
GPS-BASED REAL-TIME ORBIT DETERMINATION OF ARTIFICIAL SATELLITES 

USING KALMAN, PARTICLE, UNSCENTED KALMAN AND H-INFINITY FILTERS 

 

 

 

 

 

 

 

 

 

A THESIS SUBMITTED TO  

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES  

OF 

 MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

 

BY 

 

 

 

 

 

EREN ERDOĞAN 

 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN 

GEODETIC AND GEOGRAPHIC INFORMATION TECHNOLOGIES  

 

 

 

 

 

 

 

 

MAY 2011 
 



Approval of the thesis: 

 

GPS-BASED REAL-TIME ORBIT DETERMINATION OF ARTIFICIAL 

SATELLITES USING KALMAN, PARTICLE, UNSCENTED KALMAN AND              

H-INFINITY FILTERS 

 

 

 

submitted by EREN ERDOĞAN in partial fulfillment of the requirements for the 

degree of Master of Science in Geodetic and Geographic Information 

Technologies Department, Middle East Technical University by, 

 

 

 

Prof. Dr. Canan Özgen                         _______________ 

Dean, Graduate School of Natural and Applied Sciences 
 

Prof. Dr. Vedat Toprak                                          _______________ 

Head of Department, Geodetic and Geographic Info. Tech. 
 

Assoc. Prof. Dr. Mahmut Onur Karslıoğlu                                 _______________ 

Supervisor, Civil Engineering Dept., METU                         

 

 

 

Examining Committee Members: 

 

Assoc. Prof. Dr. Zuhal Akyürek                               _______________ 

Civil Engineering Dept., METU  
 

Assoc. Prof. Dr. Mahmut Onur Karslıoğlu                     _______________ 

Civil Engineering Dept., METU  
 

Assist. Prof. Dr. Elçin Kentel                                          _______________ 

Civil Engineering Dept., METU  
 

Dr. Uğur Murat Leloğlu                       _______________ 

Space Technologies Research Institute, TÜBĠTAK 
 

Prof. Dr. Gerhard Wilhelm Weber                      _______________ 

Institute of Applied Mathematics, METU 

 

 

Date:   25 / 05 / 2011 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been 

obtained and presented in accordance with academic rules and ethical 

conduct.  I also declare that, as required by these rules and conduct, I 

have fully cited and referenced all material and results that are not 

original to this work. 

 

      Name, Last Name: EREN ERDOĞAN 

       Signature: 

  



iv 

 

ABSTRACT 

 

GPS-BASED REAL-TIME ORBIT DETERMINATION OF ARTIFICIAL SATELLITES 

USING KALMAN, PARTICLE, UNSCENTED KALMAN AND H-INFINITY FILTERS 

 

Erdoğan, Eren 

M.Sc., Department of Geodetic and Geographic Information Technologies 

Supervisor: Assoc. Prof. Dr. Mahmut Onur Karslıoğlu 

 

May 2011, 105 pages 

Nowadays, Global Positioning System (GPS) which provide global coverage, 

continuous tracking capability and high accuracy has been preferred as the 

primary tracking system for onboard real-time precision orbit determination of 

Low Earth Orbiters (LEO).  

In this work, real-time orbit determination algorithms are established on the 

basis of extended Kalman, unscented Kalman, regularized particle, extended 

Kalman particle and extended H-infinity filters.  

Particularly, particle filters which have not been applied to the real time orbit 

determination until now are also performed in this study and H-infinity filter is  

presented using all kinds of real GPS observations. Additionally, performance 

of unscented Kalman filter using GRAPHIC (Group and Phase Ionospheric 

Correction) measurements is investigated. 

To evaluate performances of all algorithms, comparisons are carried out using 

different types of GPS observations concerning C/A (Coarse/Acquisition) code 

pseudorange, GRAPHIC and navigation solutions.  

A software package for real time orbit determination is developed using 

recursive filters mentioned above. The software is implemented and tested in 
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MATLAB© R2010 programming language environment on the basis of the 

object oriented programming schema. 

Keyword : Real-Time Orbit Determination, Navigation, GPS, Recursive Filters, 

Artificial Satellites  
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ÖZ 

 

KALMAN, PARÇACIK, SEZGĠSĠZ KALMAN VE  H-SONSUZ FĠLTRELERĠ 

KULLANILARAK YAPAY UYDULARIN YÖRÜNGELERĠNĠN GPS-BAZLI GERÇEK-

ZAMANLI BELĠRLENMESĠ 

 

Erdoğan, Eren 

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri 

Tez Yöneticisi: Doç. Dr. Mahmut Onur Karslıoğlu 

 

Mayıs 2011, 105 sayfa 

Günümüzde, küresel kapsama, sürekli izleme ve yüksek doğruluk sunan 

Küresel Konumlandırma Sistemi (Global Positioning System, GPS), alçaktan 

uçan uyduların gerçek zamanlı yörüngelerinin hassas bir şekilde 

belirlenmesinde birincil izleme sistemi (tracking system) olarak tercih 

edilmektedir. 

Bu çalışmada, genişletilmiş Kalman (extended Kalman filter), sezgisiz Kalman 

(unscented Kalman filter), düzenlenmiş parçacık (regularized particle filter), 

genişletilmiş Kalman parçaçık (extended Kalman particle filter) ve H-sonsuz 

(H-infinity filter) filtreleri ile gerçek-zamanlı yörünge belirleme algoritmaları 

geliştirilmiştir.  

Özellikle, şu ana kadar gerçek-zamanlı yörünge belirlemede kullanılmayan 

parçaçık filtreleri bu çalışmada değerlendirilmiş ve H-sonsuz filtresi belirtilen 

tüm gerçek GPS gözlemleri kullanılarak incelenmiştir. Bunun yanı sıra, sezgisiz 

Kalman filtresinin performansı GPS GRAPHIC (Group and Phase Ionospheric 

Correction) gözlemleri kullanılarak irdelenmiştir.  

Algoritmaların performans değerlendirmesinde farklı GPS gözlemleri (C/A code 

pseudorange, navigation solution and GRAPHIC) dikkate alınmaktadır. 



vii 

 

Gerçek zamanlı yörünge belirleme algoritmaları için yukarıda tanımlanan 

özyineli filtreler kullanılarak bir yazılım paketi geliştirilmiştir. Yazılım, MATLAB© 

R2010 programlama dili ortamında nesne tabanlı mimariye dayalı üretilmiş ve 

test edilmiştir. 

Anahtar Kelimeler: Gerçek-Zamanlı Yörünge Belirleme, Navigasyon, GPS, 

Özyineli Filtreler, Yapay Uydular 
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CHAPTER 1 

 
 

INTRODUCTION 

 
 

 
1.1 Background 

Remote sensing satellites play a major role in observing the Earth. Several space 

missions that are equipped with different kinds of sensors (e.g., gradiometer, 

altimeter and digital cameras) have been designed to collect valuable data for 

various study fields. Atmospheric limb sounding, gravity field determination, real 

time navigation, ocean circulation, synthetic aperture radar based imaging  and 

sea level detection are such example applications that make use of satellite based 

data.      

All these scientific studies require knowledge on location of the Earth orbiting 

artificial satellites. This necessitates determining satellite orbits accurately. Hence, 

payloads of modern satellites include equipment that allows accurate positioning 

and navigation. Global Positioning Systems (GPS), Doppler Orbitography and 

Radiopositioning Integrated by Satellite (DORIS) and Satellite Laser Ranging 

(SLR) are such systems that are used to track satellites.  Figure 1 shows the 

tracking systems on TOPEX/POSEIDON satellite which is the early altimeter 

mission launched in 1992 and ended its mission in 2006.  

The GPS was initially developed by the United States Department of Defense. It 

allows global timing, positioning and navigation. GPS receivers extract the 

information from the electromagnetic waves transmitted by Earth-orbiting GPS 

satellite constellation. GPS receivers provide two fundamental observables 

indicating the range between the receiver and tracked GPS satellite which are so 

called code (e.g., C/A-code, P-code) and phase measurements (e.g., L5, L1, L2) . 
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Spaceborne GPS receivers onboard the spacecraft have evolved and widely used 

in various science missions. The TOPEX/Poseidon mission gave the first 

opportunity for GPS based precise orbit determination of low Earth orbiters [1,2].  

Nowadays, onboard satellite GPS systems that offer global coverage, continuous 

tracking capability and high accuracy are preferred as the primary tracking 

system for precise orbit determination [3]. For instance, GRACE, CHAMP and 

GOCE satellites that contribute to the gravity field recovery require high accurate 

orbit estimation and carry dual frequency Blackjack GPS receivers. On the other 

hand synthetic aperture radar mission TERRASAR-X is equipped with a single 

frequency MosaicGNSS and a double frequency IGOR GPS receiver. Additionally, 

almost all recent remote sensing satellites have at least one single frequency GPS 

receiver for positioning. 

Orbit solutions [4-7] can be extracted from purely dynamic (only force and 

satellite model) or purely geometric (kinematic) (only using the observations) or 

combined solution of both dynamic and geometric models. Either the dynamic or 

the geometric models are influenced by systematic and random errors. The 

purpose of the modern orbit determination is to achieve an optimal estimation of 

 

Figure 1 : TOPEX/POSEIDON tracking system (Courtesy of NASA/JPL) 
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the state parameters of space vehicles using the erroneous observations fitting 

the geometric and dynamic model [6].  

1.2 Literature Review 

GPS based orbit determination can be performed in real time onboard or offline 

on ground to supply valuable and accurate orbit products.  

In ground based processing accurate orbit products are generated by exploiting 

precision orbit determination via GPS only data (e.g., [3,8-12]) or combined 

observations such as GPS, SLR, DORIS and altimeter data (e.g., [13]).  

Onboard real time orbit determination can make a valuable contribution to the 

autonomous navigation, formation flying, onboard geocoding of high resolution 

imagery, time synchronization, atmospheric sounding, additionally, it can reduce 

the dependency on ground operations [14,15]. Various algorithms have been 

proposed for on board real time orbit determination concerning the onboard 

resources and computational efforts (e.g., [15-21]). 

Orbit determination problem has been studied using different kinds of estimation 

techniques in terms of batch and recursive processing. Especially, recursive 

estimation is more suitable for real time applications. Kalman Filter [22] is the 

most favorite and commonly applied recursive algorithm. Since many of the 

systems in real world have non-linear characteristics, extended (EKF) and 

linearized Kalman Filter (LKF) algorithms are proposed to handle non-linearity. 

They utilize linearization to approximate the nonlinear dynamic or measurement 

models. In these algorithms state distribution is assumed to be Gaussian. But 

large errors can be encountered in mean and covariance estimation due to these 

approximations, leading in the worst case to the divergence of filter [23,24]. 

Kalman filter requires exact knowledge on statistics of noise sources, but the fact 

is that the system may be approximately defined and noise statistics may not be 

well known. H  filter has been designed to handle such uncertainties offering 

robust estimations [25,26]. On the other hand, various classes of filtering 

techniques have been proposed to cope with non-linearity. Unscented Kalman 

Filter (UKF) and Particle filter (PF) are such filters. UKF makes use of some 

deterministically sampled points with corresponding weights to represent mean 
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and covariance of the probability distribution [24]. Particle Filter is based on the 

Monte Carlo simulation schema. Basic idea is the recursive approximation of the 

probability densities using independent random samples, so called particles, with 

associated weights [27]. There have been many variants of particle filters, such 

as regularized particle filter and extended Kalman Particle filter.  

The most preferred recursive algorithm in orbit determination is the extended 

Kalman filter. It has been applied using different kind of GPS observables 

acquired from either double or single frequency GPS receivers. For instance, in 

[17,28] real time orbit determination algorithms studied using single frequency 

GPS receivers. [18,29] are such studies that make use of GPS navigation solution. 

In [15], a comprehensive study including various satellites and different kinds of 

GPS observables acquired from double frequency receivers has been carried out 

for real time orbit determination. In [20], another example is given that utilizes 

GPS code and phase combined observables.  

GPS navigation processing via simulation was studied by [30] applying the UKF. 

Orbit estimation from satellite and ground based observation models was also 

performed in [31] using simulated observations. It is reported that in case of 

large measurement errors, long sampling periods and large initial errors, UKF 

shows a better performance than EKF and yields a more robust convergence.  An 

onboard orbit determination algorithm has been proposed in [18] based on the 

GPS code pseudorange and navigation solution observables acquired from 

KOMPSAT-2 and CHAMP satellites. The results showed that UKF has a better 

performance than EKF in onboard orbit determination for navigation solution and 

code pseudorange observations. 

A comprehensive study on vehicle navigation comprising the orbit estimation 

using simulated ground based radar tracking data and GPS pseudorange data on 

the basis of different kinds of filters (e.g., adaptive EKF and UKF) was carried out 

in [32].  It was reported that UKF is superior to EKF in orbit determination using 

simulated radar tracking data. 

The [19] introduces an extended H  filtering approach for the onboard GPS based 

orbit determination using simulated code pseudorange data. From the result, it 
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can be concluded that H  is superior to extended Kalman Filter in the sense of 

Root Mean Square (RMS) deviations. 

In [33], particle filter was also studied for orbit determination through employing 

simulated observations from the ground (range, azimuth, elevation). Compared 

with EKF and UKF, results of PF exhibited no significant improvements in position 

accuracy but a better performance in speed determination. 

1.3 Motivation and Objective of the Study 

Early navigation solutions onboard using only C/A code pseudorange observations 

and very simple force models on the basis of Kalman filter are not enough to fulfill 

the requirements of new satellite missions. Advances in GPS and spaceborne GPS 

receivers lead to efficient and more accurate onboard real time orbit 

determination which can make a valuable contribution to the autonomous 

navigation, formation flying, onboard geocoding of high resolution imagery, time 

synchronization, atmospheric sounding and reducing the dependency on ground 

operations. Moreover, methods of recursive filtering algorithms which combine 

the measurement and dynamic model are also crucial to improve the accuracy of 

orbit products. In this context, it must also be emphasized that these algorithms 

must be able to work well and be implemented without any trouble onboard the 

satellite at the any time.  

Many of the published studies in literature make use of the extended Kalman filter 

(EKF) algorithm in real time orbit determination as given in [15]. Performance of 

EKF is well scrutinized using different kinds of GPS observations either based on 

code pseudorange or combination of code and phase pseudorange measurements. 

But, recent studies showed that the unscented Kalman (UKF) and H  filter which 

was applied to the onboard real time orbit determination improved the accuracy 

of orbit products. For instance, Choi et al. (2010) developed an algorithm based 

on the UKF using both C/A code and navigation solution measurements [18]. 

Kuang et al. (2004) applied the H  filter to the autonomous orbit determination 

which only makes use of the simulated code pseuderange measurements [19]. 

But simulated data cannot always clearly represent the problems encountered in 

the physical reality. On the other hand, although particle filters (PFs) are well 

known and preferred algorithms in tracking applications, such as radar based 
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tracking, PFs have not been considered for real time orbit determination until 

now.    

In this sense, particle filters have been performed in this study for the real time 

orbit determination. Moreover, performance of UKF using GRAPHIC 

measurements has also been investigated. H  filter has been performed using all 

kinds of real GPS observations. Furthermore, being aware of the lack of a 

comparative study on GPS based real time orbit determination, a comprehensive 

performance analysis of different filters namely extended Kalman, unscented 

Kalman, H  and particle filters (regularized particle and extended Kalman particle 

filters) using GPS navigation solution, C/A code pseudorange and GRPAHIC 

measurements has been carried out in this study.  

Finally, a software package for GPS based real time orbit determination including 

satellite dynamic models, measurement models and different types of recursive 

filters mentioned above has been developed and tested in MATLAB R2010 

programming language environment. 

1.4 Thesis Outline 

This thesis consists of four chapters. Background, literature review and objectives 

of study are explained in Chapter 1 (Introduction). 

Chapter 2 is dedicated to a brief definition of methods, models and mathematical 

backgrounds used in orbit determination. Principle of GPS, physical fundamentals 

governing the satellite motion, time and reference systems, and filtering 

algorithms are presented. 

