

A FASTER INTRUSION DETECTION METHOD

FOR

HIGH-SPEED COMPUTER NETWORKS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET CEM TARIM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

MAY 2011

ii

Approval of the thesis:

A FASTER INTRUSION DETECTION METHOD

FOR

HIGH-SPEED COMPUTER NETWORKS

Submitted by MEHMET CEM TARIM in partial fulfillment of the

requirements for the degree of Master of Science in Electrical and
Electronics Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen __________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen __________

Head of Department, Electrical and Electronics Engineering

Assist. Prof. Dr. Şenan Ece (Güran) Schmidt __________

Supervisor, Electrical and Electronics Engineering Dept.

Examining Committee Members

Prof. Dr. Semih Bilgen __________
Electrical and Electronics Eng. Dept., METU

Assist. Prof. Dr. Şenan Ece (Güran) Schmidt __________
Electrical and Electronics Eng. Dept., METU

Prof. Dr. Uğur Halıcı __________

Electrical and Electronics Eng. Dept., METU

Assoc. Prof. Dr. Cüneyt Bazlamaçcı __________
Electrical and Electronics Eng. Dept., METU

Dr. Zeki Çiftçi __________
Manager, TBMM

 Date: May 09,2011

iii

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and

ethical conduct. I also declare that, as required by these rules and
conduct, I have fully cited and referenced all material and results

that are not original to this work.

Name,Last name:Mehmet Cem TARIM
Signature :

iv

ABSTRACT

A FASTER INTRUSION DETECTION METHOD FOR

HIGH-SPEED COMPUTER NETWORKS

Tarım, Mehmet Cem

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Senan Ece (Güran) Schmidt

May 2011, 84 pages

The malicious intrusions to computer systems result in the loss of money,

time and hidden information which require deployment of intrusion

detection systems. Existing intrusion detection methods analyze packet

payload to search for certain strings and to match them with a rule

database which takes a long time in large size packets. Because of buffer

limits, packets may be dropped or the system may stop working due to high

CPU load. In this thesis, we investigate signature based intrusion detection

with signatures that only depend on the packet header information without

payload inspection. To this end, we analyze the well-known DARPA 1998

dataset to manually extract such signatures and construct a new rule set to

detect the intrusions. We implement our rule set in a popular intrusion

detection software tool, Snort. Furthermore we enhance our rule set with

the existing rules of Snort which do not depend on payload inspection. We

test our rule set on DARPA data set as well as a new data set that we collect

using attack generator tools. Our results show around 30% decrease in

detection time with a tolerable decrease in the detection rate. We believe

that our method can be used as a complementary component to speed up

intrusion detection systems.

Keywords: Intrusion Detection, Network Security, DARPA, SNORT

v

ÖZ

YÜKSEK HIZLI BİLGİSAYAR AĞLARI İÇİN DAHA HIZLI BİR

SALDIRI TESPİT METODU

Tarım, Mehmet Cem

Yüksek Lisans, Elektrik ve Elektronik Mühendisligi Bölümü

Tez Danısmanı: Senan Ece (Güran) Schmidt

Mayıs 2011, 84 sayfa

Bilgisayar sistemlerine yapılan kötü niyetli saldırılar, saldırı tespit

sistemlerinin kurulmasını gerektiren, para, zaman ve gizli bilgi kaybına

neden olur. Mevcut saldırı tespit metodları belli dizileri bulmaya çalışmak ve

bunları bir kural veritabanı ile eşleştirmek için paket yük kısmını inceler ve

bu büyük boyutlu paketlerde çok uzun zaman alır. Geçici belleklerdeki

limitlerden dolayı paketler düşürülebilir veya sistem yüksek CPU yükünden

dolayı çalışmayı bırakabilir. Bu tezde, biz paket yük kısmını incelemeden

sadece paket başlık bilgisine bakan imzalar ile oluşturulan imza tabanlı

saldırı tespit sistemi geliştirdik. Bu amaçla, biz meşhur DARPA 1998 veri

setini, böyle imzaları el ile çıkarmak, yeni bir kural seti oluşturmak ve

saldırıları tespit etmek için inceledik. Biz kural setimizi popüler saldırı tespit

yazılım aracı olan Snort'ta uyguladık. Buna ek olarak biz kural setimizi

Snortun paket yük kısmını incelemeyen mevcut kuralları ile geliştirdik. Biz

kural setimizi hem DARPA veri seti ile hem de bizim saldırı oluşturan araçları

kullanarak topladığımız yeni bir veri seti ile test ettik. Bizim sonuçlarımız,

tespit oranında kabul edilebilir bir azalışla tespit zamanının yaklaşık %30

azaldığını gösterdi. Biz inanıyoruz ki, bizim metodumuz saldırı tespit

sistemlerininin hızını artırmak için tamamlayıcı bir unsur olarak kullanılabilir.

Anahtar Kelimeler: Saldırı Tespit, Ağ güvenliği, DARPA, SNORT

vi

ACKNOWLEDGMENTS

First of all, I would like to thank my thesis advisor Senan Ece (Güran)

Schmidt for her endless support.

I would like to thank my managers Dr. Zeki Çiftçi and Volkan Öztürk and my

colleagues in TBMM for their valuable ideas.

I would also like to thank TUBITAK for its all kind of support.

Finally, I want to thank my dear wife Hatice Şule and sweet daughter İsra

Nursu for their patience and giving me encouragement.

vii

TABLE OF CONTENTS

ABSTRACT……………………………………………………………………………………………………….iv

ÖZ…….v

ACKNOWLEDGMENTS……………………………………………………………………………………..vi

TABLE OF CONTENTS…………………………………………………………………………………….vii

LIST OF TABLES………………………………………………………………………………………………ix

LIST OF FIGURES……………………………………………………………………………………………xi

CHAPTERS

 1.INTRODUCTION………………………………………………………………………………….1

 2.INTRUSION DETECTION SYSTEMS……………………………………………………5

 2.1 History of Network Security…………………………………………………5

 2.2 General Architectural Framework………………………………………..8

 2.3 Characteristics of Intrusion Detection Systems………………….9

 2.4 Taxonomy of IDS……………………………………………………………….10

 2.5 Related Works…………………………………………………………………….11

 2.6 Network-based IDS (NIDS) and SNORT…………………………….18

 2.6.1 Network-based IDS (NIDS)………………………………….18

 2.6.2 Snort…………………………………………………………………….18

 2.6.2.1 Components of snort………………………………19

 2.6.2.2 Base and Barnyard…………………………………21

2.6.3 Wireshark………………………………………………………………22

 3. OUR FAST INTRUSION DETECTION APPROACH…………………………….24

 3.1. Our Approach…………………………………………………………………….24

 3.1.1 Denial of service attacks………………………………………26

 3.1.1.1 Back…………………………………………………………26

 3.1.1.2 Land…………………………………………………………26

 3.1.1.3 Neptune…………………………………………………..26

 3.1.1.4 Ping of death…………………………………………..27

 3.1.1.5 Syslog………………………………………………………27

 3.1.1.6 Teardrop………………………………………………….28

 3.1.2 User to root attacks………………………………………………28

viii

 3.1.2.1 Eject…………………………………………………………28

 3.1.2.2 Ffbconfig………………………………………………….29

 3.1.2.3 Format…………………………………………………….29

 3.1.2.4 Loadmodule…………………………………………….29

 3.1.2.5 Perlmagic…………………………………………………30

 3.1.2.6 Rootkit…………………………………………………….30

 3.1.3 Remote to user attacks………………………………………..31

 3.1.3.1 Dict………………………………………………………….31

 3.1.3.2 Ftp-write………………………………………………….31

 3.1.3.3 Guest……………………………………………………….32

 3.1.3.4 Imap……………………………………………………….33

 3.1.3.5 Phf……………………………………………………………33

 3.1.3.6 Spy………………………………………………………….34

 3.1.3.7 Warez………………………………………………………34

 3.1.3.8 Warezmaster……………………………………………35

 3.1.3.9 Warezclient……………………………………………..35

 3.1.4 Probes……………………………………………………………………36

 3.1.4.1 Ipsweep…………………………………………………..36

 3.1.4.2 Nmap……………………………………………………….36

 3.1.4.3 Portsweep……………………………………………….37

 3.1.4.4 Satan……………………………………………………….37

 3.2. Ruleset………………………………………………………………………………37

 4. EXPERIMENTAL EVALUATION…………………………………………………………38

 4.1. Generating Our Dataset……………………………………………………47

 4.2. Enhancing Our Payload Independent Rule Set with

Modified Defult Rules…………………………………………………………………………………….52

 5. CONCLUSION………………………………………………………………………………….60

REFERENCES………………………………………………………………………………………………….61

APPENDICES………………………………………………………………………………………………….64

 A: Ruleset……………………………………………………………………………………………64

 B: Modified Snort config file……………………………………………………………….67

 C: Information about Snort………………………………………………………………..69

 D: Used command to generate our dataset………………………………………80

 E: Used command to extract header rules of Snort ruleset………………82

ix

LIST OF TABLES

TABLES

Table 1 Summary of IDS types…………………………………………………………………….11

Table 2 Summary of related works……………………………………………………………….15

Table 3 Definitions of Snort components………………………………………………………20

Table 4 Some IP and Transport Layer Headers…………………………………………….25

Table 5 Attack Signatures of Back Attack……………………………………………………26

Table 6 Attack Signatures of Land Attack…………………………………………………….26

Table 7 Attack Signatures of Neptune Attack……………………………………………….27

Table 8 Attack Signature of Ping of death Attacks……………………………………….27

Table 9 Attack Signature of Syslog Attacks………………………………………………….28

Table 10 Attack Signature of Teardrop Attacks…………………………………………….28

Table 11 Attack Signature of Eject Attack…………………………………………………….28

Table 12 Attack Signature of Ffbconfig Attacks…………………………………………..29

Table 13 Attack Signature of Format Attacks……………………………………………….29

Table 14 Attack Signature of Loadmodule Attacks………………………………………30

Table 15 Attack Signature of Perlmagic Attacks…………………………………………..30

Table 16 Attack Signature of Rootkit Attacks……………………………………………….31

Table 17 Attack Signature of Dict Attacks…………………………………………………….31

Table 18 Attack Signature of Ftp-write Attacks……………………………………………32

Table 19 Attack Signature of Guest Attacks…………………………………………………32

Table 20 Attack Signature of Imap Attacks………………………………………………….33

Table 21 Attack Signature of Phf Attacks……………………………………………………..34

Table 22 Attack Signature of Spy Attacks…………………………………………………...34

Table 23 Attack Signature of Warez Attacks………………………………………………..35

Table 24 Attack Signature of Warezmaster Attacks…………………………………….35

Table 25 Attack Signature of Warezclient Attacks……………………………………….35

Table 26 Attack Signature of Ipsweep Attacks…………………………………………….36

Table 27 Attack Signature of Nmap Attacks…………………………………………………36

Table 28 Attack Signature of Portsweep Attacks………………………………………….37

Table 29 Attack Signature of Satan attacks…………………………………………………37

x

Table 30 Our rules performance with DARPA 1998 dataset…………………………44

Table 31 Grouping the attacks in DARPA 1998 dataset……………………………….45

Table 32 Our rules performance with DARPA 1998 dataset ……………………….45

Table 33 Snort default rules performance with DARPA 1998 dataset…………46

Table 34 Snort default rules performance with DARPA 1998 dataset…………46

Table 35 Our rules performance with our dataset……………………….………………50

Table 36 Grouping the our constructed attacks……………………………………………50

Table 37 Our rules performance with our dataset ………………………….………….51

Table 38 Snort default rule performance with our dataset …………………………51

Table 39 Snort default rule performance with our dataset …………………………52

Table 40 Snort header rules performance with DARPA 1998 dataset…………53

Table 41 Snort header rules performance with DARPA 1998 dataset…………54

Table 42 Snort header rules combined with our rules performance with

DARPA 1998 dataset……………………………………………………………………………………..55

Table 43 Snort header rules combined with our rules performance with

DARPA 1998 dataset……………………………………………………………………………………..55

Table 44 Snort header rules performance with our dataset………………………..57

Table 45 Snort header rules performance with our dataset………………………..57

Table 46 Snort header rules combined with our rules performance with our

dataset………58

Table 47 Snort header rules combined with our rules performance with our

dataset………59

Table 48 General rule options……………………………………………………………………….74

Table 49 Payload detection rule options……………………………………………………….75

Table 50 Non-Payload detection rule options……………………………………………….77

Table 51 Post-Detection rule options…………………………………………………………….78

xi

LIST OF FIGURES

FIGURES

Figure 1 Growth rate of cyber incidents reported to Computer Emergency

Response Team/Coordination Center (CERT/CC)[3]………………………………………7

Figure 2 Attack sophistication vs. Intruder technical knowledge[3]…………….7

Figure 3 Basic architecture of IDS[2]…………………………………………………………….8

Figure 4 ROC Curves for different intrusion detection techniques [2]……….10

Figure 5 Components of Snort [24]………………………………………………………………20

Figure 6 BASE main screen……………………………………………………………………………21

Figure 7 BASE alert screen……………………………………………………………………………22

Figure 8 Wireshark screen [29]…………………………………………………………………….23

Figure 9 Distribution of number of intrusions………………………………………………39

1

CHAPTER 1

INTRODUCTION

The meaning of the word intrusion is entrance by force or without

permission or welcome. Another meaning is entry to another's property

without right or permission. The network intrusion meaning is an

unauthorized access to one or more components of a network. In

computer networks, intrusions cause a serious security threat for the

security of information.

