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ABSTRACT 

 

 

AN INTERACTIVE PREFERENCE BASED EVOLUTIONARY 

ALGORITHM FOR THE CLUSTERING PROBLEM 

 

 

 

Demirtaş, Kerem 

M.Sc., Department of Industrial Engineering 

Supervisor: Prof. Dr. Nur Evin Özdemirel  

Co-Supervisor: Assoc. Prof. Dr. Esra Karasakal 

 

May 2011, 67 Pages 

 

 

We propose an interactive preference-based evolutionary algorithm for the 

clustering problem. The problem is highly combinatorial and referred to as NP-Hard 

in the literature. The goal of the problem is putting similar items in the same cluster 

and dissimilar items into different clusters according to a certain similarity measure, 

while maintaining some internal objectives such as compactness, connectivity or 

spatial separation. However, using one of these objectives is often not sufficient to 

detect different underlying structures in different data sets with clusters having 

arbitrary shapes and density variations. Thus, the current trend in the clustering 

literature is growing into the use of multiple objectives as the inadequacy of using a 

single objective is understood better. The problem is also difficult because the 

optimal solution is not well defined. To the best of our knowledge, all the 

multiobjective evolutionary algorithms for the clustering problem try to generate the 

whole Pareto optimal set. This may not be very useful since majority of the solutions 

in this set may be uninteresting when presented to the decision maker. In this study, 
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we incorporate the preferences of the decision maker into a well known 

multiobjective evolutionary algorithm, namely SPEA-2, in the optimization process 

using reference points and achievement scalarizing functions to find the target 

clusters. 

 

Keywords: Clustering, Multiobjective Optimization, Metaheuristics, Evolutionary 

Algorithms, SPEA2, Preference Based 
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ÖZ 

 

KÜMELEME PROBLEMİ İÇİN ETKİLEŞİMLİ TERCİH TABANLI BİR 

ÇOK AMAÇLI EVRİMSEL ALGORİTMA 

 

 

Demirtaş, Kerem 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Nur Evin Özdemirel 

Ortak Tez Yöneticisi: Doç. Dr. Esra Karasakal 

 

Mayıs 2011, 67 Sayfa 

 

Bu çalışmada kümeleme problem için etkileşimli, tercih tabanlı, çok amaçlı bir 

evrimsel algoritma önermekteyiz. Kümeleme problemi gayet kombinasyonal olup 

literatürde NP-Hard olarak geçmektedir. Problemin amacı belirli bir benzerlik 

ölçüsüne göre benzer öğeleri aynı kümelere, benzeşmeyen öğeleri farklı kümelere 

koyarken sıkılık, bağlanabilirlik ve ayrışma gibi içsel amaçları sağlamaktır. Ancak 

bahsi geçen amaçlardan bir tanesinin kullanımı, rastgele şekilleri olan veya 

yoğunluk farkı bulunan kümeleri içeren farklı veri kümelerinin altında yatan yapıları 

ortaya çıkarmakta yeterli olmamaktadır. Tek amaç kullanımının yetersizliği daha iyi 

anlaşılmakla birlikte, literatürdeki güncel eğilim çok amaçlı yaklaşımların 

kullanılması yönündedir. Problemin bir zorluğu da optimal çözümün iyi 

tanımlanamamasından kaynaklanmaktadır. Bildiğimiz kadarıyla, kümeleme 

problemi için önerilmiş bütün çok amaçlı algoritmalar tüm Pareto optimal 

çözümlerin oluşturduğu kümeyi oluşturmayı hedeflemektedir. Bu kümedeki çoğu 

çözümün bir karar verici tarafından değerlendirildiğinde ilgi çekici bulunmaması bu 
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yaklaşımın pek faydalı olmadığını gösterebilir. Bu çalışmada, hedef kümeleri 

bulmak için, karar vericinin tercihlerini iyi bilinen bir çok amaçlı algoritma olan 

SPEA2’nin içerisine, referans noktaları ve başarı skalarlaştırma fonksiyonları 

kullanarak dahil etmekteyiz.  

 

Anahtar Kelimeler: Kümeleme, Çok Amaçlı Optimizasyon, Sezgisel Yaklaşım, 

Evrimsel Algoritma, SPEA2, Tercih Tabanlı 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

Increasing capability of computers makes it easier to store vast amounts of data in 

digital media. This technological development together with the steady preference 

for relational databases triggers an untractably rapid and immense growth in data 

accumulation in modern enterprises. This brings about the problem of extracting 

knowledge and useful information from this mass of data, where the importance of 

data mining comes forward.  

Data mining, which mainly aims to extract useful information from large data sets, is 

a growing field that often intersects with the field of operations research, and 

receives great contribution from it through formulation and solution of numerous 

data mining problems as optimization problems. Moreover, many operations 

research applications can be addressed using data mining methods. (Olafsson et al. 

2008) 

The clustering problem, which we deal with in this study, is one of the data mining 

problems that can be formulated as an optimization problem. In this chapter, we will 

define and explain the clustering problem in Section 1.1. In Section 1.2, we will 

state the challenging issues about the problem and give our motivation. 

 

1.1 Problem Definition 

The clustering problem is addressed by many disciplines from several fields, so the 

terminology used in different fields may vary.  Its applications can be found in 
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several fields such as machine learning, pattern recognition, artificial intelligence, 

web mining, text mining, image classification, genetics, biology, microbiology, 

paleontology, psychiatry, pathology, geography, and geology (Abraham et al. 2006). 

Here we start by giving the terminology that we use throughout this study. 

A data set consists of individual data points, which are also referred to as data items, 

observations, records, feature vectors, or patterns in the open literature of different 

fields. A data point is defined by its attributes in a multidimensional space. The 

number and/or the characteristics of attributes that define a data point may vary with 

different data sets. An attribute may be continuous, binary or categorical. For 

example, a point in a 2-dimensional space is defined by its two continuous attributes, 

namely x and y coordinates. To illustrate further, consider a data point which 

represents a car whose color, brand, mileage and condition of being second hand are 

of interest. This data point is defined by four attributes with different characteristics, 

which are color (categorical), brand (categorical), mileage (continuous), and 

condition of being second hand (binary, i.e., 1 if second hand, 0 if first purchase). In 

this study, we focus on data sets that consist of data points having continuous 

attributes in two dimensions. 

To give a more formal definition of the clustering problem, consider N data points 

X1… XN, the union of which comprises the whole data set D. Let any data point Xi be 

defined in an m-dimensional space. So, each Xi is defined by its m attributes, i.e., 

NiXXXX imiii ,...,1 ,,...,, 21
. Then, the aim of the clustering problem trying to 

partition D into k clusters is to form k disjoint sets C1, …, Ck, such that the union of 

these sets gives the whole data set D. 

The assumption of the clustering problem is that the data set includes hidden 

patterns of data points and the goal is to reveal those patterns as clusters by an 

appropriate approach. Unlike classification, which is also a data mining problem, no 

information about the class labels is available on any representative data point which 

can be used for learning and testing purposes. In clustering, the aim of the problem 

is to form meaningful groups from data points with unknown labels, so it is in 

general referred to as unsupervised learning.  
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The goal of the clustering problem is to put similar items in the same cluster and 

dissimilar items into different clusters according to a certain similarity measure, 

while maintaining some internal objectives such as compactness, connectivity and 

spatial separation. In other words, data points in the same cluster are desired to be at 

close similarity levels (compactness) while an acceptable level of dissimilarity is 

maintained between different clusters (separation). Also, similar or spatially 

connected data points should be in the same cluster (connectivity). 

 

1.2 Challenging Issues and Motivation 

There are some challenging issues, such as the unknown number of clusters, 

arbitrary shaped clusters, outliers, inter-cluster density differences, and density 

variation within a cluster, which make the basic clustering problem even harder. An 

illustrative example of a data set including a combination of these challenging issues 

can be found in Figure 1.1.  

 

 

Figure 1.1 An example illustrating the challenging issues in clustering problems 

 

In this section, we will explain the aforementioned challenging issues in more detail 

and give our motivation. 
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1.2.1 The Number of Clusters 

The number of clusters a given data set will be partitioned to is one of the basic, yet 

difficult to handle issues in clustering. Many traditional clustering algorithms 

assume that the number of clusters is known prior to the execution of the algorithm, 

and partition the data set into that exact number of clusters. It is obvious that, a 

priori knowledge on the number of clusters improves the performance of a clustering 

algorithm dramatically. However, such an information may not be easily available 

for all data sets. It may require expert knowledge which may be hard to obtain or it 

may simply be unavailable. Yet, even with its presence, the expert knowledge on the 

number of clusters may be inaccurate for huge data sets.  

As the sizes of the data sets of interest increase, it gets harder to extract a priori 

information on the number of clusters present in a data set. Moreover, the number of 

clusters in a data set may be subjective and may differ as the opinions of the 

decision makers differ. An idea can be to run an algorithm, which assumes the 

number of clusters to be known a priori, several times each time for a different 

number of clusters, and to apply a selection mechanism to all the generated 

solutions. However, it would be quite time consuming to try such an approach for a 

large range of the number of clusters. Therefore, it would be better for a clustering 

algorithm to be capable of discovering the number of clusters rather than using a 

given exact number during its execution time.  

In this study, we assume that the number of clusters in a data set is unknown, and 

the solutions we generate in our search can have different number of clusters.  

 

1.2.2 Arbitrary Shapes 

For data sets in two or three dimensions with data points having only continuous 

attributes, the shapes of the clusters can be identified visually once a plot of the data 

set is obtained. There are several shapes a cluster may have, most common of which 
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is spherical. In spherical shaped clusters, the dissimilarity or distance of data points 

from the data point in the center of their cluster becomes important, and we naturally 

want the data points in a cluster to be close to its center. However, considering the 

distances from a cluster center may not always yield the clusters that lie hidden 

within a data set. The clusters may have arbitrary shapes, such as elongated or spiral, 

as opposed to spherical shapes. Furthermore, in a data set, a combination of clusters 

with different shapes may exist.  

Our aim is not to limit our algorithm for finding clusters of specific shapes, and we 

claim to detect clusters with different shapes in a single data set. 

 

1.2.3 Outliers 

Similar to its definition in statistics, an outlier is called to a data point that is 

dissimilar to all of the clusters in the clustering problem. Outliers are often 

considered as separate clusters consisting of single data points. Their existence 

deteriorates the performance of most traditional clustering algorithms.  

Handling outliers is a problematic issue in clustering, since the outliers distort the 

patterns of data points in the data sets. Therefore, clustering algorithms have to be 

robust for the cases where outliers exist. For outlier detection purposes, even special 

mechanisms are proposed (Jain et al. 1999). However, it would be better to handle 

the presence of outliers by the structures of the algorithm rather than applying an 

external outlier detection mechanism in terms of maintaining a global perspective.  

In this study we treat the outliers as a part of the whole data set, and do not apply an 

additional mechanism for their detection. Yet, we still claim to detect the outliers 

present in the data sets by taking appropriate measures in our algorithm, which we 

describe in Chapter 3. 
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1.2.4 Inter-cluster Density Differences and Intra-cluster Density Variation  

Density is another problematic issue in clustering problems, which may occur in two 

ways. Inter-cluster density differences is the different densities in different clusters. 

Two different clusters may be homogenous when they are considered solely. 

However, the densities of those clusters may be different from each other, which we 

call the inter-cluster density difference. 

Intra-cluster density variation is related with the density of data points in a specific 

single cluster. Most common traditional clustering algorithms assume that the 

density of a specific cluster remains homogenous in all of its regions. However, 

inside a single cluster, more sparse and dense regions may exist without the need to 

split that cluster into smaller clusters according to the regional densities. 

