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ABSTRACT

SPECTRAL AND STATISTICAL ANALYSES OF EXPERIMENTAL
RADAR CLUTTER DATA

KAHYAO GLU, Nazli Deniz
M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. ADzgir YILMAZ

December 2010, 189 pages

The performance of radar detection and imaging systems strongly depetigds character-
istics of radar clutter. In order to improve the radar signal processirgyitiighs, successful
analysis and modeling of radar clutter are required. For a successfidlmbradar clutter,
both the spectral and statistical characteristics of the clutter should keledvaVithin the
scope of this study, an experimental radar data acquisition system is dsdltiisanalyze
radar clutter. The hardware and the data processing system arefffitd/using generic sig-
nals and then a set of measurements is taken in the open terrain. In thisttiebiajtations
and problems encountered during the establishment of the system aneedjptedetail. The
spectral and statistical analyses performed on the recorded dateeanmes. The temporal
and spatial behavior of the measured clutter data are explored. Ththhtipal models pro-
posed so far in the literature are tested on the experimental data and the fittioglels to
the experimental data is confirmed using various goodness-of-fit teéatdlyFthe results of
the analyses are interpreted in the light of the radar system parametdreardracteristics

of the illuminated terrain.



Keywords: Radar clutter, range-Doppler processing, statistical sisgpectral estimation,

experimental data



Oz

DENEYSEL RADAR KARGASA VERSININ ISTATIKSEL VE SPEKTRAL ANALIZI

KAHYAO GLU, Nazli Deniz
Y iksek Lisans, Elektrik ve Elektronik tvhendislgi Bolumii

Tez Yoneticisi : Dog. Dr. AliOzgir YILMAZ

Arahk 2010[7139 sayfa

Radar tespit ve@untileme sistemlerinin basarimi radar kargasasinin karakggnistoaghdir.
Radar sinyal isleme algoritmalarini gelistirmek icin, radar kargasasmalizaedilmesi ve
modellenmesi gerekmektedir. Basarili bir radar kargasa modeli igigakanin hem spektral
hem de istatiksel karakterigtiortaya cikariimalidir. Bu ¢alisma kapsaminda, radar karga-
sasini analiz etmek icin, deneysel radar verisi toplama sistemi kurulmuBonanim ve
veri isleme sistemdnce jenerik sinyaller kullanilarak doulanmis ve ardindan acik alanda
Olcimler alinmistir. Bu tezde, sistemin kurulumu sirasinda karsilasilan sinirlaregiaoly-
lemler detayh bir sekilde anlatiimistir. Kaydedilmis vagerinde spektral ve istatiksel anali-
zler gergeklestirilmistirOlclilen kargasa verisinin zamansal ve uzaysal davranisi arastiriimistir
Literatirde simdiye kadabnerilen kuramsal modeller deneysel viégzerinde test edilmis ve
modellerin deneysel veriye uyumu cesitli uyum-igilitestleri kullanilarak dgrulanmistir.
Son olarak, analiz sonuglari radar sistem parametreleri ve inceldaem &arakterisgi

Isiginda yorumlanmistir.

Anahtar Kelimeler: Radar kargasasi, menzil-Doppler isleme, istatiksét aspektral kesti-

rim, deneysel veri
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CHAPTER 1

INTRODUCTION

RADAR (RAdio Detection And Ranging) is an electromagnetic remote sensitigimsnt,
used for detecting, ranging and tracking targets. Basically, an electrmtiagvave is trans-
mitted and the echo reflected by the target is used to determine its directioncdistan
speed. The return signal is composed of the direct path return fromrtfet, tenultipath re-
turns, echoes from other objects, thermal noise, and jammer if preseythirag except the

target, jammer and noise can be considered as clutter.

First, the clutter diers from noise in two ways: 1) They havdtdrent correlation properties.
The clutter is a correlated interference, i.e., it has a non-white powetrspec2) Unlike

noise, clutter is a type of echo, hence its powelfisaed by the radar parameters![25].

On the other hand, theftiérence between clutter and jammer is that the clutter is a passive

interference, where the jammer is an active one.

Lastly, the definition of target éfiers according to the function of the radar. For instance, the
clouds can be considered as clutter for aifficaradars, while as target for weather radars.
Similarly, the surface of earth is the target for synthetic aperture radadsthe clutter for

surveillance radars.

The radar clutter may be homogeneous or not. The homogeneity of clutiendiepn the
cell-to-cell amplitude variations. On the other hand, the clutter can be class#figuctuating
or non-fluctuating according to the temporal behavior. The behavidutiecin both space
and time is of great importance to radar detection mechanisms and imaging tegésolo
Besides, for a successful characterization of clutter, the spectiadtatistical properties of

clutter should be considered.



In order to find an appropriate model, the radar clutter, especially thexdrand sea clutter,
has been widely studied in the literature and various spectral and statistidelstave been
proposed[15],[16][122]/124]127]128]. Once appropriatatter models are obtained, they

are utilized to develop various detection algorithms and to evaluate their parfce as in

(31, (6], 23], [29], [34], [36].

The basic motivating factor behind this work is to examine spatial and tempuretral and
statistical characteristics of experimental radar clutter. In order to (perémalyses on the
experimental radar clutter data, an experimental data acquisition and da&sging system

is established within the scope of this study.
In the chapters that follow, analysis of radar clutter is presented as fllow

In Chaptei R, various methods of radar clutter analysis are examined. tRa@stoncept of
data storage structure is discussed. Then, the spatial and tempoetdtoonrand the Doppler-
spreading fect of clutter are studied. Chapiér 2 also covers the spatial and temjadistical

analyses of clutter, which complement the spectral analysis and yield a ¢eraptierstand-

ing of clutter. This chapter ends with explanation of the concept of clutliectwity.

In Chaptei B, the experimental data acquisition set-up used in this studycisbéels First,
the general block diagram of the system is given. After the transmitter andckiver blocks
are presented in detail, the signal processing of the received signal@éreed. Finally, the

whole system is verified using generic signals.

Chaptef# covers the analyses of the experimental data. The resultstdtiktcal and spec-
tral analyses performed on the received signal, and the calculation ofutiter reflectivity

are given for each measurement together with the characteristics of thedsterrain.

Finally, in Chapte[b, the results are concluded and the possible futuke aae stated.



CHAPTER 2

RADAR CLUTTER ANALYSIS

2.1 Data Matrix Construction

In radar signal processing, there is a well-accepted approach of aisiata storage structure
in order to illustrate various digital processing concepts. The data steuistuwonstructed
in such a way that spectral and statistical processing operations carfbened on its di-
mensions. Hence, in order to construct such a structure, first the donsrshould be de-
termined. Each of pulse number, delay of the radar echo, receivenehaumber, azimuth
and elevation angles of the antenna can be considered as a potentialidmudisie data
storage structuré [25, chap 3.1]. Among them, the ones which are ofshtageedetermined
according to the data acquisition scenario. For instance, for a phasgdaatenna system,
in which a group of antennas is used, one dimension can be assigned ¢ogher channel
number. On the other hand, if the angular position of the antenna doehage in the
data acquisition system, there is no need to define any dimension represeatamymuth or
elevation angle. Once the dimensions are determined, the complex basebgressof the
received radar signal are aligned according to them. The samples larg@form, where
I and Q represent the voltage of in-phase and quadrature componéhésreteived signal,

respectively.

In this study, only two dimensions of the return signal, which representulse mumber and
the delay, are of interest. Hence, throughout this thesis, the data ssirageire will be
mentioned as thdata matrix In order to illustrate how the data matrix is constructed, con-
sider the transmitted train of M pulses given in Figuré 2.1. The antenna bdaedsso the

same region is illuminated in each pulse repetition interval (PRI). For the rsigmal, each

3



PRI is divided into N successivange cells(range binsor delay bing, each corresponding
to a fixed delay. The return signal is then sampled and stored Myaxmatrix (Figurd Z.P),

so that each row represents the samples of a fixed PRI and each coluompesed of the
samples taken from successive pulses after a fixed delay. Sueceskimns of a given row

is referred to as thiast timedomain, while the opposite is called telw timedomain.

j« PRI X M >
123 Nl 123 Nl 1123 N Ni 1123 N
s e s e

>
\ T >
N RANGE CELLS TRANSMIT PULSES

Figure 2.1: Pulse train as the transmitting signal

RCn

1+jQ

fe—>|
Ts fast DELAY (RANGE CELLS)
FAST TIME

ECHOES FROM A
TARGET AT A
CONSTANT RANGE

Figure 2.2: Data matrix

In order to place the samples in the data matrix, the knowledge of sampling rédtethidi-
mensions is required. To begin with the fast time,Tlgks: denote the time interval between
two successive range samples from a single received pulse. Acgdadihe Nyquist crite-
rion, the minimum sampling rate required for unique recovery of the redaigmal is twice
its bandwidth. In a radar system, the received signal gives informatiaut #oe reflection of

the transmitted signal from fierent range cells. Hence, it will be appropriate to model the

4



radar return signai(t) as the convolution of the transmitting signét) and the range reflec-
tivity function of the illuminated area(t) [25, chap 3.1]. Then, the spectrum of the return
signal is the product of the spectraxgf) and p(t). That is,

r(t) = x(t) = p(t) (2.1a)
R(f) = X(f) - P(f). (2.1b)

Since the spectrum gf{t) is assumed to occupy a larger bandwidth than thaf{25, chap
2.8], the spectrum of the return signal is determined by the latter. Henlgetherbandwidth
of the transmitting signal can be taken into account in determining the Nyquigilisg
rate. Thus, the minimum frequency of sampling in rarfgesast, can be chosen as twice the

bandwidth of the transmitting signdyx, i.e.,

Fsfast> 2 Brx (2.2)

according to the Nyquist sampling theorem. In order to find the unkr®yynin the above
relation, consider a rectangular pulse of duration PW as the transmittind. sigtreugh it

is not bandlimited, its bandwidth can be approximated by the Rayleigh bandwgidth a

1
Brx= —. 2.3
TX = bW (2.3)

The pulse width PW of the transmitting signal in relatin12.3) also determines tige ra

resolution of the system as follows

c-PW
Rees = > (2.4)
Combining the relations if (2.2, (2.3), aid (2.4),
Fo fast> —— (2.5a)
s, fast = Rres .
T fast < R’Tes (2.5b)



Then, the fast time sampling interval, or equivalently the range cell spastiog)d be chosen
considering the range resolution. It is important to state here the importamaage cell
spacing for discrete time target detection mechanism. A target peak in ati@saell may
be missed if an appropriate sampling is not provided in the range and thersasnplenear
the target. Hence, the range cell spacing should be fine enough to satohich details as
possible from the terrain. As a result, the Nyquist sampling rate in fast timeidpire,
Fs tast, IS determined according to the transmitting signal, which is constructed in suaf a

that it satisfies the range resolution requirement of the system.

Having found the fast time sampling criterion, the next step is to determine thetishew
sampling interval related to the data matrix, i.e., sampling along one column. Théirslew
data represent the samples taken from the same range cell in each mulsegi¥en range
cell, both the intrinsic motion of the illuminated area and the radar platform may yikdep
to-pulse phase variation, which corresponds to a Doppler shift. Thidtséa a spread in
the spectrum of the slow time signal, hence a nonzero Doppler bandwidtithap 2.8].

According to the Nyquist sampling theorem, the frequency of sampling in slow Egow,

can be expressed as

Fsslow>2-Bp (2.6)

whereBp represents the bandwidth of the slow time signal.

On the other hand, it is obvious that the slow time sampling intefgd;ow is equal to the

PRI of the pulse train. Then, the frequency of sampling in slow tif&iow IS

1 1
F - - - _— 2.7
s, slow Ts ow PRI ( )
From (2.6) and[(Z2]7),
1
Fsslow= —>2- BD (2-8)

PRI —

The selection of g sjow Or PRI is important from two points of view:

1. The unambiguous Doppler spectrum width is given by

6
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IBD:ﬁ-

(2.9)

An unambiguous Doppler spectrum wigth, which is small with respect to clutter and
target Doppler frequencies yields Doppler ambiguities. In order to eliminappler

ambiguitiesBp should be sfiiciently high, which requires PRI to be decreased.

2. The unambiguous range can be evaluated as

_c-(PRI-PW)

Rua 5

(2.10)
That is, for a betteR,5, PRI should be increased.

It is important to note that there is a tradfiHoetweerBp andR,,. For a betteBp, PRI should

be decreased causiRy, to decrease.

Apart from the range and Doppler ambiguities, the Doppler resolidigg which is impor-
tant for target detection, is also of concern. If the number of pulsesnisteleé by M, the

increased PRI improves the Doppler resolution:

B 1 B 1
~ totallength M- PRI’

(2.11)

Dres

Consequently, the slow time Nyquist sampling ratesjow can be determined considering the
unambiguous Doppler spectrum width and unambiguous range requireaiehts system

together with the target detection concerns.

To sum up, the sampling rates in fast time and slow time of the data matrix can be neinly d
termined according to the Nyquist sampling theorem. However, some othetacrégarding
the performance of the system, such as detection and imaging resolutiombigigies, are

also taken into account.

2.2 Spectral Analysis of Clutter

The spectral analysis of clutter is of great importance to successfulndesigqdar proces-

sor. In order to better understand its importance, the principle period eherig Doppler
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spectrum shown in Figufe 2.3 should be examined [25]. In the figure, tarapcontents
of targets, noise and clutter can be seen. In this spectrum, the zerdeDbjpcorresponds
to the DC return, i.e., the returns from stationary targets. Moving targetaapthe spec-
trum according to their relative radial velocity with respect to the radag. r€beiver noise is
spread uniformly over the whole spectrum. Finally, the clutter occupiesi@regound the

zero-Doppler bin due to the intrinsic motion of clutter sources.

clutter
maoving target
moving targets

\ \ noise
. -
R | l l ="
- T T -

PRF PRF

< > Pl

2 2

clutter region

Figure 2.3: Generic Doppler spectrum

According to this spectrum, for a target which is outside the clutter regiorgrtlyeinterfer-
ence is the thermal noise. However, the spectral contents at or neaDappler frequency
are dominated by the clutter. Hence, a target in this region should overcasrautter be-
sides noise in order to be detected. However, poor knowledge of teeralpeharacteristics
of clutter may yield some degradation in the performance of moving target tratidTI)

radars.

Consider the data matrix which is constructed in Sedfioh 2.1. The Dopplarspeor each
range bin can be obtained by computing the discrete Fourier transfori) (er the slow-
time samples. Then, the slow-time dimension of the data matrix is converted into tipeDop

frequency.

Based on the Doppler spectrum obtained for a given range bin, ther ppeetral density
(PSD) of the slow time sampl@/ﬁ)t’\il can also be estimated. In this nonparametric method,

the PSD estimator, which is given in



—iwt

, (2.12)

&P (w) = M

is called theperiodogram

On the other hand, the concept of correlation time introduces anotheraabptio the spectral
information. In order to understand the behavior of clutter in time, it is also itapbto
answer the following question: “How long does it take for the clutter compbtoechange
significantly?” As stated in[12], the temporal information contained in theetation time
is equivalent to the spectral information in the random process in time, loaste fact that
the DFT of the autocorrelation function gives the power spectral denfigner-Khintchine
Theorem). Then, assuming the stationarity of the slow time samples, the coaraloghich

is also a nonparametric method, gives the PSD estimate according to

N-1
dolw)= > FRe™, (2.13)
k=—(N-1)

wherer'(k) can be unbiased or biased autocovariance of the slow-time data sequence

N
Funiased) = 1 > YOY €-K), 0<k<N-1 (2.143)
t=k+1

| [

N
> yOy -k, 0<k<N-1 (2.14b)

Icbiased(k) = N
t=k+1

Note that, if the biased autocovariance is used, the correlogram estimatedseequal to the

periodogram([26].

Although both methods provide good resolution foffisiently large data sequences, the
variance of the estimates is high [26]. In these methods, when a data sangdiedsta the
sequence, this new sample is used to make estimation at a new additionahfyemstead
of improving the estimate on hand. Hence, the variance of the estimate candetieased

by increasing the data length.
In order to improve the PSD estimate, various methods are proposed. temc@sas in the
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modified periodogram methpdon-rectangular windows may be used to make the edges of

the signal smoother, thereby reducing the spectral leakage.

Another method is theévelch methodn which the data sequence is divided into segments (the
segments may overlap) and the modified periodogram is computed for eankrge Then,

the average of the estimates from each segment gives the new PSD estimate.

In these methods, the variance of the PSD estimate is decreased relativpéoiddegram.
However, the following two points should be noted: 1) The average pofuiie windowed
signal changes due the samples attenuated by the non-rectangular siftivee, a normal-
ization should be taken into account. 2) There is a tratibetween the resolution and the
variance of the estimate. Methods used to decrease the variance of thaéeedéigrades the

spectral resolution.

