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ABSTRACT 
 

IMPLEMENTATION OF X-TREE WITH 3D SPATIAL INDEX AND FUZZY 

SECONDARY INDEX 

 

Keskin, Sinan 

M.Sc., Department of Computer Engineering 

Supervisor : Prof. Dr. Adnan Yazıcı 

Co-Supervisor : Assoc. Prof. Dr. Halit Oğuztüzün 

 

December 2010, 80 pages 

Multidimensional datasets are getting more extensively used in Geographic 

Information Systems (GIS) applications in recent years. Due to large volume of these 

datasets efficient querying becomes a significant problem. For this purpose, before 

creating index structure with these enormous datasets, choosing an efficient index 

structure is an urgent necessity. 

The aim of this thesis is to develop an efficient, flexible and extendible index 

structure which comprises 3D spatial data in primary index and fuzzy attributes in 

secondary index. These primary and secondary indexes are handled in a coupled 

structure. Firstly, a 3D spatial primary index is built by using X-tree structure, and 

then a fuzzy secondary index is overlaid over the X-tree structure. The coupled 

structure is shown more efficient on a certain class of queries than uncoupled index 

structures comprising 3D spatial data in primary index and fuzzy attributes in 

secondary index separately. In uncoupled index structure, we provided 3D spatial 

primary index by using X-tree index structure and fuzzy secondary index by using 

BPlusTree index structure. 

Keywords: spatial indexing, multidimensional data indexing, fuzzy indexing, X-tree 
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ÖZ 
 

3B UZAMSAL DİZİNLİ VE BULANIK İKİNCİL DİZİNLİ X-AĞACI 

GERÇEKLEŞTİRİMİ 

 

Keskin, Sinan 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Adnan Yazıcı 

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Halit Oğuztüzün 

 

Aralık 2010, 80 sayfa 

Coğrafi Bilgi Sistemleri uygulamalarında çok boyutlu veri kümeleri son yıllarda 

daha yaygın kullanılmaktadır. Bu büyük veri kümeleri üzerinde etkili sorgulama 

yapmak önemli bir problem haline gelmiştir. Bu amaçla devasa veri kümeleri ile 

dizin oluşturmadan önce, etkili bir dizinleme yapısı seçmek kaçınılmaz bir 

gerekliliktir. 

Bu tezin amacı, 3B uzamsal verileri birincil dizinde ve bulanık nitelikleri ikincil 

dizinde içerebilen etkili, esnek ve genişletilebilir bir dizin yapısı oluşturmaktır. Bu 

yapıdaki birincil ve ikincil dizinler tek bir yapı bünyesinde ele alınmıştır. İlk olarak 

X-ağacı yapısı kullanarak 3B uzamsal birincil dizin oluşturulmuş, sonrasında bulanık 

ikincil dizin X-ağacı yapısı üzerine kaplanmıştır. Bütünleşmiş yapının, 3B uzamsal 

birincil dizin ile bulanık ikincil dizinin ayrı ayrı ele alındığı ayrık dizin yapılarının 

kullanımından daha etkili olduğu belirli sorgular üzerinde gösterilmiştir. Ayrık dizin 

yapısında, 3B uzamsal birincil dizini X-ağacı dizin yapısını kullanarak ve bulanık 

ikincil dizini ise B+ ağacı dizin yapısını kullanarak sağladık. 

Anahtar Kelimeler: uzamsal dizinleme, çok boyutlu veri dizinleme, bulanık 

dizinleme, X-ağacı 
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CHAPTER 1 

 

INTRODUCTION 
 

 

In spatial world we can define objects as points, lines and polygons. If we want to 

manage these objects in a database, we can use spatial database that is optimized to 

store and query data related to these objects. In general concept of database, 

operations are performed on various numeric and character types of data. However in 

spatial database concept, additional functionalities should be implemented for 

databases to process spatial data types.  

In addition, numeric and character types are used for indexing to look up values in 

traditional database systems faster. On the other hand, these indexes are not optimal 

for spatial queries. Also, indexes used by non-spatial databases cannot provide 

efficient features such as how far two points differ or whether given points fall 

within a spatial area of interest. Therefore, spatial index is used in spatial databases 

to speed up database operations and also to optimize spatial queries.    

Even though, the rectangular bounding boxes of huge multidimensional datasets lead 

to good performance by the derivatives of R-tree, such R*-tree, it has also been 

proved that other indexing structures based on R-tree, such as X-tree, perform very 

well for multidimensional data. 

We not only studied with pure indexing structure of X-tree, but also added fuzzy 

secondary indexing on this extension of R-tree and performed for multidimensional 

meteorological datasets. After that, we tested its features and performance of X-tree 

having 3D spatial primary index and non-spatial fuzzy secondary index. 
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For this purpose firstly we developed our spatial index that could allocate 3D spatial 

data. So X-tree index structure was adopted to allocate 3D spatial data. After 

implementing this X-tree index structure, we overlaid fuzzy secondary index on our 

base index. Therefore our index structure became a coupled type that could store 

both primary and secondary indexes in single index structure. 

Then we developed uncoupled index structure for handling 3D spatial data and fuzzy 

attributes in separate constructions. Storing 3D spatial data was supported by using 

X-tree index structure and fuzzy attributes were saved in BPlusTree index structure. 

We used X-tree as primary index and BPlusTree as secondary index. 

In overview section we began to give information about spatial indexing. After the 

definition of spatial indexing, spatial indexing techniques were provided. Spatial 

indexing techniques were explained and example implemented techniques were 

given in expression.  

Afterward in background section, we presented X-tree to understand its features and 

structure. XXL API that is one of the vital parts of our thesis work and has core 

structure of X-tree was particularly expressed. Basic components, function 

composition, query processing and advanced features of the XXL API were 

described.  

Subsequently in implementation section, we explained implementation detail of the 

X-tree. We firstly informed about coupled index structure which allocates primary 

and secondary indexes in monolithic structure. And secondly we gave information 

about uncoupled index structure which allocates primary and secondary indexes 

separately. In this section, detail knowledge about creating primary and secondary 

indexes was expressed.  

In performance tests section, we prepared test scenarios about X-tree index structure. 

We applied point, range and nearest neighbor queries over coupled and uncoupled 

index structures. We observed test result, draw graph of test results and made 

deductions about them. 
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CHAPTER 2 

 

AN OVERVIEW ON SPATIAL INDEXING 
 

 

2.1 About Spatial Indexing 
 

A multidimensional or spatial index utilizes some kind of spatial relationship to 

organize data entries, with each key value seen as a point (or region, for region data) 

in a k-dimensional space, where k is the number of fields in the search key for the 

index. Spatial indexes are ideal for queries such as, "Find the 7 nearest neighbors of a 

given point" and, "Find all points within a certain distance of a given point". 

 

2.2 Spatial Indexing Techniques 
 

Extensive research has been carried out on multidimensional indexing structure for 

last twenty years, for enabling efficient range queries and nearest neighbor searches. 

Yet, the big percentage of recent studies have center upon high-dimensional feature-

based similarity searches into a relatively small number of point data items [19]. 

Every day, lots of application can produce hundreds of gigabytes of spatio-temporal 

data daily, consisting of billions of individual data elements. Storing each data 

element in a big scientific dataset into a multidimensional indexing tree is 

unserviceable, due to the fact that the index size could be even bigger than the 

dataset, and the queries performance could be poor owing to the index size. We can 

use bounding box for each array elements, instead of using spatial information. In 

this array there are data elements which have similar spatial coordinates. Then we 

can store bounding box into indexing tree to decrease the size of the index and make 

index searches faster [19]. Storing bounding boxes for small subsets of datasets into 
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spatial indexing structures, such as R-trees [4] or its variants, allows for direct access 

to subsets of a dataset in order to improve data access performance. 

 

2.2.1 Spatial Indexing Structures 
 

There are two types of method for creating spatial indexing structure. One of them is 

space partitioning method and other one is data partitioning method [19]. Both of 

them are related to the performance and detail information about them is given in this 

section. 

 

2.2.1.1  Space Partitioning Methods 
 

Space partitioning is the process of dividing a space into two or more disjoint 

subsets. In other words, space partitioning divides a space into non-overlapping 

regions [22]. Any point in the space can then be identified to lie in exactly one of the 

regions. Space-partitioning systems are often hierarchical, meaning that a space (or a 

region of space) is divided into several regions, and then the same space-partitioning 

system is recursively applied to each of the regions thus created. The regions can be 

organized into a tree, called a space-partitioning tree [5]. 

The big percentage of space-partitioning systems use planes to divide space: Points 

are used to divide the regions. Partitioning space using planes in this way produces a 

BSP (Binary Space Partitioning) tree, one of the most common forms of space 

partitioning recursively. Most space-partitioning systems use planes (or, in higher 

dimensions, hyper planes) to divide space: points on one side of the plane form one 

region, and points on the other side form another. Points exactly on the plane are 

usually arbitrarily assigned to one or the other side. Recursively partitioning space 

using planes in this way produces a BSP tree, one of the most common forms of 

space partitioning [22]. 
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Space partitioning is particularly important in computer graphics, where it is 

frequently used to organize the objects in a virtual scene. Storing objects in a space-

partitioning data structure makes it easy and fast to perform certain kinds of 

geometry queries — for example, determining whether two objects are close to each 

other for collision detection, or for determining whether a ray intersects an object in 

ray tracing [1]. 

There are some examples of common space partitioning systems such as KDB-tree, 

Spatial KD-tree, Hybrid-tree, BSP trees, Quadtrees, Octrees [19]. 

 

2.2.1.2  Data Partitioning Methods 
 

Data Partitioning is the formal process of determining which data belongs to which 

data site. It is an orderly process for allocating data to data sites that is done within 

the same common data architecture. Data partitioning methods, based on R-trees, 

store all spatial data in bounding box and perform well for hyper rectangular data. 

R-tree and R*-tree: Instead of duplicating objects, spatial objects can be indexed by 

allowing overlapping regions, as in R-tree based index structures [4]. Although R-

trees can be used for non-point data, a large amount of overlap between internal 

nodes in R-trees leads to search performance problems. To reduce overlapping 

regions for R-trees, Beckmann et al. proposed an improved version of R-trees, called 

R*-trees [2]. The R*-tree insertion algorithm reinserts elements from a node that 

overflows, instead of splitting the node. This forced reinsertion feature of R*-trees 

improves search performance, but node insertion can become very expensive. 

X-tree: Another extension of the R-tree developed by Berchtold et al., called X-tree 

[3], which avoids highly overlap bounding boxes via the use of “supernodes”. A 

supernode is a tree node that spans multiple pages on disk, thus has a larger capacity 

than a normal node. When a node must be split and a large amount of overlap 

between sub-partitions is unavoidable, the X-tree algorithm increases the capacity of 
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the node instead of splitting it. If there would be a large amount of overlap between 

two nodes after a split, the probability that both nodes would be accessed by a search 

operation is high. Hence, sequential access to supernodes should be faster than 

random access to two separate nodes. However, supernodes have the overhead of 

additional disk management costs at index creation time. Therefore, before the X-tree 

insertion algorithm creates a supernode, it tries to find an overlap-free split based on 

past split history [3]. However, split history is not useful for non-point spatial 

objects, because an overlap-free split is not always possible for non-point data. Even 

if an overlap-free split can be found, in most cases it will not be acceptable since it 

will not meet minimum node utilization requirements. 