In this study, we do not assume any limitation on the densities of the clusters, and 

aim to extract clusters with density differences and variations. 

1.2.5 Fuzzy vs. Crisp Clustering 

There are two different ways of clustering in terms of the assignment of data points 

to clusters. Crisp clustering assumes that the clusters are well separated, and by crisp 

clustering methods, each data point is assigned to only one cluster. However, in 

fuzzy clustering, the clusters may be overlapping which makes it hard to decide 

which cluster a data point lying in the overlapping region belongs to. Therefore, in 

fuzzy clustering, each data point has a degree of membership in each of the clusters, 

which may also be considered as the probability of being in that cluster. 

In this study, we are not interested in fuzzy clustering. We assume that the clusters 

are well separated and we do not deal with any overlapping clusters. 

 

1.2.6 Multiple Objectives and Decision Maker Preferences 

There are specific methods developed for dealing with the challenging issues 

mentioned in this section. Yet, a method performing well with a data set having a 

certain challenging issue may fail if a different challenging issue occurs. Such 
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methods often try to optimize a single objective which can reveal only a specific 

type of hidden information in the data set. For example, a method trying to minimize 

the overall deviation of within cluster distances is limited to detecting clusters of 

only spherical shapes. 

In an attempt to find compact and well-separated clusters, combining compactness 

and separation measures into a single measure, such as taking the separation-to-

compactness ratio, results in loss of information. Hence, in most of the cases, using a 

single objective is not sufficient to detect different underlying structures in the data 

sets. Thus, the current trend in the clustering literature is growing into the use of 

multiple objectives as the inadequacy of using a single objective is being understood 

better. By using multiple objectives concurrently, it is possible to account for a 

variety of tradeoffs between different objectives, which can perform better for 

different challenging issues if used separately. 

By a multiobjective approach, a good representation of the Pareto optimal set of 

solutions corresponding to the objectives used can be obtained. However, this Pareto 

optimal set may include partitions that can be uninteresting when presented to a 

decision maker. For example, using two objectives one of which tries to merge and 

the other tries to split the data points, a solution that includes all the data points in a 

single cluster can be nondominated in a multiobjective sense as well as a solution 

with all data points in different singleton clusters. Such uninteresting solutions can 

be eliminated during the execution of the algorithm if any useful information can be 

gathered from the decision maker. 

In this study, we propose an interactive multiobjective approach that can exploit the 

responses of a decision maker by simple questions, such as his/her opinion about 

two data points being in the same cluster, in order to direct the search trying to 

generate solutions that can be preferred by him/her. 

 



 

 

8 

1.3 Scope and Contribution 

In this study we propose a new algorithm for clustering data points in sets having the 

following properties. 

 Number of clusters is unknown a priori to the execution of the algorithm. 

 Clusters may have arbitrary shapes. 

 There may be density variation within a cluster. 

 There may be density differences between clusters. 

 Outliers may exist. 

 The clusters are well separated (crisp). 

The algorithm we develop is based on a well known multiobjective evolutionary 

algorithm, namely SPEA2 (Zitzler et al. 2002), which can be applied to any 

multiobjective problem with proper adjustments. The main structures of the 

evolutionary algorithm, such as the general population, archive and mating pool are 

borrowed from the original SPEA2. By defining our own fitness functions and 

introducing an original way of including decision maker’s preferences throughout 

the execution, we offer an interactive preference based multiobjective evolutionary 

algorithm for the clustering problem.  
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CHAPTER 2  

 

 

LITERATURE REVIEW 

 

 

 

Clustering is a problem addressed by a variety of disciplines, making it hard to 

maintain a common terminology in the vast literature of algorithms developed. 

Stating the difficulty of constructing a truly comprehensive survey due to the sheer 

mass of literature, Jain et al. (1999) review the concepts and techniques of clustering 

related with statistics and decision theory. A similar perspective and perception is 

adopted in the outstanding surveys of Berkhin (2001) and Xu and Wunsch (2005). 

Following the classification schemes and ideas in these surveys, we will describe 

traditional clustering algorithms in Section 2.1. Then, we will give some 

metaheuristic applications to the clustering problem in Section 2.2. In Section 2.3, 

we will focus on multiobjective clustering, specifically multiobjective evolutionary 

algorithms, which aim to provide the whole set of nondominated partitions, or the 

best partition determined according to a certain selection scheme among that set. 

Finally, in Section 2.4, we will briefly mention preference based multiobjective 

evolutionary algorithms. 

 

2.1 Traditional Clustering Algorithms 

Jain et al. (1999), Berkhin (2001), and Xu and Wunsch (2005) provide extensive 

surveys and reviews in the area of clustering algorithms. In a broad view, they split 

the techniques used for clustering into two, namely hierarchical and partitional 

according to the output provided by the technique. Partitional clustering techniques 

yield a single partition or a set of different partitions of the data set. On the other 
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hand, hierarchical clustering techniques end up with a tree-like clustering structure 

occasionally referred to as a dendrogram, which represents the nested grouping of 

data points at different similarity levels. The root node of the dendrogram is the 

whole data set and each leaf is a data point. The intermediate nodes can be 

interpreted as connections between data points having a certain similarity. Then, 

different partitions from a dendrogram can be obtained by slicing it at different 

similarity levels. Hierarchical methods can be classified as either agglomerative or 

divisive according to the way how the output is constructed. In agglomerative 

methods, each data point starts as a singleton cluster. They are merged according to 

a chosen measure until whole data points are in the same cluster. Divisive methods 

behave in the opposite way, starting from a single cluster that contains all data 

points. Clusters are successively divided into smaller clusters until all data points 

become singleton clusters. Most hierarchical agglomerative clustering algorithms 

use the idea of linkage metrics which can be referred to as inter-cluster distances. 

Single-link, complete-link and average-link are the most common linkage metrics 

(Murtagh 1985, Olson 1995). Examples of usages of these metrics in hierarchical 

clustering algorithms can be found in SLINK (Sibson 1973), Voorhees’ method 

(Voorhees 1986) and CLINK (Defays 1977). Among the hierarchical agglomerative 

clustering algorithms, the single-link (SL) algorithms are most common. In SL 

algorithms, clusters are merged iteratively by their closest points in a similar way to 

minimum spanning tree construction. 

Classical hierarchical clustering algorithms are disadvantageous for lacking 

robustness and being sensitive to noise and outliers. Clusters formed by these 

algorithms that use the notion of linkage metrics are known to be spherical, thus 

clusters of arbitrary shapes are not caught. These algorithms are also criticized for 

being irrevocable in the sense that it is not possible to correct errors made in 

previous iterations. Once mistakenly placed in a wrong cluster, a data point remains 

there throughout the run of the algorithm. Excessive memory requirement is another 

disadvantage of classical hierarchical clustering algorithms. (Xu and Wunsch 2005, 

Berkhin 2001) 
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BIRCH (Zhang et al. 1996, 1997) is another important hierarchical clustering 

algorithm with its strength in detecting outliers and dealing with large data sets. 

CURE, proposed by Guha et al. (1998), utilizes the representatives’ aggregate 

linkage metric instead of the single-link and average-link metrics. By choosing the 

cluster representatives spread among the boundaries of the clusters rather than the 

centroids, CURE allows clusters of arbitrary shapes and different sizes to be 

revealed. It is also known to be insensitive to outliers and can handle large data sets. 

Guha et al. (1999) extend their existing algorithm CURE to cases where categorical 

attributes also exist and propose ROCK. Karypis et al. (1999a) propose 

CHAMELEON which relies on graph partitioning and involves the idea of a 

connectivity graph corresponding to the k-nearest neighbor subgraph. The algorithm 

is proven to detect clusters of arbitrary shapes, different sizes and densities. 

Among the partitional clustering techniques the k-means algorithm (Hartigan 1975, 

Hartigan and Wong 1979) is the most popular with its applications in both industry 

and science. The k-means algorithm is a special case of k-medoid methods where 

the cluster is represented by one of its points. In the k-means algorithm, the clusters 

are represented by their centroids and data points are iteratively assigned to their 

nearest clusters with the aim of optimizing a certain criterion, usually chosen as the 

sum of squares of errors. Since squares of errors are computed with respect to the 

cluster centroids, the k-means algorithm tends to provide spherical clusters. 

Moreover, the original k-means algorithm starts with the initialization of k clusters, 

either randomly or by a special procedure. This makes the final output very 

dependent to the initial clusters generated, which can be stated as another 

disadvantage of the algorithm in addition to its lack of capability of detecting 

arbitrary shaped clusters. Another problematic issue is about the number of clusters. 

Usually, the determination of the number of clusters, k, requires expert knowledge, 

which is highly unlikely to exist for most data sets. In such cases, the algorithm is 

run many times for different values of k, which is computationally inefficient. Also, 

the algorithm is known to be incapable of detecting outliers. (Berkhin 2001)  
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Density based clustering methods are developed from the concepts of density, 

connectivity and boundary which are closely related with a data point’s nearest 

neighbors (Berkhin 2001). Thus, it is possible to find clusters of arbitrary shapes 

using density based algorithms. Moreover, due to the nature of the algorithms, 

outliers can be detected easily. However, density variation within clusters still 

remains problematic although density differences between clusters can be detected. 

Well known density based algorithms include DBSCAN (Ester et al. 1996), 

GDBSCAN (Sander et al. 1998), OPTICS (Ankerst et al. 1999), DBCLASD (Xu et 

al. 1998) and DENCLUE (Hinneburg and Keim 1998).  

All the mentioned traditional clustering algorithms have strong points and 

weaknesses depending on both the underlying assumptions of the algorithm and the 

structure of the data set. To the best of our knowledge, no algorithm has been proven 

to be successful on all types of data sets. 

 

2.2 Metaheuristic Clustering 

Clustering problem can be regarded as a category of combinatorial optimization 

problems. Even for small data sets, it is computationally expensive to consider all 

possible assignments. The search space grows exponentially as the size of the data 

set increases, so, simple heuristic methods can easily get stuck in local optima. 

Therefore, metaheuristics have been widely applied to the clustering problem with 

the purpose of exploring the solution space more efficiently and finding optimal or 

near optimal partitions. In the literature, there are examples of both direct 

metaheuristic approaches to clustering and hybrid approaches of metaheuristics with 

traditional algorithms. Several applications of metaheuristics on clustering can be 

found in the comprehensive reviews of Rayward-Smith (2005) and Das et al. (2009). 

Babu and Murty (1993) try to improve the performance of the original k-means 

algorithm by finding near optimal seeds at the initialization step, since the final 

output is highly dependent on the generated initial cluster centroids. They also apply 

simulated annealing for the same purpose in Babu and Murty (1994). For small data 
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sets, Selim and Al-Sultan (1991) propose a simulated annealing algorithm and Al-

Sultan (1995) proposes a tabu search algorithm. A genetic algorithm (Maulik and 

Bandyopadhyay 2000) and ant colony optimization (Kanade and Hall 2004) have 

been applied to find cluster centroids. There are other ant colony optimization 

applications for clustering in Lumer and Faieta (1994), Monmarche (1999), Chu et 

al. (2004) and Handl et al. (2003). In Handl et al. (2003), the number of clusters is 

automatically determined within the algorithm. Krishna and Murty (1999) and 

Bandyopadhyay and Maulik (2002) both use hybrid genetic algorithms with k-

means for clustering. Results show that genetic algorithms have been very useful for 

improving the performance of k-means algorithms (Xu and Wunsch 2005, Berkhin 

2001).  

Among all metaheuristics, evolutionary algorithms are the most common ones used 

for clustering problems. In a recent survey, Hrushcka et al. (2009) provide a 

taxonomy of evolutionary algorithms for clustering in terms of important aspects of 

the problem and the specifications of the algorithm components. Mainly, the 

algorithms are categorized by their capability of handling variable number of 

clusters, evolutionary operators, solution representations, fitness functions and 

initialization procedures.  