In spite of the fact that the words ―attack‖ and ―intrusion‖ have different

meanings; we usually use both words in the same meaning. Intrusions

are successful attacks. They lower the confidentially of data by gaining

unauthorized access and serving this data to anyone. In addition, they

reduce the integrity of data by adding or deleting something in data.

Finally, they reduce the availability of data by saturating the network and

servers. Hence the intrusion detection systems are used to automatically

scan the local area network devices and detect these network attacks.

There are lots of different classifications for intrusion detection methods.

Among them, the misuse detection and anomaly detection are widely

accepted and commercially available detection methods. The misuse

detection systems break the network data into pieces and analyze to

detect intrusions by matching the predefined rules with packet header or

payload data. However they can only detect previously known intrusions.

The rule set contains a signature database. The rule set has to be

updated for each new type of discovered attacks. Since the signatures of

the new attacks are not included in the rule set. Packet inspection takes a

2

long processing time and causes latency on the local area network.

Moreover, this type of detection systems cause delays in the network and

decrease the network traffic performance. Due to such delays the misuse

based intrusion detection systems are not preferred especially in high

speed computer networks. The anomaly based intrusion detection

systems, first define the normal traffic condition and then compare their

traffic with this normal traffic condition. If there is a different traffic from

defined normal traffic, they alert to system administrator as anomaly

traffic.

Detection of attacks and anomaly traffic in high speed networks require

faster intrusion detection systems. Nowadays, the most of the intrusion

detection systems analyze full IP packet payload and find matches with

predefined set of rules to detect intrusions. This takes very long time.

Also if the intrusion detection system is not fast enough, some packets

pass through without inspection due to limitations of system buffers.

These missed packets increase false negative rate. Therefore, it is

necessary to develop faster intrusion detection methods. The hybrid

based intrusion detection systems consist of two detection methods:

misuse and anomaly.

In the literature there exist lots of different works to improve

performance of the intrusion detection systems. Some works propose

data mining techniques to select significant feature set to characterize

the traffic. Some other works propose DFA or FSM to reduce memory

requirement by rewriting the rules. However, for both anomaly and

misuse detection approaches the characterization of the traffic (normal

behavior and the attacks) is based on processing the entire IP packet

with the IP and TCP headers as well as payload. This construction heavily

relies on the payloads which slow down the detection process.

In this thesis, we investigate traffic characterization without using any

information from IP packet payloads. We implement our approach for

Snort which is a signature based IDS software tool. Most of the

signatures in Snort default rules contain payload information. We

construct new signatures for well-known intrusions which only depend on

3

the IP and TCP header information and write new Snort rules for this

signature set. We extract the signatures by manually investigating the

well-known DARPA data set. Furthermore we modify the default Snort

rules by excluding any payload dependent information and use them to

enhance our new Snort rules.

We test our new approach for its detection accuracy and speed on both

DARPA data set and on a new data set that we created using attack

generator tools.

Our rules enhanced with Snort header rules detection rates are 98.60%

for DARPA 1998 data set and 100% for our data set. Also the false alarm

rates are 2.16 for DARPA 1998 and 0.23% for our data set.

Besides we compare our enhanced rule set with snort default rule set.

Snort default rule set detection rates are 98.48% for DARPA 1998 data

set and 100% for our data set. Also the false alarm rates are 0.07 for

DARPA 1998 data set and 0.11% for our data set.

Furthermore, with our enhanced rule set Snort detection speed is

increased by 28.20%. Referenced papers detection rates and false

positive rates are lower than our rules performance.

We believe that our approach can be used as a ―fast path‖ for an existing

intrusion detection system which employs payload inspection. It is

possible to use our approach as a prescreening tool to eliminate the

attacks that can be detected by header inspection instead of applying

payload inspection to every packet.

The rest of the thesis is organized as follows. In chapter 2, intrusion

detection systems and their types, taxonomy and general characteristic is

shown. Besides, related works and their performances are discussed.

Also, an open source well known program Snort and some important

plugins Base and Barnyard are described. Furthermore, a packet

analyzing tool Wireshark is discussed.

In chapter 3, our fast intrusion detection approach is shown. Also the

attacks in DARPA 1998 data set are explained and their IP and transport

4

layer header to construct our rules is introduced. Then using these

headers information, our rules are constructed and formulated in Snort.

The experimental evaluations are discussed in Chapter 4 and conclusion

is presented in Chapter 5.

5

CHAPTER 2

INTRUSION DETECTION SYSTEMS (IDS)

Intrusion detection has been a very important issue of computer network

security field since the 1980s. It can be determined as any actions to

damage the confidentiality, integrity or availability of a data. The belief

that all attacks could be detected and blocked by firewalls and access

lists is wrong. There must be an Intrusion Detection Systems (IDS) with

firewall to detect intrusive activities and determine their nature, origin,

and seriousness. Intrusions coming from both internal and external

computer network can be detected by IDS.

This chapter provides an overview of the current status of research in

intrusion detection. It first provides an overview of different types of

computer intrusions, and then introduces a more detailed taxonomy of

intrusion detection systems with an overview of important research in the

field.

Also an open source well-known NIDS Snort is introduced in this chapter.

Its components are introduced. Besides its useful plugins Base and

Barnyard is introduced. Also to analyze tcpdump files, Wireshark program

is introduced.

2.1 History of Network Security

Network security term entered our literature when the Morris worm

damaged thousands of computers in November 1988. After this damage

the U.S. Defense Advanced Research Programs Agency established the

CERT/CC to manage these types of network security problems [1].

6

The Internet was first a closed network for academics and researches

only and not publicly available. Hence the security weakness of the

TCP/IP protocol suite was not corrected. Security of the Internet didn't

take into account. But now, the Internet is open and publicly available

and the weakness of the protocol causes network attacks.

Nowadays the Internet connects all computers around the world so

network security becomes a serious problem. The normal Internet user

must be careful against a number of network threats such as spam,

virus, worms, trojan horses, bots, spyware, and phishing. Governments

and companies must protect their servers and databases against the

possibility of cyber fare.

With increasing usage of Internet, networked computer systems are now

playing an important role in our society. In spite of the Internet makes

simpler everything, it can also be dangerous. Specifically, new attacks

are created every day to threaten every internet user and computer

systems. As reported by the Computer Emergency Response

Team/Coordination Center (CERT/CC) [2], the number of computer

attacks has increased exponentially over the years (Figure 1).

Furthermore, the severity and sophistication of the attacks is also

growing (Figure 2). For example, Slammer/Sapphire Worm was the

fastest computer worm in history. When it began spreading throughout

the Internet, it doubled in size every 8.5 seconds and damaged nearly

75,000 hosts [2].

7

Figure 1 Growth rate of cyber incidents reported to Computer Emergency

Response Team/Coordination Center (CERT/CC) [3].

In 1980s, the attackers needed whole understanding of computers and

networks to launch some attacks. However, today almost anyone can

generate very successful attacks with widely available attack tools [2].

Figure 2 Attack sophistication vs. Intruder technical knowledge [3].

8

2.2 General Architectural Framework

Most of the Intrusion detection systems (IDSs) have general architectural

framework shown in Figure 3. And this framework consists of the

following components:

 Data gathering device (sensors): they are responsible for

collecting data from the monitored system.

 Detector (Intrusion detection analysis engine): It analyzes

the data collected from sensors and matches the data with

database.

 Knowledge base (database): It contains signature of the

network attacks.

 Configuration device: It gives information about the current

state of the intrusion detection system (IDS).

 Response component: It generates an alarm when an intrusion

is detected.

Figure 3 Basic architecture of IDS [2]

9

2.3 Characteristics of Intrusion Detection Systems

Intrusion detection systems have some characteristics as defined below

[2]:

Detection performance: To measure the performance of an intrusion

detection system, detection accuracy doesn’t give correct information to

us. For example, a sample data set contains some attacks which are 1%

of the total data set. And a simple intrusion detection system (IDS) says

that all network traffic is normal. The IDS accuracy becomes 99%. In

order to measure real performance of IDS, the following definitions must

be satisfied [2]:

 it must be able to correctly identify intrusions.

 it must not identify normal action as an intrusion.

Typical measures for evaluating detection performance of IDSs include

detection rate and false alarm rate. Detection rate is defined as the ratio

of the number of correctly detected attacks and the total number of

attacks, while the false alarm (false positive) rate is the ratio of the

number of normal traffic data that are misclassified as attacks and the

total number of attacks. In practice, it is not easy to evaluate these two

measures, because it is usually impossible to know the total number of

attacks. Since detection rate and false alarm rate are often in contrast,

evaluation of IDSs is also performed using ROC (Receiver Operating

Characteristics) analysis. ROC curve represents a trade-off between

detection rate and false alarm rate as shown in Figure 4. The closer the

ROC is to the left upper corner of the graph (point that corresponds to

0% false alarm and 100% detection rate), the more effective the IDS are

[2].

10

Figure 4 ROC Curves for different intrusion detection techniques [2]

Time performance: The time performance of an intrusion detection

system can be measure with the total time that the IDS need to detect

attacks. This time consists of the processing time and the propagation

time. The processing time depends on the processing speed of the IDS,

which is the rate at which the IDS process logs. If this rate is not high

enough, then the real time processing of attacks may not be possible.

The propagation time is the time needed for processed information to

give alert to the system administrator. Both times need to be as short as

possible in order to allow the system administrator sufficient time to stop

an attack before much damage is being done, as well as to stop an

attacker from modifying log information or altering the IDS configuration

itself [2].

2.4 Taxonomy of IDS

Although there is no generally accepted taxonomy of IDSs, we can

summarize that it has four categories as illustrated in Table 1. These are

11

misuse based, anomaly based, network based and host based. Also their

advantages and disadvantages are summarized in the following.

Table 1 Summary of IDS types

Types of IDS Advantages Disadvantages

Host-Based Independent from

network topology

Limited view of entire

network topology.

Network-Based Monitor entire network Increase network loads

Anomaly-Based Novel attacks may be

detected.

High false positive rate.

Misuse-Based Low false positive rate.

High detection rate.

Poor detection for novel

attacks.

Frequent update needed.

2.5 Related Works

In the rest of this section we present the relevant previous work on

intrusion detection. All the works use the Defense Advanced Project

Agency (DARPA) data sets and KDD Cup 1999 to test their systems. KDD

Cup 1999 data set is derived from DARPA 1998 data set. In some works,

they also construct their data set to support their DARPA results. DARPA

intrusion detection data set is constructed on the simulated military

network environment with different attacks. The victim machines

operating systems are Linux, SunOSTM, and SolarisTM.

In [4] a hybrid procedure for developing rules by combining signature

analysis with automated techniques (such as machine learning and

statistical techniques) to achieve high detection rates with low false

alarms is proposed. They develop rules for only two remote-to-local

(R2L) attacks: warezmaster and warezclient. They test their rules on the

KDD Data set built from DARPA 1998 data set. The proposed rules

12

achieve only 53.08% detection and 0.005% false alarm rates for the two

R2L attacks in the KDD testing data set. They only develop two rules and

their rules detection rate performance is much lower than ours. Besides,

there is no other information about throughput of the system. We

increase the system speed by 30%.

In [5] a Hidden Markov Model (HMM) to detect only eight mimicry attacks

(eject, ffb, loadmodule, format, ftp-write, warezclient, satan, ipsweep) is

proposed. They use system calls of host machine and the Hidden Markov

Model Toolkit (HTK) to detect these attacks. They test their rules on the

DARPA 1998 Data set. The results show average 93% detection and 3%

false alarm rates for these attacks in the DARPA data set. They develop

rules for limited intrusions. Also they use host intrusion detection and

host machine system calls. This detection method must be installed all

computer in local area network (LAN). Because attacks which are not

destined to these installed computers, are not detected. The detection

rate is a bit lower than ours. Also there is no information about system

detection speed. With our rules the system speed is increased by 30%

also the detection rate remain high enough nearly 95%.

In [6] [7], data mining based IDSs are proposed. In [6], a subset of

significant feature set is selected. In [7], Support Vector Machines data

mining techniques are used. The performance of the proposed systems is

tested with DARPA 1998 data set. Detection rates for different attacks

types are given. They are between 84%-100% for different attack types.

They are similar with our rules result. However, there is no information

about packet processing capacity. They don’t show that their system

works faster. But in our proposed system we show that the system speed

is increased by 30%.

In [8], neural network based IDS is proposed. Besides, a feature

selection algorithm is proposed. The proposed system looks for matches

with packet header only. It is an anomaly based IDS. The performance of

the proposed system is tested with KDD Cup 1999 data set constructed

using DARPA 1998 data set. Detection rate is between 90-93% for

different attack types, and this result is not better than our system

13

performance. They don’t show that their system works faster. But in our

proposed system we show that the system speed is increased by 30%.

In [9], DFA based IDS is proposed. Rule patterns are rewritten in order to

reduce memory requirements. They test their proposed method with

DARPA 2000 data set. They claim that their system achieved a factor of

12 to 42 performance improvement compared with other DFA based

systems. However, the detection rate and false positive rates do not

mention. It is important to increase detection speed while keeping the

detection rate high enough. With our rules the system speed is increased

by 30% also the detection rate remain high enough nearly 95%.

