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Electrical and Electronics Engineering Dept., METU
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ABSTRACT

SPECTRAL AND STATISTICAL ANALYSES OF EXPERIMENTAL
RADAR CLUTTER DATA

KAHYAO ĞLU, Nazlı Deniz

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. AlïOzg̈ur YILMAZ

December 2010, 139 pages

The performance of radar detection and imaging systems strongly dependson the character-

istics of radar clutter. In order to improve the radar signal processing algorithms, successful

analysis and modeling of radar clutter are required. For a successful model of radar clutter,

both the spectral and statistical characteristics of the clutter should be revealed. Within the

scope of this study, an experimental radar data acquisition system is established to analyze

radar clutter. The hardware and the data processing system are first verified using generic sig-

nals and then a set of measurements is taken in the open terrain. In this thesis,the limitations

and problems encountered during the establishment of the system are explained in detail. The

spectral and statistical analyses performed on the recorded data are examined. The temporal

and spatial behavior of the measured clutter data are explored. The hypothetical models pro-

posed so far in the literature are tested on the experimental data and the fitting of models to

the experimental data is confirmed using various goodness-of-fit tests. Finally, the results of

the analyses are interpreted in the light of the radar system parameters andthe characteristics

of the illuminated terrain.
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ÖZ

DENEYSEL RADAR KARGAŞA VEṘISİNİN İSTATİKSEL VE SPEKTRAL ANALİZİ

KAHYAO ĞLU, Nazlı Deniz

Yüksek Lisans, Elektrik ve Elektronik M̈uhendislĭgi Bölümü

Tez Yöneticisi : Doç. Dr. AliÖzg̈ur YILMAZ

Aralık 2010, 139 sayfa

Radar tespit ve g̈orüntüleme sistemlerinin başarımı radar kargaşasının karakteristiğine băglıdır.

Radar sinyal işleme algoritmalarını geliştirmek için, radar kargaşasının analiz edilmesi ve

modellenmesi gerekmektedir. Başarılı bir radar kargaşa modeli için, kargaşanın hem spektral

hem de istatiksel karakteristiği ortaya çıkarılmalıdır. Bu çalışma kapsamında, radar karga-

şasını analiz etmek için, deneysel radar verisi toplama sistemi kurulmuştur. Donanım ve

veri işleme sistemïonce jenerik sinyaller kullanılarak doğrulanmış ve ardından açık alanda

ölçümler alınmıştır. Bu tezde, sistemin kurulumu sırasında karşılaşılan sınırlamalar ve prob-

lemler detaylı bir şekilde anlatılmıştır. Kaydedilmiş veriüzerinde spektral ve istatiksel anali-

zler gerçekleştirilmiştir.̈Olçülen kargaşa verisinin zamansal ve uzaysal davranışı araştırılmıştır.

Literatürde şimdiye kadar̈onerilen kuramsal modeller deneysel veriüzerinde test edilmiş ve

modellerin deneysel veriye uyumu çeşitli uyum-iyiliği testleri kullanılarak dŏgrulanmıştır.

Son olarak, analiz sonuçları radar sistem parametreleri ve incelenen alanın karakteristĭgi

ışığında yorumlanmıştır.

Anahtar Kelimeler: Radar kargaşası, menzil-Doppler işleme, istatiksel analiz, spektral kesti-

rim, deneysel veri
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CHAPTER 1

INTRODUCTION

RADAR (RAdio Detection And Ranging) is an electromagnetic remote sensing instrument,

used for detecting, ranging and tracking targets. Basically, an electromagnetic wave is trans-

mitted and the echo reflected by the target is used to determine its direction, distance or

speed. The return signal is composed of the direct path return from the target, multipath re-

turns, echoes from other objects, thermal noise, and jammer if present. Anything except the

target, jammer and noise can be considered as clutter.

First, the clutter differs from noise in two ways: 1) They have different correlation properties.

The clutter is a correlated interference, i.e., it has a non-white power spectrum. 2) Unlike

noise, clutter is a type of echo, hence its power is affected by the radar parameters [25].

On the other hand, the difference between clutter and jammer is that the clutter is a passive

interference, where the jammer is an active one.

Lastly, the definition of target differs according to the function of the radar. For instance, the

clouds can be considered as clutter for air traffic radars, while as target for weather radars.

Similarly, the surface of earth is the target for synthetic aperture radars,and the clutter for

surveillance radars.

The radar clutter may be homogeneous or not. The homogeneity of clutter depends on the

cell-to-cell amplitude variations. On the other hand, the clutter can be classified as fluctuating

or non-fluctuating according to the temporal behavior. The behavior of clutter in both space

and time is of great importance to radar detection mechanisms and imaging technologies.

Besides, for a successful characterization of clutter, the spectral and statistical properties of

clutter should be considered.

1



In order to find an appropriate model, the radar clutter, especially the ground and sea clutter,

has been widely studied in the literature and various spectral and statistical models have been

proposed [15], [16], [22], [24], [27], [28]. Once appropriateclutter models are obtained, they

are utilized to develop various detection algorithms and to evaluate their performance as in

[3], [6], [23], [29], [34], [36].

The basic motivating factor behind this work is to examine spatial and temporal spectral and

statistical characteristics of experimental radar clutter. In order to perform analyses on the

experimental radar clutter data, an experimental data acquisition and data processing system

is established within the scope of this study.

In the chapters that follow, analysis of radar clutter is presented as follows:

In Chapter 2, various methods of radar clutter analysis are examined. First,the concept of

data storage structure is discussed. Then, the spatial and temporal correlation and the Doppler-

spreading effect of clutter are studied. Chapter 2 also covers the spatial and temporal statistical

analyses of clutter, which complement the spectral analysis and yield a complete understand-

ing of clutter. This chapter ends with explanation of the concept of clutter reflectivity.

In Chapter 3, the experimental data acquisition set-up used in this study is described. First,

the general block diagram of the system is given. After the transmitter and the receiver blocks

are presented in detail, the signal processing of the received signal is explained. Finally, the

whole system is verified using generic signals.

Chapter 4 covers the analyses of the experimental data. The results of thestatistical and spec-

tral analyses performed on the received signal, and the calculation of theclutter reflectivity

are given for each measurement together with the characteristics of the studied terrain.

Finally, in Chapter 5, the results are concluded and the possible future works are stated.
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CHAPTER 2

RADAR CLUTTER ANALYSIS

2.1 Data Matrix Construction

In radar signal processing, there is a well-accepted approach of using a data storage structure

in order to illustrate various digital processing concepts. The data structure is constructed

in such a way that spectral and statistical processing operations can be performed on its di-

mensions. Hence, in order to construct such a structure, first the dimensions should be de-

termined. Each of pulse number, delay of the radar echo, receiver channel number, azimuth

and elevation angles of the antenna can be considered as a potential dimension of the data

storage structure [25, chap 3.1]. Among them, the ones which are of interest are determined

according to the data acquisition scenario. For instance, for a phased-array antenna system,

in which a group of antennas is used, one dimension can be assigned to the receiver channel

number. On the other hand, if the angular position of the antenna does not change in the

data acquisition system, there is no need to define any dimension representingthe azimuth or

elevation angle. Once the dimensions are determined, the complex baseband samples of the

received radar signal are aligned according to them. The samples are inI + jQ form, where

I and Q represent the voltage of in-phase and quadrature components ofthe received signal,

respectively.

In this study, only two dimensions of the return signal, which represent the pulse number and

the delay, are of interest. Hence, throughout this thesis, the data storagestructure will be

mentioned as thedata matrix. In order to illustrate how the data matrix is constructed, con-

sider the transmitted train of M pulses given in Figure 2.1. The antenna beam isfixed, so the

same region is illuminated in each pulse repetition interval (PRI). For the returnsignal, each
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PRI is divided into N successiverange cells(range binsor delay bins), each corresponding

to a fixed delay. The return signal is then sampled and stored in anMxN matrix (Figure 2.2),

so that each row represents the samples of a fixed PRI and each column is composed of the

samples taken from successive pulses after a fixed delay. Successive columns of a given row

is referred to as thefast timedomain, while the opposite is called theslow timedomain.

Figure 2.1: Pulse train as the transmitting signal

Figure 2.2: Data matrix

In order to place the samples in the data matrix, the knowledge of sampling rates inboth di-

mensions is required. To begin with the fast time, letTs, f ast denote the time interval between

two successive range samples from a single received pulse. According to the Nyquist crite-

rion, the minimum sampling rate required for unique recovery of the received signal is twice

its bandwidth. In a radar system, the received signal gives information about the reflection of

the transmitted signal from different range cells. Hence, it will be appropriate to model the

4



radar return signalr(t) as the convolution of the transmitting signalx(t) and the range reflec-

tivity function of the illuminated areap(t) [25, chap 3.1]. Then, the spectrum of the return

signal is the product of the spectra ofx(t) andp(t). That is,

r(t) = x(t) ∗ p(t) (2.1a)

R( f ) = X( f ) · P( f ). (2.1b)

Since the spectrum ofp(t) is assumed to occupy a larger bandwidth than that ofx(t) [25, chap

2.8], the spectrum of the return signal is determined by the latter. Hence, only the bandwidth

of the transmitting signal can be taken into account in determining the Nyquist sampling

rate. Thus, the minimum frequency of sampling in range,Fs, f ast, can be chosen as twice the

bandwidth of the transmitting signal,BT X, i.e.,

Fs, f ast ≥ 2 · BT X (2.2)

according to the Nyquist sampling theorem. In order to find the unknownBT X in the above

relation, consider a rectangular pulse of duration PW as the transmitting signal. Although it

is not bandlimited, its bandwidth can be approximated by the Rayleigh bandwidth as

BT X �
1

PW
. (2.3)

The pulse width PW of the transmitting signal in relation (2.3) also determines the range

resolution of the system as follows

Rres =
c · PW

2
. (2.4)

Combining the relations in (2.2), (2.3), and (2.4),

Fs, f ast ≥
c

Rres
(2.5a)

Ts, f ast ≤
Rres

c
(2.5b)
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Then, the fast time sampling interval, or equivalently the range cell spacing,should be chosen

considering the range resolution. It is important to state here the importance of range cell

spacing for discrete time target detection mechanism. A target peak in a resolution cell may

be missed if an appropriate sampling is not provided in the range and there is no samplenear

the target. Hence, the range cell spacing should be fine enough to catch as much details as

possible from the terrain. As a result, the Nyquist sampling rate in fast time domain, i.e.,

Fs, f ast, is determined according to the transmitting signal, which is constructed in such away

that it satisfies the range resolution requirement of the system.

Having found the fast time sampling criterion, the next step is to determine the slowtime

sampling interval related to the data matrix, i.e., sampling along one column. The slowtime

data represent the samples taken from the same range cell in each pulse. For a given range

cell, both the intrinsic motion of the illuminated area and the radar platform may yield pulse-

to-pulse phase variation, which corresponds to a Doppler shift. This results in a spread in

the spectrum of the slow time signal, hence a nonzero Doppler bandwidth [25, chap 2.8].

According to the Nyquist sampling theorem, the frequency of sampling in slow time, Fs, slow,

can be expressed as

Fs, slow ≥ 2 · BD (2.6)

whereBD represents the bandwidth of the slow time signal.

On the other hand, it is obvious that the slow time sampling interval,Ts, slow is equal to the

PRI of the pulse train. Then, the frequency of sampling in slow time,Fs, slow is

Fs, slow =
1

Ts, slow
=

1
PRI

(2.7)

From (2.6) and (2.7),

Fs, slow =
1

PRI
≥ 2 · BD (2.8)

The selection ofFs, slow or PRI is important from two points of view:

1. The unambiguous Doppler spectrum width is given by
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βD =
1

PRI
. (2.9)

An unambiguous Doppler spectrum widthβD, which is small with respect to clutter and

target Doppler frequencies yields Doppler ambiguities. In order to eliminate Doppler

ambiguities,βD should be sufficiently high, which requires PRI to be decreased.

2. The unambiguous range can be evaluated as

Rua =
c · (PRI− PW)

2
. (2.10)

That is, for a betterRua, PRI should be increased.

It is important to note that there is a trade-off betweenβD andRua. For a betterβD, PRI should

be decreased causingRua to decrease.

Apart from the range and Doppler ambiguities, the Doppler resolutionDres, which is impor-

tant for target detection, is also of concern. If the number of pulses is denoted byM, the

increased PRI improves the Doppler resolution:

Dres =
1

total length
=

1
M · PRI

. (2.11)

Consequently, the slow time Nyquist sampling rateFs, slow can be determined considering the

unambiguous Doppler spectrum width and unambiguous range requirementsof the system

together with the target detection concerns.

To sum up, the sampling rates in fast time and slow time of the data matrix can be mainly de-

termined according to the Nyquist sampling theorem. However, some other criteria regarding

the performance of the system, such as detection and imaging resolution and ambiguities, are

also taken into account.

2.2 Spectral Analysis of Clutter

The spectral analysis of clutter is of great importance to successful design of radar proces-

sor. In order to better understand its importance, the principle period of a generic Doppler
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spectrum shown in Figure 2.3 should be examined [25]. In the figure, the spectral contents

of targets, noise and clutter can be seen. In this spectrum, the zero-Doppler bin corresponds

to the DC return, i.e., the returns from stationary targets. Moving targets appear in the spec-

trum according to their relative radial velocity with respect to the radar. The receiver noise is

spread uniformly over the whole spectrum. Finally, the clutter occupies a region around the

zero-Doppler bin due to the intrinsic motion of clutter sources.

Figure 2.3: Generic Doppler spectrum

According to this spectrum, for a target which is outside the clutter region, theonly interfer-

ence is the thermal noise. However, the spectral contents at or near zero-Doppler frequency

are dominated by the clutter. Hence, a target in this region should overcome this clutter be-

sides noise in order to be detected. However, poor knowledge of the spectral characteristics

of clutter may yield some degradation in the performance of moving target indication (MTI)

radars.

Consider the data matrix which is constructed in Section 2.1. The Doppler spectrum for each

range bin can be obtained by computing the discrete Fourier transform (DFT) over the slow-

time samples. Then, the slow-time dimension of the data matrix is converted into the Doppler

frequency.

Based on the Doppler spectrum obtained for a given range bin, the power spectral density

(PSD) of the slow time samplesy(t)M
t=1 can also be estimated. In this nonparametric method,

the PSD estimator, which is given in
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2

, (2.12)

is called theperiodogram.

On the other hand, the concept of correlation time introduces another approach to the spectral

information. In order to understand the behavior of clutter in time, it is also important to

answer the following question: “How long does it take for the clutter component to change

significantly?” As stated in [12], the temporal information contained in the correlation time

is equivalent to the spectral information in the random process in time, basedon the fact that

the DFT of the autocorrelation function gives the power spectral density (Wiener-Khintchine

Theorem). Then, assuming the stationarity of the slow time samples, the correlogram, which

is also a nonparametric method, gives the PSD estimate according to

φ̂C (ω) =
N−1
∑

k=−(N−1)

r̂ (k) e−iωk, (2.13)

where ˆr (k) can be unbiased or biased autocovariance of the slow-time data sequence:

r̂unbiased(k) =
1

N − k

N
∑

t=k+1

y (t) y∗ (t − k) , 0 ≤ k ≤ N − 1 (2.14a)

r̂biased(k) =
1
N

N
∑

t=k+1

y (t) y∗ (t − k) , 0 ≤ k ≤ N − 1 (2.14b)

Note that, if the biased autocovariance is used, the correlogram estimate becomes equal to the

periodogram [26].

Although both methods provide good resolution for sufficiently large data sequences, the

variance of the estimates is high [26]. In these methods, when a data sample is added to the

sequence, this new sample is used to make estimation at a new additional frequency instead

of improving the estimate on hand. Hence, the variance of the estimate cannot be decreased

by increasing the data length.

In order to improve the PSD estimate, various methods are proposed. For instance, as in the
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modified periodogram method, non-rectangular windows may be used to make the edges of

the signal smoother, thereby reducing the spectral leakage.

Another method is theWelch method, in which the data sequence is divided into segments (the

segments may overlap) and the modified periodogram is computed for each segment. Then,

the average of the estimates from each segment gives the new PSD estimate.

In these methods, the variance of the PSD estimate is decreased relative to theperiodogram.

However, the following two points should be noted: 1) The average powerof the windowed

signal changes due the samples attenuated by the non-rectangular windows. Hence, a normal-

ization should be taken into account. 2) There is a trade-off between the resolution and the

variance of the estimate. Methods used to decrease the variance of the estimate degrades the

spectral resolution.

The PSD estimate of the slow time samples gives an idea about the spectral characteristics

of the clutter component in that range bin. In the literature, there are many studies on the

spectral characterization of clutter. For instance, in [14], the spectralcontent of windblown

trees is examined on the recorded radar clutter data and also a comprehensive comparison

with the previous studies is provided. According to this study, the measured Doppler spread

of windblown foliage is found to be about 1 m/sec under light wind conditions at levels of

60-80 dB below the zero-Doppler peak. Also, it is reported that the spread due to clutter is

found to increase with the force of the wind. For windy conditions, the spread is reported as

3 m/sec. However, as opposed to many previous studies, the spread is expected not to exceed

4 m/sec even for gale force winds. The inconsistencies with the previous studies are mostly

attributed to the problems of the measurement systems.
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2.3 Statistical Analysis of Clutter

In a radar system, the interference and target echoes are represented by statistical models,

hence radar detection can be considered as a statistical decision problem[25, chap 6]. For a

given range cell, target detection can be modeled as a binary hypothesis testing where

H0 ∼ Target isabsent

H1 ∼ Target ispresent

and the decision may result in one of the four possible cases given in Table2.1.

