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Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen
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ABSTRACT

EFFICIENT COMPUTATION OF THE GREEN’S FUNCTION FOR MULTILAYER
STRUCTURES WITH PERIODIC DIELECTRIC GRATINGS

Adanır, Süleyman

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Lale Alatan

February 2011, 57 pages

Numerical analysis of periodic structures in layered media is usually accomplished by using

Method of Moments which requires the formation of the impedance matrix of the structure.

The construction of this impedance matrix requires the evaluation of the periodic Green’s

function in layered media which is expressed as an infinite series in terms of the spectral do-

main Green’s function. The slow converging nature of this series make these kinds of analysis

computationally expensive. Although some papers have proposed methods to accelerate the

computation of these series successfully for a single frequency point, it is still very compu-

tation intensive to obtain the frequency response of the structure over a band of frequencies.

In this thesis, Discrete Complex Image Method (DCIM) is utilized for the efficient computa-

tion of the periodic Green’s function. First, the spectral domain Green’s function in layered

media is approximated by complex exponentials through the use of DCIM. During the ap-

plication of the DCIM, three-level approximation scheme is employed to improve accuracy.

Then, Ewald’s transformation is applied to accelerate the computation of the infinite series

involved in the periodic Green’s functions. The accuracy and the efficiency of the method is

demonstrated through numerical examples.
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ÖZ

PERİYODİK OLARAK DİELEKTRİK AÇIKLIK BIRAKILMIŞ ÇOK KATMANLI
YAPILARIN GREEN FONKSİYONUNUN İŞLEMSEL OLARAK VERİMLİ BİR

ŞEKİLDE HESAPLANMASI

Adanır, Süleyman

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Lale Alatan

Şubat 2011, 57 sayfa

Çok katmanlı ortamlardaki periyodik yapıların sayısal analizi çoğunlukla yapının empedans

matrisine ihtiyaç duyan MoM ile yapılır. Bu empedans matrisinin oluşturulması için de

Green fonksiyonunun hesaplanması gerekmektedir. Bu tür yapılardaki Green fonksiyonunun

yakınsama hızı düşük olan sonsuz bir seri olarak ifade edilmesi bu yapıların analizinin çok

süre almasına sebep olur. Bu seriyi bir frekansta başarılı bir şekilde hızlandırmak için yöntemler

öneren yayınlar çıkmış olmasına rağmen, yapının bir bant boyunca frekans yanıtını elde etmek

hala uzun süren bir işlem olarak kalmaktadır. Periyodik Green fonksiyonunun verimli olarak

hesaplanabilmesi için Ayrık Karmaşık İmgeler Metodu’ndan (DCIM) faydalanılmıştır. Önce,

çok katmanlı yapının spektral uzaydaki Green fonksiyonu DCIM kullanılarak, karmaşık üstellerle

yaklaştırılmıştır. DCIM metodu uygulanırken doğruluğu iyileştirmek amacıyla üç-seviyeli

yaklaştırma yöntemi kullanılmıştır. Daha sonra, periyodik Green fonksiyonlarının içerdiği

sonsuz serilerin hesaplanmasını hızlandırmak için Ewald dönüşümü uygulanmıştır. Yöntemin

doğruluğu ve verimliliği sayısal örneklerle gösterilmiştir.
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CHAPTER 1

INTRODUCTION

A periodic structure in a multilayered media can be formed either by periodically implanting

dielectric gratings into a layer (Figure 1.1) or by periodically loading a layer with conducting

patches and/or vias (Figure 1.2). These kind of periodic structures can be employed as Fre-

quency Selective Surfaces (FSS), reflect arrays, metamaterials or Electromagnetic Bandgap

Structures (EBG) which have been widely used in electromagnetic applications. The appli-

cation areas of these structures cover efficient, low profile antennas [1], directive resonator

antennas [2], high Q filters and resonators [3], Radar Absorbing Materials (RAM) [4], left-

handed materials [5], etc.

Figure 1.1: Periodic structure with dielectric gratings [8]

The capabilities of these kind of structures attracted many researchers and the rigorous anal-

ysis of them gained importance. FEM [6] and Method of Moments (MoM) [7] are generally

used in the numerical analysis of periodic structures. FEM is applied as an hybrid technique

in conjunction with an integral equation method. In this approach, the structure is considered

to be a combination of an inhomogeneous region and a homogeneous region. The inhomo-

geneous region is the part which includes the implanted material blocks. FEM is used in this

1



Figure 1.2: Example of a periodic structure with conducting patches (a 2-D mushroom type
left-handed material) [5]

part because of its effectiveness in handling the inhomogeneities. The homogeneous region

is the part above and below the material blocks. Integral equation methods such as MoM or

Boundary Integral (BI) method are applied in this homogeneous region since they are very ef-

ficient in modeling open radiating structures. Because of its more straightforward application

compared to hybrid approach, MoM is the preferred technique in this work.

MoM analysis of periodic structures in layered media results in a matrix equation (ZI=V) in

terms of the surface current densities induced on the conductors and equivalent volume current

densities that model the dielectric gratings. The construction of the Z matrix requires the

evaluation of the periodic Green’s function in layered media. The periodic Green’s function

can be expressed as an infinite series over the Floquet modes of the spectral domain Green’s

function:

G =
1
ab

∞∑
m=−∞

∞∑
n=−∞

G̃mn(kxm, kyn)e− jkxm(x−x′)e− jkyn(y−y′) (1.1)

kxm = ki
x +

2πm
a

(1.2)

kyn = ki
y +

2πn
b

(1.3)
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ki
x = k0 sin θ cos φ (1.4)

ki
y = k0 sin θ sin φ (1.5)

where G is the spatial domain periodic Green’s function, G̃mn is the spectral domain Green’s

function of a single element, a and b are the periodicities in x and y directions, respectively,

while θ and φ are the polar and azimuthal angles of an incident or scattered wave.

Consequently, the CPU time required for the calculation of the periodic Green’s function

constitutes a large percentage of the total solution time. Moreover, if the MoM analysis of the

structure has to be repeated for a large number of frequency points (to obtain the frequency

response of the structure), some acceleration techniques need to be developed to reduce the

computation time.

The utilization of Pade approximation in the MoM analysis of periodic structures is proposed

in [8] to eliminate the need for the repeated calculations of the current vector, I, at each

frequency point. In this method, the current vector is approximated by a rational function of

two polynomials as:

I( f ) ≈
a0 + a1( f − fa) + ..... + ap( f − fa)p

1 + b1( f − fa) + ..... + bq( f − fa)q (1.6)

The coefficients a0, ..., ap; b1, ..., bq in the polynomials are calculated by equating the Pade

approximation given in equation 1.6 to the Taylor series expansion of the current up to the

order p + q. The coefficients in the Taylor series expansion correspond to the moments of the

current and their evaluation requires the computation of the high order derivatives of the Z

matrix at the expansion frequency.

However, the computation of the high order derivatives of the periodic Green’s function, and

thus the Z matrix, is difficult and time consuming because of the complexity of the Green’s

function expressions in layered media. This complexity is due to the iterative relations in-

volved in the generalized Fresnel reflection coefficients that appear in the spectral domain

Green’s function expressions of the layered media. This complexity might be reduced by

approximating the reflection coefficients in terms of complex exponentials through the use

of Discrete Complex Image Method (DCIM) [21], [23], [24], [27]. Once the DCIM approx-

imation is obtained at the expansion frequency, the higher order derivatives of the Green’s

3



function can be easily obtained by assuming that the exponents and the coefficients found via

DCIM are not significantly dependent on frequency. This assumption is verified in [9] where

Pade approximation is used in conjunction with the DCIM in the MoM analysis of printed

structures. The numerical results presented in [9] for the analysis of a coupled line filter show

that the exponents and the coefficient found via DCIM at a single frequency can be assumed

to be constant over a 10% bandwidth. Therefore, the main motivation of this thesis is to

apply the DCIM in the evaluation of the periodic Green’s function for the layered media in

order to efficiently compute the high order derivatives of the Green’s function required for the

application of the Pade approximation method.

The utilization of DCIM for the efficient numerical evaluation of the Green’s function for peri-

odic structures in layered media was proposed by various researchers [10], [11], [12]. In these

works, the spectral domain Green’s function is decomposed into two parts: i) the asymptotic

component that corresponds to the complex exponential approximation and ii) the remainder

part that is left after the subtraction of the asymptotic part from the exact Green’s function.

