

ROUTE OPTIMIZATION FOR SOLID WASTE TRANSPORTATION USING

PARALLEL HYBRID GENETIC ALGORITHMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SELİM ONUR UŞKAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF GEODETIC AND GEOGRAPHICAL INFORMATION

TECHNOLOGIES

DECEMBER 2010

 ii

Approval of the thesis:

ROUTE OPTIMIZATION FOR SOLID WASTE TRANSPORTATION USING

PARALLEL HYBRID GENETIC ALGORITHMS

Submitted by SELİM ONUR UŞKAY in partial fulfillment of the requirements

for the degree of Master of Science in Geodetic and Geographical Information

Technologies Department, Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Garduate School of Natural and Applied Sciences ______________

Prof. Dr. Vedat Toprak

Head of Department, Geodetic and Geographical Inf. Tech. ______________

Assoc. Prof. Dr. Ayşegül Aksoy

Supervisor, Environmental Engineering Dept., METU ______________

Prof. Dr. Şebnem Düzgün

Co-supervisor, Mining Engineering Dept., METU ______________

Examining Committee Members:

Prof. Dr. Vedat Toprak

Geological Engineering Dept., METU ______________

Prof. Dr. Şebnem Düzgün

Mining Engineering Dept., METU ______________

Assoc. Prof. Dr. Ayşegül Aksoy

Environmental Engineering Dept., METU ______________

Assoc. Prof. Dr. Ahmet Coşar

Computer Engineering Dept., METU ______________

Assist. Prof. Dr. Elçin Kentel

Civil Engineering Dept., METU ______________

 Date: 29.12.2010

 iii

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name: SELİM ONUR UŞKAY

Signature : _________________

 iv

ABSTRACT

ROUTE OPTIMIZATION FOR SOLID WASTE TRANSPORTATION USING

PARALLEL HYBRID GENETIC ALGORITHMS

Uşkay, Selim Onur

M.Sc., Department of Geodetic and Geographical Information Technologies

Supervisor: Assoc. Prof. Dr. Ayşegül Aksoy

Co-Supervisor: Prof. Dr. Şebnem Düzgün

December 2010, 113 pages

The transportation phase of solid waste management is highly critical as it may

constitute approximately 60 to 75 percent of the total cost. Therefore, even a small

amount of improvement in the collection operation can result in a significant saving

in the overall cost. Despite the fact that there exist a considerable amount of studies

on Vehicle Routing Problem (VRP), a vast majority of the existing studies are not

integrated with GIS and hence they do not consider the path constraints of real road

networks for waste collection such as one-way roads and U-Turns. This study

involves the development of computer software that optimizes the waste collection

routes for solid waste transportation considering the path constraints and road

gradients. In this study, two different routing models are proposed. The aim of the

first model is to minimize the total distance travelled whereas that of the second

model is to minimize the total fuel consumption that depends on the loading

conditions of the truck and the road gradient. A comparison is made between these

two approaches. It is expected that the two approaches generate routes having

different characteristics. The obtained results are satisfactory. The distance

optimization model generates routes that are shorter in length whereas the fuel

 v

consumption optimization model generates routes that are slightly higher in length

but provides waste collection on steeply inclined roads with lower truck load. The

resultant routes are demonstrated on a 3D terrain view.

Keywords: Solid Waste Transportation, Vehicle Routing Problem, Hybrid Genetic

Algorithms.

 vi

ÖZ

PARALEL HİBRİT GENETİK ALGORITMALARLA KATI ATIK

TAŞINMASI İÇİN ROTA OPTİMİZASYONU

Uşkay, Selim Onur

Yüksek Lisans, Jeodetik ve Coğrafi Bilgi Teknolojileri

Tez Danışmanı: Doç. Dr. Ayşegül Aksoy

Ortak Tez Danışmanı: Prof. Dr. Şebnem Düzgün

Aralık 2010, 113 sayfa

Katı atık yönetimindeki taşıma safhası toplam maliyetin yaklaşık yüzde 60‟ı ile 75‟i

arasındaki bölümü oluşturabileceğinden oldukça kritiktir. Bu nedenle, atık toplama

aşamasındaki küçük çaplı bir ilerleme bile toplam maliyeti önemli miktarlarda

düşürebilir. Her ne kadar Araç Rotalama Problemi (ARP) üzerinde oldukça fazla

sayıda çalışma olsa da, mevcut çalışmaların çok büyük bir bölümü Coğrafi Bilgi

Sistemi (CBS) ortamına entegre değildir ve dolayısıyla tek yönlü yollar ve U-

dönüşleri gibi gerçek yol ağlarına ait kısıtlamaları dikkate almazlar. Bu çalışmada

katı atık taşınması için atık toplama rotalarını optimize eden ve araç yükü ile yol

eğiminin yakıt tüketimine etkisini de hesaba katan bir bilgisayar yazılımı

geliştirilmiştir. İki farklı rotalama modeli önerilmiştir. İlk modelin amacı toplam

katedilen mesafeyi, ikinci modelinki ise aracın yük durumu ve yol eğimine bağlı olan

yakıt tüketimini minimize etmektir. İki yaklaşım arasında bir karşılaştırma

yapılmıştır. İki modelin birbirinden farklı özelliklerde rotalar üretmesi

beklenmektedir. Elde edilen sonuçlar tatmin edicidir. Mesafeyi optimize eden model

daha kısa rotalar üretirken yakıt tüketimini optimize eden model biraz daha uzun

 vii

fakat yüksek eğilimli yolları daha az yükle kateden rotalar üretmektedir. Elde edilen

rotalar 3 boyutlu arazi modeli üzerinde gösterilmektedir.

Anahtar Kelimeler: Katı Atık Taşınması, Araç Rotalama Problemi, Hibrit Genetik

Algoritmalar.

 viii

To My Family

 ix

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr.

Ayşegül AKSOY and my co-supervisor Prof. Dr. Şebnem DÜZGÜN for their

valuable comments and guidance throughout the research. It was a great pleasure for

me to carry out this thesis under their supervision.

I am deeply indebted to my family for their support and encouragement to

accomplish this work.

At last, but definitely not least, I offer special thanks to my friends for their moral

support.

 x

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... vi

ACKNOWLEDGEMENTS .. ix

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

ABBREVIATIONS ... xvii

CHAPTERS

CHAPTER 1 .. 1

INTRODUCTION ... 1

CHAPTER 2 .. 6

OVERVIEW OF ROUTE OPTIMIZATION AND SOLID WASTE COLLECTION 6

2.1 Vehicle Routing Problem ... 6

2.2 Solution Methods ... 8

2.3 Genetic Algorithms for Route Optimization .. 11

2.3.1 Representation of Path .. 12

2.3.2 Generation of the Initial Population .. 14

2.3.3 Calculation of Fitness .. 14

2.3.4 Selection Operator ... 15

2.3.5 Crossover Operator ... 16

2.3.6 Mutation Operator ... 18

2.4 Solid Waste Collection ... 20

CHAPTER 3 .. 24

 xi

METHODOLOGY ... 24

3.1 General Framework of the Methodology ... 24

3.2 Input Data ... 26

3.3 Pre-processing .. 28

3.4 Optimization ... 32

3.4.1 Optimization Models ... 32

3.4.2 Optimization Method .. 40

3.5 Output ... 41

3.6 GIS Integration ... 42

3.7 Implementation .. 42

CHAPTER 4 .. 43

DEVELOPED HYBRID GENETIC ALGORITHM ... 43

4.1 Essential Elements of GA .. 45

4.2 Hill-climbing Algorithms ... 54

4.3 Parallelization ... 55

4.4 Validation of the Genetic Algorithm.. 57

4.5 Parallelization of the Genetic Algorithm ... 60

CHAPTER 5 .. 62

CASE STUDY ... 62

5.1 Study Area .. 62

5.2 Results and Discussions ... 66

CHAPTER 6 .. 87

CONCLUSION AND RECOMMENDATIONS ... 87

REFERENCES ... 89

APPENDIX A .. 96

 xii

SOFTWARE MANUAL .. 96

APPENDIX B .. 101

SOURCE CODE FRAGMENTS ... 101

 xiii

LIST OF TABLES

Table 2.1 – Heuristic methods ... 10

Table 2.2 – Comparison of Vector Representation Methods of Route Paths 13

Table 2.3 - The Edge List for Edge Recombination Crossover (ERX) Example 18

Table 3.1 - The attributes of the road features ... 27

Table 3.2 – The attributes of the point features ... 27

Table 4.1 - TSPLIB Benchmark Results .. 58

Table 5.1 – Test Case 1 - Total Route Lengths for Different Vehicle Counts 70

Table 5.2 – Test Case 2 - Total Route Lengths for Different Vehicle Counts 74

Table 5.3 – Routes Generated by the Total Distance Optimization Model 76

Table 5.4 - Routes Generated by the Total Distance Optimization Model 80

 xiv

LIST OF FIGURES

Figure 2.1 – Generalized Genetic Algorithm Cycle... 12

Figure 2.2 - Swap Sequence Mutation ... 19

Figure 2.3 - Inversion Mutation ... 19

Figure 2.4 - 2-opt Heuristic Mutation .. 20

Figure 3.1 - Framework of the Study ... 25

Figure 3.2 - Preprocessing the GIS data. a) projecting the containers to streets,

b) calculating the street intersections and marking them as nodes 28

Figure 3.3 - An example invalid route problem. a) An invalid route as the two

consecutive edges are in opposite directions (U-Turn), b) Corresponding validated

route which uses the second shortest path for the edge between nodes 2 and 3. 30

Figure 3.4-First and Second Shortest Paths ... 31

Figure 3.5 – Penalty coefficients for different road gradients and number of pre-

visited service points. ... 38

Figure 4.1- Flowchart of the proposed Hybrid Genetic Algorithm 45

Figure 4.2- Creation of an initial chromosome .. 47

Figure 4.3-Mutation Algorithms .. 50

Figure 4.4 – The frequency histogram for the number of generations between the last

two enhancements for 20 test runs. .. 52

Figure 4.5 – Best transportation distances obtained by trying different crossover and

mutation combinations (without hill-climbing algorithms). 53

Figure 4.6 – Best transportation distances obtained by selecting different population

sizes .. 54

Figure 4.7 – Illustration of the Island model .. 56

Figure 4.8- Distance vs Generation Graphs for Validation Problems 60

Figure 4.9 - Comparison of single and double processor case. The speed-up obtained

by using 2 processors is 1.83 and the efficiency is 91.5%. .. 61

Figure 5.1 – The Study Area. ... 63

 xv

Figure 5.2 – The study area in 3D Terrain View. The slopes are indicated by arrows.

 .. 64

Figure 5.3- Road directions in the area. Roads marked with red indicate bidirectional

roads whereas blue roads are unidirectional. ... 65

Figure 5.4 – The Distribution of Waste Collection Locations in Test Case 1 67

Figure 5.5 - Test Case 1 - A Full View of the Route Generated (Single Vehicle) 68

Figure 5.6 - Test Case 1 - A View of the Route Generated within the Study Area

(Single Vehicle) ... 68

Figure 5.7 - Test Case 1 - A Full View of the Route Generated (2 Vehicles) 69

Figure 5.8 - Test Case 1 - A View of the Route Generated within the Study Area (2

Vehicles) .. 69

Figure 5.9 - – The Distribution of Waste Collection Locations in Test Case 2 70

Figure 5.10 - Test Case 2 - A Full View of the Route Generated (Single Vehicle) .. 71

Figure 5.11 - Test Case 2 – A View of the Southern Part of the Route (Single

Vehicle) .. 71

Figure 5.12 - Test Case 2 – A View of the Northern Part of the Route (Single

Vehicle) .. 72

Figure 5.13 - Test Case 2 - A Full View of the Route Generated (2 Vehicles) 72

Figure 5.14 - Test Case 2 - A View of the Route Generated within the Study Area for

the first vehicle (2 Vehicles) .. 73

Figure 5.15 - Test Case 2 - A View of the Route Generated within the Study Area for

the first vehicle (2 Vehicles) .. 73

Figure 5.16 – The study area containing 239 Waste Collection Points 75

Figure 5.17 – Route Distance vs. Generation Graph for Distance Optimization Mode

 .. 76

Figure 5.18 – Route Distance vs. Running Time Graph for Distance Optimization

Mode .. 77

Figure 5.19 – Distance Optimization Model - A General Overview of Generated

Routes ... 78

Figure 5.20 - Distance Optimization Model – Overview of Generated Routes in the

Study Area .. 78

Figure 5.21 – Distance Optimization Model –Close-up view of North-East

Bahçelievler.. 79

 xvi

Figure 5.22 - Distance Optimization Model – Close-up view of Emek 79

Figure 5.23 – Distance Optimization Model – Close-up view of Southern

Bahçelievler.. 80

Figure 5.24 – Fuel Consumption Optimization Model - Distance vs Generation

Graph .. 81

Figure 5.25 - Fuel Consumption Optimization Mode - Distance vs Running Time

Graph .. 82

Figure 5.26 – Fuel Consumption Optimization Model - A General Overview of

Generated Routes ... 83

Figure 5.27 - Fuel Consumption Optimization Model - Overview of Generated

Routes in the Study Area.. 83

Figure 5.28 - Fuel Consumption Optimization Model - Close-up view of North-East

Bahçelievler.. 84

Figure 5.29 - Fuel Consumption Optimization Model – Close-up view of Emek 84

Figure 5.30 - Fuel Consumption Optimization Model - Close-up view of Southern

Bahçelievler.. 85

Figure 5.31 – Distance Optimization Model - A part of the route generated in a

steeply sloping region in Emek .. 86

Figure 5.32 – Fuel Consumption Optimization Model - A part of the route generated

in a steeply sloping region in Emek ... 86

Figure A. 1 – Maplink files .. 96

Figure A. 2 – Open Dialog ... 97

Figure A. 3 – Garbage Collection Points on 3D Terrain Map 97

Figure A. 4 – Displaying Shortest Path .. 98

Figure A. 5 – Starting the Genetic Algorithm .. 98

Figure A. 6 – Genetic Algorithm Monitor ... 99

Figure A. 7 – Visualization of the Best Route ... 100

Figure A. 8 – Simulation of the Vehicle on its Path .. 100

 xvii

ABBREVIATIONS

GIS Geographical Information Systems

VRP Vehicle Routing Problem

DEM Digital Elevation Model

GA Genetic Algorithm

TSP Traveling Salesman Problem

SWM Solid Waste Management

PGA Parallel Genetic Algorithm

ERX Edge Recombination Crossover

MFC Microsoft Foundation Classes

UTM Universal Transverse Mercator

 1

CHAPTER 1

INTRODUCTION

Solid Waste Management is a complex process involving many stages such as

generation, on-site handling and storage, collection, transfer and transportation,

processing and disposal of solid wastes (Nemerow et al., 2008). According to

Nemerow et al. (2008), approximately 60% to 75% of the total solid waste

management cost is spent for the collection phase, in which the waste is collected

from the source and carried to the transfer station or landfill. Therefore, even a small

improvement in the collection operation by selecting less-costly routes can result in a

significant saving in overall cost. This issue becomes highly critical considering the

high costs of fuel and labour.

Despite the fact that there exist a number of studies on Travelling Salesman Problem

(TSP) and different variations of Vehicle Routing Problems (VRP) in the existing

literature, the amount of studies on solid waste collection route optimization is

limited. Moreover, a vast majority of the work done about vehicle routing is limited

to hypothetical networks and are not integrated to Geographical Information Systems

(GIS). Solid Waste Collection requires a new routing model with spatial constraints

that represent the path conditions. It is important that the generated routes comply

with the road directions and the U-Turns are avoided (Vesilind et al., 2001). In this

point of view, GIS integration provides the means for the consideration of spatial

constraints in the routing model.

Geographical Information Systems (GISs) are computer-assisted systems that are

commonly utilized to capture, store, retrieve, analyze and display spatial data (Clark,

 2

1986). By using a GIS software, it is possible to work on any type of georeferenced

data from different resources. Furthermore, several extensions for existing GIS

programs are available on the market for specific purposes (engineering applications,

optimization, etc.). In general, any extension running inside a GIS application is said

to be tightly coupled with GIS. Conversely, stand-alone applications that only

process or output GIS data are said to be loosely coupled with GIS.

The aim of this study is to develop a GIS-integrated (with loose coupling) computer

software which optimizes the solid waste collection routes. For this purpose, two

different route optimization models are generated and resulting routes are compared.

The objective of the first model is to minimize the total distance travelled by the

trucks. In the second model, the objective is to minimize the fuel consumption,

which is a function of distance travelled, the road inclinations and the instantaneous

loading conditions of the truck. Information about the real road network is derived

through a GIS and integrated into the optimization models. The estimation of fuel

consumption for waste collection has been made based on the model used by Tavares

et al. (2009).

