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ABSTRACT 

 

 BEARINGS-ONLY TRACKING 

 

Bingöl, Haluk Erdem 

M.Sc., Department of Electrical and Electronics Engineering 

      Supervisor: Prof. Dr. Mübeccel Demirekler 

 

FEBRUARY 2011, 102 Pages 

 

 

The basic problem with angle-only or bearings-only tracking is to estimate the 

trajectory of a target (i.e., position and velocity) by using noise corrupted sensor 

angle data. In this thesis, the tracking platform is an Aerial Vehicle and the target 

is simulated as another Aerial Vehicle. Therefore, the problem can be defined as 

a single-sensor bearings only tracking. The state consists of relative position and 

velocity between the target and the platform. In the case where both the target 

and the platform travel at constant velocity, the angle measurements do not 

provide any information about the range between the target and the platform. The 

platform has to maneuver to be able to estimate the range of the target. Two 

problems are investigated and tested on simulated data. The first problem is 

tracking non-maneuvering targets. Extended Kalman Filter (EKF), Range 

Parameterized Kalman Filter and particle filter are implemented in order to track 

non-maneuvering targets. As the second problem, tracking maneuvering  targets 

are  investigated. An interacting multiple model (IMM) filter and different particle 

filter solutions are designed for this purpose. Kalman filter covariance matrix 

initialization and regularization step of the regularized particle filter are discussed 

in detail.  

 

Keywords: Bearings-only tracking, Kalman Filter,Modified Spherical Coordinates, 

Particle Filter, Multiple Model 
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ÖZ 

 

KERTERĐZ-AÇISI ĐZLEME 

 

BĐNGÖL, Haluk Erdem 

Yüksek Lisans., Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mübeccel Demirekler 

 

ŞUBAT 2011, 102 Sayfa 

 

Kerteriz açısı izlemenin temel sorunu hedefin  gezingesini ve hız profilini  hatalı 

ölçüm yapan  sensörün verdiği açı  verisini  kullanarak tahmin etmektir. Bu tezde 

izleme platformu bir hava aracıdır, hedef ise başka bir hava aracı olarak sentetik 

edilmektedir. Bu bağlamda, problem tek-sensörle kerteriz açısı izleme olarak 

tanımlanabilir. Durum değişkenleri hedef ve platform arasındaki nispi pozisyon ve 

hızdan oluşmaktadır. Hedefin ve platformun sürekli hızda ilerlediği durumlarda açı 

ölçüleri hedef ve platform arasındaki menzil hakkında herhangi bir bilgi 

vermemektedir. Hedefe olan menzilin tahmin edilebilmesi için platformun manevra 

yapması gerekmektedir. Bu çerçevede, iki ayrı  problem araştırılmakta ve simüle 

veri kullanarak test edilmektedir. Đlk problem manevrasız veya çok az menevra 

yapan hedeflerin izlenmesidir. Manevra yapmayan hedefleri izlemede 

Genişletilmiş Kalman Filtre (EKF), Menzil Parametreli Kalman Filtre ve parçacık 

filtresi uygulanmaktadır. Tez kapsamında ikinci bir problem olarak  manevra 

yapan hedeflerin izlenmesi araştırılmaktadır. Bu bağlamda, etkileşimli çoklu model 

(IMM) filtresi ve farklı parçacık filtreleri tasarlanmıştır. Kalman filtresi kovaryans 

matrisi ilkleme problemi ve düzenleştirilmiş parçaçık filterisinde düzenleştirme 

adımı ayrıntılı olarak incelenmiştir.  

 

Anahtar Kelimeler: Kerteriz açısı izleme, Kalman Filtre, Modifiye Küresel 

Koordinatlar, Parçacık Filtresi, Çoklu Model 
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CHAPTER 1 

1 INTRODUCTION 

Bearings only tracking has drawn some attention in the last decades due to its 

practical value as well as some of its theoretical aspects like unobservability of its 

states. The focus of this work is to track a single target with a single sensor using 

only bearings angle. In this chapter, first we will present the background 

information and the existing work in the literature. Thereafter we will formulate the 

problem and mention the limitations and the context of the thesis work. Finally, 

the thesis is outlined. 

1.1 Background 

The problem of bearings-only tracking is encountered in several important 

practical applications, since the use of passive sensors has the advantage of not 

revealing the position of its own platform. Submarine tracking, aircraft surveillance 

and electronic warfare are some of the important applications in bearings-only 

tracking [21, 25, 33]. The problem is also named as target motion analysis. 
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.  

Figure 1-1 A Typical two-dimensional target-observer geometry  

 

The aim of bearings-only tracking problem is to track the kinematics (position, 

velocity, acceleration) of the target using noisy measurements. Measurements are 

angle values between the observer and the target platform. A Typical two-

dimensional target-observer geometry illustrating the bearings-only tracking 

problem is shown in Figure 1-1. 

  

In the case of single observer bearings-only tracking problem, which is the focus 

of this thesis, same measurements can be obtained for different range values. 

Consider the case where the target moves at a constant velocity (Figure 1-2). The 

lines tr1 and tr2 represent possible targets that produce exactly the same bearing 

measurements. The figure shows three angle measurements that have been 

received, represented by three lines, namely y1, y2 and y3. Two possible target 

trajectories, tr1 and tr2, are also depicted. The target can either be close to the 

sensor and move slowly or be far away and move fast. From the figure it is clear 

that infinite number of tracks can be generated by using only the bearing angle 

sequence. 
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“

 

Figure 1-2 Single-sensor case .Two possible trajectories, tr1 and tr2 corresponding 

to the same angle measurement 

 

Tracking a maneuvering target using only bearings measurements is much more 

difficult. Figure 1-3 demonstrates from which the two trajectories system receive 

the same measurements as in Figure 1-2, but now the problem is how to 

distinguish a maneuvering target from a non-maneuvering target. In a target 

tracking system with full observability an inaccurate model of the target’s 

dynamics can be compensated with accurate measurements. In case of 

unobservable range it is essential to have accurate dynamic models. Since the 

measurements do not provide the system with information of the range, the 

system must rely on the model. On the other hand it is hard to design a model 

that describes the dynamics of both maneuvering and non-maneuvering targets. 

Instead it is common to use multiple models, where each model describes one 

possible target maneuver (including no maneuver).  
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Figure 1-3 Two possible trajectories, tr1 and tr2 corresponding to the same angle 

measurement. 

1.2 Literature Survey 

The study on bearings-only tracking problem can be classified into two classes, 

namely non-maneuvering target tracking and maneuvering target tracking. 

 

Most of the researchers in the field of bearings-only tracking have concentrated 

on the non-maneuvering target tracking (constant velocity). These 

solutions/algorithms that they provide can mainly fall into two categerios: batch 

processing type and recursive type. Since the batch processing type algorithms 

solve the problem with a delay and are computationally demanding, they are not 

studied in this work. Among recursive type algorithms, the Extended Kalman Filter 

(EKF) is one of the most widely used methods [1]. EKF in modified spherical 

coordinates (MSC)  [2,3] which defines the problem in another coordinate system 

is the most popular refinement. Shifted Rayleigh Filter is another Extended 

Kalman Filter modification [4]. Modified Gain Exteneded Kalman Filter is also 

applied to bearings-only tracking problem [5]. Besides  EKF, Unscented Kalman 



 

5 

Filter (UKF) solution is proposed in [6,7]. It is claimed in these studies that UKF is 

much more robust than the EKF. 

 

The EKF variants mentioned above can only track a single mode of the posterior 

probability distrubition function (pdf) of the target state and thus suffer from the 

same problem as the EKF, i.e., they can potentially track an inaccurate mode of 

the posterior pdf and hence become inconsistent [8]. To mitigate the 

aforementioned issue, running parallel filters was proposed in [8] to track multiple 

hypotheses of the target state, namely the Range-Parameterized Extended 

Kalman Filter (RP-EKF). The RP-EKF makes an assumption about the minimum 

and maximum distances between the sensor and target and divides this range 

interval into a number of subintervals, each representing a hypothesis regarding 

the true range of the target. A bank of independently operating range-

parameterized EKFs is thus created, each designed for one of the hypotheses 

and receiving the same bearing measurement. Recently, considerable attention 

has been paid to the Sequential Monte Carlo Methods (SMCM) [9, 10, 11], due to 

its capability of solving nonlinear estimation problems with multimodal pdfs. In the 

SMCM, each particle represents a hypothesis of the target state, weighted by its 

measurement likelihood. If the particles sample the state space sufficiently, the 

SMCM will converge to the true distribution. However, the particles are usually 

initialized randomly, and if far from a mode of the pdf, their weights will decay 

quickly and lead to particle depletion. 

 

For the bearings-only tracking of a maneuvering target the problem is much more 

diffucult and less study has been published in the literature in this regard. 

Interacting Multiple Model Filter was proposed in [12, 13]. The idea behind 

multiple model is to use multiple filters running in parallel, where each filter uses a 

model describing one possible maneuver. Le Cadre and Tremois [13] modeled 

the maneuvering target tracking using the contant velocity (CV) model with 

process noise and developed a tracking filter in the hidden Markov model 

framework. Particle filter algorithms are also proposed for  tracking maneuvering 

targets. In  [15] Karlsson e.a. propose an Auxiliary Particle Filter for maneuvering 

target tracking. Also, in [16] Andrieu e.a. use Marginilized Particle Filter. This 

study is interesting from the point of using  the optimal importance density.  
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The observer manuever is another problem which is not studied well enough in 

the literature. In [17] Jauffret e.a. examine the cases for which  maneuver of the 

observer is necessary and/or sufficient to obtain observability in passive target 

tracking. They show that it is necessary for the observer  platform to maneuver 

with non-zero acceleration in the case of a target of constant speed, but this is not 

sufficient. The platform must have a non-zero velocity component perpendicular 

to the line of sight. Necessary and sufficient conditions for observability are given 

in [18]. In [19] platform maneuvers are statistically analyzed in accordance to their 

affect on the target tracking. Optimal control theory which is applied  for 

determination of optimal observer maneuver is discussed in [19].  

 

Another area that the problem of bearings-only target tracking arises is 

Simultaneous Localization And Mapping (SLAM). Here the problem is different 

from bearings-only target tracking since the “target” does not move. Little work 

has been presented regarding bearing-only SLAM due to the difficulty of feature 

initialization [34, 35].  Reference [34] presents a solution to the feature 

initialization. Cartesian EKF solution is used for bearings only problem used. In 

Reference [35] Deans e.a. study the multiple sensor case problem again using 

EKF.  

 

1.3 The Scope of the Thesis    

In this thesis, a general framework is given for the bearings-only tracking. Two 

different problems are investigated. The first problem is to track a constant 

velocity target. For this problem different methods are simulated and their 

performances are compared. The methods include Extended Kalman Filter using 

Cartesian Coordinates (CAR-EKF), Extended Kalman Filter using Modified 

Spherical Coordinates (MSC-EKF), a bank of Extended Kalman Filters, Range-

Parameterized Extended Kalman Filter (RP-EKF) and particle filter (PF).  

 

The second problem is tracking a maneuvering target. This problem is relatively 

less analyzed in the literature compared to the first one. As the solution to this 

problem IMM and PF methods are implemented. 
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1.4 Outline of the Thesis 

In Chapter 2, the basis of bearings-only target tracking is presented and the 

observability problem is discussed. Thereafter target and sensor models and the 

coordinate systems used in the thesis are presented. In Chapter 3, the theory 

related to bearings only tracking is explained. In Chapter 5, firstly methodology of 

performance evaluation is discussed and several measures to be used in 

simulations are presented. After that implementation of the filters is described, the 

simulation scenarios are presented and the results are discussed. In chapter 6, 

the thesis is summarized and conclusions from the simulations as well as ideas 

for the future work are presented.  

 

The theory that has been omitted in the main text is included in appendices A and 

B.  
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CHAPTER 2 

2 BEARINGS ONLY TARGET TRACKING 

The problem with bearings-only target tracking is to estimate target position with 

unknown parameters of its dynamics using angle measurements between the 

observer and the target. The state primarily consists of position and velocity of a 

target or variables related with them for example the range. It is possible to 

include other quantities into the state as well, such as angular velocity, turning 

rate, turn mode, etc. according to the model that is used. 

 

This chapter starts with explaining target motion in two different coordinate 

systems, namely Cartesian coordinates and Modified Spherical Coordinates 

(MSC). Thereafter target’s dynamics for constant velocity (CV) are investigated. 

Finally, dynamics of coordinated turn model are discussed.  

2.1 Coordinate Systems 

2.1.1 Cartesian Coordinate System 

A common choice of coordinate system in any tracking application is to use 

Cartesian coordinates as illustrated in Figure 2-1 in which the observer is 

assumed to be an airplane. The x-axis is pointing through the nose of the 

observing platform, the y-axis points through the left wing and the z-axis points 

through the upper part of the observer. The state vector in 3D Cartesian 

coordinates is denoted by xcar and is given by: 



 

 

 

 

Here, instead of x-

variable, measurement and position [1].

 

  

 

For the 2D case z components are dropped.

2.1.2 Modified Spherical Coordinates

It has been shown that the estimation algorithms for the angle

analysis (TMA) problem formulated in Cartesian coordinates have resulted in 

unstable and biased estimates

exhibits filter divergence while the Pseudo

characteristics. To overcome these difficulties, a
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-y-z notation ξ-η-ζ is used avoiding confusion between 

variable, measurement and position [1]. 

Figure 2-1 3D Cartesian Coordinates 

case z components are dropped. 

