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ABSTRACT

DEVELOPMENT OF AN ITERATIVE METHOD FOR LIQUID-PROPELLANT
COMBUSTION CHAMBER INSTABILITY ANALYSIS

Cengiz, Kenan

M.S., Department of Aerospace Engineering

Supervisor : Prof. Dr. Yusuf̈OZYÖRÜK

December 2010, 58 pages

Controlling unsteady combustion induced gas flow fluctuations and the resultant motor vi-

brations is a very significant step in rocket motor design. Itoccurs when the unsteady heat

release due to combustion happens to feed the acoustic oscillations of the closed duct forming

a feed-back system. The resultant vibrations concerned mayeven lead to total failure of the

rocket system unless analysed and tested thoroughly. This thesis aims developing a linear

numerical analysis method for the growth rate of instabilities and possible mode shape of a

liquid-propelled chamber geometry. In particular, A 3-D Helmholtz code, utilizing Culick’s

spatial averaging linear iterative method, is developed tofind the form of deformed mode

shapes iteratively to obtain possible effects of heat source and impedance boundary condi-

tions. The natural mode shape phase is solved through finite volume discretization and the

open-source eigenvalue extractor, ARPACK, and its parallel implementation PARPACK. The

iterative method is particularly used for analyzing the geometries with complex shapes and

essentially for disturbances of small magnitudes to natural mode shapes. The developed tools

are tested via two simple cases, a duct with inactive flame anda Rijke tube, used as validation

cases for the code particularly with only boundary contribution and heat contribution respec-

tively. A sample 2-D and 3-D liquid-propelled combustion chamber is also analysed with heat
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sources. After comparing with the expected values, it is eventually proved that the method

should be only used for determining the mode’s instability analysis, as to whether it keeps

vibrating or decays. The methodology described can be used as a preliminary design tool for

the design of liquid-propellant rocket engine combustors,rapidly revealing only the onset of

instabilities.

Keywords: combustion instability, thermoacoustic coupling, rijke tube, duct acoustics, liquid-

propellant rocket engine, Culick’s method
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ÖZ

SIVI YAKITLI ROKET MOTORLARINDA YANMA KARARSIZLI ĞININ SAYISAL
ANAL İZİ

Cengiz, Kenan

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölüm¨u

Tez Yöneticisi : Prof. Dr. Yusuf̈OZYÖRÜK

Eylül 2010, 58 sayfa

Yanma kararsızlığı ve kontrolü, sıvı ve katı yakıtlı roket motorları tasarımında karşılaşılabilen

önemli mühendislik problemlerindendir. Ortamdaki basınç dalgalanmalarıyla yakıtın yan-

masından elde edilen ısı enerjisinin birbirini beslemesiyle ortaya çıkar. Bu çalışmada sıvı

yakıtlı roket motoru yanma odası kararsızlığı probleminin doğrusal analizini gerçekleştirmek

maksadıyla geliştirilmekte olan bir sayısal yöntem anlatılmakta ve basit iki örnek probleme

uygulaması sunulmaktadır. Sayısal analiz, ilk aşamada kapalı olduğu varsayılan yanma odasının

akustik yapısını belirleyen Helmholtz denkleminin 2 boyutlu sonlu hacimlerle ayrıştırılması

sonucu ortaya çıkan doğrusal denklem takımının özgün değerlerinin ve karşılık gelen akustik

mod yapılarının ARPACK yazılımı yardımıyla elde edilmesi ile başlar.̇Izleyen aşamada elde

edilen akustik modların ve karşılık gelen dalga numaralarının, gerçek ortamdaki ısı kaynağı

ve diğer fiziksel şartlardan kaynaklı etkileşimler ile nasıl değiştiğinin tespiti yapılır. Bunun

için karmaşık geometriler için uygulaması nispeten daha kolay olan ve bu yüzden yaygın

kullanım bulan Culick’in yinelemeli doğrusal büyüme hızı analizi yöntemi kullanılmaktadır.

Geliştirilen bilgisayar programı, ilk aşamada Rijke tüpü problemine uygulanmış ve sonuçlar

beklenen doğrultuda çıkmıştır. Sonuçlar göstermektedir ki mod şekli sonuçları güvenilirliği

bilinmemekle birlikte, dalga numarasının sanal kısmı modun kararsızlığını belirlemede pekala
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kullanılabilir. Hazırlanmış olan bu yöntem, sıvı yakıtlı bir roket motor tasarımının ilk aşamalarında

kararsızlıkların ortaya çıkma koşullarını belirlemedehızlı bir araç olarak kullanılabilir.

Anahtar Kelimeler: yanma kararsızlığı, roket motor, termoakustik, rijke tüpü, akustik mod
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tüm sabırla bekleyenlere..
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Rocketry has been developing since the first demonstrative fireworks of Chinese people back

in the ninth century. In a search for ”elixir of immortality”, Chinese alchemists eventually

discovered gunpowder, being the precursor of rockets, bombs and guns in any sort. Chinese

military then used bamboo tubes to fire mortars with gunpowder as propellant. First rocket

was used against Mongols around 1232 AD. Consequently, the technology spread towards

west during the Mongolian conquests of Eastern Europe and Middle East. There are historical

records that in 13th century the Mongolian Horde used gunpowder-propelled rockets against

Magyars in Europe, Arabs and Turks in Middle East [1]. Since then, solid-propellant rockets

have been increasingly used in European wars. However, the real achievements were done in

the 20th century World Wars. The need of combustion chambersenduring higher pressures

and nozzles with more elaborate designs allowing supersonic flows led to the modern rocket

technology. Robert Goddard launched the first liquid rocketin 1926 [1]. In the following

decades, inter-continental and multi-stage inter-planetary liquid-fuelled rockets were devel-

oped, resulting in sound impacts on human history and development. Today, shuttles with

a number of liquid-propellant (LOX, liquid hydrogen) rocket engines (Figure 1.1) are able

to accomplish demanding space missions, generating totally 36 million hps of power, and 2

million Newtons of thrust each [2].

A liquid rocket simply consists of fuel and oxidizer tanks (e.g. hydrogen and oxygen), com-

bustion chamber, and a nozzle. The basics are quite similar to solid-propellant rockets, using

liquid fuels and oxidizer instead. Main design and principles are illustrated in Figure 1.2.
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Figure 1.1: Shuttle main engine firing test [2]

Principally in a rocket engine, the chemical energy is converted into kinetic energy, as a high-

speed jet aft the nozzle. Combustion chamber is the place where the injection, mixing and

ignition of the fuel and oxidizer occurs. Pressure levels are quite high, whereas flow speed

is low. In the nozzle, the potential energy of the high pressure flow is converted to high ki-

netic energy, supplying an incredible momentum to the machine. Aft the nozzle, pressure is

usually expands to the ambient pressure (for an ideally expanded nozzle), and the velocity

reaches a maximum. In a choked flow, in the diverging part of the nozzle, the flow is always

supersonic. The change of pressure and temperature levels through a choked nozzle can be

viewed in Figure 1.3.
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Figure 1.2: A liquid-propelled rocket [2]

Figure 1.3: Flow variables through the nozzle [2]
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1.2 COMBUSTION INSTABILITIES

In modern rocket and gas turbine technology, combustion related instabilities in the chamber

have been a challenging issue in design and aft-design period , where the with-coming oscil-

lations must be kept in practical ranges. These oscillations, unless controlled, might impair

the efficiency of the combustor, cause unbearable noise to the pilot-if available, cause ther-

mally damage on internal walls, interfere with control devices and injectors, or might even

damage the system utterly. Therefore, a thorough analysis and tests must be performed prior

to any expensive and painstaking phase of the project. The results should be used to change

the design of the chamber geometry, injector design, and if necessary, to include some baffles

to modify and absorb vibrations.

In late 1930s, the occurrence of uncontrollable oscillations were first discovered in liquid

and solid-propellant rockets. The phenomenon was attributed to high density energy release

in a duct with minor losses. The imbalance of energy gains andlosses was the fundamen-

tal reasoning behind these excitations and sustained oscillations. However, prediction and

controlling of instabilities had still been a mystery in most cases. No considerable progress

was made until World War II and particularly, the lunar program in 1960s. Since then, So-

viet, French and American scientists have been the pioneersin a competitive environment, of

the progresses on understanding, analysis and eliminationof combustion instabilities, owing

to the works such as inter-continental ballistic missiles (ICBMs), space programs and some

other launch systems. In space missions, the great efforts and funds spent for development

of propulsion systems (e.g. F-1 engine), involving full-scale firing tests, contributed much to

the experimental methods and available data for further achievements (see Fig.1.4). Specif-

ically, ”Project First” aimed at curing the serious combustion instabilities of the F-1 engine.

Approximately 2000 full-scale firing tests were done throughout ”Project First”. Figure 1.5

demonstrates pressure trace of the F-1 engine, revealing the spontaneous instabilities during

a firing test. Gas turbines was not usually problematic as to acoustic instabilities in the early

years. The advent of gas turbines in 1940s did not trouble theengineers with challenge of

controlling combustion instabilities. However, contamination restrictions imposed in the last

decades caused the manufacturers to prefer lean-premixed combustion in gas turbine cham-

bers, leading to serious instabilities difficult to simulate and control. In addition, instabilities

in afterburners always stood as a problem to solve.
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The most considerable contributions, like always, were brought by the development of com-

puter systems and numerical methods of solution for physical problems. Computational envi-

ronment enabled us to describe the unsteady problems as finite element discretizations (FEM,

FVM, FDM). The most complete solution is given by the DNS or LES. Yet, computational

resources still does not meet the requirements of both for full geometry problems. Thus, alter-

native methods of solution have been suggested, such as Helmholtz solvers, linearized Euler

equation solvers, etc. They focus on the most crucial aspects of the unsteady behaviour via

appropriate assumptions, and thus reducing the computational costs down to practical levels.