Bahçelievler and Emek neighbourhoods in Ankara/Turkey are selected as the

application area. A digital road network covering the major roads of the entire

Ankara and the streets within Bahçelievler and Emek neighbourhoods is used. The

road directions are also included in the network. A digital elevation model is used to

display the 3D terrain and to calculate the road inclinations.

Once the data are input to the program, they undergo a pre-processing stage so as to

prepare the input for the optimization algorithm. The pairwise shortest paths and

distances between all the waste collection points are computed, creating a distance

matrix. The distance matrix is asymmetrical as a result of unidirectional streets. A

single distance matrix would define a single path between any two service points.

There are cases where this would end up with a U-Turn on bidirectional roads in the

optimization stage. In order to avoid the U-Turns, a secondary shortest path has also

 3

been calculated for all nodes located at bidirectional roads. In the calculation of the

second shortest path, the path is forced to start from the direction opposite to that in

the shortest path. Thereby, two distance matrices are constructed to be used by the

optimization algorithm.

The distance matrices and shortest paths between all pairs of waste collection points

are the basic requirements of the route optimization algorithm. The problem of

finding optimum routes for Solid Waste Collection is a combinatorial optimization

problem and is similar to the well-known Vehicle Routing Problem (VRP) with

respect to its constraints. According to Machado et al. (2002); exact solution methods

are not suitable for large instances of the vehicle routing problem as the search space

grows exponentially with increasing problem size. Metaheuristic methods are

commonly used for solving routing problems due to their capability to converge into

high quality solutions within a reasonable time (Tarantilis et al., 2005). In this study

a parallel hybrid genetic algorithm has been implemented to solve the optimization

models.

Genetic Algorithms are stochastic optimization techniques that model the natural

phenomena of genetic inheritance and Darwinian strive for survival (Michalewicz,

1992). The evolutionary process starts with an initial population of candidate

solutions. Each candidate solution is called a chromosome. The performance of each

chromosome is evaluated by means of a fitness function to see how well they

perform with respect to the objective function (Al Jadaan et al., 2008). A selection

procedure is applied to determine which chromosomes are chosen for genetic

reproduction (crossover), by which a child chromosome (offspring) is produced from

two parent chromosomes. Practically, better fit chromosomes have a higher chance

of being selected. The mutation operator makes random modifications on the

chromosomes to extend the search space. At each generation, the new population

replaces the old one, simulating an evolutionary process.

 4

The advantages of Genetic Algorithms (GAs) for routing problems is that they do not

require detailed knowledge of the problem and can easily adapt to changing

conditions (Sengoku and Yoshihara, 1998). Moreover, they can provide a solution at

any instance of optimization, without the user having to wait for the termination of

the algorithm. Genetic Algorithms are among the class of Metaheuristic Optimization

Algorithms and are capable of searching globally and converging to nearly-optimal

solutions in a relatively short amount of time (Sengoku and Yoshihara, 1998).

Furthermore, other hill-climbing methods can easily be implemented within the

genetic algorithms to enhance the search capabilities.

The genetic algorithm is parallelized by the course grained PGA islands model

(Shengjun et al., 2008). In this model, multiple instances of genetic algorithms run

independently on different processors and the solutions produced by each instance

migrate periodically from one instance to another. The method suggested by

Shengjun et al. (2008) has been implemented by using an exchange pool which

enables different instances of genetic algorithms to push and pull the selected routes.

The validation of the implemented optimization algorithm is performed by running

the software on 4 asymmetrical TSP benchmark problems (TSPLIB, 2010). The

optimum results of the benchmark problems are already known. The results obtained

are compared with the best possible solutions. The optimization method has also

been tested on the real road network with small test problems involving 10-20 waste

collection points.

The output of the optimization algorithm is a set of routes for waste collection

vehicles. The routes can be displayed in a 3D terrain view with different colors. The

visiting order of the waste collection locations is indicated by numbers. This type of

visualization enables the user to view the terrain relief while analyzing the path and

to compare the results of different routing models.

 5

In this study, it is aimed to illustrate the difference between the routes generated by

two models in 3D view. The first model aims to minimize the total distance travelled

whereas the second one aims to minimize the fuel consumption. The visual

characteristics of the routes generated are expected to reflect the optimization model

used.

Following this introductory chapter, Chapter 2 is dedicated to the literature review of

existing studies on Vehicle Routing Problem and solution methods in the literature.

Different variations of the Vehicle Routing Problem are explained. A number of

different solution strategies to the problem for different cases are given. A brief

discussion of the genetic algorithms designed for the vehicle routing problems in the

literature is provided. Lastly, existing studies in the literature about route

optimization for the solid waste collection case is discussed. Chapter 3 describes the

methodology of the study by presenting the framework of the stages involved in the

development of the software. After presenting the study area, the data preparation

and pre-processing stages are explained. Two new routing models that take into

account the path conditions are introduced. The details of the genetic optimization

algorithm are given along with various choices and the logic behind them. The

parallelization method is explained. Ultimately, the results are discussed. In Chapter

4, detailed information about the implementation of the genetic algorithm is

presented. The genetic operators used as well as the tuning of the parameters are

explained. The parallelization method and the benchmarking results are given.

Chapter 5 describes the area of application and presents the results of the developed

software on a number of small test cases and the real case study. A brief discussion

of the obtained results is presented. Chapter 6 concludes the main body of the thesis

and gives recommendations for the future studies.

Following the main body of the thesis, Appendix A presents a simple manual for the

developed software. In Appendix B, fragments of codes and data structures used in

the program are presented.

 6

CHAPTER 2

 OVERVIEW OF ROUTE OPTIMIZATION AND SOLID WASTE

COLLECTION

Route optimization is a broad term covering all attempts to find the shortest routes

that cover all the locations that need to be serviced. A number of different route

optimization problems are studied in the literature due to their high applicability to

many real-life situations such as solid waste collection, milk float routing, mail

delivery, school bus routing, heating oil distribution, parcel pick-up and delivery,

dial-a-ride systems, etc. (Rizzoli et al., 2004).

This chapter is dedicated to the literature survey of the previous studies. First, the

vehicle routing problem is explained briefly, covering different models and general

solution methods in the literature. As the proposed optimization method uses genetic

algorithms, the next section is devoted to genetic algorithms applied for route

optimization. Lastly, the studies related with solid waste collection problem are

discussed.

2.1 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) was first introduced by Dantzig and Ramser in

1959 and has been studied for many different real-life cases ever since. It is a

complex combinatorial optimization problem in which the objective is to minimize

the total distance travelled by a set of vehicles while servicing all locations. VRP has

different models based on the constraints of the real-life situation. The variations and

different models of the problem are well documented in Toth and Vigo (2000) and

Rizzoli et al. (2004).

 7

The Capacitated VRP is the most basic variant of VRP, in which, a fleet of vehicles

of uniform capacity are required to service a fixed number of demand points.

Vehicles have a limited capacity and therefore, each vehicle is supposed to go back

to the depot once they reach the capacity limit. According to Rizzoli et al. (2004),

removing the capacity constraint and limiting the number of vehicles to one, the

problem reduces to the classical Traveling Salesman Problem (TSP). Therefore, it

can easily be proved that the CVRP and other variants of VRP are NP-Hard in

complexity.

The VRP with time window constraints (Rizzoli et al, 2004; Tan et al, 2001)

(VRPTW) is especially important in logistics management, in which the company is

expected to deliver a number of items from depot(s) to a number of customers on

time (i.e., some or all of the items have to be delivered within a time frame). In

VRPTW, each customer is associated with a time interval and is required to service

each customer within the time window. Tan et al. (2001) addresses some other real-

life applications of VRP with time window constraints such as school bus routing,

mail and newspaper delivery, fuel oil delivery and municipal solid waste collection;

proposing a hybrid solution involves the cooperation of different artificial

intelligence techniques such as simulated annealing, tabu search and genetic

algorithm. The paper further claims that efficient routing and scheduling of vehicles

can save millions of dollars for governments and industries.

In VRP with Pickup and Delivery (VRPPD), the vehicles are supposed to satisfy a

set of transportation requests. A transportation request involves transferring the

demand from pick-up point to the delivery point. In this problem, the transport items

are not originally concentrated in the depots, but they are distributed over the nodes

of the road network. In case the demands to be transported are people, the problem

usually includes time window constraints in order to prevent customer from waiting

too long (Rizzoli et al., 2004). VRPPD arises in a wide range of commercial service

companies. A major case for the application of VRPPD is the grocery industry, in

 8

which the supermarkets serve as delivery points and their suppliers such as poultry

processors or vegetable and fruit wholesalers are pick-up points (Mosheiov, 2008).

Time dependent VRP is an extension of VRPTW, in which the costs between the

delivery points depend on time. This situation practically occurs in most cities since

the time required to travel from one point to another depends on traffic load which

depends on the time of the day (Rizzoli et al., 2004). The speed distributions have to

be known before the optimization starts in order to enable the system to calculate the

travel times. This variant of the VRP is motivated by the fact that the role of traffic

conditions cannot be underestimated in urban areas in order to perform a feasible and

realistic optimization (Donati et al., 2008).

Multiple Depot VRP (MDVRP) was formulated by Sumichrast and Markham(1995)

and differs from the classical capacitated VRP in that there is more than one depot in

MDVRP and each demand point is associated with a depot (Ho et al., 2008). As there

is more than one depot involved, the decision makers have to determine which

customers are served by which depots

2.2 Solution Methods

The solution methods for the VRP can be broadly classified as exact, heuristic and

metaheuristic. Exact methods are those which explore the entire search space for the

problem to find the best possible solution to the VRP instance. Exact approaches to

solving VRP require algorithms that generate lower and upper bounds to the optimal

value of the cost. In general, an upper bound to the optimal value of the problem

instance can be obtained by utilizing any heuristic method that can find a feasible

solution. In VRP, any set of tours that cover all the demand points constitute a

feasible solution with a given cost which cannot be smaller than that of the minimum

cost tour. A lower bound to the optimal value of the cost can be determined by

solving a relaxation of the optimization problem. A relaxation is another

optimization problem whose feasible solutions encompass all feasible solutions of

the original problem and whose objective function value is less than or equal to that

 9

of the original problem. The optimality of the solution is guaranteed when the lower

and upper bounds coincide. The two exact methods that were studied extensively:

 Branch and Bound (Fisher, 1994)

 Branch and Cut (Toth and Vigo, 2002).

The heuristic methods for optimization problems perform a relatively limited

exploration on the search space. The aim of heuristics is to produce relatively good

solutions as quickly as possible (Tarantilis, 2005). The heuristic methods are broadly

classified into three categories:

 Constructive Heuristics

 Local Search Improvement Heuristics

 Two-phase Algorithms

Constructive heuristics use the data of the problem to build a solution gradually (one

point at a time) without an improvement phase. Typically no solution is obtained

until the procedure is complete.

Local search improvement heuristics are iterative search procedures that gradually

improve the solution quality starting from an initial feasible solution by applying a

series of local modifications. The initial feasible solution is usually output of a

constructive heuristic (Tarantilis et al., 2005).

The two-phase algorithms are classified into two broad categories: “cluster first route

second” and “route first cluster second”. The former class of algorithms first clusters

the demand points into feasible routes and then constructs the actual routes using

feedback loops between the two stages. The examples to this approach are the sweep

algorithm (Gillet and Miller, 1974), Fisher and Jaikumar Algorithm (1981) and Petal

Algorithm (Ryan et al., 1993). The latter class of algorithms initially find a large

single route by utilizing a TSP algorithm disregarding the side constraints and then

decompose the tour into feasible vehicle routes in the second phase. Table 2.1

explains a number of heuristic methods in the literature.

 10

Table 2.1 – Heuristic methods

Type Method

- Constructive Heuristics

 Clark and Wright Savings Algorithm

(Clark and Wright, 1964; Altinkemer and

Gavish, 1991)

Gradually construct the solution,

one step at a time without an

improvement phase

- Local Search Improvement Heuristics

 Cyclic Transfer Algorithm (Thompson

and Psaraftis, 1993)

 2-cyclic exchanges (Van Breedam, 1994;

Kinderwater and Savelsbergh, 1997)

Iteratively improve the solution

starting from an initial feasible

solution

-2-Phase Algorithms

 Cluster First, Route Second (Gillet and

Miller, 1974; Fisher and Jaikumar,

1981; Ryan et al., 1983)

 Route First, Cluster Second

Separating the clustering and

routing processes, thereby

reducing the VRP into several

TSP problems.

Metaheuristic methods are higher level heuristic procedures that are designed to

guide heuristic approaches on achieving better quality solutions for difficult

combinatorial optimization problems (Tarantilis et al., 2005). Metaheuristic Methods

perform a deeper exploration of the solution space. Therefore, the quality of

solutions produced by metaheuristic algorithms is much higher than that of classical

heuristic methods (Tarantilis et al., 2005). Each metaheuristic has one or more

adjustable parameters. Although this provides flexibility, tuning the parameters

requires careful calibration and testing on an independent set of problem instances

(Tarantilis et al., 2005). The metaheuristic algorithms employ techniques that provide

both intensification and diversification of the candidate solutions. Intensification

refers to the exploitation of the existing solutions to obtain better local-optimum

solutions. Diversification, on the other hand, refers to the exploration of the entire

search space so that the algorithm does not get stuck in a low-quality locally optimal

 11

solution. Following is a list of metaheuristic algorithms that are commonly

implemented for routing problems:

 Simulated Annealing

 Threshold Accepting Metaheuristic

 Ant Colony Optimization

 Genetic Algorithms

2.3 Genetic Algorithms for Route Optimization

The search methods of Genetic Algorithms model the natural evolutionary processes

to gradually improve the feasible initial solutions. It is inspired by the Theory of

Natural Selection proposed by the British naturalist Charles Darwin in 1859. The

theory states that the individuals possessing favourable characteristics are more

likely to survive and reproduce, which makes them more likely to transfer their

genetic material to the proceeding generations. The individuals with less favourable

characteristics will gradually diminish as they are less likely to survive although

some individuals manage to do so by luck. As the organisms mate, the genetic

information of the parents is transferred to the offspring.

In Genetic Algorithms (GA), each candidate solution to the problem is referred to as

a chromosome. In the routing problem case, a chromosome refers to a complete set

of routes that utilize all vehicles and cover all the points that need to be serviced. The

algorithm starts with an initial population of chromosomes.

The initial chromosomes comprising the initial population are constructed either

randomly or by using heuristic methods. After an initial population of feasible

solutions is generated, the fitness of each individual in the population is calculated.

The fitness of a chromosome is a measure of how the chromosome fits with the

objective function. A selection procedure is used to decide which chromosomes

undergo evolutionary processes using genetic operators. Generally, better fit

chromosomes have a higher chance of being selected. The crossover operator

combines the features of two solutions by swapping genes in order to form offsprings

that carry the genetic properties of parents (Michalewicz, 1992). The assumption in

 12

using crossover operator is that the genetic combination of two good solutions yields

another good solution having common properties with the parents. The mutation

operator makes random or heuristic modifications on the selected chromosomes,

creating variations in the population. Mutation helps the optimization algorithm to

escape from local-minima traps and explore a wider range of the solution space.

During the evolutionary process, hill-climbing methods can be used to perform local

search on selected individuals. The hill climbing methods test the neighbour genes of

a chromosome for different combinations and if a modification results in a better

value of objective function, that modification is accepted. This process continues

until no further improvement is possible. At the end of each iteration, a new

generation is created from the previous one. Figure 2.1 illustrates the general genetic

algorithm cycle.

Figure 2.1 – Generalized Genetic Algorithm Cycle

2.3.1 Representation of Path

For combinatorial optimization problems such as Travelling Salesman Problem

(TSP) and Vehicle Routing Problem (VRP) in which a permutation of points is of

 13

interest, binary representation of tours is not well suited as the genetic operators

cannot be applied in a meaningful way. This is mostly because modification of a

single bit may result in an illegal tour where a repair algorithm is required in order to

fix the chromosome (Michalewicz, 1992). Furthermore, it would be so difficult to

handle the genetic crossover operator which is supposed to produce new routes

inheriting the genetic properties of parent (Michalewicz, 1992).

The most common representation of chromosomes in the literature is the vector

representation. Vector representation is commonly implemented as an array of

numbers each corresponding to a demand point. Michalewicz (1992) describes three

different vector representations (Table 2.2) existing in literature in connection with

TSP:

 Adjacency Representation

 Ordinal representation

 Path Representation

Table 2.2 – Comparison of Vector Representation Methods of Route Paths

Representation Explanation Comments

Adjacency If there is a direct tour between

city i and j, city j is listed in

position i.

