

DEVELOPMENT OF A GIS SOFTWARE FOR EVALUATING NETWORK
RELIBILITY OF LIFELINES UNDER SEISMIC HAZARD

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

LÜTFİ ODUNCUOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

GEODETIC AND GEOGRAPHICAL INFORMATION TECHNOLOGIES

DECEMBER 2010

Approval of Thesis:

DEVELOPMENT OF A GIS SOFTWARE FOR EVALUATING
NETWORK RELIABILITY OF LIFELINES UNDER SEISMIC HAZARD

submitted by LÜTFİ ODUNCUOĞLU in partial fulfillment of requirements for
degree of Master of Science In Geodetic and Geographical Information
Technologies, Middle East Technical University by,

Prof Dr.Canan Özgen
Dean, Graduate School of Natural and Applied Sciences ________________

Prof Dr. Vedat Toprak ________________
Head of Department, Geodetic and
Geographical Information Technologies

Prof. Dr. H. Şebnem Düzgün ________________
Supervisor, Mining Engineering Department, METU

Assoc. Prof. Dr. Sevtap Kestel ________________
Co-Supervisor, Graduate School of
Applied Mathematics. METU

Examining Committee Memebers:

Prof Dr.Vedat Toprak ________________
Geological Engineering Department, METU

Prof. Dr. H. Şebnem Düzgün ________________
Mining Engineering Department, METU

Assoc Prof. Dr. A. Sevtap Kestel ________________
Graduate School of Applied Mathmetics, METU

Assoc. Prof. Dr, Ahmet COŞAR ________________
Computer Engineering Department, METU

Assoc. Prof. Dr. Nurünnisa Usul ________________
Civil Engineering Department, METU

 Date: ___27/12/2010____

iii

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last Name : Lütfi Oduncuoğlu

 Signature :

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Prof. Dr. Şebnem Duzgun for her

supervision and guidance.

My deepest appreciation to Assoc. Prof. Dr. Sevtap Kestel in helping me to

broaden my view and knowledge.

I am heartily thankful to my friends, Gokcen Guner and Onur Yurtsever, whose

encouragement, guidance and support from the initial to the final level enabled

me to develop an understanding of the subject.

My heartiest thanks to Tugce Senturk in editing my thesis.

And my deepest gratitude to my parents in supporting me.

Lastly, I offer my regards and blessings to all of those who supported me in any

respect during the completion of the thesis.

v

ABSTRACT

DEVELOPMENT OF A GIS SOFTWARE FOR EVALUATING

NETWORK RELIBILITY OF LIFELINES UNDER SEISMIC HAZARD

Oduncuoglu, Lutfi

M. Sc. Department of Geodetic and Geographical Information

Technologies

Supervisor : Prof. Dr. H. Sebnem Duzgun

Co-Supervisor: Assoc. Prof. Dr. Sevtap Kestel

December, 2010, 111 pages

Lifelines are vital networks and it is important that those networks are still be

functional after major natural disasters such as earthquakes. The goal of this

study is to develop a GIS software for evaluating network reliability of lifelines

under seismic hazard. In this study, GIS, statistics and facility management is

used together and a GIS software module, which constructs GIS based reliability

maps of lifeline networks, is developed by using geoTools. Developed GIS

module imports seismic hazard and lifeline network layers in GIS formats using

geoTools libraries and after creating a gridded network structure it uses a

network reliability algorithm, initially developed by Yoo and Deo (1988), to

calculate the upper and lower bounds of lifeline network reliability under seismic

hazard. Also it can show the results in graphical form and save as shape file

format. In order to validate the developed application, results are compared with

vi

a former case study of Selcuk (2000) and the results are satisfactorily close to

previous study. As a result of this study, an easy to use, GIS based software

module that creates GIS based reliability map of lifelines under seismic hazard

was developed.

Keywords: GIS, Seismic Hazard, Facility Management, Network Reliability

vii

ÖZ

SİSMİK RİSK ALTINDAKİ CANDAMARLARININ AĞ

GÜVENİLİRLİĞİNİN DEĞERLENDİRİLMESİ İÇİN BİR CBS

YAZILIMI GELİŞTİRİLMESİ

Oduncuoğlu, Lütfi

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü

Tez Yöneticisi : Prof. Dr. Şebnem Düzgün

Ortak Tez Yöneticisi : Doç. Dr. Sevtap Kestel

Aralık, 2010, 111 Sayfa

Candamarları, hayati öneme sahip ağlardır. Bu ağların deprem gibi büyük doğal

afetler sonrasında işlevlerini yerine getirmeye devam etmeleri önemlidir. Bu

çalışmanın amacı; sismik tehlike altındaki candamarlarının ağ güvenilirliği için

bir CBS yazılımı geliştirilmesidir. Çalışmada, CBS, istatistik ve tesis yönetimi

birlikte kullanılmış ve geoTools kullanılarak candamarı ağları için CBS tabanlı

güvenilirlik haritaları oluşturan CBS yazılım modülü geliştirilmiştir. Geliştirilen

CBS modülü, geoTools kütüphanelerini kullanarak sismik tehlike ve candamarı

ağ tabakalarını CBS formatında almaktadır. Hücreli (Gridli) ağ yapısı

oluşturulduktan sonra, ilk olarak Yoo ve Deo (1988) tarafından geliştirilen ve

sismik tehlike altındaki can damarı ağ güvenilirliğinin alt ve üst sınırlarını

hesaplamakta kullanılan ağ güvenilirliği algoritması kullanılmaktadır. Ayrıca

sonuçlar grafik formatta gösterilip, shape dosya biçiminde kaydedilir.

Geliştirilen uygulamanın test edilebilmesi için, sonuçlar Selcuk’un (2000) önceki

viii

bir çalışması ile karşılaştırılmış; elde edilen değerlerin önceki çalışmayla uyumlu

olduğu görülmüştür. Yapılan bu çalışmanın sonunda, sismik tehlike altındaki

candamarlarının CBS tabanlı güvenilirlik haritalarını meydana getiren, kullanımı

kolay, CBS tabanlı yazılım modülü geliştirilmiştir.

Anahtar Kelimeler: CBS, Sismik Tehlike, Tesis Yönetimi, Ağ Güvenilirliği

ix

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

ABSTRACT .. v

ÖZ ..vii

TABLE OF CONTENTS .. ix

LIST OF FIGURES... xi

LIST OF TABLES...xiii

CHAPTERS

1. INTRODUCTION... 1

1.1 Importance of the Problem... 1

1.2 Aim of the study .. 4

2. LITERATURE REVIEW... 5

2.1 GIS Related Literature ... 5

2.2 Reliability Related Literature... 7

3. THEORETICAL BACKGROUND... 11

3.1 GIS Platforms .. 11

3.2 Seismic Hazard Analysis ... 16

3.3 Element Reliability .. 18

3.3.1 Seismic Capacity Model .. 19

3.4 Network Reliability.. 21

4. METHODOLOGY.. 26

4.1 Implementation of Software .. 35

4.2 Validation of Software... 48

4.3 Discussion.. 50

5. CONCLUSIONS and RECOMMENDATIONS .. 53

REFERENCES ... 56

x

APPENDICES... 59

A. PROGRAM CODES ... 59

A.1 Main.java Class... 59

A.2 Node.Java Class .. 92

A.3 Gaussian.java Class... 93

A.4 Netrel.java Class ... 94

A.5 Util.java Class ... 100

B. ATTRIBUTES OF CONSTRUCTED NETWORK LAYER... 104

B.1 Attirubute table of gridded network structure ... 104

xi

LIST OF FIGURES

FIGURES

Figure 3.1: Representation of attenuation relationship (MIT, 2004) 18

Figure 3.2: Flow Chart of Yoo and Deo Algortihm.. 23

Figure 3.3: An Example to a Network .. 24

Figure 3.4: Event tree for Yoo and Deo algorithm (Yoo and Deo, 1988)........... 25

Figure 4.1: Flow chart of the developed application... 27

Figure 4.2: A node example over pga layer .. 28

Figure 4.3: Line parts after the algorithm.. 29

Figure 4.4: Detailed structure of util.java class... 31

Figure 4.5: Structure of gaussian.java class ... 32

Figure 4.6: Detailed Sturcture of netrel.java class. .. 34

Figure 4.7: Magnified part of pga layer .. 35

Figure 4.8: Seismic hazard map of Bursa based on 475 years average values ... 36

Figure 4.9: A schematic drawing of the water distribution system (Sevuk and

Altinbilek, 1977) ... 37

Figure 4.10: Network Layer .. 37

Figure 4.11: Lifeline layer over a satellite image... 38

Figure 4.12: File selector window for seismic hazard layer................................ 39

Figure 4.13: File selector window for network layer. ... 39

Figure 4.14: File selector window for raster layer. ... 40

Figure 4.15: File selector window for output file.. 41

Figure 4.17: Reliabilities for elements by selecting“Mean” option 43

Figure 4.18: Reliabilities for elements without “Mean” option 44

Figure 4.19: Reliability map for elements... 45

Figure 4.20: Adjaceny Matrix Created by netrel.java ... 47

Figure 4.21: Output of application for source point as 8 to sink point as 7. 48

xii

Figure 4.22: Output of application for source point as 11 to sink point as 7. 49

Figure 4.23: Output of application for source point as 12 to sink point as 7. 50

xiii

LIST OF TABLES

TABLES

Table 4.1: Attribute Table of Network Layer Before Process 28

Table 4.2: Attribute Table of Network Layer Before Process 29

Table 4.3: Element reliabilities by selected “Mean” option............................... 44

Table 4.4: Element reliabilities without “Mean” option 45

Table 4.5: Lower Bounds for Element Reliability .. 46

Table 4.6: Example of attribute table of Resulting Network Layer 47

Table 6.1: Attribute table of line segments ... 104

1

CHAPTER 1

1. INTRODUCTION

1.1 Importance of the Problem

Seismic hazard studies have mostly studied over the safety of individually built

facilities such as hospitals, dams, power plants, rather than the network

infrastructures coming out from the “central” facility. Indeed, any seismic hazard

to those central facilities mostly causes system failure or power down. However,

evaluating the overall responses to seismic loads of such spatially distributed

network infrastructures require considering the performance of all components of

such a system. Likewise, such systems spatially lie over long distances and thus,

for the same earthquake, various components of the same system may be

subjected to different seismic loading.

During last twenty years, more attention has been given to application of

probabilistic simulation models and procedures for the calculation of quantitative

evaluation of reliability of lifelines under earthquake loads. Transportation

systems, pipelines, communication and power transmission systems are

examples of lifelines. During such destructive earthquakes or afterwards, it is

important to forecast secondary disasters such as fires. The damage to lifelines

during Kobe earthquake in Japan is one of the best examples of this fact. In

Kobe earthquake, major highways are damaged at 1257 different points, water of

one million, natural gas of 857000, electricity of 916000 households were cut

and telephone of 410000 subscribers were disconnected (Aydinoglu and Erdik,

1995). After the earthquake, it has been declared that at 234 different places, fire

2

started mainly because of natural gas release and electricity sparks. Total number

of fires were 531 and the area that was burned was about 1 km2 (Aydinoglu and

Erdik, 1995). While those examples taken under consideration, network

reliability is an important tool for forecasting the damage after such natural

disasters.

Network reliability analysis is mainly the assessment of the performance of a

network in case of its ability to resist the failure of its components. A network

modeled as GIS based vector data, contains a set of nodes and vertices

representing either directed or undirected communication links and information

about those nodes and vertices. In this study lifelines are idealized as equivalent

networks where the link and node capacities can be selected either deterministic

or random. Indeed, those network infrastructures are exposed to various

manmade and natural hazards treating their safety and performance.

In today’s technology Geographic Information System (GIS) tools can be used

for doing analysis of network reliability under seismic hazard. GIS is a cross-

discipline involving information science, spatial and earth science. It combines

geospatial data with computer technology. By means of the setup and operation

of systems and model analysis, it provides useful information for resource

environment, region planning, decision-making, and management. In recent

years, GIS has been widely used in many fields such as engineering, disasters

prevention, natural resources management, simulation, and prediction of natural

disasters and emergency response system of disasters, etc. Moreover, GIS can be

used together with facility management. Some of these earliest applications of

GIS in facility management were related to pavement management at

airports, municipal water and wastewater infrastructure, and electric utility

distribution. For example facility managers of the US Air Force have

developed a standardized set of GIS layers to support the management of Air

Force bases. In such system GIS brings considerable ease and support to

management of the relevant facility.

3

The possible use of GIS is not limited to management of these lifeline systems,

but GIS can also be used with facility management for other analysis. Although,

many applications have been developed for facility management in GIS, there

aren’t any considerable tool in GIS for reliability of those structures under

seismic hazard. Since GIS can be defined as a system of hardware, software and

procedures developed for sustaining the acquisition, management, analysis,

modeling and display of spatially referenced data for solving complex planning

and management problems; it is a powerful tool for dealing with the spatial data.

Therefore, GIS can be used to decrease damage on structure such as lifeline

networks, caused by natural disasters. Indeed, GIS has many roles in such an

analysis, at first glance, it is a vital tool for encircling the spatial characteristics

of network systems and the network topology can be visualized. The last but not

the least beneficial role of the GIS is its usage for visualization of outcomes of

the analysis in various file formats which allow user to analyze spatial

characteristics of network systems.

GIS is an ideal tool for network reliability analyses under seismic hazard, since it

is suited for dealing with the spatial data. Moreover, visualizing eases to

understand the results and users can make queries over results by using just only

one tool because of database integration of GIS. Therefore, GIS can be used to

evaluate network reliability under seismic hazard by using the spatial data

management. In scope of this study, a GIS based computational tool is developed

that can assess reliability of lifelines under seismic hazard based on former study

done by Selcuk (2000).

Developed software combines GIS, statistics and facility management. For this

purpose, seismic hazard, network and seismic hazard map layers are taken as

inputs. By overlapping layers a square mash grid is constructed depending on the

resolution of the seismic hazard layer. Network layer is partitioned based on

square mash and line segments are obtained which are used for reiliability

estimation of network components. Knowing the component reliabilities, the

network reliability can be calculated and reliability map of lifeline is presented.

4

1.2 Aim of the study

There are many applications and studies about lifeline reliability under seismic

hazard. However, there exists no application that combines GIS, lifeline

reliability and facility management. Nowadays, GIS is popular and widely used

concept for earth dependent data. Moreover, GIS keeps not only schema of a

network, but stores position on earth in a specific projection such as WGS 84 and

attributes of those structures. This makes it easier to join two layers such as

seismic hazard layer and network layer for this study depending on earth

positioning. Furthermore, since applications like facility management mostly use

GIS based approaches nowadays, GIS based risk analysis tools like the one in

this study are easy to interoperate with facility management tools.

The basic aim of this study is to develop a software module for generating GIS

based reliability maps of lifelines. For this purpose, a GIS software module is

developed by using geoTools. Although a few former studies were conducted on

this subject, these did not truly use GIS and their inputs and results were text

based, even the software in those studies were not easy to understand and use.

For this aim, former study of Selcuk (2000) is implemented to GIS environment

for constructing the reliability maps of lifeline networks.

5

CHAPTER 2

2. LITERATURE REVIEW

2.1 GIS Related Literature

In recent years due to the new developments in GIS applications and platforms,

several researchers have studied GIS based applications on reliability of

structures under seismic hazard, facility management, and developing software

modules within GIS.

Toprak et al. (1999), used GIS to visualize damages on water pipeline systems

after earthquakes in San Francisco. For this purpose they stated the damage on

network as repair rate. By gridding the study area, they developed the repair rate

contours within GIS, thus they determined the number of repairs in each grid.

They developed a hyperbolic relationship model between visual display of high

damage areas and grid size. This relationship helps the GIS users to obtain

sufficiently refined and easily visualized map of damage patterns.

Ertugay and Duzgun (2006) concentrated on the emergency accessibility which

was the most vital and important component of disaster preparedness. For this

purpose, 3 different accessibility measurement techniques (Zone Based,

Isochronal Based, and Raster Based Techniques) were analyzed within GIS

environment. Eskisehir urban area was used as a case study and accessibility

vulnerability index was created.

Kemec and Duzgun (2006) created effective 3D visualization tools and 3D city

models, which have improved the viewer's understanding of the information

6

contents, for earthquake vulnerability level of each building. To achieve this

goal, 3D visualization methodologies of GIS, Remote Sensing (RS) and

Computer Aided Design (CAD) systems were used. Spatial decision support

systems (SDSS) for earthquake risk assessment were developed for the

Cumhuriye Quarter of Eskisehir City.

In contrast to the studies that hitherto done (earthquake risk estimations had been

solely performed by evaluating the seismic hazard and prediction of buildings to

be damaged. Hence, seismic hazard consequences had been considered based on

only building damage), Duzgun and Yucemen (2007) took the other elements of

the urban area, such as inhabitants, urban economy, infrastructure, cultural and

historical heritage into account with using integrated risk models. They

constituted a spatial urban disaster risk model and implemented it to the

Odunpazari Municipality in Eskisehir and risk maps are found.

Duzgun et al. (2009) indicated that, to be able to do urban 3D visualization,

interoperable data, and approaches should be combined. For this purpose, they

presented a rule based approach to find a link that was between the types of

potential hazards and the relevant urban features, and this link could be described

by a set of criteria which depended on them. They claimed that the urban model

features they used were compatible with detailed definitions specified in

CityGML.

Lembo et al. (2009) offered a general idea about migration of a traditional

graphic based application to a modern GIS application, which is a spatially

enabled database application to assess possible damage of a water network

system after an earthquake. The application developed in this study was based on

a former one developed by authors (Graphical Iterative Response Analysis for

Flow Following Earthquakes (GIRAFFE)). Object oriented programming,

storage of spatial data within a database management system and performance of

analytical processing in computer memory was used for this new software. As a

result the developed application showed better performance by using modern

7

approaches of GIS processing, in terms of ease-of-use, speed, system

modification and maintenance.

O’Rourke et al. (1999), studied characteristics of Los Angeles water system

about earthquake effects and pipeline damage based on GIS. One of the main

aims of this study was to identify components and facilities which are under high

seismic hazard. This information was used for damage assessment and

deployment of emergency services and system restoration resources. The study

resulted in a comprehensive GIS characterization of Los Angeles water pipeline

network including earthquake damage patterns and distributions of seismic

parameters, permanent ground deformation. This characterization would be used

for forthcoming system analysis and reliability assessment.

Yamazaki (2001), studied over seismic monitoring and early damage assessment

in Japan. He used GIS as a platform for damage assessment and loss estimation

both real and simulated data. Seismic information gathering and network alert

(SIGNAL) an early damage assessment system, was combined with GIS. This

combined system was used for natural gas network. Together with the actual

data, the result of GIS damage estimation was utilized for whether or not to shut

off the gas supply to avoid secondary disasters in a seismic event.

Chen and Cherng (1997), designed a new model for network load management.

For this purpose they developed new software that combines facility

management, automated mapping, and geographical information systems. This

program provides system information to engineers about the distribution system

itself and load of the distribution system. This developed application is used for

preventing distribution system from damage depending on overloading or

inefficient operations result from very low loads.

2.2 Reliability Related Literature

In literature there exist many studies on seismic reliability of structures

depending on seismic hazard. Those studies are mainly over single structures

8

such as hospitals. On the other hand, there are a few studies over structures like

pipeline systems.

Yamazaki et al. (1998), studied early damage assessment and monitoring

systems in Japan. They discussed several recent vintage and future directions of

real-time earthquake hazard assessment. They claimed, damage assessment

means calculating damage statistics using empirical formulas; in fact those

estimations have wide variability scale, estimating range of damage actually

better than predicting a single number. Furthermore some researchers have done

much more detailed advanced studies using methods from other disciplines.

Bendimerad (2001), discussed that functionality of loss estimation models

improved due to advances in information and computer technology such as GIS

technologies. GIS makes it possible to display of input and output. Moreover,

loss estimation provides key information on potential damages and losses of

buildings, water, power and gas systems and other vital systems. He adds that,

with GIS systems make it possible to build developed loss estimation functions.

But those estimations do not work well for megacities, because of lack of

inventory and engineering data, even lack of expertise. Moreover, cooperating

use of damage and loss estimation with expertise it is possible to standardize

their relationship with hazard and vulnerability.