However, proper models for mechanisms like fuel injection,droplet formation, vaporization,

combustion and baffle/liner damping are still great challenges for the engineers.Hence, nu-

merical simulation is a step to have an idea before costly firing tests of the propulsion system.

Figure 1.4: A chronology of combustion instabilities [9]

In most cases, combustion itself is stable (in an open-air case for example). What makes the

system unstable is the coupling of unsteady combustion withchamber acoustic motions. Ba-

sically, the concerned acoustic vibrations in the chamber are driven by the combustion itself

when coupled with the acoustic modes of the chamber. For somemodes of oscillations, it

turns out to be a positively coupling, whence a feedback occurs in-between, resulting in a

tendency of the amplitudes to increase. Otherwise, the oscillations diminish before any per-

ception. The phenomenon can be described as a closed-loop feedback system as in Figure 1.6.

In a chamber with flow oscillations, the thermal energy is fedinto acoustic energy resulting in
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Figure 1.5: Pulses of the injected fuel stream in the F-1 engine [9].

acoustic oscillations with several modes. The oscillatingfluid parameters in turn affects the

combustion process, resulting in unsteady heat release. This phenomenon is widely called ”a

thermoacoustic coupling”, and when sustained oscillationexist, ”thermoacoustic instability”.

It is first explained by Rayleigh in 1878 [10, 3] by the famous statement which can be deemed

as a proverb for thermoacoustics:

”If heat be communicated to, and abstracted from, a mass of air vibrating in a cylinder

bounded by a piston, the effect produced will depend upon the phase of the vibration at which

the transfer of heat takes place. If heat be given to the air atthe moment of greatest con-

densation, the vibration is encouraged. On the other hand, if heat be given at the moment of

greatest rarefaction, or abstracted at the moment of greatest condensation, the vibration is

discouraged.”

Thus, the Rayleigh criterion may be simply formulated for a period of oscillation

∫

T
p′q′dt > 0 (1.1)

wherep′ andq′ are pressure and heat release oscillations respectively. It is the condition for

spontaneously excited acoustic oscillations to appear according to the Rayleigh criterion.

Another indispensable step towards understanding combustion instabilities is the time lag

modelling of the coupling, first introduced by Crocco and Cheng in 1956 [4]. They observed

that, there is always a time interval between injection of fuel and heat release due to physical

procedures like droplet formation, vaporization, wave propagation, etc. This ”time lag” delays

the response of the acoustic system, generating a phase difference in the temporal behaviour.

This way, the oscillations may grow or decay according to theRayleigh criterion [9, 4], as
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Figure 1.6: Unsteady heat release feeds energy into chamberacoustics.

stated above. Now assume the pressure varies sinusoidally,

p′ = p̂sinωt (1.2)

and assume the energy variation shows up with a constant delay,

q′ = q̂sinω(t − τ) (1.3)

For low Mach numbers, which is usually the case in a combustion chamber due to very high

temperatures (and sound speed, consequently), energy conservation equation gives for a pe-

riod of oscillation,

∆E =
γ − 1
p0γ

∫

V
dν

∫ t+2π/ω

t
p′q′ =

∫

V
dνp̂q̂

∫ t+2π/ω

t
sinωt′ sinω(t′ − τ)dt′ (1.4)

=

∫

V
p̂q̂
π

ω
cosωτdν

Therefore, Rayleigh criterion tells us that the oscillations are encouraged if cosωτ is posi-

tive; that is, if the heat release is in phase with pressure fluctuations. Simply, the problem

can be overcome by keeping the time lag in intervalsπ
2ω < τ < 3π

2ω . However, in realistic

situations, the time lag is always dependant on flow variables within complex-geometries,

eventually necessitating CFD-CAA (Computational Fluid Dynamics, Computational Aeroa-

coustics) analysis of the problem together with adequate models for heat release, damping,

etc.

1.3 LITERATURE SURVEY

In 1887 Lord Rayleigh in his book [3] first addressed the rolesof thermoacoustic coupling

phenomenon in closed ducts. He discovered a correlation between the moment of heat addi-

tion and the moment of acoustic response. Later in 1956, following the highly experimental
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discoveries achieved in World War II, Crocco an Cheng [4] gathered the theory for combustion

instabilities in liquid rocket engines and introduced the subject as one of the most challenging

topics in combustion and rocket science.

Harrje and Reardon [5] prepared a review on the topic. Later on, several reviews were also

published by Culick [6]. Most recently, valuable compilations [7, 8, 9, 10] appeared as exten-

sive materials.

Pieringer and Sattelmayer [45] examined the feasibility oftime-domain approach for the so-

lution of linearized governing equations in 3-D liquid rocket engine chamber. Although the

equations are linearized for convenience, little assumption was made about the oscillation

behaviour.

A frequency-domain wave equation approach, like in the caseof this thesis, mostly requires

solution of eigenvalue problems. Without any mode-shape assumptions, Nicoud and Benoit,

and Nicoud et al. [35, 38] posed problem as quadratic non-linear eigenvalue problems. Hence,

the whole problem was formed as a challenging solution of theeigenvalue problem. The care

of boundary conditions in the problem was included in a former paper by Lamarque and

Poinsot [34]. Solution of the related complex eigenvalue problems are tested in the thesis by

Van Leeuwen [36]. The classical Arnoldi method and Jacobi-Davidson method are employed

for the solution of thermoacoustic problems to compare the performances. Arnoldi method

turned out that it is faster in simple linear problems, whereas Jacobi-Davidson proved to be

promising for the most complex non-linear and quadratic eigenvalue problems.

Rubin [31] looked into another aspect of the liquid motor instabilities, POGO instabilities

where rocket structural longitudinal mode is coupled with the fluid system, leading to even

higher fluid oscillations. The name comes from ”pogo stick”,because the rocket stretches and

compresses like a pogo stick.

The Rijke tube, a tube open both ends with a heater wire mesh onthe cross-section to excite

longitudinal acoustic oscillations, may be conceived as the simplest case of thermoacoustic

instabilities in a duct. Thus, its analysis is definitely invaluable for the general understanding

of the instabilities and Rayleigh criterion. Hantschk and Vortmeyer [39] utilized a commer-

cially available CFD software for the solution of Navier-Stokes equation with appropriate

boundary conditions in a Rijke tube. They presented nice illustrations of self-excitation in
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Rijke tubes, realization of Rayleigh criterion and limit cycles. However, the most compre-

hensive work about the Rijke tube in both numerical and experimental aspects is perhaps the

thesis of Matveev [44]. He developed a theory to model Rijke oscillations and utilized both

linear and non-linear heat models with accompanying experimental work. Prediction of the

onset of instabilities was fulfilled by a linear analysis, whereas behaviour of the limit cycles

was scrutinized by the non-linear modelling together with the mean flow effect. Culick [43]

analytically obtained the stability boundaries of the Rijke tube approximately. Vijayakrishnan

and Ananthkrishnan in their review [40], summarized the essence and role of Rijke tube in

thermoacoustic instabilities, and presented the onset of the instabilities with a simple exam-

ple. Heckl and Howe [41] developed an analytical solution for the Rijke tube using Green’s

function approach. Later, Heckl [42] examined several flametransfer functions in frequency

domain as to their effect on the stability.

Camporeale et al. [47] proposed a methodology to predict instabilities in a simplified 1-D

chamber with passive controlling devices. The passive controlling involves damping using

Helmholtz resonators with certain resonant frequencies. Considering two flame models, the

damper not only caused the acoustic energy to be dissipated,but also modified the lag between

heat release and its acoustic response. Hence, some of the unstable eigenfrequencies forced

to be stable with proper use of resonators of the corresponding frequencies.

Another novel method was developed by Cha et al. [48] where a 1-D gas turbine combustor

is modelled as a feed-back system, so that classical controltheories apply even for complex

systems. Heat addition is considered as an input to the closed-loop feed-back system and

transfer matrices are formed. Variation of temperature canbe modelled by using multi sec-

tions through the duct. It is also reported to be straightforward to extend the method to 3-D

analysis. Figure 1.7 demonstrates the feed-back loop of thecombustion process.H1 andH2

stand for the transfer functions between the velocity and heat releaseUs,Q.

Sohn et al.[51] utilized a linear acoustic analysis to investigate the damping effects of gas-

liquid injectors in liquid rocket combustion chambers. Besides their original use, fuel injec-

tion, optimum designs of gas-liquid injectors plays a significant role as damper, eliminating

the need of other means of acoustic absorbers such as baffles and liners.

Gudmundsson and Colonius [19] investigated the noise reduction of chevron nozzles in turbo-

fan engines through a linear stability analysis involving acompressible flow solver and eigen-
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Figure 1.7: Combustion feed-back system model

system solver, ARPACK, in a coupled fashion. The method performed well in simulation of

low-frequency noise reduction, which is the primary role ofchevron nozzles.

Bogey et al. [52] constructed source terms for linearized Euler’s equations taking into ac-

count the mean flow effect and vorticity waves. An acoustic analogy is formed to compute

the acoustic field once the reference flow field is obtained viaLES to construct the source

terms. This hybrid method (propagation & generation) can beutilized in instability problems

where acoustic-mean flow interactions are significant. Benoit et al., Nicoud and Poinsot [33]

also used wave equation together with LES for a reacting flow in a swirled combustor. LES

solution of the flow supplies mean temperature field and flame transfer function for the acous-

tic analysis. Acoustic energy balance methodology served as an evaluation basis for the LES

results by realizing the Rayleigh criterion.