Modified Spherical Coordinates 

It has been shown that the estimation algorithms for the angle-only 

problem formulated in Cartesian coordinates have resulted in 

unstable and biased estimates [2]. Specifically, the Cartesian coordinate EKF 

rgence while the Pseudo-Linear estimator shows biased 

characteristics. To overcome these difficulties, an extended Kalman filter was 

(2.1) 

ζ is used avoiding confusion between state 

 

only target motion 

problem formulated in Cartesian coordinates have resulted in 

. Specifically, the Cartesian coordinate EKF 

Linear estimator shows biased 

extended Kalman filter was 



 

proposed in [2], which was formulated in a differe

modified spherical coordinates (MSC). 

well suited for angle

decouples observable and unobservable components of the estimated state 

vector. Such decoupling prevents 

matrix, which is the primary cause of filter instability. The M

comprised of the following six components: azimuth angle, azimuth angle rate, 

elevation angle, elevation angle rate, range rate divided by range, and the 

reciprocal of the range. 

variables are given in 

determined by using 

the sixth component, however, remain

[2], Aidala et al did not insert the process noise in their formulation. Another 

derivation of the MP Extended Kalman Filter was proposed

Model target acceleration noise
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], which was formulated in a different coordinate system called the 

modified spherical coordinates (MSC). This coordinate system was shown to be 

well suited for angle-only target motion analysis because it automatically 

decouples observable and unobservable components of the estimated state 

vector. Such decoupling prevents covariance matrix to be an

is the primary cause of filter instability. The MSC

comprised of the following six components: azimuth angle, azimuth angle rate, 

elevation angle, elevation angle rate, range rate divided by range, and the 

range. MSC system is illustrated in Figure 2.2,

variables are given in Equation 2.2. In theory, the first five 

determined by using a single-sensor angle data without an observer

the sixth component, however, remains unobservable until a maneuver occurs. In 

did not insert the process noise in their formulation. Another 

derivation of the MP Extended Kalman Filter was proposed in 

Model target acceleration noise is modeled in state-space representation

Figure 2-2 Modified Spherical Coordinates  

 

nt coordinate system called the 

s coordinate system was shown to be 

only target motion analysis because it automatically 

decouples observable and unobservable components of the estimated state 

to be an ill-conditioned 

SC state vector is 

comprised of the following six components: azimuth angle, azimuth angle rate, 

elevation angle, elevation angle rate, range rate divided by range, and the 

Figure 2.2, and the state 

. In theory, the first five states can be 

observer maneuver; 

s unobservable until a maneuver occurs. In 

did not insert the process noise in their formulation. Another 

in [3], where Singer 

representation.  
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1

msc
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y

y
Y

y r

ry

y

ϕ
θ

ϑ
θ

 
  
  
  
  
 = = 
  
  
  
   
  

ɺ ɺ

ɺ

ɺ
ɺ

 (2.2)  

where ϑ  is cos( )ϕ θɺ  

2.2 Target Dynamics 

Models, which describe targets’ dynamics, are intrinsically continuous. Besides, 

differential equations are used generally for describing these dynamics. Consider 

a general dynamic model written in the state space form as follows:   

 

 ( ) ( ( ), ( ), ( ))cx t f x t u t w t=ɺ  (2.3)  

 

 

 

where x(t) is the state of the system. u(t) is a known input vector to the system 

and w(t) is the noise. For our case u(t) may correspond to the observing  

platform’s maneuver that is assumed to be known without errors. How the state 

vector propagates in time is described by the function f. Process noise which is 

denoted by w(t) corresponds to non modeled part of the motion of the target.  

In discrete time the state equation can be written as: 

 

 
1 ( , , )k d k k kx f x u w+ =  (2.4)  

 

2.2.1 Constant Velocity State Equations 

Model of a target whose relative motion is approximately linear, i.e. the relative 

velocity is constant, is given in this section.   
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For a system modeled in Cartesian coordinates the constant velocity discrete time 

state equation is written as: 

 

 
1

car car

k k k k kx F x G w+ = +  (2.5)  

 

 2

2

2

1

0 01 0 0 0 0 / 2

/ 2 00 1 0 0 0 0

0 / 20 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

car car

k k k

T T

TT

TT
x x w

T

T

T

+

  
  
  
  

= +   
  
  
  
    

 (2.6)  

 

 

As seen from the formulation, state equations are linear  and time invariant. 

Measurements of the system are the bearing angles which are modeled as:  

 

 
2

1

3

2 2

1 2

arctan( )

arctan( )
k

x

x
z

x

x x

ϕ
θ

 
 

   = =  −  
 

+  

 (2.7)  

 

Here the extended definition of arctan(x) which describes angles in all four 

quadrants is used. The observables, namely φ and θ, are coupled with the 

unobservable range. As seen from Equation 2.7 measurement equation it is 

highly nonlinear. 

 

In MSC the state equation can be written as [3]: 
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1 1 4

5
2

3

3 6

2 2 2

4 6 5 4 1

5 5 4 6 3 1

2

6 4 6 5 3 1

cos( )

( )

( 2 tan( )) ( )

2 tan( ) ( )

Rt Ro

Ht Ho

Vt Vo

y y y

y
y

y

y y

y y y y y a a

y y y y y y a a

y y y y y y a a

= −

=

=

= + − − −

= − + − −

= − − + −

ɺ

ɺ

ɺ

ɺ

ɺ

ɺ

 (2.8)  

 

where aRt, aHt and aVt are target acceleration in radial, horizontal and vertical 

directions and aRo, aHo and aVo are the corresponding observer platform 

acceleration.  

 

The derivation of plant equations for MSC state equation can be found in 

Appendix A. 

 

It can be seen from Equation (2.8) that when neither the target nor the platform 

maneuvers, the last five states are decoupled from the first. This means that 

theoretically all states except the first (the inverse of range) may be observable. In 

practice, however, nonzero angular velocity is required to observe the fourth 

state, namely /r rɺ   according to [21]. 

 

The advantage of implementing a target tracking filter in MSC is that the lack of 

range estimate does not degrade the estimates of the observable states in the 

case of no maneuver [2]. If the target is not maneuvering, an accurate range 

estimate is produced by using the maneuver of the observer. The disadvantage of 

using MSC is that solving and discretization of Equation 2.8 will yield a highly 

nonlinear dynamic model. 

 

The measurement equation in MSC is: 

 

 0 1 0 0 0 0

0 0 1 0 0 0
k Kz y

ϕ
θ
   

= =   
   

 (2.9)  
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2.2.2 Constant Velocity Process Noise 

Process noise of constant velocity model is usually taken as the acceleration of 

the target that can be modeled in several ways such as white-noise model, 

polynomial model, Singer model etc. [22]. We used Singer model in the 

simulations since for manned aerial vehicles it is the one that is most commonly 

used. 

 

The Singer model assumes [23] that the target acceleration a(t) is a zero-mean 

first-order stationary Markov process with autocorrelation function  

2 | |
( ) ( ( ) ( ))aR E a t a t e

α ττ τ σ −= + =  or equivalently the power spectrum of the 

acceleration is 2 2 2
( ) 2 /( )aS w ασ ω α= + . The process a(t) can be modeled as the 

state process of a linear time-invariant system driven by white noise as follows. 

 

 ( ) ( ) ( )    0a t a t w tα α=− + >ɺ  (2.10)  

 

The state space representation of the continuous time Singer model for one 

dimension is as follows.  

 

 0 1 0 0

( ) 0 0 1 ( ) 0 ( )

0 0 1

x t x t w t

α

   
   = +   
   −   

ɺ  (2.11)  

 

Its discrete time equivalent is 

 2

1

0 1 ( 1 ) / 0

0 0 1 (1 ) / 0

1 0 0 1

T

T

k k k k k

T

T T e

x F x w e x w

e

α

α
α

α

α α
α

−

−
+

−

 − +   
    = + = − +    
        

 (2.12)  

 

In this equation wk is a zero mean white noise sequence with variance 
2 2(1 )σ β−  

where  β is Te α− . The exact covariance of kw is a function of α ,T,σ which is: 
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(2.13)  

 

The derivation of Equation (2.13) can be found in [23]. 

2.2.3 Coordinated Turn Model with Known Turn Rate 

For maneuvering targets coordinated turn (CT) model is the most common model 

[13, 24, 25]. In this model, it is assumed that the target turns at a nearly constant 

angular velocity. In addition, the magnitude of the velocity vector is almost 

constant. The maneuver occurs in a plane. However, it does not mean that it has 

to be in x-y plane. For example, if maneuver plane is vertical, this leads to climbs 

and descents. Therefore, CT can actually model this maneuver, too.  States in 

this model are the same as the Cartesian coordinates for non-maneuvering case. 

State transition matrix for CT model in 2-d coordinate system is shown in 

Equation 2.14-2.15. 

 
1

car CT car CT

k k k kx F x G w+ = +  (2.14)  

 



 

16 

 

1

sin( ) 1 cos( )
1 0

0 0

1 cos( ) sin( ) 0 0
0 1

1 0

0 0 cos( ) sin( ) 0 1

0 0 sin( ) cos( )

car car

k k k

T T

T T
x x w

T T

T T

+

Ω − Ω −   Ω Ω
   − Ω Ω   = + Ω Ω  
   Ω − Ω   
 Ω Ω 

 (2.15)  

 

where  

  

 
3 2 2

3 2 2

2 2

2 2

2( sin ) 1 cos sin
0

2( sin ) sin 1 cos
0

cov( )
1 cos ( sin )

0

( sin ) 1 cos
0

k

T T T T T

T T T T T

Q w
T T T

T

T T T
T

Ω − Ω − Ω Ω − Ω 
 Ω Ω Ω
 

Ω − Ω Ω − Ω − Ω 
 Ω Ω Ω= =  − Ω Ω − Ω −

Ω Ω 
 Ω − Ω − Ω
 

Ω Ω 

 
(2.16) 

 

Turn rate Ω  can be written as a nonlinear function of acceleration: 

 
2 2

m

k k

a

x y

±
Ω =

+ɺ ɺ
 (2.17)  

 

In Equation 2.17 ma±  is the typical maneuver acceleration of the target. Different 

nonlinear models can be constructed for different values of ma . 

 

The coordinated turn model can give accurate results if the turn rate is known. 

However, this case is unrealistic for most of the practical applications. In this 

study we also studied unknown turn rate case which is much more realistic. 

2.2.4 Coordinated Turn Model with Unknown Turn Rate 

Coordinated turn model with unknown turn rate differs from the model above with 

the inclusion of the  turn rate as a state variable [22]. The state transition matrix is 

given in Equation 2.18. 

 
1 /

( ) 0 0

0 0 1

CT CV

k k kT

F G
x x w

e τ

ω
+ −

   
= +   
   

 (2.18)  
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The most commonly used models for ω  are Wiener process model and first order 

Markov process model. We have used Markov process model in this study. The 

discrete time equation for turn rate is described in Equation 2.19. 

 

 /

1 ,

T

k k w ke w
τω ω−

+ = +  (2.19)  

 

where τ  is  the correlation time constant for the turn rate and w is zero-mean 

white noise. 

2.2.5 Coordinated Turn Model with Polar Velocity and Unknown Turn 

Rate 

Since the velocity vector is assumed to be nearly constant, using polar velocity 

instead of Cartesian velocities will simplify the transition matrix. Denote the 

magnitude of velocity as v  and the heading angle (course) as ϕ. The new state 

vector becomes as given in Equation 2.19. 

 

 
1 2[   ]

T
x x x V ϕ= Ω  (2.20)  

 

The discrete time state equation then becomes: 

 

 
1

2

1

(2 / ) sin( / 2)cos( / 2)

(2 / ) sin( / 2)sin( / 2)
CTP CTP

k k

x v T T

x v T T

x G wv

T

ϕ
ϕ

ϕ
+

+ Ω Ω +Ω 
 + Ω Ω +Ω 
 = +
 

+Ω 
 Ω 

 (2.21)  

 

Where kw  is the corresponding process noise with the covariance matrix given 

below.  



 

18 

 

2 2

3 3 3 2

3 2 3 2

0 0 0 0         0   

0 0 0 0             0  

0 0 0            0

0 0 0 / 3 / 2

0 0 0 / 2 / 2

CTP
vTQ

T T

T T

σ

σ σ
σ σ

Ω Ω

Ω Ω

 
 
 
 =
 
 
  

 (2.22)  

 

2.2.6 Sensor Error Model 

Sensor model in the simulations are implemented as given by Equation 2.23: 

 

 
m t kz z v= +  (2.23)  

 

where zm is the measured signal, zt is its true value and vk is the measurement 

noise which is assumed to have a probability distribution function N(0,R). R is 

usually selected as a diagonal matrix (i.e. azimuth and elevation measurements 

are independent from each other). 
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CHAPTER 3 

3 TRACKING FILTERS 

In target tracking the aim is to estimate the target’s state vector by 

measurements. This chapter starts with filters designed to track non-maneuvering 

targets. For maneuvering targets multiple model filters are often used, which are 

presented at the end of the chapter. 

3.1 General Information 

In this thesis the aim is to obtain probablity distrubition (usually it is expressed as 

an estimate and its uncertainity) of the unknown state vector by using noisy 

measurements. Figure 3-1 presents a block diagram that illustrates the state 

estimation [25].  

 

 

Figure 3-1 State Estimation (Copied from,[25]) 
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A general state space model for a discrete time stochastic system can be defined 

as given by Equation 3.1 and Equation 3.2: 

 

 
1 ( , , )k k k kx f x u w+ =  (3.1)  

                            

 ( , )k k k kz h x v=  (3.2)  

 

Where: 

kx  : state at time k 

kz  : measurement at time k 

ku  : known input to the dynamic system at time k 

kw  : process noise at time k 

kv  : measurement noise at time k 

The aim is to estimate the posterior distribution of the state vector given past 

observations for the above model. The Bayesian solution can be written as: 

 

 
1: 1

1:

1: 1

1: 1 1: 1

1 1: 1 1:

( | ) ( | )
( | )

( | )

( | ) ( | ) ( | )

( | ) ( | ) ( | )

nx

nx

k k k k
k k

k k

k k k k k k k

R

k k k k k k k

R

p z x p x z
p x z

p z z

p z z p z x p x z dx

p x z p x x p x z dx

−

−

− −

+ +

=

=

=

∫

∫

 (3.3)  

 

This update recursion is the optimal solution for non-linear filtering estimation 

problem. However, usually it is impossible to obtain the solution analytically as in 

our problem.  Therefore, some suboptimal filters are used which are described in 

the rest of this chapter. 
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3.2 Non-Maneuvering Target Tracking Filters 

3.2.1 Kalman Filter  

For a linear model with additive noise the system given by the Equations 3.1 and 

3.2 can be rewritten as: 

 

 
1k k k kx Ax Bu Gw+ = + +  (3.4)  

 
k k ky Hx v= +  (3.5)  

 

where , ,A B Gand H  are matrices, possibly depending on time, but independent 

of the state vector x . 

