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ABSTRACT

COMPARISON OF OCR ALGORITHMS USING FOURIER AND WAVELET BASED
FEATURE EXTRACTION

Onak, Önder Nazım

M.S., Department of Scientific Computing

Supervisor : Assist. Prof. Dr. Hakan Öktem

February 2011, 79 pages

A lot of research have been carried in the field of optical character recognition. Selection of

a feature extraction scheme is probably the most important factor in achieving high recogni-

tion performance. Fourier and wavelet transforms are among the popular feature extraction

techniques allowing rotation invariant recognition. The performance of a particular feature

extraction technique depends on the used dataset and the classifier. Different feature types

may need different types of classifiers. In this thesis Fourier and wavelet based features are

compared in terms of classification accuracy. The influence of noise with different intensities

is also analyzed. Character recognition system is implemented with Matlab. Isolated gray

scale character image first transformed into one dimensional function. Then, set of features

are extracted. The feature set are fed to a classifier. Two types of classifier were used, Nearest

Neighbor and Linear Discriminant Function. The performance of each feature extraction and

classification methods were tested on various rotated and scaled character images.

Keywords: Character recognition, Fourier transform, Wavelet transform, Ring projection
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ÖZ

FOURIER VE DALGACIK TABANLI ÖZNİTELİK ÇIKARMA YÖNTEMLERİ
KULLANARAK OPTİK KARAKTER TANIMA ALGORİTMALARININ

KARŞILAŞTIRILMASI

Onak, Önder Nazım

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Assist. Prof. Dr. Hakan Öktem

Şubat 2011, 79 sayfa

Optik karakter tanıma alanında bircok araştırma sürdürülmektedir. Öznitelik seçimi yüksek

tanıma performansı elde etmede muhtemelen en önemli etkendir. Fourier ve dalgacık anal-

izleri popüler öznitelik çıkarma yöntemleri arasındadır. Bununla birlikte öznitelik çıkarma

metodunun performansı kullanılan veri kümesi ve sınıflandırıcı tipine bağımlıdır. Bu tezde

Fourier ve dalgacık analizine dayalı öznitelik çıkarma yöntemleri sınıflandırma doğrulukları

temel alınarak karşılaştırılmıştır. Buna ek olarak çeşitli yoğunluktaki gürültünün etkiside

gözlemlenmiştir. Gri tonlamalı karakter görüntüsü önce bir boyutlu fonksiyona dönüştürüldü

ve öznitelikler çıkartılarak sınıflandırıcıya verildi. Sınıflandırıcı olarak En Yakın Komşu ve

Doğrusal Ayırtedici Fonksiyonlar kullanılmıştır. Öznitelik çıkarma ve sınıflandırma yönteminin

performansı çeşitli ölçekte ve döndürülmüş karakter görüntüleri kullanılarak test edilmiştir.

Anahtar Kelimeler: Karakter tanıma, Fourier dönüşümü, Dalgacık dönüşümü, Halka izdüşümü
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CHAPTER 1

INTRODUCTION

Optical character recognition (OCR) has been very active research area since 1950’s. It is one

of the most successful application of automatic pattern recognition [54]. Its aim is to classify

scanned, recorded or pictured images of machine printed or handwritten text, numerals, let-

ters, symbols and generate a description in the desired format. Optical character recognition

has many application area, digital libraries, packaging industries, personal digital assistants

(PDAs). However, there are many problems that arise from the application areas. For exam-

ple, in manufacturing line reading bottle caps as the bottles moving through the manufacturing

line: The bottles rotate continuously as they move down in this line. Thus the character set

printed on the caps, which is to be recognized by the machine vision system. There is no

guarantee that the character set will be presented at a fixed orientation, precise location in

front of the camera. At the same time all the printed characters may not be in same size. In

order to overcome these drawbacks, OCR system must have capable of recognizing characters

independent of their position, orientation and size.

General structure of OCR system is composed of preprocessing, feature extraction, recog-

nition units. Selection of feature extraction method is probably the single most important

factor in achieving high recognition performance [54]. Considering the fact that a very wide

range of feature extraction methods exists in the literature, an important problem is deciding

a suitable method for a particular application. Fourier and wavelet transforms are two popular

feature extraction methods verified in many applications. However, which method performs

better depends on the used dataset. In addition, OCR system performance also depends on the

type of classifier used. Because, different feature types may need different types of classifier

and vice versa.
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This thesis is concentrated on translation, rotation and size invariant machine typed character

recognition. Efficiency of Fourier and wavelet based feature extraction methods also evaluated

in terms of classification accuracy. In addition, convenience of classifiers Nearest Neighbor

and Linear Discriminant Functions were also tested.

This thesis is divided into seven chapter. In Chapter 2, history and general overview of OCR

systems and review of some algorithms and techniques related to the preprocessing, feature

extraction and classification methods are briefly explained.

Chapter 3, introduces the mathematical background of the study. We have used Fourier and

wavelet transforms to extract and compose the character features.

Chapter 4, explains the details of proposed translation, rotation and size invariant character

recognition system and its implementation.

Chapter 5, represents the experimental results obtained for each feature extraction (Fourier,

wavelet) algorithms and classification (Nearest Neighbor, Linear Discriminant Function) meth-

ods.

Chapter 6, represents the character fonts used in our experiments and also recognition rate of

each character obtained in each experiment.

Finally, concluding remarks are given in Chapter 7.
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CHAPTER 2

OVERVIEW OF OPTICAL CHARACTER RECOGNITION

Documents are in the form of papers which the human can read and understand but it is not

possible for the computer to understand these documents directly. Optical character recogni-

tion deals with the problem of classifying scanned images of machine printed or handwritten

text, numerals, letters and symbols into a computer processable format such as ASCII without

any human intervention. Useful reviews are found in [4, 41, 54]. Recognition is accomplished

by searching a match between the features extracted from the given character image and the

library of image models [11].

Character recognition systems can be classified based on upon two major criteria: the data

acquisition process (online or offline) and the text type (machine printed or handwritten) [4].

However, online character recognition is sometimes confused with Optical Character Recog-

nition. OCR refers to offline character recognition, where the system recognizes the fixed

static shape of the character image, while online character recognition instead recognizes the

dynamic motion during handwriting.

• Online Character Recognition: As the name infers online character recognition is real

time recognition of characters. Online systems have better information for performing

recognition since they have timing information and avoid the initial search step of lo-

cating the character as in the case of their offline counterpart. Online systems obtain

the position of the pen as a function of time directly from the transducer that captures

the writing as it is written. The most common of these devices is the electronic tablet

or digitizer. Online recognition of characters is known as a challenging problem be-

cause of the complex character shapes and great variation of character symbols written

in different modes [3, 4].

3



Figure 2.1: Typical optical character recognition system.

• Offline Character Recognition: Offline character recognition is known as Optical Char-

acter Recognition, because typewritten or handwritten character is scanned by optical

scanner or camera and converted into form of a binary or gray scale image. Offline char-

acter recognition is a more challenging and difficult task as there is no control over the

medium and instrument used. The artifacts of the complex interaction between the in-

strument medium and subsequent operations such as scanning and binarization present

additional challenges to the algorithm for the offline character recognition. Therefore

offline character recognition is considered as a more challenging task then its online

counterpart [3, 4].

The major difference between Online and Offline Character Recognition is that Online Char-

acter Recognition has real time contextual information but offline data does not. This differ-

ence generates a significant divergence in processing architectures and methods.

No matter which text type (typewritten or handwritten) the problem belongs, OCR system

can be roughly divided into image pre-processing (may include binarization, segmentation

and conversion to other character representation), feature extraction and selection, classifica-

tion stages. Figure 2.1 represents the basic OCR system. In this study we concentrated on

machine printed optical character recognition problem. In typewritten character recognition,

the images to be processed are in the forms of standard fonts like Times New Roman, Arial,

Courier, etc..

4



2.1 Optical Character Recognition History

Dawn of OCR: In 1929 Gustav Tauschek obtained a patent on OCR in Germany, followed

by Handel who obtained a US patent on OCR in USA in 1933. Tauschek’s principle was

template/mask matching which reflects the technology that time. His machine was a mechan-

ical device that used photo detector and mechanical template matching. He was followed by

Handel who obtained a US Patent on OCR in USA in 1933 (U.S. Patent 1,915,993).

Beginning of Research: In the beginning stage it was thought that it would be easy to develop

an OCR. The 1950’s and early half of the 1960’s were periods when researchers imagined

an ideal OCR, even through they were aware of the great difficulty of the problem. Actually,

this is an instance of a common phenomenon which occurred in the research field of artificial

intelligence [41]. The first modern character recognizers appeared in the middle of the 1940’s

with the development of the digital computers. The early work on the automatic recognition

of characters has been concentrated either upon well printed text or upon small set of well dis-

tinguished hand written text. The first commercial system was installed at the Reader’s Digest

in 1955. The United States Postal Services has been using OCR machines to sort mail since

1965 based on technology devised primarily by the prolific inventor Jacob Rainbow. In 1965

it began planning an entire banking system, National Giro, using OCR technology, a process

that revolutionized bill payment systems in the UK. The studies until 1980’s suffered from

the lack of advanced algorithms, powerful hardware and optical devices. With the explosion

on the computer hardware and software technology, the previously developed methodologies

found a very fertile environment for rapid growth in many application areas as well as OCR

system development [3].

Current Status: The popularity of OCR is increasing each year with the advent of fast mi-

croprocessors, and better scanning technologies providing the vehicle for vastly improved

recognition techniques.

2.2 Application of Character Recognition System

A common goal in the field of artificial intelligence is to mimic the function of human beings

and automate tasks that normally require manual labor or at least supervision. Optical charac-
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ter recognition is a classic example of such a problem. It has been the subject of a large body

of research because there are great number of commercial applications for this technology.

Some of the most significant applications include

• Address Reading: Address readers are used by a postal mail services which sort and

locate the destination block and postal code this address block then mails are grouped

depending on destinations for delivery purposes.

• Form Reading: A form reading system discriminate between pre-printed form instruc-

tions and filled in data. The system is first trained with a blank form. The system,

registers those areas on the form where the data should be printed. During the form

recognition phase, the system uses the spatial information obtained from training to

scan the region that should be filled with data.

• Check Reader: A check reader captures check image and recognize amounts and ac-

counts information on the checks and use the information in both fields to cross check

the recognition result. An operator intervention might require to correct misclassified

characters by cross-validating the recognition results with the check.

• Bill Processing: Bill processing system is used to read payment slips, utility bills and

inventory documents .The system focuses on certain region on a document where the

expected information are located, e.g. account number and payment value.

• Page Readers: Page reader applications have used for various purposes. One of the

application is converting non editable written document, which might be stored in a

image format, into ASCII file. Converted file then can be processed depending on

application area. Another innovative application is conversion of scanned pages into

spoken words.

• License Plate Recognition: License plate recognition applies image processing and

character recognition technology to identify vehicles by automatically reading their li-

cense plates. Typical applications of license plate recognition include private parking

lot management, traffic monitoring, automatic traffic ticket issuing, automatic toll pay-

ment, surveillance, and security enforcement.
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2.3 Steps of Optical Character Recognition System

This section focus on the machine printed character recognition methodologies. The literature

review of OCR point out that the task of OCR system can be grouped in the stage of prepro-

cessing, feature extraction and selection and recognition. In various applications some of the

stages are merged or excluded. In this section, the methodologies to develop the stages of the

OCR will be explained.

2.3.1 Preprocessing

Pre-processing is the name given to a family of procedures,which will contribute in defining

a compact representation of pattern, along the road to final classification can be made simple

and more accurate. Depending on the application and techniques number of steps in pre-

processing stage can be change. Nevertheless, the following techniques are common most of

the character recognition applications.