Table 2.1: Target detection decision table

DecideH0 DecideH1

Target absent Correct rejection False alarm

Target present Miss Detection

The decision ofabsenceor presenceof a target can be made according to a test statistic which

is computed for the current scenario and compared to a threshold value. For example, the

test statistic can be derived based on the Neyman-Pearson criterion, so that the probability of

detection is maximized for a given probability of false alarm. Such detectors are referred to

asconstant false alarm rate (CFAR) detectors.

The probability of detection and the probability of false alarm can be expressed as

PD =

∫

R1

py (y | H1) dy (2.15a)

PFA =

∫

R1

py (y | H0) dy (2.15b)

respectively, wherey represents the observation from the cell under test (CUT). The observa-

tion composing of N samples can be considered as a vector in an N-dimensional space:

y = [y1 · · · yN]. (2.16)
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Each vector in that space corresponds to one of the decisionsH0 or H1. The regionR1

denotes the set of all observations for whichH1 is chosen. The conditional probability density

functions (pdfs),py (y | H0) andpy (y | H1), represent the relative likelihoods of observation

y under each of the two hypotheses, i.e.,H0 andH1, respectively. When the decision rule is

derived based on the Neyman-Pearson criterion as in Appendix A, the test statistic in (2.17),

which is also called thelikelihood ratio, is found to be a function of these two conditional

pdfs.

py (y | H1)

py (y | H0)
≷H1

H0
γ (2.17)

In order to model these two conditional pdfs, the distribution of any interference that is present

in the CUT should be given. Even all the parameters should be known as well as the distribu-

tion itself. Hence, in the presence of clutter besides noise, perfect knowledge of its distribution

becomes important in determining the test statistic used in target detection.

Besides, the statistics of clutter is of great importance to the assignment of threshold value

for the decision rule. The threshold level for the CUT is selected according to the level of

interference, i.e., noise, jammer and clutter if present, in that CUT. The interference level is

directly related to the parameters of the clutter distribution and it may vary in space and time.

Radar clutter statistics can be analyzed in two main frameworks: 1) spatial variation and 2)

temporal behavior of the clutter [9], [12], [25, chap 2.3]. The former characterizes the cell-to-

cell variation of clutter, whereas the latter is based on observation of a specific range cell over

time. Generally, the spatial and temporal distributions are found to be different. Both spatial

and temporal analyses are carried out on the clutter amplitude, in-phase (I) component, and

quadrature (Q) component. The aim of these analyses is to assess the underlying distribution

of the experimental radar clutter data.

In the first subsection, spatial analysis of clutter statistics is discussed. The significant role of

spatial variation of clutter in radar detection and imaging mechanisms is stated. Theoretical

distributions proposed in the literature up to now for clutter amplitude and I and Qcomponents

are presented.

The second subsection covers the examination of clutter statistics in terms of temporal vari-

ation. Distributions suggested to model the temporal characteristics of clutter ina specific
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range cell are also given.

In the third subsection, the concept of space-time compound model is explained and various

compound distributions for the clutter amplitude statistics are presented in detail.

This section ends with the complementary methods used to check the fit of experimental data

to the proposed hypothetical models. The main advantages and drawbacksof these empirical

fitting methods are briefly explained.

2.3.1 Spatial Statistics of Clutter

At a given time, the clutter varies from one region to another. The variation of clutter in

space is described by its spatial distribution. The distribution of clutter in space is crucial

in terms of the performance of radar detection mechanisms. Moreover, in order to interpret

high resolution SAR images for terrain classification and target recognition,it is required

to extract the detailed spatial texture of clutter in the illuminated region [28]. As the range

resolution increases, it becomes possible to resolve discrete structures inthe region and the

range heterogeneity of the clutter prevails. Hence, the spatial variance of clutter may increase.

That is, the probability of clutter amplitude taking values away from the mean increases.

Hence, an increase in the variance causes the tails of the clutter pdf to rise up.

The effect of the clutter tail on the radar detection performance can be explained as follows:

Due to the long tail of the highly-varying clutter amplitude, the return signal may take larger

values in some range cells. For the fixed threshold detectors, this may resultin a mislead-

ing peak crossing the detection threshold level, hence thePFA increases. As opposed to

fixed threshold detectors, CFAR detectors provide adaptive threshold levels for different in-

terference levels in different range cells in order to satisfy the required detection performance.

However, if clutter is the dominant interference, rather than thermal noise,conventional CFAR

detectors may suffer from high spatial variation of clutter [25, chap 7.4]. When the clutter is

highly heterogeneous over the range cells, the parameters of clutter distribution, which are

directly related to the clutter level, differ significantly from cell to cell. Hence, conventional

CFAR detectors have difficulty in setting the correct threshold level near the clutter edges,

which may result in either a false alarm or miss of a target in undesired proportions. Knowl-

edge of the spatial variation of clutter helps to interpret these possible wrongdecisions. Also,
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to overcome the problems in the clutter edges, understanding the spatial clutterstatistics forms

a base to develop alternative detection mechanisms, such as Greatest of CFAR (GO-CFAR)

and Range Heterogeneous CFAR (RH-CFAR) [29].

Having explained the significance of spatial distribution of clutter in terms of detection and

imaging performance, some hypothetical spatial models proposed in the literature can now

be examined. However, before presenting the models, spatial calibration should be applied to

the return signal. In the next section, these calibration operations are explained.

2.3.1.1 Calibration for Spatial Analysis

In order to make the spatial analysis of clutter data independent of distanceand cell area of the

illuminated region, two calibration operations should be applied to the receivedsignal. For

these calibrations, consider the fast time dimension of the data matrix explained inSection 2.1.

The fast time complex samples represent the signal return from successive range cells in terms

of voltage.

Figure 2.4: Data matrix and spatial calibration

For the first calibration, consider the radar power equation. Accordingto the radar power

equation, the power of the return signal decreases with the fourth powerof the distance, D.

That is,
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Preceived∝
1

D4
(2.18)

Then, the received voltage decreases withD2:

Vreceived∝
1

D2
(2.19)

Hence, the decrease in the voltage of the fast time samples due to distance should be com-

pensated by multiplying the samples withR2
i , whereRi represents the distance of theith range

cell to the antenna. In (2.20),R is the range cell spacing andi is the range cell index, i.e.,

i = 1, 2, ..., N.

Ri = i · R (2.20)

The second calibration required for the spatial statistical analysis is the calibration with re-

spect to the illuminated cell area. Although the illuminated range cells are equally spaced,

they are not of equal size due to the azimuthal beam of the antenna,θ. The effect of antenna

beam on the cell area is illustrated in Figure 2.5.

According to the radar power equation, the power return is directly proportional to the cell

area. Then, the relative return from the close-by cells will be smaller than the cells that are

far from the antenna, since the cell area decreases as approached tothe antenna. In order

to eliminate the effect of unequal power return due to unequal cell areas, normalization is

required. The power return of each range cell should be divided by the cell areaAi , where

i represents the range cell index, i.e.,i = 1, 2, ..., N. Equivalently, the complex baseband

samples should be divided by the square root ofAi .

To sum up the calibration operations in the fast time, letCi denote the complex baseband

sample from theith range cell (Figure 2.4). Then, the calibrated sample

Ci ·
R2

i√
Ai

(2.21)

15



Figure 2.5: Azimuthal antenna beam and the area of the illuminated range cells

should be used in the spatial statistical analysis. In the end, the overall calibration factor is in

the order ofRi .

Finally, it is important to note that these corrections are applied after the data are received, i.e.,

at the stage of data processing. However, there is also a mechanism not studied here called

sensitivity time control (STC), which provides a range-dependent gain during data acquisition

[12], [17], [25], [33].

2.3.1.2 Spatial Clutter Models

There are various statistical models suggested for the spatial behavior ofI and Q components

and amplitude of the radar clutter. In this chapter, the proposed pdfs and their parameters

are examined in detail. The properties of the distributions which will be required for the

empirical fitting tests, such as cumulative distribution functions (CDFs) and raw moments are

also presented in this section.

In radar systems with low range resolution, the spatial behavior of I and Q components of

clutter can be modeled with Gaussian distribution [30]. Since the resolution is low, a range
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cell can be assumed to consist of a sufficiently large number of independent scatterers. Then,

the resulting distribution can be approximated by Gaussian pdf based on the central limit

theorem (CLT). Let the random variableSIQ denote the voltage of I or Q component of the

clutter in a range cell (‘S’ stands for spatial). Then, the proposed Gaussian pdf and CDF are

given as follows

pGaussian(sIQ) =
1

√
2πσ2

exp















−
(

sIQ − µ
)2

2σ2















(2.22a)

FGaussian(sIQ) =
1
2

[

1+ erf

(

sIQ − µ√
2σ2

)]

(2.22b)

where the parametersµ andσ represent the mean and the standard deviation anderf(.) is the

error function. The effect of changing these two parameters on the distribution is depicted in

Figure 2.6. The parameterµ changes the location of the pdf, whereσ is related to the scale of

the pdf.
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Figure 2.6: (a) Theoretical Gaussian pdf, (b) Theoretical Gaussian CDF

However, CLT fails as the range resolution is improved, since the number ofscatterers in a

resolution cell becomes finite or one of the scatterers dominates [29]. Hence, the assumption

of Gaussian pdf for the distributions of I and Q components of the clutter is nomore valid. It

has been stated that the I and Q components of high resolution clutter are spikier than Gaussian

distributed I and Q [17]. If the range resolution is sufficiently high, the radar system will be

able to resolve the heterogeneity of the region. That is, radar becomes more sensitive to spatial

variations of clutter from range cell to range cell, which results in a spiky characteristic.
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For a complex random variable, whose real and imaginary parts are independent and Gaussian

distributed, the amplitude is then Ricean or Rayleigh distributed. Thus, the amplitude of

clutter in low resolution radar systems can be either Ricean or Rayleigh modeled. If the

clutter amplitude in one range cell is denoted by the random variable,SZ ,

SZ =

√

SI
2 + SQ

2 (2.23)

where the I and Q components are Gaussian with non-zero mean

SI ∼ N(ν cosθ, c2)

SQ ∼ N(ν sinθ, c2)

thenSZ is Ricean distributed as in (2.24). (I0(.) is the modified Bessel function of the first

kind with order zero.)

pRicean(sZ; c, ν) =
sZ

c2
exp

















−

(

sZ
2 + ν 2

)

2c2

















I0

( sZ ν

c2

)

, sZ ≥ 0 (2.24)

The Rayleigh distribution is a special case of Ricean distribution. Ifν = 0, the Ricean pdf is

transformed into a Rayleigh pdf. That is, if

SI ∼ N(0, c2)

SQ ∼ N(0, c2)

thenSZ is Rayleigh distributed wherec > 0 is the scale parameter:

pRayleigh(sZ; c) =
sZ

c2
exp

[

− sZ
2

2c2

]

, sZ ≥ 0 (2.25a)

FRayleigh(sZ; c) = 1− exp

[

− sZ
2

2c2

]

, sZ ≥ 0 (2.25b)

The Rayleigh pdf and CDF are plotted in Figure 2.7. Thekth moment of Rayleigh distributed

random variable is as follows
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E
{

S k
Z, Rayleigh

}

= ck 2k/2 Γ

(

1+
k
2

)

(2.26)

whereΓ(.) is the gamma function.
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Figure 2.7: (a) Theoretical Rayleigh pdf, (b) Theoretical Rayleigh CDF

Moreover, the intensity of a complex Gaussian clutter is denoted bySP as in 2.27 and it is

exponentially distributed.

SP = SI
2 + SQ

2. (2.27)

For high range resolution systems, since the I and Q components deviate from Gaussian, the

deviation of amplitude statistics from Rayleigh (or Ricean) is obvious. As explained before,

the spiky characteristic of the clutter amplitude due to high resolution makes the tailof the

pdf rise up. Hence, distributions with longer tails are required to model clutteramplitude of

high resolution. There are several distributions proposed to model the non-Rayleigh clutter

amplitude. Among them, Log-normal and Weibull are the most common ones.

The Log-normal distribution is used to model the clutter amplitude in [3], [6], [32]. It has

two parameters, namely, the meanµ, and the standard deviationσ. The pdf and CDF of
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Log-normal distribution are given in (2.28) and plotted in Figure 2.8.

pLog−normal(sZ; µ, σ) =
1

sZ

√
2πσ2

exp

[

−
(ln sZ − µ)2

2σ2

]

, sZ ≥ 0 (2.28a)

FLog−normal(sZ; µ, σ) =
1
2

[

1+ erf

(

ln sZ − µ√
2σ2

)]

, sZ ≥ 0 (2.28b)
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Figure 2.8: Theoretical Log-normal pdf and CDF

Thekth moment of a Log-normal random variable is

E
{

S k
Z, Log−normal

}

= exp

[

kµ +
1
2

k2σ2
]

(2.29)

Sometimes the tail of the Log-normal pdf is too long for clutter amplitude to fit [9]. In this

case, the Weibull pdf, whose tail may be lighter than that of Log-normal, butstill longer than

Rayleigh, can be used to model clutter amplitude. Weibull distribution is a two-parameter

distribution, wherea > 0 is the scale parameter, andb > 0 is the shape parameter (2.30). As
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b decreases, the tail becomes heavier. Figure 2.9 shows how the tail of the pdf changes with

b. It can be inferred from the figure that it is the shape parameter which gives the Weibull

distribution its flexibility. It is also important to note that Rayleigh is a special caseof Weibull

distribution forb = 2.

pWeibull(sZ; a,b) = b a−bsZ
b−1 exp

[

−
( sZ

a

)b
]

, sZ ≥ 0 (2.30a)

FWeibull(sZ; a,b) = 1− exp

[

−
( sZ

a

)b
]

, sZ ≥ 0 (2.30b)
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Figure 2.9: Theoretical Weibull pdf and CDF

Thekth moment of Weibull random variable is given by

E
{

S k
Z,Weibull

}

= ak Γ

(

1+
k
b

)

. (2.31)
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2.3.2 Temporal Statistics of Clutter

So far, the spatial behavior of clutter, i.e., the change of clutter from one range cell to another,

has been examined. However, the clutter in a range cell may also vary in time. Hence, in

order to maximize the detection probability for a fixed false alarm probability, thedetection

threshold level should be adjusted in time considering the variation of clutter in agiven range

cell. That is, the knowledge of temporal behavior of clutter is important in termsof target

detection mechanisms, as well as the spatial statistics. Thus, in this section, the temporal

variations of clutter will be studied.

It is important to make the distinction between the reasons of spatial and temporal variations of

clutter. The spatial variations of clutter are associated with the land cover, i.e., the layout of the

backscatterers, such as buildings, trees, agricultural fields in the illuminated range cells. As

explained in Section 2.3.1, the range resolution of the system is the main parameter that affects

the spatial behavior of clutter. On the other hand, the temporal behavior ofclutter mainly

depends on the fluctuations of the backscatterers in a given range cell over time. However, it

is important to consider the indirect effect of land cover on the temporal behavior of clutter.

For instance, a range cell dominated by a stationary scatterer, such as a building, exhibits

very small or no fluctuation in time, where a range cell containing trees usuallyexhibits more

fluctuations. Thus, it can be concluded that the range resolution of the system also affects the

temporal statistics of clutter by changing the contents of range cells [8].

Apart from the range resolution, it is self-evident that the weather condition leads to temporal

fluctuations in clutter. For example, the wind causes the clutter amplitude to change in time.

Here, a question may arise on how long the clutter must be observed in orderto extract its

temporal behavior. It is obvious that the observation time must be sufficiently long. However,

the length of the observation time must be chosen according to the focus of interest. For

example, a long-term observation on the order of days may help monitor the seasonal trends

of clutter, where an observation length on the order of seconds may provide the short-term

characterization of clutter [12]. However, it can be predicted that the observation length can

be practically limited by the maximum allowable data record length of the data acquisition

system [8].

In order to obtain the temporal statistics of clutter, the returns fromM pulses are analyzed
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for a given cell. That is, the slow-time dimension of the data storage matrix is of interest

(Figure 2.10). If the random variableTZ denotes the clutter amplitude of a fixed range cell

over a period of time (‘T’ stands for temporal), the distributions proposed forTZ are examined

in the following subsection.

Figure 2.10: Data matrix for temporal statistics of clutter

2.3.2.1 Temporal Clutter Models

Also for the temporal statistics of clutter, a number of models are proposed in the literature.

For the temporal case, the amplitude of clutter is considered to be either Riceanor Rayleigh

distributed [8], [12].

The return from scatterers in a range cell can be classified into two types:a steady component

and a diffuse component. The former is the return from fixed discrete objects such as buildings

and it does not change in time; where the latter is formed by the returns from movable objects

such as wind-blown foliage and it contributes to the nonstationarity of the clutter [8]. A range

cell may contain one or both of these components.

The clutter amplitude with a large steady component and a diffuse component in a range cell

is modeled with a Ricean distribution. That is,
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pRicean(tZ; c, ν) =
tZ
c2

exp

















−

(

tZ 2 + ν 2
)

2c2

















I0

( tZ ν

c2

)

, tZ ≥ 0 (2.32)

On the other hand, the diffuse component itself is modeled with a Rayleigh distribution, which

is a special case of Ricean distribution.

pRayleigh(tZ; c) =
tZ
c2

exp

[

− tZ 2

2c2

]

, tZ ≥ 0 (2.33a)

FRayleigh(tZ; c) = 1− exp

[

− tZ 2

2c2

]

, tZ ≥ 0 (2.33b)

As explained previously, the temporal behavior of clutter depends on the land cover and range

resolution as well as the weather condition. The effect of range resolution on the temporal

behavior can be exemplified as follows: If a fixed large scatterer is isolatedfrom small moving

scatterers as the range resolution improved, the range cell with moving scatterers approaches

Rayleigh model where the range cell with the large scatterer is Ricean distributed. Conse-

quently, it can be concluded that the temporal behavior of clutter may change from one range

cell to another.