 

Assume that the noises { , }k kw v  are all independent with Gaussian distribution 

with zero mean and covariance matrices ( )k kCov w Q= and ( )k kCov v R= . Also, 

assume that the initial distribution of the state vector is Gaussian with mean 0x

and covariance matrice 0 0( )Cov x P= . Under these assumptions it can be shown 

that the optimal solution to the problem of estimating the state vector x based on 

the observations y is given by the Kalman Filter [11]. Below, we will give a very 

brief description of the Kalman Filter. 

 

Let |
ˆ
k kx  be the estimate of the state vector for time tk given the measurements up 

to time tk,  Z
K=(z1, z2, ....., z k). In the same manner let | 1

ˆ
k kx −  denote the estimate of 

the state vector at time tk  based on the measurements up to time tk-1. Let ˆ
kP be the 

estimate of the prediction covariance matrix for the state vector at time k. ˆ
kP 

represents the uncertainty in the estimated state vector. 

 

ˆ
kP does not depend on the measurements Zk meaning that it will not give any 

information on how well the estimates fits the measurements. Instead ˆkP 
gives a 

theoretical value on how well the filter performs if the assumptions of Gaussian 
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noise are valid. The parameter K, known as the Kalman gain, decides how much 

the innovation | 1
ˆ

k k k kz Hxε −= −  should be taken into consideration while estimating 

the state. Large values of ˆkP means that the uncertainty in the estimate of the state 

is large. This causes K to be large, so the measurement will have a great impact 

on the correction of the estimate. This will give a fast filter that considers the 

measurements to be reliable. Small values of ˆkP and  K  on the other hand results 

in a slower filter that is more robust against measurement noise. ˆ
kP  depends on 

its initiatialization and of the values in the covariance matrices Q and R. The 

designer of the filter has to balance the robustness to measurement noise against 

the fastness of the filter by choosing appropriate values for the Q and R matrices. 

 

The Kalman filter is the optimal solution under the assumptions of Gaussian 

noise. In real applications the assumption of Gaussian noise might not be valid. 

However assuming that the specified covariance matrices, Q,R and ˆkP reflects the 

true second order moments is the best linear filter. A more detailed description of 

the Kalman Filter can be found in [9,26]. A single cycle of Kalman Filter is 

described in Table 3-1. 
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Table 3-1 One Cycle of Kalman Filter 

1. Time Update 

Predict the state vector and the prediction covariance matrix for the next time step 

1| |

1| |

ˆ ˆ

ˆ ˆ

k k k k k

T

k k k k k

x Ax Bu

P AP A Q

+

+

= +

= +
 

2. Measurement Update 

Correct the predicted state vector and prediction covariance matrix according to 

the measurement 

| 1

| | 1

| | 1 | 1

1

| 1

ˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ

k k k k

k k k k k

k k k k k k

T

k k

z Hx

x x K

P P KHP

K P H S

ε

ε
−

−

− −

−
−

= −

= +

= −

=

 

Where S is : 

| 1
ˆ T

k k kS HP H R−= +  

 

  

3.2.2 Extended Kalman Filter  

In the case of a non-linear state or measurement equations as in (3.1) and (3.2) 

an Extended Kalman Filter (EKF) can be used. The idea is to linearize the system 

and apply the Kalman filter. Unlike the Kalman filter EKF is not an optimal filter.  

The implemention can be done in several ways, one of which is discretized 

linearization, in which first the non-linear continuous system is linearized and 

thereafter the resultant system is discretized. A derivation of the discretized-

linearized EKF can be found in [26]. The equations of EKF are presented in Table 
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3-2. When we compare EKF with KF we observe that the main difference is that 

the matrices A and H have been replaced with the Jacobians of the functions f 

and h in the update of P̂. 

 

Table 3-2 One Cycle of Extended Kalman Filter 

1. Time Update 

Predict the state vector and the prediction covariance matrix for the next time step 

1|

1| |

ˆ ˆ( , )

ˆ ˆ

k k k k

T

k k f k k f k

x f x u

P J P J Q

+

+

=

= +
 

2. Measurement Update 

Correct the predicted state vector and prediction covariance matrix according to 

the measurement 

| 1

| | 1

| | 1 | 1

1

| 1

ˆ( )

ˆ ˆ

ˆ ˆ ˆ

ˆ

k k k k

k k k k k

k k k k h k k

T

k k h

z h x

x x K

P P KJ P

K P J S

ε

ε
−

−

− −

−
−

= −

= +

= −

=

 

Where S is 

| 1
ˆ T

h k k h kS J P J R−= +

fJ  and hJ  are the Jacobians of the functions f and h respectivly. 

 

 

3.2.3 Extended Kalman Filter for Bearings Only Tracking in Cartesian 

Coordinates for Non-Maneuvering Target Case 

When the system is modeled in Cartesian coordinates for the non-maneuvering 

case, only the measurement equation comes out to be nonlinear. Therefore, only 

the evaluation of the Jacobian of h is required. Jacobian of h is shown in Equation 

(3.7). 
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Recall from Equation (2.7) that the measurement function in Cartesian 

Coordinates is: 

 

 
2

1

3

2 2

1 2

arctan

arctan

k

x

x
z

x

x x

ϕ
θ

  
  

   
= =     −      +  

 (3.6)  

 

 

Then it can be easily shown that the Jacobian of this function is: 

 

 
2 1

2 2 2 2

1 2 1 2
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                     0           0  0   0
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h
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− 
 + +
 =  +
 −

+ + + + + + + + 

 (3.7)

 

3.2.4 Extended Kalman Filter for Bearings Only Tracking in Modified 

Spherical Coordinates for Non-Maneuvering Target Case  

The idea behind the MSC-EKF is to use Cartesian coordinates in the time update 

but use MSC in the measurement update. In this way both the equations of 

motion and the measurement equation become linear. Let 
carx  be the state vector 

in the Cartesian coordinates and 
mscy  the state vector in the MSC. The algorithm 

of this approach is given below by Equation (3.8). 

 

 

1

1

1 1

( )

( )

car msc

k x k

car car

k k k k

msc car

k z k

msc

k k k

x f y

x Ax Bu Gw

y f x

z Hy v

+

+

+ +

=

= + +

=

= +

 (3.8)  
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The first equation describes the dynamics of the system in Cartesian coordinates 

and the third equation gives the relation between the measurements and the state 

vector in MSC. xf  and zf  are functions that transform the state vector between 

Cartesian coordinates and MSC. The explicit expressions for xf  and zf  as well 

as their Jacobians can be found in Appendix B. 

 

Figure 3-2 shows the block diagram of the filter. In the blocks Time update and 

Measurement update are performed in the same way as in the Kalman filter. The 

tasks for the blocks MSC to Car is to transform the state vector from MSC to 

Cartesian coordinates while the block Car to MSC do the opposite transformation. 

The algorithm for the MSC-EKF is given in Table 3-3 where the superscripts car 

and msc has been suppressed. The prediction covariance matrix P and the 

measurement noise covariance matrix R are described in MSC and the process 

noise covariance matrix Q is expressed in Cartesian coordinates. 

 

 

Figure 3-2 Block diagram for an extended Kalman filter using modified spherical 

coordinates (MSC-EKF) 

 

3.2.5 Range-Parameterized EKF 

For a particular EKF, the tracking performance is highly dependent on the 

Coefficient of Variation of the range estimate CR given by σr /R where R and σr are 

the range estimate and its standart deviation respectively. It is this factor which 

determines the percentage change in the range estimate for a given change in the 

bearing estimate and, therefore, governs the stability of the tracker. Practically, for 

bearings-only tracking problem apriori knowledge of the initial target range can be 
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very poor. To handle this Range-Parameterized EKF use a a number of EKF 

trackers in parallel with a different range estimate [16]. By this way RC  is tried to 

be minimised. Also, RC  is the modelled to be for all filters. 

If the range errors are uniformly distrubuted in each subinterval, subintervals can 

be subdivided using geometrical progression as in shown in Equation (3.9): 

 

 
max min

Nf
r r ρ=  (3.9)  

 

The weights associated with each EKF are computed using the measurement as 

given in Equation 3.10. 

 
1

1

1

( | )

( | )

i
i k k
k Nf

j

k k

j

p z i w
w

p z j w

−

−
=

=

∑
 

(3.10)  

 

Here 
| 1

ˆ i
k kz −  denotes the predicted angles at k for filter i, and iΣ  is the innovation 

variance. In this thesis MSC is used for RP-EKF, so iΣ  is can be extracted from 

the covariance matrix
| 1

ˆ i
k kP − . 

 

Weights are propagated in time using the measurements as seen in Equation 

3.10.  
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Table 3-3  One Cycle for MSC EKF 

1. Transform the state vector to Cartesian coordinates 

 

1| 1 1| 1
ˆ ˆ( )k k x k kx f z− − − −=  

2. Time Update 

| 1 1| 1

| 1 | 1 1| 1 | 1 1

ˆ ˆ

ˆ ˆ

k k k k k

T msc

k k k k k k k k k

x Ax Bu

P P Q

− − −

− − − − − −

= +

=Φ Φ +
 

Φ is given by the chain rule for derivates  

1

1 1 1

| 1 1

ˆ

ˆ ˆ( ) ( )k k k k

k k k k

z z x x

k k fZ k fX k

z x x z
z

J x AJ z−

− − −

− −

∂ ∂ ∂ ∂
Φ = = =

∂ ∂ ∂ ∂
 

fZJ and fXJ  are the Jacobian for the transformation function Zf  and Xf  respectively evaluated 

in different time steps.  

1 | 1 |
ˆ ˆ( ) ( )

msc T

k fZ k k k fZ k kQ J x Q J x− −=  

Where 1kQ −  is expressed in Cartesian coordinates.  

 

3. Transform the state vector to MSC 

| 1 | 1
ˆˆ ( )k k z k kz f x− −=  

4. Measurement Update 

| 1

| | 1

| | 1 | 1

1

| 1

ˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ

k k k k

k k k k k

k k k k k k

T

k k

y Hz

z z K

P P KHP

K P H S

ε

ε
−

−

− −

−
−

= −

= +

= −

=
 

Where S is: 

| 1
ˆ T

k k kS HP H R−= +  

 

( | )kp z i  can be computed as: 



 

29 

 
( )21

| 1 | 1/2 1/2

1 1
ˆ ˆ( | ) exp ( ) ' ( )

(2 ) | | 2

i i

k k k k i k k kM
p z i z z z z

π
−

− −
 = − − Σ − Σ  

 (3.11)  

 

3.2.6 Sequential Monte Carlo Methods 

In this part brief information about Sequential Monte Carlo Methods are given for 

completeness. 

 

The Sequential Monte Carlo Methods, or particle filters perform particle 

representation of probability densities. To describe particle filters first Monte Carlo 

sampling methods are introduced. Then the idea is applied to recursive Bayesian 

Estimation [11]. 

 

Expectation of a function of a random variable can be written as an integral as 

given in Equation 3.12. 

 

 { ( )} ( ) ( ) ( )E f x f x p x d x= ∫  (3.12)  

 

In this expression ( )p x
 is the probability density function of x. 

 

If the random variable xɶ, is approximated by N samples (i.e. particles) in the sense 

that 
1

ˆ( ) ( )
N

i i

i

p x w x xδ
=

= −∑  then the sample mean of ���� can be written as [8]: 

 

 

1

ˆ ˆ( ) ( )
N

i i

i

f f x w x
=

=∑  (3.13)  

 

In the equation given above f̂
 
stands for expectation of the function f . In the ideal 

case, samples are directly generated from ( )p x  and the expectation is 

approximated as given in  Equation 3.13.  Suppose samples are generated from a 

density ( )q x  ,which is similar to ( )p x . The pdf ( )q x  is called the importance or the 

proposal density which satisfies: 
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 ( )p x  > 0 ⇒  ( ) 0q x >   for all xnx R∈  (3.14)  

 

Then Equation (3.13) can be written as: 

 

 ( )ˆ ( ) ( ) ( )
( )

p x
f f x q x d x

q x
= ∫  (3.15)  

 

Now the Monte Carlo (MC) estimate is: 

 

 

1

ˆ ( ) ( )
N

i i

i

f f x w x
=

=∑ ɶ  (3.16)  

 

where  ( )iw xɶ  is the normalized weight obtained from the unnormalized weight as:  

 

 

1

( )

( )
( )

( )

( )

i

i

i

iN

i
i

p x

q x
w x

p x

q x=

 
 
 =

∑
 (3.17)  

 

Here ( )iw x  are the importance weights. If unnormalized weight ( ) / ( )i ip x q x  is 

taken as, ( )iw xɶ   Equation (3.16) becomes: 

 

 

1

1

1

( ) ( )
ˆ ( ) ( )

( )

N
i i

N
i ii

N
i i

i

f x w x

f f x w x

w x

=

=

=

= =
∑

∑
∑

ɶ

ɶ

 (3.18)  

 

This approach forms a basis for most sequential MC filters if ( )p x  is taken as the 

posterior density in Bayesian estimation. This technique is called sequential 

importance sampling (SIS). 
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3.2.6.1 Sequential Importance Sampling 

Let { }, 0, .....k jX x j k= =  be a sequences of all target states up to time k and kx  

be the target state at time k. Similarly let { }, 0, .....k jZ z j k= =  be the 

measurements up to time k. ( | )k kp X Z  can be approximated using MC 

integration as follows: 

 

 

1

( | ) ( )
N

i i

k k k k k

i

p X Z w X Xδ
=

≈ −∑  (3.19)  

 

Here, ( | )k kp X Z  is pdf of the complete state history. 

