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ABSTRACT 

 

 

NON-FUNCTIONAL VARIABILITY MANAGEMENT 

BY COMPLEMENTARY QUALITY MODELING 

IN A SOFTWARE PRODUCT LINE 

 

 

Gürses, Özgür 

 

    M.S., Department of Electrical and Electronics Engineering 

    Supervisor: Prof. Dr. Semih Bilgen 

 

September 2010, 116 pages 

 

Software product lines provide the opportunity to improve productivity, quality 

and time-to-market of software-based systems by means of systematic reuse. So 

as to accomplish systematic software reuse, elicitation of commonality knowledge 

is to be upheld by the analysis and management of variability knowledge inherent 

in domain requirements. Considerable effort is devoted to the management of 

functional variability, often neglecting the impact of quality concerns originating 

from non-functional requirements. In this thesis, a hybrid approach concentrating 

on the modeling of quantitative as well as qualitative concerns on quality has 

been proposed. This approach basically aims to support the domain design 

process by modeling non-functional variability. It further aims to support 

application design process by providing trade-off selection ability among quality 

concerns to control functional features that belong to the same domain. This 

approach is implemented and evaluated on an example domain to reveal its 

benefits on non-functional variability. 

 

Keywords: Software Product Lines, Variability Modeling, Non-functional 

Requirements, Software Quality Attributes 
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ÖZ 

 

YAZILIM ÜRÜN HATTINDA ĠġLEVSEL OLMAYAN DEĞĠġKENLĠĞĠN  

BÜTÜNLEYĠCĠ KALĠTE MODELLEME ĠLE YÖNETĠMĠ 

 

 

Gürses, Özgür 

 

     Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

     Tez Yöneticisi: Prof. Dr. Semih Bilgen 

 

Eylül 2010, 116 Sayfa 

 

Yazılım ürün hatları, dizgeli yeniden kullanım aracılığıyla, yazılım tabanlı 

sistemlerin verimini, niteliğini ve pazara sürüm süresini iyileĢtirmektedir. 

Yazılımların sistematik biçimde yeniden kullanımını baĢarmak için ortaklık 

bilgisinin belirlenmesi sürecinin, alan gereksinimlerinin doğasında yer alan 

değiĢkenlik bilgisinin analiz ve yönetim faaliyetleriyle desteklenmesi 

gerekmektedir. ĠĢlevsel değiĢkenlik yönetimi için önemli ölçülerde çaba 

harcanmakta olup iĢlevsel olmayan gereksinimlere dayalı nitelik kaygılarının 

etkisi çoğu kez yadsınmaktadır. Bu tez çalıĢmasında, hem nicel hem de nitel 

kalite kaygılarının modellenmesi üzerine yoğunlaĢan karma bir yaklaĢım 

önerilmiĢtir. Bu yaklaĢım, öncelikle iĢlevsel olmayan değiĢkenliği modelleyerek, 

alan tasarım sürecini desteklemeyi amaçlamaktadır. Ayrıca, aynı alana özgü 

iĢlevsel yetenekler üzerinde denetim sağlamak için, kalite kaygıları arasında 

ödünleĢime dayalı seçim kabiliyeti sağlayarak, uygulama tasarım sürecini 

desteklemeyi amaçlamaktadır. Bu yaklaĢım, iĢlevsel olmayan değiĢenlik 

üzerindeki katkısını ortaya çıkarmak amacıyla örnek bir alan üzerinde uygulanmıĢ 

ve değerlendirilmiĢtir. 

 

Anahtar Kelimeler: Yazılım Ürün Hatları, DeğiĢkenlik Modelleme, ĠĢlevsel 

Olmayan Gereksinimler, Yazılım Kalite Özellikleri 



  

vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In memory of 

Barış Gürses



  

vii 

 

ACKNOWLEDGEMENTS 

 

 

I would like to express my deepest gratitude to Prof. Dr. Semih Bilgen for his 

guidance, supervision and understanding as the study is evolved from an idea to 

an implementation. Without his encouragement, this study would be harder to 

accomplish. 

 

I would like to thank committee members for their valuable contributions on the 

thesis by means of their comments and discussions. 

 

I owe my deepest appreciation to my mother Fatma Gürses, my father Salih 

Gürses and my beloved sister Gözde Gürses for their perpetually unconditional 

love and support. 

 

I would like to thank my colleagues in ASELSAN Inc. for their support and 

guidance throughout my study. 



  

viii 

 

TABLE OF CONTENTS 

 

ABSTRACT .................................................................................................................................... iv 

ÖZ ..................................................................................................................................................... v 

ACKNOWLEDGEMENTS ............................................................................................................ vii 

TABLE OF CONTENTS .............................................................................................................. viii 

LIST OF FIGURES .......................................................................................................................... x 

LIST OF TABLES .......................................................................................................................... xi 

LIST OF ABBREVIATIONS......................................................................................................... xii 

CHAPTERS ...................................................................................................................................... 1 

1. INTRODUCTION ................................................................................................................. 1 

1.1. Purpose of the Study............................................................................................... 3 

1.2. Outline .................................................................................................................... 4 

2. SOFTWARE PRODUCT LINES AND VARIABILITY MANAGEMENT ........................ 5 

2.1. Overview ............................................................................................................................ 5 

2.2. SPL Processes ..................................................................................................................... 6 

2.2.1 DE Process ....................................................................................................................... 7 

2.2.2 AE Process ....................................................................................................................... 8 

2.3.Variability Management and Feature Modeling ................................................................ 10 

2.3.1 Variability Management ................................................................................................. 10 

2.3.2 Feature Modeling............................................................................................................ 11 

2.3.3 Tool Support for Management and Analysis of Feature Models .................................... 17 

2.3.4 Evaluation Criteria for Feature Models .......................................................................... 18 

2.3.4.1 Relative Permissibility Ratio (RPER) ......................................................................... 19 

2.3.4.2 Variability Factor (VF) ................................................................................................ 20 

2.3.4.3 Commonality ............................................................................................................... 21 

2.3.4.4 Homogeneity ............................................................................................................... 21 

2.3.4.5 Degree of Orthogonality (DoO)................................................................................... 22 

2.3.4.6 Extra Constraint Representativeness (ECR) ................................................................ 23 

2.3.4.7 Feature Interaction Problem Avoidance Percentage (FIPAP) ..................................... 24 

3. NON-FUNCTIONAL VARIABILITY MANAGEMENT AND QUALITY ATTRIBUTE 

VARIABILITY MODELING ........................................................................................................ 25 

3.1. Non-functional Requirements ........................................................................................... 25 

3.2. NFR Analysis ................................................................................................................... 26 

3.3. Non-functional Variability Management .......................................................................... 26 

3.3.1 Extended Feature Model (EFM) ................................................................................. 28 



  

ix 

 

3.3.2 Definition Hierarchy ................................................................................................... 29 

3.3.3 COVAMOF ................................................................................................................ 30 

3.3.4 Bayesian Belief Network ............................................................................................ 32 

3.3.5 Goal-oriented Approaches .......................................................................................... 33 

3.3.5.1 NFR Framework ...................................................................................................... 33 

3.3.5.2 Feature Softgoal Interdependency Graph (F-SIG) ................................................... 34 

3.3.5.3 Feature-Oriented NFR Analysis for SPL ................................................................. 36 

3.3.6 Tool Support for Non-functional Feature Modeling ................................................... 40 

3.4. Discussion of the Literature .............................................................................................. 40 

4. FEATURE MODELING OF METEOROLOGICAL MEASUREMENT AND LOGGING 

SYSTEM DOMAIN ....................................................................................................................... 45 

4.1. Introduction ...................................................................................................................... 45 

4.2. Meteorological Measurement and Logging System (MMLS) .......................................... 46 

4.3. Feature Modeling of MMLS Domain ............................................................................... 47 

4.3.1. Feature Context Analysis ........................................................................................... 49 

4.3.2. Feature Variability Identification ............................................................................... 50 

4.3.2.1. Structural Interdependencies ................................................................................... 51 

4.3.2.2. Implicit Interdependencies ...................................................................................... 61 

4.4. Integrating Complementary Quality Modeling with Functional Feature Model of MMLS 

Domain .................................................................................................................................... 67 

4.4.1. Complementary Quality Modeling ............................................................................ 67 

4.4.2. 1
st
 Phase: Quantitative Quality Attribute Analysis..................................................... 71 

4.4.2.1. Elementary Attribute Elicitation ............................................................................. 72 

4.4.2.2. Compound Attribute Elicitation .............................................................................. 78 

4.4.3. 2
nd

 Phase: Qualitative Quality Attribute (NFR Goal) Analysis.................................. 83 

4.4.4. 3
rd

 Phase: Construction of the Complementary Quality Model ................................. 89 

5. EVALUATION OF THE COMPLEMENTARY QUALITY MODELING APPROACH . 95 

5.1. Introduction ...................................................................................................................... 95 

5.2. Evaluation of Complementary Quality Modeling Approach ............................................ 95 

5.2.1. Evaluation in terms of FIPAP Criterion ..................................................................... 97 

5.2.2. Evaluation with respect to the Relation Between VF and ECR Criteria .................... 98 

5.2.3. Evaluation in terms of Commonality Criterion ........................................................ 100 

5.2.4. Evaluation in terms of DoO Criterion ...................................................................... 103 

5.2.5. Evaluation in terms of RPER Criterion .................................................................... 105 

6. CONCLUSION .................................................................................................................. 107 

REFERENCES ............................................................................................................................. 112 



  

x 

 

LIST OF FIGURES 

 

FIGURES 

Figure 2.1: SPL Processes (modified from [9]) .................................................................. 7 

Figure 2.2: An instance of feature model [33] .................................................................. 14 

Figure 2.3: Examples of dead features (Shaded features represent dead features) 

[expanded on [33]] ............................................................................................................ 15 

Figure 2.4: Examples of false optional features (Shaded features represent false optional 

features) [expanded on [33]] ............................................................................................. 16 

Figure 3.1:  Requirements Correlations Taxonomy (expanded on [20]) .......................... 27 

Figure 3.2:  Instance of EFM (adapted from [33]) ........................................................... 29 

Figure 3.3:  Sample NFR Graph for NFR Goals in CAGS Domain (adapted from [10]) 39 

Figure 4.1: Basic MMLS System Architecture ................................................................ 49 

Figure 4.2: Feature Diagram for MMLS Domain – Uppermost Level ............................. 50 

Figure 4.3: Feature Diagram for System Management..................................................... 53 

Figure 4.4: Feature Diagram for System Setup ................................................................ 54 

Figure 4.5: Feature Diagram for System Maintenance ..................................................... 57 

Figure 4.6: Feature Diagram for Information Delivery .................................................... 58 

Figure 4.7: Feature Diagram for Peripheral Retrieval ...................................................... 59 

Figure 4.8: Feature Diagram for Hardware Components ................................................. 61 

Figure 4.9: Complementary Quality Modeling Process ................................................... 70 

Figure 4.10: Hardware Interaction Based on Data Transmission Rates ........................... 75 

Figure 4.11: Extended Feature Diagram of Data Storage Units ....................................... 76 

Figure 4.12: Extended Feature Diagram of Sensors ......................................................... 77 

Figure 4.13: Extended Feature Diagram of Displays ....................................................... 78 

Figure 4.14: Extended Feature Diagram of Printer .......................................................... 78 

Figure 4.15: Extended Feature Diagram of Hardware Components ................................ 82 

Figure 4.16: NFR Goal Integrated Feature Diagram of MMLS Domain – Uppermost 

Level ................................................................................................................................. 84 

Figure 4.17: NFR Graph for Resource Utilization ........................................................... 85 

Figure 4.18: NFR Graph for Accuracy ............................................................................. 86 

Figure 4.19: NFR Graph for Availability ......................................................................... 87 

Figure 4.20: NFR Graph for Cost of Ownership .............................................................. 88 



  

xi 

 

LIST OF TABLES 

 

 

TABLES 

 

Table 4.1: Implicit Interdependencies of MMLS Model .................................................. 63 

Table 4.2: Implicit Interdependencies Between Resource Utilization NFR Goal and 

System Log Management Feature Group ......................................................................... 86 

Table 4.3: Mapping Between Quantitative and Qualitative QAs ...................................... 89 

Table 4.4: Traceability Between Range of Quantitative QA Values and Levels of 

Qualitative QAs ................................................................................................................ 91 

Table 4.5: Specification of Excludes Relationships .......................................................... 92 

Table 4.6: Effect of Qualitative QAs on Functional Feature Configurations ................... 93 

Table 5.1: Calculated Parameters of VF and ECR Criteria as per Model ....................... 100 

Table 5.2: Calculated Parameters of Commonality as per Model ................................... 101 

Table 5.2 (cont‟d) ............................................................................................................ 102 

Table 5.3: Calculated Parameters of DoO for Model-2 and Model-3 ............................. 104 



  

xii 

 

LIST OF ABBREVIATIONS 

 

AE    Application Engineering 

CASE    Computer Aided Software Engineering 

COTS    Commercial-off-the Shelf 

COVAMOF   ConIPF Variability Modeling Framework 

DE    Domain Engineering 

DoO    Degree of Orthogonality 

DRT    Data Refreshment Time 

ECR    Extra Constraint Representativeness 

EFM    Extended Feature Model 

FIPAP    Feature Interaction Problem Avoidance Percentage 

FODA    Feature Oriented Domain Analysis 

FORM    Feature Oriented Reuse Method 

FR    Functional Requirement 

F-SIG    Feature Softgoal Interdependency Graph 

HW    Hardware 

MMLS    Meteorological Measurement and Logging System 

MTBF    Mean Time Between Failures 

NFR    Non-functional Requirement 

PER    Permissibility Ratio 

PL    Product Line 

PW    Password 

RPER    Permissibility Ratio 

RE    Requirements Engineering 

RSEB    Reuse-Driven Software Engineering Business 

SIG    Softgoal Interdependency Graph 

SIMPLE   Structured Intuitive Model of Product Line Economics 

SPL    Software Product Lines 

SPLE    Software Product Line Engineering 

SW    Software 

TCO    Total Cost of Ownership 

QA    Quality Attribute 

UML    Unified Modeling Language 

VM    Variability Management



 
 

1 
 

CHAPTER 1 

CHAPTERS 

 

1. INTRODUCTION 

 

 

 

Development of large scale software systems has been a great challenge 

compelling software developers and software researchers for years. As the 

software systems demanded become large in scale, it becomes more and more 

inefficient to develop them from scratch or as a single component. The Software 

Product Line (SPL) concept has been proposed to build these software systems 

from several components that can be reused for the development of different 

software systems with different requirements providing the developers the chance 

to manage the configuration, in other words the commonality and variability 

properties of each product developed different from others in the end.  

 

There have been many studies based on the conceptual scope, phases, 

development and applicability of SPL during the last two decades. As the basic 

requisite of conceptual development of SPL, domain analysis poses its 

importance since the construction of variable applications can be realized on a 

well-defined, mature domain. This reveals the vitality of commonality and 

variability analysis of the domain being developed as well. Most of the recent 

studies rely on the expressive and comprehensibility power of features which is a 

kind of a common language with the ease to understand and agree on by all 

stakeholders. This is the main reason where the paradigm of Feature Modeling in 

SPL stems from. In recent studies, the expressive power of the Feature Modeling 

paradigm is particularly used for modeling variability in terms of characteristics 

of possible variant products.  
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Since main considerations for the features of a domain simply originate from the 

requirements of that domain, there is a need for a clear understanding and explicit 

elicitation of the requirements involved. There is a strong connection between the 

requirements and features of a domain. This brings the need for a competent 

analysis of requirements of a domain if the key to realize this task is feature 

modeling. 

 

As for analysis of requirements for the sake of explicit description and elicitation 

of requirements, classification of requirements as Functional and Non-functional 

helps for further identification. As a basic definition, a functional requirement 

(FR) is the one that would allow the user or customer to perform some kind of 

function on the product. A non-functional requirement (NFR) is some kind of a 

constraint or a restriction on the product that must be taken into account during 

the design of the solution. These constraints and restrictions may somehow limit 

users as a result of the interaction involved. 

 

In spite of the complex and vague nature of NFRs, subsequent to their elicitation, 

somehow these requirements have to be projected on the problem domain. 

Furthermore as a result of this projection, they have to be incorporated in design 

abstractions in the form of quality attributes (non-functional features) with 

suitable approaches for the sake of taking them in account during domain analysis 

phase. Similar to the experiences with approaches for functional features, quality 

attributes (QAs) – derived from NFRs - inspire the need of variability 

management due to the probable need for different levels of their involvement in 

design decisions. Furthermore, there are complex relationships among different 

types and levels of QAs in addition to the relationships between functional 

features and QAs. In order to resolve this variability originating from the hard-to-

quantify nature of QAs, trade-offs among each of them has to be managed in a 

systematic way. 
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In order to achieve a satisfactory analysis of a domain, the effect of QAs should 

never be disregarded. On the contrary, their potential for contribution to 

variability has to be incorporated to modeling of features in a controlled and 

systematic fashion. 

 

1.1. Purpose of the Study 

 

In this thesis study, a comprehensive survey of literature is realized regarding two 

main issues; namely the variability concept and modeling of QAs. Furthermore 

modeling of QA issue is broadened with the answers on how QAs are elicited 

from respective requirements (technically named as NFRs), and how these 

elicited QAs are represented in proper models. 

 

Inspiring from two approaches for modeling the QAs in the scope of SPL, namely 

Extended Feature Modeling (EFM) and Feature-Oriented NFR Analysis; 

Complementary Quality Modeling Approach is proposed and implemented  in 

conjunction with functional feature model which are constructed on the same 

illustration example developed for this study.  

 

For a competent and concrete evaluation of the results of the implementation, 

some metrics are gathered from the literature which try to answer the questions 

regarding the contribution of QA modeling to the variability concern of domains 

to be analyzed. 

 

Specifically, Relative Permissibility Ratio (RPER), Variability Factor (VF), 

Commonality, Degree of Orthogonality (DoO), Extra Constraint 

Representativeness (ECR) and Feature Interaction Problem Avoidance Percentage 

(FIPAP) metrics are considered for evaluating the proposed techniques for QA 

modeling. 
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1.2. Outline 

 

This thesis document includes six chapters. Chapter-2 defines the basic concepts 

and sub-processes of SPL dealing with details of the variability and its 

management in the concept of SPL in addition to some evaluation criteria for the 

variability assessment of feature models. 

 

Chapter-3 introduces the NFR management concept emphasizing on QA 

variability management with details and discussions on state-of-art modeling 

approaches proposed in the literature.  

 

Based on comparisons and assessments realized between these approaches, an 

approach inspired from a synthesis of EFM and Feature-Oriented NFR Analysis 

approaches is implemented. Comprehensive discussion on the development 

process and assessment of these approaches on the selected illustration example is 

presented in Chapter-4. 

 

In Chapter-5, first, evaluations based on the criteria introduced in Chapter-2 are 

realized solely on functional feature model developed for this study; afterwards 

similar evaluations are realized for not only the functional feature model extended 

with qualitative QAs but also the functional feature model extended with 

Complementary Quality Modeling approach as the proof of concept. Towards the 

end of Chapter-5, a detailed comparative discussion based on the evaluations for 

each model is provided. 

 

As the conclusion of the work, Chapter-6 assesses the whole material in terms of 

its benefits, drawbacks and contributions to the literature. Besides, possible future 

work is suggested within the context of this chapter. 
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CHAPTER 2 

 

 

2. SOFTWARE PRODUCT LINES AND VARIABILITY 

MANAGEMENT 

 

 

 

 

In this chapter, first, an overview of the literature on SPL development process is 

given. The scope, capabilities, and applications of the process with its sub-phases 

are summarized. Then one of the fundamental principles of SPL concept, 

variability management, is introduced with an overview of Feature Modeling 

approach and the state of art Computer Aided Software Engineering (CASE) tools 

serving for systematic construction of variability models. 

 

2.1. Overview 

 

SPL is defined as a collection of software-based systems sharing common set of 

features which are supposed to be managed efficiently in a well defined domain. 