2.3.3 Space-Time Compound Clutter Statistics

Since both the spatial and temporal statistics of clutter play an important role in target detec-

tion mechanisms, it is sometimes useful to define the clutter as a function of both space and

time. Based on this, a different approach to clutter modeling is introduced: thecompound

clutter model. The nature of the compound clutter model enables both temporal and spatial

correlation properties of the returns to be taken into account [11], [27]. In this model, the

clutter amplitude is decomposed into two independent processes, which are related to time

and space.

The first component, thespecklerepresents the spatial voltage fluctuations in the fast time

dimension. The speckle component generally exhibits a short decorrelation time. The speckle

is modeled so that the mean of its power levelE
{

|S|2
}

= 1 [28]. The underlying power level

of the clutter is related to the second component, namely thetexture. The texture, which
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represents the ‘local power’ variation of the return signal, decorrelates in a relatively longer

time [21]. The ‘local mean voltage’ level, which is square root of the texture, modulates the

clutter amplitude, hence it is called themodulating component.

Accordingly, the clutter amplitude can be written as

CZ =
√
τ × |S| (2.34)

where

|S| : amplitude of the speckle

τ : texture
√
τ : modulating component

Figure 2.11: Space - time compound model [21]

Figure 2.11 illustrates the concept of space-time compound clutter model [21]. For a fixed

range, the temporal average of the return power is calculated. This corresponds to the ‘local

mean power’, which is a function of range. Then, the spatial variation of temporal averages

is used to construct a space-time compound model. That is, given the temporal averages of

local amplitudes, the spatial variation of clutter is expressed by the conditional probability
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p (cZ | m) (‘C’ stands for compound). Heremdenotes the local mean voltage, or equivalently

the modulating component. Then, the clutter amplitude can be found from (2.35):

p (cZ) =
∫ ∞

0
p (cZ | m) p (m) dm. (2.35)

2.3.3.1 Compound Clutter Models

The K-distribution is the most widely known model among the space-time compoundmod-

els. It was first proposed for the sea clutter, but due to its ability of considering both spatial

and temporal the correlation properties, it is also applied to the other types ofclutter [27].

For the K-distribution, the speckle is Rayleigh distributed, and the texture is modeled with

the Gamma or the Chi-square, which is a special form of Gamma [15]. (Accordingly, the

modulating component is Root-Gamma or Chi distributed). Then, the clutter amplitudeCZ is

K-distributed. In (2.36), the parametersa andν are the scale and shape parameters, respec-

tively. The shape parameterν is related to the number of scatterers in a range cell. Hence,

lowerν corresponds to smaller number of scatterers in a range cell, which yields a heavier tail

due to spiky amplitude characteristics [35].

pK(cZ; a, ν) =
4

aΓ (ν)

(cZ

a

)ν

Kν−1

[

2
cZ

a

]

, cZ ≥ 0 (2.36a)

FK(cZ; a, ν) = 1− 2
Γ (ν)

(cZ

a

)ν

Kν

[

2
cZ

a

]

, cZ ≥ 0. (2.36b)

Thekth moment of K random variable is given in (2.37).

E
{

C k
Z, K

}

= ak
Γ
(

ν + k
2

)

Γ
(

1+ k
2

)

Γ (ν)
(2.37)

K-distribution is also used to model the clutter intensitycP [20]. The K-distributed clutter

intensity is given as follows

pK(cP; a, ν) =
2

aν+1Γ (ν)
cP

ν−1
2 Kν−1

[

2acP
1
2

]

, cP ≥ 0. (2.38)
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Figure 2.12: Theoretical K pdf and CDF

The K-distribution is widely used to model the clutter amplitude. However, the speckle am-

plitude and the texture may deviate from Rayleigh and Gamma distributions, respectively. As

a result, the K-distribution loses its validity. For example, consider the texture componentτ

modeled with the Gamma distribution as in

pΓ(τ; a, ν) =
1

aΓ (ν)

(

τ

a

)ν−1
exp

(

−τ
a

)

, τ ≥ 0 and a=
µ

ν
(2.39)

whereµ is the mean andµ2/ν is the variance of the texture. In [16], it has been stated that the

texture may deviate from the Gamma distribution due to bad weather conditions. Moreover,

if the parameterν goes to∞, the variance goes to zero and the textureτ approaches the mean

µ. (This corresponds to the homogeneous texture and the parameterν can be considered as

a measure of texture homogeneity [28].) In this case, the clutter amplitude is a Rayleigh

speckle multiplied with a constant modulating component, which results in another Rayleigh

pdf instead of a K pdf.

From the point of speckle, the range resolution plays a dominant role in the distribution of the
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speckle amplitude. As the range resolution is improved, the speckle amplitude deviates from

Rayleigh. Hence, the K-distribution is no longer a valid model for clutter amplitude.

Consequently, the need arises for defining general statistical models forboth the speckle and

modulating component. The generalized Gamma model will be an appropriate choice for

both components, since many pdfs can be derived from this model. The generalized Gamma

modelGΓ is given by (2.40), wherea > 0, b > 0, andν > 0 are the scale, shape, and power

parameters, respectively:

pGΓ(x; a,b, ν) =
b

aΓ (ν)

( x
a

)bν−1
exp

[

−
( x
a

)b
]

, x ≥ 0. (2.40)

Adjusting the parameters in (2.40), Gamma, Weibull, Rayleigh, Exponential, andLog-normal

pdf can be obtained [16]:

• X ∼GΓ (b = 1)⇒ X ∼ Gamma (Γ) distributed

• X ∼GΓ (ν = 1)⇒ X ∼Weibull (W) distributed

• X ∼GΓ (ν = 1 & b = 2)⇒ X ∼ Rayleigh (R) distributed

• X ∼GΓ (ν = 1 & b = 1)⇒ X ∼ Exponential (E) distributed

• X ∼GΓ (ν→ ∞ & b→ 0)⇒ X ∼ Log-normal (LN) distributed

For the generalized model, the distribution of speckle amplitude is denoted by

pGΓ(cZ | m; b1, ν1) =
b1

mΓ (ν1)

(cZ

m

)b1ν1−1
exp

[

−
(cZ

m

)b1
]

, cZ ≥ 0 (2.41)

and the pdf of the modulating component by

pGΓ(m; a,b2, ν2) =
b2

aΓ (ν2)

(m
a

)b2ν2−1
exp

[

−
(m

a

)b2
]

, m> 0 (2.42)

Then, the pdf of clutter amplitude is called thegeneralized compound (GC) model[16] and it

is obtained from
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pGC (cZ) =
∫ ∞

0
pGΓ (cZ | m) pGΓ (m) dm (2.43)

Various clutter models can be obtained by adjusting the parameters of the GC model. For

example, Weibull-speckle Gamma-texture compound model is a special case ofthe GC model.

In this case, the deviation of speckle from the Rayleigh distribution is taken intoaccount. On

the other hand, for thecompound Gaussian (CG) models, the speckle amplitude is Rayleigh

distributed, but the texture differs. The K-model given previously in (2.36) and the generalized

K model with Log-normal texture [28] are examples of theGC model. TheGeneralized K

(GK) modelis an important special case of the GC model, since both K and Weibull results

from this model.

• X ∼GC (b1 = b2 = b)⇒ X ∼ Generalized K (GK) distributed

• X ∼GK (b = 2 & ν1 = 1)⇒ X ∼ K (K) distributed

• X ∼GK (ν1 = 1 & ν2 = 0.5)⇒ X ∼Weibull (W) distributed

2.3.4 Empirical Distribution Fitting

So far, the statistical distributions proposed to model radar clutter both in space and time

have been presented. Once an experimental clutter data set is constructed, there are various

methods used to check whether it fits a theoretical model or not. In the first instance, various

exploratory tools based on graphical characteristics of the distributions,such as histogram,

quantile - quantile (Q-Q) plot, etc., can be applied. This will help hold a rudimentary view

about the distribution of experimental data. However, it will be definitely notenough to

conclude. Hence, the preliminary guess about the empirical distribution should be verified

by applying more formal methods, such as goodness-of-fit (GoF) tests.In this section, these

complementary empirical fitting methods will be explained briefly.

At first, let x be the vector of empirical data samples, wherexi may represent the clutter

amplitude or I/Q component in either slow time or fast time domain.

x = [x1 · · · xn] (2.44)
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In order to extract the underlying distribution of the empirical clutter data, it isusually better

to plot the histogram ofx and visually compare it to the pdfs of various theoretical distribu-

tions. By this way, some irrelevant distributions may be immediately eliminated, while some

distributions may stand out.

During this preliminary step, some other measures can also be made use of. For instance, con-

siderskewnessandkurtosis, which are the 3rd and the 4th order normalized central moments,

respectively. The skewness, given in (2.45a), is related to the asymmetryof a distribution

around its mean. On the other hand, the kurtosis given in (2.45b) is a measure of relative

peakedness or flatness of a distribution. Since both parameters are exactly equal to zero for

Gaussian distribution, deviation of these parameters from zero can be considered as a measure

of deviation from Gaussianity.

γZ
3 =

E
{

(Z − µZ)3
}

E
{

(Z − µZ)2
}3/2

(2.45a)

γZ
4 =

E
{

(Z − µZ)4
}

E
{

(Z − µZ)2
}2
− 3 (2.45b)

Having obtained a first guess about the theoretical model for the empiricaldata, GoF tests

based on the statistical theory can be applied. Hence, first, a binary hypothesis test problem1

is constructed where thenull andalternativehypotheses are defined as follows:

H0 ∼ Empirical data follow the specified distribution

HA ∼ Empirical data do NOT follow the specified distribution.

The decision whether to accept or rejectH0 can be made based either on the pdf of the distri-

bution as in thearea tests, or on the CDF as in thedistance tests.

There are various GoF tests such as Chi-Square (CS), Anderson-Darling (AD), Kolmogorov-

Smirnov (KS). Among them, KS test is a commonly used tool to check goodness of fit due to

its applicability to any distribution and straightforward computation. KS test depends on the

comparison of empirical and hypothetical CDFs rather than their pdfs. In order to construct

the empirical and hypothetical CDFs, first the empirical data,x, are sorted in the ascending

1 Hypothesis test terminology is given in Appendix B
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order. The resulting empirical CDF is a step-function that increases by 1/n at each data value

xi (Figure 2.13). On the other hand, the hypothetical CDF is evaluated at each data value.

The test statistic of KS test is a measure of the maximum absolute difference between the

empirical and hypothetical CDFs and is given by2

Dn = sup
xi

|Sn(xi) − F(xi)| , (2.46)

where,

xi : Ordered data points;i = 1, . . . ,n

Sn(x): Empirical CDF (step function)

F(x): Hypothetical CDF.

Dn can be alternatively expressed as

Dn = max
1≤i≤n

(

F(xi) −
i − 1

n
,

i
n
− F(xi)

)

. (2.47)

Once the test statistic is evaluated for the empirical data, it is compared to thecritical value

given in the standard KS table for some significance levelα and sample sizen. The critical

values in the standard KS test table do not depend on the distribution which is being tested.

(Standard critical values for KS test are provided in [1].)

Next, the decision is made according to the following rule:

RejectH0, if Dn > critical value

AcceptH0, if Dn < critical value

That is, if the difference between the empirical and hypothetical CDF exceeds some critical

value, the empirical data cannot be said to follow the hypothetical distribution,hence it is

rejected. In contrast, if the difference is below that critical value, the null hypothesis cannot

be rejected.

2 Thesupremum, or equivalently theleast upper bound, of an ordered set S is the least element (not necessarily
in S) which is greater than or equal to each element of S.
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Figure 2.13: Kolmogorov-Smirnov test statistic

The main drawback of the KS test is that the hypothetical distribution should becompletely

specified, i.e., all its parameters should be determined, in order to evaluate it for each empirical

data value. If no parameter of the hypothetical distribution is determined fromthe empirical

data, the test statistic,Dn, is independent of the distribution. However, when the parameters

of the hypothetical distribution are not given but instead estimated from the data, the result of

the KS test is no more distribution independent [10].

If the standard KS table is used when the parameters are estimated from the data, the confi-

dence level will be higher [10], and the actual significance level will be smaller than the value

associated with the standard table [5]. Smallerα corresponds to a larger critical value, which

makes it harder to reject the null hypothesis. This can be interpreted as thehypothesized CDF

is made closer to the empirical data by estimating the parameters from the data. In this case,

the probability of making an error by failing to reject the null hypothesis (i.e., Type-II error)

may increase. Hence, the use of standard KS test table should be avoidedwhen the parameters

are estimated from the empirical data.

Similar to the KS test, the knowledge of distribution parameters is required for theAD test,
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which is a modified version of the KS test for a better performance at the tails of the distri-

bution. Besides, AD test can only be applied for a few specific distributions. As opposed

to the AD and KS tests, the CS test does not require to completely specify the distribution

parameters. However, it is not a powerful test for small number of samples unlike AD and KS

tests.

Considering the main drawbacks and superiorities of the GoF tests, a modifiedKS test with

the extension of Monte Carlo approach will be used in this study. The principle of Monte

Carlo approach in KS test can be explained as follows:

1. KS test statistic is computed for the empirical data and the hypothetical model. In

this step, the hypothetical model is constructed by estimating the parameters from the

empirical data. The parameters can be estimated by means of Method of Moments

(MoM) [17], in which the kth moment is equated to thekth sample moment of the

empirical data as in (2.48),t being the number of unknown parameters to be estimated.

E
{

Xk
}

=
1
n

n
∑

i=1

xk
i , k = 1, ..., t (2.48)

Besides the MoM estimates, maximum likelihood (ML) estimates can be used as the

distribution parameters.

2. A large number of synthetic data sets is generated, so that each set follows the hypo-

thetical model with the parameters estimated for the empirical data in Step 1.

3. For each synthetic data set, its own parameters are estimated. Then, eachdata set is fit

to the hypothetical model with the new estimated parameters. The KS test statistic is

recorded for each fit. That is, the distribution ofDn is obtained for the case of estimated

parameters (Figure 2.14).

4. The fraction of time in which the resulting KS test statistic for synthetic data is larger

than or equal to that of the empirical data is determined. This fraction gives the empir-

ical p-value, p.

5. Finally, the empirical p-value found by Monte Carlo method in Step 4 is compared to

the significance levelα:
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Figure 2.14: Distribution ofDn

If α > p, H0 is rejected

If α < p, H0 is NOT rejected

This is equal to comparing the new critical value to the empirical test statistic,D.

In the literature, there are many modifications of the standard KS test with tablesextracted

based on the Monte Carlo simulations for different distributions with unknown parameters.

For instance, Lilliefors test checks whether the empirical data samples come from a distribu-

tion in the Gaussian family when the parameters are not specified [2]. Similarly,in [4] and

[5], modified tables for Weibull and Gamma distributions are presented.
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2.4 Clutter Reflectivity

In this section, the relative intensity which mainly depends on the type of clutter ispresented.

In order to explain the relative intensity, first, consider the radar power equation

PR =
PT ·GT ·GR · λ2 · σC

(4 · π)3 · R4 · L
, (2.49)

where

PR : Received power (W)

PT : Transmitted power (W)

GT : Gain of the TX antenna (W/W)

GR : Gain of the RX antenna (W/W)

λ : Wavelength (m)

σC : Radar cross section (RCS) (m2)

R : Range (m)

L : Losses (W/W).

The equation in (2.49) can also be written in terms of the clutter-to-noise ratio (CNR) as

follows

CNR=
PT ·GT ·GR · λ2 · σC

(4 · π)3 · R4 · k · T · B · F · L
, (2.50)

where

k : Boltzmann constant, 1.38 · 1023 (W/(Hz ◦K))

T : Temperature (◦K)

B : Effective noise bandwidth (Hz)

F : Noise factor.

As it can be seen from the radar power equations above, the power of the received signal is

proportional to the radar cross section (RCS) of the illuminated region. Forthe surface clutter

(such as ground and sea returns), the return power depends on the area illuminated, where it

depends on the illuminated volume for the volume clutter (such as weather and chaff).
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In order to describe the surface or volume clutter independent of the illuminated area or vol-

ume, respectively, thenormalized radar cross section (NRCS)is defined. The NRCS is also

referred to as thenormalized radar reflectivityor thebackscattering coefficient [33].

For the surface clutter, NRCS can be obtained from

σ0 =
σC

AC
, (2.51)

whereσC is the RCS of clutter andAC is the area of the illuminated region [33].

For a small azimuthal beamwidth ofθ and a low grazing angle3 of ψ, the area of a resolution

cell at range R is calculated from

AC =
R · θ · Rres

cosψ
, (2.52)

where Rres is the range resolution of the system.

Similarly, the volume clutter is described by theclutter RCS per unit volume, η, given in

(2.53).

η =
σC

VC
(2.53)

Finally, in [9] and [33], it is stated that the NRCS for land clutter is greater than that of the

sea and weather clutters. Among the types of land clutter, the cities and the mountains are

reported to have the largestσ0, where the agricultural fields and deserts have smallerσ0.

3 Grazing angle is the angle between the surface and the incoming radar illumination.
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CHAPTER 3

EXPERIMENTAL DATA ACQUISITION AND DATA

PROCESSING

The aim of this thesis is to perform the analyses discussed so far on experimental radar clutter

data. Hence, a data acquisition set-up is established in order to make clutter measurements.