Illegal routes can be

produced, which requires

repair algorithms.

Ordinal For each point in the route path R,

the index of the point within the

reference list is recorded and

inserted into the ordinal

representation vector O. The point

is then deleted from the reference

list.

Hard to implement the

genetic operators.

Path The route path is represented

directly.

The most natural

representation. Preferred

due to its simplicity and

applicability to various

operators.

 14

2.3.2 Generation of the Initial Population

The construction of initial population is of great importance since it has great impact

on the genetic material comprising the final solution (Bjarnadóttir, 2004). The initial

population is generally constructed randomly; however it can also be constructed

using heuristic methods.

 Many classical and hybrid genetic algorithms prefer random generation of initial

routes (e.g., Sengoku and Yoshihara, 1998; Nazif and Lee, 2010). As its name

implies, all the connections in randomly generated routes are established by

randomly selecting a point from the available point list. The randomly generated

routes possess a high diversity of genetic material which enables the genetic

algorithm to explore a larger search space. However, it generally takes a considerable

amount of computation time to obtain optimized solutions.

The heuristic approaches aim to construct well-structured routes. One of the possible

heuristic approaches is to use the sweep approach of Gillet and Miller (1974) in

which the demand points are sorted according to polar angle from the depot. The

second approach is to solve the Generalized Assignment Problem to obtain an

allocation of demand points for vehicles and then to construct the routes by using

simple heuristic methods. A third heuristic approach proposed by Ho et al. (2008)

involves grouping the demand points by assigning them to nearest depot (in case of

multiple depots), generating routes using the Clark and Wright (1964) saving

algorithm and then solving a scheduling problem. The application of heuristics

methods in the generation of initial population is expected to result in solutions that

evolve faster. However, a possible drawback is that such an artificially constructed

population may lack the diversity required to obtain near-optimal solutions (Baker

and Ayechew, 2003).

2.3.3 Calculation of Fitness

Each individual in the population is a potential solution to the problem and is

evaluated by means of a measure called “fitness”. Fitness can be considered as a way

of ranking a chromosome against other chromosomes. Therefore, the fitness function

can be associated with the objective function of the model. The raw fitness value in

routing problems is generally expressed as the inverse of the cost (Michalewicz,

 15

1992). The normalized fitness, on the hand is calculated such that the sum of all

normalized fitness values add up to 1.

2.3.4 Selection Operator

Selection operator chooses the chromosomes to be included in the next generations.

The chromosomes may undergo genetic operations such as crossover and mutation

before transferring to next generations. The selection operators are generally

stochastic and are formulated in such a way that the better members of the population

have a greater probability of being selected. It is important that worse members of

the population have some probability of being selected as well (Al Jadaan et al.,

2008). Three selection operators are explained:

 Tournament Selection

 Ranking Selection

 Roulette Wheel Selection.

Tournament selection involves choosing a sample of k individuals from the

population randomly and running several tournaments among the chosen individuals.

The best individual in the tournament is selected within a probability of p, which is

also called as the pressure of selection (Miller and Goldberg, 1995). The probability

of selecting n
th

 best individual in the tournament is given as:

 (2.1)

Ranking selection (Miller and Goldberg, 1995) sorts the individuals in the population

based on fitness. Assuming that there are N individuals in the population, the

probability of being selected for an individual in the sorted list is:

(2.2)

In Roulette Wheel Selection (RWS), the selection probability of each individual is

proportional to its fitness (Miller and Goldberg, 1995). In practice, the selection

probability of an individual equals to the normalized fitness of the individual since

the normalized fitness values add up to 1.

 16

(2.3)

2.3.5 Crossover Operator

The crossover operator creates new chromosomes using the genes of the parent

chromosomes. The parent chromosome pairs to be mated are selected by means of

the selection operator. The performance of the crossover operator is directly related

with its ability to transfer the significant properties of the parent chromosomes to the

child. The following crossover operators are commonly used for routing problems:

 Partially Mapped Crossover (PMX)

 Order Crossover (OX)

 Edge Recombination Crossover (ERX)

The Partially Mapped Crossover (PMX), introduced by Goldberg and Lingle (1985),

builds an offspring by choosing a subsequence of tour from one parent and

preserving the order and position of as many cities as possible (Michalewicz, 1992).

In PMX, two random cut points for the parent chromosomes are selected to serve as

a boundary for swapping operations. For example, let and be two chromosomes

with marked cut points such that:

.

Swapping the segments bounded by the cut points, the offsprings will initially be:

The swap operation also defines a series of mappings between points

 which assist in completing the remaining parts of the

offspring from original parents. If a point to be copied from an original parent

conflicts with the swapped segment (i.e., results in visiting the same point twice), the

 17

mapping of that point is used instead, which guarantees the avoidance of any

conflict. The resultant offsprings are:

Order Crossover (OX), introduced by Davis (1985), builds offspring by choosing a

subsequence of a tour from one parent and preserving the relative order of demand

points from another parent (Michalewicz, 1992). In OX, first the segments between

cut points are copied into the offsprings. Considering the same parents used in PMX,

the offsprings after the first step would be:

Next, starting from the second cut point of one parent, the points are copied from

other parent excluding the points already used. For instance, the sequence of points

in the second parent is . After the removal of points already used,

the sequence becomes . Appending this sequence to the offspring starting

from the second cut, the offspring becomes:

.

Similarly, the second offspring becomes:

According to Michalewicz (1992), the OX makes use of the fact that the relative

orders of the points are important rather than their positions in the path.

The Edge Recombination Crossover (ERX), introduced by Whitley, Starkweather

and Fuquay (1989), transfers more than 95% of the edge information from parents to

offspring. The idea behind ERX is that an offspring should be constructed based on

the edges from both parents rather than considering the position or relative order of

the demand points (Michalewicz, 1992). For the two parent chromosome instances

 18

given for PMX, the edge list in Table 2.3 can be constructed. Starting from an initial

point for ERX, the next point is selected by making use of the edge list. Generally,

the point with smallest number of edges in the edge list is selected. If there is more

than one alternative, a random choice is made. Repeating the procedure, the

following offspring can be generated:

.

Table 2.3 - The Edge List for Edge Recombination Crossover (ERX) Example

Point No Edges to other points

1 9 2 4

2 1 3 8

3 2 4 9 5

4 3 5 1

5 4 6 3

6 5 7 9

7 6 8

8 7 9 2

9 8 1 6 3

2.3.6 Mutation Operator

The mutation operator makes random changes to chromosomes to maintain the

diversity within the population. Thereby, premature convergence to local optimum

solutions is prevented. Three mutation algorithms are explained:

 Swap Sequence Mutation

 Inversion Mutation

 Heuristic Mutation

The swap sequence operator (Nazif and Lee, 2010) randomly selects two substrings

of demand points and exchange them. Although swapping sequences is one of the

simplest mutation techniques available in the literature, it is very useful for the

 19

exploration of the solution space. Figure 2.2 illustrates the swap sequence mutation

technique.

Figure 2.2 - Swap Sequence Mutation

The inversion mutation, on the other hand, selects a substring from the parent

chromosome and flips it to form a new offspring (Ho et al., 2008). The inversion

operator provides the system with the capability to find the suitable ordering of

demand points. Figure 2.3 illustrates the inversion mutation.

Figure 2.3 - Inversion Mutation

In general, the heuristic mutation operators use a neighbourhood technique to

produce better offsprings. A set of chromosomes transformed from the parent

chromosome by exchanging genes are regarded as the neighbourhood (Ho et al.,

2008). Generally, best chromosome in the neighbourhood is used as the offspring.

 20

The 2-opt mutation (Sengoku and Yoshihara, 1998) is one of the most commonly

used heuristic mutations which improves the tours by checking every pair of edges

and checks if exchanging the pairs result in an improvement. If there is any

improvement in case of an exchange, the pairs are swapped and the order of the

subtour is reversed. Figure illustrates the 2-opt mutation algorithm.

Figure 2.4 - 2-opt Heuristic Mutation

2.4 Solid Waste Collection

According to Nuortio et al. (2006), planning the solid waste collection is one of the

most difficult operational problems encountered by local authorities in solid waste

management. Therefore, it is highly important to consider the cost-effectiveness of a

solid waste collection operation while designing the collection routes. The waste

collection routes in many cities are still designed manually. However, there have

been numerous technological advances in the past decades in terms of computational

power; which leads the haulers to seriously consider using computer software for

planning their routes (Nuortio et al., 2006). Most of the studies involving route

 21

planning for the collection of municipal solid waste in the existing literature are

based on the Vehicle Routing Problem.

Uraz (2002) used GIS tools to make a descriptive analysis of Bahçelievler

Neighbourhood and presented a comprehensive overview of the neighbourhood and

the collection service in Bahçelievler. The collection routes were generated using the

Network Analyst Extension of ArcView 3.2. It uses Dijkstra‟s shortest path

algorithm to calculate the shortest path from a root node to every other node in the

network. At each iteration, the edges next to the node are evaluated regarding their

costs and the edge with least cost is selected. According to Uraz (2002), “The

Analyst may sometimes generate paths that are not suitable for solid waste collection

truck to follow in the streets of the study area. The most important factor of these

non-suitable paths is that the analyst allows the vehicle to turn back easily on the

same street for reaching to the next node”. The cost parameters used in the study are

distance, time taken to travel along the streets. The effect of average speed on the

fuel consumption was considered as well. A number of different routes were

proposed for different zones of Bahçelievler.

Ghose et al. (2006) proposed a solid waste collection system for the municipality of

Asansol in West Bengal, India. A GIS-based optimal routing model was considered

for transporting solid wastes to the landfill, involving the planning of bins, vehicles

and optimal routing. For the collection phase, the vehicles are divided into three

categories based on their volume and suitability for different conditions. The vehicle

type to be used depends on the road with and the type of the collection bin. The study

aimed to propose a framework for efficient solid waste management system rather

than concentrating solely on the route optimization. The collection routes were

generated by using the network module of Arc/Info GIS software with objective of

finding the shortest or minimum impedance through a network. The routes were

computed using a travelling salesman problem model.

 22

Nuortio et al. (2006) conducted a study in two different regions of Eastern Finland

and proposed a conceptual model aiming to schedule the waste collection activities

and minimize the distance travelled by garbage trucks using metaheuristic methods

with local search techniques. Detailed historical data provided by the waste

management company on waste accumulation levels and stop points of vehicles for

waste collection was used to estimate the waste production of each bin and the

travelling speed in each road class. Time windows were assigned to each bin,

considering the time limitations of the collection activity and working hours of the

waste disposal site. The distances between pairs of bins were calculated by using the

shortest path algorithm of Dijkstra (Dijkstra, 1959). The travel times were estimated

by using historical GPS data. In the optimization stage, a feasible solution was

generated by a hybrid insertion heuristic and then a metaheuristic algorithm is used

along with local search techniques.

Tavares et al. (2009) proposed a GIS integrated route modelling software to optimize

fuel consumption of waste collection trucks in the city of Praia and Santiago Island.

The study addresses road slope when estimating the fuel consumption of the waste

collection trucks. It was shown that longer routes can be more optimal in terms of

fuel consumption when the road inclination is taken into account. In order to estimate

the fuel consumption, the model proposed by Ntziachristos and Samaras (2000) was

used. Although the effect of vehicle load was also considered in the paper, it was not

implemented in the study. The Network Analyst software was used for the

optimization of the waste collection vehicle route for a single vehicle. The results

showed that road slopes affect the optimal route significantly when the fuel

consumption is to be minimized.

This study proposes a more realistic approach by incorporating the spatial constraints

for one-way streets and U-Turns into the model and using a digital elevation model.

The route optimization is carried out by a hybrid genetic algorithm, which is easy to

adapt to new constraints that may arise under varying conditions. This provides

additional flexibility compared to exact algorithms and enables the user to work on

larger data sets. The search capability of the genetic algorithm is strengthened by

 23

using hill-climbing algorithms, which speeds up the process of converging into high

quality solutions. Furthermore, the algorithm is parallelized with very high efficiency

so as to speed-up the genetic search.

 24

CHAPTER 3

METHODOLOGY

Classical vehicle routing models do not meet the requirements of solid waste

collection vehicle routing as far as the path constraints are considered. One of the

important path constraints is the avoidance of U-Turns (Vesilind et al., 2001).

Therefore, a spatial routing model that includes vector representation of routes needs

to be established and solved. Moreover, factors affecting the fuel consumption such

as slope and instantaneous vehicle load need to be included within the model.

3.1 General Framework of the Methodology

The aim of the proposed framework is to optimize the waste collection routes using

two different spatial models. The objective of one of the models is to minimize the

total distance travelled whereas the other one aims to minimize the fuel consumption.

The framework of this study consists of four main stages: input, pre-processing,

optimization of waste collection routes and display of output. Figure 3.1 illustrates

the general framework of this study.

The input stage involves the preparation of the input data of the application. The road

network and waste collection locations are digitized and exported as an ESRI Shape

File (ESRI Shape File Technical Documentation, 2010). The road directions are

indicated as an attribute. As a result, uni-directional and bi-directional roads can be

distinguished during route optimization.

In the pre-processing stage, road network and waste collection points are used to

generate the distance matrices in which all the shortest distances between waste

 25

collection points are declared. For this purpose, firstly, the projections of the waste

collection points on the nearest street features are calculated. Then, a directed graph

is created from the road network and the nodes calculated. By using the graph, the

shortest paths between all pairs of waste collection points are calculated. For the

points lying along the bidirectional routes, second shortest paths that are forced to

start from the direction opposite to the primary shortest path are calculated as well.

For each path generated, the average slope of the path has also been calculated for

usage in the estimation of the fuel consumption.

Figure 3.1 - Framework of the Study

In the optimization stage, a parallel hybrid genetic algorithm is used to search for the

routes with lowest total cost that service all the required demand points (waste

collection locations). In this context, the term “cost” depends on the objective of the

optimization. Two optimization models are proposed. The first model aims to

 26

minimize the total distance travelled by all vehicles and the cost refers to distance in

this model. On the contrary, the second model aims to minimize the total fuel

consumption. In this case, cost refers to fuel consumption.

The genetic optimization algorithm starts by creating an initial population of feasible

solutions. Then, an iterative evolutionary process begins, in which selected good

solutions combine with each other to produce other solutions (offspring) that inherit

the properties of their parents and some solutions are exposed to modifications. This

evolutionary process is supported by hill-climbing algorithms that periodically make

local improvements on the solutions. The genetic operators are designed in such a

way that no invalid routes are produced at any instance of execution. This is ensured

by keeping track of the assignment status of each waste collection points in every

genetic operator. The algorithm is parallelized by using islands model (Shengjun et

al., 2008). Thereby, multiple instances of the optimization algorithm run at the same

time and communicate periodically. The genetic algorithm is capable of providing a

solution any time without having to wait for the algorithm to terminate.

The last stage (output) involves displaying the resultant routes in an illustrative

manner. The optimization algorithm gives the arrangement of waste collection points

to the output module. The waste collection points are represented by an array of

numbers indicating the waste collection point and whether the primary or secondary

shortest paths are used. The output module sequentially reads the route arrays

displays the paths connecting the waste collection locations on a 3D terrain view.

3.2 Input Data

The developed software has three main inputs: a polyline shape file representing road

network, a point shape file representing the garbage containers and a digital elevation

model represented by a grid file generated by Surfer (Surfer, 2010). The

organization of the input files is described in Appendix A.

 27

Table 3.1 shows the expected attributes of the road features. The ID1 field is the

primary key, which is unique for each road feature. The direction attribute indicates

whether the road is unidirectional or bidirectional. In practice, the traffic flow is

either in the direction of digitization or both ways. The road type attribute refers to

the road hierarchy which affects the line width of the feature while displaying. The

level attribute corresponds to the height level of the feature. This feature is

implemented to clarify which roads that share a common latitude and longitude

actually intersect. The features having a level value difference greater than 2 are

assumed to be not intersecting.

Table 3.1 - The attributes of the road features

Field Name Type Explanation

ID1 Integer The primary key of the road features

Name String The name of the street

Direction Integer Direction of traffic flow with respect to

digitization direction. (0=same, 1=opposite,

2=both ways)

Type Integer The road type. (1=major road, 2=main road,

3=street)

Level Integer The height level of the road.

Table 3.2 shows the attributes of point features. The ID1 field is the primary key,

which is unique for each point feature. The Type field indicates whether the point is

a waste collection point or landfill.

Table 3.2 – The attributes of the point features

Field Name Type Explanation

ID1 Integer The primary key of the point features

Type Integer Type of the point (0=waste collection

point, 1=Landfill)

 28

3.3 Pre-processing

The aim of the pre-processing stage is to find the shortest paths and distances

between each pair of containers so as to construct the distance matrix required by the

optimization algorithm. The calculation of pairwise shortest paths requires a

preprocessing on the given input data. The preprocessing stage involves the

construction of the graph structure to be used by the shortest path algorithm.