 

2.3 Multiobjective Clustering 

Without proper modification for a given specific data set, current metaheuristic 

applications that use single objectives have limited capabilities.  As the objective to 

be minimized, most of them use within cluster variance, and they take Euclidean 

distance as the dissimilarity measure. As a consequence, they are unable to capture 

arbitrary shaped clusters in the data sets and result in spherical clusters. Also, 

possible density variations within clusters are ignored, and the resulting clusters are 

homogeneous. In addition to that, usually, the number of clusters are assumed to be 

known a priori and taken as fixed, ignoring partitions with different number of 

clusters. Since the characteristics of data sets vary, robust results cannot be obtained 

from these algorithms. In addition, a data set may be challenging in more than one 
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aspect, i.e., it may include arbitrary shaped clusters with different densities, and the 

density within a cluster may also vary. Each challenging issue favors one algorithm 

over another. Thus, such situations are impossible to be handled using a single 

objective.  

In clustering ensemble methods, good parts of the partitions obtained by running 

different algorithms are tried to be combined in a final partition that is better than the 

original partitions in terms of a defined validity criterion (Hruschka et al. 2009). In 

other words, clustering ensembles need an initial set of partitions provided by 

several runs of an algorithm or set of algorithms, to be combined into a single 

partition (Handl and Knowles 2007). Such methods ignore the tradeoffs between the 

objectives of the individual algorithms, since each algorithm tries to optimize its 

own objective. However, the decision maker should be provided with a set of 

solutions that reflects the tradeoffs between the objectives, where multiobjective 

clustering comes forward. 

 

 2.3.1 Objectives, Validity Indices 

Traditional algorithms and metaheuristics try to find the best possible partitioning of 

a given data set according to a performance measure that is hoped to define the 

quality of a given partition. Generally, these performance measures can be referred 

to as validity indices. Validity indices can be categorized into two: internal indices 

and external indices. External indices use a reference or a prespecified partition to 

validate a given clustering solution. Rand, Adjusted-Rand (Rand 1971) and Jaccard 

indices can be counted in this category. On the other hand, internal indices do not 

need a reference partition and are directly driven from the partition at hand and the 

structure of the data set (Xu and Wunsch 2005). Such measures may also behave as 

the objectives of an algorithm when the algorithm generates a partition trying to 

optimize the value of these measures.  

Some widely used objectives are compactness, connectivity and separation. As far as 

compactness is concerned, less variation between data points in the same cluster is 
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desirable. There are several validity indices, and other measures suggested to 

quantify the compactness of a clustering solution. Average distance between data 

points of a cluster and cluster center (DB index, Davies and Bouldin, 1979), total 

variance of distances between data points and cluster center (CH index, Calinski and 

Harabasz, 1974), total distance between data points and cluster center (I Index) are 

well known compactness measures that tend to provide spherical clusters. In order to 

detect arbitrary shaped clusters, graph theoretic measures are used as the 

compactness objective. Yousri et al. (2008) propose to use the standard deviation of 

the edges of a minimum spanning tree constructed in a cluster. Similarly, Pal and 

Biswas (1999) suggest taking the maximum edge in a minimum spanning tree, 

relative neighborhood graph or a Gabriel graph constructed for a cluster. Such 

measures are known to be successful as the construction of the corresponding 

structures is closely parallel with the concept of clustering. 

Connectivity is related with placing neighboring points into the same cluster. Thus, 

clusters of arbitrary and mostly elongated shapes are easily detected with this 

objective. In their multiobjective approach, Handl and Knowles (2007) use 

connectivity as one of the objectives. Their aim is to penalize the neighboring points 

put in different clusters by minimizing the connectivity function they define as 

follows. 

otherwise      0

clustersdifferent in  are  and  if     
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         (1) 

In the above function, N is the total number of data points, H is a parameter defining 

the maximum neighborhood size, and nnij indicates the j
th

 nearest neighbor of point 

i.  

The goal of separation is to keep an acceptable dissimilarity level between any two 

different clusters. Most common separation measures are single link (minimum 

distance between data points from different clusters), complete link (maximum 
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distance between data points from different clusters) and average link (average 

distance between data points from different clusters) separation. 

 

 2.3.2 Multiobjective Evolutionary Clustering Algorithms 

Most of the multiobjective approaches to the clustering problem make use of 

evolutionary algorithms. Ripon et al. (2006) use Variable-length Real Jumping 

Genes Genetic Algorithm (VRJGGA) to identify the non-dominated solutions. They 

use cosine symmetry for intra-cluster entropy and Euclidean distance for inter-

cluster distance. As the first objective, they maximize overall intra-cluster entropy 

which can be referred to as a compactness measure. The second objective is a 

separation objective that minimizes average separated distance between all cluster 

centers. They evaluate nondominated solutions by classification accuracy, 

generalized Dunn's index, overall deviation as well as the values of the objectives 

used in optimization. The algorithm does not need the number of clusters to be 

known a priori. 

Handl and Knowles (2004a) propose VIENNA (Voronoi Initialised Evolutionary 

Nearest-Neighbor Algorithm) which uses the elitist multiobjective evolutionary 

algorithm PESA-II to find a set of Pareto optimal solutions for a predetermined 

number of clusters. They use Euclidean distance for synthetic data sets, cosine 

symmetry for real data sets. As the compactness objective, they minimize overall 

intra-cluster variance as in the k-means algorithms. In order to detect clusters of 

arbitrary shape, they introduce their second objective which is a measure of 

connectivity as given in equation (1). Solutions that are Pareto optimal at the end of 

the run are evaluated according to the F-measure, a measure used to define the 

quality of partitions. However, their algorithm needs the number of clusters to be 

given a priori. 

Handl and Knowles (2004b, 2007) extend their work in Handl and Knowles (2004a) 

and propose Multi-Objective Clustering with automatic k determination (MOCK) so 

that the number of clusters can vary throughout the run. The result of their work is a 



 

 

17 

Pareto optimal set consisting of solutions corresponding to different tradeoffs as well 

as different number of clusters. They also propose a way of selecting a single 

solution from the resulting Pareto optimal set using control fronts, an idea inspired 

by Gap Statistic (Tibshirani et al. 2001). The objectives used in these studies are the 

same as those in Handl and Knowles (2004a), which are minimizing compactness 

defined as overall intra-cluster variance and minimizing connectivity defined as in 

equation (1). The resulting Pareto optimal set and the solution selected among the 

solutions in that set are evaluated using the adjusted Rand Index. 

Chen and Wang (2005) use NSGA-II to optimize two objectives: minimizing 

compactness measured as overall intra-cluster deviation and maximizing 

connectivity measured similar to equation (1).  Instead of penalizing neighboring 

data points put in different clusters, Chen and Wang (2005) propose to award the 

neighboring data points put in the same cluster. To evaluate the solutions, they use 

the F-measure. Their algorithm does not need an a priori determined number of 

clusters. 

Won et al. (2008), Du et al. (2005), Korkmaz et al. (2006) and Özyer et al. (2004) 

use overall intra-cluster deviation as a compactness objective to be minimized. As a 

second objective they propose to minimize the number of clusters, k. Won et al. 

(2008) use a hybrid strategy, including a k-means algorithm for fine tuning at the 

end. Therefore, their partitions are limited to clusters of spherical shape. Du et al. 

(2005) propose Niched Pareto Genetic Algorithm, NPGA (Horn et al. 1994), with 

linked-list based chromosome encoding. Their solutions are again limited to 

partitions consisting of spherical clusters. They propose to evaluate the final 

solutions by the amount of leap in overall intra-cluster variance with respect to the 

change in k to select a single solution. Korkmaz et al. (2006) extend the work in Du 

et al. (2005) by using an improved linked-list based chromosome encoding to obtain 

a one-to-one mapping between the chromosome representation and the 

corresponding actual partitioning. In this way, they reduce the redundancy issues, 

which results in more efficient exploration of the solution space. Özyer et al. (2004) 
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apply multiobjective genetic k-means algorithm (MOKGA), which combines the 

original k-means algorithm and NPGA to gene expression data.  

Law et al. (2004) propose a two-step process which includes detection of clusters 

according to a set of candidate objectives in the first step, and the integration of 

objectives in a goodness function to give the final partitioning using re-sampling 

techniques in the second step. Their approach lacks the competency to detect the 

tradeoff between the objectives in the first step. Yet, they try to consider the tradeoff 

between objectives in the second step. 

A summary of the algorithms mentioned here is presented in Table 2.1. Most 

frequently used objectives are compactness (COM) measured as overall intra-cluster 

distance variation, connectivity (CON) as defined in equation (1) or similar to 

equation (1), and the number of clusters (NUMC). For the number of clusters 

column, “K” indicates that the number of clusters is known a priori and is fixed. On 

the other hand, algorithms having a “U” in this column are able to generate 

partitions having an unknown number of clusters throughout the run. “A” in the 

shape column is an abbreviation for arbitrary, which indicates the algorithm’s 

capability to detect clusters of arbitrary shape. So, algorithms having an only “S” in 

the shape column are restricted to finding partitions having only spherical clusters.  
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Table 2.1 A review of multiobjective evolutionary algorithms for clustering 

Author(s) and Year 

Objectives # of 

Clusters Shape Approach 1 2 

Ripon et al. (2006) 

Max overall 

intra-cluster 

entropy 

Min average 

distance 

between 

cluster 

centers 

U S VRJGGA 

Handl and Knowles 

(2004a) 
Min COM Min CON K S, A VIENNA 

Handl and Knowles 

(2004b, 2007) 
Min COM Min CON U S, A MOCK 

Chen and Wang 

(2005) 
Min COM Max CON U S, A NSGA-II 

Won et al. (2008) Min COM Min NUMC U S 

Hybrid strategy with 

k-means for fine 

tuning 

Du et al. (2005) Min COM Min NUMC U S 

NPGA with linked-

list based 

chromosome 

encoding 

Korkmaz et al. (2006) Min COM Min NUMC U S 

NPGA with an 

improved linked-list 

based chromosome 

encoding 

Özyer et al. (2004) Min COM Min NUMC U S MOKGA 

 

All the algorithms mentioned here generate the whole Pareto optimal set. However 

this may not be a good idea when the solutions in this set are considered as 

partitions. First of all, it is computationally hard to generate all the nondominated 

solutions. Secondly, a majority of the solutions in this set may be uninteresting when 

presented to a decision maker. A few algorithms propose a selection mechanism, yet 

they still apply this mechanism to the whole set of nondominated solutions they 

found. It would be a better idea to incorporate the preferences of a decision maker in 

the optimization process so that the nondominated solutions favored by him/her can 

be generated instead of the whole set of nondominated solutions. To the best of our 

knowledge, until this time, there has been no application of a preference based 

multiobjective evolutionary algorithm for the clustering problem. 
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2.4 Preference Based Multiobjective Evolutionary Algorithms 

Multiobjective evolutionary algorithms aim to generate a good representation of the 

whole Pareto optimal set by generating and keeping a well distributed set of 

nondominated solutions, construction of which is not straightforward. Special 

mechanisms are needed to direct the search while assuring both convergence and 

diversity. However, many solutions in this set may not be desired by the decision 

maker although they are equally important in a pure multiobjective sense, since they 

are all nondominated. It also requires more execution time to keep the diversity and 

spread among the representative Pareto optimal set. Therefore it may not be 

necessary to generate the whole Pareto optimal set, especially when the decision 

maker can provide information about his/her preferences. 