 

2.3 Problems of (R-tree-based) Index Structures in High-Dimensional Space 
 

Characteristics of the R*-tree were extensively studied for understanding the factors 

that cause performance problems. Query performance is directly related with the 

overlap in the directory since multiple paths have to be followed even for simple 

point queries [24]. There is no generally accepted definition for overlap in the 

directory especially for the high-dimensional case. In the following, we therefore 

provide an overview of overlap definitions. 

 

2.3.1 Definition of Overlap 
 

Intuitively, overlap is the percentage of the volume generated by more than one 

directory hyperrectangle. This intuitive definition of overlap is directly correlated to 

the query performance since in processing queries, overlap of directory nodes results 

in the necessity to follow multiple paths, even for point queries [23]. 
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Definition 1a (Overlap) 

The overlap of an R-tree node is the percentage of space covered by more than one 

hyperrectangle. If the R-tree node contains n hyperrectangles {R1, ..., Rn}, the 

overlap may formally be defined as 

 
R  R,  ,.., ,

R ,..,
                                                     1  

The amount of overlap measured in Definition 1a is related to the expected query 

performance only if the query objects (points, hyperrectangles) are distributed 

uniformly. A more accurate definition of overlap needs to take the actual distribution 

of queries into account [3]. Since it is impossible to determine the distribution of 

queries in advance, in the following we will use the distribution of the data as 

estimation for the query distribution. This seems to be reasonable for high-

dimensional data since data and queries are often clustered in some areas, whereas 

other areas are virtually empty. Overlap in highly populated areas is much more 

critical than overlap in areas with a low population [24]. In second definition of 

overlap, the overlapping areas are therefore weighted with the number of data objects 

that are located in the area. 

 

Definition 1b (Weighted Overlap) 

The weighted overlap of an R-tree node is the percentage of data objects that fall in 

the overlapping portion of the space [3]. More formally, 

 
 |   R  R,  ,.., ,  

  |  R   ,..,
                                  2  

In Definition 1a, overlap occurring at any point of space equally contributes to the 

overall overlap even if only few data objects fall within the overlapping area. If the 

query points are expected to be uniformly distributed over the data space, Definition 

1a is an appropriate measure which determines the expected query performance. If 

the distribution of queries corresponds to the distribution of the data and is no 

uniform, Definition 1b corresponds to the expected query performance and is 
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therefore more appropriate [3]. Depending on the query distribution, we have to 

choose the appropriate definition. 

So far, we have only considered overlap to be any portion of space that is covered by 

more than one hyperrectangle. In practice however, it is very important how many 

hyperrectangles overlap at a certain portion of the space. The so-called multi-overlap 

of an R-tree node is defined as the sum of overlapping volumes multiplied by the 

number of overlapping hyperrectangles relative to the overall volume of the 

considered space [3]. 

 

Figure 1: Overlap and Multi-Overlap of 2-dimensional data 

In Figure 1 [3], we showed a two-dimensional example of the overlap according to 

Definition 1a and the corresponding multi-overlap. The weighted overlap and 

weighted multi-overlap (not shown in the figure) would correspond to the areas 

weighted by the number of data objects that fall within the areas [3]. 
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CHAPTER 3 

 

BACKGROUND 
 

 

Preliminary concept and related work is presented in this section to provide a clear 

understanding of this thesis work. 

We gave detailed information about X-tree, XXL API and FCM algorithm. Given 

information about these subjects are vital base of our work. 

 

3.1 X-tree 
 

The features of the X-tree (eXtended node tree) index structure can be summarized 

as follows [3]: 

 Based on R-tree 

 Used for storing data in many dimensions (not only point data but also 

extended spatial data) 

 Supports efficient query processing of high-dimensional data 

 Uses extended variable size(supernodes)  

 Provides a directory organization and also uses the available main memory 

more 

The X-tree may be seen as a hybrid of a linear array-like and a hierarchical R-tree-

like directory as shown Figure 2 [3]. It is well established that in low dimensions the 

most efficient organization of the directory is a hierarchical organization. The reason 

is that the selectivity in the directory is very high which means that, e.g. for point 
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queries, the number of required page accesses directly corresponds to the height of 

the tree. 

MBR0  SplitHistory0  Ptr0        MBRn‐1   SplitHistoryn‐1   Ptrn‐1

 

Figure 2: Structure of a Directory Node 

3.1.1 Structure of X-tree 
 

The heterogeneous structure of X-tree is illustrated in Figure 3 [3]. There are three 

different types of nodes in X-tree and they can be given as in the following way; 

 Data Nodes: These nodes contain rectilinear Minimum Bounding Rectangles 

(MBRs) together with pointers to the actual data objects, 

 Normal Directory Nodes: These nodes contain MBRs together with pointers 

to sub-MBRs. 

 Supernodes: They are large forms of directory nodes and they have variable 

sizes. They are used mainly to avoid splits in the directory.   

 

Figure 3: Structure of the X-tree 
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The block sizes for X-tree are different from those for R-tree and X-tree contains 

larger nodes when it is actually necessary. In Figure 4 [7], there are three examples 

of X-tree with having data in different dimensions. For X-trees, when the dimension 

increases the number and size of supernodes also increases and the height of X-tree 

which indicates the number of page accesses for point queries decreases. 

 

Figure 4: Various Shapes of the X-tree in different dimensions 

In an X-tree, creating supernodes is mostly avoided, but when it is not possible to 

avoid overlap they are created. For many cases, this creation can be avoided by 

choosing an overlap-minimal split axis. If there is enough memory available, 

supernodes are kept in main memory [3]. Otherwise, the nodes to be replaces are 

selected by using a priority function and the following priority function [7] can be a 

proper one according to the experience. 

.  .  .  with                           (3) 
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The storage utilization for uniformly distributed data is about 66% and this ratio is 

higher for supernodes [7]. It can be calculated for supernodes of size m.BlockSize 

with the following two extreme cases: 

Assuming a certain amount of data occupies .  blocks for a maximally filled node. 

Then the same amount of data requires .
2

  1
 blocks when using a minimally filled 

node [7]. On the average, a supernode storing the same amount of data requires 

. .
   blocks. From that, it is obtained a storage utilization of  

⁄      which for large  is considerably higher than 66%. For  

5 , for example, the storage utilization is about 88%. 

In Figure 4 [7], it is shown 3 different shapes of X-tree. There are two extreme cases 

of the X-tree:  

 None of the directory nodes is a supernode 

 The directory consists of only one large supernode (root) 

X-tree has two special cases and first one is that none of the directory nodes is a 

supernode. Here, the directory organization of the X-tree is completely hierarchical 

and it is similar to an R-tree. The height and size of the directory basically 

correspond to that of an R-tree [6]. Low dimensional and non-overlapping data may 

cause such an extreme case. 

In the second case, X-tree is basically one root-supernode containing the lowest 

directory level of the corresponding R-tree. High dimensional or highly overlapping 

data can cause this situation and the size of the directory linearly depends on the 

dimension [3]. 

 
 .

 . 2 .  .                              4  
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3.1.2 Algorithms for the X-tree 
 

In this section we explained the algorithms for the X-tree. Insertion, split, query, 

delete and update algorithms were represented below.  

1. Insertion Algorithm: The main goal of this algorithm is to avoid splits producing 

overlap. The algorithm is given in Figure 5 [7] and its steps can be summarized as in 

the following way; 

 The algorithm firstly determines the MBR and recursively calls the insertion 

algorithm. 

 If there is no split in the recursive insert, only the size of corresponding 

MBRs is updated. Otherwise, a new MBR is added to the current node and 

the current node calls the split algorithm which is presented in Figure 6 [7]. 
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Figure 5: X-tree Insertion Algorithm for Directory Nodes 

2. Split Algorithm: Split algorithm first tries to find a split of the node based on the 

topological and geometric properties of the MBRs. If the topological split however 

results in high overlap, the split algorithm tries next to find an overlap-minimal split 

[3]. 

 Partitioning MBRs may result in under filled nodes and this causes a 

degeneration of the tree. Also this is not good for the space utilization. 

 If the number of MBRs in one of the partitions is below a given threshold, the 

split algorithm terminates without a split. 

int X_DirectoryNode::insert(DataObject obj, X_Node **new_node) { 
   SET_OF_MBR *s1, *s2; 
   X_Node *follow, *new_son; 
   int return_value; 
   follow = choose_subtree(obj); // choose a son node to insert obj into 
   return_value = follow->insert(obj, &new_son); // insert obj into subtree 
   update_mbr(follow->calc_mbr()); // update MBR of old son node 
   if (return_value == SPLIT){ 
    // insert mbr of new son node into current node 
 add_mbr(new_son->calc_mbr());  
  if (num_of_mbrs() > CAPACITY) { // overflow occurs 
   if (split(mbrs, s1, s2) == TRUE) { 
       // topological or overlap-minimal split was successfull 
     set_mbrs(s1); 
     *new_node = new X_DirectoryNode(s2); 
      return SPLIT; 
   } 
   else { // there is no good split 
     *new_node = new X_SuperNode(); 
     (*new_node)->set_mbrs(mbrs); 
     return SUPERNODE; 
   }  
      }      
       } // node ‘follow’ becomes a supernode  
      else if (return_value == SUPERNODE) {  
  remove_son(follow); 
  insert_son(new_son); 
      } 
      return NO_SPLIT; 
} 
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 In this situation, the current node becomes a supernode and it is extended to 

twice of the standard block size. If this occurs for a node which is already a 

supernode, it is extended by one additional block [7]. 

 If there is not enough space on disk to store the newly created or extended 

supernode, disk manager will perform a local reorganization. This will be 

necessary only when writing back the supernodes on secondary storage. 

However, this is a rare operation.  

 The only condition that an overlap in the X-tree directory may occur is an 

overlap caused by the topological split below a threshold value which can be 

shown as MAX_OVERLAP [7]. The maximum overlap value can be 

estimated as in the following formula : 

. 2.      1 .     

  2.     

  
  

    
                                                                           (5) 

TI0 = Page access time,  

TTr = The time to transfer a block from disk into main memory,  

TCPU = CPU time necessary to process a block 

 MIN_FANOUT is the usual minimum fan-out value of a node. Its values may be 

between 35% and 45% appropriately. 
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Figure 6: X-tree Split Algorithm for Directory Nodes 

3. Query Algorithms: This algorithm is about searching MBR object in X-tree. Query 

algorithm starts from root of X-tree and searches relevant MBR object in normal 

directory nodes. At the end, query algorithm returns a result set of MBR objects 

which are included by the parameter MBR object. Point, range and nearest neighbor 

queries can be given as example of X-tree queries.  