2.3.1.1 Noise Filtering

The objective of noise filtering is to remove any unwanted bit-patterns, and suppress spurious

points usually introduced by writing surface or poor sampling rate of the image acquisition

device. The basic idea is convolving the image with a pre-defined mask in order to assign

(a) Noisy. (b) Filtered.

Figure 2.2: Illustration of noisy and noise filter applied character images.

a value to a pixel as a function of the gray values of its neighboring pixels. Let x(i, j) be the

noisy image under consideration, then the basic linear filtering process defined as follows:

x f iltered(i, j) =
∑

k

∑
l

aklx(i − k, j − l), (2.1)
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where akl is the weight of the gray levels of pixels of the mask at location (k, l). Sample noisy

and fitered images are given in Figure 2.2.

2.3.1.2 Segmentation

Segmentation refers to the decomposition of image into its components in order to make the

image easier to analyze. It is important stage in image analysis which directly affects recog-

nition rates. Character segmentation is the process in which from the word segmentation we

extract only characters. Segmentation can be divided into two type external and internal. Ex-

ternal segmentation decomposes the image into its logical units. For example, in document

analysis, page layout is decomposed into paragraphs, sentences and words. Internal segmen-

tation is an operation that seeks to decompose and image into individual symbols, characters,

shapes, etc.. Some of segmentation techniques are listed below and more information can be

found in [28].

• Amplitude thresholding or window slicing.

• Component labeling.

• Boundary based approaches.

• Clustering and region based approaches.

• Template matching.

• Texture segmentation.

2.3.1.3 Binarization

Image binarization refers to the conversion of a gray-scale image into a binary image. Each

pixel in an image is converted into one bit and the value ’1’ or ’0’ assigned depending upon

the value of the pixel and threshold value. Binarization process is categorized into two group

global and local.

• Global binarization, picks one threshold value for the entire image which is often based

on an estimation of the background level from the intensity histogram of the image.
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Figure 2.3 represents the gray scale image and binary image obtained using global

binarization method.

• Local binarization, uses different threshold values for each pixel according to the local

area information.

(a) Gray scale image. (b) Binary image.

Figure 2.3: Binarization.

2.3.1.4 Conversion to Other Representation

In some recognition application, character patterns are transformed to other representation

models. Zahn [57] proposed a method which represent the contour of shape or character

image as a function cumulative angular function φ(t), that represents the net angular bend be-

tween starting point and point t of contour (Figure 2.4). The φ(t) representation measures the

way in which the shape in question differs from the circular shape. Another method is pro-

posed by Tang in [49] which transform two dimensional binary pattern into one dimensional

function using rings. We will explain details of Tang’s projection method in the 4th chapter.

(a) Contour. (b) Cumulative angular function φ.

Figure 2.4: Illustration of the shape contour and cumulative angular function.
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2.3.2 Feature Extraction and Selection

A feature is a distinctive or characteristic measurements, transform, structural component

extracted from a segment of a pattern [17] which is used to describe patterns by intending

to minimize loss of any important information. It is important to make distinction between

feature extraction and selection. However these terms are used interchangeably in literature

[29]. Feature extraction is a process of determining feature vector of given pattern and it is

one of the most important step in pattern recognition applications. Because, it is required to

convert pattern into feature vector in order to make the recognition problem solvable.

Definition 2.3.1 Feature extraction: extraction from the raw data the information which is

more relevant for classification purposes, in the sense of minimizing the within-class pattern

variability while enhancing the between-class variability.

Feature selection refers to a process of selecting best subset from future set.

Definition 2.3.2 Given a set of features ~x ∈ Rd, select a subset of size ~̂x ∈ Rm where m ≤ d,

that leads to the smallest classification error.

Selecting features from set of measurements decreases the size of feature vector which im-

proves classification performance. The reasons for the necessity to decreasing feature di-

mension can be summarized as follows. Reducing computational complexity, data storage

requirement, training and utilization times. In addition, some of the extracted features might

be irrelevant, redundant or sensitive to distortion. Thus, it is required to eliminate those from

whole set.

There are many feature extraction techniques described in literature. These are include,

Fourier descriptors [10, 13, 57], Wavelet descriptors [13, 17, 50], Zernike moments [33],

Independent component analysis [42], Zoning [21]. However, efficiency of each feature ex-

traction method varies depending on the specific recognition problem and available data. In

addition, it is not easy to compare performance of feature extraction methods reported in the

literature, because they are based on different data sets [54]. These reasons make the selection

of best feature extraction method challenging task for given specific application.

• Fourier Transform: The common practice is to use the magnitude spectrum of mea-
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surement vector as the feature set. One of the most attractive property of the Fourier

transform is its position shift invariance if we only consider magnitude spectrum and

ignore the phase.

• Wavelet Transform: The wavelet transform is a series expansion technique that provide

us to represent the signal or image in different resolution levels which is called mul-

tiresolution representation. At different resolution, the details of images characterize

different physical structures [36].

• Template Matching: In this method the character image itself is used as a feature vector.

Similarity between the input and each template image is computed by comparing pixels

of the binary image [54]. Jaccard and Yula distances are two of the similarity measure-

ment methods. Let ni j be the number of pixel positions where the template pixel x is i

and the image pixel y is j, with i, j ∈ 0, 1

ni j =

n∑
m=1

δm(i, j), (2.2)

where

δm(i, j) =


1, i f (xm = i) ∧ (ym = j),

0, otherwise,
(2.3)

dJ =
n11

n11 + n10 + n01
, (2.4)

dY =
n11n00 − n10n01

n11n00 + n10n01
, (2.5)

• Zoning: The character image is divided into mxn zones then percentage of black pixels

analyzed as features Figure 2.5. Additional features can be used to improve perfor-

mance such as contour directions and strokes [21, 54].

• Crossing and Distances: Features are measured from the crossings count the number

of transitions from background to foreground pixels along vertical and horizontal di-

rections through the character image and distances calculate the distances of the first

image pixel detected from the upper and lower boundaries, along vertical and from the

left and right boundaries along horizontal lines (Figure 2.6) [22].

• Projection Histogram: Projection histograms count the number of pixels in each col-

umn and row of a character image Figure 2.7. Let y(i) represent the horizontal projec-
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(a) Image and di-
vided zones.

(b) Density of
zones.Darker
squares indicate
higher density of
zone pixels.

Figure 2.5: Zoning method.

Figure 2.6: Crossing and distances.

tion, dissimilarity between two character image is given as follows [54]:

D =

n∑
i=1

|Y1(i) − Y2(i)| , (2.6)

where

Y(i) =

i∑
j=1

y( j), (2.7)

Figure 2.7: Vertical and horizontal histogram.

• Zernike Moments: Zernike moments are projection of the input image onto space

spanned by the V functions which form a complete orthonormal set over the unit disk
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of x2 + y2 ≤ 1 in polar coordinates. The fundamental feature of Zernike moments

is their rotational invariance and the magnitudes of Zernike moments can be used as

rotationally invariant image feature [33, 54].

• Moment Invariants: An image can be represented as a point in N dimensional vector

space by using N moments [20, 54]. This converts the pattern recognition problem into

a standard decision theory problem. Let R be the represent the region of pattern to be

recognized then (p + q)-th order moment of region is defined as follows:∫ ∫
R

xpyqdxdy (p, q = 1, 2, 3, ...) , (2.8)

2.3.3 Classification Methods

After feature extraction and selection procedure completed, a classifier can be designed using

several number of available approaches. A classifier is a function that takes the various of

features in an example and predicts the class that example belongs to. It is not easy problem

to choose classifier, because there is no single optimal approach for classification. There are

many admissible classifier design approaches available, each capable of discriminating pat-

terns in certain portion of the feature space. In supervised learning, no matter which classifi-

cation approach is used, classification process operate in two mode:training and classification

[29]. In training mode, classifier is trained based on measured features of each known class

patterns. The learned classifier is basically a model of the relationship between the features

and the class label in the training set. In classification mode, the trained classifier assigns

the input pattern to one of the pattern classes considering measured features. Consequently

the performance of the classifier depends on both available training samples as well as the

specific values of the samples. The idea is that, if the classifier truly captured the relationship

between features and classes, it ought to be able to predict the classes of examples [44]. The

are four main recognition approaches:

• Template Matching.

• Statistical Approach.

• Syntactic or Structural Approach.

• Neural Networks.
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The above techniques are not necessarily independent and same recognition method may exist

with different interpretations.

2.3.3.1 Template Matching

It is one of the earliest and simplest approaches to pattern recognition, which is used to deter-

mine the analogy between two entities of the same type. In template matching, the pattern to

be recognized is matched against the stored template while taking into account all allowable

changes. Template matching is computationally demanding and it would be fail if the pat-

terns are distorted due to the imaging process, viewpoint change, or large interclass variations

among the patterns [29].

2.3.3.2 Statistical Approach

In statistical pattern recognition,given a set of measurements obtained through observation

and represented as a d dimensional pattern vector x, pattern is assigned to one of C possible

classes (ωi i = 1, ...,C). The features are assumed to have a probability density function

conditioned on the pattern class and feature vector x is viewed as an observation drawn ran-

domly from the class conditional probability function p(x|wi). A decision rule partitions the

measurement space into C regions (Ωi i = 1, ...,C). If an observation vector is in Ωi then it

is assumed to belong to class ωi.

Depending on the available information about the class conditional densities various strate-

gies are utilized in order to design classifier. If class conditional densities are known Bayes

decision rule can be used. On the other hand, it is not common situation in practice. In

such a case two different strategy can be followed: parametric and nonparametric. Parametric

approach assumes that the form of the class conditional densities are known, but some param-

eters of densities need to be estimated using training data. However, if the form of the class

conditional densities is not known it is required to estimate the density function or directly

construct the decision boundary. Detailed information about statistical recognition methods

can be found in [19, 56].
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2.3.3.3 Syntactic or Structural Approach

In many recognition problem it is appropriate to view pattern as being composed of simpler

sub patterns. The elementary sub patterns are called primitives and any given complex pattern

can be represented in terms of relationship between these primitives. Syntactic or Structural

pattern recognition, provides a description of how the given pattern is constructed from the

primitives. This paradigm has been used in situations where the patterns have a definite

structure which can be captured in terms of a set of rules [29].

2.3.3.4 Neural Networks

A neural network is a graph, with patterns represented in terms of numerical values attached

to the nodes, which can be called neurons, of the graph and transformations between patterns

achieved via message-passing algorithms. The nodes in the graph are divided as input nodes

or output nodes, and the graph as a whole can be viewed as a representation of a parallel mul-

tivariate function linking inputs to outputs. All links have a weights which parameterizing

the input and output function and they are adjusted by learning algorithm. Since it has a par-

allel architecture computations can be made in higher rate compared to classical techniques.

In addition, neural networks can adapt to changes in data and learn the characteristic of the

input.

Neural network architecture involves treating the network as a statistical processor, charac-

terized by making particular probabilistic assumptions about data. Patterns appearing on the

input nodes or the output nodes of a network are viewed as samples from probability densi-

ties, and a network is viewed as a probabilistic model that assigns probabilities to patterns.

The problem of learning the weights of a network is thereby reduced to a problem in statistics

that of finding weight values that look probable in the light of observed data [30].

2.4 Factors Affecting OCR Accuracy

There are a number of key factors to consider when observing a printed resource and assessing

whether it will produce the text resource accuracy desired through OCR technologies. Some

of the main ones are listed below:
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2.4.1 Scanning methods

If the image can be represented as gray scale or better, then this is more likely to improve

the OCR accuracy than almost any other scanning mechanism. Gray scale is clearly readable

thus, the lower the standard of scanned image then the worse the OCR accuracy is likely to

be. There are other factors related to the nature of the original that will affect the standard of

the scanned image and these should be accounted for as well.

2.4.2 Nature of original paper

The original paper on which text appears is critical to the scanned image. It is very difficult to

read text which appears against a very dark background, or is printed over words or graphics.