An early survey on handling decision maker preferences can be found in Coello 

(2000). The instant a decision maker provides his/her preference information is one 

important aspect of preference based evolutionary algorithms. Depending on when 

the preference information is obtained, the ways a decision maker can express 

his/her preferences is classified into three: a priori, a posteriori and interactively. 

Another classification can be made according to the characteristics of the preference 

information provided by the decision maker. He/she can give a full preference 

information such as the desired objective function levels. Also he can implicitly 

provide an insight about his/her preferences i.e., by comparing two solutions, where 

the preference information obtained in this case would be partial (Branke, 2008). 

Whether full or partial, the preference information provided by the decision maker 

should be incorporated into the optimization process by an appropriate technique. 

Branke (2008) provides an invaluable review for such techniques and also provides 

a classification based on the methods used in these techniques. Krettek et al. (2009) 

propose an interactive way of incorporating decision maker preferences into a 

multiobjective evolutionary algorithm. At each interaction, the decision maker is 

asked to compare a pair of two solutions in terms of comparability and quality, and 

his/her answers are used to induce a ranking on the population. Deb (1999) 

introduces bias among the solutions by using weights in a sharing function so that 
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solutions from the preferred regions of the Pareto optimal set are generated and 

carried through the generations. Branke et al. (2001) alter the region dominated by a 

solution by changing the angle of domination from a right angle to a wider angle 

using tradeoff functions. In this way, according to the preference information 

obtained from the decision maker, originally nondominated solutions may become 

dominated. However, this approach is limited to problems with two objectives, and 

it cannot be easily generalized to problems with more objectives. Deb et al. (2006), 

Deb and Kumar (2007a), and Deb and Kumar (2007b) use reference points and 

achievement scalarizing functions, which are ideas originated from the work by 

Wierzbicki (1980) to direct the evolutionary search into regions preferred by the 

decision maker. Molina et al. (2009) modify the definition of domination and 

propose g-dominance by which an originally dominated solution can actually be 

preferred to the solution that dominates it. Thiele et al. (2007) modify the 

indicator in Indicator Based Evolutionary Algorithm (IBEA) proposed by Zitzler 

and Kuenzli (2004). They weight it with an achievement scalarizing function and a 

reference point given by the decision maker, and propose the Preference Based 

Evolutionary Algorithm, PBEA. 

From the approaches used in the aforementioned algorithms, it is obvious that 

reference points and achievement scalarizing functions play a crucial role in 

incorporating decision maker preferences in multiobjective evolutionary algorithms, 

as they also do in our proposed algorithm. Therefore, more detailed explanation 

about them will be given in Section 3, before describing our algorithm. 
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CHAPTER 3  

 

 

PROPOSED ALGORITHM 

 

 

 

In this chapter, we will begin by introducing a theoretical background that forms the 

backbone of our algorithm in Section 3.1. In Section 3.2, we will give the notation 

used for the clustering problem and define our objectives that we use in our 

algorithm. After giving the notation used in the algorithm in Section 3.3, we will 

give an overview of our proposed algorithm in Section 3.4, and explain it in detail in 

Section 3.5. 

 

3.1 Theoretical Background 

Our algorithm is based on the Strength Pareto Evolutionary Algorithm (SPEA2) 

(Zitzler et al. 2002). In this section, we first discuss the important aspects of the 

original SPEA2 algorithm. Then, we explain the idea of reference points and 

achievement scalarizing functions. 

 

3.1.1 The Strength Pareto Evolutionary Algorithm 2 (SPEA2) 

SPEA2 (Zitzler et al. 2002) is an improved version of the Strength Pareto 

Evolutionary Algorithm (SPEA) proposed by Zitzler and Thiele (1999). SPEA2 

operates with a regular population and an external population often referred to as the 

archive. In any generation, individuals in the current regular population and the 

archive from the previous generation are evaluated together. Then a new archive is 
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selected from the union of individuals in the current population and the archive of 

the previous generation. In contrast to SPEA, archive size is fixed in SPEA2, so 

dominated solutions may also enter the archive. If the number of nondominated 

solutions candidate to enter the archive exceeds the archive size, then a truncation 

method is applied to reduce this number to the size of the archive. This method also 

prevents the removal of boundary solutions from the archive so that a good spread of 

nondominated solutions can be maintained. On the other hand, if the number of 

nondominated solutions entering the archive is less than the archive size, the 

remaining portion of the archive is filled with dominated individuals according to 

their fitness values. From the archive selected, a mating pool is constructed and the 

offsprings generated from this mating pool are copied to the next population by 

replacing the old population.  

When compared to SPEA, fitness assignment scheme is improved in SPEA2 by 

taking into account the number of individuals an individual dominates or is 

dominated by. Fitness of an individual is the sum of two parts, namely the raw 

fitness and the density. Raw fitness of an individual is determined by the strengths 

of its dominators, where the strength of an individual is defined as the number of 

individuals it dominates from the union of the population at that generation and the 

archive of the previous generation. So, the raw fitness value of any nondominated 

solution is equal to zero. Density of an individual is calculated by a decreasing 

function of its distance to its k
th

 nearest neighbor, where k is a parameter fixed 

before the execution of the algorithm. Density is arranged in a way that it is always 

greater than zero and less than one.  

 

3.1.2 Reference Points and Achievement Scalarizing Functions 

Achievement scalarizing functions (ASF) are first introduced by Wierzbicki (1980). 

They are mostly used in reference point methods. In such methods, there exists the 

concept of a reference point, which can be interpreted as the levels in the objectives 

that seem desirable for the decision maker. Once the objective values of the 

reference point are specified by the decision maker, ASFs can be used to evaluate 
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the feasible solutions at hand according to their proximities to the given reference 

point. For a given reference point, an ASF simply tries to find the maximum 

weighted difference among all the corresponding pairs of objective values between 

the reference point and any feasible solution. To illustrate, let g be the reference 

point having an objective value of gi for the i
th

 objective. Assuming that all 

objectives are to be minimized and using a weight of wi for scalarizing objective i,  

the achievement scalarizing function value asfp of a solution p with objective value 

of fi for the i
th

 objective is defined as )(max iii
i

p gfwasf . Then, the solution 

having the minimum asf value among all the solutions in the feasible region will be 

nondominated and it can be referred to as the closest solution on the efficient 

frontier to the reference point with an importance of wi tied for objective i. Thus, 

solving the achievement scalarizing problem which aims to find the minimum of 

these asf values among the set of all feasible solutions at hand can be interpreted as 

finding the reflection of the reference point on that set, which can be visualized in 

Figure 3.1. 

 

Figure 3.1 Visualization of achievement scalarizing functions 

 

In Figure 3.1, solution p is the reflection of the reference point g on the efficient 

frontier for weights of w1 and w2. Note that, either by using different weights or 
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using another reference point with the same weights, solutions q and r can also be 

the reflections on the efficient frontier. 

 

3.2 Notation and Objectives for the Clustering Problem 

We use the following notation to characterize a clustering problem. 

D Set of all data points. 

N Number of data points in set D. 

i, j Indices for data points, Nji ,,1,  . 

ijd  Euclidean distance between data points i and j. 

iNN  Ordered set of nearest neighbors of data point i. 

H Number of nearest neighbors in
iNN , given for all data points. 

iden  Density of data point i defined as the length of the longest edge in the 

minimum spanning tree constructed for the set NNi for a given H. 

K Number of clusters found in a solution. 

k, l Indices for clusters, Klk ,,1,  . 

Ck Set of data points in cluster k, Kk ,,1 . 

kcom  Compactness of cluster k, which is the length of the longest edge in the 

minimum spanning tree constructed for cluster k. 

klsep  Single link separation of clusters k and l defined as follows. 

Let i and j be two data points from clusters k and l, respectively, such that 

they are the closest points to each other in these two clusters. Then, 

.ijkl dsep  

Among the above, only the neighborhood size H is a problem parameter that needs 

to be determined externally. 

In our multiobjective approach, we use two objectives defined as below for the 

clustering problem. 
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1. Minimize compactness fcom, where }{max k
k

comfcom . 

2. Maximize separation for which two different measures are used. 

2.1. From the decision maker’s perspective: 

 }{min kl
lk

sepfsep  

2.2. In the algorithm: 

Let i and j be the two data points from clusters k and l, respectively, that 

satisfy the fsep definition given in 2.1 above. 
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This “adjusted” separation measure is used to be able to detect the density 

differences in the data set and to “inflate” the separation measure, when it 

is defined between particularly dense regions of the two clusters. 

 

3.3 Notation and Definitions for the Evolutionary Algorithm 

We use the following notation in describing our proposed evolutionary algorithm. 

Pt Set of solutions in the population in generation t. 

P
size

 Number of solutions in the population . 

At Set of solutions in the archive in generation t. 

A
size

 Number of solutions in the archive. 

A
mult

 Multiplier to determine the portion of the archive that will be allocated to 

solutions preferred by the decision maker. 

It The incumbent solution in generation t.  

ISt The set of interesting solutions in generation t.  

MPt Set of solutions in the mating pool in generation t. 

MP
size

 Number of solutions in the mating pool. 
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p, q Indices for solutions. 

fcomp Compactness objective value for solution p. 

fasepp Adjusted separation objective value for solution p. 

gcom Compactness objective value of the given reference point. 

gasep Adjusted separation objective value of the given reference point. 

w
com

 Weight used in scalarizing the compactness objective. 

w
asep

 Weight used in scalarizing the adjusted separation objective. 

asfp Achievement scalarazing function value of solution p. 

 )}(),(max{ p

asep

p

com

p fasepgasepwgcomfcomwasf  

     )()( pp fasepgasepgcomfcom , 

where 001.0,
1

min
maxd

, and dmax is the maximum distance between 

all data point pairs. 

Sp  Strength of solution p defined as the number of solutions dominated by 

solution p. 

FRp Raw fitness of solution p (the smaller the better). 

APq
pq

qp SFR


, where pq   indicates that solution q dominates solution p. 

Op  Minimum rank of solution p in terms of fcomp and fsepp in the population. 

Solutions in set P are once sorted in nondecreasing order of fcomp and 

once in nonincreasing order of fasepp. Between the two ranks of solution p 

in these sortings, the smaller one is taken as Op. 

FOp Objective fitness (the smaller the better) of solution p. 

 
1sizesize

p

pp
AP

O
FRFO . 

Cp Crowding distance of solution p. 

 
minmax

)1()1(

minmax

)1()1(

fasepfasep

fasepfasep

fcomfcom

fcomfcom
C

pppp

p , 

where subscripts in parentheses indicate that compactness values of 

solutions in set P are sorted in nondecreasing order, separation values in 

nonincreasing order. 
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Terms in the denominator are the maximum and the minimum 

compactness and separation values in the population.   

FDp  Crowding distance fitness (the smaller the better) of solution p defined as 

1

1

p

pp
C

FRFD . 

FAp  Achievement scalarizing fitness (the smaller the better) of solution p 

defined as 

 |} and :{| pqp asfasfAPqqFA , where ||  indicates the 

cardinality of the set. 

mprob Mutation probability for each gene of each offspring. 

 

3.4 Overview of the Proposed Algorithm: Interactive Preference Based 

Multiobjective Evolutionary Clustering (IP-MOEC) 

We modify some parts of the original SPEA2 by introducing a reference point 

approach together with the notion of achievement scalarizing function, as suggested 

in Wierzbicki (1980). Besides, as another addition to the original SPEA2, we 

incorporate the preferences of the decision maker in the optimization process 

interactively in order to direct our search toward solutions preferred by him/her, 

rather than generating the whole Pareto optimal set. Also, the crowding distance in 

NSGA II (Deb et al. 2002) is used as proposed in Karasakal and Silav (2010) for 

truncation of the archive.  