The PSD estimate of the slow time samples gives an idea about the spectealtehstics
of the clutter component in that range bin. In the literature, there are madigston the
spectral characterization of clutter. For instance[in [14], the spemirgbnt of windblown
trees is examined on the recorded radar clutter data and also a compreltemsparison
with the previous studies is provided. According to this study, the measuwpgl® spread
of windblown foliage is found to be about 1/sec under light wind conditions at levels of
60-80 dB below the zero-Doppler peak. Also, it is reported that theagpdee to clutter is
found to increase with the force of the wind. For windy conditions, theagpie reported as
3 nysec. However, as opposed to many previous studies, the spreaddseekpet to exceed
4 nysec even for gale force winds. The inconsistencies with the previouiestaige mostly

attributed to the problems of the measurement systems.
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2.3 Statistical Analysis of Clutter

In a radar system, the interference and target echoes are repdebgrgatistical models,
hence radar detection can be considered as a statistical decision pf@blezhap 6]. For a

given range cell, target detection can be modeled as a binary hypotlstisig tghere

Ho ~ Target isabsent

H; ~ Target ispresent

and the decision may result in one of the four possible cases given inZdble

Table 2.1: Target detection decision table

DecideHg DecideH;
Target absent | Correct rejection| False alarm
Target present Miss Detection

The decision ofbsencer presencef a target can be made according to a test statistic which
is computed for the current scenario and compared to a threshold valneex&mple, the
test statistic can be derived based on the Neyman-Pearson criterioat tetprobability of
detection is maximized for a given probability of false alarm. Such detecterseerred to

asconstant false alarm rate (CFAR) detectors

The probability of detection and the probability of false alarm can be expdess

Pp = fm by (v | Hi) dy (2.15a)

Pen = fm o, (v | Ho) dy (2.15b)

respectively, wherg represents the observation from the cell under test (CUT). Theabser

tion composing of N samples can be considered as a vector in an N-dimdrsgane:

y=[yL YNl (2.16)
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Each vector in that space corresponds to one of the decislgrr H;. The regionfi;
denotes the set of all observations for whithis chosen. The conditional probability density
functions (pdfs),py (y | Ho) andpy (y | H1), represent the relative likelihoods of observation
y under each of the two hypotheses, ildyg,andH;, respectively. When the decision rule is
derived based on the Neyman-Pearson criterion as in AppEddix A, thetaéstic in [Z.17),
which is also called thékelihood ratio, is found to be a function of these two conditional

pdfs.

py (y | Hl) ~Hi

_ 2.17

py (v [ Ho) o ” 40
In order to model these two conditional pdfs, the distribution of any intenies that is present
in the CUT should be given. Even all the parameters should be knownllkestke distribu-
tionitself. Hence, in the presence of clutter besides noise, perfect&dgeof its distribution

becomes important in determining the test statistic used in target detection.

Besides, the statistics of clutter is of great importance to the assignment siialdesalue
for the decision rule. The threshold level for the CUT is selected acaptditthe level of
interference, i.e., noise, jammer and clutter if present, in that CUT. Theaentede level is

directly related to the parameters of the clutter distribution and it may vary irespattime.

Radar clutter statistics can be analyzed in two main frameworks: 1) spatiafioarand 2)
temporal behavior of the clutter][9], [12], [25, chap 2.3]. The forntaracterizes the cell-to-
cell variation of clutter, whereas the latter is based on observation ot#ispange cell over
time. Generally, the spatial and temporal distributions are found tofferefit. Both spatial
and temporal analyses are carried out on the clutter amplitude, in-phaseniponent, and
quadrature (Q) component. The aim of these analyses is to assess é¢hlgingdlistribution

of the experimental radar clutter data.

In the first subsection, spatial analysis of clutter statistics is discussedsigificant role of
spatial variation of clutter in radar detection and imaging mechanisms is statedreTibal
distributions proposed in the literature up to now for clutter amplitude and | asah@ponents

are presented.

The second subsection covers the examination of clutter statistics in terms afr&bwauri-

ation. Distributions suggested to model the temporal characteristics of clutkespecific

12



range cell are also given.

In the third subsection, the concept of space-time compound model is eegblanal various

compound distributions for the clutter amplitude statistics are presented in detail.

This section ends with the complementary methods used to check the fit oiregptl data
to the proposed hypothetical models. The main advantages and dravabfiose empirical

fitting methods are briefly explained.

2.3.1 Spatial Statistics of Clutter

At a given time, the clutter varies from one region to another. The variatiatutter in
space is described by its spatial distribution. The distribution of clutter inesgacrucial
in terms of the performance of radar detection mechanisms. Moreoveen tr interpret
high resolution SAR images for terrain classification and target recognitias required
to extract the detailed spatial texture of clutter in the illuminated region [28]. Asahge
resolution increases, it becomes possible to resolve discrete structihesregion and the
range heterogeneity of the clutter prevails. Hence, the spatial varifinkdter may increase.
That is, the probability of clutter amplitude taking values away from the meameases.

Hence, an increase in the variance causes the tails of the clutter pdf tprise u

The dfect of the clutter tail on the radar detection performance can be explasretiaws:

Due to the long tail of the highly-varying clutter amplitude, the return signal mesy lerger
values in some range cells. For the fixed threshold detectors, this mayireautislead-

ing peak crossing the detection threshold level, hencePtheincreases. As opposed to
fixed threshold detectors, CFAR detectors provide adaptive threshalld lior diferent in-
terference levels in éierent range cells in order to satisfy the required detection performance.
However, if clutter is the dominant interference, rather than thermal nmosgentional CFAR
detectors may dgter from high spatial variation of clutter [25, chap 7.4]. When the clutter is
highly heterogeneous over the range cells, the parameters of clutterwudistribwhich are
directly related to the clutter level, ftler significantly from cell to cell. Hence, conventional
CFAR detectors have filiculty in setting the correct threshold level near the clutter edges,
which may result in either a false alarm or miss of a target in undesired ipi@pm Knowl-

edge of the spatial variation of clutter helps to interpret these possible wemigjons. Also,
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to overcome the problems in the clutter edges, understanding the spatialstiitgics forms
a base to develop alternative detection mechanisms, such as Greatesfo{@B-CFAR)

and Range Heterogeneous CFAR (RH-CFAR) [29].

Having explained the significance of spatial distribution of clutter in terms tefatien and
imaging performance, some hypothetical spatial models proposed in the liéecatu now
be examined. However, before presenting the models, spatial calibratialide applied to

the return signal. In the next section, these calibration operations degregh

2.3.1.1 Calibration for Spatial Analysis

In order to make the spatial analysis of clutter data independent of distadaz|l area of the
illuminated region, two calibration operations should be applied to the recsigedl. For
these calibrations, consider the fast time dimension of the data matrix explai@edtiori 2.11.
The fast time complex samples represent the signal return from sueemsge cells in terms

of voltage.

»| Fast Time

RC, RC; RCN
PRI,
PRI,
PRI;
~
\\\
\\
S
Cj: complex
Slow Time (voltage)
PRIw

Figure 2.4: Data matrix and spatial calibration

For the first calibration, consider the radar power equation. Accordirthe radar power
equation, the power of the return signal decreases with the fourth puivtlee distance, D.

That is,
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1

Preceived D4 (2.18)
Then, the received voltage decreases \ith
1
Vreceived™ E (2.19)

Hence, the decrease in the voltage of the fast time samples due to distanltelshoom-
pensated by multiplying the samples \A/Rﬁ whereR; represents the distance of tfferange
cell to the antenna. IM_(Z.POR is the range cell spacing ands the range cell index, i.e.,

i=1,2,..,N

R=i-R (2.20)

The second calibration required for the spatial statistical analysis is theatedibwith re-
spect to the illuminated cell area. Although the illuminated range cells are eqpaltgd,
they are not of equal size due to the azimuthal beam of the antenihe dfect of antenna

beam on the cell area is illustrated in Figlrg 2.5.

According to the radar power equation, the power return is directly ptiopal to the cell
area. Then, the relative return from the close-by cells will be smaller thanetts that are

far from the antenna, since the cell area decreases as approadhedattenna. In order

to eliminate the ffect of unequal power return due to unequal cell areas, normalization is
required. The power return of each range cell should be divideddygdh aread;, where

i represents the range cell index, i.es 1, 2, ..., N Equivalently, the complex baseband

samples should be divided by the square rod;of

To sum up the calibration operations in the fast time,detlenote the complex baseband

sample from thé!" range cell (FigurE2]4). Then, the calibrated sample

(2.21)

.
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Fixed Beam Antenna

Figure 2.5: Azimuthal antenna beam and the area of the illuminated range cells

should be used in the spatial statistical analysis. In the end, the overatbtalibfactor is in

the order ofR.

Finally, it is important to note that these corrections are applied after the@ataceived, i.e.,
at the stage of data processing. However, there is also a mechanistndiet here called

sensitivity time control (STC)vhich provides a range-dependent gain during data acquisition

[12], [17], [23], [33].

2.3.1.2 Spatial Clutter Models

There are various statistical models suggested for the spatial behavamaf) components
and amplitude of the radar clutter. In this chapter, the proposed pdfs aimdottrameters
are examined in detail. The properties of the distributions which will be redjdoethe

empirical fitting tests, such as cumulative distribution functions (CDFs) amdraments are

also presented in this section.

In radar systems with low range resolution, the spatial behavior of | andn@penents of

clutter can be modeled with Gaussian distribution [30]. Since the resolution jsloange
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cell can be assumed to consist of &isiently large number of independent scatterers. Then,
the resulting distribution can be approximated by Gaussian pdf based omeritraldimit
theorem (CLT). Let the random varialfq denote the voltage of | or Q component of the
clutter in a range cell § stands for spatial). Then, the proposed Gaussian pdf and CDF are

given as follows

1 Sio — 1)?
Pcaussial SIQ) = 7 eXp[—% (2.22a)
1 SiQ —H
FcaussiaSIQ) = > 1+erf (2.22b)
202

where the parametersando represent the mean and the standard deviatioredidl is the
error function. The fect of changing these two parameters on the distribution is depicted in
Figure[2Z.6. The parametgrchanges the location of the pdf, wherés related to the scale of
the pdf.

(@) (b)

Figure 2.6{ (d) Theoretical Gaussian df] (b) Theoretical Gaus<idh C

However, CLT fails as the range resolution is improved, since the numltsatterers in a
resolution cell becomes finite or one of the scatterers domiriates [29] eHegcassumption
of Gaussian pdf for the distributions of | and Q components of the clutter isare valid. It

has been stated that the | and Q components of high resolution clutter aes gk Gaussian
distributed | and Q[[17]. If the range resolution idfsiently high, the radar system will be
able to resolve the heterogeneity of the region. That is, radar becomeseamsitive to spatial

variations of clutter from range cell to range cell, which results in a spikyatdteristic.
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For a complex random variable, whose real and imaginary parts aresindept and Gaussian
distributed, the amplitude is then Ricean or Rayleigh distributed. Thus, the aneptfud
clutter in low resolution radar systems can be either Ricean or Rayleigh modkl|éte

clutter amplitude in one range cell is denoted by the random variggle,

Sz = 1[S| 2+ SQ2 (2.23)

where the | and Q components are Gaussian with non-zero mean

S| ~ N(vcos, c?)
Sq ~ N(vsiné, c?)

thenS; is Ricean distributed as il (2124)lg(.) is the modified Bessel function of the first

kind with order zero.)

(Sz2 +V2>

2c2

|O(SZ—V), >0 (2.24)

Sz
Pricead Sz; C, V) = 2 exp{— =

The Rayleigh distribution is a special case of Ricean distribution.9f0, the Ricean pdf is

transformed into a Rayleigh pdf. That s, if

S| ~ N(0,c)
Sq ~ N(0, )

thenS; is Rayleigh distributed where> 0 is the scale parameter:

2
S S
PrayleigfSz; C) = —i exp[—iz] , =0 (2.25a)
C 2c
Sy 2
FRrayleig{Sz; C) = 1 — exp —a| %= 0 (2.25b)

The Rayleigh pdf and CDF are plotted in Figlirel 2.7. Kenoment of Rayleigh distributed

random variable is as follows
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k
E{SE rayieig] = ¢ 292 F(l + E) (2.26)

wherel(.) is the gamma function.

Theoretical Rayleigh pdf Theoretical Rayleigh CDF
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Figure 2.7{ (@) Theoretical Rayleigh pff,|(b) Theoretical Rayleigh CDF

Moreover, the intensity of a complex Gaussian clutter is denoteSdgs in[2.2¥ and it is

exponentially distributed.

Sp=S1%+Sg% (2.27)

For high range resolution systems, since the | and Q components deviat&#ossian, the
deviation of amplitude statistics from Rayleigh (or Ricean) is obvious. As mqiabefore,
the spiky characteristic of the clutter amplitude due to high resolution makes tlod thé
pdf rise up. Hence, distributions with longer tails are required to model clatbglitude of
high resolution. There are several distributions proposed to model th&®agleigh clutter

amplitude. Among them, Log-normal and Weibull are the most common ones.

The Log-normal distribution is used to model the clutter amplitudélin [3], [61).[3t has

two parameters, namely, the meanand the standard deviatian The pdf and CDF of
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Log-normal distribution are given i (2.28) and plotted in Fidure 2.8.

1 (In'sz - )
PLog-normal(Sz; i, 07) = ——— eXp[—— , S >0 (2.28a)
Sy V2no2 202
1 Insy; —u
FLog-normal(Sz; p,0) = 5|1+ erf(—)] , =20 (2.28b)
o 2 V252
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Figure 2.8: Theoretical Log-normal pdf and CDF

Thek moment of a Log-normal random variable is

1
E{S¥ Log-normal = exp[kﬂ + Ekzaz] (2.29)

Sometimes the tail of the Log-normal pdf is too long for clutter amplitude taffit [8]thls
case, the Weibull pdf, whose tail may be lighter than that of Log-normaktillionger than
Rayleigh, can be used to model clutter amplitude. Weibull distribution is a twanpeter

distribution, wherea > 0 is the scale parameter, abd- 0 is the shape parametér (2.30). As
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b decreases, the tail becomes heavier. Fifiurde 2.9 shows how the tail afftblegmges with

b. It can be inferred from the figure that it is the shape parameter whigds ghe Weibull

distribution its flexibility. It is also important to note that Rayleigh is a special o&%éeibull

distribution forb = 2.

b
Pweibul(Sz; & b) = baPs, P-1 exp[— (5) ] 720

s, \b
Fweibul(Sz; a,b) = 1- exp[— (EZ) ]

Theoretical Weibull pdf Theoretical Weibull CDF
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Figure 2.9: Theoretical Weibull pdf and CDF

Thek™ moment of Weibull random variable is given by

k
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2.3.2 Temporal Statistics of Clutter

So far, the spatial behavior of clutter, i.e., the change of clutter fromamgercell to another,
has been examined. However, the clutter in a range cell may also vary in tiereceHin
order to maximize the detection probability for a fixed false alarm probabilityg#tection
threshold level should be adjusted in time considering the variation of cluttegiiena range
cell. That is, the knowledge of temporal behavior of clutter is important in teximarget
detection mechanisms, as well as the spatial statistics. Thus, in this sectiormp@dke

variations of clutter will be studied.

Itis important to make the distinction between the reasons of spatial and tewgistions of
clutter. The spatial variations of clutter are associated with the land covethéedayout of the
backscatterers, such as buildings, trees, agricultural fields in the illurdiretge cells. As
explained in Section2.3.1, the range resolution of the system is the main pardrac#ects
the spatial behavior of clutter. On the other hand, the temporal behaviduttér mainly
depends on the fluctuations of the backscatterers in a given rangeeetime. However, it
is important to consider the indirecffect of land cover on the temporal behavior of clutter.
For instance, a range cell dominated by a stationary scatterer, suchuéldiagh exhibits
very small or no fluctuation in time, where a range cell containing trees usasiliits more
fluctuations. Thus, it can be concluded that the range resolution of stensyalso fiects the

temporal statistics of clutter by changing the contents of range Cells [8].

Apart from the range resolution, it is self-evident that the weatheritondeads to temporal
fluctuations in clutter. For example, the wind causes the clutter amplitude toehatime.
Here, a question may arise on how long the clutter must be observed intorexiract its
temporal behavior. It is obvious that the observation time must tieiguntly long. However,
the length of the observation time must be chosen according to the focus refsinté-or
example, a long-term observation on the order of days may help monitor thens¢&rends
of clutter, where an observation length on the order of seconds maidprthe short-term
characterization of clutter [12]. However, it can be predicted that tiservation length can

be practically limited by the maximum allowable data record length of the data acquisitio

system/[8].
In order to obtain the temporal statistics of clutter, the returns fkdrpulses are analyzed
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for a given cell. That is, the slow-time dimension of the data storage matrix isterest
(FigurelZ.1D). If the random variable; denotes the clutter amplitude of a fixed range cell
over a period of time T’ stands for temporal), the distributions proposedTfgiare examined

in the following subsection.

» Fast Time

RC1 RCi RCN

PRIy

PRI

PRI3

S
Cj: complex

I Slow Time I (voltage)

PRIy

Figure 2.10: Data matrix for temporal statistics of clutter

2.3.2.1 Temporal Clutter Models

Also for the temporal statistics of clutter, a number of models are proposed litdrature.

For the temporal case, the amplitude of clutter is considered to be either RicRayleigh

distributed [8], [12].

The return from scatterers in a range cell can be classified into two tgmésady component
and a dffuse component. The former is the return from fixed discrete objects suhldings
and it does not change in time; where the latter is formed by the returns framthecbjects
such as wind-blown foliage and it contributes to the nonstationarity of the cj8jteA range

cell may contain one or both of these components.

The clutter amplitude with a large steady component andfas#i component in a range cell

is modeled with a Ricean distribution. That is,

23



(tzz +V2)

- |0(—), t7>0 (2.32)

tz
Priceadlz; C,v) = ? expl_

On the other hand, theftlise component itself is modeled with a Rayleigh distribution, which

is a special case of Ricean distribution.

