
1

AUTOMATIC QUALITY OF SERVICE (QOS) EVALUATION FOR DOMAIN SPECIFIC
WEB SERVICE DISCOVERY FRAMEWORK

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRA ASKAROGLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2011

Approval of the thesis:

AUTOMATIC QUALITY OF SERVICE (QOS) EVALUATION FOR DOMAIN SPECIFIC

WEB SERVICE DISCOVERY FRAMEWORK

submitted by EMRA ASKAROGLU in partial fulfillment of the requirements for the degree
of
MASTER OF SCIENCE in Computer Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assist. Prof. Dr. Pınar Şenkul
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering Dept., METU

Asst. Prof. Dr. Pınar Şenkul
Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Dept., METU

Prof Dr. Nihan Kesim Çiçekli
Computer Engineering Dept., METU

Assoc. Prof. Dr. Erdoğan Doğdu
Computer Engineering Dept., TOBB Uni.

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: EMRA ASKAROGLU

Signature :

iii

ABSTRACT

AUTOMATIC QUALITY OF SERVICE (QOS) EVALUATION FOR DOMAIN SPECIFIC
WEB SERVICE DISCOVERY FRAMEWORK

Askaroglu, Emra

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Pınar Şenkul

June 2011, 61 pages

Web Service technology is one of the most rapidly developing contemporary technologies.

Nowadays, Web Services are being used by a large number of projects and academic studies

all over the world. As the use of Web service technology is increasing, it becomes harder

to find the most suitable web service which meets the Quality of Service (QoS) as well as

functional requirements of the user. In addition, quality of the web services (QoS) that take

part in the software system becomes very important. In this thesis, we develop a method to

track the QoS primitives of Web Services and an algorithm to automatically calculate QoS

values for Web Services. The proposed method is realized within a domain specific web

service discovery system, namely DSWSD-S, Domain Specific Web Service Discovery with

Semantics. This system searches the Internet and finds web services that are related to a

domain and calculates QoS values through some parameters. When a web service is queried,

our system returns suitable web services with their QoS values. How to calculate, keep track

of and store QoS values constitute the main part of this study.

Keywords: Web Service, Quality of Service (QoS), QoS Primitive, Automatic QoS Calcula-

iv

tion, Web Service Discovery

v

ÖZ

ALANA ÖZGÜ WEB SERVİS KEŞİF SİSTEMLERİNDE OTOMATİK SERVİS
KALİTESİ HESAPLANMA YÖNTEMİ

Askaroglu, Emra

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yar. Doç. Dr. Pınar Şenkul

Haziran 2011, 61 sayfa

Günümüzde en hızlı gelişen teknolojilerden biri Web Servislerdir. Web Servisler dünyada

birçok proje ve araştırmada kullanılmaktadır. Web Servis teknolojileri kullanımı artarken,

kullanıcıların fonksiyonel isteklerini en iyi şekilde karşılayacak kaliteli servisleri bulmaları

giderek zorlaşmaktadır. Ayrıca istekleri karşılayan servislerin yanında bulunan servislerin

kaliteleri özellikle büyük sistemler için daha da önemli hale gelmektedir. Bu tezde, web servis

kalite parametrelerini takip edip inceleyecek ve bu parametrelerden servisin kalite puanını

otomatik olarak hesaplayacak bir algoritma geliştirdik. Bu geliştirilen algoritma alana özel

Web Servis keşif sistemi (DSWSD-S - Domain Specific Web Service Discovery-Semantic)

içerisinde çalışacak şekilde geliştirildi. Bu sistem internet üzerindeki bir alan ile ilişkili web

servisleri bularak belli parametrelere göre bu web servislerin kalitelerini hesaplamaktadır.

Kullanılmak üzere bir web servis bulunmak istendiğinde, sistemimiz kullanıcı tarafından gir-

ilen anahtar kelimeye uygun web servisleri kalite puanları ile birlikte kullanıcıya yansıtır.

Servis ile ilgili bilgileri sistemde tutma yöntemimiz ve kalite hesabını nasıl ele aldığımız bu

çalışmanın en önemli bölümlerini oluşturmaktadır.

vi

Anahtar Kelimeler: Web Servis, Web Servis Kalitesi, Servis Kalite Parametreleri, Otomatik

Servis Kalitesi Hesaplama, Web Servis Keşfi

vii

To my family and my friends

viii

ACKNOWLEDGMENTS

I would like to thank to Pınar Şenkul for her supervision and guidance through the develop-

ment of this thesis.

I would like to thank to my family and my supportive friends for their belief in me.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xii

LIST OF FIGURES . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Thesis Organization . 3

2 RELATED WORK . 5

2.1 UDDI Extended Web Service Selection Models 5

2.2 Quality of Service Studies . 9

2.3 QoS Calculation Algorithms . 13

3 DOMAIN-SPECIFIC WEB SERVICE DISCOVERER WITH SEMANTICS
AND QOS HANDLING IN THIS SYSTEM 17

3.1 Overall Design of the System . 17

3.2 Graphical User Interface . 19

3.3 Quality of Service in DSWSD-S 21

4 TRACKING QUALITY OF SERVICE PARAMETER VALUES 25

4.1 Invocation of a Web Service . 25

4.2 QoS Parameter Values . 28

4.2.1 Response Time . 28

x

4.2.2 Availability . 28

4.2.3 Reliability . 29

4.2.4 Throughput . 29

5 AUTOMATIC QOS CALCULATION ALGORITHM FOR WEB SERVICES 30

5.1 Calculating Response Time . 31

5.2 Calculating Availability . 33

5.3 Calculating Reliability . 34

5.4 Calculating Throughput . 35

5.5 Calculating Overall QoS Value . 37

5.6 Evaluating Price Value and Sort Algorithm 39

6 CASE STUDIES AND EVALUATION . 40

6.1 Web Services used in the Experiments 40

6.2 Comparison of Algorithms . 46

7 CONCLUSION . 50

REFERENCES . 52

APPENDICES

A CASE STUDIES . 54

A.1 QOS PARAMETER VALUES OF SERVICES 54

xi

LIST OF TABLES

TABLES

Table 2.1 Aggregation Functions for Computing the QoS of Execution Plans [10] . . . 11

Table 4.1 Default Values of Web Service Parameters 26

Table 4.2 Sample Web Service Descriptions . 27

Table 4.3 URL Descriptions . 27

Table 5.1 QoS Parameters for a Web Service . 31

Table 5.2 QoS Parameters for a Web Service . 31

Table 6.1 Web Service Descriptions . 41

Table 6.2 Web Service URL Informations . 41

Table 6.3 QoS Parameter Values of Service 257 . 42

Table 6.4 QoS Parameter Values of Service 258 . 43

Table 6.5 QoS Parameter Values of Service 260 . 43

Table 6.6 QoS Parameter Values of Service 266 . 44

Table 6.7 QoS Parameter Values of Service 268 . 44

Table 6.8 QoS Results . 47

Table 6.9 QoS Results . 49

Table A.1 QoS Parameter Values of Service 250 . 55

Table A.2 QoS Parameter Values of Service 251 . 55

Table A.3 QoS Parameter Values of Service 252 . 56

Table A.4 QoS Parameter Values of Service 253 . 56

Table A.5 QoS Parameter Values of Service 254 . 57

xii

Table A.6 QoS Parameter Values of Service 255 . 57

Table A.7 QoS Parameter Values of Service 256 . 58

Table A.8 QoS Parameter Values of Service 263 . 58

Table A.9 QoS Parameter Values of Service 264 . 59

Table A.10QoS Parameter Values of Service 265 . 59

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 UDDI Registry Primary Datatypes [3] . 6

Figure 2.2 Current UDDI Model [6] . 6

Figure 2.3 A new Web Services Registration and Discovery Model [6] 7

Figure 2.4 Agents and Agencies in a Service-Oriented Architecture [5] 8

Figure 2.5 Reputation-Enhanced Web Service Discovery Model [7] 8

Figure 2.6 Architecture for WSB [9] . 9

Figure 2.7 Execution Path 1 [10] . 10

Figure 2.8 Execution Path 2 [10] . 10

Figure 2.9 A Segment of a Sample QQL Query [11] 12

Figure 2.10 Step 1 of Query Formulation [11] . 12

Figure 2.11 Step 2 of Query Formulation [11] . 13

Figure 2.12 Step 3 of Query Formulation [11] . 13

Figure 2.13 Step 4 of Query Formulation [11] . 14

Figure 2.14 General View of All the Steps to Select Best Service[24] 16

Figure 3.1 The architecture of DSWSD-S [21] . 18

Figure 3.2 Achitecture of Crawler Layer [21] . 19

Figure 3.3 User Interface Without QoS Constraints 20

Figure 3.4 User Interface with Default QoS Constraints 20

Figure 3.5 User Interface with Custom QoS Constraints 21

Figure 3.6 Database Architecture . 22

Figure 3.7 Relation between GUI, QoS and DB . 24

xiv

Figure 4.1 Tracking Algorithm . 26

Figure 6.1 Response Time and Throughput of Service 257 45

Figure 6.2 Response Time and Throughput of Service 258 45

Figure 6.3 Response Time and Throughput of Service 260 45

Figure 6.4 Response Time and Throughput of Service 266 45

Figure 6.5 Response Time and Throughput of Service 268 46

Figure 6.6 Proposed Algorithm . 46

Figure 6.7 QoS values calculated with the Proposed Algorithm of This Work and the

Algorithm in [20] . 48

Figure 6.8 The progress of QoS values of Service 258 and Service 266 with Proposed

Algorithm . 48

Figure 6.9 The progress of QoS values of Service 258 and Service 266 with Algorithm

[20] . 49

Figure A.1 Response Time and Throughput of Service 250 54

Figure A.2 Response Time and Throughput of Service 251 60

Figure A.3 Response Time and Throughput of Service 252 60

Figure A.4 Response Time and Throughput of Service 253 60

Figure A.5 Response Time and Throughput of Service 254 60

Figure A.6 Response Time and Throughput of Service 255 61

Figure A.7 Response Time and Throughput of Service 256 61

Figure A.8 Response Time and Throughput of Service 263 61

Figure A.9 Response Time and Throughput of Service 264 61

Figure A.10Response Time and Throughput of Service 265 62

xv

CHAPTER 1

INTRODUCTION

For building large software systems that include distributed parts, the use of Web Services is

one of the most preferable techniques [1]. For the potential users, there are large number of

public services on the web. These services provide a variety of functionality, while some of

them may provide the same result.

With the increasing number of published web services, searching and selecting a web service

is becoming a complex problem. First of all, user needs to spend much time to be able to

find a web service that functionally matches the expectations without using an auxiliary tool.

While searching a service, beside the difficulty of keyword selection, it is not easy to select

the best suitable service from the result set. Random selection from the returned set is a high

risk to take for large software systems. The other problem is that, even if the user finds a

service that meets the expectations, its not easy to decide that the chosen web service has high

enough Quality of Service (QoS) value to use in a software system. QoS for a web service

can be calculated by considering the items below;

• how rapid the web service will response after invocation,

• how many transactions the service can handle cuncurrently,

• whether the service will be available and reliable during the lifetime of the project.