Data and analysis are presented in Chapter 3 where the results are evaluated and 

discussed. 

A concluding remark and future works are given in Chapter 4 with a discussion 

and summary. 
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CHAPTER 2 

 
 

GPS BASED ORBIT DETERMINATION  

 
 

 
Earth observation satellites that have been equipped with different kinds of 

sensors require orbit products (e.g. position, velocity) at various accuracy levels 

ranging from centimeters to several meters. Earth gravity missions GRACE [34] 

and GOCE [35]  are examples that require highly accurate orbit products used in 

the determination of the Earth‟s gravity field. TerraSAR-X is equipped with an X-

band SAR sensor to acquire radar images of the Earth and use high precision orbit 

products for their evaluation [36].  Another example is the ESA Proba-2 satellite 

which stands for PRoject for OnBoard Autonomy and is dedicated to the 

demonstration of innovative technologies. Some of which are new sensors to 

measure electron density and temperature in the background plasma of the 

Earth‟s magnetosphere or an exploration micro-camera. Proba-2 carries a Phoenix 

GPS receiver onboard with an attached eXtended Navigation System (XNS) in 

order to experiment autonomous and precise navigation [37]. Examples can be 

extended for various missions that require reliable orbit products processed either 

real-time onboard or offline.  

In order to fulfill orbit product requirements, payloads of modern satellites include 

equipment that allows accurate positioning and navigation. Global Positioning 

Systems (GPS), Doppler Orbitography and Radiopositioning Integrated by 

Satellite (DORIS) and Satellite Laser Ranging (SLR) are such systems that are 

used in orbit determination of satellites. Global Positioning System offers global 

coverage, continuous tracking capability and high accuracy so that GPS receivers 

onboard the artificial satellites have been preferred as the primary tracking 

system for orbit determination of various missions. Besides, advances in 

spaceborne GPS receivers are another important factor leading to a high accuracy 
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orbit determination of artificial satellites. Figure 2 shows a dual frequency IGOR 

GPS receiver, and a single frequency PHOENIX GPS receiver.  

GPS receivers extract two fundamental raw observables from transmitted GPS 

signals which are pseudorange (e.g., C/A, P code) and phase pseudorange 

measurements (e.g., L1, L2 ). These observables allow to compute the range 

between the spaceborne GPS receiver and the GPS satellites. One can compute 

the position and velocity of the tracked satellite either using GPS only observables 

or combined solutions comprising both the GPS observables and underlying 

dynamic model. Figure 3 illustrates satellite-to-satellite tracking (high-low) of 

CHAMP gravity mission. 

In orbit determination, position and velocity are the minimum number of 

parameters defining the state vector that needs to be estimated. The number of 

parameters in the state vector can be increased, so that dynamic or measurement 

model parameters can also be estimated in order to improve the accuracy. 

Besides, extra parameters may be required for other scientific applications, such 

as GPS receiver clock biases and atmospheric drag.  

This section comprises models and methods for the estimation of the state vector 

in orbit determination.   

 

Figure 2 : Spaceborne GPS receivers. Left image; IGOR dual frequency GPS 

receiver. Right image: Phoenix single frequency GPS receiver. (Courtesy of 
DLR) 
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2.1 Methods of Orbit Determination 

Various orbit determination methods, in terms of dynamic, kinematic and reduced 

dynamic approaches [34,38,39], have been studied in the literature.    

Kinematic strategy (e.g., [40,41]) requires only the geometric information 

obtained from the GPS observations and no force model is included.  

Dynamic strategy (e.g., [12,42]) relies on accurate modeling of physical 

situations surrounding the satellite. Detailed mathematical models of all forces 

exerted on the satellite and physical properties of the satellite are required. 

Unknown parameters can be extended to include additional dynamic model 

parameters. A nominal orbit is first calculated, explicitly using equation of motion 

via analytical or numerical integration methods. Then, observations are best fitted 

to the nominal orbit with in parameter estimation methods. 

Dynamic model is sensible to errors caused by the imperfect modeling of forces 

acting on the satellite. On the other hand accuracy of kinematic model is highly 

dependent on the GPS constellation, viewing geometry, and erroneous 

measurements [3,43].  

 

Figure 3 : GPS-CHAMP, high-low satellite-to-satellite tracking (courtesy of 
GFZ Potsdam) 
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Reduced dynamic orbit determination strategy (e.g., [3,10]) addresses the 

problems of the dynamic and kinematic orbit determination and offers an optimal 

solution by ensuring equilibrium between the dynamic and observation model 

errors. If the measurements are accurate, this approach may not require a 

precise force model [17,39]. This approach mainly makes use of stochastic 

information by introducing pseudo-stochastic parameters (e.g., empirical 

accelerations) or adding process noise to dynamic model [38]. Throughout this 

study, reduced dynamic approach has been utilized in orbit determination.  

2.2 GPS Satellite Based Positioning 

Satellite based positioning (shortened as satellite positioning) refers to compute 

the observer position using measurements acquired from satellites (e.g., GPS, 

GLONAS, GALILEO) [44]. Observer may stand on the Earth surface, in air or in 

space.  

Principle of GPS based navigation of artificial satellites which is known as low-

height satellite-to-satellite tracking is depicted in Figure 4.    and    are the 

position vectors with respect to the geocenter of the Earth.   is the range 

 

Figure 4 : Principle of satellite-to-satellite (low-height) tracking 
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between the receiver and GPS satellite which is formulated as below; 

      ‖     ‖  (1) 

Position of GPS satellites are broadcasted in GPS signals. The range is measured 

by the receivers using transmitted satellite signals. Once ranges are measured, 

observer position    can be computed. 3D position components and clock bias due 

to synchronization error between the receiver and transmitter of the GNSS 

satellite are the unknowns in positioning. Thus, at least four observations are 

required for the computation.   

2.2.1 GPS Overview 

Global positioning System (GPS) [44-47] serves as a ranging system that lets 

observers to compute their position, velocity and time in space. Current 

constellation is composed of 32 satellites, 24 of which are operational [48].  

Satellites are positioned at altitudes of approximately 20200 km above the earth. 

Distribution of the constellation has been maintained to enable that at least four 

satellites can be seen simultaneously above the user horizon.   

GPS provides two levels of service; standard positioning service (SPS) and precise 

positioning service (PPS). SPS is for the civilian users whereas access to PPS is 

only for authorized users.  

GPS satellites transmit the pseudorandom noise (PRN) ranging code and the 

navigation message which consist of satellite health status, timing information, 

satellite clock bias and ephemerides. Information is modulated onto carrier 

signals and then transmitted to receivers. All carrier signals are generated from 

the fundamental frequency of 10.23 Mhz by multiplication with a constant factor 

shown in Table 1.  

Course/acquisition (C/A) code and precise (P) code are the fundamental PRN 

ranging codes provided by the GPS. (C/A) code is for civilian users and available 

under standard positioning service. P code, designed for precise positioning 

service, is accessed by only military and authorized users. C/A code is modulated 

onto L1 carrier, but P code is on both the L1 and L2 carriers. New ranging codes 
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(e.g., L5C) and carrier frequencies (e.g., L5) have been provided during the 

modernization of GPS. 

The pseudoranges are derived observables generated by GPS receivers from 

transmitted satellite signals and categorized into two groups; code pseudoranges 

and phase pseudoranges. Code pseudoranges are constructed utilizing the 

information coded in the signal whereas phase pseudoranges are derived from the 

phase of the carrier signal. Positioning accuracy at meter level can be reached by 

code ranges on the other hand phase ranges may offer millimeter level accuracy. 

Each receiver and GNSS satellites are equipped with clocks. GNSS Satellite clocks 

are more precise and expensive compared to clocks on receivers. Thus, receiver 

clocks cannot be synchronized very well to satellite clocks. Range measured by 

receiver is the sum of geometric range and receiver clock bias [44]. Hence, 

measured range is called pseudorange.  

2.2.2 GPS Observables 

GPS receivers extract two fundamental raw observables from transmitted GPS 

signals, which are called code pseudorange (e.g., C/A code) and phase 

pseudorange measurements (e.g., L1 and L2 phases) [44]. Following sections 

introduce fundamentals of both code and phase pseudorange observables. 

 

Table 1 : GPS Carrier Frequencies 

 

Signal 
Multiplication 

Factor 

Frequency 

(Mhz) 

Wavelength 

(cm) 

L1 154 1575.42 19 

L2 120 1227.60 24.4 

L5 115 1176.45 25.5 
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2.2.2.1 Code pseudorange 

Let signal emission time measured by satellite clock define as      and signal 

reception time read by receiver satellite as     , knowing that clock 

measurements of both the GPS satellite and the receiver are not perfect and 

include biases with respect to GPS system time [44].  Then time difference 

between two clocks is given by  

          
    (         )  ( 

        )       , (2) 

where      and      are the receiver and GPS satellite clock biases, respectively, 

   (      
   ) and   = (      

   ). In this regard, the code pseudorange, 

 , can be computed by multiplying the Equation (2) by the speed of light c: 

       (      
   )   (      )  (3) 

2.2.2.2 Phase Pseudorange 

If phase of the reconstructed received signal is    with the carrier frequency    

and     is the receiver generated reference phase based on the frequency of    , 

then the beat phase,   
 ( ), can be obtained as follows  [44]: 

      
 ( )     

 ( )     (4) 

where t is the time epoch with respect to initial time t0, N is the integer ambiguity 

and    
  is the fractional part of the phase. Once the receiver is switched 

instantaneous fractional phase is measured but the integer ambiguity, N, is 

unknown.  

Phase beat can be modeled as follows: 

      
 ( )     

 

 
     (5) 
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where          
     is the clock error difference and f is the nominal 

frequency and   is the geometric range. Substituting (5) into (4) yields 

      
 

 
  

 

 
      (6) 

where   wavelength of the carrier signal,       
  and after multiplied by   it 

becomes 

                 (7) 

Note that the phase pseudorange given in Equation (7) is almost identical to code 

pseudorange (3) apart from the bias term, N.  

2.2.3 GPS Error Sources 

Code or phase measurements are affected by various systematic errors, biases 

and noise sources. The main effects [44,46,47] on observable can be classified as 

 GPS satellite ephemerides and clock errors, 

 errors due to signal propagation through the atmosphere (ionosphere and 

troposphere), 

 relativistic effects,  

 antenna phase center offset, 

 multipath effect, 

 other transmitter and receiver related errors.  

Some systematic errors may be modeled in observation equations. Alternatively, 

some may be reduced or removed through the combination of observables.  

Combined effect of error sources on range measurement is described as user 

equivalent range error (UERE) [44]. Magnitudes of the effect of some individual 

error sources and UERE taken from [44] are shown In Table 2. It has to be noted 

that values given in Table 2 are limited because in real situation influence of 

many variable have to be considered, e.g., elevation angel of satellite, strength of 

the received signal [44]. Following sub sections give a brief explanation of 

mentioned error sources. 
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2.2.3.1 GPS Satellite Ephemerides and Clock Errors 

Ephemerides and clock data of GPS satellites are required for the modeling of 

measurements. Thus, accuracy of ephemerides and clocks both on receiver and 

GPS satellite is of vital importance in precise positioning. Small errors in clocks 

may introduce large errors on range measurement in view of the Equation (4). To 

this end, GPS satellites are equipped with high quality clocks. Besides, parameters 

concerning GPS clock and ephemerides are computed by the GPS control 

segment. These parameters are than loaded to each GPS satellite via uplink, 

which broadcast them to the users as a part of the GPS signal.    

2.2.3.2 Atmospheric Effects 

Signals travel from GPS satellites to receivers through an approximate range of 

20,000 km and interact with different layers of the atmosphere (ionosphere and 

troposphere). This interaction results in change of signal velocity which is called 

refractivity bending the signal path. The ionosphere, at the height of between 

approximately 50km-1000km above the earth, causes more errors than the 

Table 2 : Magnitude of effect of GNSS errors sources and UERE [44]  

GNSS Error Sources Magnitude (m) 

Ephemerides 2.1 

Satellite clock 2.1 

Ionosphere 4.0 

Troposphere 0.7 

Multipath 1.4 

Receiver measurement 0.5 

UERE (1  probability) 5.3 
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troposphere. Ionosphere consists of free electrons and ions. The physical 

characteristics of the ionosphere change with day and night, seasonally and 

depending upon the solar activity. The ionospheric delay is highly related to the 

total electron content (TEC) through the signal path. The units of TEC is defined 

by TECU which is defined by 1 TECU= 1016 electrons per m2.  Hereby, the 

ionospheric error in magnitude can be represented by 

          
         

  
  (8) 

where f is the signal frequency. Furthermore, TEC is 

         ∫   ( )   
   

   

 (9) 

where    is the electron density varying through the path which extends from 

satellite to receiver. Ionopsheric delay has the same effect in magnitude for both 

code and phase measurements, but differs in sign. 

                           
         

  
 (10) 

Effect of ionosphere on GPS code measurement for single frequency receivers can 

be computed using the Klobuchar Model [49], coefficients of which are 

broadcasted in the GPS navigation message. It offers at least 50% reduction of 

ionospheric effect. But Klobuchar Model is suitable for measurement acquired 

near Earth surface so that it is not an efficient model in orbit determination of LEO 

satellites [17]. But, single frequency users can use the global ionosphere map 

(GIM) products or code phase combinations to account for the ionospheric effects. 

In orbit determination based on the JPL GIM models has been demonstrated in 

[50].  The so called GRAPHIC, Group and Phase Ionospheric correction, uses the 

linear combination of C/A code and L1 phase measurements to reduce ionospheric 

delay [7]. GRAPHIC method has been applied successfully to either real time or 

offline orbit determination as given in [15,51,52]. Ionosphere is a dispersive 

medium at GPS carrier frequencies. Thus for double frequency users, ionospheric 

effects can be mitigated via combining the signals with different carrier 
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frequencies without taking advantage of any ionosphere model [44]. To this end, 

ionospheric error mitigation strategies based on the combination of 

measurements serves as a suitable framework for real time orbit determination.  

Troposphere which is the lower part of the atmosphere extends up to about 40 

km above the earth surface and also refracts the GPS signals. Troposphere 

contains dry gases and water vapor that have different refraction characteristics. 

Troposphere exhibits a non-dispersive characteristic for GPS signals so that its 

effect cannot be directly computed using carrier frequencies. Science mission 

satellites flight generally at high altitudes so that they do not interact with the 

troposphere. Thus, in orbit determination, the effect of the troposphere can be 

neglected. 

2.2.3.3 Multipath Effect 

GPS signals can arrive the receiver through multiple paths due to the reflection 

from nearby objects and this phenomenon is referred to as the multipath effect 

[44]. It affects both the code and range measurements. Although, there is no 

general model due to the high dependency of time, location and geometry, 

multipath effect can be reduced or removed via scrutinizing the signal to noise 

ratio or code and phase combinations [44]. 

2.2.3.4 Relativistic Effects 

Due to the accelerating motion of the GPS satellites with respect to the inertial 

reference frame at rest and gravitational potential differences between the 

satellite and the receiver, special and general relativistic effects need to be 

considered. Satellite orbits, signal propagation and both the satellite and receiver 

clocks are affected from the relativistic phenomena. More about the relativistic 

effects on GPS may be found in [44,47].     

2.2.3.5 Antenna Phase Center Offset 

Geometrical point on the receiver antenna that is referred to as antenna reference 

point mostly does not coincide with the electrical antenna phase center that varies 
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with elevation, azimuth, satellite signal intensity, frequency and antenna type 

[44]. Antenna phase center offset is generally obtained through calibration and a 

predetermined value is used in processing. It should be provided by the 

manufacturer.   

2.2.3.6 Receiver Related Errors 

Receiver related errors are introduced by receiver clock, antenna, amplifier, 

cables, signal quantization etc. 

2.2.4 GPS Measurement Equations  

Parameter estimation in orbit determination necessitates modeling the GPS 

observables in terms of state vector parameters. As seen in Section 2.2.2, code 

and phase pseudoranges serve as the fundamental observable types. In addition 

to direct use of pseudorange observables, linear combination of these may be 

advantageous in reducing or almost cancelling the errors in models.  