In [10], a hybrid IDS is proposed. In anomaly part they use Self

Organizing Map structure to find normal behavior. In misuse part they

define signatures by using some packet header information. The

proposed system is tested with KDD Cup 1999 data set and detection

rate is 99.90%. The result is a bit higher than our results. However there

is no other information about throughput of the system. We increas the

system speed by 30%.

In [11], anomaly based IDS is proposed. In order to define abnormal

activity Support Vector Machines approach is used. Besides, some packet

header information is used in order to define normal traffic. The proposed

system performance is tested with DARPA 1999 data set. The result is

worse than our proposed system. The detection rate is below 90% and

also there is no evidence about the improvement of throughput.

In [12] [13], data mining based IDSs are proposed. They both use

Support Vector Machines algorithm in order to reduce feature set. The

proposed systems are tested with KDD Cup 1999. The detection rate of

the proposed system is similar to ours. They are between 68-100% for

different attack types in [12] and overall nearly 95% in [13]. But there is

no information about throughput of the systems. With our rules the

system speed is increased by 30% also the detection rate remain high

enough nearly 95%.

14

In [14], anomaly and network based IDS is proposed. To classify the

traffic Support vector machines method is used. The proposed system is

tested with DARPA 1998 data set. DOS and probe types of attacks are

detected with high rate upper than 90% but the overall performance is

lower than 70%. The detection performance of the system is much lower

than our proposed system. Also there is no information about throughput

of the systems. With our rules the system speed is increased by 30%

also the detection rate remain high enough nearly 95%.

In [15] [16], rule based IDSs are proposed. In [15], automatic tuning

approach is proposed. In [16], they propose genetic based machine

learning to dynamically update rules. The proposed systems are tested

with KDD Cup 1999 data set. The overall detection rates are 95% and

92% respectively. The detection performances are nearly same with our

proposed system performance. But there is no information about

throughput of the proposed systems.

In [17], a false positive rate is decreased while filtering the alerts. Snort

rule set and DARPA 1999 data set are used to test system performance.

In results, they claim that false positive rate is reduced by 63%. There is

no other information about detection capability and system throughput

capacity.

In [18], packet header information is analyzed. They say that the packet

payload inspection in heavy traffic condition is unnecessary. They

compare their system with Snort rule set. They claim that their proposed

system time performance is increased by 6.5%. However there is no

information about detection rate. With our rules the system speed is

increased by 30% also the detection rate remain high enough nearly

95%.

15

Table 2 Summary of related works

Ref. Feature Methodology Data

set

Accuracy

(%)

Header

or

Payload

[4] Misuse and

machine learning

and statistical

techniques are

used.

Hybrid based KDD

Cup

1999

53.08% Header

[5] Host machine

system calls are

used.

Host based DARPA

1998

93% Payload

[6] A subset of

significant feature

set is selected.

Data Mining

based

Misuse based

DARPA

1998

Normal: 100

Probe:100

DOS:100

U2R: 84

R2L: 99,47

Header

[7] Artificial Neural

Network and

Support Vector

Machines

techniques are

used.

Data Mining

based

Network

based

DARPA

1998

99,80-99,2 Header

[8] It is a feature

selection

algorithm.

Neural

network

based

Anomaly

based

KDD

Cup

1999

90,94-93,48 Header

16

[9] In order to reduce

memory

requirements,

rule patterns are

rewritten.

DFA based

Misuse based

DARPA

2000

- Payload

[10] To find normal

behavior, Self

Organizing Map

structure is used.

Hybrid based KDD

Cup

1999

99,90 Header

[11] To detect

abnormal activity

Support Vector

Machines

approaches is

used.

Anomaly

based

DARPA

1999

87,74 Header

[12] Decision Trees

and Support

Vector Machines

are combined.

Data Mining

based

Hybrid based

KDD

Cup

1999

Normal:

99,70

Probe:100

DOS:99,92

U2R: 68

R2L: 97,16

Payload

[13] In order to

eliminate

unimportant

feature set,

feature selection

algorithm SVM is

used.

Data Mining

Misuse based

KDD

Cup

1999

DOS: 99,53

Probe:97,55

U2R:19,73

R2L:28,81

Overall:95,7

2

Payload

17

[14] In order to

classify the traffic

Support Vector

Machines method

is used.

Anomaly

based

Network

based

DARPA

1998

Normal: 95

Probe:91

DOS:97

U2R: 23

R2L: 43

Avg: 69,8

Payload

[15] Automatic tuning

approach is

proposed.

Misuse based KDD

Cup

1999

95 Payload

[16] Rules are

dynamically

updated which

called genetic-

based machine

learning.

Misuse based KDD

Cup

1999

92,03 Payload

[17] Filtering the alert,

false positive

rates are

decreased. It is

compared with

Snort rule set.

Network

based

DARPA

1999

63% reduced

false positive

rates.

Payload

[18] Packet header

information is

analyzed. It is

compared with

Snort rule set.

Misuse based DARPA

1999

The system

performance

is increased

by 6.5%

Header

18

2.6 Network-based IDS (NIDS) and Snort

2.6.1 Network-based IDS (NIDS)

Network based intrusion detection systems (NIDS) analyze network

traffic to identify unauthorized access and abnormal traffic. NIDS collects

packets in a given network and matches it with predefined attack

signature database. If the system finds matches, give an alert to the

system administrator. A well-known example of NIDS is Snort.

2.6.2 Snort

Snort is a free and open source network intrusion detection system

(NIDS) which is developed by Sourcefire. In 2009, Snort entered

InfoWorld’s Open Source Hall of Fame as one of the ―greatest open

source software of all time.‖ [19]

In 2006, Gartner’s Magic Quadrant for Network Intrusion Prevention

System Appliances listed Sourcefire as one of 5 leaders in this network

security market sector. The others consist of 3com, Tipping Point, IBM,

McAfee, and Juniper Networks [20].

In 2010, Sourcefire was placed as a leader in the Gartner report ―Magic

Quadrant for Network Intrusion Prevention Systems‖. Also only three

companies out of 14 received this recognition from Gartner [21].

Snort is the most popular and widely used NIDS in worldwide. There are

about 300,000 registered users. Also Snort has been downloaded

approximately 15 million times so far [22].

Developers of Snort chose their tool to be open source project influencing

from Richard Stallman who is founders of open source movement. Open

source means that all software should have source code available and

can be developed by some communities of interested developers. With

supports of open source community, Snort is improved and become the

leader in some reports in intrusion detection area [23].

There exists thousands of qualified programmers reviewing and testing

the functionality of the Snort engine and rule sets. All bugs and other

19

problems can be detected and solved easily from Snort user community

in worldwide in contrast to ―closed‖ programs and projects [23].

Therefore, Snort is chosen as a framework and used for analysis and

tests in our intrusion detection approach in this thesis.

2.6.2.1 Components of snort

Snort consists of some important components. These are shown in the

following [24]:

• Packet Decoder

• Preprocessors

• Detection Engine

• Logging and Alerting System

• Output Modules

Figure 5 shows how these components are organized. Packet coming

from the Internet first goes to packet decoder part of the Snort and then

travels through preprocessor, detection engine and logging and alerting

system. And then, after analyzed the packet either dropped or cause to

generate an alert.

In Table 3, each components function is summarized.

20

Figure 5 Components of Snort [24]

Table 3 Definitions of Snort components

Name Description

Packet Decoder Prepares packets for processing.

Preprocessors or Input Plugins Used to normalize protocol headers,

detect anomalies, packet reassembly

and TCP stream reassembly.

Detection Engine Matches rules with packet data.

Logging and Alerting System Generates alert and log messages.

Output Modules Process alerts and logs and generate

final output.

21

The detailed information about Snort and its modes of work, alert output,

high performance configuration and rules structure is in Appendix C.

2.6.2.2 Base and Barnyard

BASE means the Basic Analysis and Security Engine. The former name of

the project was the Analysis Console for Intrusion Databases (ACID). This

program gives a very user friendly web interface to analyze Snort alerts.

It has a user authentication and role-base system. It is also an open

source project so it is supported by open source community users [25].

Some screenshots is shown in Figure 6 and Figure 7.

Figure 6 BASE main screen

22

Figure 7 BASE alert screen

Barnyard is an output plugin for Snort. It reads the alert log file created

from Snort with binary format and writes the data to the database [26].

This is really useful plugin. Because Snort can log rapidly in binary format

and while Barnyard writing these data to database, Snort spends time

processing network traffic data. Thus the performance of snort increases

[27].

2.6.3 Wireshark

Wireshark is also a free and open source project which is used to analyze

network packets. Its former name was Ethereal.

Wireshark supports almost all protocol types used in computer network

such as TCP, UDP, IP, ICMP, DHCP, ARP, DNS. Nowadays, it is so popular

that it was the Source Forge Project of the Month in August 2010 [28].

The screenshot of the wireshark program is shown in Figure 8.

23

Figure 8 Wireshark screen [29]

24

CHAPTER 3

OUR FAST INTRUSION DETECTION APPROACH

In this chapter, we present developing steps of our fast intrusion

detection method. First, the attack types in the DARPA Data set are

analyzed and their characteristics, which are IP and transport layer

header information, are listed in Table 4. And then by using Snort

program, we construct attack signatures based on these headers

information and formulate with Snort rules to detect these attacks. Our

goal is speed up the intrusion detection system by decreasing the

detection time and to keep detection rate high enough and false alarm

rate low enough.

3.1 Our Approach

In order to construct our approach we follow the steps shown below.

1. The tcpdump files of DARPA 1998 data sets are downloaded and

analyzed in Wireshark program.

2. Common packet header features for all type of attacks are noted.

3. Using these features, rules are constructed and formulated with

Snort rule type.

4. After we change the Snort configuration files, we test our

constructed rules.

5. If the test gives high false alarms or poor detection performance,

further analysis is needed.

25

There are lots of different attacks in DARPA 1998 data set but some of

them are obsolete today. So we generate some attacks by using some

attack tools to test and update our constructed rule set.

In order to detect attacks we use IP and transport layer header

information which is shown in Table 4.

Table 4 Used IP and Transport Layer Header fields

Source port Port numbers ranges from 0 to 65536.

Destination port Port numbers ranges from 0 to 65536.

Tos Type of Service value.

Total length Packet total length in bytes.

IP flags Do Not Fragment (D), More Fragment (M)

Ttl Time to live value.

TCP flags Ack(A), Push(P), Reset(R), Syn(S), Fin(F)

Window The tcp window scale option.

ICMP type Type of icmp packet.

ID Ip id number

In the rest of this chapter we present the list of attacks that we extract

from the DARPA data set and their respective signatures that only

depend on the packet headers.

26

3.1.1 Denial of Service Attacks

3.1.1.1 Back

It is a denial of service attack destined to web server port TCP 80. It

includes many back slashes in the packet payload. The web servers were

vulnerable and used to stop working in old times [30].

Table 5 Attack Signatures of Back Attack

Source

port

Destination

port

tos Total

length

IP

flags

ttl Tcp

flags

window ICMP

type

Any 80 0 >1400 D 64 PA - -

3.1.1.2 Land

These attacks occur when an attacker sends a spoofed SYN packet in

which the source address is the same as the destination address [30].

Table 6 Attack Signature of Land Attack

Source

port

Destination

port

tos Total

length

IP

flags

ttl Tcp

flags

window ICMP

type

- - - - - - - - -

3.1.1.3 Neptune

It is a SYN Flood denial of service attack. The attacker sends a SYN

packet and then the victim machine reply with SYN ACK and waits for

ACK packet to establish a TCP connection. But the attacker does not send

an ACK packet and continue to send SYN packet to fill the TCP half open

connection buffer of victim machine. So the victim machine become out

27

of service and does not accept any new connection attempts. So the

system becomes out of service.

Table 7 Attack Signature of Neptune Attacks

Source

port

Destination

port

tos Total

length

IP

flags

ttl Tcp

flags

window ICMP

type

Any any - <40 - 255 S 242 -

3.1.1.4 Ping of death

The Ping of Death is a denial of service attack that has larger packet size

than 65535 bytes. Sending the large ping packets may crash the victim

machine [31].

Table 8 Attack Signature of Ping of death Attacks

Source

port

Destination

port

tos Total

length

IP

flags

Ttl Tcp

flags

window ICMP

type

- - - 1480 - - - - -

3.1.1.5 Syslog

It is a denial of service attack that allows an attacker to remotely kill the

syslogd service on a Solaris server. The Solaris operating systems are not

vulnerable now [30].

28

Table 9 Attack Signature of Syslog Attacks

Source

port

Destination

port

tos Total

length

IP

flags

ttl Tcp

flags

window ICMP

type

514 514 - <10 64 - - -

3.1.1.6 Teardrop

It is a denial of service attack that the attacker sends malformed IP

fragments with overlapping [30].

Table 10 Attack Signature of Teardrop Attacks

Source

port

Destination

port

tos Total

length

IP

flags

ttl Tcp

flags

window ICMP

type

Id

Any any - 28 M - - - - 242

3.1.2 User to root attacks

3.1.2.1 Eject

The Eject attacks destined to Solaris operating systems. The attacker has

a user account and gain to root in victim machine by using eject program

[32].

Table 11 Attack Signature of Eject Attack

Source

port

Destination

port

Tos Total

length

IP

flags

ttl Tcp

flags

window ICMP

type

Any 23 16 58 D 64 PA 32120 -

29

3.1.2.2 Ffbconfig

The Ffbconfig attack is also destined to Solaris operating system. It use

ffbconfig program to generate the attack [30].