Padgett et al. (2007) studied relationships between bridge damage and

the resulting loss of functionality of the bridge. They claimed that these are

critical for assessing the impact of an earthquake event on the performance of the

transportation network. They used these data to assess the probability of meeting

various damage states and they expressed in terms of restoration of

functionality, and subsequently facilitate the refinement of component limit-

state capacities in order to develop analytical fragility curve. Hence they

improved the assessment of transportation network performance. For modeling

the potential decision model an expert opinion was used since the subjective

nature of the problem. Hence, they calculated the damage state exceedance

probabilities for various kinds of bridge component damage, where the damage

9

states were given in terms of maximum allowable level of traffic carrying

capacity. They claimed exceedance probabilities may be represented by fragility

curves, which were derived from functionally consistent limit states.

Ellingwood (2001) studied over special considerations on structural design and

evaluation of buildings and other facilities with regard to their ability to

withstand the effects of earthquakes, specifically related to probability-based

codes design and reliability-based state assessment of existing buildings.

Moreover, he compared his method with current deterministic approaches for

post earthquake building condition assessment. He also examined importance of

inherent randomness and uncertainty modeling in forecasting the building

performance through a fragility assessment of a steel building with welded

connections. Moreover, his comparisons on predicted and observed building

damage indicates that despite advances in non-linear dynamic analysis and

structural modeling, still there were limitations for using deterministic

approaches for post-earthquake building condition assessment. Hence, a

probabilistic analysis of building response is critical in providing ideas of

building behavior. He also claimed that, reliability tools are quite sophisticated

but they are not economically feasible for condition assessment of vast majority

of building.

Yoo and Deo (1988) compared a number of network reliability algorithms and

commented that the best one was Dotson and Gobien (1979) algorithm. This

algorithm gave the results for upper and lower bound in a short time. This

technique for finding out the terminal reliability or probabilistic networks is

obtained. This technique utilized set-the-oretic concepts division of space of

graph realizations in way that allows fast evaluation for the source to terminal

probability (Dotson, et al, 1979).

Selcuk and Yucemen (1998), idealized a lifeline network as an equivalent

network with capacity of its elements being random and spatially correlated and

a comprehensive probabilistic model for the assessment of the reliability of

lifeline under earthquake loads was developed. By using the past earthquake

10

occurrence data, a probability distribution of seismic hazard, that the network

was exposed was derived. The seismic hazard method they used, was a modified

version of “classical” seismic hazard analysis model. In case studies they had

satisfactory results by using their new approach.

Selcuk and Yucemen (1998) studied lifeline reliability under seismic hazard with

multiple sources. For this purpose they combined three aspects which were

hazard methodology, capacity determination techniques, and network reliability

assessment methods. Combining these three aspects in one probabilistic model,

made it possible to evaluate the reliability of any lifeline network under seismic

hazard. Therefore, the main aim of study was to present probabilistic model for

evaluation of the seismic reliability of a lifeline having multiple seismic sources.

11

CHAPTER 3

3. THEORETICAL BACKGROUND

3.1 GIS Platforms

Open source solutions are available for many types of commercial applications,

in almost every area of use, such as databases, web applications, GIS and more.

Using open source applications has a number of benefits, which can be listed as

price, security and developing source-code based applications. Price is an

advantage since open source software is totally free of charge. In security issues,

because the source code of those applications are open to everyone, security

updates are released quicker than commercial applications. Another advantage of

using open source software is, users can develop source-code based applications.

Moreover, developing applications on open source platforms has other benefits

for developing on enterprise applications. One of the most important advantages

of developing on open source platforms is the large amount of documents and

support available. Such support can be taken from developers’ community via e-

mail groups. As a result, considering all these factors, open source was selected

for this study.

In order to develop a GIS based application, a GIS platform should be selected

firstly. Many documents or resources comparing these GIS applications are

available on the internet and Cascadoss Project is one of them. This project

evaluates desktop GIS applications according to marketing, technical and

economical potentials. For each potential area related criteria are defined and

evaluation is done on basis with total grade of 60. When the first criterion

12

marketing potential is considered, GRASS and QuantumGIS are the applications

with highest marketing potential. uDIG, gvSIG and OpenJUMP are other

desktop GIS applications with significant growth potential. On the other hand, as

the technical potential is considered GRASS, QGIS and uDig come to the

forefront, while gvSIG and OpenJUMP are promising ones. Concerning the

economical potential QGIS and OpenJUMP are significant ones and again the

GRASS, gvSIG and uDIG are promising applications. Under the enlightening of

this information the potential GIS desktop application that can be used in this

study are GRASS, Quantum GIS (QGIS), uDig, gvSIG and OpenJUMP.

However, other then these desktop applications there exists some tool packages

for developing GIS applications, such as geoTools. Using geoTools, plug-ins can

be developed for uDIG, OpenJUMP and other Java based GIS applications.

Therefore, one of these GIS applications can be used in this study.

The earliest open source GIS application is GRASS (Geographic Resources

Analysis Support System) which was developed by U.S. Army Corps of

Engineer in 1982. This application supports both raster and vector layers. On the

other hand it uses topological vector data model, in which areas are expressed

with boundaries and centroids. This topological structure does not allow

overlapping boundaries within a single layer.

Quantum GIS (QGIS) is an open source software based on KDE Linux desktop

environment, which has GPL (General Public Licensed). QGIS project was first

started by Gary Sherman in 2002. QGIS can run on different operating systems

such as Mac OS X, UNIX variants and Microsoft Windows. Moreover, it

requires less system resources than other GIS applications. The disadvantage of

this application is lack of python coding documentation, which arises from

changing plug-in coding language from C++ to python by developers.

uDig (User-friendly Desktop GIS) is an LPGL (Lesser General Public Licensed)

GIS application. This application is based on Eclipse java development

environment. Developers of uDig aim to build a user friendly, desktop located,

internet oriented, and a GIS ready platform. The disadvantages of this

13

application result from JRE (Java Runtime Environment), depending on the

slight differences between open JDK (Java Development Kit) and Sun Java JDK,

java sources.

gvSIG is another open source GIS platform, this application is developed to

handle complex planning problems. This application is developed by a small

community, indeed this is the disadvantage of this GIS platforms. Updates and

bug fixes are not released regularly, moreover building plug-ins for this

application is not very easy depending on lack of documentation.

OpenJUMP is a recently developed open source GIS platform based on Java.

This application is still under development. This situation is the basic

disadvantage of this GIS platform, bug fixes and updates are not regularly

released. Therefore, it is not possible to build complex plug-ins for OpenJUMP

for the moment.

GeoTools is an open source GIS toolkit for developing standards compliant

solutions. It provides an implementation of Open Geospatial Consortium (OGC)

specifications as they are developed. GeoTools is a contributor of the GeoAPI

project -a vendor-neutral set of Java interfaces derived from OGC specifications-

and implements a subset of those. It is written in Java and currently is under

active development. It is used by GeoServer and UDig projects.

Between the GIS platforms listed above, two of them stand out due to their

advantages, QGIS and geoTools. The main of this study is to develop a plug-in

that provides seismic analyses results of lifelines within GIS. To that end, these

two GIS platforms are compared with respect to their features.

Since, the proposed solution starts with gaining the required data from the input

files, the code built for this purpose should be capable of interacting with widely

used GIS software and able to read common GIS data formats; QuantumGIS and

geoTools commonly give users opportunity to build custom plug-ins for different

needs. Furthermore, such tools have both extension capability for custom

computation on different data sources. On the other side, whatever the GIS

14

platform used, building extensions require perfect understanding of the platform

itself and delicate documentations on both the system itself and how to write

extensions. Despite they give users to understand, record, visualize, manage and

compute GIS data, when QuantumGIS and geoTools are compared, geoTools

has better and more user friendly development interface and better

documentation and support on not only how to use but also on how to extend.

Moreover, QuantumGIS has some disadvantages that have potential for

difficulty or problems in writing extensions. In the first instance, in recent

versions the system allows plug-ins only in Python language, although the

platform itself coded in C++. This brings the potential problem of ability to

embed the code parts of the platform and reuse them in the plug-ins. Moreover,

the architecture with two different coding languages C++ and Python makes

debugging of the whole system more difficult in case of problems, thus makes

solution of the possible problems harder. Also use of different languages in the

same platform comes up with potential problem of contradiction in libraries.

Furthermore, uses of different languages make documentation and understanding

of the whole system more complicated. This causes potential difficulty for

further advances of proposed system and for future studies. Unlike QuantumGIS,

geoTools is written in java and also has extension capacity in the same language.

Besides, geoTools have more detailed documentation on how to write plug-ins.

The last but not the least benefit is that, since Java is a platform independent high

level programming language both the GIS platform itself and the written

extension modules, whether in source code or complied form, can run on any

operating system and processer architecture.

As a result, due to detailed documentations, unified code language and the

platform independent nature, considering also the well documented advanced

support and wide capabilities of Java language itself, geoTools is chosen as the

main development platform for the solution of the problem. In coding as

expected and required Java language is used. Moreover, one of the chief

developers of QGIS, Gary Sherman was gotten in contact with, about the issue

15

and he suggested using of geoTools, because of the complexity of the plug-in

developed in this study.

As the main platform to use in solution is decided, the next step is to define the

data format to be used as input and output data file formats. Since the study

mainly considers use of available hazard data and the already built lifeline

structure, use of already defined GIS data formats are preferred. The common

GIS platforms mostly consider a general map format called geotiff in order to

save data with respect to position in a defined space. In this data format the

properties are visualized as colors at pixels of the image where the pixels

represent the position. Then geotiff format is a suitable choice for storing hazard

map. In addition, geotiff is a widely used common GIS data format and as a

result in this study the input data format is used in geotiff format. On the other

side, lifelines also should be represented in proper formats. Because the data for

lifelines are usually designed in terms of geometrical shapes, shape file format

which is designed to store vector data, is a more suitable choice. Since this

format is also a widely used one, it is used as the second input file type to be

used for lifeline data network.

In order to develop such software, the first step is to build tools that can read data

from the input files load them into running program with usable structure. On

purpose, the developed system uses libraries written in Java available for use

under GIS platform. Then as the data are obtained from the files the next step is

to combine the shapes from the shape file with the characteristic data. In fact,

this part is the real place where the product of this research starts. The built Java

code first should input the hazard map and vector data from the shape file, and

then compile these two data. In this study, since the aim is to get the reliability

profile of the lifeline under seismic hazard, the seismic hazard layer is converted

into lifeline vector data.

As it becomes possible to get and process input data, functions are written in

order to combine these. Then the first step is to take an ordinary shape file such

16

as a map and geo referenced seismic hazard layer file, and to visualize the

property gained from the seismic hazard layer file on the shape file.

3.2 Seismic Hazard Analysis

Seismic hazard analysis gives numerical information that can be used for

designing and checking safety of structures face with seismic activity. In general,

in earthquake protection measures, the vital factor is how frequent the

occurrence of the damaging earthquake.

Since the former earthquakes are known from databases and from past seismicity

records, expected rate of seismic activity at a specific region based on

probabilistic models can be calculated. There are a number of probabilistic

methods in past to estimate the probability of future occurrences of earthquakes.

The numeric values of seismic hazard is mostly given as probability, that the site

experiences ground motion intensities (given as intensity or peak ground

acceleration of earthquake severity) larger than a given value. For calculation of

seismic hazard, firstly it is necessary to analyze the available records on former

earthquakes. For doing this, earthquake catalogs of instrumental records and

historical earthquakes are needed to be examined. By the help these data, a

database is created that includes location, occurrence time, and size of former

seismic activity. Consequently, it can be used as an input for the stochastic

model that gives an estimation of the future seismic activity, expected at a

specified region over a specified time interval, as an output.

A future earthquake is unpredictable, i.e. the occurrence time, location, size and

some other characteristics cannot be known. Random variables of probabilistic

seismic hazard model are the seismicity parameters such as magnitude of a

future earthquake, its location, occurrence time, and space. Calculation of

probability distribution of those random variables and estimation of the required

parameters are based on former seismic activities data, which are used in the

procedure of probabilistic seismic hazard analysis. Attenuation equation, which

17

describes the decay of ground motion from the earthquake origin to the site

associated with the uncertainty relationships, is also considered in the analysis.

The attenuation of energy from the earthquake source to the site is described

through an empirical model which is referred as the attenuation function. In last

phase, seismic hazard curves are estimated expressing the probability of

exceeding various levels of specified earthquake intensity or ground motion

parameter.

As stated, the probability of exceedance of a specified peak ground acceleration

level at a given site during a specified time interval is the output of a

probabilistic seismic hazard analysis. With utilizing the total probability

theorem, this probability can be calculated from

() (|) ()XP Y y P Y y x f x d x> = >∫ (3.1)

where Y is earthquake intensity as a random variable, y is the intensity level and

x expresses the vector of random variables that affects the outcome of Y. The

vector x usually contains the random variables M and R, which express

magnitude of the earthquake and distance to the site of earthquake respectively.

In the case of those variables are assumed to be independent, the equation 3.1

can be written as:

() (| ,) () ()M RP Y y P Y y m r f m f r dmdr> = >∫∫ (3.2)

Firstly, attenuation is the energy with which an earthquake affects a location

depends on the running distance. The attenuation in the signal of ground motion

intensity plays an important role in the assessment of possible strong ground

shaking. A seismic wave loses energy as it propagates through the earth

(attenuation). This phenomenon is tied in to the dispersion of the seismic energy

with the distance as shown in Figure 3.1.

18

It is necessary to select a ground motion parameter of severity of the earthquakes

while estimating the seismic hazard at a site. Once having parameter, an

attenuation relationship has to be set. This relationship defines an estimate of

ground motion parameter in terms of magnitude and distance from site to

epicenter of earthquake.

The peak ground acceleration or PGA is defined as the absolute maximum value

of the representative temporary series of the ground acceleration. It is useful to

define lateral forces and shear stresses in procedures that use equivalent static

forces like the specified ones in the seismic codes. Hence, attenuation

relationships defines the peak ground acceleration in terms of magnitude and

epicentral or hypocentral distance. The intensity of ground motion at a site

changes with distance from the zone of energy release (fault) during an

earthquake.

Figure 3.1: Representation of attenuation relationship (MIT, 2004)

3.3 Element Reliability

Seismic reliability of network elements gives reliability of a lifeline under an

earthquake. Seismic capacity, which means ability to stand to earthquake loads,

is used to determine the seismic reliability of an element. Since there are various

random factors and uncertainties, that are utilized for calculating seismic

capacity, seismic capacity should be defined as a probabilistic model.

Uncertainties in seismic capacity of an element are based on uncertainties in the

19

material properties, dimensions, and models that are utilized for calculating the

capacity.

3.3.1 Seismic Capacity Model

Seismic capacity model uses term capacity or strength of an element and the

demand loading on the element by two random variables C and D respectively.

The case demand exceeds capacity means failure, the failure probability becomes

which is symbolized as Pf is a function like:

() (0)fP P C D P C D= ≤ = − ≤ (3.3)

This equation can be written as:

()() () 1
f D C

P F c f c dc

∞

∞−

= −∫ (3.4)

Another important term for probability of survival state or the reliability of the

element symbolized as PS is just the opposite of Pf that is given below.

()
S

P P C D= > (3.5)

1S fP R P= = − (3.6)

In this respect, R, which means reliability, is a synonym for survival probability.

With the same manner as Pf, reliability can be written as:

() ,
f

f CD

w

P f c d dcdd= ∫∫
(3.7)

fCD(c,d) is joint density function of C and D and wf is the failure domain, which

can be defined as { }2(,) | 0fw c d R c d= ∈ − < .

In a simplified case of independence, distributions of fc and fd are still required to

be known for estimating the probability of failure. However, if normality and

independency of distributions are assumed both for demand and capacity with

20

means
C

µ and
D

µ , and standard deviations
C

σ and
D

σ , then probability of failure

is expressed as below:

2 2
1 Φ c D

f

C D

P
µ µ

σ σ

 −
 = −
 −

 (3.8)

where ()Φ • refers to the standardized normal distribution.

Reliability for a single site, point, which is given in equation 3.8 needs to be

modified for spatially extended components. For this purpose, multi-site model

which is based on separating the lifeline into smaller segments is developed by

Selcuk (2000). This is done by the formula:

1,
1

j

i i i i

n

S S j n S

j

P P min P=

=

≤ ≤∏ (3.9)

In terms of reliability, this equation is given as:

1,
1

j

i i i i

n

S S j n S

j

R R min R=

=

≤ ≤∏ (3.10)

Since, reliability evaluation for elements is done under normality and

independence assumptions, probabilities can be calculated by using two

methods:

i. In first method, population mean, which is parameter for average value of

peak ground acceleration values, is used. Therefore, z values are

calculated as:

2

()
 = i pga

p x
z

µ

σ

−
 (3.11)

21

Here,
i

x values are the average of pga values of a grid, and
pgaµ is the

average of all the pga.

ii. In second method, sample estimate is used. If this method is chosen, the

estimation of
pgaµ is used. Therefore, for having a unbiased estimation

for reliability the equation 3.17 is changed to:

2

()
 =

pgai
p x x

z

n
σ

−
 (3.12)

Here, pgax is the average of pga values on a link.

3.4 Network Reliability

In a network every component is connected. The main issue in network

reliability is to find operational path of nodes for analyzing. Since there would be

more than one course of those nodes from terminal to end point, to achieve this

aim, a network is divided into nodes and lines. Usually, the reliability of a

system is probability that while operating under given environmental conditions,

the system will do its job properly for certain time period (Kapur et al., 1977).

There are many methods for calculating the network reliability. These are

i. State Enumeration Method

ii. Factoring Method

iii. Series and Parallel Reduction Method

iv. Cut-Set Enumeration Method

v. Path Enumeration Method

vi. Network Reliability Model

Yoo and Deo (1988) compared all algorithms and commented that the best one

was Dotson and Gobien (1979) algorithm which was a path enumeration

algorithm. This algorithm gives reliabilities within an upper and lower bound in

22

a short time. This technique for finding out the terminal reliability or

probabilistic networks is obtained. This technique utilizes set-the-oretic concepts

division of space of graph realizations in a way that allows fast evaluation for the

source to terminal probability (Dotson, et al, 1979).

This algorithm aims to find the probability of survival for each communication

between specific pair of nodes in a network. However survival probability of

each link has to be known. Presuming there is a network having n nodes and m

links, two terminal nodes are identified as source and sink, which are denoted as

s and t respectively. Therefore, an element must be either a node or link. Two

adjacent nodes denoted by j and i. As a result this graph can be shown as an nxn

matrix, which is namely adjacency matrix denoted as G=[gij](Dotson, et al,

1979).

1, if there is a link

0, if there is no linkij
g

=

 (3.13)

In this study the modified Dotson Algorithm, which is developed by Yoo and

Deo (1988), is used.

The flow of the algorithm is given below in Figure 3.2:

23

Figure 3.2: Flow Chart of Yoo and Deo Algortihm

Algorithm starts with reading the inputs which are adjacency, probability and

edge matrices. Neighbourhood data between nodes and direction information are

kept by adjaceny matrix. Element reliabilities are contained by probability matrix

and link data are kept by edge matrix. After reading the inputs, a path is found by

breath first search method and reliability of the path is calculated and added to R.

Iteration continues until no new path can be found or the increase in R is smaller

than 0.00002.

An illustrative example for the use of proposed algorithm to calculate network

reliability is presented below. This example is taken from the earlier study of

Yoo and Deo for comparison reasons. Given a network with four nodes and five

edges (Figure 3.2), source and sink nodes are taken to be 1 and 4, respectively.

The figure below presents a network with four edges and 5 nodes. In this

example source edge is 1 and sink edge is 4.

24

Figure 3.3: An Example to a Network

Based on the algorithm, the formulation of matrices needed as follows: Let G

denotes the adjacency matrix and EDGE be the node matrix, and then the

algorithm results in a vector of PROB yielding reliabilities.

0 1 1 0

0 0 1 1

0 0 0 1

0 0 0 0

G

 =

1 3

1 2

2 3

2 4

3 4

EDGE

 =

0.9

0.9

0.9

0.9

0.9

PROB

 =

Solution algorithm developed by Yoo and Deo is as follows:

INITILIAZATION: Set R = 0. Put event E0 = [0 0 0 0 0] into the queue.