Use of pseudoranges or combinations of these is restricted by the receiver type 

and access authorization. For instance, single frequency receivers can utilize C/A 

code and L1 phase observables. On the other hand, double frequency receivers 

can allow use of L2 phase observables. Further information can be found in 

[44,46,47] for different kind of measurement models and their combinations. 

In this study, the interest is constricted to the single frequency GPS receivers. To 

this end, C/A code and L1 phase observable and their combination derived by 

averaging them (called GRAPHIC) are used in orbit determination. In addition, 

navigation solution measurements provided by the onboard system of the satellite 

are also evaluated as observations. 

2.2.4.1 C/A  Code and L1 Phase Measurement Equations 

Code and phase pseudorange observables acquired from the GPS receivers 

contain errors which are treated shortly in Section 2.2.3. These raw observables 

can be modeled for C/A code pseudorange,     , and L1 phase pseudorange,     , 

by the following measurement model equations: 
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         ‖ 
        ‖   (      

   )                  (11) 

        ‖ 
        ‖   (      

   )                  (12) 

where      and      are the position vectors of the satellite and the receiver, 

respectively. Here, ‖         ‖ is the geometric range between the receiver at 

reception time, t, and GPS satellite at transmission time,     ,      is the 

ionospheric path delay, N bias arise from the ambiguity of the carrier phase 

measurement, and  ‟s are the random measurement noise. Furthermore,      

and     indicate errors specific to the type of observables such as multi path, 

relativistic effects, etc. 

2.2.4.2 GRAPHIC Measurement Equation 

Direct measurement of the ionospheric path delay is limited to dual frequency 

GPS receivers. Considering the single frequency receivers, mitigation of path 

delay effect can be accomplished by combining the observables. Effect of the 

ionospheric delay can be reduced by averaging both code pseudorange and 

carrier phase measurements. This technique is known as Group and Phase 

Ionospheric Correction (GRAPHIC) [7]. 

Simplified expressions for the observables which are C/A code pseudorange,     , 

and L1 phase pseudorange,     , are given as below: 

         ‖ 
        ‖   (      

   )             (13) 

        ‖ 
        ‖   (      

   )              (14) 

Note that the ionospheric terms are the same in both equations (13) and (14), 

but different in sign. Combining the measurements by averaging (13) and (14) 

results in 

    
        

 
 ‖         ‖   (      

   )  
 

 
     (15) 
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In (15), the ionospheric term,     , is cancelled. Pseudorange error,     , due to 

the code measurement noise is much greater than the    , so that the error of 

the GRAPHIC observable,   , is about half of the code pseudorange [15,40]: 

       
        

 
 
    

 
   (16) 

2.2.4.3 Navigation Solution 

GPS navigation solutions are derived from the pseudorange and pseudorange rate 

observations by onboard systems of the artificial satellites through the filtering as 

internal processing [18,46,53] and composed of position and velocity fixes. 

Observation vector,     , for navigation solutions can be given as 

         0
 
 
1  (17) 

where   and   are the position and velocity vectors. 

2.3 Time and Reference System  

Identifying the motion of a body, modeling observations, representation and 

interpretation of results necessitate establishing a well-defined reference system 

[54].  

Appropriate time definitions [54] are also demanded in satellite applications. Time 

scales called ephemeris time, dynamic time or terrestrial time describing the 

orbital motion of celestial bodies around the sun are appropriate for the time 

propagation of satellite orbits on the basis of equation of motion. Diurnal rotation 

of Earth is in interest, when establishing the relations between Earth fixed and 

space fixed reference systems. Hence, it necessitates defining a time scale which 

takes into account the diurnal rotation of the Earth (e.g., sidereal time, universal 

time). Moreover, high resolution time scale requirements lead to the motivation 

for the development of atomic clocks which are in use in many areas, e.g., laser 

ranging, measurement of signal travel time in Global Navigation Satellite Systems 

(GNSS).      
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2.3.1 Fundamentals of Coordinate and Reference Systems 

When dealing with reference systems, it is important to distinguish the concepts; 

coordinate systems, reference system, conventional reference system and 

reference frame [54,55]. 

Coordinate system is defined by its origin, orientation of axis and the scale which 

is commonly selected as the same for all axes. Furthermore, axis of coordinate 

system can be Cartesian or curvi-linear (e.g., spherical or ellipsoidal coordinates). 

Reference system refers to a conceptual definition that consists of definition of 

coordinate system, constants, parameters and underlying mathematical and 

physical models. Reference system can be specialized explicitly by conventions. 

Reference frame is the realization of a reference system. It is established by 

observing celestial bodies (e.g., stars, quasars) or based on observations acquired 

from stations on Earth surfaces. Observed positions as well as velocities are 

stored in catalogues to realize reference frames.  

Space fixed, earth fixed and satellite orbital systems refer to fundamental 

reference systems used in the orbit determination. 

Space fixed or inertial system (in fact quasi-inertial system) is a reference system 

that is in rest or moves uniformly in space and also named as celestial reference 

system. Newton‟s law of motion is valid in an inertial system in which equation of 

motion can be formulated. Also, Celestial objects (e.g., stars, quasars, planets) 

are commonly defined in this system. International Astronomical Union (IAU) is 

responsible for establishment of celestial reference systems. Early definition of 

conventional celestial reference system (CCRF) considered the orientation of the 

equinox and the equator with respect to reference epoch J2000 (Julian date 2000) 

to fix the axis of system. The x axis is oriented towards the vernal equinox which 

is the intersection of ecliptic and equatorial plane. The z axis coincides with the 

mean rotation axis of the Earth and y axis completes the right handed system. 

Realization of this system was carried out via Fifth Fundamental Catalogue (FK5) 

created by astronomical observations to planetary objects.  In 1991, IAU adapted 

a new and more accurate celestial reference system called “International Celestial 

Reference System (ICRS)”. Origin of ICRS is barycentre of solar system or 

geocentre. This system is realized by the “International Celestial Reference 
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Frame”. ESA‟s satellite mission HIPPARCOS and Very long Base Interferometry 

techniques made a considerable contribution to the accuracy improvements in 

realization of the system. Distant celestial objects are used to fix the axis of ICRS 

rather than the orientation of the equinox and the equator as it is in the 

conventional celestial reference system. But, the equator and the vernal equinox 

at J2000 realized by FK5 are consistent with the ICRF to keep the continuity.    

Earth fixed or terrestrial reference system is a non-inertial reference system co-

rotating with the Earth and origin of the reference system is located at the 

geocenter. The Z axis points the Earth‟s pole. X- Y plane coincides with the 

equatorial plane. The X axis lies in the Greenwich meridian plane. Conventional 

reference system established by IERS is the “International Terrestrial Reference 

System” and it has been realized by the “International Terrestrial Reference 

Frame”. ITRF are composed of globally distributed station coordinates and 

velocities on the Earth‟s surface. ITRF has been updated based on new geodetic 

space techniques (e.g., VLBI, SLR, LLR). The new realizations are published in 

terms of ITRFxx. The postfix xx refers to year of data used in formation of the 

frame. World Geodetic System 1984 (WGS 84) is another conventional terrestrial 

reference system referring to Global Positioning System. National Imagery and 

Mapping Agency (NIMA) is responsible for the definition and realization of WGS 

84. The WGS 84 Reference System is a right-handed, Earth-fixed orthogonal 

coordinate system.   

Satellite orbital reference system, shown in Figure 5, moves with the artificial 

satellite and its axis can be defined through radial, along-track (or transverse) 

and cross-track directions [56]. Origin of the reference system usually coincides 

with the satellite mass center. The radial (R) axis points from center of Earth to 

satellite. The direction of along-track (S) axis is aligned with the direction of 

velocity vector. The along-track axis does not generally coincide with the velocity 

vector except for circular orbits or for elliptical orbits at apogee and perigee. 

Furthermore, the cross-track (W) component is normal to the plane defined by R 

and S. Once given the position vector,  , and the velocity vector,  , of the 

satellite, the relation between the satellite orbital reference sytem and the 

geocentric reference system denoted by IJK components in the Figure 5 can be 

written as 
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             (18) 

2.3.2 Time Systems 

Different kinds of time systems used in orbit determination are explained in the 

following section. These refer to sidereal, dynamic and atomic time systems. 

2.3.2.1 Sidereal and Universal Time 

Definition of sidereal and universal time [54] is derived from the diurnal rotation 

of the Earth.  

Sidereal time is defined as the hour angle of the vernal equinox [54]. Sidereal 

time referring to observer‟s meridian and true vernal equinox is called Local 

Apparent Sidereal Time (LAST). Removing the effect of nutation results in Local 

Mean Sidereal Time (LMST). When the Greenwich meridian is in interest, 

corresponding hour angles are Greenwich Apparent Sidereal Time (GAST) and 

Greenwich Mean Sidereal Time (GMST), respectively. The relation between the 

GAST and GMST that is referred to as “Equation of Equinox” is expressed by  

 

Figure 5 :  Satellite orbital reference system with radial (R), along-track (S) and 
cross-track (W) components (adapted from [56])  
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                     (19) 

where        is the n utation term,   is the obliquity of the ecliptic,    is the 

nutation in longitude. Furthermore, relations between sidereal time systems 

shown in Figure 6 are given as 

                          (20) 

where   is the astronomical longitude. Practical reasons necessitate to use solar 

time which is related with apparent diurnal motion of sun about the Earth. Due to 

the high variation in hour angle of Sun, a fictitious one called Mean Sun moving 

with constant velocity is defined. Universal Time (UT) refers to the Greenwich 

hour angle of the Mean Sun and defined by the following formula:     

                                                 (21) 

After applying the reduction related with the Earth‟s rotation axis, the time scale 

UT1 is obtained from the UT0 referring to local time and instantaneous rotation 

 

Figure 6 : Definition of Sidereal time (adapted from [54] ) 
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axis. UT1 is the fundamental time scale in Earth rotation. 

2.3.2.2 Atomic Time 

High accurate time scales are provided by TAI (Temps Atomique International – 

International Atomic Time) based on the atomic clocks. TAI is realized by more 

than 200 atomic clocks at about 60 laboratories [57]. The epoch of the TAI 

coincides with UT1 on January 1, 1958.  

Requirement of a uniform time scale being in a close relationship with UT1 

resulted in the development of a Universal Coordinated Time (UTC) whose time 

interval corresponds to TAI. TAI differs from UTC by an integer number.  

The difference  (leap seconds) between UTC and UT1 is within the 0.9 second:  

   |    |  |       |         (22) 

IERS is authorized to compute this difference and publish it via bulletins. 

Time system of the GPS, called GPS Time, refers to the atomic time system. The 

difference between GPS Time (GPST) and TAI is constant and is equal to 19 

second: 

                  (23) 

GPS time offset from UTC is an integer number of seconds, due to the leap 

seconds. The offset between GPST and UTC is transmitted in GPS navigation 

message.  

An epoch in GPS Time is defined by the GPS Week number and seconds counted 

from the standard epoch, 00:00:00 UTC (midnight), 6 January 1980 (JD 

2444244.5). In navigation message, GPS Week is the modulo of 1024. First 

modulo occurred at midnight 21-22 August 1999. 

The relation between the GPS Time and UTC is provided in GPS satellite message 

and in bulletins of USNO and BIPM [54]. 

http://tycho.usno.navy.mil/leapsec.html
http://tycho.usno.navy.mil/leapsec.html
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2.3.2.3 Terrestrial Time, Dynamical Time 

Dynamical time scales, Baycentric Dynamical Time (TDB) and Terrestrial 

Dynamical Time (TDT), were adopted by IAU in 1977 on requirement for the 

relativistic formulation of orbital motion [54].  

Terrestrial Time (TT) one of the new time scales introduced by the IAU in the 

framework of General Theory of Relativity  in 1991. In contrast to TDT, Terrestrial 

Time is not based on dynamical theories.   

The relationship between the TT, TDT and TAI are  

                         (24) 

2.3.3 Transformation Between Space Fixed and Earth Fixed 

Systems 

Transformation between earth fixed (terrestrial) and space fixed systems is 

accomplished by the multiplication of Euler rotation matrixes sequentially in terms 

of precession (P), nutation (N), Earth rotation (S) and polar motion (W) [54,55].  

In this sense, the position vector,     , given in geocentric space fixed system are 

transformed  to earth fixed reference system,      , via following equations: 

   

        

              

(25) 

where   is the total rotation matrix. Earth‟s rotation axis and equatorial plane 

rotate with respect to inertial system. This situation is due to the effect of 

gravitational effects of celestial bodies (moon, sun and other planets) on the 

Earth‟s bulge. In this sense, total motion of ecliptic and equinox at a given certain 

epoch with respect to a fixed epoch which is selected as J2000 (2000 January 

1.5) is expressed by the precession, P, and nutation, N. After concerning the 

effect of precession, the new equatorial plane and equinox are referred to as 

mean equator and as mean equinox, respectively. When the effect of nutation is 

considered, then the terms are named as instantaneous true equator and true 
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equinox of date. For the precession, the total transformation matrix from the 

reference epoch to observation epoch i s accomplished via rotation on the basis of 

three angels,   ,   ,   , which are depicted in Figure 7, and given by 

       (   )  (  )  (   )  (26) 

where    indicates the Euler rotation matrix about the spin axis of the Earth, z. 

The nutation matrix is computed using the following equation: 

       (     )  (   )  ( )  (27) 

where   denotes the obliquity of ecliptic,    is the nutation in the obliquity and    

represent the nutation in longitude. Here,    refers to the rotation around x axis. 

Transformation from instantaneous space fixed system to earth fixed system 

necessitates considering “Earth Orientation Parameters” which are Greenwich 

Apparent Sidereal Time (GAST) and polar motion parameters. Earth rotation 

matrix, S, which is parameterized by GAST is written as 

 

Figure 7 : The precession angles    ,   ,   . The Ox axis points towards   

 in the old system, towards   in the new [96]. 
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       (    )  (28) 

Furthermore, polar motion represents the relative motion of the Earth‟s 

instantaneous spin axes with respect to the terrestrial reference frame and 

commonly defined by the polar coordinates xp, yp. Hence the rotation matrix, W is 

defined as 

       (  )  .  /  (29) 

Transformation of the velocity vector between space fixed and earth fixed system 

is accomplished via derivation with respect to time [5]. In this regard, the 

transformation between the World Geodetic System (WGS-84) and the 

International Celestial Reference System (ICRS) (mean equator and equinox of 

J2000) can be given as [5]  

   

         
            

         
           

     
    

  
       

(30) 

where      and      are the position and velocity vector in WGS-84, and       

and       are the position and velocity vector defined in ICRS. Here,     
     is the 

transformation matrix form WGS-84 to ICRS. Some simplifications can be made in 

computation of the derivative,      
       , which can be computed by assuming the 

nutation, precession and polar motion to be constant. Consequently, the 

derivative simplifies to the following equation: 

   
     

    

  
  

  

  
    (31) 

Further information and implementation details can be found in [5,54,55]. 

2.4 Force Modeling 

Second order differential equation governing the translational motion of the 

orbiting satellite in the Newtonian framework has the following form [5] 
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    ̈   (     )    (32) 

where  ̈ is the acceleration and F is the forces acting on the satellite, m is the 

mass of satellite, r and v are the position and velocity vectors of satellite. 

An approximate solution to the Equation (32) can be expressed in the framework 

of two body problem. Earth is assumed to be a spherical body with a uniform 

mass distribution, thus effect of the Earth‟s gravity field is identical to that of a 

point mass. Then the approximate formulation of motion can be given as  

    ̈   
  

  
   (33) 

where G is the gravitational constant and M is the sum of Earth mass and satellite 

mass. Comparing to the Earth‟s mass, the mass of the satellite can be neglected. 

In reality, satellites are not only affected by the Earth, but also other celestial 

objects such as Sun, Moon and planets. Interaction of satellites with other 

massive objects is analogous to three body problem in celestial mechanic which 

deals with the motion of the Earth, Moon and the Sun. However, the three body 

problem has no solution in a closed form as it is the case in analytic solution of 

the two-body problem [6]. But approximate solutions of the three body problem 

exist. Accordingly, the two body problem is considered as the reference case, 

then the additional forces which are also named perturbing forces are formulated 

as deviations from the reference solution. On the other hand, Earth orbiting 

satellites are subjected to non-gravitational perturbing forces like as atmospheric 

drag, solar radiation pressure and relativistic effects in addition to gravity related 

forces. 