4. Delete-Update Operations: Delete and update operations on X-tree may change the 

structure of tree. If the supernode consists of two blocks, it is converted to a normal 

directory node. Otherwise, that is if the supernode consists of more than two blocks, 

it is reduced the size of the supernode by one block [3]. 

 

 

bool X_DirectoryNode::split(SET_OF_MBR *in, SET_OF_MBR *out1,  
                                                 SET_OF_MBR *out2) { 
 SET_OF_MBR t1, t2; 
 MBR r1, r2; 
           //first try topological split, resulting in two sets of MBRs t1 and t2 
 topological_split(in, t1, t2); 
 r1 = t1->calc_mbr(); r2 = t2->calc_mbr(); 
 // test for overlap 
 if (overlap(r1, r2) > MAX_OVERLAP) 
 { 
     // topological split fails -> try overlap minimal split 
     overlap_minimal_split(in, t1, t2); 
     // test for unbalanced nodes 
    if (t1->num_of_mbrs() < MIN_FANOUT ||  

 t2->num_of_mbrs() < MIN_FANOUT) 
       // overlap-minimal split also fails  

      // (-> caller has to create supernode) 
       return FALSE; 
    } 
   *out1 = t1; *out2 = t2; 
   return TRUE; 
} 
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3.2 XXL (eXtensible and fleXible Library) API 
 

In this section, we gave detailed information about XXL API that is one of the vital 

parts of our thesis work. The core structure of the X-tree is particularly expressed.  

 

3.2.1 Definition of XXL API 
 

XXL (extensible and flexible Library) is a Java library providing advanced query 

processing functionality and also low-level components such as accessing to raw 

disks and high-level components such as a query optimizer. Its main features can be 

given as in the following way; 

 Easy to use 

 High-level 

 Platform independent 

XXL has a demand-driven cursor algebra which can be considered as a framework 

for indexing. When we use cursor in querying, we create a demand-driven cursor. At 

this point we only have a cursor object which points to root node of X-tree. And 

when we want to take an object from cursor, search algorithm runs and finds wanted 

object and returns it. For this reason cursor is demand-driven [17]. 

XXL is freely available under the terms of the GNU Lesser General Public License. 

The components of this library can be listed as in the following way; 

1. The cursor package has algebra of the most important query operators. These 

operators have demand-driven implementations and it is required by the 

operators that both input and output satisfy an iterator interface. XXL also 

contains an algebra based on Java’s ResultSet Interface to support the import 

of external database sources. 
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2. A rich infrastructure of external data structures is included in XXL and this 

enables you to implement new database functionality. Also, there is a very 

flexible buffer mechanism in XXL and you can use this with no need to know 

the other parts of XXL. 

3. XXL has default implementations such as R-tree, M-tree, X-tree and also it is 

easy to implement new structures in XXL. All of these implementations exist 

as a framework in XXL and it is fully embedded into the library. 

XXL is proposed as a library for conducting experiments. The results of experiments 

are used for evaluating the new query processing techniques’ performance. With the 

idea of improving the quality of experimental work, it is thought to publish the 

results and the code. The code is considered to be poor and so XXL would be an 

ideal infrastructure for experiments as it is a well-documented and open source 

library [8, 9, 10]. 

The reasons behind the design and implementation of XXL can be given as in the 

following way: 

 If platforms, programming languages or compilers are not same, it becomes 

difficult to compare two access methods. As a result, the number of I/Os 

becomes the only criterion for the comparison. Therefore, XXL should 

support experimental evaluations in standard forms. 

 One of the aims can be given as that XXL could serve as a repository for 

algorithms. It can be considered as a good study to collect the 

implementations of existing algorithms under a framework structure. 

 Many of the existing implementations of query processing algorithms have an 

ad-hoc manner and they have poor software designs. Also there are 

limitations about specific operating systems and they have incomplete or in 

available documentations. 

When the XXL project started eleven years ago, the first choice for the platform to 

develop was Java. The functionalities of other Java libraries such as API 

(Application Programming Interface) of the SDK (Software Development Kit) [11] 
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and Colt [12], benefits of using design patterns like factory, iterator and decorator 

leads the developers to choose Java [13].  

3.2.2 Basic Components 
 

3.2.2.1 Functions and Predicates 
 

As a general principle, functions are remarkably important to encapsulate 

abstractions but this concept has received little attention in database community 

especially due to the implementation problems of query processing algorithms [14]. 

XXL has an abstract class named as Function and you can implement a new function 

by defining a sub-class of Function. To make the number of explicit classes smaller 

Function’s sub-classes are generally implemented in the form of anonymous classes. 

In Java, if the occurrence of the implementation of a sub-class and creation of an 

object of the class are in the same place of the code, this can be considered as a 

specific concept. Here, after the method of the object is invoked the evaluation of the 

target function occurs eventually. 

With the help of compose function in the Function class, new functions as 

compositions of other functions could be created at runtime. This can be provided 

easily with the help of anonymous classes in Java. In XXL, this feature is used, for 

instance, to implement aggregate functions incrementally.  

Function class is implemented by a functional class in XXL and a new functional 

object can be declared in the following ways; 

1. Function class is extended and an anonymous class is implemented. Here, 

invoke method containing the executable code is overridden.  

2. Composition of functional objects can call the compose method of a 

functional object. 
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When the invoke method is called with the appropriate parameters, the code of a 

functional object is executed and in XXL functional objects may have a status unlike 

the pure mathematical functions. 

3.2.2.2 Containers 
 

A container can be defined as an implementation of a map providing an abstraction 

from the physical storage. An object is inserted into a container with a new ID and 

after that this object can be retrieved with this generated ID. Containers include 

mechanisms for buffer management to act as bridge between levels of a storage 

hierarchy.  

The container implementations of XXL can be given as in the following way; 

 MapContainer: In MapContainer, the set of objects is kept in main memory 

and with the help of this container queries can be run fast in memory and also 

debugging is supported. 

 BlockFileContainer: Here, block is an array of bytes having a fixed length 

and BlockFileContainer is a file of blocks. This container is useful for the 

implementation of index-structures such as R-trees. 

 ConverterContainer: It is a decorated container which is designed to 

overcome the deficiencies of inappropriate serialization mechanism of Java. 

 BufferedContainer: It is another decorator to support object buffering in 

XXL. 

XXL supports accesses to raw devices with the help of some Java classes. Therefore, 

it is enabled to run experiments on external storage without any interaction with the 

underlying operating systems. This can be operated in two ways as in the following; 

 Native methods provided by the NativeRawAccess class can be used.  

 An implementation of an entire file system running on a raw device which is 

provided by XXL can be used.  
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The abstract class Container is specifically designed to provide buffered access to 

objects. Thus, access methods have a flag to fix and unfix the accessed object to be 

used in the insertion and the removal of the objects.  

The package xxl.collections contains a few of the implementations of the Container 

interface such as Map-Container. Many of the containers like BlockFileContainer 

and BufferedContainer are designed for external data management. 

 

3.2.2.3 Cursors 
 

A cursor can be considered as an abstract mechanism and it is used to access objects 

within a stream. In XXL, cursors are not dependent to specific type of underlying 

objects. A cursor’s interface that shown in Figure 7 can be given as in the following 

way; 

 

 

 

 

 

 

Figure 7: Interface of cursor 

The functions of a cursor are similar to the functions of the iterator placed into the 

java.util package. These functions can be given as in the following way; 

 Peek: Reports the next object of the iteration 

 Reset: Sets the cursor the beginning of the iteration 

interface Cursor extends java.util.Iterator { 
 

Object peek(); 
 

void update(Object o); 
 
void reset(); 

 
void close(); 
 

} 
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 Close: Stops the iteration and releases resources 

 Update: Updates the current object of the iteration 

There is algebra in XXL for processing cursors and this algebra contains operations 

which get cursors input and produce outputs as cursors. 

The types of cursors can be given as in the following way; 

 Input cursors: These cursors are used to transform a data source into a cursor.  

 Processing cursors: They modify the input cursor. 

 Flow cursors: They change the underlying data flow without changing the 

objects within the input stream. 

 

3.2.3 Query Processing 
 

3.2.3.1 Indexing 
 

The package xxl.indexStructures is a framework containing tree-based index 

structures and it has a skeleton implementation for so-called grow-and-post trees [17] 

such as R-trees, B-trees and X-trees. Also, this package facilitates implementing new 

index-structures. 

An example for using an index-structure like an M-tree [15] can be given as in the 

following way; 

            MTree mTree = new MTree(MTree.HYPERPLANE_SPLIT); 

            mTree.initialize(getDescriptor, container, minCap, maxCap); 

Here, first of all a constructor is called and in this example the constructor has single 

parameter which is used to specify the split strategy. After construction, M-tree is 

initialized and here the first parameter shows a functional object that computes a so-
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called descriptor for a given data item. The second parameter is responsible for 

managing the nodes of the tree and the last two parameters specify the minimum and 

maximum number of items within a node. 

In order to implement a new index-structure, firstly the framework which is the 

implementation of grow-and-post trees [16] must be understood. The inner class 

Node determines the index-structure and coding a specialized class for nodes can be 

considered as the basic part of implementing a new index-structure. 

 

3.2.3.2 The Lower Interface of Index Structures 
 

The data of tree-based index structures are kept in nodes referring to blocks having a 

fixed size. A user may implement own container class to manage these blocks. A 

sample usage of containers is illustrated in Figure 8 [3] and top container is a 

BufferedContainer where a large number of nodes are kept in buffer. 

If the requested node does not exist in the buffer, the request for the node is passed to 

the ConverterContainer and this container converts a node into its block and vice 

versa. After that, the request is redirected to a FileContainer object which reads the 

desired block from disk. 
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Figure 8: An example for using containers 

 

3.2.3.3 Join Processing 
 

It can be said that the most important operations in a database system are joins and 

new join types are required for new applications like spatial databases. XXL join 

processing is a framework designed to obtain a single implementation to support 

different kinds of join operations efficiently. Also, XXL is enabled to cover sort-

merge and hash-based joins. 

While processing join operations a sweep-area that is a small subset is kept for each 

input source and input’s elements are inserted into the related sweep-area. After that, 

the other sweep-area is checked for join partners and to remove the elements not 

producing join results anymore a sweep-area is reorganized periodically. 

The most important functions of the interface SweetArea as shown in Figure 9 can be 

given as in the following way; 
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Figure 9: Interface of SweepArea 

Here, each of the inputs has a unique identifier and the operations show the basic 

steps of join processing.  

In XXL a join can be called by the following statement; 

Iterator it = new Join (input1, input2,   

HashBagSweepArea.FACTORY_METHOD,                            

Tuplify.DEFAULT_INSTANCE); 

 

Here, two input sources are specified by the first two parameters and the third 

parameter indicates a factory method in order to generate a sweep-area which is 

organized as a hash-table [18]. The last parameter is a functional object describing 

how to construct the output tuple of the join. For a user to implement a new join type, 

it is necessary to implement an appropriate class satisfying the interface SweepArea. 