Below is a brief overview of our proposed evolutionary algorithm. In the algorithm, 

there is a regular internal population used for general purposes and an external 

archive that helps to maintain elitism. Preferences of the decision maker are 

incorporated into the algorithm directly in the interaction phase and implicitly in the 

selection phase.  
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Phase 0.  “Initialization” 

Initial population generation and creation of the initial empty archive. 

Initialization of the reference point by assigning worst possible values to its 

objectives. 

Phase 1. “Union and Evaluation” 

Union of the population and the archive and evaluation of  the individuals in 

the union. 

Phase 2. “Interaction” 

Interaction with the decision maker if certain conditions are satisfied and 

making the necessary changes. 

Phase 3. “Selection” 

Archive selection from the union. 

Phase 4. “Evolution” 

Construction of the the mating pool from the new archive and application of 

genetic operators to the mating pool to generate the offspring. Setting the 

new population and restarting Phase 1. 

The overview of the algorithm presented above is simple and can be explained under 

four main headings, namely Union and Evaluation, Interaction, Selection and 

Evolution with an additional step of Initialization at the beginning. Here we will 

give a more thorough explanation of the algorithm by providing the details of these 

phases. 
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Step 0. Generate the initial population of size P
size

 randomly and put in set P1. 

Set A
size

 = P
size

/2. Set A
mult

 = 1. 

Create empty archive set A0 of size A
size

.  

 Set gcom = 0, gasep = dmax, where dmax is the longest distance between all 

pairs of points in set D. 

 Set generation count t = 1. 

 

Step 1.  Calculate asfp, Sp, FRp, and FAp for each solution p in set
1tt AP . Find the 

solution q having the smallest asf value. If no information is available about 

the data point pairs that determine the separation and compactness of 

solution q, interact with the decision maker. According to his/her responses, 

update the reference point, the incumbent solution and the set of interesting 

solutions if necessary. If the reference point is changed for the first time, set 

A
mult

 = 0.5. 

Step 2. Find the number of non-dominated solutions #nondominated in 
1tt AP .  

IF #nondominated < multsize AA  

Calculate FOp for each solution p in 1tt AP . Select the best 

multsize AA solutions in terms of FOp values and put them in At. (All 

nondominated solutions are included in At). 

ELSE (#nondominated ≥ multsize AA ) 

Calculate FDp for each solution p in 1tt AP . Select the best 

multsize AA solutions in terms of FDp values and put them in At. Find the 

solution q having the smallest FD value. If no information is available 

about the data point pairs that determine the separation and compactness of 

solution q, interact with the decision maker. According to his/her responses, 

update the reference point, the incumbent solution and the set of interesting 

solutions if necessary. If the reference point is changed for the first time, set 

A
mult

 = 0.5. 

END IF 
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IF At has not reached size A
size

 

From the solutions in 
ttt AAP 1
, select the best solutions in terms of  

FAp values and put them in At until At has size A
size

. 

END IF 

Step 3. Duplicate each solution in At once and construct the mating pool MPt of 

size MP
size

. Perform uniform crossover on the mating pool, apply mutation 

to the generated offspring and set them as the new population Pt+1. If the 

stopping condition is not satisfied, then set t = t + 1 and go to Step 1. 

 

3.5 Details of the Algorithm 

In this section, the procedures mentioned in the overview of the algorithm and 

additional structures used in the algorithm will be explained further in detail. 

 

3.5.1 Solution Representation 

Solution representation is an important issue in multiobjective evolutionary 

algorithms for clustering problems. Several different coding schemes are proposed 

in the literature. Hruschka et al. (2009) give a classification of the coding schemes in 

the open literature in terms of their various aspects and provide a comprehensive 

review stating their strengths and weaknesses.  

In our algorithm, edge based encoding is used to represent the solutions. Each 

solution is represented as a chromosome of N genes. Each gene indicates a link 

between two data points represented by its value and its index, implying that those 

two data points are in the same cluster in that particular solution. To illustrate, 

consider the following example with seven data points and an arbitrary solution 

given in Figure 3.2. 

1 3 7 4 6 5 1 

 
Figure 3.2 Chromosome representation of an arbitrary solution  
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In this solution, the first gene indicates a link from data point 1 to itself. Similarly 

data point 2 is linked with 3, 3 is linked with 7, and so on. Links between data points 

can be revealed with a simple decoding procedure as proposed in Handl and 

Knowles (2007), and it can be completed in linear time. Once all the links are 

revealed, actual clusters can be observed. The visualization of the partitioning for 

this example can be found in Figure 3.3. 

 

 

Figure 3.3 Actual partitioning of the example representation 

 

It can be seen from the figure that the solution represented by the provided example 

chromosome actually corresponds to a clustering solution with K = 3, and the three 

clusters are }6{},5,3{},7,4,2,1{ 321 CCC . 

 

3.5.2 Initialization 

Generation of the initial population is another aspect that has been widely studied in 

evolutionary algorithms for clustering. The success of the technique used to generate 

the individuals in the initial population depends on the selected representation 

scheme and how the objectives are measured. In our algorithm, no special technique 

is used for initial population generation. The individuals in the initial population are 

generated randomly, simply by assigning a random value for each gene in every 

individual.  
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The initialization of the reference point is done by assigning the worst possible 

values for each objective. At the beginning of the algorithm, we do not have any 

information about the preferences of the decision maker, so the reference point 

cannot reflect his/her preferences. Because of this reason, A
mult

 is initialized to 1, 

meaning that all the archive is filled according to FO and FD values and no portion 

is allocated to solutions having good FA values. According to the responses of the 

decision maker in the interaction steps, the reference point is approximated and it 

starts affecting the direction of the search. 

 

3.5.3 Evaluation 

In the union and evaluation phase of the algorithm, the population at that generation 

is united with the archive from the previous generation first, and then, the solutions 

in the union are evaluated together. The evaluation is mainly the calculation of the 

strengths, achievement scalarizing function values and the necessary fitness values 

of the solutions.  

Strength and raw fitness definitions are directly taken from the original SPEA2 

algorithm. The strength, Sp, of solution p in the union is found by counting the 

number of solutions in the union dominated by p. Hence, a solution’s strength 

increases as it dominates more solutions. On the other hand, raw fitness FRp of a 

solution p depends on the sum of the strengths of its dominators. Therefore FRp may 

increase rapidly if the strength values of its dominators are large, and unlike the 

strength, it is better to have a smaller FR value. For nondominated solutions, FR 

values are simply zero. 

Before the calculation of other fitness values, the number of nondominated 

solutions, #nondominated, in the union is found, since reserved separate portions of 

the archive which will be filled according to different fitness types depend on this 

number. If #nondominated is greater than multsize AA , it means that a truncation is 

needed to reduce this number to available space in the archive, which is multsize AA . 

Density fitness FD, that uses the crowding distance idea in NSGA II (Deb et al. 
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2002) is used in truncation as proposed in Karasakal and Silav (2010). By using FD, 

the nondominated solutions in relatively less dense regions of the Pareto optimal 

front are promoted. On the other hand, if #nondominated is less than multsize AA , 

then the available space in the archive is filled according to the objective fitness, FO 

as proposed in Karasakal and Silav (2010). FO tries to favor solutions lying on the 

boundaries to introduce diversity in the next generations and widen the evolutionary 

search.  

After filling a reserved portion of the archive according to either FD or FO, the 

remaining space is filled according to the achievement scalarizing fitness, FA. In 

order to calculate FAp, for solution p, first, the achievement scalarizing function 

values of the solutions in the union should be calculated. In calculating the 

achievement scalarizing function value, asfp of any solution p, the terms multiplied 

by ɛ ’s are added in order to ensure that weakly efficient solutions have worse asf 

values than their corresponding strictly efficient solutions. Solutions entering the 

archive according to the FA are expected to be close to the target solution 

considering that the target solution can be represented by the reference point, which 

is updated according to the decision maker’s responses in the interactions phase. 

 

3.5.4 Interaction with the decision maker 

There are a few widely used ways of interacting with the decision maker in 

preference based multiobjective algorithms. He/she may be asked to compare two 

solutions if he prefers one over the other. This comparison is mostly in terms of the 

objective function values. He/she may give a total preference, or may state the 

amount of loss in an objective to gain some for another objective, which can indicate 

information about the tradeoff between those objectives. The decision maker may be 

asked to express desirable levels for each objective, which can be treated as the 

objective values of a reference point. However, the aforementioned methods to 

extract decision maker preferences may not be realistic in our problem. The decision 

maker may not initially have a concrete idea about the value of the compactness 

objective of the clustering problem. It gets even more unrealistic for the decision 
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maker to express a desirable value about the separation objective of the problem 

especially for the cases where the separation value of the target solution is adjusted. 

On the other hand, presenting two solutions to the decision maker is also a 

problematic task. For problems of two or three dimensions, the clusters of each 

solution can be plotted and visually presented to the decision maker so that he/she 

can provide his/her preference. However, it would be time consuming to do so, and 

such an approach may not be received well by the decision maker. Moreover, it is 

not possible to plot the clusters in a visually recognizable way for data sets with 

higher than three dimensions.  

In our problem, the interaction with the decision maker is simple and 

straightforward. In each generation, two solutions, which are the best solutions in 

terms of FA and FD separately, are found. The idea is that, the solution best in FA is 

the closest solution on the Pareto optimal front to the current reference point and the 

solution best in FD is from the least dense region of the Pareto optimal front and 

could also be interesting. Once these two solutions are found, the data point pairs 

that determine the compactness and separation of the solutions are detected and 

presented to the decision maker to learn if they are in the same cluster or not 

according to him/her. According to the response of the decision maker, certain 

updates for the incumbent solution, set of interesting solutions and/or the reference 

point are made if the need arises. For example, if the decision maker thinks that 

points i and j should be in the same cluster, then the compactness value of the 

clustering problem is updated according to the definition of compactness objective if 

necessary. Similarly, if the two points should be in different clusters, then the 

algorithm considers updating the adjusted separation value of the clustering problem 

if necessary.  

The procedure of interaction with the decision maker is given below in an 

algorithmic fashion.  
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Let solution a be the best solution in terms of FA (or FD), i and j be the two data 

points that determine the compactness value for solution a. Ask the decision maker 

if i and j are in the same cluster. 

IF “YES” 

 IF “gcom has not changed yet” 

Set gcom = fcoma, A
mult

 = 0.5. 

 ELSE 

  Set
afcomgcomgcom ,max . 

 END IF 

ELSE (“NO”) 

 Calculate the adjusted distance adij. 
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Set },min{ gasepadgasep ij . 

END IF 

Let i and j be the two data points that determine the separation value for solution a. 

Ask the decision maker if i and j are in the same cluster. 

IF “NO” 

 IF “gasep has not changed yet” 

Set gasep = fasepa, A
mult

 = 0.5. 

 ELSE 

  Set },min{ gasepfasepgasep a
. 

 END IF 

ELSE (“YES”) 

 Set ijdgcomgcom ,max . 

END IF 
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At the end of interaction with the decision maker, any solution that was able to 

update the reference point is added to the set of interesting solutions. The condition 

for an update in the incumbent solution is stricter. For a solution to be the new 

incumbent solution, its compactness points should be in the same cluster, separation 

points should be in different clusters and it should at the same time be able to update 

both gcom and gasep.  

 

3.5.5 Evolutionary Operators 

Uniform crossover and bitwise mutation are the operators used for evolutionary 

purposes. In a single crossover event, two offspring are generated from two parents. 

For each pair of parents, a uniform mask, which is a binary array having the same 

size of an individual’s chromosome, is constructed randomly. Then using this mask, 

genes of the first offspring whose corresponding values are 1 in the uniform mask 

are copied from the first parent. Similarly, the genes whose corresponding values are 

0 in the uniform mask are copied from the second parent. Second offspring is 

constructed by reversing the parents. In Figure 3.4 an example of a crossover event 

can be found. With the crossover operator, merging and splitting of clusters is 

performed which is an effective way of exploring the solution space. 
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Figure 3.4 A crossover example 

Every offspring constructed by the crossover is then subjected to a mutation event. 