Equation of motion can be formulated in space fixed frame or Earth fixed frame. 

Formulation in Earth fixed frame requires introducing additional accelerations so 

called apparent forces like centrifugal, coriolis and rotational (gyro) accelerations 

[42,54]. Hence the translational equation of motion of the satellite is given in an 

earth-fixed geocentric reference frame by [42]: 
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    ̈   
  

  
   ̈    (     ̇        )   ̈       ̈     ̈     (34) 

where; 

   ̇  ̈       : the position, velocity and acceleration vector of the satellite, 

 
  

  
      : effect of Earth‟s central body, 

         : dynamical parameters defining the force model, 

 ̈            : accelerations due to perturbing forces exerted on the satellite,  

 ̈          : centrifugal acceleration due to the rotational motion of the   

                earth-fixed frame, 

 ̈          : coriolis acceleration due to the rotational motion of the earth-   

                fixed frame and the motion of the satellite, 

 ̈          : rotational or gyro-acceleration due to the non-uniform motion of    

      the earth-fixed frame.  

Equation (34) can be solved numerically with given initial conditions [6].  

The effect of perturbations as a function of geocentric distance to various 

satellites is shown in Figure 8.  

Following sections explain the various gravitational and non-gravitational forces 

and their influences on satellites.    
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Figure 8 : Magnitudes of accelerations acting on satellite [5] 



32 

 

2.4.1 Earth’s Gravitational Effect 

Gravity acceleration ( ̈   ) exerted on satellite is the result of gradient of the 

gravitational potential, U  

    ̈        (35) 

Concerning the Earth‟s body, gravity potential at a point as shown in Figure 9 can 

be specified by summing the effect of individual mass elements of this body and 

given by the following equation:  

      ∫
  

|   |
  (36) 

where G is the gravitational constant, dm is the mass element, r is the geocentric 

position vector of the mass element with respect to the earth fixed reference 

frame, the center of which is denoted by, O, in the figure and it does not exactly 

coincide with the center of mass of the Earth, s is the geocentric position vector 

of the point of interest and |   | is the distance from mass element to the point 

of interest. The integral in (36) is evaluated utilizing the Legendre Polynomials by 

 

Figure 9 :  Gravity potential at a point due to the individual mass element 
given in the Earth fixed reference system  
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means of serial expansions. Afterward, Earth‟s gravity potential takes the 

following form: 

     
  

 
∑ ∑

  

  

 

   

 

   

   (    )(      (  )       (  ))  (37) 

where n, m refer to degree and order of spherical harmonics, respectively, R is 

the equatorial radius. Here,    is geocentric longitude and   is the geocentric 

latitude,     is the Legendre polynomial of degree n and order m.      and    , 

are the geopotential or stoke coefficients standing for the Earth‟s internal mass 

distribution.  

Equation (37) illustrates the spherical harmonic representation of the Earth‟s 

gravity potential concerning the inhomogeneous mass distribution and aspherity 

of the Earth. Taking into account computer implementation aspects, Earth‟s 

gravity potential can be formulated by means of recursion formula [5] which is 

written as 

     
  

 
∑∑

  

  

 

   

 

   

(             )  (38) 

Recurrence relations V and W in terms of Cartesian coordinates are given as 
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In regard to (35), cartesian components of the acceleration vector can be 

calculated as  

    ̈  
  

  
{          }, if m=0, (44) 

   

 ̈  
  

   
* (                        )  

(     ) 

(   ) 
 

         (                       ) +, if m>0, 

(45) 

 

    ̈  
  

  
{          }, if m=0, (46) 

   

 ̈  
  

   
* (                        )  

(     ) 

(   ) 
 

         (                        ) +, if m>0, 

(47) 

    ̈  
  

  
{(     )(                    )}.   (48) 

2.4.2 Atmospheric Drag 

Compared to the other non-gravitational forces, atmospheric resistance exhibits 

the most prominent effect on low Earth satellites at low altitudes [5,6].  

Force acting on satellite due to the neutral part of the atmosphere, also called 

neutral drag, increases with respect to the velocity and decreases with respect to 

the altitude of the satellite. The effect of drag forces is significant factor to 

determine the lifetime of the satellite. 

Acceleration exerted on the satellite due to the drag force is given by 

    ̈         
   

 
       (49) 
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where   is the atmospheric density, m is the spacecraft mass,    is the drag 

coefficient,    is the relative velocity of the satellite with respect to the 

atmosphere,   is the cross-sectional area of the satellite. Following formula holds 

for approximate computation of   : 

               (50) 

where   and   is the satellite velocity and position vectors in space fixed reference 

system.   is the Earth‟s angular velocity vector  

Atmospheric density,  , exhibits variations in dependence of mainly  diurnal 

effects, solar and  geomagnetic activity, seasonal and annual variations. It 

presents approximately exponential reduction with increasing altitude [6].  

Various studies have been done to model atmospheric density. Some of the 

models are Harris-Priester model [58] which is the simplest one, Jachia 1977 

density model [59] and MSIS model [60,61]. A comparative study on various 

density models can be found in [5]. 

The drag coefficient    is an expression for the interaction between the 

atmosphere and the satellite surface. The value of the drag coefficient depends on 

several parameters defined by the spacecraft surface material, chemical 

constitute of the atmosphere and the temperature of the particles [5]. Therefore, 

determination of the atmospheric drag coefficient,   , a priory is not an easy task 

and it is important to estimate it with the orbit determination process  [5]. 

2.4.3 Sun and Moon (Third Body Effect) 

Sun, Moon and other planets have an effect on spacecraft because of their 

gravitation. Assuming that all these celestial bodies interacting with spacecraft are 

point masses, then the acceleration,  ̈  , exerted on spacecraft is given by [5]: 

     ̈     
   

|   |
  (51) 
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where   is the geocentric position vector of the satellite and   is the geocentric 

position vector of celestial bodies with the corresponding mass M. 

The total acceleration exerted on the spacecraft due to celestial bodies can be 

computed by summing of the individual effects of each body. Hence, neglecting 

the other planets and taking into account only Sun and Moon, the acceleration 

due to third body,  ̈  , can be written as 

     ̈    ̈     ̈      (52) 

where  ̈    and  ̈     are accelerations due to the Sun and the Moon, respectively. 

One of the important aspects in (52) is the determination of the position of the 

Sun and the Moon. Low precision Solar and Lunar coordinates by means of series 

expansions are given in [5]. Accurate position of Sun and Moon can be obtained 

using ephemerides (e.g., most common in use DE200, DE405) published by 

NASA‟s Jet Propulsion Laboratory which are given in quasi inertial reference 

frame.  

2.4.4 Direct Solar Radiation Pressure 

Effect of Solar radiation on spacecraft is twofold, namely, direct and indirect. 

Direct effect refers to the interaction of solar radiation pressure with the 

spacecraft directly, while the indirect effect refers to the solar radiation pressure 

reflected from the Earth [5,54]. Acceleration,  ̈   , due to the direct interaction of 

the solar radiation pressure is thus given as 

     ̈        
    

  
 

 

 
   ( ) ,(   )        ( ) -  (53) 

       ( )                   (54) 

where     is solar radiation pressure with an approximate value of 4.56*10-6Nm-2 

and AU is the astronomical unit (1.5*108km). Here, m is the satellite mass, A is 

the area of satellite surface interacting with the radiation and   is the normal 

vector to the satellite surface defining the orientation of A,    shows the direction 
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of the Sun,   is the angel between the   and   . Amount of the reflection is 

indicated by the coefficient  ,   is the shadow function. Besides,   and      are 

the geocentric coordinates of the satellite and sun, respectively, given in quasi 

inertial system. 

Reflectivity coefficient,  , takes the values between 0.2 and 0.9 for metarials used 

in construction of satellites.     means complete absorption and      is for the 

complete reflectance. 

Shadow function,  , determines the eclipse condition and takes the value 

between 0 and 1. If satellite is in Earth‟s shadow (umbro), v=0 if the satellite is in 

sunlight v=1 and if the satellite is in half-shadow (penumbre), 0<v<1. 

Assuming the surface normal is in the direction of the Sun, then (53) simplifies to 

following formula: 

     ̈          
 

 

  

  
   

    (55) 

where radiation pressure coefficient,         

Radiation pressure coefficient,   , can also be estimated in the orbit 

determination process as a free parameter [5]. 

2.4.5 Coriolis and Centrifugal Forces 

Coriolis,  ̈    , and centrifugal accelerations,  ̈     , must be taken into account 

when the equation of motion is formulated in an Earth fixed reference frame 

[15,42]. These accelerations arise due to rotation of the Earth around its axis and 

can be expressed by 

     ̈                   

(56) 

  ̈            ̇       
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where   and  ̇ are the position and velocity vectors of the satellite with respect to 

Earth fixed reference frame,   is the Earth‟s instantaneous angular velocity 

vector. 

2.4.6 Empirical Acceleration 

Empirical acceleration is considered to accommodate the effect of unmodeled or 

inaccurately modeled accelerations in orbital motion [5,6,62]. Empirical 

acceleration may be modeled in connection with the orbital period of spacecraft, 

hence it has once cycle per orbital revolution characteristic [5,6]. It may be 

formulated in different ways. One of the formulations is given by  

             ( )       ( )  (57) 

where x is the empirical acceleration, A is the constant acceleration term, B and 

C are the coefficients, v is the true anomaly.  

Another approach is the first order Gauss-Markov process. It has been used 

successfully in various studies (e.g., [3]). First order Gauss-Markov process can 

be formulated via the following differential equation (also known as Langevin 

Equation) [6,62,63]: 

    
  

  
    ( )      (58) 

where       and   is the correlation time.   is white Gaussian noise with the 

variance   . (58) is composed of both deterministic and purely random parts that 

are correlated with time. Solution for the first order Gauss Markov process is 

given by 

     ( )     (    ) (  )  ∫    (   ) ( )  
 

  

   (59) 

The first part of (59) defines the deterministic part and the second part 

constitutes a stochastic integral with the following variance  
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(      (     ))   (60) 

where 
  

  
 is the steady state variance of  ( ). For finite value of   and      (59) 

can be defined in discrete form as in [6] and written as 

         
  (     )      (61) 

In orbit determination, the state vector can be augmented to estimate the 

components of empirical acceleration at each epoch. This introduces three extra 

parameters, each of which represents empirical acceleration at one dimension. 

Correlation time can also be inserted into the state vector and estimated through 

the filtering. But setting correlation time to a pre-determined value works well 

[6]. In this case, the prior value of correlation time can be determined 

empirically. 

2.4.7 Other Effects 

These effects are needed for high precision modeling and listed as indirect effect 

of radiation pressure, solid Earth and ocean tides, third body perturbations due to 

the other planets and relativistic effects.    

Earth radiation pressure is the consequence of indirect part of solar radiation. 

Some solar radiation exerted on Earth is transmitted to satellites, which result in 

perturbations acting on the satellites motion. It corresponds to 10% - 35% of the 

direct part [5]. The reflected radiation cannot be modeled easily due to the 

variation in distribution of land, sea and clouds [54].  

Mass distribution of body is subjected to a change with time due to the 

gravitational attraction of other bodies. Hence mass property coefficients     and 

    may vary with time [6]. Deformations of the Earth caused by these effects 

are referred to as solid Earth tides and ocean tides. These tidal effects of Earth 

results change on motion of orbiting satellites. 
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Some satellite missions may require very high accurate orbits, so that relativistic 

effects need to be accounted. In previous sections, forces acting on satellites have 

been formulated in Newtonian framework. The motion of satellites can also be 

formulated in the framework of General Relativity based on the equation of 

geodesic or in terms of relativistic corrections which have to be added to the 

translational equation of motion [64].  

2.5 Numerical Integration and Orbit Prediction  

Recursive filtering algorithms in orbit determination involve orbit prediction step 

that is the propagation of the equation of motion from one epoch to another. 

Advances in digital computers lead to use of numerical methods to solve 

differential equations governing the satellite motion. Higher order differential 

equations can be reduced to a set of first order differential equations [65]. Then, 

orbit prediction problem or differential equations can be solved using a convenient 

numerical method with given initial conditions. 

Second order differential equation may be written as 

    
   

   
  ( )

  

  
  ( )  (62) 

and reduced to a set of first order equations as given below: 

    
  

  
  ( )   (63) 

    
  

  
  ( )   ( ) ( )   (64) 

The equation of perturbed motion, defined in Section 2.4, can be formulated in 

general form by  

     ̈   (     ̇)   (65) 

where t is the time,   and  ̇ are the position and velocity components of the total 

acceleration exerted on satellites [5]. 
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The second order differential equation defined in (65) can be solved via numerical 

methods either directly or reducing the equation into a set of first order ordinary 

differential equations as given below:  

    
  

  
  ̇     (66) 

    
  

  
  ̈   (     )   (67) 

The Equations (66) and (67) can be written in state space form by 

      .
 
 ̇
/  (68) 

     ̇  (

  

  
  

  

)  (
 ̇

 ̈ (     )
*  (69) 

where   is the n-dimensional state vector and  ̇ is the n-dimensional first order 

ordinary differential equation of orbital motion. 

Solution for (69) corresponds to the solution for the initial value problem for 

ODEs. Most important numerical methods used to solve ODEs can be listed [65];  

 Runge-Kutta,  

 Predictor-Corrector (multistep), 

 Extrapolation.  

Predictor-Corrector (or multistep) methods require extra storage of solutions 

along the trajectory. Solution is propagated to the next time epoch by 

extrapolation, and then the extrapolation is corrected based on the derivatives at 

the new epoch. 

Extrapolation method is mainly constituted by the Richardson extrapolation 

method. First practical implementation was made by Bulirsch and Stoer.   
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Runge-Kutta method is one step method and has been preferred in this study. 

Therefore next section will introduce the Runge-Kutta method. A comparative 

study and more details in numerical integration methods for orbit prediction may 

be found in [5,66]. 

2.5.1 Runge-Kutta Methods 

Ordinary differential equations can be evaluated numerically by the following 

general formula [67]: 

                 (70) 

Here,   is the slope estimate to predict the new solution      from the old    over 

the interval h and i is the time index. 

Runge-Kutta (RK) takes into account various points defined in the integration 

interval h to compute an average slope. There are different kinds of Runge-Kutta 

(RK) methods. The simple and efficient one is the Runge-Kutta fourth order 

(RK4). Concerning the integration interval of 30 second used in this study, it is 

reasonable to take Runge-Kutta fourth order in real time orbit determination 

[15,28].  The generalized form of RK4 is 

             (       )    (71) 

where  (       ) is called increment function and represents the slope over the 

interval. The increment function   is given by 

                        (72) 

where a‟s indicate constants and k‟s are slopes satisfying following recurrence 

relations 

    

    (     )  

    (                  )  

(73) 
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    (                         )  

  

    (                                     )  

where p‟s and q‟s are constants. 

The value of a, p and q correspond to the terms of Taylor series expansion. For 

further details to compute a, p and q, see [67]. 

The most commonly used form of the RK is the fourth order RK given by the 

formula 

            
 

 
(             )    (74) 

where increment function can be written explicitly:  

                       
 

 
(             )  (75) 

In (75), k‟s are 

    

    (     )  

    .   
 

 
       

 

 
   /   

    .   
 

 
       

 

 
   /   

    (             )  

(76) 

2.6 Linearization 

Sub optimal filters (e.g., Extended Kalman Filter, H  Filter) that make use of 

linearization procedure to approximate non-linear dynamic or measurement 
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models require various partial derivatives with respect to some certain 

parameters.  

Dynamic model in orbit determination is governed by the second order differential 

equations containing all relevant accelerations acting on the satellite. The partial 

derivatives of the dynamic equation with respect to state vector according to an 

initial epoch help to determine the transition matrix which can be computed by 

the integration of variational equations (see sections 2.6.1). Besides, partial 

derivatives with respect to model specific parameters allow computing sensitivity 

to these parameters.  

