
1

SCHEDULING APPROACHES FOR PARAMETER SWEEP APPLICATIONS IN A
HETEROGENEOUS DISTRIBUTED ENVIRONMENT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÜLŞAH KARADUMAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2010

Approval of the thesis:

SCHEDULING APPROACHES FOR PARAMETER SWEEP APPLICATIONS IN A

HETEROGENEOUS DISTRIBUTED ENVIRONMENT

submitted by GÜLŞAH KARADUMAN in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East Techni-
cal University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Dr. Cevat Şener
Supervisor, Computer Engineering Dept., METU

Dr. Nedim Alpdemir
Co-supervisor, TUBITAK UEKAE ILTAREN

Examining Committee Members:

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Dept., METU

Dr. Cevat Şener
Computer Engineering Dept., METU

Asst. Prof. Dr. Pınar Şenkul
Computer Engineering Dept., METU

Dr. Mahmut Nedim Alpdemir
TUBITAK UEKAE ILTAREN

İbrahim Demir, M.Sc.
TUBITAK UEKAE ILTAREN

Date: 17.09.2010

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: GÜLŞAH KARADUMAN

Signature :

iii

ABSTRACT

SCHEDULING APPROACHES FOR PARAMETER SWEEP APPLICATIONS IN A
HETEROGENEOUS DISTRIBUTED ENVIRONMENT

Karaduman, Gülşah

M.Sc., Department of Computer Engineering

Supervisor : Dr. Cevat Şener

Co-Supervisor : Dr. Nedim Alpdemir

September 2010, 80 pages

In this thesis, the focus is on the development of scheduling algorithms for Sim-PETEK which

is a framework for parallel and distributed execution of simulations. Since it is especially de-

signed for running parameter sweep applications in a heterogeneous distributed computational

environment, multi-round and adaptive scheduling approaches are followed. Five different

scheduling algorithms are designed and evaluated for scheduling purposes of Sim-PETEK.

Development of these algorithms are arranged in a way that a newly developed algorithm

provides extensions over the previously developed and evaluated ones. Evaluation of the

scheduling algorithms is handled by running a Wireless Sensor Network (WSN) simulation

over Sim-PETEK in a heterogeneous distributed computational system formed in TUBITAK

UEKAE ILTAREN. This evaluation not only makes comparisons among the scheduling algo-

rithms but it also and rates them in terms of the optimality principle of divisible load theory

which mentions that in order to obtain optimal processing time all the processors used in

the computation must stop at the same time. Furthermore, this study adapts a scheduling

approach, which uses statistical calibration, from literature to Sim-PETEK and makes an as-

sessment between this approach and the most optimal scheduling approach among the five

algorithms that have been previously evaluated. The approach which is found to be the most

iv

efficient is utilized as the Sim-PETEK scheduler.

Keywords: Scheduling, Parameter Sweep Applications, Divisible Load Theory

v

ÖZ

DAĞITIK HETEROJEN BİR ORTAMDA PARAMETRE TARAMA UYGULAMALARINI
ÇİZELGELEME YAKLAŞIMLARI

Karaduman, Gülşah

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Yöneticisi : Dr. Cevat Şener

Ortak Tez Yöneticisi : Dr. Mahmut Nedim Alpdemir

Eylül 2010, 80 sayfa

Bu tez kapsamında, simülasyonların paralel ve dağıtık koşturulması için gerçeklenmiş bir

altyapı olan Sim-PETEK yapısı için çizelgeleme algoritmalarının geliştirilmesine yönelik

çalışmalar yapılmıştır. Sim-PETEK özellikle parametre tarama uygulamalarının heterojen ve

dağıtık hesaplama ortamlarında çalıştırılmasına yönelik bir şekilde geliştirildiği için çizelgele-

me sırasında çok turlu ve uyarlanabilir yaklaşımlar izlenmiştir. Bu bağlamda beş farklı algo-

ritma tasarlanmış ve değerlendirilmiştir. Algoritmaların geliştirilmesi sürecinde izlenen yol

yeni geliştirilmekte olan bir algoritmanın daha önceden geliştirilmiş ve değerlendirilmiş algo-

ritmalara eklentiler sunması şeklinde olmuştur. Çizelgeleme algoritmalarının değerlendirilme-

si için Sim-PETEK altyapısını kullanan bir Kablosuz Algılayıcı Ağ simülasyonu TÜBİTAK

UEKAE İLTAREN’de kurulan heterojen ve dağıtık bir hesaplama ortamında koşturulmuştur.

Yapılan değerlendirmelerde farklı çizelgeleme algoritmalarının birbirleriyle karşılaştırılarının

yanı sıra algoritmaların optimum işleme zamanının ancak bütün işlemcilerin aynı anda dur-

masıyla elde edilebileceğini belirten bölünebilir yük teorisi açısından da değerlendirilmesi

yapılmıştır. Bu çalışmada ayrıca literatürde bulunan istatistiksel çizelgeleme yaklaşımı Sim-

PETEK yapısına uyarlanmış ve bu yaklaşımla sunduğumuz en iyi çizelgeleme yaklaşımı

karşılaştırılmıştır. Yapılan değerlendirmeler sonucunda en verimli bulunan çizelgeleme yakla-

vi

şımının Sim-PETEK çizelgeleyicisi olarak kullanılması planlanmıştır.

Anahtar Kelimeler: Çizelgeleme, Parametre Tarama Uygulamaları, Bölünebilir Yük Teorisi

vii

To my endless love, to Ayşe and to Çilek

viii

ACKNOWLEDGMENTS

I would like to present my special thanks to my supervisor Dr. Cevat Şener and my co-

supervisor Dr. Mahmut Nedim Alpdemir for their guidance, understanding and encourage-

ment throughout the development of this thesis.

I would like to show my gratitude to my thesis jury members Asst. Prof. Dr. Pınar Şenkul,

Assoc. Prof. Dr. Halit Oğuztüzün, and İbrahim Demir for reviewing and evaluating my thesis.

My special thanks is to Doruk Bozağaç from TUBITAK UEKAE ILTAREN. His invaluable

ideas, suggestions, and help have been essential to my research. I appreciate all the time he

has spent for the development of my thesis.

I would like to thank to Kezban Demirtaş Başıbüyük, Filiz Alaca Aygül, and Kevser Sönmez

Sunercan for their invaluable friendship and support.

Finally, my deepest thanks are to my parents and my elder sister, Ayşe İlknur Karaduman,

who supported me with their never ending love, understanding, encouragement and support

throughout my life.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVATIONS . xv

CHAPTERS

1 INTRODUCTION . 1

1.1 Overview . 1

1.2 Organization . 4

2 BACKGROUND . 5

2.1 Parameter Sweep Applications . 5

2.2 Stochastic Simulations . 8

2.3 Sim-PETEK as a Simulation Specific Grid MiddleWare 8

2.3.1 Grid Environments and Simulation Applications 9

2.3.1.1 Service Oriented Approach 9

2.3.1.2 Resource Oriented Approach 10

2.3.2 Goals of Sim-PETEK . 10

2.3.3 Architecture of Sim-PETEK 11

2.3.3.1 Coordinator Grid Service 12

2.3.3.2 Simulator Grid Service 13

2.3.3.3 Workflow in Sim-PETEK 14

x

2.4 Load Scheduling Approaches . 16

2.5 Divisible Loads . 17

2.5.1 Divisible Load Theory (DLT) 18

2.5.2 Divisible Load Scheduling 19

2.5.3 Adaptive Divisible Load Scheduling 21

3 Sim-PETEK SCHEDULING ALGORITHMS 24

3.1 AMRS (Adaptive Multi-Round Synchronous Scheduling Algorithm) 25

3.2 AMRA (Adaptive Multi-Round Asynchronous Scheduling Algorithm) 32

3.3 Improved Adaptive Multi-Round Asynchronous Scheduling Algo-
rithms . 35

3.3.1 SAMRA (Smart Adaptive Multi-Round Asynchronous Schedul-
ing Algorithm) . 35

3.3.2 SSSE-AMRA (Slow Start - Slow End Adaptive Multi-Round
Asynchronous Scheduling Algorithm) 39

3.3.3 ISSSE-AMRA (Improved Slow Start - Slow End Adaptive
Multi-Round Asynchronous Scheduling Algorithm) 45

4 IMPLEMENTATION OF SCHEDULING ALGORITMS 48

4.1 Scheduling Workflow . 48

4.2 Scheduling Algorithm Descriptions 50

4.3 Class Hierarchy of Scheduling Algorithms 51

5 CASE STUDY AND PERFORMANCE ANALYSIS 53

5.1 Wireless Sensor Network Simulation 53

5.2 Performance Evaluation and Analysis of the Scheduling Algorithms 54

5.2.1 Testing Environment and Test Cases 54

5.2.2 Test Results . 57

5.2.2.1 Results of First Group of Tests 58

5.2.2.2 Results of Second Group of Tests 70

5.2.2.3 Results of Third Group of Tests 73

5.3 Discussion . 73

6 CONCLUSION . 76

REFERENCES . 78

xi

LIST OF TABLES

TABLES

Table 2.1 Current, Voltage, and Power Values When Rload = 50 Ω 6

Table 2.2 Current, Voltage, and Power Values When Rload = 25 Ω 7

Table 3.1 Computational Resource Nodes for the Example 29

Table 3.2 AMRS First Round Job Distribution . 30

Table 3.3 AMRS Node Process Power Values After First Round 30

Table 3.4 AMRS Second Round Job Distribution . 31

Table 3.5 AMRS Node Process Power Values After Second Round 31

Table 3.6 AMRS Third Round ENPR Values and Job Distribution 32

Table 3.7 SAMRA Node Process Power Values After Probing 38

Table 3.8 SAMRA ENPR Values After Probing . 38

Table 3.9 SAMRA Node Process Power Values After 15 Seconds 39

Table 3.10 SAMRA ENPR Values After 15 Seconds 39

Table 3.11 SSSE-AMRA ENPR Values After First Jobs Completed 44

xii

LIST OF FIGURES

FIGURES

Figure 1.1 Distributed System Stack . 2

Figure 2.1 A Direct Current Electrical Circuit . 6

Figure 2.2 Rload vs. Current, Voltage, and Power 7

Figure 2.3 Sim-PETEK Architecture . 11

Figure 2.4 Initialization Stage of Sim-PETEK Workflow 14

Figure 2.5 Job Distribution Stage of Sim-PETEK Workflow 15

Figure 2.6 Result Collection and Status Monitoring Stage of Sim-PETEK Workflow . 16

Figure 2.7 Load Classification . 17

Figure 3.1 Sim-PETEK Scheduling Activity Diagram 26

Figure 3.2 Pseudocode for AMRS Schedule Function 27

Figure 3.3 Pseudocode for AMRS InitializeENPR Function 28

Figure 3.4 Pseudocode for AMRS RecomputeENPR Function 28

Figure 3.5 AMRS Job Distributions . 33

Figure 3.6 Pseudocode for AMRA Schedule Function 34

Figure 3.7 AMRA Job Distributions . 34

Figure 3.8 Pseudocode for SAMRA Schedule Function 36

Figure 3.9 SAMRA Job Distributions . 37

Figure 3.10 Number of Runs vs. Rounds . 41

Figure 3.11 Pseudocode for SSSE-AMRA Schedule Function 42

Figure 3.12 SSSE-AMRA Job Distributions . 44

Figure 3.13 Pseudocode for Task Redistribution Part of ISSSE-AMRA Schedule Function 45

xiii

Figure 3.14 SSSE-AMRAJob Distributions: Assumed Case 46

Figure 3.15 ISSSE-AMRA Job Distributions: Assumed Case 47

Figure 4.1 Sim-PETEK Scheduling Workflow . 49

Figure 4.2 Sample SchedulerList.xml . 50

Figure 4.3 Scheduling Class Hierarchy . 51

Figure 5.1 AMRS Scheduling Algorithm Execution Times 58

Figure 5.2 AMRS Job Distributions When Number of Rounds is 10 59

Figure 5.3 AMRA Scheduling Algorithm Execution Times 61

Figure 5.4 SAMRA Scheduling Algorithm Execution Times 62

Figure 5.5 SSSE-AMRA Scheduling Algorithm Execution Times 63

Figure 5.6 ISSSE-AMRA Scheduling Algorithm Execution Times 63

Figure 5.7 Comparison of Sim-PETEK Scheduling Algorithms 64

Figure 5.8 Comparison of Sim-PETEK Scheduling Algorithms with Increased Num-

ber of Runs and MC Trials . 64

Figure 5.9 Node Execution Times with AMRA . 66

Figure 5.10 Node Execution Times with SAMRA . 67

Figure 5.11 Node Execution Times with SSSE-AMRA 68

Figure 5.12 Node Execution Times with ISSSE-AMRA 69

Figure 5.13 Comparison of ISSSE-AMRA and Calibrated Scheduler 71

Figure 5.14 Node Execution Times with ISSSE-AMRA and Calibrated Scheduler . . . 72

Figure 5.15 Comparison of Adaptive and Nonadaptive Versions of ISSSE-AMRA . . . 74

xiv

LIST OF ABBREVATIONS

API Application Programming Interface

GUI Graphical User Interface

PSA Parameter Sweep Application

MC Monte Carlo

HLA High Level Architecture

CPU Central Processing Unit

SOA Service Oriented Architecture

OGSA Open Grid Services Architecture

URI Uniform Resource Identifier

WSRF Web Services Resource Framework

WS Web Service

SIMA Simulation Modeling Infrastructure

DEVS Discrete Events System Specification

TIG Task Interaction Graph

DLT Divisible Load Theory

xv

MI Multi Installment

UMR Uniform Multi-Round

MRRS Multi-Round Scheduling with Resource Selection

RUMR Robust Scheduling for Divisible Workloads

TF Task Farm

AMRS Adaptive Multi-Round Synchronous Scheduling Algorithm

AMRA Adaptive Multi-Round Asynchronous Scheduling Algorithm

P-AMRA Probed Adaptive Multi-Round Asynchronous Scheduling Algorithm

SSSE-AMRA Slow Start - Slow End Adaptive Multi-Round Asynchronous Scheduling Al-

gorithm

ISSSE-AMRA Improved Slow Start - Slow End Adaptive Multi-Round Asynchronous Schedul-

ing Algorithm

WSN Wireless Sensor Network

xvi

CHAPTER 1

INTRODUCTION

In this first chapter of this thesis, a brief overview of our work and organization of the follow-

ing chapters are presented.

1.1 Overview

Today it has become a very common approach to simulate real-world objects by modeling

them using mathematical formulas. This approach is followed in order to observe the behavior

of systems through approximated models of various fidelity and detect possible failures and

risks before real life usage. For example, characteristics of a newly designed airplane’s flight

while it is passing over a river or lake can be simulated by modeling the airplane, lake, and

river and errors detected during the simulation can be corrected before the mass production

starts [4].