 

3.2.3.4 Aggregation 
 

Aggregate operations are important in large database systems to deliver a quick 

overview of the response set. In contrast to a relational DBMS, XXL supports 

functions as results of aggregate operations. This allows returning a histogram or 

public interface SweepArea { 
 

 public void insert(Object o); 
 
 public void reorganize(Object curStatus, int id); 
 
 public Iterator query(Object o); 
 
 ... 
 
} 
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other more advanced statistical data structures directly to the user (without producing 

an intermediate relation). In the following, it is briefly described the basic structures 

of XXL package statistics. 

This package is based on a generic aggregator cursor that applies user-defined 

functions to aggregate the objects of a given iterator. This cursor returns the 

intermediate value of the aggregate among the input that has been consumed so far. 

The final value can be reported by a call to aggregator.last(), which consumes the 

entire iterator. An example of such an aggregator as shown in Figure 10 is given 

below: 

 

 

 

 

 

 

Figure 10: Definition of Aggregator 

 

3.2.4 Summary of XXL API 
 

XXL is a query processing library implemented in Java that includes the most 

important ingredients for efficient query processing. In addition XXL, a well 

documented Java library, suitable for rapid implementation of advanced query 

processing techniques. The software is freely available under the terms of the GNU 

Lesser General Public License. The design of the library was determined by two 

goals: the functionality of XXL should be extended easily and XXL should be 

flexible enough for being customized fast to specific problems.  

Aggregator aggregator = new Aggregator( 
 
new RandomIntegers(100, 50), 
         new Function () { // the aggregation function 
    public Object invoke (Object agg, Object next) { 
      return (agg == null) ? next : maxComp.invoke(agg, next); 
    } 
        } 

); 
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Key components of XXL are powerful cursor algebra, a framework for a broad class 

of index structures and a toolbox of I/O data structures. Due to its powerful methods, 

XXL is also an excellent platform for experimental work. Coding of new algorithms 

and data structures requires substantial less time than beginning from scratch. XXL is 

not in competition to the popular Java API, but it provides seamless enhancements. 

 

3.3 Fuzzy C-Means Clustering 
 

In our thesis work, FCM algorithm is used for generating fuzzy membership value of 

meteorological attributes. Algorithm is applied for each attribute in meteorological 

attributes. For this purpose an adaptor structure is developed to handle getting fuzzy 

values from given input value of each meteorological attribute. After we calculated 

the fuzzy membership value of meteorological attribute, we inserted this calculated 

value to fuzzy secondary index. 

 

3.3.1 About FCM 
 

Fuzzy C-Means (FCM) is a method of clustering which allows one piece of data to 

belong to two or more clusters. FCM clustering was first reported in the literature for 

a special case (m=2) by Joe Dunn in 1974 [20]. The general case (for any m greater 

than 1) was developed by Jim Bezdek in his PhD thesis at Cornell University in 1973 

[21]. 

In FCM clustering, each point has a degree of belonging to clusters, as in fuzzy logic, 

rather than belonging completely to just one cluster. Thus, points on the edge of a 

cluster may be in the cluster to a lesser degree than points in the center of cluster 

[20]. 
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FCM clustering processes n vectors in p-space as data input, and uses them, in 

conjunction with first order necessary conditions for minimizing the FCM objective 

functional, to obtain estimates for two sets of unknowns. 

The unknowns in FCM clustering are:  

 A fuzzy c-partition of the data, which is a c*n membership matrix U=[u(ik)] 

with c rows and n columns. The values in row i give the membership of all n 

input data in cluster i for k=1 to n; the k-th column of U gives the 

membership of vector k (which represents some object k) in all c clusters for 

i=1 to c. Each of the entries in U lies in [0,1] ; each row sum is greater than 

zero; and each column sum equals 1.  

 The other set of unknowns in the original FCM model is a set of c cluster 

centers or prototypes, arrayed as the c columns of a p*c matrix V. These 

prototypes are vectors (points) in the input space of  p-tuples. Pairs (U, V) of 

coupled estimates are found by alternating optimization through the first 

order necessary conditions for U and V. The objective function minimized in 

the original version measured distances between data points and prototypes in 

any inner product norm, and memberships were weighted with an exponent 

1 [21]. 

 

3.3.2 The Algorithm of FCM 
 

FCM is based on minimization of the following objective function: 

 , 1 ∞                                         6  

where m is any real number greater than 1, uij is the degree of membership of xi in the 

cluster j, xi is the ith of d-dimensional measured data, cj is the d-dimension center of 

the cluster, and ||*|| is any norm expressing the similarity between any measured data 

and the center [20]. 
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Fuzzy partitioning is carried out through an iterative optimization of the objective 

function shown above, with the update of membership uij and the cluster centers cj 

by: 

 
1

∑
 
 

                                          7  

∑ .

∑
                                                           8  

This iteration will stop when 1  , where  is a termination 

criterion between 0 and 1, whereas k are the iteration steps. This procedure converges 

to a local minimum or a saddle point of Jm [21]. 

The algorithm is composed of the following steps: 

1. Initialize U=[uij] matrix, U(0) 

2. At k-step: calculate the centers vectors C(k)=[cj] with U(k) 

 
∑ .

∑
                                                                 9   

3. Update U(k), U(k+1) 

 
1

∑
 
 

                                          10  

4. If   then STOP; otherwise return to step 2. 

And some more clear explanation can be shown as in below steps. For each point x 

we have a coefficient giving the degree of being in the kth cluster uk(x). Usually, the 

sum of those coefficients for any given x is defined to be 1: 

 1

.  

                                           11  
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With fuzzy c-means, the centroid of a cluster is the mean of all points, weighted by 

their degree of belonging to the cluster: 

 
∑ 

∑                                                   12  

 

The degree of belonging is related to the inverse of the distance to the cluster center: 

 
1

,
                                                 13  

 

Then the coefficients are normalized and fuzzified with a real parameter m > 1 so 

that their sum is 1 [20]. So, 

 
1

∑ ,
,

                                         14  

 

For m equal to 2, this is equivalent to normalizing the coefficient linearly to make 

their sum 1. When m is close to 1, then cluster center closest to the point is given 

much more weight than the others, and the algorithm is similar to k-means [21]. 
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CHAPTER 4 

 

IMPLEMENTATION OF X-TREE STRUCTURES 
 

 

In this section, we explained spending efforts to develop X-tree with new specialties. 

We described step by step how to build X-tree node that contains both 3D spatial 

data and fuzzy data. Then we represented the structure of uncoupled index. For these 

purposes, some part of implemented code and figure of structure are given to provide 

explanatory expression.  

In performance tests section, we prepared class of queries for test scenarios about 

coupled and uncoupled index structures. And we applied on both indexes and 

observed results as table. We wrote our deductions according to the test results. 

 

4.1 General Overview 
 

In this section, efforts and studies on developing new specialties of X-tree are 

explained in details. Our main goals in this thesis can be summarized as follow; 

 Providing 3D spatial primary indexing on X-tree by using point coordinates  

 Supporting non-spatial fuzzy secondary indexing on X-tree by using 

meteorological attributes to create coupled index structure 

 Building uncoupled index structure that handles 3D primary index and fuzzy 

secondary index separately 

 Comparing the performance of coupled and uncoupled index structure  
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First of all, implementation details about development of XXL API by using 

meteorological attributes are given step by step in order to explain the details of 

studies.  

After that, the development of 3D spatial primary index is explained particularly. 

Also, implementation of X-tree index structure is given and operations on X-tree 

structure such as making tree-traversals on X-tree, showing the structure of created 

index as rectangle boxes view and using X-tree index in querying are focused on. 

 

4.2 Handling 3D Rectangle in X-tree Node Structure 
 

In this work, it is planned to have a node containing a 3D rectangle and 

meteorological attributes having values in a specified [min, max] range. Our X-tree 

is designed to have nodes containing both 3D rectangle data for spatial index and 

meteorological attributes for fuzzy secondary index. 

Our node structure can be given as in the following way: 

 

 

 

 

Figure 11: New Node Structure of X-tree 

Here, the meteorological attributes such as temperature, wind speed humidity and 

pressure have numerical values in [min, max] interval. These values are allocated in 

map structure to enable dynamical access. 

In spatial side, we wanted to create a primary index with our data-points. For this 

purpose firstly we created MBR objects by using data-points, and then we inserted 

Node { 
Rectangle [coor: x, coor:y, coor:z], 
 
Meteorological_attributes [hot, cold, snowy, ...] 

} 
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them to the X-tree. Creating MBR object by using data-points was needed a 

converting operation. For conversion we made modification on converter functions. 

Before the modification, converter functions are shown in Figure 12 in the following 

code: 

 

 

 

 

 

 

 

 

Figure 12: Previous Structure of Converter 

The converter in Figure 12 was used before inserting data to the X-tree. It is usage is 

demonstrated in Figure 13; 

 

 

 

 

 

 

 

Figure 13: Usage of Previous Structure of Converter in Insertion 

for(...) { //reading data from any source, such as input file 
    double data[] = ...; //read coordinates as double 
    //create point object that contains double type point 
    DoublePoint p = new DoublePoint(data);  
    //create MBR object by using point data 
    DoublePointRectangle mbr = new DoublePointRectangle(p,p); 
    //KPE object can be inserted to the X-tree so convension is needed 
 
    KPE k = new KPE(new Object[]{data, id},  

                  new Converter[]{dataConverter, idConverter}); 
   
    tree.insert(k); //insert the KPE data 
} 

Converter dataConverter = new ConvertableConverter( 
                                               new Function(){  
                                                      public DoublePoint invoke(){ 
                                                         return new DoublePoint(dim); 
                                                      } 
                                                }); 
 
Converter idConverter = new ConvertableConverter( 
                                                new Function(){  
                                                      public DoublePointRectangle invoke(){ 
                                                        return new DoublePointRectangle(dim); 
                                                      } 
                                                }); 
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However the code in Figure 13 is not applicable for our insertion operation because 

the converter was not suitable for our 3D rectangular data. We adapted converter 

functions to support 3D spatial data insertion. We implemented abstract functions for 

conversion. The modified structure of converter functions code is shown in Figure 

14; 

 

 

 

 

 

 

 

 

Figure 14: New Structure of Converter 

After we modified converter functions we created MBR objects that has 3 

dimensional rectangle by using data-points and inserted them to the X-tree 

successfully. 

 

4.3 Obtaining Supernode 
 

As we mentioned in section 3, the X-tree consists of three different types of nodes: 

data nodes, normal directory nodes, and supernodes.  

In here supernodes are large directory nodes of variable size. The aim of using 

supernodes in the X-tree is to avoid splits in the directory that would result in an 

inefficient directory structure [3]. 