The linearized equation of measurement model contains the partial derivatives 

with respect to state parameters and measurement model parameters.    

2.6.1 Partial Derivatives of Dynamic Model and Variational 

Equations  

Second order differential equation can be written as 

     ̈   (     ̇)  (77)  

where   is the independent variable (e.g., time),   is the particular solution 

vector,  ̇ and  ̈ are the first and second order derivatives of the solution with 

respect to the independent variable, t. Variational equations denote the 

dependence of   with respect to certain parameters,  , which would contain the 

initial state or model parameters and can be formulated as [68] 

    
  ̈

  
 
  

  ̇

  ̇

  
 
  

  

  

  
 
  

  
   (78) 

The solution of variational equations gives the derivative,  
  

  
.  

Considering orbit determination problem; the state vector   is composed of 

position and velocity vector defining the satellite orbit at time t: 
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     ( )  [
 ( )

 ( )
]  (79) 

Then the dynamical model in the form of a set of the first order differential 

equations can be written as 

     (   )   ̇(   )  [
 ̇( )

 ̇(     )
]  [

 ( )

 (     )
]  (80) 

In orbit determination, state transition matrix and sensitivity to dynamic model 

parameters can be analysied by proper setting of the parameter vector  . 

Suppose that the   is composed of the state vector at time t0 and model 

parameters,          like atmospheric drag or radiation pressure coefficients: 
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 (  )
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  (81) 

The variational equation for orbit determination which is also called the 

differential equation of state transition matrix can be given as 

    
  ̇

  
 
  

  

  

  
 
  

  
   (82) 

The solution for (82) gives the state transition matrix, 
  

  
, which indicates how 

much the state changes at time t if a small change in state and model parameters 

occurred at time t0.   

In (82), partial derivatives, 
  

  
 and 

  

  
, in the first term of right hand side can be 

defined as 
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where 
  

  
 includes partials derivatives of the accelerations acting on the satellite 

with respect to the position and the velocity vectors, n is the number of model 

parameters,  . 

In (82), the second term in the right-hand side of the equality can be defined as  

    
  

  
 

[
 
 
 
 
  (     )

  
  (     )

  ]
 
 
 
 

  (   )

  (84) 

where 
  

  
 is the partial derivatives of differential equation,  (   ), with respect to 

parameter vector  . 

2.6.2 Partial Derivatives of Measurement Model 

Filters that make use of linearization to approximate non-linear measurement 

models, such as Kalman and H  filters, require partial derivatives of the 

measurement model with respect to the state parameters. In addition to position, 

velocity, and force equation parameters, state parameters may include unknown 

measurement model parameters (e.g., clock bias for code pseudorange 

measurements). 

The state vector   is composed of position  , velocity  , force and measurement 

model parameter vectors    and     defining satellite orbit at time t: 

      [

 
 
  
  

]  (85) 

Then the partial derivatives of observation   with respect to state parameters are 

given by the following formulation: 

    
  

  
 [
  

  

  

  

  

   

  

   
]  (86) 
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2.7 Parameter estimation  

Orbit determination mainly constitutes a special case of parameter estimation 

problem [4]. Unknown parameters defining the orbits of artificial satellites are 

determined from the observations. Advances in observation techniques make 

possible to use a large number of observations to determine the orbits of artificial 

satellites [6]. Therefore, the parameter estimation problem which is specific to 

the orbit determination turns into an over-determined problem, since more 

observations are available then the number of unknown parameters.   

In the estimation process, the initial value of the satellite is generally unknown 

and the observations are corrupted by random and systematic errors. On the 

other hand, knowledge about the dynamic or measurement model can be 

imperfect. In this context, obtaining the best estimate of the state parameters of 

a spacecraft is referred to as orbit determination [6]. System equations, in a 

general form, comprising both the measurement and dynamic model for orbit 

determination can be given as; 

     (         )  

(87)  

     (     )  

where   and   are dynamic and measurement model functions, respectively.   is 

the process noise and   is the measurement noise.   is the state vector and   

denotes the observation vector.  

Especially in real time applications, recursive filters that do not require storing 

past measurements become crucial. In general, it can be said that recursive filters 

work in a predictor-corrector form as shown in Figure 10. In prediction step, the 

state vector,  , is propagated to the next time epoch. In correction step, this 

predicted state is updated using new allocated observations,  .  

Within this scope, Kalman, particle unscented Kalman and H  filters that combine 

both the measurement model and the dynamical model in a predictor-corrector 

form have been employed in this study. 
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Kalman Filter for linear models [22] is usually most favorite and commonly 

applied recursive algorithm. But many of the systems are non-linear as it is in 

satellite dynamics. Extended Kalman Filter (EKF), essential idea of which 

introduced by Stanley F. Schmidt, was proposed to handle the non-linearity in 

models [22].  

Particle filter (PF) [27,69,70] is another method which is designed to cope with 

non-linear and non-Gaussian system models. Basic idea of the PF is the recursive 

approximation of the probability densities using independent random samples, so 

called particles, with associated weights. Sequential Importance Sampling (SIS) is 

the fundamental step in a particle filter. Several PFs proposed in literature are the 

special cases of the SIS PF. In this context, different kinds of PF have been 

studied in order to improve the sample diversity and the numerical problems. 

Regularized particle filters (RPF) and Extended Kalman Particle filters (EKPF) are 

such examples that are also preferred in this study. One of the significant 

advantages of RPF is that the evaluation of the Jacobian matrix used in EKF is not 

required. On the contrary, EKPF which mainly exhibits a hybrid form runs EKF at 

each cycle of filter for each particle.  

Unscented Kalman Filter (UKF) introduced by [24] is an alternative approach to 

deal with non-linerities in system models. UKF uses the deterministically sampled 

points with corresponding weights representing the mean and the covariance of 

the probability distribution.  

H  filter deals with modeling errors and noise uncertainties while minimizing the 

worst case error rather than the mean square estimation error as it is in Kalman 

 

Figure 10 : Working schema of recursive filter in a predictor-corrector form 
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Filter. H  filter does not make any assumption about the noise statistics, but 

bounds the noise amplitude. 

A brief introduction to the above mentioned filters are described in the following 

sub-sections.  

2.7.1 Kalman Filter 

Kalman Filter for linear models [22] is probably the most favorite and commonly 

applied recursive algorithm. But, either measurement or dynamic models in many 

estimation problems have nonlinear characteristics. Concerning the small 

perturbations around the state of the system, smooth nonlinear models can be 

treated as approximately linear [22]. Hence, after applying a linearization 

procedure, classical Kalman Filter equations are exploited in nonlinear filtering 

problem. Linearization can be performed about a predefined nominal trajectory or 

current estimate of the actual trajectory. The resulting filtering algorithms are 

then called Linearized Kalman Filter (LKF) and Extended Kalman Filter (EKF), 

respectively. Comparison of Linearized and Extended Kalman Filters follows as 

below [22]; 

 Linearized Kalman Filter takes into account both the perturbation from the 

nominal trajectory and estimation error, but the only concern in extended 

form is the estimation error. As the time progresses, deviation between 

the actual and nominal trajectory can increase, so that the linearity 

assumption on perturbations falls down and results in divergence of the 

filter. That is the most significant drawbacks of the linearized KF. The 

advantage is that the nominal trajectory is calculated only once. 

 In Linearized KF, Kalman Gain can be determined beforehand, but in 

Extended KF cannot. Thus, Extended KF increases the real time 

computational burden. 

 Due to the low sensitivity to linearization errors, EKF presents a better 

performance than the LKF. 

Extended Kalman Filter offers an algorithm with two steps namely correction and 

prediction to combine the noisy sensor data and the uncertain dynamic model for 
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the estimation of the system state [45].  System equations comprising both 

measurement and dynamic models are given as below:  

     (         )  

(88)  

     (     )  

where   and   are dynamic and measurement model functions, respectively.   

and   are the zero mean uncorrelated process and measurement noises with the 

covariances   such that   [    
 ]        and   such that   [    

 ]       

respectively. In Equation (88),   is the state vector and  k is the time stamp. 

Prediction step includes propagation of the state vector,  , and related 

covariance,   which represents the estimation uncertainty up to the next epoch. 

Following equations show the predicted state,  ̂ 
 , and predicted covariance 

matrix,   
 . 

    ̂ 
   ̂   

  ∫  (   )   
  

    

 

(89)  

 

 
  
        

   
        

where the sign (-) indicates the predicted values. Here,   is the state transition 

matrix.   can be determined using variational equations (see section 2.6.1). 

Differential equation of   is given by; 

 
 

  
 (       )  

  (   )

  ( )
 (       )  (90)  

Correction step utilizes the observations    to update the propagated state and 

the corresponding uncertainty. Correction step begins with the computation of the 

Kalman Gain,  , that behaves as a weighting function: 

      
   

 (    
   

    )
  
  (91)  
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where   is the measurement sensitivity (design) matrix,   is the measurement 

covariance matrix. Corrected or updated state vector,  ̂ 
 
, and covariance matrix, 

  
 , can be established as follows: 

  ̂ 
   ̂ 

    (    ( ̂ 
 ))  

(92)  

   
    

        
   

where the sign (+) indicates the updated  values,    measurement vector and 

 ( ̂ 
 ) is the predicted observations. In Kalman Filter, the process and 

measurement noises are assumed to be zero mean and their statistical 

characteristics are represented by Gaussian distribution. 

Table 3 summarizes the extended Kalman filter algorithm. 

 

Table 3 : Extended Kalman filter algorithm 

      ̂ 
   ̂   

  ∫  (   )  
 

    

 

       
        

   
       

                        ̂ 
   ̂ 

    (    ( ̂ 
 )) 

                         
    

         

1) Propagate the  state and covariance to the next epoch 

   

  where   
 

  
 (       )  

  (   )

  ( )
 (       ) 

 

2) Compute the Kalman gain 

          
   

 (    
   

    )
  

 

 

3) Update predicted state vector and covariance matrix using new 

observations obtained  
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2.7.2 Unscented Kalman Filter 

EKF relies on the propagation of Gaussian random variables through the 

underlying system models which are approximated via linearization procedure. 

But the non-linear system cannot be well approximated using linearization 

approach so that EKF can diverge. Besides, determination of Jacobian increases 

the computational complexity and partial derivatives can be very difficult for 

complex systems. Unscented Kalman Filter (UKF) proposed by [24] is an 

alternative approach addressing these problems of EKF. 

Backbone of the UKF is unscented transform (UT) that makes use of some 

deterministically sampled points with corresponding weights which represents the 

mean and the covariance of the probability distribution [24]. These sampled 

points are propagated through the nonlinear function of the system model and 

used to estimate statistics of the new state, so that explicit determination of 

Jacobian or Hessian is no longer required. 

2.7.2.1 Unscented Transform 

Consider n dimensional random variable   that is propagated through the 

nonlinear function, 

    ( )  (93)  

where    has the mean value  ̅ and covariance    .  Unscented transformation is a 

method to compute statistics of   which is a nonlinear function of the random 

variable   [24]. 

To calculate the statistics of y (mean value  ̅ and the covariance    ), the mean 

and covariance of   is represented by a set of deterministically selected points so 

called sigma points,  , with their corresponding weights, w. Then each sigma 

point is transformed through the nonlinear function   as shown in Figure 11. Mean 
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 ̅ and covariance     of the   are estimated using these transformed sigma points 

and associated weights. 

In computations, the covariance matrix can be a non-positive semi-definite matrix 

leading to prevent computation of square root of    . This problem can be avoided 

by introducing a variant of UT which is called Scaled Unscented Transform (SUT) 

[71,72]. In the procedure for the SUT [71-73], minimum number of sigma points 

which represents  ̅ and     is selected with respect to the dimension n of the 

random variable,  . In case of n dimensional random variable, 2n+1 sigma 

points,  , and associated weights,  , can be determined as follows ; 

            ̅                                                          

(94) 

 

             ̅  (√(   )   )                             

           ̅  .√(   )   /
   
                      

where   is the index of the sigma point,   (√(   )   )  is ith row or column of 

the matrix square root of scaled covariance matrix   (   )   . If the matrix 

square root L of   is formulated as        then the only rows of L are used for 

the calculations of sigma points. If it is written in the form of      , the 

columns of L are used. Cholesky or QR decomposition can be applied to 

determine square root matrix L.   has a similar behavior to as scaling parameter 

and it is determined by 

 

Figure 11 : Unscented Transform [24] 
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     (   )     (95)  

where   controls the spread of sigma points and takes small values      .   is 

another scaling parameter providing extra degree of freedom to accommodate the 

effect of higher order moments. To guarantee positive definitiveness   is selected 

as     [72]. The value     presents a well default choice [72]. 

The weights for the mean   
   and covariance   

  are obtained from the following 

expressions: 

   
  

{
 

 
 

   
                                   

 

 (   )
                    

 

(96)  

   
  

{
 

 
 

   
 (      )                         

 

 (   )
                                       

 

where   is another parameter that is used to incorporate higher order effects.   

  is the optimal value for the Gaussian distribution [23]. 

After selecting the sigma points   , each one is propagated through the nonlinear 

function: 

     (  )                             (97)  

Then the weighted mean  ̅ of the transformed sigma points is: 

  ̅  ∑  
   

  

   

  (98)  

The posterior covariance     that is the weighted outer product of the 

transformed sigma points is 
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     ∑  
 *    ̅+*    ̅+

  

  

   

 (99)  

Compared to the linearized models that rely on Taylor expansion, UT 

compensates the effect of the nonlinearity up to third order in Taylor series 

expansion for systems whose input variables are in Gaussian distribution [23]. For 

non-Gaussian inputs variables at least up to second order terms, the system can 

be well approximated accurately [23].  

Figure 12 shows an example for the performance of Monte Carlo sampling, EKF 

and UT. 

 

Figure 12 :  Example of the UT for mean and covariance propagation. (a) 
actual (Monte Carlo Sampling) , (b) first-order linearization (EKF), (c) UT. [23] 
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2.7.2.2 Unscented Transform Applied to Kalman Filter 

(Unscented Kalman Filter) 

Unscented Kalman Filter [72-74] is mainly the extension of the unscented 

transform approach to the sequential estimation. Probability distribution of the 

state is assumed to be Gaussian as in EKF. However, distribution is represented 

by deterministically selected sigma points. The system of nonlinear equations:  

     (         )  

(100)  

     (     )  

where   and   are dynamic and measurement model functions, respectively.   is 

the state vector.   and   are the zero mean additive process and measurement 

noise components with associated covariances   such that   [    
 ]         and 

  such that  [    
 ]      , respectively. Both the process and the measurement 

noise are Gaussian random variables. In the implementation of UKF, state vector 

can be augmented to contain both the process and measurement noise 

parameters, but for the case where noises are purely additive, the state is no 

longer required to be augmented [73]. In this study, a non-augmented UKF is 

used. 

UKF can be executed in three steps which are sigma point calculation, time 

update (prediction) and measurement update (correction).  

Sigma points        and associated weights   
  and   

  at epoch k-1 are 

calculated based on the mean and covariance using (94) and (96). Then each 

sigma point is propagated through the nonlinear equation and the predicted 

sigma point,      , at new epoch k is 

               (       )                 (101)  

Predicted state  ̂ 
  and predicted covariance  ̂    

  are calculated as in (98) and 

(99), respectively:  
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 ̂ 
  ∑  

      

  

   

 

 ̂     
  ∑  

 {      ̂ 
 }{        ̂ 

 }
 
   

  

   

 

(102)  

 

Sigma points are redrawn due to the update of the predicted covariance  ̂     
  by 

the process noise  . Then the predicted observations      for each sigma point 

and their mean  ̂ 
  are computed by 

       (        )  (103)  

  ̂ 
  ∑  

     

  

   

  (104)  

In the measurement update step, firstly, innovation covariance  ̂     is determined 

by 

  ̂     ∑  
 {      ̂ 

 }{      ̂ 
 }
 
   

  

   

 (105)  

Cross-correlation matrix between the predicted state  ̂ 
  and the observation  ̂ 

  

are obtained as 

  ̂     ∑  
 {      ̂ 

 }{        ̂ 
 }
 

  

   

  (106)  

Therefore, the filter gain is given by 

    ̂    ( ̂    )
  
  (107)  

Then the estimated state vector  ̂ 
  and estimated covariance  ̂ 

  are calculated as 

given by 
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 ̂ 
   ̂ 

   (   ̂ 
 )   

  
   ̂    

   ( ̂    ) 
   

(108)  

Table 4 summarizes the unscented Kalman filter algorithm [73].  