Simulations are very useful in many areas such as financial computations, computational

chemistry and physics, genetics and DNA modeling, defense and security modeling, and

protein folding. However, such kinds of simulation models require high computational power

because of the enormous calculations they have to handle. At this point, super computers

with custom architecture can be used but this is an expensive solution. A cheaper solution is

the utilization of distributed heterogeneous computational resources over a local or wide area

network.

When heterogeneous computational resources are utilized, usage and management of such

resources become a problem to be handled. Recently, many researchers have focused on the

specification and implementation of software middlewares which simplify the management

1

and usage of heterogeneous computational resources by providing access to the resources

through a standardized programming interface [11]. Figure 1.1 shows a distributed system

stack where a software middleware handles resource access and management.

Figure 1.1: Distributed System Stack

More recent studies on software middleware of distributed systems make use of the abstrac-

tions defined by the Service-Oriented Architecture (SOA), which is a design principle using

a collection of services for simplifying the communication between different systems. Open

Grid Services Architecture (OGSA) [2] and its reference implementations such as GT3.x [1]

and Web Services Resource Framework (WSRF) [5] are good examples which use SOA for

distributed system management especially for managing Grid infrastructures.

A software middleware, which is responsible for the management of a distributed computing

environment for running distributed simulation applications, has to consider distinct proper-

ties of simulation applications. With this aspect in mind, in TUBITAK UEKAE ILTAREN, we

developed a Paralel Simulation Run Framework (Sim-PETEK) which is a WSRF [5] compli-

ant service-oriented software middleware designed for Parameter Sweep Applications (PSA)

and stochastic simulations (e.g. Monte Carlo (MC) simulations). Distinct properties of Sim-

PETEK which make it a simulation-centric middleware can be described as follows [11]:

2

• Formalization of a distributable task specification is handled around the notion of a

simulation scenario

• Simulation specific aspects are utilized for the scheduling and monitoring of distributed

tasks

• Result collection approach meets the simulation applications’ requirements

The work presented in this thesis focuses on the scheduling part of Sim-PETEK. In order to

design an effective scheduler component, a literature survey has been conducted and existing

scheduling approaches has been improved to fit Sim-PETEK requirements. There are basi-

cally two different scheduling approaches in literature. Static scheduling approach makes all

of the decisions before the application starts running whereas dynamic scheduling approach

makes its decisions at run-time.

Before the selection of scheduling approach, characteristics of the load that is going to be

processed should be analyzed because different approaches are appropriate for different char-

acteristics. Load characteristics can be grouped as indivisible, modularly divisible, and arbi-

trarily divisible:

• Indivisible loads can not be divided and have to be processed as a whole.

• Modularly divisible loads can be subdivided into smaller ones but these smaller loads

have interactions among.

• Arbitrarily divisible loads can be partitioned into smaller load fractions arbitrarily.

PSAs, for which Sim-PETEK is designed, are the applications consisting of a set of inde-

pendent ”experiments” [15] which show the characteristics of arbitrarily divisible loads. For

optimal scheduling of this kind of independent loads, there is a theory in the literature which

is called as Divisible Load Theory (DLT). The optimality principle of DLT states that in order

to obtain optimal processing time all the processors used in the computation must stop at the

same time [10].

Divisible load scheduling approaches found in the literature try to satisfy the optimality prin-

ciple of DLT by distributing the load fractions either in a single round or in multiple rounds.

3

For large workloads single round approach is not efficient because of the communication cost

and multi-round approach is followed for overlapping communication and computation times.

If a scheduling algorithm is designed for task distribution in a heterogeneous computation

environment, it has to consider that the performance is affected by the variations in the sys-

tem such as network latency. In order to achieve high performance, scheduling approach

should adapt itself to these variations by following a load balancing strategy. This means that

dynamic scheduling should be applied.

Recently, adaptivity is integrated into divisible load scheduling algorithms for achieving high

performance in heterogeneous environments. In [22], adaptivity is provided by estimating

processing capacity of the resources by making them to process a small load partition. The

method in [23] utilizes statistical calibration techniques for adaptivity purposes.

After inspecting scheduling strategies of literature, Sim-PETEK scheduling algorithms are

decided to be designed in multi-round and adaptive manner. This is because Sim-PETEK is

developed for heterogeneous computational environments for running PSAs.

Several scheduling algorithms have been developed for Sim-PETEK scheduling purposes.

After the implementation, performance tests are carried out for determining the most efficient

algorithm. Moreover, the algorithm defined in [23] is implemented and comparison tests have

been performed. The reason why the approach in [23] is selected from literature is that, it has

been found to be the most appropriate approach for Sim-PETEK architecture.

1.2 Organization

Organization of this thesis can be summarized as follows. In Chapter 2, a background infor-

mation about parameter sweep applications, stochastic simulations, and Sim-PETEK archi-

tecture is given. In Chapter 3, our literature survey on scheduling is presented. This chap-

ter especially focuses on divisible load theory and divisible load scheduling. In Chapter 4,

scheduling algorithms developed for Sim-PETEK scheduling purposes are described. Chap-

ter 5 gives some implementation details of scheduling algorithms. In Chapter 6, performance

analysis of the scheduling algorithms is made. Chapter 7 provides discussions on our study

and lists possible future works. Finally, Chapter 8 presents our conclusions.

4

CHAPTER 2

BACKGROUND

As mentioned in Chapter 1, the work presented in this thesis aims at developing schedul-

ing algorithms for Sim-PETEK which is a framework designed for running parameter sweep

applications that may involve stochastic analysis methods in a distributed computation envi-

ronment. In this chapter, firstly an introductory information about parameter sweep applica-

tions and stochastic simulations is provided. Afterwards, Sim-PETEK architecture and the

technologies used in the architectural design are presented.

This chapter also provides a literature survey which is held on scheduling approaches for dis-

tributed and heterogeneous systems. This survey especially focuses on divisible load schedul-

ing approaches because parameter sweep applications can be characterized in terms of arbi-

trarily divisible loads.

2.1 Parameter Sweep Applications

In [15] parameter sweep applications (PSA) are defined as the applications consisting of inde-

pendent experiments which are held for distinct parameter sets. In the first place, a number of

input parameters are selected and then the effects of these selected parameters are analyzed.

The analysis is held by defining a minimum and maximum value and a step size for each of

the input parameters. Discrete values of the input parameters defined by this method form

discrete value sets and the batch parameter set can be defined as the union of such discrete

value sets. Simulation is run for each discrete value of the batch parameter set and these

different simulation runs are called batch runs. Results of batch runs are collected and ana-

lyzed according to the batch parameter value change. Distributed environments such as grid

are ideal execution environments for this kind of applications of many scientific and engi-

5

neering domains such as bioinformatics, operations research, data mining, business model,

network simulations, massive searches, ecological modeling, fractals calculations, and image

manipulation [20].

Figure 2.1: A Direct Current Electrical Circuit

As a parameter sweep example, the electrical circuit shown in Figure 2.1 which is taken from

[3] can be considered. The circuit contains a generator with an internal resistance of 75 Ω on

the left hand side and a resistive load on the right hand side. The current passing through the

circuit is measured by the ampermeter. If the load resistance is given as 50 Ω, voltage at the

”out” node, load side power, and the current values will be as shown in Table 2.1.

Table 2.1: Current, Voltage, and Power Values When Rload = 50 Ω

Current 0.12 Amperes
”out” Voltage 6 Volts

Load Side Power 0.72 Watts

If the load resistance is decreased to 25 Ω, current, voltage, and power values will be as shown

in Table 2.2.

6

Table 2.2: Current, Voltage, and Power Values When Rload = 25 Ω

Current 0.15 Amperes
”out” Voltage 3.75 Volts

Load Side Power 0.562 Watts

As it can be seen from the tables, when the load resistance is decreased, a higher current and

a lower voltage is produced at the load side. For further observation, a parametric analysis of

the circuit can be held by sweeping with load resistance. As an example if load resistance is

increased from 5 Ω to 100 Ω in 20 steps, current, voltage, and power changes occur as shown

in Figure 2.2 where load resistance is denoted by ”Rload”.

Figure 2.2: Rload vs. Current, Voltage, and Power

7

2.2 Stochastic Simulations

Many real world problems are solved by making use of computer simulations. However,

modeling large scale systems is not an easy task, since large number of variables have effects

on the whole system and there are parameters which include some uncertainties. Even in

cases where perfect modeling is held, such systems can not get rid of the errors which occur

during application or manufacturing and cause system performance changes. In order to be

able to make a more realistic model, designers make use of stochastic simulation analysis

methodologies. In [24], it is stated that stochastic simulation methods attempt to mimic or

replicate the behavior of a system by exploiting randomness to obtain a statistical sample

of possible outcomes. It is also stated that because of the randomness involved, simulation

methods are also commonly known in some contexts as Monte Carlo (MC) methods. A Monte

Carlo Trial is a simulation run held by the following approach: Each random variable of a

system has a domain space and inputs are generated from each domain space. The simulation

runs repetitively for the different input generations and the results of these repetitive runs are

analyzed by using histograms and aggregated for a final result summary [11].

Stochastic simulation analysis methods can be included in parameter sweep applications for

achieving more confident solutions. For this purpose, a number of i.d.d. (independent and

identically distributed) repetitions are held for each parameter in the batch parameter set.

The results of the repetitions are used in the expected performance computation and variance

exploitation which are then used for finding solution’s confidence interval. This approach

gives confident results, on the other hand, it causes an exponential increase in the total number

of runs. As an example, if the simulation contains two input parameters requiring M and N

number of batch runs respectively, and performs T repetitions for each batch, the simulation

consists of M ∗ N ∗ T runs in total [11].

2.3 Sim-PETEK as a Simulation Specific Grid MiddleWare

It is previously mentioned that, Sim-PETEK is the software middleware which is used as the

sample framework for the study presented in this thesis. In this section, software technologies

and design aspects of Sim-PETEK are explained in detail.

8

2.3.1 Grid Environments and Simulation Applications

In today’s world, many applications work on huge data sets and/or require extensive CPU

power. This kind of applications have led to the solutions that either use super computers

with highly specialized architectures or that utilize distributed heterogeneous resources of a

local or wide area network. Recently, researchers of this area have focused on the specifica-

tion and implementation of software middlewares which are dedicated for the simplification

of distributed computational resource management through a standardized programming in-

terface. At this point, grid has been defined as the general name for the common protocols and

mechanisms to utilize geographically dispersed computational and data resources for solving

CPU intensive problems in distributed, heterogeneous and multi-user environments [11].

Large scale distributed simulations can make use of grid technologies for accessing distributed

data sets and computational resources. Recently, HLA (High Level Architecture) simulations

are reported to be executed on the Internet by the help of grid technologies [33].

2.3.1.1 Service Oriented Approach

Grid infrastructures are further developed and Service-Oriented approaches are applied in

order to be able to make use of the abstractions provided by service-orientation. Service-

Oriented Architecture (SOA) is a design principle which focuses on simplifying the commu-

nication between the systems running on different platforms. A service is an autonomous

system which accepts one or more requests and returns responses via a well-defined interface

and SOA is a collection of such services [30].

Introduction of Open Grid Services Architecture (OGSA) has led to the emergence of service-

oriented grid technologies. OGSA has defined the ”Grid Service” concept which is a unifi-

cation of the notions of Web Service and object-oriented distributed software architectures

[2]. Furthermore, OGSA specifies standard programming interfaces for grid service creation,

management and lifetime control [18].

9

2.3.1.2 Resource Oriented Approach

Resource-oriented approach is a more recent approach defining the ”resource” notion and

focusing on resource management. Resource-orientation defines resources as logical ad-

dresses, such as URIs, and any operation on a resource is handled by sending an opera-

tion request to the resource under consideration [11], [19]. In order to standardize resource

management in resource-oriented systems, OASIS defined Web Services Resource Frame-

work (WSRF) in 2004 [5]. WSRF specification defines Web Service Resource expression,

management, access, and grouping with the main objective of making web service resources

stateful [11], [25]. WSRF consists of four specifications namely, WS-ResourceProperties,

WS-ResourceLifetime, WS-ServiceGroup, and WS-ReosurceLifetime.

• WS-ResourceProperties defines how WS-resources are described in the XML-based

”ResourceProperties” document, and how these properties could be modified and queried

via this document. This document also includes state information about WS-resources

[25].

• WS-ResourceLifetime defines the main mechanisms used for managing resource life-

time.

• WS-ServiceGroup defines the grouping strategies for both services and service re-

sources. This kind of grouping is important in terms of providing a single access point

to services and resources of the same group [31].

• WS-BaseFaults defines the standards for error reporting.

2.3.2 Goals of Sim-PETEK

For many scientific application domains which use stochastic simulations for system analysis,

number of required batch runs and Monte Carlo trials are so high that efficient and effective us-

age of available computational resources become crucial in order to obtain simulation results

in a permissible timespan. At this point, Service-Oriented Computational environments such

as grids provide a viable solution for such CPU-intensive applications by introducing a new

paradigm for software deployment, execution and management. However, usage of resources

10

in a wide area is challenging because of reliability, security, effective management of com-

ponent deployment, life-cycle, monitoring and disposal, user authentication, access control,

auditing and billing issues. Concerning such issues, a Service-Oriented Grid environment is

not only an architecture which provides distributed computation but it is also a well-defined

programming and execution model consisting of rules, specifications, and APIs. Therefore,

Sim-PETEK was developed as a grid middleware which is compliant with Service-Oriented

Grid standards such as OGSA and WSRF. Through compliance to relevant standards, the

architecture provides a consistent resource access and utilization layer for developers of sim-

ulation applications [11].

2.3.3 Architecture of Sim-PETEK

Figure 2.3: Sim-PETEK Architecture

In Figure 2.3 which is directly taken from [11], the general architecture of Sim-PETEK is

shown. As the figure indicates, Sim-PETEK has been developed as a Service-Oriented in-

frastructure. Two main components of Sim-PETEK are the services named Coordinator Grid

Service and Simulator Grid Service. As previously mentioned in 2.3.2, Sim-PETEK is com-

pliant with WSRF standards and is implemented by using .NET Windows Communication

Foundation (WCF) for the web service layer. WCF is a .NET Framework API which is de-

signed for service-oriented application development. WCF follows service-oriented architec-

ture principles for giving support to distributed computing where a client can interact with one

or more services and each service can be called simultaneously by multiple clients [6]. WCF

11

already implements WS-Addressing WS-RealiableMessaging and WS-Security in its struc-

ture. Other standards of WSRF such as WS-ResourceProperties and WS-BaseNotification is

implemented by Sim-PETEK by using WCF extension models in order to provide full com-

pliance with WSRF.