Table 12 Attack Signature of Ffbconfig Attacks

Source

port

Destination

port

Tos Total

length

IP

flags

Ttl Tcp

flags

window ICMP

type

Any any 0 71 D 254 PA 8760 -

3.1.2.3 Format

The Format attack is also destined to Solaris operating systems. It use

format program to generate the attack. The format program formats

diskettes and PCMCIA memory cards [30].

Table 13 Attack Signature of Format Attacks

Source

port

Destination

port

Tos Total

length

IP

flags

Ttl Tcp

flags

window ICMP

type

any any 0 71 D 254 PA 8760 -

3.1.2.4 Loadmodule

The Loadmodule attack is destined to SunOS systems. It use the

loadmodule program within SunOS. With this attack unauthorized users

can gain root access on the local machine [30].

30

Table 14 Attack Signature of Loadmodule Attacks

Source

port

Destination

port

tos Total

length

IP

flags

ttl Tcp

flags

window ICMP

type

any 23 - Between

40 and

50

D 64 PA 32696 -

3.1.2.5 Perlmagic

The Perlmagic attack uses Suidperl script to generate the attack in some

Perl implementations. With this attack anyone with access to an account

on the system can gain root access [30].

Table 15 Attack Signature of Perlmagic Attacks

Source

port

Destination

port

tos Total

length

IP

flags

Ttl Tcp

flags

window ICMP

type

Any 23 - 19 D 64 PA 32120 -

3.1.2.6 Rootkit

A rootkit is software that enables continued privileged access to a

computer while actively hiding its presence from administrators by

subverting standard operating system functionality or other applications.

An attacker installs a rootkit on a computer after first obtaining root-level

access, either by exploiting a known vulnerability or by obtaining a

password. Once a rootkit is installed, it allows an attacker to mask the

ongoing intrusion and maintain privileged access to the computer [33].

31

Table 16 Attack Signature of Rootkit Attacks

Source

port

Destination

port

tos Total

length

IP

flags

Ttl Tcp

flags

window ICMP

type

Any any - Between

50 and

100

- 63 - - 8

>1000 >1000 - Between

4 and

40

- - - - -

3.1.3 Remote to user attacks

3.1.3.1 Dict

The Dict attack is a Remote to Local User attack in which an attacker

tries to gain access to some machine by making repeated guesses at

possible usernames and passwords [30].

Table 17 Attack Signature of Dict Attacks

Source port Destination

port

tos Total

length

IP

flags

ttl Tcp

flags

window ICMP

type

20,23,110,

143,513

>1000 - Between

17 and

20

- - PA - -

3.1.3.2 Ftp-write

The Ftp-write attack is a Remote to Local User attack that takes

advantage of a common anonymous ftp misconfiguration. The

anonymous ftp root directory and its subdirectories should not be owned

by the ftp account or be in the same group as the ftp account. If any of

32

these directories are owned by ftp or are in the same group as the ftp

account and are not write protected, an intruder will be able to add files

(such as an rhosts file) and eventually gain local access to the system.

Table 18 Attack Signature of Ftp-write Attacks

Source

port

Destinatio

n port

tos Total

length

IP

flags

Ttl Tcp

flags

Window ICMP

type

20,21 >1000 0 - D 254 S 24820 -

Between

1000

and

1100

20,21,513 0 - D 63 S 512 -

3.1.3.3 Guest

The Guest attack is a variant of the Dictionary attack. On badly

configured systems, guest accounts are often left with no password or

with an easy to guess password. Because most operating systems ship

with the guest account activated by default, this is one of the first and

simplest vulnerabilities an attacker will attempt to exploit [30].

Table 19 Attack Signature of Guest Attacks

Source port Destination

port

tos Total

length

IP

flags

ttl Tcp

flags

window

20,23,110,143,513 >1000 - Between

17 and

20

- - PA -

33

3.1.3.4 Imap

The Imap attack exploits a buffer overflow in the Imap server of Redhat

Linux 4.2 that allows remote attackers to execute arbitrary instructions

with root privileges. The Imap server must be run with root privileges so

it can access mail folders and undertake some file manipulation on behalf

of the user logging in. After login, these privileges are discarded.

However, a buffer overflow bug exists in the authentication code of the

login transaction, and this bug can be exploited to gain root access on

the server. By sending carefully crafted text to a system running a

vulnerable version of the Imap server, remote users can cause a buffer

overflow and execute arbitrary instructions with root privileges [30].

Table 20 Attack Signature of Imap Attacks

Source

port

Destination

port

tos Total

length

IP

flags

ttl Tcp

flags

Window ICMP

type

Any 143 - >1000 D - PA 32120 -

3.1.3.5 Phf

The Phf attack abuses a badly written CGI script to execute commands

with the privilege level of the http server. Any CGI program which relies

on the CGI function escape_shell_cmd() to prevent exploitation of shell-

based library calls may be vulnerable to attack. In particular, this

vulnerability is manifested by the "phf" program that is distributed with

the example code for the Apache web server [30].

34

Table 21 Attack Signature of Phf Attacks

Source

port

Destination

port

tos Total

length

IP

flags

Ttl Tcp

flags

window ICMP

type

Any 80 - Between

50 and

60

D 64 PA 32120 -

3.1.3.6 Spy

Spy attacks are multi-day scenario attacks in which a user breaks into a

machine with the purpose of finding some important information where

the user tries to avoid detection [32].

Table 22 Attack Signature of Spy Attacks

Source

port

Destination

port

tos Total

length

IP

flags

ttl Tcp

flags

window ICMP

type

>10000 23 16 Between

45 and

50

- 64 PA 32120 -

3.1.3.7 Warez

In warez attack, user logs into anonymous FTP site and creates a hidden

directory [32].

35

Table 23 Attack Signature of Warez Attacks

Source

port

Destination

port

tos Total

length

IP

flags

ttl Tcp

flags

window ICMP

type

Any 21 0 <30 - 64 PA 32120 -

3.1.3.8 Warezmaster

In warezmaster attacks, anonymous FTP user uploads of illegal copies of

copywrited software onto FTP server [27].

Table 24 Attack Signature of Warezmaster Attacks

Source

port

Destination

port

tos Total

length

IP

flags

Ttl Tcp

flags

window ICMP

type

20 >1000 - <40 - 254 S 24820 -

3.1.3.9 Warezclient

In warezclient attacks, users download illegal software which was

previously posted via anonymous FTP by the warezmaster [32].

Table 25 Attack Signature of Warezclient Attacks

Source

port

Destination

port

tos Total

length

IP

flags

Ttl Tcp

flags

window ICMP

type

>1000 21 - <20 - 64 S 512 -

36

3.1.4 Probes

3.1.4.1 Ipsweep

An Ipsweep attack is a surveillance sweep to determine which hosts are

listening on a network. This information is useful to an attacker in staging

attacks and searching for vulnerable machines [30].

Table 26 Attack Signature of Ipsweep Attacks

Source

port

Destination

port

tos Total

length

IP

flags

Ttl Tcp

flags

window ICMP

type

Any <100(except

80,25)

- - - 64 S 512 -

Any Any - <30 - - - - 8

3.1.4.2 Nmap

Nmap is a general-purpose tool for performing network scans. Nmap

supports many different types of port scans—options include SYN, FIN

and ACK scanning with TCP and UDP, as well as ICMP (Ping) scanning.

The Nmap program also allows a user to specify which ports to scan, how

much time to wait between each port, and whether the ports should be

scanned sequentially or in a random order [30].

Table 27 Attack Signature of Nmap Attacks

Source

port

Destination

port

tos Total

length

IP

flags

Ttl Tcp

flags

window ICMP

type

Any any 0 <40 - 254 F 2048 -

137,138 137,138 - <250 - 63 - - -

Any Any - - - 63 - - 8

37

3.1.4.3 Portsweep

In portsweep attacks, attacker sends packet to every port by using some

tools to detect open services of victim machine [32].

Table 28 Attack Signature of Portsweep Attacks

Source

port

Destination

port

tos Total

length

IP

flags

Ttl Tcp

flags

window ICMP

type

>1000 any(except

80)

- <40 - - S - -

3.1.4.4 Satan

It is a network probing tool which looks for well-known weaknesses [32].

Table 29 Attack Signature of Satan attacks

Source

port

Destination

port

tos Total

length

IP

flags

Ttl Tcp

flags

window ICMP

type

Any any - <20 - - - - -

>1000 any(80 not

included)

- <40 - 64 S - -

any(53

not

included)

any(53 not

included)

0 <25 - 64 - - -

3.2 Rule set

By using both information in Section 3.1 and Snort tool, we construct our

rules presented in Appendix A.

38

CHAPTER 4

EXPERIMENTAL EVALUATION

We compare our rule set with Snort default rules in two data sets. First

data set is DARPA 1998 data set which is widely used training and testing

intrusion detection system performance. Second data set is our own data

set which is constructed in our experimental setup.

At first, DARPA 1998 data set is downloaded from the website. There are

both tcpdump file for testing data set and tcpdump list file which shows

the attack types and attack times. The data set has 16.5 GB of tcpdump

file consists of seven weeks tcpdump files, 27 types of attacks and totally

almost 300000 attacks.

Then we prepare our experimental environment. We use our notebook

Acer emachines D730G. It has Intel Core i5-430M and 3 GB DDR3

Memory and the operating system is Windows 7.

Then a virtual machine software VMware is installed. With two virtual

machines are installed on this VMware. One of the virtual machines has

Ubuntu 10.04 operating system. And the other one is Backtrack which

consist of very popular attack tools for hackers [34].

In Ubuntu 10.04 virtual machine, Snort and Base are installed to test

rules performances. Also, the wireshark program is installed to inspect

the downloaded data packet contains intrusion activity and to save attack

traffic that we create. The entire rule set is constructed and improved by

inspecting the data sets tcpdump file.

39

Our first data set is DARPA 1998 data set and in this data set first week

has the lowest intrusions among the other weeks. And sixth week has the

highest intrusions among the other weeks. The distribution of number of

intrusions over the seven weeks is shown in Figure 9.

1 2 3 4 5 6 7

0

20000

40000

60000

80000

100000

120000

Number of

intrusion

Figure 9 The distribution of number of intrusions in DARPA 1998

In this part we want to show the performance of our rule set for DARPA

1998 data set. The followings are the attacks in the DARPA 1998 data

set:

Back: In the test data set there are 4381 back attacks. Our constructed

rules detect all the back attacks, i.e. detection rate of back is 100%. Also

our constructed rules detected 581 normal packets as a back attack, i.e.

number of false positive is 581. False positive rate of back is 13.26%.

This rate is not low enough because our rules detect a large packet

destined to tcp port number 80 as a back attack and tcp port number 80

is commonly used for http.

Dict: In the test data set there are 882 dict attacks. And our constructed

rules detected 631 of them, i.e. detection rate of dict is 71.54%.

40

Remaining 251 attacks are not detected, i.e. our rules miss these

attacks. The detection rate of dict attack can be increase further by

setting the threshold. In order to guess password of victim machines, this

type of attack is repeated. We detect this type of attack by looking the

victim machine response. When the attacker enters wrong password, the

victim machine respond with a login failure message. This failure

message came from tcp port number 20, 23, 110, 143, 513 and repeated

a much in a limited time period.

Eject: The test data set consists of 11 eject attacks and 6 of them is

detected and the remaining 5 is missed. So detection rate of eject attack

is 54.54%.

Ffb: The test data set consists of 10 ffb attacks and all of them is

detected, i.e. the detection rate is 100% but also our rules detect extra

24 attacks as a ffb attacks, i.e. a number of false positive is 24. We

surprised that our rules really give a huge amount of false positive rate of

ffb attack but thanks to all the attacks is detected. There are no missed

attacks.

Format: Ffb and format types of attacks have same characteristics so we

use one rule to detect these attacks. In test data set, there are 8 attacks

and our rules detect all attacks so detection rate is 100%. And also there

exist 5 false positive attacks of format. The false positive rate of format is

lower than the ffb.

Ftp-write: There are 8 ftp-write attacks in the test data set and half of

them are detected, i.e. detection rate is 50%. We construct two rules to

detect this type of attacks because there are two different characteristic

of this type of attacks. But our rules miss half of them.

Guest: Dict and guest attacks have some characteristic so we construct

one rule for these attacks. In test data set there are 50 guest attacks and

all of them are detected. It means the detection rate is 100%. But false

positive number is 15 and the false positive rate is 30%. This rate is a

little high but it is so important that there are no missed attacks.

41

Imap: In test data set there are 8 imap attacks. Our rules detect only 3

of them and miss the remaining 5. But there is a wrong in the data set

because the imap attacks are a buffer overflow attacks and packet size

must be large as possible as. But in data set some imap attacks labeled

packet size is very low. So our detection rate is low.

Ipsweep: In test data set there are 16336 ipsweep attacks and all of

them are detected. There are two different version of this attack. So we

construct two rules for them. Furthermore, the false positive rate is very

low (0.67%).

Land: In test data set there are 35 land attacks and our rule detect all

the land rules because the IP addresses of both source and destination

are same. So it can be easily detected.

Loadmodule: In test data set there are 9 loadmodule attacks but only 3

of them is detected. Again the test data set wrongly labeled some attacks

so detection rate is very low (33.3%).