 

Table 4 : Unscented Kalman filter algorithm for additive zero mean noise case  

                     ̅    (√(   )       )                    

                   (       ) 

     ̂ 
  ∑  

     

  

   

        ̂     
  ∑  

 {      ̂ 
 }{        ̂ 

 }
 
  

  

   

 

                   ̅    (√(   )       )                    

      ̂     ∑  
 {      ̂ 

 }{      ̂ 
 }
 
  

  

   

 

                     ̂     ∑  
 {      ̂ 

 }{        ̂ 
 }
 

  

   

 

1) Compute the sigma points 

2) Propagate the each sigma point to the next epoch 

3) Compute the predicted mean and covariance 

4) Redraw a complete new set of sigma points 

5) Compute predicted observations 

          (        )          ̂ 
  ∑   

     
  
             

6) Update predicted state vector and covariance matrix  

                ̂    ( ̂    )
  

 

              ̂ 
   ̂ 

   (   ̂ 
 ) 

               
   ̂    

   ( ̂    ) 
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2.7.3 Particle Filter 

Pioneering work of Gordon et al. in 1993 makes the particle filter applicable in 

practice [75]. Particle filter refers to the suboptimal estimation by means of 

sequential Monte Carlo method. Basic idea of particle filter is the recursive 

approximation of probability densities using independent random samples, so 

called particles, with associated weights in Bayesian framework [27,69,76].  

Figure 13 shows representation of a probability distribution using samples with 

associated weights. In the figure, the solid line is the true probability density and 

the circles describes the particles. Furthermore, the larger size of circles indicates 

larger weights. 

Particle filter is also known under various names such as condensation algorithm, 

sequential Monte Carlo filtering, sequential importance sampling, bootstrap 

filtering and interacting particle approximation. 

The main advantage of the particle filter is that it easily handles non-linear, non-

Gaussian dynamic and measurement models.  

 

Figure 13 : Representation of probability distributions  
using weighted samples (particles) (adapted from [97])  

 



60 

 

2.5.4.1. Problem Statement in Bayesian Framework 

Consider again the following system:  

     (         )  (109) 

 

 

     (     )  (110)  

where k is the time index,   and   are dynamic and measurement model 

functions, respectively.   is the process noise and   is the measurement noise. 

Furthermore,   is the state vector.  

From a probabilistic approach in Bayesian framework [70,77], (109) and (110) 

can be represented by the transition density,  (  |    ), and observation density 

 (  |  ).  

In filtering, it is desired to estimate    based on all past measurements,     , up 

to the time k. Assuming that the state sequence *  +      has a Markovian 

property, filtering problem includes prediction and measurement update steps. 

Prediction step is realized by Champman-Kolmogorov equation resulting in a prior 

density which is given by 

  (  |      )  ∫ (  |    ) (    |      )        (111)  

where  (    |      ) is the joint distribution. Once acquiring the new 

observations, prior density  (  |      ) is updated using Bayes theorem yielding 

the posterior density:  

  (  |    )  
 (  |  ) (  |      )

 (  |      )
  (112)  

where  (  |      )  ∫ (  |  ) (  |      )    is the normalizing constant. 

Furthermore,  (  |  ) denotes the likelihood distribution. 

Analytical solution to denominator of (112) only exists in some special cases such 

as in Kalman Filter.  It is not always possible to sample directly from a posterior 
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distribution  (  |    ). Instead, Monte Carlo simulation can be performed to 

implement recursive Bayesian problem given in (111) and (112).  

2.5.4.2 Sequential Importance Sampling  

When the direct sampling from a target distribution,  ( ), is impossible as it is in 

(112), samples are generated from another distribution,  ( ), which is similar to 

 ( ) [76]. This auxiliary density is referred to as importance density or proposal 

density. 

Importance sampling refers to a general Monte Carlo integration technique [27]. 

For a given integral   

   ∫ ( )    (113)  

Monte Carlo integration takes into account the  ( ) via the following form 

  ( )   ( ) ( )  (114)  

where   ( ) is the probability density. Substituting (114) into (113) yields 

   ∫ ( ) ( )    (115)  

Then the estimate of I using the samples    drawn from the density  ( ) is the 

sample mean and denoted by 

   
 

 
∑ (  )

 

   

  (116)  

where N is the number of samples. If the sampling from the distribution  ( ) is 

not possible, the importance sampling can be applied. In this case, the integral I 

is rewritten as 
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   ∫ ( ) ( )   ∫ ( )
 ( ) 

 ( )
 ( )    (117)  

The estimate of the integral I using the samples drawn by importance density 

 ( ) is given by 

   
 

 
∑ (  )

 (  ) 

 (  )

 

   

  (118)  

where  ̃(  )  
 (  ) 

 (  )
 are the unnormalized importance weights for each sample. 

The normalized importance weights  (  ) can be obtained by 

  (  )  
 ̃(  )

∑  ̃(  ) 
   

   (119)  

Returning to the recursive Bayesian filtering problem given in (111) and (112), 

the discrete weighted approximation to posterior density  (  |    ) at epoch k in 

Monte Carlo framework can be defined as  

  (  |    )  ∑  
  (     

 ) 

 

   

 (120)  

where   is the kronecker delta. The weights   
  are chosen via the rules of 

importance sampling. Sequential estimation of   
  yields 

   
       

  
 (  |  

 ) (  
 |    

 )

 (  
 |    

    )
  (121)  

where  (  
 |    

    ) is the importance density. The details of intermediate 

computations to obtain   
  may be found in [27,77]. When the number of samples 

N approaches infinity, approximation given in (120) also converges to the true 

posterior density  (  |    ). Sequential filtering defined by the (120) and (121) 
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yields Sequential Importance Sampling (SIS) particle filter. Variant of the particle 

filters proposed in literature is the special cases of the SIS particle filter. 

2.5.4.2 Degeneracy Problem 

A degeneracy phenomenon refers to the problem where the variance of the 

importance weights can be increased over time [76]. In other words, almost all of 

weights of the particles tend to be zero after some iteration of the filter. Thus, 

most of the particles do not contribute to the estimation of the posterior density. 

This increases the computational burden unnecessarily and importance weights 

become numerically insignificant.  

The measure of the degeneracy is expressed by the effective sample size,     , 

introduced in [78-80] and estimated by 

  ̂    
 

∑   
  

   

  (122)  

where   
  are the normalized weights and  ̂    is the estimated sample size. Small 

 ̂    indicates severe degeneracy. Although the degeneracy problem can be 

reduced using large number of particles, this would be impractical and increases 

the number of computation. More efficient strategies are the resampling method 

and good choice of the importance density [70].   

2.5.4.3 Resampling 

Resampling method is based on the elimination of particles with small importance 

weights and takes into account the large weighted particles. Resampling step 

generates new set of particles via sampling with replacement from the discrete 

representation of the posterior distribution 

  (  |    )  ∑  
  (     

 )

 

   

  (123)  
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Figure 14 shows the pictorial explanation of the resampling. Solid line shows the 

importance distribution. Black bullets are the particles before the resampling.  

Size of bullets is proportional to their corresponding weights. Resampling 

procedure eliminates the low weighted particles and generates multiple particles 

from large weighted ones as shown in Figure 14. 

Some efficient resampling schemas given in literature are residual resampling 

[80], stratified resampling [81], multinominal resampling [69] and systematic 

resampling [82]. Due to the simple implementation characteristics, systematic 

resampling is often preferred [83]. Systematic resampling algorithm is also 

preferred in this study.  

Although the resampling reduces the degeneracy, it introduces another significant 

problem so called sample impoverishment [84]. Particles which have high 

importance weights can be selected many times that result in loss of diversity. In 

this case, after a few iteration, all particles can collapse to a single point. For 

systems with a small process noise sample impoverishment tends to be severe. 

Additionally, broken of the statistical independence among the particles is another 

problem of resampling. Various methods have been proposed to overcome the 

 

Figure 14 : Illustration of Resampling 
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drawbacks of resampling, such as roughening method [75], Markov Chain Monte 

Carlo move step [85] and regularization method [86].  

2.5.4.4 Choice of Importance Density 

Beside the resampling method, selection of the importance density that minimizes 

the variance of the importance weight is crucial to reduce degeneracy. It directly 

affects the efficiency of the filter. 

The simple and most popular suboptimal choice is the transition (prior) density 

 (  |    ): 

  (  
 |    

    )    (  |    )  (124)  

Substituting (124) into (121), importance weight yields   

 

  
      

  
 (  |  

 ) (  
 |    

 )

 (  
 |    

    )
  

             
   (  |  

 )  

(125)  

The use of transition density as importance density can make the filter sensitive 

to outliers [76]. More efficient methods concerning outliers are densities, 

progressive correction, partitioned sampling, auxiliary filter or local linearization 

techniques.   

2.5.4.5 Regularized Particle Filter 

Regularized particle filter (RPF) [27,86] addresses the sample impoverishment 

problem encountered due to the resampling step. RPF make use of kernel 

densities as shown in Figure 15 [86]. Hence, it allows resampling from the 

continuous approximation of the posterior density given below:  

  (  |    )  ∑  
   (     

 ) 

 

   

 (126)  
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and  

    
 

  
 .
 

 
/  (127)  

where   is the kernel density function,  h>0 is the scalar kernel bandwidth, n is 

the dimension of the state.  

For some special cases it is possible to select optimal kernel density and 

bandwidth [27,86]; if the samples are equally weighted, Epanechnikov kernel is 

the optimal kernel and given by;  

      {

   

   
(  ‖ ‖ )          ‖ ‖    

                                               

 (128)  

where    is the volume of unit hypersphere. If the underlying density is Gaussian 

kernel with a unit covariance matrix, then the optimal bandwidth,     , is  

      [   
  (   )( √ ) ]

 
      

 
     (129)  

In order to reduce the complexity, optimal bandwidth for Gaussian kernel can be 

 

Figure 15 : Representation of densities via weighted samples (left) and kernel 

densities (right) [86]  
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written as 

      [
 

   
]

 
   

   
 
     (130)  

In general case the underlying density  (  |    ) is assumed to be Gaussian with 

the covariance matrix S that is computed from the particles. The whitening is 

then applied to obtain the unit covariance [86]. Hence, the particle    turns into 

      , where        and the rescaled regularization kernel becomes: 

    
(    )  

  
 .   

 

 
/  (131)  

Although the above mentioned kernel density and bandwidth are optimal in 

restrictive cases, these can also be used for general cases for the suboptimal 

filtering [27].  

In this study Gaussian kernel density is used. Algorithm of regularized particle 

filter is given in Table 5 [27]. 

2.5.4.6 Local Linearization Particle Filter - Extended 

Kalman Particle Filter 

Importance density,  (  
 |    

    ), may be approximated based on the local 

linearization methods such as Extended Kalman Filter (EKF) and Unscented 

Kalman Filter (UKF) [27,72,73].  EKF based gaussian approximation to 

importance density is given by 

  (  
 |    

    )    ( ̂ 
   ̂ 

 )  (132)  

where  ̂ 
  and  ̂ 

  are the estimated mean and covariance for ith particle at time k. 

Such a filter is referred to as Extended Kalman Particle Filter (EKPF). The 

Algorithm of EKPF for one cycle is summarized in Table 6 [27]. 
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Table 5 : Regularized particle filter [27] 

1)  FOR i=1,…,N 

 Draw particles from importance density  

       
    (  

 |    
    ) 

 Compute weight  

       
    (  |  

 )    

     END FOR 

2) Normalize weights 

 Compute Sum of weights 

             (  
 )  

 Normalize weights 

         FOR i=1,…,N 

                   
   

  
 

    
 

         END FOR 

3) Compute the effective particle count,  ̂    

4) If   ̂              

 Compute empirical covariance matrix    

 Compute    such that     
     

 Generate new particles via resampling with replacement 

         [2  
 
   3

   

 
]          0{  

    }
   

 
1  

 Draw samples    from Epanechnikov or Gaussian Kernel  

FOR i=1,…,N 

       -        

       -    
    

         
   

END FOR 

     END IF       
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Table 6 : Extended Kalman particle filter algorithm [27] 

1) Execute EKF for each particle 

 FOR i=1,…,N 

 Propagate each particle and corresponding covariance up to next 

epoch using Extended Kalman Filter 

     (  ̂ 
   ̂ 

  )     (    
      

    )  

 Draw particles from importance density  

       
    (  

 |    
    )   ( ̂ 

   ̂ 
 )  

 Compute importance weight  

       
    

 (  |  
 ) .  

 |    
 /

 .  
 |    

    /
   where  (  

 |    
    )   ( ̂ 

   ̂ 
 )  

     END FOR 

2) Normalize the importance weights 

 Compute Sum of weights 

        (  
 )  

 Normalize weights 

     FOR i=1,…,N 

              
   

  
 

    
 

     END FOR 

3) Generate new particles via resampling with replacement 

[2  
 
   3

   

 
]          0{  

    }
   

 
1  

4) Assign Covariance 

FOR i=1,…,N 

         
 
   ̂ 

  

 

END FOR 

 



70 

 

2.5.5 H∞ Filter 

H  filter deals with modeling errors and noise uncertainties while minimizing the 

worst case error rather than the mean square estimation error as it is in Kalman 

Filter [25,26]. H  filter does not make any assumption about the noise statistics, 

but bounds the noise amplitude. 

Dynamic and measurement model equations of a discrete time linear system are 

given below. 

                 

(133)  

             

where k is the time stamp and 0<k<N-1,   is the state vector,   is the 

measurement vector,   and   are process and measurement noise vectors, 

respectively.   and   are matrices of appropriate dimensions. Then the unknown 

estimation error,  ̂ , of interest is 

  ̂      ̂   (134)  

where  ̂ is the estimate of  . In minimization of estimation error, the cost 

function, J, can be established in context with the game theoretical approach 

[26,87,88] and given by the following form  

   
∑ ‖    ̂ ‖  

    
   

‖    ̂ ‖    
  ∑ ‖  ‖  

  
  ‖  ‖  

  
    

   

  (135)  

where  ̂  is the a priory estimate of the initial state vector,   . The norm defined 

in the general form ‖  ‖  
  is computed by   

      where   is an arbitrary 

weighting matrix. Furthermore,   ,   ,    and     are the symmetric and positive 

definite weighting matrices which are specific to the problem and chosen by the 

designer. For instance, if the initial estimation error, process noise, measurement 

noise and corresponding covariances are known then these quantities should be 

preferred in place of   ,   ,    [26]. 



71 

 

Here, H  filter tries to find an estimate  ̂ by minimizing the worst case error. 

Worst case is obtained by maximizing initial estimation error, process noise and 

measurement noise in (135) and derived by the uncertain system model and 

noises. Then a solution is found that minimizes the estimation error     ̂ . Such 

a filtering approach, H  filter, is also interpreted as a minimax problem [88]. 

Since solving of the condition given in (135) is difficult. Hence a user defined 

performance bound,  , is specified. For this, a bounded cost function 

(performance criterion) is to be specified as 

       (136)  

where     is a scalar.  