Various and specific needs of any particular market segment or mission are aimed 

to be satisfied. The developed systems are aimed to be originated from a common 

set of core assets in a prescribed way. [1] 

 

The key issue in SPL is software reuse. Similar to mathematicians using the same 

formulas to solve different problems or physicists using the same laws to explain 

different phenomena, software system designers are to use these same software-

based systems or modules sharing common set of features for the development of 

various software-based systems feeding the needs of any particular market. [3] 
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Software reuse serves the potential to increase productivity, improve quality, and 

reduce risk during the design and development of the software-based systems. But 

the reuse of software sub-systems or modules is not enough, since the concept of 

how software is developed based on reuse is usually ignored. This limits the 

success that software reuse can meet. 

In order to get rid of these limits, reuse should be supported with requirements 

engineering in which the application is to be analyzed for reuse before writing its 

specifications for reuse. The process is also to be supported with how reusable 

specifications are retrieved and validated. For further support, domain analysis 

can serve for the identification of user requirements for reuse. During the design 

and development phase of software assets, the process has to be supported 

systematically by the practices above. 

 

2.2. SPL Processes 

 

SPL development consists of two processes that run in parallel, namely, product 

line engineering based on core asset development (which can also be included in 

the context of domain engineering (DE)) and application engineering (AE) the 

aim of which is individual product development. [1] 

 

The DE process includes activities for analyzing systems in a domain and helps in 

the creation of reference architectures and reusable components. The AE process 

includes the activities for developing applications using the artifacts (i.e. domain 

model, domain architecture) created by DE. [2] 
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Figure-1 below illustrates how DE and AE work together in parallel. 

 

Figure 2.1: SPL Processes (modified from [9]) 

 

2.2.1 DE Process 

 

The process in which the development of the product line (PL) architecture is 

realized can be regarded as DE phase. DE aims to collect, organize and store 

recent information and experience acquired during building systems or parts of 

systems in a specific domain in the form of reusable assets. Furthermore, DE 

aims to provide an appropriate way to reuse the assets while building new 

systems. [2] 

 

DE consists of three main steps namely as domain analysis, (domain) 

architectural design and domain implementation. During domain analysis sub-

process, the application scope of the whole PL is analyzed with the contribution 

of requirement analysis for the PL. [9] 

 

For the development of core assets in a SPL, it requires basically the domain 

analysis which identifies commonality and manages variability within. In the 

study of domain analysis paradigm, several modeling approaches and analysis 

techniques are proposed. 

 

Feature oriented domain analysis (FODA) [5] has been established to identify 

commonalities and variabilities in a domain in terms of product features where 

the feature can be defined as an abstract communication medium between the 

customer and the developer having a common meaning for both parties which 
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defines product characteristics. FODA uses this medium in order to identify 

commonality and variability effectively among different products in a domain. 

Furthermore it provides a basis for developing, parameterizing and configuring 

various reusable assets. [1]  

 

FODA is extended into Feature Oriented Reuse Method (FORM) to support 

architectural design and object-oriented component development for the 

incorporation into marketing perspective and exploration of analysis and design 

issues using this perspective. 

Several other attempts have also been made for the extension of FODA. Reuse-

Driven Software Engineering Business (RSEB) [6], a method based on Unified 

Modeling Language (UML) notations with the feature model of FODA, was 

proposed to be used for reuse in object-oriented software engineering. [1] UML 

[7] has many advantages in providing greater insights into understanding and 

managing commonality and variability. Using UML notation, the functional 

requirements view is represented through a use case model, the static model view 

through a class model, and the dynamic model view through a collaboration 

model and a state chart view. 

 

In following the domain analysis, SPL architecture is designed which provides the 

framework for reusable components. Reusable components are designed in the 

last step of DE, namely during domain implementation. [9] 

 

2.2.2 AE Process 

 

The process in which the development of individual projects over the PL is 

realized can be regarded as the AE phase. AE aims to develop software products 

using DE artifacts which guide developers throughout the selection of proper 

architecture model and existing components. [2] 
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AE consists of three main phases, namely, product requirement analysis, product 

design and product implementation during which component integration is 

realized. 

 

During product requirement analysis, the requirements on each respective product 

are specified individually in relation with the domain requirement analysis 

performed in DE. Feature analysis for each respective product is realized. As the 

feature analysis is performed, product features are selected with the help of 

customer requirements and domain model artifacts. These features are used for 

the definition of product configuration that is composed of software components. 

The architecture of each respective product is derived with the help of SPL 

architecture. Finally in product implementation phase, product-specific 

components are implemented. These components are tailored to constitute a 

software product on the selected domain architecture model. Components are 

tailored especially for the enhancement of their adaptability through the interfaces 

in order to realize their integration with others to form the desired final software 

product. 

 

During definition of partial involvement of any component in overall 

functionality of the system, there exists a trade-off between the size and 

functionality of it. Granularity of the components poses its importance in the 

sense of flexibility and maintainability such that large components reuse more 

software but are harder to compose and maintain whereas small components 

might embed too little functionality. [4] According to Chung et al. [8], as software 

components become larger, their reuse value greatly increases whereas the ease of 

adapting and integrating them decreases. Therefore a comprehensive effort during 

the design of the components is needed for the sake of fine-tuning the level of this 

granularity. Experience gained during the application phase and FRs engineered 

during domain engineering phase are the main inputs for defining this measure. 
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Components need to be designed in a substitutable way such that a component 

could be replaced by another regardless of either at design time or run-time. This 

provides flexibility during the development of the whole system when AE is of 

concern. 

 

In order to enhance the reusability effectiveness of a component, a significant 

effort has to be provided for the thorough documentation, testing and verification 

facilities of each. 

 

2.3.Variability Management and Feature Modeling 

 

2.3.1 Variability Management 

 

Variability Management (VM) is one of the fundamental concepts in SPLE as the 

main purpose of SPL is to support variants (different choices) of products by not 

only taking into account the commonalities but also the variabilities extracted 

from the domain. For the sake of development and production of a wide range of 

variant systems from a defined domain, during DE phase, variability has to be 

explicitly elicited from the requirements thereafter by defining, representing, 

exploiting, implementing, evolving, in other words managing it throughout all 

sub-phases of SPLE in all sets of software artifacts constituted from requirements 

such as architectures and components. [25] As of the most critical sub-phases of 

VM, variability is said to be defined during DE and to be exploited during AE by 

configuring appropriate variants.[24]  

 

SPLE offers the differentiation flexibility and diversifiability of end products. As 

the dependencies, restrictions, relations between different variabilities are 

managed systematically, this ability of flexibility in terms of diversifiability is 

guaranteed to be enhanced as the dynamics of diversifiability are kept under 

control. In order to achieve this enhancement, systematic identification and 
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management of variability has to be supported with appropriate approaches, 

techniques and tools. [26] 

 

Variability subject involved in any domain has to be represented by proper 

abstractions namely by variation points. These are the points where differences 

exist in the final systems. They are the source of different feature possibilities 

namely the variants existent in the domain to be satisfied. [24][25] 

 

In order to represent variability in a domain, modern approaches use features as 

basic concept for variability representation. 

 

2.3.2 Feature Modeling 

 

Feature Modeling paradigm was first introduced to the literature in the context of 

the Feature-Oriented Domain Analysis (FODA) Method by Kang et al. [5] in 

1990. The paradigm takes advantage of the features as they are externally visible 

characteristics that can be utilized to differentiate one product from the others. 

Additionally, Feature Modeling helps in scoping of product-line by selection of 

features which are desired to be supported by the PL and which are not. [28] In a 

poorly scoped product-line domain, relevant requirements as derivation points for 

features may not be implemented or some implemented requirements may never 

be used, leading to redundant complexity in addition to development and 

maintenance costs. [32] 

 

Stemming from the commonality and variability insight of PLs, features as the 

external visible characteristics of products are easier to identify than the 

conceptual abstractions (i.e. functions, objects, components, aspects etc.) derived 

from internal viewpoints. This further supports the participation of all 

stakeholders during not only production but also development of software 

modules.  

 



  

12 

 

Lee et al. [1] define Feature Modeling as “the activity of identifying externally 

visible characteristics of products in a domain and organizing them into a model 

called a feature model”. During this activity, features are arranged hierarchically, 

based on relations specified between parent features (variation points as features) 

and respective child features (variants as sub-features). There exists several 

notations for the expressions of relations between the features. The notation 

proposed by Czarnecki et al. [21] seems to be the most comprehensive and the 

one that is widely used. These parent-to-child relationships can be specified as 

follows: 

 Mandatory – parent feature requires all its mandatory child features 

 Optional – parent feature may include any number of optional child 

features 

 Alternative – parent feature requires exactly one feature from a group of 

alternative child features 

 Or – parent feature requires at least one feature from a group of or child 

features 

 

It should be noted that a child feature can appear in a product if only its parent 

feature is included. 

 

These relationships are regarded as structural interdependencies by Jarzabek et al. 

[20] as they are explicitly defined interdependencies. On the contrary, 

interdependencies such as relationships of requires or excludes and correlations 

between features are regarded as implicit interdependencies (also regarded as 

cross-tree constraints [33]) that are implicit modeling abstractions. A selection of 

a specific feature may require the selection of any other specific variant, similarly, 

a selection of a specific variant may avoid the selection of any other specific 

feature as well, so called “Requires Relationship” and “Excludes Relationship” 

respectively. Main difference between structural and implicit  interdependencies 

can be specified as follows; structural interdependencies are explicit modeling 

abstractions for guidance especially for feature selection (especially during AE) 
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and they somehow may be visible to customers, whereas implicit 

interdependencies have an obscure nature and usually they are not visible to some 

stakeholders (i.e. customers). Pohl et al. [24] defines this difference as external 

variability and internal variability respectively. Some stakeholders (application 

engineers and especially customers) do not need to take the implicit one into 

consideration whereas the domain expert designing feature model has to realize 

these connections between features. In this respect, implicit interdependencies 

should be utilized in the models in a controlled manner such that augmenting the 

usage rate of these dependencies leads to visual complexity as the perception of 

all relationships thoroughly gets harder. 

 

Not only during the construction of domain architecture but also during building 

the applications, the utilization of feature diagrams is inevitable. Basically feature 

diagrams are graphical representations of feature models. 

 

In feature diagrams, the relationships between features are structured in a 

hierarchical tree format in order to form a suitable feature model and facilitate the 

feature selection process. These trees are constituted of nodes and directed edges 

in which nodes are mapped to features and directed edges are used to reveal 

interrelationships between these features.  

 

During the usage of features for the modeling of variability, the perceptual 

advantage of graphical notation is utilized in most of the feature modeling 

approaches as well. Beginning with the emerge of feature diagram concept with 

FODA, a diversity of graphical feature modeling notations are proposed so far, 

examples of which are compiled with a comprehensive and comparative 

discussion by Metzger and Heymans. [35] Originating from FODA, commonly 

and widely used basic notations for Feature Diagrams can be observed in Figure 

2.2 below in which structural and implicit relations are defined among features 

and their respective sub-features.   
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Figure 2.2: An instance of feature model [33] 

 

As an apparent instance for co-utilization of both structural and implicit 

interdependencies, with respect to the Figure 2.2 above which demonstrates the 

supported features of a software to be loaded in a mobile phone; all the phones 

possess support for calls in addition to display support for only one of either 

basic, colour or high resolution screens. Moreover, the software may optionally 

possess support for a GPS and one or both of camera and MP3 multimedia 

facilities. In terms of implicit interdependencies; inclusion of camera support 

feature in a product automatically implicates high resolution screen support into 

the product configuration whereas including GPS feature support automatically 

precludes basic resolution screen support out of the product configuration and 

vice versa. 

 

Consequently, using this graphical demonstrative power of features, the notion of 

Feature Diagrams is widely accepted in state of art Feature Modeling approaches. 

 

As clearly specified in [33], there are some issues to be taken into account during 

the construction of implicit interdependencies (a.k.a. cross-tree constraints). 
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A feature model is defined to be void if it represents no products. In relation to 

this specification, main reason that drives a feature model to void is the wrong 

usage of cross-tree constraints such that a feature model without any cross-tree 

constraints can never be void. 

 

Another possible outcome of misusage of cross-tree constraints is the dead 

features as such features cannot be included in any of products due to wrongly 

defined interrelationships including structural ones. These relationships are 

needed to be avoided as they give wrong idea regarding the expression of the 

domain. Examples of such situations are demonstrated in Figure 2.3 below. [33]  

 

 

Figure 2.3: Examples of dead features (Shaded features represent dead 

features) [expanded on [33]] 

 

With relevance to dead features issue, one other outcome of wrong cross-

constraint usage is the false optional features. False optional features are the ones 

that are included in all of the products although they are not modeled as 

mandatory features in the feature model. [33] 
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Figure 2.4: Examples of false optional features (Shaded features represent 

false optional features) [expanded on [33]] 

 

Constraints (namely the implicit interdependencies) between features are 

essentials for the establishment of a substantial feature model due to the need of  

following facilitations: the modeler (possibly the domain expert constructing 

domain architecture) may desire to state that a feature F1 requires a feature F2 to 

perform its functionality properly leading to a situation that if application 

engineer selects F1 for an application, F2 has to be selected as well. In a similar 

manner, the domain engineer may desire to state that if a feature F1 can not 

perform its functionality with the presence of feature F2 leading to a restriction for 

the application engineer to select F2 if feature F1 is selected previously. In the 

light of variability modeling, all these possibilities of relationships are classified 

by Pohl et al. [24] to be among variant-to-variant, variation point-to-variation 

point and variant-to-variation point as conventions included in the concept of 

Orthogonal Variability Model where variation points can be regarded as features 

and variants as sub-features. 
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As a consequence of conjunction in between these structural and implicit 

interdependencies, in terms of scalability of the variability knowledge involved in 

the model, there is an important need of control over trade-off among the 

structural and implicit interdependencies. This is due to the fact that the structural 

one is the driving force for variability whereas the implicit one put essential limits 

around variability as the rules it defines are used to verify consistency and 

completeness of not only the features but also the entire model. 

 

2.3.3 Tool Support for Management and Analysis of Feature Models 

 

Being the most widely used variability modeling and management mechanisms, 

the support of CASE tools is required by Feature Modeling approaches for the 

systematic management of the modeling knowledge. They need the visual 

expression ability during the development and usage of this knowledge and select 

them as a variability mechanism in the end. 

 

A number of feature modeling tools have been proposed and reported in the 

literature: XFeature [27], FeaturePlugin: Feature Modeling Plug-in (also known 

as fmp) [28] , FeatureIDE [29], Captain Feature [30] and the commercial tool 

pure::variants from pure-systems GmbH [31].  

 

Different from the feature modeling tools referenced above, a framework named 

FAMA (Feature Model Analyzer) is proposed [40] in order to realize automated 

analysis of feature models. The framework is available to be implemented on 

Eclipse Platform [41]. As long as a feature model expressed in XML is provided 

to the tool, analysis of the feature model can be performed with the help of the 

most widely used solvers (i.e. SAT, CSP and BDD) in the literature. These 

solvers are utilized to analyze feature models which are expressed in the form of 

either of Boolean Satisfiability Problem (SAT), Constraint Satisfaction Problem 

(CSP) or Binary Decision Diagram (BDD). The reasoners included in the 

framework implementation are capable to answer many of questions related with 
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the characteristics inherent in the feature model. Two of the primary facilities 

upheld by the tool are providing the total number of possible products of a feature 

model and the total number of products that contain a specific feature. 

 

In the context of the goals and scope of the present study, it can be observed in 

Chapter 5 that FAMA is utilized for evaluating the benefits of the proposed QA 

modeling approach. FAMA provides essential parameters needed by several types 

of evaluation criteria specific to different models of comparison.  

 

2.3.4 Evaluation Criteria for Feature Models 

 

Various methods and approaches are being implemented on the basis of Feature 

Modeling fundamentals. In order to make an assessment regarding any approach 

and its implementation, especially in terms of its variability related contributions, 

some evaluation criteria have to be defined. 

 

First of all, in order to have a general idea about the complexity and flexibility of 

a feature model, the number of potential products has to be measured. It is usually 

accepted that the more the number of potential products derived from a model, the 

more its complexity and flexibility. A huge number of potential products may 

constitute a more flexible SPL while leading to more complexity. This measure 

can be assessed with respect to a Feature Model with or without the relations and 

dependencies defined between the features. As the relations (i.e. requires or 

conflicts) are taken into account, the number of potential products is expected to 

be decreased, which is more realistic in terms of evaluating the complexity and 

flexibility of the feature model. Below, some specific metrics considered relevant 

in this context will be reviewed. 
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2.3.4.1 Relative Permissibility Ratio (RPER) 

 

As an indicator of how well a variability modeling approach fits the need of 

attaining more permissible systems, Kasikci and Bilgen [38] proposed 

permissibility ratio (PER). PER is defined, as in expression (1), as the ratio of the 

number of systems that are acceptable as valid systems by the experts and users of 

the domain (Na), to the total number of possible systems that can be generated 

using the particular modeling approach (Nt). 

 

)1(
t

a

N

N
PER  

 

Since it requires too much effort to determine the true number of acceptable valid 

systems by the users and experts (Na) and due to the difficulty in defining 

common means of filtering rules to specify Na, PER is utilized by the criterion of 

relative PER (RPER). As defined in expression (2) below, RPER is obtained by 

the ratio of PER of two different variability modeling approaches. RPER is 

meaningful under the following restrictions:  

 the same set of criteria is used by the experts and users for the validation 

of acceptable systems which leads to the same values of Na for different 

variability modeling approaches, 

 the models of comparison need to express the variability in terms of the 

same modeling artifact, namely the features, 

 the variability items (i.e. number of features – leaf nodes – in feature 

model) utilized for the specification of acceptable systems are the same   

 

RPER is obtained as the ratio of the number of possible systems that can be 

generated using the particular modeling approach where constraints and 

relationships between the artifacts are taken into account.   
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As RPERA,B gets closer to zero, the variability modeling capability of model B is 

said to represent actual realizable systems more accurately. 

 

2.3.4.2 Variability Factor (VF) 

 

In relevance to the discussion above, the variability of a Feature Model is strictly 

related with the relations and dependencies defined amongst the features in the 

model. During the description of a Feature Model in terms of relationships 

between the features, the variability of the model can be said to be described 

concurrently and indirectly. In other words, the variability depends on relations 

and its types as these relations restrict the number of potential products. In order 

to have a measure regarding the variability of a model, as defined by Benavides et 

al. [13], the Variability Factor (VF)  quantifies the ratio of the number of potential 

products with the feature relations defined to the number of potential products 

without the feature relations defined as illustrated in (3). This factor has the range 

of values from 0 to 1 and the more it is close to 1, the more the Feature Model is 

said to have variability. The value of this factor gives the Feature Model 

developer the idea regarding the degree of variability that the model possesses. 

Besides, this factor exhibits the flexibility of the feature model. 

 

Alternatively, for the calculation of VF, the denominator can be assumed to 

converge to 2
n
, where n denotes the number of leaf node features such that the 

most flexible feature model would be the one that has all its features as optional. 

[33] 
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2.3.4.3 Commonality 

 

It is harder to have an assessment regarding the overall commonality measure of a 

Feature Model. However, inspiring from the metric utilized by Fernandez-

Amoros et al. [32], it is possible to make an assessment regarding the 

commonality of a feature which can be measured by having the ratio of the 

number of possible products having a specific feature to the number of the total 

number of all potential products, wherein the relations between the features are all 

defined. 

 

Similar to the approach above, Benavides et al. [33] extend the calculation by 

evaluating with regards to not only a single feature but also a configuration of 

features (additionally defining the features not to be selected). In reference to (4) 

below, the evaluation is performed by calculating the number of products that 

employs a specific feature or a specified feature configuration divided by the 

number of all potential products derived from the feature model. 

 

)4(
][

productsallofNumber

ionconfiguratspecifiedwithproductsofNumber
yCommonalit

 

 

The metric spans the values from 0 to 1. The value of this metric can be utilized 

for the prioritization of the order of the features that are going to be developed 

since most common features forms the backbone of the referenced PL domain and 

needs to be developed prior to others. [13] 

 

2.3.4.4 Homogeneity 

 

Conceptually relevant to the commonality measure discussed above, Clements et 

al. [34] proposed the homogeneity metric implemented on their general-purpose 

business model called Structured Intuitive Model of Product Line Economics 
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(SIMPLE). It supports the estimation of the costs and benefits in a PL 

development organization. The homogeneity metric is proposed to reveal an 

indication of the degree to which a PL is homogenous (i.e. how similar are the 

SPL products), considering the fact that not every product exhibits the same 

commonality.  