Firstly, the geometric projections of waste collection points on the closest street

features are determined. Thereby, each waste collection location is associated with a

point on the road network. Each point of projection on the road network is recorded

as a marked node. Then, all the intersections within the road network (road-road

intersections) are determined and recorded as normal nodes (Figure 3.2).

Each node in the network is recorded with its position within the containing polyline.

The nodes generated and polyline are used to construct the graph structure consisting

of vertices and edges, denoted by

Figure 3.2 - Preprocessing the GIS data. a) projecting the containers to streets,

b) calculating the street intersections and marking them as nodes

 29

Once the graph is constructed, all pairs of shortest paths between the “marked nodes”

are calculated by means of Dijkstra‟s shortest path algorithm. The algorithm is

modified so that the nodes closer to the destination point have a higher priority

during the search. This modification enables the algorithm to find a short path to the

destination earlier. In this manner, longer paths are eliminated without having to

search unnecessary path routes.

The edges represented by straight lines in traditional vehicle routing problems are

replaced by the shortest paths calculated using the road network. Therefore, the

distance between any two containers is represented by the shortest distance

calculated within the road network and the edge is represented by the shortest path.

Even though this method provides sufficient input for the optimization algorithm by

generating the distance matrix and the edges, it does not address an important path

constraint for bidirectional roads: using shortest paths may lead to invalid routes in

cases where two consecutive edges have a common node lying along a bidirectional

road. It is probable that the ending vector of the former edge and the starting vector

of the latter edge head to opposite directions. In these cases, a second shortest path

must be used for the second edge to avoid a U-turn on the bidirectional road. The

second shortest path is calculated using the same algorithm by forcing the opposite

direction for the starting vector of the second edge. This case is illustrated in Figure

3.3.

 30

Figure 3.3 - An example invalid route problem. a) An invalid route as the two

consecutive edges are in opposite directions (U-Turn), b) Corresponding validated

route which uses the second shortest path for the edge between nodes 2 and 3.

 31

Figure 3.4-First and Second Shortest Paths

 32

The average slope of the paths have also been calculated to be used in the

optimization model that takes into account the fuel consumption. The slope of each

segment (straight line) comprising the shortest path is calculated from the available

altitude data. The average slope of the path is the weighted average of all the slopes

comprising the path, in which the affect of the slope is proportional to the length of

the line segments.

 (3.1)

where

 is the average slope of the path,

n is the number of line segments comprising the shortest path,

 is the slope of the line segment i and

l is the length of line segment i.

3.4 Optimization

The optimization stage aims to generate a route for each vehicle in such a way that

each route starts and ends at the landfill and each waste collection point is serviced

by exactly one vehicle, minimizing the total operational cost. Two optimization

models are proposed. The first one aims to minimize the total distance travelled

whereas the second one aims to minimize the fuel consumption; which is a function

of distance, instantaneous vehicle load and the road gradient. In both models, the

term “cost” is used to address the item to be minimized. Therefore, in the first model,

the cost is associated with distance whereas in the second model, the cost is

associated with fuel consumption.

3.4.1 Optimization Models

Let there be m vehicles and n waste collection points which are required to be

serviced. The route optimization problem for solid waste collection can be defined on

 33

a directed graph where is the set of vertices and

 is the set of edges defined on the graph G. The vertex

 represents the landfill and the other vertices represent the waste collection points.

Let M be the set of vehicles and be the sets of routes assigned to each

vehicle. The route of each vehicle k can be shown as set of vertices (3.2) where

represents the i
th

 point in the route of vehicle k and is the number of waste

collection points assigned to route vehicle k. For convenience, and refer to

the landfill for each route k. Therefore, collection trucks leave from the landfill site

and return back when they are filled up.

(3.2)

.

The primary and secondary shortest path distances of any two points are

denoted by and , respectively. The geometric vectors

and are the first and last vectors of the primary shortest path and

 and are the first and last vectors of the secondary shortest path

between the vertices , which were calculated in the pre-processing stage. The

angle between any two vectors is computed by the Equation 3.3, which uses the dot

product formula.

(3.3)

A binary variable associated with each edge in the graph denotes if there exists an

edge in graph G that connects vertices and . The value of is 0 if there is no

 34

direct connection between the vertices and within the routes and 1 if the

vertices have a direct connection. Additionally indicates an edge starting from

the landfill and indicates an edge ending at the landfill.

Another binary variable indicates whether the primary or secondary shortest paths

are used connecting the and vertices of route k. The value is 1 if the

first shortest path is used and 2 if second shortest paths are used. Equation 3.4 says

that the path between the and vertices of route k is taken from the

primary shortest path if the angle between the last vector of the edge and

the first vector of the edge is not opposite. Otherwise, the path is taken

from the second shortest path. is defined recursively (in terms of itself) since the

progress of the route at any instance of construction depends on the previous path.

(3.4)

where

 ≈ 3.14159 corresponds to the angle between opposite vectors in radians. The

condition that the angle between two adjacent edges is equal to π radians is a U-Turn.

In case of a U-Turn, the second shortest paths are used.

The distance between and vertices for every route depends on

whether the first or second shortest paths are used. Therefore, can be defined as:

(3.5)

 35

In the first optimization model, the aim is to minimize the total distance travelled.

Therefore, the cost of the route is defined in terms of distance. The distance-based

cost between and vertices for every route can be defined as:

(3.6)

The total cost of route k, therefore, is

(3.7)

A solution of the problem consists of a partition of V and a

corresponding permutation which specifies the order of the customers in the route k

(Tarantilis et al., 2005).

The objective of the model is to

Subject to

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

 36

(3.13)

(3.14)

where

 is the route vector for vehicle k, consisting of vertices,

 is the number of vertices in route k,

 indicates whether there is an edge between vertices i and j,

 indicates whether the first or second shortest path is used in the edge of

route.

The objective function, Equation 3.8 is to minimize the total distances travelled.

Equation 3.9 restricts the routes so that no two vehicles can service the same waste

collection location. Equation 3.10 ensures that the sum of total number of waste

collection points assigned to each vehicle adds up to the number of waste collection

points. Equation 3.11 says that the landfill is entered and left as many times as the

number of vehicles. Equation 3.12 shows that each waste collection point is entered

and left only once. Equation 3.13 says that there either exist or not exist an edge

between points i and j by restricting the possible values of the variable to 0 and 1.

Equation 3.14 restricts the paths that can be used to primary and secondary shortest

paths.

In the second optimization model, the objective is to minimize the fuel consumption,

which is a function of the path length, average slope and the instantaneous loading

conditions of the truck. A fuel consumption model for waste collection trucks was

given by Tavares et al. (2009).

According to Tavares et al. (2009), the fuel consumption during waste collection and

transportation depends on the distance travelled, vehicle load and road gradient as

 37

well as the actual operating conditions. Tavares et al. (2009) suggest the use of the

method proposed by Ntziachristos and Samaras (2000) for the evaluation of these

effects to fuel consumption. In this method, the basic fuel consumption per kilometer

as a function of speed is expressed by the following empirical formula:

,

where V is the velocity of the truck in km/h.

(3.15)

The empirical formula for the basic fuel consumption is calibrated for half-loaded

trucks. The effect of load and road gradient is introduced to the equation by means of

two dimensionless correction factors: Load Correction Factor (LCF) and Gradient

Correction Factor (GrCF).

(3.16)

(3.17)

Where LP is the load percentage of the truck and x is the slope percentage. The

overall fuel consumption is estimated by means of the following formula, in terms of

galloons.

 (3.18)

In this study, the road gradient (slope) and vehicle load is introduced to the model by

means of a penalty coefficient for the distance travelled. For the calculation of the

load percentage of the truck, the average amount of garbage per service location is

assumed to be 50kg and the weight capacity of the vehicle is assumed to be 8tons.

Therefore, each service point visited is assumed to fill the truck with a percentage of

0.625%. The Load Correction Factor (LCF) can therefore be expressed as:

 38

(3.19)

where n denotes the number of garbage collection service points visited so far by the

particular truck. The empirical equation for the gradient correction factor is valid for

slopes within the range of -13.5° to 13.5° (-15% to 15%). Converting the road

gradient from percentage to degrees, the penalty coefficient can therefore be written

as:

(3.20)

Figure 3.5 illustrates different penalty coefficients for road gradient and loading

conditions. The chart demonstrates the importance of slope and load for fuel

consumption. For instance, the loading percentages after visiting 50 and 100 waste

collection points are 31.25% and 62.5%, respectively. If the road inclination is 10°

and the road length is 200m, the excess load for visiting 100 demand points would

result in an excess distance of 68m compared to passing through the same road with

half the load.

Figure 3.5 – Penalty coefficients for different road gradients and number of pre-

visited service points.

 39

Integration of the fuel consumption into the model requires the definition of average

slope of edges. , which is the average slope of the primary shortest path

connecting vertices and . Likewise, is the average slope of the secondary

shortest path. For simplicity in the notation, the average slope can also be written as

 where path no indicates whether the first or second shortest paths are

used, and i and j denote the source and destination vertices, respectively. The

definition of the fuel-consumption based cost for the second model becomes:

(3.21)

The total cost of each route k can be defined as

(3.22)

The objective of the model is to

Subject to

(3.23)

(3.24)

(3.25)

 40

(3.26)

(3.27)

(3.28)

(3.29)

where

 is the route vector for vehicle k, consisting of vertices,

 is the number of vertices in route k,

 indicates whether there is an edge between vertices i and j,

 indicates whether the first or second shortest path is used in the edge of

route.

The objective function, Equation 3.23 is to minimize the total distances travelled.

Equation 3.24 restricts the routes so that no two vehicles can service the same waste

collection location. Equation 3.25 ensures that the sum of total number of waste

collection points assigned to each vehicle adds up to the number of waste collection

points. Equation 3.26 says that the landfill is entered and left as many times as the

number of vehicles. Equation 3.27 shows that each waste collection point is entered

and left only once. Equation 3.28 says that there either exist or not exist an edge

between points i and j by restricting the possible values of the variable to 0 and 1.

Equation 3.29 restricts the paths that can be used to primary and secondary shortest

paths.

3.4.2 Optimization Method

In Chapter 2, three broad classes of optimization algorithms were presented: exact,

heuristic and metaheuristic. Even though exact methods can the problem to full

 41

optimality (i.e., they can find the best possible solution), they can only solve problem

instances with up to 100 service points (Fisher et al., 1997). Heuristic methods

operate based on inspection and their search capability is limited. Therefore, it is

more suitable to consider metaheuristic algorithms as they make a deeper exploration

of the search space.

Genetic Algorithms (GA) are selected among other optimization methods. Genetic

Algorithms are in the class of Metaheuristic Optimization Algorithms and they are

modelled based on the evolution of species. According to Sengoku and Yoshihara

(1998), Genetic Algorithm “does not require detailed knowledge of the problem, it

can search globally and it can adapt the changing conditions of the problem”.

Furthermore, it is easy to make the genetic algorithm cooperate with other heuristics

to provide a hybrid solution. A detailed description of the implemented hybrid

genetic algorithm is presented in Chapter 4.

3.5 Output

The optimization algorithm generates a routes starting and ending at the landfill for

each vehicle. The route is represented by an array of numbers representing the visit

order of the waste collection points. The numbers are accompanied by a flag

indicating whether the first or the second shortest path is used to connect the points.

The output is displayed on a 3D terrain view using Open Graphics Library (OpenGL,

2010). OpenGL is a general purpose, platform independent graphics library that has a

variety of functions for drawing graphics in 2D and 3D. Moreover, OpenGL

functionalities are embedded in many graphic cards so that very little CPU power is

required to process the screen output. Thereby, the user can navigate through map

without while the optimization is in progress without affecting the performance

significantly. The application has the capability to visualise the road network,

garbage collection points and the route along with a 3D terrain view in OpenGL.

 42

3.6 GIS Integration

The developed software is stand-alone and does not work inside a GIS program and

therefore, is loosely coupled with GIS environment. It supports ESRI shape files and

a Surfer Grid Files as input. The road network and the garbage collection locations

are introduced to the system as shape files. For simplicity in metric distance

calculations, the shape files are projected using UTM Projection (Zone 36N) with

WGS84 datum. The DEM is optional and introduced to the system as a Surfer Grid

File.

Apart from operating on GIS data, the proposed optimization model has a spatial

constraint that prevents U-Turns. The constraint requires a geometric vector variable

which indicates the starting and ending directions of paths between every pair of

service points. The proposed model uses this information to select either the primary

or secondary shortest path to travel between any two waste collection points.

3.7 Implementation

The developed software is implemented in C++ programming language using

Microsoft Visual Studio 2005 as a stand-alone application. The software is structured

based on the Document/View architecture; however the related MFC libraries are

only used for display and disk I/O features. It is designed as multi-thread application

with the genetic algorithm running in a separate thread. This feature enables the user

to pan through the map while the genetic algorithm runs in the background without

any interruption.

The genetic algorithm is created almost entirely by using ANSI C++ and the standard

template library (STL) for required data structures such as dynamic arrays and hash

maps. Therefore, it is possible to extract the genetic algorithm code from the

application in order to use in other C++ environments with a few modifications.

The sample-runs of the developed software are made on a 2.20GHz double core Intel

processor with 2GB of memory. All other processor-demanding applications are

closed before the tests in order to provide the same conditions for every single

execution.

 43

CHAPTER 4

DEVELOPED HYBRID GENETIC ALGORITHM

In this study, a hybrid genetic algorithm is utilized for the optimization of the waste

collection routes. Genetic algorithm is preferred in this study due to the following

reasons:

 GAs can provide feasible solutions at any instance of generation,

 A detailed knowledge of the problem is not required (Sengoku and Yoshihara

, 1998),

 It is easy to adapt to changing conditions of the problem easily (Sengoku and

Yoshihara , 1998),

 GAs can search globally without getting stuck in local optima (Sengoku and

Yoshihara , 1998),

 It is possible to co-operate with other techniques (hybridization),

 GAs can be parallelized with very high efficiency.

In Chapter 2, a literature review of Genetic Algorithms for the vehicle routing

problems was presented. The idea behind the Genetic Algorithms is explained and

various concepts related with Genetic Algorithms were discussed considering the

path representation methods and the use of appropriate genetic operators.

This chapter focuses on the details of the hybrid genetic algorithm developed in this

study. First, a general flowchart of the genetic algorithm is presented by explaining

the components. Then, the stages of the algorithm including the creation of the initial

population, the genetic operators, the hill-climbing techniques and the GA

 44

parameters are discussed. The strategies used for parallelizing the genetic algorithm

are explained by presenting a chart for speed-up. The genetic algorithm is validated

on a set of benchmark problems provided by TSPLIB (TSPLIB, 2010).

A flowchart of the genetic algorithm used is presented in Figure 4.1. The proposed

genetic algorithm starts by creating an initial population of candidate solutions

(referred to as chromosomes, individuals or members). After the creation of the

initial population, the fitness of each chromosome in the population is calculated. As

multiple instances of the algorithm run in parallel, the chromosomes migrated from

other populations are transferred from the exchange pool to the population. The

chromosomes are then sorted based on fitness and the selection operator chooses the

chromosomes that are to undergo genetic operations. Then, chromosomes to be

transferred to exchange pool are selected based on their fitness using the roulette

wheel selection method and copied to the pool to be used by other parallel instances

of the GA. The genetic operators are applied to the selected chromosomes of the

population and the termination criteria are checked. The iteration continues until the

termination criteria are satisfied. The source code of various parts of the genetic

algorithm is presented in Appendix B.

 45

Figure 4.1- Flowchart of the proposed Hybrid Genetic Algorithm

4.1 Essential Elements of GA

The following items are the essential elements of genetic algorithms that must be

considered for any genetic algorithm.

 Representation of Chromosomes

 Generation Initial Population

 Fitness Function

 Elitism

 Mutation

 Crossover

 Termination Criterion

 Tuning of Parameters

In this genetic algorithm, path representation is preferred among other representation

methods due to its simplicity and applicability to many genetic operators and hill-

climbing techniques. In the path representation, each waste collection point is

 46

represented by a specific positive number. The route assigned to each vehicle is

represented by a vector of numbers.

The chromosomes comprising the initial population are generated independently.

The number of chromosomes in a population is referred to as the population size.

The procedure below explains how each individual chromosome is generated.

Repeating this procedure as many times as the population size, the initial population

is generated.

The flowchart for generating an initial chromosome is illustrated in Figure 4.2.