2.5.5.2 Non-Linear H  Filter 

Non-linear version of H∞ filter problem has been studied by various authors (e.g., 

[89-92]). In order to reduce the complicated computation procedures, 

approximate approaches via linearization as it is in EKF have been studied to 

design robust filters based on the H∞ norm minimization criterion. Such studies 

were explained in [25,90,93] and the derived filter has been named as extended 

robust filter or extended H∞ filter. Extended H∞ filter which is preferred in this 

thesis is based on the study given in [25]. Consider the nonlinear system which is 

given below  

       (  )   (  )    

(137)  

     (  )      

where  ,   and   are non-linear functions, x is the state vector. w and v are zero 

mean uncorrelated white noises  with covariances,   such that  [    
 ]      , 

and   such that  [    
 ]      . Then the linearized system of equations which are 

obtained by means of the Taylor series expansion through the estimated 

trajectory,  ̂ | , and predicted trajectory,  ̂ |   , can be calculated as follows: 
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(138)  

                   

where  , G and H are matrixes of appropriate dimensions.     is     ( ̂ | )  

     and    is      ( ̂ |   )     ̂ |   . Representing the filter state error by 

 ̃ |      ̂ |  and predictor state error by  ̃ |        ̂ |   ,    and    which 

indicate higher order terms are given by 

      ( ̃ | )    ( ̃ | )    

(139)  

      ( ̃ |   )  

where   are the higher order terms in Taylor series expansion. Note that 

extended Kalman filter neglects the higher order terms    and   . On the 

contrary,    and    are treated as norm bounded uncertainties in the non-linear 

H  filter in [25]. They satisfy following conditions: 

 ‖  ‖ 
    

 ‖ ̃ | ‖ 
 
   

 ‖  ‖ 
   

(140)  

 ‖  ‖ 
    

 ‖ ̃ | ‖ 
 
. 

where   ,    and    are appropriate constants. The noise parameters,    and   , 

in (138) are rescaled by    and    in order to compensate the error of    and   . 

Hence, the estimation problem depicted in (138) turns into the scaled H  filter 

problem given by 

                      

(141)  

                  

where   
        

      
  and   

    
 (    

 ).  

Herewith, non-linear H  filter attempts to estimate the state by satisfying the 

performance criterion for all uncertainties. Filter structure in the predictor-
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corrector form same as the extended Kalman filter presented in Section 2.7.1 

except   and   are scaled by    and   . In addition, corrected error covariance 

  
  is given by the following formulas 

 

  
       

         
    

  
    

     
 [    

 ] [
  
        

   
 

   
   

     
   

    
]

  

[
  
  
]   

 , 

(142)  

where the sign (-) indicates the predicted values and (+) indicates corrected 

(updated) values, k is the time stamp. In (142),   and   are covariance matrixes 

of measurement and process noises scaled by    and   , respectively. It should 

be noted that when   goes to  , then the H  filter reverts to Kalman filter [25]. 

By appropriate selection of   the tradeoff between the H  performance and 

minimum variance performance can be controlled. 

2.8 Orbit Determination; Implementation Characteristics 

This section introduces the details of the orbit determination algorithm used in 

this research. 

2.8.1 Dynamic Model 

In this study, dynamic model comprises the Earth‟s gravity model, luni-solar 

effects, and atmospheric drag. EGM2008 Earth gravity field model developed by 

U.S. National Geospatial Intelligence is used to describe gravity irregularities 

resulting from the Earth‟s flattening and inhomogeneous mass distributions. 

Degree and order up to 50 has been selected. Harris-Priester density model [58] 

has been included into dynamic model for atmospheric drag computation. 

Gravitational effect of sun and moon are also considered whereas ephemerides of 

Sun and Moon have been calculated by approximate models according to short 

series expansions introduced in [5].  

Position and velocity at a desired epoch is obtained through the integration of the 

dynamic model from an initial epoch with a given initial position and velocity. 
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Integration is performed numerically. Considering the computational burden and 

the accuracy achievement, 30 second step size of propagation is sufficient [28]. 

Hence, RK4 method with a step size of 30 second is selected throughout the 

study. Any step adjustment and error control during the integration is neglected.  

2.8.2 Reference Frames  

Throughout this study, equation of motion was integrated in Earth-fixed reference 

frame. GPS observations and Earth‟s gravitational accelerations are naturally 

processed in Earth fixed frame, so WGS-84 is selected in this study. On the other 

hand, computation of accelerations due to Luni-Solar gravitation and atmospheric 

drag has been performed, particularly in International Celestial Reference Frame 

(ICRF) as a kind of quasi inertial system. Therefore, these accelerations computed 

in inertial reference frame have been transformed to the Earth fixed frame.  

2.8.3 State vector  

Minimum number of state parameters in orbit determination comprises is taken as 

components of position vector,  , and velocity vector,  ̇. State vector can be 

extended in order to estimate additional parameters of dynamic and 

measurement models. To this end, empirical acceleration,  ̈   , which is related 

to the dynamic model has been inserted into the state vector when Kalman, 

Unscented Kalman and H  filters have been studied. On the other hand, 

components of the empirical accelerations have not been included into the state 

vector of the particle filter because extending its dimension requires that the 

number of samples have to be increased [75]. This is in turn not convenient for 

the real time orbit determination considering the limited capacity of satellite 

onboard processing systems.  

When using C/A code pseudoranges as observations receiver clock bias 

parameter,     , has to be estimated. The estimation of ambiguity bias 

parameters is also necessary at each epoch when GRAPHIC observables are used. 

In both cases state vectors has been extended to include these parameters. On 

the other hand, navigation solutions do not require any measurement model 

parameters. Table 7 shows state vector types that used in filter implementations. 
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2.8.4 Initial State 

Initial state for all types of filters has been determined from the GPS observables. 

Therefore, the methods for obtaining the position and velocity components of 

initial state differ with respect to the type of observables.   

Navigation solutions are derived from the pseudorange and pseudorange rate 

observations by filtering as internal processing [18,46,53] and composed of 

position and velocity fixes. Hence, when the navigation solution is used in orbit 

determination, observations obtained at first epoch can be accepted as initial 

position and velocity vector. 

For C/A code pseudorange range measurements, initial position vector has been 

estimated via kinematic positioning using method of least squares. Initial velocity 

vector has been obtained through the numerical differentiation of kinematic 

position estimations determined at first three epochs. Numerical differentiation 

can be employed using second order Lagrange interpolating polynomials [67] 

constructed at adjacent three epochs and given by the following formula 

 

 ( )  
  

  
  (  )

        
(     )(     )

  (  )
        

(     )(     )

  (  )
        

(     )(     )
  

(143)  

 

Table 7 : Components of state vectors used in filtering 

Sate vector 

Filter Type 

Kalman, unscented 

Kalman and H  filters 

Particle Filter 

C/A Code [   ̇  ̈        ] ,   ̇     - 

Navigation Solution [    ̇  ̈    ] ,   ̇ - 

GRAPHIC [   ̇  ̈          ] ,    ̇       - 
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where t is the time at which the velocity estimate is desired. Here,   ,    and    

are time of first three epoch and  (  ),  (  ),  (  ) are corresponding kinematic 

position estimations. Initial time is selected in the middle point to avoid bad 

interpolation results at the first and end points of the interval.  

For orbit determination using GRAPHIC measurements, initial position and velocity 

of filters are also assigned as it is in C/A code pseudorange range measurements.  

State vector includes receiver clock bias in case of C/A code pseudorange and 

GRAPHIC measurements. For this initial clock bias is obtained from kinematic 

positioning. Initial value for empirical accelerations is set to 0.  

3.1.1 Data Preparation 

In orbit determination, It is crucial to remove invalid or degraded measurements 

for the improvement of the filter performance. To this end, once acquiring new 

observations at a current epoch, adequate data editing strategies are necessary in 

real time orbit determination.  

For the detection of low quality observations some parameters can be compared 

with a per-defined threshold. These parameters can be listed as [94]  

 standard deviation of residuals,  

 elevation angle of the GPS satellites in the spacecraft antenna system,  

 signal-to-noise ratio,  

 number of observed GPS satellites,  

 position dilution of precision.   

Throughout this study, threshold for the elevation angle has been set to 5 degree 

for GRAPHIC and C/A code pseudorange measurements. Observations at a 

current epoch, elevation angle of which was below the defined threshold, have 

been excluded from the data set. Number of observed GPS satellites has been 

also checked at each epoch. The threshold for the number of observed GPS 

satellite is set to 6. Measurement update step in filters have been skipped for the 

epochs which do not ensure the number of satellite threshold. Additionally, 

residual checks have been taken into account to detect invalid measurements. To 

this end, residuals are compared with the expected uncertainty. The method to 
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check the residuals refers to the strategy introduced in [3,15]. Accordingly, 

expected uncertainty of the range obtained from GRAPHIC observables can be 

computed at each epoch from the predicted covariance of the receiver position, 

covariance of the ambiguity bias parameters and signal in space range error of 

employed GPS ephemerides. Therefore, approximate expected variance of 

GRAPHIC observables can be written as 

    

    

         
         

        
       

   (144)  

where           
  is the sum of variances of receiver position error,      

 , ambiguity 

bias error,       
 , and signal in space  range error,        

 . To obtain pre-defined 

residuals, mean clock offset,     is estimated for GRAPHIC observables by 

                   
 

 
∑(           ‖ 

           ‖    
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  (145)  

After priory clock offset estimated, residuals which are differences between the 

predicted observations and observations are determined. For the graphic 

observables pre-computed residuals,         , are 

                        (‖ 
          ‖   (      

     )   )  (146)  

These residuals are compared with the threshold defined by the expected 

uncertainty.  If the threshold is exceeded, observation set is concerned 

susceptible due to one or more faulty measurements. To identify the bad 

measurements sub-solutions are computed. Sub-solution is obtained firstly by 

excluding one observation from the set and re-estimating the receiver clock bias 

and residuals afterward. The sub solution procedure is applied to all observations 

in the set. The result with smallest standard deviation is accepted and the 

excluded observation is treated as outlier which is removed from the data set. 

This process can be repeated until all other faulty measurements are removed. 

The same procedure have been also applied to C/A code observations. Range 

error due to the atmospheric path delay is mitigated in GRAPHIC observables, but 
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C/A code measurements are still affected by this error. Thus, the expected 

variance of C/A code measurements is related with the atmospheric path delay, 

receiver position error and signal in space range error.   

Observation vector for navigation solution is composed of position and velocity 

components. The difference between the predicted and observed position and 

velocity vector is compared with the expected uncertainty which is derived from 

the covariance of the predicted position and velocity and the covariance of the 

observation noise. The 3   edit level is also applied to the expected uncertainty.  
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CHAPTER 3 

 
 

DATA SET, EVALUATIONS, AND RESULTS 

 
 

 
3.1 Data Set 

Data set used in this study is taken from the CHAMP onboard BlackJack GPS 

receiver. CHAMP satellite was launched in 2000 into a 450 km orbit. At the 

acquisition time of observables CHAMP satellite was in an orbit at about 391km 

altitude. The BlackJack receiver is a dual frequency spaceborne GPS receiver and 

was developed by NASA‟s Jet Propulsion Laboratory (JPL) [95]. 

Data set comprises the Navigation solution, C/A code pseudorange and phase 

measurements on 22 October 2003 and has been provided by the Information 

System and Data Center (ISDC), GFZ Potsdam. Data set is generally high quality 

and has been recorded during a massive solar storm so that ionospheric 

perturbations on the raw GPS data are pronounced [94].  Positions of GPS 

satellites have been computed using the navigation massages broadcasted from 

the GPS satellites. And it has acquired from the NASA‟s Crustal Dynamics Data 

Information System (CDDIS).   

High Precision Orbit Ephemeris (POE) that is used to compare results has been 

obtained from NASA‟s JPL.  

3.2 Evaluations 

All of the algorithms for orbit determination have been developed via MATLAB© 

R2010 programming language using object oriented schema. The implemented 

codes executed on a computer which has a 32-bit Windows-Vista operating 

system, Intel Core2 Due processor and 4 GB ram. 
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Extended Kalman (EKF), unscented Kalman (UKF), H , regularized (RPF) and 

extended Kalman particle filters (EKPF) have been evaluated separately using all 

types of measurements which are navigation solutions, C/A code pseudorange 

and GRAPHIC observables. Table 8 shows which types of observations have been 

evaluated by each filter mentioned above.  Firstly, performances of particle filters 

have been evaluated to find the best sample number. Then all filters have been 

compared to each other. The comparisons are based on the position and velocity 

differences with respect to JPL POE and Root Mean Square (RMS) of these 

differences through the along track, cross track and radial components. 

Additionally, in computation of RMS values, initial 1 hour arc of estimated 

trajectory have been extracted to avoid the effects of the filter start-up as in [15]. 

Processing time is also important in real time applications, so that analysis on the 

elapsed time for one cycle of each filter is also demonstrated.  

The performance of particle filters is highly dependent on the number of samples. 

For this reason RPF and EKPF based orbit determination algorithms have been 

executed using different number of samples. To this end, both types of particle 

filters have been tested using 50, 100, 150 and 200 samples to find the optimal 

number of samples suitable for real time orbit determination. Taking the number 

of samples more than 200 has not caused a relative improvement in RMS values 

at each specific test with respect to sample numbers.  

RPF and EKPF diverged after a few iterations of filters when using GRAPHIC 

measurements. This has probably to do with the choice of the importance density 

or large state vector due to the additional ambiguity bias parameters. 

Investigation of particle filters with respect to the filter divergence will be 

considered as a future work.  

 

Table 8 : Observation types used in different filters 

Filters and used observation 

types 

Filters 

EKF H  UKF RPF EKPF 

C/A code pseudorange + + + + + 

Navigation solution + + + + + 

GRAPHIC + +  - - 
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Table 9 summarizes the statistical assessments of RPF based orbit determination 

in terms of Root Mean Square (RMS) of differences using GPS navigation solution 

measurements. Besides, 3D position and velocity differences with respect to JPL‟s 

POE are illustrated in Figure 16. RMS of the 3D position and velocity differences 

indicates that the accuracy of navigation solutions increases proportionally to the 

number of samples. On the other hand increasing the particle count in RPF 

reduces the number of abnormal excursions as shown in Figure 16. The most 

accurate results which present 10.937m RMS in 3D position and 0.0158m/s2 RMS 

in 3D velocity difference have been obtained using 200 samples.   

Statistical results of evaluations for RPF using C/A code pseudorange 

measurements are given in Table 10 and Figure 17 shows the 3D position and 

velocity differences with respect to JPL‟s POE. Position and velocity accuracies 

become better while the number of samples increases according to the RMS 

values given in Table 10. Setting the number of samples to N=150 results in 3D 

position RMS of11.729m and 3D velocity RMS of 0.0298m/s2. RMS for N=200 for 

position has been improved to 11.543m. But the same is not valid for the velocity 

because the RMS value of 0.0297m/s2 exhibits no significant improvements. 

Moreover increasing the sample count also increases the computational burden so 

that for C/A code measurements appropriate number of sample should not exceed 

150.  

 

Table 9 : Regularized particle filter (RPF) applied to navigation solutions 

RMS of RPF using 

navigation 

solutions 

Particle Count (N) 

N= 50 N= 100 N= 150 N= 200 

Position (T) 7.386  6.999 6.626 6.219 

Position (N) 6.861  7.112 6.791 6.251 

Position (R) 7.353  7.644 6.519 6.471 

Velocity (T) 0.0134 0.0121 0.0109 0.0095 

Velocity (N) 0.0116 0.0114 0.0105 0.0086 

Velocity (R) 0.0129 0.0118 0.0101 0.0092 

3D position 12.478 12.575 11.512 10.937 

3D velocity 0.0220 0.0204 0.0182 0.0158 

T: along track, N: cross track, R : radial differences. Unit of position is m and velocity is m/s2. 
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Analysis of EKPF based orbit determination for GPS navigation solution 

measurements are summarized in Table 11 and corresponding 3D position and 

velocity differences  with respect to JPL‟s POE are illustrated in Figure 18. It is 

shown that no improvement in RMS has been reached in the position even if the 

number of the samples is increased. On the contrary, RMS of velocity differences 

generally becomes better proportionally to the number of samples. But selecting 

 

Table 11 : Extended Kalman Particle Filter (EKPF) applied to navigation 
solutions 

RMS of EKPF using 

navigation 

solutions 

Particle Count (N) 

N= 50 N= 100 N= 150 N= 200 

Position (T) 6.779 6.847 6.825 7.021 

Position (N) 6.708 7.295 6.816 6.942 

Position (R) 7.074 6.848 7.026 7.228 

Velocity (T) 0.0184 0.0177 0.0173 0.0184 

Velocity (N) 0.0173 0.0172 0.0162 0.0153 

Velocity (R) 0.0180 0.0177 0.0179 0.0171 

3D position 11.874 12.124 11.934 12.237 

3D velocity 0.0310 0.0304 0.0297 0.0298 

T: along track, N: cross track, R : radial differences. Unit of position is m and velocity is m/s2. 
 