 

For instance a more homogenous feature model possesses less unique features in 

a product whereas a less homogenous one possesses more unique features 

keeping in mind that unique features can be included in only one product. [33]  

 

The metric has the range of values from 0 to 1, where 0 implies that all the 

products are unique. As the homogeneity converges to 1, the products are said to 

be more similar with each other. Inspiring from the equations defined in [33] and 

[34], homogeneity can be calculated by (5) below where FU stands for the number 

of unique features in one product, and NP stands for the total number of different 

products represented by the feature model: 

 

 51
NP

yHomogeneit FU  

 

The metric helps for the assessment of PL scoping such that as the evaluation on 

homogeneity of the products derived from a PL is performed, the degree of reuse 

among the products in the PL can be derived. This would provide an anticipation 

and comparison for the levels of component reuse in different PLs. 

 

2.3.4.5 Degree of Orthogonality (DoO) 

 

Czarnecki and Kim [36] introduce the DoO, defined as the ratio between the 

number of products evaluated by including the effects of all dynamics of the 

whole feature model (i.e. all the constraints among whole features of the feature 

model are taken into account) and the number of products in a sub-tree including 
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the effects of local dynamics (i.e. only local constraints in the sub-tree are 

considered during the calculation of products derived from the sub-tree) as 

referenced in (6).  

 

 6
]int[ sconstralocalwithtreeSubofproductsofNumber

ModelFeatureofproductsofnumberTotal
DoO


  

 

This metric has the range of values from 0 to infinity. A high DoO implies that 

decisions about feature selections can be realized locally without taking their 

influence on choices in other parts of the feature hierarchy into account. 

 

2.3.4.6 Extra Constraint Representativeness (ECR) 

 

Mendonca et al. [37] define ECR as the ratio of the number of variables 

possessing implicit interdependencies (repeated variables counted once) to the 

total number of variables in the feature tree as referenced in (7) below. 

 

 7
]int[

featuresofnumberTotal

sconstratreecrossininvolvedfeaturesofNumber
ECR


  

 

The metric encompasses the values between 0 and 1. This measure gives an idea 

regarding the usage intensity of cross-tree constraints with regards to structural 

ones. Moreover, the measure can be regarded as the utilization ratio of implicit 

interdependencies to structural ones. In the light of this idea, as discussed in 

Section 2.3.2 Feature Modeling, while opining on scalability of the variability 

knowledge involved in the model, this measure would give an idea for the sake of 

acquiring a comparison and trade-off exercise between these two essentials of 

variability modeling.   
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2.3.4.7 Feature Interaction Problem Avoidance Percentage (FIPAP) 

 

In a fashion similar to the evaluation of ECR, Kasikci and Bilgen [38] proposed a 

metric to measure how better a variability modeling approach avoids problems 

stemming from feature interactions. As the number of features in a model 

increase, if the relationships of excludes are not defined sufficiently and 

appropriately among the features, coexistence of some features may hinder the 

proper operation of the product. Therefore, it can be deduced that the more 

exclude relationships exist in a feature model, better the modeling approach is in 

avoiding Feature Interaction Problems. As defined in (8), relative FIPAP of 

model A with respect model B is measured based on the exclusion relationship 

numbers for model A (EnA) and model B (EnB). 
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CHAPTER 3 

 

 

 

3. NON-FUNCTIONAL VARIABILITY MANAGEMENT AND 

QUALITY ATTRIBUTE VARIABILITY MODELING 

 

 

 

 

3.1. Non-functional Requirements 

 

The specifications and approaches mentioned so far address formation of 

components regarding only functional properties or requirements of software 

systems. As the common drawback of recent approaches, there exist a lack of 

traceability from NFRs to design and implementation. Not only to ensure 

confidence in the system but also to achieve successful configuration of 

components, the effect of non-functional properties - also specified as extra-

functional properties or quality attributes in the literature as well - has to be taken 

into account. 

 

There seems to be no consensus about the nature of NFRs and the way to 

document them in requirements specifications. Jacobson, Booch and Rumbaugh 

defined NFR as “A requirement that specifies system properties, such as 

environmental and implementation constraints, performance, platform 

dependencies, maintainability, extensibility, and reliability. A requirement that 

specifies physical constraints on a functional requirement.” [12] Glinz concludes 

his study regarding the definition of NFR as “an attribute of or a constraint on a 

system.” where he defines specific quality requirements being attributes of the 

system with instances of Reliability, Usability, Security, Availability, Portability, 
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Maintainability etc.[11]. Depending on the context and the application of the 

system, the set of NFR instances can be extended. 

 

3.2. NFR Analysis 

 

As it is the phase during which requirement analysis for the systems is realized, 

the domain analysis in SPL development has to consider both FRs and NFRs. 

 

Reasons why NFR analysis during SPL development is necessary can be 

specified as follows: First of all, different software applications sharing common 

functional properties may require different levels of NFRs such as reliability, 

security, privacy, performance, etc. Besides, if NFR analysis is not realized 

properly, redundant efforts on design and implementation of some NFR aspects 

may have negative effect on other NFRs of the product such as higher cost of 

development and maintenance. 

 

It is also more difficult than FRs to analyze and define NFRs due to very vague 

nature of them together with their variations involved. Besides, most NFRs are 

closely tied with FRs leading to considerable difficulty to distinguish them from 

each other. Furthermore, non-functional variations, details of which are to be 

considered during feature analysis, arise from NFR tradeoffs making them more 

confused.  

 

3.3. Non-functional Variability Management 

 

Variability is a significant concept in SPLE that has to be managed 

systematically. There are many different methods and notations focused on 

functional variability. Despite the complexity of non-functional variability 

management in SPL due to the ambigious nature of QAs (non-functional 
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features), success in feature-oriented approaches for functional variability 

modeling has guided recent studies, to be reviewed below, through similar 

approaches in non-functional variability modeling.  

In extension to Section 2.3.2 Feature Modeling, during analysis of features as the 

indispensable phase of DE, the concept of variability modeling needs to be 

broadened with the QA concerns. As a natural consequence of that, in course of 

defining relations (i.e. structural and implicit interdependencies) between features 

in a feature model, non-functional features are to be separated from functional 

ones, treated in a different way, due to their distinctive nature in terms of their 

interplay among each other and with functional features. From RE point of view, 

with expansion on what Jarzabek et al. [20] proposes as classification of 

interdependencies involved among all functional features and QAs, Correlation 

Taxonomy of Requirements is illustrated in Figure 3.1 below. 

 

Figure 3.1:  Requirements Correlations Taxonomy (expanded on [20]) 

 

It should be noted that, during the construction of interrelationships among whole 

set of features; QAs involved in structural interdependency are proposed to 

possess OR and AND relations and structural interdependency between a 

functional and non-functional feature takes explicit contribution form. Besides, 

implicit interrelation between a functional feature and non-functional feature is to 

have the correlation relationship which is in the form of either positive or 

negative (i.e. the choice of a sorting algorithm (functional feature) may influence 

time performance (QA) in a positive or negative way). As an extension on 

Jarzabek et al.‟s taxonomy, implicit interdependencies among NFRs has to be 

taken into account during domain analysis since QAs involved in a domain model 



  

28 

 

encapsulates inexplicit interplays among each other that needs to be observed and 

controlled. These interplays are possibly in the form of positive and negative 

impact among each other that we can name as “Implicit Contribution”. 

The need for a proper representation technique for the illustration of variability 

modeling of non-functional features makes the usage of feature model diagrams 

indispensible in such a domain where it is considerably difficult to capture all the 

information. 

 

Below an overview of non-functional variability modeling approaches with the 

particular usage of feature model technique is presented with comparisons. 

 

3.3.1 Extended Feature Model (EFM) 

 

Benavides et al. [13] proposed an extension on classical feature models with 

extra-functional features and improvement on previously proposed vague 

notations with the help of allowing relations amongst attributes. Attribute is 

specified as any characteristic of a feature that can be measured in a defined 

attribute domain. In relevance to these specifications, extra-functional feature 

(non-functional feature) is specified as the relation between one or more attributes 

of a feature. Attributes can be utilized to specify extra-functional information 

such as cost, speed, RAM memory or development time required to fortify the 

features as referenced in Figure-3.2 below. These attributes can hold values of a 

specified range belonged to a discrete or continuous domain (i.e. integer or real 

number domains).  EFMs can also offer complex constraints among attributes and 

features such as “If attribute A1 of F1 is lower than a value X, then feature F2 can 

not be part of the product.” [33] which can be modeled in the form of implicit 

interdependencies amongst features.  
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Figure 3.2:  Instance of EFM (adapted from [33]) 

 

Additionally, a notation inspired from Streitferdt et al. [42] is adopted for the sake 

of illustrating how attributes decorate several features.  It should be noted that the 

parent features are decorated with functional expressions that are dependent on 

the attribute values of their child features. 

 

As several attributes are added to features, feature models can be utilized with 

optimization operations in order to select a set of features that either maximizes or 

minimizes any value of a given feature attribute. [33] 

 

An algorithm based on Constraint Programming with some definition of rules is 

proposed in the study which details these relations between the attributes of the 

classical functional feature model. Furthermore filtering rules are defined for the 

limitation of potential products of the model having the desired configuration of 

the user. Besides, validation and optimization rules are defined in the algorithm in 

order to find out the best products with control over previously specified 

constraints regarding the derived NFRs. [13] 

 

3.3.2 Definition Hierarchy 

 

Kuusela and Savolainen [14] proposed a definition hierarchy method for the 

organization of requirements into definition hierarchy where requirements for 
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different products are demonstrated in the same hierarchy. Different from the 

contemporary design methods, the method analyzes the requirements in two 

categories as design objectives and design decisions instead of emphasizing only 

on FRs based on customer‟s needs.  

 

The hierarchy is structured on a logical AND tree in which the topmost nodes are 

design objectives (i.e. architectural drivers, other QAs the system has to achieve) 

with the remaining nodes left as design decisions. Each node in the definition 

hierarchy has a priority that reflects the importance of it with a clear intention of 

its parent. The hierarchy is organized in a way that an edge between a design 

objective and a design decision indicates that the requirement is (partially) 

satisfied by design decisions. 

 

Definition Hierarchy method aids the designer in management of requirements 

and their interrelations by resolving the requirement conflicts and inconsistencies 

with the definition of design decisions and objectives. It helps the designer on the 

way of finding missing requirements by reverse-tracing the hierarchy tree. 

Besides if a requirement is considered to be ambigious, it is easier to define it 

more accurately by adding new nodes of design objectives on the suspected sub-

tree. 

 

3.3.3 COVAMOF 

 

Most of the contemporary software variability modeling methods aims to 

represent variation points as the primary entity with a clear hierarchical 

organization. The framework for modeling variability in software product 

families named as COVAMOF (ConIPF Variability Modeling Framework) [15] 

aims to represent dependencies by modeling their relations as well. The 

framework uses the CVV (COVAMOF Variability View) for modeling of the 

artifacts on all abstraction layers of the product family with Variation Point View 

and Dependency View capabilities. The CVV captures the variability with the 
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help of variation points and dependencies. Each variation point in the view is 

associated with an artifact (i.e. feature tree, feature, architecture or a C header 

file) in SPL. Five types of variation points (i.e. optional, alternative, optional 

variant, variant and value) are specified in the view. These variation points 

include a description and information regarding its state (i.e. open or closed), the 

rationale behind binding, how the mechanism is to be realized. 

 

As for the dependencies, three types of associations of variation points are 

specified in CVV. Predictable associations are used for the representation of 

variation points whose impact on the validity of the dependency can be 

determined prior to selection of the variants.  

 

Directional associations are used for the representation of variation points, where 

dependency can only specify if the variant selection affects the validity of the 

dependency either positively or negatively but not definitely. Unknown 

associations represent variation points where the impact of variant selection on 

validity of the dependency is unknown. 

 

Types of dependencies are distinguished to three as logical, numerical and 

nominal. Logical dependencies define a function valid providing the validity of 

dependency for the selection of variants of the associated variation points. 

Numerical dependencies specify a numerical value, which depends on the 

selection of the variants among the associated variation points. Nominal 

dependencies define a set of categories, where the binding of all variation points 

in association with dependencies map to one of each. 

 

 

 

 

 



  

32 

 

3.3.4 Bayesian Belief Network 

 

As a feature diagram alone lacks the facility to help the designers select the best 

configuration of variants on the way to achieve the required QAs, Zhang et al. 

[16] proposed a Bayesian Belief Network (BBN) based approach to quality 

prediction and assessment for an SPL.  Similar to Definition Hierarchy 

framework, BBN simply aims to represent and model the impact of functional 

variants (especially design decisions) explicitly on system QAs. These impacts 

originate from the interrelationships among variants (design decisions) and QAs. 

The examples of the interrelationships can be specified as the impact of one 

variant on many QAs, the impact of one QA on many variants, or impact of 

variants on each other in a competitive or synergetic fashion. 

 

Impacts of the variants are represented as domain experts‟ knowledge and 

experiences derived from the development of similar projects on the same SPL. In 

addition to the analysis of relationship between the variants and the QAs, the 

BBN approach also deals with the uncertainity involved in the design decisions. 

The uncertainity is due to the risk that any configuration of the variants may lead 

to either high or low quality in terms of attributes and design decisions.  

 

BBN model is structured around variables as QAs and design decisions which are 

represented as nodes in the model. These nodes are annotated with definitions. 

Directed edges in the tree model are used to relate a variant with one another (i.e. 

a design decision to a QA). Conditional probability is used for the quantification 

of the conceptual relationships between the variants or design decisions and QAs, 

value of which designates the domain expert‟s belief in how much a specific 

design decision has the impact on any given QA. The approach basically tries to 

enhance the comprehension of the impact of design decisions on QAs on the way 

to reveal more rational decisions. 
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3.3.5 Goal-oriented Approaches 

 

Majority of software variability modeling methods are too design oriented, 

dealing too much with features and aiming relatively more on revealing 

architecture definition. The requirements are usually structured in definition 

hierarchies or feature models. This poses complexity during application as it 

necessitates a fairly large domain experience. During the requirement analysis 

process of SPL (i.e. analysis and selection process of variants), traditional SPL 

approaches pose problems when it is the case to deal with NFRs.  

 

The goal-based model is introduced to the literature in order to solve these 

problems faced during the elicitation of NFRs. The model simply aims to model 

non-functional concerns explicitly and represent the intentionality of the system 

by relating the goals with traditional features. The goal is defined as the purpose 

of the system under development, having two types as hard goals and softgoals. 

Hardgoals are used for the satisfaction of functional features in a model whereas 

softgoals are used for the satisfaction of QAs required. The hardgoals and 

softgoals are dependent on each other in a way that the scope of variability in a 

model is defined by analysis of hardgoals but softgoals helps the designers to 

manage this variability in a most efficient way with exact definitions of quality 

criteria. [17] 

 

3.3.5.1 NFR Framework 

 

Mylopoulos et al. [18] proposed a goal-based visual variability analysis technique 

for explicitly modeling variants of different set of requirements for each product 

of a product family, in opposition to the case for only one product. Two sub-

models are proposed as the functional goal model (dealing with goals and 

functional tasks) and the softgoal model (dealing with conditions and criteria that 

the system is to meet) derived from NFRs and QAs. Both of the sub-models are 

structured as AND/OR trees in which QAs are represented as soft-goals having 
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their operationalizations included in the functional goal sub-model as tasks. 

Variability is represented through different OR paths of the functional goal 

model. Sub-models are related with each other through the correlation links 

defined by the NFR framework. [19]. The method offers to support the selection 

of a particular variant (represented in the functional goal sub-model) based on QA 

criteria, after the relations between two sub-models are established. 

 

3.3.5.2 Feature Softgoal Interdependency Graph (F-SIG) 

 

Many goal-oriented analysis techniques are based on QA analysis in a single 

system development. The goal-oriented analysis simply helps the designers to 

derive and represent QAs explicitly, specify the contributions from functional 

features to QAs and correlations among QAs, measure design decision impacts on 

QAs and finally selecting best design alternative satisfying certain QAs. On the 

other hand, being the extension of FODA, feature-oriented reuse method (FORM) 

is a well known domain analysis method to model common and variant 

requirements for PLs. 

 

In Feature Softgoal Interdependency Graph (F-SIG) method, similar to goal-based 

visual variability analysis method [20], goal-based approach is aimed to be 

extended to a PL context by taking the advantage of QA analysis capability of 

goal-based approach. This approach is blended with PL domain analysis 

capability of FODA. The principal objective of the approach is to provide design 

model representing the interdependencies between variant features and QAs. In 

order to realize this objective, Softgoal Interdependency Graph (SIG) proposed by 

Chung et al. [19] is used to analyze NFRs by specifying softgoals and linking the 

interdependencies among variant features and softgoals. Similar to goal-based 

model, these linkages are established by means of correlation links defined in 

NFR framework. The approach is formed out to be F-SIG in the end.  
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Similar to some other QA variability modeling approaches such as COVAMOF 

and BBN, the F-SIG framework aims to aid the developers in assessing the 

impact of variant features on QAs required by the system. These impacts can be 

regarded as the restrictions to be defined on the behavioural requirements arising 

from the selected variant features. Against the difficulty in capturing the 

definitions and restrictions on QAs due to their vague nature, using softgoal 

concept in goal-oriented analysis assists the designers during feature modeling. 

 

In the approach, interdependency is classified as structural and implicit. Structural 

interdependency is any explicit relation defined for features in the form of 

mandatory, optional, alternative and OR; for QAs in the form of only OR or AND 

all of which are imposed by modeling technique proposed by Czarnecki and 

Eisenecker [21]. Implicit interdependency is any correlation between features and 

QAs in the form of negative or positive as imposed by NFR framework proposed 

by Chung et al.[19]. 

 

F-SIG approach uses QA softgoal and claim softgoal types by discarding 

operationalizing goal, all of which are basic artifacts of SIG approach proposed 

by Chung et al.[19]. It is claimed that some features are regarded as they already 

include the role of operationalizing softgoals which are supposed to have 

contributions to QA softgoals. 

 

The framework developed around F-SIG can help the designers in analyzing the 

interrelationships between design decisions and QAs. It does not include enough 

quantitative data to clearly address the best design decisions for any stated QAs in 

addition to a lack of tool support for the decision process. 
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3.3.5.3 Feature-Oriented NFR Analysis for SPL 

 

Peng et al. [10] extended the goal-based models simply by materializing the 

NFRs in a way that NFR goals are linked with real-world context to aid realizing 

non-functional variability analysis over a whole domain.  

 

The method elaborated in the context of the approach involves four major phases 

specified as following: 

1. Feature Context Construction: As the starting point of all phases, a feature 

context model is constructed on an initially built functional feature model. 

Feature context construction is realized by modeling the real-world context 

from which non-functional concerns are derived in the form of execution 

scenarios, intents of human, events, social concepts etc. 

2. Non-functional Variability Identification: Before identification of non-

functional variability, goal presence analysis is realized. Some NFRs that are 

always desired by stakeholders are already included in almost every model, 

but context-specific NFRs has to be elicited with the help of NFR templates as 

heuristics for the goal-presence analysis.  

Being the product of goal presence analysis, non-functional goals are further 

analyzed into sub-goals with different levels.  Against one of the primal 

handicaps of other QA variability modeling approaches (including goal-

oriented approaches), the method takes a chance to propose optionality at PL 

level by specifying three levels for each NFR goal as low, medium and high. 

Higher level NFRs always replace lower ones. But if an higher level NFR 

conflicts with another NFR, the lower levels are to be reserved as well. 

Concept of conflicts between NFRs on the level of operationalizations is a 

significant part of the variability analysis, since non-functional variations arise 

from tradeoffs of these conflicting NFRs. 