For convenience, the following terminology is defined for Sim-PETEK in [11] and architec-

ture definitions are made according to this terminology:

• Coordinator stands for Coordinator Grid Service

• Simulator stands for Simulator Grid Service

• Job is a set of simulation runs, i.e. a single unit of work assigned to a Simulator node

by the Coordinator

• Scenario is the set of all parameters required by the simulation models for each simu-

lation run

• Job Execution is a bunch of simulation runs which contains a number of batch runs

and Monte Carlo(MC) trials

When a developer implements a client application using Sim-PETEK for its simulation distri-

bution, he/she should construct a simulation execution order that includes the main simulation

scenario, batch parameters and their values, and number of MC trials, and pass that order to

the Coordinator. Taking this order, the Coordinator initializes the available Simulator nodes

on the network and then distributes jobs to those nodes for execution. Simulator resources

send periodic notifications to the Coordinator about their job status and the Coordinator uses

this information for monitoring and re-scheduling purposes [11].

The following sections provide a more detailed description of Sim-PETEK’s internal struc-

ture.

2.3.3.1 Coordinator Grid Service

As it can be seen from Figure 2.3, Coordinator consists of four main components, namely Job

Manager, Resource Manager, Scheduler, and Job Producer. Job Manager is the component

12

which is responsible for establishing Simulator connection and management. This component

gathers job status and resource information from the Simulator and provides that information

to the Scheduler and Resource Manager components. Sending jobs to the simulator nodes,

collecting job results and sending job status and results to the client application are additional

responsibilities of the Job Manager. Resource Manager owns the responsibility of Simulator

resource creation, query, and lifetime management which are handled in accordance with

WS-ResourceProperties and WS-ResourceLifetime standards. Scheduler makes an analysis

on simulator nodes’ CPU load and available memory for creating an optimized scheduling

plan (This component is the one on which the study in this thesis focuses). Prepared schedule

is sent to the Job Manager which transmits it to the Job Producer. Job Producer arranges the

simulation runs according to the schedule, creates jobs, and returns them to the Job Manager

for distribution [11].

2.3.3.2 Simulator Grid Service

Simulator Grid Service of Sim-PETEK is composed of four components which are Resource

Manager, Notification Manager, Scenario Factory and Job Execution Manager. Similar to

Coordinator’s Resource Manager component, Simulator’s Resource Manager implements the

resource creation, query, and lifetime management mechanisms in compliance with WS-

ResurceProperties and WS-ResourceLifetime standards of WSRF. Notification Manager fol-

lows WS-BaseNotification standard and is responsible for handling subscription requests for

resource information and job execution status and for sending periodic notification messages

which includes resource and job status information to the Coordinator. Scenario Factory con-

structs different scenarios for each run by substituting batch parameter values into the base

scenario. These scenarios are used by Job Execution Manager which creates simulation runs.

Other responsibilities of the Job Execution Manager are executing the simulation runs and

collecting the results to assemble the job result. By default, this result is sent to the Coordina-

tor in the form of a notification message. If the client application provides a service reference

to which the results should be sent, Simulator sends the results to the specified service instead

of the Coordinator [11].

13

2.3.3.3 Workflow in Sim-PETEK

Sim-PETEK provides a software infrastructure which is designed to be used for running

stochastic parameter sweep applications. The sequence of the main calls through the layers

of the infrastructure can be described in terms of several stages which are given below:

:Simulation Application

«Coordina tor»
ResourceManager

«Coordina tor»
JobManager

«Simu la to r»
ResourceManager

getCoordinatorResource()

:CoordinatorResourceProperties

startSimulationExecu tion()

:SimulationExecut ionResponse

getSimulato rResource()

:SimulatorResourceProperties

Figure 2.4: Initialization Stage of Sim-PETEK Workflow

• Initialization is the first stage, in which Simulator nodes are initialized and a parallel

execution environment is formed by the Coordinator by making connections with the

Simulator. This stage is explained in detail in Figure 2.4 which is taken from [11].

The flow in the system starts with the Simulation Application’s Coordinator Resource

Request via getCoordinatorResource operation. As a response to this request Coordi-

nator sends CoordinatorResourceProperties over its Resource Manager. As a result,

the connection between Simulation Application and Coordinator is establihed. Sub-

sequently, Simulation Application requests the simulation execution to be started and

gets the response as SimulationExecutionResponse which includes simulation execu-

tion identifiers. From this point on, Coordinator connects to the Simulator, subscribes

for notifications and asks for resource information via getSimulatorResource operation.

14

Resource information is retrieved from the Simulator in the form of SimulatorResour-

ceProperties.

«Coordina tor»
ResourceManager

«Coordina tor»
JobManager

«Coordina tor»
Scheduler

«Simu la to r»
JobExecutionManager

«Simu la to r»
ScenarioFactory

«Simu la to r»
ResourceManager

«S IMA»
Simulation
Framework

«Coordina tor»
JobProducer

getCoordinatorResource()

:CoordinatorResourceProperties
prepareSchedules()

:Schedules

createJobPackages()

:JobPackages

startJobExecution(JobPackages)

getSimulato rResource()

:SimulatorResourceProperties

createScenarios()

:Scenarios

executeSimulationRun(Sce nario)

Figure 2.5: Job Distribution Stage of Sim-PETEK Workflow

• Job Distribution is the second stage of Sim-PETEK workflow. The detailed descrip-

tion of this stage is provided in Figure 2.5 [11]. After the initialization stage, Job

Manager sends the simulator resource information to the Scheduler which produces the

scheduling plan. This plan is transmitted to Job Producer which creates job packages.

At this point, Coordinator requests the Simulator to start job execution. This request is

passed to Simulator’s Job Execution Manager which first retrieves resource information

and then asks the Scenario Factory to produce simulation run scenarios according to the

resource properties. Consequently, a request is sent to Simulation Modeling Infrastruc-

ture (SIMA) [26], which is a DEVS based simulation infrastructure [11].

• Stochastic Analysis is the third stage in which stochastic analysis methods such as

repetitions by Monte-Carlo simulations are applied to simulation runs [11].

• Result Aggregation is the forth stage of the workflow. During this stage, simulators

apply the filtering logic provided by the simulation application to the simulation results

and the filtered results are sent to the Coordinator. This filtering logic prevents huge

simulation result data to be sent over the network channels (only the required parts of

15

the results are transmitted).

Simulation Application

«Coordina tor»
JobManager

«Simu la to r»
NotificationManager

«Simu la to r»
Job Execution

Manager

getJobExecutionStatus()

getJobExecutionStatus()

:JobExecutionStatus

:JobExecutionStatus

getSimulationExecutionS tatus()

:Simulation Execu tionS tatus

getJobExecutionResults()

getJobExecutionResults()

:JobExecutionResults
:JobExecutionResults

getSimulationExe cutionRe sults()

:Simulation Execut ionRe sults

Figure 2.6: Result Collection and Status Monitoring Stage of Sim-PETEK Workflow

• Result Collection and Status Monitoring is the final stage of Sim-PETEK workflow.

Figure 2.6 shows this stage, in which components can ask for current job status and job

results.

2.4 Load Scheduling Approaches

There are two types of scheduling approaches that can be found in literature, namely static

scheduling and dynamic scheduling. In static scheduling approach, all decisions are made

before the application starts running. This means that static scheduling is appropriate for

the cases where future behavior is predictable. On the other hand, dynamic scheduling ap-

proach involves making decisions at run-time either by following a predefined strategy or as

a function of the current state of the system.

The simplest method of static scheduling is distributing the load as subtasks to computational

resources according to a rule such as assigning task ti j to resource ri(j%N(Ri)). Since this

task distribution rule does not consider neither the computational power of resources nor the

complexity of the subtasks, there is a possibility of inefficient distributions.

16

The most common mechanism used for dynamic scheduling purposes is the ”Master-Slave

Model” which can work efficiently for different types of scenarios. In this model, scheduler

is defined as the master and all other resources are slaves. Initially, master collects the whole

load as subtasks in a queue and then starts by assigning ”n” tasks at the front of the queue to

”n” resources, i.e. slaves. When a slave finishes its task, it informs the master which assigns

the next task from the front of the task queue. The algorithm goes on in the same way until

all tasks of the task queue are processed [29].

2.5 Divisible Loads

The behavior of the scheduling algorithms depend on the characteristics of the load that is

being processed. This is because some loads cannot be subdivided and have to be processed on

a single processor as a whole whereas some other kinds of loads can be subdivided arbitrarily

and can be independently processed on different processors. Load classification in [9] is

provided in Figure 2.7.

Figure 2.7: Load Classification

According to [9], indivisible loads are indivisible and independent as the name implies. This

means that further subdivision of this kind of loads is impossible. If static scheduling approach

17

is applied for indivisible loads, the problem can be considered as bin-packing problems found

in the literature and can be solved by adding some heuristics to the scheduling algorithm. Oth-

erwise, if dynamic scheduling approach is applied, scheduling deals with the computational

resource speed and availability and current system state.

Modularly divisible loads are defined in [9] as the loads that are subdivided a priori into

smaller loads which have interactions among themselves. This interaction can be represented

by a Task Interaction Graph (TIG) vertices of which correspond to load modules and edges of

which correspond to module interactions.

Arbitrarily divisible loads are the ones which can be partitioned into smaller load fractions

arbitrarily. These fractions can either have precedence relations or not [9].

When the load type of parameter sweep applications which are the focus of the study in this

thesis is examined, they fall into the arbitrarily divisible load category. This is because inde-

pendent experiments of a parameter sweep applications can be divided into arbitrary partitions

that do not have any precedences among themselves.

2.5.1 Divisible Load Theory (DLT)

Divisible load theory (DLT) is a methodology defined in [10]. This methodology tries to de-

velop linear and continuous models for partitionable computation and communication loads

for parallel processing. The load that is considered by DLT is massive and requires an enor-

mous amount of time to process. In the DLT model, there is one master processor and the

other processors are defined as slaves. The master processor partitions the massive load into

smaller partitions, keeps one of the load partitions for itself to process and sends the rest to the

slaves in the network for processing. An important problem here is to decide how to achieve

a balance in the load distribution between processors so that the computation is completed in

the shortest possible time. This load balancing can be done at the beginning or dynamically

during the computation.

Divisible load theory is interested in the load partitions that do not have any dependency

relations (i.e. each load partition can be independently processed, and the results obtained

after the process of one load partition does not have an effect on another one). Scheduling of

these kinds of loads is nontrivial because the designed algorithms should focus on efficient

18

utilization of the available resources in terms of computational power and communication

channel bandwidth.

Divisible load distribution, in general, follows the following steps. Firstly, the load to be

processed arrives at the master node. If the computational node network has a linear topology,

the master node pumps all the load in a pipelined manner, and every slave node receiving the

load from its predecessor keeps the portion assigned for it and passes the rest to its successor.

The problem is then reduced to the decision of the size of load portions in a way that total

processing time is kept minimum. Because of the fact that this load partitioning is for a

heterogeneous system of processors and network links, dividing the whole load equally results

in a poor performance.

One point that is mentioned by the divisible load theory is that in order to obtain optimal pro-

cessing time all the processors used in the computation must stop at the same time. This is the

basic optimality principle for divisible load scheduling problems. The optimal time can only

be achieved by an intelligent selection of the proper subset of the available processors. Thus,

using a larger number of nodes may cause a poor performance compared to the performance

of an optimal subset of nodes among which the load is dispatched according to the optimality

principle.

Another point is that the divisible nature of the load provides the opportunity to divide and

distribute the load in a repetitive sequence. By this strategy, the idle time of the processors

at the farthest end of the load distribution sequence is reduced. In addition to this reduction

in time, the finish time of the computation can be controlled by the selection of number of

installments (i.e. repetitions) [10].

2.5.2 Divisible Load Scheduling

Load scheduling focuses on minimizing the overall execution time by finding an optimal strat-

egy for both splitting the whole load into chunks and distributing these chunks to the available

resources in the right order. This scheduling problem was tried to be solved by single-round

and multi-round approaches. In the single-round approach, master processor distributes the

task chunks to the workers in a single round. This means that there is a single communication

between the master and each worker [8]. However, for large workloads single-round approach

19

is not efficient because of the idle time incurred by the last processors to receive their chunks.

In order to solve this inefficiency problem multi-round scheduling approach has come to the

scene. In multi-round scheduling, master processor sends the task chunks to the worker pro-

cessors in multiple rounds which provides shorter and pipelined communications. Moreover,

communication and computation times are overlapped by this approach.

The first multi-round scheduling algorithm is named as Multi Installment (MI) which starts

with small chunks and increases the chunk sizes throughout application execution to achieve

effective overlap of communication and computation [36]. Some other kinds of multi-round

scheduling algorithms start with large chunks and decrease chunk sizes instead of increasing

throughout application execution. The major disadvantage of such algorithms is poor overlap

of computation with communication [36]. This is because, for most of the applications the

amount of data to be sent for a chunk is proportional to the chunk size and starting by sending

a large chunk to the first worker would cause all the remaining workers to be idle during that

potentially long data transfer [35].

UMR (Uniform Multi-Round) is another scheduling algorithm which distributes work to com-

putational resources in multiple rounds. UMR is an extension of MI algorithm and is devel-

oped for addressing the limitations of MI. These limitations are that MI does not model laten-

cies associated with resource utilization and also does not provide any way to determine the

optimal number of rounds. UMR handles these limitations by imposing the restriction that

rounds must be ”uniform”, i.e. within each round the master assigns identical chunks to all

workers [34]. By this restriction, the UMR algorithm makes it possible to compute optimal

number of rounds while modeling resource latencies [35].

The MRRS (Multi-round Scheduling with Resource Selection) algorithm [28] extends the

UMR by considering the network bandwidth and latency in addition to the computational

capacity of workers. Furthermore, the MRRS is featured with a resource selection policy that

finds the best subset of available computational resources [27].

Investigations on multi-round algorithms have revealed that [34]:

• dividing the workload into large chunks reduces overhead, and thereby application

makespan;

• the use of small chunks at the onset of application execution makes it possible to overlap

20

overhead with useful work more efficiently; and

• the use of small chunks at the end of the execution leads to better robustness to perfor-

mance prediction errors

With these investigations in mind, Robust Scheduling for Divisible Workloads (RUMR) [34]

algorithm was developed. What RUMR tries to do is to combine ideas from multi-round

divisible workload scheduling, for performance, and from factoring-based scheduling, for

robustness. Factoring-based approach of this algorithm provides dynamicity.