) tz tz 2
Prayleigtz; €) = 2 eXp[—Z—CZ], tz>0 (2.33a)
t 2
FRrayleigitz; €) = 1 - EXD[—%} , tz>0 (2.33b)

As explained previously, the temporal behavior of clutter depends onritletaver and range
resolution as well as the weather condition. Tlfie@ of range resolution on the temporal
behavior can be exemplified as follows: If a fixed large scatterer is isdiaiedsmall moving
scatterers as the range resolution improved, the range cell with movingersatpproaches
Rayleigh model where the range cell with the large scatterer is Ricean disttibGonse-
guently, it can be concluded that the temporal behavior of clutter may elfemrg one range

cell to another.

2.3.3 Space-Time Compound Clutter Statistics

Since both the spatial and temporal statistics of clutter play an important rolegéet thtec-
tion mechanisms, it is sometimes useful to define the clutter as a function of lzmté apd
time. Based on this, a fierent approach to clutter modeling is introduced: ¢benpound
clutter model The nature of the compound clutter model enables both temporal and spatial
correlation properties of the returns to be taken into account [IL1], [R¥this model, the
clutter amplitude is decomposed into two independent processes, whictlatexirto time

and space.

The first component, thepecklerepresents the spatial voltage fluctuations in the fast time
dimension. The speckle component generally exhibits a short decomdiatie. The speckle
is modeled so that the mean of its power IeEe{lSF} = 1 [28]. The underlying power level

of the clutter is related to the second component, namelyexieire The texture, which
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represents the ‘local power’ variation of the return signal, decorielata relatively longer

time [21]. The ‘local mean voltage’ level, which is square root of the textonadulates the

clutter amplitude, hence it is called theodulating component

Accordingly, the clutter amplitude can be written as

where

Cz = vV x|S| (2.34)

|S| : amplitude of the speckle

T : texture

/T : modulating component

Return Power

@ Temporal average (fixed range)
T Standard deviations (fixed range)
--——- Spatial variation of temporal averages

----- Space/time snapshots
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Figure 2.11: Space - time compound model [21]

Figure[Z.11 illustrates the concept of space-time compound clutter model f2tJa fixed

range, the temporal average of the return power is calculated. Thespomds to the ‘local

mean power’, which is a function of range. Then, the spatial variationnopteal averages

is used to construct a space-time compound model. That is, given the témypenages of

local amplitudes, the spatial variation of clutter is expressed by the condipooizability
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p(cz | m) (‘C’ stands for compound). Hera denotes the local mean voltage, or equivalently

the modulating component. Then, the clutter amplitude can be found ffron (2.35)

p(c2) = fo " p(cz 1 m) p(m) dm (2.35)

2.3.3.1 Compound Clutter Models

The K-distribution is the most widely known model among the space-time compoode

els. It was first proposed for the sea clutter, but due to its ability of cerisigl both spatial

and temporal the correlation properties, it is also applied to the other typdsttar [27].

For the K-distribution, the speckle is Rayleigh distributed, and the texture i€ledvith

the Gamma or the Chi-square, which is a special form of Gamimia [15]. (dicgdy, the
modulating component is Root-Gamma or Chi distributed). Then, the clutter angalijuid
K-distributed. In[[2.36), the parameteasandv are the scale and shape parameters, respec-
tively. The shape parameteris related to the number of scatterers in a range cell. Hence,
lower v corresponds to smaller number of scatterers in a range cell, which yietds/gehtail

due to spiky amplitude characteristi€s|[35].

bk (Cz; av) = ari(v) (CEZ) Ky1 [z%z] >0 (2.36a)
Fr(cz av)=1- % (%Z) K, [2%2] ¢z > 0. (2.36b)

Thek™ moment of K random variable is given in (2137).

o (2.37)

K-distribution is also used to model the clutter intensigy[20]. The K-distributed clutter

intensity is given as follows

Nl=

7 Ky-1 [ZaCP

L. >0, 2
i | =0 (2.38)

pk(cp; &, v) =
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Figure 2.12: Theoretical K pdf and CDF

The K-distribution is widely used to model the clutter amplitude. However, theképam-
plitude and the texture may deviate from Rayleigh and Gamma distributionsctigspe As
a result, the K-distribution loses its validity. For example, consider the textumponentr

modeled with the Gamma distribution as in

T

1 v-1 T
pr(r; &v) = —— (5) exp(—a), T>0and a=

ar(v)

< I=

(2.39)

wherey is the mean ang?/v is the variance of the texture. InJ16], it has been stated that the
texture may deviate from the Gamma distribution due to bad weather conditionsoWéo,

if the parameter goes too, the variance goes to zero and the textuegpproaches the mean

u. (This corresponds to the homogeneous texture and the paranegterbe considered as

a measure of texture homogeneity [[28].) In this case, the clutter amplitude igleidgta
speckle multiplied with a constant modulating component, which results in anclyéigh

pdf instead of a K pdf.
From the point of speckle, the range resolution plays a dominant role indfndbdtion of the
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speckle amplitude. As the range resolution is improved, the speckle amplitudéederom

Rayleigh. Hence, the K-distribution is no longer a valid model for clutter amgitud

Consequently, the need arises for defining general statistical modélstfothe speckle and
modulating component. The generalized Gamma model will be an appropridate ¢bo
both components, since many pdfs can be derived from this model. Tkeealjead Gamma
modelGI is given by [2.4D), whera > 0, b > 0, andv > 0 are the scale, shape, and power

parameters, respectively:
b X bv-1 X b
pGr(X, a, b, V) = ar—M (a) exp[— (a) ] 5 X > 0. (240)

Adjusting the parameters in(2]40), Gamma, Weibull, Rayleigh, Exponential,apdormal
pdf can be obtained [16]:

X ~GI'(b=1) = X ~Gammal) distributed

X ~GI'(v = 1) = X ~ Weibull (W) distributed

X~GI'(v=1&b=2)= X ~ Rayleigh R) distributed

X ~GI'(v=1&b=1)= X ~ Exponential E) distributed

X ~GI'(v > o0& b— 0)= X ~ Log-normal LN) distributed

For the generalized model, the distribution of speckle amplitude is denoted by

. 3 bl Cz bivi—1 cz by
Per(Cz | m; by, v1) = Py (E) eXp[— (E) , ¢z>0 (2.41)

and the pdf of the modulating component by
] 3 b2 m bovo—-1 m by
pGr(m, a, b2, V2) = m (5) exp[— (E) ] , m> 0 (242)

Then, the pdf of clutter amplitude is called theneralized compound (GC) modi&6] and it

is obtained from
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Pec (cz) = fo ) Per (Cz | M) per (M) dm (2.43)

Various clutter models can be obtained by adjusting the parameters of the G&. nirad
example, Weibull-speckle Gamma-texture compound model is a special ¢aed3E model.

In this case, the deviation of speckle from the Rayleigh distribution is takematimunt. On

the other hand, for theompound Gaussian (CG) modgetise speckle amplitude is Rayleigh
distributed, but the texturefiiers. The K-model given previously in (Z]136) and the generalized
K model with Log-normal texture [28] are examples of (A€ model. TheGeneralized K
(GK) modelis an important special case of the GC model, since both K and Weibull results

from this model.

e X ~GC(by = by = b) = X ~ Generalized KGK) distributed
e X ~GK(b=2&v; =1) = X ~K(K) distributed

e X ~GK(vy1 =1& vy =05) = X ~ Weibull (W) distributed

2.3.4 Empirical Distribution Fitting

So far, the statistical distributions proposed to model radar clutter both oe spad time
have been presented. Once an experimental clutter data set is consttiuete are various
methods used to check whether it fits a theoretical model or not. In the Stahice, various
exploratory tools based on graphical characteristics of the distributsoic, as histogram,
guantile - quantile (Q-Q) plot, etc., can be applied. This will help hold a rudimgniaw

about the distribution of experimental data. However, it will be definitely ermiugh to
conclude. Hence, the preliminary guess about the empirical distributiaridshe verified

by applying more formal methods, such as goodness-of-fit (GoF) testisis section, these

complementary empirical fitting methods will be explained briefly.

At first, let x be the vector of empirical data samples, whgrenay represent the clutter

amplitude or [Q component in either slow time or fast time domain.

X =[x %] (2.44)
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In order to extract the underlying distribution of the empirical clutter data,usislly better
to plot the histogram of and visually compare it to the pdfs of various theoretical distribu-
tions. By this way, some irrelevant distributions may be immediately eliminated, whiie so

distributions may stand out.

During this preliminary step, some other measures can also be made usein&téiace, con-
siderskewnesandkurtosis which are the '8 and the &' order normalized central moments,
respectively. The skewness, given [0 (2]45a), is related to the asymofedrgistribution
around its mean. On the other hand, the kurtosis giveh in (P.45b) is a reezfstelative
peakedness or flatness of a distribution. Since both parameters atly exaal to zero for
Gaussian distribution, deviation of these parameters from zero can bidemd as a measure

of deviation from Gaussianity.

,  E{Zz-m)?
3
E{@-m)"”
_ 4
Vs = E{(Z—#Z)}z -3 (2.45b)
E{(Z - pz)?)

(2.453)

Y

Having obtained a first guess about the theoretical model for the empdata)l GoF tests
based on the statistical theory can be applied. Hence, first, a binarthiegitest problerh

is constructed where theull andalternativehypotheses are defined as follows:

Ho ~ Empirical data follow the specified distribution

Ha ~ Empirical data do NOT follow the specified distribution

The decision whether to accept or rejetgtcan be made based either on the pdf of the distri-

bution as in thearea testsor on the CDF as in thdistance tests

There are various GoF tests such as Chi-Square (CS), AnderstingdAD), Kolmogorov-
Smirnov (KS). Among them, KS test is a commonly used tool to check goodhésdue to
its applicability to any distribution and straightforward computation. KS testrtpen the
comparison of empirical and hypothetical CDFs rather than their pdfstder @o construct

the empirical and hypothetical CDFs, first the empirical datare sorted in the ascending

! Hypothesis test terminology is given in Appenfix B
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order. The resulting empirical CDF is a step-function that increasegrbgtieach data value

i (Figure[Z.1B). On the other hand, the hypothetical CDF is evaluated latlese value.

The test statistic of KS test is a measure of the maximum absolfiezatice between the

empirical and hypothetical CDFs and is given®y

Dn = sgplsn(m) - F(x)l, (2.46)

where,

X: Ordered data point$;=1,...,n
Sn(X): Empirical CDF (step function)
F(X): Hypothetical CDF.

D, can be alternatively expressed as

i—1 i
D, = {2&1?‘( F(x) - —n F(xi)). (2.47)

Once the test statistic is evaluated for the empirical data, it is compared ¢atibhal value
given in the standard KS table for some significance levahd sample siza. The critical
values in the standard KS test table do not depend on the distribution whieing tested.

(Standard critical values for KS test are provided_in [1].)

Next, the decision is made according to the following rule:

RejectHp, if Dy > critical value

AcceptHg, if Dy < critical value

That is, if the diference between the empirical and hypothetical CDF exceeds some critical
value, the empirical data cannot be said to follow the hypothetical distributiemce it is
rejected. In contrast, if the filerence is below that critical value, the null hypothesis cannot

be rejected.

2 Thesupremumor equivalently théeast upper bouncf an ordered set S is the least element (not necessarily
in S) which is greater than or equal to each element of S.
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Figure 2.13: Kolmogorov-Smirnov test statistic

The main drawback of the KS test is that the hypothetical distribution shoutdingletely
specified, i.e., all its parameters should be determined, in order to evaluateath empirical
data value. If no parameter of the hypothetical distribution is determinedtfrerampirical
data, the test statisti@,, is independent of the distribution. However, when the parameters
of the hypothetical distribution are not given but instead estimated frometiae ithe result of

the KS test is no more distribution independént [10].

If the standard KS table is used when the parameters are estimated fromahthdaonfi-
dence level will be highel[10], and the actual significance level willrbalker than the value
associated with the standard table [5]. Smaleorresponds to a larger critical value, which
makes it harder to reject the null hypothesis. This can be interpreted lagdbthesized CDF
is made closer to the empirical data by estimating the parameters from the datia.dast,
the probability of making an error by failing to reject the null hypothesis (ixpgefll error)
may increase. Hence, the use of standard KS test table should be awbielethe parameters

are estimated from the empirical data.
Similar to the KS test, the knowledge of distribution parameters is required f@kDhiest,
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which is a modified version of the KS test for a better performance at the fate alistri-
bution. Besides, AD test can only be applied for a few specific distributidssopposed
to the AD and KS tests, the CS test does not require to completely specify thbutisn
parameters. However, it is not a powerful test for small number of samplée AD and KS

tests.

Considering the main drawbacks and superiorities of the GoF tests, a md¢iHiezbst with
the extension of Monte Carlo approach will be used in this study. The plnofpMonte

Carlo approach in KS test can be explained as follows:

1. KS test statistic is computed for the empirical data and the hypothetical madel. |
this step, the hypothetical model is constructed by estimating the parametarg&o
empirical data. The parameters can be estimated by means of Method of Moments
(MoM) [L7], in which thek™ moment is equated to thHé" sample moment of the

empirical data as in(2.48) being the number of unknown parameters to be estimated.

E{x = %Zn: X, k=1,..,t (2.48)

i=1
Besides the MoM estimates, maximum likelihood (ML) estimates can be used as the

distribution parameters.

2. A large number of synthetic data sets is generated, so that each sesftii® hypo-

thetical model with the parameters estimated for the empirical data in Step 1.

3. For each synthetic data set, its own parameters are estimated. Thedatasht is fit
to the hypothetical model with the new estimated parameters. The KS test statistic is
recorded for each fit. That is, the distribution®f is obtained for the case of estimated

parameters (Figufe Z.114).

4. The fraction of time in which the resulting KS test statistic for synthetic datagedar
than or equal to that of the empirical data is determined. This fraction gieespir-

ical p-value, p

5. Finally, the empirical p-value found by Monte Carlo method in Step 4 is cozdptar

the significance levetl:
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p (Dn) p (Dn) D
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Figure 2.14: Distribution oDy,

If @ >p, Hopisrejected

If @ < p, Hpis NOT rejected

This is equal to comparing the new critical value to the empirical test statstic,

In the literature, there are many modifications of the standard KS test with @lilested
based on the Monte Carlo simulations foffeient distributions with unknown parameters.
For instance, Lilliefors test checks whether the empirical data samples comefdistribu-
tion in the Gaussian family when the parameters are not specified [2]. Simitafj and

[5], modified tables for Weibull and Gamma distributions are presented.
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2.4 Clutter Reflectivity

In this section, the relative intensity which mainly depends on the type of clupeesented.

In order to explain the relative intensity, first, consider the radar pogeateon

_ PT‘GT'GR'/IZ‘O'C
(4-7% R-L

R , (2.49)

where

Pr : Received power (W)

Pt : Transmitted power (W)

Gt : Gain of the TX antenna (YW)
Gr : Gain of the RX antenna (YW)
A Wavelength (m)

oc : Radar cross section (RCS) Yn
R: Range (m)

L : Losses (WW).

The equation in[{Z.49) can also be written in terms of the clutter-to-noise rali®)@s

follows

Pr-Gr-Gr- A2 0¢

CNR= :
(4-73 R-K-T-B-F-L

(2.50)

where

k : Boltzmann constant,.28- 10?3 (W/(Hz °K))
T : Temperature°K)
B : Effective noise bandwidth (Hz)

F : Noise factor.

As it can be seen from the radar power equations above, the powes oédhived signal is
proportional to the radar cross section (RCS) of the illuminated regiorthE@urface clutter
(such as ground and sea returns), the return power depends aedhiitaninated, where it

depends on the illuminated volume for the volume clutter (such as weather afd ch
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In order to describe the surface or volume clutter independent of the illtedimaea or vol-
ume, respectively, theormalized radar cross section (NRCGS)Yefined. The NRCS is also

referred to as thaormalized radar reflectivitpr thebackscattering cggcient[33].

For the surface clutter, NRCS can be obtained from

(2.51)

whereo is the RCS of clutter ané¢ is the area of the illuminated regidn |33].

For a small azimuthal beamwidth éfand a low grazing angfof v, the area of a resolution

cell at range R is calculated from

_ R0 Rres

Ac cosy

: (2.52)

where Rgsis the range resolution of the system.

Similarly, the volume clutter is described by thkitter RCS per unit volume;, given in

2.53).

oc

=V (2.53)

n

Finally, in [9] and [33], it is stated that the NRCS for land clutter is greaten that of the
sea and weather clutters. Among the types of land clutter, the cities and theéamsuare

reported to have the largasg, where the agricultural fields and deserts have smafjer

3 Grazing angle is the angle between the surface and the incoming radar dtionin
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CHAPTER 3

EXPERIMENTAL DATA ACQUISITION AND DATA
PROCESSING

The aim of this thesis is to perform the analyses discussed so far onregpéal radar clutter
data. Hence, a data acquisition set-up is established in order to make cluttremsants.
After the whole system is implemented and its operation is verified in the laborater-

surements are taken in the open terrain.

In this chapter, the general block diagram of the data acquisition systeiveis gnd the
operation of the whole system is explained. The specifications and limitaticechfblock

are discussed briefly. Further details about the data acquisition systeiven in Kilicdlu's

thesis[[37].

