
 

 

 

ROUTE OPTIMIZATION FOR SOLID WASTE TRANSPORTATION USING 

PARALLEL HYBRID GENETIC ALGORITHMS 

 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

THE MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

BY 

 

 

SELİM ONUR UŞKAY 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE 

OF 

MASTER OF SCIENCE 

IN 

THE DEPARTMENT OF GEODETIC AND GEOGRAPHICAL INFORMATION 

TECHNOLOGIES 

 

 

 

 

DECEMBER  2010 



 ii 

Approval of the thesis: 

 

ROUTE OPTIMIZATION FOR SOLID WASTE TRANSPORTATION USING 

PARALLEL HYBRID GENETIC ALGORITHMS 

 

Submitted by SELİM ONUR UŞKAY in partial fulfillment of the requirements 

for the degree of Master of Science in Geodetic and Geographical Information 

Technologies Department, Middle East Technical University by, 

 

Prof. Dr. Canan Özgen 

Dean, Garduate School of Natural and Applied Sciences ______________ 

Prof. Dr. Vedat Toprak 

Head of Department, Geodetic and Geographical Inf. Tech. ______________ 

Assoc. Prof. Dr. Ayşegül Aksoy 

Supervisor, Environmental Engineering Dept., METU ______________ 

Prof. Dr. Şebnem Düzgün 

Co-supervisor, Mining Engineering Dept., METU ______________ 

 

Examining Committee Members: 

Prof. Dr. Vedat Toprak  

Geological Engineering Dept., METU ______________ 

Prof. Dr. Şebnem Düzgün  

Mining Engineering Dept., METU ______________ 

Assoc. Prof. Dr. Ayşegül Aksoy 

Environmental Engineering Dept., METU ______________ 

Assoc. Prof. Dr. Ahmet Coşar 

Computer Engineering Dept., METU ______________ 

Assist. Prof. Dr. Elçin Kentel 

Civil Engineering Dept., METU ______________ 

 

 

      Date:   29.12.2010 

  



 iii 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare  that all  information  in  this document has been obtained 

and presented in accordance with academic rules and ethical conduct. I also 

declare that, as required by  these rules and conduct, I have fully cited and 

referenced all material and results that are not original to this work.  

  

  

  

Name, Last name:  SELİM ONUR UŞKAY  

   

Signature              :      _________________



 iv 

ABSTRACT 

ROUTE OPTIMIZATION FOR SOLID WASTE TRANSPORTATION USING 

PARALLEL HYBRID GENETIC ALGORITHMS 

 

Uşkay, Selim Onur 

M.Sc., Department of Geodetic and Geographical Information Technologies 

Supervisor: Assoc. Prof. Dr. Ayşegül Aksoy 

Co-Supervisor: Prof. Dr. Şebnem Düzgün 

December 2010, 113 pages 

 

The transportation phase of solid waste management is highly critical as it may 

constitute approximately 60 to 75 percent of the total cost. Therefore, even a small 

amount of improvement in the collection operation can result in a significant saving 

in the overall cost. Despite the fact that there exist a considerable amount of studies 

on Vehicle Routing Problem (VRP), a vast majority of the existing studies are not 

integrated with GIS and hence they do not consider the path constraints of real road 

networks for waste collection such as one-way roads and U-Turns. This study 

involves the development of computer software that optimizes the waste collection 

routes for solid waste transportation considering the path constraints and road 

gradients.  In this study, two different routing models are proposed. The aim of the 

first model is to minimize the total distance travelled whereas that of the second 

model is to minimize the total fuel consumption that depends on the loading 

conditions of the truck and the road gradient. A comparison is made between these 

two approaches. It is expected that the two approaches generate routes having 

different characteristics. The obtained results are satisfactory. The distance 

optimization model generates routes that are shorter in length whereas the fuel 
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consumption optimization model generates routes that are slightly higher in length 

but provides waste collection on steeply inclined roads with lower truck load.  The 

resultant routes are demonstrated on a 3D terrain view. 

 

Keywords: Solid Waste Transportation, Vehicle Routing Problem, Hybrid Genetic 

Algorithms. 
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ÖZ 

PARALEL HİBRİT GENETİK ALGORITMALARLA KATI ATIK 

TAŞINMASI İÇİN ROTA OPTİMİZASYONU  

 

Uşkay, Selim Onur  

Yüksek Lisans, Jeodetik ve Coğrafi Bilgi Teknolojileri 

Tez Danışmanı: Doç. Dr. Ayşegül Aksoy 

Ortak Tez Danışmanı: Prof. Dr. Şebnem Düzgün 

Aralık 2010, 113 sayfa 

 

Katı atık yönetimindeki taşıma safhası toplam maliyetin yaklaşık yüzde 60‟ı ile 75‟i 

arasındaki bölümü oluşturabileceğinden oldukça kritiktir. Bu nedenle, atık toplama 

aşamasındaki küçük çaplı bir ilerleme bile toplam maliyeti önemli miktarlarda 

düşürebilir. Her ne kadar Araç Rotalama Problemi (ARP) üzerinde oldukça fazla 

sayıda çalışma olsa da, mevcut çalışmaların çok büyük bir bölümü Coğrafi Bilgi 

Sistemi (CBS) ortamına entegre değildir ve dolayısıyla tek yönlü yollar ve U-

dönüşleri gibi  gerçek yol ağlarına ait kısıtlamaları dikkate almazlar. Bu çalışmada 

katı atık taşınması için atık toplama rotalarını optimize eden ve araç yükü ile yol 

eğiminin yakıt tüketimine etkisini de hesaba katan bir bilgisayar yazılımı 

geliştirilmiştir. İki farklı rotalama modeli önerilmiştir. İlk modelin amacı toplam 

katedilen mesafeyi, ikinci modelinki ise aracın yük durumu ve yol eğimine bağlı olan 

yakıt tüketimini minimize etmektir. İki yaklaşım arasında bir karşılaştırma 

yapılmıştır. İki modelin birbirinden farklı özelliklerde rotalar üretmesi 

beklenmektedir. Elde edilen sonuçlar tatmin edicidir. Mesafeyi optimize eden model 

daha kısa rotalar üretirken yakıt tüketimini optimize eden model biraz daha uzun 
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fakat yüksek eğilimli yolları daha az yükle kateden rotalar üretmektedir. Elde edilen 

rotalar 3 boyutlu arazi modeli üzerinde gösterilmektedir. 

 

Anahtar Kelimeler: Katı Atık Taşınması, Araç Rotalama Problemi, Hibrit Genetik 

Algoritmalar. 
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CHAPTER 1 

INTRODUCTION 

Solid Waste Management is a complex process involving many stages such as 

generation, on-site handling and storage, collection, transfer and transportation, 

processing and disposal of solid wastes (Nemerow et al., 2008). According to 

Nemerow et al. (2008), approximately 60% to 75% of the total solid waste 

management cost is spent for the collection phase, in which the waste is collected 

from the source and carried to the transfer station or landfill. Therefore, even a small 

improvement in the collection operation by selecting less-costly routes can result in a 

significant saving in overall cost. This issue becomes highly critical considering the 

high costs of fuel and labour. 

 

Despite the fact that there exist a number of studies on Travelling Salesman Problem 

(TSP) and different variations of Vehicle Routing Problems (VRP) in the existing 

literature, the amount of studies on solid waste collection route optimization is 

limited. Moreover, a vast majority of the work done about vehicle routing is limited 

to hypothetical networks and are not integrated to Geographical Information Systems 

(GIS). Solid Waste Collection requires a new routing model with spatial constraints 

that represent the path conditions. It is important that the generated routes comply 

with the road directions and the U-Turns are avoided (Vesilind et al., 2001). In this 

point of view, GIS integration provides the means for the consideration of spatial 

constraints in the routing model.  

 

Geographical Information Systems (GISs) are computer-assisted systems that are 

commonly utilized to capture, store, retrieve, analyze and display spatial data (Clark, 
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1986). By using a GIS software, it is possible to work on any type of georeferenced 

data from different resources. Furthermore, several extensions for existing GIS 

programs are available on the market for specific purposes (engineering applications, 

optimization, etc.). In general, any extension running inside a GIS application is said 

to be tightly coupled with GIS. Conversely, stand-alone applications that only 

process or output GIS data are said to be loosely coupled with GIS. 

 

The aim of this study is to develop a GIS-integrated (with loose coupling) computer 

software which optimizes the solid waste collection routes.  For this purpose, two 

different route optimization models are generated and resulting routes are compared. 

The objective of the first model is to minimize the total distance travelled by the 

trucks. In the second model, the objective is to minimize the fuel consumption, 

which is a function of distance travelled, the road inclinations and the instantaneous 

loading conditions of the truck. Information about the real road network is derived 

through a GIS and integrated into the optimization models. The estimation of fuel 

consumption for waste collection has been made based on the model used by Tavares 

et al. (2009).   

 

Bahçelievler and Emek neighbourhoods in Ankara/Turkey are selected as the 

application area. A digital road network covering the major roads of the entire 

Ankara and the streets within Bahçelievler and Emek neighbourhoods is used. The 

road directions are also included in the network. A digital elevation model is used to 

display the 3D terrain and to calculate the road inclinations. 

 

Once the data are input to the program, they undergo a pre-processing stage so as to 

prepare the input for the optimization algorithm.  The pairwise shortest paths and 

distances between all the waste collection points are computed, creating a distance 

matrix. The distance matrix is asymmetrical as a result of unidirectional streets. A 

single distance matrix would define a single path between any two service points. 

There are cases where this would end up with a U-Turn on bidirectional roads in the 

optimization stage. In order to avoid the U-Turns, a secondary shortest path has also 
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been calculated for all nodes located at bidirectional roads. In the calculation of the 

second shortest path, the path is forced to start from the direction opposite to that in 

the shortest path. Thereby, two distance matrices are constructed to be used by the 

optimization algorithm. 

 

The distance matrices and shortest paths between all pairs of waste collection points 

are the basic requirements of the route optimization algorithm. The problem of 

finding optimum routes for Solid Waste Collection is a combinatorial optimization 

problem and is similar to the well-known Vehicle Routing Problem (VRP) with 

respect to its constraints. According to Machado et al. (2002); exact solution methods 

are not suitable for large instances of the vehicle routing problem as the search space 

grows exponentially with increasing problem size. Metaheuristic methods are 

commonly used for solving routing problems due to their capability to converge into 

high quality solutions within a reasonable time (Tarantilis et al., 2005). In this study 

a parallel hybrid genetic algorithm has been implemented to solve the optimization 

models. 

 

Genetic Algorithms are stochastic optimization techniques that model the natural 

phenomena of genetic inheritance and Darwinian strive for survival (Michalewicz, 

1992). The evolutionary process starts with an initial population of candidate 

solutions. Each candidate solution is called a chromosome. The performance of each 

chromosome is evaluated by means of a fitness function to see how well they 

perform with respect to the objective function (Al Jadaan et al., 2008). A selection 

procedure is applied to determine which chromosomes are chosen for genetic 

reproduction (crossover), by which a child chromosome (offspring) is produced from 

two parent chromosomes. Practically, better fit chromosomes have a higher chance 

of being selected. The mutation operator makes random modifications on the 

chromosomes to extend the search space. At each generation, the new population 

replaces the old one, simulating an evolutionary process.  
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The advantages of Genetic Algorithms (GAs) for routing problems is that they do not 

require detailed knowledge of the problem and can easily adapt to changing 

conditions (Sengoku and Yoshihara, 1998). Moreover, they can provide a solution at 

any instance of optimization, without the user having to wait for the termination of 

the algorithm. Genetic Algorithms are among the class of Metaheuristic Optimization 

Algorithms and are capable of searching globally and converging to nearly-optimal 

solutions in a relatively short amount of time (Sengoku and Yoshihara, 1998). 

Furthermore, other hill-climbing methods can easily be implemented within the 

genetic algorithms to enhance the search capabilities. 

 

The genetic algorithm is parallelized by the course grained PGA islands model 

(Shengjun et al., 2008). In this model, multiple instances of genetic algorithms run 

independently on different processors and the solutions produced by each instance 

migrate periodically from one instance to another. The method suggested by 

Shengjun et al. (2008) has been implemented by using an exchange pool which 

enables different instances of genetic algorithms to push and pull the selected routes. 

 

The validation of the implemented optimization algorithm is performed by running 

the software on 4 asymmetrical TSP benchmark problems (TSPLIB, 2010). The 

optimum results of the benchmark problems are already known. The results obtained 

are compared with the best possible solutions. The optimization method has also 

been tested on the real road network with small test problems involving 10-20 waste 

collection points. 

 

The output of the optimization algorithm is a set of routes for waste collection 

vehicles. The routes can be displayed in a 3D terrain view with different colors. The 

visiting order of the waste collection locations is indicated by numbers. This type of 

visualization enables the user to view the terrain relief while analyzing the path and 

to compare the results of different routing models. 
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In this study, it is aimed to illustrate the difference between the routes generated by 

two models in 3D view. The first model aims to minimize the total distance travelled 

whereas the second one aims to minimize the fuel consumption. The visual 

characteristics of the routes generated are expected to reflect the optimization model 

used. 

 

Following this introductory chapter, Chapter 2 is dedicated to the literature review of 

existing studies on Vehicle Routing Problem and solution methods in the literature. 

Different variations of the Vehicle Routing Problem are explained. A number of 

different solution strategies to the problem for different cases are given. A brief 

discussion of the genetic algorithms designed for the vehicle routing problems in the 

literature is provided. Lastly, existing studies in the literature about route 

optimization for the solid waste collection case is discussed. Chapter 3 describes the 

methodology of the study by presenting the framework of the stages involved in the 

development of the software. After presenting the study area, the data preparation 

and pre-processing stages are explained. Two new routing models that take into 

account the path conditions are introduced. The details of the genetic optimization 

algorithm are given along with various choices and the logic behind them. The 

parallelization method is explained. Ultimately, the results are discussed. In Chapter 

4, detailed information about the implementation of the genetic algorithm is 

presented. The genetic operators used as well as the tuning of the parameters are 

explained. The parallelization method and the benchmarking results are given. 

Chapter 5 describes the area of application and presents the results of the developed 

software on a number of small test cases and the real case study. A brief discussion 

of the obtained results is presented. Chapter 6 concludes the main body of the thesis 

and gives recommendations for the future studies. 

 

Following the main body of the thesis, Appendix A presents a simple manual for the 

developed software. In Appendix B, fragments of codes and data structures used in 

the program are presented. 
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CHAPTER 2 

 OVERVIEW OF ROUTE OPTIMIZATION AND SOLID WASTE 

COLLECTION 

Route optimization is a broad term covering all attempts to find the shortest routes 

that cover all the locations that need to be serviced. A number of different route 

optimization problems are studied in the literature due to their high applicability to 

many real-life situations such as solid waste collection, milk float routing, mail 

delivery, school bus routing, heating oil distribution, parcel pick-up and delivery, 

dial-a-ride systems, etc. (Rizzoli et al., 2004). 