Initially, the path vector of each vehicle route in a chromosome is empty and the

bucket of available points is full. Hence, the initial transportation costs for each

vehicle are zero.

Random waste collection points are assigned to each vehicle as their first

destinations and the transportation costs are updated accordingly. Any point assigned

to a vehicle is marked as assigned in order to assure that it will not be re-assigned

later. Thereby, generation of illegal solutions is prevented. Then, the vehicle with

lowest transportation cost is selected in order to assign the next destination. Roulette

wheel selection is used to select the next point. The procedure continues until all

points are assigned to a vehicle. Since the algorithm uses roulette wheel selection, the

initial route construction process is stochastic.

The probability of selecting any available point j is proportional to a constant power

of the inverse distance between points. Thus, the probability of being selected for

each candidate point j is given in Equation (4.1.

 (4.1)

where

 47

 denotes the distance from the last selected point to the next candidate point and

 is the intensification constant.

The higher the intensification constant (), the higher the tendency of selecting

closer points will be. As approaches to 0, the roulette wheel selection method

behaves more like random selection. The value of is kept constant throughout the

generation of each individual chromosome; however, its value is increased gradually

after each chromosome. The value of starts from 1.0 and reaches to 4.0 in the last

chromosome of the population. The variation of values throughout the generation

process is to create initial chromosomes of different characteristics.

Figure 4.2- Creation of an initial chromosome

The fitness function in the Genetic Algorithm is a measure of how the objective

function in the mathematical model is satisfied. Therefore, for both optimization

models presented in Chapter 3, only the fitness function is modified as the

constraints of the problem are the same for both cases.

 48

The fitness of a chromosome is calculated as a function of transportation distance

and the penalty component of the chromosome. The penalty coefficient () is a

multiplier of the transportation distance (). The value of the penalty coefficient

constant (1.0) for the first optimization model which minimizes the distance

travelled. On the contrary, in the second model which minimizes the fuel

consumption, represents the penalty coefficient given in the mathematical model.

The fitness of each individual is calculated using the formula in Equation (4.2).

(4.2)

The first 10% of the chromosomes possessing the highest fitness values are protected

from deterioration and are said to be in the elitism region. The approach to elitism is

different from other studies in that the chromosomes in the elitism region are only

protected against modifications which lower their fitness values. In traditional

approaches, the elite chromosomes cannot be modified in any manner.

Three different mutation operators are employed in the proposed genetic algorithm:

point swap mutation, modified 2-opt heuristic mutation, and insertion mutation. The

chromosomes to undergo mutation are selected randomly. For all mutation types, any

mutation that is to reduce the quality of the chromosome cannot be applied to the

chromosomes in the elitism region. They can only be applied for the chromosomes

that are beyond the elitism region in order to increase genetic diversity in the search.

The point swap mutation is a simplified version of swap sequence mutation proposed

by Nazif and Lee (2010). Two waste collection points are swapped rather than two

sequences of routes. However, the points to be swapped are not selected randomly.

First, an arbitrary waste collection point in the chromosome is selected. The other

point to be swapped with the first one is selected by means of roulette wheel

selection such that closer points have a higher probability of being selected for

exchange. Then the two points are swapped. Therefore, it is likely that the selected

points are close to each other as the selection probability is related with the inverse

 49

distance. This mutation supports swapping points between vehicles and is very

simple and powerful.

The 2-opt mutation utilized in this study differs from the original one explained in

Chapter 2 in that not all the pairs of edges are checked for swapping pairs. Instead,

only edges that are closer than the average edge size of the chromosome are

considered for 2-opt mutation. The average edge size of the chromosome is

calculated by dividing the total path length of the chromosome by the total number of

waste collection points. The sequence of points between the swapped pairs is

inverted to check if inversion enhances the result.

In the insertion mutation, all edges are checked for a point which is closer to the edge

than quarter the size of the edge. If there is such a point within the threshold distance,

the point is removed from its original position and inserted between the two points

comprising the edge.

After each mutation, each route is repaired so that second shortest paths are used

wherever it is necessary. Figure 4.3 illustrates the mutation algorithms used within

this genetic algorithm.

a.) Point Swap Mutation

 50

b.) 2-opt Mutation

c.) Insertion Mutation

Figure 4.3-Mutation Algorithms

Edge Recombination Crossover (ERX) is used to generate new offsprings from

parent chromosomes. Although alternative crossover algorithms such as PMX and

OX could also be used, they are not as effective as ERX in terms of inheriting

important genetic material such as edges. As ERX (Whitley et al., 1989) was

originally proposed for the Travelling Salesman Problem (TSP), it is slightly

modified to support multiple vehicles.

To start with, the edge list (Table 2.3) is constructed for all points by using two

parent chromosomes as explained in Chapter 2. Then, all vehicles are assigned an

initial point from either one of the two parents. At each iteration, the vehicle with

 51

lowest transportation cost is selected and the next destination of the vehicle is

selected from the edge list. If the edge list contains more than one edge starting from

the current point, the shortest edge (nearest point) is selected. The process continues

until all points are used.

The termination criterion for the genetic algorithm in this study is based on the

number of generations without further evolution of the best cost obtained. To

determine a suitable number of inefficient generations required to terminate the

optimization process, initially the termination criterion is adjusted so that the genetic

algorithm terminates after 5000 inefficient generations. After running the algorithm

with 20 runs with well-tuned parameters, the number of generations passed between

the last two enhancements is recorded. For instance, if a genetic algorithm makes the

last cost enhancement in the generation 15000 and the previous enhancement in the

generation 14000, the difference 1000 is recorded as the result of that particular run.

Figure 4.4 illustrates the frequency histogram for the number of generations between

last two enhancements for different runs with a bandwidth of 100. Among the 20

samples, only a single sample continued evolving after 1746 generations. It can be

inferred from the chart that almost all of the sample runs cannot demonstrate any

further enhancement after 1000 generations without evolution. The proposed genetic

algorithm terminates if there is no further enhancement of the best route in the last

2000 evolutions.

 52

Figure 4.4 – The frequency histogram for the number of generations between the last

two enhancements for 20 test runs.

Metaheuristic optimization methods are widely used in optimization problems with

large inputs and almost always require a fine tuning of parameters. Tuning the

parameters is of great importance in genetic algorithms as the evolutionary process

converges to better results in a shorter amount of time with the related parameters

well-adjusted. The main parameters involved in genetic algorithms are the

percentages of individuals that are to undergo mutation and crossover as well as the

population size.

 Figure 4.5 illustrates the best route distances obtained by running the genetic

algorithm with different mutation and crossover percentage values. The genetic

algorithm was run with 3 different mutation percentage combinations ranging from

5% to 15% and 9 different crossover percentage combinations ranging from 40% to

80%. The experiment was done three times and average costs are used in order to

reduce the chances of obtaining misleading coincident results. According to the

experiment using 27 different mutation-crossover combinations, the best results were

obtained by using a crossover percentage of 45% and a mutation percentage of 5%.

 53

However, this combination makes a local peak in the chart with a small variation of

parameters resulting in a bad performance, mutation values of 15% with 50% to 60%

of crossover is also recommendable.

Figure 4.5 – Best transportation distances obtained by trying different crossover and

mutation combinations (without hill-climbing algorithms).

Selection of the most suitable population size is also of great importance. If the

population size becomes too low, the genetic diversity would not suffice to sustain

the evolution and the evolution of potential solutions would seize quickly. Likewise,

if the population size becomes too high, it would take longer to execute the genetic

operators as well as the hill-climbing algorithms.

Figure 4.6 illustrates a range of different population sizes used with the genetic

algorithm. The genetic algorithm is run on 20 different population sizes, ranging

from 150 to 1050. The experiment was repeated 3 times and the average distance

values are used. The best results were obtained by using a population size of 500.

 54

Figure 4.6 – Best transportation distances obtained by selecting different population

sizes

4.2 Hill-climbing Algorithms

Hill-climbing is a local search method that is often used in cooperation with genetic

algorithms to increase the performance. Hill-climbing algorithms are iterative and

their aim is to gradually improve the solution by enhancing a small part of it at each

iteration. The genetic algorithm developed in this study is called “hybrid” as it

utilizes hill-climbing algorithms that aim to enhance the evolutionary process.

The 2-opt mutation described in the preceding sections is a hill-climbing algorithm

as it attempts to find better solutions each time by switching pairs between different

sets of edges. If the change results in a better solution, an incremental change is made

and the process continues until no further enhancement is possible.

Another hill-climbing method used in this study is exhaustive search. It is practically

impossible to find the best permutation of a large set of points with exhaustive search

(also referred to as brute-force search) as the computation time grows exponentially

with the number of points. However, exhaustive search can be used to find the best

possible arrangement of points in the route for a small part of the route. For each

route, a small part consisting of 8 to 12 nodes is randomly selected at each generation

to apply the exhaustive search. The best permutation of the selected range nodes is

found and replaced with the old sequence.

 55

Purely exhaustive search checks for every possible arrangement of points and hence,

is inefficient. To speed up the search, alpha beta pruning and heuristic methods are

employed. The alpha beta pruning technique stops the evaluation of a permutation

even before the sequence is completed when the instantaneous cost of the partial

sequence exceeds the lowest cost found so far. When the evaluation of a permutation

is stopped, any dependant permutation will not be considered. This approach will

narrow down the search space without affecting the overall result. The heuristic

improvement method on the other hand focuses on obtaining a feasible (low-cost)

permutation as soon as possible so that the alpha beta pruning technique can

eliminate the non-optimal permutations earlier. This can be achieved by sorting the

points so that the nearest point is checked first in the search algorithm.

4.3 Parallelization

Genetic algorithms are computationally costly considering the efforts to apply the

genetic operators and evaluation functions. However, they are very suitable for

parallelization. Distributed computation increases the performance of the genetic

algorithm significantly.

The genetic algorithm is parallelized by the course-grained PGA islands model

(Shengjun et al., 2008). In this model, multiple instances of the genetic algorithm run

independently on different processors. Each instance of genetic algorithm is fed by

the same initial data and represents an evolving subpopulation. Each subpopulation

evolves independently on their processor in parallel executing the same genetic

algorithm. Since every individual subpopulation is isolated and the only means of

genetic transfer between different subpopulations is migration, each subpopulation is

associated with an imaginary island. Figure 4.7 illustrates the implementation of the

model in the genetic algorithm.

 56

As the instances of genetic algorithm discover new routes, 5 individuals from every

subpopulation are duplicated and sent to the exchange pool every 100 generations.

Likewise, every subpopulation receives 3 individuals from the exchange pool every

50 generations. The amount of individuals currently existing in the pool is less than

50, all of them are pulled out of the pool. The individuals in the subpopulation are

not allowed to return to their original islands once they are sent to the pool.

The access to the exchange pool is sequential. Therefore, only one island can access

the exchange pool at any instance. Whenever an island is to send chromosomes to the

exchange pool, first it locks the pool if it is available. Once the chromosome is

migrated, it is unlocked. This prevents concurrent access to the pool, which may

corrupt the chromosomes.

Figure 4.7 – Illustration of the Island model

For the parallelization of the genetic algorithm, the OpenMP library is used.

OpenMP (Open multi-processing) is a cross-platform application programming

interface that supports multi-platform shared memory multiprocessing programming

in many languages on a variety of architectures, including UNIX and Microsoft

Windows platforms. It has a number of compiler directives, library routines and

environment variables that assist the programmer to parallelize the routines that

require high speed.

 57

In parallel programming (Parallel Programming Lecture 14 Computer Performance,

2010), the term „speed-up‟ refers to the ratio to which a parallel algorithm is faster

than a corresponding sequential algorithm. It is calculated by dividing the time

passed for accomplishing a task using a sequential algorithm by that using a parallel

algorithm (4.3). Efficiency, on the other hand, is a measure of how effectively the

processors are used. It is calculated by dividing the speed-up by the number of

processors (4.4).

(4.3)

(4.4)

4.4 Validation of the Genetic Algorithm

The validation of the proposed genetic algorithm is made by running the software on

three sample asymmetrical TSP benchmark problems provided by TSPLIB (TSPLIB,

2010). Each benchmark problem is given a name indicating the number of service

points. The benchmark problems are provided as a text file containing a header part

and a distance matrix. The header includes information about the dimensions of the

particular problem and the cost of best possible solution (optimum distance)

calculated before using exact methods. The distance matrix provides the distances

between every pair of nodes. In the validation stage, the program directly uses the

distance matrix read from the sample problem file.

 58

Table 4.1 - TSPLIB Benchmark Results

Problem
Name

Number of
Nodes

Optimum Cost
Cost

Obtained

Deflection
from

Optimum (%)

kro124p 124 36230 37374 3.15

flv170 170 2755 2784 1.05

rbg358 358 1163 1191 2.40

rbg443 443 2720 2756 1.32

The progress of the solution of the benchmark problems is demonstrated in Figure

4.8. The x axis shows the number of generations of the genetic algorithm to reach to

the distance represented by y axis.

a.) Problem Name: kro124p (3.15% deflection from optimal solution)

 59

b.) Problem Name: flv170 (1.05% deflection from optimal solution)

c.) Problem Name: rbg 358 (2.40% deflection from optimal solution)

 60

d.) Problem Name: rbg 443 (1.32% deflection from optimal solution)

Figure 4.8- Distance vs Generation Graphs for Validation Problems

The benchmarking results show that the proposed Parallel Hybrid Genetic Algorithm

solves the sample benchmark problems within 1.05 to 3.15 optimality within less

than 5 minutes. Therefore, the algorithm is reliable and is capable of searching

globally.

4.5 Parallelization of the Genetic Algorithm

The chart in Figure 4.9 illustrates the efficiency of the parallelization by comparing

the number of generations per millisecond in single and double processor case. The

test was made in exactly the same conditions by closing all other applications that

have a potential to affect the results. Comparing the slopes of the single and double

processor cases, the speed-up is calculated as 1.83 with an efficiency of 91.5%.

 61

Figure 4.9 - Comparison of single and double processor case. The speed-up obtained

by using 2 processors is 1.83 and the efficiency is 91.5%.

 62

CHAPTER 5

CASE STUDY

5.1 Study Area

The proposed area of application for the solid waste collection routing problem

includes Bahçelievler and Emek neighbourhoods in Çankaya/Ankara/Turkey with an

approximate area of 2.5km
2
. The altitude of the region ranges from 860m to 920m

above sea level. The area is divided into three zones: Aşağı Bahçelievler, Yukarı

Bahçelievler and Emek. For the current waste collection operation; three vehicles are

allocated, one for each zone. The waste collection routes are determined based on

driver‟s experience (Uraz, 2002). Following collection waste is disposed at ITC

Mamak Landfill Site.

Even though the study primarily focuses on the routes generated in Bahçelievler and

Emek Neighbourhoods, the available map data covers entire Ankara in terms of

major and main roads and also all the streets of Bahçelievler and Emek

Neighbourhoods. Bahçelievler and Emek Neighbourhoods are located approximately

at the center of the city whereas the Mamak ITC Landfill is located in the South-

Eastern part of the city, bounded by Natoyolu Street from East and the Ankara Ring

Road from the South (Latitude: 39.878259, Longitude: 32.934608). The maps are

obtained as satellite images in the form of GeoTIFF and then digitized using

appropriate GIS tools.

Figure 5.1 illustrates the location of the study area and Mamak Landfill in Ankara.

The points demonstrated by asterisks correspond to the waste collection locations. In

 63

this study, 239 hypothetical waste collection locations are digitized homogenously.

These locations are assumed to be the collection points for the wastes produced in

the households situated on the relevant streets.

Figure 5.1 – The Study Area.

In Figure 5.2, a terrain view of the Bahçelievler and Emek Neighbourhoods is

provided in order to illustrate the varying altitudes. The locations of the waste

collection points are marked with red dots. The altitude increases from yellow to

dark green. The main trends of slope in the area are towards East and West from the

ridge defined by the 4
th

 street (Figure 5.2) and are indicated by arrows.

The road inclination trends are particularly important as far as the optimization

model which aims to minimize the fuel consumption is concerned. The fuel

 64

consumption model used in this study (Tavares et al., 2009) depends on

instantaneous vehicle load and the road inclination.

Figure 5.2 – The study area in 3D Terrain View. The slopes are indicated by arrows.

The unidirectional and bidirectional streets in the study area are as illustrated in

Figure 5.3. The streets that are shown with red are bidirectional streets. Conversely,

other streets shown in blue are unidirectional. The direction of traffic flow is marked

by an arrow. Unidirectional roads are important constraints in planning the routes as

they have the potential to change the vehicle routes significantly.