Besides, if there are two web services that provide same functionality, a user should have the

chance to prefer a free service over another one with price.

In the literature, there are many studies on QoS evaluation for Web Services [1, 2, 3, 4, 5,

6, 7, 8]. Most of these studies rely on user evaluation for calculating QoS values of Web

1

services. The others that perform QoS calculation automatically or semi-automatically have

several drawbacks. One of them is the lack of considering aging factor for older parameter

values. Another one is the indefinite QoS value ranges, which makes it harder to make QoS

comparison.

In this thesis, we present a method to automatically calculate, keep track of and store QoS

values for Web services. QoS value is calculated through tracking the values for ”Response

Time”, ”Availability”, ”Reliability”, ”Throughput” and ”Price” parameters of services over

time. These attributes are the most frequently used parameters in the literature that constitute

QoS values [2, 3, 4, 5, 9]. Since these values are checked and recorded periodically, it is

possible to calculate QoS values automatically, without any need for user rating. Another im-

portant feature incorporated in QoS calculation is that the old values contribute to the overall

QoS value less than the newer ones. Hence, a service with increasing quality becomes more

favorable.

Calculation of the QoS values can be done in different ways. Usually the calculation is based

on the assumption that all of these parameters are of the same weight. However, users may

want to use these parameters with different weights. For example, a user may request a service

whose response time is very short, on the other hand, whose price is not important. In this

situation, the weights of the parameters should change and QoS value calculation should be

done accordingly. The proposed method provides this functionality.

The value calculation algorithm normalizes the overall value in [0-1] range. This normal-

ization facilitates the comparison of the services considerably. On the contrary, the indefinite

value range for a web service would not be much helpful for comparing different web services.

These indefinite numbers can be used only in web service comparison.

1.1 Motivation

Web services becomes one of the most preferable techniques in software society. Web ser-

vices help developers build large software systems so quickly and easily. Therefore, the main

motivation of this thesis is to help developers find web services that meets their expectations

with high quality. While doing this, we found out that the QoS calculation methods proposed

in the literature have certain drawbacks.

2

The work that is proposed in this thesis is actually a part of a larger web service discovery

system. The system searches the web, categorizes web services according to ontologies and

presents users an easy way to find required web services. There are several previous studies

on QoS calcuation. In this work, we aim to overcome the shortcomings of the previous studies

for automatic QoS calculation.

Quality of web service may be affected from several parameters. Within the scope of this

work, five criteria, which are response time, availability, reliability, throughput and price are

considered but the proposed model can be extended with other criteria easily.

1.2 Contributions

The main contributions of this thesis are as follows:

• Tracking method for Quality of Web Service parameters is presented. While tracking

the QoS parameters, how to get the parameter values for each web service invocation is

described in detailed.

• A novel QoS calculation algorithm is presented. The algorithm is described step by

step.

• Comparison between QoS calculation approaches is described. The advantages and

disadvantages of the proposed QoS calculation algorithm is discussed.

• The proposed work is realized within a Web Service discovery framework. This frame-

work and interaction of the proposed work with the framework are presented.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 presents the related work on QoS calculation and web service selections.

In Chapter 3, the overall design of domain specific web service discovery system is presented.

The graphical user interface, database operations, calculation of quality and relations between

3

these parts are described in detail. Also, Quality of Service and its influences on the main

system are described in the rest of Chapter 3.

In Chapter 4, tracking quality of web service parameters and getting the parameter values for

each invocation are described in detail. The chapter starts with the information on invoca-

tion of a web service and it continues with the data collection algorithms of QoS parameters

(Response Time, Availability, Reliability and Throughput) for web services.

In Chapter 5, the proposed QoS calculation algorithm is presented step by step. The approach

is discussed with different point of views.

In Chapter 6, case study and evaluations of the system and proposed QoS calculation algo-

rithm are displayed. In addition, a comparison between the proposed approach and previous

approaches is presented.

Conclusion and future work are discussed in Chapter 7.

4

CHAPTER 2

RELATED WORK

QoS for Web Services topic is studied by several researchers in the literature. The studies

focus on different aspects and provide various solutions. In Section 2.1, UDDI extended

models involving user feedbacks for QoS are presented. In Section 2.2, related Quality of

Service research and use of QoS parameters are presented. In Section 2.3, QoS calculation

algorithms of previous studies are given.

2.1 UDDI Extended Web Service Selection Models

UDDI (Universal Description, Discovery and Integration) is a directory that includes web

service information. UDDI is an XML-based and platform-dependent structure. Web services

publish their detailed information in the UDDI registry for public users [2]. For example,

Ministry of Health or pharmacies can publish costs of medicines or detailed information about

medicines in a UDDI registry. Therefore, public users can get information about medicines

that meets their requirements.

UDDI registry includes four primary datatypes, which are businessEntity, businessService,

bindingTemplate, and tModel. The businessEntity structure contains contact information, in-

dustry categories, business identifiers and a list of published services of the company. The

businessService contains information about an individual web service. Type of the web ser-

vice, taxonomical categories it belongs to and the way of binding to the web service can

be given with the businessService data structure. The bindingTemplate structure contains

technical description about a web service. The last UDDI registry datatype is tModel which

represents various other information about web services [3][4]. The relation between these

5

datatypes can be given as in Figure 2.1.

Figure 2.1: UDDI Registry Primary Datatypes [3]

As QoS becomes more important for web service to meet the users expectations, many studies

focus on extending the current UDDI for including QoS values. The conventional UDDI does

not support non-functional requirements for web services [5]. In Figure 2.2, current UDDI

model is represented. In [6], the current UDDI model is extended with a new model including

a new role called Certifier and the registry structure differs from conventional UDDI registry

by having associated QoS registered in the repository. In Figure 2.3, the extended UDDI

model is represented. Before registration of a web service, the Certifier verifies the claims

of QoS for a web service. Therefore users can verify the QoS claims of web service before

invocation and can select web services according to QoS information [6].

Figure 2.2: Current UDDI Model [6]

6

Figure 2.3: A new Web Services Registration and Discovery Model [6]

In [5], E. Michael Maximilien and Munindar P. Singh propose to extend web service selection

architecture by adding an agent framework. The main purpose of the framework called Web

Services Agent Framework (WSAF), is to keep the QoS parameter values and user feedbacks.

WSAF creates an agent for each web service and each agent does the same operations for

individual web services. In Figure 2.4, the proposed architecture can be seen.

The detailed usage of the agents and QoS details are proposed in their paper. In addition, they

built a simulation for WSAF and evaluated a scenario involving agent usage and various QoS

variables.

In [7], a QoS-based web service discovery with reputation-enhanced model is proposed. In

Figure 2.5, the architecture of the proposed model can be seen. In this model, UDDI is

extended by a reputation manager, discovery agent, rating database and QoS in the UDDI

registry. Reputation manager gets the user feedbacks, calculates reputation scores and records

the scores into the rating database. Discovery agent receives requests by a SOAP message

from the service consumer, finds web services that meet the consumer’s requirements and

7

Figure 2.4: Agents and Agencies in a Service-Oriented Architecture [5]

returns the found web service list. Discovery agent applies service matching, ranking and

selection algorithm while finding the web services that meet the users expectations.

Figure 2.5: Reputation-Enhanced Web Service Discovery Model [7]

In this model, reputation manager calculates the reputation scores by applying the equation

[7] given as 2.1;

U =

N∑
i=1

S iλ
di (2.1)

where N is the number of ratings for each service, S i the rating of the ith service, λ is the

inclusion factor and di is the age of the ith service in days [7].

8

Anna Averbak et al [8], propose a model to improve the web service selection process by using

user feedbacks. Within their model, there is a matchmaker, which searches web services as

response for users requests. The model, also allows users to give a rating point for each service

by considering how relevant or appropriate the returned web service is for their requests. The

matchmaker uses the user ratings when a user calls the proposed system with similar requests.

In [9], an architecture for agent-based web service selection is proposed. In this work, the

architecture in [5] is extended by involving Verifier/Certifier given as in Figure 2.6.

Figure 2.6: Architecture for WSB [9]

In this model, the service matching, ranking and selection algorithm in [5] is used with small

changes. In addition, the UDDI tModel is used for QoS parameters as in [5].

2.2 Quality of Service Studies

QoS value calculation without extending UDDI architecture is the other important research

area in the literature. QoS value calculation parameters ”Response Time”, ”Availability”,

9

”Reliability”, ”Throughput” and ”Price” are the mostly used parameters in several studies

[6, 9, 10, 11, 12, 13]. The main idea for QoS calculation is tracking QoS parameters with web

service invocations and selecting web services depending on the QoS parameters. The studies

use different approaches for web service selection after tracking QoS parameters.

Liangzhao Zeng et al in [10], use QoS parameters for web service composition. In the paper,

they define execution paths and execution plans for their goal. ”An execution path of a state-

chart is a sequence of states [t1,t2, ..tn], such that t1 is the initial state, tn is the final state and

for every ti (1 < i < n) ...”. And ”A set of pairs p = < ti, si1 >, < t2, si2 >, ..., < tN , siN > is an

execution plan of an execution path...”

Figure 2.7: Execution Path 1 [10]

Figure 2.8: Execution Path 2 [10]

In the paper, execution price, execution duration, reputation, reliability and availability crite-

rias are used as QoS parameters. Figures 2.7 and 2.8 can be used as examples for execution

paths. In Table 2.1, the aggregation function of the used QoS parameters are given. The de-

tails about the parameters and the functions are given in the paper. In the experiments part of

the paper, they aim to select an optimal execution plan depending on the given aggregation

functions.

10

Table 2.1: Aggregation Functions for Computing the QoS of Execution Plans [10]

Criteria Aggreation Function
Price Qprice(p) =

∑N
i=1 qprice(si, opi)

Duration Qdu(p) = CPA(qdu(s1, op1), ..., qdu(sN , opN)
Reputation Qrep(p) = 1

N
∑N

i=1 qrep(si)
Reliability Qrep(p) =

∏N
i=1 eqrel(si)∗zi

Availability Qrep(p) =
∏N

i=1 eqav(si)∗zi

In the literature, there are several studies on QoS ontologies and query languages that aim to

be helpful for non-expert users and select web services that meet users requirements prop-

erly. QoSOnt [14], WS-QoS [15] and OWL-Q [16] are proposed ontologies for semantic

web service selection. In [25], a new QoS ontology is presented. In addition, there are also

syntactic-based QoS query languages such as [17][18][19].

In [11], a QoS query language proposed. In addition, a user-friendly user interface is proposed

with query language. They claim that the proposed query language is easy to use.

The proposed query consists of six parts, which are query ID, user ID, submission time, time

constraints, QoS constraints and data source. Query ID, user ID and submission time are used

as logging information. In time constraints part, there are start date, end date, duration and

frequency of the usage. QoS constraints include constraints related to QoS parameters. Data

source is used to define data source to process the service selection. An example segment of

the proposed language is given in Figure 2.9.