As it will be presented in Chapter 2, the DCIM makes it possible to cast the Green’s function

in layered media into a form similar to the free space Green’s function. It is demonstrated that

computation of the periodic free space Green’s function can be accelerated through the use

of the Ewald transformation [32], [33]. Therefore, a similar acceleration for the numerical

evaluation of the periodic Green’s function in layered media can be achieved when the DCIM

is utilized. [11] and [12] exploit this fact and accelerate the asymptotic series summation by

using Ewald’s Method. After the extraction of the asymptotic part, the remainder part be-

comes rapidly convergent compared to the original Green’s function. In [12], the summation

for this remainder part is computed by using Shanks’ Transformation [14], [15].

Although the periodic Green’s function in layered media was accurately and efficiently com-

puted in these works, they do not offer any simplification for the computation of the deriva-

tives of the Green’s function with respect to frequency since the original Green’s function

expression still exists in the remainder part of the Green’s function. Therefore, the remain-

der part needs to be eliminated for the efficient computation of the derivatives with respect

to frequency. Although the complex exponential approximation is obtained by sampling the

spectral domain Green’s function, the remainder term is non-zero. This is due to the fact that

some part of sampling needs to be done over the complex values of spectral variable kρ in

order not to cross the surface wave poles, but the Floquet mode summation is over real values

4



of kρ. Therefore, the sampling should also be done along the real kρ axis in order to eliminate

the remainder term. For this aim, the 3-level DCIM proposed in [27] is used to approximate

the spectral domain Green’s functions. It should be noted that in order to be able to perform

the sampling over the real values of kρ, the surface wave contributions need to be extracted

prior to sampling.

In the second chapter of this thesis, some background information about the Discrete Complex

Image Method, the surface wave pole extraction procedure and Ewald’s Method are presented.

Various forms of DCIM like 2-Level and 3-Level schemes are introduced. A brief introduction

for series acceleration techniques is given and then the Ewald’s transformation is summarized.

Chapter 3 presents the numerical results obtained by approximating the Green’s function for

periodic structures in planarly layered media with complex exponentials through the applica-

tion of DCIM. In order to demonstrate the accuracy achieved with the use of 3-Level DCIM,

the numerical results obtained by 2-Level DCIM with and without surface wave extraction

are also included.

Chapter 4 is reserved for the acceleration of the computation of the periodic Green’s function

in layered media by using Ewald’s transformation. First, the modifications made in Ewald’s

transformation associated with the complex exponentials are introduced, then the numerical

results are presented.

The final chapter is devoted for the conclusions of this thesis work including the advantages

and shortcomings of the proposed method. Future work that is planned to be accomplished is

also discussed.

The software used throughout this thesis work is MATLAB.
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CHAPTER 2

BACKGROUND INFORMATION

2.1 Discrete Complex Image Method

As the printed geometries in multilayer environment have found increasingly more use in the

designs of low-profile, light-weight and multifunction antennas, and microwave integrated

circuits, rigorous analysis of these structures have become more important. The numerical

algorithms based on Method of Moments (MoM) are widely favoured over other techniques

to analyze these geometries.

In order to be able to apply the MoM, the expressions for the Green’s functions in the corre-

sponding domain are required. However, closed-form Green’s functions for planarly layered

media can be obtained analytically only in the spectral domain. Closed-form Green’s func-

tions in spatial domain are obtained through either a 2-D inverse Fourier transformation or

a 1-D Hankel transformation of the corresponding spectral domain function [17]. The latter

transformation is also known as the Sommerfeld integral which is expressed as [17]

G =
1

4π

∫
S IP

dkρkρH(2)
0 (kρρ)G̃(kρ) (2.1)

where G is the spatial domain Green’s function, G̃ is the spectral domain Green’s function,

H(2)
0 is the zeroth order Hankel function of the second kind and S IP is the Sommerfeld Inte-

gration Path as shown in Figure 2.1 for a lossless structure. Since both approaches mentioned

above involve the evaluation of oscillatory and slowly-convergent integrals some approxima-

tion methods need to be applied to compute the spatial domain Green’s functions efficiently

and accurately.

6



Figure 2.1: Sommerfeld Integration Path

It is first proposed in [23] to approximate the spectral domain Green’s functions by complex

exponentials so that the Sommerfeld integral can be evaluated analytically by using the well

known Sommerfeld identity

e− jkr

r
= −

j
2

∫
S IP

dkρkρH(2)
0 (kρρ)

e− jkz |z|

kz
(2.2)

The complex exponential approximation of the spectral domain Green’s function can be writ-

ten in the following form:

G̃(kρ) =

M∑
i=1

αi
e− jkzβi

j2kz
(2.3)

Consequently, by using the Sommerfeld identity, the spatial domain Green’s function takes

the following form:

G(x − x′, y − y′) =
1

4π

M∑
i=1

αi
e− jkRi

Ri
(2.4)

where Ri =

√
(x − x′)2 + (y − y′)2 + β2

i . Since this method provides a closed-form expression

for the spatial domain Green’s function as shown in equation 2.4, initially the method is

shortly named as ’closed-form Green’s function’. However, later on, researchers working in

this area preferred to call the method as ’Discrete Complex Image Method (DCIM)’, since

7



each term of the summation in equation 2.4 represents the contribution of a complex source

with amplitude αi positioned at a complex distance βi.

The originally proposed DCIM, is further studied in [21] where the total Green’s function is

decomposed into three components. The first component represents the contribution of the

quasi-dynamic images dominating in the near-field region, the second component represents

the contribution of the surface waves dominating in the far-field region and finally the third

component represents the contribution of the complex images. The spectral domain expres-

sions for the contributions of the quasi-dynamic images and the surface waves are subtracted

from the spectral domain Green’s function and the remaining part is approximated by DCIM.

In order to find the complex coefficients and exponents given in equation 2.3, the remaining

part of the spectral domain Green’s function is sampled along the path C1 shown in Figure 2.2.

Then the Prony’s Method [18] is employed to extract the complex exponent and coefficient

information from the sampled data. Prony’s method requires the sampling to be performed

along a real variable. Therefore, the following transformation is carried out to map the com-

plex variable kz0 into a real variable t

C1 : kz0 = k0[− jt + (1 −
t

T0
)] , 0 ≤ t ≤ T0 (2.5)

where t is the running parameter and T0 is the truncation point.

Although the DCIM is more efficient than numerical integration, this method has some prob-

lems which are investigated in [24]. Green’s functions may have sharp peaks and fast changes

for small values of t. This means that, the sampling rate should be high for small values of t

so that the fine features of the function is captured in the approximation. T0 is another param-

eter of the approximation that effects accuracy and the speed of the algorithm. If a Green’s

function has a slow-decaying spectral domain behaviour, then one must sample it far enough

to get an accurate near-field distribution that means a larger T0. When the Green’s function

has sharp peaks and fast changes as well as a slow-decaying spectral domain behaviour, one

must sample it to a large T0 with very small ∆t steps in order to get accurate near-field and

far-field distribution which causes a long CPU time. If the Green’s function does not possess

one of the aforementioned properties, we can choose a smaller T0 or a larger ∆t step to make

the computations faster. As an example, if the Green’s function has a fast-decaying spectral

domain behaviour we can choose a smaller T0 and still obtain an accurate near-field distribu-
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Figure 2.2: The sampling paths on the complex: (a) kρ plane and (b) kz0 plane [21]

tion with a shorter CPU time. However this requires users to investigate the spectral domain

behaviour of the Green’s functions in advance and then to perform a few iterations to find the

best possible combination of the approximation parameters. Because of these difficulties, the

one-level approximation approach as studied in [21] can not be made fully robust and suit-

able for the development of computer aided design tools. M. I. Aksun developed a two-level

approach [24] in order to overcome these problems. There are two paths instead of one as
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seen in Figure 2.3. The first path is a simple line on the real axis of kρ plane between kρmax2

and kρmax1 . The second path is same as the path described in the one-level approach. The

Green’s function is first sampled along the path Cap1 and approximated by complex exponen-

tials. Then, the approximated function is subtracted from the original Green’s function and

the remaining function is sampled along the path Cap2 and it is approximated by another set of

complex exponentials. These two sets are then added together to obtain the total closed-form

Green’s function.

Figure 2.3: The sampling path on the complex kρ plane in [24]

Since the sharp peaks and fast changes occur for small kρ values, sampling along the path Cap1

can be done with large steps and this lets us to make the sampling in a wider range (larger

kρmax1) leading to a very accurate near-field distribution. For small kρ values, the sampling

is performed along the path Cap2 with small steps to capture the fine features (fast changes,

peaks), but this time a narrower sampling interval (smaller kρmax2) could be chosen so that the

total number of sampling points and consequently the CPU time for the computation stays

at low values compared to one-level approximation. This method also has the advantage

of being versatile since it is applicable to all kinds of Green’s functions without changing

the approximation parameters. It should also be noted that for the extraction of complex

coefficients and exponents, Generalized Pencil of Function (GPOF) method [19] is preferred

rather than Prony’s method in the two-level approximation scheme since GPOF method is less

sensitive to numerical noise.