The digital elevation model used to construct the 3D terrain is loaded from a Surfer

grid file (Surfer, 2010). In order to prepare the grid file, a 90m resolution SRTM grid

of Ankara is used along with 70 additional altitude samples of Bahçelievler and

Emek Neighbourhoods taken from Google Earth. The final grid of 30m resolution is

 65

generated by means of kriging interpolation. The interpolation is made by using

Surfer (Surfer, 2010).

The datum and the projection of the shape files are WGS84 and UTM 36N

(Universal Transverse Mercator Projection, Zone: 36N), respectively. For

convenience in measuring distances, metric system is used. The coordinates of the

SRTM altitude data has also been projected using the same parameters before the

interpolation.

Figure 5.3- Road directions in the area. Roads marked with red indicate bidirectional

roads whereas blue roads are unidirectional.

 66

The landfill in Mamak and 239 hypothetical waste collection locations within the

study area are represented by a point-featured shape file. The altitude data of the

terrain is prepared by interpolating the freely available SRTM (SRTM, 2010) data

(90m resolution) with altitude samples collected from Google Earth using Surfer

(Golden Software – Surfer, 2010). The resultant grid is saved with grid size of 30m.

5.2 Results and Discussions

Two different optimization models are implemented for the optimization algorithm.

The first one aims to minimize the total distance travelled and the second one aims to

minimize the total fuel consumption. In the end, is aimed to demonstrate that the two

approaches produce different results regarding their objective functions.

In Chapter 4, the genetic optimization algorithm was validated by using 4 TSP

Benchmark Problems. Even though this provides some degree of reliability for the

algorithm, it is not sufficient. The proposed optimization model is designed to

support spatial constraints and therefore, it has to be tested using small test problems

in real road network. The first optimization model which minimized the total

distance travelled is tested on small test problems within Bahçelievler and Emek

Neighbourhoods. The results of the test problems (generated routes) can be verified

by inspection easily. Testing the optimization algorithm on the real road network

with unidirectional and bidirectional roads, the following items are verified:

 Closure of the path

 Avoidance of U-Turns

 Compliance with road directions

 The shape of the route path

In the first test case, 10 waste collection points are digitized within the study area

randomly. The locations of the waste collection points are shown in Figure 5.4.

 67

Figure 5.4 – The Distribution of Waste Collection Locations in Test Case 1

For this test case, the routes generated are analyzed for two cases:

 Single Vehicle (Figure 5.5 and Figure 5.6)

 2 Vehicles (Figure 5.7 and Figure 5.8)

 68

Figure 5.5 - Test Case 1 - A Full View of the Route Generated (Single Vehicle)

Figure 5.6 - Test Case 1 - A View of the Route Generated within the Study Area

(Single Vehicle)

 69

Figure 5.7 - Test Case 1 - A Full View of the Route Generated (2 Vehicles)

Figure 5.8 - Test Case 1 - A View of the Route Generated within the Study Area (2

Vehicles)

 70

Table 5.1 – Test Case 1 - Total Route Lengths for Different Vehicle Counts

Number of Vehicles Total Route Length (m)

1 30050.7

2 53889.7

For the second test case, 20 waste collection points are digitized in the study area

with two clusters as shown in Figure 5.9.

Figure 5.9 - – The Distribution of Waste Collection Locations in Test Case 2

 71

Figure 5.10 - Test Case 2 - A Full View of the Route Generated (Single Vehicle)

Figure 5.11 - Test Case 2 – A View of the Southern Part of the Route (Single

Vehicle)

 72

Figure 5.12 - Test Case 2 – A View of the Northern Part of the Route (Single

Vehicle)

Figure 5.13 - Test Case 2 - A Full View of the Route Generated (2 Vehicles)

 73

Figure 5.14 - Test Case 2 - A View of the Route Generated within the Study Area for

the first vehicle (2 Vehicles)

Figure 5.15 - Test Case 2 - A View of the Route Generated within the Study Area for

the first vehicle (2 Vehicles)

 74

Table 5.2 – Test Case 2 - Total Route Lengths for Different Vehicle Counts

Number of Vehicles Total Route Length (m)

1 51840.3

2 29557.6

Regarding the test problems considered, it is clear that the paths generated are closed

(i.e., start and end at the landfill). Each waste collection point is visited only once.

Moreover, the generated routes comply with the road directions without any U-

Turns. Furthermore, the route optimization algorithm succeeded in considering the

clustered distribution of waste collection points in the Test Case 2. The route of each

vehicle services one of the two clusters without any explicit algorithm to detect the

clusters or any assignment procedure to assign the vehicles to points.

For the case study of Bahçelievler and Emek Neighbourhoods, the developed

software is supposed to generate routes involving the landfill and 239 waste

collection points for 3 trucks. The waste collection locations are uniformly

distributed along the streets within the study area. Figure 5.16 shows the locations of

the waste collection points. The test is made using two different optimization models:

distance optimization mode and fuel consumption optimization mode. It is aimed to

demonstrate the differences in routes arising from the model used.

In the first model, the objective is to minimize the total distance travelled by 3 trucks.

Therefore the inclination of the roads and the instantaneous truck load is not taken

into account and has no contribution on the penalty coefficient. Figure 5.17 and

Figure 5.18 demonstrate the evolution of the routes.

 75

Figure 5.16 – The study area containing 239 Waste Collection Points

For the both the distance optimization model and the fuel consumption optimization

model, the genetic algorithm is run 6 times. The lowest cost obtained in each model

is marked and the resultant routes are illustrated.

Table 5.3 demonstrates the results of the total distance optimization model. The best

route set has a total length of 119.9km, approximately.

 76

Table 5.3 – Routes Generated by the Total Distance Optimization Model

Run # Number of Generations Time Passed(sec) Route Length (m)

1 2045 301 121256.8

2 1193 192 122554.4

3 7356 324 121564.8

4 1658 213 120904.4

5 2856 245 121945.8

6 7616 504 119862.1

Figure 5.17 and Figure 5.18 illustrate the progress of the genetic algorithm for 6

different runs.

Figure 5.17 – Route Distance vs. Generation Graph for Distance Optimization Mode

 77

Figure 5.18 – Route Distance vs. Running Time Graph for Distance Optimization

Mode

The software is run on an Intel Core2Duo Processor with 2GB of memory. The clock

speed of each processor is 2.20GHz. During the test, all applications running in the

background are closed so as to provide the same conditions for different runs.

The best solution is obtained in 761.6 generations within 504 seconds. The charts in

Figure 5.17 and Figure 5.18 show that the solutions evolve very rapidly within the

first 1000 generations. The evolution gradually slows down and the genetic

algorithm is terminated after the termination criteria explained in Chapter 3 are

 78

satisfied. Figures Figure 5.19 throughFigure 5.23 illustrate different views of the

routes generated by the distance optimization model.

Figure 5.19 – Distance Optimization Model - A General Overview of Generated

Routes

Figure 5.20 - Distance Optimization Model – Overview of Generated Routes in the

Study Area

 79

Figure 5.21 – Distance Optimization Model –Close-up view of North-East

Bahçelievler

Figure 5.22 - Distance Optimization Model – Close-up view of Emek

 80

Figure 5.23 – Distance Optimization Model – Close-up view of Southern

Bahçelievler

In the other optimization model which aims to minimize the total fuel consumption, a

penalty coefficient is calculated for each edge of the routes generated based on the

empirical model suggested by Tavares et al. (2009). According to the model, the fuel

consumption depends on the road inclination and the instantaneous loading

conditions of the vehicle as well as the distance travelled. Table 5.4 illustrates the

roads generated by the fuel consumption optimization model.

Table 5.4 - Routes Generated by the Total Distance Optimization Model

Run #
Number of

Generations
Time Passed(sec)

Route Length
(m)

1 4356 388 121203.5

2 2169 176 122269.9

3 845 66 122269.9

4 2107 189 121207.8

5 2856 245 121945.8

6 2733 247 121856.6

 81

The charts in Figures Figure 5.24 and Figure 5.25 demonstrate the evolution of the

routes using the fuel consumption optimization model. It can be inferred from the

charts that the solutions evolve rapidly in the first 500 generations and then the

evolution gradually slows down. The algorithm is terminated when the termination

criteria are satisfied.

Figure 5.24 – Fuel Consumption Optimization Model - Distance vs Generation

Graph

 82

Figure 5.25 - Fuel Consumption Optimization Mode - Distance vs Running Time

Graph

The Figures Figure 5.26 through Figure 5.30 illustrate the routes generated in

different parts of the study area.

 83

Figure 5.26 – Fuel Consumption Optimization Model - A General Overview of

Generated Routes

Figure 5.27 - Fuel Consumption Optimization Model - Overview of Generated

Routes in the Study Area

 84

Figure 5.28 - Fuel Consumption Optimization Model - Close-up view of North-East

Bahçelievler

Figure 5.29 - Fuel Consumption Optimization Model – Close-up view of Emek

 85

Figure 5.30 - Fuel Consumption Optimization Model - Close-up view of Southern

Bahçelievler

Comparing the two models, it is expected that the model that minimizes fuel

consumption handles the regions with steep slopes when the loading percentage of

the waste collection truck is relatively low and flat regions when it is intensely

loaded so as to minimize the fuel consumption. This behaviour can be seen in

Figures Figure 5.31 and Figure 5.32.

Figure 5.31 demonstrates a route generated by the distance optimization model.

Since the fuel consumption is not considered, the heavily loaded trucks can be routed

along steep slopes. The truck represented by blue routes climb a very steep slope

after having serviced 90 waste collection points.

On the other hand, Figure 5.32 illustrates a route generated in the same region using

the fuel consumption optimization model. The collection route of the vehicle

represented by green route starts from the steeply sloped region and the relatively flat

areas are serviced later.

 86

Figure 5.31 – Distance Optimization Model - A part of the route generated in a

steeply sloping region in Emek

Figure 5.32 – Fuel Consumption Optimization Model - A part of the route generated

in a steeply sloping region in Emek

 87

CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

Two different approaches are compared for route optimization: optimizing the total

distance travelled and the fuel consumption. The objective of the first one is to

minimize the total distance regardless of the effects of the road gradient and vehicle

load. On the contrary, the second approach optimizes the fuel consumption estimated

by an empirical model. It is shown that the two approaches generate different routes

as the objective of the optimization changes.

The model is realistic as it considers the distances within the real road network using

a digital elevation model (DEM). Moreover, the road directions are taken into

consideration while generating routes. The model has a spatial constraint that avoids

U-Turns, which is an essential element for waste collection routing.

The software provides two options for decision makers in selecting the waste

collection routes: minimizing the total distance travelled and minimizing the total

fuel consumption. This provides flexibility for decision makers so that the software

can be used for different case studies rather than solid waste collection routing.

Moreover, other fuel consumption models can be adapted easily by changing a single

line of code.

As the developed software is run successfully for a moderately large number of

points, it can directly be used for waste collection planning for larger applications. It

is a trivial task to integrate new constraints to the model by modifying only the

 88

fitness function of the genetic algorithm. This is advantageous compared to exact

algorithms as far as the amount of implementation work is considered.

The system is scalable in the sense that a high degree of parallelism is achieved in

the tests conducted. Therefore, if the problem size is increased, the excess

computational time can be compensated by increasing the number of cores in the

computer on which the software is run.

For the future studies, this work can be applied to larger areas. Additional constraints

such as minimization of left turns can be implemented to achieve a more goal-

oriented routing system. Moreover, the software can be enhanced to support multiple

landfills, which would add more complexity to the problem.

In addition to the recommendations for the possible future work-flow enhancements,

it is also recommendable to modify the software so that it can operate in distributed

networks rather than shared memory multi-core processors. This would significantly

increase the scalability of the system. The pre-processing and optimization

algorithms can be integrated to a tightly-coupled system so that application can run

inside a GIS environment or within a GIS-based network.

 89

REFERENCES

Al Jadaan O., Rajamani L., Rao C.R. (2008), “Improved selection

operator for GA”, Journal of Theoretical and Applied Information

Technology, Vol. 4, No. 4, pp. 269 -277.

Altinkemer K., Gavish B. (1991), “Parallel Savings Based Heuristics for

the Delivery Problem”, Operations Research, Vol. 39, No. 3, pp. 456-469

Azi, N., Gendreau, M. and Potvin, J., (2010), “An exact algorithm for a

single-vehicle routing problem with time windows and multiple use of

vehicles.”, European Journal of Operational Research. Vol. 202, No. 3,

pp. 756-763.

Baker B.M., Ayechew M.A. (2003), “A genetic algorithm for the vehicle

routing problem”, Computers and Operations Research, Vol.30, No. 5,

pp. 787-800

Bell J.E., McMullen P.R. (2004), “Ant colony optimization techniques

for the vehicle routing problem”, Advanced Engineering Informatics

Vol.18, No.1, pp.41–48

Bin Y., Zhong-Zhen Y., Baohzen Y. (2009), “An improved ant colony

optimization for vehicle routing problem”, European Journal of

Operational Research, Vol.196, No. 1, pp. 171-176

Bjarnadóttir Á.S. (2004), “Solving the Vehicle Routing Problem with

Genetic Algorithms” (Master‟s Thesis), Informatics and Mathematical

Modelling, Technical University of Denmark

 90

Clarke K.C. (1986), “Advances in Geographic Information Systems,

Computers, Environment and Urban Systems”, Vol. 10, No. 3-4, pp. 175-

184

Clarke, G., Wright, J.V. (1964), “Scheduling of vehicles from a central

depot to a number of delivery points”, Operations Research, Vol. 12,

No.1, pp. 568-581

Davis, L. (1985), “Applying Adaptive Algorithms to Epistatic Domains”,

in Proceedings of the International Joint Conference on Artificial

Intelligence”, pp.162-164.

Donati A.V., Montemanni R., Casagrande N., Rizolli A.E., Gambardella

L.M. (2008), “Time Dependent Vehicle Routing Problem with a Multi

Ant Colony System”, European Journal of Operational Research, Vol.

185, No. 3, pp. 1174-1191

Dorigo M., Gambardella L.M. (1997), “Ant colony system: a

cooperative learning approach to the traveling salesman problem”, IEEE

Transactions on Evolutionary Computation, Vol.1, No.1, pp.53-66.

Dorigo M., Maniezzo V., Colorni A. (1996), “Ant system: optimization

by a colong of cooperating agents”, IEEE Transactions on Systems, Man

and Cybernetics, Part B, Vol.26, No.1,1996, pp.29-41

El-Mihoub T.A., Hopgood A.A., Nolle L., Battersby A. (2006), “Hybrid

Genetic Algorithms: A Review”, Engineering Letters, ISSN: 1816-0948,

13:2, EL_13_2_11

Fisher M.L., (1994), “Optimal solution of vehicle routing problems using

Minimum K-trees”, Operations Research, Vol. 42, No 4, pp. 626-642

Fisher M.L., Jaikumar R. (1981), "A generalized assignment heuristic for

vehicle routing", Networks, Vol.11, No.2, pp.109-124

 91

Fisher M.L., Jörnsten K.O., Madsen B.G.O., (1997), “Vehicle Routing

with Time Windows: Two optimization Algorithms”, Operations

Research, Vol.45, No. 3, pp.488-492

Ghose, M.K., Dikshit, A.K., Sharma, S.K., (2006), “A GIS based

transportation model for solid waste disposal – a case study on Asansol

municipality.”, Waste Management, Vol. 26, No.11, pp.1287–1293

Gillett B.E., Miller L.R. (1974) "A Heuristic Algorithm for the Vehicle-

Dispatch Problem", Operations Research, Vol. 22, No. 2, pp. 340-349

Gillett, B.E., Miller, L.R. (1974), “A heuristic algorithm for the vehicle

dispatch problem”, Operations Research, Vol. 22, No.2, pp. 240–349.

Goldbeg D.E. (1989), “Genetic Algorithms in Search, Optimization and

Machine Learning”, Addison-Wesley Longman Publishing Co., Inc.

Boston, MA, USA

Goldberg D.E., Miller B.L. (1995), “Genetic Algorithms, Tournament

Selection, and the Effects of Noise”, IlliGAL Report, No. 95006

Goldberg, D.E., Lingle, R. (1985), “Alkies, Loci, and the TSP”, in

Proceedings of the First International Conference on Genetic Algorithms,

Lawrence Erlbaum Associates, Hillsdale, pp.154-159.

Ho, W., Ho, G.T.S., Ji, P., Lau, H.C.W. (2008), “A hybrid genetic

algorithm for the multi-depot vehicle routing problem”, Engineering

Applications of Artificial Intelligence, Vol. 21, pp. 548-557

Holland J. (1975), “Adaptation in Natural and Artificial Systems”,

University of Michigan Press, Ann Arbor, MI. 9

Keenan P. (2008), “Modelling Vehicle Routing in GIS”, Operational

Research, Springer Berlin / Heidelberg, Vol 8, No 3, pp.201-218

Kinderwater, G.A.P., Savelsbergh, M.W.P. (1997), “Vehicle Routing:

Handling Edge Exchanges” in Local Search in Combinatorial

Optimization. Wiley, Chichester.