After the whole system is implemented and its operation is verified in the laboratory, mea-

surements are taken in the open terrain.

In this chapter, the general block diagram of the data acquisition system is given and the

operation of the whole system is explained. The specifications and limitations ofeach block

are discussed briefly. Further details about the data acquisition system are given in Kılıçŏglu’s

thesis [37].

3.1 General Block Diagram of the Data Acquisition System

The experimental radar system, which is used in this study for data acquisition, is constructed

by using commercial off-the-shelf (COTS) test equipments. The transmitter unit is composed

of:

• MATLABas the waveform generator tool,

• Agilent E8267D PSG Vector Signal Generator[38] as the transmitter,

• Agilent HP8348A Microwave Amplifier[39] as the high power transmitter amplifier,

and
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• GAH-1042or DRH-4121 as the transmitting antenna;

while the receiver unit is composed of:

• GAH-1042or DRH-412as the receiving antenna,

• Two cascadedAML218L1502[40] as the low noise amplifier (together with a 12V DC

power supply),

• Receiver option 1:

– Agilent E4446A PSA Spectrum Analyzer[41], [42] as the receiver together with

– Agilent 89601A Vector Signal Analysis Software[43],

Receiver option 2:

– Agilent N9010A EXA Signal Analyzer[44], [45] as the receiver itself,

• MATLABas the signal processing tool.

A computer is utilized, on which MATLAB, Agilent 89601A Vector Signal Analysis Soft-

ware, Agilent Waveform Download Assistant, and other control interfaces of the COTS equip-

ments, such as Agilent IO Connection Expert, are installed. The vector signal generator is

connected to the computer via an Ethernet cable, and the spectrum analyzer (in option 1) or

the signal analyzer (in option 2) is connected to the computer via USB interface (Figure 3.1

and Figure 3.2). These connections make the remote control of the instruments possible. The

connections to the instruments can be verified by Agilent IO Connection Expert. Also, a

graphical user interface is developed in MATLAB in order to control the data acquisition and

measurement analyses via a user-friendly environment.

The general block diagrams of the system for both receiver alternatives are depicted in Fig-

ure 3.1 and Figure 3.2. A brief explanation of the system operation is as follows: First, the

I and Q data of the transmit signal are generated in MATLAB and downloaded to the vec-

tor signal generator by means of Waveform Download Assistant Toolkit functions. Next, the

baseband generator of the vector signal generator converts the digitalI and Q data into analog

1 Due to antenna reciprocity, these antennas can be used interchangeablyfor the transmitter and the receiver.
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baseband signals. Then, the I/Q modulator of the vector signal generator modulates the base-

band signal to the desired center frequency at the desired output power level. The resulting

RF signal is amplified through a high power amplifier and routed to the transmitting antenna.

On the receiver side, the returns from the scatterers are captured by the receiving antenna.

The received signal is amplified by a cascaded two-stage low noise amplifierand sent to one

of the two alternative receivers:

• For the first option, in which PSA Spectrum Analyzer together with Vector Signal An-

alyzer Software forms the receiver, the spectrum analyzer downconverts the RF signal

into IF and then converts into digital. The digitized IF signal is sent to the VectorSignal

Analyzer software, which performs the digital downconversion.

• For the second option, EXA Signal Analyzer performs analog downconversion, IF dig-

itization and digital downconversion operations itself.

Finally, the digital baseband I and Q samples from either receiver options are saved into a file

and then processed in MATLAB.
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Figure 3.1: General block diagram of the data acquisition system - Receiver option 1
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Figure 3.2: General block diagram of the data acquisition system - Receiver option 2
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Two important connections in both Figure 3.1 and Figure 3.2 should be pointedout, namely

the 10 MHz reference and trigger connections between the vector signalgenerator and the

spectrum/signal analyzer.

1. If both of the vector signal generator and the spectrum/signal analyzer use their own

internal reference oscillators in the same system, this may yield arbitrary frequency

reading errors. In order to avoid these errors, all the oscillators in the system should

have a common reference. Hence, the 10 MHz reference output of the vector signal

generator should be connected to the 10 MHz reference input of the spectrum/signal

analyzer, or vice versa. The former configuration is used in this system, and the 10 MHz

reference source of the spectrum/signal analyzer is set toexternal. Here, it is important

to check that an annunciator likeEXT REFappears on the spectrum/signal analyzer and

vector signal analyzer screens.

2. In radar systems, the delays of the echoes are important since they determine the range

of the targets. Hence, the receiver (in this system, the spectrum analyzerand vector sig-

nal analyzer together, or the signal analyzer itself) should know when the transmission

begins. This information can be provided to the receiver via a trigger pulsewhich is set

to start at the beginning of the transmit signal. In this system, the trigger pulse isde-

fined by a marker waveform and given out from theEVENT1 output of the vector sig-

nal generator. (Defining marker waveforms are explained in detail in Section 3.2.1.2.)

Then, if external triggering option is selected for the spectrum/signal analyzer and the

EVENT1 output of the vector signal generator is connected to itsTRIG IN input, the

measurement waits for the trigger pulse from the vector signal generator.

In the following sections, each block of the experimental radar system is explained starting

with the elements of the transmitter unit. In Figure 3.3, a photo of the experimental radar

system can be seen during data acquisition on the roof of METU Electrical and Electronics

Engineering Department’s Building D.
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Figure 3.3: Experimental data acquisition system during measurements

3.2 Transmitter

In this section, the operation principle of the transmitter unit, which is given in Figure 3.4, is

explained.

3.2.1 Generation of the Transmit Signal

3.2.1.1 Selecting the Transmit Signal

In this study, various transmitting signals, such as single pulse and phase coded pulses, have

been used for system verification and experimental data analyses.

The phase coded pulses are constructed based on the pulse compression technique. In this

technique, high resolution of a short pulse width is combined with the high energy of a long

pulse width. Hence, a long pulse which has a bandwidth corresponding to a short pulse is

transmitted. In order to achieve this, the pulse is either modulated or coded (e.g. frequency
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Figure 3.4: Operation principle of the transmitter

modulation and phase-coded pulses). For phase-coded pulses, the pulse width is divided into

a number of chips of equal length and each chip is transmitted with a particular phase. The

bandwidth of the phase coded pulse is determined by the chip width (or, compressed pulse

width), Tchip, instead of the pulse width itself. This results in a larger bandwidth and a better

resolution achieved with the same energy. Equivalently, for a given range resolution (or chip

width) and total pulse energy, if more chips are used, the transmitter power isreduced due to

the increased total pulse width.

Here, the pulse compression ratio, PCR, is defined as the ratio of the rangeresolution of an

unmodulated pulse of lengthτ to that of the modulated or coded pulse of the same length and

bandwidth of B. This ratio can be considered as the SNR improvement factor. From (3.1), it

can be concluded that if the same pulse width is divided into more chips, the SNRis increased

more:

PCR=

c·τ
2
c

2·B
= Bτ. (3.1)

In phase-coded pulses, the phase of each chip is determined accordingto a phase code.

Barker-7, random phase codes, and P4 codes are examples of the phase codes used in this

study. Among them, the P4 code is the mostly used one in the experiments. P4 codes can be

defined for any number of chips, and the phase of theith chip,Φi , is determined by
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Φi =
π

L
(i − 1) (i − L − 1) i = 1,2, ..., L (3.2)

whereL is the number of chips. In Figure 3.5, the phase history of the 100-chip P4 code is

shown as an example. It is also important to note that P4 codes are discrete approximations

to linear FM (LFM), which is also a widely used pulse compression technique [18].
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Figure 3.5: Phases of 100-chip P4 code

On the other hand, a single pulse has been widely used to verify the system. However, coded

pulses are preferred due to the improvement factor ofL they introduce to the SNR.

3.2.1.2 Generation of the IQ Data

Once the transmitting signal is chosen and all its parameters (PW, PRI, pulse code, number of

chips) are determined considering the requirements of the experiment, the I and Q waveforms

of the signal can be constructed. However, not only the I and Q waveforms, but also the

sample clock information and the marker waveforms should also be provided tothe vector
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signal generator (VSG):

1. Complex IQ data array:

In order to define I and Q waveforms of the transmitting signal, first an amplitude array

and a phase array are constructed in MATLAB as follows:

A = [α1 α2 α3 · · · αK ] (3.3a)

P =
[

φ1 φ2 φ3 · · · φK
]

(3.3b)

Figure 3.6: Amplitude and phase arrays

If the whole PRI is divided into K chips2, φ j andα j in (3.3b) and (3.3a) are the phase

and amplitude of thejth chip, respectively. The amplitude array is constructed accord-

ing to the PW and PRI, while the phase array is constructed according to the phase

2 For simplicity, one PRI is chosen to consist of an integer number of chips.
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code of the pulse. Construction of the amplitude and phase arrays of a coded pulse is

depicted in Figure 3.6.

Next, the I and Q waveforms are generated as given below

I = A · cos(P) (3.4a)

Q = A · sin(P) . (3.4b)

The VSG accepts the user defined I and Q waveforms in the form of a complex array

given in (3.5).

IQ = I + j · Q (3.5)

According to the specifications of the VSG, the complex IQ data array must consist of at

least 60 samples. The maximum number of samples is also specified as 64 Megasam-

ples [38]. The complex IQ waveform downloaded into the waveform memoryis re-

peated continuously.

2. Sample clock:

Together with the I and Q waveforms, the choice of sampling clock for the digital-

to-analog converters (DACs) of the baseband generator is provided tothe VSG. The

maximum sampling rate of the VSG is 100 Msamples/sec, i.e., the time between two

samples can be minimum 10 nsec [38].

Starting from 100 MHz, the maximum sampling rate, for which the number of samples

per chip is an integer, is selected for simplicity. For example, consider a pulseof 1

usec PW and 7 chips. The maximum sampling rate is chosen as 98 MHz, for which the

number of samples per chip is 14.

3. Waveform Markers:

In order to mark specific positions on the I and Q waveforms, two marker waveforms are

defined, one for triggering and one for PULSE/RF blanking. In MATLAB, a marker

matrix is constructed, so that each row corresponds to a marker waveform, and the

number of columns is equal to the length of the I and Q waveforms. In the beginning,
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all entries of the marker matrix are zero, which means that no marker is set yet. The

markers are activated by setting the necessary entries to 1 (marker polarityis positive).

Figure 3.7: Waveform markers

The first marker (M1) is configured to indicate the beginning of the I and Q waveforms

at which a trigger pulse will be generated. That is, in order to activate M1,the first

entry of the first row is set to 1. When M1 is on, the trigger pulse is automaticallysent

to theEVENT1 output port of the VSG.

On the other hand, the second marker (M2) shows where the pulse is ON in order to

make the VSG blank the RF output during OFF samples of the pulse. The PULSE/RF

blanking operation, which also enables the Automatic Level Control (ALC) hold func-

tion, is important to maintain the output power level of the RF signal. If PULSE/RF

blanking and ALC are OFF, VSG may fail to maintain the correct output level. (The

effect of PULSE/RF blanking and ALC hold functions on the power levels is shown in

Appendix C.1.) Therefore, the entries of M2 corresponding to the pulse width of the

signal are set to 1 for PULSE/RF blanking (Figure 3.7). In addition, the PULSE/RF

blanking function is assigned to M2 by means of an SCPI command (See Table 3.1).

After downloading the markers to the VSG as it will be described in Section 3.2.1.3, it

should be checked that the annunciatorENVLPrepresenting the RF blanking appears

on the screen of VSG.

48



3.2.1.3 Waveform Download Assistant

Agilent Waveform Download Assistant Toolkitprovides a set of MATLAB functions required

to download the complex IQ data array into the VSG, such asagt newconnection, agt query,

agt waveformload, agt sendcommand. The steps of the downloading process are as follows:

1. Open a new connection session with the VSG over the LAN interface:

The LAN connection between the VSG and the computer is established using the

agt newconnection( )function, which takes the IP address of the VSG as the input.

Usingagt query( )function, the IEEE SCPI query command*idn? can be sent to the

VSG in order to verify the connection. If the connection fails, an error message is

displayed.

2. Download the IQ waveform to the VSG:

Once the connection is established, the IQ waveform, sampling rate and the marker

waveforms can be downloaded to the VSG usingagt waveformload( )function. If the

download fails, an error message is displayed. If the download is successful, the an-

nunciatorsARBandIQ appear on the screen of VSG.

3. Configure VSG:

Each of the configuration settings, such as center frequency, output power level, marker

functions, etc. can be defined as an SCPI string (Table 3.1). These SCPI strings are sent

to the VSG as the input argument ofagt sendcommand( )function.

Table 3.1: SCPI commands for VSG

SCPI command Meaning

‘SOURce:FREQuency 10GHz’ Sets the center frequency to 10 GHz

‘POWer 10dBm’ Sets the output power 10 dBm

‘OUTPut:MODulation:STATe ON’ Turns the modulator ON (MOD ON)

‘OUTPut:STATe ON’ Turns the RF output power ON (RF ON)

‘SOURce:RADio:ARB:MDEStination:PULSe M2’ Assings the RF blanking function to M2
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3.2.1.4 Vector Signal Generator

Once the user defined I and Q waveforms are downloaded to the VSG, theyare written on the

waveform memory and repeated continuously until a new waveform is downloaded.

Next, the digital I and Q waveforms are sent to the internal baseband generator block of

the VSG (in Dual Arbitrary Waveform Generator mode). In this block, the digital-to-analog

conversion of the I and Q waveforms are performed using the sample clockinformation,

which is also downloaded from the computer together with the I and Q waveforms.

Then, in order to upconvert the signal to the desired carrier frequency(in this study, 10 GHz

3), analog baseband I and Q signals are fed into the IF ports of the I/Q modulator of the VSG

[46] (Figure 3.4). The output of the I/Q modulator is at the desired center frequency and

power level.

3.2.2 High Power Amplifier

The received power is directly proportional to the transmitted power. In order to improve the

received power and the SNR, the transmit power should be increased.

In order to increase the transmit power further, a high power amplifier is required after VSG

(Figure 3.1 and Figure 3.2). In this study,Agilent HP8348A Microwave Amplifier, whosePout

vs. Pin graph at the frequency of interest, i.e., at 10 GHz, is given in Figure 3.8,is utilized.

As it can be seen from the figure, the amplifier provides about 30 dB lineargain at 10 GHz.

It should be noted that the RF input to the amplifier should not exceed the maximum continu-

ous power+22 dBm [39]. Detailed specifications of the high power amplifier are provided in

[37] and [39].

3 The carrier frequency is selected considering the frequency range of the antennas at hand.
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Figure 3.8:Pout vs. Pin graph of HP8348A @ 10 GHz CW input

3.3 Receiver

As explained before, two alternative receivers have been used in this study. In this section,

the operation principle of these receivers is explained (Figure 3.9).

3.3.1 Low Noise Amplifier

In order to amplify the weak return signal received by the antenna, an amplifier is required

at the front-end of the receiver. However, any component inserted inthe system introduces

some noise on the received signal, which effects the signal-to-noise ratio (SNR). The SNR

degradation caused by components in an RF system is measured by noise factor (F) and noise
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Figure 3.9: Operation principle of the receiver

figure (NF) of the system:

F =
S NRin

S NRout
(3.6a)

NF(dB) = 10 log10(F) = S NRin,dB− S NRout,dB (3.6b)

For a cascaded N-stage system, the overall noise factor can be found from the Friis’ formula

Foverall = F1 +
F2 − 1

G1
+

F3 − 1
G1G2

+ · · · + FN − 1
G1G2 · · ·GN−1

, (3.7)

whereFi andGi denote the noise factor and linear gain of theith stage of the system, respec-

tively. According to (3.7), the overall noise factor of the system mostly depends on the noise

factor of the first stage, since the contribution of the subsequent stagesto the noise factor is

reduced by the gain of the previous stages. Hence the amplifier, which will be added as the

first stage of the receiver, should have a low noise figure.

In this system,AML218L1502 Low Noise Amplifier (LNA)with a noise figure of maximum 3

dB is utilized as the first stage of the receiver. It also provides about 18dB gain at 10 GHz

[40]. Using such an LNA with quite high gain, the effect of high noise figure of the PSA

spectrum analyzer, which is about 25 dB, is alleviated. (For the second receiver option, the

noise figure of the EXA signal analyzer is about 2 dB worse than that of the PSA spectrum

analyzer in the first option.) From the Friis’ formula for the current receiver system
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Foverall = FLNA+
FPS A/EXA− 1

GLNA
, (3.8)

the overall noise figures of two receiver options are found to be 8.446 dB and 9.966 dB. The

overall gain of the receiver unit is 18 dB. (Figure 3.10)

Figure 3.10: Overall noise figure and gain of the receiver with 1 LNA

In order to improve the noise figure of the receiver further, twoAML218L1502LNAs are

cascaded (Figure 3.1 and Figure 3.2):

Foverall = FLNA1 +
FLNA2 − 1

GLNA1
+

FPS A/EXA− 1

GLNA1GLNA2
. (3.9)

Figure 3.11: Overall noise figure and gain of the receiver with 2 LNAs

Then, the resulting noise figures of two receiver options are 3.202 dB and 3.297dB, while the

overall gain of the receiver unit is 36 dB. (Figure 3.11)
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3.3.2 Receiver Option 1

The first receiver option is composed of PSA Spectrum Analyzer and Vector Signal Analyzer

software (Figure 3.1).