Although being successful in approximating the Green’s function for distances up to a few

wavelengths (ρ = 3λ, 4λ), the accuracy of the method deteriorates beyond this range. In
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the literature, the reason of this problem is attributed mainly to two sources; not extracting

the quasi-static terms and not extracting the surface wave contributions before applying the

DCIM.

However, as discussed in [25], in the application of the two-level approach, the approxima-

tion of the spectral domain Green’s functions on the path Cap1 via complex exponentials can

be considered as the extraction of the quasi-static terms in addition to some dynamic terms.

Moreover, it is demonstrated in [25] through numerical examples that the difference between

the approximation of the surface wave contribution by complex exponentials and the exact

surface wave contribution is responsible for the deviation of the complex image approxima-

tion of the Green’s function from the exact Green’s function beyond a few wavelengths. The

reason of this result is attributed to the fact that the terms approximated by complex im-

ages represent spherical waves while the original surface wave contributions are cylindirical

in nature. Hence, if the dimensions of the structure under investigation is larger than a few

wavelengths, surface wave contributions must be subtracted from the spectral domain Green’s

function prior to the complex image approximation and their contributions must be added an-

alytically in the spatial domain to obtain more accurate results. As pointed out in [26], there is

still an important shortcoming of the two-level approximation scheme resulting from its lack

of capturing the contribution of the lateral waves associated with the branch point singularity.

The surface waves have the following asymptotic behaviour for large ρ [27]:

e− jkρpρ

√
ρ

(2.6)

where kρp is the surface wave pole (SWP), whereas lateral waves at an interface of two mate-

rials behave asymptotically like [28]:

e− jkbrρ

ρ2 (2.7)

where kbr is the branch point, which is usually a real quantity. A simple comparison of

equations 2.6 and 2.7 reveals that when a SWP (kρp) is purely real (lossless material), the

contribution of the surface waves dominate in the far field and the two-level approach with

SWP extraction does not fail in the far field regions. On the other hand, if a SWP has an
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imaginary part (it must be negative imaginary), as in the cases of lossy materials, its contri-

bution decays exponentially with increasing ρ whereas the contribution of the lateral waves

decay with ρ2. Therefore, for such cases, the contribution from the lateral waves determine

the far-field behaviour of the spatial domain Green’s functions and the two-level approach

fails in the far field regions even though the surface wave contributions are extracted.

As proposed in [27], in order to incorporate the contribution of the lateral waves, the sampling

path of the two-level approach needs to be modified such that the DCIM become capable of

capturing the features around the branch point accurately. To achieve this goal, three different

sampling paths are suggested which are shown in Figures 2.4, 2.5 and 2.6. All of the three

approaches presented, are designed to bring the sampling paths closer to the branch point k0.

Figure 2.4: Path for the first 3-level DCIM approach on the complex: (a) kz plane and (b) kρ
plane [27]

It can be observed that the sampling should be done over three different paths in order to be

able to take samples close to the branch point k0. Hence this method is referred as ’Three-level

approximation scheme’.

The formulation presented so far is valid for a single hertzian dipole source. When a periodic

source configuration is considered, the spatial domain Green’s functions could be obtained

from their spectral domain counterparts through the use of the following Floquet mode sum-
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Figure 2.5: Path for the second 3-level DCIM approach on the complex: (a) kz plane and (b)
kρ plane [27]

mations:

G =
1
ab

∞∑
m=−∞

∞∑
n=−∞

G̃mn(kxm, kyn)e− jkxm(x−x′)e− jkyn(y−y′) (2.8)

For a single source, the sampling path in the DCIM can be freely modified to improve the

accuracy of the method as long as the deformed path does not cross any singularities. Because

the relation between the spectral and the spatial domain Green’s functions are in terms of

Fourier integrals, the modifications on the integration path does not affect the result of the

integral according to the Cauchy integral theorem. However, for the case of periodic sources,

one does not have the freedom to choose the sampling path of the DCIM. Since the Floquet

mode summation is over the real values of kx and ky, and hence kρ, the sampling of the spectral

domain Green’s function should also be performed along the real values of kρ. Hence the

three-level approximation scheme is employed in this thesis with a sampling path along the

real kρ axis. It is apparent that for this choice of sampling path, the surface wave contributions

need to be extracted before applying DCIM. Therefore, the surface wave extraction procedure

will be outlined in the next section.
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Figure 2.6: Path for the third 3-level DCIM approach on the complex: (a) kρ plane and (b) kz

plane [27]

2.2 Surface Wave Poles

The Green’s functions for the cases of layered media involve poles and branch point singu-

larities. These singularities are responsible for the surface and lateral waves excited by the

source. The surface waves are of high importance since they can propagate along the interface

without suffering much attenuation [29].

Surface wave poles always exist in pairs, negative of each other, on the complex kρ plane

[27]. Therefore, the surface wave contribution of a pole pair can be represented in the spectral

domain as

G̃sw =
2kρpRes

k2
ρ − k2

ρp
(2.9)

where kρp is the surface wave pole and Res is the residue of it. Surface wave poles and the

associated residues for a general multilayer media can be obtained via the method presented
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in [31], which is easy and robust. By using the residue theorem, the contribution of these

poles in the spatial domain can be easily expressed as:

Gsw = −
j
2

(Res)H(2)
0 (kρpρ)kρp (2.10)

It is known [30] that for large arguments, the Hankel function of the second kind decays with

the square-root of the argument. Since the spherical waves decays with ρ itself, in far fields

the surface waves become dominant over spherical waves, which is the reason why surface

wave poles must be extracted and handled explicitly to obtain an accurate far field distribution.

The spatial domain Green’s function for the case of periodic sources is obtained via Floquet

mode summations. This summation is applied for both the complex exponentials obtained

by DCIM and the spectral domain surface wave contribution which is given in equation 2.9.

Thus, the periodic Green’s function in spatial domain is expressed as follows:

G =
1
ab

∞∑
m=−∞

∞∑
n=−∞

M∑
i=1

αi
e− jkz0βi

j2kz0
e− jkxm(x−x′)e− jkyn(y−y′)+

1
ab

∞∑
m=−∞

∞∑
n=−∞

2kρpRes

k2
ρ − k2

ρp
e− jkxm(x−x′)e− jkyn(y−y′)

(2.11)

where x′ and y′ are the coordinates of the source; x and y are the coordinates of the observation

point; a and b are the periodicities of the structure in x and y directions, respectively; kxm and

kyn are the wavenumbers in x and y directions, respectively and kz0 is the wavenumber in z

direction. Note also that, αi and βi are the coefficients and exponents obtained by applying

DCIM to the spectral domain Green’s function in layered media. kxm, kyn and kz0 are given as

kxm = ki
x +

2πm
a

(2.12)

kyn = ki
y +

2πn
b

(2.13)

kz0 =


√

k2
0 − (k2

xm + k2
yn) k2

0 ≥ k2
xm + k2

yn

− j
√

(k2
xm + k2

yn) − k2
0 k2

0 ≤ k2
xm + k2

yn

(2.14)

where ki
x and ki

y are the wavenumbers associated with m = 0 and n = 0 respectively. They are

given as
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ki
x = k0 sin θ cos φ (2.15)

ki
y = k0 sin θ sin φ (2.16)

where θ and φ are the polar and azimuthal angles of an incident or scattered wave.

