mentioned so far, Hardware Components

feature group deals with critical hardware elements of the MMLS domain. From

this point of view, capabilities available in this group complement the design

decisions realized during the development of the software components.

Being one of the most critical entities of the MMLS domain, Hardware

Components feature group poses its significance when the limitations regarding

the realization of any product configuration is of concern. Decisions based on the

user-defined system requirements directly effect the hardware component

configuration in the first place. Subsequently, specification of hardware

component configuration puts borderlines on the varied capabilities of the

software components. This is due to the fact that most of the features in this group

possess specific characteristics on their own which causes potential conflicts with

a number of varied features of any software configuration. This situation is

handled by implicit interdependencies that are established between SW and HW

features as they are detailed in Section 4.3.2.2. Implicit Interdependencies.

Measurement of weather conditions, logging the measured or processed data and

representation of the transformed information are the principal duties of any

product derived from MMLS domain. Therefore, Sensors, Displays, Printer and

Data Storage Units feature groups are modeled as mandatory variation points in

the sub-tree of Hardware Components. It should be noted that any product

60

configuration derived from MMLS domain owns basic level of GUI on a built-in

display unit that has the capability to meet basic and common demonstration

requirements of the system. Due to their widespread usage for weather condition

monitoring, Wind Speed and Direction Sensor, Ambient Humidity and

Temperature Sensor and Air Pressure Sensor are incorporated in the model

through an OR-relation with their parent node. Displays feature group offers two

kinds of display units: Monitor Keyboard Drawer is the more sophisticated one

with PC-like capabilities such as integrated keyboard and touchpad in addition to

high resolution display in varied resolutions; LCD Display is the moderate one

with average display quality and less user-friendliness. Since common visual

representation requirements of any MMLS product configuration are already fed

by built-in display that is already included in any product configuration,

additional varied user-requirements are to be satisfied by any one of these two

types of display units which are modeled as alternative to each other. Printer

feature group includes two varieties of printers as Inkjet and Laser types.

So as to realize recording all manner of information (i.e. measured data, setup

data etc.) produced by the system, three different types of data storage units are

modeled through the alternative relation with their parent nodes. Type A and

Type B units are Solid State Disks (SSD). They offer lower levels of storage

capacity with higher cost and performance with respect to Type C which is a

standard Hard Disk Drive (HDD). The specifications of these three types of data

storage units are detailed in Section 4.4 Integrating Complementary Quality

Modeling with Functional Feature Model of MMLS Domain. These specifications

are used as basic modeling commodities of quality modeling aspects.

61

Figure 4.8: Feature Diagram for Hardware Components

4.3.2.2. Implicit Interdependencies

In order to ensure a consistency in terms of interrelations among the features of

MMLS domain, construction of implicit interdependencies on the basis of

structural interdependencies is indispensible. In this section, MMLS feature

model is discussed in detail by revealing the rationale behind its constructed

relationships. It must be noted that two basic types of relationships are practised

in the model, namely requires and excludes relationships. Requires is a directional

relationship between the features such that a requires relationship defined from

feature A to B means feature B is required to be included in the product

configuration if A is included. Different from the requires relationship, excludes

relationship is bi-directional meaning that presence of any of feature pairs

interrelated with exclude relationship can not co-exist in the same product

configuration.

There exists numerous implicit interdependencies between the features of MMLS

domain. Since it is cumbersome to depict all these relations on feature diagrams,

as is the case in structural ones, textual descriptions regarding each and every one

are provided in this section.

For the sake of understandability of textual descriptions to express the rationale

behind relationships between these features, they are indicated by connecting two

feature (source feature and target feature) specifications with requires and

excludes expressions. For instance, System SW Update requires Maintenance

62

Interface means that if System SW Update capability is included in the product

configuration, than Maintenance Interface facility is required to be included in the

product configuration.

These feature relationship expressions are compiled in Table 4.1 below to assist

the textual descriptions provided hereunder.

63

Table 4.1: Implicit Interdependencies of MMLS Model

ID Source Feature Dependency

Relationship

Target Feature

1.a Unit-Level Excludes Off-line Test

1.b Module-Level Requires Off-line Test

1.c Off-line Test Requires Module-Level

2.a
Set/Change Data Transmission

Frequency
Requires Data Transmission Interface

2.b Data Transmission Interface Requires
Set/Change Data Transmission

Frequency

3.a Set Resolution Requires Monitor Keyboard Drawer

3.b Monitor Keyboard Drawer Requires Set Resolution

4.a Off-line Test Requires Maintenance Interface

4.b System SW Update Requires Maintenance Interface

4.c Database Maintenance Requires Maintenance Interface

5.a Wind Speed and Direction Sensor Requires Set Sensor Parameters

5.b Set Sensor Parameters Requires Wind Speed and Direction Sensor

5.c Wind Speed and Direction Sensor Requires Off-line Test

6.a Inkjet Printer Excludes USB Port

6.b Inkjet Printer Excludes Ethernet/LAN

6.c Laser Printer Excludes Serial Port

6.d Laser Printer Excludes Parallel Port

7.a Wind Speed and Direction Sensor Requires RS232

7.b RS232 Requires Wind Speed and Direction Sensor

7.c
Ambient Humidity and

Temperature Sensor
Requires RS422

7.d Air Pressure Sensor Requires RS422

8.a LCD Display Requires RS422

8.b Monitor Keyboard Drawer Requires VGA

8.c VGA Requires Monitor Keyboard Drawer

64

 Rationale for 1.a, 1.b & 1.c;

Unit-Level failure management capability is the core of On-line test feature.

But as mentioned earlier, Module-Level failure management is the enhanced

version of Unit-Level and is an alternative to it. Off-line Test holds Module-

Level failure management as its essential utilization. Therefore, there should

exist no configuration that includes Unit-Level Failure Management

capability along with Off-line Test. Besides, Module-Level failure

management capability and Off-line Test feature mutually require each other.

It should be noted that, Module-Level failure management capability ensures

all types of System Test functionalities whereas Unit-Level is capable to

ensure Start-up Test and On-line Test.

 Rationale for 2.a & 2.b;

Both of Set/Change Data Transmission Frequency and Data Transmission

Interface features are modeled as optionally. However, Set/Change Data

Frequency feature owes its presence to Data Transmission Interface as its

functionality is offered under the content of this interface. Furthermore, in the

scope of the MMLS Feature Model, there exists no other feature that owes its

presence to Data Transmission Interface which leads to mutually-require

relationship between these two features.

 Rationale for 3.a & 3.b;

Set Resolution functionality can be achieved if only Monitor Keyboard

Drawer feature is included in the product configuration since Monitor

Keyboard Drawer is the only display unit alternative that can operate with any

combination of two resolution alternatives. Additionally, Monitor Keyboard

Drawer feature needs the presence of any alternative features included in Set

Resolution variation point in order to perform its demonstrative functionalities

properly. Therefore these two features mutually require each other in any

product configuration.

65

 Rationale for 4.a, 4.b & 4c;

Maintenance Interface offers user interface for the functionalities related with

System Maintenance. If the optional features of System SW Update and

Database Maintenance modeled under System Maintenance feature group are

decided to be included in the configuration, they need the presence of

Maintenance Interface capability of the software to perform their

functionalities properly, considering their interaction with the user. For the

System Test feature group, only Off-Line Test feature needs the presence of

Maintenance Interface in order to be initialized by the user, whereas Start-up

Test and On-line Test can initialize and operate without the user intervention.

Therefore, requires relationship from Off-line Test feature, System SW

Update and Database Maintenance feature groups to Maintenance Interface

feature is needed to be defined.

 Rationale for 5.a, 5.b & 5.c;

Wind Speed and Direction Sensor needs an initialization message from the

MMLS software to have its activation parameter to be set to active, this

initialization messaging facility is supported by Set Sensor Parameters feature.

Moreover, in order to measure the direction of the wind correctly, reference

measurement direction (in terms of degrees) with respect to the factory set

measurement axis has to be set prior to its operation. This reference direction

information with respect to factory set measurement axis can be set with the

help of optional Set Sensor Parameters feature. Wind Speed and Direction

Sensor is the only one that the system can offer the capability to set its

internal parameters. Therefore inclusion of Set Sensor Parameters feature to

the product configuration without the presence of Wind Speed and Direction

Sensor feature has no meaning. Consequently, these two features mutually

require each other.

In extension to the reasoning above, Wind Speed and Direction Sensor is the

only one that allows the system to ask for its operation status at any time. This

66

sensor is capable to provide acknowledge messages as long as it is asked for

status update through its interface. This capability is utilized by Off-line Test

feature to let the user investigate the status of the sensor for proper operation.

It should be noted that this capability can not be ensured by On-line Test,

since On-line Test regards the periodic availability of messages from the

sensors (simplex operation) to decide that they are operating properly,

whereas Off-line Test is capable to send messages in order to receive

availability messages from this sensor (duplex operation). As long as this

sensor is included in the configuration, it needs the presence of Off-line Test

capability.

 Rationale for 6.a, 6.b, 6.c & 6.d;

Inkjet Printers that are modeled in MMLS domain are the former versions of

Laser Printers. Therefore they are modeled to be in excludes dependencies

with USB Port and Ethernet/LAN interface types which are of contemporary

interface technologies and are not supported by Inkjet Printers. Similarly

Laser Printers of MMLS domain does not support former classical interface

technologies of Serial and Parallel Port types which lead to excludes

dependencies from Laser Printers to these interface types.

 Rationale for 7.a, 7.b, 7.c & 7.d

Wind Speed and Direction Sensor is compatible to only RS232 type of

interface while Ambient Humidity and Temperature Sensor and Air Pressure

Sensor are capable to transmit their signals in compliance with RS422

interface only. Since there exists no HW component having requirement for

RS232 interface compatibility, Wind Speed and Direction Sensor and RS232

feature pair mutually require each other.