Programming a system to interpret only the relevant data and disregard the rest is a difficult

task. If the OCR engine cannot discriminate between the character and the paper background

noise then it will be more likely to misrepresent the character. Gray scale images as opposed

to black and white give the OCR software a better chance of discriminating between text and

noise and thus improve the accuracy.

2.4.3 Nature of printing

The nature of the printed text in the original may make a significant difference to OCR ac-

curacy. Obviously if the text is printed poorly or if it was typed and characters are broken,

faded or have indistinct edges then this will affect the ability of an OCR engine to recognize

patterns and differentiate between similar shaped characters. So the clarity of the printing is a

factor to consider. For example, while examining a string of characters combining letters and

numbers, there is very little visible difference between a capital letter ”O” and the numeral

”0”. Humans can re-read the sentence or entire paragraph to determine the accurate meaning.

This procedure, however, is much more difficult for a machine. Some fonts may also have

improved print clarity over others and also by the use of larger point sizes.
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2.4.4 Formatting complexities

Variations in font size and type face may result in misunderstanding the characters. Broken

character and touching character stemming from excess ink or paper degradations may not be

recognized.
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CHAPTER 3

PRELIMINARIES

3.1 Mathematical Background

3.1.1 The Fourier Transform

The Fourier transform was developed by Baron Jean-Baptiste-Joseph Fourier (1768-1830),

a French mathematician and physicist, and he applied it in order to explain many instances

of heat conduction. Fourier transform provides an alternative way of representing data by

decomposing a function in space or time into its various frequency components. The basic

building blocks are sine and cosine functions which vibrate at a frequency of n times per 2π

interval. Each frequency component have its own amplitude and phase information where

amplitude refers the magnitude of the sinusoidal and phase specifies the starting point in the

cycle. Fourier transform can be applied to both continuous and discrete functions.

3.1.1.1 The Continuous Fourier Transform

Theorem 3.1.1 If f : R → R is a continuously differentiable function with
∫ ∞
−∞

f (t)dt < ∞,

then the Fourier transform of f is given by

f̂ (ω) =
1
√

2π

∫ ∞

−∞

f (t)e−iωtdt, (3.1)

and inverse Fourier transform can be obtained by

f (t) =
1
√

2π

∫ ∞

−∞

f̂ (ω)eiωtdt, (3.2)

where ω is angular velocity.
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3.1.1.2 The Discrete Fourier Transform

The discrete Fourier transform is used to find the frequency spectrum of sampled functions

(Figure 3.1).

Definition 3.1.2 Let {yn}
N−1
0 be a sequence of N complex numbers the discrete Fourier trans-

form (DFT) of y is the sequence ŷn, where

ŷk =

N−1∑
n=0

yne
−2πikn

N (k = 0, ....,N − 1) , (3.3)

The inverse discrete Fourier transform is given by

yn =
1
N

N−1∑
n=0

ŷke
2πikn

N (n = 0, ....,N − 1) , (3.4)

(a) A sample function. (b) Amplitude spectrum.

Figure 3.1: A sample function and its single sided amplitude spectrum.

3.1.1.3 Basic Properties

In this section we will give some basic properties of the Fourier transform. We will use

notation F
[
f (t)

]
(ω) = f̂ (ω) and F −1

[
f̂ (ω)

]
(t) = f (t) to represent Fourier transform and its

inverse:

F [a f (t) + bg(t)](ω) = aF [ f (t)](ω) + bF [g(t)](ω), (3.5)

F −1
[
a f̂ (ω) + b̂g(ω)

]
(t) = aF −1

[
f̂ (ω)

]
(t) + bF −1 [̂

g(ω)
]
(t), (3.6)

F
[
tn f (t)

]
(ω) = in

dn

dωnF
[
f (t)

]
(ω), (3.7)
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F −1
[
ωn f̂ (ω)

]
(t) = (−i)n dn

dtnF
−1

[
f̂ (ω)

]
(t), (3.8)

F
[
f (t − a)

]
(ω) = e−iωaF

[
f (t)

]
(ω), (3.9)

F
[
f (bt)

]
(ω) =

1
b
F

[
f (t)

]
(
ω

b
), (3.10)

F [ f (t) ∗ g(t)](ω) = F [ f (t)](ω).F [g(t)](ω), (3.11)

3.1.2 The Wavelet Transform

Wavelets are wave-like osilating functions that satisfy certain mathematical requirements.

They have been introduced by A. Grossman and J. Morlet as function ψ (x) whose trans-

lation and dilation
(√

sψ (sx − t)
)
(s,t)∈R+×R

can be used for expansion of L2 (R) functions. J.

Stromberg and Y. Meyer showed independently that there exist wavelets ψ (x) such that whose

translation and dilation
(√

2 jψ
(
2 jx − k

))
( j,k)∈Z

is an orthonormal basis of L2 (R) [36, 37]. The

function ψ (x) has a companion, the scaling function φ (x). These two functions can be used

to decompose or reconstruct the functions in L2 (R). Scaling and wavelet functions satisfy the

following relations:

φ (x) =
∑
k∈Z

hkφ (2x − k) , (3.12)

ψ (x) =
∑
k∈Z

gkφ (2x − k) , (3.13)

where hk and gk are called lowpass and highpass filter coefficients respectively.

hk = 2 〈φ (x) , φ (2x − k)〉 , (3.14)

gk = (−1)kh∗1−k, (3.15)

3.1.2.1 Multiresolution Analysis

A multiresolution analysis of L2 (R) is defined as a sequence of closed subspaces V j ⊂

L2 (R) , ( j ∈ Z).

Definition 3.1.3 Let V j, ( j = . . . ,−2,−1, 0, 1, 2, . . .) be a sequence of subspaces of functions

in L2 (R). The collection of subspaces
{
V j, j ∈ Z

}
is called a multiresolution analysis with

scaling function φ if the following conditions hold:
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• V j ⊂ V j+1.

•
⋂

j∈Z V j = {0} and
⋃

j∈Z V j is dense in L2 (R).

• The function f (x) belongs to V j if and only if the function f
(
2− jx

)
belongs to V0.

• The function φ is belongs to V0 and the set {φ (x − k) , k ∈ Z} is orthonormal basis for

V0.

The V j’s are called approximation spaces and different choices of φ may yield different mul-

tiresolution analysis.

Theorem 3.1.4 Suppose
{
V j, j ∈ Z

}
is a multiresolution analysis with scaling function φ.

Then for any j ∈ Z the set of functions

φ jk (x) = 2 j/2φ(2 jx − k), (k ∈ Z) , (3.16)

is an orthonormal basis for V j.

Theorem 3.1.5 Suppose
{
V j, j ∈ Z

}
is a multiresolution analysis with scaling function φ.

Then the following relation holds:

φ(x) =
∑
k∈Z

hkφ(2x − k) where hk = 2
∫ ∞

−∞

φ(x)φ(2x − k), (3.17)

Moreover, we also have

φ(2 j−1x − l) =
∑
k∈Z

hk−2lφ(2 jx − k), (3.18)

or, equivalently

φ jk(x) = 2−1/2
∑
k∈Z

hk−2lφ jk, (3.19)

where φ jk(x) = 2 j/2φ(2 jx − k).

Theorem 3.1.6 Suppose
{
V j, j ∈ Z

}
is a multiresolution analysis with scaling function φ.

Then the following equalities hold: ∑
k∈Z

hk−2lhk = 2δl0, (3.20)

∑
k∈Z
|hk|

2 = 2, (3.21)
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∑
k∈Z

hk = 2, (3.22)∑
k∈Z

h2k = 1, (3.23)∑
k∈Z

h2k+1 = 1, (3.24)

Theorem 3.1.7 Suppose
{
V j, j ∈ Z

}
is a multiresolution analysis with scaling function

φ (x) =
∑
k∈Z

hkφ (2x − k) , (3.25)

Let
{
W j

}
be span of

{
ψ

(
2 jx − k

)
, k ∈ Z

}
, where

ψ (x) =
∑
k∈Z

(−1)kh∗1−kφ (2x − k) , (3.26)

Then W j ⊂ V j+1 is the orthogonal complement of V j in V j+1. Furthermore ψ jk (x) = 2 j/2ψ(2 jx−

k), k ∈ Z is an orthogonal basis for the W j.

By successive orthogonal decomposition,

V j = W j−1 ⊕W j−2 ⊕ . . . ⊕W0 ⊕ V0, (3.27)

= W j−1 ⊕W j−2 ⊕ . . . ⊕W0 ⊕W−1 ⊕ . . . . (3.28)

Equivalently, each f ∈ L2 (R) can be uniquely expressed as a sum
∑+∞

k=−∞ wk, (wk ∈ Wk) and

where the wk’s are mutually orthogonal.

3.1.2.2 Decomposition and Reconstruction

Suppose that we have function f which is already in one of the approximation space, such as

V j:

f =
∑
k∈Z

〈
f , φ jk

〉
φ jk, (3.29)

The one level decomposition of function f has the form

f =
∑
k∈Z

〈
f , φ j−1,k

〉
φ j−1,k︸                    ︷︷                    ︸

fi−1

+
∑
k∈Z

〈
f , ψ j−1,k

〉
ψ j−1,k︸                    ︷︷                    ︸

wi−1

, (3.30)

where fi−1 , wi−1 are called approximation and detail of function f respectively. Reconstruction

of function f is defined as:〈
f , φ jk

〉
= 2−1/2

∑
l∈Z

hk−2l
〈

f , φ j−1,l
〉

+ 2−1/2
∑
l∈Z

gk−2l
〈

f , ψ j−1,l
〉
, (3.31)
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Figure 3.2: Wavelet decomposition.

(a) A sample function. (b) Approximation coefficients at level 2.

(c) Detail coefficients at level 2. (d) Detail coefficients at level 1.

Figure 3.3: Decomposition of a sample function using Daubechies 2 wavelet.
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Figure 3.4: A sample function and its approximation, detail functions for 2 level Daubechies
2 wavelet decomposition.

3.1.2.3 Wavelet families

There are different types of wavelet families whose qualities vary according to several criteria.

The main criteria are:

• The support of ψ and F [Ψ(t)] (ω): the speed of convergence to 0 of these functions

when the time t or the frequency ω goes to infinity, which quantifies both time and

frequency localizations.

• The symmetry, which is useful in avoiding dephasing in image processing.

• The number of vanishing moments for ψ or for φ if it exists, which is useful for com-

pression purposes.

• The regularity, which is useful for getting nice features, like smoothness of the recon-

structed signal or image, and for the estimated function in nonlinear regression analysis.

These are associated with two properties that allow fast algorithm and space-saving coding:

• The existence of a scaling function φ.

• The orthogonality or the biorthogonality of the resulting analysis.
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There are several wavelet families available that have been proven to be useful in many ap-

plication areas including, pattern recognition, image processing, signal processing, etc. The

following section gives an brief information about the wavelet families that we used in our

study except Haar wavelet.

• Haar: It was proposed in 1909 by Alfréd Haar (Figure 3.5). Haar used these functions

to give an example of a countable orthonormal system for the space of square-integrable

functions on the real line. The Haar wavelet is the simplest possible wavelet. The

technical disadvantage of the Haar wavelet is that it is not continuous, and therefore not

differentiable. This property can, however, be an advantage for the analysis of signals

with sudden transitions:

φ(x) =


1, 0 ≤ x < 1,

0, elsewhere,
(3.32)

ψ(x) = φ(2x) − φ(2x − 1), (3.33)

Figure 3.5: Haar wavelet scaling, wavelet functions and decomposition, reconstruction filter
coefficients.

• Daubechies wavelets: Invented by Ingrid Daubechies (Figure 3.6). They are orthogonal

wavelets defining a discrete wavelet transform and characterized by a maximal number

of vanishing moments for some given support. With each wavelet type of this class,

25



there is a scaling function (also called father wavelet) which generates an orthogonal

multiresolution analysis.