In the paper, they proposed a user interface to help user specify QoS constraints. The specifi-

cation can be done with four steps. In first step, user can select QoS attributes to use in service

seletion from provided QoS attributes as in Figure 2.10. In the second step, user defines the

QoS requirements as in Figure 2.11. In this paper, in addition to user-defined digit inputs,

fuzzy inputs can be used for QoS requirements. In third step, the order of QoS attributes can

be defined as in Figure 2.12. When user selects QoS attributes, s/he can set a priority value for

the selected QoS attribute. The priority of unselected QoS attributes are considered as zero.

Finally, the last step is defining the time constraints as in Figure 2.13. User may want to use

web service at the time of service selection. Besides, user may want to use web service in the

future. Therefore in time constraints, s/he can set date/time value as one of future time.

11

Figure 2.9: A Segment of a Sample QQL Query [11]

Figure 2.10: Step 1 of Query Formulation [11]

12

Figure 2.11: Step 2 of Query Formulation [11]

Figure 2.12: Step 3 of Query Formulation [11]

2.3 QoS Calculation Algorithms

There are also studies about QoS calculation considering non-functional properties of Web

Services. The algorithm in [20] considers four QoS parameters: Availability, Reliability,

Execution Time and Execution Price. In the paper, QoS parameters are categorized as negative

QoS factors and positive QoS factors. If the higher value of QoS parameter lowers quality,

13

Figure 2.13: Step 4 of Query Formulation [11]

then the QoS parameter is a member of negative QoS factors. On the other hand, if the higher

the value of QoS parameter leads to higher quality, then the QoS parameter is a member of

positive QoS factors.

In the paper, values of each QoS paramaters are calculated by different equations and the

overall QoS value has its own equation itself. The equations can be given step by step as;

For Availability(qa(S)):

qa(S) =
NAS

NAT
(2.2)

where NAS is the number of times the service can be accessed and NAT is the number of times

that the service is invoked.

For Execution Time(qet(S)):

qet(S) = TRT − TS T (2.3)

where TRT is the moment that the service returns result and TS T is the moment when the

service is invoked.

For Reliability(qr(S)):

14

qr(S) =
NRS

NRT
(2.4)

where NRS is the number of times the service returns expected result in a time span and NRT

is the number of service invocation times in the same time span.

Execution Price value is used as itself. The value of price is used in the QoS value calculation

algorithm with no change.

The QoS value calculation equation is given as;

∑
Wm ∗ qi +

∑
Wn ∗

1
q j

(2.5)

where Wm and Wn are weights of QoS parameters; qi is a negative QoS parameter and q j is

positive QoS parameter.

There are two important points that are not considered by this algorithm. The first important

thing is the age of the QoS parameter values. The age of the parameter values are important

to follow the evoluation of the service. Web services are mostly modified by their developers

so a web service may become better or worse than earlier version. Therefore the latest QoS

parameter values should have more weight than the oldest ones. Another important point is

that QoS values are not generated in a definite range in this algorithm. Therefore, it is very

hard to interpret such a value by itself. It can be only helpful for comparison when values for

two web services are available. In this thesis, we considered these two important points while

implementing our QoS calculation algorithm.

In [24], a framework for quality of web service evaluation is designed. In this framework,

functional candidate services are chosen at first. Then, the chosen services are filtered with

some constraints and the candidate services are found. After that, QoS values are calculated

for each candidate service. The architecture can be given as in Figure 2.14.

The architecture is divided in two steps. The first step is finding services that meets the user’s

functional requirements. The other step is evaluating quality result of each service. In this

work, used QoS parameters and calculation algorithm are not given in detail. The equation in

2.6 is used for the final quality value.

15

Figure 2.14: General View of All the Steps to Select Best Service[24]

Qws =

N∑
i=0

aiqi (2.6)

where qi is ith quality item value, ai is the weight of ith quality item and
∑

ai is equal to 1.

This algorithm normalizes the QoS result of each service in range [0-1]. However this algo-

rithm does not consider the ages of QoS parameter values for each iteration.

16

CHAPTER 3

DOMAIN-SPECIFIC WEB SERVICE DISCOVERER WITH

SEMANTICS AND QOS HANDLING IN THIS SYSTEM

The thesis is a part of project described in [21][23]. The project aims to develop a domain-

specific web service discovery system with semantics (DSWSD-S). In this chapter, DSWSD-

S system is described. In Chapter 3.1, overall design of the proposed system is presented.

Chapter 3.2 is about graphical user interface of the system which plays an important role

for the interaction between the main system and users. Finally, in Chapter 3.3, the place of

Quality of Service in DSWSD-S is presented.

3.1 Overall Design of the System

The main idea of the DSWSD-S system is to search web services quickly, to keep their up-

to-date status and evaluate their quality to respond users requests appropriately. While doing

this, web services are annotated with the ontology of the domain specific discovery system.

The system aims to provide following facilities, as well:

• Providing semantic queries for service search

• Ability to deal with high number of services, providing up-to-date information about

web services

• Fast inclusion of recently published services

Finding the most appropriate web service that meets users requirements from the published

web services, which are registered to different service registries becomes a difficult problem as

17

the number of services increases. In addition, there are web services which are not registered

to any of the registries. The aim of the DSWSD-S is searching both registries and the sites

and presenting a a common graphical interface for requesters.

Figure 3.1: The architecture of DSWSD-S [21]

The proposed system consists of two layers as in Figure 3.1, which are domain-specific

crawler layer and domain-specific service discovery layer.

In this system, each domain specific service discovery node has its own crawler. The process

in domain specific crawler layer starts with web service address acqusition. After that, the

context of a web service is downloaded and examined whether it is related to its own on-

tology. Next, crawler tries to validate web services by calling them with appropriate input

parameters. Crawler passes validated web services to extraction module. Extraction mod-

ule makes semantic service annotation. Finally, crawler adds verified web services into the

service database as shown in Figure 3.2.

Domain-specific discovery layer has a graphical user interface to query the database. When

it provides the user interface, user can select search ontology, enter keyword to search and

set QoS constraints for required web services. After specifying inputs, discovery layer passes

provided inputs to syntactic and semantic matching engine. The engine checks the inputs

and decides whether the requirements are related to its own ontology or not. If it is related

to its own ontology it uses its own database, otherwise it passes the request to DSWSD-S

peers. Finally, the discovery layer finds the web services that meet users requirements from

18

Figure 3.2: Achitecture of Crawler Layer [21]

the database, evaluates their QoS values and returns a list that is sorted by QoS values to user.

3.2 Graphical User Interface

As mentioned in Section 3.1, domain-specific discovery layer provides a user interface. The

user interface has a place between users and the down-level of the proposed architecture. In

general, the user interface takes the search inputs from user, pass the inputs to search engine

and lists the web services compatible with the inputs to the user.

The user interface lets user set the ontology that s/he want to search in. After selecting the

ontology user should enter keyword(s) to search in the selected ontology as in the Figure 3.3.

The user can also set QoS constraints to make an advanced search. While making advanced

search user can use either default QoS constraints or custom QoS constraints. If user selects

to use default QoS constraints the inputs of QoS constraints become disabled as in Figure 3.4.

If user wants to set custom weights of QoS parameters inputs become enabled as in Figure

3.5

As in Figure 3.5, user can set response time, availability, reliability, throughput and price

values of web service as QoS constraints. The first four QoS constraints (response time,

availability, reliability and throughput) are entered as a number between 0 and 100. These

19

Figure 3.3: User Interface Without QoS Constraints

Figure 3.4: User Interface with Default QoS Constraints

20

Figure 3.5: User Interface with Custom QoS Constraints

values are used as the weight of the related QoS parameters. The average of the inputs are used

as threshold for result list. For example, if user sets 60 for response time, 80 for availability,

100 for reliability and 80 for throughput, then the entered values are taken as weight of the

related QoS parameter and their average, which is 80, is taken as threshold which means result

list would be eliminated from web services which have QoS value less than 0.8 (80 / 100).

There is also price value which is taken as a QoS constraint. User may want to set a maximum

price value that s/he can afford for a web service. Price value is used to eliminate the result

list from the web services whose prices are higher than the entered price value. If user sets

price value as 0, then only free web services are listed on the user interface.

3.3 Quality of Service in DSWSD-S

After URL acquisition and recording web services into database, a new engine starts work-

ing in order to evaluate qualities of the discovered services. The engine that is proposed in

this thesis gets the QoS parameter values of each web service recorded into service database.

Quality of Service has an important role in DSWSD-S system. In general, DSWSD-S can

21

search registries and unregistered web sites and finds web services semantically. In addition,

with the usage of user interface DSWSD-S can give response to users requests. The function-

ality of the system is further extended with QoS supported service query and automatic QoS

evaluation, so that higher quality services can be highlighted among the ones that all match

syntactic and semantic queries.

Figure 3.6: Database Architecture

In DSWSD-S system we used the database architecture as shown in Figure 3.6. We keep

ontologies, service URLs, service descriptions, QoS parameter values and service responses

in the database. In QoSResults table, calculated QoS values by the same weights of QoS

parameters are recorded.

As a part of this thesis, a web service that handles connection with the database is imple-

mented. In the web service, there exists operations such as inserting a data to a table

• insertURL(String URL)

• insertServiceDescription(ServiceDescriptionClass serviceDescription)

• insertOntology(Ontology ontology)

• insertQOSInformation(QoSInformations QoSParameters)

22

• ...

getting data from a table

• getURLs()

• getURL(int URLID)

• getQoSValue(int serviceDescriptionID)

• ...

calculating QoS of services and getting QoS values of the services

• calculateQoSResult(int serviceDescriptionID)

• getQoSResults(List ServiceDescription)

As shown in Figure 3.6, the table holds QoS parameters for each web service with their in-

serted date time (QoSInformations). QoS values are kept in a different table (QoSResults).

During a certain period of time, all web services in this database (table ServiceDescriptions)

are invoked by a program and their QoS parameter results are taken and saved in QoSInfor-

mations table. Meanwhile we can see the evolution of each web service according to these

information.

The relation between user interface, QoS and database are presented in Figure 3.7.

As shown in Figure 3.7, GUI calculates matching degree of keyword with selected ontology.

After that, it gets services with their matching degrees from database. After applying a custom

threshold to the returned list, it uses QoS engine to get the list ordered by their QoS values

depending on QoS constraints entered by user.

23

Figure 3.7: Relation between GUI, QoS and DB

24

CHAPTER 4

TRACKING QUALITY OF SERVICE PARAMETER VALUES

In DSWSD-S system, crawlers search the Web for URLs and service descriptions of web

services. In each service description file, there may be several web services. All of the

discovered web services are recorded into the database with their service names, parameters

and URLs.

In this chapter, invocation of a web service and tracking QoS parameter values for each web

service are described.