In the algorithm, neighborhood biased mutation, which is proposed by Handl and 

Knowles (2007), is used. It is a kind of bitwise mutation, where each gene can be 

mutated with a certain probability, mprob. The mutation is done by changing the 

current value of the mutating gene by randomly assigning a different value for it. 

Since assigning a value for a gene means constructing a link between two data 

points represented by the index of the gene and the value of the gene, it may not be a 

good idea to construct such links between distant data points. Therefore, in the 

neighborhood biased mutation we use, the set of values that can randomly be 

assigned to a mutating gene is limited to its H nearest neighbors, where H is a 

parameter determined before the execution of the algorithm. A mutation operator on 

an arbitrary solution and visualization of its effect on the clustering is illustrated in 

Figure 3.5. Similar to the crossover operator, merging and splitting of clusters is 

performed by the mutation operator. 
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Figure 3.5 A mutation example 

Note that, allowing a data point to connect to itself by mutation helps constructing 

singleton clusters. Therefore, we allow such links to be formed by our mutation 

operator to be able to detect outliers. 
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CHAPTER 4  

 

 

COMPUTATIONAL EXPERIMENTS 

 

 

 

In this chapter, we report the empirical results obtained by experimenting with our 

algorithm. In Section 4.1, we describe the data sets used in this study. After setting 

the parameters of the algorithm by the results of the pilot runs given in Section 4.2, 

we give the computational results corresponding to this parameter setting in Section 

4.3. 

 

4.1 Data Sets 

There are many well-known data sets that can be used for the clustering problem, 

most of which can be obtained from UC Irvine Machine Learning Repository
1
. 

However a majority of the data sets provided there include categorical attributes 

which are not included in our scope. In addition, for some of the data sets, the 

dimension of the data points may be higher than two, which makes the data set 

undesirable for us. In this study, we focus on two dimensional data sets with 

numerical attributes, and the data sets we use are taken from the open literature 

(Sourina 2011). Table 4.1 provides a list of the data sets used in this study. In Table 

4.1, N is the number of data points in the data set, and K indicates the number of 

clusters in the target solution for that data set, including the number of outliers.  

 

                                                 
1
 http://archive.ics.uci.edu/ml/ 
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Table 4.1 Data sets used 

Set # Data Set Name N K 
# of 

outliers 

Data Set Properties* 

1 data_60 60 3 0 Elongated, Box 

2 data_66 66 4 0 Elongated, Box 

3 data-c-cc-nu-n 289 7 4 
Spherical, Elongated, Ring, 

DDBC, DVWC, Outlier 

4 data-c-cc-nu-n_v2 285 3 0 
Spherical, Elongated, Ring, 

DDBC, DVWC 

5 data-c-cc-nu-n2 195 6 3 
Spherical, Elongated, Ring, 

DDBC, DVWC, Outlier 

6 data-c-cc-nu-n2_v2 192 3 0 
Spherical, Elongated, Ring, 

DDBC, DVWC 

7 data-c-cv-nu-n 76 6 3 
Spherical, Elongated, DDBC, 

DVWC, Outlier 

8 data-c-cv-nu-n_v2 73 3 0 
Spherical, Elongated, DDBC, 

DVWC 

9 data-c-cv-u-n 81 5 3 Spherical, DDBC, DVWC, Outlier 

10 data-uc-cc-nu-n 191 6 3 
Spiral, Spherical, DDBC, DVWC, 

Outlier 

11 data-uc-cc-nu-n_v2 188 3 0 Spiral, Spherical, DDBC, DVWC 

12 data-uc-cv-nu-n 127 6 3 
Spherical, Elongated, DDBC, 

DVWC, Outlier 

13 dataX 202 4 2 Butterfly, DVWC, Outlier 

14 dataX_v2 200 2 0 Butterfly, DVWC 

15 data-oo 144 6 4 
Spherical, Ring, DDBC, DVWC, 

Outlier 

16 data-oo_v2 140 2 0 Spherical, Ring, DDBC, DVWC 

17 train1 307 6 2 Spherical, DDBC, DVWC, Outlier 

18 train1_v1 306 5 1 Spherical, DDBC, DVWC, Outlier 

19 train2 287 4 0 
Spherical, Elongated, DDBC, 

DVWC 

20 train3 397 6 30 
Elongated, Snake, DDBC, DVWC, 

Noise 

21 train3_v1 361 5 0 Elongated, Snake, DDBC, DVWC 

*DDBC: Density differences between clusters 

  DVWC: Density variation within a cluster 

 

Besides different number of data points, outliers and target number of clusters, each 

data set given in Table 4.1 includes a combination of the challenging issues, which 

are arbitrary shaped clusters, density variation within a cluster and density 
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differences between clusters, as introduced in Chapter 1. The plots of these data sets 

can be found in Appendix A.  

 

4.2 Parameter Settings and Performance Measures  

We have a few parameters that need to be set before the execution of the algorithm. 

In Table 4.2, we present the final values of the parameters that we choose as a result 

of our pilot runs. Here, P
size

, A
size

 and MP
size

 settings are borrowed from SPEA2. We 

choose equal weights in w
com

 and w
asep

 not to favor one objective over the other. 

 

Table 4.2 Parameter Setting 

Parameter Value 

H N  

P
size

 100 

A
size

 50 

MP
size

 100 

w
com

 0.5 

w
asep

 0.5 

mprob 0.005 

Number of generations 10,000 

 

Taking the neighborhood size H as N is commonly seen in literature. For mprob 

we have also tried 0.01 for five of the data sets, namely 2, 4, 7, 9 and 11, and seen 

that 0.005 yields better results. Since we have several types of fitness values in our 

algorithm, it is difficult to determine a termination criterion that depends on the 

improvements in the best of these fitness values.  To understand its convergence 

behavior, we ran our algorithm for a long time, i.e. 10,000 generations.  

The solutions are evaluated in terms of Jaccard and Rand Indices, which are external 

validity indices that measure the closeness of our solution to the target solution. 
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To illustrate, for an arbitrary solution s, let 

a:  the number of data point pairs in the same cluster both in the target solution 

and s, 

b:  the number of data point pairs in the same cluster in the target solution, but 

in different clusters in s, 

c: the number of data point pairs in different clusters in the target solution, but 

in the same cluster in s, 

d: the number of data point pairs in different clusters in both s and the target 

solution. 

Then the Jaccard Index (JI) is calculated as
cba

a
JI , and the Rand Index (RI) 

is calculated as
dcba

da
RI . JI focuses only on the data point pairs that are 

assigned to the same cluster correctly in our solution according to the clusters in the 

target solution. On the other hand, RI also gives importance to the data point pairs 

that are in different clusters in the target solution which are assigned to different 

clusters in our solution. 

The algorithm is coded in C using open source CodeBlocks development 

environment, and the pilot runs are made on a PC with 3GB RAM, and Intel Core 2 

Duo 2.4 GHz processor running Ubuntu 10.04. The results of the pilot runs are 

given in Table 4.3.  
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Table 4.3 Pilot Results 

  Target  Best in I and IS 

Set # Data set name K fcom fasep Q K fcom fasep JI g
*
 

1 data_60 3 1.00 12.39 29 3 1.00 12.39 1.00 1,600 

2 data_66 4 1.00 1.27 10 4 1.00 1.27 1.00 5,550 

3 data-c-cc-nu-n 7 0.77 0.46 19 6 0.77 3.01 0.99 6,000 

4 data-c-cc-nu-n_v2 3 0.77 3.01 22 3 0.77 3.01 1.00 2,650 

5 data-c-cc-nu-n2 6 0.55 2.60 17 6 0.55 2.60 1.00 3,900 

6 data-c-cc-nu-n2_v2 3 0.55 37.54 8 3 0.55 37.54 1.00 2,000 

7 data-c-cv-nu-n 6 0.78 6.53 19 6 0.78 6.53 1.00 2,350 

8 data-c-cv-nu-n_v2 3 0.78 6.53 19 2 0.71 0.72 0.89 1,050 

9 data-c-cv-u-n 5 0.65 5.73 16 5 0.65 5.73 1.00 2,900 

10 data-uc-cc-nu-n 6 0.68 4.41 31 5 0.68 2.32 0.50 6,450 

11 data-uc-cc-nu-n_v2 6 0.68 4.41 14 2 0.68 94.33 0.96 4,600 

12 data-uc-cv-nu-n 6 0.67 2.03 25 5 0.67 9.36 0.98 1,750 

13 dataX 4 0.90 51.92 23 4 0.90 51.92 1.00 1,600 

14 dataX_v2 2 0.90 51.92 23 2 0.90 51.92 1.00 2,050 

15 data-oo 6 0.55 1.27 26 5 0.55 18.18 0.50 450 

16 data-oo_v2 2 0.55 1.27 13 1 0.55 0.50 0.50 - 

17 train1 6 0.03 0.18 15 6 0.03 0.18 1.00 2,500 

18 train1_v1 5 0.03 0.18 23 5 0.03 0.18 1.00 2,800 

19 train2 4 0.03 0.26 27 4 0.03 0.26 1.00 4,000 

20 train3 36 0.74 0.02 8 3 0.15 0.13 0.31 - 

21 train3_v1 5 0.05 0.35 22 5 0.05 0.35 1.00 4,800 
 

In Table 4.3, g* stands for the generation number in which the best solution in terms 

of its closeness to the target solution with respect to the Jaccard Index is seen in the 

archive. Q is the number of questions asked to the decision maker throughout the 

run. Reported solutions are the best among the final incumbent solution (I), the set 

of interesting solutions (IS) and the archive (A). According to Table 4.3, 2,500-3,000 

generations are enough for most of the data sets; however, for some of them at least 

6,000-7,000 generations are needed for the best solution to appear in the archive. 

Note that, the 20
th

 data set, namely train, 3 includes noise, which is different from 

outliers. Since noise is not within our scope, this data set is discarded from the final 

runs. 
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4.3 Computational Results without Decision Maker Preference 

From the results of the pilot runs given in Table 4.3, we see that the parameter 

settings given in Table 4.2 are reasonable. Therefore, we set our parameters as in 

Table 4.2 in our final runs. Also, in order to observe the effect of the interaction with 

the decision maker, we first run our algorithm (IP-MOEC) as a purely multiobjective 

evolutionary clustering algorithm (MOEC), by discarding the interaction phase and 

decision maker’s preferences. 

Since our algorithm includes randomness, we have made five replications for each 

data set. We report the number of distinct solutions found in the final archive in 

Table 4.4.  

Table 4.4 Characteristics of the replications in terms of distinct solutions in the final archive 

Set # Data Set Name 

Number of distinct 

solutions* 

min avg max 

1 data_60 1 1 1 

2 data_66 3 3 3 

3 data-c-cc-nu-n 4 4 4 

4 data-c-cc-nu-n_v2 2 3.6 7 

5 data-c-cc-nu-n2 3 3.6 5 

6 data-c-cc-nu-n2_v2 2 2.2 3 

7 data-c-cv-nu-n 5 13.8 19 

8 data-c-cv-nu-n_v2 11 14.4 18 

9 data-c-cv-u-n 7 9.4 12 

10 data-uc-cc-nu-n 3 5.6 11 

11 data-uc-cc-nu-n_v2 2 3.6 6 

12 data-uc-cv-nu-n 8 10.2 12 

13 dataX 8 8.2 9 

14 dataX_v2 8 8.2 9 

15 data-oo 6 9.2 10 

16 data-oo_v2 6 6 6 

17 train1 3 4 5 

18 train1_v1 3 4.2 5 

19 train2 6 6.8 8 

20 train3_v1 4 5.8 8 

* Minimum, average and maximum of five replications 
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The number of distinct solutions in the final archive depends on the characteristics 

of the data set rather than its size. For example, 20
th

 data set has the greatest number 

of data points, but the average number of distinct solutions reported for this data set 

is almost half of the average number of distinct solutions reported for the 7
th

 data set 

which contains only half the number of data points as data set 20. For the first two 

data sets, the possible number of nondominated solutions is low, so the number of 

distinct solutions is also low since the archive is totally filled with nondominated 

solutions.  