 

Suppose the samples i

kX  are drawn from an importance density ( | )k kq X Z
 
, then 

the weights in  Equation 3.19 can be written as: 

 

 ( | )

( | )

i
i k k
k i

k k

p X Z
w

q X Z
∝  (3.20)  

   

In order to obtain a sequential method, the importance function is chosen such 

that: 

 

 
1 1 1( | ) ( | , ) ( | )k k k k k k kq X Z q x X Z q X Z− − −≜  (3.21)  

 

This factorization is the basic idea of sequential importance sampling.  

 

Now, assume that at each iteration a particle set 1{ , }
i i N

k k iX w =  for ( | )k kp X Z  is 

available, and a new set 1 1 1{ , }
i i N

k k iX w+ + =  for 1 1( | )k kp X Z+ +  is obtained by using the 

observation 1kz + . Weight update equation can be written as: 
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1 1 1

1 1

1

1 1 1

1

1 1 1

1

( | , ) ( | )
( | )

( | )

( | , ) ( | ) ( | )
                     

( | )

( | ) ( | ) ( | )
                     

( | )

k k k k k
k k

k k

k k k k k k k

k k

k k k k k k

k k

p z X Z p X Z
p X Z

p z Z

p z X Z p x X p X Z

p z Z

p z x p x x p X Z

p z Z

+ + +
+ +

+

+ + +

+

+ + +

+

=

=

=

 (3.22)  

 

Denominator can be viewed as a normalizing constant, so it can be said that 

posterior density is proportional to: 

 

 
1 1 1 1 1( | ) ( | ) ( | ) ( | )k k k k k k k kp X Z p z x p x x p X Z+ + + + +∝  (3.23)  

 

By substituting Equation 3.21 and Equation3.23 into Equation 3.20 the weight 

update equation can then be shown to be: 

 

 
1 1 1 1

1

1 1

1 1 1

1 1

( | ) ( | ) ( | )

( | , ) ( | )

( | ) ( | )
       

( | , )

i i i i
i k k k k k k
k i i i

k k k k k

i i i
i k k k k
k i i

k k k

p z x p x x p X Y
w

q x X Z q X Z

p z x p x x
w

q x X Z

+ + + +
+

+ +

+ + +

+ +

∝

=

 (3.24)  

 

Furthermore, if 1 1 1 1( | , ) ( | , )k k k k k kq x X Z q x x z+ + + += , then the weights take the form: 

 

 
1 1 1

1

1 1

( | ) ( | )
 

( | , )

i i i
i i k k k k
k k i i

k k k

p z x p x x
w w

q x x z

+ + +
+

+ +

∝  (3.25)  

 

Equation 3.25 is useful in terms of recursive solution. Then the posterior density 

becomes: 

 

 
1 1 1 1 1

1

( | ) ( )
N

i i

k k k k k

i

p x z w x xδ+ + + + +
=

≈ −∑  (3.26)  

 

If  N→∞  in Equation 3.26 1 1( | )k kp x z+ +  approaches to the true posterior 

distribution. The SIS algorithm has two main properties [11]. Firstly, nonlinearities 
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in the state and measurement functions can be handled without any modification 

(remember Kalman Filter). Secondly, there is no need to parameterize the 

probability distribution, since any pdf can be approximated by particles. The SIS 

algorithm is summarized in Table 3-4. 

 

Table 3-4: Filtering Via Sequential Importance Sampling, [11] 

 

1 1 1 1 1[{ , } ] ({ , } , )
i i N i i N

k k i k k i kx w SIS x w z+ + = = +=  

• For i=1:N 
 

-Draw 1 1( | , )
i i i

k k k kx q x x z+ +∼  

 

-Update weight  1 1 1
1

1 1

( | ) ( | )
ˆ  =

( | , )

i i i
i i k k k k
k k i i

k k k

p z x p x x
w w

q x x z

+ + +
+

+ +

 

 
• End  

 
• For i=1:N 

 

-Normalize weight  1
1

1

1

ˆ
 =

ˆ

i
i k
k N

i

k

i

w
w

w

+
+

+
=
∑

 

 
• End  

 
 

The SIS algorithm is the basis of most particle filters.  

3.2.6.2 Resampling 

The SIS algorithm updates particle weights recursively. The most common 

problem with this recursion is the sample depletion or degeneracy problem. After 

some iterations all particles but a few may have negligible weights [10]. 

Processing with these particles makes the algorithm ineffective and causes a 

degradation in the ability of the method to approximate the posterior density. This 

problem is named as degeneracy or sample depletion. To overcome this problem, 

particles with smaller weights can be eliminated, and instead of them higher 

weighted particles can be generated. This process is called resampling.  
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The degree of depletion can be represented by effective number of samples [11, 

27], which is: 

 
2

|1 ( )
eff i

k k

N
N

N Var w
=

+
 (3.27)  

 

As  Equation 3.27 implies effN  becomes maximum ( effN N= ) when all weights 

are equal1/N . The lowest it can attain is 1, which is the case where only but one 

particle has the weight 
| 1i

k kw =  and the others have weight 0. 

 

A logical approximation of Equation (3.27) is [27]: 

 

2

|

1

1ˆ

( )
eff N

i

k k

i

N

w
=

=

∑
 

(3.28)  

 

In this work Equation 3.28 is used as a measure of finding the effectiveness of 

particles. 

Resampling can be summarized as a mapping of pdf { , }
i i

k kx w  into a similar pdf 

*
{ ,1/ }

i

kx N . There are a number of resampling algorithms in the literature [27]. 

The most commonly used resampling algorithm is strafied or systematic 

resampling which is used in this thesis. Systematic resampling minimizes the 

variation of ( )
i

kVar w and it has less computational complexity than the other 

resampling algorithms [11].   

 

The systematic resampling assumes that the weights are continues random 

variables in the interval (0,1) which are randomly ordered. The grid points ( ju ’s) 

in each interval [ ic, 1ic + ) are counted, and particles corresponding to that interval 

are either replicated or eliminated. The algorithm is given in Table 3-5. 

After the resampling procedure, all weights are assigned as 1/N . 
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Table 3-5: Systematic Resampling, [11] 

 
* *

1 1[{ , , } ] ({ , } )
j j j N i i N

k k i k k ix w i RESAMPLE x w= ==  

• Construct the CDF 
 

- 1 0c =   

 
- For i=1:N 
 

     1

i

i i kc c w+ = +  

 
- End For 
 

• Start from the initial point of CDF: 1i =  
 

• Draw a starting point : 1 [0,1/ ]u U N∼  

 

• For 1:j N=  

 
- Move along the CDF: 1 ( 1) /ju u j N= + −  

 
- While j ju c>  

 
    1i i= +  
 
- End While 
 

            - Assign sample: *j i

k kx x=  

 

            - Assign weight : *
1/

j

kw N=  

 

            - Assign parent : 1ji i= −  
 

• End For 
 

 

3.2.6.3 Sampling Importance Resampling Particle Filter 

Sampling Importance Resampling (SIR) Filter is actually SIS with the resampling 

step. SIR is illustrated in Figure 3-3 and the algorithm is summarized in Table 3-6. 
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Figure 3-3 A single cycle of a Particle Filter, [11] 
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Table 3-6: Sampling Importance Resampling Algorithm, [11] 

 

1 1 1 1 1[{ , } ] ({ , } , )
i i N i i N

k k i k k i kx w SIR x w z+ + = = +=  

• For i=1:N 
 

-Draw 1 1( | , )
i i i

k k k kx q x x z+ +∼  

 

-Update weight  1 1 1
1

1 1

( | ) ( | )
ˆ  =

( | , )

i i i
i i k k k k
k k i i

k k k

p z x p x x
w w

q x x z

+ + +
+

+ +

 

 
• End For 

 
• For i=1:N 

 

-Normalize weight  1
1

1

1

ˆ
 =

ˆ

i
i k
k N

i

k

i

w
w

w

+
+

+
=
∑

 

• End For 
 

• Calculate the effective sample size: 
2

1

1

1ˆ

( )
eff N

i

k

i

N

w +
=

=

∑
 

 

• If ˆ
eff ThresholdN N< then Resample  

 
 

ThresholdN  is a design parameter. If ThresholdN is taken as N ,then resampling is 

carried out at each step. In this case there is no need to update the weights , 

since after resampling weights are taken equal. 

 

3.2.6.4 Choice of Importance Density 

The selection of importance density is one of the most critical issues in the design 

of a particle filter. The accuracy of the importance density affects the degeneracy 

of the particles. There are several importance density proposals in the literature 

[27]. Here, the functions, which are used in this work are presented. 
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Optimal Important Density 

The optimal importance density function is the posterior function itself [28]: 

 
1 1 1 1

1 1 1

1

( | , ) ( | , )

( | ) ( | )
                          

( | )

i i

k k k opt k k k

i

k k k k

i

k k

q x x z p x x z

p z x p x x

p z x

+ + + +

+ + +

+

=

=
 (3.29)  

 

If Equation (3.29) is substituted into the weight update equation (3.25), one 

obtains: 

 

 
1 1 1 1 1 1( | ) ( | ) ( | )i i i

k k k k k k k k k kw w p z x w p z x p x x dx+ + − + + +∝ = ∫  (3.30)  

 

Equation 3.30 states that the importance weights at time k can be computed 

before the particles are propagated to time k. 

 

The first drawback of using optimal important density is the unavailability of the 

density to draw samples. Second drawback is the calculation of the integral in 

Equation 3.30 [11].  

 

However,the above formulation can be used for some special cases. The first 

case is when the state kx  is a member of a finite set. In that case it is possible to 

take samples from the posterior and the integral becomes a sum. In this work this 

solution is investigated for maneuvering target tracking. The second case is when 

the posterior density is Gaussian [3].  

 

Prior Density as Importance Density 

The standard choice for importance density is to use the conditional prior of the 

state vector: 

 
1 1( | , ) ( | )

i i

k k k k kq x x z p x x+ +=  (3.31)  

 

Then the weight update equation becomes: 

 
1 1 1( | )

i i i

k k kw w p z x+ + +=  (3.32)  
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When the prior density is chosen as the importance density, the current 

observation is neglected while propagating the state, which in turn may cause 

quick depletion of the particles. 

 

3.2.7 Regularized Particle Filter 

In Section 3.2.6, the basic theory behind the particle filter algorithm is presented. 

In this part, the Regularized Particle Filter (RPF) that is used in non-maneuvering 

target tracking problem is described. 

Resampling was introduced in particle filter algorithm for reducing degeneracy. 

However, resampling stage causes another problem, which is called the sample 

impoverishment [11,28]. At the resampling stage, duplicated particles occupy the 

same place. If the process noise is small, these duplicated particles are not 

spread out and after a number of resampling steps all particles may collapse to 

the same point in the state-space. The reason for this problem is that samples are 

drawn from the discrete approximation of the posterior distribution.  

 

Lets refresh that the SIR filter posterior distribution was represented as: 

 
1 1 1 1 1

1

( | ) ( )
N

i i

k k k k k

i

p x z w x xδ+ + + + +
=

≈ −∑  (3.33)  

 

In regularized particle filter, this posterior distribution is approximated as: 

 

 
1 1 1 1 1( | ) ( )

1
( )

i i

k k k h k k

h nx

p x z w K x x

x
K x K

h h

+ + + + +≈ −

 =  
 

 (3.34)  

 

Where ( )hK x  is the Kernel density, h>0 is the Kernel bandwidth, nx is the 

dimension of the state-space.  

 

The Kernel is used for interpolation, with each particle contributing to the estimate 

in accordance with its distance from 1kx + . The kernel and bandwidth are chosen to 

minimize the Mean Integrated Square Error (MISE) between the posterior PDF 
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and the corresponding kernel estimate. When the samples are equally weighted, 

the optimal kernel is the Epanechnikov kernel [11]: 

 

 
22

(1 || || )     if ||x||<1
2

0                            otherwise

x

x

nopt

n
x

cK

+ −
= 



 (3.35)  

 

xn
c  is the volume of the unit sphere in xnR .If the posterior density is Gaussian with 

a unit covariance matrix, the optimal choice for the bandwidth can be given as: 

 1 1

4 41  with [8 ( 4)(2 ) ]x x x

x

n n n

opt n xh AN A c n π
−
+ +−= = +  (3.36)  

 

Regularized Particle Filter differs from the SIR filter only in resampling stage. 

During the resampling stage each particle is jittered by adding an extra term as 

shown in Equation 3.37:  

 *i i

k k opt k ix x h D ε= +  (3.37)  

 

In the above equation, kD  is obtained from the empirical covariance matrix of the 

particles using Cholesky decomposition at time k, i.e.  ( , )
T i i

k k k kD D Cov x w= in 

Equation 3.37. opth  is the optimal bandwidth and iε  
is a random number drawn 

from the corresponding Kernel.  RPF effectively jitters the resampled values.  

 

In this work Gaussian kernel is used for RPF, where the bandwidth becomes the 

variance of the Gaussian.  

 

One cycle of RPF is given in Table 3-7. 

 

The disadvantage of RPF is that variance of the posterior distribution increases. 

In order to overcome this problem Markov Chain Monte Carlo (MCMC) move step 

based on Metropolis-Hastings algorithm can be used [29]. The basic idea in 

Metropolis-Hastings algorithm is that a resampled particle *i

kx  is moved to a new 
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state if u α≤  where u is a uniform distributed random variable and α  is the 

acceptance probability. If u α>  then the move is rejected. 