 Rationale for 8.a, 8.b & 8.c;

LCD Display offered in the content of MMLS domain is compatible to only

RS422 type of interface. Similarly, Monitor Keyboard Drawer unit needs

67

VGA interface to support its graphical interface applications. Due to the fact

that there exists no feature other than Monitor Keyboard Drawer requiring

VGA interface, VGA and Monitor Keyboard Drawer features are modeled to

be in mutually-require relation with each other.

4.4. Integrating Complementary Quality Modeling with Functional Feature

Model of MMLS Domain

In this section, as the beginning, the basics of complementary quality modeling is

introduced. Subsequently, the basic constituents of the complementary model

(namely the levels and operationalizations of feature oriented NFR analysis and

the quantitative QAs of EFM) are developed. In following, these constituents are

integrated to each other thereby ensuring the integration of the whole

complementary quality model to the functional feature model of the MMLS

domain.

4.4.1. Complementary Quality Modeling

On the way to perform feature oriented quality-based variability analysis of

feature domains, the quality modeling knowledge inherent in the domains can be

revealed and expressed by means of two different perspectives. As mentioned

earlier, these perspectives are originated from two different aspects of quality

modeling, namely the qualitative quality modeling aspects and the quantitative

quality modeling aspects. Based on previously mentioned methodologies that the

complementary quality modeling is inspired from; qualitative quality modeling is

achieved by Feature-oriented NFR Analysis in which quality modeling

knowledge is a kind of soft-goal to be achieved and possesses hard-to-quantify

nature; quantitative quality modeling is achieved by building extensions on

functional features to build up EFMs in which quality modeling knowledge is a

fragment of a functional feature and can be expressed in terms of a quantifiable

parameter.

68

Qualitative quality modeling aspects can be classified in different levels, each of

which provides operationalizations that are some kind of functional feature

projections of quality-based goals. This kind of quality modeling is beneficial in

revealing level-based qualitative variability knowledge thereby enhancing the

variability of the whole model. However, as it is integrated with a functional

feature model (by means of direct relationships of either require or exclude), the

operationalizations seem to lack the interaction with the functional features. This

leads to a lack of control over functional features especially during AE phase,

during which selections of features are realized to make up the product

configurations. This is due to the reason that it is not always possible to construct

direct relationships between all the operationalizations (or levels) provided by

Feature-oriented NFR Analysis and the functional features existent in the domain

model. Even if these relationships, in the form of implicit interdependencies, are

constructed, in most cases, they run short of providing all possibilities of implicit

interdependencies.

On the other hand, quantitative quality modeling aspects are the quality-based

attributes belonging to specific functional features. This kind of quality modeling

is beneficial in revealing the quantifiable quality-based attributes inherent in

specific functional features. Nevertheless, from the variability point of view, these

QAs seems to have no contribution to the variability of the whole model as long

as they are not utilized during AE phase. The utilization of these QAs can be

achieved by incorporating them within feature decision rules in the form of either

require or exclude relationships with other features of the model.

The designation “complementary” is derived from the idea that these two

different perspectives complement each other especially if the elicitation of

variability knowledge inherent in feature domains is of concern. This

complementary study finds its meaning by providing a two-way feedback

between these two quality modeling perspectives in order to satisfy the

shortcomings of both sides.

69

In its simplest explanation, following their elicitation, the quantitative QAs are

connected to the levels (thereby to the operationalizations as well) derived by

Feature-oriented NFR Analysis through the implicit interdependencies (i.e.

requires and excludes relationships). In order to construct these relationships,

each type of quantitative QA corresponds to a specific type of soft-goal derived

by qualitative quality analysis. No implicit interdependencies other than these

pairings (between the type of quantitative QAs and soft-goals) are allowed to be

constructed.

In the scope of this work, as demonstrated in Figure 4.9 below, Complementary

Quality Modeling approach together with its integration to MMLS functional

feature model is implemented mainly in three phases. In the context of 1
st
 phase,

quantitative QA analysis is performed. In the 2
nd

 phase, Feature-oriented NFR

analysis is performed and types of soft-goals are specified in addition to the

definition of operationalizations belonged to different levels of each soft-goal. In

the last phase, quality modeling artifacts derived with the help of these two

approaches are integrated to each other which also ensures the integration of the

Complementary Quality Model to the Functional Feature Model. It should be

noted that the Complementary Quality Modeling practice needs the existence of a

functional feature model as a basis for its implementation prior to integration.

Figure 4.9: Complementary Quality Modeling Process

7
0

71

4.4.2. 1
st
 Phase: Quantitative Quality Attribute Analysis

In the scope of this phase, functional features involved in the initial functional

feature model are examined so as to reveal their hidden quality-based attributes

that has quantifiable nature.

These quality-based attributes are to be regarded as parameters that would have

different values for different features. These parameters may belong to different

domains (i.e. real, integer, boolean etc.) based on the set of values it can take. As

the functional features are examined on the way to elicit their quantifiable QAs,

care must be taken on the types of the attributes especially of the features

included in the same feature groups. Possessing the same types of QAs is

indispensable for the establishment of comparative relations among the

options/alternatives offered in the same feature groups (to be clarified practically

in the next section).

These quality-based attributes revealed from the child features of a specific

feature group can be named as Elementary Attributes. An elementary attribute

defined for a specific functional feature does not pose a significant importance on

its own since it may or may not be included in product configuration. In order to

derive more realistic reasonings from several elementary attributes (valid for

different feature configurations), expressions has to be defined specifically for the

parent nodes of these functional features, namely the feature groups (variation

points). This expression should be in the form of a mathematical function whose

variables are the attributes of its child features. This mathematical function may

take any form depending on the usage of quality modeling context (i.e. total cost

belonged to a parent feature is the sum of the costs belonged to its child features).

This expression can be named as Compound Attribute since it is composed of

several elementary attributes or compound attributes owned by its child features.

Similar to the case in elementary attributes, care must be taken on the type of

72

compound attributes. That is to say, parent features have to possess compound

attributes type of which is the same with elementary attributes belonged to its

child features.

The values of compound attributes are dynamic such that they are dependent on

the feature combination selected from the group of its child features. Different

feature combinations of child features yield different compound attribute values

for the parent features.

4.4.2.1. Elementary Attribute Elicitation

In the context of MMLS domain, as mentioned previously in Section 4.3.2.1

Structural Interdependencies, specification of hardware component configuration

is said to put borderlines on the varied capabilities of the software components.

This situation is handled by establishing implicit interdependencies between the

SW and HW features.

However, these implicit interdependences fall short of responding the needs to

manage the boundaries drawn by NFRs. As mentioned in Section 3.1 Non-

functional Requirements, it is the non-functional concerns that define physical

constraints on functional features. Therefore there should exist an extensive

mechanism to elicit additional characteristics inherent in functional features that

would have the expressive power in terms of quality concerns. As long as these

characteristics are revealed and utilized systematically, non-functional (or quality)

concerns can be managed efficiently.

At this place, the elementary attributes mined from functional features are the best

candidates to be used for management of quality concerns. It must be noted that

elementary attributes are utilized in a similar way with the establishment of

implicit interdependencies realized in Section 4.3.2.2 Implicit Interdependencies.

73

In the context of MMLS domain, HW components feature group is the most

suitable instance to reveal elementary attributes, as they can be regarded as

sources of physical constraints due to their concrete nature. Besides they

encapsulate abundant of characteristics possessing quantifiable characteristics

(i.e. memory capacity of data storage units).

In the light of discussions provided above, four basic types of quantitative QAs

(alias the elementary attributes) are defined in the context of Hardware

Components feature group of MMLS domain, namely, capacity, cost, MTBF

(Mean Time Between Failures) and DRT (Data Refreshment Time).

Capacity stands for the numerical value which expresses the memory storage

capability of data storage units contained in MMLS domain. Capacity is

meaningful for the Data Storage Units feature group. As demonstrated in Figure

4.11, in each variant of Data Storage Units feature group, capacity attribute is

expressed in terms of GigaByte (GB) unit and is modeled in integer domain as the

same type of parameter within each functional feature.

As all hardware components utilized in MMLS domain are COTS units, they all

have a market price to be managed efficiently especially for the cases that overall

production cost of the system is of concern. All the functional features taking part

in HW components feature group contain cost as one of their elementary attribute

and is expressed in terms of dollars ($). This attribute is modeled in integer

domain as the same type of parameter throughout the features it is used.

MTBF is the numerical value representing the average time between the failures

of hardware components. This attribute is a good sign of reliability and

availability of the physical components thereby it is utilized by all features of HW

components feature group. MTBF values for the features are expressed in terms

of hours (hrs) and are modeled in integer domain as the same type of parameter

within each functional feature. As will be clarified in Section 4.4.2.2 Compound

74

Attribute Elicitation, for the ease of computation in some exclusive cases when

summation of more than one attribute is necessary, the features are decorated with

the inverse of MTBF parameter (i.e. [(MTBF)
-1

]).

DRT is the numerical value to express the elapsed time to transmit the refreshed

data through the interfaces of HW components. It is expressed in terms of

milisecond (ms) unit. This attribute is an indicator for the data transmission

performance of HW components. DRT is modeled in the context of three HW

components (namely the sensor units, display units and data storage units), those

of which involve data transmission facilities. As referenced in Figure 4.10 below,

a single type of parameter (i.e. DRT) is defined to represent the transmission

performance of each of these HW components. For the transmission between the

sensor and the processor, data flow is simplex and has the direction from the

sensor to processor. Therefore DRT parameter represented for this interface is

dependent on the type of sensor. This is the reason why this parameter is defined

as the elementary attribute of sensor units.

In a similar fashion, the same parameter is used to model the data transmission

performance for the interface between the processor and the display units where

the data flow is simplex and has the direction from processor to display units.

Note that the value of DRT is dependent on the type of display. Therefore, this

attribute is modeled as a part of the features in Displays feature group.

Different from the others, data flow between processor and the data storage units

is duplex. Nevertheless DRT is the parameter to describe the data transmission

performance of this interface and is dependent on the type of data storage unit

utilized.