Converter dataConverter = new ConvertableConverter( 
        new AbstractFunction<Object, DoublePoint>() {  
   public DoublePoint invoke(){ 
        return new DoublePoint(DIMENSION_OF_X_TREE); 
   } 
}); 
 
Converter idConverter = new ConvertableConverter( 
        new AbstractFunction<Object, DoublePointRectangle>() {  
              public DoublePointRectangle invoke(){ 
                   return new DoublePointRectangle(DIMENSION_OF_X_TREE); 
        } 
}); 
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In insertion steps if there is no other possibility to avoid overlap, supernodes are 

created during insertion only. After we created X-tree by using different number of 

records, we have two different cases:  

 When there is not any supernode among the directory nodes 

 When there is at least one supernode among the directory nodes 

In the first case as shown in the Figure 15, the X-tree has a completely hierarchical 

organization of the directory and is therefore similar to an R-tree. This case may 

occur for low dimensional and non-overlapping data. 

 

Figure 15: X-tree that has only normal directory nodes 

In the second case as shown in the Figure 16, the directory of the X-tree has a 

supernode so that the performance corresponds to the performance of a linear 

directory scan according to the number of supernode. 
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Figure 16: X-tree that has both normal directory nodes and supernode 

In our work, we wanted to observe the both special cases. So that, firstly we tried to 

create an X-tree structure which has no supernode. Then we attempted to create X-

tree structure having at least one supernode among the directory. We made 

modification on our API to generate supernode. In this operation, we created 

minMaxFactor value in API source that is a factor where the minimum capacity of 

nodes was smaller than the maximum capacity. It means minMaxFactor is the 

quotient between minimum and maximum number of entries in a node, e.g. 0.5.  

We set minMaxFactor of the X-tree when the time of X-tree initializing. In insertion 

operation if split is necessary, minMaxFactor value is considered. Therefore by 

changing this value of X-tree, we could generate supernode easily.  

 

4.4 Drawing Tree View of X-trees 
 

Drawing the structure of X-tree as topological view is not a major issue of our work 

but it is useful for us to show the proof of concept. For this purpose the topological 

view of the X-tree was drawn. We developed a recursive algorithm to draw the tree 

view. Algorithm starts from the root node and draws each node of X-tree when the 

cursor on it and moves the cursor to the child node from the current parent node. The 

pseudecode can be given as in the following way: 
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Figure 17: Drawing algorithm for X-tree 

We started this function by giving root node as a parameter. After the execution is 

completed, output of the execution is shown in Figure 18. 

 

Figure 18: Tree view of an X-tree 

 

4.5 Rectangular View of X-trees 
 

For proof of concept and also to show that X-tree index structure had been 

successfully built, we also implemented another drawing method. We showed the 

node elements of the X-tree as rectangular view. In this view, it can be seen that 

parent node covers its children nodes, as shown in Figure 19. This appearance claims 

 if current node level is greater than zero 

o draw the rectangle of the current node and calculate the position of 

the drawer cursor on the screen 

o get all the child node of the current node 

 call this function for each child node of the current node 

 if current node level is equal to zero, this is leaf node 

o draw the rectangle of this leaf node and calculate the position of the 

drawer cursor on the screen 
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that the X-tree structure was correctly created. The outermost rectangle is the root 

node of the X-tree and the innermost rectangles are the data elements that are in leaf 

nodes. Their id numbers can also be seen in the view. 

 

Figure 19: Rectangular view of an X-tree 

We drew the X-tree structure by coloring the rectangles according to their levels to 

show the structure more clearly. In Figure 20, it is shown that the nodes, which are in 

the same level, are colored by the same color. 

 

Figure 20: Colored rectangular view of an X-tree 
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4.6 Overlaying Secondary Index to the X-tree Structure 
 

In this section, we gave detailed information about overlaying operation on building 

secondary index. In coupled index structure, we handled primary and secondary 

indexes in monolithic structure. For this purpose, we firstly built 3D spatial primary 

index by using X-tree structure, then we overlaid fuzzy secondary index over created 

X-tree structure.  

We have three major parts of overlaying operation. These are allocation 3D spatial 

data and fuzzy data in node, applying FCM algorithm on meteorological data to 

calculate fuzzy membership value for fuzzy secondary index and traversing over X-

tree primary index to build secondary index. 

 

4.6.1 Allocating Meteorological Attributes 
 

The base implementation of X-tree structure done by XXL API only contains 

rectangular object in creating X-tree nodes. As in the structure of X-tree which is 

presented in Figure 3, the X-tree has three different types of nodes: data nodes, 

normal directory nodes, and supernodes. The data nodes of the X-tree contain 

rectilinear minimum bounding rectangles (MBRs) together with pointers to the actual 

data objects, and the directory nodes contain MBRs together with pointers to sub-

MBRs. 

According to the aim of our thesis work, we developed X-tree nodes containing both 

MBRs and meteorological attributes. For this purpose, we made some changes on the 

MBRs object that allocated these attributes. Not only MBRs allocate these attributes 

but also directory nodes and supernodes should allocate them. Therefore secondary 

index on X-tree could be achieved by using meteorological attributes on the tree 

structure. 
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Figure 21: 3D rectangle for spatial index and meteorological attribute for secondary 
index 

In detail, X-tree node structure was changed with a new hash map which was used 

for meteorological attributes. The structure of this hash map containing a key for 

each attribute and two variables for max-min values of each attributes is shown in 

Figure 21. By this definition, lots of meteorological attributes can be allocated in the 

nodes of the X-tree. A meteorological attribute in the data node, has only one value. 

Normally in the data node max-min value has no meaning and it has only value that 

points its meteorological value about meteorological attribute. 

To allocate both spatial data and meteorological data, we need a specialized 

Descriptor-class. We used this class for allocating data in the node and getting data 

from node. The Descriptor in the X-tree is just n-dimensional DoublePointRectangle. 

We used 3-dimesional DoublePointRectangle class to store both spatial data and 

meteorological attributes as seen in Figure 22. Note that this is a simplified view of 

the class and it is not the actual class implementation. 
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Figure 22: Basic Structure of DoublePointRectangle Class 

After we adapted DoublePointRectangle class, we worked on insertion to X-tree. In 

insertion, when we were inserting new data to the X-tree, its structure was changing. 

In this operation some of nodes’ position was changing in tree arrangement process, 

such as move node from one branch of tree to another branch according to the split 

algorithm. In arrangement operation node is read from object buffer or written to 

object buffer or cloned. We also adapted these operations to handle our new 

DoublePointRectangle class.  

We adapted the read and write methods of DoublePointRectangle to make sure that 

meteorological attributes get serialized to disk properly. 

The read method reads the state (the attributes) for an object of this class from the 

specified data input and restores the calling object. The read method, as shown in 

public static class DoublePointRectangle implements Rectangle { 
    // default definitions in here 
    ........... 
    // allocates <temperature, humidity,  
    // pressure, ..., windspeed> attributes 
    protected HashMap<String, double[]>  
             meteorologicalAttributes = new HashMap<String, double[]>(); 
 
  public DoublePointRectangle(double[] leftCorner,  

double[] rightCorner, HashMap meteorologicalAttributes)  { 
  

super(leftCorner, rightCorner); 
 this.meteorologicalAttributes = meteorologicalAttributes; 
  } 
        
  //provide setter and getter methods for meteorologicalAttributes 
  getMeteorologicalAttributes(); 
  setMeteorologicalAttributes(String attributeName, double values[]) ; 
  // provide reasonable implementations...  
  public boolean overlaps (Descriptor descriptor){} 
  public boolean contains (Descriptor descriptor){} 
  public void union (Descriptor descriptor){} 
  public boolean equals (Object object){} 
} 
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Figure 23, must read the values in the same sequence and with the same types as 

were written by write. 

 

 

 

 

 

 

Figure 23: Implemented read Method 

And the write method, as shown in Figure 24, writes the state (the attributes) of the 

calling object to the specified data output. This method should serialize the state of 

this object without calling another write method in order to prevent recursions. 

 

 

 

 

 

 

 

 

Figure 24: Implemented write Method 

 

 public void read(DataInput dataInput) throws IOException { 
  for(int i=0; i< leftCorner.length; i++) 
   leftCorner[i] = dataInput.readDouble(); 
  for(int i=0; i< rightCorner.length; i++) 
   rightCorner[i] = dataInput.readDouble(); 
   
  double [] meteorologicalAtt = new double[16]; 
  for(int i=0; i< meteorologicalAtt.length; i++) 
   meteorologicalAtt[i] = dataInput.readDouble(); 
  addMeteorologicalAttributes(meteorologicalAtt);  
 } 

 public void write(DataOutput dataOutput) throws IOException { 
  for(int i=0; i< leftCorner.length; i++) 
   dataOutput.writeDouble(leftCorner[i]); 
  for(int i=0; i< rightCorner.length; i++) 
   dataOutput.writeDouble(rightCorner[i]); 
   
  Set<String> keys=meteorologicalAttributes.keySet(); 
  Iterator<String> it = keys.iterator(); 
  while(it.hasNext()) { 
     String keyName = (String)it.next(); 
     double [] d = meteorologicalAttributes.get(keyName);  
     dataOutput.writeDouble(d[0]); 
     dataOutput.writeDouble(d[1]); 
  }  
 } 
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The addMeteorologicalAttributes puts the meteorological attributes’ values to the 

meteorological attribute hash map, as shown in Figure 25. This method is used in the 

insertion section of application after the 3D rectangle created. We firstly created 

DoublePointRectangle with spatial data, and then we add meteorological attributes.  

 

 

 

 

 

 

 

 

Figure 25: Implemented addMeteorologicalAttributes Method for meteorological 
attributes 

The constructor of DoublePointRectangle class is used with given rectangle 

parameter and it creates a new DoublePointRectangle as a copy of the given 

rectangle as shown in Figure 26. This is generally used by copy operation on the 

node objects. 

 

 

 

 

 

private void addMeteorologicalAttributes(double[] meteorologicalAtt)  { 
 double [] minMax = null; 
 for(int i=0; i< meteorologicalAtt.length; ++i) {  
  
  switch (i) { 
  case 0://temporal 
   minMax = new double[2]; 
   minMax[0]=meteorologicalAtt[i]; 
   break; 
  case 1://temporal 
   minMax[1]=meteorologicalAtt[i]; 
   meteorologicalAttributes.put("tm", minMax); 
   break; 
  ....... 
} 
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Figure 26: Implemented Constructor of DoublePointRectangle 

And the final method of this method group is copyMeteorologicalAttributes method 

which is shown in Figure 27 and copies meteorological attributes’ values from 

source hash map to the destination hash map. It is useful for clone operation.  

 

 

 

 

 

 

 

 

 

Figure 27: Implemented copyMeteorologicalAttributes Method 

public DoublePointRectangle(Rectangle rectangle)  { 
 DoublePointRectangle rect = (DoublePointRectangle)rectangle; 
 leftCorner = new double[rect.leftCorner.length]; 
 rightCorner = new double[rect.rightCorner.length]; 

System.arraycopy (rect.leftCorner, 0, leftCorner, 0, 
rect.leftCorner.length); 
System.arraycopy (rect.rightCorner, 0, rightCorner, 0, 
rect.rightCorner.length);   

 meteorologicalAttributes = new HashMap<String, double[]>();
  

copyMeteorologicalAttributes(rect.meteorologicalAttributes, 
meteorologicalAttributes); 

   
} 

private void copyMeteorologicalAttributes( HashMap<String,   
double[]>  source, HashMap<String, double[]> destination)  { 
  if(source!=null && source.size()>0) {    
   Set<String> keys=source.keySet(); 
   Iterator<String> it = keys.iterator(); 
   while(it.hasNext()){ 
    String keyName = (String)it.next(); 
    double [] d = source.get(keyName); 
     
    double [] minMax = new double[2]; 
    minMax[0]=d[0]; 
    minMax[1]=d[1]; 
     
    destination.put(keyName, minMax); 
   }  
  } 
} 
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Once we adapted the read/write method, constructor of DoublePointRectangle and 

developed new function for our purpose, we created X-tree containing both spatial 

and meteorological data in its nodes. 