ITERATION 1: The E0 = [0 0 0 0 0] deleted from the event queue. New E0 is

created which comes from the original network. Breath first shortest paths are

found with source and sink edges 1 and 4, respectively. E1 = [1 0 0 1 0]

corresponds to first event and it is a success. Therefore 0.9 x 0.9 = 0.81 is added

to R. After that, complement events of E1 which are obtained and put into the

queue. These are the

E2 = [-1 0 0 0] and E3 = [1 0 0 -1 0]

ITERATION 2: The next event deleted from the queue is E2. The adjacency

matrix of the network corresponding E2 is given below:

25

A breath first search method finds the new shortest path source to sink. In this

case this event contains edges 5 and 2 which are defined as E4= [-1 1 0 0 1]. As

it leads us to the success, its probability values become (0.1 x 0.9 x 0.9 = 0.081).

This will increase the value of R to 0.891. Indeed complement events of E4

which are sub-events of E2 are given as

E5 = [-1 -1 0 0 0] and E6 = [-1 1 0 0 -1] are inserted into the queue.

This iteration continues until the queue is empty so that the algorithm terminates.

The value of R as a result of these i iterations is 0.97119. (Yoo et al. 1988)

The figure below shows the event tree structure created by this algorithm. Each

node in this tree means to a success in rectangular shape or a failure in oval

shape. Algorithm generates four success and five failures. There are 25=32

elementary events (Yoo et al, 1988).

 Figure 3.4: Event tree for Yoo and Deo algorithm (Yoo and Deo, 1988).

26

CHAPTER 4

4. METHODOLOGY

In order to build a GIS based reliability map of a lifeline under seismic hazard, a

GIS based application was developed in Java programming language. For

achieving this goal, developed application must take several inputs and after

some conversions process, these inputs are used to plot the reliability map and to

calculate the upper and lower bounds for network reliability of the system under

seismic hazard. Figure 4.1, presents the overall flow chart of this process.

The application consists of a main.java class and several others that are invoked

by the main.java class. After the main.java reads the inputs from the files, it

passes them to util.java class which mainly does the gridding of the network, in

other words it creates the line segment structure for reliability analysis. The

util.java class takes these input data and grids the network layer in accordance

with pixel size of the seismic hazard layer and also calculates the hazard values

(pga values) of the grid elements. Then the main.java class passes the results

from the util.java class to Gaussian.java class which calculates the survival

probabilities for gridded network elements using standard normal distribution.

After that main.java class passes the results from Gaussian.java class to

netrel.java class, which calculates the network reliability. Finally reliability map

is created by main.java.

27

Figure 4.1: Flow chart of the developed application

The developed application has a sequential structure as mentioned in figure 4.1.

In first step, input files are read by using the “FileDataStore” library network and

seismic hazard layers can be represented. This library is also used for working

with the “shp”, “dbf” and “prj” files as a group. Moreover, FeatureSource library

is used for restoring the attributes from seismic hazard layer. Seismic hazard map

layer is read by rasterFileChooser function (Appendix A).

Once the input files are read, application constructs a gridded network for

reliability calculation. These operations are conducted by util.java. In this step,

firstly nodes have to split into smaller line segments. In geoTools platform nodes

are stored as MULTILINESTRING format, which allows creating smaller line

28

segments in LINESTRING format, indeed those two are the same in usage, but

MULTILINESTRING format is a coalescence of line parts in LINESTRING

format. The algorithm developed in this study for creating the line segments are

given below:

1. Find coordinates of start and end points of link under consideration.

2. Using start and end coordinates, find the grids under interest.

3. Intercepts grids and node.

4. Create line parts of node depending on grid size.

5. Set average pga values of pixels to new multi-line strings.

The figure 4.2 illustrates the layers before the algorithm applied. Here the pga

and network layers are not processed.

Figure 4.2: A node example over pga layer

Table 4.1 illustrates the attribute table of the network layer before the process.

Table 4.1: Attribute Table of Network Layer Before Process

Link No FIRST_X FIRST_Y LAST_X LAST_Y
1 X1 Y1 X2 Y2

29

After algorithm applied to those two layers a new vector layer is created, Figure

4.3 shows the new layer after application.

Figure 4.3: Line parts after the algorithm

Table 4.2 below illustrates the attribute table of the network layer after

application of algorithm.

Table 4.2: Attribute Table of Network Layer Before Process

Link
No

PGA FIRST_X FIRST_Y LAST_X LAST_Y Probs

1 H1 X1 Y1 X2 Y2 P1

2 H2 X2 Y2 X3 Y3 P2

3 H3 X3 Y3 X4 Y4 P3

4 H4 X4 Y4 X5 Y5 P4

After creating line segments as a new layer, reliabilities have to be calculated for

those line parts. For doing this, a pga value is assigned to every line segment.

The pga values are taken to be average of pga values of the grid elements. This

step requires the calculation of parameters the mean and the variance are

calculated.

As mentioned the processes above are done by Util.java class. While performing

these operations util.java class uses “getintersectionPoints” and

30

“getEndPointPositions” functions mainly and generate a new vector layer of

line-segments (Appendix A). In first phase, the end points of the network

element are obtained by “getEndPointPositions”. Once having the end points of

the elements, the grids under interest are found by “getIntersectionLinearRings”

function. Finally intersection point of network and seismic hazard layers are

obtained by “getintersectionPoints” and new line segments are created by using

those intersection points. Here, functions such as “Main.selectFeatures” are used

for controls of the developed application. “Main.selectFeatures” functions is for

choosing source and sink points by mouse, “Main.displaylayers” function is used

for displaying the new network layer, the “Main.generateTempShapeFile” is

used for generating a temporary file for analysis. The boxes such as “invoked

by” or “Instantiated by” are used to display the running sequence of functions in

developed modules. Detailed structure of the util.java class can be seen in figure

4.4. Appendix B represents the output of this class in Table 6.1.

Once the gridded network structure is constructed by util.java, this new network

structure is sent through main.java and z values are calculated based on pga

values by using the equations (3.11) or (3.12) and Gaussian.class is imported by

main.java. Those z values are processed by gaussian.java class, where the normal

probabilities are calculated which can be seen in Table 6.1 (Appendix B).

Gaussian class has two main functions, those are “phi” and “Phi” here “phi” used

for normal probabilities of standard Gaussian function and “Phi” is for

calculating the cumulative probabilities of standard normal values by using

Taylor series expansion. Gaussian.class uses “Phi” for obtaining the tabulated

normal probabilities. Those probabilities are set as an attribute to generated

temporary shape file for analysis. The detailed structure of the Gaussian.java

class can be seen in figure 4.5.

31

Figure 4.4: Detailed structure of util.java class

F
ig

ur
e

4.
4:

 D
et

ai
le

d
st

ru
ct

ur
e

of
 u

ti
l.

ja
va

 c
la

ss

32

Figure 4.5: Structure of gaussian.java class

F
ig

ur
e

4.
5:

 S
tr

uc
tu

re
 o

f
ga

us
si

an
.j

av
a

cl
as

s

33

Having the line segments survival probabilities, the upper and lower bounds of

element reliabilities are calculated in main.java by using equations (3.9) and

(3.10). Those element reliability values are set to temporary network layer as an

attribute, by using the AttributeType and AttributeDescriptor libraries. After

having element reliabilities those values are passed through netrel.java class.

At this stage, element reliability values are used in netrel.java class for

calculating network reliability. Other required parameters for network reliability

calculation such as adjacency matrix and edge matrix are calculated and passed

through netrel.java class by main.java. In main.java, calculateAdjacencyMatrix

reads the node list and creates an adjacency matrix, and using hashmap libraries

of java, edge matrix is created by egdeIndex function. Having reliability,

adjacency, and edge matrices netrel.java class calculated the network reliability.

This class includes two main parameters and four functions. Those parameters

are “qsize” which is used for queue size of the iteration and set to 2500 and

“psize” is used for number of paths which is set to 500. The functions in

netrel.java are “bfs”, “findInterval”, “probab”, and “comple”. bfs function is

used for making a breath first search of paths and after first path is found by this

function, probab function calculates the reliability of that path. Then comple

function removes the used path from queue for next iterations, finally

findInterval function is calculates the reliability interval of the network under

interest. The iteration ends in two ways, when there is no new path or the

increase in reliability values less than 0.00002. The detailed structure of

netrel.java class can be seen in Figure 4.6.

34

Figure 4.6: Detailed Sturcture of netrel.java class.

F
ig

ur
e

4.
6:

 D
et

ai
le

d
S

tu
rc

tu
re

 o
f

ne
tr

el
.j

av
a

cl
as

s.

35

4.1 Implementation of Software

In order to give the overall reliability of the lifeline network, the tool combines

the seismic hazard and lifeline network layer initially by using util.class. For

each element of the lifeline network, element reliabilities are evaluated

afterwards. Once having those reliabilities, possible routes between source and

sink are found and adjacency matrix is created which is used for network

reliability assessment by netrel.java class later on.

There are many methods for generating a seismic hazard map. However, in this

study formerly calculated seismic hazard values are used as peak ground

acceleration (pga) values which are given to the application as seismic hazard

layer. These values are taken from the study of Yilmaz (2008). In order to give

these values as an input to software, a point shape file is created from the given

pga values. This shape file keeps coordinates of the point in latitude, longitude

format with WGS84 datum and also keeps the average pga values of these

points. Figure 4.7 shows a magnified part of shape file of pga values.

Figure 4.7: Magnified part of pga layer

This seismic hazard layer has grid structure with dimensions of 0.02 degree,

which are approximately equal to 250 meters resolution. Figure 4.8 represents a

36

seismic hazard map generated in accordance with 475 years average pga values

by using Mapinfo and this raster layer is just used for the visualization of the

seismic hazard, which can be replaced with any georeferenced raster file.

Figure 4.8: Seismic hazard map of Bursa based on 475 years average values

The network layer representing water pipeline system of Bursa is taken from

study of Sevuk and Altinbilek (1977). Figure 4.9 shows the considered network.

The water pipeline includes a pump station and two reservoirs to be chosen as

the source points while a certain point in network chosen as sink point. In such

networks, the existence of more than one source and several pipelines results in

multiple routes between source and sink points, thus the developed application

gives an overall reliability of sum of that routes by using the algorithm given in

chapter 4.

37

Figure 4.9: A schematic drawing of the water distribution system (Sevuk and Altinbilek, 1977)

Figure 4.10: Network Layer

Figure 4.10 illustrates the network layer in original coordinates generated by

Sevuk and Altinbilek, 1977.

38

In figure 4.11, the proposed lifeline network is placed on a georeferenced

satellite image of the part of Bursa under interest.

Figure 4.11: Lifeline layer over a satellite image

The developed tool takes seismic hazard and lifeline network layers in shape file

format. Once the application is executed it starts with file selector window,

which is for seismic hazard layer, shown in Figure 4.12;

39

Figure 4.12: File selector window for seismic hazard layer.

After selecting the seismic hazard layer, another file chooser window appears for

network layer which can be seen in Figure 4.13.

Figure 4.13: File selector window for network layer.

40

Finally, another file chooser window appears for raster layer which can be seen

in Figure 4.14. This layer is optional and by choosing “cancel”, the user can

continue without this layer.

Figure 4.14: File selector window for raster layer.

Once the input files are chosen, another file chooser for the output file appears

which allows user to save output file in a certain directory. Figure 4.15 below

illustrates this file chooser window for output file.

41

Figure 4.15: File selector window for output file.

After input and output files specified, the main window of the develop

application is opened. Figure 4.16 illustrates the main window of the application.

42

F
ig

ur
e

4.
16

:
M

ai
n

w
in

do
w

 a
ft

er
 a

pp
li

ca
ti

on
 s

ta
rt

ed
.

43

On main window two points from the list are selected as source and sink, and

clicking the “Run” button application is executed. On the main frame of the

program, user can choose the “Mean” option, “E.R.” (Element Reliability) and

variance option which are explained in detail in Chapter 3. The Figure 4.17

below indicate results when the mean option is selected on toolbar.

Figure 4.17: Reliabilities for elements by selecting“Mean” option

Based on the component reliability coded in the program Table 4.3 and Table 4.4

present the values of survival probability for with and without selecting mean

option, respectively.

44

Table 4.3: Element reliabilities by selected “Mean” option

Link Number Reliability

1 0,558384137

2 0,686912141

3 0,686912141

4 0,686912141

5 0,971471511

6 0,918452944

7 0,919727409

8 0,994207004

9 0,551945781

10 0,992773483

11 0,939943514

12 0,94964042

13 0,525365759

14 0,963004678

15 0,919727409

Figure 4.18: Reliabilities for elements without “Mean” option

45

Table 4.4: Element reliabilities without “Mean” option

Link Number Reliability

1 0,89862064

2 0,69862064

3 0,76862064

4 0,99862064

5 0,99862064

6 0,99862064

7 0,99862064

8 0,99862064

9 0,99862064

10 0,99862064

11 0,99862064

12 0,99862064

13 0,79862064

14 0,99862064

15 0,99862064

“E.R” option is for presenting the element wise reliabilities, instead of network

reliability. The output with “E.R” option is shown in figure 4.19.

Figure 4.19: Reliability map for elements

46

The main aim of the developed application is to calculate the network reliability

between two given points. Network reliability is calculated using the element

reliabilities, as mentioned in Chapter 3. In this study, lower bound of the element

reliabilities which are given in Table 4.5 are used.

Table 4.5: Lower Bounds for Element Reliability

Link Number Lower Bound
1 0,5548
2 0,5420
3 0,5909
4 0,5022
5 0,5256
6 0,8880
7 0,6098
8 0,6974
9 0,5299

10 0,6951
11 0,5987
12 0,6588
13 0,5164
14 0,7822
15 0,5255

As the element reliabilities are available the data is passed to netrel.java class

and network reliability analyses are conducted. The algorithm of Yoo and Deo

(1988) algorithm is implemented in netrel.java class (Appendix A). Within this

class “bfs”, “probab”, and “comple” functions are used. A breath first search is

done finding the alternative path from source to sink. After that, those paths are

analyzed by comple function one by one and passed through the “probab”

function. Network reliabilities are calculated by “probab” function.

47

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 1 0 0

Figure 4.20: Adjaceny Matrix Created by netrel.java

By using the AttributeType and AttributeDescriptor libraries, the reliability

values are set to network layer as an attribute. Resulting attribute table of the

network, given in table 4.6. Here, “reliability” field is the element reliability, that

is used for network reliability analysis and “upper” and “lower” fields refer to

lower and upper bounds on the network respectively.

 Table 4.6: Example of attribute table of Resulting Network Layer

Reliability Lower Upper

0,554823899 0,515786159 0,986546924

0,541959357 0,515786159 0,986546924

0,59088161 0,515786159 0,986546924

0,502193882 0,515786159 0,986546924

0,525604927 0,515786159 0,986546924

0,888024551 0,515786159 0,986546924

0,609808289 0,515786159 0,986546924

0,697357123 0,515786159 0,986546924

0,529895028 0,515786159 0,986546924

0,695090484 0,515786159 0,986546924

0,598713428 0,515786159 0,986546924

0,658800089 0,515786159 0,986546924

0,516377549 0,515786159 0,986546924

0,78217528 0,515786159 0,986546924

0,52549179 0,515786159 0,986546924

48

4.2 Validation of Software

In order to check whether the developed software functions properly, as a case

study, an earlier research of Selcuk (2000) over Bursa water pipeline was used.

The original study of Selcuk uses the pipeline plans from the study of Sevuk and

Altinbilek (1977). In Figure 4.9 the network is given.

Results of this case study are obtained, by using different options of application.

As source points reservoirs and pump station are used. The same point with

Selcuk's study is used as sink, which is node 7. Since application can study one

source and sink points at a time, the application was executed for three sources

separately.

 In the first run, the pump station 8 was selected as the source and point 7 as the

sink, the result of which can be seen in Figure 4.21. As can be seen from Figure

4.21, the nodes between these two points are coloured according to different

values of reliabilities.

Figure 4.21: Output of application for source point as 8 to sink point as 7.

49

In former study of Selcuk (2000), the reliability interval of this network had the

results 0.50397654 as lower bound and 0.92255221 as upper bound, while in this

study the upper and lower reliability bounds are found as 0.51578615,

0.98654692, respectively.

In the next run, the reservoir 11 was selected as the source and point 7 as the

sink. The result can be seen in figure 4.22. As can be seen from Figure 4.22, the

nodes between these two points are coloured according to reliabilities.

Figure 4.22: Output of application for source point as 11 to sink point as 7.

In this run the results are 0.242322972 as lower bound and 0.97885037 as upper

bound, while in former study of Selcuk (2000) the reliability interval of this

network had 0.05824558 as lower bound and 0.531142095 as upper bound.

50

In the last run, the reservoir (12) was selected as the source and point 7 as the

sink, the result of which is presented in Figure 4.23. As can be seen from Figure

4.23 the nodes between these two points are coloured according to reliabilities.

Figure 4.23: Output of application for source point as 12 to sink point as 7.

In this final run the results are 0.27135216 as lower bound and 0.75497461 as

upper bound. In former study of Selcuk (2000) the reliability interval of this

network was 0.23964787 as lower bound and 0.72729676 as upper bound.

4.3 Discussion

The developed application was tested with the earlier study of Selcuk (2000) and

the results were satisfactorily close to this study. Differences between the results

arouse from two reasons;

i. The seismic hazard values for two studies are different. In the former

study of Selcuk (2000), the seismic hazard values were calculated by the

developed software, while in this study the seismic hazard values for

Bursa are taken as input to application. The seismic hazard values used in

51

this study are taken from a recent study which was done by Yilmaz

(2008). Therefore, seismic hazard values are up to date and seismic

resolution is more precise.

ii. Since the computation power of computers today are very much higher

than those at the time of study of Selcuk (2000), element reliabilities are

calculated for each network element which are divided into smaller line

segments than former study of Selcuk.

As these conditions are considered, the results are taken to be satisfactorily close

the former study done by Selcuk.

Since the reliability calculation algorithm used in this study does not consider the

material or inner structure of the lifeline system and soil properties, it can be

used for networks such as water, waste water, and natural gas pipeline systems.

As explained in the methodology the solution algorithm is limited to use

unidirectional systems. Since lifelines are unidirectional networks, such an

algorithm is applicable to most of the lifeline system. The application developed

in this study is essential for providing survival probability of lifeline structures

under earthquake loads. That is especially important for lifelines like natural gas

pipeline systems, which can cause cascading disaster effects after major

earthquakes.

Due to the limited scope and time of the research the application was developed

as a standalone GIS tool. However it is suitable to convert a plug-in for Udig.

Furthermore, use of java which is a platform independent language, gives extra

flexibility about the architecture and operating system of the environment, in

which the application can run.

This software module was tested on a hypothetical network, previously used by

Sevuk and Altinbilek (1977). Therefore the network structure does not fit the city

plan correctly and this application should be applied to a real life network.

52

As performed in this study the reliability analysis of lifelines is important to

estimate the results of a possible earthquake. However, for such systems, it is

important to prevent failures under earthquake loads rather than to estimate the

risk. Consequently, the output of the developed GIS application can be used for

strengthening structure of lifeline networks.

53

CHAPTER 5

5. CONCLUSIONS and RECOMMENDATIONS

This thesis is about developing a GIS tool that can generate reliability map for

lifelines under seismic hazard. To achieve this goal, an application that combines

GIS, statistics, and facility management is developed. In order to combine these

three, point shape file seismic hazard layer, network layer and seismic map layer

are taken as input to application while a reliability map is the output of

application. Using these input layers, the application first overlaps the network

and seismic hazard layers. Then, seismic hazard layer is considered as square

mash grids. Depending on the coordinates of those points and network layer is

divided into line segments such that each line segment lies in a mash grid. After

these proeesses, pga values, which are the average of that mash grid, are

calculated for every line segment and given as an attribute to that line segments

which are in line string format. Probabilities for those line segments are

evaluated and used for the assessment of reliabilities of network elements.

Knowing the reliabilities for elements of network, reliability is calculated

between sources and sink points.

This application was developed on geoTools, which is GIS solutions for Java

language. Moreover, the GIS application called Udig is developed using Java

language on Eclipse development environment. Because geoTools is coded in

Java, this application can be used as a plug in for Udig GIS software with some

modifications. Document of Udig provides information about those

modifications that have to be applied. As explained in these documents, in order

54

to add developed application to Udig as a plugin, relevant classes of Udig are

downloaded and added as a project. Then developed classes are injected as

classes and recompiled under downloaded project.