3.1 General Block Diagram of the Data Acquisition System

The experimental radar system, which is used in this study for data acquistamnstructed
by using commercialfé-the-shelf (COTS) test equipments. The transmitter unit is composed

of:

e MATLABas the waveform generator tool,
e Agilent E8267D PSG Vector Signal General@8] as the transmitter,

e Agilent HP8348A Microwave AmplifigB9] as the high power transmitter amplifier,

and
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e GAH-10420r DRH-412! as the transmitting antenna;

while the receiver unit is composed of:

e GAH-10420r DRH-412as the receiving antenna,

e Two cascadedML218L150740] as the low noise amplifier (together with a 12V DC
power supply),

e Receiver option 1:

— Agilent E4446A PSA Spectrum Analyf&t], [42] as the receiver together with

— Agilent 89601A Vector Signal Analysis Softwftg],
Receiver option 2:
— Agilent N9010A EXA Signal Analyzf#], [45] as the receiver itself,

e MATLABas the signal processing tool.

A computer is utilized, on which MATLAB, Agilent 89601A Vector Signal Analy Soft-
ware, Agilent Waveform Download Assistant, and other control intedad the COTS equip-
ments, such as Agilent IO Connection Expert, are installed. The vectaal signerator is
connected to the computer via an Ethernet cable, and the spectrum arfedyzetion 1) or
the signal analyzer (in option 2) is connected to the computer via USB intefffagure 3.1
and Figuré_312). These connections make the remote control of the insteupassible. The
connections to the instruments can be verified by Agilent IO ConnectionrExpdso, a
graphical user interface is developed in MATLAB in order to control tamdccquisition and

measurement analyses via a user-friendly environment.

The general block diagrams of the system for both receiver altersaieedepicted in Fig-
ure[3.1 and Figure_3.2. A brief explanation of the system operation is asvfollBirst, the
I and Q data of the transmit signal are generated in MATLAB and downbtbéml¢he vec-
tor signal generator by means of Waveform Download Assistant Toalkidtfons. Next, the

baseband generator of the vector signal generator converts the bagithQQ data into analog

! Due to antenna reciprocity, these antennas can be used intercharfgedisytransmitter and the receiver.
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baseband signals. Then, tH®Imodulator of the vector signal generator modulates the base-
band signal to the desired center frequency at the desired output fBwek The resulting

RF signal is amplified through a high power amplifier and routed to the transmititegza.

On the receiver side, the returns from the scatterers are capturee logcdiving antenna.
The received signal is amplified by a cascaded two-stage low noise amatiiesent to one

of the two alternative receivers:

e For the first option, in which PSA Spectrum Analyzer together with Vecton&ign-
alyzer Software forms the receiver, the spectrum analyzer dowedsrthe RF signal
into IF and then converts into digital. The digitized IF signal is sent to the V&itpral

Analyzer software, which performs the digital downconversion.

e For the second option, EXA Signal Analyzer performs analog dowrersion, IF dig-

itization and digital downconversion operations itself.

Finally, the digital baseband | and Q samples from either receiver optiersaiged into a file

and then processed in MATLAB.
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Two important connections in both Figure13.1 and Fiduré 3.2 should be panotedamely
the 10 MHz reference and trigger connections between the vector gignatator and the

spectrunysignal analyzer.

1. If both of the vector signal generator and the spectsignal analyzer use their own
internal reference oscillators in the same system, this may vyield arbitranyeiney
reading errors. In order to avoid these errors, all the oscillators inyttera should
have a common reference. Hence, the 10 MHz reference output otther\signal
generator should be connected to the 10 MHz reference input of tloersmpgsignal
analyzer, or vice versa. The former configuration is used in this systehtha 10 MHz
reference source of the spectrisignal analyzer is set texternal Here, it is important
to check that an annunciator liEXT REFappears on the spectrysignal analyzer and

vector signal analyzer screens.

2. Inradar systems, the delays of the echoes are important since theyidetthe range
of the targets. Hence, the receiver (in this system, the spectrum anahgeector sig-
nal analyzer together, or the signal analyzer itself) should know wteetrahsmission
begins. This information can be provided to the receiver via a trigger puigsh is set
to start at the beginning of the transmit signal. In this system, the trigger pullee is
fined by a marker waveform and given out from EBENT1 output of the vector sig-
nal generator. (Defining marker waveforms are explained in detail indp¢8.2.1.2.)
Then, if external triggering option is selected for the spectsignal analyzer and the
EVENT1 output of the vector signal generator is connected td R IN input, the

measurement waits for the trigger pulse from the vector signal generator.

In the following sections, each block of the experimental radar systenplaierd starting
with the elements of the transmitter unit. In Figlirel 3.3, a photo of the experimewiad r
system can be seen during data acquisition on the roof of METU ElectridaEbectronics

Engineering Department’s Building D.
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Figure 3.3: Experimental data acquisition system during measurements

3.2 Transmitter

In this section, the operation principle of the transmitter unit, which is given iarEig@.4, is

explained.

3.2.1 Generation of the Transmit Signal
3.2.1.1 Selecting the Transmit Signal
In this study, various transmitting signals, such as single pulse and phdee golses, have

been used for system verification and experimental data analyses.

The phase coded pulses are constructed based on the pulse comptessidque. In this
technique, high resolution of a short pulse width is combined with the higlygéa long
pulse width. Hence, a long pulse which has a bandwidth correspondinghiortapsilse is

transmitted. In order to achieve this, the pulse is either modulated or codedrézgency
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Figure 3.4: Operation principle of the transmitter

modulation and phase-coded pulses). For phase-coded pulsesisinevjulih is divided into
a number of chips of equal length and each chip is transmitted with a partittdaep The
bandwidth of the phase coded pulse is determined by the chip width (or, essgat pulse
width), Tenip, instead of the pulse width itself. This results in a larger bandwidth and a better
resolution achieved with the same energy. Equivalently, for a giverereegplution (or chip
width) and total pulse energy, if more chips are used, the transmitter poveshised due to

the increased total pulse width.

Here, the pulse compression ratio, PCR, is defined as the ratio of thenesajetion of an
unmodulated pulse of lengthto that of the modulated or coded pulse of the same length and
bandwidth of B. This ratio can be considered as the SNR improvement.f&eton [3.1), it
can be concluded that if the same pulse width is divided into more chips, thesSiNfReased

more:

S|

PCR= = Br. (3.2)
In phase-coded pulses, the phase of each chip is determined acctwdinghase code.
Barker-7, random phase codes, and P4 codes are examples ofages qudes used in this
study. Among them, the P4 code is the mostly used one in the experiments. B4Laadme

defined for any number of chips, and the phase oftthehip, @;, is determined by
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®i=E(i—1)(i—L—1) i=1,2..,L (3.2)

wherelL is the number of chips. In Figute_8.5, the phase history of the 100-chipéhet is
shown as an example. It is also important to note that P4 codes are digmpet@imations

to linear FM (LFM), which is also a widely used pulse compression technifie [

P4 code of 100chips
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Figure 3.5: Phases of 100-chip P4 code

On the other hand, a single pulse has been widely used to verify the systevevét, coded

pulses are preferred due to the improvement factdr thiey introduce to the SNR.

3.2.1.2 Generation of the 1Q Data

Once the transmitting signal is chosen and all its parameters (PW, PRI, pdisentimber of
chips) are determined considering the requirements of the experiment €l waveforms
of the signal can be constructed. However, not only the | and Q wawsfobut also the

sample clock information and the marker waveforms should also be providée teector
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signal generator (VSG):

1. Complex IQ data array:

In order to define | and Q waveforms of the transmitting signal, first an amplaucy

and a phase array are constructed in MATLAB as follows:

A=larazasz -+ ak] (3.3a)
P=[¢162¢3 - ¢«] (3.3b)
Tchip
-4+
PW
-4 -
PRI
- >
1 2 L K
A o/o/ojojojojo|o|ojojo|ojojo|0jo|0|0JO|0O|0]O|O|0O
a1... a1 Ne
P 0 o|ojo|ojojojo|ojojo|0jo|0|0OJO|0O|0OJO|0O|0]JO|0O|0
P11 p1,Nc\
—
Nc: chip samples
- >
hd —~ —
on-samples off-samples

Figure 3.6: Amplitude and phase arrays

If the whole PRI is divided into K chip$, ¢; andej in (3:30) and[(3.3a) are the phase
and amplitude of thé'" chip, respectively. The amplitude array is constructed accord-

ing to the PW and PRI, while the phase array is constructed according tdhése p

2 For simplicity, one PRI is chosen to consist of an integer number of chips.
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code of the pulse. Construction of the amplitude and phase arrays okd paotse is
depicted in Figure_316.

Next, the | and Q waveforms are generated as given below

I =A-cos(P) (3.4a)

Q=A-sin(P). (3.4b)

The VSG accepts the user defined | and Q waveforms in the form of a corphey

given in [3.5).

IQ=1+j-Q (3.5)

According to the specifications of the VSG, the complex IQ data array mosistof at
least 60 samples. The maximum number of samples is also specified as 6aMegas
ples [38]. The complex 1Q waveform downloaded into the waveform meriorg-

peated continuously.

2. Sample clock:

Together with the | and Q waveforms, the choice of sampling clock for the Higita
to-analog converters (DACs) of the baseband generator is providiw t¢SG. The
maximum sampling rate of the VSG is 100 Msamydes, i.e., the time between two

samples can be minimum 10 nsec![38].

Starting from 100 MHz, the maximum sampling rate, for which the number of sample
per chip is an integer, is selected for simplicity. For example, consider a plilse
usec PW and 7 chips. The maximum sampling rate is chosen as 98 MHz, fdr thhic

number of samples per chip is 14.

3. Waveform Markers:

In order to mark specific positions on the | and Q waveforms, two markezfwems are
defined, one for triggering and one for PUL/RE blanking. In MATLAB, a marker
matrix is constructed, so that each row corresponds to a marker wanedmd the

number of columns is equal to the length of the | and Q waveforms. In therbegin
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all entries of the marker matrix are zero, which means that no marker istsetlye

markers are activated by setting the necessary entries to 1 (marker pislaasitive).

PW

Trigger

m1/1/0(0|0|0(0|0|0|0|0O|O|O|O|O(O
M2/111(1|1|{1/0|{0|0({0|0|0|0(0|0O(O

Pulse ON Pulse OFF (RF blanking)

Figure 3.7: Waveform markers

The first marker (M1) is configured to indicate the beginning of the | anda@eforms
at which a trigger pulse will be generated. That is, in order to activatetMeLfirst
entry of the first row is set to 1. When M1 is on, the trigger pulse is automatisefy

to theEVENT1 output port of the VSG.

On the other hand, the second marker (M2) shows where the pulse is QiNento
make the VSG blank the RF output during OFF samples of the pulse. The PRESE
blanking operation, which also enables the Automatic Level Control (Aldlj func-
tion, is important to maintain the output power level of the RF signal. If PURFE
blanking and ALC are OFF, VSG may fail to maintain the correct output levighe (
effect of PULSERF blanking and ALC hold functions on the power levels is shown in
Appendix[C.1.) Therefore, the entries of M2 corresponding to the puidtnwf the
signal are set to 1 for PULSEF blanking (Figuré_3]7). In addition, the PULSH¥
blanking function is assigned to M2 by means of an SCPI command (See[Tdhle 3
After downloading the markers to the VSG as it will be described in Secfion.3,2t1
should be checked that the annuncidEdVLPrepresenting the RF blanking appears

on the screen of VSG.

48



3.2.1.3 Waveform Download Assistant

Agilent Waveform Download Assistant Tooliibvides a set of MATLAB functions required
to download the complex 1Q data array into the VSG, suchgisiewconnectioyagt query,

agt waveformloagdagt sendcommandrhe steps of the downloading process are as follows:

1. Open a new connection session with the VSG over the LAN interface:

The LAN connection between the VSG and the computer is established using the

agt newconnection(function, which takes the IP address of the VSG as the input.

Using agt query()function, the IEEE SCPI query commaridn? can be sent to the
VSG in order to verify the connection. If the connection fails, an errorsags is

displayed.

2. Download the 1Q waveform to the VSG:

Once the connection is established, the 1Q waveform, sampling rate and tkermar
waveforms can be downloaded to the VSG usaggwaveformload( Yunction. If the
download fails, an error message is displayed. If the download is stagdke an-

nunciatorsARBand|Q appear on the screen of VSG.

3. Configure VSG:

Each of the configuration settings, such as center frequency, ouywet evel, marker
functions, etc. can be defined as an SCPI string (Table 3.1). ThedesBiGgs are sent

to the VSG as the input argumentaxft sesndcommand(function.

Table 3.1: SCPI commands for VSG

SCPI command Meaning

‘SOURce:FREQuency 10GHz’ Sets the center frequency to 10 GHz
‘POWer 10dBm’ Sets the output power 10 dBm
‘OUTPut:MODulation:STATe ON’ Turns the modulator ON (MOD ON)
‘OUTPut:STATe ON’ Turns the RF output power ON (RF ON)
‘SOURce:RADI0:ARB:MDEStination:PULSe M2/ Assings the RF blanking function to M2
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3.2.1.4 Vector Signal Generator

Once the user defined | and Q waveforms are downloaded to the VSGrtheyitten on the

waveform memory and repeated continuously until a new waveform is ldaded.

Next, the digital | and Q waveforms are sent to the internal basebandagenélock of
the VSG (in Dual Arbitrary Waveform Generator mode). In this block, tigital-to-analog
conversion of the | and Q waveforms are performed using the sample ititmriknation,

which is also downloaded from the computer together with the | and Q wawsfor

Then, in order to upconvert the signal to the desired carrier frequ@mdyis study, 10 GHz
%), analog baseband | and Q signals are fed into the IF ports of@neddulator of the VSG
[46] (Figure[3.4). The output of th¢@ modulator is at the desired center frequency and

power level.

3.2.2 High Power Amplifier

The received power is directly proportional to the transmitted power.dardo improve the

received power and the SNR, the transmit power should be increased.

In order to increase the transmit power further, a high power amplifiegisned after VSG
(Figure[3:1 and Figuile 3.2). In this stud\gilent HP8348A Microwave AmplifigwhosePqy;
vs. Py graph at the frequency of interest, i.e., at 10 GHz, is given in Figuies3\8ilized.
As it can be seen from the figure, the amplifier provides about 30 dB lgearat 10 GHz.

It should be noted that the RF input to the amplifier should not exceed the max@ontinu-

ous power-22 dBm [39]. Detailed specifications of the high power amplifier are pravide

[37] and [39].

3 The carrier frequency is selected considering the frequency rdrige antennas at hand.
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High Power Amplifier, Input = CW @10 GHz
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Figure 3.8:Pgy; vs. Pin graph of HP8348A @ 10 GHz CW input

3.3 Receiver

As explained before, two alternative receivers have been used intdlg 9n this section,

the operation principle of these receivers is explained (Figuie 3.9).

3.3.1 Low Noise Amplifier

In order to amplify the weak return signal received by the antenna, afifemjs required
at the front-end of the receiver. However, any component insertéteisystem introduces
some noise on the received signal, whidfeets the signal-to-noise ratio (SNR). The SNR

degradation caused by components in an RF system is measured by omséfpand noise
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EXA Signal Analyzer
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Figure 3.9: Operation principle of the receiver

figure (NF) of the system:

_ SNR,
=~ SNRu (3.6a)
NF(dB) = 10log;o(F) = SNRwde — S NRutdr (3.6b)

For a cascaded N-stage system, the overall noise factor can be foumthi Friis’ formula

Fo-1 Fa-1 Fn—-1
2 +3 N

F -F S ~ oy N =
overall 1+ Gy G1G, + + GGy Gt

(3.7)

whereF; andG; denote the noise factor and linear gain of tHestage of the system, respec-
tively. According to [[3.V), the overall noise factor of the system mostly deépen the noise
factor of the first stage, since the contribution of the subsequent s@agfes noise factor is
reduced by the gain of the previous stages. Hence the amplifier, whichenditided as the

first stage of the receiver, should have a low noise figure.

In this systemAML218L1502 Low Noise Amplifier (LNAJith a noise figure of maximum 3
dB is utilized as the first stage of the receiver. It also provides abodBl@ain at 10 GHz
[40]. Using such an LNA with quite high gain, théfect of high noise figure of the PSA
spectrum analyzer, which is about 25 dB, is alleviated. (For the se@medver option, the
noise figure of the EXA signal analyzer is about 2 dB worse than thateoP®A spectrum

analyzer in the first option.) From the Friis’ formula for the current resesystem
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Fpsyexa—1

Foveral = FLnaA + ) (3.8)

Gina

the overall noise figures of two receiver options are found to be 8.B4dénd 9.966 dB. The

overall gain of the receiver unit is 18 dB. (Figlire 3.10)

Receiver option - 1 Receiver option - 2
PSA LNA EXA LNA
NFpsa = 25 dB NFna =3 dB NFpsa =27 dB NFna =3 dB
Gpsa =0 dB Gna = 18 dB RX Gpsa = 0dB Gna =18 dB RX
Antenna Antenna
NF gveran = 8.446 dB NFoveral = 9.966 dB
Goveral = 18 dB Goverat = 18 dB

Figure 3.10: Overall noise figure and gain of the receiver with 1 LNA

In order to improve the noise figure of the receiver further, &adL218L1502LNAs are
cascaded (Figufe 3.1 and Figlirel 3.2):

Finae—1  Fpsaexa—1

Foveral = FLnar + G G G . (3.9)
LNAL LNALTSLNA2
Receiver option - 1 Receiver option - 2
PSA —— LNA2 — LNA1 EXA —— LNA2 — LNA1
NFpsa = 25 dB NFina2 =3 dB NFina1=3dB NFexa = 27 dB NFina2 =3 dB NFina1=3dB
Gpsa=0dB Ginaz2 =18 dB Gina1=18dB RX Gexa=0dB Ginaz2 =18 dB Gna1=18dB RX
Antenna Antenna
NFoveran = 3.202 dB NFoveran = 3.297 dB
Goverall = 36 dB Goveral = 36 dB

Figure 3.11: Overall noise figure and gain of the receiver with 2 LNAs

Then, the resulting noise figures of two receiver options are 3.202 dB.297dB, while the

overall gain of the receiver unit is 36 dB. (Figlire 3.11)
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3.3.2 Receiver Option 1

The first receiver option is composed of PSA Spectrum Analyzer antbV8ignal Analyzer
software (Figuré&311).

