

AN INTERACTIVE PREFERENCE BASED MULTIOBJECTIVE

EVOLUTIONARY ALGORITHM FOR THE CLUSTERING PROBLEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

KEREM DEMİRTAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

MAY 2011

ii

Approval of the thesis:

AN INTERACTIVE PREFERENCE BASED EVOLUTIONARY

ALGORITHM FOR THE CLUSTERING PROBLEM

submitted by KEREM DEMİRTAŞ in partial fulfillment of the requirements for

the degree of Master of Science in Industrial Engineering Department, Middle

East Technical University by,

Prof. Dr. Canan Özgen ________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Sinan Kayalıgil ________________

Head of Department, Industrial Engineering

Prof. Dr. Nur Evin Özdemirel ________________

Supervisor, Industrial Engineering Dept., METU

Assoc. Prof. Dr. Esra Karasakal ________________

Co-Supervisor, Industrial Engineering Dept., METU

Examining Committee Members:

Assist. Prof. Dr. Cem İyigün ________________

Industrial Engineering Dept., METU

Prof. Dr. Nur Evin Özdemirel ________________

Industrial Engineering Dept., METU

Assoc. Prof. Dr. Esra Karasakal ________________

Industrial Engineering Dept., METU

Assist. Prof. Dr. Sinan Gürel ________________

Industrial Engineering Dept., METU

Assist. Prof. Dr. Tuğba Taşkaya Temizel ________________

Information Systems Dept., METU

 Date: 26/05/2011

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last Name : Kerem DEMİRTAŞ

 Signature :

iv

ABSTRACT

AN INTERACTIVE PREFERENCE BASED EVOLUTIONARY

ALGORITHM FOR THE CLUSTERING PROBLEM

Demirtaş, Kerem

M.Sc., Department of Industrial Engineering

Supervisor: Prof. Dr. Nur Evin Özdemirel

Co-Supervisor: Assoc. Prof. Dr. Esra Karasakal

May 2011, 67 Pages

We propose an interactive preference-based evolutionary algorithm for the

clustering problem. The problem is highly combinatorial and referred to as NP-Hard

in the literature. The goal of the problem is putting similar items in the same cluster

and dissimilar items into different clusters according to a certain similarity measure,

while maintaining some internal objectives such as compactness, connectivity or

spatial separation. However, using one of these objectives is often not sufficient to

detect different underlying structures in different data sets with clusters having

arbitrary shapes and density variations. Thus, the current trend in the clustering

literature is growing into the use of multiple objectives as the inadequacy of using a

single objective is understood better. The problem is also difficult because the

optimal solution is not well defined. To the best of our knowledge, all the

multiobjective evolutionary algorithms for the clustering problem try to generate the

whole Pareto optimal set. This may not be very useful since majority of the solutions

in this set may be uninteresting when presented to the decision maker. In this study,

v

we incorporate the preferences of the decision maker into a well known

multiobjective evolutionary algorithm, namely SPEA-2, in the optimization process

using reference points and achievement scalarizing functions to find the target

clusters.

Keywords: Clustering, Multiobjective Optimization, Metaheuristics, Evolutionary

Algorithms, SPEA2, Preference Based

vi

ÖZ

KÜMELEME PROBLEMİ İÇİN ETKİLEŞİMLİ TERCİH TABANLI BİR

ÇOK AMAÇLI EVRİMSEL ALGORİTMA

Demirtaş, Kerem

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Nur Evin Özdemirel

Ortak Tez Yöneticisi: Doç. Dr. Esra Karasakal

Mayıs 2011, 67 Sayfa

Bu çalışmada kümeleme problem için etkileşimli, tercih tabanlı, çok amaçlı bir

evrimsel algoritma önermekteyiz. Kümeleme problemi gayet kombinasyonal olup

literatürde NP-Hard olarak geçmektedir. Problemin amacı belirli bir benzerlik

ölçüsüne göre benzer öğeleri aynı kümelere, benzeşmeyen öğeleri farklı kümelere

koyarken sıkılık, bağlanabilirlik ve ayrışma gibi içsel amaçları sağlamaktır. Ancak

bahsi geçen amaçlardan bir tanesinin kullanımı, rastgele şekilleri olan veya

yoğunluk farkı bulunan kümeleri içeren farklı veri kümelerinin altında yatan yapıları

ortaya çıkarmakta yeterli olmamaktadır. Tek amaç kullanımının yetersizliği daha iyi

anlaşılmakla birlikte, literatürdeki güncel eğilim çok amaçlı yaklaşımların

kullanılması yönündedir. Problemin bir zorluğu da optimal çözümün iyi

tanımlanamamasından kaynaklanmaktadır. Bildiğimiz kadarıyla, kümeleme

problemi için önerilmiş bütün çok amaçlı algoritmalar tüm Pareto optimal

çözümlerin oluşturduğu kümeyi oluşturmayı hedeflemektedir. Bu kümedeki çoğu

çözümün bir karar verici tarafından değerlendirildiğinde ilgi çekici bulunmaması bu

vii

yaklaşımın pek faydalı olmadığını gösterebilir. Bu çalışmada, hedef kümeleri

bulmak için, karar vericinin tercihlerini iyi bilinen bir çok amaçlı algoritma olan

SPEA2’nin içerisine, referans noktaları ve başarı skalarlaştırma fonksiyonları

kullanarak dahil etmekteyiz.

Anahtar Kelimeler: Kümeleme, Çok Amaçlı Optimizasyon, Sezgisel Yaklaşım,

Evrimsel Algoritma, SPEA2, Tercih Tabanlı

viii

To my mom

ix

ACKNOWLEDGMENTS

I have received valuable support and motivation by many people throughout this

masters thesis study.

First of all, I would like to express my sincere gratitudes to my academic

supervisors, Dr. Nur Evin Özdemirel and Dr. Esra Karasakal for their endless

interest in my work, valuable advices they have given and the support they have

shown. I could not imagine a better guidance.

I would also like to express my gratitudes to the examining committee members Dr.

Cem İyigün, Dr. Sinan Gürel and Dr. Tuğba Taşkaya Temizel for their valuable

comments and reviews.

I would like to thank my dear friends, Büşra Atamer, Özlem Karsu, Çınar Kılcıoğlu,

Aykut Bulut, Volkan Gümüşkaya, Erdem Çolak, Bilge Çelik, Banu Lokman and

Tülin İnkaya for their support and motivation. They were always there, even at the

hardest moments, easing the stress. I would also like to thank Tülin for her opinions,

feedback and advices she has given in our precious corridor chats.

I wish to express my deepest thanks to my dearest wife, Ayşegül Demirtaş, for her

never ending patience and support. Her presence was enough to keep me motivated,

and, even seeing her around was enought to keep my face smiling.

Last but not least, I would like to thank my mother for her endless love and support

during my whole life. I thank her for raising me to who I am, and without her, I

would have never made it up this far.

x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... vi

ACKNOWLEDGMENTS .. ix

TABLE OF CONTENTS .. x

LIST OF TABLES ... xiii

LIST OF FIGURES .. xiv

CHAPTERS ... 1

1. INTRODUCTION ... 1

1.1 Problem Definition .. 1

1.2 Challenging Issues and Motivation ... 3

1.2.1 The Number of Clusters ... 4

1.2.2 Arbitrary Shapes ... 4

1.2.3 Outliers ... 5

1.2.4 Inter-cluster Density Differences and Intra-cluster Density Variation ... 6

1.2.5 Fuzzy vs. Crisp Clustering .. 6

1.2.6 Multiple Objectives and Decision Maker Preferences 6

1.3 Scope and Contribution ... 8

2. LITERATURE REVIEW .. 9

xi

2.1 Traditional Clustering Algorithms .. 9

2.2 Metaheuristic Clustering ... 12

2.3 Multiobjective Clustering .. 13

2.3.1 Objectives, Validity Indices ... 14

2.3.2 Multiobjective Evolutionary Clustering Algorithms 16

2.4 Preference Based Multiobjective Evolutionary Algorithms 20

3. PROPOSED ALGORITHM .. 22

3.1 Theoretical Background .. 22

3.1.1 The Strength Pareto Evolutionary Algorithm 2 (SPEA2) 22

3.1.2 Reference Points and Achievement Scalarizing Functions 23

3.2 Notation and Objectives for the Clustering Problem 25

3.3 Notation and Definitions for the Evolutionary Algorithm 26

3.4 Overview of the Proposed Algorithm: Interactive Preference Based

Multiobjective Evolutionary Clustering (IP-MOEC) .. 28

3.5 Details of the Algorithm .. 31

3.5.1 Solution Representation .. 31

3.5.2 Initialization .. 32

3.5.3 Evaluation ... 33

3.5.4 Interaction with the decision maker .. 34

3.5.5 Evolutionary Operators ... 37

4. COMPUTATIONAL EXPERIMENTS .. 40

4.1 Data Sets .. 40

xii

4.2 Parameter Settings and Performance Measures 42

4.3 Computational Results without Decision Maker Preference 45

4.4 Computational Results with Decision Maker Preference........................ 47

5. CONCLUSIONS ... 55

REFERENCES .. 58

APPENDIX A THE PLOTS OF THE DATA SETS USED IN THE STUDY 66

xiii

LIST OF TABLES

TABLES

Table 2.1 A review of multiobjective evolutionary algorithms for clustering 19

Table 4.1 Data sets used .. 41

Table 4.2 Parameter Setting ... 42

Table 4.3 Pilot Results ... 44

Table 4.4 Characteristics of the replications in terms of distinct solutions in the final

archive ... 45

Table 4.5 Performance of proposed algorithm without decision maker interaction

(MOEC) in terms of solution quality ... 46

Table 4.6 Characteristics of the replications ... 48

Table 4.7 The performance of IP-MOEC in terms of solution quality 49

Table 4.8 The performance of IP-MOEC in terms of execution times 51

Table 4.9 Comparison of IP-MOEC with other clustering algorithms 52

Table 4.10 Comparison of clustering algorithms in terms of execution times 54

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 An example illustrating the challenging issues in clustering problems 3

Figure 3.1 Visualization of achievement scalarizing functions 24

Figure 3.2 Chromosome representation of an arbitrary solution 31

Figure 3.3 Actual partitioning of the example representation 32

Figure 3.4 A crossover example .. 38

Figure 3.5 A mutation example ... 39

Figure A.1 Plots of data sets (1-8) ... 66

Figure A.2 Plots of data sets (9-16) ... 67

Figure A.3 Plots of data sets (17-20) ... 67

1

CHAPTER 1

INTRODUCTION

Increasing capability of computers makes it easier to store vast amounts of data in

digital media. This technological development together with the steady preference

for relational databases triggers an untractably rapid and immense growth in data

accumulation in modern enterprises. This brings about the problem of extracting

knowledge and useful information from this mass of data, where the importance of

data mining comes forward.

Data mining, which mainly aims to extract useful information from large data sets, is

a growing field that often intersects with the field of operations research, and

receives great contribution from it through formulation and solution of numerous

data mining problems as optimization problems. Moreover, many operations

research applications can be addressed using data mining methods. (Olafsson et al.

2008)

The clustering problem, which we deal with in this study, is one of the data mining

problems that can be formulated as an optimization problem. In this chapter, we will

define and explain the clustering problem in Section 1.1. In Section 1.2, we will

state the challenging issues about the problem and give our motivation.

1.1 Problem Definition

The clustering problem is addressed by many disciplines from several fields, so the

terminology used in different fields may vary. Its applications can be found in

2

several fields such as machine learning, pattern recognition, artificial intelligence,

web mining, text mining, image classification, genetics, biology, microbiology,

paleontology, psychiatry, pathology, geography, and geology (Abraham et al. 2006).

Here we start by giving the terminology that we use throughout this study.

A data set consists of individual data points, which are also referred to as data items,

observations, records, feature vectors, or patterns in the open literature of different

fields. A data point is defined by its attributes in a multidimensional space. The

number and/or the characteristics of attributes that define a data point may vary with

different data sets. An attribute may be continuous, binary or categorical. For

example, a point in a 2-dimensional space is defined by its two continuous attributes,

namely x and y coordinates. To illustrate further, consider a data point which

represents a car whose color, brand, mileage and condition of being second hand are

of interest. This data point is defined by four attributes with different characteristics,

which are color (categorical), brand (categorical), mileage (continuous), and

condition of being second hand (binary, i.e., 1 if second hand, 0 if first purchase). In

this study, we focus on data sets that consist of data points having continuous

attributes in two dimensions.

To give a more formal definition of the clustering problem, consider N data points

X1… XN, the union of which comprises the whole data set D. Let any data point Xi be

defined in an m-dimensional space. So, each Xi is defined by its m attributes, i.e.,

NiXXXX imiii ,...,1 ,,...,, 21
. Then, the aim of the clustering problem trying to

partition D into k clusters is to form k disjoint sets C1, …, Ck, such that the union of

these sets gives the whole data set D.

The assumption of the clustering problem is that the data set includes hidden

patterns of data points and the goal is to reveal those patterns as clusters by an

appropriate approach. Unlike classification, which is also a data mining problem, no

information about the class labels is available on any representative data point which

can be used for learning and testing purposes. In clustering, the aim of the problem

is to form meaningful groups from data points with unknown labels, so it is in

general referred to as unsupervised learning.

3

The goal of the clustering problem is to put similar items in the same cluster and

dissimilar items into different clusters according to a certain similarity measure,

while maintaining some internal objectives such as compactness, connectivity and

spatial separation. In other words, data points in the same cluster are desired to be at

close similarity levels (compactness) while an acceptable level of dissimilarity is

maintained between different clusters (separation). Also, similar or spatially

connected data points should be in the same cluster (connectivity).

1.2 Challenging Issues and Motivation

There are some challenging issues, such as the unknown number of clusters,

arbitrary shaped clusters, outliers, inter-cluster density differences, and density

variation within a cluster, which make the basic clustering problem even harder. An

illustrative example of a data set including a combination of these challenging issues

can be found in Figure 1.1.