For each of these NFR levels, operationalizations are further specified to set 

up relations in the form of conflicts and dependencies. Besides, the 

operationalizations are further evaluated for all NFR levels considering the 
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possibilities of their satisfiability such that if an operationalization is 

evaluated to be unsatisfiable, then it should be removed. Besides the 

operationalizations define the presence of NFR levels or their relations such 

that; if all operationalizations of an NFR level are removed, then it should be 

removed or if all operationalizations of an NFR level are partially satisfiable, 

then it should be adjusted to be optional. 

During integration of operationalizations into conventional feature models, as 

of the bridges between the NFR levels and functional features, there emerges 

the need for definition for two types of operationalizations, namely dynamic 

operationalizations that can be regarded as a sub-feature of the affected 

functional feature and static operationalizations that can be regarded as 

restrictions on the affected functional feature. Besides, for the instances of 

dynamic operationalizations affecting multiple functional features are defined 

as crosscutting features, interactions with functional features of which are 

required to be recorded. 

 

3. NFR Integration: NFR-related operationalizations are involved/incorporated 

into the feature model in parallel to modification on functional features based 

on the relations with non-functional concerns. 

 

4. NFR-oriented Decision Modeling: Finally, a feature decision tree model 

with both functional and non-functional concepts is built where all NFR 

conflicts, NFR dependencies, environmental dependencies and constraints are 

taken into account. In decision model, only variability-related features are 

involved. 

 

The structure of the feature model produced by the approach is constructed on the 

variation points of optional, alternative and OR features. Optionality as the basics 

of variability is utilized differently in the approach of Peng et al. such that; in 

conventional feature models, an optional functional feature is either included in 

the model or not, whereas an NFR can never be excluded from the model. It is 
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intrinsically included in the model and it has to be represented explicitly for an 

effective management of QAs. That is why the different levels for soft goals are 

defined in their model. 

 

Concept of cardinality is also involved in the model due to the need of 

representation of numerous variants that can be chosen for a single variation point 

of OR type. Cardinality is represented as [minimum number of variants … 

maximum number of variants] in the feature model. 

 

As an important intermediate product of the modeling process proposed by the 

approach, NFR graphs are critical such that four important elements of the whole 

process are encapsulated in. These are NFR goals with sub-goals, identified NFR 

levels for each respective NFR sub-goals, suggested operationalizations for the 

implementation of each NFR levels and required environmental conditions for 

specification of operationalizations. 

 

Four different types of relations between these elements are defined in the 

concept of NFR graphs, specified as, (1) AND/OR decomposition of a goal to its 

corresponding sub-goals, (2) relation between NFR goals and its corresponding 

NFR levels, (3) AND/OR decomposition between NFR levels and its 

corresponding operationalizations and (4) environmental dependencies between 

operationalizations and environmental conditions (for the evaluation of 

applicability of each operationalization). As an illustration of notations included 

in an NFR graph, a sample NFR graph of Security and Usability modeled with 

reference to Computer Aided Grading System (CAGS) domain is demonstrated in 

Figure 3.3 below. 
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Figure 3.3:  Sample NFR Graph for NFR Goals in CAGS Domain (adapted 

from [10]) 

 

In terms of classification of interrelations amongst artifacts of NFR integrated 

feature model, as illustrated in the Figure 3.3 above, structural interdependencies 

can be realized in the form of AND/OR decomposition of goals to its sub-goals 

and decomposition of NFR levels to its operationalizations.  

 

The interplay between NFR sub-goals and their corresponding NFR levels can be 

modeled in the form of either structural or implicit interdependencies since any 

level of NFRs mutually excludes the other levels. Defining conflicts relationship 

as an implicit interdependency for each of NFR levels belonging to the same sub-

goal has the same affect on variability with defining alternative relationship as a 

structural interdependency between a sub-feature and its corresponding NFR 

levels.  From the variability point of view, they are considered to have the same 

effect on the variability of the model. It would be better to use structural rather 

than implicit interdependency for the sake of ease of perception and 

understandability of the model. 
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Other instances of implicit interdependencies can be realized between NFR levels 

and functional features in the form of relations between functional features and 

either of static or dynamic operationalizations or crosscutting features. Besides, 

there may exist relations amongst operationalizations no matter to which NFR 

level they are belonged to. These relations are in the form of conflicts or 

dependences (that can be regarded as excludes or requires relationships 

respectively). One other implicit interdependency is defined as Environmental 

Dependence specifying the relation between environmental condition (i.e. 

required hardware or medium due to selected functional feature) and the 

corresponding operationalization. 

 

The concept of dependency among NFR goals, functional features and 

environmental conditions is beneficial for the integration of non-functional 

perspectives into the decision model.  

 

3.3.6 Tool Support for Non-functional Feature Modeling 

 

There is no generally accepted modeling tool for QA variability. COVAMOF, 

Definition Hierarchy, EFM and Goal-based Models provide their own tools that 

have been developed specifically for each design implementation; BBN uses a 

commercial tool named Hugin for the automation of inferences and F-SIG uses 

MS Visio for the representation of the models.[22]  

 

3.4. Discussion of the Literature 

 

In order to take the variability derived from NFRs under control, a detailed study 

has to be provided at very beginning of DE particularly in Domain Analysis 

phase. As individual products are under development, this study has to be 

supported and extended with the experiences gained during Product Requirement 

Analysis phase of AE by sustaining a two way feedback between respective sub-

processes of DE and AE. 
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But it is not that easy to represent NFRs clearly for their ease of perception during 

the analysis of the domain and the development of applications. Besides, the 

efforts and approaches fall short in providing an integrated feature modeling 

framework to capture NFRs together with FRs.  

 

As the outcomes of product‟s NFRs analysis can be stated as an important input 

for the definition of product features; prior to design and configuration of the 

product is completed, a consistent feature analysis has to be realized with proper 

methods helping for elicitation of NFRs. Introducing NFRs to the feature model 

ontology is expected to enrich the feature model ontology with description of 

relations, constraints, restrictions among QAs and functional features. 

 

In the scope of SPL, variability is defined with the help of variation points. These 

variation points can define decision points in conjunction with their possible 

alternatives in the form of functional or non-functional (quality) aspects. These 

decision points can form the basis of NFR-integrated variability models which 

can provide comprehensive variability decision support for AE with both 

functional and non-functional considerations. Right after the structural and 

implicit interdependencies of any feature model are defined and model validation 

is performed (i.e. the feature model is valid if at least one product can be derived 

from it), FAMA can guide the designers towards a valid and complete feature 

selection (decision model support with the help of the rules of relations defined 

among the QAs and functional features) which would help in making evaluation 

of the integrated feature model basically in terms of its variability. 

 

During feature modeling, the control over these variation points is crucial since 

identifying and understanding the dynamic semantics of systems is a requisite for 

product design activities. Most of the time these points derived from NFRs are not 

formally identified in a feature analysis with details and there exists no competent 

mechanism to capture them explicitly. In order to have such applicable feature 

models, the variation points derived from the analysis performed for NFRs are to 
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be explicitly identified within a feature model and are to be integrated suitably 

with functional features. This is essential for Domain Architecture Design phase 

of DE in extension with Product Design Analysis phase of AE. 

 

The tendency to use feature diagrams in feature models as the basic aid for 

modeling proves its competence as variability representation technique, not only 

for the analysis of FRs but also for NFRs, since its usage is adopted by most of 

the recent approaches.  

 

During the literature review, state of art QA variability modeling approaches have 

been assessed with respect to their potential contribution to variability model 

development, taking their capability to reveal the interplay of QAs with functional 

features into account. 

 

As of being one of the QA modeling approaches, Definition Hierarchy 

concentrates on analysis and classification of requirements which practices 

especially on the problem domain leaving little effort for design activities in the 

solution domain. Even design decisions are realized in parallel to the elicitation of 

the requirements. There has to exist a balance of endeavor between these two 

domains. 

 

During variability modeling of QAs, COVAMOF emphasizes dependency 

analysis between variation points. However, in order to determine the 

applicability of design decisions on variation points, some restrictions or 

conditions such as environmental dependencies on operationalizations of the 

variants have to be taken into account. 

 

As the impact of the variants are specified based on domain experts‟ belief 

regarding the knowledge and experience derived from the development of similar 

projects on the same SPL, BBN lacks objectivity and correctness for the instances 

of immature SPLs with on-going development on their competence. 
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QA variability modeling approaches mentioned above remain short of responding 

to the need of different levels of QA optionality at PL level except the approach 

proposed by Peng et al.[10]. This need for modeling qualitative QA knowledge in 

feature domains can be expressed with an example of cost requirement. 

Concerning all product candidates to be derived from the same SPL domain, low 

cost attribute can have a high level of priority for one family member whereas it 

may have low priority in another. In addition to advantage of availability of 

optionality at PL level, goal-based approach serves the opportunity to make trade-

off analysis between different QAs for the sake of satisficing different conflicting 

NFRs with the help of operationalization analysis.  

 

Besides, most of the QA variability modeling approaches mentioned so far fall 

short of responding to the need of modeling QAs with a quantitative analysis, 

except EFM approach proposed by Benavides et al. [13]. In the model, functional 

features are decorated with attributes as characteristics of a feature that can be 

measured such as availability, cost, latency, bandwidth etc. Furthermore, relations 

between the attributes attached to several functional features or non-functional 

features can be constructed.  

 

Among the others, EFM approach of Benavides et al. [13] and Feature-Oriented 

NFR Analysis method of Peng et al. [10] seem to complement each other for a 

better variability analysis of non-functional features in terms of their facilitations 

for quantitative and qualitative quality aspects respectively. Inspiring from what 

Bartholdt et al. [23] propose in their study, qualitative and quantitative QAs can 

be integrated to functional features in the same model. By establishing 

interrelations between the artifacts of Feature-Oriented NFR Model and 

quantitative QAs attached to functional features (inspiring from EFM approach), 

the integration of functional features with non-functional features can be achieved 

on the same model. Utilization of FAMA tool would help to deduce evaluations 

on the integrated feature models in terms of its variability. 
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The basic and most important contribution of this QA integrated feature modeling 

approach is that it gives domain designers the chance to elicit and expose the 

quality knowledge hidden in the specifications of the requirements. Moreover, it 

allows the product designers to manage these systematically elicited and modeled 

quality knowledge in terms of its variability. In other words, the approach serves 

the ability to control variants originating from qualitative and quantitative quality 

aspects. 

 

In the next chapter, an approach inspired from a synthesis of the aforementioned 

quantitative and qualitative non-functional feature modeling approaches is 

implemented on the same feature model, in accordance with the considerations 

presented in this section. 
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CHAPTER 4 

 

 

4. FEATURE MODELING OF METEOROLOGICAL 

MEASUREMENT AND LOGGING SYSTEM DOMAIN 

 

 

 

 

4.1. Introduction 

 

In this chapter, with the aim of providing a proof of concept and detailed 

illustration for feature modeling using the proposed Complementary Quality 

Modeling Approach first, the standard feature model of the Meteorological 

Measurement and Logging System (MMLS) domain, will be introduced together 

with its SPL-oriented specifications for the modeling of the system.  

 

Subsequently, the reasons why this sample domain is selected for feature 

modeling will be provided in addition to the discussions regarding the experience 

acquired during the design. 

 

Afterwards, before all else, MMLS domain will be modeled in a conventional 

feature modeling approach wherein non-functional features and quality concerns 

are not peculiarly taken into account during variability modeling. 

 

Towards the end of the chapter the conventional feature model developed priorly 

is extended for the sake of supplementing variability modeling with QA concerns. 

Variability modeling specifications, implementation details and experiences 

obtained during the development of the model extended with QA aspects are 

provided as well. 
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4.2. Meteorological Measurement and Logging System (MMLS) 

 

As the primal objective of this study, the elicitation of variability knowledge 

inherent in a domain is a prerequisite for the design of domain architecture and 

implementation of the domain with suitable artifacts. For the purpose of efficient 

exercise on variability concerns during development of a feature model, a 

reference domain that is easily adaptable to SPL-oriented DE and adequate in 

terms of diversifiability potential is a requisite. 

 

Practicing on variability modeling of MMLS domain is preferred as it conforms 

to the considerations outlined above. Based on its system specifications, basically, 

MMLS aims to measure, log and display meteorological information necessary 

for weather logging and forecasting applications. For this purpose, the system 

embodies different types of sensors each of which are specialized on the type of 

the information to be collected from the environment in various weather 

conditions. Different types of sensors come along with different types of interface 

specifications as they are procured of commercial-off-the shelf (COTS) 

hardwares. As the system is assigned to exploit logging and displaying facilities 

as well, a software configuration is required to collect the data transmitted from 

several sensors with different electrical interface specifications in order to convert 

this information for processing purpose followed by logging and displaying 

functionalities. The system is required to offer different software configurations 

as it needs to be compatible to work with different types of display units which 

are to be procured as COTS hardwares similar to the case in sensor units. Besides, 

the system needs to be configurable in order to transmit different types of 

processed information to external systems, interface specification of which is 

dependent on the system that MMLS is designed to be integrated with. 

 

In the light of the basic system specifications summarized above, in the scope of 

this study, the software to achieve aforementioned tasks is proposed to be a single 

software configuration unit which is composed of different software components. 
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As the main purpose of the study, the variability knowledge to be elicited from 

system requirements will be managed inside the internal structure of these 

components in terms of different parts.  These parts are some kind of problem 

domain counterparts of modeling artifacts in solution domain, namely the 

features. Based on feature decisions provided during AE phase, these parts are 

assembled to form the desired configuration and constitute the required 

components. 

 

Besides, the study is concentrated solely on the dynamics of feature modeling 

aspect of the reference domain of MMLS. The possible relations and interactions 

with other phases of SPLE will be provided with discussions as well. 

 

In the present work, the Feature Model together with its extension to quality 

modeling aspects of MMLS domain is developed by the author to be used as the 

proof of concept and revised by experienced engineers from Aselsan Inc. for its 

consistency. Besides, during development of MMLS domain for SPL, experience 

formerly gained in course of development of an MMLS software configuration 

delivered to customer and built in a layered architecture within a non-SPL context 

is utilized as guidance and inspiration. Similar set of requirements are used as the 

driving force for the specification of features for software configuration needed 

by all stakeholders (i.e. domain experts, application engineers and customer).  

 

4.3. Feature Modeling of MMLS Domain 

 

Prior to the construction of feature model of MMLS domain, fundamental tasks to 

be achieved are needed to be outlined with the help of a comprehensive elicitation 

of domain requirements. These tasks are to be achieved by any probable software 

configuration produced during AE phase. Following the definition of these 

fundamental tasks, different kinds of features are to be derived and augmented on 

the basis of their respective root features where the emphasis is laid especially on 

the variability concern. 



  

48 

 

In the light of these, any system produced from MMLS domain has to interact 

with users in order to realize user-dependent functionalities. This brings the need 

of Graphical User Interface composed of a number of components acting like a 

bridge between the user and other components of the software assigned to realize 

different functionalities of the system.  

 

Besides, as can be deduced from the name of the domain, one of the main duties 

to be achieved by any instance of MMLS domain is to realize the logging 

facilities where a number of components control the communication between the 

sources of data to be stored and the database acting as the main storage unit. 

Additionally these components have to provide services to the Peripheral 

Retrieval Components in order to realize the back-up facilities for the protection 

of information on the database. Moreover, some of the components that can be 

classified in this group have to realize some further maintenance tasks in order to 

ensure the availability of the system. 

 

The system needs to communicate with different types of sensors and display 

units to collect and represent the measured data respectively. Therefore, the tasks 

to be achieved by the system hardware interface has to be assigned to some 

components that can be grouped under the definition of Peripheral Retrieval 

Components, as referenced in Figure 4.1 below. Furthermore, these components 

have to achieve interaction with a printer as it is to be included in any product 

configuration. 

 

Communication between these three types of component groups is to be 

controlled and organized by System Management Components. 

 

This classification of components eases the perception of the distribution of tasks 

amongst the components of MMLS domain regarding their fundamental roles 

outlined above. 
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Figure 4.1: Basic MMLS System Architecture 

 

4.3.1. Feature Context Analysis 

 

As a starting point for the definition of the scope and context of MMLS feature 

model, the classes of component groups with reference to Figure-4.1 have to be 

utilized. These groups are some kind of a classified compilation of solutions 

developed from the requirements that any instance of MMLS domain has to meet. 

For the sake of meeting these requirements, varieties of features can be defined 

and extended on the grounds of each of these basic classes.  

 

It must be noted that, during the construction of feature diagrams, all the 

information derived from the expected capabilities of the system is not required to 

be projected on the feature model. This is due to the fact that, basic need for the 

construction of a feature model is to manage the variability information included 

in a domain. Redundant usage of common features withinside a feature model 

degrades the quality of a feature model considering its power to exploit variability 

knowledge. Consequently, in the scope of this work, as introduced in the 

following sections, variant features of the domain are included in the feature 
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model, in which the commonality knowledge is modeled inherently and indirectly 

(discussions on proof of concepts are to be provided in Chapter 5). 

 

4.3.2. Feature Variability Identification 

 

In the discussions hereunder, the textual explanations on the feature model 

structure are provided in addition to their representations on diagrams for the sake 

of clarification.  

 

As depicted in the feature diagram in Figure-4.2, the uppermost level of MMLS 

Feature Diagram consists of six variation points, each of which are composed of a 

group of features.  

 

Some of these features are variation points as well, in which at least two features 

are present (to be specified afterwards); some of them are the variants (a.k.a the 

leaf nodes of the feature tree) to be included directly in a product configuration. 

 

 

Figure 4.2: Feature Diagram for MMLS Domain – Uppermost Level 

 

As demonstrated in the diagram, all the variation points in the uppermost level are 

modeled as mandatory feature groups, such that any instance of MMLS product 

configurations has to possess System Management, System Setup, System 

Maintenance, Information Delivery, Peripheral Retrieval and Hardware 

Component facilities with any combinations of their respective variants. In 

consistency with the definition of basic MMLS System Architecture provided in 

Section 4.3.1 Feature Context Analysis; these feature groups substantially reflect 



  

51 

 

the content of their counterparts in the solution domain as classified groups of 

components. 

 

As mentioned in Section 2.3.2 Feature Modeling and referenced in Figure 3.1, 

interrelationships among the functional features are classified as structural and 

implicit interdependencies. The rest of the feature model detailed below the 

uppermost level is basically composed of these two types of feature relationships. 

For the ease of their representation, the two classes of interdependencies are 

handled separately in the following sections with their constitution rationale 

provided. 

 

4.3.2.1. Structural Interdependencies 

 

In this section, MMLS feature model is examined in terms of its structural 

relationships in between feature groups and their respective sub-features. As 

referenced in Section 2.3.2 Feature Modeling, four types of relations are utilized 

in the model, namely mandatory, optional, alternative and OR relations. It should 

be noted that, unless otherwise specified, all OR-relations implies a selection of at 

least one feature rather than none out of all variants in the feature group hold by 

the parent node. 

 

System Management is the principal feature group of the model. Literally, upper 

layer functionalities; management of security, maintenance, logging facilities; 

operational management of user interface and hardware interfaces in addition to 

sustaining the communication in between all these features are to be handled 

within this group of functions. For instance, the process in which a measured data 

is collected, delivered to processor following with transmission to external 

systems or displayers through hardware interfaces is managed by this group of 

functions. In addition to these facilities, basic functions such as „Initialize 

System‟ and „Shut-down System‟ are not included in the model since they are 
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treated as commonality points due to their non-contributory nature with respect to 

variability concern. 

 

Apart from these functional capabilities, as demonstrated in Figure 4.3, three 

variation points, namely, Authentication, System Log Management and Failure 

Management are incorporated as sub-feature groups into the feature model 

together with their variant contributions. Authentication feature group is modeled 

as optional whereas System Log Management and Failure Management feature 

groups are modeled as mandatory. The rationale behind modeling Authentication 

feature group as optional is to leave the decision of possessing a system with extra 

security precautions to the user. Authentication serves two alternatives as 

Hardware-based and Password-based Authentication facilities meaning that no 

such system configuration exists which supports both types of authentication. 

HW-based Authentication is to be handled by one of the most conventional form 

of its utilization such that as long as this function is selected, a USB Security Key 

is needed to initialize the system. PW-based Authentication serves two optional 

functions: a reminder that notifies the user periodically to change the system 

authentication PW and a facility to save a master-key attached to the standard 

authentication password which assures a two-fold security for authentication. 