3.3.2.1 PSA Spectrum Analyzer

In this option,Agilent E4446A Performance Spectrum Analysis (PSA) Spectrum Analyzer

forms the hardware of the receiver unit. It can be classified as a superheterodyne receiver. The

spectrum analyzer first downconverts the received signal into IF frequency and then digitizes

it (Figure 3.9). Then, it performs all processing in digital domain.

In order to perform the radar signal analyses explained in Section 2, thereceiver should pro-

vide the time domain I and Q data. Besides frequency domain analyses, the spectrum analyzer

can perform time domain analyses in itsBasic Mode. In this mode, the spectrum analyzer is

capable of downconversion of digital IF and then storing maximum 106 complex baseband

time samples with a time resolution of 66.7 nsec (at IF BW= 10 MHz 4) in its memory [42].

That is, the corresponding maximum total time record length is about 66.7 msec.In Basic

Mode, it is possible to download 106 complex baseband samples directly from the spectrum

analyzer’s memory and save it into a ‘.mat’ file on the computer (in this study, via USB inter-

face).

However, there is a limitation on the center frequency, for which the time domain analyses

can be performed by the spectrum analyzer. The maximum frequency allowed in Basic Mode

is 3 GHz. For the center frequencies higher than3 GHz, the Vector Signal Analyzer software

is required for time domain analysis. Hence, the digitized IF signal is sent to theVector Signal

Analyzer, where the digital downconversion is performed.

3.3.2.2 Vector Signal Analyzer Software

Agilent 89600 Vector Signal Analyzer (VSA)is a software tool which works with various

hardware measurement platforms and processes the data in time, frequency and modulation

domains [43]. In this study, VSA 89601A is used with E4446 PSA spectrum analyzer, which

4 The IF BW is chosen according to the bandwidth of the signal, which is generally 10 MHz in this study.
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is configured as its analog-to-digital converter module. VSA takes the digitized IF samples

from the spectrum analyzer over the USB interface in between.

In this experimental system, the main operation of the VSA is the downconversion of digital

IF signal into the baseband. The detailed block diagram and working principle of the vector

signal analyzer can be seen in [37]. Basically, after downconversioninto baseband, the data

are recorded into a sample memory. Then, all of the frequency, time and modulation domain

analyses are performed on these samples.

In this study, the time domain I and Q data provided by the VSA are recorded in a‘.mat’ file

to process in MATLAB. In order to make accurate measurements, the optimum configuration

of the VSA should be done as follows:

The input range: Setting the input range too low introduces distortion in the measurements,

while a too high input range yields loss of dynamic range. For instance, the effect of low input

range on the measurements is illustrated in Figure C.2. Hence, selecting the optimum input

range for the received signal is important in terms of the measurement accuracy.

Time record length: The time record length depends on the frequency span, the frequency

points, and the RBW5 [43]. The total time length can be calculated from

Total time record length (sec)=
Number of frequency points− 1

Span
. (3.10)

The total time record length is important in terms of the Doppler resolution as given in 2.11.

The higher the total length is, the better the Doppler resolution is. Besides, for the temporal

statistics of the return signal, where the behavior of the clutter over time is analyzed, it is

better to observe a range cell longer. Hence, the time record length is desired to be as long

as possible. Then, the number of frequency points is selected as maximum aspossible, where

the frequency span is required to be the minimum.

Time sample resolution: The time resolution of the received samples,XDelta, is directly

related to the range resolution. Hence, the time resolution should be adjusted inVSA in such

a way that the range resolution requirement of the system is satisfied.

5 RBW is set to arbitrary at auto coupled mode.
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XDelta=
1

1.28 · Span
(3.11)

As discussed in Section 2.3, both temporal and spatial behavior of clutter statistics strongly

depend on the range resolution. Besides, the range resolution is importantin target detection.

In this experimental study, the range resolution, or equivalently the time resolution, is desired

to be sufficiently high. Here, it should be stated that the best time resolution that can be

achieved by this set-up, i.e., receiver option 1, is about 97 nsec, since the maximum frequency

span of the VSA is 8 MHz.

It can be easily observed from (3.10) and (3.11) that the selection of thefrequency span is

critical due to the trade-off between the time resolution and the total time record length. This

trade-off stems from the limited memory reserved for the frequency points per span. The

maximum number of frequency points allowed per span, i.e., the maximum frequency display

points, is 5242886, while the corresponding total time points can be equal to or less than this

number (if zero padding is required before the FFT process). Due to thefixed number of total

time points, the total time record length decreases if the time resolution is improved further,

or vice versa. Hence, an optimization is required considering the system requirements.

For instance, consider a P4-coded pulse whose signal parameters areas follows: PW= 4 usec,

PRI= 100 usec, number of chips= 40. Then, the chip width of the pulse is 100 nsec, which

corresponds to a range resolution of 15 m. For simplicity, the time resolution of the VSA is

chosen to be 100 nsec, so that each received sample corresponds to achip. Then, from (3.11),

the required frequency span is 7.8125 MHz. The corresponding maximumtotal time length,

calculated from (3.10) is only 52.4 msec.

In order to increase the total time length, it can be suggested that successive time recordings

can be appended. However, it has been observed that the phase of the signal differs signifi-

cantly from one recording to another, which may result in loss of phase coherency. Therefore,

this approach cannot be utilized for spectral analysis, which is directly influenced by the phase

of the signal. On the other hand, for statistical analysis of clutter in space, the total time length

of the measurement is not significant. Hence, there is no need to append successive files in

order to increase the total length. However, it can be proposed that forstatistical analysis, in

6 Note that, the maximum number of sample points is limited further by VSA since the waveform memory of
1 Gsamples, available in Basic Mode of spectrum analyzer, cannot be utilized.
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which the phase coherency is not essential and a long time dwell is required, the method of

appending successive recordings can be used.

As a consequence, due to the limitations of the VSA and PSA, the system requirements should

be well defined and the optimization of the system parameters should be done accordingly.

3.3.3 Receiver Option 2

The time record length of the first receiver option is quite short (52.4 msec at 15 m range

resolution). Hence, in order to improve the time record length further, otheralternatives have

been sought (details are given in [37]). Among them, it has been possibleto realize only the

following option due to time and resource shortage:Agilent N9010A EXA Signal Analyzer

itself is utilized as the receiver of the system (Figure 3.2).

3.3.3.1 EXA Signal Analyzer

As it can be seen from Figure 3.9, the EXA performs analog downconversion, IF digitization

and digital downconversion operations. The specifications of EXA signal analyzer, which

are of interest for this study, are almost the same as the PSA spectrum analyzer, except the

following two:

1. EXA signal analyzer is able to make time domain measurements up to 13.6 GHz, where

PSA spectrum analyzer allows up to 3 GHz. By this means, it becomes possibleto omit

VSA at the frequency of interest, i.e., at 10 GHz, and use EXA itself inI /Q Analyzer

Modefor digital downconversion. Then, the limit on the number of samples brought by

VSA can be eliminated and the whole waveform memory can be used for time domain

IQ waveform analysis.

2. EXA signal analyzer is able to record maximum 4.106 samples with a time resolution

of 66.7 nsec (at 10 MHz IF BW) [45], i.e., 4 times that of PSA spectrum analyzer can

do in its Basic Mode. As a result, the total length will be 266.67 msec at 10 m range

resolution.

57



The time record length is still on the order of msec, however, it is improved together with the

range resolution with respect to the first receiver option. The maximum time record lengths

and the corresponding Doppler resolutions achieved by the two receiver options at the best

available range resolutions are tabulated in Table 3.2.

Table 3.2: Time record lengths and Doppler resolutions for the receiver options

Receiver Option 1 Receiver Option 2

PSA+ VSA EXA

Best range resolution 15 m 10 m

Total time record length 52.4 msec 266 msec

Doppler resolution 19 Hz 3.8 Hz

3.4 Antennas

In this study, separate antennas are utilized for the transmitter and the receiver. As it can be

seen from Figure 3.3, the antennas are placed next to each other while pointing in the same

direction. The positions of the antennas are fixed during measurements.

First, spiral antennas were used as the transmitting and receiving antenna. However, since

their beamwidths are very large and they have low gains, they were replaced by double ridged

horn antennasGAH-1042andDRH-412. The gains and the radiation patterns of these anten-

nas at the frequency of interest were measured in the anechoic chamber. The details of the

measurements are given in [37] and the results are presented in Table 3.3 and Figure 3.12.

Table 3.3: Gain of the antennas

Antenna 1 Antenna 2

(GAH-1042) (DRH-412)

@ 9GHz 15.5257 dBi7 11.1457 dBi

@ 10GHz 15.3757 dBi 11.8457 dBi

7 decibels relative to isotropic- gain of an antenna relative to an isotropic antenna, which uniformly distributes
energy in all directions
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Figure 3.12: Measured radiation patterns of the antennas (E-plane)

As it can be seen from the radiation patterns, the 3dB-beamwidths of both antennas in the

azimuth plane are around 30◦. The beamwidth of the antenna is of great importance to the

spatial calibration discussed in Section 2.3.1.1. It also determines the angularresolution as

a distance at rangeR, which is calculated from (3.12),θ being the antenna beamwidth (Fig-

ure 3.13). For example, two targets at a range of 2.5 km should be separated by a distance of

at least 1.3 km in order to be resolved in this system.

Sres = 2Rsin
θ

2
(3.12)

Figure 3.13: Angular resolution

Besides, both of the antennas are vertically linear polarized. Furthermore, these antennas can

be used interchangeably for the transmitter and receiver units owing to the antenna reciprocity.

If a single antenna were used for both transmitter and receiver, a circulator (duplexer) would

be required. In this case, the receiver would beoff during transmission. After the transmis-

sion is completed, the antenna would be switched to the receiver by means of the circulator.

However, in this study, since separate antennas are used for transmitting and receiving, and
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the reception is triggered at the beginning of the transmit signal ( 3.2.1.2), reception continues

during the transmission period. Then, although the antennas are placed asfar as possible from

each other for isolation, the coupling of the transmit signal directly into the receiver antenna

cannot be avoided. Hence, the transmit signal, which is not reflected from the scatterers but

directly coupled into the receiver, should be removed from the receivedsignal. This operation

can be performed during data processing which will be explained in Section3.5.

However, this isolation problem may yield much critical problems, such as RF input port of

the receiver being subjected to a high RF power level. This may result in lesssensitivity of the

analog-to-digital converter (ADC) circuitry to weaker signals or even damage to the receiver.

In this case, it is always useful to measure the RF level at the receiver side and make sure that

the received power does not exceed the maximum input level of the receiver.

Besides, it should be noted that the LNAs may not operate anymore in the linear region during

the pulse widths because of the high RF power due to the coupled transmit signal. Operating

beyond their compression point, gain of the LNAs decreases. Consequently, the desired noise

figure cannot be achieved. By removing the samples corresponding to thecoupled transmit

signal from the received signal, this problem can be eliminated. During theoff times of the

transmitter, the LNAs are expected to operate in their linear region again.

3.5 Processing the Received I and Q vs. Time Data

The last block of the receiver is the receiver processing block, whichis implemented in MAT-

LAB. The processor gets the received complex IQ time data saved into a ‘.mat’file by VSA

or EXA, in which all the settings are also included. The processor also knows the transmitted

signal and its parameters.

Then, the flow of the process is as follows (Figure 3.14):

1. First, as described in Section 3.4, the samples of transmitting signal, which are directly

coupled into the receiver due to isolation problems, should be removed as if reception

is off during transmission. Hence, the received IQ time samples corresponding tothe

first pulse width are removed from each pulse repetition interval. Considering the delay

of the trigger pulse and the recovery time of LNAs to get off the compression region, a
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Figure 3.14: Flow of the receiver processing

few extra samples may be removed.

Here, it should be noted that, although separate antennas are used for transmission and

reception in this system, by removing the first samples received during transmission,

the bistatic radar system turns into a monostatic radar, in which the receiver waits for

the whole transmit pulse to leave the antenna and the range that corresponds to the pulse

width and recovery time is said to be eclipsed. Hence, the system used in this study is

also exposed to that blind range of monostatic radars. This blind range,Rmin, can be

expressed as follows:

Rmin =
c · (pulse width+ recovery time)

2
, (3.13)

Although an echo from a range closer thanRmin cannot be received completely due to

the off time of the receiver, less samples can still be received. In such cases, since less

samples enters the matched filter, the peaks at the output of the matched filter maynot

be so clear. This blind zone can be excluded by removing another pulse width from the

received signal.

2. Next, in order to maximize the signal-to-noise ratio, the matched filtering operation
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is performed. The received IQ time samples are convolved by the conjugateof time

reversed IQ data samples of the transmitting signal. Here, it is important to note that

a correction is required due to the different transmitting and receiving sampling rates.

The transmitting signal is generated by a sample clock of maximum 100 MHz, where

the maximum sampling rate of the receiver is about 10 MHz. Hence, the IQ samples of

the transmitting signal is downsampled before matched filtering.

3. After matched filtering, anMxN data matrix, which is explained in Section 2.1 is con-

structed. Each row of this data matrix is composed of samples from one pulse repetition

interval and each column represents the samples from one range cell. Fora coded pulse,

data matrix is constructed so that each chip corresponds to a range cell. Once the data

matrix is constructed, various digital signal processing operations can beperformed

along its dimensions. In this study, the range-Doppler processing of the received signal

is performed; spatial and temporal spectrum of the received signal areobserved; spatial

and temporal statistical distributions are determined.

Range-Doppler plot: In order to get the range-Doppler plot, FFT is taken in the

columns of data matrix by means of thefft() function of MATLAB. Since thefft() func-

tion of MATLAB does not perform any normalization, the output should be divided by

the FFT size.

By taking FFT columnwise, it can be concluded that there is a target in a particular

range cell if there is a return from that range cell in all pulse repetition intervals. Be-

sides, if there is a target moving in a particular range, the non-zero Doppler shift due to

its motion can be observed in that range cell.

The axes of the range-Doppler plot are arranged as follows:

• X-axis (Range axis): Since the time resolution (XDelta) is known, the fast-time

samples can be written in terms of seconds and then converted into the corre-

sponding ranges. Here, it is important to note that if the blind zone is excluded

from the analysis as explained above, the range axis should be arranged accord-

ingly.

• Y-axis (Doppler range axis): The slow-time samples can be transformed intothe

Doppler frequency. Doppler axis can be chosen to be between (-1/2PRI, 1/2PRI)

or (0, 1/PRI) if it is known that all the targets are approaching; (1/PRI, 0) if it is
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known that all the targets are moving away.

• Z-axis (Amplitude): In VSA and EXA, the received IQ time data samples are

saved into the files in terms ofVolts. The amplitude is converted into power in

dBmby the following formula:

Power (Watts)=
(Volts/

√
2)2

R(Ω)
∗ duty ratio (3.14a)

=
(Volts rms)2

50(Ω)
∗ PW

PRI
(3.14b)

Power (dBm)= 10 log10 (Power (Watts))+ 30 (3.14c)

Spectral analysis:By means of various methods, the power spectral density estimates

of the slow-time and the fast-time samples are obtained (Section 2.2).

Statistical analysis:The histogram of the slow-time and the fast time samples are plot-

ted and various goodness-of-fit test are applied on both dimensions in order to extract

the temporal and spatial statistical behavior of the return signal (Section 2.3).

3.6 Verification of the System Using Generic Signals

In order to verify the system, the signal generator and the spectrum analyzer are directly

connected to each other, without using antennas. A generic signal is constructed and after the

received signal is processed, the results are evaluated.

3.6.1 Ability of Doppler Shift Detection

As explained in Section 3.1, if the oscillators of the signal generator and the spectrum analyzer

do not use the same 10 MHz reference, the frequency reading at the spectrum analyzer will

be incorrect. This error can be interpreted as a Doppler shift in the carrier frequency and it is

expected to be observed on the range-Doppler plot after the signal processing.

Equivalently, the carrier frequency can be set to a value slightly different than the intended

operating frequency. For instance, the VSG center frequency is set to10 GHz+ 2000 Hz and
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Figure 3.15: Doppler shift

the spectrum analyzer center frequency is adjusted to 10 GHz as usual. When the received

signal is processed, the Doppler shift of 2000 Hz can be seen on the range-Doppler plot, as

expected (Figure 3.15).

3.6.2 Ability of Finding the Target Location

In order to verify the ability of target range detection, a transmit pulse with aninherent delay

is generated. Since the trigger is taken from the first sample of the whole PRI, the pulse seems

to be received after some delay. For example, a pulse with 40-chip-P4 code, 4 usec PW and

100 usec PRI is sent as in Figure 3.16(a) with a delay of 40 usec, which corresponds to a range

of 6000 m. The result is shown in Figure 3.16(b), where it can be seen that there is indeed a

target at 6000 m.
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Figure 3.16: (a) Delayed transmit pulse, (b) Target detected at 6000 m

3.7 Graphical User Interface

The graphical user interface (GUI) is developed in MATLAB. It allows the user to enter the

transmitting signal parameters, such as PW, PRI, number of chips and pulsecode, in order

to create and save a new transmitting signal. The user may also select a predefined signal

to transmit. The IQ waveform is downloaded to the VSG by means of the SEND command.

Also, the carrier frequency and the output power can be adjusted via theGUI. It lets the user

browse the received signal files saved by VSA and EXA and select the file to be analyzed.

Statistical and spectral analyses on the received signal can be controlled by means of the GUI.

A screenshot of the GUI can be seen in Figure 3.17.
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Figure 3.17: Graphical user interface

3.8 Comparison of the System with the Previous Studies

In the literature, many studies conducted on experimental radar clutter data can be found.