Suppose particle *i

kx  is generated by duplicating i

kx  by resampling step. If the 

importance density is chosen prior distribution, The Metropolis-Hasting 

acceptance probability is given by: 

 

 * * *( | ) ( | )
min 1,

( | ) ( | )

i i i

k k k k

i i i

k k k k

p z x p x x

p z x p x x
α

 
=  

 
 (3.38)  

 

This acceptance probability equation can be interpreted as: if at the resampling 

step generated particle does not belong to higher probability regions in terms of 

measurement, this particle is not accepted. 
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Table 3-7 Regularized Particle Filter, [11] 

 

1 1 1 1 1[{ , } ] ({ , } , )
i i N i i N

k k i k k i kx w RPF x w z+ + = = +=  

• For i=1:N 
 

-Draw 1 1( | )
i i i

k k kx p x x+ +∼  

 

-Update weight  1 1 1
ˆ  = ( | )
i i

k k kw p z x+ + +  

 
• End For 

 
• For i=1:N 

 

-Normalize weight  1
1

1

1

ˆ
 =

ˆ

i
i k
k N

i

k

i

w
w

w

+
+

+
=
∑

 

 
• End For 

 

• Calculate the effective sample size: 
2

1

1

1ˆ

( )
eff N

i

k

i

N

w +
=

=

∑
 

 

• If ˆ
eff ThresholdN N<  

 

-Calculate the empirical covariance matrix 1kS +  of 1 1{ , }
i i

k kx w+ +  

 

-Compute 1kD +  such that 1 1 1

T

k k kD D S+ + +=  

 
-Resample using strafied sampling 
 
-For i=1:N 

o Draw i Kε ∼  from the Gaussian Kernel 

o *i i

k k opt k ix x h D ε= +  

           -End For 
 

•   End If   
 

  



 

43 

3.3 Maneuvering Tracking Filters 

In this section, the algorithms will be explained that are used for tracking a target 

that makes a coordinated turn. Since the turn rate is not known the process model 

is nonlinear as well as the measurement model. A reasonable approach to 

overcome the difficulties that rose because of the uncertainty in the turn rate is to 

use multiple model approach. Below firstly the multiple model filter is explained 

and  then it is applied it to track an object that makes a coordinated turn.    

 

3.3.1 Interacting Multiple Model Filter 

The idea behind interacting multiple model (IMM) is to have multiple filters, here 

denoted as subfilters, running in parallel. IMM is different than multiple model 

systems since a special interaction between the states of the paralel models is 

defined.Figure 3-4 shows the block diagram of IMM. For simplicity only two 

subfilters are illustrated. In IMM five different probability variables are used to 

calculate which model the system obeys. They are summarized in Table 3-8. If 

j

km  denotes the event that the system obeys model 
jm  at time k then the 

probability that the system changes from model i to model j, |

1P { | }
j i j i

r k kp m m −= , is 

a priori probability that is considered as a design parameter. 
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Table 3-8 The Probability variables that are used in the IMM algorithm 

j

kµ  P { }
j

r km  
Probability that the system is in model j at time step 

k. Based on measurements kZ  
up to  time k 

j

kC  1P { }
j

r km +  
Probability that the system is in model j at time step 

k+1. based on measurements kZ  
up to time k  

|j ip  1P { | }
j i

r k km m+  
Apriori probability that the system will make the 

transition from model i to model j.  

|i j

kµ  1P { | }
i j

r k km m +  

Conditional probability that the system was in model i 

at time k given that it is in model j at time k +1. Based 

on measurements kZ  
up to time k 

j

kλ  1( | , )k k kp z Z r j− =
 

Conditioned likelihood function of the sytsem at time 

k  

 

 

In the blocks called Filter 1 and Filter 2 each subfilter produces a new estimate of 

the state vector 
|

j

k kx  according to the model that the subfilter is using. The 

likelihood of the model j

kλ  is also calculated. j

kλ  is used in the block Probability 

Update where the probability variables are updated. In the block Merging all 
|

ˆ j
k kx  

are combined (merged). The estimates from the subfilters 
|

j

k kx  are weighted by 

their probabilities j

kµ  to obtain the total estimated state vector |
ˆ
k kx . 
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Figure 3-4 Block diagram of IMM Filter.  

 

In the Mixing block the model interacts to produce the inputs for Filter j, called 

0

1| 1
ˆ j

k kx − − . Assume that the system is in model j at time k. Since it is unknown in 

which model the system is at time k − 1 the estimates of the previous time step 

are weighted together according to 

 

 0 |

1| 1 1 1| 1
ˆ ˆj i j i

k k k k k

i

x xµ− − − − −=∑  (3.39)  

 

where 
|i jµ is given by Bayes’ theorem as follows: 

 |
| 1 1 1
1 1

1

{ | } { }
{ | }

{ }

j i i j i i
i j i j r k k r k k
k r k k j j

r k k

P m m P m p
P m m

P m C

µ
µ − − −

− −
−

= = =  (3.40)  

 

The total IMM algorithm is summarized  in Table 3-9. 
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Table 3-9 One Cycle of IMM Filter  

 

1. Mixing Calculate the mixed initial state vectors and covariance matrices. 

0 |

1| 1 1 1| 1

0 | 0 0

1| 1 1 1| 1 1| 1 1| 1 1| 1 1| 1

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ( ( )( ) )

j i j i

k k k k k

i

j i j i i j i j T

k k k k k k k k k k k k k

i

x x

P P x x x x

µ

µ

− − − − −

− − − − − − − − − − − − −

=

= + − −

∑

∑
 

2. Filtering For all subfilters j perform the time update and measurement update 

according to the algorithm of the subfilter. This yields 
|

ˆ j
k kx  and 

|
ˆ j

k kP . 

3. Mode Matching Determine the likelihood j

kλ  for the observation given model j. 

( )21

| 1 | 1/2 1/2

1 1
ˆ ˆexp ( ) ' ( )

(2 ) | | 2

j j j

k k k k j k k kM

j

z z z zλ
π

−
− −

 = − − Σ − Σ  
 

Σ  and 
| 1

ˆ( )j

k k kz z −−  is calculated in the measurement update in the filter and M is 

the dimension of the measurement vector. 

 

4. Propability Update Update the probability variables 
jµ , 

|i jµ  and 
jC   

1

|

|
|

j j
j k k
k

j j i i

k k

i

i j i
i j k
k j

k

C

C

C p

p

C

λ
µ

µ

µ
µ

−=

=

=

∑  

where 
1

j j

k kj
C Cλ −=∑ . 

5. Estimate and Covariance Combination Calculate the output of the filter. 

| |

| | | | | |

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ( ( )( ) )

j j

k k k k k

j

j j j j T

k k k k k k k k k k k k k

j

x x

P P x x x x

µ

µ

=

= + − −

∑

∑
 

 

For our problem, i.e., the maneuvering target tracking three sub filters are used; 

one for constant velocity (CV) motion, and the other two for the clockwise and 

counterclockwise coordinated turns. These models are implemented in MSC-EKF. 

CV motion sub filter is the model that is described in section 3.2.4. State transition 

matrix for coordinated turn is shown in Equation 3.41 which was described in 
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Section 2.2.4. The Jacobian corresponding to these transformations are given 

below. 

 

 

( )

sin( ) 1 cos( )
1 0

1 cos( ) sin( )
0 1

0 0 cos( ) sin( )

0 0 sin( ) cos( )

j j

k k

j j

k k

j j
j k k

k j j

k k

j j

k k

j j

k k

T T

T T
F

T T

T T

 Ω − Ω
− Ω Ω 

 − Ω Ω
=  

Ω Ω 
 Ω − Ω
 

Ω Ω  

           
(3.41)  

 

 

( ) ( )
1 11 0

( ) ( )
2 20 1

( )

( ) ( )
3 30 0

( ) ( )
4 40 0

k k

k k

k k

k k

j j
f f

x y

j j
f f

x yj
Fk j j

f f

x y

j j
f f

x y

 
∂ ∂ 

 
 ∂ ∂
 
 
 ∂ ∂
 
 ∂ ∂
 =  
 ∂ ∂
 
 ∂ ∂ 
 
 ∂ ∂ 
 

∂ ∂  

ɺ ɺ

ɺ ɺ
∼

ɺ ɺ

ɺ ɺ

     j= 2,3          (3.42)  

 

where  

 
( ) ( )

( )
1( )

( )
sin( )1 ( )

j j
jk k

j

k k k

j
f T

g k
x x

∂ Ω ∂Ω
= +

∂ Ω ∂ɺ ɺ
 (3.43)  

 

 
( ) ( )

( )
1( )

( )
(1 cos( ))1 ( )

j j
jk k

j

k k k

j
f T

g k
y y

∂ − − Ω ∂Ω
= +

∂ Ω ∂ɺ ɺ
 (3.44)  

 

 
( ) ( )

( )
2( )

( )
(1 cos( ))2 ( )

j j
jk k

j

k k k

j
f T

g k
x x

∂ − − Ω ∂Ω
= +

∂ Ω ∂ɺ ɺ
 (3.45)  
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( ) ( )

( )
2( )

( )
sin( )2 ( )

j j
jk k

j

k k k

j
f T

g k
y y

∂ Ω ∂Ω
= +

∂ Ω ∂ɺ ɺ
 (3.46)  

 

 
( )

( ) ( )
3

( )
3 cos( ) ( )

j
j j k
k

k k

j
f

T g k
x x

∂ ∂Ω
= Ω +

∂ ∂ɺ ɺ
 (3.47)  

 

 

 
( )

( ) ( )
3

( )
3 sin( ) ( )

j
j j k
k

k k

j
f

T g k
y y

∂ ∂Ω
=− Ω +

∂ ∂ɺ ɺ
 (3.48)  

 

 
( )

( ) ( )
4

( )
4 sin( ) ( )

j
j j k
k

k k

j
f

T g k
x x

∂ ∂Ω
= Ω +

∂ ∂ɺ ɺ
 (3.49)  

 

 

 
( )

( ) ( )
4

( )
4 cos( ) ( )

j
j j k
k

k k

j
f

T g k
y y

∂ ∂Ω
= Ω +

∂ ∂ɺ ɺ
 (3.50)  

 

with 

 ( ) ( ) ( )
( )

1 ( ) ( ) 2 ( )

( )

( ) 2

cos( ) sin( ) sin( )
( )

( )

( 1 cos( ))
          

( )

j t j t j t

j k k k k k k

j j j

k k k
j t

k k

j

k

T T x T x T T y
g k

T y

Ω Ω Ω
= − − +

Ω Ω Ω

− + Ω

Ω

ɺ ɺ ɺ

ɺ
 (3.51)  

 

 ( ) ( ) ( )
( )

2 ( ) ( ) 2 ( )

( )

( ) 2

sin( ) (1 cos( )) cos( )
( )

( )

sin( )
          

( )

j t j t j t

j k k k k k k

j j j

k k k
j t

k k

j

k

T T x T x T T y
g k

T y

Ω − Ω Ω
= − +

Ω Ω Ω

Ω
−

Ω

ɺ ɺ ɺ

ɺ

 (3.52)  

 

 ( ) ( ) ( )
3 ( ) sin( ) cos( )j j t j t

k k k kg k T Tx T Ty=− Ω − Ωɺ ɺ  (3.53)  
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 ( ) ( ) ( )
4 ( ) cos( ) sin( )j j t j t

k k k kg k T Tx T Ty= Ω − Ωɺ ɺ  (3.54)  

 

 ( ) 1

3/22 2

( 1)

( ) ( )

j j t

k m k

t t
k k k

a x

x x y

+
∂Ω −

=
∂  + 

ɺ

ɺ ɺ ɺ

 (3.55)  

 

 

 

3.3.2 Multiple-Model Particle Filter 

Like in Kalman-Filter based methods, multiple state-transition models can be 

utilized in particle filter algorithms to represent dynamic system more precisely 

[30, 31].  

For multiple-model particle filter (MM-PF) state is extended with the regime 

variable. Therefore, the state vector consists of both a continuous valued part and 

a discrete-valued part. The augmented state vector is expressed by [   r ]
T T

k k ky x=  

where kx  stands for target states (continuous part), and rk stands for regime 

variable (discrete part) where {1,2,....., }kr S s∈ = .  

In the MM-PF firstly, 1 1{ }
n N

k nr + =  is generated based on 1{ }
n N

k nr =  and the Markov 

transitional probability matrix [ ]ijπΠ = , where ,i j S∈ .This can be done by 

defining a new matrix RΠ  such that R DΠ =Π . D is the upper triangular matrix 

with diagonal and the elements above the diagonal being equal to 1. An example 

for s=2  is shown below: 

 

 

 

 

 

0.6 0.4

0.4 0.6

0.6 1

0.4 1

R

 
Π =  

 

 
Π =  

 

 (3.56)  

 



 

50 

Suppose the particle i is at regime 1 at time k. At time k+1 this particle will be at 

regime 1 with probability 11π  and it goes to state 2 with probability 12π . To realize 

this transition we draw a sample from the uniform distribution (0,1)nu U∼ . If nu  is 

in between 0 and 11π  the new regime is assigned as 1. If it is between 11π and 1 

(which is the (1,2)RΠ ) it is assigned as 2. This procedure can be extended to s 

number of regimes straightforwardly. 

 

At the next step, sampling importance-resampling algorithm is used based on 

regime variable of the particle. Table 3-10 summarizes the MM-PF algorithm. For 

our problem the components of continuous valued vector are target kinematic 

variables. The discrete valued part is turn model. The discrete valued part can 

take values 1,2,3 where 1 stands for constant velocity, 2 and 3 stands for 

clockwise and counter clockwise coordinated turn models, respectively.  

3.3.3 Marginalized Particle Filter 

The basic idea behind the Marginalized (Rao-Blackwellized) Particle Filter (MPF)  

is partitioning the state vector into two parts as linear and non-linear. By this way, 

state dimension for the particle filter solution is kept small, which in turn increases 

the accuracy of the particle filter solutions. Let the state vector be ( , )
l n T

k k kx x x=  

where l

kx  corresponds to the states that enters both the state and observation 

model linearly, n

kx  corresponds to the nonlinear states that has non-linear 

propagation and measurement equations. Essentially particle filter solution is 

applied to non-linear states, n

kx  . The linear states are propagated through 

Kalman Filter for each particle.  More information about MPF can be found in [27]. 