Developed software was tested with benchmark tests in previous papers and

former study of Selcuk (2000) as a case study for a part of Bursa water pipeline

system. The result are slightly different then Selcuk's former study. Those

differences aroused from the difference of seismic hazard values and precision of

the calculation. Therefore, the results were satisfactorily in accordance with

former study.

As explained above, the developed GIS application can be used for different

purposes, and can be interoperated with different platforms and other

applications. In order to make such uses easier and more efficient, for further

researches a database connection functionality can be added to this application.

This database connection allows users make queries over the output results.

The developed tool was tested by using the former study of Selcuk, which

considers a hypothetical network. In order to, further check the reliability of the

developed GIS application several case studies and comparisons can be done

using real lifeline networks which were studied before.

Lifeline networks are constructed using different materials, such as concrete,

plastic, etc. which affect their strength against the earthquake loads. Also soil

structure is another important parameter for resistance against earthquake loads.

Therefore, another research subject may be to include material type and soil

properties to the model used in this study, for more precise calculations of

reliability under seismic hazard.

Resulting application can be used any GIS user, visualizing the results ease the

understanding and managing the lifelines under earthquake loads. The outcomes

of this application would be used to improve purposes of network components

against seismic hazard which have low survival probability.

55

Therefore, after major earthquakes other disaster like fires depending of lifeline

networks can be prevented. Moreover, this application can be used to design new

lifeline networks, designers can build the networks on different routes or more

resistant materials to seismic hazard can be used.

56

REFERENCES

Aydinoglu, M. N., Erdik, M., 1995. January 1995 Hyogo-ken Nanbu (Kobe)
earthquake reconnaissance and assessment report. Bogazici Universitesi,
Kandilli Rasathanesi ve Deprem Arastirma Enstitusu, Bogazici University
publications, 1995, vi,118p.

Bendimerad. F., 2001. Loss estimation: a powerful tool for risk assessment
and mitigation. Soil Dynamics and Earthquake Engineering 21 467-472.

Chen, T.-H., Cherng, J.-T., 1997. Design of a TLM application program
based on an AM/FM/GIS system. Power Industry Computer Applications.
20th International Conference Book 346 - 351.

Duzgun, H.S.B., Yücemen, M.S., 2007. Kentsel alanlarda bütünleşik deprem

riski modeli: Eskişehir örneği. Afet Sempozyumu Bildiriler Kitabı, pp. 201-

211.

Ellingwood, B.R., 2001. Earthquake risk assessment of building structures
Reliability. Engineering and System Safety 74, 251-262.

Ertugay, K., Duzgun, S., 2006. Integrating physical accessibility of
emergency establishments into earthquake risk assessment. ECI Conference
on Geohazards, Lillehammer, Norway, Paper 45.

Faccioli, E., 2006. Seismic hazard assessment for derivation of earthquake
scenarios in Risk-UE. Bull Earthquake Eng 4, 341–364.

Kemec, S., Duzgun, S., 2006. Use of 3D visualization in natural disaster risk
assessment for urban areas. Innovations in 3D Geoinformation Systems
Lecture Notes in Geoinformation and Cartography, Part 8, Part 2, 557-566.

57

Kemec, S., Zlatanova S., and Duzgun, S., 2009. Selecting 3D urban
visualisation models for disaster management: a rule-based approach.
Proceedings of TIEMS Annual Conference, Istanbul, Turkey.

Lembo, A. J., O'Rourke Jr, T. D., and Bonneau, A. L., 2009. Advances in
GIS for Lifeline. Visualization and Management. American Society of Civil
Engineers, Conf. Proc. 357, 51.

O’Rourke, T. D., Toprak, S., and J., Sang-Soo, 1999. GIS Characterization of
the Los Angeles Water Supply, Earthquake Effects, and Pipeline Damage
Research Progress and Accomplishments 1997-1999. Multidisciplinary
Center for Earthquake Engineering Research, University at Buffalo, July, pp.
45-54.

Padgett, J. E., and DesRoches, R., 2007. Bridge Functionality Relationships
for Improved Seismic Risk Assessment of Transportation Networks,
Earthquake Spectra Volume 23, Issue 1, pp. 115-130

Selcuk, A.S., Yücemen, M.S., 1999. Reliability of lifeline networks under
seismic hazard. Reliability Engineering and System Safety 65, 213–227.

Selcuk, A.S., Yücemen, M.S., 2000. Reliability of lifeline networks with
multiple sources under seismic hazard. Natural Hazards 21 1–18.

Sevuk, S., Altinbilek, D., 1977. Su Dagitim Sebekeleri Projelendirme ve
Bilgisayarla Cozum Esaslari, Orta Dogu Teknik Universitesi Muhendislik
Fakultesi Yayinlari No 56.

Toprak, S., O'Rourke, T. D.,Tutuncu, I., 1999. GIS characterization of
spatially distributed lifeline damage. Tech Council Lifeline Earthquake Eng
Monogr , no. 16, pp. 110-119.

Yamazaki, F., 2001. Seismic monitoring and early damage assessment
systems in Japan. Progress in Structural Engineering and Materials Volume
3, pp 66 – 75.

58

Yamazaki, F., Megiro, K., Noda, S., 1998. Developments of early earthquake
damage assessment in Japan. Structural Safety and Reliability, 1570-1580.

Yilmaz Ozturk, N. and Yucemen M. 2008. Probabilistic seismic hazard
analysis : a sensitivity study with respect to different models, Phd. Thesis

Yoo, Y. B., Deo N., 1988. A Comparison of algorithms for terminal-pair
reliability. IEEE Transactionson Reliability, 37(2).

Bursa Satellite Image, Google. Retrieved December 2010, from
http://maps.google.com/

Attenuation Relationship Image, Seismic Risk Assestment and Loss
Estimation 2004, Retrieved June 2010, from
http://web.mit.edu/istgroup/ist/documents/earthquake/Part1.pdf

59

APPENDICES

A. PROGRAM CODES

A.1 Main.java Class

package org.geotools.demo;

import java.awt.Color;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.Date;

import java.util.HashMap;

import java.util.HashSet;

import java.util.Iterator;

import java.util.List;

import java.util.Map;

import java.util.Set;

import java.util.Vector;

import javax.swing.JButton;

import javax.swing.JCheckBox;

import javax.swing.JComboBox;

import javax.swing.JLabel;

import javax.swing.JOptionPane;

import javax.swing.JTextField;

import javax.swing.JToolBar;

import org.geotools.coverage.GridSampleDimension;

import org.geotools.coverage.grid.GridCoverage2D;

import

org.geotools.coverage.grid.io.AbstractGridCoverage2DReader;

import org.geotools.coverage.grid.io.AbstractGridFormat;

import org.geotools.coverage.grid.io.GridFormatFinder;

import org.geotools.data.DefaultTransaction;

import org.geotools.data.FeatureSource;

import org.geotools.data.FileDataStore;

import org.geotools.data.FileDataStoreFinder;

60

import org.geotools.data.Transaction;

import org.geotools.data.shapefile.ShapefileDataStore;

import org.geotools.data.shapefile.ShapefileDataStoreFactory;

import org.geotools.data.simple.SimpleFeatureCollection;

import org.geotools.data.simple.SimpleFeatureSource;

import org.geotools.data.simple.SimpleFeatureStore;

import org.geotools.demo.node.Node;

import org.geotools.demo.util.Gaussian;

import org.geotools.demo.util.Netrel;

import org.geotools.demo.util.Util;

import org.geotools.factory.CommonFactoryFinder;

import org.geotools.feature.AttributeTypeBuilder;

import org.geotools.feature.FeatureCollections;

import org.geotools.feature.FeatureIterator;

import org.geotools.feature.simple.SimpleFeatureBuilder;

import org.geotools.feature.simple.SimpleFeatureTypeBuilder;

import org.geotools.geometry.DirectPosition2D;

import org.geotools.geometry.jts.ReferencedEnvelope;

import org.geotools.map.DefaultMapContext;

import org.geotools.map.MapContext;

import org.geotools.map.MapLayer;

import org.geotools.referencing.crs.DefaultGeographicCRS;

import org.geotools.styling.ChannelSelection;

import org.geotools.styling.ContrastEnhancement;

import org.geotools.styling.FeatureTypeStyle;

import org.geotools.styling.Fill;

import org.geotools.styling.Graphic;

import org.geotools.styling.Mark;

import org.geotools.styling.RasterSymbolizer;

import org.geotools.styling.Rule;

import org.geotools.styling.SLD;

import org.geotools.styling.SelectedChannelType;

import org.geotools.styling.Stroke;

import org.geotools.styling.Style;

import org.geotools.styling.StyleFactory;

import org.geotools.styling.Symbolizer;

import org.geotools.swing.JMapFrame;

import org.geotools.swing.JMapPane;

import org.geotools.swing.data.JFileDataStoreChooser;

import org.geotools.swing.event.MapMouseEvent;

import org.geotools.swing.event.MapMouseListener;

import org.opengis.feature.simple.SimpleFeature;

import org.opengis.feature.simple.SimpleFeatureType;

import org.opengis.feature.type.AttributeDescriptor;

import org.opengis.feature.type.AttributeType;

import org.opengis.feature.type.GeometryDescriptor;

import org.opengis.filter.Filter;

import org.opengis.filter.FilterFactory2;

import org.opengis.filter.identity.FeatureId;

import org.opengis.style.ContrastMethod;

import com.vividsolutions.jts.geom.Coordinate;

import com.vividsolutions.jts.geom.GeometryFactory;

import com.vividsolutions.jts.geom.LineString;

import com.vividsolutions.jts.geom.LinearRing;

import com.vividsolutions.jts.geom.MultiLineString;

import com.vividsolutions.jts.geom.MultiPolygon;

61

import com.vividsolutions.jts.geom.Point;

import com.vividsolutions.jts.geom.Polygon;

/**

 * In this example we create a map tool to select a feature

clicked with the

 * mouse. The selected feature will be painted yellow.

 *

 * @source URL

 */

/**

 * SIRA: >loadShapeRaster >selectOtherFeatures >displayLayers

>selectFeatures

 * >displaySelectedFeatures

 */

public class Main

{

 /*

 * Factories that we will use to create style and filter

objects

 */

 private StyleFactory sf =

CommonFactoryFinder.getStyleFactory(null);

 private FilterFactory2 ff =

CommonFactoryFinder.getFilterFactory2(null);

 private GeometryFactory gf = new GeometryFactory();

 // private static final double demand = 0.24;

 private static double stdDev = 0.002;

 private AbstractGridCoverage2DReader reader;

 private Netrel netrel = new Netrel();

 public File logFile;

 public FileWriter logWriter;

 /*

 * Convenient constants for the type of feature geometry in

the shapefile

 */

 private enum GeomType

 {

 POINT, LINE, POLYGON

 };

 /*

 * Some default style variables

 */

 private static final Color LINE_COLOUR = Color.BLACK;

 private static final Color FILL_COLOUR = Color.DARK_GRAY;

 private static final Color MAX_DANGEROUS = Color.RED;

 private static final Color MORE_DANGEROUS = Color.ORANGE;

 private static final Color MODERATE_DANGEROUS =

Color.GREEN;

 private static final Color LESS_DANGEROUS = Color.BLUE;

62

 private static final Color MIN_DANGEROUS = Color.CYAN;

 private static final Color OTHER_LINE_COLOR = Color.BLACK;

 private static final float OPACITY = 0.5f;

 private static final float LINE_WIDTH = 1.0f;

 private static final float THICK_LINE_WIDTH = 5.0f;

 private static final float POINT_SIZE = 10.0f;

 private static final double proximity = 0.2;

 private static int counter = 0;

 private static File rasterFile;// = null;// new

 //

File("MAPS/raster/PGA475_modified.tif");

 private static File shapeRasterFile;// = new File(

 //

"MAPS/shape/combined_pga_spectra_point/combined_pga_spectra_point

.shp");

 private static File shapeFile;// = new

 //

File("MAPS/shape/bursa/bursa_polyline.shp");

 private static File tempFile;

 private JMapFrame mapFrame;

 private FeatureSource<SimpleFeatureType, SimpleFeature>

featureSource;

 private SimpleFeatureType originalFeatureType;

 private SimpleFeatureType generatedFeatureType;

 private FeatureSource<SimpleFeatureType, SimpleFeature>

otherFeatureSource;

 private String geometryAttributeName;

 private GeomType geometryType;

 private Set<FeatureId> MAX_IDs = new HashSet<FeatureId>();

 private Set<FeatureId> MORE_IDs = new HashSet<FeatureId>();

 private Set<FeatureId> MODERATE_IDs = new

HashSet<FeatureId>();

 private Set<FeatureId> LESS_IDs = new HashSet<FeatureId>();

 private Set<FeatureId> MIN_IDs = new HashSet<FeatureId>();

 private Set<FeatureId> OTHER_IDs = new

HashSet<FeatureId>();

 private ArrayList<Set<FeatureId>> sets = new

ArrayList<Set<FeatureId>>();

 private ArrayList<MultiLineString> inputMultiLineStrings =

new ArrayList<MultiLineString>();

 private ArrayList<Long> inputMultiLineStringsDirections =

new ArrayList<Long>();

 private Vector<Coordinate> nodeList = new

Vector<Coordinate>();

 private ArrayList<FeatureId> featureIds = new

ArrayList<FeatureId>();

 private double[] reliabilities;

 private int[][] adjacencyMatrix;

 private double generalPgaValAvg;

63

 private int totalNumberOfPoints;

 private double totalPgaVal;

 private Coordinate sourcePoint;

 private Coordinate sinkPoint;

 /**

 * 1 means UPPER 0 means LOWER

 */

 // private final static int upperOrLower = 1;

 private ArrayList<ArrayList<LinearRing>> gridList;

 boolean fullNetworkColorize = false;

 boolean fullNetworkAverage = false;

 boolean isItFirstRun = true;

 private JComboBox sourcePointCheckBox;

 private JComboBox sinkPointCheckBox;

 private JTextField lowerValueField;

 private JTextField upperValueField;

 private double lastClickTime;

 private double lastX;

 private double lastY;

 private final double doubleClickTime = 300;

 private double networkReliabilityLower;

 private double networkReliabilityUpper;

 private boolean isRasterUsed = true;

 /**

 * orijinal dosyayı okuyup gerekli düzenlemeleri yapıp

yeniden çağrılıp

 * çağrılmadıgını tutar

 */

 /*

 * The application method

 */

 public static void main(String[] args)

 {

 Main me = new Main();

 try

 {

 me.logFile = new File("MAPS/log.txt");

 me.logFile.delete();

 me.logFile.createNewFile();

 me.logWriter = new FileWriter(me.logFile);

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 JFileDataStoreChooser shapeRasterFileChooser = new

JFileDataStoreChooser("shp");

 shapeRasterFileChooser.setCurrentDirectory(new

64

File("MAPS/shape/combined_pga_spectra_point"));

 shapeRasterFileChooser.setDialogTitle("Select Seismic

Hazard Layer");

 shapeRasterFileChooser.showOpenDialog(null);

 shapeRasterFile =

shapeRasterFileChooser.getSelectedFile();

 if (shapeRasterFile == null)

 {

 return;

 }

 JFileDataStoreChooser shapeFileChooser = new

JFileDataStoreChooser("shp");

 shapeFileChooser.setCurrentDirectory(new

File("MAPS/shape/bursa"));

 shapeFileChooser.setDialogTitle("Select Network

Layer");

 shapeFileChooser.showOpenDialog(null);

 shapeFile = shapeFileChooser.getSelectedFile();

 if (shapeFile == null)

 {

 return;

 }

 JFileDataStoreChooser rasterFileChooser = new

JFileDataStoreChooser("tif");

 rasterFileChooser.setCurrentDirectory(new

File("MAPS/raster"));

 rasterFileChooser.setDialogTitle("Select Raster File

- Optional");

 rasterFileChooser.showOpenDialog(null);

 rasterFile = rasterFileChooser.getSelectedFile();

 if (rasterFile == null)

 {

 me.isRasterUsed = false;

 }

 me.sets.add(me.MIN_IDs);

 me.sets.add(me.LESS_IDs);

 me.sets.add(me.MODERATE_IDs);

 me.sets.add(me.MORE_IDs);

 me.sets.add(me.MAX_IDs);

 me.sets.add(me.OTHER_IDs);

 long startTime = new Date().getTime();

 me.loadShapeRaster(shapeRasterFile);

 tempFile = me.generateTempShapeFile(shapeFile);

 me.displayLayers(rasterFile, tempFile);

 long endTime = new Date().getTime();

 long elapsedTime = endTime - startTime;

 try

 {

 me.logWriter.write("Elapsed Time :-> " +

elapsedTime + " ms" + '\n');

 me.logWriter.flush();

 }

 catch (IOException e)

 {

 e.printStackTrace();

65

 }

 }

 private File generateTempShapeFile(File shapeFile)

 {

 File f = null;

 FileDataStore store;

 try

 {

 store =

FileDataStoreFinder.getDataStore(shapeFile);

 FeatureSource<SimpleFeatureType, SimpleFeature>

featureSource = store.getFeatureSource();

 originalFeatureType = store.getSchema();

 setGeometry(featureSource);

 ArrayList<MultiLineString>

inputMultiLineStrings = new ArrayList<MultiLineString>();

 Vector<Coordinate> nodeList = new

Vector<Coordinate>();

 ArrayList<Long> inputMultiLineStringsDirections

= new ArrayList<Long>();

 ArrayList<FeatureId> featureIds = new

ArrayList<FeatureId>();

 int[][] pointsAndEdges = new int[][] {};

 ArrayList<Long> directions = new

ArrayList<Long>();

 FeatureIterator<SimpleFeature> featureIterator

= null;

 try

 {

 featureIterator =

featureSource.getFeatures().features();

 Util util = new Util();

 double[] reliabilities = new

double[featureSource.getFeatures().size()];

 int index = 0;

 while (featureIterator.hasNext())

 {

 if (index == reliabilities.length)

 break;

 SimpleFeature feature =

featureIterator.next();

 List<Object> objects =

feature.getAttributes();

 for (Iterator<Object> iterator =

objects.iterator(); iterator.hasNext();)

 {

 // iterates once

 MultiLineString

multiLineString;

 Object object =

iterator.next();

 if (object instanceof

MultiLineString)

 multiLineString =

(MultiLineString) object;

 else if

66

(!object.toString().equals(""))

 {

 directions.add((Long)

object);

 continue;

 }

 else

 continue;

 inputMultiLineStrings.add(multiLineString);

 Coordinate firstEndPoint =

multiLineString.getCoordinates()[0];

 Coordinate secondEndPoint =

multiLineString.getCoordinates()[1];

 if

(!nodeList.contains(firstEndPoint))

 nodeList.add(firstEndPoint);

 if

(!nodeList.contains(secondEndPoint))

 nodeList.add(secondEndPoint);

 LineString lineString =

gf.createLineString(multiLineString.getCoordinates());

 ArrayList<LineString>

lineStrings = util.getIntersectionLinearRings(gridList,

lineString, gf,

 null);

 reliabilities[index] =

calculateNormalValues(lineStrings, false);

 featureIds.add(feature.getIdentifier());

 index++;

 }

 }

 int[][] adjacencyMatrix =

calculateAdjacencyMatrix(inputMultiLineStrings,

 inputMultiLineStringsDirections, nodeList);

 if (isItFirstRun)

 {

 sourcePoint = nodeList.get(8);

 sinkPoint = nodeList.get(7);

 }

 Object[] result =

netrel.findInterval(inputMultiLineStrings.size(),

nodeList.size(), reliabilities,

 adjacencyMatrix,

nodeList.indexOf(sourcePoint) + 1, nodeList.indexOf(sinkPoint) +

1);

 pointsAndEdges = (int[][]) result[0];

 double lower = (Double) result[1];

 double upper = (Double) result[2];

 f = createAndLoadShapeFile(reliabilities,

inputMultiLineStrings, pointsAndEdges, directions, lower,

 upper);

67

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 finally

 {

 featureIterator.close();

 }

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 return f;

 }

 private void loadShapeRaster(File shapeRasterFile)

 {

 FileDataStore store;

 try

 {

 store =

FileDataStoreFinder.getDataStore(shapeRasterFile);

 otherFeatureSource = store.getFeatureSource();

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 selectOtherFeatures(null);

 }

 /**

 * This method connects to the shapefile; retrieves

information about its

 * features; creates a map frame to display the shapefile

and adds a custom

 * feature selection tool to the toolbar of the map frame.