3.3.2.1 PSA Spectrum Analyzer

In this option, Agilent E4446A Performance Spectrum Analysis (PSA) Spectrum Analyz
forms the hardware of the receiver unit. It can be classified as alsetpendyne receiver. The
spectrum analyzer first downconverts the received signal into ¢fiéecy and then digitizes

it (Figure[3.9). Then, it performs all processing in digital domain.

In order to perform the radar signal analyses explained in Sddtion e¢k@&er should pro-
vide the time domain | and Q data. Besides frequency domain analyses, theispanalyzer
can perform time domain analyses inlasic Mode In this mode, the spectrum analyzer is
capable of downconversion of digital IF and then storing maximufncbdnplex baseband
time samples with a time resolution of 66.7 nsec (at IF BWO MHz %) in its memory [42].
That is, the corresponding maximum total time record length is about 66.7 rirs@&asic
Mode, it is possible to download $@omplex baseband samples directly from the spectrum
analyzer’s memory and save it into a ‘.mat’ file on the computer (in this study, SR idter-

face).

However, there is a limitation on the center frequency, for which the time donmailyses
can be performed by the spectrum analyzer. The maximum frequencyedliovBasic Mode
is 3 GHz. For the center frequencies higher tBaBHz the Vector Signal Analyzer software
is required for time domain analysis. Hence, the digitized IF signal is sent Wetier Signal

Analyzer, where the digital downconversion is performed.

3.3.2.2 \Vector Signal Analyzer Software

Agilent 89600 Vector Signal Analyzer (VSi8)a software tool which works with various
hardware measurement platforms and processes the data in time, fregnemmodulation

domains|[43]. In this study, VSA 89601A is used with E4446 PSA spectnatyaer, which

4 The IF BW is chosen according to the bandwidth of the signal, which is giiy@0 MHz in this study.
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is configured as its analog-to-digital converter module. VSA takes the digitzeamples

from the spectrum analyzer over the USB interface in between.

In this experimental system, the main operation of the VSA is the downconmesEigital
IF signal into the baseband. The detailed block diagram and workingiplenaf the vector
signal analyzer can be seenin][37]. Basically, after downconveistorbaseband, the data
are recorded into a sample memory. Then, all of the frequency, time andatiodwdomain

analyses are performed on these samples.

In this study, the time domain | and Q data provided by the VSA are recordetnrat file
to process in MATLAB. In order to make accurate measurements, the optimonfig@ration

of the VSA should be done as follows:

The input range: Setting the input range too low introduces distortion in the measurements,
while a too high input range yields loss of dynamic range. For instanceftéw ef low input
range on the measurements is illustrated in Figuré C.2. Hence, selecting theroptiput

range for the received signal is important in terms of the measurememaagcu

Time record length: The time record length depends on the frequency span, the frequency

points, and the RBW [43]. The total time length can be calculated from

Number of frequency points 1
Span ’

Total time record length (see) (3.10)

The total time record length is important in terms of the Doppler resolution as gN&211.
The higher the total length is, the better the Doppler resolution is. Besidebeftemporal
statistics of the return signal, where the behavior of the clutter over time iszauglit is
better to observe a range cell longer. Hence, the time record length isdi&sibe as long
as possible. Then, the number of frequency points is selected as maxinpassitde, where

the frequency span is required to be the minimum.

Time sample resolution: The time resolution of the received sampl&felta is directly
related to the range resolution. Hence, the time resolution should be adjust8é.im such

a way that the range resolution requirement of the system is satisfied.

5 RBW is set to arbitrary at auto coupled mode.
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1
XDelta= Wﬂ (3.11)
As discussed in Sectidn 2.3, both temporal and spatial behavior of cluttistissastrongly
depend on the range resolution. Besides, the range resolution is importangtet detection.
In this experimental study, the range resolution, or equivalently the tim&utesyg is desired
to be stficiently high. Here, it should be stated that the best time resolution that can be
achieved by this set-up, i.e., receiver option 1, is about 97 nsec, smogstkimum frequency

span of the VSA is 8 MHz.

It can be easily observed from (3110) afd (3.11) that the selection dfghaency span is
critical due to the tradefbbetween the time resolution and the total time record length. This
trade-dt stems from the limited memory reserved for the frequency points per span. The
maximum number of frequency points allowed per span, i.e., the maximum fregdesplay
points, is 524288, while the corresponding total time points can be equal to or less than this
number (if zero padding is required before the FFT process). Due foxétenumber of total

time points, the total time record length decreases if the time resolution is impragbdrfu

or vice versa. Hence, an optimization is required considering the systpringments.

For instance, consider a P4-coded pulse whose signal parametasdaliews: PW= 4 usec,
PRI = 100 usec, humber of chips40. Then, the chip width of the pulse is 100 nsec, which
corresponds to a range resolution of 15 m. For simplicity, the time resolutiore &84\ is
chosen to be 100 nsec, so that each received sample corresportigptoehen, from[(3.71),
the required frequency span is 7.8125 MHz. The corresponding maxtotairtime length,
calculated from[{3.10) is only 52.4 msec.

In order to increase the total time length, it can be suggested that swectss recordings
can be appended. However, it has been observed that the phasesajribl difers signifi-
cantly from one recording to another, which may result in loss of phaserency. Therefore,
this approach cannot be utilized for spectral analysis, which is directheinfled by the phase
of the signal. On the other hand, for statistical analysis of clutter in spactttd time length
of the measurement is not significant. Hence, there is no need to appmassive files in

order to increase the total length. However, it can be proposed thstafiistical analysis, in

6 Note that, the maximum number of sample points is limited further by VSA sireesétveform memory of
1 Gsamples, available in Basic Mode of spectrum analyzer, cannot beditiliz
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which the phase coherency is not essential and a long time dwell is regteschethod of

appending successive recordings can be used.

As a consequence, due to the limitations of the VSA and PSA, the systememeuits should

be well defined and the optimization of the system parameters should be ctmndiagly.

3.3.3 Receiver Option 2

The time record length of the first receiver option is quite short (52.4 mis&b an range
resolution). Hence, in order to improve the time record length further, altematives have
been sought (details are given in[37]). Among them, it has been possitdalize only the
following option due to time and resource shortadgegjilent N9010A EXA Signal Analyzer
itself is utilized as the receiver of the system (Fidure 3.2).

3.3.3.1 EXA Signal Analyzer

As it can be seen from Figuke 8.9, the EXA performs analog downcsiovenF digitization
and digital downconversion operations. The specifications of EXA bkigmalyzer, which
are of interest for this study, are almost the same as the PSA spectrurmeanakcept the

following two:

1. EXAssignal analyzer is able to make time domain measurements up to 13.6 Géte, wh
PSA spectrum analyzer allows up to 3 GHz. By this means, it becomes pdssiiohit
VSA at the frequency of interest, i.e., at 10 GHz, and use EXA itseliQnAnalyzer
Modefor digital downconversion. Then, the limit on the number of samples bitdugh
VSA can be eliminated and the whole waveform memory can be used for time domain

IQ waveform analysis.

2. EXA signal analyzer is able to record maximur@ samples with a time resolution
of 66.7 nsec (at 10 MHz IF BW) [45], i.e., 4 times that of PSA spectrum aealgan
do in its Basic Mode. As a result, the total length will be 266.67 msec at 10 nerang

resolution.
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The time record length is still on the order of msec, however, it is improvedhiegwith the
range resolution with respect to the first receiver option. The maximum tiooeddengths
and the corresponding Doppler resolutions achieved by the two reagitiens at the best

available range resolutions are tabulated in Table 3.2.

Table 3.2: Time record lengths and Doppler resolutions for the receptEams

Receiver Option 1 | Receiver Option 2
PSA+ VSA EXA
Best range resolution 15m 10m
Total time record length 52.4 msec 266 msec
Doppler resolution 19 Hz 3.8Hz

3.4 Antennas

In this study, separate antennas are utilized for the transmitter and theeredes it can be
seen from FigurE_3l3, the antennas are placed next to each other wihii@gpan the same

direction. The positions of the antennas are fixed during measurements.

First, spiral antennas were used as the transmitting and receiving antdonaver, since
their beamwidths are very large and they have low gains, they were rdfigcuble ridged
horn antenna&AH-1042andDRH-412 The gains and the radiation patterns of these anten-
nas at the frequency of interest were measured in the anechoic chahhieedetails of the

measurements are given in[37] and the results are presented il Tabhel FRyard 3.1P.

Table 3.3: Gain of the antennas

Antenna 1 Antenna 2
(GAH-1042) | (DRH-412)
@ 9GHz | 15.5257 dBV’ | 11.1457 dBi
@ 10GHz | 15.3757 dBi | 11.8457 dBi

7 decibels relative to isotropicgain of an antenna relative to an isotropic antenna, which uniformly disésb
energy in all directions
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Radiation pattern of GOAH—1042 @ 9&10GHz Radiation pattern of %RH—412 @ 9&10GHz
0 0

SEHR,

Figure 3.12: Measured radiation patterns of the antennas (E-plane)

As it can be seen from the radiation patterns, the 3dB-beamwidths of btethreas in the
azimuth plane are around 30The beamwidth of the antenna is of great importance to the
spatial calibration discussed in Sectlon 2.3.1.1. It also determines the anggdartion as

a distance at rang®, which is calculated fron{(3.12), being the antenna beamwidth (Fig-
ure[3.18). For example, two targets at a range of 2.5 km should be ssphyea distance of

at least 1.3 km in order to be resolved in this system.

Figure 3.13: Angular resolution

Besides, both of the antennas are vertically linear polarized. Furtherthese antennas can

be used interchangeably for the transmitter and receiver units owing totdvana reciprocity.

If a single antenna were used for both transmitter and receiver, a ¢oc(dplexer) would
be required. In this case, the receiver wouldofeduring transmission. After the transmis-
sion is completed, the antenna would be switched to the receiver by mearmsaifciilator.

However, in this study, since separate antennas are used for transmittimgciving, and
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the reception is triggered at the beginning of the transmit signal (3.2.1c2ptien continues
during the transmission period. Then, although the antennas are pldeedapossible from
each other for isolation, the coupling of the transmit signal directly into theivecantenna
cannot be avoided. Hence, the transmit signal, which is not reflectedtire scatterers but
directly coupled into the receiver, should be removed from the recsigadl. This operation

can be performed during data processing which will be explained in S&fion

However, this isolation problem may yield much critical problems, such as RE pwt of
the receiver being subjected to a high RF power level. This may result indesgivity of the
analog-to-digital converter (ADC) circuitry to weaker signals or evanaige to the receiver.
In this case, it is always useful to measure the RF level at the recédesaisd make sure that

the received power does not exceed the maximum input level of theveecei

Besides, it should be noted that the LNAs may not operate anymore in therkggéan during
the pulse widths because of the high RF power due to the coupled transrait €gperating
beyond their compression point, gain of the LNAs decreases. Consqtiee desired noise
figure cannot be achieved. By removing the samples corresponding totlpéed transmit
signal from the received signal, this problem can be eliminated. Duringffh@nes of the

transmitter, the LNAs are expected to operate in their linear region again.

3.5 Processing the Received | and Q vs. Time Data

The last block of the receiver is the receiver processing block, whichplemented in MAT-
LAB. The processor gets the received complex IQ time data saved into a filmdity VSA
or EXA, in which all the settings are also included. The processor alsoktite transmitted

signal and its parameters.

Then, the flow of the process is as follows (Figure B.14):

1. First, as described in Section13.4, the samples of transmitting signal, whidirectly
coupled into the receiver due to isolation problems, should be removedextion
is off during transmission. Hence, the received IQ time samples corresponding to
first pulse width are removed from each pulse repetition interval. Comsigitre delay

of the trigger pulse and the recovery time of LNAs to gfttbe compression region, a
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Figure 3.14: Flow of the receiver processing

few extra samples may be removed.

Here, it should be noted that, although separate antennas are usesh$onission and
reception in this system, by removing the first samples received duringrtissien,
the bistatic radar system turns into a monostatic radar, in which the receavtsrfor
the whole transmit pulse to leave the antenna and the range that corresptmepulse
width and recovery time is said to be eclipsed. Hence, the system used in thissstu
also exposed to that blind range of monostatic radars. This blind r&gg,can be

expressed as follows:

c - (pulse width+ recovery time)
2 2

Rimin = (3.13)

Although an echo from a range closer tRs, cannot be received completely due to
the df time of the receiver, less samples can still be received. In such casss|ess
samples enters the matched filter, the peaks at the output of the matched filteoimay
be so clear. This blind zone can be excluded by removing another pul8efvac the

received signal.
2. Next, in order to maximize the signal-to-noise ratio, the matched filtering tpera
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is performed. The received IQ time samples are convolved by the conjafytitee
reversed 1Q data samples of the transmitting signal. Here, it is important to radte th
a correction is required due to thefférent transmitting and receiving sampling rates.
The transmitting signal is generated by a sample clock of maximum 100 MHzewher
the maximum sampling rate of the receiver is about 10 MHz. Hence, the |Qeswnfp

the transmitting signal is downsampled before matched filtering.

. After matched filtering, aM xN data matrix, which is explained in Section]2.1 is con-
structed. Each row of this data matrix is composed of samples from one ppks#ion
interval and each column represents the samples from one range cellcéaed pulse,
data matrix is constructed so that each chip corresponds to a range csdl ti@ndata
matrix is constructed, various digital signal processing operations caeiiermed
along its dimensions. In this study, the range-Doppler processing of¢b&ee signal

is performed; spatial and temporal spectrum of the received signabassved; spatial

and temporal statistical distributions are determined.

Range-Doppler plot: In order to get the range-Doppler plot, FFT is taken in the
columns of data matrix by means of tfi) function of MATLAB. Since thefft() func-
tion of MATLAB does not perform any normalization, the output should bédd by
the FFT size.

By taking FFT columnwise, it can be concluded that there is a target in aydartic
range cell if there is a return from that range cell in all pulse repetitionvater Be-
sides, if there is a target moving in a particular range, the non-zero Dragipfedue to

its motion can be observed in that range cell.

The axes of the range-Doppler plot are arranged as follows:

e X-axis (Range axis): Since the time resolution (XDelta) is known, the fast-time
samples can be written in terms of seconds and then converted into the corre-
sponding ranges. Here, it is important to note that if the blind zone is exctlude
from the analysis as explained above, the range axis should be atracgerd-
ingly.

¢ Y-axis (Doppler range axis): The slow-time samples can be transformethmto
Doppler frequency. Doppler axis can be chosen to be betwe@&PR1, 12PRI)
or (0, YPRI) if it is known that all the targets are approachingP@l, 0) if it is
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known that all the targets are moving away.

e Z-axis (Amplitude): In VSA and EXA, the received IQ time data samples are
saved into the files in terms &folts The amplitude is converted into power in

dBmby the following formula:

2
Power (Watts)= M x duty ratio (3.14a)
R(Q)
_ (Voltsyme)®>  PW
= 500 * SRI (3.14b)
Power (dBm)= 10 log,, (Power (Watts)} 30 (3.14c¢)

Spectral analysis:By means of various methods, the power spectral density estimates

of the slow-time and the fast-time samples are obtained (Sécfibn 2.2).

Statistical analysis: The histogram of the slow-time and the fast time samples are plot-
ted and various goodness-of-fit test are applied on both dimensionden torextract

the temporal and spatial statistical behavior of the return signal (Sécfijpn 2.3

3.6 \Verification of the System Using Generic Signals

In order to verify the system, the signal generator and the spectrumzanalye directly
connected to each other, without using antennas. A generic signalsswucted and after the

received signal is processed, the results are evaluated.

3.6.1 Ability of Doppler Shift Detection

As explained in Sectidn 3.1, if the oscillators of the signal generator angéoeram analyzer
do not use the same 10 MHz reference, the frequency reading atebtwsp analyzer will
be incorrect. This error can be interpreted as a Doppler shift in theec&equency and it is

expected to be observed on the range-Doppler plot after the sigreagsiag.

Equivalently, the carrier frequency can be set to a value slighfferéint than the intended

operating frequency. For instance, the VSG center frequency is $6t@&Hz+ 2000 Hz and
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Figure 3.15: Doppler shift

the spectrum analyzer center frequency is adjusted to 10 GHz as usheh W& received
signal is processed, the Doppler shift of 2000 Hz can be seen onrtge-Boppler plot, as
expected (Figure 3.15).