 

4.6.2 Implementing FCM Algorithm 
 

In our work, FCM algorithm is used to generate fuzzy secondary index by using 

meteorological attributes. Algorithm is applied for each attribute in meteorological 

attributes. For this purpose an adapter structure is developed to handle getting fuzzy 

values from the given input value of each meteorological attribute. In detail, 

following steps were implemented; 

 Choose the number of clusters, numberOfCluster. In this step clusters are 

chosen by using input values threshold. After reading records from input file, 

read values are sorted ascending order and clusters are defined on this sorted 

array. 

 After generating numberOfCluster clusters, then determine the cluster 

centers. Sorted array that generated in the previous step is used for this aim 

and the threshold of elements in array determines the exact cluster centroids. 

 Assign each point to the nearest cluster center, where "nearest" is defined 

with respect to one of the distance measures discussed above. 

 Determine the fuzzy membership of each cluster centroid for each point. 

 Repeat the two previous steps until some convergence criterion is met 

(usually that the assignment hasn't changed). 

The main advantages of this algorithm are its simplicity and speed which allow it to 

run on large datasets.  

In our work, firstly we read whole data from input file and then each meteorological 

attribute was put on a set. Then ascending ordering operation was applied to data in 

each set and then fixed centroids were determined for each set. For example 
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temperature values were ordered by ascending order than fixed centroids in the name 

of cold, warm and hot were determined by using the following formulas: 

 
2

                 15  

 
2

               16  

 
2

           17  

  

 

Figure 28: Fuzzy C-Means clustering 

After determining of these three centroids, the algorithm of Fuzzy-C Means 

algorithm was applied as mentioned above.  

When algorithm is completed, FCM algorithm generates fuzzy membership values 

for each centroid that is about the distance from centroid. We do not need distance of 
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fuzzy values of each centroid; we need membership of fuzzy values. Calculating 

membership from distance values is explained below. 

Let a, b and c values are the fuzzy membership distance values of each centroid. At 

the beginning we have fuzzy membership [a, b, c] that are about distance. When the 

algorithm completed we get these [a, b, c] fuzzy membership of each values in set 

about the distance of each centroid as shown in Figure 28. At this point we applied 

reverse ratio formula as shown below. 

  1
. .

. . .
                                    18  

And by using calculated x we can determine the fuzzy membership value for each as 

follows; 

 ,  ,                                                      19  

Therefore we get fuzzy membership as , ,  . These calculated fuzzy 

membership values are used in meteorological attributes fuzzification that comprises 

the process of transforming crisp values of meteorological attribute into grades of 

membership for linguistic terms of fuzzy sets.  

 

4.6.3 Setting Meteorological Attributes of Each Node by Traversing in X-tree 
 

In the structure of the X-tree, there are rectangles and meteorological attributes in 

each node. Meteorological attributes are used for secondary index on X-tree. In the 

creation step of the X-tree, only primary index that consists of spatial data is 

normally created by the insertion operation of the X-tree. After the primary index of 

the X-tree is created, there are no meteorological attributes in directory and 

supernode. Only data nodes have meteorological attributes. In these leaf nodes each 

meteorological attribute has value of its owner data that is observed in measurement 

and written on the input file’s records. But these meteorological attributes have no 
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relation each other at this point. It means parent nodes of the data nodes, simply 

directory nodes, have no meaningful information about their child nodes’ 

meteorological attributes. So these meteorological attribute values should be 

arranged for creating our secondary index structure. At this work, a complete 

navigation should be done over all the data node, normal directory nodes or super 

nodes and also root node. After this traverse is done, each node should have values 

which has min-max interval of child nodes’ values. 

The suitable way of doing this traverse is making recursive call. It means operation 

starts from the root node and traveling the X-tree’s all nodes and finally finishes the 

travel on the root node by setting the min-max interval of all data used in the creation 

of the X-tree index. At starting point of algorithm about this recursive iteration 

begins with root node. Then it continues with handling all of its child nodes and 

doing the same for each child node until it reaches the data nodes. In recursive 

procedure, when it reaches the data node, it returns value to the parent node. In this 

progress every node has min-max interval of meteorological attributes that are set by 

using their child nodes’ values. Finally after the traversing is completed, root node 

has min-max meteorological attribute interval of the whole data set. The pseudecode 

of this recursive procedure is given in Figure 29; 
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Figure 29: Algorithm of traversing in X-tree 

This function starts executing from root node. Executing steps of this algorithm is 

shown in Figure 30.   

 

Figure 30: Recursive traverse on X-tree 

 

 

 

 if current node level is greater than zero 

o this node is not data node so that create dummy meteorological 

attribute values for each node for initialization. 

o get all the child node of the current node 

 call this function for each child node of the current node 

 set min max values of meteorological attributes 

 if parent min is higher than child min, set child 

value to parent 

 if parent max is less than child max, set child 

value to parent 

 if current node level is equal to zero, this is leaf/data node 

o return the meteorological attribute values for this data node to the 

parent node 
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4.7 Reading Records from File and Objectifying Them 
 

In our work, we have text file that has meteorology stations and each station’s 

meteorological values in each line record. The columns of a line record of this text 

file are shown below; 

 

The meanings of these columns can be given as in the following way; 

latitude   : latitude coordinate of the station 

longitude  : longitude coordinate of the station 

station   : identification number of the station 

temperature  : temperature value of the meteorological observation 

humidity   : humidity value of the meteorological observation 

pressure   : pressure value of the meteorological observation 

precipitation period  : precipitation period value of the meteorological observation 

wind direction  : wind direction value of the meteorological observation 

wind speed  : wind speed value of the meteorological observation 

altitude  : altitude coordinate of the station 

In insertion, we could create X-tree index by using these values from text file. 

Latitude, longitude and altitude variables were used for spatial indexing that indicate 

the point of a rectangle for MBRs. These three values made our rectangle 3D form 

containing one for coordinate x, one for y and one for z. For generating a 3D 

rectangle from these three values we put this point on the lower left corner of the 

rectangle then calculated the other corner of the rectangle by adding static variable 

10 to the latitude, longitude, altitude variables. We used 10 for static variable 

latitude  longitude  station  temperature humidity pressure
Precipitation 

period 
Wind 

direction 
Wind 
speed 

altitude
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because we wanted to show MBR object as cubic form which had 10 units each 

dimension length. Therefore we have got a 3D rectangle as shown in Figure 31. 

 

Figure 31: 3D rectangle for insertion to X-tree 

So that three variables are used for spatial indexing and other variables of 

meteorological attributes are used for secondary index. In other words, three 

variables used for primary index and other six variables are used for secondary index 

that indicate meteorological attributes as shown in Figure 32. 
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Figure 32: Detail view of node element in X-tree 

In implementation details, we read the lines in the text file one by one then parse 

each line to identify the variables. Then we created 3D rectangle that was 3-

dimensional Rectangle and extended the abstract class Rectangle the value at each 

dimension should be of the type double. After that, hash map for allocating 

meteorological attributes was created by using six meteorological variables. This 

hash map allocates <temperature, humidity, pressure, precipitation period, wind 

direction, wind speed> attributes. Then hash map of the meteorological attributes 

was put to the MBR object containing our 3D rectangle. 

 

4.8 A Simple Example of X-tree Index Creation  
 

We demonstrate the execution of X-tree index creation by using ten input data. 

 Firstly we read data from input file. Example of input file is shown in Table 

1.  
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Table 1: A simple view of input file 

Latitude  Longitude  Station  Temperature Humidity Pressure
Precipitation 

Period 

Wind 

Direction 

Wind 

Speed 
Altitude

41  10  17015  ‐4.70 97 1028 1 0  0  248.0

45  17  17016  1.80 94 1029 1 0  0  189.0

43  9  17017  3.30 72 1029 1 140  15  118.0

42  32  17018  1.60 99 1028 1 140  5  324.0

44  15  17019  2.60 91 1028 1 190  25  1041.0

40  22  17020  4.40 85 1028 1 240  10  36.0

36  28  17021  4.20 80 1027 1 230  5  1295.0

25  14  17022  0.50 100 1025 1 0  20  42.0

14  19  17023  ‐2.30 98 1029 1 0  10  60.0

35  30  17024  ‐1.40 94 1029 1 50  10  77.0

 

 Then we created 3D spatial primary index by using read data from input file. 

We read records from input file line by line and executed FCM algorithm to calculate 

fuzzy membership for each record attributes. Then we applied algorithm as shown in 

Figure 33; 

 

 

 

 

 

Figure 33: Algorithm of reading line from input file and insertion to X-tree 

After we read all records from input file and inserted them to the X-tree, we had 3D 

spatial index X-tree as shown in Figure 34. In our index we had data nodes that have 

meteorological attributes. On the other hand, in directory nodes we had no 

information about meteorological attributes.  

 for each line record in input file 

o read <latitude, longitude, altitude> values for 3D points 

o read <temperature, humidity, pressure, precipitation period, wind 

direction, wind speed> for meteorological attributes 

o create DoublePointRectangle object with these read values and 

apply conversion to created rectangle object 

o insert created rectangle object to the X-tree 
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Figure 35: View of X-tree that has primary and secondary indexes 

 

4.9 Building the Uncoupled Index Structure 
 

We developed uncoupled index structure for handling 3D spatial data and fuzzy 

attributes in discrete constructions. Storing 3D spatial data was supported by using 

X-tree index structure and fuzzy attributes were saved in BPlusTree index structure.  

For this purpose we created both 3D spatial index and secondary index by using each 

record in input file while we were performing insertion operation. In detail, firstly we 

read a line from input file and created a 3D spatial MBR object and stored it in X-

tree. And then we created a fuzzy attribute object and inserted it in BPlusTree index. 

Finally we had two separate indexes, one of them is X-tree as primary index and the 

other one is BPlusTree as secondary index as shown in Figure 36. 
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Figure 36: View of uncoupled index: X-tree for primary and BPlusTree for 
secondary index 

 

4.9.1 X-tree Index Creation for 3D Spatial Primary Index 
 

In this case we had simple X-tree that only contains 3D spatial MBR objects as 

shown in Figure 37. To create X-tree we just used <latitude, longitude, altitude> 

data. 