Flandro [22] studied the effects of vortex shedding on pressure oscillations in solid-propellant

rocket motors. There is a energy flow from the vortex fluctuations to the acoustic field, cre-

ating a dipole or quadrapole mechanism. Figure 1.8 shows theanalysis model for vortex-

generated sound. It is found that the location and orientation of vortical structures with respect

to acoustic waves is quite decisive on damping or driving characteristic of vorticity waves. In

a solid-propellant rocket, the rotational effects significantly modifies the longitudinal modes

of oscillation due to slip condition on burning surface. Moreover, the radial modes are also

disturbed because of normal vertical oscillations caused by vortical structures. Flandro, in

a following work [23] constructed an approach for the inclusion of rotational effects in the

”Standart Stability Prediction Program (SSP)”. It was an 3-D improvement to the Culick’s

one-dimensional flow-turning correction, where radial velocity corrections on the burning

surface is also included. The outcome revealed that this extra driving effect makes the solid

rocket less stable than previously predicted in SSP.
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Figure 1.8: Hydrodynamic-acoustic interactions [22].

French et al.[24, 26, 27, 28, 29, 30] came up with many improvements and automations for

the solid rocket stability programs SSP & SPP (Standard Stability Program & Solid Propellant

Performance). The works mostly put effort on tangential modes of vibration where previously

difficulties existed with accuracy aspects. To obtain the transverse mode shapes accurately,

they implemented Green’s Function Discretization (GFD) [24, 25] requiring less nodes per

wave length. A novel technique is employed for the eigenvalue extraction of the discretized

equations. A range of frequencies are solved with an arbitrary source term on the right-hand

side of the discretized form of the eigenvalue problem [24, 26]

Mi jφ j = ei (1.5)

whereei is the small perturbation to the system acting as a source. Asthe desired frequency

range is swept with small intervals, the resonant modes peakin amplitude as shown in Fig-

ure 1.9. This method proved to be faster than standard techniques when a wide range of

frequencies is in question.

1.4 OBJECTIVES

The objective of this thesis is to develop a 3-D homogeneous Helmholtz solver and iterative

combustion instability code for finding acoustic mode shapes and complex wavenumbers in
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Figure 1.9: The French method for eigen-problem solution [24]

3-D combustion chambers. The iterative combustion instability code is a linear analysis tool,

which iteratively imposes inhomogeneous terms on the homogeneous Helmholtz equation

(sources such as heat source; and inhomogeneous boundary conditions, such as an impedance

condition), consequently supplying the actual mode shape and complex wavenumber to de-

termine the growth and damping characteristics of the oscillations as a first step towards sta-

bility analysis of the combustion chambers. In Chapter 2, the theory behind the developed

codeHELM2D/3D andYAKARis explained thoroughly. Eigenvalue problem solution pro-

cess is also explained both for serial and parallel implementations. In Chapter 3, a duct with

impedance boundary condition and inactive flame is examined. In Chapter 4, the well-known

Rijke tube case is considered as to the vibration behaviour of the fundamental acoustic mode.

Chapter 5 is intended to simulate a fictional liquid-propelled rocket combustion chamber in

choked condition, both for 2-D and 3-D cases. Finally, Chapter 6 summarizes what have been

studied and concludes the results of the various cases.
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CHAPTER 2

EQUATIONS OF LINEAR COMBUSTION INSTABILITIES

The method described in this chapter will be for linear combustion analysis in a chamber.

Methods used for analysis of nonlinear behaviour mostly have roots in this linear analysis

developed in early works of Culick [21, 20]. The analysis is mainly based on the assumption

of small deviations from a homogeneous problem, making use of Green’s function theorem.

2.1 THE WAVE EQUATION

In order to obtain inhomogeneous wave equation, one must start with inhomogeneous set

of flow equations. Because viscous effects are most of the time negligible in acoustic pro-

cesses having small perturbations of flow variables, Euler equations are best to start with. The

following assumptions would guide us in the conservation equations to be used [10].

• Cp,Cv andγ are constants

• p0, u0, ρ0 are uniform throughout the chamber. For a liquid-propellant engine, it is not

a problem to assume uniform flow throughout the chamber wherehigh pressures and

temperatures exist, whereas Mach numbers are low (except for the nozzle). However it

is not very realistic to assumeT0 constant in a rocket combustor.

• Steady flow and waves.

• Only a heat source will be taken into account, being the heat release of combusting fuel.

• Fluctuations ofu, p,T, ρ andq are small enough.
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therefore, the linearized Euler equations can be derived (see Appendix A):

∂ρ′

∂t
+ ∇ · (ρ0 ~V′) = 0 (2.1)

∂ ~V′

∂t
+

1
ρ0
∇p′ = 0 (2.2)

∂p′

∂t
+ γp0∇ · ~V′ = (γ − 1)q′ (2.3)

whereq′ is the oscillatory heat source. Now, subtracting∂∂t (Eq.2.3) fromγp0∇·(Eq.2.2), we

obtain the wave equation

γp0

ρ0
∇2p′ −

∂2p′

∂t2
= −(γ − 1)

∂q′

∂t

which becomes,

∇2p′ −
1
ā2

∂2p′

∂t2
= h (2.4a)

n · ∇p′ = − f (2.4b)

whereā2 =
γp0
ρ0

is the mean sound speed, andf is a possible boundary condition revealing

reflective behaviour of the internal boundaries of the chamber. h = −γ−1
ā2

∂q′

∂t is the source term

consisting purely of heat release of combusting fuel.

Equations (2.4) are the equations to be solved throughout the chamber for the steady waves.

However, determining the pressure oscillations would not yield the stability behaviour by

itself. We will need further interpretations for the phenomenon.

2.2 EXPANSION IN MODES AND SOLUTION BY ITERATION

Now that wave equation is derived, the procedure explained in detail in [9] may be developed.

For the solution of pressure, Green’s function expression will be utilized together with some

other expressions.

Because the fluctuations are assumed small for an acoustic process in the chamber, they can

be taken as small harmonic oscillations around a mean:
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p′ = p̂e−iākt ; q′ = q̂e−iākt (2.5)

whereā is the mean sound speed andk is the complex wave number unknown initially,

k =
1
ā

(ω + iα) (2.6)

Here,α is known as the growth rate. It is obvious that a positiveα means the wave is grow-

ing in amplitude,p′ ∼ eαt, whereas a negative value causes the oscillations to diminish. In

classical acoustics, it is known thath = f = 0 inherently; hence the wave turns out to be sta-

tionary with no imaginary part of the wave number. Moreover,α << ω would be a reasonable

assumption for combustion processes where the waves are decaying or growing slowly. It is

also a reasonable assumption that sources are small perturbations of the classical field with

no sources. Therefore, we can write,

h = κĥe−iākt ; f = κ f̂ e−iākt (2.7)

whereκ is a small parameter included to guarantee the smallness ofh and f . Hence the

equation (2.5) yields the inhomogeneous Helmholtz equation

∇2 p̂+ k2 p̂ = κĥ (2.8a)

n̂ · ∇p̂ = −κ f̂ (2.8b)

The best method here to solve the linear problem is the use of Green function to convert the

differential equation into integral equation [9]. Thereby, an iterative method may be con-

structed to obtain the complex wavenumber explicitly.

2.2.1 Green’s Function, Modal Expansion and Spatial Averaging

Now, define a Green’s function with homogeneous boundary condition,

∇2G(r |r0) + k2G(r |r0) = δ(r |r0) (2.9a)

n̂ · ∇G(r |r0) = 0 (2.9b)

whereG(r |r0) is the Green’s function of the wave observed atr due to the source atr0.

Multiply (2.8a) byG(r |r0); (2.9a) byp̂(r), subtract the results and integrate over the volume
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in question to obtain

$
V

G(r |r0)∇2 p̂(r ) − p̂(r )∇2G(r |r0)]dV (2.10)

= κ

$
V

G(r |r0)ĥ(r )dV −
$

V
p̂(r )δ(r − r0)dV

Utilizing Green’s theorem for the first integral, and sifting property of the delta function is

applied to the second integral on the right-hand side:

	
S
[G(r |r0)∇p̂(r ) − p̂(r )∇G(r |r0)] · n̂dS = κ

$
V

G(r |r0)ĥ(r )dV − p̂(r0) (2.11)

Applying the boundary conditions (2.8b) and (2.9b) gives,

p̂(r0) = κ

{$
V

G(r |r0)ĥ(r )dV +
	

S
G(rs|r0) f̂ (rs)dS

}

(2.12)

where the subscript ”s” ensures that it lies on the boundary surface.

Physically, the wave observed atr due to a point source atr0 has the same effect as for the

wave observed atr0 subject to a point source atr . Hence, the Green’s function for the wave

operator possesses symmetry property

G(r |r0) = G(r0|r ) (2.13)

Then the equation (2.12) becomes,

p̂(r ) = κ

{$
V

G(r |r0)ĥ(r0)dV0 +

	
S

G(r |r0s) f̂ (r0s)dS0

}

(2.14)

Now on, it comes to determine the Green’s function. The most convenient way to express

it for the case is expansion in normal modes of the chamber, that is, eigenfunctionsψ(r ) of

classical acoustics problem (see section2.3).