2.5.3 Adaptive Divisible Load Scheduling

In large scale applications running in a heterogeneous environment such as grid, performance

is affected by the variances in workload, processors, network latencies, and other system re-

lated factors. Adapting to the variance of these factors requires dynamic task assignment, and

therefore, dynamic scheduling algorithms are powerful tools for the performance improve-

ment via the load balancing strategies they follow. Dynamic loop scheduling schemes such

as Factoring, Fractiling, Weighted Factoring, and Adaptive Weighted Factoring are examples

of such strategies. In the factoring method, a probablistic analysis is held, and factoring rules

according to which loop iterations are executed are formulated. Fractiling is a method based

on factoring. It is a combined scheduling technique that balances processor loads and main-

tains locality by exploiting self-similarity properties of fractals. Since the heterogeneity in

processor performance could lead to severe load imbalance, a Weighted Factoring approach

was proposed, where the chunks sizes are proportional to the relative processor speeds. There

are computing environments where processor workloads vary dynamically. If a scientific ap-

plication that requires a number of iterations over the computation space is running in such

a dynamic environment then a better performance can be achieved by adjusting the weights

dynamically after each iteration. This aspect is addressed by the Adaptive Weighted Factoring

technique [7].

Except from RUMR, described algorithms for divisible load scheduling are static because

they work under the assumption that the full computational capacity of resources is constantly

available and can be readily used, which makes them impractical for dynamic environments

such as the Grid [27]. RUMR has a dynamic nature, however all of its parameters are fixed

21

before it starts, which makes RUMR a non-adaptive scheduling algorithm.

Recently, adaptive approaches in divisible load scheduling have emerged. In [22], a two phase

adaptive load distribution strategy is followed. In the first phase (probe phase), a small part of

the load is partitioned and communicated to individual processing resources. When a resource

completes its load, the average bandwidth and average processing capacity of the processing

resource is estimated. Then the optimal load distribution phase starts and distributes the load

by computing the optimal load fractions to be dispatched to the individual processor resources.

Computations of the optimal load fractions are made according to the estimations of the first

phase.

In [23], skeletal task farm is used for scheduling divisible workloads for enhancing the perfor-

mance. A task farm (TF) consists of a farmer process which administers a set of independent

worker processes to concurrently execute a large number of independent tasks, collectively

comprising a divisible workload. The work in [23], provides a dynamic framework which

tries to make an automatic scheduling of divisible workloads based on the dispersion of the

participating computational resources and size of the workload. The core of this work consists

of a calibration phase and an execution phase. In the calibration phase, computational nodes

are calibrated by making them to execute one element from the task set. When all workers

finish their tasks, the execution times are taken and used for resource quantification by means

of a fitness index, F. There are two different calibration methods, namely times-only calibra-

tion and statistical calibration. If times-only calibration is followed, fitness index, F is defined

as a normalized decreasing function based on the inverse of the execution times. For a worker

node nodei,

Fi =

1
ti∑N

j=1
1
t j

(2.1)

where ti denotes the execution time value for nodei. When statistical calibration method is

used F is computed by using a curve fitting method over execution time. Univariate linear re-

gression fitting method considers that execution time depends only on processor availability

whereas multivariate linear regression considers that both the network latency and the proces-

sor availability affect the execution time. Univariate linear regression defines its regression

function as

22

t = c0 + c1a′ (2.2)

where a’ is a vector of size N (number of workers) denoting scaled processor availability and

c0 and c1 are constants. The main objective of this approach is to assign fewer tasks to the

workers which work more slowly. Calculation of fitness index in equation 2.1 is held by using

fitted values of t in 2.2.

In multivariate case, t is expressed as in 2.3 and used for fitness index calculation:

t = c0 + c1l + c2a
′2 (2.3)

where l is a vector with size N which keeps network latencies for the worker nodes.

In the execution phase for the TF, task assignment is held according to:

αl =

⌊S
k
× Fl + 0.5

⌋
∀l = 1, ...,N (2.4)

where S stands for total number of tasks, and k is the installment factor which dynamically

quantifies the number of rounds by making use of the number of tasks in the workload and the

system circumstances. If single round scheduling is to be applied, then k = 1 is substituted in

2.4. Otherwise, for multi-round scheduling k is calculated according to node dispersion. This

dispersion is estimated by the coefficient of variation(CV):

t̄ =
1
N

N∑
i=1

ti and σ =

√√√
1
N

N∑
i=1

(ti − t̄)2

CV =
σ

t̄
(2.5)

k = ln(S)CV (2.6)

23

CHAPTER 3

Sim-PETEK SCHEDULING ALGORITHMS

Sim-PETEK is a software infrastructure designed for executing parameter sweep applications

on distributed and heterogeneous computational environments such as grid. With these as-

pects in mind, job scheduling algorithms of Sim-PETEK should be practically used for divis-

ible loads in dynamic computational environments. As mentioned in Section 2.5.3, adaptive

approaches are more appropriate for dynamic environments and multi-round scheduling ap-

proaches should be followed for divisible loads such as parameter sweeps. For this reason,

Sim-PETEK scheduling algorithms were developed as multi-round and in an adaptive manner.

Before a detailed description of the scheduling algorithms, definitions, parameters and nota-

tions used in the scheduling algorithms are presented below:

• Run: Single execution of a simulation run consisting of one member of the batch

parameter set. This single execution includes repetitions from stochastic analysis, since

repetitions are not distributed among nodes.

• Job: A load sent to the nodes consisting of several runs.

• ActualJobExecutionTime: Execution time of the last load sent to a node.

• NodeAvgRunExecutionTime: Average execution time of a run from the last load sent

to a node.

• NodeProcessPower: Average processing power of a node calculated from the last load

sent to that node.

• NPP: Abbreviation for NodeProcessPower

24

• NodeProcessRatio: Ratio of node process power to the sum of all nodes process power.

• ENPR: Expected Node Processing Ratio. Expected ratio of the processing power of

the node to the whole processing power in service of the coordinator. Sum of these

values add up to 1.

• NumRounds: Number of rounds in the scheduling algorithm.

• TotalNumNodes: Total number of nodes in service to the coordinator.

• TotalNumRuns: Total number of runs to be executed for completing the batch param-

eter set.

• numRunsPerRound: Number of runs to be dispacthed in a round.

The general flow of all scheduling algorithms developed for Sim-PETEK are the same and it

is presented as an activity diagram in Figure 3.1. The algorithms start with an initialization

phase in which number of rounds and ENPR values of the computational nodes are initialized.

ENPR initialization is done according to the number of CPU cores of the nodes. After the

initialization phase, job dispatching rounds start. In each round, number of runs to be assigned

to the idle simulator nodes are computed and jobs with associated runs are sent to the nodes

for processing. When job completion messages are received, ENPR values of the nodes are

updated and the next round starts. The rounding phase ends when all of the runs are finished

and simulation results are received.

3.1 AMRS (Adaptive Multi-Round Synchronous Scheduling Algorithm)

Adaptive Multi-Round Synchronous Scheduling Algorithm is the first scheduling algorithm

that was implemented for scheduling purposes of Sim-PETEK.

The algorithm starts with assigning an expected execution processing ratio to the available

computational nodes. This assignment considers number of CPU cores of the nodes and

assigns a ratio to each node between 0 and 1 where sum of all values are 1. This value can be

represented as the following ratio for a node nodei:

25

Figure 3.1: Sim-PETEK Scheduling Activity Diagram

26

Number o f CPU Cores o f nodei∑N
j=1 Number o f CPU Cores o f node j

where N denotes the number of available computational nodes.

After this initial step, first round starts by dispatching runs to the computational nodes in

accordance with their ENPR values. The round ends when all of the nodes finish their jobs

and send the results. Before the next round starts, ENPR values of the nodes are updated and

job assignments are made according to the newly computed processing ratios. This procedure

goes on till all the jobs are completed.

AMRS contains ”synchronous” in its naming since it waits for all nodes to finish their jobs in

a round (i.e. the next round starts when all of the nodes inform that they have finished their

jobs).

(1) Func Schedule

(2) numRounds = A

(3) Initialize ENPR[numNodes]

(4) Initialize Jobs[numNodes]

(5) For (i = 0; i < numIterations; i++)

(6) numRunsPerRound = TotalNumRuns / numRounds

(7) For (j = 0; j < TotalNumNodes; j++)

(8) Jobs[j] = numRunsPerRound * ENPR[j]

(9) End For

(10) Run jobs

(11) Wait all nodes to complete their jobs

(12) roundNumber = i

(13) RecomputeENPR

(14) End For

(15) End Schedule

Figure 3.2: Pseudocode for AMRS Schedule Function

Figure 3.2 shows the pseudocode of the AMRS algorithm. The pseudocode briefly follows

the steps that was previously explained in Figure 3.1. In the AMRS algorithm number of

rounds mentioned as ”A” on the pseudocode line (2) is an optimal value that is determined by

experimentation. In lines (3) and (4) initialization of ENPR and Jobs arrays are held. ENPR

array keeps the expected node processing ratios of the nodes and Jobs array keeps the number

of runs to be sent to the nodes (i.e. Jobs[i] = number of runs to be sent to node i). At line (5),

the main loop of the AMRS scheduling algorithm starts. Firstly, number of runs of that round

is computed at line (6) and then the number of runs in each node’s job is computed at lines

(7), (8), and (9). At line (10) jobs are sent to the nodes and at line (11) all of them are waited

to finish. Before the next round begins, ENPR values are recomputed at line (12).

27

(1) Func InitializeENPR

(2) For (i = 0; i < numNodes; i++)

(3) ENPR[i] = Cores[i] / TotalNumberOfCores

(4) NPPTable[i] = Cores[i]

(5) End For

(6) End InitializeENPR

Figure 3.3: Pseudocode for AMRS InitializeENPR Function

Detailed information about ENPR initialization is given by the pseudocode in Figure 3.3. For

each node, ENPR value is set to a value which is a ratio of the number of CPU cores that

the node under consideration contains, to the total number of CPU cores of the all available

nodes. NPPTable at line (4) of the pseudocode is the table keeping processing powers of the

nodes. In the initialization step, the procesing power of a node is thought to be proportional

to its number of CPU cores.

(1) Func RecomputeENPR

(2) For (i = 0; i < numNodes; i++)

(3) actualExecutionTime = jobExecutionTimes[i]

(4) nodeRunTime = actualExecutionTime / Jobs[i]

(5) nodePocessPower = 1/nodeRunTime

(6) NPPTable[i] = nodePocessPower;

(7) End For

(8) sumNodeProcessPower = Sum(NPPTable.Values)

(9) For (i = 0; i < numNodes; i++)

(10) prevENPRValue = ENPR[i];

(11) alpha = 1.0 / roundNumber;

(12) nodeProcessRatio = NPPTable[i] / sumNodeProcessPower;

(13) nextENPRValue = ((1 - alpha) * prevENPRValue +

alpha * nodeProcessRatio)

(14) End For

(15) End RecomputeENPR

Figure 3.4: Pseudocode for AMRS RecomputeENPR Function

Furthermore, ENPR recomputation is mentioned in detail in figure 3.4. For this recompu-

tation, node process power values are updated firstly. This update is done according to the

execution time of the last job completed by the node. At line (4) the average time needed by

the node for completing one run is computed and node process power is set accordingly at

lines (5) and (6). At line (8) sum of the process powers of all nodes are computed. This sum

is used afterwards in the node process ratio computation.

ENPR recomputation is held according to the following estimation formula which is defined

in [21]:

28

T 1
m,E(t + 1) = (1 − α1

m(t))T 1
m,E(t) + α1

m(t)T 1
m,R(t) (3.1)

This formula uses an estimation technique which predicts the next value in a series as a

weighted average of the currently observed value and the previous estimations. This is known

as aging in literature [32]. For adapting this technique, we use historical measures of job

execution times of the nodes. In the above formula, T 1
m,E(t+1) is the predicted execution time

of a new run on node m, t is the number of times that the jobs are executed on m, T 1
m,R(t) is

the actual execution time of the job on the same node, and α1
m(t)(< 1) is the learning rate.

Learning rate is kept as 1/2 in order to simplify the implementation of aging [32]. The values

of T 1
m,E(t) and T 1

m,R(t) are provided by the previous executions.

Lines (9) - (14) of the RecomputeENPR function in Figure 3.4 applies the prediction formula

and estimates the expected execution powers of the nodes for the next round. As we have

mentioned before, number of runs to be sent to a node is proportional with this estimated

value.

For further understanding of AMRS, we should work with a numeric example. In this exam-

ple, a simulation containing 60 runs and applying 10 MC trials in each run is traced. AMRS

applies 3 rounds for dispatching the jobs to 5 computational resource nodes shown in Table

3.1.

Table 3.1: Computational Resource Nodes for the Example

Node A Node B Node C Node D Node E
8-Core 4-Core 4-Core 2-Core 2-Core

In the first place, ENPR initialization of the nodes are made and they will be set as follows:

Node A⇒ 8/(8 + 4 + 4 + 2 + 2) = 0.4

Node B⇒ 4/(8 + 4 + 4 + 2 + 2) = 0.2

Node C ⇒ 4/(8 + 4 + 4 + 2 + 2) = 0.2

Node D⇒ 2/(8 + 4 + 4 + 2 + 2) = 0.1

Node E ⇒ 2/(8 + 4 + 4 + 2 + 2) = 0.1

Since AMRS will be dispatching 60 runs in 3 rounds, 20 rounds will be dispatched in a

29

round. In the first round, distribution will be in a manner shown in Table 3.2. As mentioned

previously, this distribution is made according to ENPR values. For example,

NumberO f RunsForNode A = ENPRNode A ∗ NumberO f RunsPerRound = 0.4 ∗ 20 = 8

Table 3.2: AMRS First Round Job Distribution

Node A Node B Node C Node D Node E
8 Runs 4 Runs 4 Runs 2 Runs 2 Runs

In our example we assume that, Node A finishes 8 runs in 10 seconds, Node B finishes 4 runs

in 25 seconds, Node C finishes 4 runs in 10 seconds, Node D finishes 2 runs in 20 seconds,

and Node E finishes 2 runs in 10 seconds. Our further assumption is that this performance of

the nodes does not change during the whole simulation execution.

When all nodes finish their jobs, first round finishes and ENPR values are recomputed. For

this recomputation, node process power values are computed in the first place. Table 3.3

shows node process power values of our nodes with computation details.