Neptune: In test data set there are 1526643 neptune attacks but we use

only 10% of them in order to get true statistics otherwise almost all the

attacks would consist of this type of attacks and overall results would not

be meaningful. Our rules detect almost every Neptune attacks (99.98%

of them are detected) and there are no wrong detected attacks.

Nmap: In test data set there are 2357 nmap attacks and 2022 of them is

detected. The detection rate is 85.78%. Also there are some missed

attacks. But there are no wrong detected attacks. Nmap attacks have 3

different version, tcp, udp and icmp types. All udp and icmp types of

nmap attacks are detected but there is a miss with tcp type of attacks.

Perlmagic: In test data set, there are 5 perlmagic attacks but our rule

set detects 21 attacks as a perlmagic. All the perlmagic attack is detected

but the false positive rate is surprised us. It is very huge.

Phf: In test data set, there are 5 phf attacks and all of them are

detected. The detection rate is 100%. Furthermore there are no missed

and wrong labeled attacks, i.e. the false positive rate is 0%.

42

Pod: In test data set, there are 10498 pod attacks and all of them are

detected. The detection rate is 100%. Besides the false positive rate is

0%.

Portsweep: In test data set, there are 10616 portsweep attacks and

1473 of them is detected. The detection rate is so low (13.87) because

portsweep attacks have lots of different types and only some of them is

formulated as a rule. In order to increase this detection rate, all other

types must be defined exactly in different rules.

Rootkit: In test data set, there are 254 rootkit attacks and 243 of them

are detected. So the detection rate is 95.66 and 11 rootkit attacks is

missed. Rootkit attacks have also two different versions: udp and icmp.

Therefore, two rules are constructed to detect this type of attacks. Icmp

versions of these attacks are detected easily but some udp versions of

these attacks are not detected.

Satan: In test data set, there are 32625 satan attacks and all of them is

detected. However false positive rate is not low enough (13.25%).

Because satan have three different versions: icmp, udp and tcp. We

construct three rules for them but two rules for tcp and udp increase

false positive rate of this type of attacks.

Spy: In test data set, there are only 2 spy attacks and one of them is

detected. The other is missed because it is a mislabeled attack.

Syslog: In test data set, there are 4 syslog attacks and all of them are

detected and also there are no missed and mislabeled attacks, i.e.

detection rate is 100% and false positive rate is 0%. The detection rate is

huge because this attacks udp source and destination port number is

equal to 514.

Teardrop: In test data set, there are 2173 teardrop attacks and 1027 of

them is detected so the detection rate is 47.26%. There are no wrong

labeled attacks, i.e. the false positive rate of these attacks is 0%.

However some of these attacks are not detected.

43

Warez: In test data set, there is only one warez attack and it is

detected. Besides there is no wrong labeled attacks.

Warezclient: In test data set, there are 1766 warezclient attacks and

805 of them are detected. The detection rate is 45.58% and there is no

wrong labeled attack, i.e. the false positive rate is 0%.

Warezmaster: In test data set, there are 19 warezmaster attacks and

18 of them are detected. The detection rate is 94.73% and there is no

wrong labeled attack, i.e. the false positive rate is 0%.

Totally in DARPA 1998 data set, there are 234728 attacks and 227915 of

them are detected and 5078 of them is false positive (wrong detection)

and 11891 of them is false negative (missed). The overall detection

performance of our rules is 94.93% and false positive rate is 2.16%. We

summarize our test results in Table 30.

44

Table 30 Our rules performance with DARPA 1998 data set

detected false positive false negativedetection rate (%) false alarm rate (%)

back 4381 4962 581 0 100,00% 13.26%

dict 882 631 0 251 71.54% 0,00%

eject 11 6 0 5 54.54% 0,00%

ffb 10 34 24 0 100,00% 240,00%

format 8 13 5 0 100,00% 62.50%

Ftp-write 8 4 0 4 50,00% 0,00%

guest 50 65 15 0 100,00% 30,00%

imap 8 3 0 5 37.50% 0,00%

ipsweep 16336 16447 111 0 100,00% 0.67%

land 35 35 0 0 100,00% 0,00%

loadmodule 9 3 0 6 33.33% 0,00%

neptune 152665 152643 0 22 99.98% 0,00%

nmap 2357 2022 0 335 85.78% 0,00%

perlmagic 5 21 16 0 100,00% 320,00%

phf 5 5 0 0 100,00% 0,00%

pod 10498 10498 0 0 100,00% 0,00%

portsweep 10616 1473 0 9143 13.87% 0,00%

rootkit 254 243 0 11 95.66% 0,00%

satan 32625 36951 4326 0 100,00% 13.25%

spy 2 1 0 1 50,00% 0,00%

syslog 4 4 0 0 100,00% 0,00%

teardrop 2173 1027 0 1146 47.26% 0,00%

warez 1 1 0 0 100,00% 0,00%

warezclient 1766 805 0 961 45.58% 0,00%

warezmaster 19 18 0 1 94.73% 0,00%

Total 234728 227915 5078 11891 94.93% 2.16%

Our ruleset performance

of attacks

After looking attacks by attacks performance, we group the attacks in

Table 31 and give the results in Table 32. Our rules detection rate for

DOS and U2R types of attacks more than 90% and also Probe attacks are

nearly 85% but in R2L type attack this rate is below to 60%.

The meaning of the result is that DOS, U2R and Probes attacks can be

detected with headers information with high detection rate. Besides U2R

and Probes attacks gives some false alarms. Also the header detection

rate of R2L attacks is low.

45

Table 31 Grouping the attacks in DARPA 1998 data set

Attack Types Attack Names

DOS Back, Land, Neptune, Pod, Syslog, Teardrop

U2R Eject, Ffbconfig,Format,Loadmodule,Perlmagic,Rootkit

R2L Dict, Ftp-write, Guest, Imap, Phf, Spy, Warez,

Warezmaster, Warezclient

Probes Ipsweep, Nmap, Portsweep, Satan

Table 32 Our rules performance with DARPA 1998 data set

detected false positive false negativedetection rate (%) false alarm rate (%)

DOS 169756 169169 581 1168 99.31% 0.34%

U2R 297 320 45 22 92.59% 15.15%

R2L 2741 1533 15 1223 55.38% 0.54%

Probes 61934 56893 4437 9478 84.69% 7.16%

of attacks

Our ruleset performance

Then Snort default rules are tested in DARPA data set. Their performance

is shown in Table 33. Our rules only look for header part of the packet,

and this causes to decrease the detection rate and increase the false

detection rate of our rules.

46

Table 33 Snort default rules performance with DARPA 1998 data set

detected false positivefalse negative detection rate (%) false alarm rate (%)

back 4381 4366 0 15 99.65% 0,00%

dict 882 822 72 132 93.19% 8,16%

eject 11 0 0 11 0,00% 0,00%

ffb 10 1 0 9 10,00% 0,00%

format 8 0 0 8 0,00% 0,00%

Ftp-write 8 0 0 8 0,00% 0,00%

guest 50 20 0 30 40,00% 0,00%

imap 8 0 0 8 0,00% 0,00%

ipsweep 16336 14359 0 1977 87.89% 0,00%

land 35 35 0 0 100,00% 0,00%

loadmodule 9 0 0 9 0,00% 0,00%

neptune 152665 152278 74 461 99.74% 0.3%

nmap 2357 2348 0 9 99.61% 0,00%

perlmagic 5 0 0 5 0,00% 0,00%

phf 5 0 0 5 0,00% 0,00%

pod 10498 10494 0 4 99.96% 0,00%

portsweep 10616 10584 0 32 99.69% 0,00%

rootkit 254 250 0 4 98.42% 0,00%

satan 32625 32580 0 45 99.86% 0,00%

spy 2 0 0 2 0,00% 0,00%

syslog 4 0 0 4 0,00% 0,00%

teardrop 2173 1901 0 272 87.48% 0,00%

warez 1 1 0 0 100,00% 0,00%

warezclient 1766 1187 37 616 67.21% 2.09%

warezmaster 19 18 0 1 94.73% 0,00%

Total 234728 231244 183 3667 98.48% 0.07%

of attacks

Snort Default ruleset performance

After looking attacks by attacks performance, we show the results in a

group in Table 34. Snort default rules detection rate in DOS and Probe

types of attacks more than 95% and also U2R attacks are nearly 85%

but in R2L type attack this rate is about to 70%.

Table 34 Snort default rules performance with DARPA 1998 data set

detected false positivefalse negative detection rate (%) false alarm rate (%)

DOS 169756 169074 74 756 99.55% 0.04%

U2R 297 251 0 46 84.51% 0,00%

R2L 2741 2048 109 802 70.74% 3.97%

Probes 61934 59871 0 2063 96.66% 0,00%

of attacks

Snort Default ruleset performance

47

The DARPA 1998 experiment data has 16.5 GB of tcpdump file. In our

rules it takes 708 seconds to test, but in default configuration of snort it

takes 1025.1 seconds. The speed is increased by 30.9%.

Also, Snort default rule set detects 16 type attacks of 27 type attacks in

DARPA 1998 data set. But our rule set detects25 type attacks of 27 type

attacks in DARPA 1998 data set. Attack types not detected from Snort

default rule set have very low number in total. So the overall result of

Snort default rule set is remaining high.

Portsweep attacks detection performance of our rule set is very low.

Because there are lots of different versions of these attacks. Our rules

only detect some of them. But Snort default rule set detect these attacks

in very huge detection rate. All the other attack types’ detection

performance of Snort default rule set and our rule set is nearly same.

Some attacks are not detected by the Snort default rule set because they

are not widely used in nowadays and the victim operating systems not

vulnerable to these attack types any more.

We use DARPA 1998 data set since there is no other publicly available

data set to test and improve our intrusion detection method and also all

works related these topics use this data set. But DARPA 1998 data set is

old and contains some obsolete attacks. Computer attacks are changing

very frequently and intrusion detection system rules must be updated

very frequently. Hence we artificially generate attacks and construct a

test data set different than DARPA to compare Snort rule set performance

and our rule set performance.

4.1 Generating Our Data set

Our second test data set is our constructed data set. We simulate the

attacks by using Bactrack virtual machine in VMware. Bactrack is a

GNU/Linux distribution consists of security-related tools such as scanners

and password crackers. It mainly use for digital forensics and penetration

testing [34].

48

For victim machine we use Ubuntu 10.04 virtual machine in VMware.

Then, the following attacks are created to the victim machine. In victim

machine the wireshark program is working while the attacks happening

to save attacked traffic data.

We use hping tool which can produce every packet type (tcp, udp and

icmp) and Brutessh script to generate the following attacks and construct

data set. Our constructed data set contains attacks which are known to

be common and regular. The experiment data has 1.2 MB of pcap file.

We construct the following attacks since they are popular today and

threaten to every computer systems. The attack tool Hping is also very

popular for hackers to generate attacks. And also it is a good tool for

system administrator to test their systems performance.

The commands are used to generate the following attacks as shown in

Appendix D.

Dict attack

This is the dictionary attack. A password list is constructed to crack the

root password of the victim machine and generate attacks.

Land attack

In this attack source and destination ip address is the same. In these

attack TCP flag SYN is set.

Neptune attack

This type of attacks is a SYN flood attack. The attack packet is generated

with ttl value equal to 255 and window size equal to 242. Also TCP SYN

flag is set.

Pod attack

These types of attack consist of icmp echo ping packet. But ping packets

default sizes are 32 bytes and there is no problem. In these attacks the

ping packet size is increased.

49

Teardrop attack

These types of attacks have mis-fragmented UDP packets. This type of

attacks is generated with packet IP id number equal to 242 and more

fragments bit is set. Also type of the packet is UDP.

Ipsweep attack

These types of attacks are two types. One type of this is scanning port.

The other type is generating icmp echo ping packet.

Nmap attack

These types of attacks consist of three types. These are tcp, udp and

icmp types. Nmap attack is used to detect victim machine operating

system.

Portsweep attack

These types of attacks are port scanning attacks to understand victim

machines open ports. The attack is generated with sending TCP SYN

packet to every port.

Satan attack

These types of attacks consist of three types generally. These are icmp,

tcp and udp types.

After collecting the traffic data, we test Snort default rule set and our rule

set by typing the following commands for each saved attack data.

snort –r [attack pcap filename] –c /etc/snort/snort.conf

snort –r [attack pcap filename] –c /etc/snort/snort1.conf (our modified

configuration file)

The test results of our rule set are shown in Table 35. All the attacks are

detected with a high detection rate and low false alarm rate.

50

Table 35 Our rules performance with our data set

detected false positivefalse negative detection rate (%) false alarm rate (%)

back - - - - - -

dict 7 7 0 0 100,00% 0,00%

eject - - - - - -

ffb - - - - - -

format - - - - - -

Ftp-write - - - - - -

guest - - - - - -

imap - - - - - -

ipsweep 452 454 2 0 100,00% 0.44%

land 84 84 0 0 100,00% 0,00%

loadmodule - - - - - -

neptune 160 160 0 0 100,00% 0,00%

nmap 199 199 0 0 100,00% 0,00%

perlmagic - - - - - -

phf - - - - - -

pod 272 272 0 0 100,00% 0,00%

portsweep 96 97 1 0 100,00% 1.03%

rootkit - - - - - -

satan 264 264 1 1 99.62% 0,37%

spy - - - - - -

syslog - - - - - -

teardrop 153 153 0 0 100,00% 0,00%

warez - - - - - -

warezclient - - - - - -

warezmaster - - - - - -

Total 1687 1690 4 1 99.94% 0.23%

of attacks

Our ruleset performance

We group the attacks in Table 36 and give the results in Table 37. Our

rules detection rate performance is 100% in DOS and R2L types and also

Probe attacks are nearly 100%.