Figure 1.1 An example illustrating the challenging issues in clustering problems

In this section, we will explain the aforementioned challenging issues in more detail

and give our motivation.

4

1.2.1 The Number of Clusters

The number of clusters a given data set will be partitioned to is one of the basic, yet

difficult to handle issues in clustering. Many traditional clustering algorithms

assume that the number of clusters is known prior to the execution of the algorithm,

and partition the data set into that exact number of clusters. It is obvious that, a

priori knowledge on the number of clusters improves the performance of a clustering

algorithm dramatically. However, such an information may not be easily available

for all data sets. It may require expert knowledge which may be hard to obtain or it

may simply be unavailable. Yet, even with its presence, the expert knowledge on the

number of clusters may be inaccurate for huge data sets.

As the sizes of the data sets of interest increase, it gets harder to extract a priori

information on the number of clusters present in a data set. Moreover, the number of

clusters in a data set may be subjective and may differ as the opinions of the

decision makers differ. An idea can be to run an algorithm, which assumes the

number of clusters to be known a priori, several times each time for a different

number of clusters, and to apply a selection mechanism to all the generated

solutions. However, it would be quite time consuming to try such an approach for a

large range of the number of clusters. Therefore, it would be better for a clustering

algorithm to be capable of discovering the number of clusters rather than using a

given exact number during its execution time.

In this study, we assume that the number of clusters in a data set is unknown, and

the solutions we generate in our search can have different number of clusters.

1.2.2 Arbitrary Shapes

For data sets in two or three dimensions with data points having only continuous

attributes, the shapes of the clusters can be identified visually once a plot of the data

set is obtained. There are several shapes a cluster may have, most common of which

5

is spherical. In spherical shaped clusters, the dissimilarity or distance of data points

from the data point in the center of their cluster becomes important, and we naturally

want the data points in a cluster to be close to its center. However, considering the

distances from a cluster center may not always yield the clusters that lie hidden

within a data set. The clusters may have arbitrary shapes, such as elongated or spiral,

as opposed to spherical shapes. Furthermore, in a data set, a combination of clusters

with different shapes may exist.

Our aim is not to limit our algorithm for finding clusters of specific shapes, and we

claim to detect clusters with different shapes in a single data set.

1.2.3 Outliers

Similar to its definition in statistics, an outlier is called to a data point that is

dissimilar to all of the clusters in the clustering problem. Outliers are often

considered as separate clusters consisting of single data points. Their existence

deteriorates the performance of most traditional clustering algorithms.

Handling outliers is a problematic issue in clustering, since the outliers distort the

patterns of data points in the data sets. Therefore, clustering algorithms have to be

robust for the cases where outliers exist. For outlier detection purposes, even special

mechanisms are proposed (Jain et al. 1999). However, it would be better to handle

the presence of outliers by the structures of the algorithm rather than applying an

external outlier detection mechanism in terms of maintaining a global perspective.

In this study we treat the outliers as a part of the whole data set, and do not apply an

additional mechanism for their detection. Yet, we still claim to detect the outliers

present in the data sets by taking appropriate measures in our algorithm, which we

describe in Chapter 3.

6

1.2.4 Inter-cluster Density Differences and Intra-cluster Density Variation

Density is another problematic issue in clustering problems, which may occur in two

ways. Inter-cluster density differences is the different densities in different clusters.

Two different clusters may be homogenous when they are considered solely.

However, the densities of those clusters may be different from each other, which we

call the inter-cluster density difference.

Intra-cluster density variation is related with the density of data points in a specific

single cluster. Most common traditional clustering algorithms assume that the

density of a specific cluster remains homogenous in all of its regions. However,

inside a single cluster, more sparse and dense regions may exist without the need to

split that cluster into smaller clusters according to the regional densities.

In this study, we do not assume any limitation on the densities of the clusters, and

aim to extract clusters with density differences and variations.

1.2.5 Fuzzy vs. Crisp Clustering

There are two different ways of clustering in terms of the assignment of data points

to clusters. Crisp clustering assumes that the clusters are well separated, and by crisp

clustering methods, each data point is assigned to only one cluster. However, in

fuzzy clustering, the clusters may be overlapping which makes it hard to decide

which cluster a data point lying in the overlapping region belongs to. Therefore, in

fuzzy clustering, each data point has a degree of membership in each of the clusters,

which may also be considered as the probability of being in that cluster.

In this study, we are not interested in fuzzy clustering. We assume that the clusters

are well separated and we do not deal with any overlapping clusters.

1.2.6 Multiple Objectives and Decision Maker Preferences

There are specific methods developed for dealing with the challenging issues

mentioned in this section. Yet, a method performing well with a data set having a

certain challenging issue may fail if a different challenging issue occurs. Such

7

methods often try to optimize a single objective which can reveal only a specific

type of hidden information in the data set. For example, a method trying to minimize

the overall deviation of within cluster distances is limited to detecting clusters of

only spherical shapes.

In an attempt to find compact and well-separated clusters, combining compactness

and separation measures into a single measure, such as taking the separation-to-

compactness ratio, results in loss of information. Hence, in most of the cases, using a

single objective is not sufficient to detect different underlying structures in the data

sets. Thus, the current trend in the clustering literature is growing into the use of

multiple objectives as the inadequacy of using a single objective is being understood

better. By using multiple objectives concurrently, it is possible to account for a

variety of tradeoffs between different objectives, which can perform better for

different challenging issues if used separately.

By a multiobjective approach, a good representation of the Pareto optimal set of

solutions corresponding to the objectives used can be obtained. However, this Pareto

optimal set may include partitions that can be uninteresting when presented to a

decision maker. For example, using two objectives one of which tries to merge and

the other tries to split the data points, a solution that includes all the data points in a

single cluster can be nondominated in a multiobjective sense as well as a solution

with all data points in different singleton clusters. Such uninteresting solutions can

be eliminated during the execution of the algorithm if any useful information can be

gathered from the decision maker.

In this study, we propose an interactive multiobjective approach that can exploit the

responses of a decision maker by simple questions, such as his/her opinion about

two data points being in the same cluster, in order to direct the search trying to

generate solutions that can be preferred by him/her.

8

1.3 Scope and Contribution

In this study we propose a new algorithm for clustering data points in sets having the

following properties.

 Number of clusters is unknown a priori to the execution of the algorithm.

 Clusters may have arbitrary shapes.

 There may be density variation within a cluster.

 There may be density differences between clusters.

 Outliers may exist.

 The clusters are well separated (crisp).

The algorithm we develop is based on a well known multiobjective evolutionary

algorithm, namely SPEA2 (Zitzler et al. 2002), which can be applied to any

multiobjective problem with proper adjustments. The main structures of the

evolutionary algorithm, such as the general population, archive and mating pool are

borrowed from the original SPEA2. By defining our own fitness functions and

introducing an original way of including decision maker’s preferences throughout

the execution, we offer an interactive preference based multiobjective evolutionary

algorithm for the clustering problem.

9

CHAPTER 2

LITERATURE REVIEW

Clustering is a problem addressed by a variety of disciplines, making it hard to

maintain a common terminology in the vast literature of algorithms developed.

Stating the difficulty of constructing a truly comprehensive survey due to the sheer

mass of literature, Jain et al. (1999) review the concepts and techniques of clustering

related with statistics and decision theory. A similar perspective and perception is

adopted in the outstanding surveys of Berkhin (2001) and Xu and Wunsch (2005).

Following the classification schemes and ideas in these surveys, we will describe

traditional clustering algorithms in Section 2.1. Then, we will give some

metaheuristic applications to the clustering problem in Section 2.2. In Section 2.3,

we will focus on multiobjective clustering, specifically multiobjective evolutionary

algorithms, which aim to provide the whole set of nondominated partitions, or the

best partition determined according to a certain selection scheme among that set.

Finally, in Section 2.4, we will briefly mention preference based multiobjective

evolutionary algorithms.

2.1 Traditional Clustering Algorithms

Jain et al. (1999), Berkhin (2001), and Xu and Wunsch (2005) provide extensive

surveys and reviews in the area of clustering algorithms. In a broad view, they split

the techniques used for clustering into two, namely hierarchical and partitional

according to the output provided by the technique. Partitional clustering techniques

yield a single partition or a set of different partitions of the data set. On the other

10

hand, hierarchical clustering techniques end up with a tree-like clustering structure

occasionally referred to as a dendrogram, which represents the nested grouping of

data points at different similarity levels. The root node of the dendrogram is the

whole data set and each leaf is a data point. The intermediate nodes can be

interpreted as connections between data points having a certain similarity. Then,

different partitions from a dendrogram can be obtained by slicing it at different

similarity levels. Hierarchical methods can be classified as either agglomerative or

divisive according to the way how the output is constructed. In agglomerative

methods, each data point starts as a singleton cluster. They are merged according to

a chosen measure until whole data points are in the same cluster. Divisive methods

behave in the opposite way, starting from a single cluster that contains all data

points. Clusters are successively divided into smaller clusters until all data points

become singleton clusters. Most hierarchical agglomerative clustering algorithms

use the idea of linkage metrics which can be referred to as inter-cluster distances.

Single-link, complete-link and average-link are the most common linkage metrics

(Murtagh 1985, Olson 1995). Examples of usages of these metrics in hierarchical

clustering algorithms can be found in SLINK (Sibson 1973), Voorhees’ method

(Voorhees 1986) and CLINK (Defays 1977). Among the hierarchical agglomerative

clustering algorithms, the single-link (SL) algorithms are most common. In SL

algorithms, clusters are merged iteratively by their closest points in a similar way to

minimum spanning tree construction.

Classical hierarchical clustering algorithms are disadvantageous for lacking

robustness and being sensitive to noise and outliers. Clusters formed by these

algorithms that use the notion of linkage metrics are known to be spherical, thus

clusters of arbitrary shapes are not caught. These algorithms are also criticized for

being irrevocable in the sense that it is not possible to correct errors made in

previous iterations. Once mistakenly placed in a wrong cluster, a data point remains

there throughout the run of the algorithm. Excessive memory requirement is another

disadvantage of classical hierarchical clustering algorithms. (Xu and Wunsch 2005,

Berkhin 2001)

11

BIRCH (Zhang et al. 1996, 1997) is another important hierarchical clustering

algorithm with its strength in detecting outliers and dealing with large data sets.

CURE, proposed by Guha et al. (1998), utilizes the representatives’ aggregate

linkage metric instead of the single-link and average-link metrics. By choosing the

cluster representatives spread among the boundaries of the clusters rather than the

centroids, CURE allows clusters of arbitrary shapes and different sizes to be

revealed. It is also known to be insensitive to outliers and can handle large data sets.

Guha et al. (1999) extend their existing algorithm CURE to cases where categorical

attributes also exist and propose ROCK. Karypis et al. (1999a) propose

CHAMELEON which relies on graph partitioning and involves the idea of a

connectivity graph corresponding to the k-nearest neighbor subgraph. The algorithm

is proven to detect clusters of arbitrary shapes, different sizes and densities.

Among the partitional clustering techniques the k-means algorithm (Hartigan 1975,

Hartigan and Wong 1979) is the most popular with its applications in both industry

and science. The k-means algorithm is a special case of k-medoid methods where

the cluster is represented by one of its points. In the k-means algorithm, the clusters

are represented by their centroids and data points are iteratively assigned to their

nearest clusters with the aim of optimizing a certain criterion, usually chosen as the

sum of squares of errors. Since squares of errors are computed with respect to the

cluster centroids, the k-means algorithm tends to provide spherical clusters.

Moreover, the original k-means algorithm starts with the initialization of k clusters,

either randomly or by a special procedure. This makes the final output very

dependent to the initial clusters generated, which can be stated as another

disadvantage of the algorithm in addition to its lack of capability of detecting

arbitrary shaped clusters. Another problematic issue is about the number of clusters.

Usually, the determination of the number of clusters, k, requires expert knowledge,

which is highly unlikely to exist for most data sets. In such cases, the algorithm is

run many times for different values of k, which is computationally inefficient. Also,

the algorithm is known to be incapable of detecting outliers. (Berkhin 2001)

12

Density based clustering methods are developed from the concepts of density,

connectivity and boundary which are closely related with a data point’s nearest

neighbors (Berkhin 2001). Thus, it is possible to find clusters of arbitrary shapes

using density based algorithms. Moreover, due to the nature of the algorithms,

outliers can be detected easily. However, density variation within clusters still

remains problematic although density differences between clusters can be detected.

Well known density based algorithms include DBSCAN (Ester et al. 1996),

GDBSCAN (Sander et al. 1998), OPTICS (Ankerst et al. 1999), DBCLASD (Xu et

al. 1998) and DENCLUE (Hinneburg and Keim 1998).

All the mentioned traditional clustering algorithms have strong points and

weaknesses depending on both the underlying assumptions of the algorithm and the

structure of the data set. To the best of our knowledge, no algorithm has been proven

to be successful on all types of data sets.

2.2 Metaheuristic Clustering

Clustering problem can be regarded as a category of combinatorial optimization

problems. Even for small data sets, it is computationally expensive to consider all

possible assignments. The search space grows exponentially as the size of the data

set increases, so, simple heuristic methods can easily get stuck in local optima.

Therefore, metaheuristics have been widely applied to the clustering problem with

the purpose of exploring the solution space more efficiently and finding optimal or

near optimal partitions. In the literature, there are examples of both direct

metaheuristic approaches to clustering and hybrid approaches of metaheuristics with

traditional algorithms. Several applications of metaheuristics on clustering can be

found in the comprehensive reviews of Rayward-Smith (2005) and Das et al. (2009).