For each data set, from the distinct solutions in the final archive, we report the best 

solution in terms of JI and RI indices in each replication. The results of five 

replications are summarized in Table 4.5. 

Table 4.5 Performance of proposed algorithm without decision maker interaction (MOEC) in terms 

of solution quality 

Set 

# 
Data Set Name 

JI* RI* 

min avg max min avg max 

1 data_60 1.00 1.00 1.00 1.00 1.00 1.00 

2 data_66 1.00 1.00 1.00 1.00 1.00 1.00 

3 data-c-cc-nu-n 0.99 0.99 0.99 0.99 0.99 0.99 

4 data-c-cc-nu-n_v2 1.00 1.00 1.00 1.00 1.00 1.00 

5 data-c-cc-nu-n2 1.00 1.00 1.00 1.00 1.00 1.00 

6 data-c-cc-nu-n2_v2 1.00 1.00 1.00 1.00 1.00 1.00 

7 data-c-cv-nu-n 1.00 1.00 1.00 1.00 1.00 1.00 

8 data-c-cv-nu-n_v2 1.00 1.00 1.00 1.00 1.00 1.00 

9 data-c-cv-u-n 1.00 1.00 1.00 1.00 1.00 1.00 

10 data-uc-cc-nu-n 0.45 0.69 0.80 0.61 0.84 0.92 

11 data-uc-cc-nu-n_v2 0.45 0.70 0.80 0.60 0.84 0.92 

12 data-uc-cv-nu-n 0.98 0.98 0.98 0.99 0.99 0.99 

13 dataX 1.00 1.00 1.00 1.00 1.00 1.00 

14 dataX_v2 1.00 1.00 1.00 1.00 1.00 1.00 

15 data-oo 0.50 0.50 0.50 0.53 0.53 0.53 

16 data-oo_v2 0.50 0.50 0.50 0.50 0.50 0.50 

17 train1 1.00 1.00 1.00 1.00 1.00 1.00 

18 train1_v1 1.00 1.00 1.00 1.00 1.00 1.00 

19 train2 1.00 1.00 1.00 1.00 1.00 1.00 

20 train3_v1 1.00 1.00 1.00 1.00 1.00 1.00 

* Minimum, average and maximum of five replications 
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Results show that our algorithm performs well for almost all of the data sets. 

However for data sets 15 and 16, in which two clusters are separated from each 

other with a distance that is very close to the density of the less dense cluster, the 

inflation of the separation approach cannot adjust the separation distance properly. 

Therefore, for these data sets, the target solution remains dominated considering our 

objectives, and cannot enter the archive. 

 

4.4 Computational Results with Decision Maker Preference 

Since our algorithm includes randomness, we have made five replications for each 

data set. We report the number of distinct solutions found in the union of the final 

incumbent solution, the set of interesting solutions and the archive in Table 4.6. In 

Table 4.6, we also report the results about the number of questions asked to the 

decision maker.  
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Table 4.6 Characteristics of the replications 

Set 

# 
Data Set Name 

Number of distinct 

solutions* 

Number of questions 

asked* 

min avg max min avg max 

1 data_60 2 3 4 7 17.6 29 

2 data_66 3 4 6 10 25.8 45 

3 data-c-cc-nu-n 5 5.4 6 14 18.2 22 

4 data-c-cc-nu-n_v2 3 4.6 6 12 15.4 22 

5 data-c-cc-nu-n2 6 6.4 7 14 16.8 20 

6 data-c-cc-nu-n2_v2 2 3.2 4 8 12.2 21 

7 data-c-cv-nu-n 10 10.2 11 19 20.8 24 

8 data-c-cv-nu-n_v2 6 7.8 11 12 15.2 19 

9 data-c-cv-u-n 6 7.8 10 16 20.6 25 

10 data-uc-cc-nu-n 5 6.2 8 13 22.2 31 

11 data-uc-cc-nu-n_v2 3 4.2 5 14 15.6 18 

12 data-uc-cv-nu-n 8 9.2 11 18 22 25 

13 dataX 9 10.2 12 23 25.6 32 

14 dataX_v2 8 9.2 10 22 23.6 26 

15 data-oo 6 8.8 10 14 20.2 26 

16 data-oo_v2 5 6 7 14 18.2 23 

17 train1 4 5.4 6 15 17.2 19 

18 train1_v1 4 5.2 6 12 16.2 23 

19 train2 6 6.8 7 15 19.6 27 

20 train3_v1 5 6.2 8 16 20.2 26 

* Minimum, average and maximum of five replications, 

 

 

Note that, the size of the archive is taken as 50, and the average number of distinct 

interesting solutions observed in a replication for all the data sets is approximately 5. 

Yet, the results presented in Table 4.4 show that the number of distinct solutions is 

quite less than the maximum possible number of distinct solutions that can occur in 

the union of the final incumbent solution, the set of interesting solutions and the 

archive. In addition, the average number of distinct solutions with the preference 

based approach is expected to be higher than the approach that discards the decision 

maker preferences, since the number of distinct nondominated solutions is not more 

than the archive size in any of the data sets. Moreover, on the average, it is expected 

to observe more distinct solutions with the preference based approach, since with 

this approach; dominated solutions may also enter the archive. However, the 
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averages in Tables 4.4 and 4.6 do not reflect such a big difference. These show that 

the preference based approach that lies within our algorithm works well.  

Also, the number of questions asked to the decision maker is reasonable and much 

smaller than the total number of point pairs in a data set. Besides, the number of 

questions does not increase with the data set size and varies depending on the 

properties of the data sets. For example, a maximum of 45 questions asked for the 

2
nd

 data set is mainly because most of the distances are the same with each other and 

limited information can be deducted by asking different pairs of points since the 

objectives determined by those points are equal.  

For each data set, we report the best solution from the set of distinct solutions in the 

final incumbent solution, the set of interesting solutions and the archive in terms of 

JI and RI indices. The results are summarized in Table 4.7 

Table 4.7 The performance of IP-MOEC in terms of solution quality 

Set 

# 
Data Set Name 

JI* RI* 

min avg max min avg max 

1 data_60 1.00 1.00 1.00 1.00 1.00 1.00 

2 data_66 1.00 1.00 1.00 1.00 1.00 1.00 

3 data-c-cc-nu-n 0.99 0.99 0.99 0.99 0.99 0.99 

4 data-c-cc-nu-n_v2 1.00 1.00 1.00 1.00 1.00 1.00 

5 data-c-cc-nu-n2 1.00 1.00 1.00 1.00 1.00 1.00 

6 data-c-cc-nu-n2_v2 1.00 1.00 1.00 1.00 1.00 1.00 

7 data-c-cv-nu-n 1.00 1.00 1.00 1.00 1.00 1.00 

8 data-c-cv-nu-n_v2 1.00 1.00 1.00 1.00 1.00 1.00 

9 data-c-cv-u-n 1.00 1.00 1.00 1.00 1.00 1.00 

10 data-uc-cc-nu-n 0.50 0.66 0.80 0.61 0.78 0.92 

11 data-uc-cc-nu-n_v2 0.50 0.86 0.98 0.60 0.90 0.99 

12 data-uc-cv-nu-n 0.98 0.98 0.98 0.99 0.99 0.99 

13 dataX 1.00 1.00 1.00 1.00 1.00 1.00 

14 dataX_v2 1.00 1.00 1.00 1.00 1.00 1.00 

15 data-oo 0.50 0.50 0.50 0.53 0.53 0.53 

16 data-oo_v2 0.50 0.50 0.50 0.50 0.50 0.50 

17 train1 1.00 1.00 1.00 1.00 1.00 1.00 

18 train1_v1 1.00 1.00 1.00 1.00 1.00 1.00 

19 train2 1.00 1.00 1.00 1.00 1.00 1.00 

20 train3_v1 1.00 1.00 1.00 1.00 1.00 1.00 

* Minimum, average and maximum of five replications 
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Table 4.7 shows that we succeed in finding the target partitioning in 14 data sets out 

of 20. Moreover, we find the target partitioning for those data sets in all of the five 

replications, which shows the robustness of our algorithm.  

For data sets 3 and 12, our algorithm performs well in all of the five replications, but 

still fails to find the target partitioning. Each of these data sets includes three 

outliers, one of which our algorithm fails to detect. Yet our algorithm is still capable 

of detecting the remaining outliers even though there is no specific mechanism used 

for this purpose in the algorithm.  

Data sets 10 and 11 include both density variation within a cluster and density 

differences between clusters, and therefore are quite challenging. Data set 10 also 

includes outliers which makes it even more difficult. However, our algorithm 

performs relatively worse in only one of the five replications for these data sets. For 

these data sets, the separation distance occurs between two data points located in 

particularly dense regions of their clusters, which may be hard to detect and adjust. 

Yet, in the remaining four replications, our algorithm seems to be capable of 

adjusting the separation properly and its performance can be considered reasonable.  

Our algorithm consistently performs badly for data sets 15 and 16. Unlike data sets 

10 and 11, the density difference between clusters in the separation region occurs 

smoothly for data sets 15 and 16. In these data sets, the separation distance is similar 

to the density of one of the end points in its corresponding cluster. Therefore, we 

cannot adjust that separation value properly and our algorithm fails to find the target 

partitioning for these data sets.  

In Table 4.8, we report the performance of our algorithm in terms of the execution 

times. The maximum observed execution time is 1553 seconds (25 minutes) for data 

set 20, which has a total of 361 data points. 
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Table 4.8 The performance of IP-MOEC in terms of execution times 

Set # Data Set Name 
Execution times* 

min avg max 

1 data_60 75 78 81 

2 data_66 85 87 90 

3 data-c-cc-nu-n 1061 1088 1126 

4 data-c-cc-nu-n_v2 994 1120 1428 

5 data-c-cc-nu-n2 487 496 507 

6 data-c-cc-nu-n2_v2 467 519 644 

7 data-c-cv-nu-n 105 106 106 

8 data-c-cv-nu-n_v2 98 100 102 

9 data-c-cv-u-n 122 124 125 

10 data-uc-cc-nu-n 459 492 528 

11 data-uc-cc-nu-n_v2 455 540 649 

12 data-uc-cv-nu-n 237 239 241 

13 dataX 533 543 548 

14 dataX_v2 528 576 668 

15 data-oo 347 348 349 

16 data-oo_v2 326 333 349 

17 train1 1050 1166 1427 

18 train1_v1 1047 1072 1090 

19 train2 912 1016 1207 

20 train3_v1 1512 1529 1553 

* Minimum, average and maximum of five replications (in seconds) 

 

The performance of our algorithm is compared to three well known classical 

clustering algorithms, namely k-means, SL (single linkage) and DBSCAN, as well 

as the version of our algorithm that does not account for the preferences of the 

decision maker.  

The results of the classical algorithms are taken from İnkaya et al. (2010). In İnkaya 

et al. (2010), the k-means algorithm is run for several values of k (i.e. the number of 

clusters in the k-means algorithm) in the range between 2% and 10% of the points in 

the data set with increments of 1, and the best solution in terms of JI is reported in 

order to be fair in comparison. To illustrate, for a data set having 100 data points, the 

k-means algorithm is run nine times, each time with a different k value in the range 

[2, 11], which is assured to include the number of clusters in the target solution. 