Among them, studies performed by Billingsley at MIT Lincoln Laboratory (MIT-LL) are

quite comprehensive [7], [12], [14]. Many measurements were taken at different sites, and the

details of the measurement systems and the sites were published as technical reports. During

the establishment of the experimental data acquisition system for this study, these technical

reports have been frequently referred. In this section, the data acquisition system used in this

study is compared to the systems used by MIT-LL.

MIT-LL performed clutter measurements with two different radars, namely the Phase One

and L-Band Clutter Experiment (LCE), at different frequency ranges. Also, different systems

and parameters were used for spatial and temporal analyses. For instance, short time dwell

measurements were used for spatial analyses, while the temporal analyseswere based on long

time dwell measurements. In addition, the antenna beam was rotated in each PRIfor cell-to-

cell clutter characterization, while the measurements for temporal analyses were taken with a

stationary beam antenna.

In Table 3.4 and Table 3.5, the main system parameters are compared for spatial and tem-

poral clutter analyses, respectively. For comparison, a set of most commonly used system

parameters is used.
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Table 3.4: Comparison of MIT-LL Phase One radar clutter measurement system and the ex-
perimental data-acquisition system used in this study for spatial analysis

System parameter MIT-LL
Phase One [12]

System-1
(PSA+ VSA)

System-2 (EXA)

Frequency X-Band (9.1 GHz) X-Band (10 GHz) X-Band (10 GHz)

Antenna Rotating Stationary Stationary

Polarization VV or HH VV VV

3-dB beamwidths 1◦az. & 3◦el. 30◦az. 30◦az.

Pulse width 100 nsec 4 usec 5.32 usec

Number of chips 1 (uncoded pulse) 40 (P4 coded pulse) 40 (P4 coded pulse)

Chip width 100 nsec 100 nsec 133 nsec

Bandwidth 10 MHz 10 MHz 7.5 MHz

Range resolution 15 m 15 m 20 m

RX sampling rate 10 MHz in range 10 MHz 15 MHz

Samples/chip 1 1 2

Range cell spacing 15 m 15 m 10 m

TX power 50 kW peak (34
dBm average)

7.5 dBm average 7.5 dBm average

PRI 2 msec 100 usec 133 usec

Calibration wrt.
cell area

YES YES YES

Calibration wrt.
distance

YES (STC8) YES YES

8 Sensitivity time control
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Table 3.5: Comparison of MIT-LL radar clutter measurement systems and theexperimental
data-acquisition system used in this study for temporal analysis

System
parameter

MIT-LL
Phase One

[14]

MIT-LL LCE
[14]

System - 1
(PSA+ VSA)

System - 2
(EXA)

Frequency X-Band
(9.1 GHz)

L-Band
(1.23 GHz)

X-Band
(10 GHz)

X-Band
(10 GHz)

Antenna Stationary Stationary Stationary Stationary

Polarization VV or HH VV or HH VV VV

3-dB
beamwidths

1◦az. & 3◦el. 6◦az. & 3◦el. 30◦az. 30◦az.

Pulse width 1 usec 1 usec 4 usec 5.32 usec

Number of
chips

1 (uncoded
pulse)

1 (uncoded
pulse)

40 (P4 coded
pulse)

40 (P4 coded
pulse)

Chip width 1 usec 1 usec 100 nsec 133 nsec

Bandwidth 1 MHz 1 MHz 10 MHz 7.5 MHz

Range
resolution

150 m 150 m 15 m 20 m

RX sampling
rate

1 MHz 2 MHz 10 MHz 15 MHz

Samples/chip 1 2 1 2

Range cell
spacing

150 m 75 m 15 m 10 m

PRI 2 msec 2 msec 100 usec 133 usec

Number of
pulses/record

30720 30720 524 2000

Time record
length

61.44 sec 61.44 sec 52.4 msec 266 msec

Doppler
resolution

0.016 Hz 0.016 Hz 19.08 Hz 3.8 Hz

TX power 50 kW peak
(44 dBm
average)

8 kW peak (36
dBm average)

7.5 dBm
average

7.5 dBm
average
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CHAPTER 4

ANALYSIS OF THE MEASURED RADAR CLUTTER

In this study, the experimental radar system, whose principle of operation,specifications and

verification are discussed in Chapter 3, is used to measure radar clutter. The measurements

are carried out on the roof of the METU Electrical and Electronics Engineering Department’s

Building D.

Two different terrains are illuminated with the same transmit signal and the measurements are

taken on the same day with the same system shown in Figure 3.2, i.e., the option with EXA

Signal Analyzer and 2 LNAs. The system parameters used for clutter measurements can be

summarized as in Table 4.1.1

After the I/Q data samples are recorded by EXA Signal Analyzer, the steps described in

Section 3.5 are applied.

In this chapter, the results of the analyses performed on the experimental radar clutter data

are presented in detail. The results are interpreted in the light of the characteristics of the

illuminated regions. The photos taken on the day of the measurement together with the top

views obtained from the Google Earth application are made use of while making comments

on the results.

1 A comparison of the system parameters used during measurements andin the previous studies on radar
clutter is given in Section 3.8.
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Table 4.1: System parameters used during measurements

THE TRANSMITTER THE RECEIVER

• P4 coded pulse @ 10 GHz

• Pulse width= 5.32 usec

• Number of chips= 40

• Chip width= 133 nsec

• PRI= 133 usec

• 7.5 dBm average transmit
power

• Sampling rate= 15 MHz
(i.e., 2 samples/chip)

• Total time record length=
266 msec

Blind zone= ∼ 800 m

Range resolution= ∼ 20 m

Range cell spacing (RC)2 = ∼ 10 m

Doppler resolution= ∼ 3.8 Hz

Maximum unambiguous range= ∼ 19 km

2 Two samples are recorded for each resolution cell. Each sample is referred to as a range cell throughout this
chapter.
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4.1 Terrain - 1

A photo of the first terrain is shown in Figure 4.1.

Figure 4.1: Terrain - 1 on the day of measurements

Before moving to the analyses of the measured data, the boundaries of the illuminated region

are first determined. Hence, the red lines indicating the azimuthal beam of theantenna are

first drawn on the Google Earth top view as in Appendix D.1. The antenna beamwidth is

generally defined as the 3-dB beamwidth. However, the returns are accepted from a larger

angle, obviously with less power. In this study, an area shaded by an angle of 40◦ is marked

as the beam of the antenna.

Next, successive paths at certain intervals are drawn in the beam of the antenna. These paths

are of length equal to the theoretical maximum unambiguous range, which is about 19 km.

Their altitude profiles obtained from the Google Earth application are given inAppendix D.1.

These paths are examined in order to extract the altitude characteristics of the illuminated

region. For instance, the presence of a hill at about 5 km can be deduced from these profiles.
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It is obvious that the frequency of the paths and their placement may affect the results signifi-

cantly. Hence, the paths are tried to be placed such that they give a reasonable idea about the

altitude of the illuminated area.

Then, for each path, the points which may cause shadowing are determined. Here, it should

be noted that, the altitude profiles provided by Google Earth do not include theheights of the

buildings. Besides, the grazing angle of the radar should be taken into account in determining

the shadowed regions. In this case, it is useful to examine the photo of the illuminated region.

Hence, considering the altitude profiles, the heights of the buildings and the grazing angle

together, the points causing shadowing are marked. For the first observation area, it can be

roughly said that the hill at about 5 km is expected to shadow its back to some range according

to the grazing angle. Also, it is possible to see peaks beyond 11 km due to thereturns from

higher hills at these ranges.

4.1.1 Range-Doppler Processing for Terrain - 1

For the first illuminated region, the power vs. range plot is given in Figure 4.2(a). Here, it

should be noted that the first 800 m in the power vs. range plot corresponds to the blind zone.

The blind zone can be ignored by removing an extra PW from the receivedtime data.3 For the

range plot given in Figure 4.2(b), a total number of 41 chips (i.e., 82 RCs)are removed: 40

chips for the pulse width and 1 chip for the recovery time of the receiver. Hence, the returns

from up to 800 m+ 20 m= 820 m are excluded and the range axis starts after 820 m.

As it can be seen from Figure 4.2(a) and Figure 4.2(b), there is actually no return beyond 5

km up to a range of 11 km. Also, peaks with reasonable SNRs can be observed beyond this

point as expected. However, it is quite hard to distinguish the scatterers atthese ranges due to

the quite large angular resolution.

On the other hand, the SNRs of the returns from the first 5 km are quite high. For a detailed

range analysis, the range plot is zoomed into this crowded region. In this region, there are

many point scatterers such as buildings (Figure 4.3(a)). The ranges ofsome possible scatterers

are marked on the top view of the zoomed region as in Figure 4.3(b), where the red lines

show the antenna beam and the blind zone is shaded with green lines. When the range plot in

3 Note that, a pulse width has already been removed due to the isolation problems. Now, a second pulse width
is removed in order to eliminate the blind zone.
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(a) Blind zone included

(b) Blind zone excluded

Figure 4.2: Power vs. range plot for Terrain - 1
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(a)

(b)

Figure 4.3: Ranges of the possible scatterers in Terrain - 1
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Figure 4.4: Power vs. range plot for Terrain - 1 with blind zone removed (500 m - 5 km)

Figure 4.4 is compared to the photos in Figure 4.3, the ranges of the scatterers mostly seem

to be consistent with the range of the peaks in the power vs. range plot.

The range - Doppler plot for the first terrain can be seen in Figure 4.5(a). The Doppler axis is

zoomed to the first 50 Hz. Considering the Doppler resolution of the system, which is about

3.8 Hz, no Doppler spread can be observed beyond 820 m. This may be reasonable since the

scatterers in this region are mostly buildings and bare hills. Hence, it is not surprising that

such stable scatterers do not yield a Doppler spread.

The blind zone is also examined in terms of Doppler spread. Hence, the range - Doppler plot

is redrawn with the blind zone included as in Figure 4.5(b). From this plot, a Doppler spread

of 15-20 Hz can be immediately seen in the blind region. This may be explained bythe fact

that the region is mostly crowded with trees and the movement of the leaves may result in a

Doppler spread. Besides, the air is still during the measurements. In the presence of wind,

the Doppler spread is expected to be greater. Detailed examination is given inthe following

subsection.
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(a) Blind zone excluded

(b) Blind zone included

Figure 4.5: Doppler vs. range plot for Terrain - 1 (0 - 50 Hz)
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4.1.2 Spectral Analysis for Terrain - 1

The Doppler axis in the Doppler vs. range plot gives an idea about the spectral characteristics

of a range cell. Here, two different range cells marked in Figure 4.6 are examined in detail.

The first range cell is filled with trees while the second cell consists of a building.

(a) (b)

Figure 4.6: RCs at 340 m and 620 m for detailed spectral analyses (Terrain - 1)

First, consider the range cell with trees at 620 m, for which the I/Q components and the am-

plitude of the returns from 2000 successive pulses are plotted in Figure 4.7(a). These samples

are examined with various methods in order to obtain a PSD estimate for this range. The PSD

estimate based on the periodogram method is given in Figure 4.7(b) and Figure 4.7(c). A

spread of 30 Hz can be seen 50 dB below the zero-Doppler. The same result can be seen from

Figure 4.7(d) and Figure 4.7(e), which show the correlogram with biasedautocorrelation of

the slow-time samples.

In order to compare the result with that of the MIT-LL studies [14], [19],the periodogram

in Figure 4.7(c) is plotted with respect to the Doppler velocity (νD) instead of the Doppler

frequency (fD) according to the following equation4:

νD(m/s) =
fD(Hz) · λ(m)

2
(4.1)

4 The measurements of MIT-LL at different frequencies are reported in terms of Doppler velocity for
frequency-independent comparison.
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(c) Periodogram (zoomed)
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(d) Correlogram
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(e) Correlogram (zoomed)

Figure 4.7: PSD estimate based on periodogram and correlogram for the range cell filled with
trees (620 m)

As previously discussed in Section 2.2, in [14], it is reported that the measured Doppler veloc-

ity spectral extent from windblown trees at levels 60 to 80 dB below the zero-Doppler peak is

about 1 m/s under light wind condition. The Doppler velocity increases up to about 3 m/s for

windy conditions and it is estimated not to exceed 4 m/s for gale force winds (Figure 4.8(b)).
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Figure 4.8: Comparison of the Doppler spread at 620 m with the MIT-LL studies

In this study, the measured Doppler velocity 45 to 50 dB below zero-Doppleris about 0.45

m/s (Figure 4.8(a)) under still air. The dynamic range is smaller than that of theMIT-LL

measurement results. Hence, the comparison may be performed for the levels 45 to 50 dB

below zero-Doppler. At these levels, the MIT-LL clutter is found to spread up to 0.5 m/s,

which is close to the result of this study. However, it should be noted for thefuture works,

the transmitter power of this system should be increased in order to improve theSNR and

consequently the dynamic range, so that more reliable comments can be made.

The PSD estimate based on the periodogram has a high variance as it can also be observed

from Figure 4.7. In order to improve the variance of the PSD estimate, various methods such

as modified periodograms with different windows and Welch method are utilized (Figure 4.9).

Among them, the Welch method yields the best result in terms of estimate variance; however,

the resolution is decreased considerably. Hence, without decreasing the resolution as much as

possible, the variance of the estimate is tried to be decreased with some other methods. For

instance, the periodograms or modified periodograms of 3 different records of 2000 pulses

each are averaged. According to Figure 4.9(b) and Figure 4.9(c), theWelch method still

having the least variance, the averaging seems to work and the result may be improved further

by increasing the number of records averaged.
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(a) Modified periodogram with different windows and Welch method
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(c) Averaging periodograms and modified periodograms (zoomed)

Figure 4.9: Further spectral analysis of the range cell at 620 m for a better PSD estimate
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The next range cell to be analyzed is dominated by a building at 340 m ratherthan trees.

Accordingly, less or no Doppler spread is expected to be observed forthis range cell.

The spectral analyses are performed similarly and the results are given inFigure 4.10 and

Figure 4.11. The Doppler velocity at levels about 60 dB below zero-Doppler is about 0.06

m/s (Indeed, it corresponds to the first Doppler bin). That is, in contrast to the range cell with

trees at 620 m, almost no Doppler spread is observed.
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(c) Periodogram (zoomed)
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(d) Doppler velocity at 340 m
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Figure 4.10: PSD estimate based on periodogram and correlogram for therange cell with a
building in it (340 m)
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(a) Modified periodogram with different windows and Welch method
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Figure 4.11: Further spectral analysis of the range cell at 340 m for a better PSD estimate
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4.1.3 Statistical Analysis for Terrain - 1

4.1.3.1 Temporal Analysis for Terrain - 1

In this study, the temporal statistical characteristics of the crowded region outside the blind

zone are examined. The region between 820 m and 3880 m, which consists of 305 samples, is

investigated over time. The number of analyzed pulses is changed in order tocheck whether

the observation time affects the temporal statistics of clutter.

The normality of I and Q data are checked by means of the Lilliefors test. The results are

tabulated in Table 4.2 and Table 4.3. According to the tables, it can be said thatthe number

of RCs for which normality is rejected does not seem to be affected with the observation time

or number of pulses analyzed.

Table 4.2: Temporal fit of clutter I/Q data between 820 m - 3880 m to Normal distribution
(First L pulses)

Number of pulses
analyzed (L)

Corresponding
time length

Number of RCs
for which

Normality is
rejected - I

(LILLIETEST)

Number of RCs
for which

Normality is
rejected - Q

(LILLIETEST)

2000 266 msec 19/305 8/305
1000 133 msec 19/305 21/305
500 66.5 msec 13/305 12/305
200 26.6 msec 12/305 17/305
100 13.3 msec 16/305 18/305

Table 4.3: Temporal fit of clutter I/Q data between 820 m - 3880 m to Normal distribution
(1:step:2000)

Number of
pulses

analyzed
(1:step:2000)

step Corresponding
time length

Number of
RCs for which
Normality is
rejected - I

(LILLIETEST)

Number of
RCs for which
Normality is
rejected - Q

(LILLIETEST)

2000 1 266 msec 19/305 8/305
1000 2 266 msec 13/305 8/305
500 4 266 msec 19/305 13/305
200 10 266 msec 10/305 12/305
100 20 266 msec 10/305 8/305
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On the other hand, the Rayleigh distribution is widely proposed to model temporal character-

istics of clutter amplitude in an RC as discussed in Section 2.3.2.1. Hence, the fit of empirical

clutter amplitude to Rayleigh distribution is checked with both the standard KS test and the

modified KS (MKS) test with the Monte Carlo approach (with a significance level of 0.05).

For each of 305 RCs, the parameters of the Rayleigh distribution are estimatedfrom the em-

pirical clutter amplitude with ML method. The results are given in Table 4.4 and Table 4.5.