3.6.2 Ability of Finding the Target Location

In order to verify the ability of target range detection, a transmit pulse withtaerent delay

is generated. Since the trigger is taken from the first sample of the who]&eRiulse seems
to be received after some delay. For example, a pulse with 40-chip-R4 ¢agec PW and
100 usec PRI is sent as in Figlire 3.1p(a) with a delay of 40 usec, whigsponds to a range
of 6000 m. The result is shown in Figyre 3.16(b), where it can be seéthéiva is indeed a
target at 6000 m.
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3.7 Graphical User Interface

The graphical user interface (GUI) is developed in MATLAB. It allows tiser to enter the

transmitting signal parameters, such as PW, PRI, number of chips andcoadlsgin order

to create and save a new transmitting signal. The user may also select ingcdegnal

to transmit. The IQ waveform is downloaded to the VSG by means of the SENneod.

Also, the carrier frequency and the output power can be adjusted vialhdt lets the user

browse the received signal files saved by VSA and EXA and selectléhsfbe analyzed.

Statistical and spectral analyses on the received signal can be cahbylieeans of the GUI.

A screenshot of the GUI can be seen in Fidurel3.17.
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Figure 3.17: Graphical user interface

3.8 Comparison of the System with the Previous Studies

In the literature, many studies conducted on experimental radar clutter atatiaecfound.
Among them, studies performed by Billingsley at MIT Lincoln Laboratory (NALI) are
quite comprehensive][7],112], [14]. Many measurements were taldifferent sites, and the
details of the measurement systems and the sites were published as teemudal During
the establishment of the experimental data acquisition system for this stusly,tdahnical
reports have been frequently referred. In this section, the data @mqusystem used in this

study is compared to the systems used by MIT-LL.

MIT-LL performed clutter measurements with twofférent radars, namely the Phase One
and L-Band Clutter Experiment (LCE), affftirent frequency ranges. Alsofidirent systems
and parameters were used for spatial and temporal analyses. Foc@msthort time dwell
measurements were used for spatial analyses, while the temporal anedysdmsed on long
time dwell measurements. In addition, the antenna beam was rotated in eafdr B&li-to-
cell clutter characterization, while the measurements for temporal analgsedaken with a

stationary beam antenna.

In Table[3:# and Table_3.5, the main system parameters are comparedtfal @pd tem-
poral clutter analyses, respectively. For comparison, a set of moghoaly used system

parameters is used.
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Table 3.4: Comparison of MIT-LL Phase One radar clutter measuremstensyand the ex-
perimental data-acquisition system used in this study for spatial analysis

System parameter MIT-LL System-1 System-2 (EXA)
Phase Onel[1R] (PSA+ VSA)
Frequency X-Band (9.1 GHz) || X-Band (10 GHz) || X-Band (10 GHz)
Antenna Rotating Stationary Stationary
Polarization VV or HH \AY VvV
3-dB beamwidths 1°az. & Jel. 30°az. 30°az.
Pulse width 100 nsec 4 usec 5.32 usec
Number of chips 1 (uncoded pulse)|| 40 (P4 coded pulse) 40 (P4 coded pulse
Chip width 100 nsec 100 nsec 133 nsec
Bandwidth 10 MHz 10 MHz 7.5 MHz
Range resolution 15m 15m 20m
RX sampling rate 10 MHz in range 10 MHz 15 MHz
Sampleghip 1 1 2
Range cell spacing 15m 15m 10m
TX power 50 kW peak (34 7.5 dBm average 7.5 dBm average
dBm average)
PRI 2 msec 100 usec 133 usec
Calibration wirt. YES YES YES
cell area
Calibration wirt. YES (STC?) YES YES
distance

8 Sensitivity time control
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Table 3.5: Comparison of MIT-LL radar clutter measurement systems arekgiexgimental
data-acquisition system used in this study for temporal analysis

System MIT-LL MIT-LL LCE System - 1 System - 2
parameter Phase One [14] (PSA+ VSA) (EXA)
[14]
Frequency X-Band L-Band X-Band X-Band
(9.1 GH2z) (2.23 GHz) (10 GHz) (10 GHz2)
Antenna Stationary Stationary Stationary Stationary
Polarization VV or HH VV or HH vV vV
3-dB 1°az. & Jel. 6°az. & Jel. 30°az. 30az.
beamwidths
Pulse width 1 usec 1 usec 4 usec 5.32 usec
Number of 1 (uncoded 1 (uncoded 40 (P4 coded || 40 (P4 coded
chips pulse) pulse) pulse) pulse)
Chip width 1 usec 1 usec 100 nsec 133 nsec
Bandwidth 1 MHz 1 MHz 10 MHz 7.5 MHz
Range 150 m 150 m 15m 20m
resolution
RX sampling 1 MHz 2 MHz 10 MHz 15 MHz
rate
Sampleghip 1 2 1 2
Range cell 150 m 75m 15m 10m
spacing
PRI 2 msec 2 msec 100 usec 133 usec
Number of 30720 30720 524 2000
pulsegrecord
Time record 61.44 sec 61.44 sec 52.4 msec 266 msec
length
Doppler 0.016 Hz 0.016 Hz 19.08 Hz 3.8 Hz
resolution
TX power 50 kW peak || 8 kW peak (36 7.5dBm 7.5dBm
(44 dBm dBm average) average average
average)
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CHAPTER 4

ANALYSIS OF THE MEASURED RADAR CLUTTER

In this study, the experimental radar system, whose principle of operapenifications and
verification are discussed in Chapfér 3, is used to measure radar clitem@asurements
are carried out on the roof of the METU Electrical and Electronics Erging Department’s

Building D.

Two different terrains are illuminated with the same transmit signal and the measurersents a
taken on the same day with the same system shown in Higdre 3.2, i.e., the optionXaith E
Signal Analyzer and 2 LNAs. The system parameters used for clutterunesasnts can be

summarized as in Table 411.

After the |/Q data samples are recorded by EXA Signal Analyzer, the steps desomibe
Sectior 3.b are applied.

In this chapter, the results of the analyses performed on the experimadalaiutter data
are presented in detail. The results are interpreted in the light of the td@stcs of the
illuminated regions. The photos taken on the day of the measurement togétinénemop
views obtained from the Google Earth application are made use of while makngents

on the results.

L A comparison of the system parameters used during measuremernits thiedprevious studies on radar
clutter is given in Section 3.8.
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Table 4.1: System parameters used during measurements

THE TRANSMITTER | THE RECEIVER \

P4 coded pulse @ 10 GHz e Sampling rate= 15 MHz

i.e., 2 sampleshi
Pulse width= 5.32 usec ( pleship)

e Total time record length=
266 msec

Number of chips= 40

Chip width= 133 nsec
PRI= 133 usec

7.5 dBm average transmit
power

Blind zone= ~ 800 m
Range resolutios ~ 20 m
Range cell spacing (R&}: ~ 10 m
Doppler resolutior= ~ 3.8 Hz
Maximum unambiguous range~ 19 km

2 Two samples are recorded for each resolution cell. Each samplerisekfe as a range cell throughout this
chapter.
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41 Terrain-1

A photo of the first terrain is shown in Figure 4.1.

Figure 4.1: Terrain - 1 on the day of measurements

Before moving to the analyses of the measured data, the boundaries oftfiaalted region
are first determined. Hence, the red lines indicating the azimuthal beam ahtbena are
first drawn on the Google Earth top view as in Apperdix]D.1. The antenambalth is
generally defined as the 3-dB beamwidth. However, the returns arptaddeom a larger
angle, obviously with less power. In this study, an area shaded by #& @frg(® is marked

as the beam of the antenna.

Next, successive paths at certain intervals are drawn in the beam oftdma. These paths
are of length equal to the theoretical maximum unambiguous range, whiclous &® km.
Their altitude profiles obtained from the Google Earth application are givAppendiXD.1.
These paths are examined in order to extract the altitude characteristics idéithinated

region. For instance, the presence of a hill at about 5 km can be egdwen these profiles.
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It is obvious that the frequency of the paths and their placement fiegst éhe results signifi-
cantly. Hence, the paths are tried to be placed such that they give aabssaea about the

altitude of the illuminated area.

Then, for each path, the points which may cause shadowing are deterrfiess] it should
be noted that, the altitude profiles provided by Google Earth do not includeetgbts of the
buildings. Besides, the grazing angle of the radar should be taken irdoratdn determining
the shadowed regions. In this case, it is useful to examine the photo of tinénidited region.
Hence, considering the altitude profiles, the heights of the buildings andalzang angle
together, the points causing shadowing are marked. For the first abisararea, it can be
roughly said that the hill at about 5 km is expected to shadow its back to somge according
to the grazing angle. Also, it is possible to see peaks beyond 11 km due rietdings from

higher hills at these ranges.

4.1.1 Range-Doppler Processing for Terrain - 1

For the first illuminated region, the power vs. range plot is given in FiguZé} Here, it
should be noted that the first 800 m in the power vs. range plot comdso the blind zone.
The blind zone can be ignored by removing an extra PW from the rectiwedlata® For the
range plot given in Figure 4.2(b), a total number of 41 chips (i.e., 82 Rf&sjemoved: 40
chips for the pulse width and 1 chip for the recovery time of the receivencH, the returns

from up to 800 m+ 20 m= 820 m are excluded and the range axis starts after 820 m.

As it can be seen from Figufe 4.2(a) and Fidure 4]2(b), there is actualigtarn beyond 5
km up to a range of 11 km. Also, peaks with reasonable SNRs can bevetidsyond this
point as expected. However, it is quite hard to distinguish the scatterndiessatranges due to

the quite large angular resolution.

On the other hand, the SNRs of the returns from the first 5 km are quite hayha detailed
range analysis, the range plot is zoomed into this crowded region. In tfimrehere are
many point scatterers such as buildings (Fiure 4.3(a)). The rangemefpossible scatterers
are marked on the top view of the zoomed region as in Figure 4.3(b), whenedhlines

show the antenna beam and the blind zone is shaded with green lines. Whandk plot in

3 Note that, a pulse width has already been removed due to the isolation psolNem, a second pulse width
is removed in order to eliminate the blind zone.
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Figure 4.2: Power vs. range plot for Terrain - 1
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Figure[4.4 is compared to the photos in Figurd 4.3, the ranges of the scatterstly seem

to be consistent with the range of the peaks in the power vs. range plot.

The range - Doppler plot for the first terrain can be seen in Figure )} 5@ Doppler axis is
zoomed to the first 50 Hz. Considering the Doppler resolution of the systaihws about
3.8 Hz, no Doppler spread can be observed beyond 820 m. This magdmneble since the
scatterers in this region are mostly buildings and bare hills. Hence, it is nuisog that

such stable scatterers do not yield a Doppler spread.

The blind zone is also examined in terms of Doppler spread. Hence, the r&uppler plot
is redrawn with the blind zone included as in Figure 4]5(b). From this plot,@p[@o spread
of 15-20 Hz can be immediately seen in the blind region. This may be explaintgk bsct
that the region is mostly crowded with trees and the movement of the leaves sudtyimea
Doppler spread. Besides, the air is still during the measurements. In thenpesof wind,
the Doppler spread is expected to be greater. Detailed examination is gitrenfllowing

subsection.
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4.1.2 Spectral Analysis for Terrain - 1

The Doppler axis in the Doppler vs. range plot gives an idea about dutrapcharacteristics
of a range cell. Here, two fierent range cells marked in Figurel4.6 are examined in detail.

The first range cell is filled with trees while the second cell consists of aibgild

(b)

Figure 4.6: RCs at 340 m and 620 m for detailed spectral analysesifTert)

First, consider the range cell with trees at 620 m, for which tQecbmponents and the am-
plitude of the returns from 2000 successive pulses are plotted in Fig{@ 4These samples
are examined with various methods in order to obtain a PSD estimate for this fidregeSD
estimate based on the periodogram method is given in Fjgure 4.7(b) ancBgic). A
spread of 30 Hz can be seen 50 dB below the zero-Doppler. The santiecan be seen from
Figure[4.7(d) and Figufe 4.7{e), which show the correlogram with bias&storrelation of

the slow-time samples.

In order to compare the result with that of the MIT-LL studies| [14],] [18F periodogram
in Figure[4.7(0) is plotted with respect to the Doppler velocity)(instead of the Doppler

frequency p) according to the following equatich

fo(H2) - A(m)

> (4.1)

vp(m/s) =

4 The measurements of MIT-LL at fiierent frequencies are reported in terms of Doppler velocity for
frequency-independent comparison.
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Figure 4.7: PSD estimate based on periodogram and correlogram fanipe cell filled with
trees (620 m)

As previously discussed in Section?2.2,[inl[14], it is reported that the med&oppler veloc-
ity spectral extent from windblown trees at levels 60 to 80 dB below the Regpler peak is
about 1 nis under light wind condition. The Doppler velocity increases up to aboys3an

windy conditions and it is estimated not to exceed/4 for gale force winds (Figufe 4.8[b)).
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Figure 4.8: Comparison of the Doppler spread at 620 m with the MIT-LListud

In this study, the measured Doppler velocity 45 to 50 dB below zero-Dopphdrout 0.45
m/s (Figure[4.8(a)) under still air. The dynamic range is smaller than that dfitfie.L

measurement results. Hence, the comparison may be performed for tledgve 50 dB
below zero-Doppler. At these levels, the MIT-LL clutter is found to sgrap to 0.5 rys,
which is close to the result of this study. However, it should be noted fofutinee works,
the transmitter power of this system should be increased in order to impro&N\iReand

consequently the dynamic range, so that more reliable comments can be made.

The PSD estimate based on the periodogram has a high variance as itccae alsserved
from Figure[4.Y. In order to improve the variance of the PSD estimate, wamethods such
as modified periodograms withftérent windows and Welch method are utilized (Fiduré 4.9).
Among them, the Welch method yields the best result in terms of estimate variamedr,
the resolution is decreased considerably. Hence, without decreasirgstiiution as much as
possible, the variance of the estimate is tried to be decreased with some othedsndtar
instance, the periodograms or modified periodograms offgrént records of 2000 pulses
each are averaged. According to Fig[ire 4]9(b) and Figure }.9(c)/Vdieh method still
having the least variance, the averaging seems to work and the resulermagroved further

by increasing the number of records averaged.
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The next range cell to be analyzed is dominated by a building at 340 m rthiéernrees.

Accordingly, less or no Doppler spread is expected to be observedisaange cell.

The spectral analyses are performed similarly and the results are givagure[4.10 and
Figure[4.11. The Doppler velocity at levels about 60 dB below zero-Ropp about 0.06
m/s (Indeed, it corresponds to the first Doppler bin). That is, in cortivate range cell with

trees at 620 m, almost no Doppler spread is observed.
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Power Spectral Density Estimates (340m)
T T

T T T
anl Rectangular i
30 Zoomed Bartlett-Hanning
Bartlett
—40}+ Blackman b
Blackman-Harris
50 Hamming |
= Hanning
I PWELCH
@ -60r
h=2
3
$ ~70r
>
o
Q
£ -80f
3
H
o -90r
-100~
-110F : 1
-120b - i i | | B

0 0.05 0.1 0.15 0.2
Frequency (kHz)

(a) Modified periodogram with éierent windows and Welch method

Power Spectral Density Estimates (340m)
T

-20 T T T T
=— periodogram
average of periodograms (3 records)
-40 average of modified periodograms (3 records) (Blackman-Harris)|
welch (Hamming window with %50 overlap)

Power/frequency (dB/Hz)
I
©
o

-120

-140

3 4
Frequency (kHz)

(b) Averaging periodograms and modified periodograms

Power Spectral Density Estimates (340m)
T T T T T T T 1
—301 I —— periodogram
average of periodograms (3 records)
average of modified periodograms (3 records) (Blackman-Harris)
welch (Hamming window with %50 overlap)
50} ]

Zoomed

Power/frequency (dB/Hz)
|
4
o
T

—gol
—o0l
-100
-110
i i i i i i i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Frequency (kHz)

(c) Averaging periodograms and modified periodograms (zoomed)

Figure 4.11: Further spectral analysis of the range cell at 340 m fettartPSD estimate
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4.1.3 Statistical Analysis for Terrain - 1

4.1.3.1 Temporal Analysis for Terrain - 1

In this study, the temporal statistical characteristics of the crowded regitside the blind
zone are examined. The region between 820 m and 3880 m, which com§B8&ssamples, is
investigated over time. The number of analyzed pulses is changed in orlezdk whether

the observation timefects the temporal statistics of clutter.

The normality of | and Q data are checked by means of the Lilliefors test. 8hdts are
tabulated in Table412 and Taljle 4.3. According to the tables, it can be saiti¢hatmber
of RCs for which normality is rejected does not seem tofiecéed with the observation time
or number of pulses analyzed.

Table 4.2: Temporal fit of clutter@ data between 820 m - 3880 m to Normal distribution
(First L pulses)

Number of pulses Corresponding Number of RCs Number of RCs
analyzed (L) time length for which for which
Normality is Normality is
rejected - | rejected - Q
(LILLIETEST) (LILLIETEST)
2000 266 msec 19/305 8/305
1000 133 msec 19/305 21/305
500 66.5 msec 13305 12/305
200 26.6 msec 12/305 17/305
100 13.3 msec 16/305 18305

Table 4.3: Temporal fit of cluttey@ data between 820 m - 3880 m to Normal distribution

(1:step:2000)

Number of step Corresponding| Number of Number of
pulses time length RCs for which | RCs for which
analyzed Normality is Normality is
(1:step:2000) rejected - | rejected - Q
(LILLIETEST) | (LILLIETEST)
2000 1 266 msec 19/305 8/305
1000 2 266 msec 13/305 8/305
500 4 266 msec 19/305 13/305
200 10 266 msec 10/305 12/305
100 20 266 msec 10/305 8/305
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On the other hand, the Rayleigh distribution is widely proposed to model tehgbaacter-
istics of clutter amplitude in an RC as discussed in Se€fion 213.2.1. Hence, therfipoical
clutter amplitude to Rayleigh distribution is checked with both the standard KSrtdgsha
modified KS (MKS) test with the Monte Carlo approach (with a significance leve.05).
For each of 305 RCs, the parameters of the Rayleigh distribution are estifr@atethe em-
pirical clutter amplitude with ML method. The results are given in Table 4.4 abt[FR5.