75

It must be noted with reference to Figure 4.10 below that Sensors.DRT signifies

overall DRT measure for sensor units defined in any of product configuration

they are included in. The same is valid for the parameters of other HW

components such as Displays.DRT and Data_Storage_Units.DRT.

Figure 4.10: Hardware Interaction Based on Data Transmission Rates

With reference to Figure 4.10 above, it must also be noted that, first, the measured

data provided from sensors is saved to database by means of Processor unit.

Afterwards, this data is read from the database again to be finally fed to display

units for presentation purposes under the control of Processor unit again. This is

the typical route followed by every measured data sourced by sensor units.

Following the introductory discussion provided so far regarding the types and

usage of the parameters to be utilized in the scope of the complementary quality

modeling practice of MMLS domain, the rest of this section is dedicated to the

details of the implementation. It must be noted that the numbers assigned to the

elementary attributes of the features are common and tentative values based on

the information collected from the market products. Besides, as presented in a

number of instances through the rest of this section, it should be stated that the

graphical notation adopted for the illustration of feature diagrams is inspired from

the studies of Streitferdt et al. [42] and Benavides et al. [13].

As demonstrated in Figure 4.11 below, all four types of elementary attributes are

utilized in the context of Data Storage Units. This is a good instance to observe

how a decision among different feature alternatives leads to several trade-offs

76

among different aspects. It should be noted that the cost of the component is not

directly proportional with the level of the capacity offered. It is reasonable to

establish a proportionality relation between the cost and DRT or cost and MTBF

parameters. Since HDDs include mechanical parts such as arms and spinning

platters whereas SSDs includes none, HDDs are more susceptible to aging in the

same operative conditions. This leads to a high level of MTBF values for SSDs

compared to HDDs. As SSDs have the capability to realize parallel read and write

operations on several partitions of the drive while HDDs can not, DRT assigned

to SSDs are far lower than that of HDDs. Due to these reasons, cost is more likely

to be related with the level of the technology involved in the component such that

SSDs are state of the art types in data storage products. It can be concluded that

performance comes with the higher cost. Furthermore as a different instance of

trade-off regarding the outcome of a selection among the alternatives, HDDs offer

higher level of capacity with higher level of cost whereas SDDs offer higher level

of reliability and data transmission performance with higher cost.

Figure 4.11: Extended Feature Diagram of Data Storage Units

As demonstrated in Figure 4.12 below, three types of elementary attributes are

utilized to model the quantitative quality characteristics of the sensors, namely,

cost, MTBF and DRT. It is not reasonable to derive proportionality relations these

attributes since these characteristics are comparatively more typical (specific to

type of products) with respect to other types of HW components.

77

Figure 4.12: Extended Feature Diagram of Sensors

As referenced in Figure 4.13 below, similar to the case for sensors, three types of

elementary attributes, namely cost, MTBF and DRT are utilized. Typical values

assigned to cost parameter indicate that Monitor Keyboard Drawer possesses

almost twice as much price as the LCD display. This is a usual situation

concerning the user-friendly facilities (i.e. interaction with the user) offered by

Monitor Keyboard Drawer which is not valid for LCD Display. As is the case in

Data Storage Units, once again, higher level of services for user satisfaction

comes along with higher costs. Again there exists a trade-off between the cost and

MTBF as is the case for Data Storage Unit alternatives. But this time there exists

an inverse proportionality between them such that LCD Display with higher

MTBF value is offered with lower cost. The reason why LCD owns twice as

much MTBF value as Monitor Keyboard Drawer is possibly due to the

comparatively more number of components are involved in Monitor Keyboard

Drawer. It should be noted that, based on the basic formula of overall MTBF

calculation, increasing the number of components with the same MTBF values

even reduces the total MTBF of all comprised components. However higher cost

compensates for the need of higher data transmission performance by means of its

sophisticated configuration.

78

Figure 4.13: Extended Feature Diagram of Displays

In reference to Figure 4.14, Laser Printers offer slightly higher levels of reliability

with respect to Inkjet Printers which requires comparatively higher values for

cost.

Figure 4.14: Extended Feature Diagram of Printer

4.4.2.2. Compound Attribute Elicitation

In the previous section, decoration of leaf features with elementary attributes has

been realized. This section is dedicated to explain how the owner of these leaf

features, namely the parent features (i.e. feature groups) are decorated with

quantitative QAs which will be named as compound attributes from now on.

79

Compound attributes owned by the feature groups are different from elementary

attributes as they can not be represented by a single parameter on their own. They

are dependent on the feature configuration that would be selected for any product

instance. So as to represent any selectable feature configuration, they should be in

the form of flexible aggregative expressions. In order to cope with the numerical

values represented by the parameters, these aggregative expressions should be in

the form of suitable mathematical functions.

These mathematical functions are based on the type of the parameters they utilize.

As mentioned before, each type of the parameter is based on a specific quality

concern (i.e. MTBF parameter is based on reliability concern). Therefore these

mathematical functions possess the same type of quality concern with their

parameters.

Before specifying the details regarding the aggregative functions for compound

attributes, an exceptional case regarding the utilization of elementary attribute

values into compound attributes has to be clarified. The exceptional case is

caused by the absence of an elementary attribute in the compound attribute

expression. This is due to the fact that the owner of the elementary attribute

(namely the leaf feature) is not included in the selected product configuration.

This brings the need of definition for null value of zero for the elementary

attribute of a feature which is not included in the configuration. The

representative of these features (namely the elementary attributes) in the

compound attribute expression takes the null value of zero.

The aggregation function adopted to express compound attribute for cost is based

on the summation of its parameters, namely the elementary attributes.

 9....321 CostCostCostCostaggregated

80

Similarly, aggregation function owned by compound attribute of capacity is based

on summation operation.

 10...321 CapacityCapacityCapacityCapacityaggregated

Calculation of compound attribute for MTBF is based on its well-known typical

formula as given in (11) below;

 11
...

111
1

321

MTBFMTBFMTBF

MTBFaggregated

It must be noted that, as can be observed in Figure 4.11, Figure 4.12, Figure 4.13

and Figure 4.14, the elementary attribute of [(MTBF)-1] is utilized instead of

MTBF value itself. This is a precaution for the cases that a feature is not included

in the configuration and its representative contributes to the compound attribute

expression with null value. If it was directly imported in the expression of (11),

the total MTBF would come out to be 0, as the denominator of the equation

diverges to infinity. This yields to completely wrong and useless results.

However, in such cases, [(MTBF)-1] takes the null value and the total MTBF

calculation is not effected from this exceptional case.

The assignment of null values to elementary attributes due to non-existence of

their owner feature is valid for all types of compound attribute calculations.

Different from aforementioned compound attribute expressions, DRT for

compound attributes is based on a different calculation procedure. The rationale

behind the calculation of this attribute expression is based on the minimum rule

such that the pace of data transmission between component groups is perceived to

be as fast as the slowest one, as inspired from the famous phrase “the chain is as

strong as the weakest ring”. For instance, the performance of the sensors in a

sample product is defined with respect to the one with the minimum performance.

81

Similarly, considering the display units, the speed of data transmission on the line

between the processor and display unit can be specified by filtering out the one

with the lowest speed. For the case of DRT attributes, higher values of DRT

imply higher values of delay are needed to feed the line with the refreshed data.

Therefore, we can conclude that higher DRT means lower data transmission

performance. This is the reason why MAX operand is utilized on the way to

specify the DRT with lowest data transmission performance, as referenced in

expression (12) below.

 12...),,(321 DRTDRTDRTMAXDRTaggregated

Same type of parameters belonged to different features (as demonstrated in

Figure 4.11, Figure 4.12, Figure 4.13 and Figure 4.14) are aggregated with

appropriate functions given in (9), (10), (11) and (12) to build up compound

attributes.

Considering the whole system, as referenced in Figure 4.15 below, expressions to

reflect the overall quantitative quality characteristics of the system has to be

provided. For the sake of convenience of notation, these attributes are designated

with overall phrases.

The compound attributes of Overall Capacity, Overall Cost and Overall MTBF

are expressed with the same formulas given in (9), (10) and (11). From this point

of view, they can be regarded as function of functions. DRT is aggregated based

on a formula different from the one given in (12). With reference to Figure 4.10,

considering the whole system, the trip of a typical measured data from source

(sensors) to target (display units) is as follows: transmission between sensor and

processor is directional from sensors to processor; it is followed by bi-directional

(i.e. first the data is written to database, then it is read) transmission between

processor and data storage units; finally it ends with one-way transmission

between processor and display units. All these transmissions are realized in a

82

consecutive order such that, similar like estimating total latency through

transmission lines, overall DRT value can be aggregated by summing DRT values

assigned to each transmission line, as referenced in expression (13) below. It

should be noted that, DRT attribute belonged to data storage unit contributes to

expression with twice of its value due to bi-directional characteristic of the

transmission line.

 13).__(2.. DRTUnitsStorageDataxDRTDisplaysDRTSensorsDRTOverall

Besides, this is the final step of 1st phase since overall aggregated values for

specific quality concerns are extracted from their owner features. As explained in

the next sections of this chapter, these overall values will be utilized to provide

reasoning about the quality concerns.

Figure 4.15: Extended Feature Diagram of Hardware Components

With reference to Figure 4.15 above, it should be noted that the parameters given

in the “Attribute Value” column of each feature group is dependent on the

selection of the feature combination from each respective feature groups. For

instance, Sensors.Cost value has different values for different feature

configurations specified from Sensors feature group. Besides, different from the

case in elementary attributes, the parameters in “Attribute Value” column can

never take null values since the feature group they are belonged to possesses at

least one feature included in any sample of product configuration. This is the

83

reason why MTBF parameter is assigned to feature groups as itself instead of its

inverse.

4.4.3. 2
nd

 Phase: Qualitative Quality Attribute (NFR Goal) Analysis

In the scope of this phase, departing from the knowledge and inspiration sourced

by the types of quantitative QAs; aims, concerns and purposes of the stakeholders

(i.e. system developers or users) are analyzed. On the way to achieve this

analysis, NFR goal model is adopted.