Table 4.4: Temporal fit of clutter amplitude between 820 m - 3880 m to Rayleigh distribution
(First L pulses)

Number of pulses
analyzed (L)

Corresponding
time length

Number of RCs
for which Rayleigh

is rejected (KS
TEST)

Number of RCs
for which Rayleigh
is rejected (MKS

TEST)

2000 266 msec 94/305 120/305

1000 133 msec 77/305 103/305

500 66.5 msec 63/305 96/305

200 26.6 msec 44/305 73/305

100 13.3 msec 32/305 63/305

Table 4.5: Temporal fit of clutter amplitude between 820 m - 3880 m to Rayleigh distribution
(1:step:2000)

Number of
pulses

analyzed
(1:step:2000)

step Corresponding
time length

Number of
RCs for which

Rayleigh is
rejected (KS

TEST)

Number of
RCs for which

Rayleigh is
rejected (MKS

TEST)

2000 1 266 msec 94/305 120/305

1000 2 266 msec 76/305 107/305

500 4 266 msec 63/305 94/305

200 10 266 msec 48/305 82/305

100 20 266 msec 29/305 70/305

First of all, the standard KS test is expected to reject the hypothesized distribution less, since

it is made closer to the empirical distribution by estimating the parameters from the empirical

data as discussed in Section 2.3.4. Indeed, the number of RCs for which Rayleigh is rejected

by the MKS test is greater than the number in the standard KS test in Table 4.4 and Table 4.5.
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Second, it can be seen that the rejection of Rayleigh distribution increasesas the number of

analyzed pulses increases as opposed to the normality rejection. For the MKS test, the ratio

of rejection increases from 20% to 40% as the observation time increases from 13.3 msec to

266 msec or the number of pulses increases from 100 to 2000.
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Figure 4.12: Temporal analysis of clutter amplitude between 820 m - 3880 m in 266 msec

To better understand the results, consider the plot which shows the RCs for which Rayleigh is

rejected to model clutter amplitude (Figure 4.12(a)). When this plot is comparedto the range

characteristic of the region which is given in Figure 4.4, it can be seen thatthe RCs for which

Rayleigh is rejected and the peaks of the power vs. range plot are quite correlated. That is, an

RC with a scatterer in it tends to reject Rayleigh clutter amplitude. This may be interpreted

as follows: Considering the structure of the terrain with mostly point scatterers, an RC may
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be dominated by one scatterer since the range resolution of the system is quitefine. Hence,

the clutter amplitude in time may deviate from Rayleigh and be rather modeled with Ricean

distribution. The point of Ricean distribution is that both I and Q have non-zero means. This

explains the result of relatively less rejection of I/Q normality than that of Rayleigh model

for clutter amplitude: I and Q may still be normally distributed, although Rayleigh ampli-

tude requires normal I/Q components with zero mean. Actually, the consistency between

non-zero mean of I/Q data and the tendency to reject Rayleigh amplitude can be seen from

Figure 4.12(b) and Figure 4.12(c) which show the spatial change of temporal means of I/Q

components over 820 m - 3880 m.

4.1.3.2 Spatial Analysis for Terrain - 1

So far, the temporal statistical characteristics of the clutter have been explored. Next, the

spatial statistical analysis is carried out over the fast time axis after the spatial calibration

operation explained in Section 2.3.1.1 is performed.

For instance, consider the samples between 820 m - 3880 m in the 20th pulse. According to

the Lilliefors test and the skewness - kurtosis values, the I/Q data deviates from normality. It

can be seen from Figure 4.13(a) and Figure 4.13(b). Since the skewness of the I component

is much closer to zero than that of the Q component, the histogram of the I component is

expected to be relatively more symmetrical. Similarly, the kurtosis values are greater for the

Q component. Consequently, its histogram is spikier.
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Figure 4.13: Histogram of the I and Q components between 820 m - 3880 m for the 20th pulse
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On the other hand, the histogram and the cumulative histogram of the corresponding 305

calibrated amplitude samples are given in Figure 4.14(b) and Figure 4.14(c). The Rayleigh,

Log-normal and Weibull models are checked to model clutter amplitude. ML estimates of the

parameters are used and the MKS test is applied with a significance level of 0.05. The results

are given in Figure 4.14(d) - 4.14(f). Log-normal and Rayleigh are rejected while the Weibull

distribution is not rejected.

Then, the space-time compound analyses are performed for the same range interval. The tex-

ture and speckle components are derived as explained in Section 2.3.3.1. Using the MKS test,

the speckle is found to be Rayleigh distributed. For the clutter amplitude to be K-distributed,

the texture should be Gamma distributed. However, the texture does not fit to any of the

Gamma, Log-normal and Exponential distributions. The results are shown inFigure 4.15.

In addition, the spatial analyses performed on the range interval of 820 m- 3880 m for the

20th pulse are repeated for the first 50 pulses. For each pulse, the normality of I /Q data is

checked by the Lilliefors test, and the MKS test is applied in order to check thefit of the

clutter amplitude to the Rayleigh, Log-normal and Weibull distributions. The significance

level is 0.05 for all tests. The results are given in Table 4.6.

Table 4.6: Spatial fit of I/Q data and amplitude of clutter for the first 50 pulses (820 m - 3880
m)

Lillifors test results for I /Q components
820 m - 3880 m (305 samples)

MKS test results for clutter amplitude
820 m - 3880 m (305 samples)

• I - Normality rejected for 50 pulses
out of 50 pulses

• Q - Normality rejected for 50 pulses
out of 50 pulses

• Rayleigh rejected for 50 pulses out of
50 pulses

• Log-normal rejected for 50 pulses out
of 50 pulses

• Weibull rejected for 18 pulses out of
50 pulses

As it can be seen from Table 4.6, normality of I/Q data is rejected for all pulses. Also, the

skewness and kurtosis values calculated for each pulse are consistentwith this result. Among

all, the values for the 10th, 20th, 30th, 40th and 50th pulses are tabulated in Table 4.7 as an
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Figure 4.14: Spatial analysis of clutter amplitude between 820 m - 3880 m for the 20th pulse
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Figure 4.15: Space - time compound analysis of clutter amplitude between 820 m -3880 m
for the 20th pulse
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Table 4.7: I/Q skewness and kurtosis values for pulse number= 10, 20, 30, 40, 50 (820 m -
3880 m)

Pulse number SKEWNESS-I KURTOSIS-I SKEWNESS-Q KURTOSIS-Q

10 0.328 -3.122 2.952 22.157

20 0.137 -4.451 4.140 34.649

30 0.325 -3.951 1.951 29.106

40 0.220 -3.528 3.124 24.691

50 0.393 -4.175 3.393 31.684

example.

On the other hand, the Rayleigh distribution is rejected to model the clutter amplitude. This

result is expected since the range heterogeneity of clutter dominates for high range resolution.

The Log-normal distribution is also rejected for all pulses while the Weibull distribution is

rejected with 40%.

Instead of analyzing the full range of 820 m - 3880 m, smaller windows may be investigated.

A window of size W is swept over the fast time samples in order to observe the change of

spatial characteristics of clutter amplitude. In this study, three different window sizes are

used: 25, 50 and 100 samples, which correspond to a window length of 250 m, 500 m, and

1 km, respectively. For each window, the parameters are estimated by ML method and the

spatial changes of these parameters are plotted. Also, in each window, theMKS test is applied

for the corresponding theoretical model. The results of MKS test are assessed together with

the spatial change of the distribution parameters.

The results of the analyses for the 20th pulse with three different window sizes are given

in Figure 4.16, Figure 4.17, and Figure 4.18. For each window size, the shape and scale

parameters of Log-normal and Weibull distributions are plotted so that the x-axis shows the

range where a window starts. For instance, for W= 50, the parameter estimate read at 1000

m belongs to the window between 1000 m and 1500 m.
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Figure 4.16: Spatial changes of the shape and scale parameters of Weibull and Log-normal
distributions for the 20th pulse (Window size= 100)
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Figure 4.17: Spatial changes of the shape and scale parameters of Weibull and Log-normal
distributions for the 20th pulse (Window size= 50)
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Figure 4.18: Spatial changes of the shape and scale parameters of Weibull and Log-normal
distributions for the 20th pulse (Window size= 25)
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First of all, it should be noted that as the window size decreases, the spatial change of shape

or scale parameters becomes more apparent. On the other hand, for smallerwindows, the

distribution fitting is performed based on less samples. This trade-off should be considered

before deciding on the window size. That is, the window size should be fineenough to extract

the spatial characteristics of the region while containing sufficient samples for a successful

distribution fitting.

According to the Figures 4.16 - 4.18, as the window size decreases, the rejection of Weibull

decreases while the rejection of Log-normal increases. This result may be explained as fol-

lows: The smaller the window size is, the more homogeneous the window becomes. Hence,

the variance of a window decreases and the tails becomes lighter yielding the Log-normal

model to be rejected more.

In both of the Weibull and Log-normal plots, the scale parameter seems to be much more

related to the spatial calibration operation than the shape parameter. That is,it can be roughly

inferred that the scale parameter is connected with the power level of the returns while the

shape parameter depends on the dispersion of the scatterers on the terrain.

For detailed analysis, consider the estimates of the parameters over a windowof W = 50 (500

m) given in Figure 4.17. The shape parameter of Weibull distribution decreases mainly in

three points (Figure 4.17(c)). A decrease in the shape parameter of Weibull means an increase

in the variance and a heavier tail. Hence, such heterogeneous regions may be considered as

clutter edges. The MKS test result for each window plotted in Figure 4.17(e) also seems to

be correlated with these edges. That is, for the windows rejected to be modeled with Weibull

distribution, the shape parameter estimation decreases sharply. Besides, Log-normal distribu-

tion may be proposed to model these windows based on Figure 4.17(e) and Figure 4.17(f). As

opposed to the result of the full range, i.e., 820 m - 3880 m, for smaller windows Log-normal

is accepted and the Weibull is rejected more.
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4.1.4 Surface Clutter Reflectivity for Terrain - 1

In this section, the clutter RCS and reflectivity are calculated for the range interval of 820 m

- 3880 m.

The radar power equation given in (2.50) is used to calculate the clutter RCS(σC). The re-

quired parameters are tabulated in Table 4.8 and the CNR values are obtainedfrom the power

vs. range plot for this terrain (Figure 4.4). Here, it is important to note thatthe CNR values

obtained from the range-Doppler plot include the improvement factors dueto the pulse com-

pression and coherent pulse integration. Hence, the actual CNR valueswithout improvements

should be used in (2.50). These CNR values are plotted in Figure 4.19(a).

OnceσC is calculated from (2.50), the clutter reflectivity (σ0) is obtained by dividing the

σC into the range cell area, which is calculated considering the azimuthal beamwidth of the

antenna (θ) and the grazing angle (ψ).

Table 4.8: Parameters for calculation of clutter reflectivity

Parameter Value

PT 7.5 dBm

GT +GR 27.2 dB

GLNA 36 dB

λ 0.03 m

T 298◦K

B 7.5 MHz

F 3.3 dB

L 10 dB

θ 30 ◦

ψ 0 ◦

Number of chips 16 dB

Number of integrated pulses 33 dB

The resulting clutter RCS and clutter reflectivity for Terrain - 1 are given inFigure 4.19(b)

and Figure 4.19(d), respectively.
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Figure 4.19: Clutter RCS and reflectivity for 820 m - 3880 m
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4.2 Terrain - 2

The second illuminated terrain can be seen in Figure 4.20.

Figure 4.20: Terrain - 2 on the day of measurements

Before analyses, the similar preliminary work is conducted for the second terrain, such as

determination of the boundaries, altitude profiles and the shadowed regionsof the illuminated

area. The altitude profiles are given in Appendix D.2. Analyzing the hills inside the beam

of the antenna from these profiles, the points shadowing their backs are marked with blue

pointers. According to these pointers, a horizon line is expected to be seenat about 5.5 km.

4.2.1 Range-Doppler Processing for Terrain - 2

The power vs. range plot for this terrain is given in Figure 4.22(a). According to this plot,

there is no return beyond 5 km, as opposed to Terrain - 1. Considering thehigh buildings

located just before the peak of the first hill, the horizon line which is expected to be at 5.5 km
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may be brought closer to 5 km. Hence, the result seems to be reasonable. Excluding the blind

zone from the analyses, the range-Doppler graph can be plotted as in Figure 4.22(b).

Figure 4.21: Ranges of the possible scatterers in Terrain - 2

The blind zone for this terrain is composed of many trees which yields a Doppler spread up

to 25-30 Hz. The range-Doppler plot for this terrain is given in Figure 4.23.

4.2.2 Spectral Analysis for Terrain - 2

For detailed spectral analyses, the range cell at 380 m is chosen (Figure 4.24) and the results

are plotted in Figure 4.25 and Figure 4.26. The Doppler velocity for this range under light air

is found to be about 0.4 m/s at levels 45 dB below zero-Doppler peak (Figure 4.25(d)).
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(a) Blind zone included

(b) Blind zone excluded

Figure 4.22: Power vs. range plot for Terrain - 2
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Figure 4.23: Doppler vs. range plot for Terrain - 2 with blind zone included (0 - 70 Hz)

(a) (b)

Figure 4.24: RC at 380 m for detailed spectral analyses (Terrain - 2)
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Figure 4.25: PSD estimate based on periodogram and correlogram for therange cell filled
with trees (380 m)
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Figure 4.26: Further spectral analysis of the range cell at 380 m for a better PSD estimate

103



4.2.3 Statistical Analysis for Terrain - 2

4.2.3.1 Temporal Analysis for Terrain - 2

The temporal analyses performed for Terrain - 2 are tabulated in Table 4.9- 4.12. The blind

zone is excluded from the analyses and 417 samples between 820 m - 4990m are examined

over different number of pulses. Table 4.9 and Table 4.11 give the analysis resultsof the first

L pulses for each range. Also, for each range, keeping the observation time constant, each of

2, 4, 10 and 20 pulses are analyzed. The results are in Table 4.10 and Table 4.12.

Table 4.9: Temporal fit of clutter I/Q data between 820 m - 4990 m to Normal distribution
(First L pulses)

Number of pulses
analyzed (L)

Corresponding
time length

Number of RCs
for which

Normality is
rejected - I

(LILLIETEST)

Number of RCs
for which

Normality is
rejected - Q

(LILLIETEST)
2000 266 msec 15/417 12/417
1000 133 msec 19/417 20/417
500 66.5 msec 14/417 26/417
200 26.6 msec 23/417 23/417
100 13.3 msec 25/417 25/417

Table 4.10: Temporal fit of clutter I/Q data between 820 m - 4990 m to Normal distribution
(1:step:2000)

Number of
pulses

analyzed
(1:step:2000)

step Corresponding
time length

Number of
RCs for which
Normality is
rejected - I

(LILLIETEST)

Number of
RCs for which
Normality is
rejected - Q

(LILLIETEST)
2000 1 266 msec 15/417 12/417
1000 2 266 msec 21/417 20/417
500 4 266 msec 22/417 28/417
200 10 266 msec 24/417 24/417
100 20 266 msec 16/417 20/417
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Table 4.11: Temporal fit of clutter amplitude between 820 m - 4990 m to Rayleighdistribution
(First L pulses)

Number of pulses
analyzed (L)

Corresponding
time length

Number of RCs
for which Rayleigh

is rejected (KS
TEST)

Number of RCs
for which Rayleigh
is rejected (MKS

TEST)
2000 266 msec 5/417 32/417
1000 133 msec 2/417 35/417
500 66.5 msec 4/417 23/417
200 26.6 msec 1/417 23/417
100 13.3 msec 0/417 19/417

Table 4.12: Temporal fit of clutter amplitude between 820 m - 4990 m to Rayleighdistribution
(1:step:2000)

Number of
pulses

analyzed
(1:step:2000)

step Corresponding
time length

Number of
RCs for which

Rayleigh is
rejected (KS

TEST)

Number of
RCs for which

Rayleigh is
rejected (MKS

TEST)
2000 1 266 msec 5/417 32/417
1000 2 266 msec 1/417 30/417
500 4 266 msec 1/417 26/417
200 10 266 msec 1/417 18/417
100 20 266 msec 1/417 24/417

According to Table 4.9 and Table 4.10, the normality of I/Q data is accepted with a high

percentage and the result does not seem to depend on the number of pulses analyzed or the

observation time.

On the other hand, the results of MKS tests checking the fit of clutter amplitude toRayleigh

model show that Rayleigh is rejected with a ratio not higher than 10%. As opposed to Terrain

- 1, the Rayleigh seems to be a suitable model for temporal clutter amplitude. This isan

expected result, since a range cell in Terrain - 2 is mostly composed of diffuse components in

contrast to Terrain - 1.
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4.2.3.2 Spatial Analysis for Terrain - 2

For the spatial characterization of clutter, 417 samples corresponding to the range 820 m -

4990 m are analyzed after spatial calibration as in Terrain - 1.

As an example, the results of the 1st pulse are presented in Figure 4.27. According to the MKS

test performed with ML estimates of the parameters, Log-normal and Rayleighare rejected

and Weibull is accepted.

For the space-time compound analyses performed for the same range interval and the same

pulse, the texture and speckle components and their GoF test results are also shown in Fig-

ure 4.28. The speckle is found to be Rayleigh distributed, however none of the Gamma,

Log-normal and Exponential distributions is successful to model the texture component.

The above spatial tests are again repeated for the first 50 pulses and theresults are tabulated in

Table 4.13. The Rayleigh and Log-normal models are not accepted for any of the 50 pulses.

On the other hand, the ratio of Weibull rejection is found to be quite high as opposed to the

Terrain - 1 results. For 80% of the pulses, Weibull model is rejected. Here, it will be better to

analyze the spatial characteristics of clutter amplitude in smaller windows.

Table 4.13: Spatial fit of I/Q data and amplitude of clutter for the first 50 pulses (820 m - 4990
m)

Lillifors test results for I /Q components
820 m - 4990 m (417 samples)

MKS test results for clutter amplitude
820 m - 4990 m (417 samples)

• I - Normality rejected for 50 pulses
out of 50 pulses

• Q - Normality rejected for 50 pulses
out of 50 pulses

• Rayleigh rejected for 50 pulses out of
50 pulses

• Log-normal rejected for 50 pulses out
of 50 pulses

• Weibull rejected for 39 pulses out of
50 pulses
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Figure 4.27: Spatial analysis of clutter amplitude between 820 m - 4990 m for the 1st pulse
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Figure 4.28: Space - time compound analysis of clutter amplitude between 820 m -4990 m
for the 1st pulse
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The window sizes of 250 m, 500 m and 1 km are used for the second illuminationarea.