4.1 Invocation of a Web Service

In the task of tracking QoS parameter values of web services and calculating QoS values of

each web service starts with getting web service descriptions from the database. After that,

for each web service, URL of service is taken from the database in a loop. ”index.asmx” files

of the specified URLs contain descriptions of web services. Therefore, in the next step the

program downloads the ”index.asmx” files of URLs to local storage one by one.

After downloading whole content of a URL, the invocation process begins. There may be

more than one service in each wsdl file. Each web service is recorded in the database sepa-

rately. Therefore, the services in the downloaded wsdl file are taken at first. The next step is to

generate parameters of each web service. Service descriptions of web services contain param-

eter information. Therefore, with the given information, information the program generates

the values of the parameters as shown in Table 4.1.

The values for primitive types are generated by following some basic rules. As in Table 4.1,

25

Table 4.1: Default Values of Web Service Parameters

Type of Parameter Value
Boolean true

Int64 or Int32 or Int16 or Byte 1
Double or Decimal or Single 1.0

String ”1”
DateTime Current date time

Enum First value of the type of the parameter
Class execute the process for each property of object
Array execute the process for each object in the array

the program sets ”true” value to boolean parameter, 1 to integer parameter, 1.0 to double,

decimal or single parameters. Since some of services get a parameters as ”String” type but

convert the parameters to integer inside of the service. Therefore the program sets ”1” to

”String” type parameters. The program sets the current system time to ”DateTime” parameters

and the first value of the parameter if the parameter is an enumaration. If a parameter is an

object of a Class, then the program executes the process for each property of object. In

addition, if a parameter is an Array, then the program executes the same process for each

value of the array again.

After filling values of parameters, the program invokes the web service as last step of the

process. The whole process is given in the Figure 4.1;

Figure 4.1: Tracking Algorithm

This process is illustrated with an example as follows;

1. Getting service descriptions from the database:

26

Table 4.2: Sample Web Service Descriptions

ID URLID Service Description Service Name
249 34 ResultsGetBooking GetBooking(Int32 Book-

ingNumber, String ConfirmationKey)
GetBooking

256 35 CascadingDropDownNameValue[] Get-
Model(String knownCategoryValues, String
category)

GetModel

261 36 Int16 Validate CreditCardType(String
ps InputNo)

Validate CreditCardType

262 36 Int16 Validate CreditCard(String ps InputNo) Validate CreditCard
263 36 Int16 Validate SporeCarRegNo(String

ps InputNo)
Validate SporeCarRegNo

The five lines in the Table 4.2 are taken from the database as sample.

2. Getting URL description of the first line: URLID of the first line is 34. The record with

ID 34 of the URL Table is given as 4.3;

Table 4.3: URL Descriptions

ID ServiceURL
34 http://www.reservations.wwcars.co.uk/WWCarsOnlineRes/XML/wwcarsXMLInterface.asmx

3. Download the wsdl file: The program generates the address as ServiceURL + ”?wsdl”

and uses ”index.asmx” as file name.

4. Set values of parameters: The name of the example service is GetBooking and the

service takes two parameters BookingNumber and ConfirmationKey. The types of the

”BookingNumber” is Int32 and ”ConfirmationKey” is String. Therefore, the program

sets the value of ”BookingNumber” as 1 and the value of the ”ConfirmationKey” as

”1”.

5. Invoke the web service: The service is called by using the generated parameter values

6. The process continues from the second step for the next web service.

27

4.2 QoS Parameter Values

Since a service is invoked by the program, the QoS parameters values can be taken automat-

ically. The processes of tracking web service for QoS parameters - Response Time, Avail-

ability, Reliability and Throughput - are different from each other. Therefore in this section

getting response time, availability, reliability and throughput values of web services are de-

scribed seperately.

4.2.1 Response Time

Response Time represents the delay time of taking response from the service after calling it.

In other words, it tells the speed of the algorithm in the invoked service. For this parameter,

the time just before calling service and the time just after receiving respond from the service

are taken. The difference of the taken time values gives the response time of the service and

is recorded into the database as a value in miliseconds. Generally, users prefer services that

return quick response, therefore a high value for response time parameter reduces the QoS for

the service. Hence, QoS is inversely proportional to the value of response time [22].

4.2.2 Availability

Availability represents the accessibility and effectivity of a service. After calling a service, if

it returns any result, it means that the service is available at that time. If the service is inactive

or returns an exception, it means the service is not available. When the service returns a

result in other words if the service is available, then value 1 is written to the database as the

availability value. When the service is inactive in other words if the service is not available,

then the value 0 is written to the database. For the Availability parameter, the high number of

the value 1 for a service will increase the QoS value of the service. It means that, the service

is active and accessible in different times during a period of lifetime. Therefore it becomes

preferable when availability is important for user [22].

28

4.2.3 Reliability

Reliability refers that a service returns the same result when invoked at different time in-

stances, with the same parameter. Therefore to get reliability value of a service, the result

value of each service invocation has to be recorded for result comparison. To do that, Ser-

viceResponses table is created into the database. When program gets the result of a service,

it serializes the result object to XML and records the content of the serialized object into the

ServiceResponses table.

In order to obtain reliability value, we call service with the same parameters and get the result.

The program serializes the result object to XML for the next invocation, gets the previous

result for the service recorded in the ServiceResponses table and compares the contents of

these results. If the same result is obtained, we record 1 to the database as reliability value

and record 0 for different result. If the service is invoked for the first time, then there would be

no result value for comparison. Therefore, for this situation -1 is recorded in the database and

this value will not be included in the calculation algorithms. As in availability, for reliability

parameter, the high number of the value 1 for a web service will make the QoS value of the

service increase [22].

4.2.4 Throughput

Throughput value refers to whether the service can handle high number of concurrent calls.

When calculating the maximum number of concurrent calls, if the maximum number is ex-

ceeded, the system gives an exception error. Therefore, in our program, we decided to use the

effect of concurrent calls to response time for throughput value.

In order to obtain throughput value, the program starts 50 threads for each web service con-

currently. All threads calculate response time of the service seperately. After all threads

finish their jobs, the program records the average of the response times calculated by threads

to the database as throughput value. The difference between response time of one service

call (the value calculated in Response Time) and the average value of these response times

of 50 threads gives us the behaviour of the service under 50 clients. Higher throughput will

decrease QoS value of the service. QoS is inversely proportional to the value of throughput,

as in response time [22].

29

CHAPTER 5

AUTOMATIC QOS CALCULATION ALGORITHM FOR WEB

SERVICES

In this chapter, we describe the proposed algorithm that aims to evaluate values of the QoS

parameters by considering their ages and set a QoS value for each Web services in range [0-1].

The proposed algorithm takes date/time value for each QoS parameter set as prerequisite. The

date/time value keeps the date of the invocation of a web service. In addition, values of QoS

parameters must be in ascending order by date/time. The date/time value helps us set the age

of the values.

By ordering QoS parameter values, the newest QoS value set becomes the last, and the oldest

value set becomes the first value set of the ordered list. The oldest QoS value set (the first

value in the ordered list) is set to be 1. Each QoS value set takes the day difference between

their date/time value and date/time value of the oldest set as age. Therefore, the newest set

(the last value in the oredered list) has highest value as age.

Assume a web service invoked five times in different days and values of the QoS parameters

are taken as in Table 5.1.

As we can see in Table 5.1 the values are sorted in ascending order by date/time. The age of

the first value set taken in 12.03.2011 is set to be 1. The age of the second line becomes 3 and

the age of the third line becomes 4 and the ages of rest of the lines are set in the same way, as

shown in Table 5.2

There are five steps in the proposed algorithm. In the first four step, average QoS parameter

values (response time, availability, reliability and throughput values) are calculated. These

30

Table 5.1: QoS Parameters for a Web Service

Response Time Availability Reliability Throughput Date Time
(ms) (ms)
3200 1 1 29400 12.03.2011
2700 1 0 25760 14.03.2011
1800 1 0 19100 15.03.2011
1500 1 1 16590 17.03.2011
1000 1 1 12090 19.03.2011
1200 1 1 14530 23.03.2011
980 1 1 10920 28.03.2011

Table 5.2: QoS Parameters for a Web Service

Response Time Availability Reliability Throughput Date Time Age
(ms) (ms)
3200 1 1 29400 12.03.2011 1
2700 1 0 25760 14.03.2011 3
1800 1 0 19100 15.03.2011 4
1500 1 1 16590 17.03.2011 6
1000 1 1 12090 19.03.2011 8
1200 1 1 14530 23.03.2011 12
980 1 1 10920 28.03.2011 17

four steps give the results in range [0-1] and considers ages of the values while calculating

values of QoS parameters. In the last step, overall QoS is calculated by using the results of

the previous steps.

While describing steps of the algorithm, the values in Table 5.1 are used as a running exam-

ples.

5.1 Calculating Response Time

Response time for a web service is kept as a value in miliseconds in the database. Response

time value in this form is not helpful to determine whether the web service is good enough

to use in a system point of view for response time. Therefore, to evaluate response time of

web service, instead of using response time value itself, the progress in the response time is

considered in this algorithm.

To see the progress, we first calculate the average of the response time values with the equation

31

5.1.

∑N
k=1 RTk

N
(5.1)

where RTk is response time value and N is the length of the QoS parameter values set.

As we mentioned in previous sections, the weight of the recent QoS value set should be higher

than the older ones. So, when we calculate the response time average by considering ages of

the value sets with the equation 5.2, so that the resulting value reflects the progress of the

service.

∑N
k=1 RTk ∗ ak∑N

k=1 ak
(5.2)

where RTk is the response time value, a is the age of the value and N is the length of the QoS

parameter values set.

The comparison between these two equations gives us an important information about progress

of the web service. If the result of 5.2 is higher than 5.1, then the web service is slower than

before. But if the result of 5.1 is higher than 5.2, then the web service is faster than before.

Since high response time value makes the quality low, if the result of 5.2 is higher than 5.1,

then the quality of the web service must be low. But if the result of 5.1 is higher than 5.2, then

the quality of the web service must be high.

The last step for calculation Response Time value is to normalize the value in range [0-1]. For

the equation assume that;

• The result of the equation 5.1 is M

• The result of the equation 5.2 is N

ResponseT ime =

0 if N > 2M

0.5 − N−M
2M if N > M

0.5 if N = M

0.5 + M−N
2M if N < M

(5.3)

32

In this equation, we considered that if the results of the equations 5.1 and 5.2 are the same,

then the web service has no progress in positive or negative way, so we give 0.5 point for

response time value. If the results of 5.1 is higher than the result of 5.2, which means there is

a progress in positive way, we add the ratio of the progress to 0.5. But if the result of 5.1 is

smaller than the result of 5.2, which means there is a progress in negative way, we substract

the ratio of the progress from 0.5. If the result of the substraction becomes a negative value

then the result is set to 0.