System Log Management feature group holds two optional features with OR-

relation: history track facilities for System Setup Information and Operational 

Information (i.e. log-in – log-out information, changes in the status of system SW, 

measured data exchanges between sensors and external systems).  

 

Finally, Failure Management feature group holds two levels of failure 

management facilities: Unit-level and Module-level. In Unit-level Failure 

Management, a low level of fault detection is utilized such that status knowledge 

of replaceable units (i.e. sensors) are monitored with the help of data 

communicated through the interfaces. Module-layer Failure Management is a 

higher level of fault detection mechanism that monitors failures possible to 

emerge between the HW-components in terms of their inter-accessibility. As 



  

53 

 

Module-layer Failure Management mechanism encompasses all functionalities of 

Unit-Level Failure Management, these two options are modeled as alternative to 

each other in the feature model. 

 

 

Figure 4.3: Feature Diagram for System Management 

 

System Setup is another uppermost-level feature group included in the feature 

model. Similar to the case in System Management feature group, the functions 

incorporated under this group are filtered out in terms of their contribution to 

variability of the overall feature model. Primary mission that could be classified 

under this group is the realization of any type of system setup functionalities such 

as setting the type of transmission channel or setting the time and date of the 

operating system. For this reason, they are not incorporated into the feature model 

considering their lack of contribution to variability concern. 

 

As depicted in Figure 4.4, System Setup feature group offers four variation points 

namely Set/Change Data Recording Frequency, Set/Change Data Transmission 

Frequency, Set Resolution and Set Sensor Parameters which are interrelated 

through OR-relationship with each other. Set Sensor Parameters feature offers the 

capability of setting the internal parameters (i.e. initialization and offset values) of 

some specific sensor types. Set/Change Data Recording Frequency and 
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Set/Change Data Transmission Frequency features provide the ability to adjust 

the frequency levels of transmission to data storage and display units respectively. 

 

Any product instance of MMLS domain is in compliance with 800x600 

resolution. As for Set Resolution feature, system offers to switch from this default 

resolution to any of the selected resolution alternatives. Depending on the type of 

display units included in system configuration (i.e. this feature is meaningful as 

long as Monitor Keyboard Drawer is included in the HW-configuration - to be 

detailed later in Section 4.3.2.2 Implicit Interdependencies), system offers at least 

one of any two resolution alternatives: 1280x1024 and 1024x768. These features 

are modeled through OR-relation with each other, since Set Resolution feature 

serves the ability to switch between any resolution scales included in product 

configuration. 

 

 

Figure 4.4: Feature Diagram for System Setup 

 

As a precaution against probable failures to emerge during the normal operation 

of the system, feature model is decorated with a number of variants classified 

under different feature groups with a System Maintenance parent feature on top, 

as portrayed in Figure 4.5. System Maintenance includes three feature groups, by 

name, System Test, Database Maintenance and Store/Restore Database Back-up.  
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System Test feature group includes three types of tests related by OR-relation 

with their parent node, namely, Start-up Test, On-line Test and Off-line Test. 

Basically, Start-up test is performed for checking mission readiness, On-line Test 

ascertains the persistence of system performance, Off-line test acts as the 

inspector to specify the defective component in cases of system failure. 

 

In relation with Failure Management Levels (to be clarified in Section 4.3.2.2 

Implicit Interdependencies), main capabilities of these testing types are mentioned 

as follows: 

Start-up Test offers the following facilities: 

 Controls and reports sensor status 

 Initiates as soon as the system is powered 

 Can be stopped and bypassed at any time 

 

On-line Test offers the following facilities: 

 Detects the existence of a unit-level fault, is more efficient if followed by 

Off-line Test in order to specify the specific location of a fault in an HW 

component (for instance On-line test detects a failure related with the 

transmission from any specific sensor or printer, but it is the off-line test 

that detects the failure is whether caused by the module which processes 

the signal or the source is defective) 

 Controls and reports status of communication with sensors or other basic 

HW components (i.e. data storage unit) such that the test detects a failure 

if only no signal is received from the signal source 

 Is continuous, initiates with start-up and runs until system shut-down 

without the need of operator intervention and can not be stopped or 

bypassed 
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Off-line Test offers the following facilities: 

 Performs more comprehensive test on different HW modules (i.e. PCBs, 

processors etc.) with the help of fault diagnosis algorithms, in addition to 

unit-level facilities provided by On-line Test 

 Controls and reports operating status of supply voltages, processor and 

database and data transfer lines in addition to units (i.e. sensors or printer) 

 Executes with the initiative of the user 

 

Any failure in database is not desired in order to avoid sudden loss of information 

especially for the cases that backed-up version of it is not available. In order to 

realize these preventive facilities, following operational capabilities are modeled 

under the Database Maintenance feature group with OR-relation among each 

other; Database Clean-up clears all the data stored in the database for a fresh start 

to logging (especially beginning time of logging is of concern), Store/Restore 

Back-up Database to store/restore data to/from any type of back-up media in 

order to either observe previously loaded data or continue to logging over and 

transfer the data contained in the database to selected type of back-up medium. As 

part of Store/Restore Back-up Database feature group, three types of storage 

media is available for the purpose of backing-up the information contained in 

database so as to prevent data loss due to any failure in database. These storage 

media types, namely USB, DVD and CD are modeled as an alternative to one 

another such that none of them is permitted to co-exist with the other due to its 

redundant usage. 

 

System logging works in accordance with First In First Out (FIFO) rationale. As 

soon as the system reaches its maximum logging capacity (as restricted by means 

of the data recording hardware), most recent data is overwritten on the latest data. 

Keeping this in mind, if preventing the system from loss of critical recorded data 

is of concern, Database Clean-up and Store/Restore Database Back-up features 

are requisite for the desired product configuration. Apart from these, System SW 

Update is served as optional function for any case of failure in the system SW. 
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Figure 4.5: Feature Diagram for System Maintenance 

 

Information Delivery feature group consists of functionalities that are particularly 

related with the forms of information transmission to user, most common example 

of which is to provide visual information by means of any selected visual 

fashions. Based on the variety of these visual resources, features are classified 

under the variation points of Graphical User Interface (GUI) and information 

delivery on printed material. These two facilities are indispensable elements of 

any MMLS domain, therefore they are modeled as mandatory variation points. By 

means of GUI, delivery of statistical information through graphics (i.e. charts, 

measured value vs. time plots), maintenance screen as for monitoring detailed 

system status and data transmission screen for observing the status of delivered or 

received messages (i.e. measured sensor data) through the interfaces is served as 

variants. Owing to the presence of the printer in the configuration, options of 

print-out capabilities for either textual statistics or graphical statistics are 

available as variants. 
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Figure 4.6: Feature Diagram for Information Delivery 

 

Peripheral Retrieval is another feature group that holds the variants of hardware 

interface types to ensure the communication not only within the sub-units of the 

MMLS but also with external systems. As of features to be classified under 

Peripheral Retrieval feature group but not to be reflected on the feature model due 

to commonality; any instance of MMLS domain provides the capability to let the 

user edit the settings for its interface and realize overall communication both 

inside and outside its borders.  

 

System communicates with the aid of either RS422, RS232 or VGA interfaces 

leading to mandatory relation with its parent node. To be detailed later in Section 

4.3.2.2 Implicit Interdependencies, types of sensors and display units included in 

the configuration implicitly specifies the presence of either of these three types of 

interfaces. Printing Interfaces offered are available for a wide spectrum of printer 

types which contributes the system a high standard of modularity and integrability 

with COTS printer products. In order to broaden this spectrum, MMLS feature 

model is designed to support integrability with former versions of printing 

interface types (i.e. Serial Port and Parallel Port) but also contemporary versions 

(i.e. USB Port and Ethernet/LAN). It must be noted that these four types of 

printing interfaces are connected to their parent feature through alternative-

relation since only one type of printer interface per product configuration is 

supported by the MMLS domain. 
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Figure 4.7: Feature Diagram for Peripheral Retrieval 

 

Different from the feature groups mentioned so far, Hardware Components 

feature group deals with critical hardware elements of the MMLS domain. From 

this point of view, capabilities available in this group complement the design 

decisions realized during the development of the software components. 

 

Being one of the most critical entities of the MMLS domain, Hardware 

Components feature group poses its significance when the limitations regarding 

the realization of any product configuration is of concern. Decisions based on the 

user-defined system requirements directly effect the hardware component 

configuration in the first place. Subsequently, specification of hardware 

component configuration puts borderlines on the varied capabilities of the 

software components. This is due to the fact that most of the features in this group 

possess specific characteristics on their own which causes potential conflicts with 

a number of varied features of any software configuration. This situation is 

handled by implicit interdependencies that are established between SW and HW 

features as they are detailed in Section 4.3.2.2. Implicit Interdependencies. 

 

Measurement of weather conditions, logging the measured or processed data and 

representation of the transformed information are the principal duties of any 

product derived from MMLS domain. Therefore, Sensors, Displays, Printer and 

Data Storage Units feature groups are modeled as mandatory variation points in 

the sub-tree of Hardware Components. It should be noted that any product 
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configuration derived from MMLS domain owns basic level of GUI on a built-in 

display unit that has the capability to meet basic and common demonstration 

requirements of the system. Due to their widespread usage for weather condition 

monitoring, Wind Speed and Direction Sensor, Ambient Humidity and 

Temperature Sensor and Air Pressure Sensor are incorporated in the model 

through an OR-relation with their parent node. Displays feature group offers two 

kinds of display units: Monitor Keyboard Drawer is the more sophisticated one 

with PC-like capabilities such as integrated keyboard and touchpad in addition to 

high resolution display in varied resolutions; LCD Display is the moderate one 

with average display quality and less user-friendliness. Since common visual 

representation requirements of any MMLS product configuration are already fed 

by built-in display that is already included in any product configuration, 

additional varied user-requirements are to be satisfied by any one of these two 

types of display units which are modeled as alternative to each other. Printer 

feature group includes two varieties of printers as Inkjet and Laser types. 

 

So as to realize recording all manner of information (i.e. measured data, setup 

data etc.) produced by the system, three different types of data storage units are 

modeled through the alternative relation with their parent nodes. Type A and 

Type B units are Solid State Disks (SSD). They offer lower levels of storage 

capacity with higher cost and performance with respect to Type C which is a 

standard Hard Disk Drive (HDD). The specifications of these three types of data 

storage units are detailed in Section 4.4 Integrating Complementary Quality 

Modeling with Functional Feature Model of MMLS Domain. These specifications 

are used as basic modeling commodities of quality modeling aspects. 
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Figure 4.8: Feature Diagram for Hardware Components 

 

4.3.2.2. Implicit Interdependencies 

 

In order to ensure a consistency in terms of interrelations among the features of 

MMLS domain, construction of implicit interdependencies on the basis of 

structural interdependencies is indispensible. In this section, MMLS feature 

model is discussed in detail by revealing the rationale behind its constructed 

relationships. It must be noted that two basic types of relationships are practised 

in the model, namely requires and excludes relationships. Requires is a directional 

relationship between the features such that a requires relationship defined from 

feature A to B means feature B is required to be included in the product 

configuration if A is included. Different from the requires relationship, excludes 

relationship is bi-directional meaning that presence of any of feature pairs 

interrelated with exclude relationship can not co-exist in the same product 

configuration. 

 

There exists numerous implicit interdependencies between the features of MMLS 

domain. Since it is cumbersome to depict all these relations on feature diagrams, 

as is the case in structural ones, textual descriptions regarding each and every one 

are provided in this section. 

 

For the sake of understandability of textual descriptions to express the rationale 

behind relationships between these features, they are indicated by connecting two 

feature (source feature and target feature) specifications with requires and 

excludes expressions. For instance, System SW Update requires Maintenance 
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Interface means that if System SW Update capability is included in the product 

configuration, than Maintenance Interface facility is required to be included in the 

product configuration. 

 

These feature relationship expressions are compiled in Table 4.1 below to assist 

the textual descriptions provided hereunder. 
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Table 4.1: Implicit Interdependencies of MMLS Model 

ID Source Feature Dependency 

Relationship 

Target Feature 

1.a Unit-Level Excludes Off-line Test 

1.b Module-Level Requires Off-line Test 

1.c Off-line Test Requires Module-Level 

2.a 
Set/Change Data Transmission 

Frequency 
Requires Data Transmission Interface 

2.b Data Transmission Interface Requires 
Set/Change Data Transmission 

Frequency 

3.a Set Resolution Requires Monitor Keyboard Drawer 

3.b Monitor Keyboard Drawer Requires Set Resolution 

4.a Off-line Test Requires Maintenance Interface 

4.b System SW Update Requires Maintenance Interface 

4.c Database Maintenance Requires Maintenance Interface 

5.a Wind Speed and Direction Sensor Requires Set Sensor Parameters 

5.b Set Sensor Parameters Requires Wind Speed and Direction Sensor 

5.c Wind Speed and Direction Sensor Requires Off-line Test 

6.a Inkjet Printer Excludes USB Port 

6.b Inkjet Printer Excludes Ethernet/LAN 

6.c Laser Printer Excludes Serial Port 

6.d Laser Printer Excludes Parallel Port 

7.a Wind Speed and Direction Sensor Requires RS232 

7.b RS232 Requires Wind Speed and Direction Sensor 

7.c 
Ambient Humidity and 

Temperature Sensor 
Requires RS422 

7.d Air Pressure Sensor Requires RS422 

8.a LCD Display Requires RS422 

8.b Monitor Keyboard Drawer Requires VGA 

8.c VGA Requires Monitor Keyboard Drawer 
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 Rationale for 1.a, 1.b & 1.c; 

Unit-Level failure management capability is the core of On-line test feature. 

But as mentioned earlier, Module-Level failure management is the enhanced 

version of Unit-Level and is an alternative to it. Off-line Test holds Module-

Level failure management as its essential utilization. Therefore, there should 

exist no configuration that includes Unit-Level Failure Management 

capability along with Off-line Test. Besides, Module-Level failure 

management capability and Off-line Test feature mutually require each other. 

It should be noted that, Module-Level failure management capability ensures 

all types of System Test functionalities whereas Unit-Level is capable to 

ensure Start-up Test and On-line Test. 

 

 Rationale for 2.a & 2.b; 

Both of Set/Change Data Transmission Frequency and Data Transmission 

Interface features are modeled as optionally. However, Set/Change Data 

Frequency feature owes its presence to Data Transmission Interface as its 

functionality is offered under the content of this interface. Furthermore, in the 

scope of the MMLS Feature Model, there exists no other feature that owes its 

presence to Data Transmission Interface which leads to mutually-require 

relationship between these two features. 

 

 Rationale for 3.a & 3.b; 

Set Resolution functionality can be achieved if only Monitor Keyboard 

Drawer feature is included in the product configuration since Monitor 

Keyboard Drawer is the only display unit alternative that can operate with any 

combination of two resolution alternatives. Additionally, Monitor Keyboard 

Drawer feature needs the presence of any alternative features included in Set 

Resolution variation point in order to perform its demonstrative functionalities 

properly. Therefore these two features mutually require each other in any 

product configuration. 
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 Rationale for 4.a, 4.b & 4c; 

Maintenance Interface offers user interface for the functionalities related with 

System Maintenance. If the optional features of System SW Update and 

Database Maintenance modeled under System Maintenance feature group are 

decided to be included in the configuration, they need the presence of 

Maintenance Interface capability of the software to perform their 

functionalities properly, considering their interaction with the user. For the 

System Test feature group, only Off-Line Test feature needs the presence of 

Maintenance Interface in order to be initialized by the user, whereas Start-up 

Test and On-line Test can initialize and operate without the user intervention.  

Therefore, requires relationship from Off-line Test feature, System SW 

Update and Database Maintenance feature groups to Maintenance Interface 

feature is needed to be defined. 

 

 Rationale for 5.a, 5.b & 5.c; 

Wind Speed and Direction Sensor needs an initialization message from the 

MMLS software to have its activation parameter to be set to active, this 

initialization messaging facility is supported by Set Sensor Parameters feature. 

Moreover, in order to measure the direction of the wind correctly, reference 

measurement direction (in terms of degrees) with respect to the factory set 

measurement axis has to be set prior to its operation. This reference direction 

information with respect to factory set measurement axis can be set with the 

help of optional Set Sensor Parameters feature. Wind Speed and Direction 

Sensor is the only one that the system can offer the capability to set its 

internal parameters. Therefore inclusion of Set Sensor Parameters feature to 

the product configuration without the presence of Wind Speed and Direction 

Sensor feature has no meaning. Consequently, these two features mutually 

require each other. 

 

In extension to the reasoning above, Wind Speed and Direction Sensor is the 

only one that allows the system to ask for its operation status at any time. This 
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sensor is capable to provide acknowledge messages as long as it is asked for 

status update through its interface. This capability is utilized by Off-line Test 

feature to let the user investigate the status of the sensor for proper operation. 

It should be noted that this capability can not be ensured by On-line Test, 

since On-line Test regards the periodic availability of messages from the 

sensors (simplex operation) to decide that they are operating properly, 

whereas Off-line Test is capable to send messages in order to receive 

availability messages from this sensor (duplex operation). As long as this 

sensor is included in the configuration, it needs the presence of Off-line Test 

capability. 

 

 Rationale for 6.a, 6.b, 6.c & 6.d; 

Inkjet Printers that are modeled in MMLS domain are the former versions of 

Laser Printers. Therefore they are modeled to be in excludes dependencies 

with USB Port and Ethernet/LAN interface types which are of contemporary 

interface technologies and are not supported by Inkjet Printers. Similarly 

Laser Printers of MMLS domain does not support former classical interface 

technologies of Serial and Parallel Port types which lead to excludes 

dependencies from Laser Printers to these interface types. 

 

 Rationale for 7.a, 7.b, 7.c & 7.d 

Wind Speed and Direction Sensor is compatible to only RS232 type of 

interface while Ambient Humidity and Temperature Sensor and Air Pressure 

Sensor are capable to transmit their signals in compliance with RS422 

interface only. Since there exists no HW component having requirement for 

RS232 interface compatibility, Wind Speed and Direction Sensor and RS232 

feature pair mutually require each other. 

 

 Rationale for 8.a, 8.b & 8.c; 

LCD Display offered in the content of MMLS domain is compatible to only 

RS422 type of interface. Similarly, Monitor Keyboard Drawer unit needs 
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VGA interface to support its graphical interface applications. Due to the fact 

that there exists no feature other than Monitor Keyboard Drawer requiring 

VGA interface, VGA and Monitor Keyboard Drawer features are modeled to 

be in mutually-require relation with each other.  

 

4.4. Integrating Complementary Quality Modeling with Functional Feature 

Model of MMLS Domain 

 

In this section, as the beginning, the basics of complementary quality modeling is 

introduced. Subsequently, the basic constituents of the complementary model 

(namely the levels and operationalizations of feature oriented NFR analysis and 

the quantitative QAs of EFM) are developed. In following, these constituents are 

integrated to each other thereby ensuring the integration of the whole 

complementary quality model to the functional feature model of the MMLS 

domain. 

 

4.4.1. Complementary Quality Modeling 

 

On the way to perform feature oriented quality-based variability analysis of 

feature domains, the quality modeling knowledge inherent in the domains can be 

revealed and expressed by means of two different perspectives. As mentioned 

earlier, these perspectives are originated from two different aspects of quality 

modeling, namely the qualitative quality modeling aspects and the quantitative 

quality modeling aspects. Based on previously mentioned methodologies that the 

complementary quality modeling is inspired from; qualitative quality modeling is 

achieved by Feature-oriented NFR Analysis in which quality modeling 

knowledge is a kind of soft-goal to be achieved and possesses hard-to-quantify 

nature; quantitative quality modeling is achieved by building extensions on 

functional features to build up EFMs in which quality modeling knowledge is a 

fragment of a functional feature and can be expressed in terms of a quantifiable 

parameter. 
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Qualitative quality modeling aspects can be classified in different levels, each of 

which provides operationalizations that are some kind of functional feature 

projections of quality-based goals. This kind of quality modeling is beneficial in 

revealing level-based qualitative variability knowledge thereby enhancing the 

variability of the whole model. However, as it is integrated with a functional 

feature model (by means of direct relationships of either require or exclude), the 

operationalizations seem to lack the interaction with the functional features. This 

leads to a lack of control over functional features especially during AE phase, 

during which selections of features are realized to make up the product 

configurations. This is due to the reason that it is not always possible to construct 

direct relationships between all the operationalizations (or levels) provided by 

Feature-oriented NFR Analysis and the functional features existent in the domain 

model. Even if these relationships, in the form of implicit interdependencies, are 

constructed, in most cases, they run short of providing all possibilities of implicit 

interdependencies. 