 

Figure 37: View of X-tree for primary index 
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4.9.2 BPlusTree Index Creation for Fuzzy Secondary Index 
 

For secondary indexing we created BPlusTree structure as shown in Figure 38. We 

inserted <temperature> data to the index. Before we inserted this data to BPlusTree 

index, we applied FCM algorithm to get the fuzzy membership values of related 

temperature data. Therefore we inserted fuzzy membership value to the BPlusTree 

index. 

 

Figure 38: View of BPlusTree for secondary index 

 

4.9.3 Management of 3D Spatial Index and Fuzzy Secondary Index 
 

We implemented an algorithm for search operation by using both indexes as shown 

in Figure 39. 

In here, we firstly used X-tree primary index in search operation by using 3D spatial 

parameters and we stored the results in a list. Then BPlusTree secondary index was 

used by using meteorological attributes and the results were also stored in another 

list. 
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CHAPTER 5 

 

 

Figure 39: Search algorithm for using both primary index and secondary index 

Finally we tried to match the results if any element existed in both list or not. In 

matching operation we used station id for each records. If the element was in both 

result lists, we put it in final result list containing the entire searched element 

according to the query. If the element was not in both result lists, we could say that 

this element was not the exact element which we searched. Finally we had final 

result list that contains all the elements for which we queried. 

 

 

 

 

 

 

 

 

 

 

 

Search Algorithm of Uncoupled Index Structures 

1. Search on Xtree primary index and put results to spatialResultList 

2. Search on BPulsTree secondary index and put results to fuzzyResultList 

3. For each element in spatialResultList   

    3.1. For each element in fuzzyResultList    

           3.1.1.If spatialResultList element is member of fuzzyResultList    

           3.1.1.1. Put element to finalResultList 
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CHAPTER 5 

 

PERFORMANCE TESTS 
 

 

5.1 Test Inputs and Queries 
 

In performance tests section, different test cases were performed to get idea about the 

performance and features of both coupled and uncoupled index implementation 

approaches.  

We noted elapsed time and iteration count values as a result of testing measurements. 

Time values were collected for giving idea about time performance of each index. 

And iteration count values were observed to show the I/O performance of each 

index. In each iteration process we fetched a node of index to analyze if it was proper 

for query or not. This fetch operation refers one I/O cost for index organization. By 

this way iteration count becomes meaningful for performance evaluation over two 

different index approaches. 

In the beginning, insertion operation was afforded by using different number of input 

records. Then different types of queries were done to perform the structure. 

 

5.1.1 Insertion Tests 
 

In this step firstly coupled index creation was tested and then uncoupled index 

creation was observed. At test operation 1000-5000-10000-20000-40000-60000-

80000 numbers of records were inserted by descending order in each step.  
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In insertion tests, we firstly tested data insertion to coupled index structure. And we 

observed insert operation results as seen in Table 2. In Table 2, number of inserted 

records, creation time of primary and secondary indexes, insertion total duration, 

supernode and normal node count for each level were given in detail. Then we 

secondly tested data insertion to uncoupled index structure. Results of this test were 

written in Table 3. We gave the same detail information as Table 2. However, there 

is no information about creation time of secondary index. The reason is that in 

uncoupled index structure primary index and secondary index was created 

individually. Therefore in the same time we could build both of them. It means both 

indexes creation was done during the same time period. 

Table 2: Observed values of coupled index structure insertion 

Number 

of 

Inserted 

Records 

Primary 

Index 

Duration 

(ms) 

Secondary 

Index 

Duration 

(ms) 

Total Time 

for 

Insertion 

(ms) 

Number of super nodes 

per level 

Number of normal nodes per 

level 
Height 

1000  557  59  616 [0, 0, 0, 0, 0]  [0, 52, 12, 2, 1]  5

5000  2841  998  3839 [0, 11, 5, 1, 0, 0]  [0, 302, 51, 10, 2, 1]  6

10000  6693  3696  10389 [0, 25, 10, 1, 0, 0, 0]  [0, 651, 137, 28, 8, 2, 1]  7

20000  17802  15846  33648 [0, 56, 28, 12, 1, 0, 0]  [0, 1373, 282, 44, 10, 3, 1]  7

40000  47314  72010  119324 [0, 104, 48, 27, 5, 0, 0]  [0, 2976, 694, 107, 19, 4, 1]  7

60000  89340  185920  275260 [0, 159, 53, 38, 8, 0, 0, 0]  [0, 4547, 1126, 187, 24, 7, 2, 1]  8

80000  149271  330094  479365 [0, 219, 61, 50, 12, 0, 0, 0]  [0, 6034, 1532, 266, 33, 10, 2, 1]  8

 

Table 3: Observed values of uncoupled index structure insertion 

Number of 

Inserted 

Records 

Primary & 

Secondary Index 

Duration (ms) 

Total Time 

for Insertion 

(ms) 

Number of super nodes per 

level 

Number of normal nodes per 

level 
Height

1000  610  610 [0, 0, 0, 0, 0]  [0, 52, 12, 2, 1]  5

5000  2295  2295 [0, 11, 5, 1, 0, 0]  [0, 302, 51, 10, 2, 1]  6

10000  4974  4974 [0, 25, 10, 1, 0, 0, 0]  [0, 651, 137, 28, 8, 2, 1]  7

20000  11289  11289 [0, 56, 28, 12, 1, 0, 0]  [0, 1373, 282, 44, 10, 3, 1]  7

40000  24126  24126 [0, 104, 48, 27, 5, 0, 0]  [0, 2976, 694, 107, 19, 4, 1]  7

60000  37636  37636 [0, 159, 53, 38, 8, 0, 0, 0]  [0, 4547, 1126, 187, 24, 7, 2, 1]  8

80000  52904  52904 [0, 219, 61, 50, 12, 0, 0, 0]  [0, 6034, 1532, 266, 33, 10, 2, 1]  8
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We combined total duration and total iteration results of Table 2 and Table 3 to 

demonstrate better view of performance difference in Table 4. 

Table 4: Coupled and uncoupled index structures insertion comparison table 

Number of 

Inserted Records 

Total Time for 

Coupled Index 

Insertion (ms) 

Total Time for 

Uncoupled Index 

Insertion (ms) 

Difference (ms) 

1000  616 610 6 

5000  3839 2295 1544 

10000  10389 4974 5415 

20000  33648 11289 22359 

40000  119324 24126 95198 

60000  275260 37636 237624 

80000  479365 52904 426461 

 

By using results in Table 4, we generated comparison chart, shown in Figure 40. 

 

Figure 40: Coupled and uncoupled index structures insertion comparison chart 

With respect to our experiment it can be observed that;  

 The behavior of insertion on coupled index structure over growing number of 

record is exponential. And insertion duration difference between these index 
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structures is also exponential. In coupled index structure, we should traverse 

whole of X-tree to overlay the secondary index on this index. When we 

inserted more records to X-tree, we got larger X-tree that contained more 

nodes. Therefore traversing on this X-tree took longer time and behavior of 

this relation became exponential.  

 The behavior of insertion on uncoupled index structure over growing number 

of record is linear. 

  

5.1.2 Query Tests 
 

After insertion, we tested query operations over both coupled and uncoupled index 

structures. For this purpose in coupled structure, 3D spatial locations were queried on 

primary index of X-tree and also fuzzy attributes were queried on secondary index of 

X-tree. In uncoupled structure, 3D spatial locations were queried on primary index of 

X-tree as in the coupled structure, but fuzzy attributes were searched on BPlusTree 

secondary index. We explained this operation details in Section 4.9.3 where we also 

expressed the management algorithm of both indexes. 

In coupled index structure tests we only observed total duration and total iteration 

count on X-tree. Because of this structure was monolithic, we could only observe 

these results. However, in uncoupled index structure, we could observe query time 

and iteration count on primary and secondary indexes individually. 

 

5.1.2.1 Point Query 
 

This query is used for finding exact point in our spatial index as shown in Figure 41. 

The query has capability of searching fuzzy attribute values on secondary index also. 

As we know that our X-tree contains rectangles, not points. So in point query, we 

generated 3D rectangle by using 3D point as like insertion operation that mentioned 

previous section. 
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A simple usage of Point Query can be given as in the following way; 

"Find the station which is based in <10, 20, 30> coordinates and it is temperature is 

higher than 0,01 hot" 

 

Figure 41: Point query 

We firstly run point query on coupled index and noted duration, iteration results in 

Table 5. 

Table 5: Observed values about point query on coupled index structure 

Number of Inserted 

Records 

Primary&Secondary Index Query 

Duration (ms) 

Primary&Secondary Index Query 

Iteration 

1000  2 20 

5000  3 27 

10000  4 28 

20000  4 30 

40000  4 30 

60000  5 31 

80000  5 31 

 

Then we run the same query on uncoupled index and wrote the results in Table 6. In 

this table primary and secondary index duration, iteration and their sums are 

available. 
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Table 6: Observed values of point query on uncoupled index structure 

Number of 

Inserted 

Records 

Primary Index 

Query 

Duration (ms) 

Secondary 

Index Query 

Duration (ms) 

Total Time 

for query 

(ms) 

Primary 

Index 

Iteration

Secondary 

Index 

Iteration 

Iteration for 

match 

operation 

Total 

Iteration 

1000 2  7 9 20 37 167  224

5000 3  12 15 27 180 3669  3876

10000 3  25 28 28 424 15883  16335

20000 4  71 75 30 1024 47371  48425

40000 4  641 645 30 2087 83314  85431

60000 5  781 786 31 3241 124807  128079

80000 7  968 975 31 4357 160360  164748

 

We created Table 7 by using total duration and total iteration results of Table 5 and 

Table 6 to demonstrate better view of performance difference. 

Table 7: Coupled and uncoupled index structures point query comparison table 

Number of 

Inserted Records 

Coupled Index Structure  Uncoupled Index Structure 

Total Time for query (ms) Total Iteration  Total Time for query (ms)  Total Iteration 

1000  2 20 9  224

5000  3 27 15  3876

10000  4 28 28  16335

20000  4 30 75  48425

40000  4 30 645  85431

60000  5 31 386  128079

80000  5 31 475  164748

 

By using iteration results in Table 7, we generated iteration comparison charts 

between coupled and uncoupled indexes, shown in Figure 42. In this figure, (a) 

shows total iteration count for coupled index structure, (b) shows total iteration count 

for uncoupled index structure and (c) shows both of them in a chart. 
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Figure 42: Point query total iteration charts 

By analyzing these charts we can argue that; 

 In iteration perspective, behavior of coupled index structure is logarithmic in 

point query. This situation is derived from height of balanced X-tree. X-tree 

is a balanced tree, so searching performance on this structure is related to the 

height of the tree. 

 Again in iteration view, behavior of uncoupled index structure is linear in 

point query. In Table 6 we can see that primary index iteration numbers are 

equal to the same values in Table 5. But secondary index iteration numbers 

are always increasing according to the rise of inserted record count in 

uncoupled index structure. In addition iterations that were done for match 

operation is also increasing. Therefore these increases made the behavior 

linear.   
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We also drew duration comparison charts between coupled and uncoupled indexes 

by using elapsed time results in Table 7, shown in Figure 43. In this figure, (a) shows 

total time for coupled index structure, (b) shows total time for uncoupled index 

structure and (c) shows both of them in a chart.   