If we apply the response time calculation algorithm to the values in Table 5.1;

• At first, the average of the response times is calculated

3200 + 2700 + 1800 + 1500 + 1000 + 1200 + 980
7

= 1769 (5.4)

• Secondly, the average of the response times is calculated by considering the age values

(3200 ∗ 1) + (2700 ∗ 3) + (1800 ∗ 4) + (1500 ∗ 6) + (1000 ∗ 8) + (1200 ∗ 12) + (980 ∗ 17)
(1 + 3 + 4 + 6 + 8 + 12 + 17)

= 1305

(5.5)

• Finally, equation 5.3 is applied for the values 1769 and 1305. Since M is 1769 and N is

1305, fourth rule of the equation 5.3 gives us the result of the response time value for

this example. The calculation of the final result is given in 5.6

0.5 +
M − N

2M
= 0.5 +

1769 − 1305
2 ∗ 1305

= 0.68 (5.6)

5.2 Calculating Availability

Availability represents the accessibility of a web service in a certain period of lifetime. As

mentioned before, while invocation of a web service, if the service gives a response, then ”1”

33

is set as the availability value in the database. If there is no response, ”0” is recorded into the

database.

At the first sight, one may think that the average of the values in the database may give us the

availability of a web service. Assume that, a web service is not accessible at the beginning

of the period of value collection, but it is always accessible other times including use time

of the service. Assume that another web service is accessible at the beginning but it is not

accessible other times. In these two cases, averages of the values may be nearly same but it is

not fair to give the same availability value for both web service. Therefore, instead of taking

averages of the values without ages of the values, an equation considering ages must be used

for calculating availability. By considering ages, availability value in the first case differs

from the second case. Availability value in the first case becomes higher than the availability

value in the second case.

∑N
k=1 Ak ∗ ak∑N

k=1 ak
(5.7)

where Ak is the availability value at time k, a is the age of the value and N is the number of

the QoS parameter values recorded.

The equation 5.7 calculates the average of the availability by considering ages of the recorded

values. In Table 5.1, all availability values recorded in the database are ”1”, therefore the

availability value must be ”1”. If we apply the equation 5.7, the same result is obtained as

shown in 5.8.

(1 ∗ 1) + (1 ∗ 3) + (1 ∗ 4) + (1 ∗ 6) + (1 ∗ 8) + (1 ∗ 12) + (1 ∗ 17)
1 + 3 + 4 + 6 + 8 + 12 + 17

= 1 (5.8)

5.3 Calculating Reliability

Reliability represents the consistency of a web service. In other words, it refers to whether

a service returns the same result for the same parameters when invoked at different time. As

in Availability, while invoking a web service, if the service gives the same response as the

previous response with the same paramaters, then ”1” is recorded as the reliability value into

the database. If the response is different from the response of the previous invocation, ”0” is

34

set into the database. For the first invocation for a web service ”-1” is set into the database.

But the value ”-1” is not used in any equation including calculation reliability.

The example cases mentioned in calculating availability part occurs for reliability, as well.

Assume that there are two web services. The first web service gives the same response at

the beginning of the invocations, but in recent invocations, the responses differ from each

other. The second web service gives different responses at the beginning of the invocations.

However, in recent invocations, it always gives the same responses. The reliability values

of these two web services must be different. The reliability value of the first web service

must be less than reliability value of the second web service. Since using averages without

considering ages would not reflect this difference, the equation for calculating reliability value

must consider ages of the recorded values.

∑N
k=1 Rk ∗ ak∑N

k=1 ak
(5.9)

where Rk is the reliability value at time k, a is the age of the value and N is the number of the

QoS parameter values recorded.

The equation 5.9 calculates the average of the reliability by considering ages of the values.

For the example given in Table 5.1, the calculated reliability value s shown in 5.10.

(1 ∗ 1) + (0 ∗ 3) + (0 ∗ 4) + (1 ∗ 6) + (1 ∗ 8) + (1 ∗ 12) + (1 ∗ 17)
1 + 3 + 4 + 6 + 8 + 12 + 17

= 0.86 (5.10)

5.4 Calculating Throughput

Throughput represents how many concurrent invocations a web service can handle. For

throughput value of a web service, 50 concurrent transactions are used to invoke the ser-

vice and their average response times is kept in the database as throughput value. Therefore,

in the database, values in milliseconds are recorded for throughput as in response time. Here

the important thing is to be able to follow the progress of the service for concurrent calls. If

the service can handle more concurrent calls recently, than throughput value must be high, but

if the service can handle less concurrent calls, then the throughput value must be low. In order

to observe the progress, firstly, the average of the throughput values is calculated as given in

35

equation 5.11.

∑N
k=1 Tk

N
(5.11)

where Tk is throughput value at time k and N is the number of the QoS parameter values

recorded.

After that, the average of throughput values is calculated again. However, this time the equa-

tion includes the age of the recorded values, as shown in equation 5.12.

∑N
k=1 Tk ∗ ak∑N

k=1 ak
(5.12)

where Tk is the throughput value at time k, a is the age of the value and N is the number of

the QoS parameter values recorded.

The comparison between equations 5.11 and 5.12 gives the progress of the web service. If the

result of 5.11 is higher than the result of 5.12, then the web service can handle more or the

same number of concurrent calls in less time. However, if the result of 5.12 is higher than the

value of 5.11, then the web service can handle less or the same number of concurrent calls in

more time.

If the results of the equations 5.11 and 5.12 are the same, then the web service has no progress

in positive or negative way, so we give 0.5 point for throughput value. If the results of 5.11

is higher than the result of 5.12, which means there is a progress in positive way, we add

the ratio of the progress to 0.5. But If the results of 5.11 is smaller than the result of 5.12,

which means there is a progress in negative way, we substract the ratio of the progress from

0.5. If the result of the substraction becomes a negative value then the result is set to 0. The

corresponding equation is given in 5.13. In this equation, assume that

• The result of the equation 5.11 is M

• The result of the equation 5.12 is N

36

Throughput =

0 if N > 2M

0.5 − N−M
2M if N > M

0.5 if N = M

0.5 + M−N
2M if N < M

(5.13)

When the algorithm is applied to the example values in Table 5.1;

• At first, the average of throughput is calculated

29400 + 25760 + 19100 + 16590 + 12090 + 14530 + 10920
7

= 18341 (5.14)

• Secondly, the average of the throughput is calculated by considering the age values

(29400 ∗ 1) + (25760 ∗ 3) + (19100 ∗ 4) + (16590 ∗ 6) + (12090 ∗ 8) + (14530 ∗ 12) + (10920 ∗ 17)
(1 + 3 + 4 + 6 + 8 + 12 + 17)

= 14497

(5.15)

• Finally, the comparison in 5.13 must be done for the values 1769 and 1305. Since M

is 18341 and N is 14497, fourth rule of the equation 5.13 gives us the result of the

throughput value for this example, as shown in 5.16.

0.5 +
M − N

2M
= 0.5 +

18341 − 14497
2 ∗ 14497

= 0.63 (5.16)

5.5 Calculating Overall QoS Value

The final step of the proposed algorithm is calculating the overall QoS value by considering

the calculated response time, availability, reliability and throughput values. The user may

want to use each QoS parameters with different weights. For example the user may want a

37

service which is available as long as possible but response time is not important. In this situa-

tion the user decreases the weight of response time but increases weight of availability on the

screen provided by the GUI. Therefore, in this calculation, weights of each QoS parameters

are included, given as 5.17. In this equation assume that;

• The result of the response time calculation is RT

• The result of the availability calculation is A

• The result of the reliability calculation is R

• The result of the throughput calculation is T

(wRT ∗ RT) + (wA ∗ A) + (wR ∗ R) + (wT ∗ T)
wRT + wA + wR + wT

(5.17)

where wRT is the weight of response time, wA is the weight of availability, wR is the weight of

reliability and wT is the weight of throughput.

In this study, the weights are values between 0 and 100. In addition, the average of the weights

is used as the threshold value on the result list. The weights are taken from the user through

GUI.

When the equation is applied to the calculation results of the example values in Table 5.1, the

result of the response time is 0.68, the result of the availability is 1, the result of the reliability

is 0.86 and the result of the throughput is 0.63. Assume that, weight of the response time is

set to be 80, weight of the availability is set to be 60, weight of the reliability is set to be 80

and weight of the throughput is set to be 100;

(80 ∗ 0.68) + (60 ∗ 1) + (80 ∗ 0.86) + (100 ∗ 0.63)
80 + 60 + 80 + 100

= 0.77 (5.18)

The QoS value of the example web service is calculated as 0.77.

38

5.6 Evaluating Price Value and Sort Algorithm

In the Web, there are a lot of services which are cost-free but there are also service that must

be paid to use. The price value does not effect the quality of the service. But the user may

want to express his/her preference for the price of the web service. S/He may want to use a

free web service or a web service up to a certain cost. The price value can be set by user.

The given value is used as the maximum cost that user can afford. Therefore, when user set a

value from the GUI, web services with higher prices are eliminated from the result list.

In this work, a service is implemented such that it takes the list of web services and calculates

QoS values of the web services by including weights of QoS parameters that are taken from

user and returns a list ordered by QoS values. The service also eliminates web services whose

costs are more than user can afford. After this filtering, if there are web services that have the

same QoS value, then web services are ordered by the price values of the services.

While sorting the web services with respect to their QoS values, some tuning is necessary

to break the ties. Assume that there are two services having the same overall QoS values

in our list. If both services have the same progress in response time and throughput values

but the averages of response times and throughput are different so these service should have

different QoS values. To this aim, while sorting web services, average value of response time

by considering the age of the recorded values is used as the weight of the services in sorting.

The same rule is used for throughput value, as well.

To give an example, assume that there are two web services which have the same response

time and throughput values for each invocation and they are both availabile and reliable. But

the response time of the first service is 800 ms, and the response time of the second service

is 1000 ms. In this situation, each QoS parameter value for these two web services becomes

the same. Assume that response time value of each service is 0.5. The response time value

of the second service is multiplied by 800/(800+1000) and the response time value of the

first service multiplies by 1000/(800+1000). The resulting values of these multiplications are

added to response time values. By this way, the response time value of first service becomes

(0.5 + 0.28) = 0.78 and the response time value of the second service becomes (0.5 + 0.22)

= 0.72. As a result, when the overall QoS values are the same, the Web service with smaller

response time is favoured.

39

CHAPTER 6

CASE STUDIES AND EVALUATION

In this chapter, the experimental results of the proposed algorithm are presented. This chapter

consists of two parts. The first part presents the description of the real Web services obtained

from the Web through DSWSD and tracked by using the proposed method. This part also

contains QoS value calculation with real values for two services. The second part presents

comparison of the QoS results obtained by the proposed algorithm and by the algorithm given

in [20].

6.1 Web Services used in the Experiments

In this project 15 sample Web services discovered from the Web by the service discovery

system DSWSD-S are selected and tracked for about one month. In Table 6.1, information

about these web services can be seen. The services are invoked once a day and mostly at the

evening hours. In Table 6.2, the URL information about example web services are given.

In this thesis, the services in Table 6.1 are used as test services. Column ID represents pri-

mary key of each row. URLID is the database primary key of the URL of the service. Ser-

viceDescription column gives the description of the service which includes name, parameters

and result type of the service. The last column, which is ServiceName, keeps the name of the

service. URL descriptions of each service in Table 6.1 are shown in Table 6.2.