This chapter is dedicated to the literature survey of the previous studies. First, the 

vehicle routing problem is explained briefly, covering different models and general 

solution methods in the literature. As the proposed optimization method uses genetic 

algorithms, the next section is devoted to genetic algorithms applied for route 

optimization. Lastly, the studies related with solid waste collection problem are 

discussed. 

 

2.1 Vehicle Routing Problem 

The Vehicle Routing Problem (VRP) was first introduced by Dantzig and Ramser in 

1959 and has been studied for many different real-life cases ever since. It is a 

complex combinatorial optimization problem in which the objective is to minimize 

the total distance travelled by a set of vehicles while servicing all locations. VRP has 

different models based on the constraints of the real-life situation. The variations and 

different models of the problem are well documented in Toth and Vigo (2000) and 

Rizzoli et al. (2004).  
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The Capacitated VRP is the most basic variant of VRP, in which, a fleet of vehicles 

of uniform capacity are required to service a fixed number of demand points. 

Vehicles have a limited capacity and therefore, each vehicle is supposed to go back 

to the depot once they reach the capacity limit.  According to Rizzoli et al. (2004), 

removing the capacity constraint and limiting the number of vehicles to one, the 

problem reduces to the classical Traveling Salesman Problem (TSP). Therefore, it 

can easily be proved that the CVRP and other variants of VRP are NP-Hard in 

complexity. 

 

The VRP with time window constraints (Rizzoli et al, 2004; Tan et al, 2001) 

(VRPTW) is especially important in logistics management, in which the company is 

expected to deliver a number of items from depot(s) to a number of customers on 

time (i.e., some or all of the items have to be delivered within a time frame). In 

VRPTW, each customer is associated with a time interval and is required to service 

each customer within the time window. Tan et al. (2001) addresses some other real-

life applications of VRP with time window constraints such as school bus routing, 

mail and newspaper delivery, fuel oil delivery and municipal solid waste collection; 

proposing a hybrid solution involves the cooperation of different artificial 

intelligence techniques such as simulated annealing, tabu search and genetic 

algorithm. The paper further claims that efficient routing and scheduling of vehicles 

can save millions of dollars for governments and industries. 

 

In VRP with Pickup and Delivery (VRPPD), the vehicles are supposed to satisfy a 

set of transportation requests. A transportation request involves transferring the 

demand from pick-up point to the delivery point. In this problem, the transport items 

are not originally concentrated in the depots, but they are distributed over the nodes 

of the road network. In case the demands to be transported are people, the problem 

usually includes time window constraints in order to prevent customer from waiting 

too long (Rizzoli et al., 2004). VRPPD arises in a wide range of commercial service 

companies. A major case for the application of VRPPD is the grocery industry, in 
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which the supermarkets serve as delivery points and their suppliers such as poultry 

processors or vegetable and fruit wholesalers are pick-up points (Mosheiov, 2008). 

 

Time dependent VRP is an extension of VRPTW, in which the costs between the 

delivery points depend on time. This situation practically occurs in most cities since 

the time required to travel from one point to another depends on traffic load which 

depends on the time of the day (Rizzoli et al., 2004). The speed distributions have to 

be known before the optimization starts in order to enable the system to calculate the 

travel times. This variant of the VRP is motivated by the fact that the role of traffic 

conditions cannot be underestimated in urban areas in order to perform a feasible and 

realistic optimization (Donati et al., 2008). 

 

Multiple Depot VRP (MDVRP) was formulated by Sumichrast and Markham(1995) 

and differs from the classical capacitated VRP in that there is more than one depot in 

MDVRP and each demand point is associated with a depot (Ho et al., 2008). As there 

is more than one depot involved, the decision makers have to determine which 

customers are served by which depots 

2.2 Solution Methods 

The solution methods for the VRP can be broadly classified as exact, heuristic and 

metaheuristic. Exact methods are those which explore the entire search space for the 

problem to find the best possible solution to the VRP instance. Exact approaches to 

solving VRP require algorithms that generate lower and upper bounds to the optimal 

value of the cost. In general, an upper bound to the optimal value of the problem 

instance can be obtained by utilizing any heuristic method that can find a feasible 

solution. In VRP, any set of tours that cover all the demand points constitute a 

feasible solution with a given cost which cannot be smaller than that of the minimum 

cost tour. A lower bound to the optimal value of the cost can be determined by 

solving a relaxation of the optimization problem. A relaxation is another 

optimization problem whose feasible solutions encompass all feasible solutions of 

the original problem and whose objective function value is less than or equal to that 
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of the original problem. The optimality of the solution is guaranteed when the lower 

and upper bounds coincide. The two exact methods that were studied extensively: 

 Branch and Bound (Fisher, 1994) 

 Branch and Cut (Toth and Vigo, 2002). 

 

The heuristic methods for optimization problems perform a relatively limited 

exploration on the search space. The aim of heuristics is to produce relatively good 

solutions as quickly as possible (Tarantilis, 2005).  The heuristic methods are broadly 

classified into three categories: 

 Constructive Heuristics 

 Local Search Improvement Heuristics 

 Two-phase Algorithms 

 

Constructive heuristics use the data of the problem to build a solution gradually (one 

point at a time) without an improvement phase. Typically no solution is obtained 

until the procedure is complete.  

 

Local search improvement heuristics are iterative search procedures that gradually 

improve the solution quality starting from an initial feasible solution by applying a 

series of local modifications. The initial feasible solution is usually output of a 

constructive heuristic (Tarantilis et al., 2005).  

 

The two-phase algorithms are classified into two broad categories: “cluster first route 

second” and “route first cluster second”. The former class of algorithms first clusters 

the demand points into feasible routes and then constructs the actual routes using 

feedback loops between the two stages. The examples to this approach are the sweep 

algorithm (Gillet and Miller, 1974), Fisher and Jaikumar Algorithm (1981) and Petal 

Algorithm (Ryan et al., 1993). The latter class of algorithms initially find a large 

single route by utilizing a TSP algorithm disregarding the side constraints and then 

decompose the tour into feasible vehicle routes in the second phase. Table 2.1 

explains a number of heuristic methods in the literature.  
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Table 2.1 – Heuristic methods 

Type Method 

- Constructive Heuristics 

 Clark and Wright Savings Algorithm 

(Clark and Wright, 1964; Altinkemer and 

Gavish, 1991) 

Gradually construct the solution, 

one step at a time without an 

improvement phase 

- Local Search Improvement Heuristics 

 Cyclic Transfer Algorithm (Thompson 

and Psaraftis, 1993) 

 2-cyclic exchanges (Van Breedam, 1994; 

Kinderwater and Savelsbergh, 1997) 

 

Iteratively improve the solution 

starting from an initial feasible 

solution 

-2-Phase Algorithms 

 Cluster First, Route Second (Gillet and 

Miller, 1974;  Fisher and Jaikumar, 

1981; Ryan et al., 1983) 

 Route First, Cluster Second 

Separating the clustering and 

routing processes, thereby 

reducing the VRP into several 

TSP problems. 

 

Metaheuristic methods are higher level heuristic procedures that are designed to 

guide heuristic approaches on achieving better quality solutions for difficult 

combinatorial optimization problems (Tarantilis et al., 2005). Metaheuristic Methods 

perform a deeper exploration of the solution space. Therefore, the quality of 

solutions produced by metaheuristic algorithms is much higher than that of classical 

heuristic methods (Tarantilis et al., 2005). Each metaheuristic has one or more 

adjustable parameters. Although this provides flexibility, tuning the parameters 

requires careful calibration and testing on an independent set of problem instances 

(Tarantilis et al., 2005). The metaheuristic algorithms employ techniques that provide 

both intensification and diversification of the candidate solutions. Intensification 

refers to the exploitation of the existing solutions to obtain better local-optimum 

solutions. Diversification, on the other hand, refers to the exploration of the entire 

search space so that the algorithm does not get stuck in a low-quality locally optimal 
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solution. Following is a list of metaheuristic algorithms that are commonly 

implemented for routing problems: 

 Simulated Annealing 

 Threshold Accepting Metaheuristic 

 Ant Colony Optimization 

 Genetic Algorithms 

 

2.3   Genetic Algorithms for Route Optimization 

 

The search methods of Genetic Algorithms model the natural evolutionary processes 

to gradually improve the feasible initial solutions. It is inspired by the Theory of 

Natural Selection proposed by the British naturalist Charles Darwin in 1859. The 

theory states that the individuals possessing favourable characteristics are more 

likely to survive and reproduce, which makes them more likely to transfer their 

genetic material to the proceeding generations. The individuals with less favourable 

characteristics will gradually diminish as they are less likely to survive although 

some individuals manage to do so by luck. As the organisms mate, the genetic 

information of the parents is transferred to the offspring.  

In Genetic Algorithms (GA), each candidate solution to the problem is referred to as 

a chromosome. In the routing problem case, a chromosome refers to a complete set 

of routes that utilize all vehicles and cover all the points that need to be serviced. The 

algorithm starts with an initial population of chromosomes.  

The initial chromosomes comprising the initial population are constructed either 

randomly or by using heuristic methods. After an initial population of feasible 

solutions is generated, the fitness of each individual in the population is calculated. 

The fitness of a chromosome is a measure of how the chromosome fits with the 

objective function. A selection procedure is used to decide which chromosomes 

undergo evolutionary processes using genetic operators. Generally, better fit 

chromosomes have a higher chance of being selected. The crossover operator 

combines the features of two solutions by swapping genes in order to form offsprings 

that carry the genetic properties of parents (Michalewicz, 1992). The assumption in 
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using crossover operator is that the genetic combination of two good solutions yields 

another good solution having common properties with the parents. The mutation 

operator makes random or heuristic modifications on the selected chromosomes, 

creating variations in the population. Mutation helps the optimization algorithm to 

escape from local-minima traps and explore a wider range of the solution space. 

During the evolutionary process, hill-climbing methods can be used to perform local 

search on selected individuals. The hill climbing methods test the neighbour genes of 

a chromosome for different combinations and if a modification results in a better 

value of objective function, that modification is accepted. This process continues 

until no further improvement is possible. At the end of each iteration, a new 

generation is created from the previous one. Figure 2.1 illustrates the general genetic 

algorithm cycle. 

 

Figure 2.1 – Generalized Genetic Algorithm Cycle 

 

2.3.1 Representation of Path 

For combinatorial optimization problems such as Travelling Salesman Problem 

(TSP) and Vehicle Routing Problem (VRP) in which a permutation of points is of 
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interest, binary representation of tours is not well suited as the genetic operators 

cannot be applied in a meaningful way. This is mostly because modification of a 

single bit may result in an illegal tour where a repair algorithm is required in order to 

fix the chromosome (Michalewicz, 1992). Furthermore, it would be so difficult to 

handle the genetic crossover operator which is supposed to produce new routes 

inheriting the genetic properties of parent (Michalewicz, 1992). 

The most common representation of chromosomes in the literature is the vector 

representation. Vector representation is commonly implemented as an array of 

numbers each corresponding to a demand point. Michalewicz (1992) describes three 

different vector representations (Table 2.2) existing in literature in connection with 

TSP: 

 Adjacency Representation 

 Ordinal representation 

 Path Representation 

 

Table 2.2 – Comparison of Vector Representation Methods of Route Paths 

Representation Explanation Comments 

Adjacency If there is a direct tour between 

city i and j, city j is listed in 

position i. 

Illegal routes can be 

produced, which requires 

repair algorithms.  

Ordinal For each point in the route path R, 

the index of the point within the 

reference list is recorded and 

inserted into the ordinal 

representation vector O. The point 

is then deleted from the reference 

list. 

Hard to implement the 

genetic operators. 

Path The route path is represented 

directly. 

The most natural 

representation. Preferred 

due to its simplicity and 

applicability to various 

operators. 
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2.3.2 Generation of the Initial Population 

The construction of initial population is of great importance since it has great impact 

on the genetic material comprising the final solution (Bjarnadóttir, 2004). The initial 

population is generally constructed randomly; however it can also be constructed 

using heuristic methods. 

 Many classical and hybrid genetic algorithms prefer random generation of initial 

routes (e.g., Sengoku and Yoshihara, 1998; Nazif and Lee, 2010). As its name 

implies, all the connections in randomly generated routes are established by 

randomly selecting a point from the available point list. The randomly generated 

routes possess a high diversity of genetic material which enables the genetic 

algorithm to explore a larger search space. However, it generally takes a considerable 

amount of computation time to obtain optimized solutions. 

The heuristic approaches aim to construct well-structured routes. One of the possible 

heuristic approaches is to use the sweep approach of Gillet and Miller (1974) in 

which the demand points are sorted according to polar angle from the depot. The 

second approach is to solve the Generalized Assignment Problem to obtain an 

allocation of demand points for vehicles and then to construct the routes by using 

simple heuristic methods. A third heuristic approach proposed by Ho et al. (2008) 

involves grouping the demand points by assigning them to nearest depot (in case of 

multiple depots), generating routes using the Clark and Wright (1964) saving 

algorithm and then solving a scheduling problem. The application of heuristics 

methods in the generation of initial population is expected to result in solutions that 

evolve faster. However, a possible drawback is that such an artificially constructed 

population may lack the diversity required to obtain near-optimal solutions (Baker 

and Ayechew, 2003). 

2.3.3 Calculation of Fitness 

Each individual in the population is a potential solution to the problem and is 

evaluated by means of a measure called “fitness”. Fitness can be considered as a way 

of ranking a chromosome against other chromosomes. Therefore, the fitness function 

can be associated with the objective function of the model. The raw fitness value in 

routing problems is generally expressed as the inverse of the cost (Michalewicz, 
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1992).  The normalized fitness, on the hand is calculated such that the sum of all 

normalized fitness values add up to 1. 

2.3.4 Selection Operator 

Selection operator chooses the chromosomes to be included in the next generations. 

The chromosomes may undergo genetic operations such as crossover and mutation 

before transferring to next generations. The selection operators are generally 

stochastic and are formulated in such a way that the better members of the population 

have a greater probability of being selected. It is important that worse members of 

the population have some probability of being selected as well (Al Jadaan et al., 

2008). Three selection operators are explained:  

 Tournament Selection 

 Ranking Selection 

 Roulette Wheel Selection. 

Tournament selection involves choosing a sample of k individuals from the 

population randomly and running several tournaments among the chosen individuals. 

The best individual in the tournament is selected within a probability of p, which is 

also called as the pressure of selection (Miller and Goldberg, 1995). The probability 

of selecting n
th

 best individual in the tournament is given as: 

 (2.1) 

 

Ranking selection (Miller and Goldberg, 1995) sorts the individuals in the population 

based on fitness. Assuming that there are N individuals in the population, the 

probability of being selected for an individual in the sorted list is: 

 
(2.2) 

In Roulette Wheel Selection (RWS), the selection probability of each individual is 

proportional to its fitness (Miller and Goldberg, 1995). In practice, the selection 

probability of an individual equals to the normalized fitness of the individual since 

the normalized fitness values add up to 1. 
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(2.3) 

2.3.5 Crossover Operator 

The crossover operator creates new chromosomes using the genes of the parent 

chromosomes. The parent chromosome pairs to be mated are selected by means of 

the selection operator. The performance of the crossover operator is directly related 

with its ability to transfer the significant properties of the parent chromosomes to the 

child. The following crossover operators are commonly used for routing problems: 

 Partially Mapped Crossover (PMX) 

 Order Crossover (OX) 

 Edge Recombination Crossover (ERX) 

 

The Partially Mapped Crossover (PMX), introduced by Goldberg and Lingle (1985), 

builds an offspring by choosing a subsequence of tour from one parent and 

preserving the order and position of as many cities as possible (Michalewicz, 1992). 