The structure adopted for the construction of the NFR goal model is mainly

inspired from the study of Peng et al. [10] in addition to its origins as the previous

studies performed by Chung et al. [19] and Cysneiros and Leite [43].

The basic structure of the NFR model is as follows. Each NFR goal is

decomposed into three levels as low, medium and high. Introducing the

decomposition of NFR goals into several levels is favorable in terms of modeling

qualitative quality concerns where quantification on quality concerns is not

possible, advantageous or meaningful.

Each of these levels are decorated with appropriate operationalizations to be

treated as selectable features since they are some kind of functional attribute

projections of non-functional concerns. The levels and thereby the

operationalizations are modeled as alternative to each other meaning that only one

level is allowed to be selected for each sample of product configuration. This

provides several benefits as follows. Modeling with at least three alternatives

improves overall variability performance of the whole model. Moreover, thanks

to this alternative relation among the various levels, different combinations of

trade-off selections among NFR goals become available (i.e. an instance of

product with Low Resource Utilization, Medium Accuracy, High Availability and

Low Cost of Ownership).

84

The types of quantitative quality aspects revealed in the previous section specify

the starting point to seek the probable aims that the system should achieve. In the

scope of the MMLS domain, this brings the need for definition of four types of

NFR goals, namely Resource Allocation, Accuracy, Availability and Cost of

Ownership. As referenced in Figure 4.16 below, these NFR goals can be

described as root goals since they are modeled as mandatory feature groups at the

uppermost level of the initial feature model. The reason why these root goals are

modeled as mandatory can be specified as follows. NFR goals are different from

the functional features due to their vague nature such that a functional feature can

be clearly defined to be involved or not in a product configuration. But the

existence or non-existence of goals originated from non-functional (or quality)

concerns can not be defined exactly such that any type of quality concern may

take part in any configuration to some extend. However, their contribution in

terms of various levels can be utilized in product configurations. Below a detailed

discussion on the origins of these NFR goals are provided together with their

operationalizations assigned to each level.

Figure 4.16: NFR Goal Integrated Feature Diagram of MMLS Domain –

Uppermost Level

Resource Utilization is one of the vital indicators of Efficiency of a software

product. It is defined as the capability to provide appropriate performance,

relative to the amount of resources used, under specified conditions. Resource

Utilization is defined as the capability of the same software product to manage

and utilize these relative amounts of resources as the software performs its

function. [44] In the light of these quality model definitions stated in

85

ISO/IEC9126 standard, the levels of Resource Utilization NFR goal is prescribed

as depicted in Figure 4.17 below. With reference to Figure 4.17, as the level of

the goal is escalated, the capability offered by the system in terms of storing and

managing higher amounts of data is improved as well. For instance, inclusion of

low level Resource Utilization allows the software to record only the raw data

without attachments of time and source information. However, a high level of

Resource Utilization means that data stored to data storage units includes the

recording date/time in addition to the source information of the raw data.

Naturally, this high level of resource management comes with its toll such that

higher amounts of data storage units are needed.

Figure 4.17: NFR Graph for Resource Utilization

As demonstrated in Table 4.2 below, low and medium level operationalizations of

Resource Utilization need further implicit interdependencies. Log Operational

Information feature modeled under System Log Management feature group

excludes the low and medium level operationalizations of Resource Utilization

NFR goal. This is due to the fact that Log Operational Information feature

requires both the time and source information to perform its basic missions of

keeping track of log-in – log-out information, changes in the status of system SW

and measured data exchanges between sensors and external systems.

86

Table 4.2: Implicit Interdependencies Between Resource Utilization NFR

Goal and System Log Management Feature Group

Source Feature Dependency Relationship Target Feature

Log Operational Information
Excludes Record Raw Data

Excludes Record Data with Time Stamps

Being one of the significant factors of Functionality concern, Accuracy is defined

as the capability of a software product to present correct results with required

precision. [44] Precision for the perceived results is directly proportional with the

refreshment frequency of the data provided to indicator units through the

appropriate interfaces. In the scope of the MMLS domain, the user interface for

perception of accuracy and precision is sustained by means of display units. In

addition to display units, different type of the sensors and data storage units

utilized in the product configuration are the other actors effecting the data

refreshment frequency thereby the level of accuracy as well. In the domain of

display units, the accuracy of the presented data is specified as the sensitivity.

Therefore, with the assumption of the same set of correct data transmitted with

different refresh rates causes different perception levels of sensitivity; as NFR

goal of Accuracy, three levels of sensitivity with percentages of 10, 5 and 1 are

offered for the low, medium and high levels of accuracy respectively.

Figure 4.18: NFR Graph for Accuracy

87

As an important parameter of Reliability concern, Availability is the capability of

a software product which ensures the satisfactory performance of a required

function during a specified duration of time. [44] On the way to specify a system

in terms of its availability against probable failures, the failure rates of its

constituents are the determinants for failure avoidance capability. Being

encouraged from this variable capability depending on different instances of

MMLS configurations, three levels of availability operationalizations are offered.

These levels are classified on the basis of different durations needed for periodical

maintenance of the system. For example, an instance of MMLS with low overall

MTBF value is said to possess low level of failure avoidance leading to low level

of availability. This brings the need of periodic maintenance in a more frequent

fashion. Selection of low level Availability offers (and requires at the same time)

four times of periodic maintenance per year whereas high level offers/requires

once a year.

Figure 4.19: NFR Graph for Availability

Different from other NFR goals mentioned so far, Cost of Ownership is based on

a different rationale. Cost of Ownership quality is inspired from a financial

estimate named as Total Cost of Ownership (TCO). For computer systems, it is

defined as “the total of direct capital investment in hardware and software

including indirect costs of installation, training, repairs, downtime, technical

88

support, and upgrading.” [45] It must be noted that resources provided especially

for training, repairment and technical support required by the system are vital in

terms of long-term system availability throughout its life-cycle. In the scope of

the MMLS domain, direct capital investment in hardware is modeled in the

context of quantitative quality modeling practice provided in Section 4.4.2 as the

1
st
 phase of Complementary Quality Modeling approach. Being the

operationalizations assigned to different levels of NFR goal named Cost of

Ownership, different combinations of indirect costs for training, technical support

and repairs (in the form of warranty and spare-parts) are offered to the user of the

system. Roughly speaking, components with higher MTBF values possess higher

levels of costs meaning that higher costs during the production of the system

bring better availability in the long-term. Therefore, as referenced in Figure 4.20

below, if the cost of ownership is selected to be high for any instance of product,

technical supports of warranty and spare parts are not offered. But a system with

low Cost of Ownership is more vulnerable to failures. From the user‟s point of

view, this leads to the need of technical support in the form of 2-year warranty in

addition to the delivery of spare parts that are replaceable by end-user in cases of

failures.

Figure 4.20: NFR Graph for Cost of Ownership

89

It should be noted that, notation as inspired from [10] for designation of

operationalizations is as follows: Dashed circles as provided in Figure 4.17

represent dynamic operationalizations, those of which requires an action to be

realized. However, solid circles with instances in Figure 4.18, Figure 4.19 and

Figure 4.20 stand for static operationalizations meaning a restriction on the

system capability if utilized in system configuration.

4.4.4. 3
rd

 Phase: Construction of the Complementary Quality Model

In this phase, in its basic specification, the connections between quantitative and

qualitative attributes, elicited in 1
st
 and 2

nd
 phases respectively, are established.

As demonstrated in Table 4.3, each type of quantitative QA has its counterpart in

the form of qualitative QA.

Table 4.3: Mapping Between Quantitative and Qualitative QAs

Type of Quantitative

Quality Attribute

(Compound Attributes)

Type of Qualitative

Quality Attribute

(NFR goals)

Affected Quality

Modeling Concern

Overall Cost Cost of Ownership
Efficiency

Overall Capacity Resource Utilization

Overall MTBF Availability Reliability

Overall DRT Accuracy Functionality

The connections between qualitative and quantitative QAs are to be realized in

the form of excludes dependencies. These dependencies are bi-directional

relationships defined between the operationalizations (belonged to different levels

of NFR goals) and Hardware Components feature group. The rules and conditions

for these exclude relationships are defined with respect to compound attribute

values assigned to Hardware Components root node.

As demonstrated in Table 4.4, excludes relationships between Hardware

Components and Cost of Ownership levels are realized depending on the values

owned by Overall Cost compound attribute. The same dependency rationale is

90

adopted for Resource Utilization levels through Overall Capacity attribute values,

for Availability levels through Overall MTBF values and finally for Accuracy

levels through Overall DRT values.

The meaning and purpose of all these relations become apparent when it is time to

select any one of the available levels of the NFR goals as part of product

configuration. As mentioned below, the benefit of selection out of these levels is

two fold:

 Each of the levels assigned to four different types of NFR-goals serves

different operationalizations available to selection for their contribution to

product configuration. This is beneficial in the sense that overall variability of

the feature model is enhanced by these functional domain projections of basic

quality concerns. In other words, non-functional variability of the whole

model is enhanced.

 More importantly, selections among various levels of NFR-goals (possibly to

be realized during AE phase) has a filtering effect over the feature alternatives

available under Hardware Components feature group. This filtering operation,

which is realized by excludes relationships, limits the available feature

alternatives to be selected as the variants and sub-variants of Hardware

Components variation point. By means of these relationships defined, the

maturity of the feature model is enhanced as it provides more realistic feature

combinations for available product configurations. Further discussion on this

enhancement is provided in the scope of Chapter 5.

The rationale behind the rules for excludes relationships are based on

classification of numerical ranges owned by each of the compound attributes.

Each level of NFR-goals are mapped to a compliant range of values specified for

their counterpart compound attribute. For instance, as demonstrated in Table 4.4

below, Low level Cost of Ownership is compliant to the range of Overall Cost

values between 4100 and 7825 $. This means, if Low Cost of Ownership is

included in the product configuration, by means of excludes relationships, only

91

the product configurations compliant with that specified range of overall cost

values are available for selection.