 

On the other hand, quantitative quality modeling aspects are the quality-based 

attributes belonging to specific functional features. This kind of quality modeling 

is beneficial in revealing the quantifiable quality-based attributes inherent in 

specific functional features. Nevertheless, from the variability point of view, these 

QAs seems to have no contribution to the variability of the whole model as long 

as they are not utilized during AE phase. The utilization of these QAs can be 

achieved by incorporating them within feature decision rules in the form of either 

require or exclude relationships with other features of the model. 

 

The designation “complementary” is derived from the idea that these two 

different perspectives complement each other especially if the elicitation of 

variability knowledge inherent in feature domains is of concern. This 

complementary study finds its meaning by providing a two-way feedback 

between these two quality modeling perspectives in order to satisfy the 

shortcomings of both sides.  
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In its simplest explanation, following their elicitation, the quantitative QAs are 

connected to the levels (thereby to the operationalizations as well) derived by 

Feature-oriented NFR Analysis through the implicit interdependencies (i.e. 

requires and excludes relationships). In order to construct these relationships, 

each type of quantitative QA corresponds to a specific type of soft-goal derived 

by qualitative quality analysis. No implicit interdependencies other than these 

pairings (between the type of quantitative QAs and soft-goals) are allowed to be 

constructed. 

 

In the scope of this work, as demonstrated in Figure 4.9 below, Complementary 

Quality Modeling approach together with its integration to MMLS functional 

feature model is implemented mainly in three phases. In the context of 1
st
 phase, 

quantitative QA analysis is performed. In the 2
nd

 phase, Feature-oriented NFR 

analysis is performed and types of soft-goals are specified in addition to the 

definition of operationalizations belonged to different levels of each soft-goal. In 

the last phase, quality modeling artifacts derived with the help of these two 

approaches are integrated to each other which also ensures the integration of the 

Complementary Quality Model to the Functional Feature Model. It should be 

noted that the Complementary Quality Modeling practice needs the existence of a 

functional feature model as a basis for its implementation prior to integration. 



 

 

 

 

 

 

Figure 4.9: Complementary Quality Modeling Process 
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4.4.2. 1
st
 Phase: Quantitative Quality Attribute Analysis 

 

In the scope of this phase, functional features involved in the initial functional 

feature model are examined so as to reveal their hidden quality-based attributes 

that has quantifiable nature.  

 

These quality-based attributes are to be regarded as parameters that would have 

different values for different features. These parameters may belong to different 

domains (i.e. real, integer, boolean etc.) based on the set of values it can take. As 

the functional features are examined on the way to elicit their quantifiable QAs, 

care must be taken on the types of the attributes especially of the features 

included in the same feature groups. Possessing the same types of QAs is 

indispensable for the establishment of comparative relations among the 

options/alternatives offered in the same feature groups (to be clarified practically 

in the next section). 

 

These quality-based attributes revealed from the child features of a specific 

feature group can be named as Elementary Attributes. An elementary attribute 

defined for a specific functional feature does not pose a significant importance on 

its own since it may or may not be included in product configuration. In order to 

derive more realistic reasonings from several elementary attributes (valid for 

different feature configurations), expressions has to be defined specifically for the 

parent nodes of these functional features, namely the feature groups (variation 

points). This expression should be in the form of a mathematical function whose 

variables are the attributes of its child features. This mathematical function may 

take any form depending on the usage of quality modeling context (i.e. total cost 

belonged to a parent feature is the sum of the costs belonged to its child features). 

 

This expression can be named as Compound Attribute since it is composed of 

several elementary attributes or compound attributes owned by its child features. 

Similar to the case in elementary attributes, care must be taken on the type of 
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compound attributes. That is to say, parent features have to possess compound 

attributes type of which is the same with elementary attributes belonged to its 

child features. 

  

The values of compound attributes are dynamic such that they are dependent on 

the feature combination selected from the group of its child features. Different 

feature combinations of child features yield different compound attribute values 

for the parent features.  

 

4.4.2.1. Elementary Attribute Elicitation 

 

In the context of MMLS domain, as mentioned previously in Section 4.3.2.1 

Structural Interdependencies, specification of hardware component configuration 

is said to put borderlines on the varied capabilities of the software components. 

This situation is handled by establishing implicit interdependencies between the 

SW and HW features. 

 

However, these implicit interdependences fall short of responding the needs to 

manage the boundaries drawn by NFRs. As mentioned in Section 3.1 Non-

functional Requirements, it is the non-functional concerns that define physical 

constraints on functional features. Therefore there should exist an extensive 

mechanism to elicit additional characteristics inherent in functional features that 

would have the expressive power in terms of quality concerns. As long as these 

characteristics are revealed and utilized systematically, non-functional (or quality) 

concerns can be managed efficiently. 

 

At this place, the elementary attributes mined from functional features are the best 

candidates to be used for management of quality concerns. It must be noted that 

elementary attributes are utilized in a similar way with the establishment of 

implicit interdependencies realized in Section 4.3.2.2 Implicit Interdependencies.  
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In the context of MMLS domain, HW components feature group is the most 

suitable instance to reveal elementary attributes, as they can be regarded as 

sources of physical constraints due to their concrete nature. Besides they 

encapsulate abundant of characteristics possessing quantifiable characteristics 

(i.e. memory capacity of data storage units). 

 

In the light of discussions provided above, four basic types of quantitative QAs 

(alias the elementary attributes) are defined in the context of Hardware 

Components feature group of MMLS domain, namely, capacity, cost, MTBF 

(Mean Time Between Failures) and DRT (Data Refreshment Time). 

 

Capacity stands for the numerical value which expresses the memory storage 

capability of data storage units contained in MMLS domain. Capacity is 

meaningful for the Data Storage Units feature group. As demonstrated in Figure 

4.11, in each variant of Data Storage Units feature group, capacity attribute is 

expressed in terms of GigaByte (GB) unit and is modeled in integer domain as the 

same type of parameter within each functional feature.  

 

As all hardware components utilized in MMLS domain are COTS units, they all 

have a market price to be managed efficiently especially for the cases that overall 

production cost of the system is of concern. All the functional features taking part 

in HW components feature group contain cost as one of their elementary attribute 

and is expressed in terms of dollars ($). This attribute is modeled in integer 

domain as the same type of parameter throughout the features it is used. 

 

MTBF is the numerical value representing the average time between the failures 

of hardware components. This attribute is a good sign of reliability and 

availability of the physical components thereby it is utilized by all features of HW 

components feature group. MTBF values for the features are expressed in terms 

of hours (hrs) and are modeled in integer domain as the same type of parameter 

within each functional feature. As will be clarified in Section 4.4.2.2 Compound 
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Attribute Elicitation, for the ease of computation in some exclusive cases when 

summation of more than one attribute is necessary, the features are decorated with 

the inverse of MTBF parameter (i.e. [(MTBF)
-1

]). 

 

DRT is the numerical value to express the elapsed time to transmit the refreshed 

data through the interfaces of HW components. It is expressed in terms of 

milisecond (ms) unit. This attribute is an indicator for the data transmission 

performance of HW components. DRT is modeled in the context of three HW 

components (namely the sensor units, display units and data storage units), those 

of which involve data transmission facilities. As referenced in Figure 4.10 below, 

a single type of parameter (i.e. DRT) is defined to represent the transmission 

performance of each of these HW components. For the transmission between the 

sensor and the processor, data flow is simplex and has the direction from the 

sensor to processor. Therefore DRT parameter represented for this interface is 

dependent on the type of sensor. This is the reason why this parameter is defined 

as the elementary attribute of sensor units. 

 

In a similar fashion, the same parameter is used to model the data transmission 

performance for the interface between the processor and the display units where 

the data flow is simplex and has the direction from processor to display units. 

Note that the value of DRT is dependent on the type of display. Therefore, this 

attribute is modeled as a part of the features in Displays feature group. 

 

Different from the others, data flow between processor and the data storage units 

is duplex. Nevertheless DRT is the parameter to describe the data transmission 

performance of this interface and is dependent on the type of data storage unit 

utilized. 
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It must be noted with reference to Figure 4.10 below that Sensors.DRT signifies 

overall DRT measure for sensor units defined in any of product configuration 

they are included in. The same is valid for the parameters of other HW 

components such as Displays.DRT and Data_Storage_Units.DRT.  

 

 

Figure 4.10: Hardware Interaction Based on Data Transmission Rates 

 

With reference to Figure 4.10 above, it must also be noted that, first, the measured 

data provided from sensors is saved to database by means of Processor unit. 

Afterwards, this data is read from the database again to be finally fed to display 

units for presentation purposes under the control of Processor unit again. This is 

the typical route followed by every measured data sourced by sensor units. 

 

Following the introductory discussion provided so far regarding the types and 

usage of the parameters to be utilized in the scope of the complementary quality 

modeling practice of MMLS domain, the rest of this section is dedicated to the 

details of the implementation. It must be noted that the numbers assigned to the 

elementary attributes of the features are common and tentative values based on 

the information collected from the market products. Besides, as presented in a 

number of instances through the rest of this section, it should be stated that the 

graphical notation adopted for the illustration of feature diagrams is inspired from 

the studies of Streitferdt et al. [42] and Benavides et al. [13].  

 

As demonstrated in Figure 4.11 below, all four types of elementary attributes are 

utilized in the context of Data Storage Units. This is a good instance to observe 

how a decision among different feature alternatives leads to several trade-offs 
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among different aspects. It should be noted that the cost of the component is not 

directly proportional with the level of the capacity offered. It is reasonable to 

establish a proportionality relation between the cost and DRT or cost and MTBF 

parameters. Since HDDs include mechanical parts such as arms and spinning 

platters whereas SSDs includes none, HDDs are more susceptible to aging in the 

same operative conditions. This leads to a high level of MTBF values for SSDs 

compared to HDDs. As SSDs have the capability to realize parallel read and write 

operations on several partitions of the drive while HDDs can not, DRT assigned 

to SSDs are far lower than that of HDDs. Due to these reasons, cost is more likely 

to be related with the level of the technology involved in the component such that 

SSDs are state of the art types in data storage products. It can be concluded that 

performance comes with the higher cost. Furthermore as a different instance of 

trade-off regarding the outcome of a selection among the alternatives, HDDs offer 

higher level of capacity with higher level of cost whereas SDDs offer higher level 

of reliability and data transmission performance with higher cost. 

 

 

Figure 4.11: Extended Feature Diagram of Data Storage Units 

 

As demonstrated in Figure 4.12 below, three types of elementary attributes are 

utilized to model the quantitative quality characteristics of the sensors, namely, 

cost, MTBF and DRT. It is not reasonable to derive proportionality relations these 

attributes since these characteristics are comparatively more typical (specific to 

type of products) with respect to other types of HW components. 
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Figure 4.12: Extended Feature Diagram of Sensors 

 

As referenced in Figure 4.13 below, similar to the case for sensors, three types of 

elementary attributes, namely cost, MTBF and DRT are utilized. Typical values 

assigned to cost parameter indicate that Monitor Keyboard Drawer possesses 

almost twice as much price as the LCD display. This is a usual situation 

concerning the user-friendly facilities (i.e. interaction with the user) offered by 

Monitor Keyboard Drawer which is not valid for LCD Display. As is the case in 

Data Storage Units, once again, higher level of services for user satisfaction 

comes along with higher costs. Again there exists a trade-off between the cost and 

MTBF as is the case for Data Storage Unit alternatives. But this time there exists 

an inverse proportionality between them such that LCD Display with higher 

MTBF value is offered with lower cost. The reason why LCD owns twice as 

much MTBF value as Monitor Keyboard Drawer is possibly due to the 

comparatively more number of components are involved in Monitor Keyboard 

Drawer. It should be noted that, based on the basic formula of overall MTBF 

calculation, increasing the number of components with the same MTBF values 

even reduces the total MTBF of all comprised components. However higher cost 

compensates for the need of higher data transmission performance by means of its 

sophisticated configuration.  
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Figure 4.13: Extended Feature Diagram of Displays 

 

In reference to Figure 4.14, Laser Printers offer slightly higher levels of reliability 

with respect to Inkjet Printers which requires comparatively higher values for 

cost. 

 

 

Figure 4.14: Extended Feature Diagram of Printer 

 

4.4.2.2. Compound Attribute Elicitation 

 

In the previous section, decoration of leaf features with elementary attributes has 

been realized. This section is dedicated to explain how the owner of these leaf 

features, namely the parent features (i.e. feature groups) are decorated with 

quantitative QAs which will be named as compound attributes from now on. 
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Compound attributes owned by the feature groups are different from elementary 

attributes as they can not be represented by a single parameter on their own. They 

are dependent on the feature configuration that would be selected for any product 

instance. So as to represent any selectable feature configuration, they should be in 

the form of flexible aggregative expressions. In order to cope with the numerical 

values represented by the parameters, these aggregative expressions should be in 

the form of suitable mathematical functions.   

 

These mathematical functions are based on the type of the parameters they utilize. 

As mentioned before, each type of the parameter is based on a specific quality 

concern (i.e. MTBF parameter is based on reliability concern). Therefore these 

mathematical functions possess the same type of quality concern with their 

parameters. 

 

Before specifying the details regarding the aggregative functions for compound 

attributes, an exceptional case regarding the utilization of elementary attribute 

values into compound attributes has to be clarified. The exceptional case is 

caused by the absence of an elementary attribute in the compound attribute 

expression. This is due to the fact that the owner of the elementary attribute 

(namely the leaf feature) is not included in the selected product configuration. 

This brings the need of definition for null value of zero for the elementary 

attribute of a feature which is not included in the configuration. The 

representative of these features (namely the elementary attributes) in the 

compound attribute expression takes the null value of zero. 

 

The aggregation function adopted to express compound attribute for cost is based 

on the summation of its parameters, namely the elementary attributes.  

 

 9....321  CostCostCostCostaggregated  
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Similarly, aggregation function owned by compound attribute of capacity is based 

on summation operation.  

 

 10...321  CapacityCapacityCapacityCapacityaggregated  

Calculation of compound attribute for MTBF is based on its well-known typical 

formula as given in (11) below; 

 

 11
...

111
1

321




MTBFMTBFMTBF

MTBFaggregated
 

 

It must be noted that, as can be observed in Figure 4.11, Figure 4.12, Figure 4.13 

and Figure 4.14, the elementary attribute of [(MTBF)-1] is utilized instead of 

MTBF value itself. This is a precaution for the cases that a feature is not included 

in the configuration and its representative contributes to the compound attribute 

expression with null value. If it was directly imported in the expression of (11), 

the total MTBF would come out to be 0, as the denominator of the equation 

diverges to infinity. This yields to completely wrong and useless results. 

However, in such cases, [(MTBF)-1] takes the null value and the total MTBF 

calculation is not effected from this exceptional case. 

 

The assignment of null values to elementary attributes due to non-existence of 

their owner feature is valid for all types of compound attribute calculations.  

 

Different from aforementioned compound attribute expressions, DRT for 

compound attributes is based on a different calculation procedure. The rationale 

behind the calculation of this attribute expression is based on the minimum rule 

such that the pace of data transmission between component groups is perceived to 

be as fast as the slowest one, as inspired from the famous phrase “the chain is as 

strong as the weakest ring”.  For instance, the performance of the sensors in a 

sample product is defined with respect to the one with the minimum performance. 
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Similarly, considering the display units, the speed of data transmission on the line 

between the processor and display unit can be specified by filtering out the one 

with the lowest speed. For the case of DRT attributes, higher values of DRT 

imply higher values of delay are needed to feed the line with the refreshed data. 

Therefore, we can conclude that higher DRT means lower data transmission 

performance. This is the reason why MAX operand is utilized on the way to 

specify the DRT with lowest data transmission performance, as referenced in 

expression (12) below. 

 

 12...),,( 321 DRTDRTDRTMAXDRTaggregated   

 

Same type of parameters belonged to different features (as demonstrated in 

Figure 4.11, Figure 4.12, Figure 4.13 and Figure 4.14) are aggregated with 

appropriate functions given in (9), (10), (11) and (12) to build up compound 

attributes.  

 

Considering the whole system, as referenced in Figure 4.15 below, expressions to 

reflect the overall quantitative quality characteristics of the system has to be 

provided. For the sake of convenience of notation, these attributes are designated 

with overall phrases. 

 

The compound attributes of Overall Capacity, Overall Cost and Overall MTBF 

are expressed with the same formulas given in (9), (10) and (11). From this point 

of view, they can be regarded as function of functions. DRT is aggregated based 

on a formula different from the one given in (12). With reference to Figure 4.10, 

considering the whole system, the trip of a typical measured data from source 

(sensors) to target (display units) is as follows: transmission between sensor and 

processor is directional from sensors to processor; it is followed by bi-directional 

(i.e. first the data is written to database, then it is read) transmission between 

processor and data storage units; finally it ends with one-way transmission 

between processor and display units. All these transmissions are realized in a 
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consecutive order such that, similar like estimating total latency through 

transmission lines, overall DRT value can be aggregated by summing DRT values  

assigned to each transmission line, as referenced in expression (13) below. It 

should be noted that, DRT attribute belonged to data storage unit contributes to 

expression with twice of its value due to bi-directional characteristic of the 

transmission line. 

 

 13).__(2.. DRTUnitsStorageDataxDRTDisplaysDRTSensorsDRTOverall   

 

Besides, this is the final step of 1st phase since overall aggregated values for 

specific quality concerns are extracted from their owner features. As explained in 

the next sections of this chapter, these overall values will be utilized to provide 

reasoning about the quality concerns. 

 

 

Figure 4.15: Extended Feature Diagram of Hardware Components 

 

With reference to Figure 4.15 above, it should be noted that the parameters given 

in the “Attribute Value” column of each feature group is dependent on the 

selection of the feature combination from each respective feature groups. For 

instance, Sensors.Cost value has different values for different feature 

configurations specified from Sensors feature group. Besides, different from the 

case in elementary attributes, the parameters in “Attribute Value” column can 

never take null values since the feature group they are belonged to possesses at 

least one feature included in any sample of product configuration. This is the 
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reason why MTBF parameter is assigned to feature groups as itself instead of its 

inverse. 

 

4.4.3. 2
nd

 Phase: Qualitative Quality Attribute (NFR Goal) Analysis 

 

In the scope of this phase, departing from the knowledge and inspiration sourced 

by the types of quantitative QAs; aims, concerns and purposes of the stakeholders 

(i.e. system developers or users) are analyzed. On the way to achieve this 

analysis, NFR goal model is adopted. 

The structure adopted for the construction of the NFR goal model is mainly 

inspired from the study of Peng et al. [10] in addition to its origins as the previous 

studies performed by Chung et al. [19] and Cysneiros and Leite [43].  

 

The basic structure of the NFR model is as follows. Each NFR goal is 

decomposed into three levels as low, medium and high. Introducing the 

decomposition of NFR goals into several levels is favorable in terms of modeling 

qualitative quality concerns where quantification on quality concerns is not 

possible, advantageous or meaningful.  