Table 36 Grouping the our constructed attacks

Attack Types Attack Names

DOS Land, Neptune, Pod, Teardrop

U2R -

R2L Dict

Probes Ipsweep, Nmap, Portsweep, Satan

51

Table 37 Our rules performance with our data set

detected false positivefalse negative detection rate (%) false alarm rate (%)

DOS 669 669 0 0 100,00% 0,00%

U2R - - - - - -

R2L 7 7 0 0 100,00% 0,00%

Probes 1011 1014 4 1 99.90% 0.39%

of attacks

Our ruleset performance

Then we test Snort default rule set performance with our constructed

data set. The test results are shown in Table 38. Snort default rule set

also detects all the attacks with high detection rate and only gave 2 false

positives.

Table 38 Snort default rule performance with our data set

detected false positive false negativedetection rate (%) false alarm rate (%)

back - - - - - -

dict 7 7 0 0 100,00% 0,00%

eject - - - - - -

ffb - - - - - -

format - - - - - -

Ftp-write - - - - - -

guest - - - - - -

imap - - - - - -

ipsweep 452 454 2 0 100,00% 0.44%

land 84 84 0 0 100,00% 0,00%

loadmodule - - - - - -

neptune 160 160 0 0 100,00% 0,00%

nmap 199 199 0 0 100,00% 0,00%

perlmagic - - - - - -

phf - - - - - -

pod 272 272 0 0 100,00% 0,00%

portsweep 96 96 0 0 100,00% 0,00%

rootkit - - - - - -

satan 264 264 0 0 100,00% 0,00%

spy - - - - - -

syslog - - - - - -

teardrop 153 153 0 0 100,00% 0,00%

warez - - - - - -

warezclient - - - - - -

warezmaster - - - - - -

Total 1687 1689 2 0 100,00% 0.11%

of attacks

Snort Default ruleset performance

52

We show the results in a group in table 39.

Table 39 Snort default rule performance with our data set

detected false positive false negativedetection rate (%) false alarm rate (%)

DOS 669 669 0 0 100,00% 0,00%

U2R - - - - - -

R2L 7 7 0 0 100,00% 0,00%

Probes 1011 1013 2 0 100,00% 0.19%

of attacks

Snort Default ruleset performance

If we compare our rule set performance with Snort default rule set

performance for our constructed data set, we can say that the results are

nearly same. Snort default rules detection rate is a little higher and false

alarm rate is a little lower than our rules. Since Snort default rule set

inspects full packet payloads to find signatures. But our rule set inspects

only header part of packet.

In our rules it takes 2.26 seconds to test but in default configuration of

snort it takes 5.03 seconds. The speed is increased by 55.06%.

4.2 Enhancing our Payload Independent Rule Set with Modified

Default Snort Rules

Snort default rule set is a well-accepted rule set. We next consider

modifying these rules to enhance our new manually designed rules.

First, 53 different rule types of Snort default rule set are combined a file

named snort_all. Second, payload detection rule options are excluded

from this file.

In Snort default rule set, there exist 3382 rules. After extracting header

rules 66 rules remain in rule set. To extract header rules we use some

UNIX commands presented in Appendix E.

After extracting header rules, first we test the rule set with DARPA 1998

data set. The results are shown in Table 40. The results show that Snort

53

header rules detection performance is decreased from 98.48% to 82.23%

compared with Snort default rule set performance. However the time

detection performance is increased. While the Snort default rules takes

1025.1 seconds, the Snort header takes 728 seconds. Because of rule

reduction some attacks are missed.

Table 40 Snort header rules performance with DARPA 1998 data set

detected false positive false negative detection rate (%)false alarm rate (%)

back 4381 41 0 4340 0,93% 0,00%

dict 882 7 0 875 0,79% 0,00%

eject 11 0 0 11 0,00% 0,00%

ffb 10 0 0 10 0,00% 0,00%

format 8 0 0 8 0,00% 0,00%

Ftp-write 8 0 0 8 0,00% 0,00%

guest 50 2 0 48 4,00% 0,00%

imap 8 0 0 8 0,00% 0,00%

ipsweep 16336 14326 0 2010 87,69% 0,00%

land 35 35 0 0 100,00% 0,00%

loadmodule 9 0 0 9 0,00% 0,00%

neptune 152665 132460 0 20205 86,76% 0,00%

nmap 2357 2037 0 320 86,42% 0,00%

perlmagic 5 0 0 5 0,00% 0,00%

phf 5 0 0 5 0,00% 0,00%

pod 10498 5408 0 5090 51,51% 0,00%

portsweep 10616 8405 0 2211 79,17% 0,00%

rootkit 254 6 0 248 2,36% 0,00%

satan 32625 28315 0 4310 86,78% 0,00%

spy 2 0 0 2 0,00% 0,00%

syslog 4 0 0 4 0,00% 0,00%

teardrop 2173 893 0 1280 41,09% 0,00%

warez 1 1 0 0 100,00% 0,00%

warezclient 1766 1077 0 689 60,98% 0,00%

warezmaster 19 18 0 1 94,73% 0,00%

Total 234728 193031 0 41697 82.23% 0,00%

of attacks

Snort header ruleset performance

After looking attacks by attacks performance, we show the results in a

group in Table 41.

54

Table 41 Snort header rules performance with DARPA 1998 data set

detected false positive false negative detection rate (%)false alarm rate (%)

DOS 169756 138837 0 30919 81,78% 0,00%

U2R 297 6 0 291 2,02% 0,00%

R2L 2741 1105 0 1636 40,31% 0,00%

Probes 61934 53083 0 8851 85,70% 0,00%

of attacks

Snort header ruleset performance

The results show that DOS and Probes attacks can be detected with high

rate by looking header part of the packet. However R2L attacks are

needed payload inspection. The U2R attacks detection rate is very low

because lots of these types of attacks are obsolete and not detected.

After that snort header rules and our rules are combined and tested with

DARPA 1998 data set again. The results show in Table 42. The detection

rate is increased compared with Snort header rules. Because some

missed attacks are detected with our rules.

55

Table 42 Snort header rules combined with our rules performance with

DARPA 1998 data set

detected false positive false negative detection rate (%) false alarm rate (%)

back 4381 4962 581 0 100,00% 13.26%

dict 882 631 0 251 71,54% 0,00%

eject 11 6 0 5 54,54% 0,00%

ffb 10 34 24 0 100,00% 240,00%

format 8 13 5 0 100,00% 62.50%

Ftp-write 8 4 0 4 50,00% 0,00%

guest 50 65 15 0 100,00% 30,00%

imap 8 3 0 5 37,50% 0,00%

ipsweep 16336 16447 111 0 100,00% 0.67%

land 35 35 0 0 100,00% 0,00%

loadmodule 9 3 0 6 33,33% 0,00%

neptune 152665 152643 0 22 99,98% 0,00%

nmap 2357 2345 0 12 99,49% 0,00%

perlmagic 5 21 16 0 100,00% 320,00%

phf 5 5 0 0 100,00% 0,00%

pod 10498 10498 0 0 100,00% 0,00%

portsweep 10616 9311 0 1305 87,70% 0,00%

rootkit 254 243 0 11 95,66% 0,00%

satan 32625 36951 4326 0 100,00% 13.25%

spy 2 1 0 1 50,00% 0,00%

syslog 4 4 0 0 100,00% 0,00%

teardrop 2173 1027 0 1146 47,26% 0,00%

warez 1 1 0 0 100,00% 0,00%

warezclient 1766 1253 0 513 70,95% 0,00%

warezmaster 19 18 0 1 94,73% 0,00%

Total 234728 236524 5078 3282 98.60% 2.16%

of attacks

Snort header ruleset performance + Our ruleset performance

After looking attacks by attacks performance, we show the results in a

group in Table 43.

Table 43 Snort header rules combined with our rules performance with

DARPA 1998 data set

detected false positive false negative detection rate (%) false alarm rate (%)

DOS 169756 169169 581 1168 99,31% 0,34%

U2R 297 320 45 22 92,59% 15,15%

R2L 2741 1981 15 775 71,72% 0,54%

Probes 61934 65054 4437 1317 97,87% 7,16%

of attacks

Snort header ruleset performance + Our ruleset performance

56

The results show that DOS, R2L and Probes attacks detection rates are

increased a little. But in U2R attacks, there exists many increases.

Because our rules detect much this types of attacks. Besides the false

alarm rate of U2R is increased. The test takes 736 second. The time

detection performance is nearly same with Snort headers but it is better

than the Snort default rules 1025.1 seconds. The speed is increased by

28.20%.

Then we test Snort header rules performance with our constructed data

set. The test results are shown in Table 44. Snort header rule set

detection overall performance is decreased from 100% to 73.62%

compared with Snort default rule set.

57

Table 44 Snort header rules performance with our data set

detected false positive false negative detection rate (%) false alarm rate (%)

back - - - - - -

dict 7 0 0 0 0,00% 0,00%

eject - - - - - -

ffb - - - - - -

format - - - - - -

Ftp-write - - - - - -

guest - - - - - -

imap - - - - - -

ipsweep 452 213 0 0 47,12% 0,00%

land 84 84 0 0 100,00% 0,00%

loadmodule - - - - - -

neptune 160 160 0 0 100,00% 0,00%

nmap 199 199 0 0 100,00% 0,00%

perlmagic - - - - - -

phf - - - - - -

pod 272 272 0 0 100,00% 0,00%

portsweep 96 55 0 0 57,29% 0,00%

rootkit - - - - - -

satan 264 106 0 0 40,15% 0,00%

spy - - - - - -

syslog - - - - - -

teardrop 153 153 0 0 100,00% 0,00%

warez - - - - - -

warezclient - - - - - -

warezmaster - - - - - -

Total 1687 1242 0 0 73,62% 0,00%

of attacks

Snort header ruleset performance

After looking attacks by attacks performance, we show the results in a

group in Table 45.

Table 45 Snort header rules performance with our data set

detected false positive false negative detection rate (%) false alarm rate (%)

DOS 669 669 0 0 100,00% 0,00%

U2R - - - - - -

R2L 7 0 0 0 0,00% 0,00%

Probes 1011 573 0 0 56,67% 0,00%

of attacks

Snort header ruleset performance

The results show that DOS detection rate remain 100%. But R2L and

Probes attacks detection rates are decreased compared with Snort

58

default rule set performance. However the time detection performance is

increased. While the Snort default rules takes 5.03 seconds, the Snort

header takes 2.88 seconds. Because of rule reduction some attacks are

missed.

After that Snort header rules and our rules are combined and tested with

our constructed data set again. The results show in Table 46. The

detection rate is increased compared with Snort header rules. Because

some missed attacks are detected with our rules.

Table 46 Snort header rules combined with our rules performance with

our data set

detected false positive false negative detection rate (%) false alarm rate (%)

back - - - - - -

dict 7 7 0 0 100,00% 0,00%

eject - - - - - -

ffb - - - - - -

format - - - - - -

Ftp-write - - - - - -

guest - - - - - -

imap - - - - - -

ipsweep 452 454 2 0 100,00% 0.44%

land 84 84 0 0 100,00% 0,00%

loadmodule - - - - - -

neptune 160 160 0 0 100,00% 0,00%

nmap 199 199 0 0 100,00% 0,00%

perlmagic - - - - - -

phf - - - - - -

pod 272 272 0 0 100,00% 0,00%

portsweep 96 97 1 0 100,00% 1.03%

rootkit - - - - - -

satan 264 265 1 0 99.62% 0,37%

spy - - - - - -

syslog - - - - - -

teardrop 153 153 0 0 100,00% 0,00%

warez - - - - - -

warezclient - - - - - -

warezmaster - - - - - -

Total 1687 1691 4 0 100,00% 0.23%

of attacks

Snort header ruleset performance + Our ruleset performance

After looking attacks by attacks performance, we show the results in a

group in Table 45.

59

Table 47 Snort header rules combined with our rules performance with

our data set

detected false positive false negative detection rate (%) false alarm rate (%)

DOS 669 669 0 0 100,00% 0,00%

U2R - - - - - -

R2L 7 7 0 0 100,00% 0,00%

Probes 1011 1015 4 0 100,00% 0.39%

of attacks

Snort header ruleset performance + Our ruleset performance

The results show that all types of attacks are detected. But combined

ruluset gives some false alarms because of our rules performance only.

However the time detection performance is increased. The test takes

2.95 second. The time detection performance is nearly same with Snort

headers but it is better than the Snort default rules 5.03 seconds. The

speed is increased by 41.35%.

60

CHAPTER 5

CONCLUSION

Our results in this thesis show that faster intrusion detection systems can

be designed with signatures that do not depend on packet payloads. We

observe that a significant amount of intrusions can be detected by only

inspecting the packet headers. However, we do not propose our approach

as the only intrusion detection facility for a given system. Rather we see

it as a fast detection pre-scanning tool to eliminate the intrusions that

can be detected without payload inspection.

Our future work includes developing an automatic signature extraction

method rather than manually processing the traffic traces. In addition,

time and state based approaches can be incorporated. It is also possible

to apply this method to detection tools other than Snort.