 

 

Table 10 : Regularized particle filter (RPF) applied to C/A code pseudorange 
measurements 

RMS of RPF using 

C/A code 

pseudorange 

measurements 

Particle Count (N) 

N= 50 N= 100 N= 150 N= 200 

Position (T) 8.439 6.904 6.779 6.586 

Position (N) 7.911 7.249 6.897 6.849 

Position (R) 6.872 7.376 6.637 6.554 

Velocity (T) 0.0165 0.0170 0.0174 0.0176 

Velocity (N) 0.0179 0.0180 0.0171 0.0171 

Velocity (R) 0.0187 0.0184 0.0172 0.0173 

3D position 13.456 12.435 11.729 11.543 

3D velocity 0.0307 0.0309 0.0298 0.0297 

T: along track, N: cross track, R : radial differences. Unit of position is m and velocity is m/s2. 
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the number of samples N=150 and N=200 exhibits almost identical 3D RMS of 

position and velocity differences which are 0.0297 m/s2 and 0.0298 m/s2 

respectively. Hence, making use of N=150 sample should be convenient for EKPF 

using navigation solution measurements. 

Table 12 summarizes the RMS values of position and velocity differences for EKPF 

using GPS C/A code measurements. 3D position and velocity differences with 

respect to JPL‟s POE are illustrated in Figure 19. It is shown that RMS decreases 

as the number of samples N increases. But for N=100, N=150 and N=200, the 

filter presents similar RMS in 3D velocity differences which are 0.0156 m/s2, 

0.0153 m/s2 and 0.0150 m/s2, respectively. Hence setting the number of sample 

to 150 which presents 3D position RMS of 9.104m and 3D velocity RMS of 0.0153 

m/s2 should be convenient for EKPF applied to C/A code measurements. 

In brief, previously obtained results show that selecting the number of samples as 

N=200 for navigation solution and N=150 for C/A code pseudorange 

measurements may be convenient for real time orbit determination  using 

regularized particle filter. It can be concluded from the results that the number of 

samples N=150 for both navigation solutions and C/A code pseudorange 

measurements should also be appropriate for the extended Kalman particle filter. 

 

 

Table 12 : Extended Kalman Particle Filter (EKPF) applied to C/A code 

pseudorange measurements 

RMS of EKPF using 

C/A code 

pseudorange 

measurements 

Particle Count (N) 

N= 50 N= 100 N= 150 N= 200 

Position (T) 5.594 5.110 4.954 4.848 

Position (N) 5.772 5.608 5.523 5.480 

Position (R) 5.524 5.409 5.275 5.145 

Velocity (T) 0.0109 0.0080 0.0081 0.0079 

Velocity (N) 0.0110 0.0089 0.0093 0.0091 

Velocity (R) 0.0105 0.0100 0.0091 0.0087 

3D position 9.753 9.317 9.104 8.948 

3D velocity 0.0186 0.0156 0.0153 0.0150 

T: along track, N: cross track, R : radial differences. Unit of position is m and velocity is m/s2. 
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Performance comparisons in terms of RMS of position and velocity differences for 

the EKF, H , UKF, RPF and EKPF based on the GPS navigation solution 

measurements are given in the Table 13. Besides, Figure 20 describes the 3D 

position and velocity differences for all types of filters with respect to JPL‟s POE 

using navigation solutions. It is shown that the RPF based orbit determination 

exhibits the best results with RMS value of 10.937m in 3D position and RMS value 

of 0.0158m/s2 in 3D velocity differences. RPF is also superior to other filters with 

respect to the along-track (T), cross-track (N) and radial (R) component 

differences. Here, H  filtering with RMS value of 11.306m in 3D position and RMS 

value of 0.0186m/s2 in 3D velocity RMS exhibits better results than the EKF, UKF 

and EKPF. EKF presents the least accurate results in RMS value for 3D positioning 

with 13.390m. Additionally, EKF based filtering of GPS navigation solutions with 

RMS value of 0.0214m/s2 in 3D velocity represents more degraded performance 

except the EKPF which has RMS value of 0.0304m/s2 in velocity. To sum up, RPF 

applied to navigation solutions yields more accurate results.   

The RMS results of C/A code pseudorange measurements derived via execution of 

all types of filters are collected in Table 14 and Figure 21 shows corresponding 3D 

position and velocity differences with respect to POE. Both the RPF with RMS 

value of 11.729m in 3D position and RMS value of 0.0298 m/s2   in 3D velocity 

and EKPF with RMS value of 9.104m in 3D position and RMS value of 0.0153 m/s2   

in 3D velocity exhibit least accurate results when using the C/A code 

 

Table 13 : Comparison of filters applied to navigation solution 

RMS of filters using 

navigation 

solutions 

Filters 

EKF H  UKF RPF EKPF 

Position (T) 7.603 6.455 7.308 6.219 6.825 

Position (N) 7.646 6.457 7.494 6.251 6.816 

Position (R) 7.938 6.668 7.654 6.471 7.026 

Velocity (T) 0.0127 0.0110 0.0117 0.0095 0.0173 

Velocity (N) 0.0118 0.0102 0.0116 0.0086 0.0162 

Velocity (R) 0.0126 0.0110 0.0120 0.0092 0.0179 

3D position 13.390 11.306 12.967 10.937 11.934 

3D velocity 0.0214 0.0186 0.0204 0.0158 0.0297 

T: along track, N: cross track, R : radial differences. Unit of position is m and velocity is m/s2. 
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measurements. Besides, particle filters, RPF and EKPF, produced more noisy 

outputs as shown in Figure 21. Best results have been achieved using UKF with 

respect to RMS values either in 3D position and velocity differences or in their 

along-track, cross-track and radial components. RMS value of 6.357m in 3D 

position and RMS value of 0.0099m/s2 in 3D velocity has been obtained in UKF 

based filtering of C/A code pseudorange measurements. H  filter with the results 

of 3D position RMS of 7.234m and 3D velocity RMS of 0.0117m/s2  also presents 

the better performance than the EKF, RPF and EKPF. Although the EKF may be 

the more preferred algorithm in real time orbit determination, H  and UKF filters 

deliver more accurate results when using the C/A code pseudorange 

measurements.   

Table 15 illustrates the comparisons of EKF, H  and UKF in real time orbit 

determination using GRAPHIC measurements and Figure 22 shows the 3D position 

and velocity differences with respect to JPL precise orbit ephemerides. It is 

already mentioned that the particle filter algorithms for GRAPHIC measurements 

have produced bad outputs; more precisely filters diverged after a few iterations. 

Therefore analysis is restricted to the EKF, H  and UKF. The values of RMS given 

in Table 15 indicate that the H  and UKF based orbit determination algorithms 

are superior to EKF in case of GRAPHIC measurements. Here, H  filter have 

Table 14 : Comparison of filters applied to C/A code pseudorange 
measurements 

RMS of filters using 

C/A code 

pseudorange 

measurement 

Filters 

EKF H-inf UKF RPF EKPF 

Position (T) 4.269 4.103 3.482 6.779 4.954 

Position (N) 4.527 4.392 3.849 6.897 5.523 

Position (R) 4.132 4.024 3.670 6.637 5.275 

Velocity (T) 0.0072 0.0069 0.0056 0.0174 0.0081 

Velocity (N) 0.0070 0.0068 0.0059 0.0171 0.0093 

Velocity (R) 0.0067 0.0065 0.0057 0.0172 0.0091 

3D position 7.470 7.234 6.357 11.729 9.104 

3D velocity 0.0121 0.0117 0.0099 0.0298 0.0153 

T: along track, N: cross track, R : radial differences. Unit of position is m and velocity is m/s2. 
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produced better results with the RMS values of 3.105m in 3D position and RMS 

value of 0.0046m/s2 in 3D velocity. UKF based orbit determination using GRAPHIC 

measurements exhibits RMS value of 3.473m in 3D position and RMS value of 

0.0047m/s2 in 3D velocity. Hence, UKF has presented almost similar results in 

velocity compared to H  filter but not in position. it is shown that H  and UKF 

filters give more accurate results by using the GRAPHIC measurements compared 

to the results of the orbit determination based on the navigation solutions and 

C/A code pseudorange measurements.   

One of the significant advantages of RPF and UKF is that the evaluation of the 

Jacobian matrix is not required. Posterior distribution in RPF is approximated by 

randomly selected samples. On the other hand UKF uses the deterministically 

selected samples. Although this tends to decrease the implementation complexity, 

computation time grows proportionally to the number of samples which is a 

disadvantage of real time processing. 

Another important concept in real time orbit determination is the execution time 

of filters between the consecutive epochs. In this study, observations acquired 

from GPS receivers with a 30 seconds sampling period have been used. The 

propagation step size for the dynamical model is also set to 30 seconds. To this 

end, elapsed time required to complete internal processing for one cycle of each 

filter has to be smaller than the observation sampling period. Table 16 shows the 

mean execution time for one cycle of each filter obtained through the analysis in 

Table 15 : Comparison of filters applied to GRAPHIC measurements 

RMS of filters using 

GRAPHIC 

measurements 

Filters 

EKF H-Inf UKF 

Position (T) 2.628 2.155 2.405 

Position (N) 1.738 1.558 1.585 

Position (R) 1.990 1.602 1.940 

Velocity (T) 0.0031 0.0030 0.0029 

Velocity (N) 0.0028 0.0026 0.0027 

Velocity (R) 0.0029 0.0025 0.0026 

3D position 3.726 3.105 3.473 

3D velocity 0.0051 0.0046 0.0047 

T: along track, N: cross track, R : radial differences. Unit of position is m and velocity is m/s2. 
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this study. The results indicate that the all types of filters, in particular particle 

filters which require more execution time, should be convenient for the real time 

orbit determination. On the other hand, capabilities of satellite onboard systems 

(processors and memory units) are limited. It has been proved in various 

applications that EKF exploits sufficient time for onboard applications. H  filter 

requires slightly more time than EKF as shown in Table 16 so that it should also 

be convenient for onboard systems since the 30 second interval is not exceeded. 

Performance of UKF with respect to execution time has been demonstrated in 

[18] and it is declared that UKF is also suitable for onboard orbit determination. 

Although the RPF and EKPF require the highest execution time compared to other 

filters according the results in Table 16, these filters exploit less time than the 

sampling period. Performances of all filters have been evaluated and tested using 

a computer which has 32-bit Windows-Vista operating system, Intel Core2 Due 

processor and 4 GB ram. For the implementation in practice, the filters 

particularly particle filters must be tested on systems, performances of which are 

similar to onboard processing systems of satellites.  

Table 16 : Execution time of filters for one cycle 

Filter 

Elapsed Time for One Cycle (second) 

Navigation 

Solution 

measurements 

C/A code 

pseudorange 

measurements 

GRAPHIC 

observable 

measurements 

EKF 0.042 0.100 0.112 

H  0.049 0.113 0.122 

UKF 0.386 0.490 0.610 

RPF  

   50-  particle 

  100- particle 

  150- particle 

  200- particle 

 

0.928 

1.870 

2.810 

3.801 

 

0.990 

1.934 

2.945 

3.820 

 

- 

- 

- 

- 

EKPF  

   50-  particle 

  100- particle 

  150- particle 

  200- particle 

 

1.673 

3.385 

5.170 

6.780 

 

1.993 

3.470 

5.189 

6.850 

 

- 

- 

- 

- 
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CHAPTER 4 

 
 

CONCLUSION AND FUTURE WORK 

 
 

 
4.1 Conclusion 

Advances in spaceborne GPS receivers offer continuous and high accurate 

tracking of Earth observing artificial satellites. Therefore, Global Positioning 

System (GPS) has been preferred as the primary tracking system either in real 

time or offline precise orbit determination of satellites. Although GPS provides 

high quality measurements, it is sensitive to the distribution of GPS satellite 

constellation, viewing geometry and erroneous measurements [3,43]. In addition, 

onboard GPS receivers sometimes cannot provide information for a long time due 

to the possible malfunctioning, which leads to data gaps in orbit products [42]. 

Combining both the geometric information obtained from GPS receivers and the 

dynamic model defined by the equation of orbital motion reduces these 

deficiencies of GPS tracking system. In this regard, recursive filters that make use 

of both measurement and dynamic models are convenient for real time orbit 

determination. Various studies on real-time orbit determination have been carried 

out using different types of recursive filters. It is well scrutinized in the literature 

that extended Kalman filter is the most preferred filter in real time orbit 

determination by taking into account all types of GPS measurements which are 

acquired from the single or dual frequency GPS receivers. On the other hand, 

unscented Kalman (UKF), H  and particle filters (PF) have also been utilized in 

real time orbit determination algorithms.  

Particle filters which have not been applied to the real time orbit determination 

until now have been performed in this study. Performance of UKF using GRAPHIC 

measurements has also been investigated and H  filter has been presented using 

all kinds of real GPS observations. Furthermore, a comprehensive performance 
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analysis of the real time orbit determination algorithms in terms of EKF, UKF, H  

and PF (in particularly regularized particle filter (RPF) and extended Kalman 

particle filter (EKPF)) have been evaluated using C/A code pseudorange, 

navigation solution and GRAPHIC measurements.  

A software package for GPS-based real time orbit determination including 

underlying dynamic models, measurement models and different types of recursive 

filters have been developed and tested in MATLAB R2010a programming language 

environment. These are extended Kalman, unscented Kalman, H , regularized 

particle and extended Kalman particle filters. Filters are capable of using different 

types of GPS observations which are C/A code pseudorange, navigation solution 

and GRAPHIC measurements. Equation of orbital motion defining the dynamic 

model includes gravitational and non-gravitational perturbing forces acting on the 

artificial satellite. Gravity related force models are composed of effects of the 

Earth, Sun and Moon. Atmospheric drag is the non-gravitational perturbing force 

which has been taken into account and has been modeled based on the Harris-

Priester atmospheric density model. EGM2008 Earth gravity field model is used to 

determine the gravitational acceleration exerted on the satellite due to the Earth‟s 

mass. Sun and moon are assumed to be point masses in the model. Ephemerides 

of sun and moon are approximated by short series expansions introduced in [5].  

Although, it is generally known that the extended Kalman Filter is the most 

favorite and commonly applied recursive algorithm for real time orbit 

determination applications, H  and UKF filters have shown better results in terms 

of RMS values of position and velocity differences than the EKF for C/A code 

pseudorange, navigation solution and GRAPHIC measurements. It is also very 

important to emphasize that the regularized particle filter has been superior to all 

other filters for navigation solution measurements. One of the significant 

advantages of RPF and UKF is that the evaluation of the Jacobian or Hessian 

matrix is not required. Although this decreases the implementation complexity, 

computation time grows proportionally to sample numbers. In addition, elapsed 

time to execute one cycle of each filter for all types of measurements remained 

below the measurement sampling interval. In the analysis, it has turned out that 

the extended Kalman filter has required the least time.  H  filter spent slightly 

more time than the EKF. UKF and PF exploit more time compared with EKF and 
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PF. In particular, particle filters have needed the most time among other filters. 

Efficiency of timing performance of EKF and UKF on onboard processors has been 

already confirmed in different studies. H  filter requires slightly more time 

compared to EKF so that it should also be convenient for onboard systems. For 

the implementations in practice, particularly the particle filters must be tested on 

onboard processing systems of satellites.  

4.2 Future Work 

The following items include future works on GPS based real time orbit 

determination. 

 Algorithms developed in MATLAB programming language will be 

transformed into a programming language which is suitable for satellite 

onboard systems like C++ or Java. 

  

 Performance analysis of filters used in this study in case of large initial 

errors encountered at the filter start-up and long sampling period will be 

evaluated. 

 

 Divergence problem of regularized and extended Kalman particle filters 

when using GRAPHIC measurements will be investigated. 

 

 Statistical outlier detection instead of simple thresholding which has been 

used in this study will be developed in the software.   
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