In this work since none of the states has a linear part, a suboptimal solution 

namely the Extended Kalman Filter (EKF) is used for target kinematic variables 

and particle filter is used for regime transition variable. One cycle for MPF is given 

in Table 3-11.  

For regime transition, kr  optimal importance density can be used for particle filter 

[9].  
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Table 3-10 Multiple Model Particle Filter, [11]  

 

1 1 1 1 1[{ , } ] ({ , } , )
i i N i i N

k k i k k i ky w MMPF y w z+ + = = +=
 

• [   r ]
T

k k kx y=   

 
• For n=1:N 

-Draw nu  from a uniform distrubition  

-Set n

ki r=  

-m=1  

-While ( RΠ (i,m) < nu )  

o m=m+1 
 

-End While 

-set 1

n

kr m+ =  

• End For 
 

• Regime conditioned sampling importance resampling  

            1 1 1[{ , }] [{ , , }]
n n n

k k k k kx w RC SIR x w z+ + += −            

 

• Calculate the effective sample size: 
2

1

1

1ˆ

( )
eff N

i

k

i

N

w +
=

=

∑
 

 

• If ˆ
eff ThresholdN N<  

 

-Resample 
 

• End If   

• 1 1 1[   r ]
T

k k ky x+ + +=  
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Table 3-11 Marginalized Particle Filter, [11] 

 

1| 1 1| 1 1 1 | | 1 1
ˆ ˆ[{ , , } ] Marginalized ({ , , } , )i i i N i i i N

k k k k k i k k k k k i kx P r PF x P r z+ + + + + = = +=
 

 
• For i=1:N 

-Draw 1

i

kr +  from the optimal importance density  

-Compute the unnormalized weights 1

i

kw +ɶ  

• End For 
 

• Compute the normalize weights 1

i

kw +  

 
• For i=1:N 

-Apply one-step-ahead EKF 

- 1| 1 1| 1 | | 1
ˆ ˆ[ , ] [ , , , ]i i i i i

k k k k k k k k k kx P EKF x P r z+ + + + +=  

• End For 
 

• Calculate the effective sample size: 
2

1

1

1ˆ

( )
eff N

i

k

i

N

w +
=

=

∑
 

• If ˆ
eff ThresholdN N<  

 

-Resample   
• End If 
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3.3.4 Auxiliary Multiple Model  Particle Filter 

In multiple-model estimation remember that aim was to estimate, the posterior 

distribution of the state and the regime variable 1 1 1( , | )k k kp x r Z+ + + [15].  For 

Sequential Monte Carlo Methods this density is presented by particles, so the 

posterior density for t h
i particle at time 1k+ can be written as [11]:  

 

 

 

 

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

( , , | ) ( | ) ( , , | )

                              = ( | ) ( | , , ) ( | , ) ( | )

                              = ( | ) ( | , ) ( | )

k k k k k k k k

k k k k k k k k

i i

k k k k k k k

p x i r Z p z x p x i r Z

p z x p x i r Z p r i Z p i Z

p z x p x x r p r r

+ + + + + + +

+ + + + +

+ + + + +

∝

i

k
w

 (3.57)  

 

In Equation 3.57 1( | )
i

k kp r r+  is an element transitional probability matrix Π . Since 

it is hard to sample from 1 1( , , | )k k kp x i r Z+ +  define a new importance sampling 

function 1 1( , , | )k k kq x i r Z+ + : 

 

 
1 1 1 1 1 1 1 1 1( , , | ) ( | ( )) ( | , ) ( | )

i i i i

k k k k k k k k k k k kq x i r Z p z r p x x r p r r wµ+ + + + + + + + +∝  (3.58) 

 

Here 1

i

kµ + 's are defined as support points and can be defined as: 

 
1 1 1 1

1 1

( ) { | , }

               =f(x ,x ,r )

i i

k k k k k

i o

k k k

r E x x rµ + + + +

− +

=
 (3.59)  

 

In this work importance sampling function 1 1 1( | , | )k k kq x i r Z+ + +  is selected as prior 

distribution:  

 
1 1 1 1 1( , , | ) ( | , )k k k k k kq x i r Z p x x r+ + + + +≜  (3.60)  

 

If Equation (3.58) is integrated with respect to  1kx +  to get an expression for 

1 1( , | )k kq i r Z+ + Equation (3.61) is obtained. 

 
1 1 1 1 1 1( , | ) ( | ( )) ( | )

i i i

k k k k k k k kq i r Z p z r p r r wµ+ + + + + +∝  (3.61)  
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In AUX-MMPF, firstly a random sample is selected from the distribution 

1 1 1( , , | )k k kq x i r Z+ + + . This can be achieved  by first sampling the regime variables 

for corresponding particle i.e, { , }
j j

ki r [11]. To do this, all N  particles firstly are 

propagated for all regimes {1, 2...., }R s= . The number of particles is now 

increased to sN . Each of the  sN  particles is assigned a weight using Equation 

(3.64) and N  particles with 
1{ , }j j N

k ji r =   are sampled using obtained weights.  The 

resultant triplet sample 
1{ , , }

j j j N

k k ix i r =
 is a random sample from density 

1 1 1( , , | )k k kq x i r Z+ + + . To use these samples to characterize 1 1 1( , , | )k k kp x i r Z+ + + , 

weights j

kw  are attached to each particle ,where j

kw  is ratio of (3.61) and (3.60). 

Notice that in Equation 3.62 importance sampling function is replaced by prior 

distribution. 

 

 
1 1 1 1 1 1

1 1 1 1 1

1 1

1

( | ) ( | , ) ( | )

( | ( )) ( | , ) ( | )

( | )
     

( | ( ))

j j j

j j j

j j i j j i i
j k k k k k k k k
k ij j i j j i i

k k k k k k k k k

j

k k

ij

k k k

p z x p x x r p r r w
w

p z r p x x r p r r w

p z x

p z r

µ

µ

+ + + + + −

+ + + + −

+ +

+

=

=

 (3.62)  

 

By defining  the augmented state vector as 
1 1[ , , ]

T

k k ky x i r+ +≜ , the distribution 

1 1 1( , , | )k k kp x i r Z+ + +  can now be written as: 

 
1 1 1

1

( , , | ) ( ) ( )
M

i j

k k k k k k k

j

p x i r Z p y w y yδ+ + +
=

= ≈ −∑  (3.63)  

 

A single cycle of the  AUX-MMPF is described in Table 3-12. 
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Table 3-12 Auxiliary Multiple Model Particle Filter,[11]  

 

1 1 1 1 1[{ , } ] ({ , } , )
i i N i i N

k k i k k i ky w AUX MMPF y w z+ + = = += −
 

• [   r ]
T

k k kx y=   

 
• For n=1:N 

-For 
kr =1:s  

o Compute support points 
1 1 1( ) ( , , , )

i i o o

k k k k k kr f x x x rµ + − +=  

o Compute weights 1 1 1 1 1 1( , | ) ( | ( )) ( | )
i i i

k k k k k k k kq i r Z p z r p r r wµ+ + + + + +∝  

-End For  
• End For 

 
• Draw N samples 

1{ , }j j N

k ji r =  from the Ns  samples according to weights 

created in Step 1. 
 

• Predict the selected N samples 
-For j=1:N 

o 
1 1( , , , )

j i o o j

k k k k k kx f x x x r G v− += +  

o 
( | )

( | ( ))
j

j
j k k
k i j

k k k

p z x
w

p z rµ
∝  

- End For  
                       

• Normalize the weights 
 

• Calculate the effective sample size: 
2

1

1

1ˆ

( )
eff N

i

k

i

N

w +
=

=

∑
 

• If ˆ
eff ThresholdN N<  

 

-Resample 
 

• End If   

• 1 1 1[   r ]
T

k k ky x+ + +=  
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CHAPTER 4 

4 SIMULATIONS and DISCUSSION 

In this chapter, the algorithms and system models outlined in the previous 

chapters are applied to representative target trajectories and results are 

discussed. 

4.1 Performance Evaluation 

A tracking filter’s performance depends on a variety of things, such as the 

trajectories of the target and the platform, measurement of noise and initialization 

of the filter and the process. How accurate the estimate will be in bearings-only 

target tracking depends, to a large extent, on the geometry of the scenario in 

question. Many simulations are needed to test the filter for all possible trajectories 

and filter initializations. Even if all scenarios could be tested, the result set will be 

too large to interpret . We have the risk that the filter shows too good performance 

in simulations while it may not be the case in practice because the scenarios 

diverts too much from the reality. There is also another risk which is the opposite 

of the above mentioned, i.e., the risk that the filter showing a bad performance in 

simulations is rejected; however, simulation scenarios may have low probability to 

occur in reality. In the case that the common scenarios are known, they can be 

directly used in the simulations. Another alternative can be testing the filter for 

scenarios in which performance of the filter is the most critical. Therefore, if the 

filter shows a good performance in critical situations then probably a performance 

which is worse can be accepted for the other scenarios. Furthermore, filters which 

show bad performance in critical situations can also be rejected without 

conducting some other tests.     
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Monte Carlo simulation is a method that is widely used to test the performance of 

the filters. In this method, all the filter inputs are considered to be variables with 

known distributions. Inputs that are obtained from these distributions can be used 

in many simulations. If the number of simulations is big then the filter performance 

is considered to reflect the true behavior of the filter. Monte Carlo Stimulations 

can be used to test the filter for several scenarios and the mean estimation error 

can be investigated in a many simulations, which helps to measure how well the 

filter performs in general.        

 

In our simulations, process and measurement noises are selected as Gaussian.  

In order to investigate the influence of a parameter, it is varied in a deterministic 

manner while the others are held constant. To evaluate the performance a set of 

simulations are performed and the mean value of estimation error is investigated. 

The details about the selection of the parameters or noises are described in detail 

in the Simulations section. The tested parameters include the target initial position 

and velocity.  

 

The main parameter used for performance comparison in this study is the Root-

Mean-Square Error (RMSE) of the range. It can be computed in 2D (x, y) or in 3D 

(x,y,z). RMSE is calculated at each time step as given in Equation 4.1 to be able 

to observe the maneuver dependent characteristics of the algorithms. If there are 

(Nmc) number of Monte Carlo runs  for a specified scenario RMSE is averaged.  

 

 
( ) ( ) ( )( )2 2 2

1 1 2 2 3 3

1

1 mcN
true true true

k k k k k k k

iMC

RMSE x x x x x x
N =

= − + − + −∑  (4. 1) 

 

 

As an additional parameter, the time mean  of root means square error RMSE is 

also calculated for each simulation. Here L is the number of steps in the 

simulation. 

 

 
( ) ( ) ( )( )2 2 2

1 1 2 2 3 3

1 1

1 1 mcNL
true true true

k k k k k k

k iMC

RMSE x x x x x x
L N= =

= − + − + −∑ ∑  (4. 2) 
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Another parameter evaluated is range root mean square after observer 

maneuver. Since the system may be unobservable before the maneuver, this 

parameter is evaluated for the performance of the filters when the system 

becomes observable. Also, the final range error is calculated which is the error 

after obtaining the last measurement. 

  

Lastly, confidence ellipses are shown for some simulation results. The uncertainty 

of an estimate can be expressed in terms of confidence ellipse [34]. For Kalman 

Filter solutions confidence ellipses can be calculated using covariance matrix 

values, and for particle filter solutions it can be evaluated using the particles at 

one time instant. The ellipses are drawn using the function in [37].  

4.2 Filter Initialization 

Initialization of filters is an important issue in estimation theory. Since the problem 

with bearings only tracking is unobservable for some sceanarios, this problem 

becomes crucial. In the literature initialization problem for bearings-only tracking is 

rarely mentioned.  

4.2.1 Cartesian Coordinates Kalman Filter Initialization 

Suppose that the initial range error prior is normally distributed ( 2
( , )rr N r σ∼ . The 

bearing measurement error is zero mean Gaussian, which can be shown as 

2
( , )N ϕϕ ϕ σ∼  where ϕ is the first bearing measurement [9]. Let x1 and x2 

components of the Cartesian state vector be written in terms of r and ϕ as follows: 

 

 
1 2cos       x sinx r rϕ ϕ= =  (4. 3) 

 

From the distributions of ( )r r−  and ( )ϕ ϕ−  and the transformations above, it 

can be shown that an approximate mean and covariance of ( x1 ,x2 ) are: 
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1 2

1 1 1 2

2 1 2 2

1 1 2 2[( )( ) ]
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Similarly, suppose that the target speed s and the course c is given by 

2
( , )rs N s σ∼  and 2

( , )rc N c σ∼ . The covariance values of velocity components 1xɺ  

and 2xɺ  can be calculated as: 

 
1 1

2 2

1 2

2 1 1 2

2 2 2 2 2

2 2 2 2 2

2 2 2

sin cos

cos sin

( ) sin cos

x x c s

x x c s

x x s c

x x x x

P s c c

P s c c

P s c c

P P

σ σ

σ σ

σ σ

= +

= +

= −

=

ɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ ɺ ɺ ɺ

 (4. 6) 

 

Then the initial covariance matrix for the 2-D case can be defined as: 
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 (4. 7) 

 

4.2.2 Modified Spherical Coordinates Kalman Filter Initialization 

In the literature Modified Spherical Coordinates (MSC) Kalman Filter covariance 

initialization is done by using heuristic values, and  taking covariance matrix as 

diagonal [3,4,8,32,].  
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One of the proposed solutions is transforming the covariance found in Cartesian 

coordinates into MSC using Jacobian matrix [11]. 
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 (4. 8) 

 

where G is the Jacobian matrix of the transformation function from Cartesian to 

MSC.. However, since the function g is highly nonlinear, this approximation is not 

satisfactory for some cases. Therefore, a different initialization procedure can be 

defined using Monte Carlo Simulation Techniques as: 
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 (4. 9) 

 

where pn  represents the number of particles, xi is a sample drawn from the 

Cartesian coordinates initial estimate and covariance value. Here the samples are 

assumed to have multivariate normal distribution. In our simulations, this simple 

trick improves the accuracy of the algorithm. 