Figure 3.6: Daubechies 8 scaling, wavelet functions and decomposition, reconstruction filter
coefficients.

• Symlets: The symlets are nearly symmetrical wavelets proposed by Daubechies as mod-

ifications to the Daubechies wavelet family (Figure 3.7).

Figure 3.7: Symlet 8 scaling, wavelet functions and decomposition, reconstruction filter co-
efficients.

• Coiflets: Coiflets are discrete wavelets designed by Ingrid Daubechies (Figure 3.8), at

the request of Ronald Coifman, to have scaling functions with vanishing moments. The
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wavelet is near symmetric, their wavelet functions have N/3 vanishing moments and

scaling functions N/3 − 1.

Figure 3.8: Coiflet 5 scaling, wavelet functions and decomposition, reconstruction filter coef-
ficients.

27



CHAPTER 4

IMPLEMENTATION

This chapter describes a translation, scale and rotation invariant machine printed character

recognition scheme. The scheme first apply noise filtering procedure to the given gray scale

character image, then filtered image is converted into binary format. The binary image is

transformed into another form using rings in order to obtain one dimensional translation,

scale and rotation invariant representation. Then the features are extracted from projected

character representation.

In this chapter, a detailed implementation of the character recognition model is described.

4.1 Recovering Occluded Character Image

The occlusion problem means that a part of one object is obscured by another object [1].

In our study foreground occlusion were considered. Because we have seen that after noise

filtering and binarization steps background has contained additional foreground colors if the

noise intensity was high (Figure 4.1). Although the images we have used are graysclae format,

the character recognition algorithm deals with black and white images. Everything white is

threat as if belonging to the character is called foreground color. The rest is black and called

background color.

If foreground occlusion occurs then there is occlusion because the foreground color is obscur-

ing some of the background color. So there is additional foreground color attached which now

belongs to the character [9]. Consequently, the character recognition system can take these

additional foreground colors as a part of the character which cause to fail the algorithm.
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Detecting and reconstructing of this type of occlusion is based on searching for character re-

gion entirely contained in the background, so that character region and background can be

separated. Extracted background can be reconstructed changing white regions with black

region. Figure 4.1 represents the occluded background and steps of recovering occluded char-

acter image.

(a) Noisy character image. (b) Occluded background
after noise filtering and bi-
narization.

(c) Detected character
boundary.

(d) Extracted background. (e) Reconstructed back-
ground.

(f) Reconstructed image.

Figure 4.1: Illustration of recovering character image from occlusion.

4.2 Pattern Representation

After noise filtering and binarization procedure, one dimensional representation of an image

obtained by using Transformation Ring Projection algorithm. The new representation of an

image is translation, scale and rotation invariant, which removes the necessity of selecting

invariant features from the extracted feature set. We will give theoretical information about

projection algorithm and also represent the outputs for shifted, scaled and rotated character

images.
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4.2.1 Transformation Ring Projection

The Transformation Ring Projection method proposed by Tang [49] in order to transform

two dimensional patterns into one dimension. If the projections are done by using rings, the

resulting one dimensional pattern is invariant to rotations.

Definition 4.2.1 A target pattern setW denoted as follows:

W = {w1, . . . ,wi, . . . ,wN} , (4.1)

where N ∈ I and wi is i th class which may contain finite pattern samples, i.e.,

wi ⊆ A = {a1, . . . , ak} (i = 1, . . . ,N) , (4.2)

We callW a standard set such that

|wi| = 1 ∀i = 1, . . . ,N ∀w ∈ W, (4.3)

That means all wi in setW are single pattern sample.

One important aspect of Transformation Ring Projection Method is that it uses a ring extrac-

tion panel defined as follows to extract the feature of the pattern samples in order to achieve

the orientation invariant property.

Definition 4.2.2 A ring extraction panel is a triple ϕ = (R,Θ, δ), where R,Θ ∈ I and δ, ring

extraction function, is a function of R and Θ, i.e., δ = p(R,Θ) and

∀k∈Ip(R,Θ)) = p(R,Θ + km), (4.4)

That means p(R,Θ) is a cycle function of Θ with a period of m.

A graphical representation of Ring-extraction panel is shown in Figure 4.2. It consists of n

concentric ring and m spokes, where m and n are integers. The radius of i th ring is denoted

by ri and s j j th spoke (i = 1, . . . , n; j = 1, . . . , k). Each cross point between ring and spoke

is called sample point and denoted by p(i, j). After going through the ring-extraction panel,

a pattern sample is represented by a vector called ring projection vector.
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Figure 4.2: Ring extraction panel [49].

Definition 4.2.3 A ring projection vector extracted by ring-extraction panel ϕ = (R,Θ, δ) is

~V =


pr1

...

prn

 =


∫ m

1 p(1, j)d j
...∫ m

1 p(n, j)d j

 . (4.5)

If we consider the discrete case of the digital image pattern, the ring-projector vector can be

represented as

~V =


∑m

1 p(1, j)d j
...∑m

1 p(n, j)d j

 . (4.6)

p(i, j) = f (x) =


1, if overlaps with pattern sample,

0, otherwise ,
(4.7)

Definition 4.2.4 The ri is called non-zero ring if pri , 0 otherwise ri called zero ring.

The ring projection operation play important role in Transformation Ring Projection Algo-

rithm. Its basic principle can be seen in Figure 4.3.

Theorem 4.2.5 Ring projection is a rotation invariant operation, i.e., for a given pattern, the

result of the pattern orientation independent [49].
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Figure 4.3: Ring projection [49].

Proof. For a given patterns Ω1 and Ω2 stands for two samples, between which there is a

rotated angle k. The ring projected vectors for Ω1 and Ω2 extracted by ϕ = (R,Θ, δ) are

~V1 =


pr1

1
...

pr1
n

 , ~V2 =


pr2

1
...

pr2
n

 , (4.8)

For the sample Ω1 ring projection of i th ring is

pr1
i

=

∫ m

1
p(1, j)d j (i = 1, . . . , n) , (4.9)

and for Ω1

pr2
i

=

∫ m

1
p(1, j + k)d j (i = 1, . . . , n) , (4.10)

where for certain ring i and k are constant.

Since p(i, j) is a periodic function with period of m it can be written as:

Let t = j + k then we have dt = d j

pr2
i

=

∫ m

1
p(1, j + k)d j =

∫ m+k

k
p(1, t)dt, (4.11)

pr2
i

=

∫ m+k

k
p(1, t)dt =

∫ m

k
p(1, t)dt +

∫ m+k

m
p(1, t)dt, (4.12)

pr2
i

=

∫ m

k
p(1, t)dt +

∫ k

1
p(1, t)dt =

∫ m

1
p(1, t)dt = pr1

i
, (4.13)

�

The theorems shows that the result of projection, all patterns in the same category but different

orientations (i.e., rotated) have same one dimensional pattern. However, ring projection does
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not solve the size and translation invariance problems. In order to obtain size and translation

invariance of one dimensional pattern, it is required to follow some procedures before the ring

projection method. We will explain these procedures in the next section.

(a) Not rotated. (b) 90. (c) 180. (d) 270.

(e) Ring Projections.

Figure 4.4: Rotated characters and ring projections.

4.2.2 Position Invariance

Center of the mass is a position and rotation invariant feature for the two dimensional binary

image [27]. Let (Cx,Cy) be the center of mass then it can be calculated in following way:

Cx =
m10

m00
, (4.14)

Cy =
m01

m00
, (4.15)

where mpq is the Cartesian moment of order p + q and is defined as

mpq =
∑

x

∑
y

xpyq p(x, y), (4.16)
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The position invariance can be obtained by translating the origin of our reference frame to the

center of mass [13, 27, 49]. After moving the origin of our reference frame to the center of

Figure 4.5: Binary image and its center of mass [49].

mass, we let

M(x, y) = max
N∈D

∣∣∣N(x, y) − p(Cx,Cy)
∣∣∣ , (4.17)

where
∣∣∣N(x, y) − p(Cx,Cy)

∣∣∣ represents the Euclidean distance between two points.In addition

we transform p(x, y) into polar coordinate based on the following relation:
x = γ cos θ,

y = γ sin θ,
(4.18)

Hence,

p(x, y) = p(γ cos θ, γ sin θ), (4.19)

where γ ∈ [0,∞) and θ ∈ (0, 2π].For any fixed γ ∈ [0,M], we then compute following integral.

f (γ) =

∫ 2π

0
p(γ cos θ, γ sin θ)dθ, (4.20)

The resulting f (γ) is a ring projection of the planar mass distribution of the two dimensional

pattern. However the images are most often stored in discrete formats we must modify f (γ)

into the following expression:

f (γ) =

M∑
k=0

p(γ cos θ, γ sin θ)dθ, (4.21)

4.2.3 Size Invariance

Size invariance can be obtained by normalizing the size of input pattern to predefined size S .

Let us assume s j is the largest non-zero ring distance of given input pattern. Then the size of
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(a) Original im-
age character.

(b) Shifted to
right bottom
corner.

(c) Shifted to
left upper corner.

(d) Ring Projections.

Figure 4.6: Characters and ring projections.

the input pattern is normalized by a factor of S
si

. However, the disadvantage of image resizing

is spatial distortion. Its effects on the projections in different scales can be seen at Figure 4.7.

Ellipses marks the affect of distortion on output.

4.2.4 TRP Algorithm

The steps of the Ring Projection Algorithm can be summarized as follows:

1. Normalize the input pattern to standard size.

2. Find center of mass of the two dimensional binary pattern and locate center of reference

to the center of mass.

3. Transform normalized pattern to polar coordinate system.
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(a) .5. (b) .8. (c) 1. (d) 1.2. (e) 1.5.

(f) Ring Projections.

Figure 4.7: Original and scaled character images and ring projections.

4. Apply ring projection and calculate one dimensional output for increasing ring radius.

4.3 Feature Extraction

In pattern recognition, each pattern for training and test is represented by a feature vector

and a discrimination rule is applied to classify a test vector. In our machine printed character

recognition approach two different type of feature extraction method were examined, Fourier

and Wavelet based. Fourier and Wavelet based feature extraction methods were used for

character [13, 26] and many other recognition problems [6, 10, 15, 38, 43, 45, 47, 57]. We

have extracted features from one dimensional character representation function obtained in

the previous section.
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4.3.1 Fourier Analysis

Fourier descriptors were used by Persoon [43], Zahn [57], Chen [13] and Impedovo [26] to

describe the characters, numerals and shape of closed planar figures. In this thesis, we have

applied Fourier transform after obtaining one dimensional character pattern representation.

Let y(n) is the one dimensional character representation obtained by applying Transformation

Ring Projection method, then the coefficients of Discrete Fourier Transform is:

ŷk =

N−1∑
n=0

y(n)e
−2πikn

N (k = 0, ....,N − 1) , (4.22)

The low frequency components of the Fourier transform determine global shape and high

frequency components determine the details of function. Thus, we can construct the original

function using first M coefficients with the inverse Fourier Transform.In addition, elimination

of high frequency descriptors is useful for noise cancellation. It is kind of low-pass filtering

procedure:

y(n) ≈
1
N

M−1∑
n=0

ŷne
2πikn

N (n = 0, ....,N − 1) (4.23)

Although only M coefficients are used to approximate the function y(n), n still ranges from 0

to N − 1. In other words, the same number of points is in the approximated function, however

not as many terms are used in reconstruction of each point. The reconstruction results with

different number of coefficients are shown at Figure 4.9

We composed feature vector by considering magnitude spectrum, which provide total amount

of information contained at a given frequency, of projected character representation. First 9

Fourier magnitude spectrum values were used as a feature vector in our OCR system imple-

mentation. Let F and V denote the frequency spectrum and feature vector respectively:

Fi = |Fi| e jω+φi , (4.24)

~V1 =


v1
...

v9

 =


|F1|

...

|F9|

 . (4.25)

4.3.2 Wavelet Transform

Wavelet transforms are rapidly surfacing in fields as diverse as telecommunication and biol-

ogy [55]. The main feature of wavelets is that their ability to represent and detect localized fre-
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(a) Character image.