As the URLs and service names imply, test services are taken from car domain. The Web

service tracking procedure given in Chapter 4 is applied to the web services given in Table

6.1. The developed program is used in different times and the values for each web service

are taken and recorded into the database. Recorded values of services 257, 258, 260 and 266

40

Table 6.1: Web Service Descriptions

ID URLID Service Description Service Name
250 34 ResultsGetCountries GetCountries() GetCountries
251 34 ResultsGetLocations GetLocations(Int32 CountryID) GetLocations
252 34 ResultsCarAvailabilityByAirport CarAvailabilityByAir-

port(String PickupAirport, String PickupDate, String
DropoffDate, String PickupTime, String DropoffTime,
String Currency)

CarAvailability
ByAirport

253 34 ResultsCarAvailabilityByTownCity CarAvailabilityBy-
TownCity(String PickupTownCity, String PickupDate,
String DropoffDate, String PickupTime, String Dropoff-
Time, String Currency)

CarAvailability
ByTownCity

254 34 ResultsCarAvailabilityByLocationID CarAvailabilityBy-
LocationID(Int32 PickupLocationID, Int32 DropoffLo-
cationID, String PickupDate, String DropoffDate, String
PickupTime, String DropoffTime, String Currency)

CarAvailability
ByLocationID

255 34 ResultsGetBooking GetBooking(Int32 BookingNumber,
String ConfirmationKey)

GetBooking

256 34 ResultsGetVoucher GetVoucher(Int32 BookingNumber,
String ConfirmationKey)

GetVoucher

257 35 CascadingDropDownNameValue[] GetMake() GetMake
258 35 CascadingDropDownNameValue[] GetModel(String

knownCategoryValues, String category)
GetModel

260 43 System.String[] GetSuburbSuggestions(String prefixText,
Int32 count)

GetSuburb Sugges-
tions

263 48 CascadingDropDownNameValue[] GetMakes-
ByYear(String knownCategoryValues, String category,
String contextKey)

GetMakesByYear

264 48 CascadingDropDownNameValue[] GetModelsBy-
Make(String knownCategoryValues, String category,
String contextKey)

GetModelsByMake

265 55 CascadingDropDownNameValue[] GetMake(String
knownCategoryValues, String category)

GetMake

266 55 CascadingDropDownNameValue[] GetModel(String
knownCategoryValues, String category)

GetModel

268 55 CascadingDropDownNameValue[] GetMakeCount(String
knownCategoryValues, String category)

GetMakeCount

Table 6.2: Web Service URL Informations

ID Service URL
34 http://www.reservations.wwcars.co.uk/WWCarsOnlineRes/XML/wwcarsXMLInterface.asmx
35 http://cardealer.com.pk/Services/cars.asmx
43 http://www.fixedpricecarservice.com.au/Services/WebService.asmx
48 http://www.carquotes.com/Tools/DynamicPopulateDictionary.asmx
55 http://carseller.co.nz/controls/searchService.asmx

41

Table 6.3: QoS Parameter Values of Service 257

Service ID Response Time Throughput Reliability Availability DateTime
257 984,375 12400 1 1 07.03.2011 22:04
257 875 11546,5625 1 1 09.03.2011 22:45
257 937,5 11667,5 1 1 10.03.2011 23:20
257 875 11430,3125 1 1 12.03.2011 10:56
257 1078,125 11637,1875 1 1 14.03.2011 15:53
257 968,75 12637,5 1 1 15.03.2011 16:03
257 1156,25 13158,4375 1 1 19.03.2011 13:05
257 1140,625 11368,125 1 1 20.03.2011 12:51
257 1140,625 13866,875 1 1 23.03.2011 23:18
257 1031,25 13396,25 1 1 24.03.2011 22:29
257 1390,625 14382,5 1 1 29.03.2011 23:23
257 1321,875 12805 1 1 01.04.2011 23:41
257 1475 13627,5 1 1 03.04.2011 12:56
257 1475,5 14011,875 1 1 04.04.2011 18:15
257 1393,75 14115,625 1 1 05.04.2011 16:03

are given in Tables 6.3-6.7 and progress charts of response time and throughput paramaters

of these services are given in Figures 6.1-6.5. These services are used in the next section for

evalution, therefore we present the detailed list of recorded values here just for these services.

QoS values of other services are given in Appendix A.

As shown in the tables, each service has its own characteristics. QoS parameters of each

service changes day by day. Response times of services generally do not have a specific

path. However, when the values of Service 257 is examined, it is observed that the response

time values are increasing day by day. So its response time quality becomes less than other

services. Service 268 and Service 266 are not reliable services because they return different

result for each invocation. Service 260 gives a different result once, the reliability point is

lower than other services.

For reliability and availability, there should be more data to make a good comparison. In this

calculation whole data in the database is used. After the proposed system runs and collects

data for a long period, subset of data may be used for calculation.

42

Table 6.4: QoS Parameter Values of Service 258

Service ID Response Time Throughput Reliability Availability DateTime
258 968,75 12426,25 1 1 07.03.2011 22:04
258 1156,25 14342,8125 1 1 09.03.2011 22:45
258 875 12154,6875 1 1 10.03.2011 23:20
258 890,625 11210 1 1 12.03.2011 10:56
258 1853,25 13751,875 1 1 14.03.2011 15:53
258 953,125 11549,375 1 1 15.03.2011 16:03
258 1156,25 14310,9375 1 1 19.03.2011 13:05
258 1109,375 13672,8125 1 1 20.03.2011 12:51
258 1125 24643,75 1 1 23.03.2011 23:18
258 1015,625 11344,375 1 1 24.03.2011 22:29
258 937,5 11586,25 1 1 29.03.2011 23:23
258 937,5 11383,4375 1 1 01.04.2011 23:41
258 875 10675 1 1 03.04.2011 12:56
258 921,875 11261,5625 1 1 04.04.2011 18:15
258 1031,25 12209,0625 1 1 05.04.2011 16:03

Table 6.5: QoS Parameter Values of Service 260

Service ID Response Time Throughput Reliability Availability DateTime
260 3625 12867,8125 1 1 07.03.2011 22:04
260 1218,75 11910,3125 1 1 09.03.2011 22:45
260 1203,125 11010,625 1 1 10.03.2011 23:20
260 1515,625 9688,125 1 1 12.03.2011 10:56
260 2265,625 25399,0625 0 1 14.03.2011 15:53
260 2218,75 11918,75 1 1 15.03.2011 16:03
260 2078,125 11742,8125 1 1 19.03.2011 13:05
260 1531,25 8984,375 1 1 20.03.2011 12:51
260 1406,25 11413,125 1 1 23.03.2011 23:18
260 1343,75 12781,25 1 1 24.03.2011 22:29
260 1265,625 14801,25 1 1 29.03.2011 23:23
260 1234,375 14132,1875 1 1 01.04.2011 23:41
260 1171,875 13567,1875 1 1 03.04.2011 12:56
260 1468,75 13261,5625 1 1 04.04.2011 18:15
260 1390,625 9299,6875 1 1 05.04.2011 16:03

43

Table 6.6: QoS Parameter Values of Service 266

Service ID Response Time Throughput Reliability Availability DateTime
266 218,75 3117,1875 1 1 07.03.2011 22:04
266 546,875 4248,125 1 1 09.03.2011 22:45
266 328,125 4615,3125 0 1 10.03.2011 23:20
266 171,875 2188,125 0 1 12.03.2011 10:56
266 234,375 7413,75 0 1 14.03.2011 15:53
266 218,75 3744,375 0 1 15.03.2011 16:03
266 312,5 2064,6875 0 1 19.03.2011 13:05
266 250 3383,125 0 1 20.03.2011 12:51
266 234,375 3305,625 0 1 23.03.2011 23:18
266 265,625 3418,125 0 1 24.03.2011 22:29
266 375 4635,3125 0 1 29.03.2011 23:23
266 265,625 6096,875 0 1 01.04.2011 23:41
266 140,625 2571,875 0 1 03.04.2011 12:56
266 156,25 1975 0 1 04.04.2011 18:15
266 359,375 6644,375 0 1 05.04.2011 16:03

Table 6.7: QoS Parameter Values of Service 268

Service ID Response Time Throughput Reliability Availability DateTime
268 218,75 3044,6875 1 1 07.03.2011 22:04
268 343,75 4701,5625 0 1 09.03.2011 22:45
268 328,125 4237,8125 0 1 10.03.2011 23:20
268 171,875 1970 0 1 12.03.2011 10:56
268 265,625 4728,4375 0 1 14.03.2011 15:53
268 359,375 5485,3125 0 1 15.03.2011 16:03
268 140,625 1984,0625 0 1 19.03.2011 13:05
268 281,25 4500,3125 0 1 20.03.2011 12:51
268 234,375 3243,75 0 1 23.03.2011 23:18
268 265,625 3610 0 1 24.03.2011 22:29
268 375 4456,5625 0 1 29.03.2011 23:23
268 250 3290,9375 0 1 01.04.2011 23:41
268 140,625 1795,625 0 1 03.04.2011 12:56
268 203,125 1870,3125 0 1 04.04.2011 18:15
268 828,125 6181,5625 0 1 05.04.2011 16:03

44

Figure 6.1: Response Time and Throughput of Service 257

Figure 6.2: Response Time and Throughput of Service 258

Figure 6.3: Response Time and Throughput of Service 260

Figure 6.4: Response Time and Throughput of Service 266

45

Figure 6.5: Response Time and Throughput of Service 268

Figure 6.6: Proposed Algorithm

6.2 Comparison of Algorithms

In this part of this chapter, a comparison between proposed algorithm in our work and algo-

rithm given in [20] is given. For comparison, the real values of services 257, 258, 260 and

266, which are given in previous section are used.

Figure 6.6 represents the algorithm given in Chapter 5. QoS calculation starts with selecting

a service to evaluate. When a service is selected QoS parameter values are retrieved from the

database. Following this, for each QoS parameter, evaluation calculation is done and lastly,

overall QoS value is calculated. When the proposed algorithm in Figure 6.6 is applied to the

values of the tables given, the results can be seen as the second column of Table 6.8.

The equation in the algorithm given in [20] can be given as Formula 6.1.

46

Table 6.8: QoS Results

Service ID Overall QoS value by the proposed algorithm Overall QoS value by [20]
250 0,75 3701,20
251 0,75 3726,75
252 0,76 3655,37
253 0,78 4169,91
254 0,77 15740,35
255 0,75 18148,91
256 0,76 13737,54
257 0,71 13955,03
258 0,76 14157,23
260 0,78 14516,37
263 0,78 13709,64
264 0,78 15622,47
265 0,80 11931,33
266 0,51 4334,33
268 0,48 3968,14

∑
Wm ∗ qi +

∑
Wn ∗

1
q j

(6.1)

where Wm and Wn are weights of QoS parameters; qi is a negative QoS parameter and q j is

positive QoS parameter.