 */

 private void displayLayers(File rasterFile, File shpFile)

 {

 Style rasterStyle = null;

 if (isRasterUsed)

 {

 AbstractGridFormat format =

GridFormatFinder.findFormat(rasterFile);

 reader = format.getReader(rasterFile);

 rasterStyle = createRGBStyle();

 }

 FileDataStore store;

 try

 {

 store =

FileDataStoreFinder.getDataStore(shpFile);

 featureSource = store.getFeatureSource();

68

 }

 catch (IOException e1)

 {

 e1.printStackTrace();

 }

 setGeometry(featureSource);

 MapContext map = new DefaultMapContext();

 map.setTitle("Reliability Map Tool");

 Style style = createDefaultStyle();

 if (isRasterUsed)

 map.addLayer(reader, rasterStyle);

 map.addLayer(featureSource, style);

 mapFrame = new JMapFrame(map);

 mapFrame.enableToolBar(true);

 mapFrame.enableStatusBar(true);

 JMapPane mapPane = mapFrame.getMapPane();

 /*

 * Before making the map frame visible we add a new

button to its

 * toolbar for our custom feature selection tool

 */

 JToolBar toolBar = mapFrame.getToolBar();

 toolBar.setSize(toolBar.getWidth(), 150);

 final JLabel upperValue = new JLabel("U");

 upperValue.setToolTipText("Upper Bound");

 upperValueField = new

JTextField(String.valueOf(networkReliabilityUpper), 8);

 upperValueField.setEditable(false);

 toolBar.addSeparator();

 toolBar.add(upperValue);

 toolBar.add(upperValueField);

 final JLabel lowerValue = new JLabel("L");

 lowerValue.setToolTipText("Lower Bound");

 lowerValueField = new

JTextField(String.valueOf(networkReliabilityLower), 8);

 lowerValueField.setEditable(false);

 toolBar.addSeparator();

 toolBar.add(lowerValue);

 toolBar.add(lowerValueField);

 final JTextField stdDevTextField = new

JTextField(String.valueOf(stdDev), 8);

 JLabel stdDevLabel = new JLabel("Var:");

 stdDevLabel.setToolTipText("Variance");

 toolBar.addSeparator();

 toolBar.add(stdDevLabel);

 toolBar.add(stdDevTextField);

 final JCheckBox fullNetworkColorizeCheckBox = new

JCheckBox("E.R.");

 fullNetworkColorizeCheckBox.setToolTipText("Show

element reliability");

69

 // fullNetworkColorizeCheckBox.setSelected(true);

 toolBar.addSeparator();

 toolBar.add(fullNetworkColorizeCheckBox);

 final JCheckBox fullNetworkAverageCheckBox = new

JCheckBox("Mean");

 fullNetworkAverageCheckBox.setToolTipText("Use

Population Mean");

 toolBar.addSeparator();

 toolBar.add(fullNetworkAverageCheckBox);

 // final JCheckBox upperValueCheckBox = new

JCheckBox("U.B.");

 // upperValueCheckBox.setToolTipText("Use Upper

Bounds For Network Reliability Calculation");

 // toolBar.addSeparator();

 // toolBar.add(upperValueCheckBox);

 JLabel sourcePointLabel = new JLabel("S:");

 sourcePointLabel.setToolTipText("Source Point");

 sourcePointCheckBox = new JComboBox(nodeList);

 sourcePointCheckBox.setToolTipText("Select source

point from the list");

 sourcePointCheckBox.setIgnoreRepaint(true);

 sourcePointCheckBox.addActionListener(new

ActionListener()

 {

 @Override

 public void actionPerformed(ActionEvent e)

 {

 if (!isItFirstRun)

 {

 reCalculate(stdDevTextField,

fullNetworkColorizeCheckBox, fullNetworkAverageCheckBox);

 }

 }

 });

 toolBar.addSeparator();

 toolBar.add(sourcePointLabel);

 toolBar.add(sourcePointCheckBox);

 JLabel sinkPointLabel = new JLabel("E:");

 sinkPointLabel.setToolTipText("Sink Point");

 sinkPointCheckBox = new JComboBox(nodeList);

 sinkPointCheckBox.setToolTipText("Select sink point

from the list");

 sinkPointCheckBox.setIgnoreRepaint(true);

 sinkPointCheckBox.addActionListener(new

ActionListener()

 {

 @Override

 public void actionPerformed(ActionEvent e)

 {

 if (!isItFirstRun)

 {

 reCalculate(stdDevTextField,

fullNetworkColorizeCheckBox, fullNetworkAverageCheckBox);

70

 }

 }

 });

 toolBar.addSeparator();

 toolBar.add(sinkPointLabel);

 toolBar.add(sinkPointCheckBox);

 JButton reRunButton = new JButton("Run");

 toolBar.addSeparator();

 toolBar.add(reRunButton);

 reRunButton.addActionListener(new ActionListener()

 {

 @Override

 public void actionPerformed(ActionEvent arg0)

 {

 reCalculate(stdDevTextField,

fullNetworkColorizeCheckBox, fullNetworkAverageCheckBox);

 }

 });

 mapPane.addMouseListener(new MapMouseListener()

 {

 @Override

 public void onMouseWheelMoved(MapMouseEvent ev)

 {

 }

 @Override

 public void onMouseReleased(MapMouseEvent ev)

 {

 }

 @Override

 public void onMousePressed(MapMouseEvent ev)

 {

 }

 @Override

 public void onMouseMoved(MapMouseEvent ev)

 {

 }

 @Override

 public void onMouseExited(MapMouseEvent ev)

 {

 }

 @Override

 public void onMouseEntered(MapMouseEvent ev)

 {

 }

 @Override

 public void onMouseDragged(MapMouseEvent ev)

 {

 }

71

 @Override

 public void onMouseClicked(MapMouseEvent ev)

 {

 long clickTime = ev.getWhen();

 if ((lastX == ev.getX()) && (lastY ==

ev.getY()) && ((clickTime - lastClickTime) < doubleClickTime))

 {

 DirectPosition2D directPosition2D =

ev.getMapPosition();

 Coordinate c = new

Coordinate(directPosition2D.x, directPosition2D.y);

 Coordinate found =

findClickedNode(c, nodeList, proximity);

 if (counter == 0 && found != null)

 {

 sourcePoint = found;

 sourcePointCheckBox.setSelectedItem(sourcePoint);

 reCalculate(stdDevTextField,

fullNetworkColorizeCheckBox, fullNetworkAverageCheckBox);

 counter++;

 }

 else if (counter == 1 && found !=

null)

 {

 sinkPoint = found;

 sinkPointCheckBox.setSelectedItem(sinkPoint);

 reCalculate(stdDevTextField,

fullNetworkColorizeCheckBox, fullNetworkAverageCheckBox);

 counter--;

 }

 }

 else

 {

 lastClickTime = clickTime;

 lastX = ev.getX();

 lastY = ev.getY();

 }

 }

 });

 selectFeatures(null);

 /**

 * Finally, we display the map frame. When it is

closed this application

 * will exit.

 */

 mapFrame.setSize(1280, 780);

 mapFrame.setVisible(true);

 }

 private Coordinate findClickedNode(Coordinate c,

Vector<Coordinate> nodeList, double proximity)

 {

72

 double distance = 1000;

 int index = -1;

 for (int i = 0; i < nodeList.size(); i++)

 {

 Coordinate node = nodeList.elementAt(i);

 if (c.distance(node) < distance)

 {

 distance = c.distance(node);

 index = i;

 }

 }

 if (distance < proximity && index != -1)

 return nodeList.get(index);

 return null;

 }

 private void reCalculate(JTextField stdDevTextField,

JCheckBox fullNetworkColorizeCheckBox,

 JCheckBox fullNetworkAverageCheckBox)

 {

 try

 {

 stdDev =

Double.valueOf(stdDevTextField.getText()).doubleValue();

 if (stdDev >= 1 || stdDev <= 0)

 throw (new NumberFormatException());

 fullNetworkColorize =

fullNetworkColorizeCheckBox.isSelected();

 fullNetworkAverage =

fullNetworkAverageCheckBox.isSelected();

 // upperOrLower =

upperValueCheckBox.isSelected() ? 1 : 0;

 sourcePoint = (Coordinate)

sourcePointCheckBox.getSelectedItem();

 sinkPoint = (Coordinate)

sinkPointCheckBox.getSelectedItem();

 tempFile = generateTempShapeFile(shapeFile);

 selectFeatures(null);

 }

 catch (NumberFormatException exception)

 {

 if (exception.getMessage() == null)

 JOptionPane.showMessageDialog(mapFrame,

"Enter a decimal number between 0 and 1", "Warning",

 JOptionPane.WARNING_MESSAGE);

 else

 JOptionPane.showMessageDialog(mapFrame,

"Enter valid decimal number", "Warning",

 JOptionPane.WARNING_MESSAGE);

 stdDev = 0.002;

 stdDevTextField.setText("0.002");

 }

 }

 /**

 * This method is called by our feature selection tool when

the user has

73

 * clicked on the map.

 *

 * @param pos

 * map (world) coordinates of the mouse cursor

 * @throws IOException

 */

 void selectFeatures(MapMouseEvent ev)

 {

 MAX_IDs.clear();

 MORE_IDs.clear();

 MODERATE_IDs.clear();

 LESS_IDs.clear();

 MIN_IDs.clear();

 inputMultiLineStrings.clear();

 nodeList.clear();

 inputMultiLineStringsDirections.clear();

 featureIds.clear();

 int[][] pointsAndEdges = new int[][] {};

 FeatureIterator<SimpleFeature> featureIterator =

null;

 ArrayList<ArrayList<LineString>> smallLines = new

ArrayList<ArrayList<LineString>>();

 try

 {

 featureIterator =

featureSource.getFeatures().features();

 Util util = new Util();

 if (isItFirstRun)

 reliabilities = new

double[featureSource.getFeatures().size()];

 int index = 0;

 while (featureIterator.hasNext())

 {

 if (index == reliabilities.length)

 break;

 SimpleFeature feature =

featureIterator.next();

 List<Object> objects =

feature.getAttributes();

 for (Iterator<Object> iterator =

objects.iterator(); iterator.hasNext();)

 {

 // iterates once

 MultiLineString multiLineString;

 Object object = iterator.next();

 if (object instanceof

MultiLineString)

 multiLineString =

(MultiLineString) object;

 else

 continue;

 logWriter.write("MultiLineString :-

> " + multiLineString + "\n");

 logWriter.flush();

 inputMultiLineStrings.add(multiLineString);

 //

74

inputMultiLineStringsDirections.add(direction);

 Coordinate firstEndPoint =

multiLineString.getCoordinates()[0];

 Coordinate secondEndPoint =

multiLineString.getCoordinates()[1];

 if

(!nodeList.contains(firstEndPoint))

 nodeList.add(firstEndPoint);

 if

(!nodeList.contains(secondEndPoint))

 nodeList.add(secondEndPoint);

 LineString lineString =

gf.createLineString(multiLineString.getCoordinates());

 ArrayList<LineString> lineStrings =

util.getIntersectionLinearRings(gridList, lineString, gf,

 logWriter);

 smallLines.add(lineStrings);

 double reliability =

calculateNormalValues(lineStrings, true);

 logWriter.write("Reliability :-> "

+ reliability + '\n');

 logWriter.append('\n');

 logWriter.flush();

 reliabilities[index] = reliability;

 featureIds.add(feature.getIdentifier());

 index++;

 }

 }

 adjacencyMatrix =

calculateAdjacencyMatrix(inputMultiLineStrings,

inputMultiLineStringsDirections, nodeList);

 if (isItFirstRun)

 {

 sourcePointCheckBox.setSelectedItem(sourcePoint);

 sinkPointCheckBox.setSelectedItem(sinkPoint);

 }

 Object[] result =

netrel.findInterval(inputMultiLineStrings.size(),

nodeList.size(), reliabilities,

 adjacencyMatrix,

nodeList.indexOf(sourcePoint) + 1, nodeList.indexOf(sinkPoint) +

1);

 pointsAndEdges = (int[][]) result[0];

 networkReliabilityUpper = (Double) result[2];

 networkReliabilityLower = (Double) result[1];

 upperValueField.setText(String.valueOf(networkReliabilityUp

per));

 lowerValueField.setText(String.valueOf(networkReliabilityLo

wer));

 logWriter.write("Lower Value: " +

networkReliabilityLower + '\n');

75

 logWriter.write("Upper Value: " +

networkReliabilityUpper + '\n');

 logWriter.flush();

 SimpleFeatureStore featureStore =

(SimpleFeatureStore) featureSource;

 featureStore.modifyFeatures("Upper",

networkReliabilityUpper, Filter.INCLUDE);

 featureStore.modifyFeatures("Lower",

networkReliabilityLower, Filter.INCLUDE);

 ArrayList<Coordinate> coordinates = new

ArrayList<Coordinate>();

 coordinates.add(sinkPoint);

 coordinates.add(sourcePoint);

 addCustomShapes(coordinates,

(SimpleFeatureStore) featureSource);

 isItFirstRun = false;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 finally

 {

 featureIterator.close();

 }

 createShapeMapForSmallLines(smallLines);

 colorizeFullNetwork(pointsAndEdges,

fullNetworkColorize, reliabilities, featureIds);

 }

 private void

createShapeMapForSmallLines(ArrayList<ArrayList<LineString>>

smallLines)

 {

 File newFile = null;

 try

 {

 newFile = getNewShapeFile(shapeFile,

"lineSegments.shp");

 newFile.delete();

 newFile.createNewFile();

 SimpleFeatureCollection collection =

FeatureCollections.newCollection();

 final SimpleFeatureType TYPE =

createFeatureType();

 SimpleFeatureBuilder featureBuilder = new

SimpleFeatureBuilder(TYPE);

 for (ArrayList<LineString> lineStrings :

smallLines)

 {

 for (LineString lineString : lineStrings)

 {

 featureBuilder.add(lineString);

 featureBuilder.add((Double)

lineString.getUserData());

 SimpleFeature feature =

76

featureBuilder.buildFeature(null);

 collection.add(feature);

 }

 }

 ShapefileDataStoreFactory dataStoreFactory =

new ShapefileDataStoreFactory();

 Map<String, Serializable> params = new

HashMap<String, Serializable>();

 params.put("url", newFile.toURI().toURL());

 params.put("create spatial index",

Boolean.TRUE);

 ShapefileDataStore newDataStore =

(ShapefileDataStore) dataStoreFactory.createNewDataStore(params);

 newDataStore.createSchema(TYPE);

 /*

 * You can comment out this line if you are

using the

 * createFeatureType method (at end of class

file) rather than

 * DataUtilities.createType

 */

 newDataStore.forceSchemaCRS(DefaultGeographicCRS.WGS84);

 Transaction transaction = new

DefaultTransaction("segmentHandle");

 String typeName =

newDataStore.getTypeNames()[0];

 SimpleFeatureSource featureSource =

newDataStore.getFeatureSource(typeName);

 if (featureSource instanceof

SimpleFeatureStore)

 {

 SimpleFeatureStore featureStore =

(SimpleFeatureStore) featureSource;

 featureStore.setTransaction(transaction);

 try

 {

 featureStore.addFeatures(collection);

 transaction.commit();

 }

 catch (Exception problem)

 {

 problem.printStackTrace();

 transaction.rollback();

 }

 finally

 {

 transaction.close();

 }

77

 }

 else

 {

 System.out.println(typeName + " does not

support read/write access");

 System.exit(1);

 }

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 private static SimpleFeatureType createFeatureType()

 {

 SimpleFeatureTypeBuilder builder = new

SimpleFeatureTypeBuilder();

 builder.setName("Segment");

 builder.setCRS(DefaultGeographicCRS.WGS84); // <-

Coordinate reference

 // system

 // add attributes in order

 builder.add("Segment", LineString.class);

 builder.length(15).add("PGA", Double.class); // <- 15

chars width for

 // name field

 // build the type

 final SimpleFeatureType SEGMENT =

builder.buildFeatureType();

 return SEGMENT;

 }

 private File createAndLoadShapeFile(double[] reliabilities,

ArrayList<MultiLineString> inputMultiLineStrings,

 int[][] pointsAndEdges, ArrayList<Long>

directions, double lower, double upper)

 {

 File newFile = null;

 try

 {

 newFile = getNewShapeFile(shapeFile,

"analysis.shp");

 newFile.delete();

 newFile.createNewFile();

 SimpleFeatureCollection collection =

FeatureCollections.newCollection();

 /*

 * GeometryFactory will be used to create the

geometry attribute of

 * each feature (a Point object for the

location)

 */

78

 AttributeTypeBuilder attributeTypeBuilder1 =

new AttributeTypeBuilder();

 attributeTypeBuilder1.setNillable(true);

 attributeTypeBuilder1.setBinding(Double.class);

 attributeTypeBuilder1.setName("Reliabilit");

 AttributeType reliabilityType1 =

attributeTypeBuilder1.buildType();

 AttributeDescriptor attributeDescriptor1 =

attributeTypeBuilder1.buildDescriptor("Reliabilit",

 reliabilityType1);

 AttributeTypeBuilder attributeTypeBuilder2 =

new AttributeTypeBuilder();

 attributeTypeBuilder2.setNillable(true);

 attributeTypeBuilder2.setBinding(Double.class);

 attributeTypeBuilder2.setName("Lower");

 AttributeType reliabilityType2 =

attributeTypeBuilder2.buildType();

 AttributeDescriptor attributeDescriptor2 =

attributeTypeBuilder2.buildDescriptor("Lower", reliabilityType2);

 AttributeTypeBuilder attributeTypeBuilder3 =

new AttributeTypeBuilder();

 attributeTypeBuilder3.setNillable(true);

 attributeTypeBuilder3.setBinding(Double.class);

 attributeTypeBuilder3.setName("Upper");

 AttributeType reliabilityType3 =

attributeTypeBuilder3.buildType();

 AttributeDescriptor attributeDescriptor3 =

attributeTypeBuilder3.buildDescriptor("Upper", reliabilityType3);

 SimpleFeatureTypeBuilder featureTypeBuilder =

new SimpleFeatureTypeBuilder();

 featureTypeBuilder.init(originalFeatureType);

 featureTypeBuilder.remove("BURSA8");

 featureTypeBuilder.add(attributeDescriptor1);

 featureTypeBuilder.add(attributeDescriptor2);

 featureTypeBuilder.add(attributeDescriptor3);

 generatedFeatureType =

featureTypeBuilder.buildFeatureType();

 SimpleFeatureBuilder featureBuilder = new

SimpleFeatureBuilder(generatedFeatureType);

 for (int i = 0; i <

inputMultiLineStrings.size(); i++)

 {

 featureBuilder.add(inputMultiLineStrings.get(i));

 featureBuilder.add(reliabilities[i]);

 featureBuilder.add(lower);

 featureBuilder.add(upper);

 SimpleFeature feature =

featureBuilder.buildFeature(null);

 collection.add(feature);

 }

79

 ShapefileDataStoreFactory dataStoreFactory =

new ShapefileDataStoreFactory();

 Map<String, Serializable> params = new

HashMap<String, Serializable>();

 params.put("url", newFile.toURI().toURL());

 params.put("create spatial index",

Boolean.TRUE);

 ShapefileDataStore newDataStore =

(ShapefileDataStore) dataStoreFactory.createNewDataStore(params);

 newDataStore.createSchema(generatedFeatureType);

 /*

 * You can comment out this line if you are

using the

 * createFeatureType method (at end of class

file) rather than

 * DataUtilities.createType

 */

 newDataStore.forceSchemaCRS(DefaultGeographicCRS.WGS84);

 // docs break transaction

 /*

 * Write the features to the shapefile

 */

 Transaction transaction = new

DefaultTransaction("create");

 String typeName =

newDataStore.getTypeNames()[0];

 SimpleFeatureSource featureSource =

newDataStore.getFeatureSource(typeName);

 if (featureSource instanceof

SimpleFeatureStore)

 {

 SimpleFeatureStore featureStore =

(SimpleFeatureStore) featureSource;

 featureStore.setTransaction(transaction);

 try

 {

 featureStore.addFeatures(collection);

 transaction.commit();