Babu and Murty (1993) try to improve the performance of the original k-means

algorithm by finding near optimal seeds at the initialization step, since the final

output is highly dependent on the generated initial cluster centroids. They also apply

simulated annealing for the same purpose in Babu and Murty (1994). For small data

13

sets, Selim and Al-Sultan (1991) propose a simulated annealing algorithm and Al-

Sultan (1995) proposes a tabu search algorithm. A genetic algorithm (Maulik and

Bandyopadhyay 2000) and ant colony optimization (Kanade and Hall 2004) have

been applied to find cluster centroids. There are other ant colony optimization

applications for clustering in Lumer and Faieta (1994), Monmarche (1999), Chu et

al. (2004) and Handl et al. (2003). In Handl et al. (2003), the number of clusters is

automatically determined within the algorithm. Krishna and Murty (1999) and

Bandyopadhyay and Maulik (2002) both use hybrid genetic algorithms with k-

means for clustering. Results show that genetic algorithms have been very useful for

improving the performance of k-means algorithms (Xu and Wunsch 2005, Berkhin

2001).

Among all metaheuristics, evolutionary algorithms are the most common ones used

for clustering problems. In a recent survey, Hrushcka et al. (2009) provide a

taxonomy of evolutionary algorithms for clustering in terms of important aspects of

the problem and the specifications of the algorithm components. Mainly, the

algorithms are categorized by their capability of handling variable number of

clusters, evolutionary operators, solution representations, fitness functions and

initialization procedures.

2.3 Multiobjective Clustering

Without proper modification for a given specific data set, current metaheuristic

applications that use single objectives have limited capabilities. As the objective to

be minimized, most of them use within cluster variance, and they take Euclidean

distance as the dissimilarity measure. As a consequence, they are unable to capture

arbitrary shaped clusters in the data sets and result in spherical clusters. Also,

possible density variations within clusters are ignored, and the resulting clusters are

homogeneous. In addition to that, usually, the number of clusters are assumed to be

known a priori and taken as fixed, ignoring partitions with different number of

clusters. Since the characteristics of data sets vary, robust results cannot be obtained

from these algorithms. In addition, a data set may be challenging in more than one

14

aspect, i.e., it may include arbitrary shaped clusters with different densities, and the

density within a cluster may also vary. Each challenging issue favors one algorithm

over another. Thus, such situations are impossible to be handled using a single

objective.

In clustering ensemble methods, good parts of the partitions obtained by running

different algorithms are tried to be combined in a final partition that is better than the

original partitions in terms of a defined validity criterion (Hruschka et al. 2009). In

other words, clustering ensembles need an initial set of partitions provided by

several runs of an algorithm or set of algorithms, to be combined into a single

partition (Handl and Knowles 2007). Such methods ignore the tradeoffs between the

objectives of the individual algorithms, since each algorithm tries to optimize its

own objective. However, the decision maker should be provided with a set of

solutions that reflects the tradeoffs between the objectives, where multiobjective

clustering comes forward.

 2.3.1 Objectives, Validity Indices

Traditional algorithms and metaheuristics try to find the best possible partitioning of

a given data set according to a performance measure that is hoped to define the

quality of a given partition. Generally, these performance measures can be referred

to as validity indices. Validity indices can be categorized into two: internal indices

and external indices. External indices use a reference or a prespecified partition to

validate a given clustering solution. Rand, Adjusted-Rand (Rand 1971) and Jaccard

indices can be counted in this category. On the other hand, internal indices do not

need a reference partition and are directly driven from the partition at hand and the

structure of the data set (Xu and Wunsch 2005). Such measures may also behave as

the objectives of an algorithm when the algorithm generates a partition trying to

optimize the value of these measures.

Some widely used objectives are compactness, connectivity and separation. As far as

compactness is concerned, less variation between data points in the same cluster is

15

desirable. There are several validity indices, and other measures suggested to

quantify the compactness of a clustering solution. Average distance between data

points of a cluster and cluster center (DB index, Davies and Bouldin, 1979), total

variance of distances between data points and cluster center (CH index, Calinski and

Harabasz, 1974), total distance between data points and cluster center (I Index) are

well known compactness measures that tend to provide spherical clusters. In order to

detect arbitrary shaped clusters, graph theoretic measures are used as the

compactness objective. Yousri et al. (2008) propose to use the standard deviation of

the edges of a minimum spanning tree constructed in a cluster. Similarly, Pal and

Biswas (1999) suggest taking the maximum edge in a minimum spanning tree,

relative neighborhood graph or a Gabriel graph constructed for a cluster. Such

measures are known to be successful as the construction of the corresponding

structures is closely parallel with the concept of clustering.

Connectivity is related with placing neighboring points into the same cluster. Thus,

clusters of arbitrary and mostly elongated shapes are easily detected with this

objective. In their multiobjective approach, Handl and Knowles (2007) use

connectivity as one of the objectives. Their aim is to penalize the neighboring points

put in different clusters by minimizing the connectivity function they define as

follows.

otherwise 0

clustersdifferent in are and if
1

 where

)(

,

1 1

,

ij

nni

N

i

H

j

nni

nni
jx

xCConn

ij

ij

 (1)

In the above function, N is the total number of data points, H is a parameter defining

the maximum neighborhood size, and nnij indicates the j
th

 nearest neighbor of point

i.

The goal of separation is to keep an acceptable dissimilarity level between any two

different clusters. Most common separation measures are single link (minimum

distance between data points from different clusters), complete link (maximum

16

distance between data points from different clusters) and average link (average

distance between data points from different clusters) separation.

 2.3.2 Multiobjective Evolutionary Clustering Algorithms

Most of the multiobjective approaches to the clustering problem make use of

evolutionary algorithms. Ripon et al. (2006) use Variable-length Real Jumping

Genes Genetic Algorithm (VRJGGA) to identify the non-dominated solutions. They

use cosine symmetry for intra-cluster entropy and Euclidean distance for inter-

cluster distance. As the first objective, they maximize overall intra-cluster entropy

which can be referred to as a compactness measure. The second objective is a

separation objective that minimizes average separated distance between all cluster

centers. They evaluate nondominated solutions by classification accuracy,

generalized Dunn's index, overall deviation as well as the values of the objectives

used in optimization. The algorithm does not need the number of clusters to be

known a priori.

Handl and Knowles (2004a) propose VIENNA (Voronoi Initialised Evolutionary

Nearest-Neighbor Algorithm) which uses the elitist multiobjective evolutionary

algorithm PESA-II to find a set of Pareto optimal solutions for a predetermined

number of clusters. They use Euclidean distance for synthetic data sets, cosine

symmetry for real data sets. As the compactness objective, they minimize overall

intra-cluster variance as in the k-means algorithms. In order to detect clusters of

arbitrary shape, they introduce their second objective which is a measure of

connectivity as given in equation (1). Solutions that are Pareto optimal at the end of

the run are evaluated according to the F-measure, a measure used to define the

quality of partitions. However, their algorithm needs the number of clusters to be

given a priori.

Handl and Knowles (2004b, 2007) extend their work in Handl and Knowles (2004a)

and propose Multi-Objective Clustering with automatic k determination (MOCK) so

that the number of clusters can vary throughout the run. The result of their work is a

17

Pareto optimal set consisting of solutions corresponding to different tradeoffs as well

as different number of clusters. They also propose a way of selecting a single

solution from the resulting Pareto optimal set using control fronts, an idea inspired

by Gap Statistic (Tibshirani et al. 2001). The objectives used in these studies are the

same as those in Handl and Knowles (2004a), which are minimizing compactness

defined as overall intra-cluster variance and minimizing connectivity defined as in

equation (1). The resulting Pareto optimal set and the solution selected among the

solutions in that set are evaluated using the adjusted Rand Index.

Chen and Wang (2005) use NSGA-II to optimize two objectives: minimizing

compactness measured as overall intra-cluster deviation and maximizing

connectivity measured similar to equation (1). Instead of penalizing neighboring

data points put in different clusters, Chen and Wang (2005) propose to award the

neighboring data points put in the same cluster. To evaluate the solutions, they use

the F-measure. Their algorithm does not need an a priori determined number of

clusters.

Won et al. (2008), Du et al. (2005), Korkmaz et al. (2006) and Özyer et al. (2004)

use overall intra-cluster deviation as a compactness objective to be minimized. As a

second objective they propose to minimize the number of clusters, k. Won et al.

(2008) use a hybrid strategy, including a k-means algorithm for fine tuning at the

end. Therefore, their partitions are limited to clusters of spherical shape. Du et al.

(2005) propose Niched Pareto Genetic Algorithm, NPGA (Horn et al. 1994), with

linked-list based chromosome encoding. Their solutions are again limited to

partitions consisting of spherical clusters. They propose to evaluate the final

solutions by the amount of leap in overall intra-cluster variance with respect to the

change in k to select a single solution. Korkmaz et al. (2006) extend the work in Du

et al. (2005) by using an improved linked-list based chromosome encoding to obtain

a one-to-one mapping between the chromosome representation and the

corresponding actual partitioning. In this way, they reduce the redundancy issues,

which results in more efficient exploration of the solution space. Özyer et al. (2004)

18

apply multiobjective genetic k-means algorithm (MOKGA), which combines the

original k-means algorithm and NPGA to gene expression data.

Law et al. (2004) propose a two-step process which includes detection of clusters

according to a set of candidate objectives in the first step, and the integration of

objectives in a goodness function to give the final partitioning using re-sampling

techniques in the second step. Their approach lacks the competency to detect the

tradeoff between the objectives in the first step. Yet, they try to consider the tradeoff

between objectives in the second step.

A summary of the algorithms mentioned here is presented in Table 2.1. Most

frequently used objectives are compactness (COM) measured as overall intra-cluster

distance variation, connectivity (CON) as defined in equation (1) or similar to

equation (1), and the number of clusters (NUMC). For the number of clusters

column, “K” indicates that the number of clusters is known a priori and is fixed. On

the other hand, algorithms having a “U” in this column are able to generate

partitions having an unknown number of clusters throughout the run. “A” in the

shape column is an abbreviation for arbitrary, which indicates the algorithm’s

capability to detect clusters of arbitrary shape. So, algorithms having an only “S” in

the shape column are restricted to finding partitions having only spherical clusters.

19

Table 2.1 A review of multiobjective evolutionary algorithms for clustering

Author(s) and Year

Objectives # of

Clusters Shape Approach 1 2

Ripon et al. (2006)

Max overall

intra-cluster

entropy

Min average

distance

between

cluster

centers

U S VRJGGA

Handl and Knowles

(2004a)
Min COM Min CON K S, A VIENNA

Handl and Knowles

(2004b, 2007)
Min COM Min CON U S, A MOCK

Chen and Wang

(2005)
Min COM Max CON U S, A NSGA-II

Won et al. (2008) Min COM Min NUMC U S

Hybrid strategy with

k-means for fine

tuning

Du et al. (2005) Min COM Min NUMC U S

NPGA with linked-

list based

chromosome

encoding

Korkmaz et al. (2006) Min COM Min NUMC U S

NPGA with an

improved linked-list

based chromosome

encoding

Özyer et al. (2004) Min COM Min NUMC U S MOKGA

All the algorithms mentioned here generate the whole Pareto optimal set. However

this may not be a good idea when the solutions in this set are considered as

partitions. First of all, it is computationally hard to generate all the nondominated

solutions. Secondly, a majority of the solutions in this set may be uninteresting when

presented to a decision maker. A few algorithms propose a selection mechanism, yet

they still apply this mechanism to the whole set of nondominated solutions they

found. It would be a better idea to incorporate the preferences of a decision maker in

the optimization process so that the nondominated solutions favored by him/her can

be generated instead of the whole set of nondominated solutions. To the best of our

knowledge, until this time, there has been no application of a preference based

multiobjective evolutionary algorithm for the clustering problem.

20

2.4 Preference Based Multiobjective Evolutionary Algorithms

Multiobjective evolutionary algorithms aim to generate a good representation of the

whole Pareto optimal set by generating and keeping a well distributed set of

nondominated solutions, construction of which is not straightforward. Special

mechanisms are needed to direct the search while assuring both convergence and

diversity. However, many solutions in this set may not be desired by the decision

maker although they are equally important in a pure multiobjective sense, since they

are all nondominated. It also requires more execution time to keep the diversity and

spread among the representative Pareto optimal set. Therefore it may not be

necessary to generate the whole Pareto optimal set, especially when the decision

maker can provide information about his/her preferences.

An early survey on handling decision maker preferences can be found in Coello

(2000). The instant a decision maker provides his/her preference information is one

important aspect of preference based evolutionary algorithms. Depending on when

the preference information is obtained, the ways a decision maker can express

his/her preferences is classified into three: a priori, a posteriori and interactively.

Another classification can be made according to the characteristics of the preference

information provided by the decision maker. He/she can give a full preference

information such as the desired objective function levels. Also he can implicitly

provide an insight about his/her preferences i.e., by comparing two solutions, where

the preference information obtained in this case would be partial (Branke, 2008).

Whether full or partial, the preference information provided by the decision maker

should be incorporated into the optimization process by an appropriate technique.

Branke (2008) provides an invaluable review for such techniques and also provides

a classification based on the methods used in these techniques. Krettek et al. (2009)

propose an interactive way of incorporating decision maker preferences into a

multiobjective evolutionary algorithm. At each interaction, the decision maker is

asked to compare a pair of two solutions in terms of comparability and quality, and

his/her answers are used to induce a ranking on the population. Deb (1999)

introduces bias among the solutions by using weights in a sharing function so that

21

solutions from the preferred regions of the Pareto optimal set are generated and

carried through the generations. Branke et al. (2001) alter the region dominated by a

solution by changing the angle of domination from a right angle to a wider angle

using tradeoff functions. In this way, according to the preference information

obtained from the decision maker, originally nondominated solutions may become

dominated. However, this approach is limited to problems with two objectives, and

it cannot be easily generalized to problems with more objectives. Deb et al. (2006),

Deb and Kumar (2007a), and Deb and Kumar (2007b) use reference points and

achievement scalarizing functions, which are ideas originated from the work by

Wierzbicki (1980) to direct the evolutionary search into regions preferred by the

decision maker. Molina et al. (2009) modify the definition of domination and

propose g-dominance by which an originally dominated solution can actually be

preferred to the solution that dominates it. Thiele et al. (2007) modify the

indicator in Indicator Based Evolutionary Algorithm (IBEA) proposed by Zitzler

and Kuenzli (2004). They weight it with an achievement scalarizing function and a

reference point given by the decision maker, and propose the Preference Based

Evolutionary Algorithm, PBEA.