When QoS values are calculated with the proposed algorithm in [20], then the results are as

the third column of Table 6.8.

According to the QoS calculation algorithm given in [20], the service with less QoS value

is more preferrable. In Figure 6.7, first chart gives QoS values of services calculated by our

algorithm and second chart gives QoS values of services calculated by proposed algorithm in

[20].

As seen in the figure, the QoS values calculated by algorithm in [20] are hard to interpret by

itself since the range of the value is not known themselves. These values are useful only for

comparison of web services.

When we check the descriptions of the services, it is seen that service 258 and service 266

are functionally the same. They both return models of cars. Assume that both services are

returned as the result of some service query. When we compare them in terms of QoS, our

algorithm gives that Service 258 is more preferable than Service 266. Even if response time

47

Figure 6.7: QoS values calculated with the Proposed Algorithm of This Work and the Algo-
rithm in [20]

and throughput of Service 266 are better than Service 258, Service 266 is not reliable and

response time quality of Service 266 decreases day by day. On the other hand the algorithm

in [20] gives that Service 266 is more preferable. The progress of QoS values of Service 258

and Service 266 with the proposed algorithm are given in Figure 6.8.

Figure 6.8: The progress of QoS values of Service 258 and Service 266 with Proposed Algo-
rithm

The difference between QoS evaluations for Service 258 and Service 266 can be seen clearly

in Figure 6.8. Since Service 266 is not reliable and the other QoS parameters are not effective

enough, QoS value is less than Service 258 at all the time. Figure 6.9 shows the progress

of QoS values of Service 258 and Service 266 with Algorithm [20]. In this figure it is hard

to interpret the QoS evaluation result since calculation is accumulative and recent values are

not emphasized. However it is clear that in contrast to our method it gives higher QoS value

to Service 266 than Service 258. There are many reasons for the difference between two

algorithms. The first one is that our algorithm considers the ages of recorded values but the

algorithm in [20] does not. The second one is that in algorithm in [20], all parameters are used

in the same formula. Since each parameter is in different ranges and has different features,

each parameter should be examined differently. When a service is reliable and available, the

48

reliability and availability values of the service becomes 1. Since reliability and availability

are positive QoS factors, in algorithm in [20] opposites of these values are used. Since oppo-

sites of these values are 1 and overall QoS values has response time and throughput values in

it, overall QoS value could not be affected by reliability and availability values.

Figure 6.9: The progress of QoS values of Service 258 and Service 266 with Algorithm [20]

As another comparison, Service 257 and Service 265 are functionally equivalent as their

names imply. Both algorithms gives the same result as Service 265 is more preferable than

Service 257. However, the comparison is more clear for the results of the proposed algorithm

since a definite range is used. The distance between the QoS values is clearly seen, as well.

Table 6.9: QoS Results

Service ID Overall QoS value by the proposed algorithm Overall QoS value by [20]
257 0,71 13955,03
265 0,80 11931,33

.

49

CHAPTER 7

CONCLUSION

In this thesis, the main idea of the work is to provide a method to find web services that meet

their functional requirements with high enough quality. The proposed technique searches the

Internet to find web services, records information about the discovered web services into the

database and checks the services periodically to keep QoS information updated. The system

includes a graphical user interface through which the user can enter keywords to search and

set weights of QoS parameters. When a keyword is queried, the system returns a web service

list that includes best matched services with their QoS values and it shows the list sorted by

calculated QoS values in decreasing order.

The other aim of this thesis is to find more feasible way to handle QoS parameters and more

efficient algorithm to calculate QoS values. In this thesis, we used five QoS parameters which

are Response Time, Availability, Reliability, Throughput and Price. The first four parameters

(Response Time, Availability, Reliability and Throughput) are used to calculate QoS values

and the last parameter (Price) is used for refining the result list. As a future work, other QoS

parameters can be tracked and added to the calculation algorithm. Therefore web services can

be handled with different aspects and QoS values can be more efficient.

While calculating QoS values, we normalized the results in range [0-1] to make them com-

parable and meaningful among themselves. The calculation algorithm also considers ages of

the recorded QoS parameter values which makes QoS values more comprehensible.

In the proposed system, users can set weights of QoS parameters as an integer. As a future

work, the GUI may be extended to take fuzzy inputs for weights of QoS parameters. For

example for response time parameter, in spite of using integer numbers between 0 and 100,

50

using ”fast”, ”average” and ”slow” is more preferable for the users.

User may set specific values for parameters of web services. In addition, for some web ser-

vices using default values for parameter may not give reliable results to calculate overall QoS

values. Therefore, the system should verify the parameter values. Since the verification of

parameters is out of scope of this thesis, the verification of parameter values is not considered.

The system may be improved after a study on verification of web service parameters.

Some of web services may produce different results for each invocation. For instance, assume

that there is a web service which returns the invocation date. This service returns different

results for each invocation. Therefore, in our algorithm, reliability for this service becomes

0. After a study on verification of web service, semantics of such services can be discovered

more clearly and input and expected output values can be determined more accurately. After

such a study, the reliability parameter value for such web services can be calculated more

reliably.

51

REFERENCES

[1] Zibin Zheng, Yilei Zhang, and Michael R. Lyu. Distributed QoS evaluation for real-
world web services. IEEE International Conference on Web Services, 1:1 - 8, 2010.

[2] uddi.org, ”Introduction to UDDI:Important Features and Functional Concepts”. Re-
trieved at April 2, 2011 from http://uddi.org/pubs/uddi-tech-wp.pdf

[3] ibm.com, ”Understanding WSDL in a UDDI registry”. Retrieved at April 2, 2011 from
http://www.ibm.com/developerworks/webservices/library/ws-wsdl/

[4] tutorialspoint.com, ”UDDI Data Model”. Retrieved at April 2,2011 from
http://www.tutorialspoint.com/uddi/uddi data model.htm

[5] E. Michael Maximilien, Munindar P. Sing. A Framework and Ontology for Dynamic
Web Services Selection. IEEE Internet Computing, 8(5):84-93, 2004.

[6] Shuping Ran. A Model for Web Services Discovery with QoS. ACM SIGecom Ex-
changes, vol. 4, no. 1, Spring 2003.

[7] Ziqiang Xu, Patrick Martin, Wendy Powley and Farhana Zulkernine. Reputation-
Enhanced QoS-based Web Services Discovery. IEEE International Conference on Web
Services (ICWS), pp. 249-256, 2007.

[8] Anna Averbakh, Daniel Krause, and Dimitrios Skoutas. Exploiting User Feedback to Im-
prove Semantic Web Service Discovery. International Semantic Web Conferenc (ISWC)
pp. 33-48, 2009.

[9] T. Rajendran and Dr.P. Balasubramanie. An Optimal Agent-Based Architecture for Dy-
namic Web Service Discovery with QoS. IEEE International Conference on Web Services
(ICWS), 1-7, 2010.

[10] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant
Kalagnanam and Henry Chang. QoS-Aware Middleware for Web Services Composition.
Proceedings of the 12th international conference on World Wide Web (WWW), 9-24,
2003.

[11] Delnavaz Mobedpour, Chen Ding and Chi-Hung Chi. A QoS Query Language for User-
Centric Web Service Selection. IEEE International Conference on Services Computing,
1-8, 2010.

[12] Qian MA, Hao WANG, Ying LI, Guotong XIE and Feng LIU. A Semantic QoS-Aware
Discovery Framework for Web Services. IEEE International Conference on Web Ser-
vices, 1-8, 2008.

[13] Li xiaotang, Zhan feng and Zhan shaobin. QoS-based Web Service Composition Tech-
nology Research. IEEE International Conference on Services Computing, 1-4, 2010.

52

[14] G. Dobson, R. Lock, and I. Sommerville. QoSOnt: a QoS Ontology for Service-Centric
Systems. 31st ERUOMICRO Conference on Software Engineering and Advanced Ap-
plications, 80-87, 2005.

[15] M. Tian, A. Gramm, H. Ritter and J. Schiller. Efficient Selection and Monitoring of
QoS-aware Web Services with the WS-QoS Framework. IEEE/WIC/ACM International
Conference on Web Intelligence, 152-158, 2004.

[16] K. Kritikos and D. Plexousakis. Semantic QoS Metric Matching. European Conference
on Web Services, 265-274, 2006.

[17] A. D’Ambrogio. A Model-driven WSDL Extension for Describing the QoS of Web
Services. IEEE International Conference on Web Services, 789-796, 2006.

[18] Q.X. Du, C.H. Chi, S. Chen and J. M. Deng. Modeling Service Quality for Dynamic QoS
Publishing. IEEE International Conference on Services Computing, 307-314, 2008.

[19] C. Herssens, I.J. Jureta and S. Faulkner. Dealing with Quality Tradeoffs during Service
Selection. International Conference on Autonomic Computing, 77-86, 2008.

[20] Yuqiang Li, Qianxing Xiong and Xin Qi. A New Algorithm about QoS of Web Service.
IEEE International Conference on Web Services, 1:1-3, 2010.

[21] D. Canturk and P.Senkul, Using semantic information for distributed web service dis-
covery. International Journal of Web Science. 2011

[22] Emra Askaroglu, Hilal Ozdil and P.Senkul, Automatic QoS Evaluation for Domain Spe-
cific Web Service Discovery. in progress.

[23] D. Canturk and P.Senkul, Semantic Annotation of Web Services with Lexicon-Based
Alignment. IEEE 7th World Congress on Services. July 2011.

[24] Enrique Lafuente Hernandez, Evaluation Framework for Quality of Service in Web Ser-
vices: implementation in a pervasive environment. Master thesis in INSA Lyon. 2010.

[25] Vuong Xuan Tran,Hidekazu Tsuji and Ryosuke Masuda. A new QoS ontology and its
QoS-based ranking algorithm for Web services. Simulation Modelling Practice and The-
ory 17, 1378-1398, 2009.

[26] D. Canturk and P.Senkul, A Distributed Service Discovery System Consisting Of Domain
Specific Sub-Systems. Ph. D. Thesis Report. Spring 2011.

53

APPENDIX A

CASE STUDIES

A.1 QOS PARAMETER VALUES OF SERVICES

In this section, QoS parameters of services 250, 251, 252, 253, 254, 255, 256, 263, 264, 265

are given. These values are also recorded in the same time period as the services given in

Chapter 6. While calculating QoS values of these services, the ages are given by the date

values of each QoS parameter sets.

In addition, progress charts of response times and throughputs of services 250, 251, 252, 253,

254, 255, 256, 263, 264, 265 are given in this appendix.