 }

 catch (Exception problem)

 {

 problem.printStackTrace();

 transaction.rollback();

 }

 finally

 {

80

 transaction.close();

 }

 }

 else

 {

 System.out.println(typeName + " does not

support read/write access");

 System.exit(1);

 }

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 return newFile;

 }

 private static File getNewShapeFile(File shapeFile, String

fileName)

 {

 String path = shapeFile.getAbsolutePath();

 String folderPath = path.substring(0, path.length() -

shapeFile.getName().length()) + "generated";

 boolean folderExist = new File(folderPath).exists();

 String newPath = null;

 if (!folderExist)

 {

 new File(folderPath).mkdir();

 }

 newPath = folderPath + "/" + fileName;

 JFileDataStoreChooser chooser = new

JFileDataStoreChooser("shp");

 chooser.setDialogTitle("Save generated shapefile");

 chooser.setSelectedFile(new File(newPath));

 int returnVal = chooser.showSaveDialog(null);

 if (returnVal !=

JFileDataStoreChooser.APPROVE_OPTION)

 {

 // the user cancelled the dialog

 System.exit(0);

 }

 File newFile = chooser.getSelectedFile();

 if (newFile.equals(shapeFile))

 {

 System.out.println("Error: cannot replace " +

shapeFile);

 System.exit(0);

 }

 return newFile;

 }

 private void colorizeFullNetwork(final int[][]

81

pointsAndEdges, final boolean colorizeFullMode,

 final double[] reliabilities, final

ArrayList<FeatureId> featureIds)

 {

 for (Set<FeatureId> set : sets)

 set.clear();

 if (!colorizeFullMode)

 {

 int renklendirilenSayisi = 0;

 int renklendirilmeyenSayisi = 0;

 Set<FeatureId> colorableFeatureIds = new

HashSet<FeatureId>();

 for (int edgeIndex = 0; edgeIndex <

pointsAndEdges.length; edgeIndex++)

 {

 int[] edgeArray =

pointsAndEdges[edgeIndex];

 int lineStringIndex =

findLine(edgeArray[0], edgeArray[1]);

 if (reliabilities[lineStringIndex] < 0.2)

 sets.get(0).add(featureIds.get(lineStringIndex));

 else if (reliabilities[lineStringIndex] <

0.4)

 sets.get(1).add(featureIds.get(lineStringIndex));

 else if (reliabilities[lineStringIndex] <

0.6)

 sets.get(2).add(featureIds.get(lineStringIndex));

 else if (reliabilities[lineStringIndex] <

0.8)

 sets.get(3).add(featureIds.get(lineStringIndex));

 else

 sets.get(4).add(featureIds.get(lineStringIndex));

 colorableFeatureIds.add(featureIds.get(lineStringIndex));

 renklendirilenSayisi++;

 }

 for (int edgeIndex = 0; edgeIndex <

featureIds.size(); edgeIndex++)

 {

 FeatureId featureId =

featureIds.get(edgeIndex);

 if

(!colorableFeatureIds.contains(featureId))

 {

 sets.get(5).add(featureId);

 renklendirilmeyenSayisi++;

 }

 }

 }

 else

 {

 for (int edgeIndex = 0; edgeIndex <

82

featureIds.size(); edgeIndex++)

 {

 if (reliabilities[edgeIndex] < 0.2)

 sets.get(0).add(featureIds.get(edgeIndex));

 else if (reliabilities[edgeIndex] < 0.4)

 sets.get(1).add(featureIds.get(edgeIndex));

 else if (reliabilities[edgeIndex] < 0.6)

 sets.get(2).add(featureIds.get(edgeIndex));

 else if (reliabilities[edgeIndex] < 0.8)

 sets.get(3).add(featureIds.get(edgeIndex));

 else

 sets.get(4).add(featureIds.get(edgeIndex));

 }

 }

 displaySelectedFeatures(sets);

 }

 private int findLine(int i, int j)

 {

 Coordinate start = nodeList.get(i);

 Coordinate end = nodeList.get(j);

 for (MultiLineString multiLineString :

inputMultiLineStrings)

 {

 Coordinate[] endPoints =

multiLineString.getCoordinates();

 if ((endPoints[0].equals(start) &&

endPoints[1].equals(end))

 || (endPoints[1].equals(start) &&

endPoints[0].equals(end)))

 {

 return

inputMultiLineStrings.indexOf(multiLineString);

 }

 }

 return -1;

 }

 private void addCustomShapes(ArrayList<Coordinate>

nodeList, SimpleFeatureStore featureStore)

 {

 double sourceLineLength = 0.01;

 double sinkLineLength = 0.005;

 Transaction transaction = new

DefaultTransaction("handle");

 SimpleFeatureCollection collection =

FeatureCollections.newCollection();

 featureStore.setTransaction(transaction);

 SimpleFeatureTypeBuilder featureTypeBuilder = new

SimpleFeatureTypeBuilder();

 featureTypeBuilder.init(generatedFeatureType);

83

 SimpleFeatureType simpleFeatureType =

featureTypeBuilder.buildFeatureType();

 SimpleFeatureBuilder featureBuilder = new

SimpleFeatureBuilder(simpleFeatureType);

 try

 {

 Coordinate sink = nodeList.get(0);

 Coordinate source = nodeList.get(1);

 MultiLineString grid1 = createCross(source,

sourceLineLength);

 featureBuilder.add(grid1);

 SimpleFeature feature =

featureBuilder.buildFeature(null);

 collection.add(feature);

 MultiLineString grid2 = createCross(sink,

sinkLineLength);

 featureBuilder.add(grid2);

 SimpleFeature feature2 =

featureBuilder.buildFeature(null);

 collection.add(feature2);

 featureStore.addFeatures(collection);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 private MultiLineString createCross(Coordinate point,

double crossLength)

 {

 LineString l1 = gf.createLineString(new Coordinate[]

{

 new Coordinate(point.x - crossLength,

point.y - crossLength),

 new Coordinate(point.x - crossLength,

point.y + crossLength) });

 LineString l2 = gf.createLineString(new Coordinate[]

{

 new Coordinate(point.x - crossLength,

point.y + crossLength),

 new Coordinate(point.x + crossLength,

point.y + crossLength) });

 LineString l3 = gf.createLineString(new Coordinate[]

{

 new Coordinate(point.x + crossLength,

point.y + crossLength),

 new Coordinate(point.x + crossLength,

point.y - crossLength) });

 LineString l4 = gf.createLineString(new Coordinate[]

{

 new Coordinate(point.x + crossLength,

point.y - crossLength),

 new Coordinate(point.x - crossLength,

84

point.y - crossLength) });

 MultiLineString grid = gf.createMultiLineString(new

LineString[] { l1, l2, l3, l4 });

 return grid;

 }

 private int[][]

calculateAdjacencyMatrix(ArrayList<MultiLineString>

inputMultiLineStrings,

 ArrayList<Long>

inputMultiLineStringsDirections, Vector<Coordinate> nodeList)

 {

 int[][] adjacency = new

int[nodeList.size()][nodeList.size()];

 for (int i = 0; i < nodeList.size(); i++)

 {

 Coordinate coordinate = nodeList.get(i);

 for (int j = 0; j <

inputMultiLineStrings.size(); j++)

 {

 Coordinate otherCoordinate = null;

 MultiLineString multiLineString =

inputMultiLineStrings.get(j);

 if

(multiLineString.getCoordinates()[0].equals(coordinate))

 {

 otherCoordinate =

multiLineString.getCoordinates()[1];

 adjacency[nodeList.indexOf(coordinate)][nodeList.indexOf(ot

herCoordinate)] = 1;

 }

 }

 }

 return adjacency;

 }

 private double calculateAvgPgaVal(ArrayList<LineString>

lineStrings)

 {

 double totalPgaValue = 0;

 double avgPgaValue = 0;

 for (LineString lineString : lineStrings)

 {

 totalPgaValue += (Double)

lineString.getUserData();

 }

 if (lineStrings.size() == 0)

 try

 {

 throw new Exception();

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 avgPgaValue = totalPgaValue / lineStrings.size();

85

 return avgPgaValue;

 }

 /**

 *

 * @param lineStrings

 * @param lowerUpper

 * 0 means lower, 1 means upper

 * @return

 */

 private double calculateNormalValues(ArrayList<LineString>

lineStrings, boolean log)

 {

 double result = 1;

 double avgPgaValue;

 ArrayList<Double> zVals = new ArrayList<Double>();

 int size = lineStrings.size();

 if (fullNetworkAverage)

 avgPgaValue = generalPgaValAvg;

 else

 avgPgaValue = calculateAvgPgaVal(lineStrings);

 for (int i = 0; i < size; i++)

 {

 LineString lineString = lineStrings.get(i);

 double pgaVal = (Double)

lineString.getUserData();

 double zVal;

 if (fullNetworkAverage)

 zVal = Math.abs((avgPgaValue - pgaVal)) /

Math.sqrt(stdDev);

 else

 zVal = Math.abs((avgPgaValue - pgaVal)) /

Math.sqrt(stdDev / size);

 double zValNormal = Gaussian.Phi(zVal);

 zVals.add(zValNormal);

 if (log)

 {

 try

 {

 logWriter.write("Z-Value :-> " +

zValNormal + '\n');

 logWriter.flush();

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 }

 }

 for (double zValNormal : zVals)

 {

 // if (upperOrLower == 0)

 // {

 // result *= zValNormal;

 // }

 // else if (upperOrLower == 1)

 // {

86

 // if (result > zValNormal)

 // result = zValNormal;

 // }

 if (result > zValNormal)

 result = zValNormal;

 }

 return result;

 }

 void selectOtherFeatures(MapMouseEvent ev)

 {

 try

 {

 FeatureIterator<SimpleFeature> featureIterator

= otherFeatureSource.getFeatures().features();

 ReferencedEnvelope envelope =

otherFeatureSource.getBounds();

 double maxX = envelope.getMaxX();

 totalNumberOfPoints = 0;

 totalPgaVal = 0;

 try

 {

 featureIterator =

otherFeatureSource.getFeatures().features();

 ArrayList<Node> nodeList = new

ArrayList<Node>();

 ArrayList<ArrayList<Node>> nodesList =

new ArrayList<ArrayList<Node>>();

 while (featureIterator.hasNext())

 {

 SimpleFeature feature =

featureIterator.next();

 List<Object> objects =

feature.getAttributes();

 Iterator<Object> iterator =

objects.iterator();

 Point point = (Point)

iterator.next();

 iterator.next();

 iterator.next();

 double pgaValue = (Double)

iterator.next();

 Node node = new Node();

 node.pgaValue = pgaValue;

 node.point = point;

 if (point.getX() < maxX)

 {

 nodeList.add(node);

 }

 else

 {

 nodeList.add(node);

 nodesList.add(nodeList);

 nodeList = new

ArrayList<Node>();

 }

 totalNumberOfPoints++;

87

 totalPgaVal += pgaValue;

 }

 gridList = constructGrid(nodesList);

 if (totalNumberOfPoints == 0)

 throw (new Exception());

 generalPgaValAvg = totalPgaVal /

totalNumberOfPoints;

 }

 catch (Exception ex)

 {

 ex.printStackTrace();

 return;

 }

 finally

 {

 featureIterator.close();

 }

 }

 catch (Exception ex)

 {

 ex.printStackTrace();

 return;

 }

 }

 private ArrayList<ArrayList<LinearRing>>

constructGrid(ArrayList<ArrayList<Node>> input)

 {

 ArrayList<ArrayList<LinearRing>> outerGridList = new

ArrayList<ArrayList<LinearRing>>();

 ArrayList<Node> firstParam = input.get(0);

 for (int i = 1; i < input.size(); i++)

 {

 ArrayList<Node> secondParam = input.get(i);

 ArrayList<LinearRing> innerGridList = new

ArrayList<LinearRing>();

 for (int j = 0; j < firstParam.size() - 1; j++)

 {

 Node solAlt = firstParam.get(j);

 Node solUst = secondParam.get(j);

 Node sagAlt = firstParam.get(j + 1);

 Node sagUst = secondParam.get(j + 1);

 LinearRing grid =

createGridFromNode(solAlt, solUst, sagAlt, sagUst);

 innerGridList.add(grid);

 }

 outerGridList.add(innerGridList);

 firstParam = new ArrayList<Node>(secondParam);

 }

 return outerGridList;

 }

 private LinearRing createGridFromNode(Node solAlt, Node

solUst, Node sagAlt, Node sagUst)

 {

 double avgPGA = (solAlt.pgaValue + solUst.pgaValue +

88

sagAlt.pgaValue + sagUst.pgaValue) / 4;

 Coordinate c1 = solAlt.point.getCoordinate();

 Coordinate c2 = sagAlt.point.getCoordinate();

 Coordinate c3 = sagUst.point.getCoordinate();

 Coordinate c4 = solUst.point.getCoordinate();

 LinearRing grid = gf.createLinearRing(new

Coordinate[] { c1, c2, c3, c4, c1 });

 grid.setUserData(avgPGA);

 return grid;

 }

 // docs end select features

 // docs start display selected

 /**

 * Sets the display to paint selected features yellow and

unselected

 * features in the default style.

 *

 * @param IDs

 * identifiers of currently selected features

 */

 public void

displaySelectedFeatures(ArrayList<Set<FeatureId>> sets)

 {

 Style style;

 style = createSelectedStyle(sets);

 MapContext mapContext = mapFrame.getMapContext();

 MapLayer mapLayer;

 if (isRasterUsed)

 mapLayer = mapContext.getLayer(1);

 else

 mapLayer = mapContext.getLayer(0);

 mapLayer.setStyle(style);

 mapFrame.getMapPane().repaint();

 }

 /**

 * Create a default Style for feature display

 */

 private Style createDefaultStyle()

 {

 Rule rule = createRule(LINE_COLOUR, FILL_COLOUR,

LINE_WIDTH);

 FeatureTypeStyle fts = sf.createFeatureTypeStyle();

 fts.rules().add(rule);

 Style style = sf.createStyle();

 style.featureTypeStyles().add(fts);

 return style;

 }

 /**

 * Create a Style where features with given IDs are painted

yellow, while

89

 * others are painted with the default colors.

 */

 private Style createSelectedStyle(ArrayList<Set<FeatureId>>

sets)

 {

 Rule maxRule = createRule(MAX_DANGEROUS,

MAX_DANGEROUS, LINE_WIDTH);

 maxRule.setFilter(ff.id(sets.get(0)));

 //

 Rule moreRule = createRule(MORE_DANGEROUS,

MORE_DANGEROUS, LINE_WIDTH);

 moreRule.setFilter(ff.id(sets.get(1)));

 //

 Rule moderateRule = createRule(MODERATE_DANGEROUS,

MODERATE_DANGEROUS, LINE_WIDTH);

 moderateRule.setFilter(ff.id(sets.get(2)));

 //

 Rule lessRule = createRule(LESS_DANGEROUS,

LESS_DANGEROUS, LINE_WIDTH);

 lessRule.setFilter(ff.id(sets.get(3)));

 //

 Rule minRule = createRule(MIN_DANGEROUS,

MIN_DANGEROUS, LINE_WIDTH);

 minRule.setFilter(ff.id(sets.get(4)));

 //

 Rule uncoloredLineRule = createRule(OTHER_LINE_COLOR,

OTHER_LINE_COLOR, LINE_WIDTH);

 uncoloredLineRule.setFilter(ff.id(sets.get(5)));

 //

 Rule otherRule = createRule(FILL_COLOUR, FILL_COLOUR,

THICK_LINE_WIDTH);

 otherRule.setElseFilter(true);

 FeatureTypeStyle fts = sf.createFeatureTypeStyle();

 fts.rules().add(otherRule);

 fts.rules().add(maxRule);

 fts.rules().add(moreRule);

 fts.rules().add(moderateRule);

 fts.rules().add(lessRule);

 fts.rules().add(minRule);

 if (!fullNetworkColorize)

 fts.rules().add(uncoloredLineRule);

 else

 fts.rules().remove(uncoloredLineRule);

 Style style = sf.createStyle();

 style.featureTypeStyles().add(fts);

 return style;

 }

 /**

 * Helper for createXXXStyle methods. Creates a new Rule

containing a

 * Symbolizer tailored to the geometry type of the features

that we are

 * displaying.

 */

 private Rule createRule(Color outlineColor, Color

90

fillColor, double lineWidth)

 {

 Symbolizer symbolizer = null;

 Fill fill = null;

 Stroke stroke =

sf.createStroke(ff.literal(outlineColor), ff.literal(lineWidth));

 switch (geometryType)

 {

 case POLYGON:

 fill = sf.createFill(ff.literal(fillColor),

ff.literal(OPACITY));

 symbolizer = sf.createPolygonSymbolizer(stroke,

fill, geometryAttributeName);

 break;

 case LINE:

 symbolizer = sf.createLineSymbolizer(stroke,

geometryAttributeName);

 break;

 case POINT:

 fill = sf.createFill(ff.literal(fillColor),

ff.literal(OPACITY));

 Mark mark = sf.getCircleMark();

 mark.setFill(fill);

 mark.setStroke(stroke);

 Graphic graphic = sf.createDefaultGraphic();

 graphic.graphicalSymbols().clear();

 graphic.graphicalSymbols().add(mark);

 graphic.setSize(ff.literal(POINT_SIZE));

 symbolizer = sf.createPointSymbolizer(graphic,

geometryAttributeName);

 }

 Rule rule = sf.createRule();

 rule.symbolizers().add(symbolizer);

 return rule;

 }

 /**

 * Retrieve information about the feature geometry

 */

 private void setGeometry(FeatureSource<SimpleFeatureType,

SimpleFeature> featureSource)

 {

 GeometryDescriptor geomDesc =

featureSource.getSchema().getGeometryDescriptor();

 geometryAttributeName = geomDesc.getLocalName();

 Class<?> clazz = geomDesc.getType().getBinding();

 if (Polygon.class.isAssignableFrom(clazz) ||

MultiPolygon.class.isAssignableFrom(clazz))

91

 {

 geometryType = GeomType.POLYGON;

 }

 else if (LineString.class.isAssignableFrom(clazz) ||

MultiLineString.class.isAssignableFrom(clazz))

 {

 geometryType = GeomType.LINE;

 }

 else

 {

 geometryType = GeomType.POINT;

 }

 }

 private Style createRGBStyle()

 {

 GridCoverage2D cov = null;

 try

 {

 cov = reader.read(null);

 }

 catch (IOException giveUp)

 {

 throw new RuntimeException(giveUp);

 }

 // We need at least three bands to create an RGB

style

 int numBands = cov.getNumSampleDimensions();

 if (numBands < 3)

 {

 return null;

 }

 // Get the names of the bands

 String[] sampleDimensionNames = new String[numBands];

 for (int i = 0; i < numBands; i++)

 {

 GridSampleDimension dim =

cov.getSampleDimension(i);

 sampleDimensionNames[i] =

dim.getDescription().toString();

 }

 final int RED = 0, GREEN = 1, BLUE = 2;

 int[] channelNum = { -1, -1, -1 };

 // We examine the band names looking for "red...",

"green...",

 // "blue...".

 // Note that the channel numbers we record are

indexed from 1, not 0.

 for (int i = 0; i < numBands; i++)

 {

 String name =

sampleDimensionNames[i].toLowerCase();

 if (name != null)

92

 {

 if (name.matches("red.*"))

 {

 channelNum[RED] = i + 1;

 }

 else if (name.matches("green.*"))

 {

 channelNum[GREEN] = i + 1;

 }

 else if (name.matches("blue.*"))

 {

 channelNum[BLUE] = i + 1;

 }

 }

 }

 // If we didn't find named bands "red...",

"green...", "blue..."