From the approaches used in the aforementioned algorithms, it is obvious that

reference points and achievement scalarizing functions play a crucial role in

incorporating decision maker preferences in multiobjective evolutionary algorithms,

as they also do in our proposed algorithm. Therefore, more detailed explanation

about them will be given in Section 3, before describing our algorithm.

22

CHAPTER 3

PROPOSED ALGORITHM

In this chapter, we will begin by introducing a theoretical background that forms the

backbone of our algorithm in Section 3.1. In Section 3.2, we will give the notation

used for the clustering problem and define our objectives that we use in our

algorithm. After giving the notation used in the algorithm in Section 3.3, we will

give an overview of our proposed algorithm in Section 3.4, and explain it in detail in

Section 3.5.

3.1 Theoretical Background

Our algorithm is based on the Strength Pareto Evolutionary Algorithm (SPEA2)

(Zitzler et al. 2002). In this section, we first discuss the important aspects of the

original SPEA2 algorithm. Then, we explain the idea of reference points and

achievement scalarizing functions.

3.1.1 The Strength Pareto Evolutionary Algorithm 2 (SPEA2)

SPEA2 (Zitzler et al. 2002) is an improved version of the Strength Pareto

Evolutionary Algorithm (SPEA) proposed by Zitzler and Thiele (1999). SPEA2

operates with a regular population and an external population often referred to as the

archive. In any generation, individuals in the current regular population and the

archive from the previous generation are evaluated together. Then a new archive is

23

selected from the union of individuals in the current population and the archive of

the previous generation. In contrast to SPEA, archive size is fixed in SPEA2, so

dominated solutions may also enter the archive. If the number of nondominated

solutions candidate to enter the archive exceeds the archive size, then a truncation

method is applied to reduce this number to the size of the archive. This method also

prevents the removal of boundary solutions from the archive so that a good spread of

nondominated solutions can be maintained. On the other hand, if the number of

nondominated solutions entering the archive is less than the archive size, the

remaining portion of the archive is filled with dominated individuals according to

their fitness values. From the archive selected, a mating pool is constructed and the

offsprings generated from this mating pool are copied to the next population by

replacing the old population.

When compared to SPEA, fitness assignment scheme is improved in SPEA2 by

taking into account the number of individuals an individual dominates or is

dominated by. Fitness of an individual is the sum of two parts, namely the raw

fitness and the density. Raw fitness of an individual is determined by the strengths

of its dominators, where the strength of an individual is defined as the number of

individuals it dominates from the union of the population at that generation and the

archive of the previous generation. So, the raw fitness value of any nondominated

solution is equal to zero. Density of an individual is calculated by a decreasing

function of its distance to its k
th

 nearest neighbor, where k is a parameter fixed

before the execution of the algorithm. Density is arranged in a way that it is always

greater than zero and less than one.

3.1.2 Reference Points and Achievement Scalarizing Functions

Achievement scalarizing functions (ASF) are first introduced by Wierzbicki (1980).

They are mostly used in reference point methods. In such methods, there exists the

concept of a reference point, which can be interpreted as the levels in the objectives

that seem desirable for the decision maker. Once the objective values of the

reference point are specified by the decision maker, ASFs can be used to evaluate

24

the feasible solutions at hand according to their proximities to the given reference

point. For a given reference point, an ASF simply tries to find the maximum

weighted difference among all the corresponding pairs of objective values between

the reference point and any feasible solution. To illustrate, let g be the reference

point having an objective value of gi for the i
th

 objective. Assuming that all

objectives are to be minimized and using a weight of wi for scalarizing objective i,

the achievement scalarizing function value asfp of a solution p with objective value

of fi for the i
th

 objective is defined as)(max iii
i

p gfwasf . Then, the solution

having the minimum asf value among all the solutions in the feasible region will be

nondominated and it can be referred to as the closest solution on the efficient

frontier to the reference point with an importance of wi tied for objective i. Thus,

solving the achievement scalarizing problem which aims to find the minimum of

these asf values among the set of all feasible solutions at hand can be interpreted as

finding the reflection of the reference point on that set, which can be visualized in

Figure 3.1.

Figure 3.1 Visualization of achievement scalarizing functions

In Figure 3.1, solution p is the reflection of the reference point g on the efficient

frontier for weights of w1 and w2. Note that, either by using different weights or

25

using another reference point with the same weights, solutions q and r can also be

the reflections on the efficient frontier.

3.2 Notation and Objectives for the Clustering Problem

We use the following notation to characterize a clustering problem.

D Set of all data points.

N Number of data points in set D.

i, j Indices for data points, Nji ,,1,  .

ijd Euclidean distance between data points i and j.

iNN Ordered set of nearest neighbors of data point i.

H Number of nearest neighbors in
iNN , given for all data points.

iden Density of data point i defined as the length of the longest edge in the

minimum spanning tree constructed for the set NNi for a given H.

K Number of clusters found in a solution.

k, l Indices for clusters, Klk ,,1,  .

Ck Set of data points in cluster k, Kk ,,1 .

kcom Compactness of cluster k, which is the length of the longest edge in the

minimum spanning tree constructed for cluster k.

klsep Single link separation of clusters k and l defined as follows.

Let i and j be two data points from clusters k and l, respectively, such that

they are the closest points to each other in these two clusters. Then,

.ijkl dsep

Among the above, only the neighborhood size H is a problem parameter that needs

to be determined externally.

In our multiobjective approach, we use two objectives defined as below for the

clustering problem.

26

1. Minimize compactness fcom, where }{max k
k

comfcom .

2. Maximize separation for which two different measures are used.

2.1. From the decision maker’s perspective:

 }{min kl
lk

sepfsep

2.2. In the algorithm:

Let i and j be the two data points from clusters k and l, respectively, that

satisfy the fsep definition given in 2.1 above.

ijjiji

ji

ij

ij

ijjiji

j

ij

i

ij

ij

ijjijiij

ddendden
denden

d
d

ddendden
den

d

den

d
d

ddenddend

fasep

or if
},min{

 and if

 and if

This “adjusted” separation measure is used to be able to detect the density

differences in the data set and to “inflate” the separation measure, when it

is defined between particularly dense regions of the two clusters.

3.3 Notation and Definitions for the Evolutionary Algorithm

We use the following notation in describing our proposed evolutionary algorithm.

Pt Set of solutions in the population in generation t.

P
size

 Number of solutions in the population .

At Set of solutions in the archive in generation t.

A
size

 Number of solutions in the archive.

A
mult

 Multiplier to determine the portion of the archive that will be allocated to

solutions preferred by the decision maker.

It The incumbent solution in generation t.

ISt The set of interesting solutions in generation t.

MPt Set of solutions in the mating pool in generation t.

MP
size

 Number of solutions in the mating pool.

27

p, q Indices for solutions.

fcomp Compactness objective value for solution p.

fasepp Adjusted separation objective value for solution p.

gcom Compactness objective value of the given reference point.

gasep Adjusted separation objective value of the given reference point.

w
com

 Weight used in scalarizing the compactness objective.

w
asep

 Weight used in scalarizing the adjusted separation objective.

asfp Achievement scalarazing function value of solution p.

)}(),(max{ p

asep

p

com

p fasepgasepwgcomfcomwasf

)()(pp fasepgasepgcomfcom ,

where 001.0,
1

min
maxd

, and dmax is the maximum distance between

all data point pairs.

Sp Strength of solution p defined as the number of solutions dominated by

solution p.

FRp Raw fitness of solution p (the smaller the better).

APq
pq

qp SFR


, where pq  indicates that solution q dominates solution p.

Op Minimum rank of solution p in terms of fcomp and fsepp in the population.

Solutions in set P are once sorted in nondecreasing order of fcomp and

once in nonincreasing order of fasepp. Between the two ranks of solution p

in these sortings, the smaller one is taken as Op.

FOp Objective fitness (the smaller the better) of solution p.

1sizesize

p

pp
AP

O
FRFO .

Cp Crowding distance of solution p.

minmax

)1()1(

minmax

)1()1(

fasepfasep

fasepfasep

fcomfcom

fcomfcom
C

pppp

p ,

where subscripts in parentheses indicate that compactness values of

solutions in set P are sorted in nondecreasing order, separation values in

nonincreasing order.

28

Terms in the denominator are the maximum and the minimum

compactness and separation values in the population.

FDp Crowding distance fitness (the smaller the better) of solution p defined as

1

1

p

pp
C

FRFD .

FAp Achievement scalarizing fitness (the smaller the better) of solution p

defined as

 |} and :{| pqp asfasfAPqqFA , where || indicates the

cardinality of the set.

mprob Mutation probability for each gene of each offspring.

3.4 Overview of the Proposed Algorithm: Interactive Preference Based

Multiobjective Evolutionary Clustering (IP-MOEC)

We modify some parts of the original SPEA2 by introducing a reference point

approach together with the notion of achievement scalarizing function, as suggested

in Wierzbicki (1980). Besides, as another addition to the original SPEA2, we

incorporate the preferences of the decision maker in the optimization process

interactively in order to direct our search toward solutions preferred by him/her,

rather than generating the whole Pareto optimal set. Also, the crowding distance in

NSGA II (Deb et al. 2002) is used as proposed in Karasakal and Silav (2010) for

truncation of the archive.

Below is a brief overview of our proposed evolutionary algorithm. In the algorithm,

there is a regular internal population used for general purposes and an external

archive that helps to maintain elitism. Preferences of the decision maker are

incorporated into the algorithm directly in the interaction phase and implicitly in the

selection phase.

29

Phase 0. “Initialization”

Initial population generation and creation of the initial empty archive.

Initialization of the reference point by assigning worst possible values to its

objectives.

Phase 1. “Union and Evaluation”

Union of the population and the archive and evaluation of the individuals in

the union.

Phase 2. “Interaction”

Interaction with the decision maker if certain conditions are satisfied and

making the necessary changes.

Phase 3. “Selection”

Archive selection from the union.

Phase 4. “Evolution”

Construction of the the mating pool from the new archive and application of

genetic operators to the mating pool to generate the offspring. Setting the

new population and restarting Phase 1.

The overview of the algorithm presented above is simple and can be explained under

four main headings, namely Union and Evaluation, Interaction, Selection and

Evolution with an additional step of Initialization at the beginning. Here we will

give a more thorough explanation of the algorithm by providing the details of these

phases.

30

Step 0. Generate the initial population of size P
size

 randomly and put in set P1.

Set A
size

 = P
size

/2. Set A
mult

 = 1.

Create empty archive set A0 of size A
size

.

 Set gcom = 0, gasep = dmax, where dmax is the longest distance between all

pairs of points in set D.

 Set generation count t = 1.

Step 1. Calculate asfp, Sp, FRp, and FAp for each solution p in set
1tt AP . Find the

solution q having the smallest asf value. If no information is available about

the data point pairs that determine the separation and compactness of

solution q, interact with the decision maker. According to his/her responses,

update the reference point, the incumbent solution and the set of interesting

solutions if necessary. If the reference point is changed for the first time, set

A
mult

 = 0.5.

Step 2. Find the number of non-dominated solutions #nondominated in
1tt AP .

IF #nondominated < multsize AA

Calculate FOp for each solution p in 1tt AP . Select the best

multsize AA solutions in terms of FOp values and put them in At. (All

nondominated solutions are included in At).

ELSE (#nondominated ≥ multsize AA)

Calculate FDp for each solution p in 1tt AP . Select the best

multsize AA solutions in terms of FDp values and put them in At. Find the

solution q having the smallest FD value. If no information is available

about the data point pairs that determine the separation and compactness of

solution q, interact with the decision maker. According to his/her responses,

update the reference point, the incumbent solution and the set of interesting

solutions if necessary. If the reference point is changed for the first time, set

A
mult

 = 0.5.

END IF

31

IF At has not reached size A
size

From the solutions in
ttt AAP 1
, select the best solutions in terms of

FAp values and put them in At until At has size A
size

.

END IF

Step 3. Duplicate each solution in At once and construct the mating pool MPt of

size MP
size

. Perform uniform crossover on the mating pool, apply mutation

to the generated offspring and set them as the new population Pt+1. If the

stopping condition is not satisfied, then set t = t + 1 and go to Step 1.

3.5 Details of the Algorithm

In this section, the procedures mentioned in the overview of the algorithm and

additional structures used in the algorithm will be explained further in detail.

3.5.1 Solution Representation

Solution representation is an important issue in multiobjective evolutionary

algorithms for clustering problems. Several different coding schemes are proposed

in the literature. Hruschka et al. (2009) give a classification of the coding schemes in

the open literature in terms of their various aspects and provide a comprehensive

review stating their strengths and weaknesses.

In our algorithm, edge based encoding is used to represent the solutions. Each

solution is represented as a chromosome of N genes. Each gene indicates a link

between two data points represented by its value and its index, implying that those

two data points are in the same cluster in that particular solution. To illustrate,

consider the following example with seven data points and an arbitrary solution

given in Figure 3.2.

1 3 7 4 6 5 1

Figure 3.2 Chromosome representation of an arbitrary solution

32

In this solution, the first gene indicates a link from data point 1 to itself. Similarly

data point 2 is linked with 3, 3 is linked with 7, and so on. Links between data points

can be revealed with a simple decoding procedure as proposed in Handl and

Knowles (2007), and it can be completed in linear time. Once all the links are

revealed, actual clusters can be observed. The visualization of the partitioning for

this example can be found in Figure 3.3.

Figure 3.3 Actual partitioning of the example representation

It can be seen from the figure that the solution represented by the provided example

chromosome actually corresponds to a clustering solution with K = 3, and the three

clusters are }6{},5,3{},7,4,2,1{ 321 CCC .