In PMX, two random cut points for the parent chromosomes are selected to serve as 

a boundary for swapping operations. For example, let  and be two chromosomes 

with marked cut points such that: 

 

. 

Swapping the segments bounded by the cut points, the offsprings will initially be: 

 

 

The swap operation also defines a series of mappings between points  

 which assist in completing the remaining parts of the 

offspring from original parents. If a point to be copied from an original parent 

conflicts with the swapped segment (i.e., results in visiting the same point twice), the 
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mapping of that point is used instead, which guarantees the avoidance of any 

conflict. The resultant offsprings are: 

 

 

Order Crossover (OX), introduced by Davis (1985), builds offspring by choosing a 

subsequence of a tour from one parent and preserving the relative order of demand 

points from another parent (Michalewicz, 1992). In OX, first the segments between 

cut points are copied into the offsprings. Considering the same parents used in PMX, 

the offsprings after the first step would be:   

 

 

Next, starting from the second cut point of one parent, the points are copied from 

other parent excluding the points already used. For instance, the sequence of points 

in the second parent is . After the removal of points already used, 

the sequence becomes . Appending this sequence to the offspring starting 

from the second cut, the offspring becomes: 

. 

Similarly, the second offspring becomes: 

 

According to Michalewicz (1992), the OX makes use of the fact that the relative 

orders of the points are important rather than their positions in the path. 

 

The Edge Recombination Crossover (ERX), introduced by Whitley, Starkweather 

and Fuquay (1989), transfers more than 95% of the edge information from parents to 

offspring. The idea behind ERX is that an offspring should be constructed based on 

the edges from both parents rather than considering the position or relative order of 

the demand points (Michalewicz, 1992). For the two parent chromosome instances 
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given for PMX, the edge list in Table 2.3 can be constructed. Starting from an initial 

point for ERX, the next point is selected by making use of the edge list. Generally, 

the point with smallest number of edges in the edge list is selected. If there is more 

than one alternative, a random choice is made. Repeating the procedure, the 

following offspring can be generated: 

. 

 

Table 2.3 - The Edge List for Edge Recombination Crossover (ERX) Example 

Point No Edges to other points 

1 9 2 4 

2 1 3 8 

3 2 4 9 5 

4 3 5 1 

5 4 6 3 

6 5 7 9 

7 6 8 

8 7 9 2 

9 8 1 6 3 

 

2.3.6 Mutation Operator 

The mutation operator makes random changes to chromosomes to maintain the 

diversity within the population. Thereby, premature convergence to local optimum 

solutions is prevented. Three mutation algorithms are explained: 

 Swap Sequence Mutation 

 Inversion Mutation 

 Heuristic Mutation 

 

The swap sequence operator (Nazif and Lee, 2010) randomly selects two substrings 

of demand points and exchange them. Although swapping sequences is one of the 

simplest mutation techniques available in the literature, it is very useful for the 
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exploration of the solution space.  Figure 2.2 illustrates the swap sequence mutation 

technique. 

 

Figure 2.2 - Swap Sequence Mutation 

 

The inversion mutation, on the other hand, selects a substring from the parent 

chromosome and flips it to form a new offspring (Ho et al., 2008). The inversion 

operator provides the system with the capability to find the suitable ordering of 

demand points. Figure 2.3 illustrates the inversion mutation. 

 

Figure 2.3 - Inversion Mutation 

 

In general, the heuristic mutation operators use a neighbourhood technique to 

produce better offsprings. A set of chromosomes transformed from the parent 

chromosome by exchanging genes are regarded as the neighbourhood (Ho et al., 

2008). Generally, best chromosome in the neighbourhood is used as the offspring. 
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The 2-opt mutation (Sengoku and Yoshihara, 1998) is one of the most commonly 

used heuristic mutations which improves the tours by checking every pair of edges 

and checks if exchanging the pairs result in an improvement. If there is any 

improvement in case of an exchange, the pairs are swapped and the order of the 

subtour is reversed. Figure illustrates the 2-opt mutation algorithm. 

 

Figure 2.4 - 2-opt Heuristic Mutation 

 

2.4 Solid Waste Collection  

 

According to Nuortio et al. (2006), planning the solid waste collection is one of the 

most difficult operational problems encountered by local authorities in solid waste 

management. Therefore, it is highly important to consider the cost-effectiveness of a 

solid waste collection operation while designing the collection routes. The waste 

collection routes in many cities are still designed manually. However, there have 

been numerous technological advances in the past decades in terms of computational 

power; which leads the haulers to seriously consider using computer software for 

planning their routes (Nuortio et al., 2006).  Most of the studies involving route 
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planning for the collection of municipal solid waste in the existing literature are 

based on the Vehicle Routing Problem. 

 

Uraz (2002) used GIS tools to make a descriptive analysis of Bahçelievler 

Neighbourhood and presented a comprehensive overview of the neighbourhood and 

the collection service in Bahçelievler. The collection routes were generated using the 

Network Analyst Extension of ArcView 3.2. It uses Dijkstra‟s shortest path 

algorithm to calculate the shortest path from a root node to every other node in the 

network. At each iteration, the edges next to the node are evaluated regarding their 

costs and the edge with least cost is selected. According to Uraz (2002), “The 

Analyst may sometimes generate paths that are not suitable for solid waste collection 

truck to follow in the streets of the study area. The most important factor of these 

non-suitable paths is that the analyst allows the vehicle to turn back easily on the 

same street for reaching to the next node”. The cost parameters used in the study are 

distance, time taken to travel along the streets. The effect of average speed on the 

fuel consumption was considered as well. A number of different routes were 

proposed for different zones of Bahçelievler.  

 

Ghose et al. (2006) proposed a solid waste collection system for the municipality of 

Asansol in West Bengal, India. A GIS-based optimal routing model was considered 

for transporting solid wastes to the landfill, involving the planning of bins, vehicles 

and optimal routing. For the collection phase, the vehicles are divided into three 

categories based on their volume and suitability for different conditions. The vehicle 

type to be used depends on the road with and the type of the collection bin. The study 

aimed to propose a framework for efficient solid waste management system rather 

than concentrating solely on the route optimization. The collection routes were 

generated by using the network module of Arc/Info GIS software with objective of 

finding the shortest or minimum impedance through a network. The routes were 

computed using a travelling salesman problem model. 
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Nuortio et al. (2006) conducted a study in two different regions of Eastern Finland 

and proposed a conceptual model aiming to schedule the waste collection activities 

and minimize the distance travelled by garbage trucks using metaheuristic methods 

with local search techniques. Detailed historical data provided by the waste 

management company on waste accumulation levels and stop points of vehicles for 

waste collection was used to estimate the waste production of each bin and the 

travelling speed in each road class. Time windows were assigned to each bin, 

considering the time limitations of the collection activity and working hours of the 

waste disposal site. The distances between pairs of bins were calculated by using the 

shortest path algorithm of Dijkstra (Dijkstra, 1959). The travel times were estimated 

by using historical GPS data. In the optimization stage, a feasible solution was 

generated by a hybrid insertion heuristic and then a metaheuristic algorithm is used 

along with local search techniques. 

 

Tavares et al. (2009) proposed a GIS integrated route modelling software to optimize 

fuel consumption of waste collection trucks in the city of Praia and Santiago Island. 

The study addresses road slope when estimating the fuel consumption of the waste 

collection trucks. It was shown that longer routes can be more optimal in terms of 

fuel consumption when the road inclination is taken into account. In order to estimate 

the fuel consumption, the model proposed by Ntziachristos and Samaras (2000) was 

used. Although the effect of vehicle load was also considered in the paper, it was not 

implemented in the study. The Network Analyst software was used for the 

optimization of the waste collection vehicle route for a single vehicle. The results 

showed that road slopes affect the optimal route significantly when the fuel 

consumption is to be minimized. 

 

This study proposes a more realistic approach by incorporating the spatial constraints 

for one-way streets and U-Turns into the model and using a digital elevation model. 

The route optimization is carried out by a hybrid genetic algorithm, which is easy to 

adapt to new constraints that may arise under varying conditions. This provides 

additional flexibility compared to exact algorithms and enables the user to work on 

larger data sets. The search capability of the genetic algorithm is strengthened by 
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using hill-climbing algorithms, which speeds up the process of converging into high 

quality solutions. Furthermore, the algorithm is parallelized with very high efficiency 

so as to speed-up the genetic search.  
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CHAPTER 3 

METHODOLOGY 

Classical vehicle routing models do not meet the requirements of solid waste 

collection vehicle routing as far as the path constraints are considered. One of the 

important path constraints is the avoidance of U-Turns (Vesilind et al., 2001). 

Therefore, a spatial routing model that includes vector representation of routes needs 

to be established and solved. Moreover, factors affecting the fuel consumption such 

as slope and instantaneous vehicle load need to be included within the model. 

3.1 General Framework of the Methodology 

The aim of the proposed framework is to optimize the waste collection routes using 

two different spatial models. The objective of one of the models is to minimize the 

total distance travelled whereas the other one aims to minimize the fuel consumption. 

The framework of this study consists of four main stages: input, pre-processing, 

optimization of waste collection routes and display of output. Figure 3.1 illustrates 

the general framework of this study. 

 

The input stage involves the preparation of the input data of the application. The road 

network and waste collection locations are digitized and exported as an ESRI Shape 

File (ESRI Shape File Technical Documentation, 2010). The road directions are 

indicated as an attribute.  As a result, uni-directional and bi-directional roads can be 

distinguished during route optimization. 

  

In the pre-processing stage, road network and waste collection points are used to 

generate the distance matrices in which all the shortest distances between waste 
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collection points are declared. For this purpose, firstly, the projections of the waste 

collection points on the nearest street features are calculated. Then, a directed graph 

is created from the road network and the nodes calculated. By using the graph, the 

shortest paths between all pairs of waste collection points are calculated. For the 

points lying along the bidirectional routes, second shortest paths that are forced to 

start from the direction opposite to the primary shortest path are calculated as well. 

For each path generated, the average slope of the path has also been calculated for 

usage in the estimation of the fuel consumption. 

 

 

Figure 3.1 - Framework of the Study 

 

In the optimization stage, a parallel hybrid genetic algorithm is used to search for the 

routes with lowest total cost that service all the required demand points (waste 

collection locations). In this context, the term “cost” depends on the objective of the 

optimization. Two optimization models are proposed. The first model aims to 
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minimize the total distance travelled by all vehicles and the cost refers to distance in 

this model. On the contrary, the second model aims to minimize the total fuel 

consumption. In this case, cost refers to fuel consumption.  

 

The genetic optimization algorithm starts by creating an initial population of feasible 

solutions. Then, an iterative evolutionary process begins, in which selected good 

solutions combine with each other to produce other solutions (offspring) that inherit 

the properties of their parents and some solutions are exposed to modifications. This 

evolutionary process is supported by hill-climbing algorithms that periodically make 

local improvements on the solutions. The genetic operators are designed in such a 

way that no invalid routes are produced at any instance of execution. This is ensured 

by keeping track of the assignment status of each waste collection points in every 

genetic operator. The algorithm is parallelized by using islands model (Shengjun et 

al., 2008). Thereby, multiple instances of the optimization algorithm run at the same 

time and communicate periodically. The genetic algorithm is capable of providing a 

solution any time without having to wait for the algorithm to terminate. 

 

The last stage (output) involves displaying the resultant routes in an illustrative 

manner. The optimization algorithm gives the arrangement of waste collection points 

to the output module. The waste collection points are represented by an array of 

numbers indicating the waste collection point and whether the primary or secondary 

shortest paths are used. The output module sequentially reads the route arrays 

displays the paths connecting the waste collection locations on a 3D terrain view. 

 

3.2 Input Data 

The developed software has three main inputs: a polyline shape file representing road 

network, a point shape file representing the garbage containers and a digital elevation 

model represented by a grid file generated by Surfer (Surfer, 2010).  The 

organization of the input files is described in Appendix A.  
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Table 3.1 shows the expected attributes of the road features. The ID1 field is the 

primary key, which is unique for each road feature. The direction attribute indicates 

whether the road is unidirectional or bidirectional. In practice, the traffic flow is 

either in the direction of digitization or both ways. The road type attribute refers to 

the road hierarchy which affects the line width of the feature while displaying. The 

level attribute corresponds to the height level of the feature. This feature is 

implemented to clarify which roads that share a common latitude and longitude 

actually intersect. The features having a level value difference greater than 2 are 

assumed to be not intersecting. 

 

Table 3.1 - The attributes of the road features 

Field Name Type Explanation 

ID1 Integer The primary key of the road features 

Name String The name of the street 

Direction Integer Direction of traffic flow with respect to 

digitization direction.  (0=same, 1=opposite, 

2=both ways)  

Type Integer The road type. (1=major road, 2=main road, 

3=street) 

Level Integer The height level of the road. 

 

Table 3.2 shows the attributes of point features. The ID1 field is the primary key, 

which is unique for each point feature. The Type field indicates whether the point is 

a waste collection point or landfill. 

 

Table 3.2 – The attributes of the point features 

Field Name Type Explanation 

ID1 Integer The primary key of the point features 

Type Integer Type of the point (0=waste collection 

point, 1=Landfill) 
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3.3 Pre-processing 

The aim of the pre-processing stage is to find the shortest paths and distances 

between each pair of containers so as to construct the distance matrix required by the 

optimization algorithm. The calculation of pairwise shortest paths requires a 

preprocessing on the given input data. The preprocessing stage involves the 

construction of the graph structure to be used by the shortest path algorithm. 

 

Firstly, the geometric projections of waste collection points on the closest street 

features are determined. Thereby, each waste collection location is associated with a 

point on the road network.  Each point of projection on the road network is recorded 

as a marked node. Then, all the intersections within the road network (road-road 

intersections) are determined and recorded as normal nodes (Figure 3.2).  

 

Each node in the network is recorded with its position within the containing polyline. 

The nodes generated and polyline are used to construct the graph structure consisting 

of vertices and edges, denoted by  

 

 

Figure 3.2 - Preprocessing the GIS data. a) projecting the containers to streets,         

b) calculating the street intersections and marking them as nodes 



 29 

Once the graph is constructed, all pairs of shortest paths between the “marked nodes” 

are calculated by means of Dijkstra‟s shortest path algorithm. The algorithm is 

modified so that the nodes closer to the destination point have a higher priority 

during the search. This modification enables the algorithm to find a short path to the 

destination earlier. In this manner, longer paths are eliminated without having to 

search unnecessary path routes.  

 

The edges represented by straight lines in traditional vehicle routing problems are 

replaced by the shortest paths calculated using the road network. Therefore, the 

distance between any two containers is represented by the shortest distance 

calculated within the road network and the edge is represented by the shortest path.  