Table 3.3: AMRS Node Process Power Values After First Round

Node A 1 / (10/8) = 0.8
Node B 1 / (25/4) = 0.16
Node C 1 / (10/4) = 0.4
Node D 1 / (20/2) = 0.1
Node E 1 / (10/2) = 0.2

ENPR values are then recomputed as follows according to Equation 3.1 where the learning

rate α1
m(t) is taken as 1/2:

ENPRNode A =
1
2
∗PreviousENPRNode A+

1
2
∗

NPPNode A∑
NPPValueso f Nodes

=
1
2
∗0.4+

1
2
∗

0.8
1.66

≈ 0.44

ENPRNode B =
1
2
∗PreviousENPRNode B+

1
2
∗

NPPNode B∑
NPPValueso f Nodes

=
1
2
∗0.2+

1
2
∗

0.16
1.66

≈ 0.15

30

ENPRNode C =
1
2
∗PreviousENPRNode C+

1
2
∗

NPPNode C∑
NPPValueso f Nodes

=
1
2
∗0.2+

1
2
∗

0.4
1.66

≈ 0.22

ENPRNode D =
1
2
∗PreviousENPRNode D+

1
2
∗

NPPNode D∑
NPPValueso f Nodes

=
1
2
∗0.1+

1
2
∗

0.1
1.66

≈ 0.08

ENPRNode E =
1
2
∗PreviousENPRNode E+

1
2
∗

NPPNode E∑
NPPValueso f Nodes

=
1
2
∗0.1+

1
2
∗

0.2
1.66

≈ 0.11

After ENPR recomputation, second round starts and runs are distributed according to the

newly computed ENPRs as shown in Table 3.4;

Table 3.4: AMRS Second Round Job Distribution

Node A 0.44 ∗ 20 ≈ 9 Runs
Node B 0.15 ∗ 20 = 3 Runs
Node C 0.22 ∗ 20 ≈ 5 Runs
Node D 0.08 ∗ 20 ≈ 2 Runs
Node E 0.11 ∗ 20 ≈ 3 Runs

When jobs of the second round are finished, ENPR recomputation is held once more and runs

of last round are distributed accordingly. Table 3.5 shows node process power values of our

nodes after finishing the second round.

Table 3.5: AMRS Node Process Power Values After Second Round

Node A 1 / (12/9) = 0.75
Node B 1 / (20/3) = 0.15
Node C 1 / (13/5) = 0.38
Node D 1 / (20/2) = 0.1
Node E 1 / (15/3) = 0.2

At this point, we should mention how we compute actual execution times. Sim-PETEK ar-

chitecture is designed such that a job sent to a simulator includes a number of runs, say N,

and an indicator of how many Monte Carlo trials should be held, say M. This means that the

simulator which has been assigned for a job will be running N*M simulations. Number of

31

simulations running in parallel on a simulator is proportional with the number of CPU cores

that the simulator has. For example, a dual core simulator can not run simulations in paral-

lel, a quad core one can run 4 simulations, a simulator with 8 cores can run 8 simulations in

parallel, and a simulator with 16 cores can run 15 simulations.

As an example Node A is computed to finish 9 runs in 12 seconds. For this simple example,

we assume that 10 MC trials are applied for each run meaning that when we send 8 runs to

Node A, this means 8*10 = 80 different simulations. Since there are 8 CPU cores which can

run in parallel, each core will be handling 10 simulations and finishing the whole job in 10

seconds. For the 9 runs case, there are 9*10 = 90 different simulations. 6 of the cores will

be handling 11 simulations whereas 2 of them will handle 12. As a result, 12 seconds will be

spent for finishing the whole job.

Recomputed ENPR values and distributions of the third round are presented in Table 3.6.

Table 3.6: AMRS Third Round ENPR Values and Job Distribution

Node A 0.46 10 Runs
Node B 0.12 3 Runs
Node C 0.23 5 Runs
Node D 0.07 2 Runs (Since all runs are distributed, these runs are not sent)
Node E 0.12 3 Runs (Since all runs are distributed, these runs are not sent)

Figure 3.5 shows job distributions of AMRS with a timeline. It can be easily seen that most

of the nodes wait idle when they are waiting for the other nodes to finish.

3.2 AMRA (Adaptive Multi-Round Asynchronous Scheduling Algorithm)

Asynchronous scheduling algorithm is an improved version of synchronous scheduling algo-

rithm. Instead of waiting for all of the nodes to finish their tasks in each round, asynchronous

scheduling algorithm dispatches new jobs to the nodes immediately after they finish their

runs. Before the job assignments expected execution power values of the nodes are updated

and assignments are made accordingly.

Figure 3.6 shows the pseudocode of AMRA Schedule function. The difference of this function

from AMRS algorithm is at lines between (12) and (15). AMRS algorithm waits for all nodes

32

Figure 3.5: AMRS Job Distributions

to complete their jobs whereas AMRA assigns new job to a node immediately after it finishes

its runs. With this approach AMRA tries to reduce the idle time spent by AMRS for all nodes

to finish their jobs. ENPR initialization and recomputation parts of AMRS and AMRA works

in the same manner. However, for AMRA case, first ENPR recomputation is held when all

nodes complete their first jobs. Otherwise, ENPR value of a node which has not completed

any job would be computed according to its number of CPU cores only which would yield

incorrect ENPR values for further rounds.

In order to see the effects of the improvement made by AMRA, same numeric example of

AMRS is traced. ENPR computation and job assignments are handled in the same way as

AMRS. The only difference is that when a node finishes its job, a new job is assigned to it

without waiting for the other nodes.

33

(1) Func Schedule

(2) numRounds = A

(3) Initialize ENPR[numNodes]

(4) Initialize Jobs[numNodes]

(5) While (remainingRunCount != 0)

(6) numRunsPerRound = TotalNumRuns / numRounds

(7) For (j = 0; j < TotalNumNodes; j++)

(8) Jobs[j] = numRunsPerRound * ENPR[j]

(9) remainingRunCount -= Jobs[j]

(10) End For

(11) Run jobs

(12) Wait any node to complete its job

(13) If(allNodesCompletedFirstJobs)

(14) RecomputeENPR

(15) End If

(16) End While

(17) End Schedule

Figure 3.6: Pseudocode for AMRA Schedule Function

Figure 3.7: AMRA Job Distributions

34

Figure 3.7 presents the timeline and job distributions for AMRA. This figure depicts that idle

wait times between the rounds are prevented. By this approach, simulation execution time is

reduced from 65 seconds (shown in Figure 3.5) to 45 seconds.

3.3 Improved Adaptive Multi-Round Asynchronous Scheduling Algorithms

Asynchronous scheduling algorithm is further improved and the following improved adap-

tive multi-round asynchronous scheduling algorithms are defined and implemented for Sim-

PETEK scheduling purposes.

3.3.1 SAMRA (Smart Adaptive Multi-Round Asynchronous Scheduling Algorithm)

In this improved version of AMRA a probing phase is added before the first round. In the

probing phase a sample of tasks are assigned to the simulator nodes and by this way the

computation powers are approximated. Furthermore, this algorithm is designed in a way

which is more compatible with Sim-PETEK design.

As mentioned previously in Section 3.1, Sim-PETEK architecture is designed in a way such

that a dual core simulator can not run simulations in parallel, a quad core one can run 4

simulations, and a simulator with 16 cores can run 15 simulations in parallel. With this

aspect in mind, SAMRA tries to arrange jobs as multiples of 1, 4, and 15 for dual core, quad

core, and 16-core simulators respectively. The aim of this approach is to prevent idle times

for some of the CPU cores. Since, number of Monte Carlo trials are provided as multiples

of 10 for performance analysis tests of this study, 4 and 15 can be reduced to 2 and 3. In

the pseudocode this reduced values are used for simplicity. Another approach for providing

simplicity in the pseudocodes is that only dual core, quad core, and 16-core computational

resource cases are included. That kind of parts are extended for different number of cores

during implementation.

In Figure 3.8 the pseudocode SAMRA is provided. Lines (12)-(26) is the probing part. In

the probing part, sample runs are assigned to the resources as multiples of 1,2,3, and etc. for

resources having different number of CPU cores. Similarly, jobs are assigned as multiples of

1,2, and 3 between lines (27) and (45) during the rounds.

35

(1) Func Schedule

(2) numRounds = A

(3) Initialize ENPR[numNodes]

(4) Initialize Jobs[numNodes]

(5) iterationCount == 1

(6) While (remainingRunCount != 0)

(7) numRunsPerRound = TotalNumRuns / numRounds

(8) For (j = 0; j < TotalNumNodes; j++)

(9) If (ENPR[j] < T)

(10) continue

(11) End If

(12) If (iterationCount == 1)

(13) Switch (numberOfCores[j])

(14) case 2:

(15) Jobs[j] = 1

(16) break

(17) case 4:

(18) Jobs[j] = 2

(19) break

(20) case 16:

(21) Jobs[j] = 3

(22) break

(23) default:

(24) Jobs[j] = 1

(25) break

(26) End If

(27) Else

(28) Jobs[j] = numRunsPerRound * ENPR[j]

(29) Switch (numberOfCores[j])

(30) case 2:

(31) break

(32) case 4:

(33) If (Jobs[j] > 2)

(34) Jobs[j] -= Jobs[j] % 2;

(35) End If

(36) break

(37) case 16:

(38) If (Jobs[j] > 3)

(39) Jobs[j] -= Jobs[j] % 3;

(40) End If

(41) break

(42) default:

(43) break

(44) End Else

(45) remainingRunCount -= Jobs[j]

(46) End For

(47) iterationCount++

(48) Run jobs

(49) Wait any node to complete its job

(50) If(allNodesCompletedFirstJobs)

(51) RecomputeENPR

(52) End If

(53) End While

(54) End Schedule

Figure 3.8: Pseudocode for SAMRA Schedule Function

36

For further understanding of the algorithm and observing the improvement, the numeric ex-

ample of AMRS and AMRA is also traced with SAMRA. Firstly ENPR initialization of the

nodes are made according to their CPU cores:

Node A⇒ 8/20 = 0.4

Node B⇒ 4/20 = 0.2

Node C ⇒ 4/20 = 0.2

Node D⇒ 2/20 = 0.1

Node E ⇒ 2/20 = 0.1

where 20 is the total number of CPU cores (i.e. 8 + 4 + 4 + 2 + 2).

Figure 3.9: SAMRA Job Distributions

After the ENPR initialization job dispatching starts. Timeline and distributions for SAMRA

are presented in Figure 3.9. As it can be seen from the figure, small number of runs are sent

to the nodes at the beginning for probing purposes. Node A is probed with 4 runs, Node B

37

is probed with 2 runs, and Node C, Node D, and Node E are probed with 2, 1, and 1 runs

respectively. In the 5th second, Node A, Node C, and Node E finish their runs and new jobs

are assigned to them. Since all nodes have not completed their runs yet, ENPR values are not

updated and job assignments of Node A, Node C, and Node E are made according to their

initial ENPRs:

Node A⇒ 0.4 ∗ 20 = 8⇒ 8 − (8%8) = 8 Runs

Node C ⇒ 0.2 ∗ 20 = 4⇒ 4 − (4%2) = 4 Runs

Node E ⇒ 0.1 ∗ 20 = 2⇒ 2 − (2%1) = 2 Runs

where 20 is the number of runs to be dispatched in a round.

In the 10th second, Node D finishes its run and assigned with 2 new runs (0.1 * 20 = 2).

When Node E finishes its run in 12.5th second ENPR values of the nodes are updated. Table

3.7 shows Node Process Power values and Table 3.8 shows ENPR computations.

Table 3.7: SAMRA Node Process Power Values After Probing

Node A 1 / (5/4) = 0.8
Node B 1 / (12.5/2) = 0.16
Node C 1 / (5/2) = 0.4
Node D 1 / (10/1) = 0.1
Node E 1 / (5/1) = 0.2

Table 3.8: SAMRA ENPR Values After Probing

Node A 1/2 ∗ 0.4 + 1/2 ∗ 0.8/1.66 ≈ 0.44
Node B 1/2 ∗ 0.2 + 1/2 ∗ 0.16/1.66 ≈ 0.15
Node C 1/2 ∗ 0.2 + 1/2 ∗ 0.4/1.66 ≈ 0.22
Node D 1/2 ∗ 0.1 + 1/2 ∗ 0.1/1.66 ≈ 0.08
Node E 1/2 ∗ 0.1 + 1/2 ∗ 0.2/1.66 ≈ 0.11

In 15th second, Node A, Node C, and Node E again finish their runs and their new job as-

signments are made after ENPR update. Details of ENPR update is shown in Table 3.9 and

Table 3.10.

38

Table 3.9: SAMRA Node Process Power Values After 15 Seconds

Node A 1 / (10/8) = 0.8
Node B 1 / (12.5/2) = 0.16
Node C 1 / (10/4) = 0.4
Node D 1 / (10/1) = 0.1
Node E 1 / (10/2) = 0.2

Table 3.10: SAMRA ENPR Values After 15 Seconds

Node A 1/2 ∗ 0.44 + 1/2 ∗ 0.8/1.66 ≈ 0.46
Node B 1/2 ∗ 0.15 + 1/2 ∗ 0.16/1.66 ≈ 0.12
Node C 1/2 ∗ 0.22 + 1/2 ∗ 0.4/1.66 ≈ 0.23
Node D 1/2 ∗ 0.08 + 1/2 ∗ 0.1/1.66 ≈ 0.07
Node E 1/2 ∗ 0.11 + 1/2 ∗ 0.2/1.66 ≈ 0.12

Job assignments of Node A, Node C, and Node E are as follows:

Node A⇒ 0.46 ∗ 20 = 9.2⇒ 9.2 − (9.2%8) = 8 Runs

Node C ⇒ 0.23 ∗ 20 = 4.6⇒ 4.6 − (4.6%2) = 4 Runs

Node E ⇒ 0.12 ∗ 20 = 2.4⇒ 2.4 − (2.4%1) = 2 Runs

Further tracing of the algorithm goes on in the same manner until all runs are distributed.

SAMRA finishes the same amount of work in 40 seconds (shown in Figure 3.9) which is a

less amount of time than AMRA and AMRS which spend 45 and 65 seconds respectively.

3.3.2 SSSE-AMRA (Slow Start - Slow End Adaptive Multi-Round Asynchronous Schedul-

ing Algorithm)

All of the algorithms described in the previous sections handle job assignments in a fixed

number of rounds which is determined by experimentation and the number of runs to be

assigned in a round is fixed. Our experiments with these algorithms have shown that there is

so much waiting time at the last round for all of the resources to finish their jobs. This idle

waiting condition is tried to be solved by a slow start-slow end scheduling algorithm where

the number of runs to be assigned in a round is determined by a sinusoidal function meaning

39

that the algorithm starts with small number of runs in a round, increases that number to some

extent, and then decreases.

Run count to be dispatched in a round is determined by the following formula:

RoundNumber < peak ⇒ bTotalRunCount ∗
sin(RoundNumber∗π

2∗peak)

mValue
c

RoundNumber ≥ peak ⇒ bTotalRunCount ∗
sin((RoundNumber+kValue−peak)∗π

2∗kValue)
mValue

c

The first part of this formula, i.e. when RoundNumber < peak, increases the number of

runs in a round to some extent, and the second part decreases from that point on. Beginning

by dispatching small number of runs helps collecting several historical metrics about nodes’

execution power values. By this way better estimates can be done by the estimation formula

used for ENPR computation. Furthermore, assigning small number of runs at the beginning is

a precaution for preventing bottleneck of slow nodes. The decreasing part of this algorithm is

completed in more number of rounds. This is for preventing wait conditions for slow nodes to

complete their jobs at the last rounds by dispatching less number of runs. In this formula, peak

represents round number at which maximum number of runs to be dispatched in a round is

achieved, kValue is the total number of rounds to be applied, and mValue is the normalization

factor. This normalization is necessary for obtaining the total area under the sinusodial curve

as 1 which means in our case that 100% of the runs are dispatched when all rounds are

finished. A sample number of runs versus rounds graphic can be seen in Figure 3.10 which

is drawn for 1500 runs in total. In this sample graphic, peak is 5, kValue is 50 and mValue is

33. The optimal values for peak, kValue, and mValue are determined by experimentation.

If communication costs of Sim-PETEK were not negligible, this slow start-slow end schedul-

ing approach would not be working efficient because this approach increases total number of

rounds and there is a communication cost at each round. For many architectures, there is a

huge data transfer which increases the communication cost. However, Sim-PETEK architec-

ture is designed in a way that transfered data is really small so that communication costs are

negligible.