 

Figure 43: Point query total execution time charts 

Coupled and uncoupled indexes’ elapsed time charts are similar to their iteration 

charts. So that;  

 Coupled index structure’s elapsed time chart has logarithmic behavior as its 

iteration charts. 

 Uncoupled index structure’s elapsed time chart has linear behavior as its 

iteration charts and it has the same reasons about this situation. 
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5.1.2.2 Range Query 
 

Range query is a common database operation that retrieves all records where some 

value is between an upper and lower boundary. In here as shown in Figure 44, range 

query is used for searching spatial elements in the given rectangular range that covers 

upper and lower boundary. In addition we also checked the rectangle’s fuzzy 

attribute by using fuzzy secondary index. If the input rectangle contains any spatial 

element and also this covered element provides wanted fuzzy condition, it will be 

shown in result set.    

An example usage of Range Query can be given as in the following way: 

"Find the stations that are covered by rectangle with lower boundary <10, 20, 30> 

and upper boundary <20, 30, 40> coordinates and it is temperature is higher than 

0,01 hot" 

 

Figure 44: Range query 

Range query test results over different number of inserted record were collected for 

coupled index structure in Table 8. In this table we also gave the found element 

count according to each query. 
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Table 8: Observed values of range query on coupled index structure 

Number of Inserted 

Records 

Primary&Secondary Index 

Query Duration (ms) 

Primary&Secondary Index 

Query Iteration 

Found Element 

Count 

1000  10 32  8

5000  15 59  17

10000  17 62  19

20000  22 62  32

40000  25 62  32

60000  27 65  32

80000  30 65  32

 

Then we run the same range query on uncoupled index and wrote the results in Table 

9. In this table primary and secondary index duration, iteration and their sums are 

available. 

Table 9: Observed values of range query on uncoupled index structure 

Number of 

Inserted 

Records 

Primary Index 

Query 

Duration (ms) 

Secondary 

Index Query 

Duration (ms) 

Total Time 

for query 

(ms) 

Primary 

Index 

Iteration 

Secondary 

Index 

Iteration 

Iteration 

for Match 

Operation 

Total 

Iteration 

Found 

Element 

Count 

1000  4  8 12 32 37 3374  3443  8

5000  7  57 64 59 180 70118  70357  17

10000  8  63 71 62 424 146852  147338  19

20000  8  179 187 62 1024 392695  393781  32

40000  9  281 290 62 2087 615202  617351  32

60000  10  418 428 65 3241 909867  913173  32

80000  12  1022 1034 65 4357 1172061  1176483  32

 

We joined total duration and total iteration results of Table 8 and Table 9 in Table 10 

to demonstrate better view of performance difference. 
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Table 10: Coupled and uncoupled index structures range query comparison table 

Number of 

Inserted Records 

Coupled Index Structure  Uncoupled Index Structure 

Total Time for 

query (ms) 

Total 

Iteration 

Total Time for 

query (ms) 

Total 

Iteration 

1000  10 32 12  3443 

5000  15 59 64  70357 

10000  17 62 71  147338 

20000  22 62 187  393781 

40000  25 62 290  617351 

60000  27 65 428  913173 

80000  30 65 1034  1176483 

 

We used iteration results in Table 10 to show iteration comparison charts between 

coupled and uncoupled indexes, shown in Figure 45. In this figure, (a) shows total 

iteration count for coupled index structure, (b) shows total iteration count for 

uncoupled index structure and (c) shows both of them in a chart. 

 

Figure 45: Range query total iteration charts 
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By the side of these charts analysis we can argue that; 

 Behavior of coupled index structure is logarithmic in range query according 

to iteration count. X-tree is a balanced tree, so searching performance on this 

structure is related to the height of tree. 

 Uncoupled index structure side, behavior of chart is linear in range query. In 

Table 9 we can see that primary index iteration numbers are equal to the same 

values in Table 8. But secondary index and match operation iteration 

numbers are always increasing according to the rise of inserted record count 

in uncoupled index structure. As a result these increases made the behavior 

linear. 

Comparison charts between coupled and uncoupled indexes are shown in Figure 46. 

In this figure, (a) shows total time for coupled index structure, (b) shows total time 

for uncoupled index structure and (c) shows both of them in a chart. 

 

Figure 46: Range query total execution time charts 
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The element count in the result list on range query and total iteration on querying 

process are graphed as seen in Figure 46. The chart shows that the behavior of range 

query about iteration over growing number of inserted record is linear that both of 

them are rising with nearly the same ratio. 

 

5.1.2.3 Nearest Neighbor Query 
 

NN (Nearest Neighbor) query, also called closest point query, is an optimization 

problem for finding closest points in metric spaces. The aim of query is about given a 

set S of points in a metric space M and a query point q that is an element of M; find 

the closest point in S to q. 

In our tests, performing a nearest neighbor query against the tree determining the 10 

nearest neighbor entries at target level concerning the input rectangle is applied as 

seen in Figure 47. In addition we also wanted fuzzy condition in querying. 

An example usage of Nearest Neighbor Query can be given as in the following way. 

"Find 10 nearest stations to the given station which is based in <10, 20, 30> 

coordinates and it is temperature is higher than 0,01 hot" 

 

Figure 47: Nearest Neighbor Query 

Nearest neighbor query results over different number of inserted record were 

collected for coupled index structure in Table 11. In this table we noted duration, 

number of distance based iterations for finding closest points and also found element 
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count. Naturally we always got ten result elements after querying on coupled index 

structure. 

Table 11: Observed values of NN query on coupled index structure 

Number of Inserted 

Records 

Primary&Secondary Index 

Query Duration (ms) 

Primary&Secondary Index 

Distance Based Query Iteration 

Found Element 

Count 

1000  38 494  10

5000  45 459  10

10000  98 1107  10

20000  102 846  10

40000  79 466  10

60000  83 497  10

80000  86 606  10

 

The same query was executed on uncoupled index and the results were written in 

Table 12. In this table primary and secondary index duration, iteration and their sums 

are available. In detail, found element count is not always ten on uncoupled structure. 

Because in uncoupled index structure we firstly run query on primary index and we 

got ten nearest neighbor elements, then we run query on secondary index for fuzzy 

attributes, and finally we verified match operation between these two result sets. 

Sometimes the elements that were in primary index result set could not provide fuzzy 

condition so it could not be a member of final result set. Therefore founded element 

count could be less than ten. To support ten results we may need to query more than 

ten elements on primary index and make match operation over these elements. 

Therefore in this situation query operation cost is become higher.   

 

 

 

 



 
 

73 
 

Table 12: Observed values of nearest NN on uncoupled index structure 

Number 

of 

Inserted 

Records 

Primary 

Index Query 

Duration 

(ms) 

Secondary 

Index Query 

Duration 

(ms) 

Total Time 

for query 

(ms) 

Primary Index 

Distance 

Based 

Iteration 

Secondary 

Index 

Iteration 

Iteration 

for match 

operation 

Total 

Iteration 

Found 

Element 

Count 

1000  8  45 53 486 37 5122  5645  10

5000  14  57 71 927 180 36781  37888  10

10000  20  126 146 1121 424 34914  36459  10

20000  37  109 146 846 1024 70204  72074  10

40000  40  202 242 466 2087 169102  171655  10

60000  43  282 325 497 3241 362006  365744  10

80000  54  447 501 606 4357 463529  468492  10

 

Table 13 was created by using total duration and total iteration results of Table 11 

and Table 12 to demonstrate better view of performance difference. 

Table 13: Coupled and uncoupled index structures NN query comparison table 

Number of 

Inserted Records 

Coupled Index Structure  Uncoupled Index Structure 

Total Time for query 

(ms) 

Total 

Iteration 

Total Time for query 

(ms) 

Total 

Iteration 

1000  38 494 53  5645 

5000  45 459 71  37888 

10000  98 1107 146  36459 

20000  102 846 146  72074 

40000  79 466 242  171655 

60000  83 497 325  365744 

80000  86 606 501  468492 

 

Then we generated iteration comparison graphs between coupled and uncoupled 

indexes by using iteration results in Table 13. Number of total iteration over growing 

number of inserted record charts are shown in Figure 48. In this figure, (a) shows 

total iteration count for coupled index structure, (b) shows total iteration count for 

uncoupled index structure and (c) shows both of them in a chart. 

By analyzing these charts we can say that; 
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 Coupled index structure has no meaningful behavior in nearest neighbor 

query. Because observed iteration count is related to distance based search. 

Sometimes this operation can need lots of dual distance comparison to find 

closest neighbor or sometimes not need lots of comparison. Comparison is 

relevant to the point density in searched boundary. 

 On the other hand uncoupled index structure has linear behavior in nearest 

neighbor query because of the match operation between primary and 

secondary indexes’ results. 

 

Figure 48: Nearest Neighbor query total iteration charts 

For nearest neighbor query result, we also drew duration comparison charts between 

coupled and uncoupled indexes by using duration results in Table 13, shown in 
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Figure 49. In this figure, (a) shows total time for coupled index structure, (b) shows 

total time for uncoupled index structure and (c) shows both of them in a chart. 

 

Figure 49: Nearest Neighbor query total execution time charts 

Time comparison charts’ behaviors are the same as iteration comparison charts. 

Again coupled index structure has no relation for different number of inserted 

records and also uncoupled index structure behavior is linear because of match 

operation between primary and secondary indexes’ results. 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 
 

 

In this thesis work, we worked on 3D spatial primary index and fuzzy secondary 

index. Firstly we implemented a coupled index structure that comprises both primary 

index and secondary index in monolithic X-tree index structure. Secondly we 

developed separated index structures as uncoupled approach. In this approach, we 

implemented X-tree index for 3D spatial objects and BPlusTree for fuzzy 

meteorological attributes individually. Then we performed these index structures 

with insertion and some basic queries to demonstrate the performance difference 

between them. 

For this aim a java based library which is called XXL API is used for base structure 

of X-tree. We also used XXL API for BPlusTree index structure. The source code of 

this project is adapted and modified for our purpose to handle both primary and 

secondary indexes. For fuzzy part Fuzzy-C Means algorithm is applied for 

fuzzification of meteorological values and also modifications are done on calculated 

membership values.  

In performance test section, according to the insertion operation uncoupled index 

structure was more efficient than coupled index structure because we did overlaying 

on coupled index structure to build fuzzy secondary index. So this operation badly 

affected insertion performance of coupled index structure. On the other hand, in 

querying coupled index structure was more efficient than uncoupled index structure 

because we run query in two different indexes and verified match operation over two 

result sets. For querying, we proved that coupled index structure more efficient than 

uncoupled index structure.   
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For future works, our coupled X-tree index structure can be compared with other R-

tree based index structure, such as R*-tree, in a suitable platform. Especially 

insertion operation and querying on fuzzy secondary index can be observed via 

testing with different number of record and different test cases. After testing special 

X-tree and special R*-tree structure, deductions can be made over their performance 

and features. 
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