The expression in equation 2.11 is a spectral summation. The spatial domain periodic Green’s

function can also be expressed as a spatial summation by applying Poisson transformation to

equation 2.11. The two-dimensional Poisson’s summation formula is given in [10] as follows:

∞∑
m=−∞

∞∑
n=−∞

f (ma, nb) =
1
ab

∞∑
m=−∞

∞∑
n=−∞

F(
2πm

a
,

2πn
b

) (2.17)

where f (x, y) and F(kx, ky) are a Fourier transform pair in two dimensions. Their relation are

given by the equations below:

F(kx, ky) =

∫ ∞

−∞

∫ ∞

−∞

f (x, y)e− j(kx x+kyy)dxdy (2.18)

f (x, y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

F(kx, ky)e+ j(kx x+kyy)dkxdky (2.19)

The spatial summation expression for the periodic Green’s function is then obtained as:

G =

∞∑
m=−∞

∞∑
n=−∞

M∑
i=1

αi
e− jk0Ri

4πRi
e− jki

xmae− jki
ynb +

∞∑
m=−∞

∞∑
n=−∞

−
j
2

(Res)H(2)
0 (kρpρ)kρpe− jki

xmae− jki
ynb

(2.20)

where Ri =

√
(x − x′ − ma)2 + (y − y′ − nb)2 + β2

i . The first part of the right-hand side of

equation 2.20 is the summation of complex exponentials in spatial domain and the second

one is the summation of spatial domain surface wave contributions. The exponential term

in equation 2.20 is in the same form as free space Green’s function except that there is a

complex coefficient in front of it and the expression for the distance between the source and

observation point is different here. Because of this similarity, Ewald’s transformation, which

is succesfully utilized to accelerate the summation of the free space periodic Green’s function,

can also be applied to equation 2.20. Therefore, Ewald’s transformation will be presented in

the next section.
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2.3 Ewald’s Transformation

The main idea behind the series acceleration techniques is to transform a slowly convergent

sequence into a faster converging sequence by using a mapping. There is neither a universal

algorithm that works for every type of sequence nor a unique algorithm that works for a type

of sequence. One can also use a combination of several algorithms in a problem.

Kummer’s transformation [16] is a widely used technique in series acceleration. It makes use

of the fact that the rate of convergence of a series is determined by the asymptotic form of

that series. If f (m, n) is asymptotic to a function f1(m, n) which is defined for all integers n,

then Kummer’s transformation yields [13]

∞∑
m=−∞

∞∑
n=−∞

f (m, n) =

∞∑
m=−∞

∞∑
n=−∞

[ f (m, n) − f1(m, n)] +

∞∑
m=−∞

∞∑
n=−∞

f1(m, n) (2.21)

Generally, f1(m, n) is chosen in such a way that the last series in equation 2.21 has a known

closed-form expression. If a known closed-form expression is not available, then one can use

a transformation to make it rapidly convergent. This is the case in [13] where the spectral

domain expression of free space Green’s function for doubly periodic structures is first di-

vided into two parts by Kummer’s Transformation. The first part becomes rapidly convergent

since the asymptotic expression is subtracted. The other part, which is asymptotic and slowly

convergent is recognized as the spectral representation of the original periodic source distri-

bution radiating in a medium with an imaginary wavenumber. Then, Poisson transformation

is applied to change it into a spatial domain expression. In this way, the slowly convergent

series at the beginning, has been transformed into two rapidly convergent series.

It is the reciprocal spreading property of the Fourier transformation that makes Poisson trans-

formation so beneficial for the acceleration of the series. If a function is smooth and ap-

proaches zero gradually as its argument goes to infinity, then its Fourier transform is highly

localized and the corresponding sum converges rapidly.

For the cases of periodic structures in layered media, things are more complex than the free

space case because of the reflection coefficient in the spectral domain Green’s function ex-

pressions. In [12], Shanks transformation is applied directly to the periodic Green’s functions

in planarly stratified structures and it is shown that straightforward Shank transformation can
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efficiently calculate the periodic Green’s function. However, it is reported in that work that

the efficiency of Shanks transformation is severely reduced when the distance between the

observation and the source points approaches zero or one period. Therefore, we need a better

method in order to accelerate the summation in such cases. Ewald transformation is a good

solution because of its Gaussian decaying characteristics.

In 1921, P. P. Ewald, who was studying on the calculation of Coulomb interaction energy

for a lattice of ions, published a work [32] in which he presented a method for speeding up

the convergence of series appearing in certain lattice sums. Its computational results was so

successful that researchers from various fields have adapted and applied the technique to their

own problems. Three of these researchers have applied Ewald’s method to the problem of

efficient numerical evaluation of the free space Green’s function for periodic structures [33].

The method is also adapted to the cases of two-dimensional problems with one-dimensional

periodicity [34] and three-dimensional problems with one-dimensional periodicity [35]. Its

application in evaluating Green’s functions for multilayered media is treated in [36], [11],

[12] and its application in evaluating Green’s functions for a rectangular cavity is handled in

[37].

Here, the application of Ewald method to the free space periodic Green’s function (FSPGF)

will be summarized. Modifying it for the case of planarly layered media is a simple task and

it will be performed in Chapter 4.

FSPGF can be expressed in terms of a spectral sum as follows:

G̃ =
1
ab

∞∑
m=−∞

∞∑
n=−∞

e− jkz0(z−z′)

j2kz0
e− jkxm(x−x′)e− jkyn(y−y′) (2.22)

By using the Poisson transformation, it can also be expressed in terms of a spatial sum as

G =
1

4π

∞∑
m=−∞

∞∑
n=−∞

e− jk0R

R
e− jki

xmae− jki
ynb (2.23)

where R is the distance between the observation point at (x, y, z) and the (m, n)th periodic

source point located at (x′ + ma, y′ + nb, z′). The expression for R is
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R =

√
(x − x′ − ma)2 + (y − y′ − nb)2 + (z − z′)2 (2.24)

The method of Ewald is based on the following formula [32]:

e− jkR

R
=

2
√
π

∫ ∞

0
e−R2 s2+ k2

4s2 ds (2.25)

Here, s is a complex variable. For the validity of this equation, the path of integration must be

chosen such that the integrand remains bounded as s → 0 and decays as s → ∞. This means

that

arg(s) ∈


[αk − 3π/4, αk − π/4] s→ ∞

[−π/4, π/4] s→ 0
(2.26)

During the application of the Ewald method, a change of variable from s to s′ (s′ = 1/s) is

required [33]. When this is done, the integrand must still remain bounded as s′ → 0 and

decays as s′ → ∞. This is possible if one chooses an integration path which lies in the

intersection of the two regions defined in equation 2.26. In other words, as s→ 0 and s→ ∞,

arg(s) ∈


[−π/4, αk − π/4] αk ∈ [0, π/2]

[αk − 3π/4, π/4] αk ∈ [π/2, π]
(2.27)

Having defined the necessary integration path (see Figure 2.7), we now use equation 2.25 in

expression 2.23 and split the path of integration at E to write the Green’s function in two parts

as shown below:

G = G1 + G2 (2.28)

G1 =
1

4π

∞∑
m=−∞

∞∑
n=−∞

e− jki
xmae− jki

ynb 2
√
π

∫ E

0
e−R2 s2+

k2
0

4s2 ds (2.29)

G2 =
1

4π

∞∑
m=−∞

∞∑
n=−∞

e− jki
xmae− jki

ynb 2
√
π

∫ ∞

E
e−R2 s2+

k2
0

4s2 ds (2.30)
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Figure 2.7: Path of integration for the case αk ∈ [0, π/2]

For the second part of the Green’s function (equation 2.30) Ewald’s formula [32] apply di-

rectly, which is shown below:

2
√
π

∫ ∞

E
e−R2 s2+

k2
0

4s2 ds =
1

2R
[e− jk0Rer f c(RE −

jk0

2E
) + e jk0Rer f c(RE +

jk0

2E
)] (2.31)

This changes the second part of the Green’s function into the expression below:

G2 =
1

8π

∞∑
m=−∞

∞∑
n=−∞

e− j(ki
xma+ki

ynb)

R

∑
±

e± jk0Rer f c(RE ±
jk0

2E
) (2.32)

We can not apply the Ewald’s formula to the first part of the Green’s function directly. Instead

one can apply it after some mathematical operations [33] and obtain the new expression for

G1 as below:

G1 =
1

4ab

∞∑
m=−∞

∞∑
n=−∞

e− j[kxm(x−x′)+kyn(y−y′)]

jkz0

∑
±

e± jkz0(z−z′)er f c(
jkz0

2E
± (z − z′)E) (2.33)

Now, we have transformed the original slowly converging FSPGF expression, by the Ewald

method, into two rapidly decaying expressions. This rapid convergence is because of the er f c

function appearing in both series. It is the complementary error function (since its argument
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is complex here, it is sometimes referred to as cer f c which means complex complementary

error function) and it behaves asymptotically like [33]

e−z2

z
(2.34)

The only thing left undescribed in the expressions above is the splitting parameter E. When

the equations 2.33 and 2.32 are observed, one can see that increasing E has the effect of

making the terms in G1 decay faster while making those in G2 decay more slowly. If we think

in terms of efficiency, the best choice for E is that which balances the rate of decay for both

series. By comparing the terms in the two series for large m and n and using the asymptotic

expression for er f c, it is obtained in [33] that

Eopt =

√
π

ab
(2.35)

This E value is optimum in terms of efficiency, but it is shown in [38] that when the periodic

spacing becomes large relative to a wavelength, Eopt has an accuracy problem. The reason

for this problem is explained in [38] as follows. For large arguments, complementary error

function behaves as e−z2

z , as stated previously. For large periodic spacings, Eopt given in

equation 2.35 becomes small and the imaginary part of the argument of er f c(.) becomes large

and dominant for the first several terms of the series. As a concequence, er f c(.) becomes

very large and therefore one gets very large numbers for the first several terms of these series.