Table 4.4: Traceability Between Range of Quantitative QA Values and

Levels of Qualitative QAs

Quantitative QAs (Compound Attributes) Qualitative QAs (NFR goals)

Type of

Quantitative

QA

Range of Values for

Quantitative QAs

Level of

Qualitative QA

Type of

Qualitative

QA

Overall Cost

($)

4100 < Costoverall < 7825 Low Cost of

Ownership 7825 < Costoverall < 10725 Medium

10725 < Costoverall < 15600 High

Overall

Capacity

(GB)

Capacityoverall = 30 Low Resource

Utilization Capacityoverall = 128 Medium

Capacityoverall = 160 High

Overall

MTBF

(Hours)

6200 < MTBFoverall < 8100 Low Availability

8100 < MTBFoverall < 9500 Medium

9500 < MTBFoverall < 14000 High

Overall DRT

(ms)

1050 < DRToverall < 1080 Low Accuracy

550,1 < DRToverall <1050 Medium

120 < DRToverall <550,1 High

For further clarification, all the exclude relationships defined between the levels

and Hardware Components feature group are provided in Table 4.5 below. For

instance, High Cost of Ownership excludes a feature configuration if the

condition „Costoverall < 10725‟ is satisfied. Similarly, Medium Cost of Ownership

excludes any feature configuration that satisfies the conditions of either „4100 <

Costoverall < 7825‟ or „10725 < Costoverall < 15600‟. Obviously, the limits suggested

here are all tentative, and may be adjusted by domain experts as necessary. The

aim here has been to separate Qualitative QA levels uniformly into regions with

respect to the number of available configurations derived from Hardware

Components feature group. This separation rationale is utilized in the excludes

relationships as shown below in Table 4.5.

92

Table 4.5: Specification of Excludes Relationships

NFR Goal Levels Rules for Exclude Relationships

Cost of

Ownership

Low 7825 < Costoverall

Medium 4100 < Costoverall < 7825 OR

10725 < Costoverall < 15600

High Costoverall < 10725

Resource

Utilization

Low Capacityoverall = 128 OR

Capacityoverall = 160

Medium Capacityoverall = 30 OR

Capacityoverall = 160

High Capacityoverall = 30 OR

Capacityoverall = 128

Availability Low 8100< MTBFoverall

Medium 6200 < MTBFoverall < 8100 OR

9500 < MTBFoverall <14000

High MTBFoverall < 9500

Accuracy Low DRToverall < 1050

Medium 120 < DRToverall < 550,1 OR

1050 < DRToverall < 1080

High 550,1 < DRToverall

Table 4.6 below demonstrates some available feature configurations to be utilized

in product configurations associated with some instances of Qualitative QA level

configurations.

93

Table 4.6: Effect of Qualitative QAs on Functional Feature Configurations

Qualitative QA Configurations Functional Feature

Configurations Filtered

Out from Hardware

Components Feature

Group

Cost of

Ownership

Resource

Utilization

Availability Accuracy

LOW HIGH MEDIUM MEDIUM {AHTS, Type-C HDD,

Monitor Keyboard Drawer,

Inkjet Printer},

{APS, Type-C HDD, LCD

Display, Laser Printer}

LOW MEDIUM HIGH LOW {AHTS, Type-B SSD, LCD

Display, Inkjet Printer}

MEDIUM HIGH LOW MEDIUM {AHTS, APS, Type-C HDD,

Monitor Keyboard Drawer,

Inkjet Printer},

{ AHTS, APS, Type-C HDD,

Monitor Keyboard Drawer,

Laser Printer},

{WSDS, AHTS, Type-C

HDD, LCD Display, Laser

Printer}

HIGH LOW MEDIUM HIGH {WSDS, APS, Type-A SSD,

Monitor Keyboard Drawer,

Laser Printer}

LOW LOW LOW LOW {AHTS, APS, Type-A SSD,

LCD Display, Laser Printer}

MEDIUM MEDIUM MEDIUM MEDIUM NO AVAILABLE PRODUCT

CONFIGURATION

HIGH HIGH HIGH HIGH NO AVAILABLE PRODUCT

CONFIGURATION

It must be noted that for some combinations of Qualitative QAs, the

Complementary Quality Attribute Model comes up with no available product

configuration. This is due to the trade-off relationship between different types of

94

Qualitative QAs based on the selections among their respective levels. For

instance, as referenced in Table 4.6 above, selection of High level for all

Qualitative QAs leads to no available product configuration. This is an evidence

for the idea that High level of Cost of Ownership does not guarantee the high

levels for other Qualitative QAs. Possible causes of this situation can be listed as

follows:

Type-B SSD can offer Medium level of Resource Utilization with High level of

Cost of Ownership such that high level of overall cost compensates for high level

of Availability, not Resource Utilization. Besides, High level of Cost of

Ownership ensures the highest number of features available for selection out of

Hardware Components feature group (i.e. all types of sensors can be included in a

product configuration if and only if High Cost of Ownership is included in the

product configuration). But this has a diminishing effect on overall MTBF value

leading to Low Availability (i.e. configurations of High Cost of Ownership with

all sensor types are all limited to Low Availability selection).

95

CHAPTER 5

5. EVALUATION OF THE COMPLEMENTARY QUALITY

MODELING APPROACH

5.1. Introduction

In this chapter, most of the criteria introduced in Chapter-2 find their meaning as

the evaluations are realized with respect to the relative feature model assets that

are subject of comparison. Results of these criteria are first obtained for the initial

functional feature model, it is followed by collection of same type of results from

the same model extended with qualitative QAs. Finally, acquisition of evaluation

data is completed by gathering the results of the same model extended with

Complementary Quality Modeling approach.

In the course of presenting comparative discussions on several evaluation criteria,

for the sake of convenience of expressions for the feature models:

 Initial Functional Feature Model is denoted as Model-1;

 Functional Feature Model extended with Qualitative QAs (NFR Goals) is

denoted as Model-2;

 Functional Feature Model extended with Complementary Quality Modeling

Approach is denoted as Model-3.

5.2. Evaluation of Complementary Quality Modeling Approach

On the way to provide a comparative assessment and analysis related with the

benefits and drawbacks of the proposed work, the results for the criteria of

96

FIPAP, VF versus ECR, RPER, commonality and DoO are presented in following

sub-sections with supportive ideas relevant to their contribution to Non-functional

Variability Management. The criterion of homogeneity is not subject to

evaluation due to the non-existence of a unique feature in any combination of

available products.

In the scope of this chapter, the aim is to assess the feature models with respect to

quantifiable and comparable criteria. A quality evaluation of the developed

software products is not intended. For this reason, during the selection and

collection of evaluation criteria, the metrics are selected in a way that their

parameters (i.e. the number of features, number of products, number of

relationships between features etc.) can easily be collected from the respective

feature models of comparison. By this way, the subjective effects of criteria are

aimed to be suppressed.

As mentioned in Chapter-4, during definition and elicitation of NFR goals,

ISO/IEC9126 standard is used as reference and inspiration which consists of

many software quality assessment metrics as well. But these metrics deal directly

with the software product itself, not the model of concern. That is why the metrics

utilized in the scope of comparative evaluation of feature models are identified

exclusive of this standard.

Besides, the ISO/IEC9126 standard simply aims to reason and estimate the

impacts of quality concerns on a software product whose development process is

completed, with components ready for testing. However what is aimed in this

study is to evaluate the contribution of Complementary Quality Modeling

approach in the scope of Domain Analysis phase with respect to general

quantifiable SPL-oriented metrics.

97

5.2.1. Evaluation in terms of FIPAP Criterion

As referenced in Section 2.3.4.7, FIPAP, originally defined by Kasikci [38], is a

significant indicator for the feature interaction problem avoidance capability of a

model. FIPAP basically measures the ability of a model in exploring and

exposing the possibility of encountering feature interaction problems which

originate from lack of necessary exclude relationships.

As mentioned earlier, an increase in the number of features involved in a model

leads to an increase in the number of feature interaction problems. Concerning the

implementation of Complementary Quality Modeling approach, first, Model-2 is

derived from Model-1 by appending new features (a.k.a operationalizations) as

the extensions of qualitative quality modeling concerns. However, it is obvious

that Model-2 falls short of responding to the needs for expressions required for

feature interaction problems. As mentioned earlier, the features modeled in the

context of Hardware Components feature group define certain restrictions on the

quality concerns of a domain. As long as these restrictions are defined

appropriately in terms of proper quality modeling abstractions (qualitative quality

concerns in the case of Complementary Quality Modeling Approach), it is

inevitable to define further exclude relationships between the functional features

of Hardware Components feature group and different levels of qualitative quality

modeling aspects. The reason why additional exclude relationships are required

lies beneath the aim to get rid of feature interaction problems inherent in the

model. At this point, it must be noted that Complementary Quality Modeling

approach is said to be utilized for the sake of resolving these feature interaction

problems.

In order to represent the feature interaction capability of Complementary Quality

Modeling approach, relative FIPAP values of Model-2 and Model-3 with respect

to Model-1 are calculated by means of equation (8) given in Section 2.3.4.7.

Assuming En1, En2 and En3 express the number of exclude relationships defined

98

in the scope of Model-1, Model-2 and Model-3 respectively, En1 turns out to be 5,

En2 is 7 and En3 is 19. By utilizing these values in equation (8), relative FIPAP of

Model-1 with respect to Model-2 is calculated as %40 whereas relative FIPAP of

Model-1 with respect to Model-3 comes out to be %280. This is an indication of

the fact that the Complementary Quality Modeling approach drastically enhances

the feature interaction problem avoidance capability of the initial model. Besides,

the proposed approach is said to be much more effective than Feature Oriented

NFR analysis on the way to reveal further exclusion relationships implicitly

included in qualitative quality modeling aspects.

5.2.2. Evaluation with respect to the Relation Between VF and ECR Criteria

As an extension on FIPAP criterion, ECR, originally defined by Mendonca et.al.