The results are shown in Figure 4.29-4.31. Again, as the window size decreases, more rapid

changes in the scale and shape parameters are observed. Also, for some windows for which

Weibull is rejected, Log-normal may be proposed.

For the window length of 500 m, the Weibull shape parameter is found to decrease mainly in

three points. A decrease in the shape parameter of Weibull means an increase in the variance.

Hence, it can be said that these transitions occur due to a spatial heterogeneity in that region.

However, as opposed to the Terrain - 1 results, the Weibull may still be accepted although the

shape parameter decreases.

However, the main difference between the results of Terrain-1 and Terrain-2 is that the Log-

normal is rejected more than Weibull for the latter. The lower grazing angle in the first terrain,

together with the point scatterers such as high buildings, is expected to yield avariance higher

than that of the second terrain for which the grazing angle is relatively high. Hence, the Log-

normal, with its heavier tails than Weibull, may be more suitable to model Terrain-1. This

result seems to be consistent with a previous study on ground clutter [13],in which Log-

normal is found to model the clutter amplitude for low-grazing angles, while high-grazing

angle clutter is modeled with Weibull. Also, in [32], a region with building blocks is found to

be modeled better with Log-normal distribution.
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Figure 4.29: Spatial changes of the shape and scale parameters of Weibull and Log-normal
distributions for the 1st pulse (Window size= 100)
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Figure 4.30: Spatial changes of the shape and scale parameters of Weibull and Log-normal
distributions for the 1st pulse (Window size= 50)
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Figure 4.31: Spatial changes of the shape and scale parameters of Weibull and Log-normal
distributions for the 1st pulse (Window size= 25)
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4.2.4 Surface Clutter Reflectivity for Terrain - 2

In this section, the clutter RCS and reflectivity are calculated for the range interval of 820 m

- 4990 m.

The required parameters are the same as Terrain-1 (Table 4.8), exceptfor the grazing angle.

The grazing angle for this range interval is assumed to be 10◦.

The resulting clutter RCS and clutter reflectivity for Terrain - 2 are presented in Figure 4.32(b)

and Figure 4.32(d), respectively. From these figures, it can be seenthat the surface reflectivity

of Terrain-2 is smaller than that of Terrain-1. Considering the characteristics of the terrains,

this is an expected result since Terrain-1 is mostly filled with high buildings as opposed to

Terrain-2 which is composed of relatively diffuse components [33].
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Figure 4.32: Clutter RCS and reflectivity for 820 m - 4990 m

113



CHAPTER 5

CONCLUSION

The performance of radar detection and imaging systems strongly dependson the character-

istics of radar clutter. In order to improve the radar signal processing algorithms, successful

analysis and modeling of radar clutter are required. For a successful model of radar clutter,

both the spectral and statistical characteristics of the clutter should be revealed.

In this thesis, an experimental radar data acquisition system is established in order to analyze

the measured radar clutter. The limitations of the system due to the specificationsof COTS

test equipments are determined and the system parameters are optimized accordingly. Finally,

the hardware and the data processing system are verified using genericsignals.

Next, two different terrains are illuminated with 40-chip P4 coded pulses at 10 GHz. A total

time record length of 266 msec is achieved at 20 m range resolution. The recorded data are

examined after the construction of a data matrix. The results are interpreted inthe light of

the characteristics of the illuminated terrains. For both terrains, the first range cells are filled

with trees. The first terrain is rather flat with point scatterers such as buildings with various

heights rising at various ranges. On the other hand, the second terrain isrugged with small

trees and small buildings on it and near the horizon, high buildings rises. The grazing angle

for the second terrain is greater than that of the first terrain.

First, the range-Doppler processing is performed for both terrains. Inthe power vs. range

plots, the horizon line can easily be observed. The peaks in the range characteristics also

seem to be consistent with the ranges of the scatterers in the illuminated terrains. However,

considering the wide azimuthal beamwidth of the antenna, the comments cannot go beyond

predictions. On the other hand, some Doppler spread is observed at the first ranges which are

covered mostly with trees.
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For detailed spectral analyses, the PSD of clutter is estimated for different range cells. Con-

sidering the trade-off between the resolution and variance of the PSD estimate, various non-

parametric methods are applied. PSD estimates obtained with periodogram, modified peri-

odogram and Welch methods are analyzed. In order to improve the PSD estimate averaging

over different records is performed. As a result, for the range cells with trees, the Doppler

velocity is found to spread up to 0.45 m/s at power levels 40-50 dB below the zero-Doppler

peak under light air condition. For a carrier frequency of 10 GHz, it corresponds to a Doppler

spread of 30 Hz.

Then, the statistical analyses in time and space are performed, and by meansof complemen-

tary empirical fitting methods, the empirical data are tried to fit various theoretical distribu-

tions proposed in the literature to model clutter. ML estimates of the distribution parameters

obtained from the data are used for the theoretical model that is to be fitted. As the GoF test,

the modified KS test with the extension of Monte Carlo approach is used with a significance

level of α = 0.05. For Gaussianity check of the I/Q data, skewness and kurtosis values are

used and the Lilliefors test is applied again withα = 0.05.

From the temporal statistical analysis, the I/Q data from both terrains are found to be suc-

cessfully modeled with Gaussian distribution independent of the number of pulses analyzed.

However, as opposed to the second terrain, Rayleigh distribution is rejected to model the

clutter amplitude of the first terrain, possibly due to the non-zero mean of the Gaussian I/Q

data for the range cells with a dominant scatterer in them. Instead, the Ricean distribution is

expected to model the temporal clutter of the first terrain.

As the spatial model, Rayleigh, Log-normal and Weibull distributions are checked for the

clutter amplitude at different pulses. Among them, Rayleigh is rejected as expected for the

systems with high resolution. Log-normal is also not accepted for both terrains. On the other

hand, the rejection ratios of Weibull model for the first and the second terrains are found to

be 40% and 80%, respectively. Then, it is also hard to conclude that Weibull is an appropriate

model for the whole range of both terrains.

Hence, smaller windows of length 1 km, 500 m, 250 m are investigated by sweeping over the

range cells. The spatial changes of the Weibull and Log-normal parameters together with the

result of the MKS test are assessed for each window length. For the first terrain, Weibull is

rejected more than the Log-normal, and vice versa for the second terrain.For both terrains, as
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the window size decreases, the spatial change of clutter parameters becomes more apparent.

Also, the scale parameters are found to be rather related to the power levelof the returns while

the shape parameters are based on the dispersion of the scatterers in the illuminated terrain.

Besides, since a decrease in the Weibull shape parameter corresponds toan increase in the

variance, sharp decreases in this parameter may be attributed to spatial heterogeneity of the

clutter region, which may be considered as the clutter edges.

Finally, the space-time compound models are examined. The texture and speckle components

of the clutter amplitude are extracted. The speckle is found to be successfully modeled with

the Rayleigh distribution. However, fit of the texture to any of the Gamma, Log-normal,

Weibull and Exponential models could not be achieved.

Considering the results, possible system improvements and future works can be listed as

follows:

• The total time record length of the current system is on the order of msec. Hence, it

may be increased in order to improve the Doppler resolution further.

• The sampling rate of the receiver should be improved if finer range resolutions are

required.

• The low spectral dynamic range should be improved by increasing the transmitter

power.

• Antennas with higher directivity may be used if better angular resolution is required for

clutter analyses.

• Antenna isolation may be improved so the receiver will not be exposed to hightrans-

mitter power coupled into the receiver antenna Then, it will be no more required to

remove the first samples coupled into the receiver, thereby enabling the returns from

the blind zone to be analyzed.

• A portable system may be implemented so the measurement areas can be diversified.

Then, the characteristics of clutter in different sites can be examined. For instance,

measurements can be performed near lakes, forests or agricultural fields, etc. and the

results may be compared.
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• In order to make it possible to take measurements under different weather conditions,

necessary modifications should be applied to the system. For instance, the system may

be put into a case which will protect it from rain, wind, etc. By this way, the effect of

weather on the radar clutter may be observed.
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Appendix A

NEYMAN-PEARSON CRITERION

Problem Definition: Maximize the probability of detectionPD under the constraint that the

probability of false alarmPFA does not exceed some tolerable valueα. That is,

choseR1 such thatPD is maximized, subject toPFA ≤ α.

In order to solve this optimization problem, the method of Lagrange multipliers is used:

F ≡ PD + λ (PFA − α) . (A.1)

To find the optimum solution for the design variableR1, F is maximized and thenλ satisfying

the constraintPFA = α is chosen.

If PD andPFA are expressed as

PD =

∫

R1

py (y | H1) dy (A.2a)

PFA =

∫

R1

py (y | H0) dy. (A.2b)

then, the functionF can be written as follows
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F =
∫

R1

py (y | H1) dy + λ
(∫

R1

py (y | H0) dy − α
)

= −λα +
∫

R1

{

py (y | H1) + λpy (y | H0)
}

dy

(A.3)

The first term in (A.3) is independent ofR1. Hence, the second term is maximized in order to

maximizeF. The integrand of the second term can be either positive or negative depending

on the values ofλ, py (y | H1), andpy (y | H0). Thus, the integral is maximized by assigning

all the pointsy in the N dimensional space for which

py (y | H1) + λpy (y | H0) > 0 (A.4)

to the regionR1.

Then, the decision rule is found to be as

py (y | H1)

py (y | H0)
≷H1

H0
γ (A.5)

whereγ = −λ.
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Appendix B

HYPOTHESIS TEST TERMINOLOGY

Null hypothesis,H0: The hypothesis that is to be tested.

Alternative hypothesis,HA: The hypothesis that is to be accepted when the null hypothesis

is rejected.

Type-I error (False positive): The error of rejecting the null hypothesis when it is actually

true.

Type-II error (False negative): The error of failing to reject the null hypothesis when it is

not true.

Test statistic: A quantity calculated from the data sample. The decision whether to accept or

reject the null hypothesis is based on this statistic.

Critical value: The threshold to which the test statistic is compared in order to decide whether

to reject the null hypothesis or not.

Significance level (or critical p-value),α: The probability of wrongly rejecting the null hy-

pothesis, i.e., the probability of making a Type-I error. A hypothesis test is constructed

for a given significance level. A typical value forα is 0.05.

p-value, p: The probability of getting a value of the test statistic as extreme as or more ex-

treme than that observed by chance alone, if the null hypothesis is true. Ifthe p-value

is smaller than the significance levelα, the result is said to bestatistically significant.

If the p-value is greater thanα, there is insufficient evidence to reject the null hypoth-

esis. (Note that lack of evidence for rejecting the null hypothesis is not evidence for

accepting the null hypothesis.)
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Statistical significance: A result is said to be statistically significant if it is unlikely to have

occurred by chance.

Confidence level: 100(1− α)%
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Appendix C

SOME NOTES ON THE MEASUREMENT EQUIPMENTS

C.1 PULSE/RF Blanking Function of VSG

ALC hold function is also enabled by PULSE/RF blanking. If ALC hold is on, it samples

the IQ waveform only where the marker waveform is defined, and uses the average of the

sampled waveform to set the ALC circuitry. For a pulsed signal, the marker waveform is on

during the on samples of the pulse. However, if ALC hold is off, the whole signal is taken

into account. Hence, the average seems to be lower than actual value due tothe off samples.

Then, the ALC circuitry tries to increase the average further although it is not required. This

results in an erroneous DC-like component on the whole signal.

In order to exemplify this situation, the VSG and PSA are connected directly to each other

without antennas in between. A 100-chip P4-coded pulse of 10 usec PW and 100 usec PRI is

transmitted. In the following plots for no RF blanking, the DC-like component can be easily

observed.
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Figure C.1: Effect of PULSE/RF blanking function of VSG
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C.2 Input Range Selection of VSA

(a) Input range= 10 dBm

(b) Input range= 0 dBm

(c) Input range= -30 dBm

Figure C.2: Effect of the input range selection of VSA
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C.3 Noise Level and Noise Figure of PSA Spectrum Analyzer

The noise figure of PSA spectrum analyzer can be calculated from the following formula:

NF (dB)= Noise level normalized to 1Hz RBW (dBm)− kTB (dBm) (C.1)

where

NF: Noise figure of the spectrum analyzer (dB),

k: Boltzmann’s constant (1.38× 10−23 joules/Kelvin),

T: Temperature (Kelvin),

B: Bandwidth in which the noise is measured (Hz),

RBW: Resolution bandwidth of the spectrum analyzer (Hz).

According to the data sheet of the spectrum analyzer [41], its typical noise level at 10 GHz is

-149 dBm (normalized to 1Hz RBW and 0 dB attenuation). This noise level canbe directly

read by a noise marker as in Figure C.3(a). Then, the noise figure can becalculated as

NF (dB)= Noise level normalized to 1Hz RBW (dBm)− kTB (dBm) (C.2a)

= -149 dBm− (10 · log10(1.38 · 10−23 · (25+ 273)· 1)+ 30) dBm (C.2b)

= 25 dB. (C.2c)

It is important to note that, if a normal marker is used instead of a noise marker tomeasure

the noise level, the reading differs. In this case, a correction factor ofRBW/B should be taken

into account in interpreting the noise level reading of a normal marker. Then, (C.1) can be

written as

NF (dB)= Measured noise level (dBm)− kTB (dBm)− RBW
B

(dB) (C.3)

where RBW is the resolution bandwidth of the spectrum analyzer (Hz).

For example, when B=1 MHz, T=25◦C, RBW=1 Hz, N=25 dB, the measured noise level is

found to be -99 dBm. Indeed, the normal marker reads -100 dBm (FigureC.3(b)).
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(a) By a noise marker

(b) By a normal marker

Figure C.3: Noise level readings of the spectrum analyzer
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Appendix D

ALTITUDE PROFILES OF THE ILLUMINATED TERRAINS

D.1 Altitude Profiles for Terrain - 1

Figure D.1: Antenna beam for Terrain-1
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Figure D.2: Altitude profile of Path-1 for Terrain-1

Figure D.3: Altitude profile of Path-2 for Terrain-1
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Figure D.4: Altitude profile of Path-3 for Terrain-1

Figure D.5: Altitude profile of Path-4 for Terrain-1
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Figure D.6: Altitude profile of Path-5 for Terrain-1

Figure D.7: Altitude profile of Path-6 for Terrain-1

133



Figure D.8: Altitude profile of Path-7 for Terrain-1

Figure D.9: Altitude profile of Path-8 for Terrain-1
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D.2 Altitude Profiles for Terrain - 2

Figure D.10: Antenna beam for Terrain-2

Figure D.11: Altitude profile of Path-1 for Terrain-2
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Figure D.12: Altitude profile of Path-2 for Terrain-2

Figure D.13: Altitude profile of Path-3 for Terrain-2
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Figure D.14: Altitude profile of Path-4 for Terrain-2

Figure D.15: Altitude profile of Path-5 for Terrain-2
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Figure D.16: Altitude profile of Path-6 for Terrain-2

Figure D.17: Altitude profile of Path-7 for Terrain-2
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Figure D.18: Altitude profile of Path-8 for Terrain-2

Figure D.19: Horizon line for Terrain-2

139


	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTERS
	INTRODUCTION
	RADAR CLUTTER ANALYSIS
	Data Matrix Construction
	Spectral Analysis of Clutter
	Statistical Analysis of Clutter
	Spatial Statistics of Clutter
	Calibration for Spatial Analysis
	Spatial Clutter Models

	Temporal Statistics of Clutter
	Temporal Clutter Models

	Space-Time Compound Clutter Statistics
	Compound Clutter Models

	Empirical Distribution Fitting

	Clutter Reflectivity

	EXPERIMENTAL DATA ACQUISITION AND DATA PROCESSING
	General Block Diagram of the Data Acquisition System
	Transmitter
	Generation of the Transmit Signal
	Selecting the Transmit Signal
	Generation of the IQ Data
	Waveform Download Assistant
	Vector Signal Generator

	High Power Amplifier

	Receiver
	Low Noise Amplifier
	Receiver Option 1
	PSA Spectrum Analyzer
	Vector Signal Analyzer Software

	Receiver Option 2
	EXA Signal Analyzer


	Antennas
	Processing the Received I and Q vs. Time Data
	Verification of the System Using Generic Signals
	Ability of Doppler Shift Detection
	Ability of Finding the Target Location

	Graphical User Interface
	Comparison of the System with the Previous Studies

	ANALYSIS OF THE MEASURED RADAR CLUTTER
	Terrain - 1
	Range-Doppler Processing for Terrain - 1
	Spectral Analysis for Terrain - 1
	Statistical Analysis for Terrain - 1
	Temporal Analysis for Terrain - 1
	Spatial Analysis for Terrain - 1

	Surface Clutter Reflectivity for Terrain - 1

	Terrain - 2
	Range-Doppler Processing for Terrain - 2
	Spectral Analysis for Terrain - 2
	Statistical Analysis for Terrain - 2
	Temporal Analysis for Terrain - 2
	Spatial Analysis for Terrain - 2

	Surface Clutter Reflectivity for Terrain - 2


	CONCLUSION
	REFERENCES
	NEYMAN-PEARSON CRITERION
	HYPOTHESIS TEST TERMINOLOGY
	SOME NOTES ON THE MEASUREMENT EQUIPMENTS
	PULSE/RF Blanking Function of VSG
	Input Range Selection of VSA
	Noise Level and Noise Figure of PSA Spectrum Analyzer

	ALTITUDE PROFILES OF THE ILLUMINATED TERRAINS
	Altitude Profiles for Terrain - 1
	Altitude Profiles for Terrain - 2