Similar comments can be made for both series. Gaussian decay is again achieved for terms

with large indices and the two series G1 and G2 converge to very large numbers which are

nearly equal in magnitude but of opposite sign. Therefore, one suffers severe accuracy loss

upon adding the sums of the two series due to finite precision. The result is the convergence

to incorrect values. The remedy to this accuracy loss is to increase E beyond Eopt in cases of

large periodic spacings.

In the next chapter, the numerical results obtained by applying the DCIM to the evaluation

of the periodic Green’s function in layered media will be presented. The accuracy levels of

2-level and 3-level approximation schemes will be compared.
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CHAPTER 3

NUMERICAL RESULTS FOR THE COMPUTATION OF THE

PERIODIC GREEN’S FUNCTION IN LAYERED MEDIA

In this chapter, the procedure for the application of the DCIM to the computation of the

periodic Green’s function in layered media will be outlined and numerical results will be

presented. The results obtained through 2-level and 3-level approximation schemes will be

compared in order to demonstrate the accuracy improvement achieved with the use of 3-level

approximation scheme.

The periodic Green’s function (in spatial domain) can be expressed in terms of a spectral sum

with the general form as

G =
1
ab

∞∑
m=−∞

∞∑
n=−∞

G̃(kxm, kyn)e− jkxm(x−x′)e− jkyn(y−y′) (3.1)

where kxm and kyn are given as

kxm = ki
x +

2πm
a

(3.2)

kyn = ki
y +

2πn
b

(3.3)

In equation 3.1, G̃ represents the spectral domain Green’s function of an infinitesimal dipole

point source at (x′, y′, z′). The spectral domain Green’s functions for planarly layered media

can be expressed either in terms of generalized Fresnel reflection coefficients [39] or in terms

of equivalent transmission line network parameters [40]. Both of the formulations result in

the same expressions.
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Numerical results will be presented for the scalar potential of an x-directed Horizontal Electric

Dipole (HED) which is positioned above a microstrip substrate of thickness h and relative

permittivity εr (Figure 3.1). The scalar Green’s function is chosen as a representative example,

the same procedure can be applied for the approximation of the vector potential as well. The

spectral domain Green’s function expression for such a structure is given by the following

form of plane wave summations [21]:

G̃q =
1

j2kz0
[e− jkz0(z−z′) + (RT E + Rq)e− jkz0(z+z′)] (3.4)

where RT E and Rq are the coefficients that take into account the reflections from the grounded

dielectric substrate and are given by

RT E = −
rT E

10 + e− j2kz1h

1 + rT E
10 e− j2kz1h

(3.5)

Rq =
2k2

z0(1 − εr)(1 − e− j4kz1h)

(kz1 + kz0)(kz1 + εrkz0)(1 + rT E
10 e− j2kz1h)(1 − rT M

10 e− j2kz1h)
(3.6)

Here, rT E
10 and rT M

10 are the Fresnel reflection coefficients for the Transverse Electric and Trans-

verse Magnetic waves at the interface between dielectric and air. They are given by

rT E
10 =

kz1 − kz0

kz1 + kz0
(3.7)

rT M
10 =

kz1 − εrkz0

kz1 + εrkz0
(3.8)

with

k2
z0 + k2

ρ = k2
0 (3.9)

k2
z1 + k2

ρ = k2
1 = εrk2

0 (3.10)

k2
ρ = k2

xm + k2
yn (3.11)

The spectral domain Green’s function expressions for scalar and vector potentials due to a

horizontal and/or vertical electric and/or magnetic current source in a multilayer media can

be found in [39] or [40].
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Figure 3.1: A typical periodic structure on a microstrip substrate

In all of the approaches explained in this chapter, DCIM is applied to the reflection coefficients

instead of the whole Green’s function expression. This is because of the fact that the Green’s

function is a function of z and z′, so the DCIM approximation for the Green’s function is valid

for fixed values of z and z′. However, when the MoM analysis of periodic dielectric gratings

are considered, z and z′ parameters need to be varied. Therefore, the DCIM approximation

of the reflection coefficients avoids the need for the repetitive complex image calculations for

different values of z and z′.

A final note before presenting the approximation procedures and the numerical results is about

the choice of the method utilized to extract the coefficients and the exponents of the complex

images. In this thesis work, GPOF method is preferred because of its advantage over the

Prony method in terms of the sensitivity to numerical noise [19].

3.1 Two-Level Discrete Complex Image Method

3.1.1 Formulation

In this approach, the reflection coefficients RT E and Rq in equation 3.4 are sampled along the

path suggested in [24]. This path is shown in Figure 3.2.

The parametric equations describing the paths C1 and C2 are as follows:
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Figure 3.2: The sampling path for 2-Level approach (a) on the complex kρ plane and (b) on
the complex kz0 plane

C1 : kz0 = − jk0(T2 + t) , 0 ≤ t ≤ T1 (3.12)

C2 : kz0 = k0[− jt + (1 −
t

T2
)] , 0 ≤ t ≤ T2 (3.13)

Recall that, this transformation between kz0 and t is necessary for GPOF, because it works

only for real variables. T1 and T2 are the truncation points for paths C1 and C2, respectively.

By setting t to these truncation points, we can find kρmax1 and kρmax2 :

kρmax1 = k0
√

1 + (T1 + T2)2 (3.14)

kρmax2 = k0

√
1 + T 2

2 (3.15)
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The procedure for obtaining the complex image approximation of the periodic Green’s func-

tion is as follows:

1. Sample R1 = RT E + Rq along the path C1 and by using GPOF obtain α1 and β1 such

that Rsamp
1 =

∑M1
i=1 α1ie− jkz0β1i for kz0 ∈ C1. M1 is the number of complex images for

approximating the reflection coefficient and it is based on the number of significant

singular values obtained in an intermediate stage of the GPOF algorithm.

2. Use α1 and β1 along the path C2 to obtain the effect of the coefficients α1 and β1 on the

path C2. That is, find Rsamp
21 =

∑M1
i=1 α1ie− jkz0β1i for kz0 ∈ C2. The subscript 21 means the

effect of coefficients of path 1 on path 2.

3. Sample R2 = RT E + Rq along the path C2. Subtract Rsamp
21 from this sampled reflection

coefficient R2 to obtain Rs
2. By applying GPOF to Rs

2, obtain coefficients α2 and β2 such

that Rsamp
2 =

∑M2
i=1 α2ie− jkz0β2i for kz0 ∈ C2. It is not necessary to subtract the effect of

the coefficients α2 and β2 on the path C1 from Rsamp
1 , because this effect is very small

compared to Rsamp
1 . This fact is verified by numerical experiments.

4. Find Rapp
1 =

∑M1
i=1 α1ie− jkz0β1i and Rapp

2 =
∑M2

i=1 α2ie− jkz0β2i and add them to find Rapp
tot .

Here, kz0 is along the path of the Floquet mode summation. Use Rapp
tot in place of

(RT E + Rq) in equation 3.4 to find Gapp
q . With this Gapp

q used in place of G̃ in equation

3.1, one can obtain the complex image approximation of the periodic Green’s function

on the microstrip substrate, Gapp.

3.1.2 Numerical Results

In this section, the Green’s function, Gapp, obtained by using 2-Level DCIM for reflection

coefficients is compared to the exact Green’s function, G. The parameters of the structure are

given in Table 3.1. The approximation parameters are given in Table 3.2.