 92

Kirkpatrick S., Gelatt C. D., Vecchi M.P. (1983) “Optimization by

Simulated Annealing”, Science. New Series, Vol.220, No. 4598, pp. 671–

680

Lin S., Kernighan BW. (1973), "An effective heuristic algorithm for the

TSP.", Operations Research, Vol.21, No.1, pp.498–516

Machado P., Tavares J., Pereira F.B., Costa E. (2002), “Vehicle Routing

Problem: Doing It The Evolutionary Way”, Proceedings of the Genetic

and Evolutionary Computation Conference, p.690, July 09-13

Malik W., Rathinam S., Darbha S. (2007), “An approximation algorithm

for a symmetric Generalized Multiple Depot, Multiple Travelling

Salesman Problem”, Operation Research, Letters Vol.35, No.6, pp.747-

753

Michalewicz, Z., 1996, “Genetic Algorithms + Data Structures =

Evolution Programs”, Springer–Verlag, Berlin, pp.208-237

Mosheiov G. (1998), “Vehicle routing with pick-up and delivery: tour-

partitioning heuristics”, Computers & Industrial Engineering, Vol. 34,

No. 3, pp. 669-684

Nazif H., Lee L.S. (2010), “Optimized Crossover Genetic Algorithm for

Vehicle Routing Problem with Time Windows”, American Journal of

Applied Sciences, Vol.7, No.1, ISSN 1546-9223

Nemerow, N.L., Agardy F.J. (2008), “Environmental engineering:

Environmental health and safety for municipal infrastructure, land use

and planning, and industry”, John Wiley and Sons, 558p.

Ntziachristos, L., Samaras, Z. (2000), “COPERT III – Computer

Programme to Calculate Emissions from Road Transport, Methodology

and Emission Factors (Ver. 2.1)”, EEA, Copenhagen

Nuortio T., Kytöjoki J., Bräysy O. (2006), “Improved route planning and

scheduling of waste collection and transport”, Expert Systems with

Applications, Vol. 30, No.2, pp. 223–232

 93

Rizzoli, A.E., Oliverio F., Montemanni R., Gambardella L.M. (2004),

“Ant Colony Optimization for vehicle routing problems: from theory to

applications”, Technical Report IDSIA-15-04, Instituto Dalle Molle di

Studi sull‟Intelligenza Artificiale, Lugano, Switzerland

Ryan, D.M., Hjorring, C. and Glover, F. (1993) "Extensions of the petal

method for vehicle routing", Journal of the Operational Research

Society, Vol. 44, No.1, pp.289–296.

Sengoku H., Yoshihara B. (1998), “A Fast TSP Solver Using GA on

JAVA”, Third International Symposium on Artificial Life and Robotics

(AROB III'98)

Shengjun X., Shaoyong G., Dongling B. (2008), “The Analysis and

Research of Parallel Genetic Algorithm”, Wireless Communications,

Networking and Mobile Computing WiCOM '08. 4th International

Conference, 12-14 October 2008, Dalian.

Sumichras R.T., Markham I.S. (1995), “A heuristic and lower bound for

a multi-depot routing problem”, Computers & Operations Research, Vol.

22, No. 10, pp. 1047-1056

Tan K.C., Lee L.H., Ou K. (2001), “Artificial intelligence heuristics in

solving vehicle routing problems”, Engineering Applications of Artificial

Intelligence, Vol. 14, No.1, pp. 825–837

Tarantilis, C.D., Ioannou, G., Prastacos G. (2005), “Advanced vehicle

routing algorithms for complex operations management problems”,

Journal of Food Engineering, Vol.70, No.3, pp. 455-471

Tavares G., Zsigraiova Z., Semiao V., Carvalho M.G. (2009),

“Optimisation of MSW collection routes for minimum fuel consumption

using 3D GIS modelling”, Waste Management, Vol.29, No.3, pp. 1176–

1185

Tchobanoglous G., Thiesen H., Vigh S.A. (1993), “Integrated Solid

Waste Management – Engineering Principles and Management Issues”,

McGraw-Hill International Editions, 978 p.

 94

Thompson, P.M., Psaraftis, H.N. (1993) “Cyclic transfer algorithms for

the multi-vehicle routing and scheduling problems”, Operations

Research, Vol. 41, No.5, pp. 935–946

Toth, P., Vigo, D. (2000), “The Vehicle Routing Problem, an Overview

of Vehicle Routing Problems”, Society for Industrial and Applied

Mathematics(SIAM), Philadelphia, USA, pp.1-26

Van Breedam, A. (1994), "An Analysis of the Behavior of Heuristics for

the Vehicle Routing Problem for a Selection of Problems with Vehicle-

Related, Customer-Related and Time-Related Constraints", Ph.D.

Dissertation, University of Antwerp

Vesilind P.A., Worrel W.A., Reinhart D.R. (2001), "Solid Waste

Engineering", Nelson Engineering, ISBN: 8131504107, 448 p.

Whitley, D., Starkweather, T., and Fuquay, D'A. (1989), “Scheduling

Problems and Traveling Salesman: The Genetic Edge Recombination

Operator”, Proceedings of the Third International Conference on Genetic

Algorithms, Morgan Kaufmann Publishers, San ma Mateo, CA, 1989.

Yoshikawa M., Nagura T. (2009), “Adaptive Ant Colony optimization

Considering Intensification and Diversification”, Proceedings of the

International MultiConference of Engineers and Computer Scientists,

Vol.1, March 18-20, 2009, Hong Kong

 95

ONLINE REFERENCES

ESRI – ESRI Shape File Technical Documentation, Retrieved December

2010, from http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

Golden Software – Surfer, A Powerful Contouring, Gridding, and

Surface Mapping Package for Scientists and Engineers, Retreived

October 2010, from

http://www.goldensoftware.com/products/surfer/surfer.shtml

OpenGL, The Industry's Foundation for High Performance Graphics,

Retreived December 2010, http://www.opengl.org/

Parallel Programming Lecture 14 Computer performance, Retreived

January 2011, http://lib.bioinfo.pl/files/courses/pdfcache/lecture_461.pdf

SRTM – Shuttle Radar Topography Mission, Retreived October 2010,

from http://www2.jpl.nasa.gov/srtm/

TSPLIB - Asymmetric traveling salesman problem (ATSP), Retrieved

October 2010, from http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.goldensoftware.com/products/surfer/surfer.shtml
http://www.opengl.org/
http://lib.bioinfo.pl/files/courses/pdfcache/lecture_461.pdf
http://www2.jpl.nasa.gov/srtm/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

 96

APPENDIX A

SOFTWARE MANUAL

The developed software requires two shape files as input: one for the road network

and the other for garbage collection points. A Surfer Grid file can optionally be

supplied for 3D terrain view.

The application is designed to open files of maplink extension, which can easily be

created using notepad. The file includes 3 lines containing full paths to road network

shape file, garbage collection point shape file and the altitude grid file.

Figure A. 1 – Maplink files

 97

Opening the appropriate maplink file, the application loads the shape files and grid

file.

Figure A. 2 – Open Dialog

Once the map opens, the user can pan through the 3D terrain map and see the

location of the garbage collection points as well as the landfill.

Figure A. 3 – Garbage Collection Points on 3D Terrain Map

 98

If the application runs on the shape files for the first time, the calculation of the

pairwise shortest paths along with other pre-processing stages takes a few minutes to

complete. Once the shortest paths are computed, they are recorded in the same folder

as the shape files to speed-up the process of opening the map for the next time.

The application enables the user to view the shortest paths between any desired

nodes individually. The shortest path dialog can be opened by the shortcut Ctrl+S

and typing the appropriate node numbers of the source and the destination. The node

number 0 denotes the landfill and the remaining 239 nodes denote the points in the

same order as they exist in the shape file.

Figure A. 4 – Displaying Shortest Path

 The genetic optimization algorithm can be started by clicking the „Genetic‟ toolbar

button marked in Figure A. 5.

Figure A. 5 – Starting the Genetic Algorithm

 99

As the program is designed as a multi-thread application, the progress of the genetic

algorithm can be monitored and visualized at any time. The GA monitor displays the

current progress of the genetic algorithm. The operation of the genetic algorithm can

also be controlled by means of the check boxes on the GA monitor. For instance, the

crossover and mutations can be enabled/disabled any time by the user. Furthermore,

the genetic algorithm can be switched between distance optimization mode to fuel

consumption optimization mode by using the “Fuel Consumption Optimization”

checkbox.

Clicking on the Show Best button on the GA monitor displays the best route found so

far (Figure A. 6).

Figure A. 6 – Genetic Algorithm Monitor

 100

Figure A. 7 – Visualization of the Best Route

Even though the genetic algorithm has a termination criterion, it can also be

terminated by clicking Stop on the GA Monitor Dialog.

Clicking on the play button on the toolbar, it is possible to simulate the movements

of the vehicles

Figure A. 8 – Simulation of the Vehicle on its Path

 101

APPENDIX B

SOURCE CODE FRAGMENTS

Data Structures Used Within the Code

struct t_Point {

 double x;

 double y;

 t_Point(double px, double py) : x(px), y(py) {}

 t_Point() {}

 t_Point operator -(const t_Point& rhs) const {return

t_Point(x - rhs.x,y - rhs.y);}

 double operator *(const t_Point &rhs)

 const {return x*rhs.x+y*rhs.y;} // dot product

 double magnitude() const {return hypot(x,y);}

};

struct t_Route {

 vector<int> vPoints;

 double dCost;

 double dPenalty;

};

struct t_Chromosome {

 int nGlobalThreadID;

 int nRank;

 double dNumAlternatePaths;

 vector<t_Route> vRoutes;

 double dCost;

 double dPenalty;

 double dFitness;

 bool operator <(const t_Chromosome &rhs) const

 {return dCost < rhs.dCost;}

};

struct t_GAResources

{

 double dCrossover;

 double dMutation;

 double dElitism;

 int nPopulationSize;

 vector <int> vDefaultVehicles;

 vector<t_Point *> vPoints;

 vector<t_Point *> vVehicleLocations;

 vector< vector<t_Path> > vShortestPaths;

 vector< vector<t_Path> > vSecondShortestPaths;

 102

 t_Point ptGarage;

};

struct t_Path {

 double dCost; //Cost of first shortest path

 double dAverageSlope;

 vector<t_Point> vPoints; // Points of shortest path

 vector<int> vNodesPassed; // Significant nodes that are

visited between source and destination

 void *pFirstEdge; // The first edge of the shortest path

 t_Path() {dCost=0;pFirstEdge=NULL;}

};

Declaration of Genetic Algorithm Functions

 void Initialize();

 void CreateRandomChromosome(t_Chromosome *pThisChromosome);

 int RouletteWheelSelection(double *pDistanceMatrix,

 char *pSelectionStatusMatrix = NULL,

 double dExp=-3.0);

 int RouletteWheelSelectionExt(int nCurrentPoint,

 char *pSelectionStatusMatrix,

 double dExp=-3.0,

 bool bCheckPassedNodes=true);

 void CalculateFitness (vector<t_Chromosome *> &vChromosomes);

 void Crossover(t_Chromosome *pParent1,

 t_Chromosome *pParent2,

 t_Chromosome *pChild1);

 void OptimizeSequence(

 t_Chromosome *pChromosome /*pointer to chromosome*/,

 int nVehicleNo /* Required if nStart=0*/,

 int nStart,

 int nEnd,

 int nNumActiveNeighbours=3 /* the number of nearest

neighbours to check */,

 double dLimitingDistanceRatio=2.0 /* omit the

neighbour if its distance is larger than NN*ratio */,

 int nTimeLimit=0 /* allowed time limit for

optimization*/);

 void Mutation (t_Chromosome *pChromosome);

 void Mutation_2opt(t_Chromosome *pChromosome);

 void SelectChromosomesBasedOnFitness(

 vector<int> &setSelection,

 vector<t_Chromosome *> &vChromosomes,

 int nNumChromosomes,int nNumSample);

 void CalcDistanceMatrix();

 inline double GetSegmentCost(

 int nVehicleNo,

 vector<int> &vPoints,

 int nStart,

 int nEnd);

 inline double GetRouteCost (int nVehicleNo, vector<int>

 103

&vPoints);

 void Run();

private:

 inline void ValidateCost(t_Chromosome *pChromosome);

 inline void CalculatePenalty(t_Chromosome *pChromosome);

Implementation of Mutation Function

void CGeneticAlgorithm::Mutation (t_Chromosome *pChromosome)

{

 ValidateCost(pChromosome);

 int i,j;

 int nNodeCount = m_nPointCount+1;

 int *pnVehicleNumbers = new int[m_nPointCount];

 int *pnPointOrder = new int [m_nPointCount];

 static int nPassCount=0;

 nPassCount++;

 ASSERT (pChromosome->dCost>0);

 /*

 Indexing the points-vehicle assignment

 */

 for (i=0;i<m_nVehicleCount;i++)

 {

 t_Route &thisRoute = pChromosome->vRoutes[i];

 for (j=0; j<thisRoute.vPoints.size(); j++)

 {

 int nPointNo = thisRoute.getPointNoAt(j);

 if (nPointNo != DEPONI)

 {

 pnVehicleNumbers[nPointNo] = i;

 pnPointOrder[nPointNo] = j;

 }

 }

 }

 struct t_PointNeighbourhood {

 int nVehicleNo;

 int nRouteSize;

 int nPointNo;

 int nPrevPointNo;

 int nNextPointNo;

 int nPointPos;

 double dCost;

 };

 104

 for (i=0; i < m_nPointCount/4; i++)

 {

 t_PointNeighbourhood p1,p2;

 p1.nVehicleNo = (rand() % m_nVehicleCount);

 p1.nRouteSize = pChromosome-

>vRoutes[p1.nVehicleNo].vPoints.size();

 p1.nPointPos = (rand() % p1.nRouteSize);

 p1.nPointNo = pChromosome-

>vRoutes[p1.nVehicleNo].getPointNoAt(p1.nPointPos);

 p1.nPrevPointNo = (p1.nPointPos==0) ? NOT_EXISTS :

pChromosome->vRoutes[p1.nVehicleNo].getPointNoAt(p1.nPointPos-1);

 p1.nNextPointNo = (p1.nPointPos == p1.nRouteSize-1) ?

NOT_EXISTS : pChromosome->vRoutes[p1.nVehicleNo].getPointNoAt(

p1.nPointPos+1);

 if (p1.nPointNo == DEPONI) continue;

 p2.nPointNo = RouletteWheelSelectionExt(p1.nPointNo,

NULL);

 p2.nVehicleNo = pnVehicleNumbers[p2.nPointNo];

 p2.nPointPos = pnPointOrder[p2.nPointNo];

 p2.nRouteSize = pChromosome-

>vRoutes[p2.nVehicleNo].vPoints.size();

 p2.nPrevPointNo = (p2.nPointPos==0) ? NOT_EXISTS :

pChromosome->vRoutes[p2.nVehicleNo].getPointNoAt(p2.nPointPos-1);

 p2.nNextPointNo = (p2.nPointPos == p2.nRouteSize-1) ?