61

REFERENCES

[1] T. Chen, Z. Fu, L. He and T. Strayer ―Recent Development in Network

Intrusion Detection‖ IEEE Network January/February, 2009

[2] A. Lazarevic, V. Kumar and J. Srivastava ―Intrusion Detection: A

Survey‖ Massive Computing, Volume 5, Part I, 19-78, 2005

[3] http://www.cert.org/present/internet-security-trends, 2011

[4] M. Sabhnani and G. Serpen ―KDD Feature Set Complaint Heuristic

Rules for R2L Attack Detection‖ Proceedings of the International

Conference on Security and Management, SAM '03, Las Vegas, Nevada,

USA, Volume 1 2003 pages 310-316, June 23 – 26, 2003

[5] F. Godinez, D. Hutter and R. Monroy ―On the Use of Word Networks

to Mimicry Attack Detection‖ Emerging Trends in Information and

Communication Security, International Conference, ETRICS 2006,

Freiburg, Germany, Proceedings 2006 pages 423-435, June 6-9, 2006

[6] S. Chebrolu, A. Abraham, J. P. Thomas ―Feature deduction and

ensemble design of intrusion detection systems‖ Computer & Security,

2005

[7] W. H. Chen, S. H. Hsu, H. P. Shen ―Application of SVM and ANN for

intrusion detection‖ Computers & Operations Research, 2005

[8] S. T. Sarasamma, Q. A. Zhu, J. Huff ―Hierarchical Kohonen Net for

Anomaly Detection in Network Security‖ IEEE Transactions On Systems,

Man, And Cybernetics, 2005

[9] F. Yu, Z. Chen, Y. Diao ―Fast and Memory-Efficient Regular

Expression Matching for Deep Packet Inspection‖ ANCS '06 Proceedings

of the 2006 ACM/IEEE Symposium On Architecture For Networking And

Communications Systems, 2006

62

[10] O. Depren, M. Topallar, E. Anarim, M. K. Ciliz ―An intelligent

intrusion detection system (IDS) for anomaly and misuse detection in

computer networks‖ Expert Systems with Applications, 2005

[11] T. Shon, J. Moon ―A hybrid machine learning approach to network

anomaly detection‖ Information Sciences, 2007

[12] S. Peddabachigaria, A. Abrahamb, C. Grosanc, J. Thomas ―Modeling

intrusion detection system using hybrid intelligent systems‖ Journal of

Network and Computer Applications, 2007

[13] S. J. Horng, M. Y. Su, Y.H. Chen, T. W. Kao, R. J. Chen, J. L. Lai, C.

D. Perkasa ―A novel intrusion detection system based on hierarchical

clustering and support vector machines‖ Expert Systems with

Applications, 2011

[14] L. Khan, M. Awad, B. Thuraisingham ―A new intrusion detection

system using support vector machines and hierarchical clustering‖ The

VLDB Journal, 2007

[15] Z. Yu, J. Tsai, T. Weigert ―An Automatically Tuning Intrusion

Detection System‖ IEEE Transactions On Systems, Man, And

Cybernetıcs—Part B: Cybernetics, 2007

[16] K. Shafi, H. A. Abbass ‖An adaptive genetic-based signature learning

system for intrusion detection‖ Expert Systems with Applications, 2009

[17] G. P. Spathoulas, S. K. Katsikas ―Reducing false positives in

intrusion detection systems‖ Computers & Security, 2010

[18] S. Kim and H. Lee ―Reducing Payload Scans for Attack Signature

Matching Using Rule Classification‖ ACISP 2008, LNCS 5107, pages 350-

360, 2008

[19] http://en.wikipedia.org/wiki/Snort_%28software%29#cite_note-1,

2011

[20] http://www.esecurityplanet.com/trends/article.php/3681296/Snort-

Open-Source-Network-Intrusion-Prevention.htm, 2011

63

[21] http://sourcefire.mktoweb.com/GartnerMaqicQuadrant.html, 2011

[22] www.snort.org, 2011

[23] www.snort.org/snort, 2011

[24] W. Wang, R. Battiti ―Identifying Intrusions in Computer Networks

with Principal Component Analysis‖ Availability, Reliability and Security,

2006

[25] http://base.secureideas.net, 2011

[26] http://www.snort.org/start/requirements, 2011

[27] B. Caswell, J. Beale ―Snort Intrusion Detection and Prevention

Toolkit‖, Syngress Publishing, 750 pages, 2007

[28] http://en.wikipedia.org/wiki/Wireshark, 2011

[29]http://www.infoworld.com/d/open-source/greatest-open-source-

software-all-time-776?page=0,2&source=fssr, 2011

[30] Kristopher Kendall "A Database of Computer Attacks for the

Evaluation of Intrusion Detection Systems" DISCEX, 1999

[31] http://en.wikipedia.org/wiki/Ping_of_death, 2011

[32]http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/do

cs/attacks.html, 2011

[33] http://en.wikipedia.org/wiki/Rootkit, 2011

[34] http://www.backtrack-linux.org, 2011

64

Appendix A: Rule set

This file created by Mehmet Cem TARIM

alert tcp any any -> any 80 (msg:"back"; sid:2000001; dsize:>1400;

flags:PA,12; ttl:64; tos:0; fragbits:D+;)

alert tcp any 20,23,110,143,513 -> any 1000: (msg:"dict and guest";

sid:2000002; dsize:17<>20; flags:PA,12; detection_filter: track by_dst,

count 5, seconds 60;)

alert tcp any any -> any 23 (msg:"eject"; sid:2000003; dsize:58;

flags:PA,12; ttl:64; tos:16; window:32120; fragbits:D+;)

alert tcp any any -> any any (msg:"ffb and format"; sid:2000004;

dsize:71; flags:PA,12; ttl:254; tos:0; window:8760; fragbits:D+;)

alert tcp any 20:21 -> any 1000: (msg:"ftp-write-1"; sid:2000005;

flags:S,12; ttl:254; tos:0; window:24820; fragbits:D+;)

alert tcp any 1000:1100 -> any 20,21,513 (msg:"ftp-write-2";

sid:2000006; flags:S,12; ttl:63; tos:0; window:512; fragbits:D+;)

alert tcp any any -> any 23 (msg:"guest"; sid:2000007; dsize:26<>39;

flags:PA,12;)

alert tcp any any -> any 143 (msg:"imap"; sid:2000008; dsize:>1000;

flags:PA,12; window:32120; fragbits:D+;)

alert tcp any any -> any !80,!25,:100 (msg:"ip-sweep-1"; sid:2000009;

flags:S,12; ttl:64; window:512; detection_filter: track by_src, count 3,

seconds 60;)

alert icmp any any -> any any (msg:"ipsweep-2"; sid:2000010;

dsize:<30; itype:8; detection_filter: track by_src, count 3, seconds 60;)

65

alert ip any any -> any any (msg: "land"; sid:2000011; sameip;)

alert tcp any any -> any 23 (msg:"loadmodule"; sid:2000012;

dsize:40<>50; flags:PA,12; ttl:64; window:32696; fragbits:D+;)

alert tcp any any -> any any (msg:"neptune"; sid:2000013; dsize:<40;

flags:S,12; ttl:255; window:242; detection_filter: track by_src, count 3,

seconds 1;)

alert tcp any any -> any any (msg:"nmap-1"; sid:2000014; dsize:<40;

ttl:254; flags:F,12; window:2048;)

alert udp any 137,138 -> any 137,138 (msg:"nmap-2"; sid:2000015;

dsize:<250; ttl:63;)

alert icmp any any -> any any (msg:"nmap-3"; sid:2000016; ttl:63;

itype:8;)

alert tcp any any -> any 23 (msg:"perlmagic"; sid:2000017; dsize:19;

flags:PA,12; ttl:64; window:32120; fragbits:D+;)

alert tcp any any -> any 80 (msg:"phf"; sid:2000018; dsize:50<>60;

flags:PA,12; ttl:64; window:32120; fragbits:D+;)

alert ip any any -> any any (msg:"pod"; sid:2000019; dsize:1480;)

alert tcp any 1000: -> any !80 (msg:"port-sweep"; sid:2000020;

dsize:<40; flags:S,12; detection_filter: track by_src, count 10, seconds

1;)

alert icmp any any -> any any (msg:"rootkit-1"; sid:2000021;

dsize:50<>100; ttl:63; itype:8;)

alert udp any 1000: -> any 1000: (msg:"rootkit-2"; sid:2000022;

dsize:4<>40;)

alert icmp any any -> any any (msg:"satan-1"; sid:2000023; dsize:<20;

)

66

alert tcp any 1000: -> any :10000,!80 (msg:"satan-2"; sid:2000024;

dsize:<40; flags:S,12; ttl:64; detection_filter: track by_src, count 5,

seconds 1;)

alert udp any !53 -> any !53 (msg:"satan-3"; sid:2000025; dsize:<25;

ttl:64; tos:0;)

alert tcp any 10000: -> any 23 (msg:"spy"; sid:2000026;

dsize:45<>50; flags:PA,12; ttl:64; tos:16; window:32120;)

alert udp any 514 -> any 514 (msg:"syslog"; sid:2000027; dsize:<10;

ttl:64;)

alert udp any any -> any any (msg:"teardrop"; sid:2000028; dsize:28;

id:242; fragbits:M;)

alert tcp any any -> any 21 (msg:"warez"; sid:2000029; dsize:>30;

ttl:64; flags:PA,12; tos:0; window:32120;)

alert tcp any 20 -> any 1000: (msg:"warezclient"; sid:2000030;

dsize:>300; flags:PA,12; ttl:254; window:24820; detection_filter: track

by_dst, count 5, seconds 1;)

alert tcp any 1000: -> any 21 (msg:"warezclient"; sid:2000031;

dsize:<20; flags:S,12; ttl:64; window:512;)

alert tcp any 20 -> any 1000: (msg:"warezmaster"; sid:2000032;

dsize:<40; ttl:254; flags:S,12; window:24820;)

67

Appendix B: Modified Snort config file

#--

http://www.snort.org Snort 2.8.5.2 Rule set

Contact: snort-sigs@lists.sourceforge.net

#--

var HOME_NET $wlan0_ADDRESS

var DNS_SERVERS $HOME_NET

var SMTP_SERVERS $HOME_NET

var HTTP_SERVERS $HOME_NET

var SQL_SERVERS $HOME_NET

var TELNET_SERVERS $HOME_NET

var FTP_SERVERS $HOME_NET

var SNMP_SERVERS $HOME_NET

portvar HTTP_PORTS 80

portvar SHELLCODE_PORTS !80

portvar ORACLE_PORTS 1521

portvar FTP_PORTS 21

var AIM_SERVERS

[64.12.24.0/23,64.12.28.0/23,64.12.161.0/24,64.12.163.0/24,64.12.20

0.0/24,205.188.3.0/24,205.188.5.0/24,205.188.7.0/24,205.188.9.0/24,

205.188.153.0/24,205.188.179.0/24,205.188.248.0/24]

68

var RULE_PATH /etc/snort/rules

var PREPROC_RULE_PATH /etc/snort/preproc_rules

preprocessor stream5_global: max_tcp 8192, track_tcp yes, \

 track_udp no

output unified2: filename snort.log, limit 128

include $RULE_PATH/local.rules

69

Appendix C: Information about Snort

Snort modes of work

Snort can be configured in three main working modes: [22]

• Sniffer mode, which reads network packets and displays them on the

console (screen).

• Packet Logger mode, which logs the packets to the disk.

• Network Intrusion Detection System (NIDS) mode, Snort monitors

network traffic and analyzes it for matches against a user defined rule set

and performs several actions.

Understanding standard alert output

When Snort generates an alert message, it will usually look like the

following [22]:

[**] [116:56:1] (snort_decoder): T/TCP Detected [**]

The first number is the Generator ID, this tells the user what component

of Snort generated this alert. In this example, we know that this event

came from the ―decode‖ (116) component of Snort [22].

The second number is the Snort ID (sometimes referred to as Signature

ID). Rule-based SIDs is written directly into the rules with the sid option.

In this case, 56 represent a T/TCP event [22].

The third number is the revision ID. This number is primarily used when

writing signatures, as each rendition of the rule should increment this

number with the rev option [22].

70

High performance configuration

To increase snort performance unified logging and a unified log reader

such as barnyard can be used. This allows Snort to log alerts in a binary

form as fast as possible while another program performs the slow

actions, such as writing to a database.

Reading Pcaps

Instead of having Snort listen on an interface, we can give it a packet

capture to read. Snort will read and analyze the packets as if they came

off the wire. This can be useful for testing and debugging Snort [22].

snort –r outside.tcpdump

Running Snort as a Daemon

To run Snort as a daemon, we can the add -D switch to any combination

described in the previous sections. For example:

snort –r outside.tcpdump -c /etc/snort.conf -D

Configuring snort

Includes: The include keyword allows other snort config files to be

included within the snort.conf indicated on the Snort command line. It

works much like an #include from the C programming language, reading

the contents of the named file and adding the contents in the place

where they include statement appears in the file.

Format:

include <include file path/name>

Preprocessors: Preprocessors allow the functionality of Snort to be

extended by allowing users and programmers to drop modular plugins

into Snort fairly easily. Preprocessor code is run before the detection

engine is called, but after the packet has been decoded. The packet can

be modified or analyzed in an out-of-band manner using this mechanism.

71

Preprocessors are loaded and configured using the preprocessor keyword.