4.2.3 Range Parameterized Kalman Filter Initialization 

Range-Parameterized Extended Kalman Filter (RP-EKF) divides the range 

interval into 6 subintervals ( min
ˆ 2o rr r σ= − , max

ˆ 2o rr r σ= + ). The speed interval is 

also divided into 6 intervals ( min
ˆ 2o ss s σ= − , min 0̂ 2 ss s σ= + ). Each filter is 

associated within a range estimate and speed estimate which gives 6x6=36 filters 

in total. Covariance matrix is initialized for each filter by using the algorithms 

described for MSC. 

4.2.4 Particle Filter Initialization 

For a particle filter application, samples are drawn from the multivariate Gaussian 

distribution using the covariance evaluated for MSC or Cartesian coordinates. 
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Also, accept-reject algorithm is used in order to not to have negative range or 

negative velocity magnitude.  

4.3 Non-Maneuvering Target Simulations 

For non-maneuvering target problem Cartesian coordinates-Extended Kalman 

Filter (CAR-EKF), modified spherical coordinates-Extended Kalman Filter (MSC-

EKF), regularized particle filter (RPF) algorithms are implemented. The theory 

behind these algorithms are described in Section 3. Regularized particle filter is 

selected, since the process noise is small compared to the state values. The 

particle diversity is achieved by the regularization step. Resampling is carried 

when 9 /10effN xN< . Here N denotes the total number of particles. At the 

regularization step a Gaussian kernel is used. opth is calculated using  Equation 

3.36, where the 
xn

c
 
is equal to 2 / 2π  ( xn=4).  

4.3.1 Scenario 1 

In the first scenario, 2D non-maneuvering target case is investigated. Target and 

observer trajectories are shown in Figure 4-1. Also, using Scenario 1 the 

proposed MSC filter covariance initialization procedure is investigated.  

 

Observer has an initial course of 140° and has a speed of 155 m/s. It turns 

between 13-17 seconds at constant speed and has a new course of +20°. Target 

moves on a straight line with course of -160° at a initial speed of 125 m/s.  Target 

velocity is propagated using Singer acceleration model. Total time of the 

simulation is 30 seconds. 
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Figure 4-1 Target and Observer Trajectories for Scenario 1 

 

In the first scenario target moves with nearly CV on a straight line, with the noise 

added on the magnitude of the velocity.  An example of velocity magnitude is 

shown in Figure 4-2. 
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Figure 4-2 Velocity Magnitude of Target 

  

    The initial error and simulation parameters can be found in Table 4-1. 

 

Table 4-1 Scenario 1 Simulation Parameters 

Measurement Noise Normally Distributed  with µ = 0 and σ  = 1.5° 

Initial Range Error Normally Distributed  with µ = 0 and σ  = 1.5e3 m 

Initial Speed Error Normally Distributed  with µ = 0 and σ  = 60 m/s 

Initial Course Error Normally Distributed  with µ = 0 and σ = 30° 

Process Noise  Singer  Model with (0)kw  = 1 m/s and β =0.5m/s 

Particle Number For SIR 5000 

 

100 MC runs are carried out for Scenario 1. In the first result set, the MSC 

covariance is initialized using linearization technique. The range error is shown in 

Figure 4-3 and a detailed comparison is given in Table 4-2. 
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Figure 4-3: Scenario 1 Simulation Results for Initialization Procedure 1 

 

The comparison criteria used in Table 4-2 is described in chapter 4. Here RTAMS 

stands for root time average mean square error, which is the all time averaged 

error for 100 MC runs. RTAMS after the maneuver (t=17s) is the root time 

average mean square error after the observer platform maneuver. And the final 

error is the final range error value that it is the error at final time (t=30 s).  

 

Table 4-2 Scenario 1 Performance Comparison for Initialization Procedure 1 

Algorithm  RTAMS(m) 
RTAMS(m)  

After the Manueveur 
Final Error(m) 

Cartesian EKF 1525 1086 676 

MSC EKF 1455 721 549 

RP EKF 1546 494 262 

Regularized PF 1027 435 159 
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The same simulation is carried out for MSC initialization based on MC estimation. 

The range error for MSC and RP-EKF is shown in Figure 4-4 and a detailed 

comparison is given in Table 4-3.  

 

Figure 4-4: Simulation Results for Initialization Procedure 1 and 2 for MSC 

 

Table 4-3  Performance Comparison for Different Initialization  Procedures 

Algorithm RTAMS(m) 
RTAMS(m)  

After the Maneuver 

Final 

Error(m) 

MSC EKF with initial Covariance 1 1455 721 549 

MSC EKF with initial Covariance 2 1398 703 548 

RP EKF with initial Covariance 1 1546 494 262 

RP EPF with initial covariance 2 1216 393 240 

 

 

Table 4-3, it can be seen the range estimate accuracy is increased for Monte 

Carlo initialization solution. Actually, range root time averaged mean square error 
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(RTAMS) for all observation period has an improvement of 5% in MSC EKF 

solution and 30% in RP-EKF solution.  

 

In Figure 4-4, MSC and RP-EKF range error have some jumps before the 

maneuver of the observer. This is because, in some of the MC runs filter become 

unstable for a period of time, which is named here as partially divergent track. 

Partially divergent track means that the filter become unstable for a period of time, 

but eventually it converges to the true solution. This situation is illustrated in 

Figure 4-5. The solution is unstable in 11-15 seconds interval, and after this 

interval, it converges to the true estimate. All the states except the range state are 

observable, therefore they are not shown in the figure. 

 

 

Figure 4-5 An Example of Partially Divergent Track Range Error 

 

 

Partially divergent tracks are result of the covariance matrix initialization errors.  

This problem is addressed in [3].  Here, we proposed a different initialization 

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

time(seconds)

R
an

ge
 E

rr
or

(m
et

er
s)



 

67 

procedure to solve this problem. Even though, the same problem is encountered, 

error values are improved substantially.  

 

RP-EKF improvement is much more than MSC-EKF. The reason is there are 36 

filters running in parallel in RP-EKF, and the probability of producing partially 

divergent tracks is larger (the weighting of the divergent filters become zero after 

some time).  

 

Error ellipses at time 10, 20 and 30 seconds are shown in Figure 4-7, Figure 4-8, 

Figure 4-9 and Figure 4-10.  Here the MSC EKF and RP-EKF are initialized using 

Monte Carlo Estimation technique. RP-EKF and Regularized PF confidence 

(error) ellipse encapsulate the true position while MSC EKF and Cartesian EKF 

do not. 

 

For Scenario 1 regularized particle filter (RPF) is implemented in modified 

spherical coordinates (MSC), too.  Remember from Section 3 that a regularization 

step is included in RPF filter in order to prevent sample depletion. In MSC for 2 

dimensional problem (2D), states can be written as: [1/    / ]MSC Ty r r rϕ ϕ= ɺ ɺ .Since 

the last three states are observable, regularization step is only implemented for 

first state, which is the state that gives range information. By this way, increase in 

the variance of the estimates is kept bounded. The range error for RPF MSC filter 

and RPF Cartesian coordinates filter is shown in Figure 4-6. 
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Figure 4-6 Comparison of Particle Filter Solutions with Different Coordinate 

Systems 

 

As shown in Figure 4-6 overall performance RPF filter in MSC is better than RPF 

filter in Cartesian Coordinates. We would like to emphasize that regularization is 

applied partially. As shown in Figure 4-10 and Figure 4-11 the variance of the 

MSC regularized PF solution variance is small compared to Cartesian one. It 

remains as a future work to be studied in detail.  
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Figure 4-7 Cartesian Kalman Filter Confidence Ellipse Results for Scenario 1 

 

Figure 4-8 MSC Filter Confidence Ellipse Results for Scenario 1 
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Figure 4-9 RP EKF Confidence Ellipse Results for Scenario 1 

 

Figure 4-10 Cartesian Regularized PF Confidence Ellipse Results for Scenario 1 
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Figure 4-11 MSC Regularized PF Confidence Ellipse Results for Scenario 1 

 

4.3.2 Scenario 2 

In scenario 2 observer constantly performs a coordinated turn maneuver with a 

speed of 155 m/s. Target moves on a straight line with -160° bearing at an initial 

speed of 125 m/s.  Target and observer trajectories are shown in Figure 4-12.  

Target velocity is propagated using Singer acceleration model. Total time of the 

simulation is 50 seconds. 

 

100 MC runs are carried out for Scenario 2. The range error is shown in Figure 

4-13. 
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Figure 4-12 Target and Observer Trajectories for Scenario 2 

 

 

Figure 4-13 Scenario 2 Simulation Results  
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In the second scenario since observer constantly performs a maneuver, the 

performances of the studied filters do not differ. After t=25 s all the filters 

converged to the true result.  

4.3.3 Scenario 3 

In the third scenario, again 2D non-maneuvering target case is investigated. In 

this scenario the observer follows a leg-by-leg trajectory. Target and observer 

trajectories are shown in Figure 4-14. Measurement period is taken as 3 seconds 

which is denoted her as T. 

 

The target maintains a constant speed and bearing of 120 m/s and 45° 

respectively. Observer also maintains a constant speed of 150 m/s, but 

periodically performs 90°course changes as follows: 

 

from 90° to 0°  at t = (10 + 40k)T sec, k = [0; 1; 2] 

from 0° to 90° at t = (30 + 40k)T sec, k = [0; 1] 
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Figure 4-14: Target and Observer Trajectories for Scenario 3 

 

Initial error and simulation parameters can be found in Table 4-4. 

 

100 MC runs are carried out for comparison. The MSC covariance is initialized 

using Monte Carlo simulation based technique. The range error is shown in 

Figure 4-15 and a detailed comparison is given in Table 4-5. 

 

Table 4-4 Simulation Parameters for Scenario 2 

Measurement Noise Normally Distributed  with µ = 0 and σ  = 1.5° 

Initial Range Error Normally Distributed  with µ = 0 and σ  = 10e3 m 

Initial Speed Error Normally Distributed  with µ = 0 and σ  = 100 m/s 

Initial Course Error Normally Distributed  with µ = 0 and σ = 30° 

Process Noise  Singer  Model with (0)kw  = 1 m/s and β =0.5° 

Particle Number For SIR 5000 
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Figure 4-15: Scenario 3 Simulation Results 

 

Table 4-5 Scenario 3 Performance Comparison  

Algorithm RTAMS(m) 
RTAMS(m)  

After the Maneuver 
Final Error(m) 

Cartesian EKF 6172 4382 46231 

MSC EKF 5308 3995 4315 

RP EKF 5001 3779 3942 

SIR PF 3642 2865 3054 

 

 

As shown in Table 5-5 RPF particle filter performance is superior than other 

filters. In addition, since the initial range is large, the root time averaged mean 

square (RTAMS) error increased compared with Scenario 1. 

 

In Scenario 3 system can be called “observable”. Observer maneuvers are very 

sharp and this movement increases the range observability for the problem.  
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4.3.4 Scenario 4 

In Scenario 4, 3 dimensional (3D) bearings-only non-maneuvering target tracking 

is investigated. It is assumed that two measurements are taken from the sensor, 

one is the angle between x and y coordinates (azimuth angle), and the other is 

the angle between z and x-y plane (elevation angle). Observer and target have 

the same trajectory on the x-y plane with Scenario 1. They move on the plane z=0 

meters ,and z=1000 meters respectively. The trajectory that is used in the 

simulation is given in Figure 4-16.  We imposed a constraint on the z velocity zv. 

This constraint is implemented by initializing z velocity by zero, and assigning a 

relatively small positive value for Pvz (Equation 5.8). 

 

 

z

8 2 2

v

0 m/s

P 10  m /

zv

s−

=

=
 (4. 10)

 

 

Figure 4-16 Target and Observer Trajectories for Scenario   

 

Simulation parameters for Scenario  is given in Table 4-6. 
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Table 4-6 Simulation Parameters for Scenario 4 

Measurement Noise Normally Distributed  with 
2

2

0
[0 0]  ,R= , 1.5

0

T σ
µ σ

σ

 
= = ° 

 
  

Initial Range Error Normally Distributed  with µ = 0 and σ  = 2e3 m 

Initial Speed Error For 

xv and yv  

Normally Distributed  with µ = 0 and σ  = 100 m/s 

Initial Course Error For 

xv and yv  

Normally Distributed  with µ = 0 and σ = 30° 

Process Noise  Singer  Model with (0)kw  = 1 m/s and β =0.5° 

Particle Count For SIR 5000 

 
 
100 MC runs are carried out for comparison. The range error is shown in Figure 

4-17 and a detailed comparison is given in Table 4-7. 

 

Figure 4-17 Scenario 4 Simulation Results 
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Table 4-7 Scenario 4 Performance Comparison 

Algorithm RTAMS(m) 
RTAMS(m)  

After the Maneuver 
Final Error(m) 

Cartesian EKF 1695 882 797 

MSC EKF 1309 551 761 

RP EKF 987 302 391 

Regularized  PF 960 223 229 

 

From Figure 4-17 it is seen that the regularized particle filter (Regularized PF) and 

the range-parameterized extended Kalman Filter (RP-EKF) error values are 

decreased even before the observer maneuver (t=15 s). The constraint put on z 

velocity vz keeps one state error bounded. Also, two measurements are taken in 

at a time, so H matrix can bring more improvement to the solution. 

4.4 Maneuvering Target Simulations 

For maneuvering target problem interacting multiple model filter (IMM), multiple-

model particle filter (MM-PF), marginalized particle filter (MPF), and auxiliary 

particle filter (APF) algorithms are implemented. The theories behind these 

algorithms were described in Section 3.  Initialization procedures are the same as 

in the non-maneuvering case.    