Table 4.4: Temporal fit of clutter amplitude between 820 m - 3880 m to Raylésgtibadition
(First L pulses)

Number of pulses Corresponding Number of RCs Number of RCs
analyzed (L) time length for which Rayleigh | for which Rayleigh
is rejected (KS is rejected (MKS

TEST) TEST)

2000 266 msec 94/305 120¢'305

1000 133 msec 77/305 103305

500 66.5 msec 63/305 96/305

200 26.6 msec 44/305 73/305

100 13.3 msec 32/305 63/305

Table 4.5: Temporal fit of clutter amplitude between 820 m - 3880 m to Raylésgtibadition
(1:step:2000)

Number of step Corresponding| Number of Number of
pulses time length RCs for which | RCs for which
analyzed Rayleigh is Rayleigh is
(1:step:2000) rejected (KS | rejected (MKS
TEST) TEST)
2000 1 266 msec 94/305 120305
1000 2 266 msec 76/305 107/305
500 4 266 msec 63/305 94/305
200 10 266 msec 48/305 82/305
100 20 266 msec 29305 70/305

First of all, the standard KS test is expected to reject the hypothesizeithalisin less, since
it is made closer to the empirical distribution by estimating the parameters from thigcainp
data as discussed in Sect[on 213.4. Indeed, the number of RCs for whildidRas rejected
by the MKS test is greater than the number in the standard KS test in[Tabled4T4lle[ 4.5.
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Second, it can be seen that the rejection of Rayleigh distribution increaagbs number of
analyzed pulses increases as opposed to the normality rejection. For tBeddk the ratio
of rejection increases from 20% to 40% as the observation time increased 8.3 msec to

266 msec or the number of pulses increases from 100 to 2000.

RCs Rayleigh rejected for Z, Number of pulses = 2000
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Figure 4.12: Temporal analysis of clutter amplitude between 820 m - 3880 f6im2ec

To better understand the results, consider the plot which shows the R@kith Rayleigh is
rejected to model clutter amplitude (Figire 4.IP(a)). When this plot is compaitbe range
characteristic of the region which is given in Figlirel 4.4, it can be seethtb&Cs for which
Rayleigh is rejected and the peaks of the power vs. range plot are quitédated. That is, an
RC with a scatterer in it tends to reject Rayleigh clutter amplitude. This may be rietedp

as follows: Considering the structure of the terrain with mostly point scasteaarRC may
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be dominated by one scatterer since the range resolution of the system iBroguitdence,

the clutter amplitude in time may deviate from Rayleigh and be rather modeled withnRicea
distribution. The point of Ricean distribution is that both | and Q have noo4zeans. This
explains the result of relatively less rejection @ Inormality than that of Rayleigh model

for clutter amplitude: 1 and Q may still be normally distributed, although Rayleighliamp
tude requires normaj® components with zero mean. Actually, the consistency between
non-zero mean of/@Q data and the tendency to reject Rayleigh amplitude can be seen from

Figure[4.12() and Figufe 4.12|c) which show the spatial change of @mpeans of /Q
components over 820 m - 3880 m.

4.1.3.2 Spatial Analysis for Terrain - 1

So far, the temporal statistical characteristics of the clutter have beerrexpldlext, the
spatial statistical analysis is carried out over the fast time axis after the Ispaltiaation

operation explained in Sectién 2.3]1.1 is performed.

For instance, consider the samples between 820 m - 3880 m in thpu?€e. According to
the Lilliefors test and the skewness - kurtosis values, Mealata deviates from normality. It
can be seen from Figufe 4.13(a) and Fidure 4.13(b). Since the skewhthe | component
is much closer to zero than that of the Q component, the histogram of the | cemipis
expected to be relatively more symmetrical. Similarly, the kurtosis values aategfer the

Q component. Consequently, its histogram is spikier.

Histogram of | component of the empirical data, PRI = 20 Histogram of Q component of the empirical data, PRI = 20
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Figure 4.13: Histogram of the | and Q components between 820 m - 3886thefad” pulse
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On the other hand, the histogram and the cumulative histogram of the pomndisg 305
calibrated amplitude samples are given in Figurel4.14(b) and Higure 4.T4{e)Rayleigh,
Log-normal and Weibull models are checked to model clutter amplitude. ML dstioéthe
parameters are used and the MKS test is applied with a significance levBboflhe results
are given in Figure4.14(df=414(f). Log-normal and Rayleigh gexted while the Weibull

distribution is not rejected.

Then, the space-time compound analyses are performed for the saraéniangal. The tex-
ture and speckle components are derived as explained in SEcfion]2.3mhd the MKS test,
the speckle is found to be Rayleigh distributed. For the clutter amplitude to bstibdted,
the texture should be Gamma distributed. However, the texture does not fiy tof dhe

Gamma, Log-normal and Exponential distributions. The results are showigune[4.15.

In addition, the spatial analyses performed on the range interval of 828880 m for the
20" pulse are repeated for the first 50 pulses. For each pulse, the nornfdliy data is
checked by the Lilliefors test, and the MKS test is applied in order to checkittbé the
clutter amplitude to the Rayleigh, Log-normal and Weibull distributions. Theifsignce

level is 0.05 for all tests. The results are given in Tablé 4.6.

Table 4.6: Spatial fit of/Q data and amplitude of clutter for the first 50 pulses (820 m - 3880

m)

Lillifors test results for | /Q components | MKS test results for clutter amplitude
820 m - 3880 m (305 samples) 820 m - 3880 m (305 samples)

e | - Normality rejected for 50 pulses e Rayleigh rejected for 50 pulses out pf
out of 50 pulses 50 pulses

e Q - Normality rejected for 50 pulses e Log-normal rejected for 50 pulses out
out of 50 pulses of 50 pulses

=

e Weibull rejected for 18 pulses out @
50 pulses

As it can be seen from Table 4.6, normality g@ldata is rejected for all pulses. Also, the
skewness and kurtosis values calculated for each pulse are consiistettiis result. Among

all, the values for the 10 20", 30", 40" and 5@ pulses are tabulated in Tallle 4.7 as an
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Calibrated clutter amplitude, PRI = 20 (305 RCs)
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Figure 4.14: Spatial analysis of clutter amplitude between 820 m - 3880 mdg@Cthpulse
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Table 4.7: JQ skewness and kurtosis values for pulse numb#0, 20, 30, 40, 50 (820 m -
3880 m)

| Pulse number | SKEWNESS-I | KURTOSIS-I | SKEWNESS-Q| KURTOSIS-Q |

10 0.328 -3.122 2.952 22.157

20 0.137 -4.451 4.140 34.649

30 0.325 -3.951 1.951 29.106

40 0.220 -3.528 3.124 24.691

50 0.393 -4.175 3.393 31.684
example.

On the other hand, the Rayleigh distribution is rejected to model the clutter ampliftace
result is expected since the range heterogeneity of clutter dominatestiorhige resolution.
The Log-normal distribution is also rejected for all pulses while the Weibuttidigion is

rejected with 40%.

Instead of analyzing the full range of 820 m - 3880 m, smaller windows mayestigated.
A window of size W is swept over the fast time samples in order to observehtimege of
spatial characteristics of clutter amplitude. In this study, thréemint window sizes are
used: 25, 50 and 100 samples, which correspond to a window lengtf0ah2500 m, and
1 km, respectively. For each window, the parameters are estimated by Mlodanatid the
spatial changes of these parameters are plotted. Also, in each winddiKeest is applied
for the corresponding theoretical model. The results of MKS test aesssd together with

the spatial change of the distribution parameters.

The results of the analyses for the'2@ulse with three dferent window sizes are given
in Figure[4.16, Figur€ 417, and Figdre 4.18. For each window size, thgesand scale
parameters of Log-normal and Weibull distributions are plotted so that thésxshows the
range where a window starts. For instance, foeWWO0, the parameter estimate read at 1000

m belongs to the window between 1000 m and 1500 m.
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Spatial change of Weibull scale parameter — a (Window size = 100 & Window step = 1)
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Spatial change of Weibull scale parameter — a (Window size = 50 & Window step = 1) Spatial change of Log—-normal parameter — mu (Window size = 50 & Window step = 1)
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distributions for the 28 pulse (Window size- 50)
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Spatial change of Weibull scale parameter — a (Window size = 25 & Window step = 1) Spatial change of Log—-normal parameter — mu (Window size = 25 & Window step = 1)
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Figure 4.18: Spatial changes of the shape and scale parameters ofl\Aletblog-normal
distributions for the 20 pulse (Window size= 25)
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First of all, it should be noted that as the window size decreases, thel ghatme of shape
or scale parameters becomes more apparent. On the other hand, for sviradlews, the
distribution fitting is performed based on less samples. This trédehould be considered
before deciding on the window size. That is, the window size should befioegh to extract
the spatial characteristics of the region while containingicent samples for a successful

distribution fitting.

According to the Figures 4,16 -4]18, as the window size decreasesjahgae of Weibull
decreases while the rejection of Log-normal increases. This result enaydtained as fol-
lows: The smaller the window size is, the more homogeneous the window becbieese,
the variance of a window decreases and the tails becomes lighter yieldingpghrocmal

model to be rejected more.

In both of the Weibull and Log-normal plots, the scale parameter seems to ¢ mmre
related to the spatial calibration operation than the shape parameter. Thedisbe roughly
inferred that the scale parameter is connected with the power level ofttiregevhile the

shape parameter depends on the dispersion of the scatterers on the terra

For detailed analysis, consider the estimates of the parameters over a vaihdow 50 (500
m) given in Figurd 4. 17. The shape parameter of Weibull distribution deesemainly in
three points (Figure 4.17{(c)). A decrease in the shape parameter afl\Wedans an increase
in the variance and a heavier tail. Hence, such heterogeneous regigrmernansidered as
clutter edges. The MKS test result for each window plotted in Figure 4]5I{e seems to
be correlated with these edges. That is, for the windows rejected to bdedadeh Weibull
distribution, the shape parameter estimation decreases sharply. Besigammal distribu-
tion may be proposed to model these windows based on Higure 4.17(ejpame/ £17(f). As
opposed to the result of the full range, i.e., 820 m - 3880 m, for smaller wisdlog-normal

is accepted and the Weibull is rejected more.
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4.1.4 Surface Clutter Reflectivity for Terrain - 1

In this section, the clutter RCS and reflectivity are calculated for the ramgevah of 820 m
- 3880 m.

The radar power equation given [0_(2.50) is used to calculate the clutter(&®®§)S The re-
quired parameters are tabulated in Tablé 4.8 and the CNR values are offtamele power
vs. range plot for this terrain (Figute 4.4). Here, it is important to notett@CNR values
obtained from the range-Doppler plot include the improvement factorsodile pulse com-
pression and coherent pulse integration. Hence, the actual CNR vathesit improvements

should be used i (2.50). These CNR values are plotted in Higure 4.19(a).

Onceoc is calculated from[{Z.50), the clutter reflectivityd) is obtained by dividing the
oc into the range cell area, which is calculated considering the azimuthal betmuofithe

antennad) and the grazing angle/].

Table 4.8: Parameters for calculation of clutter reflectivity

Parameter Value
Pr 7.5dBm
Gr + Gr 27.2dB
GLnA 36 dB
A 0.03m
T 298°K
B 7.5 MHz
F 3.3dB
L 10dB
0 30°
¥ 0°
Number of chips 16 dB
Number of integrated pulses 33 dB

The resulting clutter RCS and clutter reflectivity for Terrain - 1 are giveRigure[4.19(H)
and Figurg 4.19(dl), respectively.
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4.2 Terrain-2

The second illuminated terrain can be seen in Figure 4.20.

Figure 4.20: Terrain - 2 on the day of measurements

Before analyses, the similar preliminary work is conducted for the secorainesuch as
determination of the boundaries, altitude profiles and the shadowed rejitvesilluminated
area. The altitude profiles are given in Appendix]D.2. Analyzing the hills int#hé beam
of the antenna from these profiles, the points shadowing their backs akednaith blue

pointers. According to these pointers, a horizon line is expected to besabout 5.5 km.

4.2.1 Range-Doppler Processing for Terrain - 2

The power vs. range plot for this terrain is given in Figure 4.22(a).ofdiag to this plot,
there is no return beyond 5 km, as opposed to Terrain - 1. Consideringgheuildings

located just before the peak of the first hill, the horizon line which is expeotbe at 5.5 km
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may be brought closer to 5 km. Hence, the result seems to be reasonabielig the blind

zone from the analyses, the range-Doppler graph can be plotted asiie[Big2(H).

HORIZON @ ~5.5km

HIll with sSmall troes

"'l"l-._pl‘“‘i

Figure 4.21: Ranges of the possible scatterers in Terrain - 2

The blind zone for this terrain is composed of many trees which yields a Dogmlead up

to 25-30 Hz. The range-Doppler plot for this terrain is given in Figur&4.2

4.2.2 Spectral Analysis for Terrain - 2

For detailed spectral analyses, the range cell at 380 m is chosendEi@4n) and the results
are plotted in Figure4.25 and Figlire 4.26. The Doppler velocity for thissrander light air
is found to be about 0.4 fmat levels 45 dB below zero-Doppler peak (Fidure 4.25(d)).

99



dBm

dBm

-140 |

-160 -

Irl-l I .“--‘I.' it !||i BN
=100 - TE“ l 1P ‘\I b ‘| L
| ‘ ! [

-140

-160

-20
-40
-60

-80 |

-100 (AN

| | | | | | : N

-60 \

-80 -~ JIII |
bR RL 1 ] ol

ik Al R b R S | e AL
120 F-- U0 AR [ B R R O B AR A A S RIS y
|

0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 42
range (m) %10
(b) Blind zone excluded

Figure 4.22: Power vs. range plot for Terrain - 2
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Figure 4.23: Doppler vs. range plot for Terrain - 2 with blind zone inatufe- 70 Hz)
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Figure 4.24: RC at 380 m for detailed spectral analyses (Terrain - 2)
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Figure 4.25: PSD estimate based on periodogram and correlogram faaripe cell filled
with trees (380 m)
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Figure 4.26: Further spectral analysis of the range cell at 380 m fettar®’SD estimate
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4.2.3 Statistical Analysis for Terrain - 2

4.2.3.1 Temporal Analysis for Terrain - 2

The temporal analyses performed for Terrain - 2 are tabulated in Tabté4Z12. The blind

zone is excluded from the analyses and 417 samples between 820 m m48@0=xamined

over diferent number of pulses. Taljle 4.9 and Tablel4.11 give the analysis rafsihiésfirst

L pulses for each range. Also, for each range, keeping the oligegrtine constant, each of

2,4, 10 and 20 pulses are analyzed. The results are in[Table 4.10 e TER.

Table 4.9: Temporal fit of cluttey@ data between 820 m - 4990 m to Normal distribution

(First L pulses)

Number of pulses Corresponding Number of RCs Number of RCs
analyzed (L) time length for which for which
Normality is Normality is
rejected - | rejected - Q
(LILLIETEST) (LILLIETEST)
2000 266 msec 15417 12/417
1000 133 msec 19417 20417
500 66.5 msec 14417 26/417
200 26.6 msec 23417 23/417
100 13.3 msec 25417 25417

Table 4.10: Temporal fit of cluttey® data between 820 m - 4990 m to Normal distribution

(1:step:2000)

Number of step Corresponding| Number of Number of
pulses time length RCs for which | RCs for which
analyzed Normality is Normality is
(1:step:2000) rejected - | rejected - Q
(LILLIETEST) | (LILLIETEST)
2000 1 266 msec 15417 12/417
1000 2 266 msec 21/417 20417
500 4 266 msec 22/417 28417
200 10 266 msec 24/417 24417
100 20 266 msec 16/417 20/417
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Table 4.11: Temporal fit of clutter amplitude between 820 m - 4990 m to Raydigsgibution
(First L pulses)

Number of pulses Corresponding Number of RCs Number of RCs
analyzed (L) time length for which Rayleigh | for which Rayleigh
is rejected (KS is rejected (MKS

TEST) TEST)

2000 266 msec 5/417 32/417

1000 133 msec 2/417 35417

500 66.5 msec 4/417 23417

200 26.6 msec 1/417 23417

100 13.3 msec 0/417 19417

Table 4.12: Temporal fit of clutter amplitude between 820 m - 4990 m to Raydsgtibution
(1:step:2000)

Number of step Corresponding| Number of Number of
pulses time length RCs for which | RCs for which
analyzed Rayleigh is Rayleigh is
(1:step:2000) rejected (KS | rejected (MKS
TEST) TEST)
2000 1 266 msec 5/417 32/417
1000 2 266 msec 1/417 301417
500 4 266 msec 1417 26/417
200 10 266 msec 1/417 18417
100 20 266 msec /417 24417

According to Tabld_4]9 and Table"4]10, the normality /) Hata is accepted with a high
percentage and the result does not seem to depend on the numberesfanddyzed or the

observation time.