[37], counts the requires relationships in addition to exclude relationships unlike

FIPAP. VF is the indicator for the variability capability of a feature model. In the

scope of evaluation of MMLS feature model extended with Complementary

Quality Modeling approach, ECR is utilized for the comparative assessment of

each model concerning its trade-off relationship with VF.

The trade-off relationship between the respective values of ECR and VF is based

on usage density of structural and implicit interdependencies with respect to each

other. Structural interdependencies play the role of enhancing the variability of a

model whereas implicit ones are needed to keep this growth under control.

Therefore a comparative increase in the usage of structural interdependencies

leads to an increase in VF with a decrease in ECR, whereas an increase in implicit

interdependencies causes an increase in ECR with a decrease in VF.

In order to manage this trade-off relationship efficiently, there should exist a

balance between the respective values of ECR and VF sustained by a two way

feedback. Sustainability of this balance is necessary for a model, especially if

controlled growth in variability is of concern. An enhancement in the variability

99

of a feature model is desired which can be easily realized by appending new

features to the model. However, without paying attention to the interplay between

the features, the feature model can easily slip out of control in terms of its ability

to represent more realistic products. What is implied by more realistic products is

that the combination of features included in a product should not obstruct overall

functionality of the system due to feature interaction problems. Furthermore,

some features need the presence of one another, therefore more realistic products

should definitely include all these probable feature pairs possessing such kinds of

require or exclude relationships.

On the way to achieve the goal of ensuring more realistic products from a feature

model, a decrease in VF is required to be compensated by an increase in ECR.

In the light of these discussions, the parameters calculated for evaluation of VF

and ECR are presented in Table 5.1 below, with respect to each model. A

decremental trend in VF is observed as the Model-1 is evolved to Model-3

through Model-2. As for respective ECR values,Model-2 has its VF value

decreased but can not benefit from this decrease in return for an increase in the

definition of extra constraints. On the contrary, Model-3 compensates for this

shortage caused by Model-2, by providing an enhancement in discovering

additionally required relationships between features and QAs which are

originated from quality aspects. Model-3 efficiently manages the trade-off

relationship between VF and ECR by recovering the lack of feature interaction

problem exploration capability of Model-2. In brief, Model-3 achieves the

demand for sustaining feature relationships in required levels on the way to

acquire more realistic products.

100

Table 5.1: Calculated Parameters of VF and ECR Criteria as per Model

Performance Metric Model-1 Model-2 Model-3

Number of Products

[NPT]
12 * 10

6
 519 * 10

6
 47 * 10

6

Number of Products

(without interdependencies)

[NPWOI]

2
42

 2
54

 2
54

Variability Factor (VF) [NPT/NPWOI] 2.6 * 10
-6

 0.03 * 10
-6

 0.003 * 10
-6

Number of Features involved in cross-tree

constraints

[NFCTC]

25 28 38

Total Number of Features [NFT] 42 54 54

Extra Constraint Representativeness (ECR)

[NFCTC/ NFT]
0.6 0.5 0.7

5.2.3. Evaluation in terms of Commonality Criterion

As mentioned in Section 2.3.4.3, commonality is a substantial indicator of

representativeness capability of any feature in terms of its contribution to possible

product configurations. In other words, as the number of products in which a

specific feature takes part increases, the respective commonality value of that

feature increases as well.

The commonality values of all selectable features (i.e. leaf nodes of the feature

model) with respect to each of three models are presented in Table 5.2 below.

Model 2 enhances Model 1 with the fundamental contribution of the present

study, namely feature oriented analysis of NFR goals. Features common to Model

1 and Model 2 are almost identical, except for the System Management feature

group due to the specific relations of these features with the NFR goals in the

analyzed domain.

101

Table 5.2: Calculated Parameters of Commonality as per Model

Feature

Group
Feature Model-1 Model-2 Model-3

S
y
st

em
 M

a
n

a
g
em

en
t HW-based Authentication 0.20 0.20 0.20

PW Update Reminder 0.40 0.40 0.40

Save Master-key 0.40 0.40 0.40

Log System Setup Information 0.67 0.80 0.80

Log Operational Information 0.67 0.40 0.40

Unit – Level 0.28 0.28 0.43

Module – Level 0.73 0.73 0.57

S
y
st

em
 S

et
u

p
 Set/Change Data Recording Frequency 0.52 0.52 0.51

Set/Change Data Transmission Frequency 0.52 0.52 0.51

1280 x 1024 0.53 0.53 0.56

1024 x 768 0.53 0.53 0.56

Set Sensor Parameters 0.46 0.46 0.59

S
y
st

em
 M

a
in

te
n

a
n

ce

Start-up Test 0.50 0.50 0.51

On-line Test 0.50 0.50 0.51

Off-line Test 0.73 0.73 0.57

System SW Update 0.50 0.50 0.50

Database Clean-up 0.50 0.50 0.50

USB 0.25 0.25 0.25

DVD 0.25 0.25 0.25

CD 0.25 0.25 0.25

In
fo

rm
a
ti

o
n

D
el

iv
er

y

Graphical Statistics Interface 0.50 0.50 0.48

Maintenance Interface 0.99 0.99 0.99

Data Transmission Interface 0.52 0.52 0.50

Print Textual Statistics 0.67 0.67 0.67

Print Graphical Statistics 0.67 0.67 0.67

P
er

ip
h

er
a
l

D
el

iv
er

y
 RS422 0.93 0.93 0.99

RS232 0.46 0.46 0.58

VGA 0.80 0.80 0.64

USB Port 0.25 0.25 0.25

Ethernet/LAN 0.25 0.25 0.25

Serial Port 0.25 0.25 0.25

Parallel Port 0.25 0.25 0.25

102

Table 5.2 (cont’d)

H
a
rd

w
a
re

 C
o
m

p
o
n

en
ts

Wind Speed and Direction Sensor 0.46 0.46 0.15

Ambient Humidity and Temperature

Sensor
0.56 0.56 0.64

Air Pressure Sensor 0.56 0.56 0.62

Monitor Keyboard Drawer 0.80 0.80 0.29

LCD Display 0.21 0.21 0.72

Inkjet Printer 0.50 0.50 0.50

Laser Printer 0.50 0.50 0.50

Type A SSD 0.33 0.33 0.20

Type B SSD 0.33 0.33 0.20

Type C HDD 0.33 0.33 0.60

N
F

R
 G

o
a
ls

Low Resource Utilization - 0.20 0.20

Medium Resource Utilization - 0.20 0.20

High Resource Utilization - 0.60 0.60

Low Accuracy - 0.33 0.46

Medium Accuracy - 0.33 0.36

High Accuracy - 0.33 0.18

Low Availability - 0.33 0.26

Medium Availability - 0.33 0.40

High Availability - 0.33 0.35

Low Cost of Ownership - 0.33 0.69

Medium Cost of Ownership - 0.33 0.24

High Cost of Ownership - 0.33 0.07

AVERAGE COMMONALITY OF THE

MODEL
0.49 0.45 0.45

The commonality values of NFR goal levels possessing almost equal shares in

Model-2 are changed as the model is evolved to Model-3. This change brings

about dominancy in terms of commonality values for some NFR goal levels.

Model-2 and Model-3 display identical resource utilization levels while Model-3

displays significantly more favourable values, especially in terms of low cost of

ownership and medium availability and low accuracy; all as required by the user.

103

This is a significant indicator of general quality-based characteristics of products

derived from Model-3 in terms of different levels of qualitative quality modeling

aspects. In other words, product configurations derived from Model-3 have the

tendency to have high level of Resource Utilization, low level of Accuracy,

medium level of Availability with low level of Cost of Ownership. Due to the

strong connections between these NFR goals and functional features (in Hardware

Components feature group) of the model by means of implicit interdependencies,

Model-3 owes these quality-based characteristics to the properties of functional

features (a.k.a. quantitative QAs) elicited in the scope of Complementary Quality

Modeling approach. It is obvious that these quality-based characteristics are

tentative and definitely dependent on the attributes of functional features.

Besides, the changes in commonality values of NFR goal levels from equal shares

to dominancy in some levels shows that the integrability of NFR goal levels

(qualitative quality modeling concerns) with the rest of the feature model is

enhanced, as Model-2 is evolved to Model-3.

5.2.4. Evaluation in terms of DoO Criterion

Conceptually similar to the assessments on commonality values, DoO measure is

utilized to reveal how competent Complementary Quality Modeling approach is

in terms of integrability of its variability assets with the initial functional feature

model. The level of integrability for a sub-tree (i.e. a feature group) in the feature

model is proportional with the level of dependency with regards to feature

selections to be realized during AE phase. Lower DoO for a specific feature group

means higher degree of its integrability and dependency to other parts of the

feature model.

One of the primary goals of Complementary Quality Modeling approach is to

integrate elicited qualitative quality modeling aspects (NFR goals) to the rest of

feature model. In order to assess the Complementary Quality Modeling approach

104

regarding this concern, DoO values calculated separately for each NFR goal in

Model-2 and Model-3 are needed to be compared.

Additionally, since integrability of NFR goals to the rest of the feature model is

sustained by means of interdependencies with the functional features included in

Hardware Components feature group, similar comparison is needed to be realized

between DoO values of Hardware Components feature group in Model-2 and

Model-3.

The DoO values with respect to Model-2 and Model-3, belonged to Hardware

Components feature group and four basic NFR goals, namely Resource

Utilization, Accuracy, Availability and Cost of Ownership are presented in Table

5.3 below. In this table, Model 1 is not considered as it does not refer to the NFR

goals at all.

Table 5.3: Calculated Parameters of DoO for Model-2 and Model-3

Sub-tree (Model-2) (Model-3)

Resource Utilization 1.73 x 10
8
 0.16 x 10

8

Accuracy 1.73 x 10
8
 0.16 x 10

8

Availability 1.73 x 10
8
 0.16 x 10

8

Cost of Ownership 1.73 x 10
8
 0.16 x 10

8

Hardware

Components
6.18 x 10

6
 0.56 x 10

6

DoO values of NFR goals calculated with respect to Model-3 are lower than the

values for Model-2. This obviously indicates that any selection realized among

several levels of each NFR goal in Model-3 is more dependent on the rest of the

feature model when compared with Model-2. This also means that decision of

levels on each NFR goal in Model-3 has comparatively more effect on the

105

selection of features from the rest of the feature model. Based on these

evaluations, thanks to Complementary Quality Modeling approach, integrability

of qualitative quality modeling aspects is enhanced as Model-2 is evolved to

Model-3.