 

Even though this method provides sufficient input for the optimization algorithm by 

generating the distance matrix and the edges, it does not address an important path 

constraint for bidirectional roads: using shortest paths may lead to invalid routes in 

cases where two consecutive edges have a common node lying along a bidirectional 

road. It is probable that the ending vector of the former edge and the starting vector 

of the latter edge head to opposite directions. In these cases, a second shortest path 

must be used for the second edge to avoid a U-turn on the bidirectional road. The 

second shortest path is calculated using the same algorithm by forcing the opposite 

direction for the starting vector of the second edge. This case is illustrated in Figure 

3.3. 
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Figure 3.3 - An example invalid route problem. a)  An invalid route as the two 

consecutive edges are in opposite directions (U-Turn), b) Corresponding validated 

route which uses the second shortest path for the edge between nodes 2 and 3. 
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Figure 3.4-First and Second Shortest Paths 
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The average slope of the paths have also been calculated to be used in the 

optimization model that takes into account the fuel consumption. The slope of each 

segment (straight line) comprising the shortest path is calculated from the available 

altitude data. The average slope of the path is the weighted average of all the slopes 

comprising the path, in which the affect of the slope is proportional to the length of 

the line segments.  

       (3.1) 

 

where 

 is the average slope of the path, 

n is the number of line segments comprising the shortest path, 

 is the slope of the line segment i and 

l is the length of line segment i. 

 

3.4 Optimization 

The optimization stage aims to generate a route for each vehicle in such a way that 

each route starts and ends at the landfill and each waste collection point is serviced 

by exactly one vehicle, minimizing the total operational cost. Two optimization 

models are proposed. The first one aims to minimize the total distance travelled 

whereas the second one aims to minimize the fuel consumption; which is a function 

of distance, instantaneous vehicle load and the road gradient. In both models, the 

term “cost” is used to address the item to be minimized. Therefore, in the first model, 

the cost is associated with distance whereas in the second model, the cost is 

associated with fuel consumption. 

 

3.4.1 Optimization Models 

Let there be m vehicles and n waste collection points which are required to be 

serviced. The route optimization problem for solid waste collection can be defined on 
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a directed graph  where  is the set of vertices and 

 is the set of edges defined on the graph G. The vertex 

 represents the landfill and the other vertices represent the waste collection points. 

 

Let M be the set of vehicles and be the sets of routes assigned to each 

vehicle. The route of each vehicle k can be shown as set of vertices (3.2) where  

represents the i
th

 point in the route of vehicle k and  is the number of waste 

collection points assigned to route vehicle k. For convenience,  and  refer to 

the landfill for each route k.  Therefore, collection trucks leave from the landfill site 

and return back when they are filled up. 

 
(3.2) 

. 

The primary and secondary shortest path distances of any two points  are 

denoted by  and , respectively. The geometric vectors  

and  are the first and last vectors of the primary shortest path and 

 and  are the first and last vectors of the secondary shortest path 

between the vertices , which were calculated in the pre-processing stage. The 

angle between any two vectors is computed by the Equation 3.3, which uses the dot 

product formula. 

 

(3.3) 

 

A binary variable  associated with each edge in the graph denotes if there exists an 

edge in graph G that connects vertices  and . The value of  is 0 if there is no 
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direct connection between the vertices  and  within the routes and 1 if the 

vertices have a direct connection. Additionally  indicates an edge starting from 

the landfill and  indicates an edge ending at the landfill. 

Another binary variable  indicates whether the primary or secondary shortest paths 

are used connecting the  and  vertices of route k. The value is 1 if the 

first shortest path is used and 2 if second shortest paths are used. Equation 3.4 says 

that the path between the  and  vertices of route k is taken from the 

primary shortest path if the angle between the last vector of the edge  and 

the first vector of the edge  is not opposite. Otherwise, the path is taken 

from the second shortest path.  is defined recursively (in terms of itself) since the 

progress of the route at any instance of construction depends on the previous path. 

 

(3.4) 

where  

 ≈ 3.14159 corresponds to the angle between opposite vectors in radians. The 

condition that the angle between two adjacent edges is equal to π radians is a U-Turn. 

In case of a U-Turn, the second shortest paths are used. 

 

The distance between  and  vertices for every route  depends on 

whether the first or second shortest paths are used. Therefore,  can be defined as: 

 

(3.5) 
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In the first optimization model, the aim is to minimize the total distance travelled. 

Therefore, the cost of the route is defined in terms of distance. The distance-based 

cost between  and  vertices for every route  can be defined as: 

 
(3.6) 

 

The total cost of route k, therefore, is 

 

(3.7) 

 

A solution of the problem consists of a partition of V and a 

corresponding permutation which specifies the order of the customers in the route k 

(Tarantilis et al., 2005). 

 

The objective of the model is to 

 

Subject to 

(3.8) 

 
(3.9) 

 

(3.10) 

 

(3.11) 

 

(3.12) 
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(3.13) 

 
(3.14) 

 

where 

  is the route vector for vehicle k, consisting of vertices, 

 is the number of vertices in route k, 

 indicates whether there is an edge between vertices i and j, 

 indicates whether the first or second shortest path is used in the  edge of   

route. 

The objective function, Equation 3.8 is to minimize the total distances travelled. 

Equation 3.9 restricts the routes so that no two vehicles can service the same waste 

collection location. Equation 3.10 ensures that the sum of total number of waste 

collection points assigned to each vehicle adds up to the number of waste collection 

points. Equation 3.11 says that the landfill is entered and left as many times as the 

number of vehicles. Equation 3.12 shows that each waste collection point is entered 

and left only once. Equation 3.13 says that there either exist or not exist an edge 

between points i and j by restricting the possible values of the variable to 0 and 1. 

Equation 3.14 restricts the paths that can be used to primary and secondary shortest 

paths. 

 

In the second optimization model, the objective is to minimize the fuel consumption, 

which is a function of the path length, average slope and the instantaneous loading 

conditions of the truck. A fuel consumption model for waste collection trucks was 

given by Tavares et al. (2009). 

 

According to Tavares et al. (2009), the fuel consumption during waste collection and 

transportation depends on the distance travelled, vehicle load and road gradient as 
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well as the actual operating conditions. Tavares et al. (2009) suggest the use of the 

method proposed by Ntziachristos and Samaras (2000) for the evaluation of these 

effects to fuel consumption. In this method, the basic fuel consumption per kilometer 

as a function of speed is expressed by the following empirical formula: 

 

,  

where V is the velocity of the truck in km/h. 

(3.15) 

 

The empirical formula for the basic fuel consumption is calibrated for half-loaded 

trucks. The effect of load and road gradient is introduced to the equation by means of 

two dimensionless correction factors: Load Correction Factor (LCF) and Gradient 

Correction Factor (GrCF). 

 

(3.16) 

 
(3.17) 

 

Where LP is the load percentage of the truck and x is the slope percentage. The 

overall fuel consumption is estimated by means of the following formula, in terms of 

galloons. 

 (3.18) 

 

In this study, the road gradient (slope) and vehicle load is introduced to the model by 

means of a penalty coefficient for the distance travelled. For the calculation of the 

load percentage of the truck, the average amount of garbage per service location is 

assumed to be 50kg and the weight capacity of the vehicle is assumed to be 8tons. 

Therefore, each service point visited is assumed to fill the truck with a percentage of 

0.625%. The Load Correction Factor (LCF) can therefore be expressed as: 
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(3.19) 

 

where n denotes the number of garbage collection service points visited so far by the 

particular truck. The empirical equation for the gradient correction factor is valid for 

slopes within the range of -13.5° to 13.5° (-15% to 15%). Converting the road 

gradient from percentage to degrees, the penalty coefficient can therefore be written 

as: 

 

(3.20) 

 

Figure 3.5 illustrates different penalty coefficients for road gradient and loading 

conditions. The chart demonstrates the importance of slope and load for fuel 

consumption. For instance, the loading percentages after visiting 50 and 100 waste 

collection points are 31.25% and 62.5%, respectively. If the road inclination is 10° 

and the road length is 200m, the excess load for visiting 100 demand points would 

result in an excess distance of 68m compared to passing through the same road with 

half the load. 

 

Figure 3.5 – Penalty coefficients for different road gradients and number of pre-

visited service points. 
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Integration of the fuel consumption into the model requires the definition of average 

slope of edges.  , which is the average slope of the primary shortest path 

connecting vertices  and . Likewise,  is the average slope of the secondary 

shortest path. For simplicity in the notation, the average slope can also be written as 

 where path no indicates whether the first or second shortest paths are 

used, and i and j denote the source and destination vertices, respectively. The 

definition of the fuel-consumption based cost for the second model becomes: 

 

 
(3.21) 

 

The total cost of each route k can be defined as 

 

 

 

(3.22) 

 

The objective of the model is to 

 

Subject to 

(3.23) 

 
(3.24) 

 

(3.25) 
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(3.26) 

 

(3.27) 

 
(3.28) 

 
(3.29) 

 

where 

  is the route vector for vehicle k, consisting of vertices, 

 is the number of vertices in route k, 

 indicates whether there is an edge between vertices i and j, 

 indicates whether the first or second shortest path is used in the  edge of   

route. 

The objective function, Equation 3.23 is to minimize the total distances travelled. 

Equation 3.24 restricts the routes so that no two vehicles can service the same waste 

collection location. Equation 3.25 ensures that the sum of total number of waste 

collection points assigned to each vehicle adds up to the number of waste collection 

points. Equation 3.26 says that the landfill is entered and left as many times as the 

number of vehicles. Equation 3.27 shows that each waste collection point is entered 

and left only once. Equation 3.28 says that there either exist or not exist an edge 

between points i and j by restricting the possible values of the variable to 0 and 1. 

Equation 3.29 restricts the paths that can be used to primary and secondary shortest 

paths. 

3.4.2 Optimization Method 

In Chapter 2, three broad classes of optimization algorithms were presented: exact, 

heuristic and metaheuristic. Even though exact methods can the problem to full 
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optimality (i.e., they can find the best possible solution), they can only solve problem 

instances with up to 100 service points (Fisher et al., 1997). Heuristic methods 

operate based on inspection and their search capability is limited. Therefore, it is 

more suitable to consider metaheuristic algorithms as they make a deeper exploration 

of the search space. 

 

Genetic Algorithms (GA) are selected among other optimization methods. Genetic 

Algorithms are in the class of Metaheuristic Optimization Algorithms and they are 

modelled based on the evolution of species. According to Sengoku and Yoshihara 

(1998), Genetic Algorithm “does not require detailed knowledge of the problem, it 

can search globally and it can adapt the changing conditions of the problem”. 

Furthermore, it is easy to make the genetic algorithm cooperate with other heuristics 

to provide a hybrid solution. A detailed description of the implemented hybrid 

genetic algorithm is presented in Chapter 4. 

3.5 Output 

The optimization algorithm generates a routes starting and ending at the landfill for 

each vehicle. The route is represented by an array of numbers representing the visit 

order of the waste collection points. The numbers are accompanied by a flag 

indicating whether the first or the second shortest path is used to connect the points. 

 

The output is displayed on a 3D terrain view using Open Graphics Library (OpenGL, 

2010). OpenGL is a general purpose, platform independent graphics library that has a 

variety of functions for drawing graphics in 2D and 3D. Moreover, OpenGL 

functionalities are embedded in many graphic cards so that very little CPU power is 

required to process the screen output. Thereby, the user can navigate through map 

without while the optimization is in progress without affecting the performance 

significantly. The application has the capability to visualise the road network, 

garbage collection points and the route along with a 3D terrain view in OpenGL. 
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3.6 GIS Integration 

The developed software is stand-alone and does not work inside a GIS program and 

therefore, is loosely coupled with GIS environment. It supports ESRI shape files and 

a Surfer Grid Files as input. The road network and the garbage collection locations 

are introduced to the system as shape files. For simplicity in metric distance 

calculations, the shape files are projected using UTM Projection (Zone 36N) with 

WGS84 datum. The DEM is optional and introduced to the system as a Surfer Grid 

File.  

Apart from operating on GIS data, the proposed optimization model has a spatial 

constraint that prevents U-Turns. The constraint requires a geometric vector variable 

which indicates the starting and ending directions of paths between every pair of 

service points. The proposed model uses this information to select either the primary 

or secondary shortest path to travel between any two waste collection points. 

3.7  Implementation 

The developed software is implemented in C++ programming language using 

Microsoft Visual Studio 2005 as a stand-alone application. The software is structured 

based on the Document/View architecture; however the related MFC libraries are 

only used for display and disk I/O features. It is designed as multi-thread application 

with the genetic algorithm running in a separate thread. This feature enables the user 

to pan through the map while the genetic algorithm runs in the background without 

any interruption. 

The genetic algorithm is created almost entirely by using ANSI C++ and the standard 

template library (STL) for required data structures such as dynamic arrays and hash 

maps. Therefore, it is possible to extract the genetic algorithm code from the 

application in order to use in other C++ environments with a few modifications. 

The sample-runs of the developed software are made on a 2.20GHz double core Intel 

processor with 2GB of memory. All other processor-demanding applications are 

closed before the tests in order to provide the same conditions for every single 

execution. 
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CHAPTER 4 

DEVELOPED HYBRID GENETIC ALGORITHM 

In this study, a hybrid genetic algorithm is utilized for the optimization of the waste 

collection routes. Genetic algorithm is preferred in this study due to the following 

reasons: 

 GAs can provide feasible solutions at any instance of generation, 

 A detailed knowledge of the problem is not required (Sengoku and Yoshihara 

, 1998), 

  It is easy to adapt to changing conditions of the problem easily (Sengoku and 

Yoshihara , 1998), 

 GAs can search globally without getting stuck in local optima (Sengoku and 

Yoshihara , 1998), 

 It is possible to co-operate with other techniques (hybridization), 

 GAs can be parallelized with very high efficiency. 

 

In Chapter 2, a literature review of Genetic Algorithms for the vehicle routing 

problems was presented. The idea behind the Genetic Algorithms is explained and 

various concepts related with Genetic Algorithms were discussed considering the 

path representation methods and the use of appropriate genetic operators.  

  

This chapter focuses on the details of the hybrid genetic algorithm developed in this 

study. First, a general flowchart of the genetic algorithm is presented by explaining 

the components. Then, the stages of the algorithm including the creation of the initial 

population, the genetic operators, the hill-climbing techniques and the GA 



 44 

parameters are discussed. The strategies used for parallelizing the genetic algorithm 

are explained by presenting a chart for speed-up. The genetic algorithm is validated 

on a set of benchmark problems provided by TSPLIB (TSPLIB, 2010). 