(b) Projected character representation (Q). (c) Single sided magnitude spectrum (Q.)

Figure 4.8: Illustration of sample character, its ring projection and single side magnitude
spectrum.

quency information about a function or signal. They are suitable for analyzing non-stationary

signals where the Fourier transform has difficulties, and become a powerful alternative in

many application areas.

Wavelet transform has been used for character recognition [12, 13, 15, 34, 50], phoneme

recognition [35], heart valve sound classification [6]. The main difficulty at wavelet transform

based pattern recognition problems is to determine appropriate wavelet basis and number of

decomposition level. We have preferred 8 level decomposition to compose feature vector as

same length as we did in Fourier transform based feature extraction procedure. In addition,

we have find no certain approach determining decomposition level in our literature survey.

There are several approaches have been applied in literature to compose feature vector based

on wavelet transform. Combination of maximum,minimum,mean and standard deviation of

the wavelet coefficients, energy of signal at each resolution level, and average of absolute

value of the signal at each resolution level are some of them.

Daubechies 8, Symlet 8 and Coiflet 5 (Figures 3.6,3.7,3.8) wavelets were used to analyze and

extract feature vectors. The features are extracted from wavelet decomposition components of

the function figure 4.10 using equation 4.26. Thus the each component of signal is expressed
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(a) Reconstruction, using only first 3 coefficients. (b) Error.

(c) Reconstruction, using only first 5 coefficients. (d) Error.

(e) Reconstruction, using only first 7 coefficients. (f) Error.

(g) Reconstruction, using only first 9 coefficients. (h) Error.

Figure 4.9: Illustration of reconstruction of function given at figure 4.8.b using first 3,5,7 and
9 Fourier descriptors.
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with a single value, where f j is the average of j-th component of function and the ci j indicates

the j th component vector of wavelet decomposition of signal, n is the dimension of the signal

in a window.

Figure 4.10: The wavelet decomposition.

f j =

∑n
i=1

∣∣∣ci j
∣∣∣

n
, (4.26)

4.4 Classification Methods

4.4.1 Nearest Neighbor Algorithm

The nearest neighbor algorithm is a method for classifying sample point based on the nearest

of a set of previously classified points. It is a type of lazy learning algorithm which means all

computations is postponed until classification. The nearest neighbor algorithm is a suboptimal

procedure[19]. However it has a probability of a error which is less than twice the Bayes

probability and any other decision rule based on the infinite sample set [16, 19].

Assume that we have a new pair (x, ω) and it is desired to estimate class ω by utilizing the

information contained in the set of points for which the correct classification is known. We

shall call neighbor points x
′

.

x
′

∈ {x1, . . . , xn} , (4.27)
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The nearest neighbor to x is defined as

min
i=1,...,n

d(xi, x) = d(x
′

n, x), (4.28)

where d is distance measure. Then decision is made by assigning x to the category of nearest

neighbor x
′

n. The nearest neighbor algorithm allow us to partition the feature space into cells

consisting of all points closer to given training point x than to any other training points, and it

is called Voronoi tessellation [19].

Figure 4.11: Voronoi polygons:The partitioning of a plane with n points into convex poly-
gons such that each polygon contains exactly one generating point and every point in a given
polygon is closer to its generating point than to any other.

4.4.2 Linear Discriminant Analysis

Linear discriminant analysis is a well-studied topic in pattern recognition [31]. If underlying

densities were unknown, it could be assumed that the parametric form of the discriminant

functions were known and it’s parameters can be estimated using samples, instead of estimat-

ing values or parameters of probability densities. The problem of finding linear discriminant

function is formulated as a minimization of some criterion function. Sample risk or training

error are the obvious criterion functions.

Main advantage of linear discriminant functions is their simplicity. In some cases it could be

desirable to choose implementation simplicity by scarifying classification performance. We

have implemented two different linear discriminant method given below.

g(x) = ω0 + ω1x1 + ω2x2 + . . . + ωd xd, (4.29)
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g(x) = ω0 + ω1x1 + ω2x2 + . . . + ωd xd + ω11x2
1 + ω12x2

2 + . . . + ω1d x2
d, (4.30)

4.4.2.1 Generalized Linear Discriminant Function

Linear discriminant function g(x) can be written as:

g(x) = ω0 +

d∑
i=1

ωixi = ω0 + wT x = aT y, (4.31)

y = (1, x1, . . . , xd)T , (4.32)

a = (ω0, ω1, . . . , ωd)T , (4.33)

where ωi is the weight ω0 the bias. The discriminant function g(x) give an algebraic measure

of the distance from x to hyperplane H . The orientation of H is determined by the normal

vector ~ω and the location of the surface by the bias ω0. Polynomial or quadratic discriminant

Figure 4.12: Separating hyperplane.

function can be obtained by adding additional terms into equation given above

g(x) = ω0 +

d∑
i=1

ωixi +

d∑
i=1

d∑
j=1

ωi jxix j = aT y, (4.34)

y =
(
1, x1, . . . , xd, x2

1, x1x2, . . . , x2
d

)T
, (4.35)

a = (ω0, ω1, . . . , ωd, ω11, ω12, . . . , ωdd)T (4.36)

Polynomial discriminant function is not linear in x, but it is linear in y. In multicategory

case linear discriminant functions divides the feature space into c decision region. Separating

hyperplaneHi j is defined by

gi(x) = ωi0 + wT
i xi (i = 1, . . . , c) , (4.37)
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gi(x) = g j(x), (4.38)

or

(wi − w j)T + (ωi0 − ω j0) = 0, (4.39)

where (wi − w j) ⊥ Hi j and distance from x to Hi j is given by gi−g j
‖wi−w j‖

. Linear classifiers use

the following classification rule:

C(x) = Ci i f gi(x) = max
j=1,...,c

g j(x) (i = 1, 2, . . . , c) , (4.40)

There are several approaches to define criterion function. Perceptron and Minimum Squared

Error (MSE) are most popular of them. In our study we concentrated on MSE criterion func-

tion. In the next part, we will give information about how MSE formulates and solve criterion

function.

4.4.2.2 The Minimum Squared Error Criterion

The MSE formulates the problem as a set of linear equations.

aT yi = bi, bi > 0 (i = 1, 2, . . . , n) , (4.41)

Let Y be a n×(d+1) matrix whose i th row is the yT
i and b the column vector b = (b1, . . . , bn)T

then our problem is to find a weight vector a which minimizes squared error.

Ya = b, (4.42)

Y =


Y10 . . . Y1d
...

. . .
...

Yn0 . . . Ynd

 , (4.43)

b =


b1
...

bd

 a =


a1
...

ad

 , (4.44)

e = Ya − b. (4.45)

Criterion function is defined as follows:

Js = ‖Ya − b‖2 =
∑

i

(aT yi − bi)2. (4.46)
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Closed form solution of the problem can be found by using gradient

∇Js = 2YT (Ya − b) = 0, (4.47)

a = (YT Y)−1YT b, (4.48)

The MSE solution is dependent to the margin vector b. If margin vector is not chosen cau-

tiously MSE doesn’t guarantee that the resulting separating hyperplane produce error free

classification even if the sample sets are linearly separable. Ho-Kashyap procedure proposes

adjustment rules for the margin vector. In the linearly separable case margin vector ~b able to

converge to solution. However for the non-separable case inconsistently between minimum

squared error and minimum classification error remains [19].

4.4.2.3 Instability Of The Generalized Inverse Solution

Problems are generally defined as ill-posed when a small change in the data may cause a large

change in the solution. The solution of equation 4.42 can be extremely unstable when one of

the singular values of Y is small. Small singular values cause the generalized inverse solution

to be extremely sensitive to small amounts of noise in the data [5].

It is useful to analyze inverse solution from singular value spectrum. Let Y be a m by n matrix.

In singular value decomposition matrix Y is factored into:

Y = US VT , (4.49)

where

U is m by m orthogonal matrix with columns that are unit basis vector spanning the data

space Rm.

V is n by n orthogonal matrix with columns that are unit basis vector spanning the model

space Rn.

S is m by n diagonal matrix with nonnegative diagonal elements called singular values.

S =

S p 0

0 0

 , (4.50)
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S p is p by p diagonal matrix composed of positive singular values.

U =

[
Up U0

]
, (4.51)

V =

[
Vp V0

]
, (4.52)

Expanding of the singular value decomposition representation of Y in terms of U and V gives:

Y = US VT = UpS pVT
p , (4.53)

(YT Y)−1YT = VpS pUT
p , (4.54)

Generalized inverse solution is given as:

a = (YT Y)−1YT b = VpS pUT
p b =

p∑
i=1

U.,ib
si

V.,i, (4.55)

The presence of very small singular value si in the denominator can thus give us very large

coefficients for the corresponding model space V.,i and these basis vector can dominate the

solution. Perturbation in the data b + ∆b is just magnified by factor 1/si resulting large devia-

tions in the computed solution and become practically useless. The development of theoretical

strategies to mitigate this instability is known as regularization theory. One way to stabilize

the solution process is to restrict the notion of solution [48]. This stabilized or regularized,

the solution in the sense that it made the result less sensitive the data noise [5]. Tikhonov

regularization is a technique for regularizing discrete ill-posed problems.

4.4.2.4 Tikhonov Regularization

One of the most popular regularization methods to obtain a meaningful solution is Tikhonov

regularization in which the linear system or the least square problem is replaced by the min-

imization problem. In the simplest case, assume A and B are Hilbert spaces. To obtain

regularized solution to equation 4.42, choose a to fit data b in least square sense, but penalize

solutions of large norm. Solve minimization problem:

aα = arg min
a∈A

{
‖Ya − b‖2 + α ‖a‖2

}
, (4.56)

α > 0 is called regularization parameter to be chosen. For some problems (particularly in

image restoration) it is better to consider

aα = arg min
a∈A

{
‖Ya − b‖2 + α ‖La‖2

}
, (4.57)
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where L is typically the discretization of a derivative operator of first or second order. Numer-

ically the problem 4.57 is solved by considering it as a least squares problem.

min

∥∥∥∥∥∥∥∥∥
 Y
√
αL

 a −

b0

∥∥∥∥∥∥∥∥∥ , (4.58)

The solution of equation 4.56 solves the linear system

(
YT Y + αI

)
a = YT b, (4.59)

The choice of the regularization parameter α is crucial since if α is too small the solution is

contaminated by the noise in the right-hand side (as it is with α = 0, on the other hand if α is

too large the solution is a poor approximation of the original problem.

When the dimension is small enough the regularized solution aα of equation 4.59 can be

computed using the singular value decomposition of Y , which is m by n matrix, as:

aα =

k∑
i=1

s2
i

s2
i + α2

(
U.,i

)T b
si

V.,i, (4.60)

where k = min (m, n). The quantities

fi =
si

s2
i + α2

, (4.61)

are called filter factor. For si >> α, fi ≈ 1, and for si << α, fi ≈ 0. For singular values

between these two extremes, as the si decrease, the fi decrease monotonically.