NOT_EXISTS : pChromosome->vRoutes[p2.nVehicleNo].getPointNoAt(

p2.nPointPos+1);

 if (p1.nRouteSize<=2 || p2.nRouteSize<=2) continue;

 // if (p1.nRouteSize)

 if (p1.nVehicleNo == p2.nVehicleNo && abs

(p1.nPointPos-p2.nPointPos)<6)

 { // If the points to try are in the same route and

adjacent

 } // If the points to try are in the same route and

adjacent

 else

 { // The points are not on the same route OR are

not adjacent

 int pnCurrentRouteV1[6];

 int pnCurrentRouteV2[6];

 int pnMutationRouteV1[6];

 int pnMutationRouteV2[6];

 int nV1StartPos = p1.nPointPos-2;

 int nV1EndPos = p1.nPointPos+3;

 int nV2StartPos = p2.nPointPos-2;

 int nV2EndPos = p2.nPointPos+3;

 if (nV1StartPos == -2) nV1StartPos = NOT_EXISTS;

 if (nV2StartPos == -2) nV2StartPos = NOT_EXISTS;

 if (nV1EndPos > p1.nRouteSize-1) nV1EndPos =

p1.nRouteSize-1;

 if (nV2EndPos > p2.nRouteSize-1) nV2EndPos =

p2.nRouteSize-1;

 105

 int nV1Count = nV1EndPos-nV1StartPos+1;

 int nV2Count = nV2EndPos-nV2StartPos+1;

 t_Route &firstRoute = pChromosome-

>vRoutes[p1.nVehicleNo];

 t_Route &secondRoute = pChromosome-

>vRoutes[p2.nVehicleNo];

 int nIndex = 0; // index of partial route array

 for (j=nV1StartPos, nIndex=0; j<=nV1EndPos; j++,

nIndex++)

 {

 if (j==-1 || j== p1.nRouteSize-1)

pnCurrentRouteV1[nIndex] = NOT_EXISTS; // Starting from Garage

 else pnCurrentRouteV1[nIndex] =

firstRoute.vPoints[j];

 if (j== p1.nPointPos)

pnMutationRouteV1[nIndex] = secondRoute.vPoints[p2.nPointPos];

 // if point of mutation

 else pnMutationRouteV1[nIndex] =

pnCurrentRouteV1[nIndex]; // if not point of mutation, same as

current route

 }

 for (j=nV2StartPos, nIndex=0; j<=nV2EndPos; j++,

nIndex++)

 {

 if (j==-1) pnCurrentRouteV2[nIndex] =

NOT_EXISTS; // Starting from Garage

 else pnCurrentRouteV2[nIndex] =

secondRoute.vPoints[j];

 if (j== p2.nPointPos)

pnMutationRouteV2[nIndex] = firstRoute.vPoints[p1.nPointPos];

 // if point of mutation

 else pnMutationRouteV2[nIndex] =

pnCurrentRouteV2[nIndex]; // if not point of mutation, same as

current route

 }

 static int nCycleCount=0;

 nCycleCount++;

 AdjustPathDirections(pnMutationRouteV1,nV1Count);

 AdjustPathDirections(pnMutationRouteV2,nV2Count);

 // The last edges of the mutated and original

partial routes must be the same

 // so that the path can continue without a U-Turn

 // Otherwise, skip the mutation

 int nV1Last = nV1Count-1; // index of the

last point of mutation zone

 int nV2Last = nV2Count-1;

 if (pnMutationRouteV1[nV1Last]==DEPONI) {nV1Last-

-; nV1Count--;}

 if (pnMutationRouteV2[nV2Last]==DEPONI) {nV2Last-

-; nV2Count--;}

 if (pnMutationRouteV1[nV1Last-1] !=

pnCurrentRouteV1[nV1Last-1]) continue;

 106

 if (pnMutationRouteV1[nV1Last] !=

pnCurrentRouteV1[nV1Last]) continue;

 if (pnMutationRouteV2[nV2Last-1] !=

pnCurrentRouteV2[nV2Last-1]) continue;

 if (pnMutationRouteV2[nV2Last] !=

pnCurrentRouteV2[nV2Last]) continue;

 double dCostV1BeforeMutation =

GetPartialCost(pnCurrentRouteV1, nV1Count);

 double dCostV2BeforeMutation =

GetPartialCost(pnCurrentRouteV2, nV2Count);

 double dCostV1AfterMutation =

GetPartialCost(pnMutationRouteV1, nV1Count);

 double dCostV2AfterMutation =

GetPartialCost(pnMutationRouteV2, nV2Count);

 double dCostRatio =

(dCostV1BeforeMutation+dCostV2BeforeMutation) /

(dCostV1AfterMutation+dCostV2AfterMutation);

 bool bApplyMutation = dCostRatio>1.0;

 if (!bApplyMutation)

 {

 if (dCostRatio>0.95)

 if (pChromosome->nRank>50)

bApplyMutation=(RAND01>0.5);

 }

 if (dCostV1AfterMutation + dCostV2AfterMutation <

dCostV1BeforeMutation + dCostV2BeforeMutation)

 { // Mutation is beneficial

 for (j=nV1StartPos, nIndex=0; j< nV1EndPos;

j++, nIndex++)

 {

 if (j<0) continue;

 firstRoute.vPoints[j]=pnMutationRouteV1[nIndex];

 }

 for (j=nV2StartPos, nIndex=0; j< nV2EndPos;

j++, nIndex++)

 {

 if (j<0) continue;

 secondRoute.vPoints[j]=pnMutationRouteV2[nIndex];

 }

 double dDeltaCostV1 = dCostV1AfterMutation

- dCostV1BeforeMutation;

 double dDeltaCostV2 = dCostV2AfterMutation

- dCostV2BeforeMutation;

 firstRoute.dCost += dDeltaCostV1;

 secondRoute.dCost += dDeltaCostV2;

 pChromosome->dCost += dDeltaCostV1 +

dDeltaCostV2;

 pnVehicleNumbers[p1.nPointNo] =

p2.nVehicleNo;

 pnVehicleNumbers[p2.nPointNo] =

p1.nVehicleNo;

 pnPointOrder[p1.nPointNo] = p2.nPointPos;

 pnPointOrder[p2.nPointNo] = p1.nPointPos;

 107

 ValidateCost(pChromosome);

 } // if mutation is beneficial

 } //else

 } // for i

 delete [] pnVehicleNumbers;

 delete [] pnPointOrder;

 ValidateCost(pChromosome);

}

Implementation of Crossover Function

void CGeneticAlgorithm::Crossover(t_Chromosome

*pParent1,t_Chromosome *pParent2,t_Chromosome *pChild1)

{

 ValidateCost(pParent1);

 ValidateCost(pParent2);

 static long nCrossoverCount = 0;

 nCrossoverCount++;

 // Edge Recombination Crossover

 int i,j,k;

 int nNodeCount = m_nPointCount + 1;

 t_Vector *pPathDirections = new t_Vector[m_nVehicleCount];

 struct t_Neighbours {

 int nCount;

 int arNeighbours[8];

 t_Neighbours() {nCount=0;}

 };

 t_Neighbours *pEdges = new t_Neighbours[m_nPointCount];

 for (i=0; i<m_nVehicleCount; i++)

 {

 t_Route *thisRoute = &pParent1->vRoutes[i];

 int nRoutePointCount=thisRoute->vPoints.size();

 for (j=0;j<nRoutePointCount-1;j++)

 { // Edges of first parent

 int n1 = thisRoute->getPointNoAt(j);

 int n2 = thisRoute->getPointNoAt(j+1);

 if (n1!=DEPONI && n2!=DEPONI)

 {

 ASSERT (pEdges[n1].nCount<=8);

 pEdges[n1].arNeighbours[pEdges[n1].nCount++

 108

] = n2;

 pEdges[n2].arNeighbours[pEdges[n2].nCount++

] = n1;

 }

 }

 thisRoute = &pParent2->vRoutes[i];

 nRoutePointCount=thisRoute->vPoints.size();

 for (j=0;j<nRoutePointCount-1;j++)

 { // Edges of second parent

 int n1 = thisRoute->getPointNoAt(j);

 int n2 = thisRoute->getPointNoAt(j+1);

 if (n1!=DEPONI && n2!=DEPONI)

 {

 ASSERT (pEdges[n1].nCount<=8);

 pEdges[n1].arNeighbours[pEdges[n1].nCount++

] = n2;

 pEdges[n2].arNeighbours[pEdges[n2].nCount++

] = n1;

 }

 }

 }

 int nVehicleNo;

 long

nEstimatedPointPerVehicle=(m_nPointCount*1.20)/m_nVehicleCount;

 char *pSelectionStatus=new char[m_nPointCount];

 int *pnSelectedPoints=new int[m_nVehicleCount]; // keeps track

of last selected point of each vehicle route

 pChild1->dCost=0;

 pChild1->dPenalty=0;

 for (i=0; i<m_nVehicleCount; i++)

 {

 pChild1->vRoutes[i].dCost = 0; // initializing cost

 pChild1->vRoutes[i].vPoints.reserve(

nEstimatedPointPerVehicle); // reserving space to avoid frequent

memory allocations

 pnSelectedPoints[i] = NOT_EXISTS; // no point selected

yet for the vehicle

 }

 for (i=0; i<m_nPointCount; i++) pSelectionStatus[i] =

POINT_NOT_SELECTED; // marking as not selected

 int nSelectedPoint; // keeps track of the current selected

point

 for (i=0;i<m_nPointCount;i++)

 {

 nVehicleNo=0;

 double dLowestCost = 1e99;

 for (j=0; j < m_nVehicleCount; j++)

 {

 t_Route &thisRoute = pChild1->vRoutes[j];

 if (thisRoute.dCost < dLowestCost)

 {

 nVehicleNo=j; // Try to find the vehicle

which traveled less

 dLowestCost=thisRoute.dCost;

 }

 109

 }

 t_Route &childRoute = pChild1->vRoutes[nVehicleNo];

 if (pnSelectedPoints[nVehicleNo] == NOT_EXISTS)

 { // No point has been assigned to this vehicle's

route yet,

 // starting from the position of the vehicle

 if ((rand() % 2) == 0) nSelectedPoint =

pParent1->vRoutes[nVehicleNo].getPointNoAt(0);

 else nSelectedPoint = pParent2-

>vRoutes[nVehicleNo].getPointNoAt(0);

 if (pSelectionStatus[nSelectedPoint] == 1) // if

no available neighbour point from parents, select another

 nSelectedPoint=RouletteWheelSelectionExt(GARAGE,pSelectionStat

us);

 pSelectionStatus[nSelectedPoint] = POINT_SELECTED;

 // mark the point as selected to prevent re-selection

 pnSelectedPoints[nVehicleNo]=nSelectedPoint;

 childRoute.vPoints.push_back(nSelectedPoint);

 childRoute.dCost =

GetCostVP(nVehicleNo,nSelectedPoint);

 pPathDirections[nVehicleNo] =

m_pPathEndVectors[Point2Node(nSelectedPoint)];

 }

 else

 { // starting from the last point visited

 nSelectedPoint=pnSelectedPoints[nVehicleNo]; //

last selected point for the vehicle

 t_Neighbours *pNeighbours =

&pEdges[nSelectedPoint];

 int nNumNeighbours = pNeighbours->nCount;

 int nSelectedNeighbour = NOT_EXISTS;

 double dSelectedNeighbourDist = 1e99;

 for (j=0; j<nNumNeighbours; j++)

 {

 int nThisPoint = pNeighbours-

>arNeighbours[j];

 if (pSelectionStatus[nThisPoint] ==

POINT_NOT_SELECTED)

 {

 double dDistance =

GetCostPP(nSelectedPoint,nThisPoint);

 if (dDistance <

dSelectedNeighbourDist)

 {

 nSelectedNeighbour = nThisPoint;

 dSelectedNeighbourDist =

dDistance;

 }

 }

 }

 if (nSelectedNeighbour == NOT_EXISTS)

 {

 nSelectedNeighbour=RouletteWheelSelectionExt(nSelectedPoint,pS

electionStatus);

 }

 110

 t_Vector &v1 = pPathDirections[nVehicleNo];

 t_Vector &v2 =

m_pPathStartVectors[Point2Node(nSelectedPoint)*nNodeCount+Point2Node

(nSelectedNeighbour)];

 double dCosTheta=(v1*v2) / (v1.magnitude() *

v2.magnitude());

 if (dCosTheta < -.96)

 {

 childRoute.vPoints.back() |= 0x10000;

 pPathDirections[nVehicleNo] =

m_pSecondPathEndVectors[Point2Node(nSelectedPoint)*nNodeCount+Point2

Node(nSelectedNeighbour)];

 }

 else

 {

 pPathDirections[nVehicleNo] =

m_pPathEndVectors[Point2Node(nSelectedPoint)*nNodeCount+Point2Node(n

SelectedNeighbour)];

 }

 pSelectionStatus[nSelectedNeighbour] =

POINT_SELECTED;

 double dCost =

GetCostPP(childRoute.vPoints.back(),nSelectedNeighbour);

 ASSERT(dCost>0);

 childRoute.dCost+= dCost;

 childRoute.vPoints.push_back(nSelectedNeighbour

);

 pnSelectedPoints[nVehicleNo]=nSelectedNeighbour;

 } // (pnSelectedPoints[nVehicleNo] != NOT_EXISTS)

 } //for (i=0;i<m_nPointCount;i++)

 for (i=0;i<m_nVehicleCount;i++)

 {

 t_Route &thisRoute = pChild1->vRoutes[i];

 int nLastPoint = thisRoute.vPoints.back() & 0xFFFF;

 t_Vector &v1 = pPathDirections[i];

 t_Vector &v2 =

m_pPathStartVectors[Point2Node(nLastPoint)*nNodeCount+0];

 double dCosTheta=(v1*v2) / (v1.magnitude() *

v2.magnitude());

 if (dCosTheta < -.96)

 {

 thisRoute.vPoints.back() |= 0x10000;

 }

 double dCost = GetCostPG(thisRoute.vPoints.back());

 ASSERT(dCost>0);

 thisRoute.dCost += dCost;

 pChild1->dCost += thisRoute.dCost;

 }

 delete [] pPathDirections;

 delete [] pnSelectedPoints;

 delete [] pSelectionStatus;

 delete [] pEdges;

 ValidateCost(pParent1);

 111

 ValidateCost(pParent2);

 ValidateCost(pChild1);

} // Crossover

Implementation of CalculateFitness Function

 void CGeneticAlgorithm::CalculateFitness

 (vector<t_Chromosome *> &vChromosomes)

{

 int nPopulationCount=vChromosomes.size();

 double dSum=0;

 double dMaxCost =

 vChromosomes.back()->dCost + vChromosomes.back()->dPenalty;

 for (int i=0;i<nPopulationCount;i++)

 {

 double dCost=vChromosomes[i]->dCost+

 vChromosomes[i]->dPenalty;

 vChromosomes[i]->dFitness =

 (nPopulationCount-i) / (dCost/dMaxCost);

 dSum += vChromosomes[i]->dFitness;

 }

 for (int i=0; i<nPopulationCount; i++)

 {

 vChromosomes[i]->dFitness /= dSum;

 }

}

Implementation of Mutation 2-opt Function

 void CGeneticAlgorithm::Mutation_2opt

 (t_Chromosome *pChromosome)

{

 int nVehcileNo;

 int i,j,k;

 int nNumVehcles = pChromosome->vRoutes.size();

 DWORD d=GetTickCount();

 for (nVehcileNo=0; nVehcileNo < nNumVehcles; nVehcileNo++)

 {

 t_Route &thisRoute = pChromosome->vRoutes[nVehcileNo];

 int nNumEdges = thisRoute.vPoints.size()-1;

 double dAverageEdgeSize = thisRoute.dCost / nNumEdges;

 int *pOriginal = new int[thisRoute.vPoints.size()];

 int *pModified = new int[thisRoute.vPoints.size()];

 double dRouteCost = thisRoute.dCost;

 112

 for (int *p1=pOriginal, *p2=pModified,k=0;

k<=nNumEdges; k++,p1++,p2++) *p1=*p2=thisRoute.vPoints[k];

 vector<int>::iterator

 it_route = thisRoute.vPoints.begin();

 for (i=1; i<nNumEdges-1; i++)

 {

 for (j=i+1; j<nNumEdges;j++)

 {

 double dDistPoints =

GetCostPP(pOriginal[i], pOriginal[j]);

 if (dDistPoints>dAverageEdgeSize) continue;

 if (j-i==1)

 {

 SWAP(pModified[i],pModified[j]);

 }

 else

 {

 for (k=i+1; k<j;k++)

 {

 ASSERT(pModified[k]!=GARAGE);

 // requires change

 pModified[k]=pOriginal[j-k+i];

 // Inverting part of sequence

 }

 }

 int nStart = i-1;

 int nEnd = j+1;

 double dCostAfterRepair =

RepairRoute(pModified,pOriginal,nNumEdges+1);

 if (dCostAfterRepair<dRouteCost)

 {

 for (k=nStart; k<=nEnd;k++)

pOriginal[k]=pModified[k];

 dRouteCost = dCostAfterRepair;

 }

 else

 {

 for (k=nStart; k<=nEnd;k++)

pModified[k]=pOriginal[k];

 }

 } // j

 } // i

 stdext::hash_map<int,int> hStatus;

 vector<int> vModified(nNumEdges+1);

 for (k=0;k<=nNumEdges;k++)

 {

 vModified[k]=pModified[k];

 ASSERT(hStatus[pModified[k]] != 1);

 hStatus[pModified[k]] = 1;

 113

 }

 if (dRouteCost<thisRoute.dCost)

 {

 for (k=0; k<=nNumEdges;k++)

 thisRoute.vPoints[k]=pModified[k];

 double dCost =

GetRouteCost(nVehcileNo,thisRoute.vPoints);

 pChromosome->dCost += (dCost-thisRoute.dCost);

 thisRoute.dCost = dCost;

 }

 delete [] pOriginal;

 delete [] pModified;

 } // for nVehicleNo

 DWORD nDiff = GetTickCount() -d;

}