Runs of SL are made in the same manner. Similarly, DBSCAN is run for several 
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values of MinPts (2-10), which is the only parameter of the algorithm, and the 

solution having the best JI value is taken (İnkaya et al, 2010). The results are 

summarized in Table 4.9.   

Since all three algorithms have shorter execution times than ours, we make multiple 

runs of those for a fair comparison. However, it should be noted that the number of 

clusters is given in each run k-means and SL, whereas our algorithm tries to 

determine this number during its single execution. 

 

Table 4.9 Comparison of IP-MOEC with other clustering algorithms 

Set 

# 
Data set name 

k-means
1
 SL

2
 DBSCAN

3
 MOEC

4
 

IP-

MOEC
5
 

JI RI JI RI JI RI JI RI JI RI 

1 data_60 0.79 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 data_66 0.66 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 data-c-cc-nu-n 0.78 0.86 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

4 data-c-cc-nu-n_v2 0.80 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5 data-c-cc-nu-n2 0.28 0.64 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 

6 data-c-cc-nu-n2_v2 0.29 0.63 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

7 data-c-cv-nu-n 0.59 0.83 1.00 1.00 0.63 0.68 1.00 1.00 1.00 1.00 

8 data-c-cv-nu-n_v2 0.61 0.84 1.00 1.00 0.66 0.86 1.00 1.00 1.00 1.00 

9 data-c-cv-u-n 0.93 0.97 1.00 1.00 1.00
Δ
 1.00

Ө
 1.00 1.00 1.00 1.00 

10 data-uc-cc-nu-n 0.59 0.73 0.48 0.62 0.50 0.83 0.69 0.84 0.66 0.78 

11 data-uc-cc-nu-n_v2 0.34 0.73 0.45 0.60 0.59 0.83 0.70 0.84 0.86 0.90 

12 data-uc-cv-nu-n 0.62 0.83 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 

13 dataX 0.98 0.99 1.00 1.00 1.00
Δ
 1.00

Ө
 1.00 1.00 1.00 1.00 

14 dataX_v2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

15 data-oo 0.49 0.75 0.50 0.53 0.50 0.53 0.50 0.53 0.50 0.53 

16 data-oo_v2 0.52 0.76 0.89 0.95 0.95 0.98 0.50 0.50 0.50 0.50 

17 train1 0.99 1.00 1.00 1.00 1.00
Ө
 1.00 1.00 1.00 1.00 1.00 

18 train1_v1 1.00
ψ
 1.00

Ө
 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

19 train2 0.78 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

20 train3_v1 0.39 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

ψ this value is 0.997.  Δ this value is 0.998. Ө this value is 0.999. 

1 k-means: Best of 0.1N-0.02N replications, where N is the number of data points in the data set 

2 SL: Best of 0.1N-0.02N replications, where N is the number of data points in the data set 

3 DBSCAN: Best of nine replications 

4 MOEC: Average of five replications 

5 IP-MOEC: Average of five replications  

 

The performance of MOEC is very close to IP-MOEC, where decision maker’s 

preferences are included. For data set 10, MOEC performs better, and for data set 
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11, IP-MOEC outperforms MOEC. They perform equally well for the remaining 

data sets. 

Among the algorithms compared, k-means performs worst since it tends to provide 

only spherical clusters. 

All the algorithms perform badly for data set 15. For data set 16, which is a 

simplified version of data set 15 by removing outliers, SL and DBSCAN perform 

better than IP-MOEC and MOEC. As stated before, the main reason for IP-MOEC 

and MOEC to perform badly for data sets 15 and 16 is due to the characteristics of 

these sets. The clusters are separated by distances close to the density of the less 

dense cluster, which makes it harder to detect by the approach that aims to inflate 

the separation in such situations. SL and DBSCAN perform relatively bad for data 

sets 10 and 11, in which both inter-cluster density differences and intra-cluster 

density variation is present. For data set 10, IP-MOEC performs better than SL in 

terms of both JI and RI. Again, for that data set, the performance of IP-MOEC is 

better than DBSCAN in terms of JI but slightly worse in terms of RI. For data set 

11, IP-MOEC performs better than both SL and DBSCAN in terms of both JI and 

RI. In these data sets, the separation between two clusters occurs between the dense 

regions of both clusters; therefore this separation can be adjusted properly by MOEC 

and IP-MOEC. 

In general, for all the data sets that we perform well, the performance of our 

algorithm is not worse than any other algorithm in terms of both JI and RI. 

In Table 4-10, we give a comparison of the algorithms in terms of execution times. 
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Table 4.10 Comparison of clustering algorithms in terms of execution times 

Set # Data set name k-means
1
 SL

2
 DBSCAN

3
 MOEC

4
 IP-MOEC

5
 

1 data_60 0.21 0.52 0.07 89.43 77.81 

2 data_66 0.07 0.38 0.03 98.31 87.39 

3 data-c-cc-nu-n 0.24 0.66 0.26 1361.59 1087.74 

4 data-c-cc-nu-n_v2 0.05 0.87 0.05 1464.42 1120.33 

5 data-c-cc-nu-n2 0.11 0.49 0.19 672.68 496.44 

6 data-c-cc-nu-n2_v2 0.32 0.49 0.38 786.75 519.43 

7 data-c-cv-nu-n 0.05 0.38 0.04 145.79 105.68 

8 data-c-cv-nu-n_v2 0.19 0.39 0.06 132.07 100.36 

9 data-c-cv-u-n 0.11 0.38 0.24 162.82 124.26 

10 data-uc-cc-nu-n 0.10 0.48 0.12 595.90 491.65 

11 data-uc-cc-nu-n_v2 0.09 0.48 0.13 720.90 539.99 

12 data-uc-cv-nu-n 0.07 0.42 0.13 394.50 238.73 

13 dataX 0.10 0.51 0.13 676.87 543.09 

14 dataX_v2 0.83 0.50 2.34 665.86 575.53 

15 data-oo 0.11 0.43 0.23 437.81 347.78 

16 data-oo_v2 0.73 0.43 1.95 578.46 332.95 

17 train1 0.07 0.69 0.13 1311.65 1166.42 

18 train1_v1 0.08 0.72 0.11 1319.83 1071.62 

19 train2 0.10 0.65 0.11 1177.13 1016.38 

20 train3_v1 0.07 0.80 0.12 1803.64 1528.83 
1 k-means: Total of 0.1N-0.02N replications, where N is the number of data points in the data set 

2 SL: Total of 0.1N-0.02N replications, where N is the number of data points in the data set 

3 DBSCAN: Total of nine replications 

4 MOEC: Average of five replications 

5 IP-MOEC: Average of five replications 
 

Traditional algorithms are simple algorithms and run quite fast. However, they need 

the number of clusters to be known before the execution, which is not required in 

MOEC and IP-MOEC. Results in Table 4.10 show that MOEC requires more 

computation time than its interactive preference based version IP-MOEC. This is 

because of the difference between convergence behaviors of these two algorithms. 

IP-MOEC converges faster with the help of the information gathered from the 

decision maker. With decision maker’s preferences, IP-MOEC does not need to 

search some portion of the solution space that includes solutions with different 

number of clusters. Since both algorithms construct minimum spanning trees for 

each cluster of each solution, converging to a front with solutions having the target 

number of clusters decreases the execution time in later generations. 



 

 

55 

 

CHAPTER 5  

 

 

CONCLUSIONS 

 

 

 

The clustering problem with its importance in exploratory data analysis is one of the 

active research areas under data mining. It has several challenging issues, such as the 

unknown number of clusters, arbitrary shapes, outliers, inter-cluster density 

differences and intra-cluster density variations, which are introduced in more detail 

in Chapter 1. There are many algorithms developed for dealing with the 

aforementioned challenging issues. However, an algorithm performing well for a 

data set with a certain challenging issue, occasionally fails when a different 

challenging issue is introduced. To the best of our knowledge, no algorithm is 

proven to be successful with all data sets. Our scope in this study includes clustering 

problems with all of the challenging issues mentioned above.  

For the clustering problem, we developed and implemented an interactive 

multiobjective evolutionary algorithm which also considers the preferences of a 

decision maker during its execution. Decision maker preferences are extracted from 

his/her responses to simple questions such as two data points being in the same 

cluster or not. These preferences are implicitly used in the algorithm to generate a 

small portion of the Pareto optimal front desired by the decision maker, rather than 

generating a well spread representation of the whole Pareto optimal front. As 

reported in Chapter 4, the small number of distinct solutions generated and the 

reasonable number of solutions asked to the decision maker indicates that our 

preference based approach works fine. 
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We used 20 data sets from open literature (Sourina, 2011) to test the performance of 

our algorithm, and observed that the results are quite reasonable. The performance 

of our algorithm is compared with three well-known clustering algorithms, namely 

k-means, SL, and DBSCAN and is proven to provide at least as good results as the 

compared algorithms in all data sets except one, namely data-oo_v2. Moreover, in 

most of the data sets, the performance of our algorithm is better than the 

performances of the compared algorithms, which shows its strength and robustness 

for data sets with different characteristics. 

From the results, we observe that our algorithm performs consistently badly for two 

data sets, namely data-oo and data-oo_v2. As a future work, the underlying reason 

may be investigated further to adapt the algorithm in finding the target clusters in 

such data sets. 

Our algorithm can detect outliers, but in some cases outliers very close to a cluster 

may be missed. Moreover, we do not deal with data sets having noise. As another 

future work, a preprocessing mechanism may be developed to detect outliers and 

remove the noise before the execution of the algorithm. By this way, the size of the 

data set is expected to decrease, and the algorithm is expected to yield better results. 

In the algorithm, the responses of the decision maker are implicitly used to include 

his/her preferences in the search by altering the reference point if possible. However, 

the information provided by the decision maker is more valuable than that since 

he/she directly tells if two data points belong to the same cluster or different clusters. 

In addition to affecting the reference point, user information can be converted into 

cannot link and must link constraints. Then such constraints may be enforced to the 

evolutionary operators in order to reduce the search space, so that a more efficient 

search can be made. However, such an improvement is not straightforward 

considering the structures of the algorithm; especially the edge based solution 

representation, and is therefore aimed to be done as future work.  

The weights used in achievement scalarizing functions are taken as equal not to 

favor one objective over the other. However, with proper information from the 
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decision maker, these weights may be adjusted to incorporate the decision maker 

preferences in a different way. 

The maximum execution time observed in all the replications is less than half an 

hour, which is not quite high and can be considered reasonable. However, we 

believe that it can be decreased even further by a better coding scheme. This would 

make the algorithm more scalable and allow its use for larger data sets. 

We use a fixed neighborhood size for all data points in a data set, and it is equal to 

the square root of the total number of data points in that set. This neighborhood size 

should be supported with an upper bound for data sets having higher number of data 

points. Even better, with a special procedure, point specific neighborhood sizes can 

be found by preprocessing the data set, which is may improve the performance of 

our algorithm as well as saving us from setting a parameter. 

We focus on two dimensional data sets in this study. The adaptation of the algorithm 

for higher dimensional data sets may also be done in the future. 

In conclusion, we suggest our algorithm for relatively small spatial data sets with 

outliers which also include density differences between clusters and density 

variation within a cluster, and the solution quality is of higher importance than the 

execution time. 
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THE PLOTS OF THE DATA SETS USED IN THE STUDY 

 

 

 

Figure A.1 Plots of data sets (1-8) 
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Figure A.2 Plots of data sets (9-16) 

 

 

Figure A.3 Plots of data sets (17-20) 