 

A flowchart of the genetic algorithm used is presented in Figure 4.1. The proposed 

genetic algorithm starts by creating an initial population of candidate solutions 

(referred to as chromosomes, individuals or members). After the creation of the 

initial population, the fitness of each chromosome in the population is calculated. As 

multiple instances of the algorithm run in parallel, the chromosomes migrated from 

other populations are transferred from the exchange pool to the population. The 

chromosomes are then sorted based on fitness and the selection operator chooses the 

chromosomes that are to undergo genetic operations. Then, chromosomes to be 

transferred to exchange pool are selected based on their fitness using the roulette 

wheel selection method and copied to the pool to be used by other parallel instances 

of the GA. The genetic operators are applied to the selected chromosomes of the 

population and the termination criteria are checked. The iteration continues until the 

termination criteria are satisfied. The source code of various parts of the genetic 

algorithm is presented in Appendix B. 
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Figure 4.1- Flowchart of the proposed Hybrid Genetic Algorithm 

 

4.1 Essential Elements of GA 

The following items are the essential elements of genetic algorithms that must be 

considered for any genetic algorithm. 

 Representation of Chromosomes 

 Generation Initial Population 

 Fitness Function 

 Elitism 

 Mutation 

 Crossover 

 Termination Criterion 

 Tuning of Parameters 

 

In this genetic algorithm, path representation is preferred among other representation 

methods due to its simplicity and applicability to many genetic operators and hill-

climbing techniques. In the path representation, each waste collection point is 
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represented by a specific positive number. The route assigned to each vehicle is 

represented by a vector of numbers. 

 

The chromosomes comprising the initial population are generated independently. 

The number of chromosomes in a population is referred to as the population size. 

The procedure below explains how each individual chromosome is generated. 

Repeating this procedure as many times as the population size, the initial population 

is generated. 

 

The flowchart for generating an initial chromosome is illustrated in Figure 4.2. 

Initially, the path vector of each vehicle route in a chromosome is empty and the 

bucket of available points is full. Hence, the initial transportation costs for each 

vehicle are zero. 

 

Random waste collection points are assigned to each vehicle as their first 

destinations and the transportation costs are updated accordingly. Any point assigned 

to a vehicle is marked as assigned in order to assure that it will not be re-assigned 

later. Thereby, generation of illegal solutions is prevented. Then, the vehicle with 

lowest transportation cost is selected in order to assign the next destination. Roulette 

wheel selection is used to select the next point. The procedure continues until all 

points are assigned to a vehicle. Since the algorithm uses roulette wheel selection, the 

initial route construction process is stochastic. 

 

The probability of selecting any available point j is proportional to a constant power 

of the inverse distance between points. Thus, the probability of being selected for 

each candidate point j is given in Equation (4.1. 

  (4.1) 

 

where  
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 denotes the distance from the last selected point to the next candidate point and  

 is the intensification constant.  

The higher the intensification constant ( ), the higher the tendency of selecting 

closer points will be. As  approaches to 0, the roulette wheel selection method 

behaves more like random selection. The value of  is kept constant throughout the 

generation of each individual chromosome; however, its value is increased gradually 

after each chromosome. The value of   starts from 1.0 and reaches to 4.0 in the last 

chromosome of the population. The variation of  values throughout the generation 

process is to create initial chromosomes of different characteristics. 

 

 

Figure 4.2- Creation of an initial chromosome 

 

The fitness function in the Genetic Algorithm is a measure of how the objective 

function in the mathematical model is satisfied. Therefore, for both optimization 

models presented in Chapter 3, only the fitness function is modified as the 

constraints of the problem are the same for both cases. 
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The fitness of a chromosome is calculated as a function of transportation distance 

and the penalty component of the chromosome. The penalty coefficient ( ) is a 

multiplier of the transportation distance ( ). The value of the penalty coefficient 

constant (1.0) for the first optimization model which minimizes the distance 

travelled. On the contrary, in the second model which minimizes the fuel 

consumption,  represents the penalty coefficient given in the mathematical model. 

The fitness of each individual is calculated using the formula in Equation (4.2).  

 

 
(4.2) 

 

The first 10% of the chromosomes possessing the highest fitness values are protected 

from deterioration and are said to be in the elitism region. The approach to elitism is 

different from other studies in that the chromosomes in the elitism region are only 

protected against modifications which lower their fitness values. In traditional 

approaches, the elite chromosomes cannot be modified in any manner. 

 

Three different mutation operators are employed in the proposed genetic algorithm: 

point swap mutation, modified 2-opt heuristic mutation, and insertion mutation. The 

chromosomes to undergo mutation are selected randomly. For all mutation types, any 

mutation that is to reduce the quality of the chromosome cannot be applied to the 

chromosomes in the elitism region.  They can only be applied for the chromosomes 

that are beyond the elitism region in order to increase genetic diversity in the search. 

The point swap mutation is a simplified version of swap sequence mutation proposed 

by Nazif and Lee (2010). Two waste collection points are swapped rather than two 

sequences of routes. However, the points to be swapped are not selected randomly. 

First, an arbitrary waste collection point in the chromosome is selected. The other 

point to be swapped with the first one is selected by means of roulette wheel 

selection such that closer points have a higher probability of being selected for 

exchange. Then the two points are swapped. Therefore, it is likely that the selected 

points are close to each other as the selection probability is related with the inverse 
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distance. This mutation supports swapping points between vehicles and is very 

simple and powerful. 

  

The 2-opt mutation utilized in this study differs from the original one explained in 

Chapter 2 in that not all the pairs of edges are checked for swapping pairs. Instead, 

only edges that are closer than the average edge size of the chromosome are 

considered for 2-opt mutation. The average edge size of the chromosome is 

calculated by dividing the total path length of the chromosome by the total number of 

waste collection points. The sequence of points between the swapped pairs is 

inverted to check if inversion enhances the result. 

 

In the insertion mutation, all edges are checked for a point which is closer to the edge 

than quarter the size of the edge. If there is such a point within the threshold distance, 

the point is removed from its original position and inserted between the two points 

comprising the edge.  

 

After each mutation, each route is repaired so that second shortest paths are used 

wherever it is necessary. Figure 4.3 illustrates the mutation algorithms used within 

this genetic algorithm. 

 

 

a.) Point Swap Mutation 
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b.) 2-opt Mutation 

 

c.) Insertion Mutation 

Figure 4.3-Mutation Algorithms 

Edge Recombination Crossover (ERX) is used to generate new offsprings from 

parent chromosomes. Although alternative crossover algorithms such as PMX and 

OX could also be used, they are not as effective as ERX in terms of inheriting 

important genetic material such as edges. As ERX (Whitley et al., 1989) was 

originally proposed for the Travelling Salesman Problem (TSP), it is slightly 

modified to support multiple vehicles.  

 

To start with, the edge list (Table 2.3) is constructed for all points by using two 

parent chromosomes as explained in Chapter 2. Then, all vehicles are assigned an 

initial point from either one of the two parents. At each iteration, the vehicle with 
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lowest transportation cost is selected and the next destination of the vehicle is 

selected from the edge list. If the edge list contains more than one edge starting from 

the current point, the shortest edge (nearest point) is selected. The process continues 

until all points are used. 

 

The termination criterion for the genetic algorithm in this study is based on the 

number of generations without further evolution of the best cost obtained. To 

determine a suitable number of inefficient generations required to terminate the 

optimization process, initially the termination criterion is adjusted so that the genetic 

algorithm terminates after 5000 inefficient generations. After running the algorithm 

with 20 runs with well-tuned parameters, the number of generations passed between 

the last two enhancements is recorded. For instance, if a genetic algorithm makes the 

last cost enhancement in the generation 15000 and the previous enhancement in the 

generation 14000, the difference 1000 is recorded as the result of that particular run.  

 

Figure 4.4 illustrates the frequency histogram for the number of generations between 

last two enhancements for different runs with a bandwidth of 100. Among the 20 

samples, only a single sample continued evolving after 1746 generations. It can be 

inferred from the chart that almost all of the sample runs cannot demonstrate any 

further enhancement after 1000 generations without evolution. The proposed genetic 

algorithm terminates if there is no further enhancement of the best route in the last 

2000 evolutions. 
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Figure 4.4 – The frequency histogram for the number of generations between the last 

two enhancements for 20 test runs. 

 

Metaheuristic optimization methods are widely used in optimization problems with 

large inputs and almost always require a fine tuning of parameters. Tuning the 

parameters is of great importance in genetic algorithms as the evolutionary process 

converges to better results in a shorter amount of time with the related parameters 

well-adjusted. The main parameters involved in genetic algorithms are the 

percentages of individuals that are to undergo mutation and crossover as well as the 

population size. 

 

 Figure 4.5 illustrates the best route distances obtained by running the genetic 

algorithm with different mutation and crossover percentage values. The genetic 

algorithm was run with 3 different mutation percentage combinations ranging from 

5% to 15% and 9 different crossover percentage combinations ranging from 40% to 

80%. The experiment was done three times and average costs are used in order to 

reduce the chances of obtaining misleading coincident results. According to the 

experiment using 27 different mutation-crossover combinations, the best results were 

obtained by using a crossover percentage of 45% and a mutation percentage of 5%. 
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However, this combination makes a local peak in the chart with a small  variation of 

parameters resulting in a bad performance, mutation values of 15% with 50% to 60% 

of crossover is also recommendable. 

 

Figure 4.5 – Best transportation distances obtained by trying different crossover and 

mutation combinations (without hill-climbing algorithms). 

 

Selection of the most suitable population size is also of great importance. If the 

population size becomes too low, the genetic diversity would not suffice to sustain 

the evolution and the evolution of potential solutions would seize quickly. Likewise, 

if the population size becomes too high, it would take longer to execute the genetic 

operators as well as the hill-climbing algorithms. 

 

Figure 4.6 illustrates a range of different population sizes used with the genetic 

algorithm. The genetic algorithm is run on 20 different population sizes, ranging 

from 150 to 1050. The experiment was repeated 3 times and the average distance 

values are used. The best results were obtained by using a population size of 500. 
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Figure 4.6 – Best transportation distances obtained by selecting different population 

sizes 

4.2 Hill-climbing Algorithms 

Hill-climbing is a local search method that is often used in cooperation with genetic 

algorithms to increase the performance. Hill-climbing algorithms are iterative and 

their aim is to gradually improve the solution by enhancing a small part of it at each 

iteration. The genetic algorithm developed in this study is called “hybrid” as it 

utilizes hill-climbing algorithms that aim to enhance the evolutionary process. 

The 2-opt mutation described in the preceding sections is a hill-climbing algorithm 

as it attempts to find better solutions each time by switching pairs between different 

sets of edges. If the change results in a better solution, an incremental change is made 

and the process continues until no further enhancement is possible. 

Another hill-climbing method used in this study is exhaustive search. It is practically 

impossible to find the best permutation of a large set of points with exhaustive search 

(also referred to as brute-force search) as the computation time grows exponentially 

with the number of points. However, exhaustive search can be used to find the best 

possible arrangement of points in the route for a small part of the route. For each 

route, a small part consisting of 8 to 12 nodes is randomly selected at each generation 

to apply the exhaustive search. The best permutation of the selected range nodes is 

found and replaced with the old sequence. 
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Purely exhaustive search checks for every possible arrangement of points and hence, 

is inefficient. To speed up the search, alpha beta pruning and heuristic methods are 

employed. The alpha beta pruning technique stops the evaluation of a permutation 

even before the sequence is completed when the instantaneous cost of the partial 

sequence exceeds the lowest cost found so far. When the evaluation of a permutation 

is stopped, any dependant permutation will not be considered. This approach will 

narrow down the search space without affecting the overall result. The heuristic 

improvement method on the other hand focuses on obtaining a feasible (low-cost) 

permutation as soon as possible so that the alpha beta pruning technique can 

eliminate the non-optimal permutations earlier. This can be achieved by sorting the 

points so that the nearest point is checked first in the search algorithm.  

 

4.3 Parallelization 

Genetic algorithms are computationally costly considering the efforts to apply the 

genetic operators and evaluation functions. However, they are very suitable for 

parallelization. Distributed computation increases the performance of the genetic 

algorithm significantly. 

 

The genetic algorithm is parallelized by the course-grained PGA islands model 

(Shengjun et al., 2008). In this model, multiple instances of the genetic algorithm run 

independently on different processors. Each instance of genetic algorithm is fed by 

the same initial data and represents an evolving subpopulation. Each subpopulation 

evolves independently on their processor in parallel executing the same genetic 

algorithm. Since every individual subpopulation is isolated and the only means of 

genetic transfer between different subpopulations is migration, each subpopulation is 

associated with an imaginary island. Figure 4.7 illustrates the implementation of the 

model in the genetic algorithm. 
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As the instances of genetic algorithm discover new routes, 5 individuals from every 

subpopulation are duplicated and sent to the exchange pool every 100 generations. 

Likewise, every subpopulation receives 3 individuals from the exchange pool every 

50 generations. The amount of individuals currently existing in the pool is less than 

50, all of them are pulled out of the pool. The individuals in the subpopulation are 

not allowed to return to their original islands once they are sent to the pool. 

 

The access to the exchange pool is sequential. Therefore, only one island can access 

the exchange pool at any instance. Whenever an island is to send chromosomes to the 

exchange pool, first it locks the pool if it is available. Once the chromosome is 

migrated, it is unlocked. This prevents concurrent access to the pool, which may 

corrupt the chromosomes. 

 

Figure 4.7 – Illustration of the Island model 

 

For the parallelization of the genetic algorithm, the OpenMP library is used. 

OpenMP (Open multi-processing) is a cross-platform application programming 

interface that supports multi-platform shared memory multiprocessing programming 

in many languages on a variety of architectures, including UNIX and Microsoft 

Windows platforms. It has a number of compiler directives, library routines and 

environment variables that assist the programmer to parallelize the routines that 

require high speed. 
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In parallel programming (Parallel Programming Lecture 14 Computer Performance, 

2010), the term „speed-up‟ refers to the ratio to which a parallel algorithm is faster 

than a corresponding sequential algorithm. It is calculated by dividing the time 

passed for accomplishing a task using a sequential algorithm by that using a parallel 

algorithm (4.3). Efficiency, on the other hand, is a measure of how effectively the 

processors are used. It is calculated by dividing the speed-up by the number of 

processors (4.4).  

 

(4.3) 

 

(4.4) 

 

4.4 Validation of the Genetic Algorithm 

The validation of the proposed genetic algorithm is made by running the software on 

three sample asymmetrical TSP benchmark problems provided by TSPLIB (TSPLIB, 

2010). Each benchmark problem is given a name indicating the number of service 

points. The benchmark problems are provided as a text file containing a header part 

and a distance matrix. The header includes information about the dimensions of the 

particular problem and the cost of best possible solution (optimum distance) 

calculated before using exact methods. The distance matrix provides the distances 

between every pair of nodes. In the validation stage, the program directly uses the 

distance matrix read from the sample problem file. 
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Table 4.1 - TSPLIB Benchmark Results 

Problem 
Name 

Number of 
Nodes 

Optimum Cost 
Cost 

Obtained 

Deflection 
from 

Optimum (%) 

kro124p 124 36230 37374 3.15 

flv170 170 2755 2784 1.05 

rbg358 358 1163 1191 2.40 

rbg443 443 2720 2756 1.32 

 

The progress of the solution of the benchmark problems is demonstrated in Figure 

4.8. The x axis shows the number of generations of the genetic algorithm to reach to 

the distance represented by y axis. 