Table A.1: QoS Parameter Values of Service 250

Service ID Response Time Throughput Reliability Availability DateTime
250 546,875 2435,9375 1 1 07.03.2011 22:04
250 265,625 2561,875 1 1 09.03.2011 22:45
250 343,75 4359,6875 1 1 10.03.2011 23:20
250 546,875 3133,125 1 1 12.03.2011 10:56
250 515,625 2761,25 1 1 14.03.2011 15:53
250 296,875 2937,1875 1 1 15.03.2011 16:03
250 703,125 3772,8125 1 1 19.03.2011 13:05
250 484,375 4458,75 1 1 20.03.2011 12:51
250 593,75 4782,5 1 1 23.03.2011 23:18
250 328,125 2954,0625 1 1 24.03.2011 22:29
250 500 3003,4375 1 1 29.03.2011 23:23
250 296,875 2896,875 1 1 01.04.2011 23:41
250 484,375 2335,3125 1 1 03.04.2011 12:56
250 328,125 2196,5625 1 1 04.04.2011 18:15
250 578,125 4086,25 1 1 05.04.2011 16:03

54

Table A.2: QoS Parameter Values of Service 251

Service ID Response Time Throughput Reliability Availability DateTime
251 375 2485,9375 1 1 07.03.2011 22:04
251 343,75 2277,1875 1 1 09.03.2011 22:45
251 312,5 2712,1875 1 1 10.03.2011 23:20
251 328,125 4114,375 1 1 12.03.2011 10:56
251 453,125 3373,4375 1 1 14.03.2011 15:53
251 359,375 2787,8125 1 1 15.03.2011 16:03
251 421,875 3394,375 1 1 19.03.2011 13:05
251 421,875 4299,6875 1 1 20.03.2011 12:51
251 390,625 4288,125 1 1 23.03.2011 23:18
251 296,875 2885,625 1 1 24.03.2011 22:29
251 359,375 3740,3125 1 1 29.03.2011 23:23
251 281,25 3016,875 1 1 01.04.2011 23:41
251 328,125 2340,625 1 1 03.04.2011 12:56
251 406,25 2345,3125 1 1 04.04.2011 18:15
251 515,625 6215,625 1 1 05.04.2011 16:03

Table A.3: QoS Parameter Values of Service 252

Service ID Response Time Throughput Reliability Availability DateTime
252 515,625 3186,5625 1 1 07.03.2011 22:04
252 343,75 2285,3125 1 1 09.03.2011 22:45
252 250 2722,8125 1 1 10.03.2011 23:20
252 437,5 4906,875 1 1 12.03.2011 10:56
252 390,625 3095,3125 1 1 14.03.2011 15:53
252 375 2838,125 1 1 15.03.2011 16:03
252 406,25 3304,0625 1 1 19.03.2011 13:05
252 468,75 4289,6875 1 1 20.03.2011 12:51
252 406,25 4360,3125 1 1 23.03.2011 23:18
252 281,25 2877,1875 1 1 24.03.2011 22:29
252 421,875 2800,625 1 1 29.03.2011 23:23
252 281,25 2792,1875 1 1 01.04.2011 23:41
252 343,75 2426,25 1 1 03.04.2011 12:56
252 328,125 2054,0625 1 1 04.04.2011 18:15
252 468,75 5142,5 1 1 05.04.2011 16:03

55

Table A.4: QoS Parameter Values of Service 253

Service ID Response Time Throughput Reliability Availability DateTime
253 343,75 4560,3125 1 1 07.03.2011 22:04
253 343,75 3103,4375 1 1 09.03.2011 22:45
253 265,625 3237,8125 1 1 10.03.2011 23:20
253 375 5814,6875 1 1 12.03.2011 10:56
253 421,875 4026,25 1 1 14.03.2011 15:53
253 406,25 2779,375 1 1 15.03.2011 16:03
253 468,75 4615,9375 1 1 19.03.2011 13:05
253 531,25 5078,75 1 1 20.03.2011 12:51
253 406,25 4410 1 1 23.03.2011 23:18
253 296,875 2977,5 1 1 24.03.2011 22:29
253 375 4628,125 1 1 29.03.2011 23:23
253 281,25 2856,875 1 1 01.04.2011 23:41
253 375 2331,5625 1 1 03.04.2011 12:56
253 328,125 2075,9375 1 1 04.04.2011 18:15
253 484,375 4319,0625 1 1 05.04.2011 16:03

Table A.5: QoS Parameter Values of Service 254

Service ID Response Time Throughput Reliability Availability DateTime
254 1031,25 31955 1 1 07.03.2011 22:04
254 3234,375 13457,1875 1 1 09.03.2011 22:45
254 1000 10726,5625 1 1 10.03.2011 23:20
254 1796,875 12327,5 1 1 12.03.2011 10:56
254 843,75 10613,4375 1 1 14.03.2011 15:53
254 3203,125 12298,4375 1 1 15.03.2011 16:03
254 2078,125 11038,75 1 1 19.03.2011 13:05
254 1921,875 10980,3125 1 1 20.03.2011 12:51
254 2171,875 12334,6875 1 1 23.03.2011 23:18
254 1625 13069,375 1 1 24.03.2011 22:29
254 3703,125 23683,4375 1 1 29.03.2011 23:23
254 1953,125 10841,5625 1 1 01.04.2011 23:41
254 1875 12122,5 1 1 03.04.2011 12:56
254 875 11125 1 1 04.04.2011 18:15
254 2250 9939,0625 1 1 05.04.2011 16:03

56

Table A.6: QoS Parameter Values of Service 255

Service ID Response Time Throughput Reliability Availability DateTime
255 1000 12699,0625 1 1 07.03.2011 22:04
255 1078,125 16450,9375 1 1 09.03.2011 22:45
255 1000 12373,4375 1 1 10.03.2011 23:20
255 1062,5 12450,9375 1 1 12.03.2011 10:56
255 1656,25 27228,4375 1 1 14.03.2011 15:53
255 1562,5 20090 1 1 15.03.2011 16:03
255 906,25 14153,75 1 1 19.03.2011 13:05
255 1046,875 16984,6875 1 1 20.03.2011 12:51
255 2218,75 34481,875 1 1 23.03.2011 23:18
255 2296,875 13539,6875 1 1 24.03.2011 22:29
255 1125 18921,25 1 1 29.03.2011 23:23
255 906,25 12495 1 1 01.04.2011 23:41
255 921,875 11852,8125 1 1 03.04.2011 12:56
255 1453,125 15608,125 1 1 04.04.2011 18:15
255 1062,5 13576,875 1 1 05.04.2011 16:03

Table A.7: QoS Parameter Values of Service 256

Service ID Response Time Throughput Reliability Availability DateTime
256 968,75 13742,5 1 1 07.03.2011 22:04
256 906,25 11695 1 1 09.03.2011 22:45
256 890,625 11451,25 1 1 10.03.2011 23:20
256 1046,875 11336,875 1 1 12.03.2011 10:56
256 968,75 11766,5625 1 1 14.03.2011 15:53
256 953,125 11581,875 1 1 15.03.2011 16:03
256 1171,875 13997,1875 1 1 19.03.2011 13:05
256 1125 13929,0625 1 1 20.03.2011 12:51
256 1125 21945,9375 1 1 23.03.2011 23:18
256 1000 11541,875 1 1 24.03.2011 22:29
256 937,5 11408,75 1 1 29.03.2011 23:23
256 937,5 12115 1 1 01.04.2011 23:41
256 875 10454,0625 1 1 03.04.2011 12:56
256 875 11469,6875 1 1 04.04.2011 18:15
256 968,75 12847,5 1 1 05.04.2011 16:03

57

Table A.8: QoS Parameter Values of Service 263

Service ID Response Time Throughput Reliability Availability DateTime
263 859,375 15473,125 1 1 07.03.2011 22:04
263 1218,75 12020,3125 1 1 09.03.2011 22:45
263 734,375 15449,375 1 1 10.03.2011 23:20
263 1156,25 21047,8125 1 1 12.03.2011 10:56
263 781,25 13208,4375 1 1 14.03.2011 15:53
263 890,625 17443,75 1 1 15.03.2011 16:03
263 687,5 8745 1 1 19.03.2011 13:05
263 781,25 12369,375 1 1 20.03.2011 12:51
263 1000 13951,875 1 1 23.03.2011 23:18
263 906,25 12094,0625 1 1 24.03.2011 22:29
263 843,75 9887,8125 1 1 29.03.2011 23:23
263 843,75 10602,5 1 1 01.04.2011 23:41
263 734,375 9080 1 1 03.04.2011 12:56
263 718,75 9027,8125 1 1 04.04.2011 18:15
263 968,75 12088,4375 1 1 05.04.2011 16:03

Table A.9: QoS Parameter Values of Service 264

Service ID Response Time Throughput Reliability Availability DateTime
264 1343,75 10497,8125 1 1 07.03.2011 22:04
264 984,375 12485 1 1 09.03.2011 22:45
264 1437,5 12891,875 1 1 10.03.2011 23:20
264 921,875 10235,3125 1 1 12.03.2011 10:56
264 1687,5 12971,25 1 1 14.03.2011 15:53
264 1750 35775,9375 1 1 15.03.2011 16:03
264 3875 21814,375 1 1 19.03.2011 13:05
264 812,5 12309,0625 1 1 20.03.2011 12:51
264 953,125 11436,25 1 1 23.03.2011 23:18
264 1109,375 13881,25 1 1 24.03.2011 22:29
264 984,375 13649,0625 1 1 29.03.2011 23:23
264 1078,125 13381,875 1 1 01.04.2011 23:41
264 875 9791,5625 1 1 03.04.2011 12:56
264 890,625 11020,9375 1 1 04.04.2011 18:15
264 984,375 12478,125 1 1 05.04.2011 16:03

58

Table A.10: QoS Parameter Values of Service 265

Service ID Response Time Throughput Reliability Availability DateTime
265 828,125 16235,625 1 1 07.03.2011 22:04
265 750 41108,4375 1 1 09.03.2011 22:45
265 718,75 6670,3125 1 1 10.03.2011 23:20
265 937,5 9487,1875 1 1 12.03.2011 10:56
265 609,375 8781,25 1 1 14.03.2011 15:53
265 687,5 6240,3125 1 1 15.03.2011 16:03
265 578,125 9095,9375 1 1 19.03.2011 13:05
265 500 8323,4375 1 1 20.03.2011 12:51
265 687,5 16667,5 1 1 23.03.2011 23:18
265 562,5 7364,0625 1 1 24.03.2011 22:29
265 781,25 7204,0625 1 1 29.03.2011 23:23
265 828,125 7435 1 1 01.04.2011 23:41
265 843,75 10508,125 1 1 03.04.2011 12:56
265 796,875 7557,8125 1 1 04.04.2011 18:15
265 640,625 5510,9375 1 1 05.04.2011 16:03

Figure A.1: Response Time and Throughput of Service 250

Figure A.2: Response Time and Throughput of Service 251

59

Figure A.3: Response Time and Throughput of Service 252

Figure A.4: Response Time and Throughput of Service 253

Figure A.5: Response Time and Throughput of Service 254

Figure A.6: Response Time and Throughput of Service 255

60

Figure A.7: Response Time and Throughput of Service 256

Figure A.8: Response Time and Throughput of Service 263

Figure A.9: Response Time and Throughput of Service 264

Figure A.10: Response Time and Throughput of Service 265

61