 

Each of these levels are decorated with appropriate operationalizations to be 

treated as selectable features since they are some kind of functional attribute 

projections of non-functional concerns. The levels and thereby the 

operationalizations are modeled as alternative to each other meaning that only one 

level is allowed to be selected for each sample of product configuration. This 

provides several benefits as follows. Modeling with at least three alternatives 

improves overall variability performance of the whole model. Moreover, thanks 

to this alternative relation among the various levels, different combinations of 

trade-off selections among NFR goals become available (i.e. an instance of 

product with Low Resource Utilization, Medium Accuracy, High Availability and 

Low Cost of Ownership). 
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The types of quantitative quality aspects revealed in the previous section specify 

the starting point to seek the probable aims that the system should achieve. In the 

scope of the MMLS domain, this brings the need for definition of four types of 

NFR goals, namely Resource Allocation, Accuracy, Availability and Cost of 

Ownership. As referenced in Figure 4.16 below, these NFR goals can be 

described as root goals since they are modeled as mandatory feature groups at the 

uppermost level of the initial feature model. The reason why these root goals are 

modeled as mandatory can be specified as follows. NFR goals are different from 

the functional features due to their vague nature such that a functional feature can 

be clearly defined to be involved or not in a product configuration. But the 

existence or non-existence of goals originated from non-functional (or quality) 

concerns can not be defined exactly such that any type of quality concern may 

take part in any configuration to some extend.  However, their contribution in 

terms of various levels can be utilized in product configurations. Below a detailed 

discussion on the origins of these NFR goals are provided together with their 

operationalizations assigned to each level. 

 

 

Figure 4.16: NFR Goal Integrated Feature Diagram of MMLS Domain – 

Uppermost Level 

 

Resource Utilization is one of the vital indicators of Efficiency of a software 

product. It is defined as the capability to provide appropriate performance, 

relative to the amount of resources used, under specified conditions. Resource 

Utilization is defined as the capability of the same software product to manage 

and utilize these relative amounts of resources as the software performs its 

function. [44] In the light of these quality model definitions stated in 
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ISO/IEC9126 standard, the levels of Resource Utilization NFR goal is prescribed 

as depicted in Figure 4.17 below. With reference to Figure 4.17, as the level of 

the goal is escalated, the capability offered by the system in terms of storing and 

managing higher amounts of data is improved as well. For instance, inclusion of 

low level Resource Utilization allows the software to record only the raw data 

without attachments of time and source information. However, a high level of 

Resource Utilization means that data stored to data storage units includes the 

recording date/time in addition to the source information of the raw data. 

Naturally, this high level of resource management comes with its toll such that 

higher amounts of data storage units are needed. 

 

 

Figure 4.17: NFR Graph for Resource Utilization 

 

As demonstrated in Table 4.2 below, low and medium level operationalizations of 

Resource Utilization need further implicit interdependencies. Log Operational 

Information feature modeled under System Log Management feature group 

excludes the low and medium level operationalizations of Resource Utilization 

NFR goal. This is due to the fact that Log Operational Information feature 

requires both the time and source information to perform its basic missions of 

keeping track of log-in – log-out information, changes in the status of system SW 

and measured data exchanges between sensors and external systems. 
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Table 4.2: Implicit Interdependencies Between Resource Utilization NFR 

Goal and System Log Management Feature Group 

Source Feature Dependency Relationship Target Feature 

Log Operational Information 
Excludes Record Raw Data 

Excludes Record Data with Time Stamps 

 

Being one of the significant factors of Functionality concern, Accuracy is defined 

as the capability of a software product to present correct results with required 

precision. [44] Precision for the perceived results is directly proportional with the 

refreshment frequency of the data provided to indicator units through the 

appropriate interfaces. In the scope of the MMLS domain, the user interface for 

perception of accuracy and precision is sustained by means of display units. In 

addition to display units, different type of the sensors and data storage units 

utilized in the product configuration are the other actors effecting the data 

refreshment frequency thereby the level of accuracy as well. In the domain of 

display units, the accuracy of the presented data is specified as the sensitivity. 

Therefore, with the assumption of the same set of correct data transmitted with 

different refresh rates causes different perception levels of sensitivity; as NFR 

goal of Accuracy, three levels of sensitivity with percentages of 10, 5 and 1 are 

offered for the low, medium and high levels of accuracy respectively. 

 

 

Figure 4.18: NFR Graph for Accuracy 
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As an important parameter of Reliability concern, Availability is the capability of 

a software product which ensures the satisfactory performance of a required 

function during a specified duration of time. [44] On the way to specify a system 

in terms of its availability against probable failures, the failure rates of its 

constituents are the determinants for failure avoidance capability. Being 

encouraged from this variable capability depending on different instances of 

MMLS configurations, three levels of availability operationalizations are offered. 

These levels are classified on the basis of different durations needed for periodical 

maintenance of the system. For example, an instance of MMLS with low overall 

MTBF value is said to possess low level of failure avoidance leading to low level 

of availability. This brings the need of periodic maintenance in a more frequent 

fashion. Selection of low level Availability offers (and requires at the same time) 

four times of periodic maintenance per year whereas high level offers/requires 

once a year. 

 

 

Figure 4.19: NFR Graph for Availability 

 

Different from other NFR goals mentioned so far, Cost of Ownership is based on 

a different rationale. Cost of Ownership quality is inspired from a financial 

estimate named as Total Cost of Ownership (TCO). For computer systems, it is 

defined as “the total of direct capital investment in hardware and software 

including indirect costs of installation, training, repairs, downtime, technical 
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support, and upgrading.” [45] It must be noted that resources provided especially 

for training, repairment and technical support required by the system are vital in 

terms of long-term system availability throughout its life-cycle. In the scope of 

the MMLS domain, direct capital investment in hardware is modeled in the 

context of quantitative quality modeling practice provided in Section 4.4.2 as the 

1
st
 phase of Complementary Quality Modeling approach. Being the 

operationalizations assigned to different levels of NFR goal named Cost of 

Ownership, different combinations of indirect costs for training, technical support 

and repairs (in the form of warranty and spare-parts) are offered to the user of the 

system. Roughly speaking, components with higher MTBF values possess higher 

levels of costs meaning that higher costs during the production of the system 

bring better availability in the long-term. Therefore, as referenced in Figure 4.20 

below, if the cost of ownership is selected to be high for any instance of product, 

technical supports of warranty and spare parts are not offered. But a system with 

low Cost of Ownership is more vulnerable to failures. From the user‟s point of 

view, this leads to the need of technical support in the form of 2-year warranty in 

addition to the delivery of spare parts that are replaceable by end-user in cases of 

failures.   

 

 

Figure 4.20: NFR Graph for Cost of Ownership 
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It should be noted that, notation as inspired from [10] for designation of 

operationalizations is as follows: Dashed circles as provided in Figure 4.17 

represent dynamic operationalizations, those of which requires an action to be 

realized. However, solid circles with instances in Figure 4.18, Figure 4.19 and 

Figure 4.20 stand for static operationalizations meaning a restriction on the 

system capability if utilized in system configuration. 

 

4.4.4. 3
rd

 Phase: Construction of the Complementary Quality Model 

 

In this phase, in its basic specification, the connections between quantitative and 

qualitative attributes, elicited in 1
st
 and 2

nd
 phases respectively, are established. 

As demonstrated in Table 4.3, each type of quantitative QA has its counterpart in 

the form of qualitative QA.  

 

Table 4.3: Mapping Between Quantitative and Qualitative QAs 

Type of Quantitative 

Quality Attribute  

(Compound Attributes) 

Type of Qualitative 

Quality Attribute  

(NFR goals) 

Affected Quality 

Modeling Concern 

Overall Cost Cost of Ownership 
Efficiency 

Overall Capacity Resource Utilization 

Overall MTBF Availability Reliability  

Overall DRT Accuracy Functionality 

 

The connections between qualitative and quantitative QAs are to be realized in 

the form of excludes dependencies. These dependencies are bi-directional 

relationships defined between the operationalizations (belonged to different levels 

of NFR goals) and Hardware Components feature group. The rules and conditions 

for these exclude relationships are defined with respect to compound attribute 

values assigned to Hardware Components root node. 

 

As demonstrated in Table 4.4, excludes relationships between Hardware 

Components and Cost of Ownership levels are realized depending on the values 

owned by Overall Cost compound attribute. The same dependency rationale is 
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adopted for Resource Utilization levels through Overall Capacity attribute values, 

for Availability levels through Overall MTBF values and finally for Accuracy 

levels through Overall DRT values. 

 

The meaning and purpose of all these relations become apparent when it is time to 

select any one of the available levels of the NFR goals as part of product 

configuration. As mentioned below, the benefit of selection out of these levels is 

two fold: 

 Each of the levels assigned to four different types of NFR-goals serves 

different operationalizations available to selection for their contribution to 

product configuration. This is beneficial in the sense that overall variability of 

the feature model is enhanced by these functional domain projections of basic 

quality concerns. In other words, non-functional variability of the whole 

model is enhanced. 

 More importantly, selections among various levels of NFR-goals (possibly to 

be realized during AE phase) has a filtering effect over the feature alternatives 

available under Hardware Components feature group. This filtering operation, 

which is realized by excludes relationships, limits the available feature 

alternatives to be selected as the variants and sub-variants of Hardware 

Components variation point. By means of these relationships defined, the 

maturity of the feature model is enhanced as it provides more realistic feature 

combinations for available product configurations. Further discussion on this 

enhancement is provided in the scope of Chapter 5. 

 

The rationale behind the rules for excludes relationships are based on 

classification of numerical ranges owned by each of the compound attributes. 

Each level of NFR-goals are mapped to a compliant range of values specified for 

their counterpart compound attribute. For instance, as demonstrated in Table 4.4 

below, Low level Cost of Ownership is compliant to the range of Overall Cost 

values between 4100 and 7825 $. This means, if Low Cost of Ownership is 

included in the product configuration, by means of excludes relationships, only 
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the product configurations compliant with that specified range of overall cost 

values are available for selection. 

 

Table 4.4: Traceability Between Range of Quantitative QA Values and 

Levels of Qualitative QAs 

Quantitative QAs (Compound Attributes) Qualitative QAs (NFR goals) 

Type of 

Quantitative 

QA 

Range of Values for 

Quantitative QAs 

Level of  

Qualitative QA 

Type of  

Qualitative 

QA 

Overall Cost 

($) 

4100 < Costoverall < 7825 Low Cost of 

Ownership 7825 < Costoverall < 10725 Medium 

10725 < Costoverall < 15600 High 

Overall 

Capacity 

(GB) 

Capacityoverall = 30 Low Resource 

Utilization Capacityoverall = 128 Medium 

Capacityoverall = 160 High 

Overall 

MTBF 

(Hours) 

6200 < MTBFoverall < 8100 Low Availability 

8100 < MTBFoverall < 9500 Medium 

9500 < MTBFoverall < 14000 High 

Overall DRT 

(ms) 

1050 < DRToverall < 1080 Low Accuracy 

550,1 < DRToverall <1050 Medium 

120 < DRToverall <550,1 High 

 

For further clarification, all the exclude relationships defined between the levels 

and Hardware Components feature group are provided in Table 4.5 below. For 

instance, High Cost of Ownership excludes a feature configuration if the 

condition „Costoverall < 10725‟ is satisfied. Similarly, Medium Cost of Ownership 

excludes any feature configuration that satisfies the conditions of either „4100 < 

Costoverall < 7825‟ or „10725 < Costoverall < 15600‟. Obviously, the limits suggested 

here are all tentative, and may be adjusted by domain experts as necessary. The 

aim here has been to separate Qualitative QA levels uniformly into regions with 

respect to the number of available configurations derived from Hardware 

Components feature group. This separation rationale is utilized in the excludes 

relationships as shown below in Table 4.5.   
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Table 4.5: Specification of Excludes Relationships 

NFR Goal Levels Rules for Exclude Relationships 

Cost of 

Ownership 

Low 7825 < Costoverall 

Medium 4100 < Costoverall < 7825 OR  

10725 < Costoverall < 15600 

High Costoverall < 10725 

Resource 

Utilization 

Low Capacityoverall = 128 OR 

Capacityoverall = 160 

Medium Capacityoverall = 30 OR 

Capacityoverall = 160 

High Capacityoverall = 30 OR 

Capacityoverall = 128 

Availability Low 8100< MTBFoverall 

Medium 6200 < MTBFoverall < 8100 OR 

9500 <  MTBFoverall <14000 

High MTBFoverall < 9500 

Accuracy Low DRToverall < 1050 

Medium 120 < DRToverall < 550,1 OR 

1050 < DRToverall < 1080 

High 550,1 < DRToverall  

 

Table 4.6 below demonstrates some available feature configurations to be utilized 

in product configurations associated with some instances of Qualitative QA level 

configurations. 
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Table 4.6: Effect of Qualitative QAs on Functional Feature Configurations 

Qualitative QA Configurations Functional Feature 

Configurations Filtered 

Out from Hardware 

Components Feature 

Group 

Cost of 

Ownership 

Resource 

Utilization 

Availability Accuracy 

LOW HIGH MEDIUM MEDIUM {AHTS, Type-C HDD, 

Monitor Keyboard Drawer, 

Inkjet Printer},  

{APS, Type-C HDD, LCD 

Display, Laser Printer} 

LOW MEDIUM HIGH LOW {AHTS, Type-B SSD, LCD 

Display, Inkjet Printer} 

MEDIUM HIGH LOW MEDIUM {AHTS, APS, Type-C HDD, 

Monitor Keyboard Drawer, 

Inkjet Printer},  

{ AHTS, APS, Type-C HDD, 

Monitor Keyboard Drawer, 

Laser Printer},  

{WSDS, AHTS, Type-C 

HDD, LCD Display, Laser 

Printer} 

HIGH LOW MEDIUM HIGH {WSDS, APS, Type-A SSD, 

Monitor Keyboard Drawer, 

Laser Printer} 

LOW LOW LOW LOW {AHTS, APS, Type-A SSD, 

LCD Display, Laser Printer} 

MEDIUM MEDIUM MEDIUM MEDIUM NO AVAILABLE PRODUCT 

CONFIGURATION 

HIGH HIGH HIGH HIGH NO AVAILABLE PRODUCT 

CONFIGURATION 

 

It must be noted that for some combinations of Qualitative QAs, the 

Complementary Quality Attribute Model comes up with no available product 

configuration. This is due to the trade-off relationship between different types of 
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Qualitative QAs based on the selections among their respective levels. For 

instance, as referenced in Table 4.6 above, selection of High level for all 

Qualitative QAs leads to no available product configuration. This is an evidence 

for the idea that High level of Cost of Ownership does not guarantee the high 

levels for other Qualitative QAs. Possible causes of this situation can be listed as 

follows: 

Type-B SSD can offer Medium level of Resource Utilization with High level of 

Cost of Ownership such that high level of overall cost compensates for high level 

of Availability, not Resource Utilization. Besides, High level of Cost of 

Ownership ensures the highest number of features available for selection out of 

Hardware Components feature group (i.e. all types of sensors can be included in a 

product configuration if and only if  High Cost of Ownership is included in the 

product configuration). But this has a diminishing effect on overall MTBF value 

leading to Low Availability (i.e. configurations of High Cost of Ownership with 

all sensor types are all limited to Low Availability selection). 
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CHAPTER 5 

 

 

5. EVALUATION OF THE COMPLEMENTARY QUALITY 

MODELING APPROACH 

 

 

 

 

5.1. Introduction 

 

In this chapter, most of the criteria introduced in Chapter-2 find their meaning as 

the evaluations are realized with respect to the relative feature model assets that 

are subject of comparison. Results of these criteria are first obtained for the initial 

functional feature model, it is followed by collection of same type of results from 

the same model extended with qualitative QAs. Finally, acquisition of evaluation 

data is completed by gathering the results of the same model extended with 

Complementary Quality Modeling approach.   

 

In the course of presenting comparative discussions on several evaluation criteria, 

for the sake of convenience of expressions for the feature models:  

 Initial Functional Feature Model is denoted as Model-1; 

 Functional Feature Model extended with Qualitative QAs (NFR Goals) is 

denoted as Model-2; 

 Functional Feature Model extended with Complementary Quality Modeling 

Approach is denoted as Model-3. 

 

5.2. Evaluation of Complementary Quality Modeling Approach 

 

On the way to provide a comparative assessment and analysis related with the 

benefits and drawbacks of the proposed work, the results for the criteria of 
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FIPAP, VF versus ECR, RPER, commonality and DoO are presented in following 

sub-sections with supportive ideas relevant to their contribution to Non-functional 

Variability Management. The criterion of homogeneity is not subject to 

evaluation due to the non-existence of a unique feature in any combination of 

available products. 

 

In the scope of this chapter, the aim is to assess the feature models with respect to 

quantifiable and comparable criteria. A quality evaluation of the developed 

software products is not intended. For this reason, during the selection and 

collection of evaluation criteria, the metrics are selected in a way that their 

parameters (i.e. the number of features, number of products, number of 

relationships between features etc.) can easily be collected from the respective 

feature models of comparison. By this way, the subjective effects of criteria are 

aimed to be suppressed. 

 

As mentioned in Chapter-4, during definition and elicitation of NFR goals, 

ISO/IEC9126 standard is used as reference and inspiration which consists of 

many software quality assessment metrics as well. But these metrics deal directly 

with the software product itself, not the model of concern. That is why the metrics 

utilized in the scope of comparative evaluation of feature models are identified 

exclusive of this standard. 

 

Besides, the ISO/IEC9126 standard simply aims to reason and estimate the 

impacts of quality concerns on a software product whose development process is 

completed, with components ready for testing. However what is aimed in this 

study is to evaluate the contribution of Complementary Quality Modeling 

approach in the scope of Domain Analysis phase with respect to general 

quantifiable SPL-oriented metrics. 
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5.2.1. Evaluation in terms of FIPAP Criterion 

 

As referenced in Section 2.3.4.7, FIPAP, originally defined by Kasikci [38],  is a 

significant indicator for the feature interaction problem avoidance capability of a 

model. FIPAP basically measures the ability of a model in exploring and 

exposing the possibility of encountering feature interaction problems which 

originate from lack of necessary exclude relationships.  

 

As mentioned earlier, an increase in the number of features involved in a model 

leads to an increase in the number of feature interaction problems. Concerning the 

implementation of Complementary Quality Modeling approach, first, Model-2 is 

derived from Model-1 by appending new features (a.k.a operationalizations) as 

the extensions of qualitative quality modeling concerns. However, it is obvious 

that Model-2 falls short of responding to the needs for expressions required for 

feature interaction problems. As mentioned earlier, the features modeled in the 

context of Hardware Components feature group define certain restrictions on the 

quality concerns of a domain. As long as these restrictions are defined 

appropriately in terms of proper quality modeling abstractions (qualitative quality 

concerns in the case of Complementary Quality Modeling Approach), it is 

inevitable to define further exclude relationships between the functional features 

of Hardware Components feature group and different levels of qualitative quality 

modeling aspects. The reason why additional exclude relationships are required 

lies beneath the aim to get rid of feature interaction problems inherent in the 

model. At this point, it must be noted that Complementary Quality Modeling 

approach is said to be utilized for the sake of resolving these feature interaction 

problems.  

 

In order to represent the feature interaction capability of Complementary Quality 

Modeling approach, relative FIPAP values of Model-2 and Model-3 with respect 

to Model-1 are calculated by means of equation (8) given in Section 2.3.4.7. 

Assuming En1, En2 and En3 express the number of exclude relationships defined 
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in the scope of Model-1, Model-2 and Model-3 respectively, En1 turns out to be 5, 

En2 is 7 and En3 is 19. By utilizing these values in equation (8), relative FIPAP of 

Model-1 with respect to Model-2 is calculated as %40 whereas relative FIPAP of 

Model-1 with respect to Model-3 comes out to be %280. This is an indication of 

the fact that the Complementary Quality Modeling approach drastically enhances 

the feature interaction problem avoidance capability of the initial model. Besides, 

the proposed approach is said to be much more effective than Feature Oriented 

NFR analysis on the way to reveal further exclusion relationships implicitly 

included in qualitative quality modeling aspects. 

 

5.2.2. Evaluation with respect to the Relation Between VF and ECR Criteria 

 

As an extension on FIPAP criterion, ECR, originally defined by Mendonca et.al. 

[37], counts the requires relationships in addition to exclude relationships unlike 

FIPAP. VF is the indicator for the variability capability of a feature model. In the 

scope of evaluation of MMLS feature model extended with Complementary 

Quality Modeling approach, ECR is utilized for the comparative assessment of 

each model concerning its trade-off relationship with VF.  

 

The trade-off relationship between the respective values of ECR and VF is based 

on usage density of structural and implicit interdependencies with respect to each 

other. Structural interdependencies play the role of enhancing the variability of a 

model whereas implicit ones are needed to keep this growth under control. 