 // we fall back to using the first three bands in

order

 if (channelNum[RED] < 0 || channelNum[GREEN] < 0 ||

channelNum[BLUE] < 0)

 {

 channelNum[RED] = 1;

 channelNum[GREEN] = 2;

 channelNum[BLUE] = 3;

 }

 // Now we create a RasterSymbolizer using the

selected channels

 SelectedChannelType[] sct = new

SelectedChannelType[cov.getNumSampleDimensions()];

 ContrastEnhancement ce =

sf.contrastEnhancement(ff.literal(1.0),

ContrastMethod.NORMALIZE);

 for (int i = 0; i < 3; i++)

 {

 sct[i] =

sf.createSelectedChannelType(String.valueOf(channelNum[i]), ce);

 }

 RasterSymbolizer sym =

sf.getDefaultRasterSymbolizer();

 ChannelSelection sel = sf.channelSelection(sct[RED],

sct[GREEN], sct[BLUE]);

 sym.setChannelSelection(sel);

 return SLD.wrapSymbolizers(sym);

 }

}

A.2 Node.Java Class

package org.geotools.demo.node;

93

import com.vividsolutions.jts.geom.Point;

public class Node

{

 public Point point;

 public double pgaValue;

}

A.3 Gaussian.java Class

package org.geotools.demo.util;

/**

 * Compilation: javac Gaussian.java Execution: java Gaussian x mu

sigma

 *

 * Function to compute the Gaussian pdf (probability density

function) and the

 * Gaussian cdf (cumulative density function)

 *

 * % java Gaussian 820 1019 209 0.17050966869132111

 *

 * % java Gaussian 1500 1019 209 0.9893164837383883

 *

 * % java Gaussian 1500 1025 231 0.9801220907365489

 *

 * The approximation is accurate to absolute error less than 8 *

10^(-16).

 * Reference: Evaluating the Normal Distribution by George

Marsaglia.

 * http://www.jstatsoft.org/v11/a04/paper

 *

********/

public class Gaussian

{

 /**

 *

 * @param x

 * @return phi(x) = standard Gaussian pdf

 */

 public static double phi(double x)

 {

 return Math.exp(-x * x / 2) / Math.sqrt(2 * Math.PI);

 }

 /**

 *

 * @param z

94

 * @return Phi(z) = standard Gaussian cdf using Taylor

approximation

 */

 public static double Phi(double z)

 {

 if (z < -8.0)

 return 0.0;

 if (z > 8.0)

 return 1.0;

 double sum = 0.0, term = z;

 for (int i = 3; sum + term != sum; i += 2)

 {

 sum = sum + term;

 term = term * z * z / i;

 }

 return 0.5 + sum * phi(z);

 }

 //

 // // test client

 // public static void main(String[] args)

 // {

 // double z = 820; // Double.parseDouble(args[0]);

 // double mu = 1019; // Double.parseDouble(args[1]);

 // double sigma = 209; // Double.parseDouble(args[2]);

 // System.out.println(Phi(z, mu, sigma));

 // double y = Phi(z);

 // System.out.println(PhiInverse(1));

 //

 // System.out.println(Phi(11));

 // System.out.println(phi(1));

 // }

}

A.4 Netrel.java Class

package org.geotools.demo.util;

public class Netrel

{

 private static final int qsize = 2500;

 private static final int psize = 200;

 public Object[] findInterval(final int edgeNumber, final

int nodeNumber, final double[] probabilityMatrice, int[][]

adjacencyMatrice,

 final int sourceNode, final int sinkNode)

 {

 int l;

 int front, rear;

 boolean bool = false, cont_bool;

 int[][] g, q;

 int[][] edge = new int[edgeNumber][2];

95

 int[] dist, pred, pp;

 int[] event, event1, event2;

 int[][] paths;

 int[] scannedEdgeNumbers = new int[edgeNumber];

 int scannedEdgeNumber = 0;

 int inf = 99999;

 double lower = 0, upper = 0, delta = 0.000002;

 int p = 0, mm = 0;

 try

 {

 g = new int[nodeNumber][nodeNumber];

 edge = new int[edgeNumber][2];

 q = new int[qsize][edgeNumber];

 event = new int[edgeNumber];

 event1 = new int[edgeNumber];

 event2 = new int[edgeNumber];

 dist = new int[nodeNumber];

 pred = new int[nodeNumber];

 pp = new int[edgeNumber];

 paths = new int[psize][edgeNumber];

 for (int i = 0; i < nodeNumber; i++)

 {

 for (int j = 0; j < nodeNumber; j++)

 {

 if (adjacencyMatrice[i][j] == 0)

 adjacencyMatrice[i][j] = inf;

 if (adjacencyMatrice[i][j] == inf)

 continue;

 mm++;

 adjacencyMatrice[i][j] = mm;

 edge[mm - 1][0] = i + 1;

 edge[mm - 1][1] = j + 1;

 }

 }

 front = 0;

 for (int i = 0; i < edgeNumber; i++)

 q[front][i] = 0;

 rear = 1;

 while (true)

 {

 if (rear != 1 && rear == front)

 {

 break;

 }

 for (int i = 0; i < edgeNumber; i++)

96

 event[i] = q[front][i];

 front++;

 if (front > qsize)

 front = 0;

 for (int i = 0; i < nodeNumber; i++)

 {

 for (int j = 0; j < nodeNumber;

j++)

 {

 g[i][j] =

adjacencyMatrice[i][j];

 }

 }

 for (int k = 0; k < edgeNumber; k++)

 {

 if (event[k] == -1)

 {

 int i = edge[k][0];

 int j = edge[k][1];

 g[i - 1][j - 1] = inf;

 }

 }

 Object[] result1 = bfs(g, dist, pred, pp,

nodeNumber, edgeNumber, sourceNode, sinkNode);

 dist = (int[]) result1[0];

 pred = (int[]) result1[1];

 pp = (int[]) result1[2];

 for(int xx=0;xx<pp.length;xx++)

 {

 scannedEdgeNumbers[xx] =

(scannedEdgeNumbers[xx]==1||pp[xx]==1)?1:0;

 }

 bool = (Boolean) result1[3];

 if (!bool)

 {

 p++;

 upper = probab(event, upper,

edgeNumber, probabilityMatrice);

 if ((1 - (lower + upper)) <= delta)

 break;

 else

 continue;

 }

 cont_bool = true;

 if (p != 0)

 {

 cont_bool = false;

 for (int i = 0; i < p; i++)

 for (int j = 0; j <

edgeNumber; j++)

 if (paths[i][j] ==

pp[j])

 cont_bool = true;

 }

 if (!cont_bool)

 {

 for (int i = 0; i < edgeNumber;

97

i++)

 paths[p - 1][i] = pp[i];

 p++;

 }

 l = 0;

 for (int i = 0; i < edgeNumber; i++)

 {

 event1[i] = pp[i];

 if (event[i] != 0)

 event1[i] = event[i];

 if (event[i] == 0 && event1[i] ==

1)

 l++;

 }

 lower = probab(event1, lower, edgeNumber,

probabilityMatrice);

 Object[] result2 = comple(event, event1,

event2, l, q, rear, edgeNumber);

 event2 = (int[]) result2[0];

 q = (int[][]) result2[1];

 rear = (Integer) result2[2];

 rear++;

 }

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 for(int i:scannedEdgeNumbers)

 {

 if(i==1)

 scannedEdgeNumber++;

 }

 int[][] resultingScannedEdges = new

int[scannedEdgeNumber][2];

 int j = 0;

 for(int i=0;i<scannedEdgeNumbers.length;i++)

 {

 if(scannedEdgeNumbers[i]==1)

 {

 resultingScannedEdges[j][0] = edge[i][0]-

1;

 resultingScannedEdges[j][1] = edge[i][1]-

1;

 j++;

 }

 }

 Object[] result = new Object[3];

 result[0] = resultingScannedEdges;

 result[1] = lower;

 result[2] = 1 - upper;

 return result;

 }

 // dist, pred, pp,

 public Object[] bfs(int[][] g, int[] dist, int[] pred,

int[] pp, int pointNumber, int lineNumber, int source,

98

 int sink)

 {

 boolean bool = false;

 Object[] result = new Object[4];

 int inf = 99999;

 for (int i = 0; i < pointNumber; i++)

 {

 dist[i] = inf;

 pred[i] = -1;

 }

 dist[source - 1] = 0;

 int d = -1;

 int dd = 0;

 while (pred[sink - 1] == -1)

 {

 d++;

 bool = false;

 for (int i = 0; i < pointNumber; i++)

 {

 if (dist[i] != d)

 continue;

 dd = d + 1;

 for (int j = 0; j < pointNumber; j++)

 {

 if (g[i][j] == inf || dist[j] <=

dd)

 continue;

 dist[j] = dd;

 pred[j] = i + 1;

 bool = true;

 }

 }

 if (!bool)

 {

 result = new Object[4];

 result[0] = dist;

 result[1] = pred;

 result[2] = pp;

 result[3] = bool;

 return result;

 }

 }

 for (int i = 0; i < lineNumber; i++)

 pp[i] = 0;

 int j = sink;

 while (j != source)

 {

 int i = pred[j - 1];

 int e = g[i - 1][j - 1];

 pp[e - 1] = 1;

 j = i;

 }

 result[0] = dist;

 result[1] = pred;

 result[2] = pp;

 result[3] = bool;

 return result;

99

 }

 public double probab(final int[] event, double r, final int

lineNumber, final double[] probabilities)

 {

 double pr = 1;

 for (int i = 0; i < lineNumber; i++)

 {

 if (event[i] == -1)

 pr = pr * (1 - probabilities[i]);

 else if (event[i] == 1)

 pr = pr * probabilities[i];

 }

 r += pr;

 return r;

 }

 // event2, q, rear degisti

 public Object[] comple(int[] event, int[] event1, int[]

event2, int l, int[][] q, int rear, int lineNumber)

 {

 for (int k = 0; k < l; k++)

 {

 int ii = -1;

 for (int i = 0; i < lineNumber; i++)

 event2[i] = event[i];

 for (int i = 0; i < lineNumber; i++)

 {

 if (event[i] != 0 || event1[i] != 1)

 continue;

 event2[i] = event1[i];

 ii++;

 if (ii != k)

 continue;

 event2[i] = -1;

 for (int j = 0; j < lineNumber; j++)

 {

 q[rear][j] = event2[j];

 }

 if (rear >= qsize)

 rear = 0;

 break;

 }

 }

 Object[] result = new Object[3];

 result[0] = event2;

 result[1] = q;

 result[2] = rear;

 return result;

 }

}

100

A.5 Util.java Class

package org.geotools.demo.util;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import com.vividsolutions.jts.geom.Coordinate;

import com.vividsolutions.jts.geom.Geometry;

import com.vividsolutions.jts.geom.GeometryFactory;

import com.vividsolutions.jts.geom.LineString;

import com.vividsolutions.jts.geom.LinearRing;

import com.vividsolutions.jts.geom.MultiPoint;

import com.vividsolutions.jts.geom.Point;

/**

 * Basic utility class that is used by main application

 *

 * @author gokceng

 *

 */

public class Util

{

 /**

 *

 * @param linearRingLists

 * Whole Grid List to be scanned

 * @param coordinate

 * a value that is to be searched in

@linearRingLists

 * @return an Object[] that includes (x,y) indexes of

linearRingLists which

 * includes @coordinate in it

 */

 private Object[]

getIntersectionPositions(ArrayList<ArrayList<LinearRing>>

linearRingLists, Coordinate coordinate)

 {

 Object[] resultList = new Object[2];

 ArrayList<LinearRing> intersectionRow = new

ArrayList<LinearRing>();

 for (int i = 0; i < linearRingLists.size(); i++)

 {

 ArrayList<LinearRing> linearRings =

linearRingLists.get(i);

 double yValueOfStartingPoint =

linearRings.get(0).getCoordinateN(0).y;

 double yValueOfEndingPoint =

linearRings.get(0).getCoordinateN(3).y;

 if (yValueOfStartingPoint < coordinate.y &&

yValueOfEndingPoint > coordinate.y)

 {

 intersectionRow = linearRings;

 resultList[1] = i;

 break;

 }

101

 }

 for (int j = 0; j < intersectionRow.size(); j++)

 {

 LinearRing linearRing = intersectionRow.get(j);

 double xValueOfStartingPoint =

linearRing.getCoordinateN(0).x;

 double xValueOfEndingPoint =

linearRing.getCoordinateN(1).x;

 if (xValueOfStartingPoint < coordinate.x &&

xValueOfEndingPoint > coordinate.x)

 {

 resultList[0] = j;

 break;

 }

 }

 return resultList;

 }

 /**

 *

 * @param linearRingLists

 * Whole Grid List to be scanned

 * @param lineString

 * the parameter which is used for getting end

point coordinates

 * @return an Object[][] that includes both (x,y) indexes

of linearRingLists

 * which includes end points of @lineString in it

 */

 private Object[][]

getEndPointPositions(ArrayList<ArrayList<LinearRing>>

linearRingLists, LineString lineString)

 {

 Object[][] intersectionLinearRings = new Object[2][];

 Object[] startLinearRing =

getIntersectionPositions(linearRingLists,

lineString.getCoordinates()[0]);

 Object[] endLinearRing =

getIntersectionPositions(linearRingLists,

lineString.getCoordinates()[1]);

 intersectionLinearRings[0] = startLinearRing;

 intersectionLinearRings[1] = endLinearRing;

 return intersectionLinearRings;

 }

 /**

 *

 * @param linearRingLists

 * Whole Grid List to be scanned

 * @param lineString

 * The linestring object that is used for

scanning

 * @return smallest rectangular grid list that includes

@lineString

 *

 * su an sadece cevreleyen listeyi donduruyor, bu

fonsiyonu

102

 * degistirip, kesisme noktalarini donduren bir

yapi olusturulmali.

 */

 public ArrayList<LineString>

getIntersectionLinearRings(ArrayList<ArrayList<LinearRing>>

linearRingLists,

 LineString lineString, GeometryFactory

geometryFactory, FileWriter logWriter)

 {

 Coordinate startingCoordLineString =

lineString.getCoordinates()[0];

 Coordinate endingCoordLineString =

lineString.getCoordinates()[1];

 Object[][] intersectionLinearRings =

getEndPointPositions(linearRingLists, lineString);

 int firstEndPointX = (Integer)

intersectionLinearRings[0][0];

 int firstEndPointY = (Integer)

intersectionLinearRings[0][1];

 int secondEndPointX = (Integer)

intersectionLinearRings[1][0];

 int secondEndPointY = (Integer)

intersectionLinearRings[1][1];

 int startingX = (firstEndPointX < secondEndPointX) ?

firstEndPointX : secondEndPointX;

 int endingX = (firstEndPointX > secondEndPointX) ?

firstEndPointX : secondEndPointX;

 int startingY = (firstEndPointY < secondEndPointY) ?

firstEndPointY : secondEndPointY;

 int endingY = (firstEndPointY > secondEndPointY) ?

firstEndPointY : secondEndPointY;

 ArrayList<LineString> lineStrings = new

ArrayList<LineString>();

 for (int i = startingY; i <= endingY; i++)

 {

 for (int j = startingX; j <= endingX; j++)

 {

 LinearRing linearRing =

linearRingLists.get(i).get(j);

 LineString string;

 Coordinate firstEnd;

 Coordinate secondEnd;

 if (linearRing.intersects(lineString))

 {

 Geometry intersection =

linearRing.intersection(lineString);

 if (intersection instanceof

MultiPoint)

 {

 firstEnd = ((MultiPoint)

intersection).getCoordinates()[0];

 secondEnd = ((MultiPoint)

intersection).getCoordinates()[1];

 }

103

 // it means it is just a point

 else

 {

 firstEnd = ((Point)

intersection).getCoordinate();

 if

(firstEnd.distance(startingCoordLineString) <

firstEnd.distance(endingCoordLineString))

 secondEnd =

startingCoordLineString;

 else

 secondEnd =

endingCoordLineString;

 }

 if (secondEnd.compareTo(firstEnd)

== -1)

 string =

geometryFactory.createLineString(new Coordinate[] { secondEnd,

firstEnd });

 else

 string =

geometryFactory.createLineString(new Coordinate[] { firstEnd,

secondEnd });

 string.setUserData(linearRing.getUserData());

 if (logWriter != null)

 {

 try

 {

 logWriter.write("LineSegment :-> " + string + "\n");

 logWriter.flush();

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 }

 lineStrings.add(string);

 }

 }

 }

 return lineStrings;

 }

}

104

B. ATTRIBUTES OF CONSTRUCTED NETWORK LAYER

B.1 Attirubute table of gridded network structure

Table 5.1: Attribute table of line segments

PGA,
N,15,13

FIRST_X,
N,15,13

FIRST_Y,
N,15,13

LAST_X
,N,15,13

LAST_Y,
N,15,13

probs,
N.15.13

0,35693 28,64786 40,02065 28,65110 40,04000 0,98550

0,29114 28,65110 40,04000 28,65444 40,06000 0,96897

0,38474 28,65444 40,06000 28,65779 40,08000 0,93530

0,30011 28,65779 40,08000 28,66000 40,09322 0,87304

0,36008 28,66000 40,09322 28,66113 40,10000 0,85854

0,49587 28,66113 40,10000 28,66448 40,12000 0,75309

0,25683 28,66448 40,12000 28,66782 40,14000 0,61124

0,44883 28,66782 40,14000 28,67117 40,16000 0,65482

0,29051 28,67117 40,16000 28,67451 40,18000 0,72880

0,39393 28,67451 40,18000 28,67786 40,20000 0,88177

0,43587 28,67786 40,20000 28,68000 40,21282 0,97298

0,43135 28,68000 40,21282 28,68120 40,22000 0,97717

0,29025 28,68120 40,22000 28,68287 40,23000 0,99808

0,25813 28,98589 39,87394 28,98607 39,88000 0,99997

0,26576 28,98607 39,88000 28,98668 39,90000 0,99869

0,40639 28,98668 39,90000 28,98729 39,92000 0,99899

0,26344 28,98729 39,92000 28,98789 39,94000 0,99999

0,30030 28,98789 39,94000 28,98850 39,96000 0,99997

0,35348 28,98850 39,96000 28,98911 39,98000 0,99992

0,41094 28,98911 39,98000 28,98971 40,00000 0,99991

0,32845 28,98971 40,00670 28,99032 40,02000 0,99987

0,40496 28,99032 40,02000 28,99093 40,04000 0,99958

0,34319 28,99093 40,04000 28,99154 40,06000 0,99760

0,44955 28,99154 40,06000 28,99214 40,08000 0,98457

0,26710 28,99214 40,08000 28,99275 40,10000 0,92792

0,43135 28,99275 40,10000 28,99336 40,12000 0,78138

0,34908 28,99336 40,12000 28,99396 40,14000 0,58196

0,30482 28,99396 40,14000 28,99457 40,16000 0,72629

0,34234 28,99457 40,16000 28,99518 40,18000 0,92055

0,40413 28,99518 40,18000 28,99578 40,20000 0,99118

105

PGA,
N,15,13

FIRST_X,
N,15,13

FIRST_Y,
N,15,13

LAST_X
,N,15,13

LAST_Y,
N,15,13

probs,
N.15.13

0,23953 28,99578 40,20000 28,99639 40,22000 0,99984

0,38468 28,99639 40,22000 28,99700 40,24000 0,99987

0,59031 28,99700 40,24000 28,99761 40,26000 0,99899

0,48157 28,99761 40,26000 28,99821 40,28000 0,99977

0,43164 28,99821 40,28000 28,99882 40,30000 0,98888

0,54844 28,99882 40,30000 28,99927 40,31488 0,99999

0,24555 28,98589 39,87394 28,98976 39,88000 0,99987

0,41441 28,98976 39,88000 29,00000 39,89606 0,99998

0,34407 29,00000 39,89606 29,00251 39,90000 0,99897

0,26858 29,00251 39,90000 29,01527 39,92000 0,99978

0,41883 29,01527 39,92000 29,02000 39,92742 0,99896

0,24781 29,02000 39,92742 29,02802 39,94000 0,99974

0,40261 29,02802 39,94000 40,29700 39,95878 0,99988

0,26390 40,29700 39,95878 29,04078 39,96000 0,99981

0,33633 29,04078 39,96000 29,05353 39,98000 0,00000

0,28592 29,05353 39,98000 40,35800 39,99014 0,99999

0,29572 40,35800 39,99014 29,06629 40,00000 0,99999

0,30210 29,06629 40,00000 29,07904 40,02000 0,99999

0,55094 29,07904 40,02000 40,41900 40,02150 0,99999

0,42194 40,41900 40,02150 29,09180 40,04000 0,99999

0,25475 29,09180 40,04000 40,20700 40,05286 0,99994

0,39716 40,20700 40,05286 29,10455 40,06000 0,99452

0,38364 29,10455 40,06000 29,11731 40,08000 0,63088

0,59763 29,11731 40,08000 40,54100 40,08422 0,94818

0,25246 40,54100 40,08422 29,13006 40,10000 0,99914

0,33496 29,13006 40,10000 29,14000 40,11558 0,99999

0,30054 29,14000 40,11558 29,14282 40,12000 0,99999

0,30098 29,14282 40,12000 29,15558 40,14000 0,99994

0,28585 29,15558 40,14000 29,16000 40,14694 0,99997

0,45941 29,16000 40,14694 29,16833 40,16000 0,99999

0,29572 29,16833 40,16000 29,18000 40,17830 0,99996

0,39443 29,18000 40,17830 29,18109 40,18000 0,99999

0,29581 29,18109 40,18000 29,19384 40,20000 0,99989

0,27417 29,19384 40,20000 29,20000 40,20966 0,99998

0,38422 29,20000 40,20966 29,20660 40,22000 0,99999

0,30383 29,20660 40,22000 29,21935 40,24000 0,99998

0,23581 29,21935 40,24000 29,22000 40,24102 0,99999

0,40944 29,22000 40,24102 29,23211 40,26000 0,99987

0,30869 29,23211 40,26000 29,24000 40,27237 0,99999

0,38448 29,24000 40,27237 29,24244 40,27620 0,99999

0,34113 28,98342 39,88000 28,98589 39,87394 0,99996

0,59796 28,97530 39,90000 28,98000 39,88843 0,99812

0,42504 28,98000 39,88843 28,98342 39,88000 0,99446

0,39710 28,96718 39,92000 28,97530 39,90000 0,92663

Table 6.1 cont.