G(r |r0) =
∞
∑

n=0

Anψn(r ) (2.15)

The natural modesψn satisfy the homogeneous Helmholtz equation (2.24) and are orthogonal

functions, $
V
ψm(r )ψn(r )dV = E2

nδmn (2.16)
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Substituting (2.15) in (2.9), then multiplying byψm(r ) gives after integration over the volume,
$

V
ψm

∞
∑

n=0

An∇
2ψndV+ k2

$
V
ψm

∞
∑

n=0

AnψndV =
$

V
ψm(r )δ(r − r0)dV

An can be determined by using (2.24), (2.16) and sifting property of delta function,

An =
ψn(r0)

k2 − k2
n

(2.17)

Eventually, the modal expansion of the Green’s function appears as

G(r |r0) =
∞
∑

n=0

ψn(r )ψn(r0)

E2
n(k2

n − k2)
(2.18)

Substitution of the expansion in (2.14) leads to the expansion of the pressure field

p̂(r ) = κ
∞
∑

n=0

ψn(r )

E2
n(k2 − k2

n)

{$
V
ψn(r0)ĥ(r0)dV0 +

	
S
ψn(r0s) f̂ (r0s)dS0

}

(2.19)

The pressure field should approach the unperturbed mode shape ψN, while κ is approach-

ing zero. To provide grounds for this condition, isolation of the Nth term from the pressure

expansion yields

p̂(r ) = ψN(r )
κ

E2
N(k2 − k2

N)

{$
V
ψN(r0)ĥ(r0)dV0 +

	
S
ψN(r0s) f̂ (r0s)dS0

}

(2.20)

+κ

∞
∑

n=0

′
ψn(r )

E2
n(k2 − k2

n)

{$
V
ψn(r0)ĥ(r0)dV0 +

	
S
ψn(r0s) f̂ (r0s)dS0

}

The prime sign means then = Nth term is missing among the terms of summation. To provide

p̂
κ→0
−−−→ ψN, the term multiplyingψN must be unity. Hence, the formula for the perturbed

wavenumber can be obtained as

k2 = k2
N +

κ

E2
N

{$
V
ψN(r0)ĥ(r0)dV0 +

	
S
ψN(r0s) f̂ (r0s)dS0

}

(2.21)

And the pressure expansion is simply

p̂(r ) = ψN(r ) + κ
∞
∑

n=0

′
ψn(r )

E2
n(k2 − k2

n)

{$
V
ψn(r0)ĥ(r0)dV0 +

	
S
ψn(r0s) f̂ (r0s)dS0

}

(2.22)

(2.21) may also be derived more directly. Multiply (2.4) byψN, integrate over the volume,

together with (2.24) after manipulations to obtain

k2 = k2
N +

κ#
V
ψN p̂dV

{$
V
ψN(r0)ĥ(r0)dV0 +

	
S
ψN(r0s) f̂ (r0s)dS0

}

(2.23)
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It can be shown from (2.22) that the integral on the denominator of (2.23) is equal toE2
N if

the series in (2.22) converges. However, the validity of this equation is subject to discussion

[10]. Hence, the former is adopted.

The equations gathered (2.22),(2.21) are means to build a solution for the complex wavenum-

ber, k. However, the wavenumber is always dependant on pressure, as ĥ and f̂ are mostly

dependant on pressure. Therefore, an iterative method is the primary choice for solution. Be-

cause the deviation from the unperturbed mode,kN, is taken to be small by the order ofκ an

iterative procedure should be legitimate.

2.2.2 Iterative method

It can be proved that wavenumber and pressure distribution correct to the orderm in κ requires

those of orderm− 1. Hence, a successive iteration is straightforward.

Now, initialize p̂ with κ = 0,

p̂(0) = ψN

Substitution into (2.23) givesk2 correct to first order inκ, (k2)(1). Similarly, p̂ first-order ac-

curate inκ requires ˆp andk2 to zeroth-order accurate values, ˆp(0) = ψN and (k2)(0) = k2
N. This

way, an iteration can be performed until both values converge.

Up to this point, the theory behind the iterative method is explained. To summarize the pro-

cedure to be followed, a schema of the pathway towards the instability analysis is shown in

Fig.2.1. The principal result to be obtained is the information whether the mode will vibrate

or not, by solely checking whether the imaginary part of the perturbed wavenumber is positive

or negative.

2.3 HARD-WALL NATURAL MODES

Natural mode shape is the modal solution of the homogeneous Helmholtz equation of a closed

chamber, giving possible oscillation spectra of any perturbation in the chamber. It depends

purely on the geometry of the closed section in question. It can be discretized simply by uti-

lizing a finite element method throughout the closed chamber, then posing it as an eigenvalue
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Figure 2.1: Waypoints for the linear combustion stability analysis

problem. Homogeneous Helmholtz equation

∇2ψn + k2
nψn = 0 (2.24a)

n̂ · ∇ψn = 0 (2.24b)

is the equation to be solved with homogeneous boundary condition the find the natural modes

of the combustion chamber.

2.3.1 FINITE VOLUME DISCRETIZATION

A 2nd order 2-D finite volume discretization code, and a 3-D version, HELM2D& HELM3D

are developed. A higher order finite difference would seem attractive at a first glance, but

the ease of grid generation even for the most complex geometries tempted to choose finite

volume method. Therefore an accuracy analysis will have to be performed for selection of

the correct fineness of the mesh. The code is able to form the solution matrix efficiently and

swiftly, always working with sparse forms in complex domain.
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The homogeneous Helmholtz equation (2.24) can be expressedin integral form as

∮

~∇ψn · ~ds+
∫

Ω

knψndΩ = 0 (2.25)

It is now obviously described throughout a volume. Providedthe equation is conformed to

finite tetrahedral volumes of a 3-D domain,

4
∑

s=1

~∇ψn,i,s · ~∆si + knΩiψn,i = 0 (2.26)

where the subscriptn defines eigenvalue indices,i is the cell number index, ands is for

the surfaces of the tetrahedral cell. A cell-based finite volume scheme is employed for this

discretization. On boundary cells, necessary care is takento diminish in-flux and equate the

values on ghost cells.

2.3.2 EIGENVALUE PROBLEM SOLUTION

The discretized form of the finite volume solution is constructed as an eigenvalue prob-

lem. The open-source software ARPACK and PARPACK are utilized for the iterative so-

lution of the large-scale eigenvalue problem to be solved for the mode shape [12, 13, 14, 17].

PARPACK [15] is the parallelized version of ARPACK, both of which are based on an algo-

rithmic variant of Arnoldi process called Implicitly Restarted Arnoldi Method (IRAM). Some

remarkable works are available in the literature which utilize ARPACK [19, 24, 29, 32, 34].

However, the fact that it only allows limited number of eigenvalues to be extracted renders

our work a bit of cumbersome. In the equations (2.21), (2.22)it is obvious that theoretically

infinite; practically all eigenvalues are needed for realistic convergence. A finite number of

eigenmodes would solely be an approximate approach, as the method itself is. In a discrete

system, a limited number of mode shapes would be possible to capture after all.

Particularly for the 3-D problem, essentially PARPACK should be employed. For that pur-

pose, a driver routine that can handle partitioning, parallel matrix-vector multiplication and

data gathering have been developed. The driver routine calls MPI blocking message pass-

ing routines for communication(MPISend, MPIReceive, MPIBcast, MPIGatterv). ”MPI -

Send, MPIReceive” is used to distribute the work among the processes equally. The mul-

tiplication is conveniently performed via ”MPIReduceScatter” routine with ”MPISUM”

operator. The results are then collected on the master process via ”MPI Gatterv”. The de-

signed way of sharing of work and matrix multiplication can be simply illustrated through
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Figure 2.2 for a world of 3 processes. The routine also accomplishes the necessary tasks and

communication in sparse sense, reducing the amount of memory required and CPU clock.

Figure 2.2: Parallel matrix-vector multiplication

2.3.3 VALIDATION OF MODE SHAPE ANALYSIS

The eigenfunction extraction algorithm must be validated before any progress in further anal-

ysis. A block-shape domain is chosen for validation, for which analytic solution of the

Helmholtz equation is simply available through harmonic solutions together with the dis-

persion relation,

ψlmn = Aei lπ
a xei mπ

b yei nπ
c z (2.27a)

klmn =

(

lπ
a

)2

+

(mπ
b

)2
+

(nπ
c

)2
(2.27b)

Here,a, b and c are lengths of the sides onx, y and z direction respectively. In the figure

2.3, a comparison of the analytical solution and discrete solution is depicted. The numerical

solution is normalized with maximum magnitude available, in order to eliminate calculation

of A. It can be observed that the results do not match adequately (Figure 2.4). Most impor-

tantly, the wavenumber is deviated from the expected value.Hence, finer meshes and higher

orders of discretizations may be needed. However, after some trials with million cells, it is

concluded that any improvement on fineness wouldn’t help, because of the implicit limit im-

posed by the 2th order finite volume discretization. Hopefully, a finite element discretization
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with quadratic interpolation functions and natural boundary condition imposition will elimi-

nate the deviations and numerical oscillations. For the time being, it is solely considered as a

future work. Therefore, except for the rough estimations for the rocket chamber in Chapter 5,

2-D simulation is adopted.
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Figure 2.3: (1, 1, 3)th mode shape of the analytical solution (left) and of the numerical solution
(right)

Owing to the fact that choice of adequate number of cells for acceptable accuracy is affordable

and that boundary condition have been imposed flawlessly, finite volume natural mode extrac-

tor works well in 2-D discretization. Longitudinal and complex mode shape of a rectangular

domain of length 1m is examined (Figure 2.5, 2.6). The mesh resolution is approximately

30 longitudinal intervals per wave length for the tenth longitudinal mode, and the same num-

ber of intervals per wave length for the first transverse mode. Clearly, the modes shown are

resolved accurately. However, it’s for sure that higher modes will fail beyond a limit, all of

which must be avoided for the sake of reliable analysis.

2.4 SOURCE TERM

As mentioned earlier, only heat source term on the Euler equations is considered in this study.