Therefore a comparative increase in the usage of structural interdependencies 

leads to an increase in VF with a decrease in ECR, whereas an increase in implicit 

interdependencies causes an increase in ECR with a decrease in VF. 

 

In order to manage this trade-off relationship efficiently, there should exist a 

balance between the respective values of ECR and VF sustained by a two way 

feedback. Sustainability of this balance is necessary for a model, especially if 

controlled growth in variability is of concern. An enhancement in the variability 
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of a feature model is desired which can be easily realized by appending new 

features to the model. However, without paying attention to the interplay between 

the features, the feature model can easily slip out of control in terms of its ability 

to represent more realistic products. What is implied by more realistic products is 

that the combination of features included in a product should not obstruct overall 

functionality of the system due to feature interaction problems. Furthermore, 

some features need the presence of one another, therefore more realistic products 

should definitely include all these probable feature pairs possessing such kinds of 

require or exclude relationships. 

 

On the way to achieve the goal of ensuring more realistic products from a feature 

model, a decrease in VF is required to be compensated by an increase in ECR.  

 

In the light of these discussions, the parameters calculated for evaluation of VF 

and ECR are presented in Table 5.1 below, with respect to each model. A 

decremental trend in VF is observed as the Model-1 is evolved to Model-3 

through Model-2. As for respective ECR values,Model-2 has its VF value 

decreased but can not benefit from this decrease in return for an increase in the 

definition of extra constraints. On the contrary, Model-3 compensates for this 

shortage caused by Model-2, by providing an enhancement in discovering 

additionally required relationships between features and QAs which are 

originated from quality aspects. Model-3 efficiently manages the trade-off 

relationship between VF and ECR by recovering the lack of feature interaction 

problem exploration capability of Model-2. In brief, Model-3 achieves the 

demand for sustaining feature relationships in required levels on the way to 

acquire more realistic products. 
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Table 5.1: Calculated Parameters of VF and ECR Criteria as per Model 

Performance Metric Model-1 Model-2 Model-3 

Number of Products 

[NPT] 
12 * 10

6
 519 * 10

6
 47 * 10

6
 

Number of Products 

(without interdependencies) 

[NPWOI] 

2
42

 2
54

 2
54

 

Variability Factor  (VF) [NPT/NPWOI] 2.6 * 10
-6

 0.03 * 10
-6

 0.003 * 10
-6

 

Number of Features involved in cross-tree 

constraints  

[NFCTC] 

25 28 38 

Total Number of Features [NFT] 42 54 54 

Extra Constraint Representativeness (ECR) 

[NFCTC/ NFT] 
0.6 0.5 0.7 

 

5.2.3. Evaluation in terms of Commonality Criterion 

 

As mentioned in Section 2.3.4.3, commonality is a substantial indicator of 

representativeness capability of any feature in terms of its contribution to possible 

product configurations. In other words, as the number of products in which a 

specific feature takes part increases, the respective commonality value of that 

feature increases as well. 

 

The commonality values of all selectable features (i.e. leaf nodes of the feature 

model) with respect to each of three models are presented in Table 5.2 below. 

Model 2 enhances Model 1 with the fundamental contribution of the present 

study, namely feature oriented analysis of NFR goals. Features common to Model 

1 and Model 2 are almost identical, except for the System Management feature 

group due to the specific relations of these features with the NFR goals in the 

analyzed domain.  
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Table 5.2: Calculated Parameters of Commonality as per Model 

Feature 

Group 
Feature Model-1 Model-2 Model-3 

S
y
st

em
 M

a
n

a
g
em

en
t HW-based Authentication 0.20 0.20 0.20 

PW Update Reminder 0.40 0.40 0.40 

Save Master-key 0.40 0.40 0.40 

Log System Setup Information 0.67 0.80 0.80 

Log Operational Information 0.67 0.40 0.40 

Unit – Level 0.28 0.28 0.43 

Module – Level 0.73 0.73 0.57 

S
y
st

em
 S

et
u

p
 Set/Change Data Recording Frequency 0.52 0.52 0.51 

Set/Change Data Transmission Frequency 0.52 0.52 0.51 

1280 x 1024 0.53 0.53 0.56 

1024 x 768 0.53 0.53 0.56 

Set Sensor Parameters 0.46 0.46 0.59 

S
y
st

em
 M

a
in

te
n

a
n

ce
 

Start-up Test 0.50 0.50 0.51 

On-line Test 0.50 0.50 0.51 

Off-line Test 0.73 0.73 0.57 

System SW Update 0.50 0.50 0.50 

Database Clean-up 0.50 0.50 0.50 

USB 0.25 0.25 0.25 

DVD 0.25 0.25 0.25 

CD 0.25 0.25 0.25 

In
fo

rm
a
ti

o
n

 

D
el

iv
er

y
 

Graphical Statistics Interface 0.50 0.50 0.48 

Maintenance Interface 0.99 0.99 0.99 

Data Transmission Interface 0.52 0.52 0.50 

Print Textual Statistics 0.67 0.67 0.67 

Print Graphical Statistics 0.67 0.67 0.67 

P
er

ip
h

er
a
l 

D
el

iv
er

y
 RS422 0.93 0.93 0.99 

RS232 0.46 0.46 0.58 

VGA 0.80 0.80 0.64 

USB Port 0.25 0.25 0.25 

Ethernet/LAN 0.25 0.25 0.25 

Serial Port 0.25 0.25 0.25 

Parallel Port 0.25 0.25 0.25 
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Table 5.2 (cont’d) 

H
a
rd

w
a
re

 C
o
m

p
o
n

en
ts

 
Wind Speed and Direction Sensor 0.46 0.46 0.15 

Ambient Humidity and Temperature 

Sensor 
0.56 0.56 0.64 

Air Pressure Sensor 0.56 0.56 0.62 

Monitor Keyboard Drawer 0.80 0.80 0.29 

LCD Display 0.21 0.21 0.72 

Inkjet Printer 0.50 0.50 0.50 

Laser Printer 0.50 0.50 0.50 

Type A SSD 0.33 0.33 0.20 

Type B SSD 0.33 0.33 0.20 

Type C HDD 0.33 0.33 0.60 

N
F

R
 G

o
a
ls

 

Low Resource Utilization - 0.20 0.20 

Medium Resource Utilization - 0.20 0.20 

High Resource Utilization - 0.60 0.60 

Low Accuracy - 0.33 0.46 

Medium Accuracy - 0.33 0.36 

High Accuracy - 0.33 0.18 

Low Availability - 0.33 0.26 

Medium Availability - 0.33 0.40 

High Availability - 0.33 0.35 

Low Cost of Ownership - 0.33 0.69 

Medium Cost of Ownership - 0.33 0.24 

High Cost of Ownership - 0.33 0.07 

AVERAGE COMMONALITY OF THE 

MODEL 
0.49 0.45 0.45 

 

The commonality values of NFR goal levels possessing almost equal shares in 

Model-2 are changed as the model is evolved to Model-3. This change brings 

about dominancy in terms of commonality values for some NFR goal levels. 

Model-2 and Model-3 display identical resource utilization levels while Model-3 

displays significantly more favourable values, especially in terms of low cost of 

ownership and medium availability and low accuracy; all as required by the user.   
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This is a significant indicator of general quality-based characteristics of products 

derived from Model-3 in terms of different levels of qualitative quality modeling 

aspects. In other words, product configurations derived from Model-3 have the 

tendency to have high level of Resource Utilization, low level of Accuracy, 

medium level of Availability with low level of Cost of Ownership. Due to the 

strong connections between these NFR goals and functional features (in Hardware 

Components feature group) of the model by means of implicit interdependencies, 

Model-3 owes these quality-based characteristics to the properties of functional 

features (a.k.a. quantitative QAs) elicited in the scope of Complementary Quality 

Modeling approach. It is obvious that these quality-based characteristics are 

tentative and definitely dependent on the attributes of functional features.   

 

Besides, the changes in commonality values of NFR goal levels from equal shares 

to dominancy in some levels shows that the integrability of NFR goal levels 

(qualitative quality modeling concerns) with the rest of the feature model is 

enhanced, as Model-2 is evolved to Model-3. 

 

5.2.4. Evaluation in terms of DoO Criterion 

 

Conceptually similar to the assessments on commonality values, DoO measure is 

utilized to reveal how competent Complementary Quality Modeling approach is 

in terms of integrability of its variability assets with the initial functional feature 

model. The level of integrability for a sub-tree (i.e. a feature group) in the feature 

model is proportional with the level of dependency with regards to feature 

selections to be realized during AE phase. Lower DoO for a specific feature group 

means higher degree of its integrability and dependency to other parts of the 

feature model. 

 

One of the primary goals of Complementary Quality Modeling approach is to 

integrate elicited qualitative quality modeling aspects (NFR goals) to the rest of 

feature model. In order to assess the Complementary Quality Modeling approach 
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regarding this concern, DoO values calculated separately for each NFR goal in 

Model-2 and Model-3 are needed to be compared.  

 

Additionally, since integrability of NFR goals to the rest of the feature model is 

sustained by means of interdependencies with the functional features included in 

Hardware Components feature group, similar comparison is needed to be realized 

between DoO values of Hardware Components feature group in Model-2 and 

Model-3.  

 

The DoO values with respect to Model-2 and Model-3, belonged to Hardware 

Components feature group and four basic NFR goals, namely Resource 

Utilization, Accuracy, Availability and Cost of Ownership are presented in Table 

5.3 below. In this table, Model 1 is not considered as it does not refer to the NFR 

goals at all. 

Table 5.3: Calculated Parameters of DoO for Model-2 and Model-3 

Sub-tree (Model-2) (Model-3) 

Resource Utilization 1.73 x 10
8
 0.16 x 10

8
 

Accuracy 1.73 x 10
8
 0.16 x 10

8
 

Availability 1.73 x 10
8
 0.16 x 10

8
 

Cost of Ownership 1.73 x 10
8
 0.16 x 10

8
 

Hardware 

Components 
6.18 x 10

6
 0.56 x 10

6
 

 

DoO values of NFR goals calculated with respect to Model-3 are lower than the 

values for Model-2. This obviously indicates that any selection realized among 

several levels of each NFR goal in Model-3 is more dependent on the rest of the 

feature model when compared with Model-2. This also means that decision of 

levels on each NFR goal in Model-3 has comparatively more effect on the 
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selection of features from the rest of the feature model. Based on these 

evaluations, thanks to Complementary Quality Modeling approach, integrability 

of qualitative quality modeling aspects is enhanced as Model-2 is evolved to 

Model-3.  

 

Additionally, DoO value of Hardware Components feature group for Model-3 is 

lower than the values for Model-2, similar to the case for NFR goals. This can be 

regarded as the contribution of Complementary Quality Modeling approach in 

terms of an enhancement on integrability of functional features to the whole 

model in parallel to the enhancement sustained for qualitative quality aspects as 

well. Therefore, the results can be regarded as an indication of convenience of the 

Complementary Quality Modeling approach in terms of its power to integrate 

qualitative and quantitative quality modeling aspects not only with each other but 

also with initial functional feature model. 

 

5.2.5. Evaluation in terms of RPER Criterion 

 

In the scope of MMLS domain, RPER (owing to its guidance in comparative 

assessment) is benefited for the evaluation of Complementary Quality Modeling 

approach regarding how well a variability modeling approach satisfies users and 

developers on the way to acquiring more permissible systems. 

 

As referenced briefly in Section 2.3.4.1, due to difficulties in attaining its 

parameters (i.e. total number of acceptable product configurations), PER is 

utilized as part of RPER criterion under some restrictions. These restrictions set 

forth in Section 2.3.4.1 are accepted beforehand for the evaluation of 

Complementary Quality Modeling approach in MMLS domain context. 

 

In relation with those restrictions, it is meaningful to calculate RPER value with 

respect to the models possessing the same number of variability items, namely 

Model-2 and Model-3. If the models being compared differ in variability items 
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(i.e. variants – leaf nodes of feature model), the results of RPER calculation may 

be misleading. This is due to the fact that without the presence of a common 

reference point for variability, relative value calculation of PER values may cause 

unexpected results. Hence, Model-1 is not utilized for RPER calculations, since as 

Model-1 is evolved to either of Model-2 or Model-3, the number of variability 

items is increased by operationalizations defined as the extensions of qualitative 

quality aspects (i.e. NFR goals). 

 

Consequently, RPER of Model-2 with respect to Model-3 (RPER2,3) comes out to 

be 0.09. This is an acceptable level of permissibility for Model-3 on account of 

possessing 11 times better accuracy in representing actual realizable systems. 
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CHAPTER 6 

 

 

6. CONCLUSION 

 

 

 

 

VM is one of the primary concerns having significant effects on all phases of SPL 

processes. Considerable effort has been devoted by the SPL community to 

develop various approaches on the way to go beyond the adversities laid by 

variability modeling practices. However, throughout the efforts expended for 

variability modeling on functionalities of domains, modeling of QAs derived 

from NFRs are neglected quite often. 

 

On the way to meet the deficit of modeling quality-oriented concerns, as the 

beginning point of this thesis study, a comprehensive survey of the literature has 

been realized to identify the contributions and drawbacks of the state of the art 

approaches. This review has revealed the expressive power of feature-oriented 

QA modeling approaches, as feature oriented approaches have already proved 

their adequacy for functional concerns. Feature-oriented NFR Analysis seems to 

satisfy the need of modeling QAs originating from qualitative nature but lacks the 

need of modeling quality concerns possessing quantitative characteristics. On the 

other side, EFM approach remedies the lack of modeling quantitative quality 

aspects but lacks in responding the needs for modeling different levels of QA 

optionality at PL level. At this point, the proposed approach of Complementary 

Quality Modeling finds its meaning as it complements the two indispensable 

goals of QA modeling practices, namely modeling of qualitative and quantitative 

QAs. This integrated approach provides to domain designers the opportunity to 

exploit the quality knowledge– no matter it is either qualitative or quantitative – 

concealed in the specifications or requirements of any domain.  
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The proposed approach realizes the integration between quality concerns (in the 

form of levels as the extensions on different NFR goals) and functional features 

of a domain by serving the establishment of bridges in the form of dependency 

relationships. These relationships define available product configurations by 

means of direct effects on co-existence or non-existence of functional feature-

quality concern pairs.  

 

The most important contribution of Complementary Quality Modeling approach 

proposed and implemented in the scope of this study is the ability to perform 

trade-off selections among different types of basic quality concerns (namely 

NFR-goals) which not only provides further selectable operationalization 

alternatives but also ensures direct control over the available functional features 

by means of their elicited elementary attributes. In other words, management of 

variability among functional features is realized from the perspective of quality 

concerns by enhancing non-functional variability. 

 

Different combinations of selected NFR-levels provide dynamism on the 

availability of functional features (i.e. features of Hardware Components feature 

group) at the time of product specification. During AE phase, as the levels of 

basic quality concerns (in terms of NFR-goals) are specified, the feature model 

becomes limited in terms of selectable functional features at the same time. This 

provides further feedback to product engineers for specification of more realistic 

product configurations dynamically. 

 

Apart from contributions of Complementary Quality Modeling approach in non-

functional variability management context as an alternative for state of the art QA 

modeling approaches; for the purpose of assessing Complementary Quality 

Modeling approach with regards to general PL benefits, PL metrics that are 

especially applicable on feature oriented models are collected from the literature. 

FAMA framework is utilized for calculating the parameters of these metrics 

particularly for three main states of the model throughout the implementation of 
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the approach, namely Initial Functional Feature Model, Functional Feature Model 

extended with NFR goals and finally Functional Feature Model extended with 

Complementary Quality Modeling approach. The results for these three states are 

utilized for the comparative assessment of the proposed approach with respect to 

its contribution on Initial Functional Feature Model and Functional Feature Model 

extended solely by Qualitative Quality Modeling aspects. 

 

Referring to the results obtained by means of the selected evaluation criteria, 

Complementary Quality Modeling approach obviously provides enhancement in 

exploring the feature interaction problems inherent in the domain of subject. This 

exploration is valuable in terms of revealing possible conflicts between quality 

concerns (in the form of levels as the projections of different types of NFR goals) 

and functional features. Besides, Complementary Quality Modeling approach 

succeeds the compensation for the subsidence of variability by ensuring feature 

relationships in satisfactory levels so as to acquire more realistic products. 

 

Being one of the significant goals of the approach, Complementary Quality 

Modeling approach strive against integration of the elicited qualitative quality 

modeling aspects (NFR goals) to the rest of the feature model. As compared with 

Functional Feature Model extended solely by NFR goals, Complementary Quality 

Modeling approach provides better integrability of these qualitative quality 

concerns with functional features of the initial model. This integrability simply 

provides better means of comprehensiveness in modeling ability in terms of 

quality aspects. From the perspective of sustaining same type of integrability in a 

way that any selection realized among several levels of each NFR goal has strong 

dependency and impact on the selections to be realized among the rest of the 

feature model, Complementary Quality Modeling approach achieves its purpose. 

 

It must be noted that, in the scope of MMLS feature modeling, the integration of 

elicited NFR goals are constituted with only Hardware Components feature group 

(as specific part of the whole feature model) instead of covering other parts of the 
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model. Hardware Components feature group includes a large number of physical 

constraints. Regarding their capability to contribute to the definition of quality 

concerns, physical constraints are preferable for modeling. This is the basic 

reason why Hardware Components feature group is utilized for the modeling of 

Quantitative QAs. Even though it may be seen like a deficiency for the proof of 

concept, actually utilizing only Hardware Components is tentative and dependent 

on the nature of the domain of concern.  

 

Since similar results with respect to the number of features, number of products 

and different relationships are expected to be observed in following the inclusion 

of extra artifacts applicable by the approach, the trends in evaluation are not 

expected to change. As feature groups other than Hardware Components are 

utilized for the modeling of Quantitative QAs, number of constraints established 

between features are increased, leading to an increase in FIPAP and DoO (thereby 

integrability of several feature groups to the model is enhanced); VF is decreased 

with an increase in ECR, leading to similar trend with the current MMLS case; 

total number of products is decreased, leading to a decrease in RPER value. It 

must be noted that, if other feature groups are included in modeling of QAs, all of 

the trends on evaluation would be similar and more favourable than the ones in 

the current study.  

 

In the scope of this study, Feature Modeling of MMLS domain in addition to 

Qualitative QA and Complementary Quality Modeling practices are 

implementations on a small scale domain selected due to practicality and for the 

purposes of proof of concept. As for the generalizability of the approach, 

obviously, in a larger domain, more features are needed which come up with the 

need for more relationships to be defined. As of the outcome of implementation 

of Complementary Quality Modeling approach, more quantitative QAs would 

have to be defined together with more NFR goals. This would require support of 

an automated mechanism to provide guidance for matching the required levels of 
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NFR goals and values of quantitative QAs, both of which may be too numerous to 

be handled manually with the current approach.  

 

Complementary Quality Modeling approach deals with the Domain Analysis 

phase of SPL process with an emphasis on QA modeling. As referenced in Figure 

2.1, as a rule of thumb of DE phase, a feedback (often in the form of revised 

requirements) from AE phase is needed. Lack of support from AE phase causes 

threat on the validity of not only the feature model extended with Complementary 

Quality Modeling approach but also its outcomes in the form of Domain Model 

and developed software components. Therefore, as the components constituted 

from the feature model extended with Complementary Quality Modeling 

approach are utilized to form a final product, field knowledge in the form of 

experience of application engineers during software development or criticisms 

and demands from customer are needed to be taken into account and provided to 

domain experts as feedback in turn. 

 

As the future steps to be traced on the way to improve and expand the benefits of 

the Complementary Quality Modeling approach, the interplay between the 

selectable levels of each elicited qualitative quality modeling aspects (NFR goals) 

can be utilized. This interplay is sustained by the trade-off selection availability 

among different levels of each NFR goal. With the help of this trade-off selection 

ability, some optimization operations can be realized on the affected functional 

feature variation points (i.e. Hardware Components feature group in MMLS 

domain example). For instance, users may desire to possess the optimum system 

with the lowest cost of ownership or regardless of other quality concerns 

stakeholders may desire to observe possible product configuration in which 

Resource Allocation is maximized. Complementary Quality Model provides 

reasoning to its users by presenting available product configuration possibilities 

based on such kind of optimization concerns.  
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