Before presenting the results of the comparison between the exact Green’s function and the

Green’s function obtained by 2-level DCIM, it must be made sure that the DCIM is applied

succesfully to obtain the complex image representation of the reflection coefficients. For this

purpose, the expression Rapp
tot

e− jkz0(z+z′)

j2kz0
is plotted with respect to kz0 and compared to the plot
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Table 3.1: The parameters of the structure used during the simulations

εr dielectric permittivity of the substrate 3.38
h thickness of the substrate 0.1λ0

f frequency of investigation 30 GHz
a and b periodicities of the structure 1.1λ0

(x′, y′, z′) coordinates of the source point (0,0,0)
z z coordinate of the observation point 0 (on-plane case)
θ polar angle of the incident wave π rad

Table 3.2: Approximation parameters of the 2-Level DCIM

T1 truncation point of the first path 200
N1 number of samples in the first path 200
T2 truncation point of the second path 5
N2 number of samples in the second path 200
M1 number of complex images used in the first path 7
M2 number of complex images used in the second path 10

of the expression (RT E + Rq) e− jkz0(z+z′)

j2kz0
where kz0 is along the sampling path instead of the path

of the Floquet mode summation. This comparison is shown in Figure 3.3. A good agreement

is observed between the complex image representation and the exact values as shown in the

figure. The average relative error is in the order of 10−6.

Next, the complex image approximation of the spectral domain Green’s function is used in

the Floquet mode summation given in equation 3.1 to compute the periodic Green’s function

at the observation point ρ = 0.78λ0 and the results are compared with the exact results with

respect to the number of terms used in the summation as seen in Figures 3.4 and 3.5. Exact

results refer to the case when the Floquet mode summation is directly applied to the spectral

domain Green’s function without making any approximations.

Even though, the relative error during the 2-level DCIM approximation was in the order of

10−6, the relative error in the periodic Green’s function becomes 10−2. To investigate the

possible sources of the error, the approximate spectral domain Green’s function is compared

with the exact one in Figure 3.6 for real values of kρ, since Floquet mode wave numbers kxm

and kyn, consequently kρ are real.

It can be observed from Figure 3.6 that the complex image approximation obtained by sam-
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Figure 3.3: Comparison of complex image representation of reflection coefficients obtained
by 2-level DCIM to the exact values along the sampling path

Figure 3.4: Comparison of the approximate (2-Level DCIM) and exact periodic Green’s func-
tions at observation point ρ = 0.78λ0
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Figure 3.5: Relative error between the approximate (2-Level DCIM) and the exact periodic
Green’s functions at observation point ρ = 0.78λ0

Figure 3.6: Comparison of approximate (2-Level DCIM) and exact spectral domain Green’s
functions along the real axis of the kρ − plane
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pling the spectral domain Green’s function along the path C2, that corresponds to complex

values of kρ, does not accurately model the contribution of the surface wave pole along the

real axis of the kρ − plane. This discrepancy does not cause a problem for the evaluation of

the spatial domain Green’s function for a single source with DCIM since the integral of the

complex image approximation along C1 and C2 and the integral of the exact Green’s function

along the real axis of kρ − plane give same results. However, for the periodic case, there is a

Floquet mode summation instead of an inverse Fourier transform integral for the transforma-

tion from the spectral domain to the spatial domain. Therefore, each term of the summation

should be accurately approximated for the accuracy of the end result which is the spatial do-

main Green’s function. From this observation, it is clear that surface wave contributions need

to be extracted.

3.2 Two-Level Discrete Complex Image Method with Surface Wave Pole Ex-

traction

3.2.1 Formulation

The formulation for this approach is the same as that of the 2-Level DCIM approach except

that the contributions of the surface wave poles are extracted prior to sampling. Recall that

the contribution of the SWP can be written in the following form in the spectral domain:

G̃sw =
2kρpRes

k2
ρ − k2

ρp
(3.16)

where kρp is the surface wave pole and Res is its residue. In order to compute the residue of

the pole, the following theorem from complex calculus is utilized [41]:

If f (z) and g(z) are analytic at z0, and if g(z) has a simple zero at z0, then

Res
[

f (z)
g(z)

, z0

]
=

f (z0)
g′(z0)

(3.17)

The derivative operation is performed numerically by using first order finite difference formu-

las. After finding the surface wave pole (kρp) and the residue for that pole (Res), the procedure

described in section 3.1 is applied with the difference being that the expression in 3.16 is sub-

tracted from the reflection coefficients R1 = RT E + Rq and R2 = RT E + Rq and the procedure
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is continued with these new values for R1 and R2. The complex image contribution, Gapp
ci is

obtained by this procedure, but to find the total Gapp, one must add the contribution of the

surface wave pole. This contribution is found simply by putting the expression in 3.16 in

place of (RT E + Rq) in equation 3.4 to find Gsw
q . With this Gsw

q used in place of G̃ in equation

3.1, the contribution from the surface wave, Gapp
sw is obtained.

3.2.2 Numerical Results

The structure whose parameters are given in Table 3.1 is also studied in this section. The

approximation parameters of the DCIM are given in Table 3.3.

Table 3.3: Approximation parameters for 2-Level DCIM with SW Extraction Approach

T1 200
N1 200
T2 5
N2 200
M1 7
M2 7

In order to investigate whether the extraction of surface wave pole contribution helps the

DCIM model the contribution of the surface wave pole correctly, approximate spectral domain

Green’s function is compared with the exact one in Figure 3.7 for real values of kρ. Since, the

discrepancy is small for this case, the relative error plot is also shown in Figure 3.8.

As observed in Figure 3.8, by extracting the surface wave contributions, the error introduced

by the DCIM is significantly reduced. In order to investigate the effects of SW extraction on

the accuracy of the periodic Green’s function, the magnitudes of the approximate and exact

periodic Green’s functions are compared in Figure 3.9. The relative error values are also

plotted in Figure 3.10.

It can be observed that the error is reduced to a level of 10−4 by extracting the surface wave

contributions. Even though the accuracy is improved significantly, the 3-level approximation

scheme, where the sampling of the spectral domain Green’s function is performed along the

real kρ axis, is also studied in order to explore the possibility of reducing the error even further.

31



Figure 3.7: Comparison of approximate (2-Level DCIM with surface wave extraction) and
exact spectral domain Green’s functions along the real axis of the kρ − plane

Figure 3.8: Relative error between the approximate (2-Level DCIM with surface wave extrac-
tion) and exact spectral domain Green’s functions along the real axis of the kρ − plane
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Figure 3.9: Comparison of the approximate (2-Level DCIM with surface wave extraction)
and exact periodic Green’s functions at observation point ρ = 0.78λ0

Figure 3.10: Relative error between the approximate (2-Level DCIM with surface wave ex-
traction) and the exact periodic Green’s functions at observation point ρ = 0.78λ0
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3.3 Three-Level Discrete Complex Image Method with Surface Wave Pole Ex-

traction

3.3.1 Formulation

In this approach, the reflection coefficients RT E and Rq in equation 3.4 are sampled along the

real axis of kρ − plane as suggested in [27]. This path is shown in Figure 3.11.

Figure 3.11: The sampling path for 3-Level approach (a) on the complex kρ plane and (b) on
the complex kz0 plane

The parametric equations describing the paths C1, C2 and C3 are as follows:

C1 : kz0 = − jk0(T2 + t) , 0 ≤ t ≤ T1 (3.18)

C2 : kz0 = − jk0t , 0 ≤ t ≤ T2 (3.19)

C3 : kz0 = k0(1 − t) , 0 ≤ t ≤ 1 (3.20)
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Since the endpoints of path C3 is already defined (0 and k0), we only need to enter the number

of samples for that path. The expressions for kρmax1 and kρmax2 are same as in 2-Level approach

(equations 3.14 and 3.15).

The procedure of this approach for obtaining the complex image approximation of the peri-

odic Green’s function is as follows:

1. Sample R1 = RT E + Rq after subtracting the expression in equation 3.16 from it along

the path C1 and by using GPOF obtain α1 and β1 such that Rsamp
1 =

∑M1
i=1 α1ie− jkz0β1i for

kz0 ∈ C1.

2. Use α1 and β1 along the path C2 to obtain the effect of the coefficients α1 and β1 on the

path C2. That is, find Rsamp
21 =

∑M1
i=1 α1ie− jkz0β1i for kz0 ∈ C2.

3. Use α1 and β1 along the path C3 to obtain the effect of the coefficients α1 and β1 on the

path C3. That is, find Rsamp
31 =

∑M1
i=1 α1ie− jkz0β1i for kz0 ∈ C3.

4. Sample R2 = RT E + Rq after subtacting the expression in equation 3.16 from it along

the path C2. Subtract Rsamp
21 from this sampled reflection coefficient R2 to obtain Rs

2. By

applying GPOF to Rs
2, obtain coefficients α2 and β2 such that Rsamp

2 =
∑M2

i=1 α2ie− jkz0β2i

for kz0 ∈ C2.

5. Use α2 and β2 along the path C3 to obtain the effect of the coefficients α2 and β2 on the

path C3. That is, find Rsamp
32 =

∑M1
i=1 α2ie− jkz0β2i for kz0 ∈ C3.