Physically, it stands for a heat addition due to combustion of fuel with neglected mass and

momentum. The region of heat release can be modelled as a thinflame enclosed by the

cross-section of the duct at a location in the axis. Therefore, a 1-D heat release model can be
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Figure 2.4: Comparison of (1, 1, 3)th mode shape of the analytical solution (solid line) and of
the numerical solution (dashed line) atz= 2.5 plane

developed making use of the time-lag model by Crocco [4]. According to his general time-

lag description, the heat release at a point is dependant on pressure and velocity at that point

at a former time. Moreover, whatever the physical process might be, pressure and velocity

contributions must be formed as a linear combination of both, for solely linear behaviour is

accounted in the analysis. Then the heat source becomes

q̇′ = Ap′(x, t − τp) + Bu′(x, t − τu) (2.28)

or equivalently in frequency domain

ˆ̇q(x, ω) = Ap̂(x, ω)e−iωτp + Bû(x, ω)e−iωτu (2.29)

Depending on the combustion dynamics, specific coefficients and lags may be chosen. The

coefficients and lags are normally distributed fields hardly deduced from LES and experimen-

tal results [52, 33]. Generally, however, combustion in a rocket motor is taken to be dependant

on pressure mostly, whereas for a Rijke tube, heat release isdetermined by velocity at most,

controlling the rate of heat transfer through the hot wire. Specific choices will be made in the

cases discussed in the next chapters.
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Figure 2.5: (4,0) natural mode shape (lines: analytical solution k = 3.14159 rad/m; dots:
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Figure 2.6: (2,1) natural mode shape (lines: analytical solution k = 16.9180 rad/m; dots:
numerical solutionk = 16.9163 rad/m.)

2.5 BOUNDARY CONDITIONS

As stated earlier in (2.8),̂f is a term included on boundaries, imposing the influence of bound-

ary conditions on the wave system. Provided it is taken to be zero, the boundary in question

will spontaneously be a hard wall, without any flow in perpendicular direction. However, if

an impedance condition is to be imposed on the boundary, the impedance definition must be

considered first

Z =
p̂

ρ0āû · n̂
(2.30)

From momentum equation (2.1) in frequency domain we have

û =
∇p̂
ikā

(2.31)

Then, one can get a formula for̂f

f̂ = −
ikp̂
Z

(2.32)

Any impedance conditionZ can be used to simulate a boundary’s behaviour. Impedance con-

dition of a damping device or nozzle mostly depends on frequency and flow parameters. Spe-

cial treatment must be done for open atmosphere (infinitely large medium) condition ˆp = 0,

24



though. Clearly,f̂ must have such a value that all pressure oscillation values in cells on the

boundary are forced to be zero. This can be achieved simply byequating pressure to zero in

equation (2.22), resulting in a system of linear equations throughout the boundary cells with

f̂ as unknowns. This procedure is crucial on every step of the iterations. Thus, a linear system

solver from LAPACK [18] package is simply employed on each iteration step.

2.6 NUMERICAL ASPECTS

In the 2-D analysis explained, since rank of matrices -beingequal to number of cells- are not

extremely large most of the time, the serial version of ARPACK suffices on Opteron machines

with 6 GB of memory (the ”akbaba” cluster in METU/AEE). Extraction of modes never

took more than tens of minutes. Despite ARPACK’s iterative nature, the memory is a severe

computational requirement for 3-D cases due to large matrices, being unable to compute about

matrices of 150000 rank or more. Moreover, for such matricesthe Arnoldi vectors generated

and Arnoldi iterations in ARPACK increase in number, causing the simulation to take longer

computational time. The parallel implementation PARPACK is a good solution for such cases,

sharing both memory and work among the computers of a cluster. For example, a matrix with

1.7 million of rank can be solved for few eigenvalues at around 15 hours on 15 processes.

As to the simulation with the iterative method YAKAR2D, depending on the complexity of

heat and boundary condition terms, the iterations converged from 4-5 iterations up to 30-40

iterations, taking tens of minutes at most. The 3-D case tookmore iterations and time, up to 1-

2 hours depending on the conditions. In addition, although the iterative code is not developed

to work in parallel, a ”quasi-parallel” means of computation helped much in simulations, in

which different machines were assigned independently to simulate fordifferent modes at the

same time without any need of communication. It should be a better way to share work among

the machines.

Up to here, the necessary tools and methods for the analysis of linear combustion instability

in ducts has been constructed. In the following chapters, validation, analysis and experimen-

tation of various cases of ducts will be performed.
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CHAPTER 3

A TEST CASE WITHOUT FLAME

In this chapter, a simple test case with inactive flame and an impedance boundary condition

on one wall is considered. Several tests are performed to comprehend the behaviour of the

iterative solution method as various parameters of solution are changed.

3.1 VALIDATION OF NATURAL MODES

Before studying any cases with perturbation, the natural mode shapes must be validated prop-

erly. In this chapter a test case, which is also examined by Nicoud et al. [38], is analysed. It

is a simple rectangular 2-D duct with dimensionsL = 1 × 0.2 m. The domain is divided

into uniform triangular cells in an aim to reduce numerical errors. As discussed in Chapter

2, about 60 cells per wave length (0.0033m of intervals in longitudinal direction) will be safe

to use up to 10th longitudinal mode and 2nd transverse mode. That makes a total of 36000

uniform triangular cells, which results in a matrix with a rank the serial eigenvalue solver

can handle. The error comparisons with other resolutions are presented in Fig. 3.1. The

mesh with 0.00125m of longitudinal uniform intervals resulted in so many cellsthat the serial

eigenvalue solver failed due to memory restrictions. Hence, the parallel version had to be

employed benefiting from distributed memory architecture.

3.2 VALIDATION OF THE ITERATIVE ANALYSIS

The iterative method described in Chapter 2 must be validated first in several cases. Before in-

cluding any sort of heating, a simple rectangular chamber without heat release, but impedance
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boundary condition on walls shall be examined. The test setup can be viewed in Figure 3.2,

where the wall on the right has an impedance boundary condition and hard wall condition on

the rest. The iterative solution is expected to deviate the mode shape from normal mode with

hard wall condition everywhere to the case mentioned.

To validate the solution, an analytical solution should be constructed first. The longitudinal

waves can be determined through Helmholtz equation in 1-D

∂2p̂

∂x2
+ k2p̂ = 0

with
∂p̂
∂x
= 0 atx = 0

and
∂p̂
∂x
−

ik
Z

p̂ = 0 at x = L (3.1)

The wave number can be found through a harmonic solution (seeAppendix B)

kn = n
π

L
+

1
L

arctan(−i/Z), n ǫ N (3.2)

Starting from the natural modes with hard wall conditions, the iterative procedure described in

section 2.2 deviates the modes towards the conditions in thetest setup. Takinga = 0, b = −0.8
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Figure 3.2: A chamber geometry without heat release, but with impedance wall condition.

in Figure 3.2, the solutions are found and compared with the analytical results in Table 3.1.

Although the expected values are captured to some extent, weconsider the computations are

successful because together with the mixed modes, totally 10 modes were included in the

analysis. Nevertheless, infinite number of modes should be included theoretically (see Eq.

(2.21) and (2.22)). Higher resolution of the natural modes would make it possible to include

more modes into the analysis, resulting in more accurate solutions. Thus, results with 20

modes of vibration are also included in the table. It should be mentioned that an unresolved

mixed mode, occurring when 20 modes are extracted, is selected to be excluded from the

analysis, not to ruin the whole solution. Still, (4,0) longitudinal mode solution was unable to

converge, probably due to the inclusion of some unresolved higher modes. It can be observed

that inclusion of more modes occasionally improves the solution. The expectation of better

results does not hold for all modes, however. The reason for the exceptions is perhaps lack

of crucial effects of some specific higher modes to some specific modes in consideration.

Inclusion of infinite number of modes is not possible, after all. Besides, ”small perturbations

to the wavenumber” assumption should always be born in mind.Highly perturbing boundary

conditions may supply inaccurate mode shapes.

A finer mesh (interval size 0.0025 m), including effects of 10 modes of vibration, can also

be compared to the one with an uniform longitudinal intervalsize of 0.0033 m (Table 3.2).

The tendencies do not obey to the expectations. Whereas natural modes are proved to be

improved (see Fig. 3.1), the iterative solver working on thesame mesh does not benefit from

the increase of resolution. Likewise, the reason of this situation may be attributed to lack of

effect of some crucial higher modes, or highly perturbing effect of the boundary condition.
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Mod number analytical(rad/m) numerical (10 modes) numerical (20 modes)
(1,0) 4.03764 3.97800 3.95604
(2,0) 7.17924 7.27429 7.22032
(3,0) 10.3208 10.5705 10.4633
(4,0) 13.4624 13.8985 not converged

Table 3.1: A test case with inactive flame and impedance wall conditionZ = −0.8i (The effect
of 10 and 20 natural modes are included)

Mod number analytical(rad/m) numerical (0.0033 m) numerical (0.0025 m)
(1,0) 4.03764 3.97800 3.97809
(2,0) 7.17924 7.27429 7.27530
(3,0) 10.3208 10.5705 10.5759
(4,0) 13.4624 13.8985 13.9375

Table 3.2: A test case with inactive flame and impedance wall condition Z = −0.8i and two
resolutions of solution

As discussed, the ”small perturbation to the wavenumber” assumption may be violated. Ap-

parently, due to the imposed boundary condition, any mode ismodified considerably. For

example, the first longitudinal mode deviated from 3.14159 to 3.97809 rad/m to comply with

the condition. Therefore from Eq. 2.32, a large-in-magnitude impedance is expected to stick

to the assumption more consistently. Results withZ = 160i are presented in Table 3.3. Ob-

viously, the error ratios are smaller for all modes. Additionally, there was a benefit from the

inclusion of more mode numbers.