The format of the preprocessor directive in the Snort config file is:

preprocessor <name>: <options>

Snort preprocessros are frag3, sfportscan, rpc decode, performance

monitor, http inspect, smtp preprocessor, ftp/telnet preprocessor, ssh,

dns, ssl/tls, arp spoof preprocessor, dce/rpc 2 preprocessor, sensitive

data preprocessor, normalizer.

Output modules

Output modules allow Snort to more flexible in the formatting and

presentation of output to its users. The output modules are run when the

alert or logging subsystems of Snort are called, after the preprocessors

and detection engine. The format of the directives in the config file is

very similar to that of the preprocessors [22].

Multiple output plugins may be specified in the Snort configuration file.

When multiple plugins of the same type (log, alert) are specified, they

are stacked and called in sequence when an event occurs. As with the

standard logging and alerting systems, output plugins send their data to

/var/log/snort by default or to a user directed directory (using the -l

command line switch). Output modules are loaded at runtime by

specifying the output keyword in the config file:

output <name>: <options>

output alert_syslog: log_auth log_alert

Writing Snort rules

Snort rules are divided into two logical sections, the rule header and the

rule options. The rule header contains the rule’s action, protocol, source

and destination IP addresses and net masks, and the source and

destination ports information. The rule option section contains alert

messages and information on which parts of the packet should be

inspected to determine if the rule action should be taken.

72

Rules headers: The rule header contains the information that defines

the who, where, and what of a packet, as well as what to do in the event

that a packet with all the attributes indicated in the rule should show up.

The first item in a rule is the rule action. The rule action tells Snort what

to do when it finds a packet that matches the rule criteria. There are 5

available default actions in Snort, alert, log, pass, activate, and dynamic.

 Alert: Generate an alert using the selected alert method, and then

log the packet

 Log: Log the packet

 Pass: Ignore the packet

 Activate: Alert and then turn on another dynamic rule

 Dynamic: Remain idle until activated by an activate rule , then act

as a log rule

Protocols: The next field in a rule is the protocol. There are four

protocols that Snort currently analyzes for suspicious behavior TCP, UDP,

ICMP, and IP.

IP addresses: The next portion of the rule header deals with the IP

addresses and port information for a given rule. The keyword any may be

used to define any address. Snort does not have a mechanism to provide

host name lookup for the IP address fields in the config file. The

addresses are formed by a straight numeric IP address and a CIDR block.

The CIDR block indicates the net mask that should be applied to the

rule’s address and any incoming packets that are tested against the rule.

A CIDR block mask of /24 indicates a Class C network, /16 a Class B

network, and /32 indicates a specific machine address. For example, the

address/CIDR combination 192.168.1.0/24 would signify the block of

addresses from 192.168.1.1 to 192.168.1.255. Any rule that used this

designation for, say, the destination address would match on any address

in that range [22].

Port numbers: Port numbers may be specified in a number of ways,

including any ports, static port definitions, ranges, and by negation. Any

73

ports are a wildcard value, meaning literally any port. Static ports are

indicated by a single port number, such as 111 for port mapper, 23 for

telnet, or 80 for http, etc. Port ranges are indicated with the range

operator: The range operator may be applied in a number of ways to

take on different meanings [22].

log udp any any -> 192.168.1.0/24 1:1024 log udp

log udp traffic coming from any port and destination ports ranging from 1

to 1024

log tcp any any -> 192.168.1.0/24 :6000

log tcp traffic from any port going to ports less than or equal to 6000

log tcp any :1024 -> 192.168.1.0/24 500:

log tcp traffic from privileged ports less than or equal to 1024 going to

ports greater than or equal to 500

Port negation is indicated by using the negation operator !. The negation

operator may be applied against any of the other rule types (except any,

which would translate to none). The example of the port negation is

shown below [22].

log tcp any any -> 192.168.1.0/24 !6000:6010

The direction operator: The direction operator -> indicates the

orientation, or direction, of the traffic that the rule applies to. The IP

address and port numbers on the left side of the direction operator is

considered to be the traffic coming from the source host, and the address

and port information on the right side of the operator is the destination

host. There is also a bidirectional operator, which is indicated with a <>

symbol. This tells Snort to consider the address/port pairs in either the

source or destination orientation. This is handy for recording/analyzing

both sides of a conversation, such as telnet or POP3 sessions. An

example of the bidirectional operator being used to record both sides of a

telnet session is shown below [22].

log tcp !192.168.1.0/24 any <> 192.168.1.0/24 23

74

Rule Options

Rule options form the heart of Snort’s intrusion detection engine,

combining ease of use with power and flexibility. All Snort rule options

are separated from each other using the semicolon (;) character. Rule

option keywords are separated from their arguments with a colon (:)

character.

activate tcp !$HOME_NET any -> $HOME_NET 143 (flags: PA; \

content: "|E8C0FFFFFF|/bin"; activates: 1; \

msg: "IMAP buffer overflow!";)

dynamic tcp !$HOME_NET any -> $HOME_NET 143 (activated_by: 1;

count: 50;)

There are four major categories of rule options.

 General: These options provide information about the rule but do

not have any affect during detection

 Payload: These options all look for data inside the packet payload

and can be inter-related

 Non-payload: These options look for non-payload data

 Post-detection: These options are rule specific triggers that

happen after a rule has ―fired.‖

Table 48 General rule options

Keyword Description

Msg The msg keyword tells the logging and alerting engine the

message to print with the packet dump or alert.

reference The reference keyword allows rules to include references to

external attack identification systems.

75

Gid The gid keyword (generator id) is used to identify what

part of Snort generates the event when a particular rule

fires.

Sid The sid keyword is used to uniquely identify Snort rules.

Rev The rev keyword is used to uniquely identify revisions of

Snort rules.

classtype The classtype keyword is used to categorize a rule as

detecting an attack that is part of a more general type of

attack class.

Priority The priority keyword assigns a severity level to rules.

metadata The metadata keyword allows a rule writer to embed

additional information about the rule, typically in a key-

value format.

Table 49 Payload detection rule options

Keyword Description

Content The content keyword allows the user to set rules that

search for specific content in the packet payload and trigger

response based on that data.

Rawbytes The rawbytes keyword allows rules to look at the raw

packet data, ignoring any decoding that was done by

preprocessors

Depth The depth keyword allows the rule writer to specify how far

into a packet Snort should search for the specified pattern.

Offset The offset keyword allows the rule writer to specify where

76

to start searching for a pattern within a packet.

Distance The distance keyword allows the rule writer to specify how

far into a packet Snort should ignore before starting to

search for the specified pattern relative to the end of the

previous pattern match.

Within The within keyword is a content modifier that makes sure

that at most N bytes are between pattern matches using

the content keyword.

uricontent The uricontent keyword in the Snort rule language searches

the normalized request URI field.

Isdataat The isdataat keyword verifies that the payload has data at a

specified location.

Pcre The pcre keyword allows rules to be written using perl

compatible regular expressions.

byte test The byte test keyword tests a byte field against a specific

value (with operator).

byte jump The byte jump keyword allows rules to read the length of a

portion of data, then skip that far forward in the packet.

ftpbounce The ftpbounce keyword detects FTP bounce attacks.

asn1 The asn1 detection plugin decodes a packet or a portion of

a packet, and looks for various malicious encodings.

Cvs The cvs keyword detects invalid entry strings.

77

Table 50 Non-Payload detection rule options

Keyword Description

fragoffset The fragoffset keyword allows one to compare the IP

fragment offset field against a decimal value.

Ttl The ttl keyword is used to check the IP time-to-live value.

Tos The tos keyword is used to check the IP TOS field for a

specific value.

Id The id keyword is used to check the IP ID field for a specific

value.

Ipopts The ipopts keyword is used to check if a specific IP option is

present.

Fragbits The fragbits keyword is used to check if fragmentation and

reserved bits are set in the IP header.

Dsize The dsize keyword is used to test the packet payload size.

Flags The flags keyword is used to check if specific TCP flag bits

are present.

Flow The flow keyword allows rules to only apply to certain

directions of the traffic flow.

Flowbits The flowbits keyword allows rules to track states during a

transport protocol session.

Seq The seq keyword is used to check for a specific TCP

sequence number.

Ack The ack keyword is used to check for a specific TCP

acknowledge number.

78

Window The window keyword is used to check for a specific TCP

window size.

Itype The itype keyword is used to check for a specific ICMP type

value.

Icode The icode keyword is used to check for a specific ICMP code

value.

icmp_id The icmp id keyword is used to check for a specific ICMP ID

value.

icmp_seq The icmp seq keyword is used to check for a specific ICMP

sequence value.

Rpc The rpc keyword is used to check for a RPC application,

version, and procedure numbers in SUNRPC CALL requests.

ip_proto The ip proto keyword allows checks against the IP protocol

header.

Sameip The sameip keyword allows rules to check if the source ip is

the same as the destination IP.

Table 51 Post-Detection rule options

Keyword Description

Logto The logto keyword tells Snort to log all packets that

trigger this rule to a special output log file.

Session The logto keyword tells Snort to log all packets that

trigger this rule to a special output log file.

Resp The logto keyword tells Snort to log all packets that

79

trigger this rule to a special output log file.

React This keyword implements an ability for users to react to

traffic that matches a Snort rule by closing connection and

sending a notice.

Tag The tag keyword allow rules to log more than just the

single packet that triggered the rule.

Activates This keyword allows the rule writer to specify a rule to add

when a specific network event occurs.

activated_by This keyword allows the rule writer to dynamically enable

a rule when a specific activate rule is triggered.

Count This keyword must be used in combination with the

activated by keyword. It allows the rule writer to specify

how many packets to leave the rule enabled for after it is

activated.

Replace Replace the prior matching content with the given string of

the same length. Available in inline mode only.

detection_filt

er

Track by source or destination IP address and if the rule

otherwise matches more than configured rate it will fire.

80

Appendix D: Used command to generate Our data set

dict attack

./brutessh.py -h 192.168.1.143 -u root -d list.txt

land attack

hping3 -S -a 192.168.1.143 -p 21 192.168.1.143

neptune attack

hping3 -S 192.168.1.143 -t 255 -w 242

pod attack

hping3 192.168.1.143 -1 -d 1480

teardrop attack

hping3 192.168.1.143 -x -d 28 -N 242 -2

ipsweep attack

hping3 192.168.1.143 -w 512 -S -p ++0

hping3 192.168.1.143 -1 -C 8

nmap attack

hping3 192.168.1.143 -1 -t 63 -C 8

hping3 192.168.1.143 -d 200 -2 -p 138 -s 138 -t 63

hping3 192.168.1.143 -d 200 -2 -p 137 -s 137 -t 63

hping3 192.168.1.143 -8 1-100 -F

hping3 192.168.1.143 -d 10 -t 254 -F -w 2048

81

portsweep attack

hping3 192.168.1.143 -d 5 -s 10000 -p ++0 –S

satan attack

hping3 192.168.1.143 -d 5 -s 2000 -p ++0 -S

hping3 192.168.1.143 -d 3 -2

hping3 192.168.1.143 -1

82

Appendix E: Used command to extract header rules of Snort

rule set

cat bad-traffic.rules > snort_all

cat exploit.rules >> snort_all

cat community-exploit.rules >> snort_all

cat scan.rules >> snort_all

cat finger.rules >> snort_all

cat ftp.rules >> snort_all

cat telnet.rules >> snort_all

cat rpc.rules >> snort_all

cat rservices.rules >> snort_all

cat dos.rules >> snort_all

cat community-dos.rules >> snort_all

cat ddos.rules >> snort_all

cat dns.rules >> snort_all

cat tftp.rules >> snort_all

cat web-cgi.rules >> snort_all

cat web-coldfusion.rules >> snort_all

cat web-iis.rules >> snort_all

cat web-frontpage.rules >> snort_all

cat web-misc.rules >> snort_all

83

cat web-client.rules >> snort_all

cat web-php.rules >> snort_all

cat community-sql-injection.rules >> snort_all

cat community-web-client.rules >> snort_all

cat community-web-dos.rules >> snort_all

cat community-web-iis.rules >> snort_all

cat community-web-misc.rules >> snort_all

cat community-web-php.rules >> snort_all

cat sql.rules >> snort_all

cat x11.rules >> snort_all

cat icmp.rules >> snort_all

cat netbios.rules >> snort_all

cat misc.rules >> snort_all

cat attack-responses.rules >> snort_all

cat oracle.rules >> snort_all

cat community-oracle.rules >> snort_all

cat mysql.rules >> snort_all

cat snmp.rules >> snort_all

cat community-ftp.rules >> snort_all

cat smtp.rules >> snort_all

cat community-smtp.rules >> snort_all

cat imap.rules >> snort_all

cat community-imap.rules >> snort_all

84

cat pop2.rules >> snort_all

cat pop3.rules >> snort_all

cat nntp.rules >> snort_all

cat community-nntp.rules >> snort_all

cat community-sip.rules >> snort_all

cat other-ids.rules >> snort_all

cat web-attacks.rules >> snort_all

cat backdoor.rules >> snort_all

cat community-bot.rules >> snort_all

cat community-virus.rules >> snort_all

cat experimental.rules >> snort_all

cat snort_all | grep -v '#' > snort_all_nocomment

cat snort_all_nocomment | grep -v content: > snort_header_nocontent

cat snort_header_nocontent | grep -v isdataat >

snort_header_noisdataat

cat snort_header_noisdataat | grep -v pcre > snort_header_nopcre

cat snort_header_nopcre | grep -v byte* > snort_header_nobyte

cp snort_header_nobyte snort-header.rules