6. Sample R3 = RT E + Rq after subtacting the expression in equation 3.16 from it along

the path C3. Subtract Rsamp
31 and Rsamp

32 from this sampled reflection coefficient R3 to

obtain Rs
3. By applying GPOF to Rs

3, obtain coefficients α3 and β3 such that Rsamp
3 =∑M3

i=1 α3ie− jkz0β3i for kz0 ∈ C3.

7. Find Rapp
1 =

∑M1
i=1 α1ie− jkz0β1i , Rapp

2 =
∑M2

i=1 α2ie− jkz0β2i and Rapp
3 =

∑M3
i=1 α3ie− jkz0β3i and

add them to find Rapp
tot . Here, kz0 is along the path of the Floquet mode summation. Use

this in place of (RT E + Rq) in equation 3.4 to find Gapp
q . With this Gapp

q used in place

of G̃ in equation 3.1, one can obtain the complex image approximation of the periodic

Green’s function on the microstrip substrate, Gapp.
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3.3.2 Numerical Results

The approximation parameters used during the 3-level DCIM are given in Table 3.4.

Table 3.4: Approximation parameters for 3-Level DCIM Approach

T1 truncation point of the first path 200
N1 number of samples in the first path 200
T2 truncation point of the second path 5
N2 number of samples in the second path 200
N3 number of samples in the third path 50
M1 number of complex images used in the first path 8
M2 number of complex images used in the second path 5
M3 number of complex images used in the third path 5

The accuracy of the modeling of the surface wave contribution by DCIM is investigated by

comparing the approximate spectral domain Green’s function with the exact one for real val-

ues of kρ. The relative error plot is shown in Figure 3.12.

Figure 3.12: Relative error between the approximate (3-Level DCIM with surface wave ex-
traction) and exact spectral domain Green’s functions along the real axis of the kρ − plane

As observed in Figure 3.12, the relative error is reduced to the levels of 10−4. In order to

investigate the effects of this reduction on the accuracy of the periodic Green’s function, the
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Figure 3.13: Comparison of the approximate (3-Level DCIM with surface wave extraction)
and exact periodic Green’s functions at observation point ρ = 0.78λ0

Figure 3.14: Relative error between the approximate (3-Level DCIM with surface wave ex-
traction) and the exact periodic Green’s functions at observation point ρ = 0.78λ0
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Figure 3.15: Magnitudes of the approximate (3-Level DCIM with surface wave extraction)
and exact periodic Green’s functions at observation points along the diagonal of a unit cell

Figure 3.16: Relative error between the approximate (3-Level DCIM with surface wave ex-
traction) and exact periodic Green’s functions at observation points along the diagonal of a
unit cell
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magnitudes of the approximate and exact periodic Green’s functions are compared in Figure

3.13. The relative error values are also plotted in Figure 3.14. As can be seen in the figure,

the relative error values have decreased to the levels of 10−7.

The behaviour of the periodic Green’s function with respect to the location of the observation

point is observed by plotting the magnitudes of the approximate and exact Green’s functions

for along the diagonal of a unit cell. This plot is shown in Figure 3.15. Since in the application

of MoM, the Green’s functions are integrated with the source functions to obtain the matrix

entries, the level of the relative error at each observation point is crucial. For this reason,

the relative error is plotted against the observation points along the diagonal of a unit cell, to

investigate the limits of the relative error. This plot is shown in Figure 3.16. Note that, in this

simulation, the Floquet mode summations are truncated at 1001 × 1001 terms.

The 3-level DCIM with surface wave extraction has reduced the average relative error between

the exact periodic Green’s function in layered media and the complex image approximation

of it to the levels of 10−7. The next task of this thesis work is to accelerate the computation of

the series representing this Green’s function, which is handled in the next chapter.
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CHAPTER 4

ACCELERATING THE COMPUTATION OF THE SERIES

REPRESENTING THE PERIODIC GREEN’S FUNCTION IN

LAYERED MEDIA

In this chapter, the work done for accelerating the computation of the Green’s function is

explained. The Green’s function expression to be accelerated is the one obtained by using

3-Level DCIM Approach (see Section 3.3), since it gives the most accurate results. First, the

formulation of the problem is given and then the numerical results are presented.

4.1 Formulation

The Green’s function expression obtained by using 3-Level DCIM Approach is given as :

G =
1

ab

∞∑
m=−∞

∞∑
n=−∞

G̃app
q e− jkxm(x−x′)e− jkyn(y−y′) (4.1)

where G̃app
q is given as:

G̃app
q =

1
j2kz0

[e− jkz0(z−z′) + Rapp
tot e− jkz0(z+z′)] (4.2)

Here, Rapp
tot is the total approximated reflection coefficient consisting of Rapp

1 , Rapp
2 and Rapp

3 .

When we put the expression for G̃app
q in equation 4.1 we see that the periodic Green’s function

can be considered as the sum of a direct term (Gdir) and a reflected term (Gre f ):
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Gdir =
1
ab

∞∑
m=−∞

∞∑
n=−∞

e− jkz0(z−z′)

j2kz0
e− jkxm(x−x′)e− jkyn(y−y′) (4.3)

Gre f =
1

ab

∞∑
m=−∞

∞∑
n=−∞

Rapp
tot

e− jkz0(z+z′)

j2kz0
e− jkxm(x−x′)e− jkyn(y−y′) (4.4)

It is seen that Gdir is exactly the same as equation 2.22 which is the expression for free space

periodic Green’s function (FSPGF). Thus, the formulation for the application of the Ewald

Method to this term is exactly the same as described in Section 2.3.

The reflected term of the periodic Green’s function can be further split into three parts, namely

Gre f ,1, Gre f ,2 and Gre f ,3 since Rapp
tot is the sum of Rapp

1 , Rapp
2 and Rapp

3 . The expressions for

these three approximated reflection coefficients were given in Section 3.3 and they are re-

peated here:

Rapp
1 =

M1∑
i=1

α1ie− jkz0β1i (4.5)

Rapp
2 =

M2∑
i=1

α2ie− jkz0β2i (4.6)

Rapp
3 =

M3∑
i=1

α3ie− jkz0β3i (4.7)

By putting these expressions in place of Rapp
tot in equation 4.4, we obtain Gre f ,1, Gre f ,2 and

Gre f ,3. Since the expressions for these three terms are very similar, the Ewald formulation

will be given only for the first part. Gre f ,1 is given as follows:

Gre f ,1 =
1
ab

∞∑
m=−∞

∞∑
n=−∞

M1∑
i=1

α1i
e− jkz0(z+z′+β1i)

j2kz0
e− jkxm(x−x′)e− jkyn(y−y′) (4.8)

When the equation 4.8 is observed, one can realize that it is in the same form as equation 2.22

with some differences. There is an extra summation
∑M1

i=1 and an extra factor α1i. Also, z − z′

terms are replaced with z + z′ + β1i. By making these changes, the Ewald summation for this

reflected term is obtained as:

Gre f ,1
1 =

1
4ab

∞∑
m=−∞

∞∑
n=−∞

M1∑
i=1

α1i
e− j[kxm(x−x′)+kyn(y−y′)]

jkz0

∑
±

e± jkz0(z+z′+β1i)er f c
(

jkz0

2E
± (z + z′ + β1i)E

)
(4.9)
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Gre f ,1
2 =

1
8π

∞∑
m=−∞

∞∑
n=−∞

M1∑
i=1

α1i
e− j(ki

xma+ki
ynb)

R1i

∑
±

e± jk0R1ier f c(R1iE ±
jk0

2E
) (4.10)

with E being the Ewald splitting parameter and R1i being the complex distance given as:

R1i =

√
(x − x′ − ma)2 + (y − y′ − nb)2 + (z + z′ + β1i)2 (4.11)

Gre f ,1
1 and Gre f ,1

2 are combined to get Ewald summation for Gre f ,1, (Gre f ,1
ew ). By the same way,

Gre f ,2
ew and Gre f ,3

ew are obtained. These three are summed together to get Gre f
ew . The expression

for Gdir
ew is already known from Section 2.3. Gre f

ew and Gdir
ew are added together to obtain Gew,

the Ewald summation for the periodic Green’s function in the microstrip structure.

Note that the Ewald method decomposes the periodic Green’s function into two parts; G1 and

G2. Since the equation 4.9 is a spectral summation, it is sometimes referred to as ’spectral

series’ while the equation 4.10 is referred to as ’spatial series’ since it is a spatial summation.