Pseudocode of SSSE-AMRA Schedule function is shown in Figure 3.11. The main difference

of the algorithm can be seen on lines (8)-(12) of the pseudocode where number of runs for

40

Figure 3.10: Number of Runs vs. Rounds

the associated round is calculated. The round number counter namely ”roundNumber” in the

pseudocode is incremented when all of the runs in a round are dispatched (lines (41)-(44)).

This action means that the next round starts and number of runs of that round is determined

accordingly.

When we work with the same numeric example by using SSSE-AMRA with peak = 1, kValue

= 3, and mValue = 2.3, number of runs that are distributed in rounds of SSSE-AMRA are

computed as follows:

Round 1 ⇒ bTotalRunCount
mValue ∗ sin(RoundNumber∗π

2∗peak)c ⇒ b 60
2.3 ∗ sin(1∗π

2∗1) ≈ 26

Round 2 ⇒ bTotalRunCount
mValue ∗ sin((RoundNumber+kValue−peak)∗π

2∗kValue)c ⇒ b 60
2.3 ∗ sin((2+3−1)∗π

2∗3)c ≈ 22

Round 3 ⇒ bTotalRunCount
mValue ∗ sin((RoundNumber+kValue−peak)∗π

2∗kValue)c ⇒ b 60
2.3 ∗ sin((3+3−1)∗π

2∗3)c ≈ 12

This algorithm initializes ENPR values in the same way as the previously traced algorithms,

AMRS, AMRA, and SAMRA. After the initialization phase first round starts and runs are

dispatched as presented below:

Node A⇒ 0.4 ∗ 26 = 10.4⇒ 10.4 − (10.4%8) = 8 Runs

Node B⇒ 0.2 ∗ 26 = 5.2⇒ 5.2 − (5.2%2) = 4 Runs

41

(1) Func Schedule

(2) Initialize ENPR[numNodes]

(3) Initialize Jobs[numNodes]

(4) roundNumber = 1

(5) numOfDispacthedRunsOfARound = 0

(6) While (remainingRunCount != 0)

(7) If (roundNumber < peak)

(8) numRunsForRound = (TotalNumberOfRuns / mValue) *

sin((roundNumber * PI) / (2*peak));

(9) End If

(10) Else

(11) numRunsForRound = (TotalNumberOfRuns / mValue) *

sin((roundNumber + kValue - peak) *

Math.PI) / (2 * kValue));

(12) End Else

(13) For (j = 0; j < TotalNumNodes; j++)

(14) If (ENPR[j] < T)

(15) continue

(16) End If

(17) Jobs[j] = numRunsForRound * ENPR[j]

(18) Switch (numberOfCores[j])

(19) case 2:

(20) break

(21) case 4:

(22) If (Jobs[j] > 2)

(23) Jobs[j] -= Jobs[j] % 2;

(24) End If

(25) break

(26) case 16:

(27) If (Jobs[j] > 3)

(28) Jobs[j] -= Jobs[j] % 3;

(29) End If

(30) break

(31) default:

(32) break

(33) remainingRunCount -= Jobs[j]

(34) numOfDispacthedRunsOfARound += Jobs[j]

(35) End For

(36) Run jobs

(37) Wait any node to complete its job

(38) If(allNodesCompletedFirstJobs)

(39) RecomputeENPR

(40) End If

(41) If (numOfDispacthedRunsOfARound == numRunsForRound)

(42) numRounds++

(43) numOfDispacthedRunsOfARound = 0

(44) End If

(45) End While

(46) End Schedule

Figure 3.11: Pseudocode for SSSE-AMRA Schedule Function

42

Node C ⇒ 0.2 ∗ 26 = 5.2⇒ 5.2 − (5.2%2) = 4 Runs

Node D⇒ 0.1 ∗ 26 = 2.6⇒ 2.6 − (2.6%1) = 2 Runs

Node E ⇒ 0.1 ∗ 26 = 2.6⇒ 2.6 − (2.6%1) = 2 Runs

Figure 3.12 shows all distributions of SSSE-AMRA on a timeline. As the figure shows, 3 of

the nodes finish their runs at the 10th second and start with their new jobs. At that time, 20

runs of first round are distributed and 6 runs are left. So, number of runs of the new jobs are

computed as follows:

Node A⇒ 0.4 ∗ 26 = 10.4⇒ 10.4 − (10.4%8) = 8 Runs

Node C ⇒ 0.2 ∗ 22 = 4.4⇒ 4.4 − (4.4%2) = 4 Runs

Node E ⇒ 0.1 ∗ 22 = 2.2⇒ 2.2 − (2.2%1) = 2 Runs

When 20 seconds pass, Node A, Node C, and Node E finish their second jobs and Node D

finishes the first one. Then, it is time for a new distribution which is held as:

Node A⇒ 0.4 ∗ 22 = 8.8⇒ 8.8 − (8.8%8) = 8 Runs

Node C ⇒ 0.2 ∗ 22 = 4.4⇒ 4.4 − (4.4%2) = 4 Runs

Node E ⇒ 0.1 ∗ 22 = 2.2⇒ 2.2 − (2.2%1) = 2 Runs

Node D⇒ 0.1 ∗ 12 = 1.2⇒ 1.2 − (1.2%1) = 1 Run

Here, when runs of Node A, Node C, and Node E arranged, number of distributed runs is

equal to 48 meaning that third round should start. For this reason, runs of Node D is computed

according to the third round.

At the 25th second, Node B finishes its first job meaning that ENPR recomputation should be

held and a new job should be assigned to Node B. Since, this computation is same with the

previous algorithms, details are not given and computed values are presented in Table 3.11.

A job with 2 runs (0.15 ∗ 12 ≈ 2) is assigned to Node B after the computation.

Job distribution procedure goes on in a similar manner until all runs are completed. Figure

3.12 depicts that SSSE-AMRA has finished whole work in 39 seconds which is a bit better

than SAMRA.

43

Table 3.11: SSSE-AMRA ENPR Values After First Jobs Completed

Node A 0.44
Node B 0.15
Node C 0.22
Node D 0.08
Node E 0.11

Figure 3.12: SSSE-AMRA Job Distributions

44

3.3.3 ISSSE-AMRA (Improved Slow Start - Slow End Adaptive Multi-Round Asyn-

chronous Scheduling Algorithm)

ISSSE-AMRA improves SSSE-AMRA in the last iteration by redistributing the jobs of slow

nodes to the faster ones which have completed their jobs. This is a small improvement but

it prevents redundant waits for the bottlenecked nodes if there are any. Pseudocode for job

redistribution part of ISSSE-AMRA schedule function is shown in Figure 3.13. This code

part is inserted after line (38) of SSSE-AMRA scheduling function of Figure 3.11. The other

parts of the scheduling functions are the same.

(1) If(remainingRunCount == 0)

(2) maxFinishTime = 0

(3) Foreach running node "node_i"

(4) If(finishTime(node_n, Jobs[i]) < finishTime(node_i,Jobs[i])

&&

finishTime(node_i, Jobs[i]) > maxFinishTime)

(5) Jobs[n] = Jobs[i]

(6) maxFinishTime = finishTime(node_i, Jobs[i])

(7) End If

(8) End Foreach

(9) Run job

(10) End If

(11) If (numOfDispacthedRunsOfARound == numRunsForRound)

(12) numRounds++

(13) numOfDispacthedRunsOfARound = 0

(14) End If

Figure 3.13: Pseudocode for Task Redistribution Part of ISSSE-AMRA Schedule Function

When we trace the same numeric example with ISSSE-AMRA, an improvement is not pos-

sible because as it can be seen from Figure 3.12, Node A,which is the node with greatest

execution power, finishes lastly and job redistribution is not held.

However, if the case were the one shown in Figure 3.14, Node B’s job will be rescheduled to

Node C which reduces time cost from 45 seconds to 40 seconds as shown in Figure 3.15.

45

Figure 3.14: SSSE-AMRAJob Distributions: Assumed Case

46

Figure 3.15: ISSSE-AMRA Job Distributions: Assumed Case

47

CHAPTER 4

IMPLEMENTATION OF SCHEDULING ALGORITMS

Implementation details of Sim-PETEK scheduling algorithms are presented in this chapter.

The algorithms are implemented with C# on Microsoft Visual Studio 2008 platform same as

Sim-PETEK.

As mentioned in Section 2.3.3.1, Coordinator Grid Service contains a Scheduler component

which is responsible for producing optimized job scheduling plans. The study in this thesis

has focused on producing and analyzing such scheduling plans by integrating the proposed

scheduling algorithms defined in Chapter 3 into the Scheduler component of Sim-PETEK.

4.1 Scheduling Workflow

Figure 4.1 shows the activity diagram of Sim-PETEK scheduling. The flow starts with read-

ing scheduling algorithms’ properties from an XML file named as ”SchedulerList.xml” and

”Scheduling Algorithms List” is populated by these properties (Details of ”SchedulerList.xml”

is provided in Section 4.2). In the second step of the flow, a simulation execution request is

popped from the ”Simulation Execution Request Queue” which keeps the requests sent by

the ”Simulation Application” to the ”Coordinator”. In the third step, a previously unselected

scheduling algorithm is selected from the algorithm list and the corresponding scheduling

object is created at run time. From this point on, scheduling algorithm starts running and

produces the schedules in an iterative manner. When the schedule is formed, it is sent to the

”Job Producer” module which prepares the jobs. Prepared jobs are then sent to the simulators

by ”Job Manager”. This procedure goes on until all runs in the simulation execution request

are executed. When the simulation finishes, it is repeated with other scheduling algorithms in

the algorithm list in order to make comparisons. The whole process after the third step of the

48

Figure 4.1: Sim-PETEK Scheduling Workflow

49

flow is replicated for all simulation requests in the ”Simulation Execution Request Queue”.

4.2 Scheduling Algorithm Descriptions

Scheduling algorithms that are intended to be applied for a simulation execution request are

described in an XML file which is called ”SchedulerList.xml”. Before the simulation execu-

tion these algorithms are read into the memory from this file and corresponding scheduling

objects are created at run time.

<?xml version="1.0" encoding="utf-8" ?>

<SchedulerList>

<Scheduler>

<Name>AMRA</Name>

<ParameterSet>

<NumRounds>2</NumRounds>

<NumRounds>3</NumRounds>

</ParameterSet>

</Scheduler>

<Scheduler>

<Name>ImprovedSSSEScheduler</Name>

<ParameterSet>

<Peak>2</Peak>

<KValue>15</KValue>

<MValue>10.5</MValue>

<Peak>3</Peak>

<KValue>30</KValue>

<MValue>20.3</MValue>

</ParameterSet>

</Scheduler>

<Scheduler>

<Name>CalibratedScheduler</Name>

</Scheduler>

</SchedulerList>

Figure 4.2: Sample SchedulerList.xml

Structure of a sample ”SchedulerList.xml” can be seen in Figure 4.2. In this file, each sched-

uler is defined between < S cheduler >< /S cheduler > tags. In this tag there are two different

tags namely < Name > and < ParameterS et >. As the names of the tags imply, name of

the scheduler is provided in the < Name > tag and scheduler parameters such as number of

iterations and peak value are provided in the < ParameterS et > tag. For AMRS, AMRA, and

SAMRA only number of rounds are provided in the parameter set with < NumRounds > tag.

For each different number of rounds value, a new scheduling entry is added to the ”Scheduling

Algorithms List”. In the SSSE-AMRA and ISSSE-AMRA case, there are 3 different param-

eters (peak, kValue, mValue) in the parameter set. Values of these parameters are provided in

50

< Peak >, < KValue >, and < MValue > tags and for each peak, kValue, and mValue triple

a new entry is added to the ”Scheduling Algorithms List”.

Scheduling approach using statistical calibrations and described in [23] is also implemented in

this study. In ”SchedulerList.xml”, this algorithm is named as ”CalibratedScheduler”. There

is no need for defining a parameter set for this scheduling method.

4.3 Class Hierarchy of Scheduling Algorithms

Scheduling algorithms of Sim-PETEK are implemented in a way that each algorithm resides

in a different class. Instances of these classes are created at run time according to the descrip-

tions in ”SchedulerList.xml”.

Figure 4.3: Scheduling Class Hierarchy

A hierarchical class structure is formed for the implementation of scheduling algorithms.

This structure is presented in Figure 4.3. The hierarchy starts with an abstract class named as

”IterativeScheduler” at the root. The first level under the root contains ”CalibratedScheduler”,

”SyncIterativeScheduler(AMRS)”, and ”AsyncIterativeScheduler(AMRA)”. In the second

level, there exist extensions of AMRA namely ”SmartAsyncIterativeScheduler(SAMRA)”

51

and ”SlowStartSlowEndAsyncIterativeScheduler(SSSE-AMRA)”. At the last level there is

only one algorithm, ”ImprovedSlowStartSlowEndAsyncIterativeScheduler(ISSSE-AMRA)”

which is the extension of SSSE-AMRA.

As it can be seen from Figure 4.3, each class has a ”Schedule()” function. This function is the

coding part of a scheduler class in which corresponding scheduling algorithm is implemented.

IterativeS cheduler has a function ”WriteLogs()” which is called by all schedulers for record-

ing schedulers’ performance metrics.

CalibratedS cheduler does not contain any attributes. AMRS contains ”NumRounds” as a

private attribute and AMRA contains ”NumRounds” as a protected attribute so that S AMRA

can reach it. As previously mentioned, ”NumRounds” is the parameter which determines the

number of rounds that would be applied by the scheduling algorithm. S S S E−AMRA contains

”peak”, ”kValue”, and ”mValue” attributes as protected so that IS S S E − AMRA can reach

them. As also mentioned precviously, ”peak” represents round number at which maximum

number of runs to be dispatched in a round is achieved, ”kValue” is the total number of rounds

to be applied, and ”mValue” is the normalization factor.