Mod number analytical(rad/m) numerical (10 modes) numerical (20 modes)
(1,0) 3.1353428 3.1353206 3.1353195
(2,0) 6.2769356 6.2768245 6.2768219
(3,0) 9.4185283 9.4181530 9.4181486
(4,0) 12.560121 12.559224 12.559217

Table 3.3: A test case with inactive flame and impedance wall conditionZ = 160i (The effect
of 10 and 20 natural modes are included)

No particular rule for the convergence behaviour of iterative method solution can be argued

up to here. It is just expected by theory that inclusion of more and more natural modes

would benefit to the solution success. 10 or 20 modes may not besignificant against infinite
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numbers, however it should give an estimate for the solution, as inclusion of infinite number

of modes also would. Moreover, as it is emphasized before, ”small perturbation to the wave

number” assumption should always be born in mind as a first assessment for solution success.

However, as there will always be considerable amount of perturbations to the wave number

in real combusting cases with realistic boundary conditions, there is no need to be meticulous

anyway . To conclude, all together what discussed in this chapter prove the foresight to be

true, that the linear analysis constructed cannot be the most reliable way to find mode shape

and wave number. Nevertheless, in the next chapter it shall be proved to be a tool to determine

whether a mode of vibration in a duct will be excited or not.
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CHAPTER 4

AN ELEMANTARY THERMOACOUSTIC DEVICE: THE

RIJKE TUBE

Rijke tube has been simplest device to experiment, observe and analyse thermoacoustic os-

cillations and couplings. The first realization of thermoacoustic excitation of the tube was

observed by P.L. Rijke in 19th century. He used a vertical tube open at both ends, with a

wire mesh placed in the tube cross-section. Heating the wireresulted in an intense noise

at one tone. The heated air through the wire rises up and coolsdown immediately by the

wall, resulting in a mean flow upwards. At the same time, the increase of flux stemming

from heating increases heat transfer. Under specific circumstances this phenomenon coin-

cides pressure increase and causes excitation of the fundamental mode, resulting in emission

of sound [40, 43, 44]. In this chapter, a horizontal type Rijke tube is to be analysed with

respect to instability of the fundamental mode. The only distinction of the horizontal type of

Rijke tube is that the lack of natural convection necessitates a trivial mean flow through the

tube to initiate any acoustic motion (Figure 4.1). In the simulation, the geometry and mesh

discussed in the previous chapter will be used.

Figure 4.1: A horizontal Rijke tube
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4.1 HEAT SOURCE

As discussed in Sec.2.4, the heat release is usually dependant on pressure and velocity. For

a Rijke tube in Eq.(2.28), because of the dependency of heat transfer on velocity across the

wire, the velocity term dominates over pressure term. Thus,it can be assumed that heat

release depends purely on velocity in the case of Rijke tube.Moreover, as the wire mesh may

be taken as a compact flame, Crocco’s [4]n− τ model can be employed,

Q̇′(t) =
∫

Ω

q′(x, t)dΩ = Sre f
γp0

γ − 1
nu′(xre f , t − τ) · n (4.1)

whereSre f is the flame area,xre f is its location, andn is called interaction index, indicating the

strength of coupling between acoustics and heat release. The equation can also be constructed

in local form as [38]:

q′(x, t) =
n
δ f

γp0

γ − 1
u′(x, t − τ) · n (4.2)

whereδ f stands for the thickness of the flame. In numerical sense, this would be the thickness

of the cell layer that takes over the release of heat for the entire system. With harmonic

oscillation assumption and the momentum equation, the equation can be substituted in Eq.2.8

as

ĥ =
n
δ f

eikāτ∇p̂ · n (4.3)

The gradient of pressure oscillation magnitude can be easily approximated numerically via

Green-Gauss theorem.+x direction is taken to be positive direction for the gradientcalcula-

tion which means the mean flow is towards+x direction.

4.2 BOUNDARY CONDITIONS

Hard wall boundary is chosen for the circumference of the tube (Fig.4.1). To simulate the

open atmosphere conditions at both ends, the pressure oscillation magnitude will be forced to

be zero. As discussed earlier in Sec. 2.5, a linear system of equation solver is implemented to

solve for thef̂ values for each cell on the boundaries. The system is simply constructed from

Eq.(2.22),

p̂(r ) = ψN(r ) +
∞
∑

n=0

′
ψn(r )

E2
n(k2 − k2

n)

{	
S
ψn(r0s) f̂ (r0s)dS0

}

(4.4)

Clearly, at each iterative step, only unknowns are thef̂ values throughout the boundary cells

in question, accompanied by the same number of equations forthe cells to close the system.
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4.3 INSTABILITY ANALYSIS OF THE FUNDAMENTAL MODE

Through simplified analytical definitions and experiments,it has been observed that the first

longitudinal mode of Rijke tube is excited under the following conditions [40, 43, 44]:

0 < 2k1lg < π (4.5a)

0 < ω1τ < π (4.5b)

Here, the inequalities obtained [43] are adapted to the present harmonic assumptions. Nor-

mally, sincek1 = π/L, the inequalities would be interpreted as

0 < lg <
L
2

(4.6a)

0 < τ <
L
ā

(4.6b)

However, for the time being, let’s use the calculated value of k1 in (4.5) together withω1 =

k1ā.

The first condition implies that the mode is excited if the heater wire is located in the first half

of the tube, when there is a mean flow in+x direction. The second one determines whether

the heat addition is in phase with the acoustic oscillationsor not, according to the Rayleigh

criterion [10, 40].

Using then − τ heat model and the boundary condition implementation described in the

previous sections, the simulation will be examined if it is consistent with these conditions.

The first condition is examined first, takingτ = 10−4 s andL = 1 m (Table 4.1). As stated

earlier, the negative imaginary values of wave numbers implies the mode is stable, whereas

positive-valued ones are excited modes. The results show that the condition is satisfied in

all cases. That is, the excited mode is immediately attenuated when the heat source travels

from the first half to the other half of the tube. Figure 4.2 is abetter visualization of the

behaviour. It is observed that the wave number does not fluctuate much with respect to the

heater position. That is, the mode already vibrates in its frequency provided it is excited.

The position of heat source only determines its activeness.In contrast, growth rate changes

its sign as switched to the other half of the tube, meaning themode will decay. It should

also be noted that the fundamental natural mode (0,0), wherewave number and pressure are

spontaneously all zero, mutates and becomes the fundamental vibrant mode upon enforcing

the open atmosphere boundary conditions at both ends. It is convention to call the vibrant

mode with its corresponding hard-wall natural acoustic mode.
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lg (m) 0.25 0.4 0.75
Real part 3.4182 3.4178 3.4171

Imaginary part 8.72× 10−5 1.98× 10−5 −8.78× 10−5

Table 4.1: (0,0) mode wavenumber approximations for the Rijke tube with the heat source on
various locations (τ = 10−4s).
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Figure 4.2: Wave number (upper) and growth rate (lower) variation of the fundamental mode
whenτ = 10−4 s

Likewise, the adherence to the first condition in Eq. (4.5)b can also be examined. According

to the selected condition, that isL = 1 m andā = 350 m/s, 0< τ < 2.62× 10−3s should be

satisfied. Approximate wave numbers versus various time lagvalues are presented in Table

4.2. If the imaginary values, that is growth rates of the oscillations are to be inspected, it

can be observed that the stability limit agrees with the analytically found limit (Fig. 4.3).

In fact, some difference would be expected in-between, because even more assumptions are

adopted in Culick’s simple analysis, to obtain the tendencies easily [43]. Up to this point,

the numerical analysis seems to be quite efficient and dexterous. However, wave number of

the first mode,k1, should have givenk1 = π/L reasonably, as adopted in (4.6). Therefore,

the instability condition would be 0< τ < 2.86× 10−3 instead. It can be concluded that the
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obtained wave number result does not reflect the reality accurately.

τ (s) 10−5 10−4 10−3 2.6× 10−3 2.7× 10−3

Real part 3.4182 3.4182 3.4178 3.4171 3.4171
Imaginary part 6.75× 10−6 6.72× 10−5 5.26× 10−4 1.82× 10−5 −4.96× 10−5

Table 4.2: (0,0) mode wavenumber approximations for the Rijke tube with various time-lag
values (lg = 0.25m)

τ

w
av

e
nu

m
be

r

1.00x10-03 1.50x10-03 2.00x10-03 2.50x10-033.417

3.4171

3.4172

3.4173

3.4174

3.4175

3.4176

3.4177

3.4178

τ

g
ro

w
th

ra
te

1.00x10-03 1.50x10-03 2.00x10-03 2.50x10-03

-1.0x10-04

0.0x10+00

1.0x10-04

2.0x10-04

3.0x10-04

4.0x10-04

5.0x10-04

an
al

yt
ic

al
st

ab
ili

ty
bo

un
da

ry

unstable stable

Figure 4.3: Wave number (upper) and growth rate (lower) variation of the fundamental mode
whenlg = 0.25m

To exemplify, the excited mode shape can be viewed in Fig. 4.4. Together with the chosen

mean sound speed, 350 m/s, the obtainedk value corresponds to a medium-pitch sound with

a frequency of 190 Hz in audible range. Of course, it is for sure that the wave number has a

considerable amount of error, as discussed in Chapter 3. In fact, the wave shape is obviously a

full wave (see Fig.4.4) with a wave-length ofλ = L = 1 m. Hence, the real wave number and

the frequency are expected to bek = π rad/m, and 175 Hz respectively (with inactive flame

and p̂ = 0 boundary conditions, analytically ˆp = Asin(nπx)). After all, it was apparent that
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because of violently deviating behaviour of the open-atmosphere boundary conditions, the

natural mode shape (0,0) deviates tremendously, expectedly resulting in a dramatic amount of

error. As to the instability analysis however, there seem tobe no significant error. Provided the

heat model and selected boundary conditions are good enoughto simulate the phenomenon,

any other inspections can be performed safely unless there is a serious violation of stated

assumptions.
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Figure 4.4: The excited mode (0,0) whenlg = 0.25 m andτ = 10−4 s
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CHAPTER 5

A SAMPLE INSTABILITY ANALYSIS OF A

LIQUID-PROPELLED COMBUSTION CHAMBER MODEL

The last step of analysis will certainly be of a sample liquid-propelled combustion chamber.