106

PGA,
N,15,13

FIRST_X,
N,15,13

FIRST_Y,
N,15,13

LAST_X
,N,15,13

LAST_Y,
N,15,13

probs,
N.15.13

0,36437 28,95906 39,94000 28,96000 39,93769 0,72100

0,42169 28,96000 39,93769 28,96718 39,92000 0,56388

0,52522 28,95094 39,96000 28,95906 39,94000 0,61471

0,47354 28,94282 39,98000 28,95094 39,96000 0,73316

0,24719 28,93470 40,00000 28,94000 39,98695 0,61636

0,36696 28,94000 39,98695 28,94282 39,98000 0,72062

0,25965 28,92658 40,02000 28,93470 40,00000 0,54648

0,24957 28,91846 40,04000 28,92000 40,03621 0,66890

0,31932 28,92000 40,03621 28,92658 40,02000 0,51110

0,31736 28,91034 40,06000 28,91846 40,04000 0,67180

0,30520 28,90222 40,08000 28,91034 40,06000 0,59668

0,36593 28,89410 40,10000 40,44900 40,08546 0,69354

0,28642 40,44900 40,08546 28,90222 40,08000 0,55836

0,29087 28,88598 40,12000 28,89410 40,10000 0,55219

0,23953 28,87786 40,14000 28,88000 40,13472 0,51893

0,31775 28,88000 40,13472 28,88598 40,12000 0,74836

0,34234 28,86974 40,16000 28,87786 40,14000 0,79482

0,43564 28,86162 40,18000 28,86974 40,16000 0,95382

0,25590 28,85349 40,20000 28,86000 40,18398 0,98070

0,43747 28,86000 40,18398 28,86162 40,18000 0,99598

0,40963 28,84809 40,21332 28,85349 40,20000 0,99920

0,32830 28,84560 40,22000 28,84809 40,21332 0,99999

0,31844 28,83816 40,24000 28,84000 40,23505 0,99991

0,31424 28,84000 40,23505 28,84560 40,22000 0,99930

0,53208 28,83072 40,26000 28,83816 40,24000 0,99522

0,30511 28,82327 40,28000 28,83072 40,26000 0,90227

0,36772 28,81583 40,30000 28,82000 40,28879 0,69919

0,27609 28,82000 40,28879 28,82327 40,28000 0,57560

0,28459 28,80839 40,32000 28,81583 40,30000 0,84568

0,30193 28,80094 40,34000 28,80839 40,32000 0,99535

0,33663 28,79350 40,36000 40,41800 40,34254 0,99987

0,26285 40,41800 40,34254 28,80094 40,34000 0,99990

0,47834 28,78606 40,38000 28,79350 40,36000 0,99971

0,31353 28,77862 40,40000 28,78000 40,39628 0,95202

0,23719 28,78000 40,39628 28,78606 40,38000 0,97185

0,33339 28,77117 40,42000 28,77862 40,40000 0,64478

0,38471 28,76451 40,43790 28,77117 40,42000 0,98127

0,42634 28,45968 40,31203 28,46000 40,31277 0,99217

0,30488 28,46000 40,31277 28,46315 40,32000 0,97029

0,31287 28,46315 40,32000 28,47188 40,34000 0,99979

0,26311 28,47188 40,34000 28,48000 40,35863 0,99987

0,32232 28,48000 40,35863 28,48060 40,36000 0,99999

0,43440 28,48060 40,36000 28,48932 40,38000 0,99999

0,29867 28,48932 40,38000 28,49805 40,40000 0,99999

Table 6.1 cont.

107

PGA,
N,15,13

FIRST_X,
N,15,13

FIRST_Y,
N,15,13

LAST_X
,N,15,13

LAST_Y,
N,15,13

probs,
N.15.13

0,29737 28,49805 40,40000 40,32600 40,40448 0,99989

0,42259 40,32600 40,40448 28,50677 40,42000 0,99992

0,32831 28,50677 40,42000 28,51549 40,44000 0,89802

0,26259 28,51549 40,44000 28,52000 40,45034 0,90506

0,45902 28,52000 40,45034 28,52422 40,46000 0,95834

0,34155 28,52422 40,46000 28,53294 40,48000 0,99993

0,44514 28,53294 40,48000 28,54000 40,49619 0,99999

0,29719 28,54000 40,49619 28,54166 40,50000 0,99999

0,27638 28,54166 40,50000 28,55038 40,52000 0,99999

0,39938 28,55038 40,52000 28,55911 40,54000 0,99999

0,32987 28,55911 40,54000 28,56000 40,54205 0,99999

0,32285 28,56000 40,54205 28,56595 40,55569 0,99999

0,35670 28,67928 40,24000 28,68000 40,23800 0,99986

0,27685 28,68000 40,23800 28,68287 40,23000 0,99999

0,45420 28,67210 40,26000 28,67928 40,24000 0,99999

0,52801 28,66492 40,28000 28,67210 40,26000 0,99116

0,36523 28,65774 40,30000 28,66000 40,29372 0,71623

0,33376 28,66000 40,29372 28,66492 40,28000 0,65981

0,37065 28,65056 40,32000 28,65774 40,30000 0,99996

0,31046 28,64338 40,34000 28,65056 40,32000 0,99999

0,29637 28,63620 40,36000 28,64000 40,34943 0,99999

0,31806 28,64000 40,34943 28,64338 40,34000 0,99999

0,36605 28,62902 40,38000 28,63620 40,36000 0,99999

0,29008 28,62184 40,40000 28,62902 40,38000 0,99999

0,25885 28,61466 40,42000 28,62000 40,40514 0,99996

0,24154 28,62000 40,40514 28,62184 40,40000 0,99974

0,44154 28,60748 40,44000 28,61466 40,42000 0,81741

0,31363 28,60030 40,46000 28,60748 40,44000 0,93735

0,28767 28,59313 40,48000 40,35700 40,46085 0,99893

0,45902 40,35700 40,46085 28,60030 40,46000 0,99960

0,31652 28,58595 40,50000 28,59313 40,48000 0,99999

0,30637 28,57877 40,52000 28,58000 40,51656 0,99999

0,41702 28,58000 40,51656 28,58595 40,50000 0,99999

0,45902 28,57159 40,54000 28,57877 40,52000 0,99999

0,29479 28,56595 40,55569 28,57159 40,54000 0,99999

0,32870 28,73041 40,78000 28,74000 40,77529 0,99999

0,49554 28,74000 40,77529 28,75063 40,77007 0,99986

0,31044 28,68969 40,80000 40,38700 40,79494 0,79736

0,30248 40,38700 40,79494 28,72000 40,78511 0,70719

0,26833 28,72000 40,78511 28,73041 40,78000 0,76413

0,39692 28,64897 40,82000 28,66000 40,81458 0,99999

0,31980 28,66000 40,81458 28,68000 40,80476 0,99999

0,41050 28,68000 40,80476 28,68969 40,80000 0,99999

0,25370 28,60825 40,84000 28,62000 40,83423 0,99999

Table 6.1 cont.

108

PGA,
N,15,13

FIRST_X,
N,15,13

FIRST_Y,
N,15,13

LAST_X
,N,15,13

LAST_Y,
N,15,13

probs,
N.15.13

0,23593 28,62000 40,83423 28,64000 40,82441 0,99999

0,39895 28,64000 40,82441 28,64897 40,82000 0,99999

0,31613 28,56753 40,86000 28,58000 40,85388 0,99999

0,41641 28,58000 40,85388 40,35700 40,84405 0,99999

0,39332 40,35700 40,84405 28,60825 40,84000 0,99999

0,28839 28,52682 40,88000 28,54000 40,87352 0,99999

0,40310 28,54000 40,87352 28,56000 40,86370 0,99999

0,30733 28,56000 40,86370 28,56753 40,86000 0,99999

0,28355 28,48610 40,90000 40,32600 40,89317 0,98893

0,49416 40,32600 40,89317 28,52000 40,88335 0,99367

0,30087 28,52000 40,88335 28,52682 40,88000 0,99352

0,38695 28,44538 40,92000 28,46000 40,91282 0,99999

0,32205 28,46000 40,91282 28,48000 40,90299 0,99999

0,48302 28,48000 40,90299 28,48610 40,90000 0,99999

0,32885 28,40466 40,94000 28,42000 40,93247 0,99999

0,26061 28,42000 40,93247 28,44000 40,92264 0,99999

0,46923 28,44000 40,92264 28,44538 40,92000 0,99999

0,36282 28,38306 40,95061 40,29600 40,94229 0,99999

0,24347 40,29600 40,94229 28,40466 40,94000 0,99999

0,25532 28,63537 40,04000 28,64000 40,03283 0,99999

0,26409 28,64000 40,03283 28,64786 40,02065 0,99999

0,47159 28,62245 40,06000 28,63537 40,04000 0,99999

0,30850 28,60953 40,08000 28,62000 40,06379 0,99999

0,30833 28,62000 40,06379 28,62245 40,06000 0,99999

0,31806 28,59662 40,10000 40,35700 40,09476 0,99999

0,24771 40,35700 40,09476 28,60953 40,08000 0,99998

0,44250 28,58370 40,12000 28,59662 40,10000 0,99989

0,42428 28,57078 40,14000 28,58000 40,12573 0,99951

0,31091 28,58000 40,12573 28,58370 40,12000 0,99933

0,23953 28,55786 40,16000 28,56000 40,15669 0,99781

0,38283 28,56000 40,15669 28,57078 40,14000 0,99732

0,37222 28,54495 40,18000 28,55786 40,16000 0,98643

0,35977 28,53203 40,20000 28,54000 40,18766 0,90951

0,46879 28,54000 40,18766 28,54495 40,18000 0,91465

0,36633 28,51911 40,22000 28,52000 40,21863 0,57990

0,33865 28,52000 40,21863 28,53203 40,20000 0,58504

0,37627 28,50620 40,24000 28,51911 40,22000 0,90930

0,31562 28,49328 40,26000 40,32600 40,24959 0,99950

0,47045 40,32600 40,24959 28,50620 40,24000 0,99865

0,34586 28,48036 40,28000 28,49328 40,26000 0,99999

0,30071 28,46744 40,30000 28,48000 40,28056 0,99999

0,33536 28,48000 40,28056 28,48036 40,28000 0,99999

0,42400 28,45968 40,31203 28,46000 40,31153 0,99999

0,34026 28,46000 40,31153 28,46744 40,30000 0,99999

Table 6.1 cont.

109

PGA,
N,15,13

FIRST_X,
N,15,13

FIRST_Y,
N,15,13

LAST_X
,N,15,13

LAST_Y,
N,15,13

probs,
N.15.13

0,47062 28,98949 40,32000 28,99927 40,31488 0,99999

0,31168 28,95133 40,34000 28,96000 40,33546 0,99873

0,31563 28,96000 40,33546 28,98000 40,32498 0,99997

0,25198 28,98000 40,32498 28,98949 40,32000 0,99999

0,28029 28,91316 40,36000 28,92000 40,35642 0,89053

0,40261 28,92000 40,35642 28,94000 40,34594 0,97251

0,32622 28,94000 40,34594 28,95133 40,34000 0,99800

0,45802 28,87500 40,38000 28,88000 40,37738 0,70163

0,31502 28,88000 40,37738 40,44900 40,36690 0,71509

0,24268 40,44900 40,36690 28,91316 40,36000 0,74327

0,30248 28,83683 40,40000 28,84000 40,39834 0,83176

0,29243 28,84000 40,39834 28,86000 40,38786 0,76856

0,44653 28,86000 40,38786 28,87500 40,38000 0,74538

0,42225 28,79867 40,42000 40,41800 40,41930 0,99992

0,36146 40,41800 40,41930 28,82000 40,40882 0,99966

0,41975 28,82000 40,40882 28,83683 40,40000 0,99874

0,36540 28,76451 40,43790 28,78000 40,42978 0,99999

0,41125 28,78000 40,42978 28,79867 40,42000 0,99999

0,35113 28,68287 40,23000 28,68385 40,24000 0,99999

0,29539 28,68385 40,24000 28,68579 40,26000 0,99994

0,23833 28,68579 40,26000 28,68774 40,28000 0,99142

0,30898 28,68774 40,28000 28,68969 40,30000 0,67856

0,47780 28,68969 40,30000 28,69163 40,32000 0,96977

0,49440 28,69163 40,32000 28,69358 40,34000 0,99998

0,26866 28,69358 40,34000 28,69552 40,36000 0,99999

0,29572 28,69552 40,36000 28,69747 40,38000 0,99999

0,31654 28,69747 40,38000 28,69942 40,40000 0,99814

0,46872 28,69942 40,40000 40,38700 40,40599 0,75913

0,34836 40,38700 40,40599 28,70136 40,42000 0,69871

0,38458 28,70136 40,42000 28,70331 40,44000 0,93577

0,24680 28,70331 40,44000 28,70526 40,46000 0,99774

0,41441 28,70526 40,46000 28,70588 40,46641 0,99991

0,25098 28,70588 40,46641 28,70788 40,48000 0,99994

0,34234 28,70788 40,48000 28,71083 40,50000 0,99999

0,25330 28,71083 40,50000 28,71378 40,52000 0,99999

0,47297 28,71378 40,52000 28,71672 40,54000 0,99999

0,32369 28,71672 40,54000 28,71967 40,56000 0,99999

0,23896 28,71967 40,56000 28,72000 40,56224 0,99999

0,37699 28,72000 40,56224 28,72262 40,58000 0,99989

0,39468 28,72262 40,58000 28,72556 40,60000 0,99742

0,25136 28,72556 40,60000 28,72851 40,62000 0,95187

0,30248 28,72851 40,62000 28,73146 40,64000 0,68880

0,31518 28,73146 40,64000 28,73441 40,66000 0,78346

0,32463 28,73441 40,66000 28,73735 40,68000 0,96026

Table 6.1 cont.

110

PGA,
N,15,13

FIRST_X,
N,15,13

FIRST_Y,
N,15,13

LAST_X
,N,15,13

LAST_Y,
N,15,13

probs,
N.15.13

0,26710 28,73735 40,68000 28,74000 40,69797 0,99433

0,26710 28,74000 40,69797 28,74030 40,70000 0,99996

0,45130 28,74030 40,70000 28,74325 40,72000 0,99999

0,36947 28,74325 40,72000 28,74619 40,74000 0,99999

0,25475 28,74619 40,74000 28,74914 40,76000 0,99999

0,42466 28,74914 40,76000 28,75063 40,77007 0,99999

0,31214 28,97191 39,88000 28,98000 39,87649 0,55638

0,25507 28,98000 39,87649 28,98589 39,87394 0,63955

0,33648 28,92584 39,90000 28,94000 39,89385 0,72383

0,40496 28,94000 39,89385 28,96000 39,88517 0,84742

0,26390 28,96000 39,88517 28,97191 39,88000 0,91940

0,29140 28,87976 39,92000 28,88000 39,91989 0,66079

0,25525 28,88000 39,91989 40,44900 39,91121 0,81850

0,39425 40,44900 39,91121 28,92000 39,90253 0,92245

0,36442 28,92000 39,90253 28,92584 39,90000 0,97400

0,32079 28,83368 39,94000 28,84000 39,93726 0,65312

0,27023 28,84000 39,93726 28,86000 39,92858 0,84568

0,28530 28,86000 39,92858 28,87976 39,92000 0,94657

0,29534 28,78760 39,96000 40,41800 39,95462 0,59211

0,58218 40,41800 39,95462 28,82000 39,94594 0,68755

0,31736 28,82000 39,94594 28,83368 39,94000 0,89455

0,31736 28,74152 39,98000 28,76000 39,97198 0,84595

0,30558 28,76000 39,97198 28,78000 39,96330 0,67215

0,24281 28,78000 39,96330 28,78760 39,96000 0,59375

0,28130 28,69544 40,00000 40,38700 39,99802 0,96424

0,39716 40,38700 39,99802 28,72000 39,98934 0,93507

0,38982 28,72000 39,98934 28,74000 39,98066 0,87467

0,29171 28,74000 39,98066 28,74152 39,98000 0,75534

0,55395 28,64936 40,02000 28,66000 40,01538 0,96319

0,25960 28,66000 40,01538 28,68000 40,00670 0,95005

0,29247 28,68000 40,00670 28,69544 40,00000 0,92546

0,38430 28,64786 40,02065 28,64936 40,02000 0,91585

0,40709 28,76443 40,44000 28,76451 40,43790 0,95485

0,39632 28,76359 40,46000 28,76443 40,44000 0,99885

0,31888 28,76275 40,48000 28,76359 40,46000 0,99996

0,45656 28,76192 40,50000 28,76275 40,48000 0,99999

0,30688 28,76108 40,52000 28,76192 40,50000 0,99999

0,28988 28,76024 40,54000 28,76108 40,52000 0,99999

0,30022 28,75941 40,56000 28,76000 40,54584 0,99999

0,46916 28,76000 40,54584 28,76024 40,54000 0,99993

0,34493 28,75857 40,58000 28,75941 40,56000 0,99969

0,31581 28,75774 40,60000 28,75857 40,58000 0,98869

0,29506 28,75690 40,62000 28,75774 40,60000 0,79624

0,30634 28,75606 40,64000 28,75690 40,62000 0,80218

Table 6.1 cont.

111

PGA,
N,15,13

FIRST_X,
N,15,13

FIRST_Y,
N,15,13

LAST_X
,N,15,13

LAST_Y,
N,15,13

probs,
N.15.13

0,36825 28,75523 40,66000 28,75606 40,64000 0,98784

0,35807 28,75439 40,68000 28,75523 40,66000 0,99947

0,45867 28,75355 40,70000 28,75439 40,68000 0,99994

0,59664 28,75272 40,72000 28,75355 40,70000 0,99999

0,28764 28,75188 40,74000 28,75272 40,72000 0,99999

0,39938 28,75105 40,76000 28,75188 40,74000 0,99999

0,25475 28,75063 40,77007 28,75105 40,76000 0,99999

0,39029 28,68459 40,48000 40,38700 40,47017 0,83186

0,44883 40,38700 40,47017 28,70588 40,46641 0,80995

0,36096 28,65324 40,50000 28,66000 40,49569 0,66927

0,30964 28,66000 40,49569 28,68000 40,48293 0,64737

0,25475 28,68000 40,48293 28,68459 40,48000 0,63458

0,44637 28,62189 40,52000 28,64000 40,50845 0,57549

0,23881 28,64000 40,50845 28,65324 40,50000 0,52819

0,26055 28,59055 40,54000 40,35700 40,53397 0,67650

0,35122 40,35700 40,53397 28,62000 40,52121 0,67350

0,36005 28,62000 40,52121 28,62189 40,52000 0,65966

0,30023 28,56595 40,55569 28,58000 40,54673 0,78760

0,58619 28,58000 40,54673 28,59055 40,54000 0,77262

Table 6.1 cont.