3.5.2 Initialization

Generation of the initial population is another aspect that has been widely studied in

evolutionary algorithms for clustering. The success of the technique used to generate

the individuals in the initial population depends on the selected representation

scheme and how the objectives are measured. In our algorithm, no special technique

is used for initial population generation. The individuals in the initial population are

generated randomly, simply by assigning a random value for each gene in every

individual.

33

The initialization of the reference point is done by assigning the worst possible

values for each objective. At the beginning of the algorithm, we do not have any

information about the preferences of the decision maker, so the reference point

cannot reflect his/her preferences. Because of this reason, A
mult

 is initialized to 1,

meaning that all the archive is filled according to FO and FD values and no portion

is allocated to solutions having good FA values. According to the responses of the

decision maker in the interaction steps, the reference point is approximated and it

starts affecting the direction of the search.

3.5.3 Evaluation

In the union and evaluation phase of the algorithm, the population at that generation

is united with the archive from the previous generation first, and then, the solutions

in the union are evaluated together. The evaluation is mainly the calculation of the

strengths, achievement scalarizing function values and the necessary fitness values

of the solutions.

Strength and raw fitness definitions are directly taken from the original SPEA2

algorithm. The strength, Sp, of solution p in the union is found by counting the

number of solutions in the union dominated by p. Hence, a solution’s strength

increases as it dominates more solutions. On the other hand, raw fitness FRp of a

solution p depends on the sum of the strengths of its dominators. Therefore FRp may

increase rapidly if the strength values of its dominators are large, and unlike the

strength, it is better to have a smaller FR value. For nondominated solutions, FR

values are simply zero.

Before the calculation of other fitness values, the number of nondominated

solutions, #nondominated, in the union is found, since reserved separate portions of

the archive which will be filled according to different fitness types depend on this

number. If #nondominated is greater than multsize AA , it means that a truncation is

needed to reduce this number to available space in the archive, which is multsize AA .

Density fitness FD, that uses the crowding distance idea in NSGA II (Deb et al.

34

2002) is used in truncation as proposed in Karasakal and Silav (2010). By using FD,

the nondominated solutions in relatively less dense regions of the Pareto optimal

front are promoted. On the other hand, if #nondominated is less than multsize AA ,

then the available space in the archive is filled according to the objective fitness, FO

as proposed in Karasakal and Silav (2010). FO tries to favor solutions lying on the

boundaries to introduce diversity in the next generations and widen the evolutionary

search.

After filling a reserved portion of the archive according to either FD or FO, the

remaining space is filled according to the achievement scalarizing fitness, FA. In

order to calculate FAp, for solution p, first, the achievement scalarizing function

values of the solutions in the union should be calculated. In calculating the

achievement scalarizing function value, asfp of any solution p, the terms multiplied

by ɛ ’s are added in order to ensure that weakly efficient solutions have worse asf

values than their corresponding strictly efficient solutions. Solutions entering the

archive according to the FA are expected to be close to the target solution

considering that the target solution can be represented by the reference point, which

is updated according to the decision maker’s responses in the interactions phase.

3.5.4 Interaction with the decision maker

There are a few widely used ways of interacting with the decision maker in

preference based multiobjective algorithms. He/she may be asked to compare two

solutions if he prefers one over the other. This comparison is mostly in terms of the

objective function values. He/she may give a total preference, or may state the

amount of loss in an objective to gain some for another objective, which can indicate

information about the tradeoff between those objectives. The decision maker may be

asked to express desirable levels for each objective, which can be treated as the

objective values of a reference point. However, the aforementioned methods to

extract decision maker preferences may not be realistic in our problem. The decision

maker may not initially have a concrete idea about the value of the compactness

objective of the clustering problem. It gets even more unrealistic for the decision

35

maker to express a desirable value about the separation objective of the problem

especially for the cases where the separation value of the target solution is adjusted.

On the other hand, presenting two solutions to the decision maker is also a

problematic task. For problems of two or three dimensions, the clusters of each

solution can be plotted and visually presented to the decision maker so that he/she

can provide his/her preference. However, it would be time consuming to do so, and

such an approach may not be received well by the decision maker. Moreover, it is

not possible to plot the clusters in a visually recognizable way for data sets with

higher than three dimensions.

In our problem, the interaction with the decision maker is simple and

straightforward. In each generation, two solutions, which are the best solutions in

terms of FA and FD separately, are found. The idea is that, the solution best in FA is

the closest solution on the Pareto optimal front to the current reference point and the

solution best in FD is from the least dense region of the Pareto optimal front and

could also be interesting. Once these two solutions are found, the data point pairs

that determine the compactness and separation of the solutions are detected and

presented to the decision maker to learn if they are in the same cluster or not

according to him/her. According to the response of the decision maker, certain

updates for the incumbent solution, set of interesting solutions and/or the reference

point are made if the need arises. For example, if the decision maker thinks that

points i and j should be in the same cluster, then the compactness value of the

clustering problem is updated according to the definition of compactness objective if

necessary. Similarly, if the two points should be in different clusters, then the

algorithm considers updating the adjusted separation value of the clustering problem

if necessary.

The procedure of interaction with the decision maker is given below in an

algorithmic fashion.

36

Let solution a be the best solution in terms of FA (or FD), i and j be the two data

points that determine the compactness value for solution a. Ask the decision maker

if i and j are in the same cluster.

IF “YES”

 IF “gcom has not changed yet”

Set gcom = fcoma, A
mult

 = 0.5.

 ELSE

 Set
afcomgcomgcom ,max .

 END IF

ELSE (“NO”)

 Calculate the adjusted distance adij.

ijjiji

ji

ij

ij

ijjiji

j

ij

i

ij

ij

ijjijiij

ij

ddendden
denden

d
d

ddendden
den

d

den

d
d

ddenddend

ad

or if
},min{

 and if

 and if

Set },min{ gasepadgasep ij .

END IF

Let i and j be the two data points that determine the separation value for solution a.

Ask the decision maker if i and j are in the same cluster.

IF “NO”

 IF “gasep has not changed yet”

Set gasep = fasepa, A
mult

 = 0.5.

 ELSE

 Set },min{ gasepfasepgasep a
.

 END IF

ELSE (“YES”)

 Set ijdgcomgcom ,max .

END IF

37

At the end of interaction with the decision maker, any solution that was able to

update the reference point is added to the set of interesting solutions. The condition

for an update in the incumbent solution is stricter. For a solution to be the new

incumbent solution, its compactness points should be in the same cluster, separation

points should be in different clusters and it should at the same time be able to update

both gcom and gasep.

3.5.5 Evolutionary Operators

Uniform crossover and bitwise mutation are the operators used for evolutionary

purposes. In a single crossover event, two offspring are generated from two parents.

For each pair of parents, a uniform mask, which is a binary array having the same

size of an individual’s chromosome, is constructed randomly. Then using this mask,

genes of the first offspring whose corresponding values are 1 in the uniform mask

are copied from the first parent. Similarly, the genes whose corresponding values are

0 in the uniform mask are copied from the second parent. Second offspring is

constructed by reversing the parents. In Figure 3.4 an example of a crossover event

can be found. With the crossover operator, merging and splitting of clusters is

performed which is an effective way of exploring the solution space.

38

Figure 3.4 A crossover example

Every offspring constructed by the crossover is then subjected to a mutation event.

In the algorithm, neighborhood biased mutation, which is proposed by Handl and

Knowles (2007), is used. It is a kind of bitwise mutation, where each gene can be

mutated with a certain probability, mprob. The mutation is done by changing the

current value of the mutating gene by randomly assigning a different value for it.

Since assigning a value for a gene means constructing a link between two data

points represented by the index of the gene and the value of the gene, it may not be a

good idea to construct such links between distant data points. Therefore, in the

neighborhood biased mutation we use, the set of values that can randomly be

assigned to a mutating gene is limited to its H nearest neighbors, where H is a

parameter determined before the execution of the algorithm. A mutation operator on

an arbitrary solution and visualization of its effect on the clustering is illustrated in

Figure 3.5. Similar to the crossover operator, merging and splitting of clusters is

performed by the mutation operator.

39

Figure 3.5 A mutation example

Note that, allowing a data point to connect to itself by mutation helps constructing

singleton clusters. Therefore, we allow such links to be formed by our mutation

operator to be able to detect outliers.

40

CHAPTER 4

COMPUTATIONAL EXPERIMENTS

In this chapter, we report the empirical results obtained by experimenting with our

algorithm. In Section 4.1, we describe the data sets used in this study. After setting

the parameters of the algorithm by the results of the pilot runs given in Section 4.2,

we give the computational results corresponding to this parameter setting in Section

4.3.

4.1 Data Sets

There are many well-known data sets that can be used for the clustering problem,

most of which can be obtained from UC Irvine Machine Learning Repository
1
.

However a majority of the data sets provided there include categorical attributes

which are not included in our scope. In addition, for some of the data sets, the

dimension of the data points may be higher than two, which makes the data set

undesirable for us. In this study, we focus on two dimensional data sets with

numerical attributes, and the data sets we use are taken from the open literature

(Sourina 2011). Table 4.1 provides a list of the data sets used in this study. In Table

4.1, N is the number of data points in the data set, and K indicates the number of

clusters in the target solution for that data set, including the number of outliers.

1
 http://archive.ics.uci.edu/ml/

41

Table 4.1 Data sets used

Set # Data Set Name N K
of

outliers

Data Set Properties*

1 data_60 60 3 0 Elongated, Box

2 data_66 66 4 0 Elongated, Box

3 data-c-cc-nu-n 289 7 4
Spherical, Elongated, Ring,

DDBC, DVWC, Outlier

4 data-c-cc-nu-n_v2 285 3 0
Spherical, Elongated, Ring,

DDBC, DVWC

5 data-c-cc-nu-n2 195 6 3
Spherical, Elongated, Ring,

DDBC, DVWC, Outlier

6 data-c-cc-nu-n2_v2 192 3 0
Spherical, Elongated, Ring,

DDBC, DVWC

7 data-c-cv-nu-n 76 6 3
Spherical, Elongated, DDBC,

DVWC, Outlier

8 data-c-cv-nu-n_v2 73 3 0
Spherical, Elongated, DDBC,

DVWC

9 data-c-cv-u-n 81 5 3 Spherical, DDBC, DVWC, Outlier

10 data-uc-cc-nu-n 191 6 3
Spiral, Spherical, DDBC, DVWC,

Outlier

11 data-uc-cc-nu-n_v2 188 3 0 Spiral, Spherical, DDBC, DVWC

12 data-uc-cv-nu-n 127 6 3
Spherical, Elongated, DDBC,

DVWC, Outlier

13 dataX 202 4 2 Butterfly, DVWC, Outlier

14 dataX_v2 200 2 0 Butterfly, DVWC

15 data-oo 144 6 4
Spherical, Ring, DDBC, DVWC,

Outlier

16 data-oo_v2 140 2 0 Spherical, Ring, DDBC, DVWC

17 train1 307 6 2 Spherical, DDBC, DVWC, Outlier

18 train1_v1 306 5 1 Spherical, DDBC, DVWC, Outlier

19 train2 287 4 0
Spherical, Elongated, DDBC,

DVWC

20 train3 397 6 30
Elongated, Snake, DDBC, DVWC,

Noise

21 train3_v1 361 5 0 Elongated, Snake, DDBC, DVWC

*DDBC: Density differences between clusters

 DVWC: Density variation within a cluster

Besides different number of data points, outliers and target number of clusters, each

data set given in Table 4.1 includes a combination of the challenging issues, which

are arbitrary shaped clusters, density variation within a cluster and density

42

differences between clusters, as introduced in Chapter 1. The plots of these data sets

can be found in Appendix A.

4.2 Parameter Settings and Performance Measures

We have a few parameters that need to be set before the execution of the algorithm.

In Table 4.2, we present the final values of the parameters that we choose as a result

of our pilot runs. Here, P
size

, A
size

 and MP
size

 settings are borrowed from SPEA2. We

choose equal weights in w
com

 and w
asep

 not to favor one objective over the other.

Table 4.2 Parameter Setting

Parameter Value

H N

P
size

 100

A
size

 50

MP
size

 100

w
com

 0.5

w
asep

 0.5

mprob 0.005

Number of generations 10,000

Taking the neighborhood size H as N is commonly seen in literature. For mprob

we have also tried 0.01 for five of the data sets, namely 2, 4, 7, 9 and 11, and seen

that 0.005 yields better results. Since we have several types of fitness values in our

algorithm, it is difficult to determine a termination criterion that depends on the

improvements in the best of these fitness values. To understand its convergence

behavior, we ran our algorithm for a long time, i.e. 10,000 generations.

The solutions are evaluated in terms of Jaccard and Rand Indices, which are external

validity indices that measure the closeness of our solution to the target solution.

43

To illustrate, for an arbitrary solution s, let

a: the number of data point pairs in the same cluster both in the target solution

and s,

b: the number of data point pairs in the same cluster in the target solution, but

in different clusters in s,

c: the number of data point pairs in different clusters in the target solution, but

in the same cluster in s,

d: the number of data point pairs in different clusters in both s and the target

solution.

Then the Jaccard Index (JI) is calculated as
cba

a
JI , and the Rand Index (RI)

is calculated as
dcba

da
RI . JI focuses only on the data point pairs that are

assigned to the same cluster correctly in our solution according to the clusters in the

target solution. On the other hand, RI also gives importance to the data point pairs

that are in different clusters in the target solution which are assigned to different

clusters in our solution.

The algorithm is coded in C using open source CodeBlocks development

environment, and the pilot runs are made on a PC with 3GB RAM, and Intel Core 2

Duo 2.4 GHz processor running Ubuntu 10.04. The results of the pilot runs are

given in Table 4.3.