 

 

a.) Problem Name: kro124p (3.15% deflection from optimal solution) 
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b.) Problem Name: flv170 (1.05% deflection from optimal solution) 

 

 

c.) Problem Name: rbg 358 (2.40% deflection from optimal solution) 
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d.) Problem Name: rbg 443 (1.32% deflection from optimal solution) 

Figure 4.8- Distance vs Generation Graphs for Validation Problems 

 

The benchmarking results show that the proposed Parallel Hybrid Genetic Algorithm 

solves the sample benchmark problems within 1.05 to 3.15 optimality within less 

than 5 minutes. Therefore, the algorithm is reliable and is capable of searching 

globally. 

 

4.5 Parallelization of the Genetic Algorithm 

The chart in Figure 4.9 illustrates the efficiency of the parallelization by comparing 

the number of generations per millisecond in single and double processor case. The 

test was made in exactly the same conditions by closing all other applications that 

have a potential to affect the results. Comparing the slopes of the single and double 

processor cases, the speed-up is calculated as 1.83 with an efficiency of 91.5%. 
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Figure 4.9 - Comparison of single and double processor case. The speed-up obtained 

by using 2 processors is 1.83 and the efficiency is 91.5%. 
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CHAPTER 5 

CASE STUDY 

5.1 Study Area 

The proposed area of application for the solid waste collection routing problem 

includes Bahçelievler and Emek neighbourhoods in Çankaya/Ankara/Turkey with an 

approximate area of 2.5km
2
. The altitude of the region ranges from 860m to 920m 

above sea level. The area is divided into three zones: Aşağı Bahçelievler, Yukarı 

Bahçelievler and Emek. For the current waste collection operation; three vehicles are 

allocated, one for each zone. The waste collection routes are determined based on 

driver‟s experience (Uraz, 2002).  Following collection waste is disposed at ITC 

Mamak Landfill Site.  

 

Even though the study primarily focuses on the routes generated in Bahçelievler and 

Emek Neighbourhoods, the available map data covers entire Ankara in terms of 

major and main roads and also all the streets of Bahçelievler and Emek 

Neighbourhoods. Bahçelievler and Emek Neighbourhoods are located approximately 

at the center of the city whereas the Mamak ITC Landfill is located in the South-

Eastern part of the city, bounded by Natoyolu Street from East and the Ankara Ring 

Road from the South (Latitude: 39.878259, Longitude: 32.934608). The maps are 

obtained as satellite images in the form of GeoTIFF and then digitized using 

appropriate GIS tools.  

 

Figure 5.1 illustrates the location of the study area and Mamak Landfill in Ankara. 

The points demonstrated by asterisks correspond to the waste collection locations. In 
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this study, 239 hypothetical waste collection locations are digitized homogenously.  

These locations are assumed to be the collection points for the wastes produced in 

the households situated on the relevant streets.  

 

 

Figure 5.1 – The Study Area.  

 

 

In Figure 5.2, a terrain view of the Bahçelievler and Emek Neighbourhoods is 

provided in order to illustrate the varying altitudes. The locations of the waste 

collection points are marked with red dots. The altitude increases from yellow to 

dark green. The main trends of slope in the area are towards East and West from the 

ridge defined by the 4
th

 street (Figure 5.2) and are indicated by arrows.    

 

The road inclination trends are particularly important as far as the optimization 

model which aims to minimize the fuel consumption is concerned. The fuel 
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consumption model used in this study (Tavares et al., 2009) depends on 

instantaneous vehicle load and the road inclination.  

 

 

Figure 5.2 – The study area in 3D Terrain View. The slopes are indicated by arrows. 

 

The unidirectional and bidirectional streets in the study area are as illustrated in 

Figure 5.3. The streets that are shown with red are bidirectional streets. Conversely, 

other streets shown in blue are unidirectional. The direction of traffic flow is marked 

by an arrow. Unidirectional roads are important constraints in planning the routes as 

they have the potential to change the vehicle routes significantly. 

 

The digital elevation model used to construct the 3D terrain is loaded from a Surfer 

grid file (Surfer, 2010). In order to prepare the grid file, a 90m resolution SRTM grid 

of Ankara is used along with 70 additional altitude samples of Bahçelievler and 

Emek Neighbourhoods taken from Google Earth. The final grid of 30m resolution is 
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generated by means of kriging interpolation. The interpolation is made by using 

Surfer (Surfer, 2010). 

 

The datum and the projection of the shape files are WGS84 and UTM 36N 

(Universal Transverse Mercator Projection, Zone: 36N), respectively. For 

convenience in measuring distances, metric system is used. The coordinates of the 

SRTM altitude data has also been projected using the same parameters before the 

interpolation. 

 

 

Figure 5.3- Road directions in the area. Roads marked with red indicate bidirectional 

roads whereas blue roads are unidirectional. 
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The landfill in Mamak and 239 hypothetical waste collection locations within the 

study area are represented by a point-featured shape file. The altitude data of the 

terrain is prepared by interpolating the freely available SRTM (SRTM, 2010) data 

(90m resolution) with altitude samples collected from Google Earth using Surfer 

(Golden Software – Surfer, 2010). The resultant grid is saved with grid size of 30m. 

 

5.2 Results and Discussions 

Two different optimization models are implemented for the optimization algorithm. 

The first one aims to minimize the total distance travelled and the second one aims to 

minimize the total fuel consumption. In the end, is aimed to demonstrate that the two 

approaches produce different results regarding their objective functions. 

 

In Chapter 4, the genetic optimization algorithm was validated by using 4 TSP 

Benchmark Problems. Even though this provides some degree of reliability for the 

algorithm, it is not sufficient. The proposed optimization model is designed to 

support spatial constraints and therefore, it has to be tested using small test problems 

in real road network. The first optimization model which minimized the total 

distance travelled is tested on small test problems within Bahçelievler and Emek 

Neighbourhoods. The results of the test problems (generated routes) can be verified 

by inspection easily. Testing the optimization algorithm on the real road network 

with unidirectional and bidirectional roads, the following items are verified: 

 Closure of the path 

 Avoidance of U-Turns 

 Compliance with road directions 

 The shape of the route path 

In the first test case, 10 waste collection points are digitized within the study area 

randomly. The locations of the waste collection points are shown in Figure 5.4. 
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Figure 5.4 – The Distribution of Waste Collection Locations in Test Case 1 

 

For this test case, the routes generated are analyzed for two cases: 

 Single Vehicle (Figure 5.5 and Figure 5.6) 

 2 Vehicles (Figure 5.7 and Figure 5.8) 
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Figure 5.5 - Test Case 1 - A Full View of the Route Generated (Single Vehicle) 

 

 

Figure 5.6 - Test Case 1 - A View of the Route Generated within the Study Area 

(Single Vehicle) 
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Figure 5.7 - Test Case 1 - A Full View of the Route Generated (2 Vehicles) 

 

 

Figure 5.8 - Test Case 1 - A View of the Route Generated within the Study Area (2 

Vehicles) 
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Table 5.1 – Test Case 1 - Total Route Lengths for Different Vehicle Counts 

Number of Vehicles Total Route Length (m) 

1 30050.7 

2 53889.7 

 

For the second test case, 20 waste collection points are digitized in the study area 

with two clusters as shown in Figure 5.9. 

 

Figure 5.9 - – The Distribution of Waste Collection Locations in Test Case 2 
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Figure 5.10 - Test Case 2 - A Full View of the Route Generated (Single Vehicle) 

 

 

Figure 5.11 - Test Case 2 – A View of the Southern Part of the Route (Single 

Vehicle) 
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Figure 5.12 - Test Case 2 – A View of the Northern Part of the Route (Single 

Vehicle) 

 

 

Figure 5.13 - Test Case 2 - A Full View of the Route Generated (2 Vehicles) 
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Figure 5.14 - Test Case 2 - A View of the Route Generated within the Study Area for 

the first vehicle (2 Vehicles) 

 

Figure 5.15 - Test Case 2 - A View of the Route Generated within the Study Area for 

the first vehicle (2 Vehicles) 
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Table 5.2 – Test Case 2 - Total Route Lengths for Different Vehicle Counts 

Number of Vehicles Total Route Length (m) 

1 51840.3 

2 29557.6 

 

Regarding the test problems considered, it is clear that the paths generated are closed 

(i.e., start and end at the landfill). Each waste collection point is visited only once. 

Moreover, the generated routes comply with the road directions without any U-

Turns. Furthermore, the route optimization algorithm succeeded in considering the 

clustered distribution of waste collection points in the Test Case 2. The route of each 

vehicle services one of the two clusters without any explicit algorithm to detect the 

clusters or any assignment procedure to assign the vehicles to points. 

 

For the case study of Bahçelievler and Emek Neighbourhoods, the developed 

software is supposed to generate routes involving the landfill and 239 waste 

collection points for 3 trucks. The waste collection locations are uniformly 

distributed along the streets within the study area. Figure 5.16 shows the locations of 

the waste collection points. The test is made using two different optimization models: 

distance optimization mode and fuel consumption optimization mode. It is aimed to 

demonstrate the differences in routes arising from the model used.  

 

In the first model, the objective is to minimize the total distance travelled by 3 trucks. 

Therefore the inclination of the roads and the instantaneous truck load is not taken 

into account and has no contribution on the penalty coefficient.  Figure 5.17 and 

Figure 5.18 demonstrate the evolution of the routes. 
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Figure 5.16 – The study area containing 239 Waste Collection Points 

 

For the both the distance optimization model and the fuel consumption optimization 

model, the genetic algorithm is run 6 times. The lowest cost obtained in each model 

is marked and the resultant routes are illustrated. 

 

Table 5.3 demonstrates the results of the total distance optimization model. The best 

route set has a total length of 119.9km, approximately. 
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Table 5.3 – Routes Generated by the Total Distance Optimization Model 

Run # Number of Generations Time Passed(sec) Route Length (m) 

1 2045 301 121256.8 

2 1193 192 122554.4 

3 7356 324 121564.8 

4 1658 213 120904.4 

5 2856 245 121945.8 

6 7616 504 119862.1 

 

Figure 5.17 and Figure 5.18 illustrate the progress of the genetic algorithm for 6 

different runs.  

 

Figure 5.17 – Route Distance vs. Generation Graph for Distance Optimization Mode  
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Figure 5.18 – Route Distance vs. Running Time Graph for Distance Optimization 

Mode 

 

The software is run on an Intel Core2Duo Processor with 2GB of memory. The clock 

speed of each processor is 2.20GHz. During the test, all applications running in the 

background are closed so as to provide the same conditions for different runs. 

 

The best solution is obtained in 761.6 generations within 504 seconds. The charts in 

Figure 5.17 and Figure 5.18 show that the solutions evolve very rapidly within the 

first 1000 generations. The evolution gradually slows down and the genetic 

algorithm is terminated after the termination criteria explained in Chapter 3 are 
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satisfied. Figures Figure 5.19 throughFigure 5.23 illustrate different views of the 

routes generated by the distance optimization model. 

 

Figure 5.19 – Distance Optimization Model - A General Overview of Generated 

Routes  

 

 

Figure 5.20 - Distance Optimization Model – Overview of Generated Routes in the 

Study Area 
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Figure 5.21 – Distance Optimization Model –Close-up view of North-East 

Bahçelievler 

 

 

Figure 5.22 - Distance Optimization Model – Close-up view of Emek 
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Figure 5.23 – Distance Optimization Model – Close-up view of Southern 

Bahçelievler 

In the other optimization model which aims to minimize the total fuel consumption, a 

penalty coefficient is calculated for each edge of the routes generated based on the 

empirical model suggested by Tavares et al. (2009). According to the model, the fuel 

consumption depends on the road inclination and the instantaneous loading 

conditions of the vehicle as well as the distance travelled. Table 5.4  illustrates the 

roads generated by the fuel consumption optimization model.  

 

Table 5.4 - Routes Generated by the Total Distance Optimization Model 

Run # 
Number of 

Generations 
Time Passed(sec) 

Route Length 
(m) 

1 4356 388 121203.5 

2 2169 176 122269.9 

3 845 66 122269.9 

4 2107 189 121207.8 

5 2856 245 121945.8 

6 2733 247 121856.6 

 



 81 

The charts in Figures Figure 5.24 and Figure 5.25 demonstrate the evolution of the 

routes using  the fuel consumption optimization model. It can be inferred from the 

charts that the solutions evolve rapidly in the first 500 generations and then the 

evolution gradually slows down. The algorithm is terminated when the termination 

criteria are satisfied.  

 

 

Figure 5.24 – Fuel Consumption Optimization Model - Distance vs Generation 

Graph 
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Figure 5.25 - Fuel Consumption Optimization Mode - Distance vs Running Time 

Graph  

 

The Figures Figure 5.26 through Figure 5.30 illustrate the routes generated in 

different parts of the study area. 
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Figure 5.26 – Fuel Consumption Optimization Model - A General Overview of 

Generated Routes 

 

 

 

Figure 5.27 - Fuel Consumption Optimization Model - Overview of Generated 

Routes in the Study Area 
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Figure 5.28 - Fuel Consumption Optimization Model - Close-up view of North-East 

Bahçelievler 

 

 

Figure 5.29 - Fuel Consumption Optimization Model – Close-up view of Emek 

 



 85 

 

Figure 5.30 - Fuel Consumption Optimization Model - Close-up view of Southern 

Bahçelievler 

 

Comparing the two models, it is expected that the model that minimizes fuel 

consumption handles the regions with steep slopes when the loading percentage of 

the waste collection truck is relatively low and flat regions when it is intensely 

loaded so as to minimize the fuel consumption. This behaviour can be seen in 

Figures Figure 5.31 and Figure 5.32.  

 

Figure 5.31 demonstrates a route generated by the distance optimization model. 

Since the fuel consumption is not considered, the heavily loaded trucks can be routed 

along steep slopes. The truck represented by blue routes climb a very steep slope 

after having serviced 90 waste collection points. 

 

On the other hand, Figure 5.32 illustrates a route generated in the same region using 

the fuel consumption optimization model. The collection route of the vehicle 

represented by green route starts from the steeply sloped region and the relatively flat 

areas are serviced later.  
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Figure 5.31 – Distance Optimization Model - A part of the route generated in a 

steeply sloping region in Emek 

 

 

Figure 5.32 – Fuel Consumption Optimization Model - A part of the route generated 

in a steeply sloping region in Emek 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

Two different approaches are compared for route optimization: optimizing the total 

distance travelled and the fuel consumption. The objective of the first one is to 

minimize the total distance regardless of the effects of the road gradient and vehicle 

load. On the contrary, the second approach optimizes the fuel consumption estimated 

by an empirical model. It is shown that the two approaches generate different routes 

as the objective of the optimization changes. 

 

The model is realistic as it considers the distances within the real road network using 

a digital elevation model (DEM). Moreover, the road directions are taken into 

consideration while generating routes. The model has a spatial constraint that avoids 

U-Turns, which is an essential element for waste collection routing. 

 

The software provides two options for decision makers in selecting the waste 

collection routes: minimizing the total distance travelled and minimizing the total 

fuel consumption. This provides flexibility for decision makers so that the software 

can be used for different case studies rather than solid waste collection routing. 