Additionally, DoO value of Hardware Components feature group for Model-3 is

lower than the values for Model-2, similar to the case for NFR goals. This can be

regarded as the contribution of Complementary Quality Modeling approach in

terms of an enhancement on integrability of functional features to the whole

model in parallel to the enhancement sustained for qualitative quality aspects as

well. Therefore, the results can be regarded as an indication of convenience of the

Complementary Quality Modeling approach in terms of its power to integrate

qualitative and quantitative quality modeling aspects not only with each other but

also with initial functional feature model.

5.2.5. Evaluation in terms of RPER Criterion

In the scope of MMLS domain, RPER (owing to its guidance in comparative

assessment) is benefited for the evaluation of Complementary Quality Modeling

approach regarding how well a variability modeling approach satisfies users and

developers on the way to acquiring more permissible systems.

As referenced briefly in Section 2.3.4.1, due to difficulties in attaining its

parameters (i.e. total number of acceptable product configurations), PER is

utilized as part of RPER criterion under some restrictions. These restrictions set

forth in Section 2.3.4.1 are accepted beforehand for the evaluation of

Complementary Quality Modeling approach in MMLS domain context.

In relation with those restrictions, it is meaningful to calculate RPER value with

respect to the models possessing the same number of variability items, namely

Model-2 and Model-3. If the models being compared differ in variability items

106

(i.e. variants – leaf nodes of feature model), the results of RPER calculation may

be misleading. This is due to the fact that without the presence of a common

reference point for variability, relative value calculation of PER values may cause

unexpected results. Hence, Model-1 is not utilized for RPER calculations, since as

Model-1 is evolved to either of Model-2 or Model-3, the number of variability

items is increased by operationalizations defined as the extensions of qualitative

quality aspects (i.e. NFR goals).

Consequently, RPER of Model-2 with respect to Model-3 (RPER2,3) comes out to

be 0.09. This is an acceptable level of permissibility for Model-3 on account of

possessing 11 times better accuracy in representing actual realizable systems.

107

CHAPTER 6

6. CONCLUSION

VM is one of the primary concerns having significant effects on all phases of SPL

processes. Considerable effort has been devoted by the SPL community to

develop various approaches on the way to go beyond the adversities laid by

variability modeling practices. However, throughout the efforts expended for

variability modeling on functionalities of domains, modeling of QAs derived

from NFRs are neglected quite often.

On the way to meet the deficit of modeling quality-oriented concerns, as the

beginning point of this thesis study, a comprehensive survey of the literature has

been realized to identify the contributions and drawbacks of the state of the art

approaches. This review has revealed the expressive power of feature-oriented

QA modeling approaches, as feature oriented approaches have already proved

their adequacy for functional concerns. Feature-oriented NFR Analysis seems to

satisfy the need of modeling QAs originating from qualitative nature but lacks the

need of modeling quality concerns possessing quantitative characteristics. On the

other side, EFM approach remedies the lack of modeling quantitative quality

aspects but lacks in responding the needs for modeling different levels of QA

optionality at PL level. At this point, the proposed approach of Complementary

Quality Modeling finds its meaning as it complements the two indispensable

goals of QA modeling practices, namely modeling of qualitative and quantitative

QAs. This integrated approach provides to domain designers the opportunity to

exploit the quality knowledge– no matter it is either qualitative or quantitative –

concealed in the specifications or requirements of any domain.

108

The proposed approach realizes the integration between quality concerns (in the

form of levels as the extensions on different NFR goals) and functional features

of a domain by serving the establishment of bridges in the form of dependency

relationships. These relationships define available product configurations by

means of direct effects on co-existence or non-existence of functional feature-

quality concern pairs.

The most important contribution of Complementary Quality Modeling approach

proposed and implemented in the scope of this study is the ability to perform

trade-off selections among different types of basic quality concerns (namely

NFR-goals) which not only provides further selectable operationalization

alternatives but also ensures direct control over the available functional features

by means of their elicited elementary attributes. In other words, management of

variability among functional features is realized from the perspective of quality

concerns by enhancing non-functional variability.

Different combinations of selected NFR-levels provide dynamism on the

availability of functional features (i.e. features of Hardware Components feature

group) at the time of product specification. During AE phase, as the levels of

basic quality concerns (in terms of NFR-goals) are specified, the feature model

becomes limited in terms of selectable functional features at the same time. This

provides further feedback to product engineers for specification of more realistic

product configurations dynamically.

Apart from contributions of Complementary Quality Modeling approach in non-

functional variability management context as an alternative for state of the art QA

modeling approaches; for the purpose of assessing Complementary Quality

Modeling approach with regards to general PL benefits, PL metrics that are

especially applicable on feature oriented models are collected from the literature.

FAMA framework is utilized for calculating the parameters of these metrics

particularly for three main states of the model throughout the implementation of

109

the approach, namely Initial Functional Feature Model, Functional Feature Model

extended with NFR goals and finally Functional Feature Model extended with

Complementary Quality Modeling approach. The results for these three states are

utilized for the comparative assessment of the proposed approach with respect to

its contribution on Initial Functional Feature Model and Functional Feature Model

extended solely by Qualitative Quality Modeling aspects.

Referring to the results obtained by means of the selected evaluation criteria,

Complementary Quality Modeling approach obviously provides enhancement in

exploring the feature interaction problems inherent in the domain of subject. This

exploration is valuable in terms of revealing possible conflicts between quality

concerns (in the form of levels as the projections of different types of NFR goals)

and functional features. Besides, Complementary Quality Modeling approach

succeeds the compensation for the subsidence of variability by ensuring feature

relationships in satisfactory levels so as to acquire more realistic products.

Being one of the significant goals of the approach, Complementary Quality

Modeling approach strive against integration of the elicited qualitative quality

modeling aspects (NFR goals) to the rest of the feature model. As compared with

Functional Feature Model extended solely by NFR goals, Complementary Quality

Modeling approach provides better integrability of these qualitative quality

concerns with functional features of the initial model. This integrability simply

provides better means of comprehensiveness in modeling ability in terms of

quality aspects. From the perspective of sustaining same type of integrability in a

way that any selection realized among several levels of each NFR goal has strong

dependency and impact on the selections to be realized among the rest of the

feature model, Complementary Quality Modeling approach achieves its purpose.

It must be noted that, in the scope of MMLS feature modeling, the integration of

elicited NFR goals are constituted with only Hardware Components feature group

(as specific part of the whole feature model) instead of covering other parts of the

110

model. Hardware Components feature group includes a large number of physical

constraints. Regarding their capability to contribute to the definition of quality

concerns, physical constraints are preferable for modeling. This is the basic

reason why Hardware Components feature group is utilized for the modeling of

Quantitative QAs. Even though it may be seen like a deficiency for the proof of

concept, actually utilizing only Hardware Components is tentative and dependent

on the nature of the domain of concern.

Since similar results with respect to the number of features, number of products

and different relationships are expected to be observed in following the inclusion

of extra artifacts applicable by the approach, the trends in evaluation are not

expected to change. As feature groups other than Hardware Components are

utilized for the modeling of Quantitative QAs, number of constraints established

between features are increased, leading to an increase in FIPAP and DoO (thereby

integrability of several feature groups to the model is enhanced); VF is decreased

with an increase in ECR, leading to similar trend with the current MMLS case;

total number of products is decreased, leading to a decrease in RPER value. It

must be noted that, if other feature groups are included in modeling of QAs, all of

the trends on evaluation would be similar and more favourable than the ones in

the current study.

In the scope of this study, Feature Modeling of MMLS domain in addition to

Qualitative QA and Complementary Quality Modeling practices are

implementations on a small scale domain selected due to practicality and for the

purposes of proof of concept. As for the generalizability of the approach,

obviously, in a larger domain, more features are needed which come up with the

need for more relationships to be defined. As of the outcome of implementation

of Complementary Quality Modeling approach, more quantitative QAs would

have to be defined together with more NFR goals. This would require support of

an automated mechanism to provide guidance for matching the required levels of

111

NFR goals and values of quantitative QAs, both of which may be too numerous to

be handled manually with the current approach.

Complementary Quality Modeling approach deals with the Domain Analysis

phase of SPL process with an emphasis on QA modeling. As referenced in Figure

2.1, as a rule of thumb of DE phase, a feedback (often in the form of revised

requirements) from AE phase is needed. Lack of support from AE phase causes

threat on the validity of not only the feature model extended with Complementary

Quality Modeling approach but also its outcomes in the form of Domain Model

and developed software components. Therefore, as the components constituted

from the feature model extended with Complementary Quality Modeling

approach are utilized to form a final product, field knowledge in the form of

experience of application engineers during software development or criticisms

and demands from customer are needed to be taken into account and provided to

domain experts as feedback in turn.

As the future steps to be traced on the way to improve and expand the benefits of

the Complementary Quality Modeling approach, the interplay between the

selectable levels of each elicited qualitative quality modeling aspects (NFR goals)

can be utilized. This interplay is sustained by the trade-off selection availability

among different levels of each NFR goal. With the help of this trade-off selection

ability, some optimization operations can be realized on the affected functional

feature variation points (i.e. Hardware Components feature group in MMLS

domain example). For instance, users may desire to possess the optimum system

with the lowest cost of ownership or regardless of other quality concerns

stakeholders may desire to observe possible product configuration in which

Resource Allocation is maximized. Complementary Quality Model provides

reasoning to its users by presenting available product configuration possibilities

based on such kind of optimization concerns.