44

Table 4.3 Pilot Results

 Target Best in I and IS

Set # Data set name K fcom fasep Q K fcom fasep JI g
*

1 data_60 3 1.00 12.39 29 3 1.00 12.39 1.00 1,600

2 data_66 4 1.00 1.27 10 4 1.00 1.27 1.00 5,550

3 data-c-cc-nu-n 7 0.77 0.46 19 6 0.77 3.01 0.99 6,000

4 data-c-cc-nu-n_v2 3 0.77 3.01 22 3 0.77 3.01 1.00 2,650

5 data-c-cc-nu-n2 6 0.55 2.60 17 6 0.55 2.60 1.00 3,900

6 data-c-cc-nu-n2_v2 3 0.55 37.54 8 3 0.55 37.54 1.00 2,000

7 data-c-cv-nu-n 6 0.78 6.53 19 6 0.78 6.53 1.00 2,350

8 data-c-cv-nu-n_v2 3 0.78 6.53 19 2 0.71 0.72 0.89 1,050

9 data-c-cv-u-n 5 0.65 5.73 16 5 0.65 5.73 1.00 2,900

10 data-uc-cc-nu-n 6 0.68 4.41 31 5 0.68 2.32 0.50 6,450

11 data-uc-cc-nu-n_v2 6 0.68 4.41 14 2 0.68 94.33 0.96 4,600

12 data-uc-cv-nu-n 6 0.67 2.03 25 5 0.67 9.36 0.98 1,750

13 dataX 4 0.90 51.92 23 4 0.90 51.92 1.00 1,600

14 dataX_v2 2 0.90 51.92 23 2 0.90 51.92 1.00 2,050

15 data-oo 6 0.55 1.27 26 5 0.55 18.18 0.50 450

16 data-oo_v2 2 0.55 1.27 13 1 0.55 0.50 0.50 -

17 train1 6 0.03 0.18 15 6 0.03 0.18 1.00 2,500

18 train1_v1 5 0.03 0.18 23 5 0.03 0.18 1.00 2,800

19 train2 4 0.03 0.26 27 4 0.03 0.26 1.00 4,000

20 train3 36 0.74 0.02 8 3 0.15 0.13 0.31 -

21 train3_v1 5 0.05 0.35 22 5 0.05 0.35 1.00 4,800

In Table 4.3, g* stands for the generation number in which the best solution in terms

of its closeness to the target solution with respect to the Jaccard Index is seen in the

archive. Q is the number of questions asked to the decision maker throughout the

run. Reported solutions are the best among the final incumbent solution (I), the set

of interesting solutions (IS) and the archive (A). According to Table 4.3, 2,500-3,000

generations are enough for most of the data sets; however, for some of them at least

6,000-7,000 generations are needed for the best solution to appear in the archive.

Note that, the 20
th

 data set, namely train, 3 includes noise, which is different from

outliers. Since noise is not within our scope, this data set is discarded from the final

runs.

45

4.3 Computational Results without Decision Maker Preference

From the results of the pilot runs given in Table 4.3, we see that the parameter

settings given in Table 4.2 are reasonable. Therefore, we set our parameters as in

Table 4.2 in our final runs. Also, in order to observe the effect of the interaction with

the decision maker, we first run our algorithm (IP-MOEC) as a purely multiobjective

evolutionary clustering algorithm (MOEC), by discarding the interaction phase and

decision maker’s preferences.

Since our algorithm includes randomness, we have made five replications for each

data set. We report the number of distinct solutions found in the final archive in

Table 4.4.

Table 4.4 Characteristics of the replications in terms of distinct solutions in the final archive

Set # Data Set Name

Number of distinct

solutions*

min avg max

1 data_60 1 1 1

2 data_66 3 3 3

3 data-c-cc-nu-n 4 4 4

4 data-c-cc-nu-n_v2 2 3.6 7

5 data-c-cc-nu-n2 3 3.6 5

6 data-c-cc-nu-n2_v2 2 2.2 3

7 data-c-cv-nu-n 5 13.8 19

8 data-c-cv-nu-n_v2 11 14.4 18

9 data-c-cv-u-n 7 9.4 12

10 data-uc-cc-nu-n 3 5.6 11

11 data-uc-cc-nu-n_v2 2 3.6 6

12 data-uc-cv-nu-n 8 10.2 12

13 dataX 8 8.2 9

14 dataX_v2 8 8.2 9

15 data-oo 6 9.2 10

16 data-oo_v2 6 6 6

17 train1 3 4 5

18 train1_v1 3 4.2 5

19 train2 6 6.8 8

20 train3_v1 4 5.8 8

* Minimum, average and maximum of five replications

46

The number of distinct solutions in the final archive depends on the characteristics

of the data set rather than its size. For example, 20
th

 data set has the greatest number

of data points, but the average number of distinct solutions reported for this data set

is almost half of the average number of distinct solutions reported for the 7
th

 data set

which contains only half the number of data points as data set 20. For the first two

data sets, the possible number of nondominated solutions is low, so the number of

distinct solutions is also low since the archive is totally filled with nondominated

solutions.

For each data set, from the distinct solutions in the final archive, we report the best

solution in terms of JI and RI indices in each replication. The results of five

replications are summarized in Table 4.5.

Table 4.5 Performance of proposed algorithm without decision maker interaction (MOEC) in terms

of solution quality

Set

Data Set Name

JI* RI*

min avg max min avg max

1 data_60 1.00 1.00 1.00 1.00 1.00 1.00

2 data_66 1.00 1.00 1.00 1.00 1.00 1.00

3 data-c-cc-nu-n 0.99 0.99 0.99 0.99 0.99 0.99

4 data-c-cc-nu-n_v2 1.00 1.00 1.00 1.00 1.00 1.00

5 data-c-cc-nu-n2 1.00 1.00 1.00 1.00 1.00 1.00

6 data-c-cc-nu-n2_v2 1.00 1.00 1.00 1.00 1.00 1.00

7 data-c-cv-nu-n 1.00 1.00 1.00 1.00 1.00 1.00

8 data-c-cv-nu-n_v2 1.00 1.00 1.00 1.00 1.00 1.00

9 data-c-cv-u-n 1.00 1.00 1.00 1.00 1.00 1.00

10 data-uc-cc-nu-n 0.45 0.69 0.80 0.61 0.84 0.92

11 data-uc-cc-nu-n_v2 0.45 0.70 0.80 0.60 0.84 0.92

12 data-uc-cv-nu-n 0.98 0.98 0.98 0.99 0.99 0.99

13 dataX 1.00 1.00 1.00 1.00 1.00 1.00

14 dataX_v2 1.00 1.00 1.00 1.00 1.00 1.00

15 data-oo 0.50 0.50 0.50 0.53 0.53 0.53

16 data-oo_v2 0.50 0.50 0.50 0.50 0.50 0.50

17 train1 1.00 1.00 1.00 1.00 1.00 1.00

18 train1_v1 1.00 1.00 1.00 1.00 1.00 1.00

19 train2 1.00 1.00 1.00 1.00 1.00 1.00

20 train3_v1 1.00 1.00 1.00 1.00 1.00 1.00

* Minimum, average and maximum of five replications

47

Results show that our algorithm performs well for almost all of the data sets.

However for data sets 15 and 16, in which two clusters are separated from each

other with a distance that is very close to the density of the less dense cluster, the

inflation of the separation approach cannot adjust the separation distance properly.

Therefore, for these data sets, the target solution remains dominated considering our

objectives, and cannot enter the archive.

4.4 Computational Results with Decision Maker Preference

Since our algorithm includes randomness, we have made five replications for each

data set. We report the number of distinct solutions found in the union of the final

incumbent solution, the set of interesting solutions and the archive in Table 4.6. In

Table 4.6, we also report the results about the number of questions asked to the

decision maker.

48

Table 4.6 Characteristics of the replications

Set

Data Set Name

Number of distinct

solutions*

Number of questions

asked*

min avg max min avg max

1 data_60 2 3 4 7 17.6 29

2 data_66 3 4 6 10 25.8 45

3 data-c-cc-nu-n 5 5.4 6 14 18.2 22

4 data-c-cc-nu-n_v2 3 4.6 6 12 15.4 22

5 data-c-cc-nu-n2 6 6.4 7 14 16.8 20

6 data-c-cc-nu-n2_v2 2 3.2 4 8 12.2 21

7 data-c-cv-nu-n 10 10.2 11 19 20.8 24

8 data-c-cv-nu-n_v2 6 7.8 11 12 15.2 19

9 data-c-cv-u-n 6 7.8 10 16 20.6 25

10 data-uc-cc-nu-n 5 6.2 8 13 22.2 31

11 data-uc-cc-nu-n_v2 3 4.2 5 14 15.6 18

12 data-uc-cv-nu-n 8 9.2 11 18 22 25

13 dataX 9 10.2 12 23 25.6 32

14 dataX_v2 8 9.2 10 22 23.6 26

15 data-oo 6 8.8 10 14 20.2 26

16 data-oo_v2 5 6 7 14 18.2 23

17 train1 4 5.4 6 15 17.2 19

18 train1_v1 4 5.2 6 12 16.2 23

19 train2 6 6.8 7 15 19.6 27

20 train3_v1 5 6.2 8 16 20.2 26

* Minimum, average and maximum of five replications,

Note that, the size of the archive is taken as 50, and the average number of distinct

interesting solutions observed in a replication for all the data sets is approximately 5.

Yet, the results presented in Table 4.4 show that the number of distinct solutions is

quite less than the maximum possible number of distinct solutions that can occur in

the union of the final incumbent solution, the set of interesting solutions and the

archive. In addition, the average number of distinct solutions with the preference

based approach is expected to be higher than the approach that discards the decision

maker preferences, since the number of distinct nondominated solutions is not more

than the archive size in any of the data sets. Moreover, on the average, it is expected

to observe more distinct solutions with the preference based approach, since with

this approach; dominated solutions may also enter the archive. However, the

49

averages in Tables 4.4 and 4.6 do not reflect such a big difference. These show that

the preference based approach that lies within our algorithm works well.

Also, the number of questions asked to the decision maker is reasonable and much

smaller than the total number of point pairs in a data set. Besides, the number of

questions does not increase with the data set size and varies depending on the

properties of the data sets. For example, a maximum of 45 questions asked for the

2
nd

 data set is mainly because most of the distances are the same with each other and

limited information can be deducted by asking different pairs of points since the

objectives determined by those points are equal.

For each data set, we report the best solution from the set of distinct solutions in the

final incumbent solution, the set of interesting solutions and the archive in terms of

JI and RI indices. The results are summarized in Table 4.7

Table 4.7 The performance of IP-MOEC in terms of solution quality

Set

Data Set Name

JI* RI*

min avg max min avg max

1 data_60 1.00 1.00 1.00 1.00 1.00 1.00

2 data_66 1.00 1.00 1.00 1.00 1.00 1.00

3 data-c-cc-nu-n 0.99 0.99 0.99 0.99 0.99 0.99

4 data-c-cc-nu-n_v2 1.00 1.00 1.00 1.00 1.00 1.00

5 data-c-cc-nu-n2 1.00 1.00 1.00 1.00 1.00 1.00

6 data-c-cc-nu-n2_v2 1.00 1.00 1.00 1.00 1.00 1.00

7 data-c-cv-nu-n 1.00 1.00 1.00 1.00 1.00 1.00

8 data-c-cv-nu-n_v2 1.00 1.00 1.00 1.00 1.00 1.00

9 data-c-cv-u-n 1.00 1.00 1.00 1.00 1.00 1.00

10 data-uc-cc-nu-n 0.50 0.66 0.80 0.61 0.78 0.92

11 data-uc-cc-nu-n_v2 0.50 0.86 0.98 0.60 0.90 0.99

12 data-uc-cv-nu-n 0.98 0.98 0.98 0.99 0.99 0.99

13 dataX 1.00 1.00 1.00 1.00 1.00 1.00

14 dataX_v2 1.00 1.00 1.00 1.00 1.00 1.00

15 data-oo 0.50 0.50 0.50 0.53 0.53 0.53

16 data-oo_v2 0.50 0.50 0.50 0.50 0.50 0.50

17 train1 1.00 1.00 1.00 1.00 1.00 1.00

18 train1_v1 1.00 1.00 1.00 1.00 1.00 1.00

19 train2 1.00 1.00 1.00 1.00 1.00 1.00

20 train3_v1 1.00 1.00 1.00 1.00 1.00 1.00

* Minimum, average and maximum of five replications

50

Table 4.7 shows that we succeed in finding the target partitioning in 14 data sets out

of 20. Moreover, we find the target partitioning for those data sets in all of the five

replications, which shows the robustness of our algorithm.

For data sets 3 and 12, our algorithm performs well in all of the five replications, but

still fails to find the target partitioning. Each of these data sets includes three

outliers, one of which our algorithm fails to detect. Yet our algorithm is still capable

of detecting the remaining outliers even though there is no specific mechanism used

for this purpose in the algorithm.

Data sets 10 and 11 include both density variation within a cluster and density

differences between clusters, and therefore are quite challenging. Data set 10 also

includes outliers which makes it even more difficult. However, our algorithm

performs relatively worse in only one of the five replications for these data sets. For

these data sets, the separation distance occurs between two data points located in

particularly dense regions of their clusters, which may be hard to detect and adjust.

Yet, in the remaining four replications, our algorithm seems to be capable of

adjusting the separation properly and its performance can be considered reasonable.

Our algorithm consistently performs badly for data sets 15 and 16. Unlike data sets

10 and 11, the density difference between clusters in the separation region occurs

smoothly for data sets 15 and 16. In these data sets, the separation distance is similar

to the density of one of the end points in its corresponding cluster. Therefore, we

cannot adjust that separation value properly and our algorithm fails to find the target

partitioning for these data sets.

In Table 4.8, we report the performance of our algorithm in terms of the execution

times. The maximum observed execution time is 1553 seconds (25 minutes) for data

set 20, which has a total of 361 data points.