In a real liquid-propelled rocket engine, high levels of pressure and temperature exist in the

chamber, followed by a narrow throat of the nozzle entry. Pressure levels are usually on the

order of 10 bars and volumetric heat release on the order of 300 megawatts per meter cube

(e.g. Aestus rocket engine [45, 46]). Thus, flow is essentially supersonic in the nozzle, neces-

sitating sonic condition on the throat. The simulation setup should be constructed considering

this condition. Hence, this chapter examines a chamber withchoked flow at the throat. Mean

flow effects are neglected as before, despite its significance in liquid rocket chambers.

5.1 THE ROCKET ENGINE SETUP AND NATURAL MODE SHAPES

A fictional rocket motor geometry is generated with dimensions given in Fig. 5.1. To realize

choked condition, the geometry and mesh of subsonic nozzle is split through throat. That

makes a domain of 21245 triangular cells. Because higher gradients are expected, the mesh in

the proximity of the throat section is set to be finer (Fig. 5.2). Despite not very physical, the

mass input of the propellants and resultant velocity inlet condition is neglected in the analysis.

A constant velocity perturbation condition̂f = −ikāû ·n could also have been imposed on the

inlet - which is already taken as zero by definition. Taking the inlet as hard wall is adequate

for the time being for the fictional engine.

Before inclusion of any effects of the natural modes iteratively, they should be verified and

identified first. The shapes of 12 modes of vibration are demonstrated in Fig. 5.3 followed
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Figure 5.1: A fictional liquid-propelled rocket motor

by corresponding wave numbers in Table 5.1. Each mode shape is identified via capitals and

consecutive numbers: ”L” meaning longitudinal; ”R” radial, both followed by mode numbers.

For instance, L1R1 stands for first longitudinal first radialmixed mode.

index number Mode identity Wave number k (rad/m)
1 L1 12.93510
2 L2 23.05547
3 R1 23.53690
4 L1R1 30.83868
5 L3 34.00244
6 L3R1 41.37291
7 L4 44.84321
8 R2 45.99022
9 L4R1 51.52343
10 L2R2 51.57302
11 L5 56.01193
12 L3R2 60.75879

Table 5.1: Wave numbers of the natural modes considered
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5.2 HEAT SOURCE

A simplen− τ model for heat release by Crocco and Cheng is adopted [4]

q̇v
′ = ¯̇qV

n
¯pCH

[

p′(t) − p′(t − τ)
]

(5.1)

where ¯̇qV is the volumetric heat release, ¯pCH is the chamber mean pressure andn is the

interaction index andτ the time lag between acoustics and heat release. Unlike in the case

of Rijke tube studied in Chapter 4, pressure is assumed to be dependent purely on pressure

fluctuation. Harmonic variation assumption leads to the source term for the inhomogeneous

Helmholtz equation (Eq. (2.8a)),

ĥ =
γ − 1

ā
(ik)

n ¯̇qV

¯pCH
p̂(1− eikāτ) (5.2)

Upon the application of Rayleigh integral locally [45], it is proved that this flame model never

has damping effect. However, as the chamber has damping type of boundary condition, that

is, some acoustic loss must exist, stability of modes is alsoexpected.

A cloud of heat source is formed by marking triangular cells all together forming an approx-

imate cylinder shape with a height of 0.4 cm., about a center disc located close to the motor
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Figure 5.3: The mode shapes included in the stability analysis

head. Totally, the set consists of 1246 cells all contributing to the system as a separate volume

of heat source in equal magnitude.

5.3 BOUNDARY CONDITIONS

The reasoning behind cutting off the nozzle through the throat in choked flow condition is that

a sonic line attaches to the throat, preventing the acousticwaves from propagating upstream

of the throat. Hence, there is no acoustic reflection at all onthat plane, which can also be

interpreted as a total loss of acoustic waves through the plane. The realization of this condition

normally requires determination of impedance value for each frequency. Solution of quasi-

one dimensional Euler equation on sonic line gives [34]
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Z∗ =
2dū

dx|∗ − iω

(γ − 1)dū
dx|∗ − iω

(5.3)

where the starred values refer to the ones on sonic line. The solution procedure assumes

uniform mean flow, then the impedance simply becomes

Z∗ = 1 (5.4)

This is indeed the widely used value for the particular case of infinitely long duct where no

reflection occurs without dependence on frequency. This will be used in the analysis for

convenience.

5.4 RESULTS

For the fictional engine, following representative properties are used in the analysis:

Mean speed of sound: ¯a = 440 m/s

Mean chamber pressure:pCH = 800 KPa

Mean volumetric heat release: ¯̇qV = 200MW/m3

A range of interaction index and time lag values will be used to form a stability map of the

engine.n andτ generally depend on spatial coordinates. Besides, fields ofthese parameters

are usually quite difficult to obtain experimentally. It is also possible to obtainthem by the

help of compressible reacting LES for a similar case to deduce the response of turbulent flame

to acoustic perturbations [49, 50]. In this work, they shallbe taken constant like the other

flame parameters. For the case of hypergolic propellants andcoaxial injectors, empirical

values obtained by Harrje and Reardon [5] are generally in the ranges of

0.14× 10−3s≤ τ ≤ 0.20× 10−3s (5.5)

0.6 ≤ n ≤ 0.8 (5.6)

Therefore, the ranges should used initially to form stability maps. Any other desired range

during design stage can also be examined. In Fig. 5.6 stability maps of the engine for the

first 6 acoustic modes are depicted. The plots imply that the longitudinal modes tend to be
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stable, because the nozzle has an intensive damping effect on the longitudinal modes due to

flow choking. The supersonic conditions beyond the choked throat section attenuate most of

the acoustic energy of longitudinal oscillations, resulting in stability. This is in fact the case

for the first four longitudinal modes. More generally, all ofthe pure longitudinal modes are

subject to the same intensive stabilizing effect. As to the first radial mode, stability is ob-

served in all cases, except there are some points where the iterations did not converge. L1R1

mixed mode, however, seems to be excited in the ranges probed. The most remarkable of

the modes observed is L3R1 mixed mode. In some interval of time lag value, it appears to

be unstable. On the contrary, as the strength of coupling is reduced, that interval diminishes,

rendering the mode stable beyond. If a mode vibrates possibly in a limit cycle, characteristics

of which cannot be deduced in this very linear analysis, it may cause huge troubles during

firing tests unless cured in simulation phase. The design should then be tuned involving a

geometry change or inclusion of means of acoustic damping for that specific frequency and

shape such as liners on the walls, or baffles on the injectors.

The excited mode L1R1 can be illustrated in Fig. 5.4. As observed, there is no obvious

difference in the shape compared with the hard-wall natural correspondent (Fig. 5.5). There

is only small deviations due to the heat addition and the imposed boundary condition on the

throat. The shape should solely be taken as an approximationto the initial shape just at the

moment of triggering of the mode. As discussed, non-linear effects and unsteadiness would

govern beyond that level converging into a limit cycle. Suchbehaviour is another subject of

study involving temporal evolution of flow field.

Eventually, It should be mentioned that in a rocket engine, tangential modes, or mixtures of

tangential modes are typically not only more easily self-excited ones, but also they are the

most troublesome modes in prevention and controlling aspects. Therefore, a comprehensive

3-D analysis is of the most value than any means of 2-D modelling of the phenomenon. More-

over, it should also be noted that the iterative nature of themethod allows implementation of

more complex non-linear flame models and application of non-linear boundary conditions

when needed.
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Figure 5.4: Perturbed mode shape of the active mode L1R1 (n = 0.8 andτ = 0.18 ms)
vibrating withk = 30.8461 rad/s
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Figure 5.5: Perturbed mode shape of the active mode L1R1 vs. its pure mode
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Figure 5.6: The choked rocket motor stability map for several modes. ”o” stands for stable;
”x” unstable mode.

5.5 THE CHOKED ROCKET MOTOR CASE IN 3-D

For demonstrative purposes, the exactly same setup can alsobe examined in 3-D. What 3-

D case involves are extra computational burden, tetrahedron cells instead of triangles, and

volumes instead of areas. Additionally, tangential modes,which do not even exist in 2-D case,

can also be inspected as to stability conditionings. The 3-Dmesh with 91815 tetrahedral cells

is shown in Fig.5.7. The hard wall natural modes are computedefficiently via PARPACK,

as discussed in chapter 2. Totally 15 modes are computed for use in the analysis. Table 5.2

presents the mode numbers computed for the iterative instability analysis. Some of the mode

shapes can be viewed in Fig. 5.8. It is interesting that tangential modes and mixed tangential
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modes appeared as pairs. The equivalent pairs are excluded in the figure.

index number Mode identity Wave number k (rad/m)
1 L1 15.2831
2 L2 25.3825
3 T1 28.5526
4 T1 28.5711
5 L3 36.1271
6 L1T1 35.6129
7 L1T1 35.6312
8 L4 47.0956
9 T2 46.7427
10 T2 46.7017
11 L2T1 46.5996
12 L2T1 46.5809

Table 5.2: Wave numbers of the natural modes considered for the 3-D chamber

An iterative analysis for instability is performed for the identical parameters of combustion

on this 3-D version of the chamber in the previous section. However, the results should not

be reliable due to the fact that the 3-D natural mode solutions have considerable amount

of inaccuracy, as proved and discussed in Chapter 2. Still, the stability map of the rocket

engine can be seen in Figure 5.9. ”?” denotes the cases for which iterations did not converge.