If L = I (equation 4.57) the problem is said to be in standard form. Otherwise it is in general

form. In this case the generalized singular value decomposition can be used. The factorization

of the pair (Y, L) is

Y = U


Γ 0

0 In−p

0 0

 W−1, L = V
(
Υ 0

)
W−1, (4.62)

where L is p by n and m ≥ n ≥ p. The matrices U m by m and V p by p are orthonormal and

the nonsingular matrix W is n by n. The matrices Γ and Υ with diagonal elements γi and τi are

diagonal with γi + τi = 1. The generalized singular values of the matrix
(
A L

)
are defined

as si = γi/τi. The last n − p columns of W form a basis of the null space of L. If L = I the

generalized singular value decomposition reduces to the singular value decomposition of Y .
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For the generalized form, the regularized solution is written as:

aα =

p∑
i=1

s2
i

s2
i + α2

(
U.,i

)T b
γi

W.,i +

n∑
i=p+1

(
U.,i

)T bW.,i, (4.63)

The second term in the right-hand side is the (unregularized) component of the solution in the

null space of L.

Many methods have been devised for choosing α, Morozov’s Discrepancy Principle, The

L-curve Criterion, Generalized Cross Validation are some of them. We will give brief infor-

mation about these techniques but detailed information can be found in [5, 23].

Morozov’s Discrepancy Principle can be used only if the (norm of the) noise vector ε is known

[23]. The value of the regularization parameter α is chosen such that the norm of the residual

equals the norm of the noise vector using the mathematical solution from equation 4.59,∥∥∥∥∥b − Y
(
YT Y + αI

)−1
AT b

∥∥∥∥∥ = ‖ε‖ , (4.64)

The L-curve Criterion use curve (‖aα‖ , ‖b − Yaα‖) obtained by varying the value of α ∈

[0,∞). This curve is known as the L-curve since it is shaped as the letter ”L” (Figure 4.13). It

is more illuminating to look at this curve in a log-log scale. It is proposed to choose the value

α corresponding to the vertex or the corner of the L-curve that is the point with maximal cur-

vature. A motivation for choosing the vertex is, as we said before, to have a balance between

α being too small and the solution contaminated by noise, and α being too large giving a poor

approximation of the solution [23]. The vertex of the L-curve gives an average value between

these two extremes.

Figure 4.13: L curve.
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Generalized cross validation is an alternative method for selecting a regularization parameter

α. Cross validation and generalized cross-validation are techniques for model fitting for given

data and model evaluation. These two tasks can be accomplished using independent data

samples. The available data can be split into two sets, one for fitting and one for evaluation.

This is not very efficient if the sample is not very large [23].

Generalized cross validation for large scale linear ill-posed problems uses the techniques of

estimation of quadratic forms to compute the parameter of the model. The regularized prob-

lem is written as [23]:

min
{
‖b − Ya‖2 + mα ‖a‖2

}
, (4.65)

where α > 0 is the regularization parameter and the matrix Y is m by n. The generalized cross

validation estimate of the parameter α is the minimizer of

G(α) =

1
m

∥∥∥∥∥(I − Y
(
YT Y + mαI

)−1
YT

)
b
∥∥∥∥∥2

(
1
m tr

(
I − Y

(
YT Y + mαI

)−1 YT
))2 , (4.66)

The numerator is, up to a scaling factor, the square of the norm of the residual corresponding

to the solution of the normal equations of the regularized problem [23].
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CHAPTER 5

PERFORMANCE EVALUATION

In order to test the efficiency of our character recognition system approach, we have used

set of 26 uppercase English characters in 7 different fonts. The original English characters

were represented by 100 by 100 pixels. All the reference gray scale character images were

prepared by using commercial image softwares and Matlab. Up to this point all the processes

can be called segmentation. In our experiment we have used 2 different types of classifi-

cation method: Nearest Neighbor Algorithm and Linear Discriminant Analysis. In Linear

Discriminant Analysis we have implemented linear and quadratic Minimum Squared Error

discriminant functions as a classification methods. Matlab code for Minimum Squared Error

discriminant functions can be found on Appendix A.

This section is divided into 5 subsections. Since translation will not change the relative posi-

tion of the center of the mass of the character, our major concern was the system performance

under rotation, scaling and noise. First we have computed training error for each feature

extraction and classification method, because training error gives foreknowledge about effi-

ciency of recognition approach. Next, we have tested our recognition scheme on scaled and

rotated characters to observe sensitivity of feature extraction and classification methods under

these transformations. Then, performance of each method was examined using combination

of randomly rotated and scaled character sets. The last section represents the effect of noise

on recognition process. Recognition rates of characters for each test can be found in the next

chapter.
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5.1 Test Results on Isolated Character Sets

5.1.1 Training Error

First we have observed training errors of each feature extraction and classification methods

mentioned above utilizing training data as a test data. Training error gives foreknowledge

about efficiency of the given method, but 0% training error does not mean that it will produce

100 % recognition rate. Training error of each classification methods were calculated using

729 training image and recognition rates of each classifier are listed at Table 5.1 for Fourier,

Daubechies 8, Symlet 8 and Coiflet 5 wavelets based approximations respectively.

At a first glance to the training errors, we can say that,it is obvious feature space can not be

divided by linear discriminant function in our case. Quadratic Mean Squared Error based

discriminant function seems to be admissible method even if it has complications recogniz-

ing some of the characters. Nearest Neighbor method produced no training error. Features

extracted using wavelet and Fourier transforms yielded similar training errors under all clas-

sification methods.

Table 5.1: Training error.

Method Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
Fourier 0 26.2363 2.7473
Daubechies 8 0 27.1978 1.5109
Symlet 8 0 26.0989 2.7473
Coiflet 5 0 22.9396 1.511

5.1.2 Experiments on Size Invariance

We have observed the effect of scaling on character recognition process using 11 different

scale factor, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 times of the original character

size. Figure 5.1 shows that recognition rates decrease dramatically if the scaling factor get

smaller, because of character size normalization procedure. Because, size normalization is

causing spatial distortion on character image. The effect of spatial distortion can be seen at

figure 5.1. However, while size of scaled image get closer to the predetermined normalized

character size, decrease on recognition rates become smaller. In addition experimental results
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also showed that wavelet based feature sets and linear,quadratic Minimum Squared Error dis-

criminant functions are more sensitive to the distortions compared to Fourier based approach

and Nearest Neighbor Algorithm.

Table 5.2: Average recognition rates of scaled characters.

Method Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
Fourier 93.8686 63.3741 80.3946
Daubechies 8 88.9486 63.4615 80.8816
Symlet 8 89.0235 64.5604 81.9056
Coiflet 5 89.3232 66.4835 82.3676

5.1.3 Experiments on Rotation Invariance

We have used 12 different rotation angle (15,30,45,60,75,90,105,120,135,150,175,180 de-

grees) in order to monitor the behavior of recognition scheme. 336 images (total 8736) were

used for each character. We were expecting that rotation has no or very little influence on

recognition rates. However, we observed a small effect for combination of Nearest Neigh-

bor Algorithm and Fourier based feature sets results but there were considerable difference

for other combinations (Table 5.3). These results again represented how much sensitive the

Mean Squared Error based classifiers and wavelet based feature sets are for our approach.

Possible source of change on recognition rate might be distortions or computation errors in

image processing steps whilst producing rotated character image.

Table 5.3: Average recognition rates of rotated characters.

Method Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
Fourier 99.4963 67.2390 89.3773
Daubechies 8 97.1955 68.4982 90.4304
Symlet 8 96.9322 69.5398 89.9611
Coiflet 5 97.4588 72.4817 91.5751

5.1.4 Performance Test

The full performance of each feature extraction and classification methods were tested using

11.648 randomly scaled and rotated character images. Table 5.4 illustrates the performance

test results.
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(a) Fourier based.

(b) Daubechies 8 based.

(c) Symlet 8 based.

(d) Coiflet 5 based.

Figure 5.1: Illustration of average recognition rate change for scaled characters.
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(a) Fourier based.

(b) Daubechies 8 based.

(c) Symlet 8 based.

(d) Coiflet 5 based.

Figure 5.2: Illustration of average recognition rate change for rotated characters.
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Table 5.4: Average recognition rates for various scaled and rotated characters.

Method Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
Fourier 96.1367 62.9464 82.3403
Daubechies 8 91.2689 63.6418 82.8039
Symlet 8 90.9942 65.8053 83.6968
Coiflet 5 92.3592 67.4536 84.2119

5.1.5 Effect of Noise

Effect of noise on recognition output were observed using noisy images contaminated by salt

and pepper noise having 0.1 mean and variance changing from 0.02 to 0.18. 8736 character

image were used in this experiment, sample noisy images can be seen in Figure 5.3. In our

(a) m = 0.1 var =

0.04.
(b) m = 0.1 var =

0.12.

Figure 5.3: Sample noisy images.

implementation we have applied Median noise filtering implemented by Matlab function med-

filt2 before Transformation Ring Projection procedure. In the first test we did not apply any

occlusion removing procedure and have seen that recognition rate reduced dramatically with

increasing noise variance (Figure 5.4), because of high noise sensitivity of ring projection

method. However, in the second test after noise filtering we have recovered occluded char-

acter image by removing foreground occlusion Figure 5.5. Removing foreground occlusion

considerably changed recognition rate in the better way.
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(a) Fourier based.

(b) Daubechies 8 based.

(c) Symlet 8 based.

(d) Coiflet 5 based.

Figure 5.4: Illustration of change in recognition rate with increasing noise variance (without
removing occlusion).

55



(a) Fourier based.

(b) Daubechies 8 based.

(c) Symlet 8 based.

(d) Coiflet 5 based.

Figure 5.5: Illustration of change in recognition rate with increasing noise variance (with
removed occlusion).
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CHAPTER 6

EXPERIMENTAL RESULTS

This chapter gives the character fonts which are used in our experiments and also obtained

character recognition performances for each isolated character.

6.1 Fonts

(a) TimesNewRoman.

(b) Arial.

(c) Virinda.

(d) Tahoma.

(e) Simsum.

(f) Charming.

(g) KatyBerry.

Figure 6.1: Character fonts.
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6.2 Test Results for Scaled Characters

Table 6.1: Average recognition rates for scaled characters (Fourier).

Character Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
A 94.8052 49.3506 69.1558
B 92.5325 69.8052 73.3766
C 96.7532 58.7662 81.4935
D 92.2078 69.4805 84.4146
E 88.9610 36.0390 60.7143
F 90.5844 38.3117 62.9870
G 96.4286 62.3377 70.1299
H 90.9091 58.4416 71.7532
I 88.9610 79.5455 74.3506
J 96.1039 70.1299 87.0130
K 94.8052 65.5844 87.3377
L 94.4805 41.2338 76.2987
M 96.7532 67.2078 72.0779
N 91.2338 53.8961 68.5065
O 98.3766 78.2468 82.4675
P 93.5065 59.0909 72.4026
Q 95.7792 53.2468 84.0909
R 93.1818 47.4026 85.3896
S 95.7792 54.8701 86.0390
T 92.5325 76.9481 88.9610
U 95.1299 74.0260 92.8571
V 99.0260 86.0390 93.5065
W 96.4286 77.9221 95.1299
X 91.5584 67.5325 88.6364
Y 91.5584 69.1558 88.6364
Z 92.2078 83.1169 92.5325

Average 93.8686 63.3741 80.3946

Table 6.2: Average recognition rates of scaled characters (Daubechies 8).

Character Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
A 89.6104 50.3247 63.3117
B 90.9091 69.4805 72.4026
C 89.9351 67.2078 76.6234
D 88.6364 62.3377 77.5974
E 86.3636 27.9221 62.6623
F 78.8961 50.9740 74.0260
G 90.5844 46.7532 75.0000
H 83.7662 65.5844 81.8182
I 77.9221 79.8701 78.5714
J 90.5844 61.6883 76.6234
K 91.5584 67.2078 84.7403
L 90.9091 70.7792 85.7143
M 94.4805 65.2597 82.4675
N 88.3117 51.6234 75.6494
O 79.2208 67.8571 84.7403
P 88.3117 75.0000 78.2468
Q 93.5065 52.2727 80.1948
R 91.2338 50.9740 82.4675
S 81.1688 63.9610 79.8701
T 92.8571 84.4156 85.7143
U 94.4805 68.5065 89.2857
V 99.0260 81.8182 93.5065
W 98.0519 67.5325 93.1818
X 87.3377 62.6623 94.8052
Y 85.0649 61.0390 81.1688
Z 89.9351 76.9481 92.5325

Average 88.9486 63.4615 80.8816
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Table 6.3: Average recognition rates of scaled characters (Symlet 8).