Moreover, other fuel consumption models can be adapted easily by changing a single 

line of code. 

 

As the developed software is run successfully for a moderately large number of 

points, it can directly be used for waste collection planning for larger applications. It 

is a trivial task to integrate new constraints to the model by modifying only the 
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fitness function of the genetic algorithm. This is advantageous compared to exact 

algorithms as far as the amount of implementation work is considered. 

 

The system is scalable in the sense that a high degree of parallelism is achieved in 

the tests conducted. Therefore, if the problem size is increased, the excess 

computational time can be compensated by increasing the number of cores in the 

computer on which the software is run. 

 

For the future studies, this work can be applied to larger areas. Additional constraints 

such as minimization of left turns can be implemented to achieve a more goal-

oriented routing system. Moreover, the software can be enhanced to support multiple 

landfills, which would add more complexity to the problem.  

 

In addition to the recommendations for the possible future work-flow enhancements, 

it is also recommendable to modify the software so that it can operate in distributed 

networks rather than shared memory multi-core processors. This would significantly 

increase the scalability of the system. The pre-processing and optimization 

algorithms can be integrated to a tightly-coupled system so that application can run 

inside a GIS environment or within a GIS-based network. 
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APPENDIX A 

SOFTWARE MANUAL 

The developed software requires two shape files as input: one for the road network 

and the other for garbage collection points. A Surfer Grid file can optionally be 

supplied for 3D terrain view. 

The application is designed to open files of maplink extension, which can easily be 

created using notepad. The file includes 3 lines containing full paths to road network 

shape file, garbage collection point shape file and the altitude grid file.  

 

 

 

Figure A. 1 – Maplink files 
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Opening the appropriate maplink file, the application loads the shape files and grid 

file. 

 

Figure A. 2 – Open Dialog 

 

Once the map opens, the user can pan through the 3D terrain map and see the 

location of the garbage collection points as well as the landfill. 

 

Figure A. 3 – Garbage Collection Points on 3D Terrain Map 
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If the application runs on the shape files for the first time, the calculation of the 

pairwise shortest paths along with other pre-processing stages takes a few minutes to 

complete. Once the shortest paths are computed, they are recorded in the same folder 

as the shape files to speed-up the process of opening the map for the next time. 

The application enables the user to view the shortest paths between any desired 

nodes individually. The shortest path dialog can be opened by the shortcut Ctrl+S 

and typing the appropriate node numbers of the source and the destination. The node 

number 0 denotes the landfill and the remaining 239 nodes denote the points in the 

same order as they exist in the shape file. 

 

Figure A. 4 – Displaying Shortest Path 

 The genetic optimization algorithm can be started by clicking the „Genetic‟ toolbar 

button marked in Figure A. 5.  

 

Figure A. 5 – Starting the Genetic Algorithm 
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As the program is designed as a multi-thread application, the progress of the genetic 

algorithm can be monitored and visualized at any time. The GA monitor displays the 

current progress of the genetic algorithm. The operation of the genetic algorithm can 

also be controlled by means of the check boxes on the GA monitor. For instance, the 

crossover and mutations can be enabled/disabled any time by the user. Furthermore, 

the genetic algorithm can be switched between distance optimization mode to fuel 

consumption optimization mode by using the “Fuel Consumption Optimization” 

checkbox. 

Clicking on the Show Best button on the GA monitor displays the best route found so 

far (Figure A. 6). 

 

 

Figure A. 6 – Genetic Algorithm Monitor 
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Figure A. 7 – Visualization of the Best Route 

Even though the genetic algorithm has a termination criterion, it can also be 

terminated by clicking Stop on the GA Monitor Dialog. 

Clicking on the play button on the toolbar, it is possible to simulate the movements 

of the vehicles 

 

 

Figure A. 8 – Simulation of the Vehicle on its Path 
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APPENDIX B 

SOURCE CODE FRAGMENTS 

Data Structures Used Within the Code 

struct t_Point { 

 double x; 

 double y; 

 t_Point(double px, double py) : x(px),  y(py) {} 

 t_Point() {} 

 t_Point operator -(const t_Point& rhs) const {return 

t_Point(x - rhs.x,y - rhs.y);} 

 double operator *(const t_Point &rhs)  

      const {return x*rhs.x+y*rhs.y;} // dot product 

 double magnitude() const {return hypot(x,y);} 

}; 

 

struct t_Route { 

 vector<int> vPoints; 

 double dCost; 

 double dPenalty; 

}; 

 

struct t_Chromosome { 

 int     nGlobalThreadID; 

 int     nRank; 

 double    dNumAlternatePaths; 

 vector<t_Route>               vRoutes; 

 double    dCost; 

 double    dPenalty; 

 double    dFitness; 

 bool operator <(const t_Chromosome &rhs) const  

      {return dCost < rhs.dCost;} 

}; 

struct t_GAResources 

{ 

 double dCrossover; 

 double dMutation; 

 double dElitism; 

 int         nPopulationSize; 

 vector <int> vDefaultVehicles; 

 vector<t_Point *> vPoints; 

 vector<t_Point *> vVehicleLocations; 

 vector< vector<t_Path> > vShortestPaths; 

 vector< vector<t_Path> > vSecondShortestPaths; 
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 t_Point    ptGarage; 

 

}; 

struct t_Path { 

 double dCost; //Cost of first shortest path 

 double dAverageSlope; 

 vector<t_Point> vPoints; // Points of shortest path 

 vector<int> vNodesPassed; // Significant nodes that are 

visited between source and destination 

 void *pFirstEdge; // The first edge of the shortest path 

 t_Path() {dCost=0;pFirstEdge=NULL;} 

}; 

 

 

Declaration of Genetic Algorithm Functions 

 void Initialize(); 

 void CreateRandomChromosome(t_Chromosome *pThisChromosome); 

 

 int RouletteWheelSelection( double *pDistanceMatrix,  

         char *pSelectionStatusMatrix = NULL,  

         double dExp=-3.0); 

 int RouletteWheelSelectionExt( int nCurrentPoint, 

         char *pSelectionStatusMatrix, 

         double dExp=-3.0, 

         bool bCheckPassedNodes=true); 

 

 void CalculateFitness (vector<t_Chromosome *> &vChromosomes); 

 void Crossover(t_Chromosome *pParent1, 

                     t_Chromosome *pParent2, 

                     t_Chromosome *pChild1); 

 void OptimizeSequence( 

            t_Chromosome *pChromosome /*pointer to chromosome*/, 

  int nVehicleNo /* Required if nStart=0*/, 

  int nStart, 

  int nEnd, 

  int nNumActiveNeighbours=3 /* the number of nearest 

neighbours to check */, 

  double dLimitingDistanceRatio=2.0 /* omit the 

neighbour if its distance is larger than NN*ratio */, 

  int nTimeLimit=0 /* allowed time limit for 

optimization*/); 

 void Mutation (t_Chromosome *pChromosome); 

 void Mutation_2opt(t_Chromosome *pChromosome); 

 void SelectChromosomesBasedOnFitness( 

         vector<int> &setSelection,  

         vector<t_Chromosome *> &vChromosomes, 

         int nNumChromosomes,int nNumSample); 

 void CalcDistanceMatrix(); 

 inline double GetSegmentCost( 

             int nVehicleNo, 

             vector<int> &vPoints,  

             int nStart,  

             int nEnd); 

 inline double GetRouteCost (int nVehicleNo, vector<int> 
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&vPoints); 

 

 void Run(); 

private: 

 inline void ValidateCost(t_Chromosome *pChromosome); 

 inline void CalculatePenalty(t_Chromosome *pChromosome); 

 

 

Implementation of Mutation Function 

  

void CGeneticAlgorithm::Mutation (t_Chromosome *pChromosome) 

{ 

 

 ValidateCost(pChromosome); 

 int i,j; 

 int nNodeCount = m_nPointCount+1; 

 int *pnVehicleNumbers = new int[m_nPointCount]; 

 int *pnPointOrder = new int [m_nPointCount]; 

  

 static int nPassCount=0; 

 nPassCount++; 

 ASSERT (pChromosome->dCost>0); 

 

 

 

 /*  

  Indexing the points-vehicle assignment 

 */ 

 

 for (i=0;i<m_nVehicleCount;i++) 

 { 

  t_Route &thisRoute = pChromosome->vRoutes[i]; 

  for (j=0; j<thisRoute.vPoints.size(); j++) 

  { 

   int nPointNo = thisRoute.getPointNoAt(j); 

   if (nPointNo != DEPONI) 

   { 

    pnVehicleNumbers[ nPointNo ] = i; 

    pnPointOrder[nPointNo] = j; 

   } 

  } 

 } 

 

 

 

 struct t_PointNeighbourhood { 

  int nVehicleNo; 

  int nRouteSize; 

  int nPointNo; 

  int nPrevPointNo; 

  int nNextPointNo; 

  int nPointPos; 

  double dCost; 

 }; 
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 for (i=0; i < m_nPointCount/4; i++) 

 { 

  t_PointNeighbourhood p1,p2; 

 

  p1.nVehicleNo = ( rand() % m_nVehicleCount); 

  p1.nRouteSize = pChromosome-

>vRoutes[p1.nVehicleNo].vPoints.size(); 

  p1.nPointPos = (rand() % p1.nRouteSize ); 

  p1.nPointNo = pChromosome-

>vRoutes[p1.nVehicleNo].getPointNoAt( p1.nPointPos ); 

  p1.nPrevPointNo = (p1.nPointPos==0) ? NOT_EXISTS : 

pChromosome->vRoutes[p1.nVehicleNo].getPointNoAt( p1.nPointPos-1 ); 

  p1.nNextPointNo = (p1.nPointPos == p1.nRouteSize-1) ? 

NOT_EXISTS : pChromosome->vRoutes[p1.nVehicleNo].getPointNoAt( 

p1.nPointPos+1 ); 

  if (p1.nPointNo == DEPONI) continue; 

  p2.nPointNo = RouletteWheelSelectionExt(p1.nPointNo, 

NULL); 

 

  p2.nVehicleNo = pnVehicleNumbers[p2.nPointNo]; 

  p2.nPointPos = pnPointOrder[p2.nPointNo]; 

  p2.nRouteSize = pChromosome-

>vRoutes[p2.nVehicleNo].vPoints.size(); 

  p2.nPrevPointNo = (p2.nPointPos==0) ? NOT_EXISTS : 

pChromosome->vRoutes[p2.nVehicleNo].getPointNoAt( p2.nPointPos-1 ); 

  p2.nNextPointNo = (p2.nPointPos == p2.nRouteSize-1) ? 

NOT_EXISTS : pChromosome->vRoutes[p2.nVehicleNo].getPointNoAt( 

p2.nPointPos+1 ); 

   

  if (p1.nRouteSize<=2 || p2.nRouteSize<=2) continue; 

 

 

 

 // if (p1.nRouteSize) 

  if (p1.nVehicleNo == p2.nVehicleNo && abs 

(p1.nPointPos-p2.nPointPos)<6) 

  { // If the points to try are in the same route and 

adjacent 

  

  } // If the points to try are in the same route and 

adjacent 

  else 

  { // The points are not on the same route OR are 

not adjacent 

   int pnCurrentRouteV1[6]; 

   int pnCurrentRouteV2[6]; 

   int pnMutationRouteV1[6]; 

   int pnMutationRouteV2[6]; 

    

   int nV1StartPos = p1.nPointPos-2; 

   int nV1EndPos = p1.nPointPos+3; 

   int nV2StartPos = p2.nPointPos-2; 

   int nV2EndPos = p2.nPointPos+3; 

   if (nV1StartPos == -2) nV1StartPos = NOT_EXISTS; 

   if (nV2StartPos == -2) nV2StartPos = NOT_EXISTS; 

   if (nV1EndPos > p1.nRouteSize-1) nV1EndPos = 

p1.nRouteSize-1; 

   if (nV2EndPos > p2.nRouteSize-1) nV2EndPos = 

p2.nRouteSize-1; 
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   int nV1Count = nV1EndPos-nV1StartPos+1; 

   int nV2Count = nV2EndPos-nV2StartPos+1; 

 

   t_Route &firstRoute = pChromosome-

>vRoutes[p1.nVehicleNo]; 

   t_Route &secondRoute = pChromosome-

>vRoutes[p2.nVehicleNo]; 

   int nIndex = 0; // index of partial route array 

 

   for (j=nV1StartPos, nIndex=0; j<=nV1EndPos; j++, 

nIndex++) 

   { 

    if (j==-1 || j== p1.nRouteSize-1) 

pnCurrentRouteV1[nIndex] = NOT_EXISTS; // Starting from Garage 

    else pnCurrentRouteV1[nIndex] = 

firstRoute.vPoints[j]; 

    if (j== p1.nPointPos) 

pnMutationRouteV1[nIndex] = secondRoute.vPoints[p2.nPointPos];

 // if point of mutation 

    else pnMutationRouteV1[nIndex] = 

pnCurrentRouteV1[nIndex]; // if not point of mutation, same as 

current route 

   } 

 

   for (j=nV2StartPos, nIndex=0; j<=nV2EndPos; j++, 

nIndex++) 

   { 

    if (j==-1) pnCurrentRouteV2[nIndex] = 

NOT_EXISTS; // Starting from Garage 

    else pnCurrentRouteV2[nIndex] = 

secondRoute.vPoints[j]; 

    if (j== p2.nPointPos) 

pnMutationRouteV2[nIndex] = firstRoute.vPoints[p1.nPointPos];

 // if point of mutation 

    else pnMutationRouteV2[nIndex] = 

pnCurrentRouteV2[nIndex]; // if not point of mutation, same as 

current route 

 

   } 

   static int nCycleCount=0; 

   nCycleCount++; 

 

   AdjustPathDirections(pnMutationRouteV1,nV1Count); 

   AdjustPathDirections(pnMutationRouteV2,nV2Count); 

 

   // The last edges of the mutated and original 

partial routes must be the same 

   // so that the path can continue without a U-Turn 

   // Otherwise, skip the mutation 

   int nV1Last = nV1Count-1; // index of the 

last point of mutation zone 

   int nV2Last = nV2Count-1; 

   if (pnMutationRouteV1[nV1Last]==DEPONI) {nV1Last-

-; nV1Count--;} 

   if (pnMutationRouteV2[nV2Last]==DEPONI) {nV2Last-

-; nV2Count--;} 

 

   if (pnMutationRouteV1[nV1Last-1] != 

pnCurrentRouteV1[nV1Last-1]) continue; 
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   if (pnMutationRouteV1[nV1Last] != 

pnCurrentRouteV1[nV1Last]) continue; 

   if (pnMutationRouteV2[nV2Last-1] != 

pnCurrentRouteV2[nV2Last-1]) continue; 

   if (pnMutationRouteV2[nV2Last] != 

pnCurrentRouteV2[nV2Last]) continue; 

 

 

   double dCostV1BeforeMutation = 

GetPartialCost(pnCurrentRouteV1, nV1Count); 

   double dCostV2BeforeMutation = 

GetPartialCost(pnCurrentRouteV2, nV2Count); 

   double dCostV1AfterMutation = 

GetPartialCost(pnMutationRouteV1, nV1Count); 

   double dCostV2AfterMutation = 

GetPartialCost(pnMutationRouteV2, nV2Count); 