51

Table 4.8 The performance of IP-MOEC in terms of execution times

Set # Data Set Name
Execution times*

min avg max

1 data_60 75 78 81

2 data_66 85 87 90

3 data-c-cc-nu-n 1061 1088 1126

4 data-c-cc-nu-n_v2 994 1120 1428

5 data-c-cc-nu-n2 487 496 507

6 data-c-cc-nu-n2_v2 467 519 644

7 data-c-cv-nu-n 105 106 106

8 data-c-cv-nu-n_v2 98 100 102

9 data-c-cv-u-n 122 124 125

10 data-uc-cc-nu-n 459 492 528

11 data-uc-cc-nu-n_v2 455 540 649

12 data-uc-cv-nu-n 237 239 241

13 dataX 533 543 548

14 dataX_v2 528 576 668

15 data-oo 347 348 349

16 data-oo_v2 326 333 349

17 train1 1050 1166 1427

18 train1_v1 1047 1072 1090

19 train2 912 1016 1207

20 train3_v1 1512 1529 1553

* Minimum, average and maximum of five replications (in seconds)

The performance of our algorithm is compared to three well known classical

clustering algorithms, namely k-means, SL (single linkage) and DBSCAN, as well

as the version of our algorithm that does not account for the preferences of the

decision maker.

The results of the classical algorithms are taken from İnkaya et al. (2010). In İnkaya

et al. (2010), the k-means algorithm is run for several values of k (i.e. the number of

clusters in the k-means algorithm) in the range between 2% and 10% of the points in

the data set with increments of 1, and the best solution in terms of JI is reported in

order to be fair in comparison. To illustrate, for a data set having 100 data points, the

k-means algorithm is run nine times, each time with a different k value in the range

[2, 11], which is assured to include the number of clusters in the target solution.

Runs of SL are made in the same manner. Similarly, DBSCAN is run for several

52

values of MinPts (2-10), which is the only parameter of the algorithm, and the

solution having the best JI value is taken (İnkaya et al, 2010). The results are

summarized in Table 4.9.

Since all three algorithms have shorter execution times than ours, we make multiple

runs of those for a fair comparison. However, it should be noted that the number of

clusters is given in each run k-means and SL, whereas our algorithm tries to

determine this number during its single execution.

Table 4.9 Comparison of IP-MOEC with other clustering algorithms

Set

Data set name

k-means
1
 SL

2
 DBSCAN

3
 MOEC

4

IP-

MOEC
5

JI RI JI RI JI RI JI RI JI RI

1 data_60 0.79 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 data_66 0.66 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 data-c-cc-nu-n 0.78 0.86 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

4 data-c-cc-nu-n_v2 0.80 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 data-c-cc-nu-n2 0.28 0.64 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

6 data-c-cc-nu-n2_v2 0.29 0.63 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7 data-c-cv-nu-n 0.59 0.83 1.00 1.00 0.63 0.68 1.00 1.00 1.00 1.00

8 data-c-cv-nu-n_v2 0.61 0.84 1.00 1.00 0.66 0.86 1.00 1.00 1.00 1.00

9 data-c-cv-u-n 0.93 0.97 1.00 1.00 1.00
Δ
 1.00

Ө
 1.00 1.00 1.00 1.00

10 data-uc-cc-nu-n 0.59 0.73 0.48 0.62 0.50 0.83 0.69 0.84 0.66 0.78

11 data-uc-cc-nu-n_v2 0.34 0.73 0.45 0.60 0.59 0.83 0.70 0.84 0.86 0.90

12 data-uc-cv-nu-n 0.62 0.83 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99

13 dataX 0.98 0.99 1.00 1.00 1.00
Δ
 1.00

Ө
 1.00 1.00 1.00 1.00

14 dataX_v2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

15 data-oo 0.49 0.75 0.50 0.53 0.50 0.53 0.50 0.53 0.50 0.53

16 data-oo_v2 0.52 0.76 0.89 0.95 0.95 0.98 0.50 0.50 0.50 0.50

17 train1 0.99 1.00 1.00 1.00 1.00
Ө
 1.00 1.00 1.00 1.00 1.00

18 train1_v1 1.00
ψ
 1.00

Ө
 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

19 train2 0.78 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

20 train3_v1 0.39 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ψ this value is 0.997. Δ this value is 0.998. Ө this value is 0.999.

1 k-means: Best of 0.1N-0.02N replications, where N is the number of data points in the data set

2 SL: Best of 0.1N-0.02N replications, where N is the number of data points in the data set

3 DBSCAN: Best of nine replications

4 MOEC: Average of five replications

5 IP-MOEC: Average of five replications

The performance of MOEC is very close to IP-MOEC, where decision maker’s

preferences are included. For data set 10, MOEC performs better, and for data set

53

11, IP-MOEC outperforms MOEC. They perform equally well for the remaining

data sets.

Among the algorithms compared, k-means performs worst since it tends to provide

only spherical clusters.

All the algorithms perform badly for data set 15. For data set 16, which is a

simplified version of data set 15 by removing outliers, SL and DBSCAN perform

better than IP-MOEC and MOEC. As stated before, the main reason for IP-MOEC

and MOEC to perform badly for data sets 15 and 16 is due to the characteristics of

these sets. The clusters are separated by distances close to the density of the less

dense cluster, which makes it harder to detect by the approach that aims to inflate

the separation in such situations. SL and DBSCAN perform relatively bad for data

sets 10 and 11, in which both inter-cluster density differences and intra-cluster

density variation is present. For data set 10, IP-MOEC performs better than SL in

terms of both JI and RI. Again, for that data set, the performance of IP-MOEC is

better than DBSCAN in terms of JI but slightly worse in terms of RI. For data set

11, IP-MOEC performs better than both SL and DBSCAN in terms of both JI and

RI. In these data sets, the separation between two clusters occurs between the dense

regions of both clusters; therefore this separation can be adjusted properly by MOEC

and IP-MOEC.

In general, for all the data sets that we perform well, the performance of our

algorithm is not worse than any other algorithm in terms of both JI and RI.

In Table 4-10, we give a comparison of the algorithms in terms of execution times.

54

Table 4.10 Comparison of clustering algorithms in terms of execution times

Set # Data set name k-means
1
 SL

2
 DBSCAN

3
 MOEC

4
 IP-MOEC

5

1 data_60 0.21 0.52 0.07 89.43 77.81

2 data_66 0.07 0.38 0.03 98.31 87.39

3 data-c-cc-nu-n 0.24 0.66 0.26 1361.59 1087.74

4 data-c-cc-nu-n_v2 0.05 0.87 0.05 1464.42 1120.33

5 data-c-cc-nu-n2 0.11 0.49 0.19 672.68 496.44

6 data-c-cc-nu-n2_v2 0.32 0.49 0.38 786.75 519.43

7 data-c-cv-nu-n 0.05 0.38 0.04 145.79 105.68

8 data-c-cv-nu-n_v2 0.19 0.39 0.06 132.07 100.36

9 data-c-cv-u-n 0.11 0.38 0.24 162.82 124.26

10 data-uc-cc-nu-n 0.10 0.48 0.12 595.90 491.65

11 data-uc-cc-nu-n_v2 0.09 0.48 0.13 720.90 539.99

12 data-uc-cv-nu-n 0.07 0.42 0.13 394.50 238.73

13 dataX 0.10 0.51 0.13 676.87 543.09

14 dataX_v2 0.83 0.50 2.34 665.86 575.53

15 data-oo 0.11 0.43 0.23 437.81 347.78

16 data-oo_v2 0.73 0.43 1.95 578.46 332.95

17 train1 0.07 0.69 0.13 1311.65 1166.42

18 train1_v1 0.08 0.72 0.11 1319.83 1071.62

19 train2 0.10 0.65 0.11 1177.13 1016.38

20 train3_v1 0.07 0.80 0.12 1803.64 1528.83
1 k-means: Total of 0.1N-0.02N replications, where N is the number of data points in the data set

2 SL: Total of 0.1N-0.02N replications, where N is the number of data points in the data set

3 DBSCAN: Total of nine replications

4 MOEC: Average of five replications

5 IP-MOEC: Average of five replications

Traditional algorithms are simple algorithms and run quite fast. However, they need

the number of clusters to be known before the execution, which is not required in

MOEC and IP-MOEC. Results in Table 4.10 show that MOEC requires more

computation time than its interactive preference based version IP-MOEC. This is

because of the difference between convergence behaviors of these two algorithms.

IP-MOEC converges faster with the help of the information gathered from the

decision maker. With decision maker’s preferences, IP-MOEC does not need to

search some portion of the solution space that includes solutions with different

number of clusters. Since both algorithms construct minimum spanning trees for

each cluster of each solution, converging to a front with solutions having the target

number of clusters decreases the execution time in later generations.

55

CHAPTER 5

CONCLUSIONS

The clustering problem with its importance in exploratory data analysis is one of the

active research areas under data mining. It has several challenging issues, such as the

unknown number of clusters, arbitrary shapes, outliers, inter-cluster density

differences and intra-cluster density variations, which are introduced in more detail

in Chapter 1. There are many algorithms developed for dealing with the

aforementioned challenging issues. However, an algorithm performing well for a

data set with a certain challenging issue, occasionally fails when a different

challenging issue is introduced. To the best of our knowledge, no algorithm is

proven to be successful with all data sets. Our scope in this study includes clustering

problems with all of the challenging issues mentioned above.

For the clustering problem, we developed and implemented an interactive

multiobjective evolutionary algorithm which also considers the preferences of a

decision maker during its execution. Decision maker preferences are extracted from

his/her responses to simple questions such as two data points being in the same

cluster or not. These preferences are implicitly used in the algorithm to generate a

small portion of the Pareto optimal front desired by the decision maker, rather than

generating a well spread representation of the whole Pareto optimal front. As

reported in Chapter 4, the small number of distinct solutions generated and the

reasonable number of solutions asked to the decision maker indicates that our

preference based approach works fine.

56

We used 20 data sets from open literature (Sourina, 2011) to test the performance of

our algorithm, and observed that the results are quite reasonable. The performance

of our algorithm is compared with three well-known clustering algorithms, namely

k-means, SL, and DBSCAN and is proven to provide at least as good results as the

compared algorithms in all data sets except one, namely data-oo_v2. Moreover, in

most of the data sets, the performance of our algorithm is better than the

performances of the compared algorithms, which shows its strength and robustness

for data sets with different characteristics.

From the results, we observe that our algorithm performs consistently badly for two

data sets, namely data-oo and data-oo_v2. As a future work, the underlying reason

may be investigated further to adapt the algorithm in finding the target clusters in

such data sets.

Our algorithm can detect outliers, but in some cases outliers very close to a cluster

may be missed. Moreover, we do not deal with data sets having noise. As another

future work, a preprocessing mechanism may be developed to detect outliers and

remove the noise before the execution of the algorithm. By this way, the size of the

data set is expected to decrease, and the algorithm is expected to yield better results.

In the algorithm, the responses of the decision maker are implicitly used to include

his/her preferences in the search by altering the reference point if possible. However,

the information provided by the decision maker is more valuable than that since

he/she directly tells if two data points belong to the same cluster or different clusters.

In addition to affecting the reference point, user information can be converted into

cannot link and must link constraints. Then such constraints may be enforced to the

evolutionary operators in order to reduce the search space, so that a more efficient

search can be made. However, such an improvement is not straightforward

considering the structures of the algorithm; especially the edge based solution

representation, and is therefore aimed to be done as future work.

The weights used in achievement scalarizing functions are taken as equal not to

favor one objective over the other. However, with proper information from the

57

decision maker, these weights may be adjusted to incorporate the decision maker

preferences in a different way.

The maximum execution time observed in all the replications is less than half an

hour, which is not quite high and can be considered reasonable. However, we

believe that it can be decreased even further by a better coding scheme. This would

make the algorithm more scalable and allow its use for larger data sets.

We use a fixed neighborhood size for all data points in a data set, and it is equal to

the square root of the total number of data points in that set. This neighborhood size

should be supported with an upper bound for data sets having higher number of data

points. Even better, with a special procedure, point specific neighborhood sizes can

be found by preprocessing the data set, which is may improve the performance of

our algorithm as well as saving us from setting a parameter.

We focus on two dimensional data sets in this study. The adaptation of the algorithm

for higher dimensional data sets may also be done in the future.

In conclusion, we suggest our algorithm for relatively small spatial data sets with

outliers which also include density differences between clusters and density

variation within a cluster, and the solution quality is of higher importance than the

execution time.

58

REFERENCES

Abraham, A., Grosan, C., and Chis, M., “Swarm intelligence in data mining”,

Swarm Intelligence in Data Mining, Studies in Computational Intelligence, p.1-20,

Abraham, A., Grosan, C., Ramos, V. (Eds.), 2006.

Al-Sultan, K., “A tabu search approach to the clustering problem”, Pattern

Recognition, 28(9):1443-1451, 1995.

Ankerst, M., Breunig, M., Kriegel, H.-P., and Sander, J., “OPTICS: Ordering points

to identify clustering structure”, In Proceedings of the ACM SIGMOD Conference,

49-60, Philadelphia, PA., 1999.

Babu, G. P., and Murty, M. N., “A near-optimal initial seed value selection in k-

means algorithm using a genetic algorithm”, Pattern Recognition Letters,

14(10):763-769, 1993.

Babu, G. P., and Murty, M. N., “Simulated annealing for optimal initial seed

selection in k-means algorithm” Indian Journal of Pure and Applied Mathematics,

25:85- 94, 1994.

Bandyopadhyay, S., and Maulik, U., “An evolutionary technique based on k-means

algorithm for optimal clustering”, in Rn. Information Science Applications: An

International Journal, 146(1-4):221-237, 2002.

Bandyopadhyay, S., Maulik, U., and Mukhopadhyay, A., “Multiobjective Genetic

Clustering for Pixel Classification in Remote Sensing Imagery” Transactions On

Geoscience And Remote Sensing , Volume: 45, Issue: 5, Pages: 1506- 1511,

2007.

http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Crina%20Grosan
http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Vitorino%20Ramos

59

Berkhin, P., “A survey of clustering data mining techniques, Grouping

Multidimensional Data”, Springer Berlin Heidelberg, Kogan, J., Nicholas, C., and

Teboulle M. (Eds.), p.25-71, 2006.