Character Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
A 85.3896 53.8961 71.4286
B 88.9610 75.9740 77.2727
C 96.4286 71.1039 82.4675
D 89.9351 75.3247 80.5195
E 83.4416 32.4675 65.2597
F 82.7922 54.5455 61.0390
G 94.4805 61.0390 71.4286
H 85.7143 52.2727 81.1688
I 81.4935 72.7273 77.5974
J 89.2857 52.5974 76.2987
K 87.0130 51.2987 83.1169
L 92.2078 67.5325 87.3377
M 93.8312 62.3377 77.9221
N 82.7922 59.7403 86.6883
O 95.1299 59.0909 77.9221
P 86.3636 69.1558 85.3896
Q 87.9870 66.2338 88.9610
R 89.9351 65.2597 80.8442
S 88.9610 56.4935 86.0390
T 90.9091 82.1429 91.2338
U 91.8831 84.4156 91.8831
V 98.3766 85.0649 96.4286
W 90.9091 70.7792 88.6364
X 87.9870 67.2078 91.8831
Y 83.4416 56.1688 79.2208
Z 88.9610 73.7013 91.5584

Average 89.0235 64.5604 81.9056

Table 6.4: Average recognition rates of scaled characters (Coiflet 5).

Character Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
A 85.7143 54.8701 68.1818
B 94.8052 78.5714 75.6494
C 93.5065 61.3636 85.0649
D 89.6104 55.1948 81.8182
E 79.5455 40.9091 70.4545
F 79.2208 50.0000 64.9351
G 95.7792 66.8831 74.6753
H 84.4156 60.7143 82.7922
I 83.1169 71.4286 91.5584
J 81.8182 64.2857 88.9610
K 87.6623 68.8312 77.2727
L 94.8052 66.2338 89.6104
M 94.1558 57.1429 76.2987
N 89.6104 66.2338 83.4416
O 95.7792 59.7403 80.1948
P 85.7143 72.4026 80.5195
Q 88.6364 70.1299 83.1169
R 81.4935 67.8571 76.9481
S 93.1818 55.8442 82.1429
T 91.5584 74.0260 81.4935
U 89.2857 86.3636 93.5065
V 98.0519 89.6104 94.8052
W 90.2597 82.1429 91.8831
X 94.1558 72.7273 97.0779
Y 88.3117 62.3377 80.5195
Z 92.2078 72.7273 88.6364

Average 89.3232 66.4835 82.3676
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6.3 Test Results for Rotated Characters

Table 6.5: Average recognition rates for rotated characters (Fourier).

Character Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
A 99.4048 49.1071 82.1429
B 100 77.6786 85.7143
C 100 55.6548 87.2024
D 98.2143 79.7619 89.5833
E 100 44.9405 83.3333
F 99.1071 48.5119 78.5714
G 99.4048 62.50 81.8452
H 99.7024 68.1548 83.3333
I 95.8333 77.3810 83.6310
J 99.7024 76.1905 93.4524
K 100 74.1071 95.5357
L 100 47.3214 87.5
M 100 75.00 75.5952
N 99.1071 55.0595 81.5476
O 100 79.7619 89.2857
P 100 59.2262 81.25
Q 100 54.1667 95.5357
R 100 52.9762 97.9167
S 99.7024 52.9762 93.4524
T 96.7262 83.3333 95.8333
U 100 78.5714 99.1071
V 100 85.7143 94.6429
W 100 76.7857 97.6190
X 100 73.2143 93.4524
Y 100 73.5119 98.2143
Z 100 86.6071 98.5119

Average 99.4963 67.2390 89.3773

Table 6.6: Average recognition rates of rotated characters (Daubechies 8).

Character Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
A 96.7262 54.4643 73.5119
B 99.4048 73.2143 87.2024
C 96.4286 70.8333 86.3095
D 91.9643 69.6429 89.8810
E 97.9167 33.9286 87.5000
F 91.6667 58.3333 83.6310
G 96.4286 49.7024 87.2024
H 97.3214 66.9643 95.5357
I 88.0952 86.9048 82.1429
J 96.1310 67.8571 87.7976
K 99.4048 72.0238 94.9405
L 100 77.6786 93.1548
M 98.5119 64.8810 97.0238
N 98.2143 53.5714 89.2857
O 92.5595 74.4048 91.3690
P 98.8095 82.7381 94.6429
Q 99.7024 59.5238 86.0119
R 98.5119 59.5238 90.7738
S 95.8333 77.6786 92.8571
T 99.7024 88.3929 89.2857
U 98.5119 67.2619 93.4524
V 100 82.7381 96.7262
W 100 71.4286 95.5357
X 98.5119 70.5357 97.9167
Y 96.7262 62.5000 88.9881
Z 100 84.2262 98.5119
Average 97.1955 68.4982 90.4304
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Table 6.7: Average recognition rates of rotated characters (Symlet 8).

Character Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
A 97.3214 55.3571 80.9524
B 93.4524 88.3929 89.2857
C 97.6190 69.0476 86.9048
D 97.3214 83.0357 88.3929
E 98.5119 43.4524 87.5000
F 98.5119 63.0952 72.6190
G 97.9167 60.7143 79.1667
H 92.8571 68.4524 93.7500
I 92.8571 79.4643 81.5476
J 93.7500 52.6786 82.7381
K 96.7262 54.1667 85.7143
L 96.7262 71.1310 89.2857
M 99.4048 65.7738 89.5833
N 97.3214 61.3095 94.6429
O 97.9167 68.7500 88.0952
P 99.4048 72.3214 95.5357
Q 97.3214 70.2381 98.8095
R 97.3214 71.7262 92.2619
S 95.2381 62.7976 97.0238
T 94.9405 85.4167 97.9167
U 96.4286 90.4762 96.7262
V 100 88.3929 96.7262
W 96.1310 75.8929 94.9405
X 99.1071 65.4762 88.9881
Y 97.3214 60.1190 91.9643
Z 98.8095 80.3571 97.9167
Average 96.9322 69.5398 89.9611

Table 6.8: Average recognition rates of rotated characters (Coiflet 5).

Character Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
A 96.1310 55.0595 80.6548
B 99.4048 88.9881 83.6310
C 96.7262 66.0714 88.6905
D 99.7024 66.6667 90.7738
E 97.0238 52.3810 88.3929
F 92.8571 56.5476 80.3571
G 100 77.9762 85.7143
H 98.5119 70.5357 96.4286
I 93.7500 82.1429 95.5357
J 92.5595 64.5833 92.8571
K 93.1548 72.0238 85.4167
L 99.7024 63.9881 92.2619
M 99.4048 60.1190 91.0714
N 98.8095 77.0833 96.4286
O 98.2143 65.1786 97.9167
P 95.5357 69.9405 92.2619
Q 99.7024 83.0357 96.4286
R 95.2381 73.5119 85.1190
S 99.4048 58.9286 93.7500
T 97.3214 80.6548 88.9881
U 95.8333 96.4286 97.9167
V 99.1071 95.8333 98.2143
W 96.7262 88.0952 96.7262
X 100 65.4762 98.2143
Y 99.1071 75.0000 90.7738
Z 100 78.2738 96.4286
Average 97.4588 72.4817 91.5751
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6.4 Performance Test Results

Table 6.9: Performance test results (Fourier).

Character Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
A 96.6518 45.7589 74.3304
B 96.875 73.8839 74.3304
C 97.5446 51.7857 77.0089
D 94.1964 69.8661 85.0446
E 94.8661 32.5893 67.4107
F 92.1875 36.3839 64.2857
G 97.9911 57.8125 73.4375
H 94.8661 61.6071 72.3214
I 89.7321 80.5804 75.6696
J 99.1071 70.0893 88.8393
K 96.2054 63.6161 89.7321
L 99.1071 43.0804 80.1339
M 97.0982 64.9554 64.5089
N 96.6518 54.2411 75
O 99.3304 77.2321 83.0357
P 97.0982 56.0268 78.5714
Q 97.5446 51.5625 85.9375
R 95.3125 48.8839 90.6250
S 96.875 52.4554 89.5089
T 93.75 77.2321 89.2857
U 97.9911 75.2232 93.0804
V 98.4375 88.8393 94.4196
W 98.2143 77.9018 94.8661
X 92.8571 69.4196 92.4107
Y 92.8571 70.0893 92.1875
Z 96.2054 85.4911 94.8661
Average 96.1367 62.9464 82.3403

Table 6.10: Performance test results (Daubechies 8).

Character Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
A 93.0804 45.9821 62.7232
B 95.3125 69.8661 77.2321
C 93.3036 66.7411 75.6696
D 89.9554 58.0357 77.9018
E 93.0804 29.4643 74.3304
F 78.3482 51.3393 71.4286
G 91.0714 47.5446 75.4464
H 89.5089 63.8393 84.1518
I 75.8929 76.5625 81.6964
J 93.9732 64.0625 86.8304
K 92.8571 68.5268 86.1607
L 96.8750 71.6518 85.2679
M 94.6429 66.9643 85.2679
N 91.5179 59.1518 80.5804
O 79.0179 68.3036 85.7143
P 91.5179 68.75 82.5893
Q 95.7589 57.8125 82.8125
R 93.7500 54.9107 82.5893
S 85.0446 66.0714 81.6964
T 94.4196 84.5982 82.8125
U 94.4196 64.5089 90.8482
V 98.4375 78.3482 93.75
W 97.5446 71.875 93.0804
X 89.9554 60.0446 91.5179
Y 89.9554 58.2589 84.5982
Z 93.75 81.4732 96.2054
Average 91.2689 63.6418 82.8039
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Table 6.11: Performance test results (Symlet 8).

Character Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
A 87.9464 47.3214 66.9643
B 90.4018 78.5714 79.4643
C 97.3214 66.9643 80.8036
D 91.2946 74.7768 81.9196
E 89.5089 41.0714 75.6696
F 84.5982 54.0179 65.4018
G 93.75 61.3839 70.0893
H 87.5 56.6964 85.7143
I 81.6964 77.6786 80.5804
J 94.4196 52.4554 80.5804
K 86.1607 54.6875 83.2589
L 95.5357 68.3036 89.7321
M 94.8661 65.4018 77.6786
N 91.2946 61.1607 93.9732
O 93.9732 63.3929 77.4554
P 91.0714 71.2054 87.2768
Q 90.4018 65.1786 93.0804
R 89.5089 67.8571 82.5893
S 89.0625 59.8214 87.2768
T 91.7411 82.5893 91.7411
U 95.3125 86.1607 93.75
V 97.5446 87.7232 97.5446
W 92.6339 72.5446 90.1786
X 89.9554 61.3839 86.8304
Y 86.3839 56.6964 82.3661
Z 91.9643 75.8929 94.1964
Average 90.9942 65.8053 83.6968

Table 6.12: Performance test results (Coiflet 5).