52

CHAPTER 5

CASE STUDY AND PERFORMANCE ANALYSIS

In this chapter performance analysis of the scheduling algorithms is presented. For this analy-

sis, a stochastic simulation application (Wireless Sensor Network simulation) has run on Sim-

PETEK in a heterogeneous computation environment which is formed in TUBITAK UEKAE

ILTAREN. Following sections provide detailed information about the Wireless Sensor Net-

work simulation, our computation environment, and performance tests.

5.1 Wireless Sensor Network Simulation

In this study, Wireless Sensor Network(WSN) simulation developed for the study in [17] is

used. This simulation models a system consisting of 5 main components:

1. Sensors are the components which sense the movement activities and communicate

with other sensors in their range

2. Main Sensor is the component which communicates with the sensors in its range and

sends activation messages to them

3. Truck is the component which follows a predefined path during the simulation

4. Logger is a saver component saves the location and data packages created by truck and

sensors.

5. Sensor Adder adds sensors at runtime.

In the simulation, a wireless sensor network system is constructed by randomly distributing

the sensors. When the simulation starts, a truck with a predefined velocity and random path

53

starts its movement and follows its track. During this movement, sensors seeing the truck in

their range detect the truck’s location and send an accuracy value between 0 and 1 to their

parents. These values are finally collected at the main sensor and observed path of the truck

is determined after the analysis.

5.2 Performance Evaluation and Analysis of the Scheduling Algorithms

In this section, firstly a brief description about the testing environment and test cases are pre-

sented. Afterwards, the behavior of scheduling algorithms in different test cases are explained

via graphics and obtained results are analyzed.

5.2.1 Testing Environment and Test Cases

Testing environment for Sim-PETEK scheduling algorithms has been formed in TUBITAK

UEKAE ILTAREN. It is a heterogeneous computing environment consisting of 17 computa-

tional resources. One of these resources was determined as the Coordinator and the remaining

16 ones were Simulators. Resources own the following configurations:

• 1 coordinator resource: Quad-core with Windows XP Professional x64 Edition

• 5 simulator resources: 16-core with Windows Server 2003 x64 Edition

• 6 simulator resources: Quad-core with Windows XP Professional x64 Edition

• 3 simulator resources: Dual-core with Windows XP Professional x32 Edition

• 1 simulator resource: Dual-core with Windows Server 2003 x32 Edition

Various tests has been made in this environment with WSN Simulation. For a stochastic

parameter sweep approach, some input parameters were determined to be batch parameters

and simulations were held for their different values.

Test cases included in this study can be grouped into three:

In the first group of tests, AMRS defined in 3.1, AMRA defined in 3.2, and improved ver-

sions of AMRA (defined in sections 3.3.1, 3.3.2, and 3.3.3) are used as scheduling approaches

54

for deciding optimal number of rounds and determining the most efficient algorithm.

The second group of tests are applied for making a comparison between the most effective

scheduling algorithm among AMRS, AMRA, SAMRA, SSSE-AMRA, and ISSSE-AMRA

and the scheduling approach using calibration which is described in [23].

Scheduling approach of [23] has been chosen from literature because it is one of the most

recent studies for divisible load scheduling. Similar with Sim-PETEK scheduling algorithms,

this calibrated approach is adaptive and multi-round. Furthermore, it is evaluated for a

parameter-sweep in a heterogeneous environment which is very similar to the case of this

study.

The third group of tests are organized for proving the effect of adaptivity. A nonadaptive

version of ISSSE-AMRA is developed by distributing the runs according to number of CPU

cores of the computational resources in all rounds. Afterwards, execution times achieved by

this nonadaptive version is compared with the execution times of adaptive ISSSE-AMRA.

First Group of Tests

The first group of tests which uses 16 of the computational resources can be described as

follows:

There are 6 test cases each of which is repeated for different scheduling algorithms or for the

same algorithm with different number of rounds. These test cases are:

• 20 Monte Carlo trials for 100, 400, and 800 runs

• 50 Monte Carlo trials for 100, 400, and 800 runs

Different numbers of Monte Carlo trials means shorter or longer simulations, i.e. a simulation

with 20 Monte Carlo trials is shorter than the one with 50 trials. Number of sensors, truck’s

step size, and truck’s velocity are determined as batch parameters of WSN simulation and

used for task size arrangement (for our case number of runs). Number of sensors is provided

as 150 as minimum and 169 as maximum where the increasing step is 1, meaning 20 different

values. Truck’s step size is provided as 0.020 as minimum and 0.024 as maximum where

the increasing step is 0.001, meaning 5 different values. For 100 runs, truck velocity is kept

constant since different values of number of sensors and truck’s step size result in 100 runs

55

(i.e. 20 × 5 = 100). For 400 runs, truck velocity is provided as 0.40 as minimum and 0.43 as

maximum where stepping is 0.01, i.e. 4 different values (20× 5× 4 = 400). Similarly, for 800

runs, truck velocity is provided as 0.40 as minimum and 0.47 as maximum where stepping is

0.01, i.e. 8 different values (20 × 5 × 8 = 800).

As mentioned in 3.1 optimal number of rounds for the scheduling algorithms are determined

by experimentation. AMRS scheduling algorithm tests are made for 2, 3, 5, 8, and 10 rounds.

AMRA and SAMRA tests are made for 2, 3, 5, 8, 10, 15, 20, 30, 40, 50, 60, 80 and 100 rounds.

SSSE-AMRA and ISSSE-AMRA test are repeated with peak = 1, kValue = 3, mValue = 2;

peak = 1, kValue = 5, mValue = 3.3; peak = 2, kValue = 15, mValue = 10.5; peak = 3, kValue

= 30, mValue = 20.3; and peak = 5, kValue = 50, mValue = 33 where 50%, 30%, 15%, 10%,

and 5% of the total runs respectively are distributed until reaching the peak.

Second Group of Tests

The second group of tests, which use all of the resources in the resource set, determined four

different batch parameters for WSN simulation which are number of sensors, truck’s step size,

truck’s velocity X component, and truck’s velocity Y component. There are 15 different test

cases in this group:

• 10 Monte Carlo trials for 500, 1000, and 1500 runs

• 30 Monte Carlo trials for 500, 1000, and 1500 runs

• 50 Monte Carlo trials for 500, 1000, and 1500 runs

• 80 Monte Carlo trials for 500, 1000, and 1500 runs

• 100 Monte Carlo trials for 500, 1000, and 1500 runs

As many tests as possible have been applied in order to make a better analysis on the behavior

of the algorithms in different situations. For the arrangement of number of runs in this second

group of tests, minimum and maximum values and stepping size for number of sensors and

truck’s step size are same as the first group. Truck velocity’s X component is provided as 0.40

as minimum and 0.44 as maximum where the increasing step is 0.01, meaning 5 different

values. For 500 runs, truck velocity’s Y component is kept constant (i.e. 20 × 5 × 5 = 500).

For 1000 runs, it is provided as 0.40 as minimum and 0.41 as maximum with stepping size

56

0.01 meaning 2 different values so that 20×5×5×2 = 1000. Similarly, for 1500 runs velocity’s

Y component is provided as 0.40 as minimum and 0.42as maximum with the same stepping

size meaning 3 values (i.e. 20 × 5 × 5 × 3 = 1500).

Third Group of Tests

Third group of tests uses 6 of the computational resources. 3 of such resources consists of

16 cores, 2 of them have 4 cores, and 1 of them is a dual-core. For a better analysis of the

effect of adaptivity, quad-core and dual-core resources are loaded with another CPU intensive

application for 30 seconds in each 40 seconds period. There are 12 different test cases in this

group:

• 20 Monte Carlo trials for 100, 400, 1000, and 2000 runs

• 50 Monte Carlo trials for 100, 400, 1000, and 2000 runs

• 100 Monte Carlo trials for 100, 400, 1000, and 2000 runs

Different number of runs in the above test cases are arranged by playing with the values of

four different batch parameters of WSN simulation which are number of sensors, truck’s step

size, truck’s velocity X component, and truck’s velocity Y component.

5.2.2 Test Results

This section consists of three subsections. The first subsection presents the results of first

group of tests, the second one presents the results of second group, and the third one presents

the results of third group. Evaluations and comparisons of different schedulers are made

according to the total execution costs of the schedulers for the same test case.

Test results are shown via figures which present them visually. In the graphics number of

Monte Carlo trials and number of runs are represented as MCXNumberOfRunsY. For exam-

ple, MC20NumberOfRuns100 stands for 20 Monte Carlo trials for 100 runs.

57

Figure 5.1: AMRS Scheduling Algorithm Execution Times

5.2.2.1 Results of First Group of Tests

In Figure 5.1, execution times obtained by AMRS Scheduling Algorithm are presented. In

this figure AMRS-2 represents that the algorithm has applied 2 rounds. In the same manner

AMRS-3 has applied 3 rounds, AMRS-5 has applied 5 rounds, AMRS-8 has applied 8 rounds,

and AMRS-10 has applied 10 rounds.

This graphic shows that for the cases where number of runs is 100, optimal number of rounds

is 2, for the ones where number of runs is 400 or 800, optimal number of rounds is 5. This

result means that when task size is increased, number of rounds that the algorithm applies

should also be increased. However, if number of rounds is further increased then performance

of the algorithm gets worse. This is because, when number of rounds is increased, runs to be

distributed in a round decreases and some of the nodes can not get any jobs. For a better

understanding of this situation, let’s take the numeric example traced in Section 3.1 but this

time the assumption is that 10 rounds are applied. With this assumption, number of runs to be

dispatched in a round would be 6 (60/10 = 6). Then, job distributions would be in a manner

as shown in Figure 5.2.

58

Figure 5.2: AMRS Job Distributions When Number of Rounds is 10

59

As the figure shows, 2 of the nodes are not assigned with any jobs and 70 seconds are spent

for finishing the whole simulation whereas it can be finished in 65 seconds as in Figure 3.5.

Figure 5.3 shows simulation costs when AMRA Scheduling Algorithm is utilized. In this

figure, AMRA-2 represents that the algorithm has applied 2 rounds, AMRS-3 represents that

the algorithm has applied 3 rounds, and so on. As the first graphic on the figure indicates, for

the cases where number of runs is 100 optimal number of rounds is 3. When number of runs

increased to 400, optimal number of rounds increases to 8 (shown by second graphic on the

figure) and when it is increased to 800, optimal number of rounds increases to 15 for 20 MC

trials case and 20 for 50 MC trials case.

These results indicate that when task size is increased, number of rounds that is applied by

AMRA should also be increased to some extent similar to the AMRS case. Another conclu-

sion that can be reached by the results is that when simulation is extended by increasing the

number of MC trials, optimal number of rounds may increase as in the case where 50 MC

trials are made for 800 runs.

SAMRA scheduling algorithm shows a similar behavior with AMRA as shown in Figure 5.4.

The first graphic on the figure indicates that optimal number of rounds is 2 when simulation

contains 100 runs. This number increases to 10 and 15 for the cases where simulation consists

of 400 and 800 runs respectively.

In Figure 5.5, behavior of SSSE-AMRA scheduling algorithm with different peak, kValue,

and mValue values is presented. For small number of runs, the algorithm performs better

when peak and kValue are kept small. When number of runs increased, peak and kValue

should also be increased for achieving a better performance. This is thought to be related with

the situation that when peak and kValue is kept high for small number of runs, then some

nodes wait idle at the beginning or ending rounds where less number of runs are distributed.

As previously mentioned in Section 3.3.3, ISSSE-AMRA brings a small improvement over

SSSE-AMRA, so its behavior is very similar with different values of peak, kValue, and

mValue as Figure 5.6 depicts.

After all test cases are completed, a comparison is made among the scheduling algorithms.

For this comparison, execution times of the algorithms when they applied 15 rounds is used.

Figure 5.7 presents the comparison graphic.

60

Figure 5.3: AMRA Scheduling Algorithm Execution Times

61

Figure 5.4: SAMRA Scheduling Algorithm Execution Times

62

Figure 5.5: SSSE-AMRA Scheduling Algorithm Execution Times

Figure 5.6: ISSSE-AMRA Scheduling Algorithm Execution Times

63

Figure 5.7: Comparison of Sim-PETEK Scheduling Algorithms

Figure 5.8: Comparison of Sim-PETEK Scheduling Algorithms with Increased Number of
Runs and MC Trials

64

From this comparison graphic, it can determined that ISSSE-AMRA shows the best perfor-

mance in most of the cases. However, a conclusion can not be made about the behavior of

AMRA, SAMRA, and SSSE-AMRA. It is easily detected that they do not behave in conve-

nience with the theoretical results in Chapter 3 which has shown that SSSE-AMRA would

perform better than AMRA and SAMRA, and SAMRA would perform better than AMRA.

We think that these results may have occured becuase of the fact that communication costs

are not used in our scheduling model and our tests are running for simulations with small

number of runs for which communication costs are not ignorable. At this point, further tests

are applied with increased number of runs and MC trials where communication costs can be

ignored. These tests consists of 50 MC trials for 1000 runs, 50 MC trials for 2000 runs, 80

MC trials for 2000 runs, and 100 MC trials for 2000 runs. Figure 5.8 presents the results

which are convenient with the theoretical findings of Chapter 3. ISSSE-AMRA shows the

best performance, AMRA shows the worst performance, and SSSE-AMRA performs worse

than ISSSE-AMRA and better than SAMRA as expected.

Moreover, the scheduling algorithms are examined in order to analyze their DLT convenience.

Figure 5.9 presents simulation execution times with AMRA scheduling algorithm on a node

basis. From this figure, it can be detected that all nodes do not finish their task parts exactly

at the same time but there are not any huge differences.

Figure 5.10 shows simulation execution times with SAMRA. Similar with AMRA, all nodes

do not finish their tasks exactly at the same time. Differences in finish times are not high and

they are less than the differences of AMRA meaning that SAMRA is more convenient with

DLT optimality principle than AMRA.

Making same analysis with SSSE-AMRA and ISSSE-AMRA, the graphics shown in Figures

5.11 and 5.12 are obtained. As it can be seen from the figures, task finishing times of the

nodes are very near to each other meaning that DLT optimality principle is assured better than

AMRA and SAMRA. Figure 5.12 further shows duplicate and redundant times for the nodes.

Duplicate times denote the time spans where a node, Node i, which is faster than another

node, Node j, is assigned with Node j’s job in order to finish the simulation earlier. In such a

case, the time spent by Node j is denoted as redundant time on the graphic.

65

Figure 5.9: Node Execution Times with AMRA

66

Figure 5.10: Node Execution Times with SAMRA

67

Figure 5.11: Node Execution Times with SSSE-AMRA

68

Figure 5.12: Node Execution Times with ISSSE-AMRA

69

5.2.2.2 Results of Second Group of Tests

As mentioned previously, tests of this group are utilized for comparing the performance of

the most effective scheduling algorithm among Sim-PETEK scheduling algorithms and the

scheduling approach of [23] using statistical calibration techniques which is called as ”Cali-

brated Scheduler” in this study.