112

REFERENCES

[1] Lee, K., Kang, K. C., Lee, J., “Concepts and Guidelines of Feature

Modeling for Product Line Software Engineering,” Proceedings of the 7
th

International Conference on Software Reuse: Methods, Techniques, and

Tools, 2002, ISBN: 3-540-43483-6, pp. 62-77.

[2] de Almeida, E. S., Alvaro, A., Lucredio, D., Garcia, V. C., de Lamos

Meira, S. R., “A Survey on Software Reuse Processes,” International

Conference on Information Reuse and Integration, 2005. IRI-2005 IEEE,

pp. 66-71.

[3] Li, H., Katwijk, J. W., “Issues Concerning Software Reuse-in-the-Large,”

Proceedings of the 2
nd

 International Conference on Systems Integration,

1992, ICSI’92, pp. 66-75.

[4] Riva, C., Rosso, C. D., “Experiences with Software Product Family

Evolution,” Software Architecture Group, Nokia Research Center,

Proceedings of the 6
th

 International Workshop on Principles of Software

Evolution (IWPSE’03), 2003, pp. 161-169.

[5] Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S., “Feature-Oriented

Domain Analysis (FODA) Feasibility Study,” Technical Report

CMU/SEI-90-TR21, Pittsburgh, PA, Software Engineering Institute,

Carnegie Mellon University (1990).

[6] Griss, M. L., Favaro, J., d‟Alessandro, M., “Integrating Feature Modeling

with the RSEB,” Proceedings of 5
th

International Conference on Software

Reuse, Victoria, BC,Canada (1998), pp. 76-85.

[7] Gomaa, H., “Designing Software Product Lines with UML: From Use

Cases to Pattern-Based Software Architectures,” Addison Wesley Object-

Oriented Technology Series, ISBN: 0201775956, 2005.

[8] Supakkul, S., Oladimeji, E. A., Chung, L., “Toward Component Non-

functional Interoperability Analysis: A UML-based and Goal-Oriented

Approach,” 2006 IEEE International Conference on Information Reuse

and Integration, pp. 351-358, 2006.

113

[9] Helferich, A., Herzwurm, G., Schockert, S., “Developing Portfolios of

Enterprise Applications using Software Product Lines,” Proceedings of

the Conference on Component-Oriented Enterprise Applications (COEA

2005), Erfurt, Germany, 20 September 2005.

[10] Peng, X., Lee, S., Zhao, W., “Feature-oriented Nonfunctional

Requirement Analysis for Software Product Line,” Journal of Computer

Science and Technology, volume 24, Issue 2, pp. 319-338, March 2009.

[11] Glinz, M., “On Non-Functional Requirements,” RE’07, 15
th

 IEEE

International Requirements Engineering Conference, pp. 21-26, Oct.

2007.

[12] Jacobson, I., Booch, G., and Rumbaugh, J., “The Unified Software

Development Process,” Reading, Mass.: Addison Wesley, 1999.

[13] Benavides, D., Trinidad, P., Ruiz-cortés, A., “Automated Reasoning on

Feature Models,” LNCS, Advanced Information Systems Engineering: 17
th

International Conference, CAISE 2005.

[14] Kuusela, J., Savolainen, J., “Requirements Engineering for Product

Families,” Proceedings of the 22nd international conference on Software

Engineering (ICSE), 2000, pp. 61–69.

[15] Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J., “Modelling Dependencies

in Product Families with COVAMOF,” Proceedings of the 13th Annual

IEEE International Symposium and Workshop on Engineering of

Computer Based Systems (ECBS'06), 2006, pp. 299-307.

[16] Zhang, H., Jarzabek, S., Yang, B., “Quality Prediction and Assessment for

Product Lines,” Proc. of the 15th International Conference On Advanced

Information Systems Engineering (CAiSE'03), 2003, LNCS 2681,

Springer-Verlag, pp. 681-695.

[17] González-Baixauli, B., Laguna, M. A., Crespo, Y., “Product Line

Requirements based on Goals, Features and Use cases,” International

Workshop on Requirements Reuse in System Family Engineering

(IWREQFAM), 2004, pp.4-7.

http://www.pubzone.org/pages/publications/showVenue.do;jsessionid=674B02AC9F867E8631D0B65A3E413354?venueId=1951
http://www.pubzone.org/pages/publications/showVenue.do;jsessionid=674B02AC9F867E8631D0B65A3E413354?venueId=1951
http://www.pubzone.org/pages/publications/showVenue.do;jsessionid=674B02AC9F867E8631D0B65A3E413354?venueId=1951

114

[18] González-Baixauli, B., Leite, J., Mylopoulos, J., “Visual Variability

Analysis for Goal Models,” Proceedings of the 12th IEEE International

Requirements Engineering Conference (RE’04), 2004, pp. 198 – 207.

[19] Chung, L., Nixon, B., Yu, E. and Mylopoulos, J., “Non-Functional

Requirements in Software Engineering,” Kluwer Academic Publishers,

2000.

[20] Jarzabek, S., Yang, B., Yoeun, S., “Addressing quality attributes in

domain analysis for product lines,“ IEE Proceedings Software., Vol. 153,

No. 2, April 2006.

[21] Czarnecki, K., and Eisenecker, U.W., “Generative programming: methods,

tools, and applications,” Addison-Wesley, Reading, MA, 2000.

[22] Etxeberria, L., Sagardui, G., Belategi L., “Modelling variation in quality

attributes,” In Proc. of the 1st Intl. Workshop on Variability Modelling of

Software-intensive Systems, pages 51–59, 2007.

[23] Bartholdt, J., Medak, M., Oberhauser, R., “Integrating Quality Modeling

with Feature Modeling in Software Product Lines,” ICSEA, pp.365-375,

2009 Fourth International Conference on Software Engineering Advances,

2009.

[24] Pohl, K., Bockle, G.,Van Der Linden, F., “Software Product Line

Engineering: Foundations, Principles and Techniques,” Springer, 2005.

[25] Van Der Linden, F., Schmid, K., Rommes, E., “Software Product Lines in

Action: The Best Industrial Practice in Product Line Engineering,”

Springer, 2007.

[26] Chen, L., Babar, M.A., Ali, N., “Variability management in software

product lines: A systematic review,” in SPLC’09, pp. 81–90, San

Francisco, CA, USA, 2009.

[27] XFeature, http://www.pnp-software.com/XFeature/Home.html,

last visited: 02 October 2010.

[28] Antkiewicz, M., Czarnecki, K., “FeaturePlugin: Feature Modeling Plug-in

for Eclipse,” Proceedings of the 2004 OOPSLA workshop on eclipse

technology eXchange, pp. 67-72, 2004.

http://www.pnp-software.com/XFeature/Home.html

115

[29] Kästner, C., Thüm, T., Saake, G., Wielgorz, F., Apel, S., Feigenspan, J.,

Leich, T., “FeatureIDE: A Tool Framework for Feature-Oriented Software

Development,” 2009 IEEE 31
st
 International Conference on Software

Engineering, pp. 611-614, 2009.

[30] Captain Feature, http://sourceforge.net/projects/captainfeature/, last

visited: 02 October 2010.

[31] pure-systemsGmbH, “Technical White Paper, Variant Management with

pure::variants,” 2004.

[32] Fernandez-Amoros, D., Gil, R.H., Somolinos, J.C., “Inferring Information

from Feature Diagrams to Product Line Economic Models,” ACM

International Conference Proceeding Series Vol. 446, Proceedings of the

13
th

 Internationsl Software Product Line Conference, pp. 41-50, 2009.

[33] Benavides, D., Segura, S., Ruiz-Cortés, A., “Automated analysis of feature

models 20 years later: A literature review,” Information Systems, 2010.

[34] Clements, P.C., McGregor, J.D., Cohen, S.G., “The Structured Intuitive

Model for Product Line Economics (SIMPLE),” Technical Report

CMU/SEI-2005-TR-003, 2005.

[35] Metzger, A., Heymans, P., “Comparing Feature Diagram Examples Found

in the Research Literature,” Technical Report, Software Systems

Engineering University of Duisburg-Essen, 2007.

[36] Czarnecki, K., Kim, P., “Cardinality-based feature modeling and

constraints: A progress report,” In Proceedings of the International

Workshop on Software Factories At OOPSLA 2005, 2005.

[37] Mendonca, M., Wasowski, A., Czarnecki, K., Cowan, D., “Efficient

compilation techniques for large scale feature models,” In Generative

Programming and Component Engineering, 7th International Conference,

GPCE , Proceedings, pages 13–22, 2008.

[38] Kasikci, B.C., Bilgen, S., “Scalable modeling of software product line

variability,” 13th International Software Product Line Conference, SPLC

2009, San Francisco, August 2009.

http://sourceforge.net/projects/captainfeature/

116

[39] Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortés, A., “FAMA: Tooling

a Framework for the Automated Analysis of Feature Models,” First

International Workshop on Variability Modeling of Software Intensive

Systems (VAMOS), January 2007.

[40] FAMA, http://www.lsi.us.es/~fama/ , last visited: 02 October 2010.

[41] Eclipse Platform, http://www.eclipse.org, last visited: 02 October 2010.

[42] Streitferdt, D., Riebisch, M., Philippow, I., “Details of formalized relations

in feature models using ocl.,” In Proceedings of 10
th

 IEEE International

Conference on Engineering of Computer-Based Systems (ECBS 2003),

Huntsville, USA. IEEE Computer Society, pages 45-54, 2003.

[43] Cysneiros, L.M., Leite, J.C.S.P., “Nonfunctional requirements: From

elicitation to conceptual models,” IEEE Trans. Software Eng., 2004,

30(5): 328-350.

[44] ISO/IEC 9126-1:2001(E), Software engineering — Product Quality —

Part 1: Quality Model.

[45] http://www.businessdictionary.com/definition/total-cost-of-ownership-

TCO.html, last visited: 02 October 2010.

http://www.lsi.us.es/~fama/
http://www.eclipse.org/
http://www.businessdictionary.com/definition/total-cost-of-ownership-TCO.html
http://www.businessdictionary.com/definition/total-cost-of-ownership-TCO.html