4.4.1 Scenario 5 

The target-observer geometry for the maneuvering target simulations are shown 

in Figure 4-18. Target executes a coordinated turn maneuver between 20 and 25 

seconds with a turn rate, 20 / sΩ= ° . After that maneuver, it travels with nearly 

constant velocity for the rest of the observation period, which lasts 40 seconds.  

Observer has the same trajectory for the first 30 seconds with Scenario 1. 

Between 32-35 seconds it executes a second maneuver. After the second 

maneuver, it travels on a straight line.  

 

We choose the transitional probability matrix as:  
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 0.9 0.05 0.05

0.4 0.5 0.1

0.4 0.1 0.5

 
 Π =  
  

 (4. 11)  

 

Column 1, 2 and 3 represent the constant velocity model, clockwise coordinated 

turn model, and counter-clockwise coordinated turn model, respectively. A high 

probability value is assigned for transition to CV model. Also, it is assumed that 

passing from one CT model to another has a low probability.  

 

Figure 4-18 Target and Observer Trajectories for Scenario 5 

 

Initial error, noise and simulation parameters are given  in Table 4-8. 

 

Table 4-8 Simulation Parameters for Scenario 5 

Measurement Noise Normally Distributed  with µ = 0 and σ  = 1.5° 

Initial Range Error Normally Distributed  with µ = 0 and σ  = 20e3 m 

Initial Speed Error Normally Distributed  with µ = 0 and σ  = 100 m/s 

Initial Course Error Normally Distributed  with µ = 0 and σ = 30° 

Process Noise  Singer  Model with (0)kw  = 1 m/s and β =0.5° 
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Particle Number For SIR 5000 

Two different cases are investigated for maneuvering target tracking.  

 

Firstly, it is assumed that the turn rate is known exactly. The range error for 

mentioned case is shown in Figure 4-19. The error ellipses for IMM EKF and 

multiple model filter at  time 10,20,30,40 are shown in Figure 4-20 and Figure 

4-21 

 

 

Figure 4-19 Maneuvering Target with Known Turn Rate Simulation Results 
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Figure 4-20 IMM EKF Confidence Ellipse Results for Scenario 5 

 

 

Figure 4-21 Multiple Model PF Confidence Ellipse Results for Scenario 5 
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From Figure 4-19, it is clear that the performance of the IMMEKF is poor 

compared to the other three filters. Also, IMM-EKF has one divergent track which 

is not taken into consideration in the calculations.  A detailed comparison is given 

in Table 4-9.  MMPF has the best performance, which has a mean range error of 

377 meters after the observer maneuvers. The performance differences can be 

explained as follows: There are two sources of approximations in IMM-EKF. 

Firstly, IMM-EKF approximates the non-Gaussian density by a Gaussian and use 

linearization approximation for the Kalman Filter. Secondly, the mode for the 

target  is estimated using the mode probabilities with merging of histories. 

  

For particle solutions the non-Gaussian posterior density is approximated in a 

near optimal manner and there is no linearization error. In addition, the mode is 

estimating by the mode probabilities with no merging of histories. 

 

It is interesting that the Multiple Model Particle Filter (MM-PF) solution is better 

than Marginalized Particle Filter solution. Since in Marginalized PF solution the 

optimal importance density is used, it is expected to have better performance.  

However, it uses EKF for (a local linearisation approximation) to compute the 

mode-conditioned filtered estimates. It can be concluded that linearization error is 

dominant over the importance density error. 

 

Table 4-9 Scenario 5 with Known Turn Rate Performance Comparison 

Algorithm RTAMS(m) 
RTAMS(m)  

After the Maneuver 
Final Error(m) 

IMM  1386 1157 1722 

AUX-MM-PF 970 534 529 

MM-PF 886 377 199 

Marginalized PF 948 457 506 

 
 
Mode probabilities for IMM-EKF and MM-PF are shown in Figure 4-22 and Figure 

4-23, respectively. 
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Figure 4-22 Mode Probabilities of IMM-EKF 

 

 

 

Figure 4-23 Mode Probabilities of MM-PF 
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Next, maneuvering a target with unknown coordinate turn is investigated. 

Modification is done only for the interacting multiple model extended Kalman 

Filter.  

 

In the first simulation set with unknown turn rate, turn rate estimate is sampled 

from a Gaussian density with 20 / sµ = °  and 5 / sσ = °  ,where the actual turn 

rate is 20 / sΩ= ° . For this set 200 Monte Carlo runs are carried .The other 

parameters are the same as the case with known turn rate, which are given in 

Table 4-8. The simulation results are shown in Figure 4-24 and are summarized in 

Table 4-10. 

 

Figure 4-24 Maneuvering Target with unknown Turn Rate Case 1 Simulation Results 

 

Table 4-10 Scenario with unknown Turn Rate Performance Comparison 

Algorithm RTAMS(m) 
RTAMS(m)  

After the Maneuver 
Final Error(m) 

IMM-EKF  1290 929 1116 

AUX-MM-PF 986 540 642 

MM-PF 905 478 662 

Marginalized PF 933 571 883 
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In Table 4-10 IMM-EKF seems to have better results than the case with known 

turn rate. However, IMM-EKF produced 6 divergent tracks for this case. 

Therefore, it can be said that overall performance is degraded. Divergent tracks 

are discarded in evaluating the values of Table 4-10. Despite the decline in 

performance of particle filters, it can be considered as successful.    

 
For the second simulation set with unknown turn rate, turn rate estimate is 

sampled from a Gaussian density with 20 / sµ = °  and 10 / sσ = ° . For this set 

200 Monte Carlo runs are carried, too. The simulation results are shown in Figure 

4-25 and a detailed comparison is given in  Table 4-11. 

 

Figure 4-25 Maneuvering Target with unknown Turn Rate Case 2 Simulation Results 
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Algorithm RTAMS(m) 
RTAMS(m)  

After the Maneuver 
Final Error(m) 
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MM-PF 947 561 722 
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IMM-EKF resulted in 8 divergent tracks for this simulation set. If one compare 

Table 4-10 and Table 4-11, it can be seen that the performance of the particle 

filter solutions are degraded, too. Nevertheless, it is acceptable in terms of 

divergent tracks. Since the number of divergent tracks for IMM-EKF solution 

increases, it can be said its sensitivity for turn rate error is much more than the 

particle filter solutions. 

 
It can be concluded that even the IMM-EKF is modified in order to overcome the 

unknown rate error, its performance degraded substantially. On the other hand, 

the particle filter solutions performance is acceptable in terms of convergence.  
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CHAPTER 5 

5 CONCLUSIONS 

In this thesis, the problem of bearings-only target tracking is examined using 

recursive estimation algorithms. Particle filter algorithms are compared with 

classical Kalman filter based algorithms for different system models and 

scenarios. Main focus is obtaining a robust estimation algorithm for bearings-only 

target tracking problem. 

 

Mainly two different problems are investigated, non-maneuvering and 

maneuvering target tracking.  The system models for mentioned problems are 

described in detail. It is well known that the estimation filters’ performances 

depend on the characteristics of the model. Expressing the problem in a suitable 

way increases the resultant performance for any filtering method. In the tracking 

problem considered here different coordinate axes choices are compared.   

 

After defining the state space model, related filtering techniques are described. 

Firstly, extended Kalman Filter based solutions are introduced. Secondly, the 

sequential Monte Carlo methods, i.e. particle filters, and the theory behind them 

are introduced. Based on particle filter solutions, the key points like the 

degeneracy phenomenon and the choice of the importance density are 

underlined. In this work regularization is applied to only the unobservable state 

variable namely the inverse of the range. We believe that this choice will improve 

the filer performance by keeping the variance of the particles smaller compared to 

application of the regularization to full state. In the context of tracking 

maneuvering target tracking, a different importance density, auxiliary multiple 
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model particle filter  and marginalized particle filter are studied in order to  provide 

improvements. 

 

In order to track non-maneuvering target extended Kalman Filter and regularized 

particle filter are used both in Cartesian coordinates and modified spherical 

coordinates (MSC). The problem of the covariance matrix initialization in MSC is 

addressed. A set of weighted EKFs each with a different initial range estimate, 

range-parameterized extended Kalman Filter is examined. The prior distribution is 

used as the importance density for the sake of simplicity in the regularized particle 

filter. The drawback of the regularization step is the increase in the variance of the 

estimates. In order to overcome this problem system model is expressed in MSC, 

and regularization step is only applied for inverse of the range state.  

 

Maneuvering target tracking problem is investigated using multiple model filters. 

Modeling is done both in Cartesian coordinates and in spherical coordinates. In 

MSC we have used EKF based IMM filter. The effect of the error on the turn rate 

is investigated for maneuvering target-tracking problem. An extra state is added 

for turn rate in IMM filter, and the system model is modified. Even after this 

modification, it produces divergent tracks. The number of divergent tracks 

increases with the turn rate error.  

 

 For Cartesian coordinate representation we have used particle based 

approaches that uses multiple model idea. The basic method is the multiple 

model particle filter (MMPF). Two modifications of the basic method are also 

investigated namely, auxiliary multiple model particle filter (AUX-MMPF) and 

marginalized particle filter (MPF). One noticeable result is that MMPF 

performance is superior to the MPF. It is also observed that particle filter errors 

increase proportionally with the turn rate error. Nevertheless, the particle filter 

sate estimates converged to the true estimate.   

 

The results confirm the superior performance of particle filter based algorithms 

against the conventional KF-based IMM algorithms. It is an expected result since 

even the system model is simple; the model is non-linear including trigonometric 

functions.  
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As a future work, different scenarios should be implemented to investigate the 

studied filters performance. To improve the performance of the tracking filters the 

initialization of covariance matrix need to be investigated more.  The particle filter 

expressed in modified spherical coordinates should be studied in detail. Applying 

regularization step only for unobservable state increased the performance of the 

estimation algorithm. This problem can be used to understand the advantages 

and disadvantages of regularization step used in particle filter applications.  3 

dimensional maneuvering target tracking problem can be extended by defining 

new models in order to track the turn maneuvers on the y-z plane. According to 

the specific tracking problem here, further modifications can be done in particle 

filter algorithm.  
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APPENDIX A 

MSC PLANT EQUATIONS 

 

 

The derivation is the same as in [4] with obvious notation changes. 

The derivation for the first three equations is straightforward as shown below: 

 

 
1 42

1 1d r r
y y

dt r r r r

  = − = − = − 
 

ɺ ɺ
 (A.1)  

  

( ) 5

3cos( ) cos( )

yd

dt y

ϑ
ϕ

θ
= =  

(A.2)  

  

( ) 6

d
y

dt
θ θ= =ɺ  

(A.3)  

 

To find the derivatives of /r rɺ , Ω  andθɺ, first express the relative coordinates X, Y, 

and Z in terms of r, ϕ , and θ and then calculate their first and second derivatives. 

The coordinates are: 

 

 cos( ) cos( )

cos( ) sin( )

sin( )

X r

Y r

Z r

θ ϕ
θ ϕ
θ

=

=

= −

 (A.4)  

 

The Cartesian rates are: 
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 cos( ) cos( ) sin( ) cos( ) cos( ) sin( )

cos( ) sin( ) sin( ) sin( ) cos( ) cos( )

sin( ) cos( )

X r r r

Y r r r

Z r r

θ ϕ θ θ ϕ ϕ θ ϕ

θ ϕ θ θ ϕ ϕ θ ϕ

θ θ θ

= − −

= − +
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 (A.5)  

 

 

The Cartesian accelerations are:

 

 

2 2

2
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 (A.6)  

 

Next the Cartesian accelerations are expressed in observer; oX   is along the 

radial  and oY  is tangential vectors observer coordinates. The following rotation 

matrix transforms a vector from inertial (I) into antenna (A) coordinates. 

 

 cos( )cos( ) cos( )sin( ) sin( )

sin( ) cos( ) 0

sin( )cos( ) sin( )sin( ) cos( )

o

RC

θ ϕ θ ϕ θ
ϕ ϕ

θ ϕ θ ϕ θ

− 
 = − 
  

 (A.7)  

 

 

The third row of equation A.6 gives: 

 

 2 tan( )

   =a aa a

Ht Ho

Y r r rω θω θ ω= − +

−

ɺɺɺ ɺɺ
 (A.8)  

 

This can be solved for θɺɺ 
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2

2

4 6 5 3 1

2 tan( )

      = 2 tan( ) ( )

vt ot

Vt Vo

a ad r

dt r r r

y y y y y a a

θ
θ θ = − +Ω − + 

 

− − + −

ɺ ɺ ɺ

 (A.9)  

 

This is the sixth row of state equation. 

The second row of A.6 gives: 

 

 2 tan( )

   =a aa a

Ht Ho

Y r r rϑ θϑ θ= − + Ω

−

ɺɺɺ ɺɺ
 (A.10)  

 

Using A.10 and A.9 Ωɺ  can be shown as: 

 

 

5 4 6 3 1

2 tan( )

      = ( 2 tan( )) ( )

Ht Ht

Ht Ho

a ad r

dt r r r

y y y y y a a

ϑ
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 (A.11)  

 

Finally if we combine the first row of equation A.6 with A.7  Xɺɺ can be given as: 

 

 2 2

   =a aa a

Rt Ro

X r r rθ ϑ= − +

−
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 (A.12)  

 

Using this equation final plant equation can be calculated as: 

 

 2

2 2

2 2 2
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APPENDIX B 

RELATION BETWEEN CARTESIAN COORDINATES 

and MODIFIED SPHERICAL COORDINATES 

 

 

This appendix describes the relations between the Cartesian coordinates and the 

modified spherical coordinates (MSC). The Jacobians for the transformation 

equations are also given. The Cartesian coordinates are denoted by carx  and the 

MSC by 
mscy . The state vector are given below: 

 

1 2 3 4 5 6
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B.1 Transformations from mscy to carx  
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The Jacobian is defined by: 
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B.2 Transformations from carx  to mscy  
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The Jacobian is defined by 
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