 

   double dCostRatio =  

(dCostV1BeforeMutation+dCostV2BeforeMutation) / 

(dCostV1AfterMutation+dCostV2AfterMutation); 

   bool bApplyMutation = dCostRatio>1.0; 

   if (!bApplyMutation) 

   { 

    if (dCostRatio>0.95) 

     if (pChromosome->nRank>50) 

bApplyMutation=(RAND01>0.5); 

   } 

 

   if (dCostV1AfterMutation + dCostV2AfterMutation < 

dCostV1BeforeMutation + dCostV2BeforeMutation) 

   { // Mutation is beneficial 

    for (j=nV1StartPos, nIndex=0; j< nV1EndPos; 

j++, nIndex++) 

    { 

     if (j<0) continue; 

    

 firstRoute.vPoints[j]=pnMutationRouteV1[nIndex]; 

    } 

    for (j=nV2StartPos, nIndex=0; j< nV2EndPos; 

j++, nIndex++) 

    { 

     if (j<0) continue; 

    

 secondRoute.vPoints[j]=pnMutationRouteV2[nIndex]; 

    } 

    double dDeltaCostV1 = dCostV1AfterMutation 

- dCostV1BeforeMutation; 

    double dDeltaCostV2 = dCostV2AfterMutation 

- dCostV2BeforeMutation; 

    firstRoute.dCost += dDeltaCostV1; 

    secondRoute.dCost += dDeltaCostV2; 

    pChromosome->dCost += dDeltaCostV1 + 

dDeltaCostV2; 

 

    pnVehicleNumbers[p1.nPointNo] = 

p2.nVehicleNo; 

    pnVehicleNumbers[p2.nPointNo] = 

p1.nVehicleNo; 

    pnPointOrder[p1.nPointNo] = p2.nPointPos; 

    pnPointOrder[p2.nPointNo] = p1.nPointPos; 
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    ValidateCost(pChromosome); 

 

   

   } // if mutation is beneficial 

 

  } //else 

 

 

 

   

 } // for i 

 

 delete [] pnVehicleNumbers; 

 delete [] pnPointOrder; 

 

 ValidateCost(pChromosome); 

} 

 

 

Implementation of Crossover Function 

void CGeneticAlgorithm::Crossover(t_Chromosome 

*pParent1,t_Chromosome *pParent2,t_Chromosome *pChild1) 

{ 

 ValidateCost(pParent1); 

 ValidateCost(pParent2); 

 

 static long nCrossoverCount = 0; 

 nCrossoverCount++; 

 // Edge Recombination Crossover 

 int i,j,k; 

 

 int nNodeCount = m_nPointCount + 1; 

 t_Vector *pPathDirections = new t_Vector[m_nVehicleCount]; 

 

 struct t_Neighbours { 

  int nCount; 

  int arNeighbours[8]; 

  t_Neighbours() {nCount=0;} 

 }; 

 t_Neighbours *pEdges = new t_Neighbours[m_nPointCount]; 

 

 

 

 for (i=0; i<m_nVehicleCount; i++) 

 { 

  t_Route *thisRoute = &pParent1->vRoutes[i]; 

  int nRoutePointCount=thisRoute->vPoints.size(); 

  for (j=0;j<nRoutePointCount-1;j++) 

  { // Edges of first parent 

   int n1 = thisRoute->getPointNoAt(j);  

   int n2 = thisRoute->getPointNoAt(j+1); 

   if (n1!=DEPONI && n2!=DEPONI) 

   { 

    ASSERT (pEdges[n1].nCount<=8); 

    pEdges[n1].arNeighbours[ pEdges[n1].nCount++ 



 108 

] = n2; 

    pEdges[n2].arNeighbours[ pEdges[n2].nCount++ 

] = n1; 

   } 

  } 

  thisRoute = &pParent2->vRoutes[i]; 

  nRoutePointCount=thisRoute->vPoints.size(); 

  for (j=0;j<nRoutePointCount-1;j++) 

  { // Edges of second parent 

   int n1 = thisRoute->getPointNoAt(j); 

   int n2 = thisRoute->getPointNoAt(j+1); 

 

   if (n1!=DEPONI && n2!=DEPONI) 

   { 

    ASSERT (pEdges[n1].nCount<=8); 

    pEdges[n1].arNeighbours[ pEdges[n1].nCount++ 

] = n2; 

    pEdges[n2].arNeighbours[ pEdges[n2].nCount++ 

] = n1; 

   } 

  } 

 } 

 

 int nVehicleNo; 

 long 

nEstimatedPointPerVehicle=(m_nPointCount*1.20)/m_nVehicleCount; 

 char *pSelectionStatus=new char[m_nPointCount]; 

 int *pnSelectedPoints=new int[m_nVehicleCount]; // keeps track 

of last selected point of each vehicle route 

 

 pChild1->dCost=0; 

 pChild1->dPenalty=0; 

 for (i=0; i<m_nVehicleCount; i++)  

 { 

  pChild1->vRoutes[i].dCost = 0; // initializing cost 

  pChild1->vRoutes[i].vPoints.reserve( 

nEstimatedPointPerVehicle ); // reserving space to avoid frequent 

memory allocations 

  pnSelectedPoints[i] = NOT_EXISTS; // no point selected 

yet for the vehicle 

 } 

 

 for (i=0; i<m_nPointCount; i++) pSelectionStatus[i] = 

POINT_NOT_SELECTED; // marking as not selected 

 

 int nSelectedPoint; // keeps track of the current selected 

point 

 for (i=0;i<m_nPointCount;i++) 

 { 

  nVehicleNo=0; 

  double dLowestCost = 1e99; 

  for (j=0; j < m_nVehicleCount; j++) 

  { 

   t_Route &thisRoute = pChild1->vRoutes[j]; 

   if (thisRoute.dCost < dLowestCost)  

   { 

    nVehicleNo=j; // Try to find the vehicle 

which traveled less 

    dLowestCost=thisRoute.dCost; 

   } 
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  } 

  t_Route &childRoute = pChild1->vRoutes[nVehicleNo]; 

  if (pnSelectedPoints[nVehicleNo] == NOT_EXISTS) 

  { // No point has been assigned to this vehicle's 

route yet, 

   // starting from the position of the vehicle 

   if ( (rand() % 2 ) == 0) nSelectedPoint = 

pParent1->vRoutes[nVehicleNo].getPointNoAt(0); 

   else nSelectedPoint = pParent2-

>vRoutes[nVehicleNo].getPointNoAt(0); 

   if ( pSelectionStatus[nSelectedPoint] == 1) // if 

no available neighbour point from parents, select another 

   

 nSelectedPoint=RouletteWheelSelectionExt(GARAGE,pSelectionStat

us); 

 

   pSelectionStatus[nSelectedPoint] = POINT_SELECTED;

 // mark the point as selected to prevent re-selection 

   pnSelectedPoints[nVehicleNo]=nSelectedPoint; 

   childRoute.vPoints.push_back( nSelectedPoint ); 

   childRoute.dCost = 

GetCostVP(nVehicleNo,nSelectedPoint); 

   pPathDirections[nVehicleNo] = 

m_pPathEndVectors[Point2Node(nSelectedPoint)]; 

  } 

  else 

  { // starting from the last point visited 

    nSelectedPoint=pnSelectedPoints[nVehicleNo]; // 

last selected point for the vehicle 

 

   t_Neighbours *pNeighbours = 

&pEdges[nSelectedPoint]; 

   int  nNumNeighbours = pNeighbours->nCount; 

   int  nSelectedNeighbour = NOT_EXISTS; 

   double dSelectedNeighbourDist = 1e99; 

   for (j=0; j<nNumNeighbours; j++) 

   { 

    int nThisPoint = pNeighbours-

>arNeighbours[j]; 

    if (pSelectionStatus[nThisPoint] == 

POINT_NOT_SELECTED) 

    { 

     double dDistance = 

GetCostPP(nSelectedPoint,nThisPoint); 

     if (dDistance < 

dSelectedNeighbourDist) 

     { 

      nSelectedNeighbour = nThisPoint; 

      dSelectedNeighbourDist = 

dDistance; 

     } 

    } 

   } 

   if (nSelectedNeighbour == NOT_EXISTS) 

   { 

   

 nSelectedNeighbour=RouletteWheelSelectionExt(nSelectedPoint,pS

electionStatus); 

   } 
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   t_Vector &v1 = pPathDirections[nVehicleNo]; 

   t_Vector &v2 = 

m_pPathStartVectors[Point2Node(nSelectedPoint)*nNodeCount+Point2Node

(nSelectedNeighbour)]; 

   double dCosTheta=(v1*v2) / (v1.magnitude() * 

v2.magnitude() ); 

 

   if (dCosTheta < -.96) 

   { 

    childRoute.vPoints.back() |= 0x10000; 

    pPathDirections[nVehicleNo] = 

m_pSecondPathEndVectors[Point2Node(nSelectedPoint)*nNodeCount+Point2

Node(nSelectedNeighbour)]; 

   } 

   else 

   { 

    pPathDirections[nVehicleNo] = 

m_pPathEndVectors[Point2Node(nSelectedPoint)*nNodeCount+Point2Node(n

SelectedNeighbour)]; 

   } 

    pSelectionStatus[ nSelectedNeighbour ] = 

POINT_SELECTED; 

   double dCost = 

GetCostPP(childRoute.vPoints.back(),nSelectedNeighbour); 

   ASSERT(dCost>0); 

   childRoute.dCost+= dCost; 

   childRoute.vPoints.push_back( nSelectedNeighbour 

); 

    pnSelectedPoints[ nVehicleNo ]=nSelectedNeighbour; 

  } //  (pnSelectedPoints[nVehicleNo] != NOT_EXISTS) 

 

 } //for (i=0;i<m_nPointCount;i++) 

 

 for (i=0;i<m_nVehicleCount;i++) 

 { 

  t_Route &thisRoute = pChild1->vRoutes[i]; 

  int nLastPoint = thisRoute.vPoints.back() & 0xFFFF; 

  t_Vector &v1 = pPathDirections[i]; 

  t_Vector &v2 = 

m_pPathStartVectors[Point2Node(nLastPoint)*nNodeCount+0]; 

 

  double dCosTheta=(v1*v2) / (v1.magnitude() * 

v2.magnitude() ); 

 

  if (dCosTheta < -.96) 

  { 

   thisRoute.vPoints.back() |= 0x10000; 

  } 

  double dCost = GetCostPG(thisRoute.vPoints.back() ); 

  ASSERT(dCost>0); 

  thisRoute.dCost += dCost; 

  pChild1->dCost += thisRoute.dCost; 

 } 

 

 delete [] pPathDirections; 

 delete [] pnSelectedPoints; 

 delete [] pSelectionStatus; 

 delete [] pEdges; 

 

 ValidateCost(pParent1); 
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 ValidateCost(pParent2); 

 ValidateCost(pChild1); 

 

} // Crossover  

 

 

 

Implementation of CalculateFitness Function 

 void CGeneticAlgorithm::CalculateFitness  

            (vector<t_Chromosome *> &vChromosomes) 

{ 

 int nPopulationCount=vChromosomes.size(); 

 double dSum=0; 

 

 double dMaxCost =  

      vChromosomes.back()->dCost +  vChromosomes.back()->dPenalty; 

  

      for (int i=0;i<nPopulationCount;i++) 

 { 

  double dCost=vChromosomes[i]->dCost+ 

                         vChromosomes[i]->dPenalty; 

  vChromosomes[i]->dFitness =  

            (nPopulationCount-i) / (dCost/dMaxCost); 

  dSum += vChromosomes[i]->dFitness; 

 } 

 for (int i=0; i<nPopulationCount; i++) 

 { 

  vChromosomes[i]->dFitness /= dSum; 

 } 

  

 

} 

 

 

 

 

Implementation of Mutation 2-opt Function 

 void CGeneticAlgorithm::Mutation_2opt 

                   (t_Chromosome      *pChromosome) 

{ 

 int nVehcileNo; 

 int i,j,k; 

 int nNumVehcles = pChromosome->vRoutes.size(); 

 DWORD d=GetTickCount(); 

 for (nVehcileNo=0; nVehcileNo < nNumVehcles; nVehcileNo++) 

 { 

  t_Route &thisRoute = pChromosome->vRoutes[nVehcileNo]; 

  int nNumEdges = thisRoute.vPoints.size()-1; 

  double dAverageEdgeSize = thisRoute.dCost / nNumEdges; 

 

  int *pOriginal = new int[thisRoute.vPoints.size()]; 

  int *pModified = new int[thisRoute.vPoints.size()]; 

  double dRouteCost = thisRoute.dCost; 
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  for (int *p1=pOriginal,  *p2=pModified,k=0; 

k<=nNumEdges; k++,p1++,p2++ ) *p1=*p2=thisRoute.vPoints[k]; 

 

  vector<int>::iterator  

                    it_route = thisRoute.vPoints.begin(); 

  for (i=1; i<nNumEdges-1; i++) 

  { 

   for (j=i+1; j<nNumEdges;j++) 

   { 

    double dDistPoints =  

GetCostPP(pOriginal[i], pOriginal[j]); 

    if (dDistPoints>dAverageEdgeSize) continue; 

    if (j-i==1) 

    { 

     SWAP(pModified[i],pModified[j]); 

    } 

    else 

    { 

  

     for (k=i+1; k<j;k++)  

     { 

 

      ASSERT(pModified[k]!=GARAGE);

 // requires change 

      pModified[k]=pOriginal[j-k+i];

 // Inverting part of sequence 

     } 

 

 

    } 

 

 

    int nStart = i-1; 

    int nEnd = j+1; 

 

    double dCostAfterRepair = 

RepairRoute(pModified,pOriginal,nNumEdges+1); 

     

    if (dCostAfterRepair<dRouteCost) 

    { 

     for (k=nStart; k<=nEnd;k++) 

pOriginal[k]=pModified[k]; 

     dRouteCost = dCostAfterRepair; 

    } 

    else 

    { 

     for (k=nStart; k<=nEnd;k++) 

pModified[k]=pOriginal[k]; 

    } 

 

   } // j 

  } // i 

  stdext::hash_map<int,int> hStatus; 

  vector<int> vModified(nNumEdges+1); 

  for (k=0;k<=nNumEdges;k++)  

  { 

   vModified[k]=pModified[k]; 

   ASSERT(hStatus[ pModified[k] ] != 1); 

   hStatus[ pModified[k] ] = 1; 
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  } 

 

  if (dRouteCost<thisRoute.dCost) 

  { 

   for (k=0; k<=nNumEdges;k++) 

    thisRoute.vPoints[k]=pModified[k]; 

   double dCost = 

GetRouteCost(nVehcileNo,thisRoute.vPoints); 

   pChromosome->dCost += (dCost-thisRoute.dCost); 

   thisRoute.dCost = dCost; 

  } 

  delete [] pOriginal; 

  delete [] pModified; 

 } // for nVehicleNo 

 DWORD nDiff = GetTickCount() -d; 

 

} 

 