Examining the results of first group of tests in Section 5.2.2.1, ISSSE-AMRA scheduling

algorithm is found to show the best performance with Sim-PETEK architecture. For this

reason, comparisons are made between ISSSE-AMRA and Calibrated Scheduler. Figure 5.13

presents the comparison graphic. As the graphic depicts ISSSE-AMRA runs for 3 different

values of peak, kValue, and mValue. Results of second group of tests are compatible with the

finding with first group of tests which says that ”better performance is achieved with ISSSE-

AMRA by increasing peak and kValue to some extent when number of runs is increased”.

In the comparison graphic of Figure 5.13, it is clear that ISSSE-AMRA performs better than

Calibrated Scheduler in all of the test cases.

When algorithms are inspected in terms of DLT optimality principle, graphics shown in Figure

5.14 are obtained. These graphics only present the bahaviour when 100 MC trials are applied

for 1000 runs. Behaviours of the algorithms are very similar in other tests.

One important situation about the graphics of Figure 5.14 which attracts attention is that, there

are idle times for some of the nodes when Calibrated Scheduler is used as the scheduling

approach. These idle times are thought to be caused by the probing phase of the algorithm.

ISSSE-AMRA’s better performance is thought to be related with follows:

• There are not any idle times in ISSSE-AMRA.

• ISSSE-AMRA can collect more accurate information about the nodes by sending less

number of runs in several rounds at the beginning and prevents huge number of runs

to be sent to a poor node. Calibrated Scheduler applies the probing in one only round

which may not be sufficient in a system which contains frequent changes.

• Task redistribution approach of ISSSE-AMRA prevents wait conditions for bottlenecked

nodes. Calibrated Scheduler does not provide any mechanism for such kinds of cases.

70

Figure 5.13: Comparison of ISSSE-AMRA and Calibrated Scheduler

71

Figure 5.14: Node Execution Times with ISSSE-AMRA and Calibrated Scheduler

72

5.2.2.3 Results of Third Group of Tests

As it is mentioned in the previous sections, tests in this group are organized for observing the

effect of adaptivity in scheduling.

The comparison graphic of Figure 5.15 depicts that adaptive version of ISSSE-AMRA per-

forms better than the nonadaptive version in all of the test cases which is the expected behav-

ior.

5.3 Discussion

There are several projects in literature like AppLeS in [14] and Nimrod/G in [12] targeting

the PSA deployment in distributed systems.

Scheduling approach of AppLeS uses static and dynamic information about resources as well

as application-level information like number of tasks and size of data files for making schedul-

ing decisions. Since the framework targets long-running applications, it refines its scheduling

decisions periodically during the application execution. The scheduling algorithm especially

focuses on the scenarios where large input data files are shared among several task fractions.

It tries to maximize the re-use of such files by replicating the files and dispatching the tasks

close to their relevant files. This is an NP-complete scheduling problem and heuristics named

as Min-min, Max-min, Sufferage, and XSufferage are used by AppLeS framework for the

solution [16]:

• Min-min is the heuristic which gives priority to the task that can be completed earliest.

• Max-min is the heuristic which gives priority to the task that can be completed latest.

• Sufferage has the main idea that a resource should be assigned to the task that would

suffer the most if not assigned to that host.

• XSufferage applies Sufferage heuristic in cluster level.

Furthermore, a greedy algorithm using assigning work to hosts as soon as they become avail-

able is implemented for scheduling purposes and different scheduling approaches are com-

pared. XSufferage heuristic has seen to be performing best when large input files are shared

73

Figure 5.15: Comparison of Adaptive and Nonadaptive Versions of ISSSE-AMRA

74

by several tasks and performance predictions have errors within reasonable amounts. How-

ever, in a system where there is a significant variance in resource availability, greedy approach

has seen to be more appropriate [13].

Scheduling approach of Nimrod/G tries to integrate the computational economy as a part

of the scheduling system, i.e. what the scheduling system tries to do is to find sufficient

resources for meeting user’s deadline and cost. Various kinds of parameters such as resource

configuration, resource state, resource capability, access speed, and task priority are used for

arriving optimal schedules. Resources offering the best price and meeting the deadline can be

selected and used in task execution [12].

In Sim-PETEK architecture, there do not exist any cases where huge file access is needed be-

cause simulators in the system only read the simulation definitions from short XML files

and produce the different values for input parameters automatically. For this reason, the

scheduling approach of AppLeS using heuristics is not appropriate for Sim-PETEK. How-

ever, AppLeS’s approach to make periodic scheduling decisions according to the variances of

the system is similar to the adaptive approach of Sim-PETEK scheduling algorithms where

periods are defined by rounds.

Sim-PETEK, not like Nimrod/G, is not designed in a way to meet the deadline and cost

requirements of users. However, if it is desired, the architecture can be extended and compu-

tational economy can be integrated into the existing scheduling algorithms.

75

CHAPTER 6

CONCLUSION

The study in thesis has focused on the development and analysis of scheduling algorithms

for Sim-PETEK. For this purpose, 5 different scheduling algorithms are designed and im-

plemented. Our common design approach of such algorithms is that they are developed as

adaptive and multi-round. Adaptive approach is followed because Sim-PETEK is designed

to run in heterogeneous computational environments and multi-round approach is followed

since the simulation applications using Sim-PETEK are parameter sweep applications which

are arbitrarily divisible.

AMRS is the first scheduling algorithm that has been developed for Sim-PETEK. This algo-

rithm starts with assigning an initial expected execution power value to each computational

node according to its number of CPU cores. After initialization, job dispatching rounds start

and continues until all runs of the simulation are finished. Between the rounds, expected exe-

cution power values of the nodes are updated according to nodes’ performance in the previous

rounds and runs are distributed in accordance with this updated value.

AMRA improves AMRS by preventing wait conditions in the rounds. This is held by imme-

diately making a new job assignment to the nodes which finish their runs.

AMRA is further improved and named as SAMRA. What SAMRA does for this improvement

is that, it adds a probing phase before the first round and provides more compliancy with

Sim-PETEK design. Probing is handled by assigning small number of runs to the nodes for

estimating their computational powers. Sim-PETEK compliancy is provided by arranging

number of runs in a job according to the resource properties.

SSSE-AMRA tries to solve idle wait conditions at the last round by a slow start-slow end

scheduling approach. The algorithm starts with dispatching small number of runs in a round,

76

increases that number to some extent, and then decreases. Assigning small number of runs

at the beginning provides the algorithm to collect performance metrics about the nodes as a

precaution for preventing bottleneck of slow nodes. Similarly, by assigning small number of

runs at the last rounds, SSSE-AMRA prevents wait conditions for slow nodes.

SSSE-AMRA is further improved by ISSSE-AMRA by redistributing the jobs of slow nodes

to the faster ones in the last iteration. This small improvement aims to prevent redundant

waits for the bottlenecked nodes.

Various tests are applied for analyzing the developed scheduling algorithms. This analysis

has shown that number of rounds should be increased or decreased in accordance with the

number of runs that the simulation contains. Another observation after the analysis is that

ISSSE-AMRA generally shows better performance than the others.

Moreover, several tests are organized for comparing the performance of ISSSE-AMRA and

the scheduling approach of [23]. Results of these tests have revealed that ISSSE-AMRA

performs better than Calibrated Scheduler from 4% up to 15%. For this reason, ISSSE-AMRA

is determined to be the Sim-PETEK scheduling algorithm.

Comparing the scheduling approach of Sim-PETEK with other PSA running systems such as

AppLeS, it is seen that periodic scheduling decision updates of AppLeS corresponds to rounds

of Sim-PETEK Scheduler and provides adaptivity. Another PSA running system, Nimrod/G,

integrates computational economony in its scheduling system which has not been considered

by Sim-PETEK, however; it can be integrated into the scheduling algorithms of Sim-PETEK

if it is desired.

As a future extension, some other tests which will be running in a wider heterogeneous com-

putational environment such as grid can be organized. These tests will be giving us the op-

portunity to make further analysis on the behavior of scheduling algorithms.

In this study, optimal values for some parameters such as number of rounds, peak and kValue

are determined by experimentation. For getting rid of these experiments and saving time,

another extension can work on formulating such kind of values in terms of task size (i.e.

number of runs in our case) and other kinds of system properties like number of computational

resources.

77

REFERENCES

[1] OGSA, OGSI, and GT3.
http://gdp.globus.org/gt3-tutorial/multiplehtml/ch01s01.html, last visited on 22 August
2010.

[2] Open Grid Services Architecture.
http://www.globus.org/ogsa, last visited on 8 August 2010.

[3] Parameter Sweep.
http://sourceforge.net/apps/mediawiki/qucs/index.php?title=Parameter Sweep, last vis-
ited on 9 August 2010.

[4] scientific application - Computer Dictionary Definition.
http://www.yourdictionary.com/computer/scientific-application, last visited on 22 Au-
gust 2010.

[5] The Web Services Resource Framework.
http://www.globus.org/wsrf, last visited on 8 August 2010.

[6] Windows Communication Foundation.
http://en.wikipedia.org/wiki/Windows Communication Foundation, last modified on 22
July 2010, last visited on 27 July 2010.

[7] I. Banicescu and V. Velusamy. Load Balancing Highly Irregular Computations with
the Adaptive Factoring. In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS.02), 2002.

[8] O. Beaumont, A. Legrand, and Y. Robert. Scheduling divisible workloads on heteroge-
neous platforms. Parallel Computing, 29:1121–1152, 2003.

[9] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi. Scheduling Divisible Loads in
Parallel and Distributed Systems. IEEE Computer Society Press, 1996.

[10] V. Bharadwaj, D. Ghose, and T.G. Robertazzi. Divisible Load Theory: A New Paradigm
for Load Scheduling in Distributed Systems. Cluster Computing, 6(1):7–17, 2003.

[11] D. Bozağaç, G. Karaduman, A. Kara, and M.N. Alpdemir. Sim-PETEK : A Parallel
Simulation Execution Framework for Grid Environments. In Summer Computer Simu-
lation Conference (SCSC’09), pages 275–282, 2009.

[12] R. Buyya, D. Abramson, and J. Giddy. Nimrod/g: An architecture for a resource man-
agement and scheduling system in a global computational grid. In High Performance
Computing in the Asia-Pacific Region, pages 283–289, 2000.

[13] H. Casanova and F. Berman. Parameter Sweeps on the Grid with APST, in Grid Comput-
ing: Making the Global Infrastructure a Reality. John Wiley & Sons, Ltd, Chichester,
UK, 2003.

78

[14] H. Casanova, F. Berman, G. Obertelli, and R. Wolski. The apples parameter sweep
template: User-level middleware for the grid. In Supercomputing, ACM/IEEE 2000
Conference, pages 60–78, 11 2000.

[15] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for Scheduling
Parameter Sweep applications in Grid Environments. In 9th Heterogeneous Computing
Workshop(HCW), pages 349–363, 2000.

[16] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for scheduling pa-
rameter sweep applications in grid environments. In Heterogeneous Computing Work-
shop, pages 349–363, 2000.

[17] F. Deniz. Variable Structure and Dynamism Extensions To a DEVS Based Modeling
and Simulation Framework. Master’s thesis, METU, 2010.

[18] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The Physiology of the Grid. Inter-
national Journal of Supercomputer Applications, 15(3):200–222, 2001.

[19] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid. International Journal
of Supercomputer Applications, 15(3):200–222, 2001.

[20] N. Fujimoto and K. Hagihara. Near-Optimal Dynamic Task Scheduling of Independent
Coarse-Grained Tasks onto a Computational Grid. In Parallel Processing, 2003, pages
391–398, 2003.

[21] Y. Gao, Rong H., and J. Z. Huang. Adaptive Grid Job Scheduling with Genetic Algo-
rithms. Future Generation Computer Systems, 21.

[22] D. Ghose, H. J. Kim, and T. H. Kim. Adaptive Divisible Load Scheduling Strategies for
Workstation Clusters with Unknown Network Resources. IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, 16(10):897–907, 2005.

[23] H. González-Vélez and M. Cole. Adaptive statistical scheduling of divisible workloads
in heterogeneous systems. Journal of Scheduling, 13(4):427–441, 2009.

[24] M. T. Heath. Scientific Computing: An Introductory Survey. McGraw-Hill Higher Edu-
cation, 2002.

[25] M. Humphrey, G. Wasson, K. Jackson, J. Boverhof, M. Rodriguez, J. Gawor, J. Bester,
S. Lang, I. Foster, S. Meder, et al. State and events for web services: a comparison
of five WS-resource framework and WS-notification implementations. In 14th IEEE
International Symposium on High Performance Distributed Computing, 2005. HPDC-
14. Proceedings, pages 3–13, 2005.

[26] A. Kara, D. Bozagac, and M.N. Alpdemir. Sima: A devs based hierarchical and modular
modelling and simulation framework. 2. National Defensive Applications Modelling
and Simulation Conference, 4 2007.

[27] N. T. Loc and S. Elnaffar. A Dynamic Scheduling Algorithm for Divisible Loads in Grid
Environments. Journal Of Communications, 2(4):57–64, 2007.

[28] N. T. Loc, S. Elnaffar, T. Katayama, and Bao H. T. MRRS: A More Efficient Algo-
rithm for Scheduling Divisible Loads of Grid Applications. In IEEE/ACM International
Conference on Signal-Image Technology and Internet-based Systems (SITIS’06), 2006.

79

[29] T. Ma and R. Buyya. Critical-Path and Priority based Algorithms for Scheduling Work-
flows with Parameter Sweep Tasks on Global Grids. In Proceedings of the 17th Inter-
national Symposium on Computer Architecture on High Performance Computing, pages
251–258, 2005.

[30] C. Peiris, D. Mulder, and S. Cicoria. Pro WCF: Practical Microsoft SOA Implementa-
tion. Apress, 2007.

[31] B. Sotomayor. The Globus Toolkit 4 Programmer’s Tutorial. 2005.

[32] A. S. Tanenbaum. Modern Operating Systems, 2nd Edition. Prentice Hall PTR, 2001.

[33] G. Theodoropoulos, Y. Zhang, D. Chen, R. Minson, S.J. Turner, W. Cai, Y. Xie, and
B. Logan. Large scale distributed simulation on the grid. EPSRC e-Science Sister
Project GR/ S, 82862, 2003.

[34] Y. Yang and H. Casanova. RUMR: Robust Scheduling for Divisible Workloads. In Pro-
ceedings of the 12th IEEE International Symposium on High Performance Distributed
Computing (HPDC’03), 2003.

[35] Y. Yang and H. Casanova. UMR: A Multi-Round Algorithm for Scheduling Divisible
Workloads. In Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS’03), 2003.

[36] Y. Yang, K. Raadt, and H. Casanova. Multiround Algorithms for Scheduling Divis-
ible Loads. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,
16(11):1092–1102, 2005.

80