Longitudinal modes turned out to be stable in the intervals,as expected and found in the 2-D

case. Tangential modes (i.e.. T1) were expected to be unstable because there is no obvious

internal or external damping in transverse directions. They are found to be unstable, at least

in the present time lag and interaction index intervals. However, as discussed in Section 5.2,

the flame model never has damping effect, therefore the tangential modes are not expected to

be unstable in any interval. On the contrary, mixed modes aresubject to the nozzle’s damping

effect. The mixed mode L1T1 had serious converging problems however, most probably due

to the fact that the natural modes were not accurate enough. It was expected to be stable in

some intervals.

In summary, the 3-D hard-wall natural mode shape has to be validated before any use of

the 3-D stability analysis, despite the fact that the longitudinal modes and tangential mode

analysis complied with the expectations. For the time being, only 2-D analysis can be used

in a work concerning combustion stability in a duct, where the oscillating modes are to be
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Figure 5.7: 3-D rocket geometry and mesh for choked flow

Figure 5.8: Some of the modes included in the analysis of choked 3-D rocket
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Figure 5.9: The 3-D choked rocket motor stability map for several modes. ”o” stands for
stable; ”x” unstable mode.

thrown outside operation interval of the duct by decisive changes in the design of the duct.
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CHAPTER 6

CONCLUSION

In this thesis, for the analysis of linear combustion instabilities particularly in liquid-propellant

rocket engines, a methodology, involving Culick’s iterative method, is constructed. It was de-

signed as a first step towards simulation and design of combustion instabilities in 3-D ducts,

mostly applicable to liquid rocket motor chambers. It is proved that the neglection of non-

linear effects and mean flow effects simplifies the analysis down to practical levels where

self-excitement behaviour of possible modes are detected in the first place. Obtained mode

shapes are not supposed to be reliable solutions as to accuracy because of various assumptions

made. Nevertheless, the information obtained whether the mode in question will sustain its

oscillations or be diminished, serves well as a primary ideathroughout conceptual design of a

chamber geometry. In case of the instability of a mode, the growth and convergence behaviour

of oscillations will always be a mystery in the lack of non-linear effects, for limit cycles are

known to be a mere non-linear phenomenon. On the contrary, lack of non-linear effects does

not disrupt any design intended for stability, because inclusion of them would serve as extra

dissipation, having the tendency to add to the stability of the system. Those effects might be

included in further studies in a step by step manner.

To serve for these purposes, a finite volume natural mode shape extractor (HELM2D) and a

iterative solver (YAKAR) are developed, taking into account the heating effects and bound-

ary condition forcing. Both of them have 2-D and 3-D versions. However, the 3-D natural

mode shape extractor requires further improvements with higher orders of accuracy, due to

the fact that the modes are not captured well enough with a second order of accuracy finite

volume discretization. A finite element discretization with quadratic interpolation functions

is expected to suffice for that purpose. Therefore, 2-D analysis of two cases areemphasized

for now. Still, an example of rocket combustion is simulatedin 3-D. In chapter 3, solution for
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a duct with inactive flame but with impedance wall condition is validated, whereas in chapter

4, the famous Rijke tube is analysed as to the behaviour of thefirst tone of vibration. The

method performed well in both cases with some exceptional behaviours. A sample instabil-

ity analysis of a simple liquid-propellant combustion chamber is also assessed in Chapter 5.

Some mixed modes tended to be unstable whereas all of the low frequency longitudinal mode

oscillations were decayed because of intensive damping effect of nozzle. A 3-D analysis was

found to be vital, which additionally includes the results of tangential modes. Hence, the

rocket is also tested in 3-D analysis for the sake of comparison and those tangential modes. It

was already predicted that the 3-D solution would be problematic because of the inaccuracy

of natural mode shape basis. Eventually, some mixed mode cases failed to converge for the

3-D case, whereas the rest was found to comply with the 2-D results.

To conclude, the methodology discussed proved to be successful in practical applications

where a duct with proper heat and boundary models is to be assessed whether it sustains any

acoustic vibrations or not before any following design steps. Due to the assumptions involved,

the reliance on mode shape solutions should be avoided for now, though. The time required

for solution of cases is also extremely small compared to theother works which might even

extend to several days. Moreover, the fact, that heat and boundary condition implementations

are simple flexible functions dependent on current flow variables on the iterative step, over-

whelms some other methods involving quadratic non-linear eigenvalue problems with large

matrices which have always been quite difficult to solve. The flexibility of the method might

also make it easier to include non-linear models of combustion and application of bound-

ary conditions as non-linear functions, not less than further implementations and models in

further progresses.
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Appendix A

DERIVATION OF LINEARIZED EULER EQUATIONS

Throughout the linearization of Euler equations, the following assumptions are adopted for

the problem in consideration:

• Inviscid and adiabatic flow

• Cp,Cv andγ are constant

• Fluctuations ofu, p,T, ρ andQ are small

• Uniform steady state pressure and density:p0, ρ0 are constant

A.1 Continuity equation

The conservation of mass in differential form without a source nor sink can be written as,

∂ρ

∂t
+ ∇ · (ρ~V) = 0 (A.1)

Linearization of the parameters around mean values leads to,

∂(ρ0 + ρ
′)

∂t
+ ∇ · ((ρ0 + ρ

′)( ~V0 + ~V′)) = 0 (A.2)

Then,
∂ρ0

∂t
+ ∇ · (ρ0 ~V0) +

∂ρ′

∂t
+ ∇ · (ρ0 ~V′) + ∇ · (ρ

′ ~V0) + ∇ · (ρ′ ~V′) = 0 (A.3)

The mean flow already obeys conservation law, hence the first two terms are zero. Mean

velocity field is assumed to be uniform, making fifth term zero. Also eliminating second

order fluctuating term results in the linearised continuityequation :

∂ρ′

∂t
+ ρ0∇ · ~V′ = 0 (A.4)
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A.2 Momentum equation

The conservation of momentum in differential form without viscosity stresses and body forces

can be described as,

ρ
D~V
Dt
+ ∇p = 0 (A.5)

Linearise the gas properties around mean values,

(ρ0 + ρ
′)

D( ~V0 + ~V′)
Dt

+ ∇(p0 + p′) = 0 (A.6)

Expanding,

ρ0
∂ ~V0

∂t
+ρ0~V ·∇ ~V0+ρ0

∂ ~V′

∂t
+ρ0~V ·∇ ~V′+ρ

′∂ ~V0

∂t
+ρ′~V ·∇ ~V0+ρ

′∂ ~V′

∂t
+ρ′~V∇ ~V′+∇(p0+ p′) = 0

(A.7)

AssumeV0 = 0 as a special case of classical acoustics. And eliminate derivatives of uniform

and constant termsp0, ρ0;

ρ0
∂ ~V′

∂t
+ ρ0 ~V′ · ∇ ~V′ + ρ

′ ∂
~V′

∂t
+ ρ′ ~V′ · ∇ ~V′ + ∇p′ = 0 (A.8)

Finally, by eliminating the second order fluctuations,

ρ0
∂ ~V′

∂t
+ ∇p′ = 0 (A.9)

gives the linearised momentum equation.

A.3 Energy Equation

The differential energy equation with a heat source term is simply known as,

∂ET

∂t
+ ∇ ·

[

~V(ET + p)
]

= Q (A.10)

And it can be rewritten in per volume form as,

∂ρeT

∂t
+ ∇ ·

[

~V(ρeT + p)
]

= q (A.11)

whereeT = e+ 1
2 |
~V|2 is the total energy per mass ande= CvT is the internal energy per mass.

It can be derived using ideal gas relations that,

p = ρ(γ − 1)e (A.12)
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Then,
∂

∂t

(

ρ
p

ρ(γ − 1)
+

1
2
ρ|~V|2

)

+ ∇ · ~V

(

ρ
p

ρ(γ − 1)
+

1
2
ρ|~V|2 + p

)

= q (A.13)

Linearise the gas properties around mean values,

∂

∂t

(

p0 + p′

γ − 1
+

1
2

(ρo + ρ
′)( ~V0 + ~V′)2

)

+∇ · ( ~V0 + ~V′)

(

p0 + p′

γ − 1
+

1
2

(ρ0 + ρ
′)( ~V0 + ~V′)2 + p0 + p′

)

= q (A.14)

As before, the mean velocity is assumed to be zero and mean pressure and density be uniform.

Also neglect second order fluctuating terms,

1
γ − 1

∂p′

∂t
+

p0

γ − 1
∇ · ~V′ + p0∇ ~V′ = q (A.15)

After some manipulations linearised energy equation showsup,

∂p′

∂t
+ p0γ∇ · ~V′ = (γ − 1)q (A.16)
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Appendix B

ANALYTICAL SOLUTION OF THE SIMPLE CASE

The following PDE is to be solved analytically

∂2p̂

∂x2
+ k2p̂ = 0

with
∂p̂
∂x
= 0 atx = 0

and
∂p̂
∂x
−

ik
Z

p̂ = 0 at x = L (B.1)

To begin with, assume a general harmonic solution satisfying the equation with arbitrary

coefficients in complex domain

p̂ = c+neiknx + c−ne−iknx (B.2)

∂p̂
∂x
= c+n ikneiknx − c−n ikne−iknx (B.3)

And for the first boundary condition atx = 0

c+n ikn − c−n ikn = 0

c+n = c−n = cn (B.4)

For the second condition atx = L

cnikneiknL − cnikne−iknL −
ikn

Z
(cneiknL + cne−iknL) = 0 (B.5)

or,

eiknL − e−iknL =
1
Z

(eiknL + e−iknL) (B.6)

and substituting trigonometric forms by Euler’s formula

isinknL
cosknL

=
1
Z

tanknL =
−i
Z

(B.7)
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equivalently,

tan(knL − nπ) =
−i
Z

(B.8)

Finally,

kn = n
π

L
+

1
L

tan−1
(

−i
Z

)

(B.9)

is the general solution of the dispersion relation wherenǫ N.
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