The Ewald method discussed up to now is applied only to the part of the Green’s function that

is approximated by complex exponentials. The surface wave contributions, on the other hand,

are not expressed as exponentials. The spatial domain contribution of the surface wave poles

for periodic structures can be expressed in terms of a spatial summation as:

Gperiodic
sw =

∞∑
m=−∞

∞∑
n=−∞

−
j
2

(Res)H(2)
0 (kρpρ)kρpe− jki

xmae− jki
ynb (4.12)

The Ewald method is extended to the summations in the form of equation 4.12 in [44]. In

this thesis work, this method is not applied and the surface wave contributions are found by

spectral summation without any approximation method. For this reason, the details of the

method presented in [44] are not discussed here. The acceleration of the series representing

the contributions of the surface wave poles in periodic structures is considered to be a future

work.

The convergence of the spectral summation for the surface wave contribution is investigated

for the observation point ρ = 0.78λ0 and plotted in Figure 4.1
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Figure 4.1: Convergence of the spectral summation for the surface wave contribution

4.2 Numerical Results

In this section, the results for the Ewald’s Method is presented. The complementary error

functions er f c in the Ewald summation expressions contain complex values inside their ar-

guments. The extension of the error function to the complex plane is described in [42]. This

document and the implementation of it for Matlab (an M-file) can be found at the website

[43].

The approximation parameters used for the 3-Level DCIM approach is same as in the previous

chapter. Another approximation parameter in the simulations is the Ewald splitting parameter,

E. First, we will investigate the effect of this parameter to the convergence rate of both the

spectral series and the spatial series. For E = 0.7Eopt, the convergence of the spectral and

spatial series are shown in Figures 4.2 and 4.3, respectively. For E = Eopt, the plots are given

in Figures 4.4 and 4.5 while the convergence rates for E = 1.6Eopt are shown in Figures 4.6

and 4.7 Note that, this investigation is done for the direct term of the Green’s function for the

sake of simplicity.

It is observed that as the Ewald splitting parameter increases, the spectral series converges

more slowly while the convergence rate of the spatial series increases. The reason for this
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Figure 4.2: Convergence of the spectral series of Ewald summation for E = 0.7Eopt

Figure 4.3: Convergence of the spatial series of Ewald summation for E = 0.7Eopt
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Figure 4.4: Convergence of the spectral series of Ewald summation for E = Eopt

Figure 4.5: Convergence of the spatial series of Ewald summation for E = Eopt
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Figure 4.6: Convergence of the spectral series of Ewald summation for E = 1.6Eopt

Figure 4.7: Convergence of the spatial series of Ewald summation for E = 1.6Eopt
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becomes clear when we analyze equations 2.29 and 2.30. The Ewald splitting parameter

defines the upper limit of the integral in spectral part while it determines the lower limit

in spatial part. For these parameters of the structure, the best overall convergence rate is

obtained when E = Eopt. In that case, the number of terms used in Ewald summation is the

same for both the spectral and spatial series. Thus, E = Eopt is used in the simulations for

these parameters of the structure. Next, the convergence rates of the series summations for

the direct and the reflected term are investigated with E = Eopt. For this value of the Ewald

splitting parameter, the convergence of the series representing the direct term is shown in

the Figures 4.4 and 4.5. The convergence of the series representing the reflected term of the

periodic Green’s function is shown in Figure 4.8

Figure 4.8: Convergence of Ewald summation for the reflected term of the Green’s function

After determining the number of terms needed for Ewald summation, we use those numbers

for summation and compare the results to that of exact spectral summation. These plots

are shown in Figures 4.9. From this figure, one can conclude that the result of the exact

spectral summation oscillates near a final value and converge to it very slowly while the

Ewald summation reaches to that final value with a very small term number.

The CPU time for the Ewald summation is 0.225 seconds and for surface wave contribution

summation it is 0.020 seconds while for the direct spectral summation, the time needed is
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Figure 4.9: Comparison of the approximate Green’s function accelerated by Ewald summa-
tion with approximate and exact Green’s functions with no acceleration

161.44 seconds. Note that, the CPU time measured for direct spectral summation is the time

for 5001 × 5001 terms and this number of terms is still not enough for it to converge.

Next, the effect of the periodicity of the structure (a and b) on the accuracy of the Ewald

summation is investigated. For this purpose, a and b are increased to 4.3λ0 and the direct

term of the Green’s functon is computed by Ewald’s method. The convergences of the spectral

and the spatial series are shown in Figures 4.10 and 4.11. Both series converges with 7 × 7

terms. (The number of terms seen in the figures are the number of terms at one half of

a side of the structure.) The spectral series converges to −6.137471214487152 × 1023 +

j3.755745845781550×108 while the spatial series converges to 6.137471214487246×1023−

j1.934323331365723 × 108. The total series converges to the sum of these numbers which

is 9.395240960000000 × 109 + j1.821422514415827 × 108.The reason for these huge values

and consequently the loss of accuracy is described in Section 2.3.

The remedy for the problem of accuracy loss is to increase the Ewald splitting parameter,

E beyond Eopt. Therefore, E is set to 2Eopt and the direct term of the Green’s function

is computed again by Ewald’s method. For this new value of the splitting parameter, the

spectral series converges to −3.709872057975033 × 105 + j9.017734101038753 while the

spatial series converges to 3.709928913770443 × 105 − j8.606354363519641 × 10−14. As
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Figure 4.10: Convergence of the spectral series of Ewald summation for a = b = 4.3λ0 and
E = Eopt

Figure 4.11: Convergence of the spatial series of Ewald summation for a = b = 4.3λ0 and
E = Eopt
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Figure 4.12: Convergence of the spectral series of Ewald summation for a = b = 4.3λ0 and
E = 2Eopt

Figure 4.13: Convergence of the spatial series of Ewald summation for a = b = 4.3λ0 and
E = 2Eopt
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a result, the total series converges to 5.685579541022889 + j9.017734101038668. The new

value for E solved the problem of accuracy loss which is due to the finite precision of the

machine. However, this is accomplished at the cost of losing the optimum convergence rate

for the series. This can be observed in Figures 4.12 and 4.13 in which the convergence of the

spectral and the spatial series are shown, respectively.

The convergence rate of the spectral series has decreased while the convergence rate of the

spatial series has increased with the choice of E = 2Eopt. The number of terms needed for

the spectral series to converge is 11 × 11 while this number is 5 × 5 for the spatial series.

This makes the total series converge more slowly compared to the case of E = Eopt where the

number of terms needed for both spectral and spatial series to converge is 7 × 7.

The results of this chapter show that the Ewald’s method can successfully be applied to ac-

celerate the series representing the periodic Green’s function in multilayer media when this

Green’s function is approximated via DCIM.
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CHAPTER 5

CONCLUSION AND THE FUTURE WORK

The aim of this thesis was to express the periodic Green’s function in layered media in a

suitable form such that the high order derivatives with respect to frequency can be easily

obtained. For this purpose, the possibility of utilizing the DCIM is studied, 2-level and 3-

level approximation schemes are applied. The numerical results show that there are mainly

two factors that affect the accuracy of the method. First one is the contribution of surface

wave poles; they need to be extracted before applying DCIM. Second one is the choice of

the sampling path which is used to extract the parameters of the complex exponentials. The

sampling path should be the real axis of the kρ − plane since the Floquet mode summation

of the periodic Green’s function is also in terms of real values of kρ. By applying DCIM, the

spectral domain Green’s function is approximated in terms of two components which are the

complex exponentials and the surface wave contributions.

After obtaining an accurate approximation for the spectral domain Green’s function via DCIM,

Ewald’s method is used to compute the periodic Green’s functions efficiently. It is demon-

strated through numerical examples that the Floquet mode summations involved in the com-

putation of the periodic Green’s functions converge within a few terms (5 to 10) when Ewald’s

transformation is applied. However it should be noted that Ewald’s transformation is applied

only to the complex exponentials and the surface wave contributions are directly summed.

Although the main purpose of this thesis is achieved, the efficiency of the proposed method

could be further improved by accelerating the series corresponding to surface wave contribu-

tions. This series could also be accelerated by applying Ewald’s method. Because, in literature

Ewald’s method is utilized in the efficient computation of two dimensional free space peri-

odic Green’s function which involves Hankel functions and the surface wave contributions
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are also in terms of Hankel functions. However, during the application of the Ewald’s method

to the series corresponding to the surface wave contributions, some numerical problems are

encountered. The efforts to eliminate these problems are left as a future work.

As a future study it is also planned to use these accurate and efficient periodic Green’s func-

tions in the MoM analysis of periodic structures in layered media and to efficiently obtain the

frequency response of such structures through the use of Pade approximation.
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