On the other hand, the results of MKS tests checking the fit of clutter amplitudeytizigh
model show that Rayleigh is rejected with a ratio not higher than 10%. Asseplto Terrain

- 1, the Rayleigh seems to be a suitable model for temporal clutter amplitude. Tduis is
expected result, since a range cell in Terrain - 2 is mostly composeftaselicomponents in

contrast to Terrain - 1.
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4.2.3.2 Spatial Analysis for Terrain - 2

For the spatial characterization of clutter, 417 samples corresponding tarige 820 m -

4990 m are analyzed after spatial calibration as in Terrain - 1.

As an example, the results of th¥ fulse are presented in Figlire 4.27. According to the MKS
test performed with ML estimates of the parameters, Log-normal and Radeigtejected

and Weibull is accepted.

For the space-time compound analyses performed for the same rangaliatehthe same
pulse, the texture and speckle components and their GoF test resultscasb@is in Fig-
ure[4.28. The speckle is found to be Rayleigh distributed, however ntie diGamma,

Log-normal and Exponential distributions is successful to model the tegtamponent.

The above spatial tests are again repeated for the first 50 pulses aeduthe are tabulated in
Table[4.1B. The Rayleigh and Log-normal models are not acceptedyamfaie 50 pulses.
On the other hand, the ratio of Weibull rejection is found to be quite high assagpto the
Terrain - 1 results. For 80% of the pulses, Weibull model is rejected., litavél be better to

analyze the spatial characteristics of clutter amplitude in smaller windows.

Table 4.13: Spatial fit of/Q data and amplitude of clutter for the first 50 pulses (820 m - 4990
m)

Lillifors test results for | /Q components | MKS test results for clutter amplitude
820 m - 4990 m (417 samples) 820 m - 4990 m (417 samples)

e | - Normality rejected for 50 pulses e Rayleigh rejected for 50 pulses out pf
out of 50 pulses 50 pulses

e Q - Normality rejected for 50 pulses e Log-normal rejected for 50 pulses oyt
out of 50 pulses of 50 pulses

=4

e Weibull rejected for 39 pulses out 0
50 pulses
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Figure 4.27: Spatial analysis of clutter amplitude between 820 m - 4990 medfithulse
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The window sizes of 250 m, 500 m and 1 km are used for the second illuminataan
The results are shown in Figure 4/29-4.31. Again, as the window sizeates, more rapid
changes in the scale and shape parameters are observed. Alsan&wsualows for which

Weibull is rejected, Log-normal may be proposed.

For the window length of 500 m, the Weibull shape parameter is found toakexreainly in
three points. A decrease in the shape parameter of Weibull means arserdlae variance.
Hence, it can be said that these transitions occur due to a spatial hetsitpge that region.
However, as opposed to the Terrain - 1 results, the Weibull may still bgtectalthough the

shape parameter decreases.

However, the main dierence between the results of Terrain-1 and Terrain-2 is that the Log-
normal is rejected more than Weibull for the latter. The lower grazing angleifirgt terrain,
together with the point scatterers such as high buildings, is expected to yiatihace higher
than that of the second terrain for which the grazing angle is relatively kighce, the Log-
normal, with its heavier tails than Weibull, may be more suitable to model Terraimbs. T
result seems to be consistent with a previous study on ground clutierifil®hich Log-
normal is found to model the clutter amplitude for low-grazing angles, while-gigaing
angle clutter is modeled with Weibull. Also, in[32], a region with building block®isTd to

be modeled better with Log-normal distribution.
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Spatial change of Weibull scale parameter — a (Window size = 100 & Window step = 1)
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Spatial change of Weibull scale parameter - a (Window size = 50 & Window step = 1) Spatial change of Log-normal parameter — mu (Window size = 50 & Window step = 1)
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distributions for the 1 pulse (Window size- 50)
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Spatial change of Weibull scale parameter - a (Window size = 25 & Window step = 1) Spatial change of Log-normal parameter — mu (Window size = 25 & Window step = 1)
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Figure 4.31: Spatial changes of the shape and scale parameters ofl\Aletuog-normal
distributions for the I pulse (Window size- 25)
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4.2.4 Surface Clutter Reflectivity for Terrain - 2

In this section, the clutter RCS and reflectivity are calculated for the ramgevah of 820 m

- 4990 m.

The required parameters are the same as Terrain-1 (Table 4.8), éxct grazing angle.

The grazing angle for this range interval is assumed to Be 10

The resulting clutter RCS and clutter reflectivity for Terrain - 2 are preeskin Figuré 4.32(h)

and Figur¢ 4.32(d), respectively. From these figures, it can betlsatthe surface reflectivity

of Terrain-2 is smaller than that of Terrain-1. Considering the chaiatitarof the terrains,

this is an expected result since Terrain-1 is mostly filled with high buildings pesaul to

Terrain-2 which is composed of relativelyfilise components [33].
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CHAPTER 5

CONCLUSION

The performance of radar detection and imaging systems strongly depeiols character-
istics of radar clutter. In order to improve the radar signal processirggitdgs, successful
analysis and modeling of radar clutter are required. For a successéldlmbradar clutter,

both the spectral and statistical characteristics of the clutter should teedve

In this thesis, an experimental radar data acquisition system is establishe@irimanalyze
the measured radar clutter. The limitations of the system due to the specificafticT S
test equipments are determined and the system parameters are optimizdihgtcdrinally,

the hardware and the data processing system are verified using gageails.

Next, two diterent terrains are illuminated with 40-chip P4 coded pulses at 10 GHz. A total
time record length of 266 msec is achieved at 20 m range resolution. Theleelcdata are
examined after the construction of a data matrix. The results are interpretieel light of

the characteristics of the illuminated terrains. For both terrains, the firge reglls are filled
with trees. The first terrain is rather flat with point scatterers such asimgslavith various
heights rising at various ranges. On the other hand, the second terraggisd with small
trees and small buildings on it and near the horizon, high buildings risesgidzing angle

for the second terrain is greater than that of the first terrain.

First, the range-Doppler processing is performed for both terrainghelipower vs. range
plots, the horizon line can easily be observed. The peaks in the rangecthastics also
seem to be consistent with the ranges of the scatterers in the illuminated teHaimever,
considering the wide azimuthal beamwidth of the antenna, the comments canneyand
predictions. On the other hand, some Doppler spread is observed astharfges which are

covered mostly with trees.
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For detailed spectral analyses, the PSD of clutter is estimatedfferatt range cells. Con-
sidering the trade{d between the resolution and variance of the PSD estimate, various non-
parametric methods are applied. PSD estimates obtained with periodogram, dhpdifie
odogram and Welch methods are analyzed. In order to improve the PSDtestveaaging

over diferent records is performed. As a result, for the range cells with treefdbppler
velocity is found to spread up to 0.45smat power levels 40-50 dB below the zero-Doppler
peak under light air condition. For a carrier frequency of 10 GHz,ritesponds to a Doppler

spread of 30 Hz.

Then, the statistical analyses in time and space are performed, and by aheangplemen-
tary empirical fitting methods, the empirical data are tried to fit various theokeiigtabu-
tions proposed in the literature to model clutter. ML estimates of the distributi@mnzers
obtained from the data are used for the theoretical model that is to be fitteitheASoF test,
the modified KS test with the extension of Monte Carlo approach is used witmiicagce
level of « = 0.05. For Gaussianity check of th&l data, skewness and kurtosis values are

used and the Lilliefors test is applied again withk= 0.05.

From the temporal statistical analysis, thH@ ldata from both terrains are found to be suc-
cessfully modeled with Gaussian distribution independent of the numbeis&Epanalyzed.
However, as opposed to the second terrain, Rayleigh distribution is ject@odel the
clutter amplitude of the first terrain, possibly due to the non-zero mean of dlnssan /Q
data for the range cells with a dominant scatterer in them. Instead, the Riséd@ution is

expected to model the temporal clutter of the first terrain.

As the spatial model, Rayleigh, Log-normal and Weibull distributions arekatefor the
clutter amplitude at diierent pulses. Among them, Rayleigh is rejected as expected for the
systems with high resolution. Log-normal is also not accepted for bothrsri@n the other
hand, the rejection ratios of Weibull model for the first and the secondimsrare found to
be 40% and 80%, respectively. Then, itis also hard to conclude thaulMsibn appropriate

model for the whole range of both terrains.

Hence, smaller windows of length 1 km, 500 m, 250 m are investigated by sweaer the
range cells. The spatial changes of the Weibull and Log-normal parestietgether with the
result of the MKS test are assessed for each window length. For théefirgin, Weibull is

rejected more than the Log-normal, and vice versa for the second tdfoaiboth terrains, as
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the window size decreases, the spatial change of clutter parametersdsecmwre apparent.
Also, the scale parameters are found to be rather related to the powesfléwvereturns while
the shape parameters are based on the dispersion of the scatterers inrtimatéd terrain.
Besides, since a decrease in the Weibull shape parameter correspamdsooease in the
variance, sharp decreases in this parameter may be attributed to spatiad@esdity of the

clutter region, which may be considered as the clutter edges.

Finally, the space-time compound models are examined. The texture antespmoonents
of the clutter amplitude are extracted. The speckle is found to be sudbtgsstuleled with
the Rayleigh distribution. However, fit of the texture to any of the Gamma, riaygaal,

Weibull and Exponential models could not be achieved.

Considering the results, possible system improvements and future warkisechsted as

follows:

e The total time record length of the current system is on the order of msauceH i

may be increased in order to improve the Doppler resolution further.

e The sampling rate of the receiver should be improved if finer range reswduéice

required.

e The low spectral dynamic range should be improved by increasing thenttitéers

power.

e Antennas with higher directivity may be used if better angular resolution isnestjfor

clutter analyses.

e Antenna isolation may be improved so the receiver will not be exposed totaigs-
mitter power coupled into the receiver antenna Then, it will be no more exjtar
remove the first samples coupled into the receiver, thereby enablingttmasérom

the blind zone to be analyzed.

e A portable system may be implemented so the measurement areas can hbéetlvers
Then, the characteristics of clutter inflérent sites can be examined. For instance,
measurements can be performed near lakes, forests or agriculturs) &dd and the

results may be compared.
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e In order to make it possible to take measurements undkareint weather conditions,
necessary modifications should be applied to the system. For instancestidw® syay
be put into a case which will protect it from rain, wind, etc. By this way, tiieat of

weather on the radar clutter may be observed.
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Appendix A

NEYMAN-PEARSON CRITERION

Problem Definition: Maximize the probability of detectioRp under the constraint that the

probability of false alarniPr5 does not exceed some tolerable valuéhat is,
chos€eR; such thatPp is maximized, subject tBga < a.
In order to solve this optimization problem, the method of Lagrange multipliers & use

F= PD+/I(P|:A—a). (A-l)

To find the optimum solution for the design variabte, F is maximized and themsatisfying

the constrainPga = a is chosen.

If Pp andPgp are expressed as

Py = fm by (v | Ho) dy (A.2a)

Pea = L B, (v | Ho) dy. (A.2b)

then, the functiorF can be written as follows
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F=fmlpy(y|H1) dyM(fmlpy(ylHo) dy—a)

(A.3)

:_Amfm {py (v | Ho) + Apy (v | Ho)) dy

The first term in[(A.B) is independent 8¥;. Hence, the second term is maximized in order to
maximizeF. The integrand of the second term can be either positive or negatiendieg
on the values oft, py (y | H1), andpy (y | Ho). Thus, the integral is maximized by assigning

all the pointsy in the N dimensional space for which

py (y | H1) + Apy (y | Ho) > O (A.4)

to the regiorti;.

Then, the decision rule is found to be as

py (v | H1) < Hi (A.5)

by (y | Ho) ~Ho”

wherey = —A1.
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Appendix B

HYPOTHESIS TEST TERMINOLOGY

Null hypothesis,Hp: The hypothesis that is to be tested.

Alternative hypothesis,Ha: The hypothesis that is to be accepted when the null hypothesis

is rejected.

Type-I error (False positive): The error of rejecting the null hypothesis when it is actually

true.

Type-Il error (False negative): The error of failing to reject the null hypothesis when it is

not true.

Test statistic: A quantity calculated from the data sample. The decision whether to accept or

reject the null hypothesis is based on this statistic.

Critical value: The threshold to which the test statistic is compared in order to decide whether

to reject the null hypothesis or not.

Significance level (or critical p-value),a: The probability of wrongly rejecting the null hy-
pothesis, i.e., the probability of making a Type-I error. A hypothesis testristoucted

for a given significance level. A typical value faris 0.05.

p-value, p: The probability of getting a value of the test statistic as extreme as or more ex-
treme than that observed by chance alone, if the null hypothesis is trie pfvalue
is smaller than the significance level the result is said to bstatistically significant
If the p-value is greater tham, there is insfficient evidence to reject the null hypoth-
esis. (Note that lack of evidence for rejecting the null hypothesis is ridepge for

accepting the null hypothesis.)
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Statistical significance: A result is said to be statistically significant if it is unlikely to have

occurred by chance.

Confidence level: 100(1- )%
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Appendix C

SOME NOTES ON THE MEASUREMENT EQUIPMENTS

C.1 PULSHERF Blanking Function of VSG

ALC hold function is also enabled by PULB®EF blanking. If ALC hold is on, it samples
the 1Q waveform only where the marker waveform is defined, and useaviérage of the
sampled waveform to set the ALC circuitry. For a pulsed signal, the markeefarm is on
during the on samples of the pulse. However, if ALC holdfi the whole signal is taken
into account. Hence, the average seems to be lower than actual valuetdaefficsamples.
Then, the ALC circuitry tries to increase the average further although dtisaquired. This

results in an erroneous DC-like component on the whole signal.

In order to exemplify this situation, the VSG and PSA are connected directlgdio ether
without antennas in between. A 100-chip P4-coded pulse of 10 useB\WW0® usec PRI is
transmitted. In the following plots for no RF blanking, the DC-like componentlzaeasily

observed.
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(b) RF blanking ON (original view)
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(c) RF blanking OFF (Power vs. range)
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(e) RF blanking OFF (Power vs. Doppler freq)
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(d) RF blanking ON (Power vs. range)
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(f) RFblanking ON (Power vs. Doppler freq)
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doppler(Hz)

Figure C.1: Eect of PULSERF blanking function of VSG
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C.2 Input Range Selection of VSA

(a) Input range= 10 dBm

(b) Input range= 0 dBm

(c) Input range= -30 dBm

Figure C.2: Hect of the input range selection of VSA
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C.3 Noise Level and Noise Figure of PSA Spectrum Analyzer

The noise figure of PSA spectrum analyzer can be calculated fromltbeiftg formula:

NF (dB) = Noise level normalized to 1Hz RBW (dBm)kTB (dBm) (C.»

where

NF: Noise figure of the spectrum analyzer (dB),

k: Boltzmann’s constant (38 x 1023 joulegKelvin),
T: Temperature (Kelvin),

B: Bandwidth in which the noise is measured (Hz),

RBW: Resolution bandwidth of the spectrum analyzer (Hz).

According to the data sheet of the spectrum analyzer [41], its typicad teigl at 10 GHz is
-149 dBm (normalized to 1Hz RBW and 0 dB attenuation). This noise levebeatirectly
read by a noise marker as in Figlire C.B(a). Then, the noise figure aaidodated as

NF (dB) = Noise level normalized to 1Hz RBW (dBm)kTB (dBm) (C.2a)
=-149 dBm- (10- log;,(1.38- 102 . (25+ 273)- 1) + 30) dBm (C.2b)

= 25dB (C.2¢c)

It is important to note that, if a normal marker is used instead of a noise markegdsure
the noise level, the readingftirs. In this case, a correction factorRBW B should be taken
into account in interpreting the noise level reading of a normal markern,T{&1) can be

written as

NF (dB) = Measured noise level (dBm)kTB (dBm) — %\/(dB) (C.3)

where RBW is the resolution bandwidth of the spectrum analyzer (Hz).

For example, when 81 MHz, T=25°C, RBW=1 Hz, N=25 dB, the measured noise level is
found to be -99 dBm. Indeed, the normal marker reads -100 dBm (HG3(@)).
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Figure C.3: Noise level readings of the spectrum analyzer
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Appendix D

ALTITUDE PROFILES OF THE ILLUMINATED TERRAINS

D.1 Altitude Profiles for Terrain - 1

+Google

Figure D.1: Antenna beam for Terrain-1
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Figure D.2: Altitude profile of Path-1 for Terrain-1

Figure D.3: Altitude profile of Path-2 for Terrain-1
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Figure D.4: Altitude profile of Path-3 for Terrain-1

Figure D.5: Altitude profile of Path-4 for Terrain-1
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Figure D.7: Altitude profile of Path-6 for Terrain-1
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Figure D.8: Altitude profile of Path-7 for Terrain-1
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Figure D.9: Altitude profile of Path-8 for Terrain-1
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D.2 Altitude Profiles for Terrain - 2

Figure D.11: Altitude profile of Path-1 for Terrain-2
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Figure D.12: Altitude profile of Path-2 for Terrain-2

Figure D.13: Altitude profile of Path-3 for Terrain-2
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Figure D.14: Altitude profile of Path-4 for Terrain-2

Figure D.15: Altitude profile of Path-5 for Terrain-2
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Figure D.16: Altitude profile of Path-6 for Terrain-2

Figure D.17: Altitude profile of Path-7 for Terrain-2
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Figure D.18: Altitude profile of Path-8 for Terrain-2

Figure D.19: Horizon line for Terrain-2
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