Character Nearest Neighbor(%) MSE Linear(%) MSE Quadratic(%)
A 87.7232 45.3125 65.1786
B 97.5446 84.3750 78.5714
C 97.0982 56.6964 83.7054
D 93.0804 62.2768 85.4911
E 89.9554 41.7411 78.7946
F 78.7946 50.6696 65.4018
G 97.9911 67.8571 77.2321
H 89.9554 62.5 86.6071
I 88.3929 73.2143 92.4107
J 86.8304 64.7321 90.4018
K 86.8304 68.3036 72.5446
L 96.875 63.3929 90.6250
M 97.5446 53.5714 80.8036
N 93.9732 70.7589 90.4018
O 96.2054 65.4018 87.7232
P 87.5 71.4286 85.7143
Q 94.8661 73.8839 89.0625
R 83.7054 67.4107 77.4554
S 96.2054 57.1429 82.8125
T 92.8571 77.6786 81.2500
U 93.5268 90.8482 94.1964
V 98.2143 93.3036 93.9732
W 91.7411 83.9286 91.9643
X 96.2054 68.5268 95.7589
Y 91.0714 62.9464 79.6875
Z 96.6518 75.8929 91.7411
Average 92.3592 67.4536 84.2119
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CHAPTER 7

CONCLUSIONS

In this thesis we studied rotation and size invariant character recognition system with Fourier

and wavelet based feature extraction methods and compared the results. It was observed that

Linear Mean Squared Error classifier is not suitable for our character recognition approach.

Quadratic Mean Squared Error classifier has performed better result compared to linear com-

panion, but not as good as Nearest Neighbor classifier. Nevertheless, we can conclude that

higher order classifier may produce better results but, determination of order of the separating

polynomial is another problem to be solved. Another point noticed our attention is, wavelet

based feature set and Mean Squared Error classifiers has preferred compliance compared to

Fourier based feature set and Mean Squared Error classifier combination.

The Fourier feature sets and Nearest Neighbor classifier were showed the best performance.

Approximately 96% recognition rate were observed for characters in various size and orien-

tation.

Daubechies, Symlet and Coiflet wavelets were used for feature extraction. Each of them pro-

duced similar recognition rate between 91% - 92.3% , but Coiflet were the first rate. There

are several wavelet based feature extraction method reported in literature for different appli-

cations. We have used average value of function in each resolution level. Other methods may

worth to try in order to increase the recognition performance.

Noise sensitivity is the weakest point of implemented character recognition system. We ob-

served that recognition rate degraded dramatically with increasing noise variance even if we

have used Matlab implementation of median filter. This is because sensitivity of Transforma-

tion Ring Projection Algorithm to the foreground occlusion. However, foreground occlusion
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removing algorithm alleviated this problem considerably and we have obtained better recog-

nition rate for images contaminated by salt and pepper noise.
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APPENDIX A

SOURCE CODE

A.1 Center of Mass

%///////////////////////////////////////////////////////////

% Author: Önder Nazım Onak

% data2D: 2 dimensional data f(x,y)

% p: order of the variable x

% q: order of the variable y

% mpq: (p+q) order cartesian moment of the f(x,y)

%This function calculates the cartesian moment of order (p+q) of the

%two dimensional input data

%///////////////////////////////////////////////////////////

function [ mpq ] = CartesianMoment2D( data2D ,p,q)

mpq= 0;

[m n] = size(data2D);

for i = 1:m

for j = 1:n

mpq = mpq + (iˆp)*(jˆq)*data2D(i,j);

end

end

end

%///////////////////////////////////////////////////////////

% Author: Önder Nazım Onak

% input: 2 dimensional binary data.
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% x0: integer x coordinate of centre of mass

% y0: integer y coordinate of centre of mass

%///////////////////////////////////////////////////////////

function [ x0,y0 ] = CenterofMass2D( input )

m10 = CartesianMoment2D(input,1,0);

m01 = CartesianMoment2D(input,0,1);

m00 = CartesianMoment2D(input,0,0);

x0 = round(m10/m00);

y0 = round(m01/m00);

end

A.2 Transformation Ring Projection

function overlay2 = RemoveOcclusion(I_cropped)

I_cropped = medfilt2(I_cropped,[3 3]);

I_eq = adapthisteq(I_cropped);

bw = im2bw(I_eq, graythresh(I_eq));

bw2 = imfill(bw,’holes’);

bw3 = imopen(bw2, ones(5,5));

bw4 = bwareaopen(bw3, 40);

bw4_perim = bwperim(bw4);

overlay1 = imoverlay(I_eq, bw4_perim, [256 256 256]);

mask_em = imextendedmax(I_eq, 80);

mask_em = imclose(mask_em, ones(2,2));

mask_em = imfill(mask_em, ’holes’);

mask_em = bwareaopen(mask_em, 20);

overlay2 = imoverlay(I_eq, ˜(bw4_perim | mask_em), [0 0 0]);

end

%///////////////////////////////////////////////////////////
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% Author: Önder Nazım Onak

% Returns biggest ring radius for the Ring Projection Method

% radius:

% binaryData: 2 dimensional binary data

%//////////////////////////////////////////////////////////////

function [ radius ] = RPLRadius( binaryData )

radius = 0;

[ x0,y0 ] = CenterofMass2D( binaryData );

[m n] = size(binaryData);

for i = 2:m-1

for j = 2:n-1

if(binaryData(i,j) == 1)

if(binaryData(i-1,j) == 1)

if(binaryData(i,j-1) == 1)

if(binaryData(i-1,j-1) == 1)

distance = sqrt((i - x0)ˆ2 + (j - y0)ˆ2);

if(distance >= radius)

radius = ceil(distance);

end

end

end

end

end

end

end

end

%///////////////////////////////////////////////////////////

%Author: Önder Nazım Onak

% image: binary image full path

% fr: ring projected output of binary image

%///////////////////////////////////////////////////////////

function [ fr ringRadius] = RingProjection(image)
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standartSize = 50;

RadiusStepSize = 2;

AngleStepSize = pi/72;

%remove noise

gscaleim = imread(image);

gscaleim = medfilt2(gscaleim,[3 3]);

gscaleim = Occlusion(gscaleim);

% Normalize input image and convert to binary

binaryImage = im2bw(gscaleim);

[ radius ] = RPLRadius( binaryImage );

normalizedData = imresize(gscaleim, standartSize/radius,’bicubic’);

normalizedData = im2bw(normalizedData);

[xnor ynor] = size(normalizedData);

% Find Center of mass

[ x0,y0 ] = CenterofMass2D( normalizedData );

fr = zeros(standartSize/RadiusStepSize,1);

ringRadius = zeros(standartSize/RadiusStepSize,1);

index = 1;

for r = RadiusStepSize:RadiusStepSize:standartSize

for i = 0:AngleStepSize:2*pi

x = round(x0 + r*cos(i));

y = round(y0 + r*sin(i));

if((x > 0)&(y > 0) )

if((x < xnor)&&(y < ynor) )

fr(index) = fr(index) + normalizedData(x,y);

else

fr(index) = fr(index);

end

else
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fr(index) = fr(index);

end

end

fr(index) = fr(index)/(2*pi/AngleStepSize);

ringRadius(index) = r;

index = index + 1;

end

end

A.3 Feature Extraction

%///////////////////////////////////////////////////////////

% Author: Önder Nazım Onak

% Compute Magnitude and phase spectrum of TRP projected pattern

%//////////////////////////////////////////////////////////////

function [magnitude freq] = ComputeTRPFrequecySpectrum(y,r)

L=length(y);

%sampling frequency

Fs = L;

% Calculate the maximum frequency that can be perceived

Fnyquist = Fs/2;

% Since FFT only applied for data when number of point is power of 2

% set length of fft point to next power of 2 from length of data

NFFT = 2ˆnextpow2(L);

%Apply Discrete Fourier tarnsform

Y = fft(y,NFFT)/L;

% take only positive frequency half of data

Y = Y(1:NFFT/2);
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% calculate power spectrum and phase

magnitude = 2*abs(Y);

% calculate corresponding frequencies for Y

freq = Fs/2*linspace(0,1,NFFT/2);

end

%///////////////////////////////////////////////////////////

% Author: Önder Nazım Onak

%//////////////////////////////////////////////////////////////

function featureVector = ComputeTRPWaveletSpectrum(y,r,type,level)

[c,l] = wavedec(y,level,type);

featureVector = zeros(1,level + 1);

ax = wrcoef(’a’,c,l,type,level);

featureVector(1) = mean(abs(ax));

% Reconstruct detail coefficients at levels 1:level

% from the wavelet decomposition structure [c,l]

for ii = 1: level

dox{ii} = wrcoef(’d’, c, l, type, ii);

featureVector(level + 2 - ii) = mean(abs(dox{ii}));

end;

end

A.4 Classifier Implementation

%///////////////////////////////////////////////////////////

% Author: Önder Nazım Onak
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% Estimate the vector w normal to the least square linear discriminant

% hyperplane

% data is the matrix: each row is one data point, each column is one

% feature (dimension) of the data

%returns the weights of the hyperplanes.

%///////////////////////////////////////////////////////////

function [w] = msedTrain(data,group,type)

noc = max(group);

for i =1:noc

classes(i) = i;

ci = find(group == i);

classdata(i,:,:) = data(ci,:);

end

for i = 1:noc

for j = (i+1):noc

[xdimi ydimi zdimi] = size(classdata(i,:,:));

[xdimj ydimj zdimj] = size(classdata(j,:,:));

b = ones(ydimi + ydimj,1);

bmin = 0.1*ones(ydimi + ydimj,1);

if(strcmp(type ,’linear’))

for k = 1: (ydimi + ydimj)

if(k <= ydimi)

Y(k,:) = classdata(i,k,:);

else

Y(k,:) = -classdata(j,k - ydimi,:);

end

end

w0 = [ones(ydimi,1); -ones(ydimj,1)];

YY = [w0 Y];

aa= (YY’*YY);
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w(i,j,:) = (inv(YY’*YY)*YY’)*b;

elseif (strcmp(type ,’quadratic’))

% insert quadratic part

for k = 1: (ydimi + ydimj)

if(k <= ydimi)

% construct quadratic part xixj

L = length(classdata(i,k,:));

qindex = 1;

for findex = 1:L

for sindex = findex:findex

quadraticpart(qindex)=classdata(i,k,findex)*classdata(i,k,sindex);

qindex = qindex + 1;

end

end

Y(k,:) = zeros(1,L+length(quadraticpart));

Y(k,1:L) = classdata(i,k,:);

Y(k,L+1:L+length(quadraticpart)) = quadraticpart;

else

% construct quadratic part xixj

L = length(classdata(j,k - ydimi,:));

qindex = 1;

for findex = 1:L

for sindex = findex:findex

quadraticpart(qindex) =

classdata(j,k-ydimi,findex)*classdata(j,k-ydimi,sindex);

qindex = qindex + 1;

end

end

Y(k,:) = zeros(1,L+length(quadraticpart));

Y(k,1:L) = -classdata(j,k - ydimi,:);

Y(k,L+1:L+length(quadraticpart)) = -quadraticpart;

end
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end

w0 = [ones(ydimi,1); -ones(ydimj,1)];

YY = [w0 Y];

w(i,j,:) = (inv(YY’*YY)*YY’)*b;

else

error(’unknown type’);

end

end

end

end

%///////////////////////////////////////////////////////////

% Author: Önder Nazım Onak

%///////////////////////////////////////////////////////////

function [class] = msedclassify(sample,type,weightv)

if(strcmp(type ,’quadratic’))

L = length(sample);

index = 1;

for i = 1:L

for j= i:i

quadraticpart(index) = sample(i)*sample(j);

index = index +1;

end

end

quadraticsample = zeros(1,L + length(quadraticpart));

quadraticsample(1:L) = sample;

quadraticsample(L+1:L + length(quadraticpart)) = quadraticpart;

sample = quadraticsample;

end

[m n] = size(sample);

% find weight vectors that decribe the separating planes

[xw yw zw] = size(weightv);

for i = 1:xw
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for j = (i+1):yw

wij(:,1) = weightv(i,j,:);

distance(i,j)= wij’*[1 sample]’;

end

end

output = zeros(xw,1);

for i = 1:xw

indices = find(distance(i,:,1) < 0);

if(isempty(indices))

output(i) = 1;

end

end

[value class] = max(output);

if(value == 0)

class = xw + 1;

end

end
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