Branke, J., “Consideration of Partial User Preferences in Evolutionary

Multiobjective Optimization”, Springer, Berlin, pp. 157–178, 2008.

Branke, J., Kaußler, T., and Schmeck, H., “Guidance in evolutionary multi-objective

optimization”, Adv. Eng. Software, vol. 32, no. 6, pp. 499–507, 2001.

Calinski, R. B., & Harabasz, J. (1974). “A dendrite method for cluster analysis”,

Communications in Statistics, 3, 1-27.

Chen, E., Wang, F., “Dynamic Clustering Using Multi-objective Evolutionary

Algorithm”, CIS 2005, Part I, LNAI 3801, pp. 73 – 80, 2005.

Chu, S.C., Roddick, J. F., Su, C.J., and Pan, J.S., “Constrained ant colony

optimization for data clustering” In PRICAI, pages 534-543, 2004.

Coello, C. A. C., “Handling Preferences in Evolutionary Multiobjective

Optimization”, A Survey, in: Proceedings of the 2000 Congress on Evolutionary

Computation, IEEE Service Center, Piscataway, NJ, 30-37, 2000.

Das, S., Abraham, A. and Konar, A., “Metaheuristic Clustering”, Studies in

Computational Intelligence, Springer-Verlag Berlin Heidelberg, 2009.

Davies, D. L., & Bouldin, D. W. (1979). “A cluster separation measure”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1, 224-227.

Deb K, Pratap A, Agarwal S., “A fast and elitist multi-objective genetic algorithm:

NSGA-II” IEEE Transactions on Evolutionary Computation, 6 (2); 182-197, 2002.

Deb, K., “Multi-objective evolutionary algorithms: Introducing bias among Pareto-

optimal solutions”, Indian Inst. Technol., Kanpur, India, KanGAL Rep. 99002,

1999.

60

Deb, K., and Kumar, A., “Interactive evolutionary multi-objective optimization and

decision-making using reference direction method”, Technical Report KanGAL

report number 2007001, Kanpur Genetic Algorithms Laboratory, Department of

Mechanical engineering, Indian Institue of Technology Kanpur, India, 2007.

Deb, K., Kumar, A., “Light beam search based multi-objective optimization using

evolutionary algorithms”, in: Proceedings of the Congress on Evolutionary

Computation (CEC-07), pp. 2125–2132, 2007.

Deb, K., Sundar, J., Rao, U.B., Chaudhuri, S., “Reference point based multi-

objective optimization using evolutionary algorithms”, International Journal of

Computational Intelligence Research, 2(3) (2006) 273–286.

Defays, D., “An efficient algorithm for a complete link method”, The Computer

Journal, 20, 364-366, 1977.

Du, J., Korkmaz, E. E., Alhajj, R., Barker, K., “Alternative Clustering by Utilizing

Multi-objective Genetic Algorithm with Linked-List Based Chromosome

Encoding”, MLDM 2005, LNAI 3587, pp. 346–355, 2005.

Ester, M., Kriegel, H-P., Sander, J. and Xu, X. “A density-based algorithm for

discovering clusters in large spatial databases with noise”. In Proceedings of the 2nd

ACM SIGKDD, 226-231, Portland, Oregon, 1996.

Guha, S., Rastogi, R., and Shim, K., “CURE: An efficient clustering algorithm for

large databases”, In Proceedings of the ACM SIGMOD Conference, 73-84, Seattle,

WA, 1998.

Guha, S., Rastogi, R., and Shim, K., “ROCK: A robust clustering algorithm for

categorical attributes”, In Proceedings of the 15th ICDE, 512-521, Sydney,

Australia, 1999.

Handl, J. and Knowles, J., “Evolutionary Multiobjective Clustering”, Proceedings of

the Eighth International Conference on Parallel Problem Solving from Nature

(PPSN VIII), pages 1081-1091, 2004a.

61

Handl, J. and Knowles, J., “Multiobjective clustering with automatic determination

of the number of clusters”, Technical Report TR-COMPSYSBIO-2004-02. UMIST,

Manchester, UK, 2004b.

Handl, J., and Knowles, J., “An evolutionary approach to multiobjective clustering,”

IEEE Trans. Evol. Comput., vol. 11, no. 1, pp. 56–76, Feb. 2007.

Handl, J., Knowles, J. D., and Dorigo, M., “On the performance of ant-based

clustering”, In A. Abraham, M. Koppen, and K. Franke, editors, Design and

Application of Hybrid Intelligent Systems, Proc. Third International Conference on

Hybrid Intelligent Systems, volume 105 of Frontiers in Artificial Intelligence and

Applications, pages 204-213. IOS Press, 2003.

Hartigan, J., “Clustering Algorithms”, John Wiley & Sons, New York, NY, 1975.

Hartigan, J., and Wong, M., “Algorithm AS136: A k-means clustering algorithm”,

Applied Statistics, 28, 100-108, 1979.

Hinneburg, A., and Keim, D., “An efficient approach to clustering large multimedia

databases with noise”, In Proceedings of the 4th ACM SIGKDD, 58-65, New York,

NY, 1998.

Hruschka, E. R., Campello, R. J. G. B., Freitas, A., Carvalho, P. L. F., “A Survey of

Evolutionary Algorithms for Clustering”, “Transactions On Systems Man And

Cybernetics Part C-Applications And Reviews”, Volume: 39, Issue: 2, Pages: 133-

155, 2009

Horn, J., Nafpliotis, N., and Goldberg, D. E., “A Niched Pareto Genetic Algorithm

for Multiobjective Optimization”, In Proceedings of the First IEEE Conference on

Evolutionary Computation, IEEE World Congress on Computational Intelligence,

volume 1, pages 82–87, 1994.

İnkaya T., Kayalıgil S., Özdemirel N.E., “A new density-based clustering approach

in graph theoretic context”, International Journal of Computer Science and

Information Technology, 5(2), 117-135, 2010.

62

Jain, A., Murty, M., and Flynn, P., “Data clustering: A review,” ACM Comput.

Surv., vol. 31, no. 3, pp. 264–323, 1999.

Kanade, P. M., and Hall, L. 0., “Fuzzy ants clustering with centroids” In Proceedings

of the International Conference on Fuzzy Systems, 2004.

Karasakal, E., and A. Silav, “A Multi-Objective Genetic Algorithm for a Bi-

Objective Facility Location Problem with Partial Coverage”, 10-05, IE, METU,

December, 2010.

Karypis, G., Han, E.H., and Kumar, V., “CHAMELEON: A hierarchical clustering

algorithm using dynamic modeling”, COMPUTER, 32, 68-75, 1999a.

Korkmaz, E., E., Du, J., Alhajj, R., Barker, K., “Combining advantages of new

chromosome representation scheme and multi-objective genetic algorithms for better

clustering”, Intelligent Data Analysis, Volume: 10, Issue: 2, Pages: 163-182, 2006.

Krettek, J., Braun, J., Hoffmann, F., and Bertram, T., “Interactive Incorporation of

User Preferences in Multiobjective Evolutionary Algorithms”, Applications of Soft

Computing Advances in Intelligent and Soft Computing, Volume 58/2009, 379-388,

2009.

Krishna, K., and Murty, M. N., “Genetic k-means algorithm”, IEEE Transactions

on Systems, Man, and Cybernetics, Part B, 29(3):433-439, 1999.

Law, M. H. C., Topchy, A. P., Jain, A. K., "Multiobjective Data Clustering," cvpr,

vol. 2, pp.424-430, 2004 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR'04) - Volume 2, 2004

Lumer, E. D., and Faieta, B., “Diversity and adaptation in populations of clustering

ants”, In From Animals to Animats 3: Proc. of the 3th Int. Conf. on the Simulation of

Adaptive Behaviour, pages 501-508, Cambridge, MA, MIT Press, 1994.

Maulik, U., and Bandyopadhyay, S., “Genetic algorithm based clustering

technique”, Pattern Recognition, 33:1455-1465, 2000.

63

Molina, J., Santana, L.V., Hernandez-Diaz, A.G., Coello Coello, C.A., Caballero,

R., “g-dominance: Reference point based dominance”, European Journal of

Operational Research, 2009.

Monmarche, N., “On data clustering with artificial ants”, In A. A. Freitas, editor,

Data Mining with Evolutionary Algorithms: Research Directions, pages 23-26,

Orlando, Florida, AAAI Press, 1999.

Murtagh, F., “Multidimensional Clustering Algorithms”, Physica-Verlag, Vienna,

1985.

Olafsson, S., Li, X., Wu, S., “Operations research and data mining”, European

Journal of Operational Research Volume 187, Issue 3, 16, Pages 1429-1448, June

2008.

Olson, C., “Parallel algorithms for hierarchical clustering”, Parallel Computing, 21,

1313-1325, 1995.

Özyer, T., Liu, Y., Alhajj, R., Barker, K., “Multi-objective Genetic Algorithm Based

Clustering Approach and Its Application to Gene Expression Data”, Advances In

Information Systems, Proceedings, Lecture Notes In Computer Science, Volume:

3261, Pages: 451-461, 2004.

Pal and Biswas (1997). “Cluster Validation Using Graph Theoretic Concepts”,

Pattern Recognition, Vol. 30, No. 6, pp. 847-857

Rand, W. “Objective criteria for the evaluation of clustering methods”, J. Amer.

Statist. Assoc., vol. 66, no. 336, pp. 846–850, 1971.

Rayward-Smith, V. J., “Metaheuristics for Clustering in KDD”, Proceedings of the

IEEE Congress on Evolutionary Computing, 3, p.2380- 2387, 2005.

Ripon, K. S.N., Tsang, C., Kwong, S., Ip, M., “Multi-Objective Evolutionary

Clustering using Variable-Length Real Jumping Genes Genetic Algorithm”,

Proceedings of the 18th International Conference on Pattern Recognition, 2006

http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235963%232008%23998129996%23676722%23FLA%23&_cdi=5963&_pubType=J&view=c&_auth=y&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=c3bef6afdb6066c24f5dc3360b3ee97c

64

Sander, J., Ester, M., Kriegel, H.-P., and Xu, X., “Density-based clustering in spatial

databases: the algorithm GDBSCAN and its applications”, In Data Mining and

Knowledge Discovery, 2, 2, 169-194, 1998.

Selim, S. Z., and Al-Sultan, K., “A simulated annealing algorithm for the clustering

problem”, Pattern Recognition, 24(10):1003-1008, 1991.

Sibson, R., “SLINK: An optimally efficient algorithm for the single link cluster

method”, Computer Journal, 16, 30-34, 1973.

Sourina, O., 2011. “Current Projects in the Homepage of Olga Sourina”,

(http://www.ntu.edu.sg/home/eosourina/projects.html, last accessed on March 2,

2011).

Thiele, L., Miettinen, K., Korhonen, P.J., Molina, J. “A preference-based interactive

evolutionary algorithm for multiobjective optimization”, Technical Report W-412,

Helsinki School of Economics, Helsinki, Finland, 2007.

Tibshirani, R., Walther, G., and Hastie, T., “Estimating the number of clusters in a

dataset via the Gap statistic” J. Royal Statist. Soc.: Series B (Statistical

Methodology), vol. 63, no. 2, pp. 411–423, 2001.

Voorhees, E.M., “Implementing agglomerative hierarchical clustering algorithms for

use in document retrieval”, Information Processing and Management, 22, 6, 465-

476, 1986.

Wierzbicki, A. P., “The use of reference objectives in multiobjective optimization”,

In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making Theory and

Applications, pages 468–486. Berlin: Springer-Verlag, 1980.

Won, J., Ullah, S., Karray, F., “Data Clustering Using Multi-Objective Hybrid

Evolutionary Algorithm”, International Conference on Control, Automation and

Systems, 2008.

Xu, R., and Wunsch, D., “Survey of clustering algorithms,” IEEE Trans. Neural

Netw., vol. 16, no. 3, pp. 645–678, May 2005.

http://www.ntu.edu.sg/home/eosourina/projects.html

65

Xu, X., Ester, M., Kriegel, H.-P., and Sander, J., “A distribution-based clustering

algorithm for mining in large spatial databases”, In Proceedings of the 14th ICDE,

324-331, Orlando, FL, 1998.

Yousri et al. (2008). “A Novel Validity Measure for Clusters of Arbitrary Shapes

and Densities” International Conference on Pattern Recognition, 3454-3457

Zhang, T., Ramakrishnan, R. and Livny, M., “BIRCH: an efficient data clustering

method for very large databases”, In Proceedings of the ACM SIGMOD Conference,

103-114, Montreal, Canada, 1996..

Zhang, T., Ramakrishnan, R., and Livny, M., “BIRCH: A new data clustering

algorithm and its applications”, Journal of Data Mining and Knowledge Discovery,

1, 2, 141-182, 1997.

Zitzler E., and Kuenzli S., “Indicator-based Selection in Multiobjective Search”, in:,

Parallel Problem Solving from Nature - PPSN VIII, 8th International Conference,

Proceedings, Springer-Verlag, Berlin, 832-842, 2004.

Zitzler, E., and Thiele, L., “Multiobjective evolutionary algorithms: A comparative

case study and the strength pareto approach”, IEEE Transactions on Evolutionary

Computation 3(4), 257–271, 1999.

Zitzler, E., Laumanns, M., and Thiele, L., “SPEA2: Improving the Strength Pareto

Evolutionary Algorithm for Multiobjective Optimization”, In K. Giannakoglou et

al., editors, EUROGEN 2001, International Center for Numerical Methods in

Engineering (CIMNE), pages 95–100, 2002.

66

 APPENDIX A

THE PLOTS OF THE DATA SETS USED IN THE STUDY

Figure A.1 Plots of data sets (1-8)

67

Figure A.2 Plots of data sets (9-16)

Figure A.3 Plots of data sets (17-20)

