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ABSTRACT 
 

 

HUMAN ACTIVITY RECOGNITION BY GAIT ANALYSIS 

 

 

 

Kepenekci, Burcu 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Gözde Akar   

 

February 2011, 102 pages 

 

 

This thesis analyzes the human action recognition problem. Human actions are modeled as 

a time evolving temporal texture. Gabor filters, which are proved to be a robust 2D texture 

representation tool by detecting spatial points with high variation, is extended to 3D domain 

to capture motion texture features. A well known filtering algorithm and a recent 

unsupervised clustering algorithm, the Genetic Chromodynamics, are combined to select 

salient spatio-temporal features of the temporal texture and to segment the activity 

sequence into temporal texture primitives. Each activity sequence is represented as a 

composition of temporal texture primitives with its salient spatio-temporal features, which 

are also the symbols of our codebook.  To overcome temporal variation between different 

performances of the same action, a Profile Hidden Markov Model is applied with Viterbi 

Path Counting (ensemble training). Not only parameters and structure but also codebook is 

learned during training. 

 

Keywords: 3D Gabor Filters, Action Recognition, Feature Selection, Genetic 

Chromodynamics, Motion Analysis, Profile HMM, spatio-temporal Features, Temporal 

Texture. 
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ÖZ 

 

 

HAREKET ANALİZİ İLE İNSAN AKTİVİTELERİNİ TANIMA 

 

 

 

Kepenekci, Burcu 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gözde Akar 

 

Şubat 2011, 102 sayfa 

 

 

Bu çalışmada insan activitelerinin tanınması amacıyla zaman-uzamsal analize dayalı yeni 

bir yöntem önerilmiştir. Video serisinin local zaman-uzamsal betimlemesi 3B Gabor 

filtreleri kullanılarak elde edilmiştir. Hareket desenini en iyi modelleyen zaman-uzamsal 

nitelikler iki aşamalı bir nitelik seçme algoritması ile seçilmiştir. Öncelikle iyi bilinen 

süzgeçleme yöntemiyle bazı nitelikler doğrudan elenmiştir, ikinci aşamada yeni evrimsel 

bir kümeleme algorithması olan Genetic Kromodinamikler uygulanmıştır. Activiteyi 

oluşturan hareket desenlerinin her biri zaman uzamsal nitelik kümesi olarak ifade 

edilmiştir. Aynı aktivitenin farklı performansları arasındaki zamansal değişimlerin 

etkilerinin azaltılması amacıyla bir Saklı Markov Model yapısı önerilmiştir. Önerilen 

algoritma ile hem parameter hem de kodkitabı eğitim sırasında öğrenilmiştir.   

 

Anahtar Kelimeler: 3B Gabor Filtreleri, Aktivite Tanıma, Nitelik Seçimi, Genetik 

Kromodinamik Öbekleme, Hareket Analizi, Profil Saklı Markov Model, Zaman-uzamsal 

nitelikler, Zamansal Desen. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

As the number of cameras grows exponentially, it becomes impossible for a security 

operator to monitor several video streams for extended periods of time. This leads to the 

need for the systems that are able to detect, categorize and recognize human actions, 

requesting human attention only when necessary. Detection and tracking systems have 

progressed significantly in the past few years, and human motion and behavior 

interpretation have naturally become the following step. In all of the surveillance systems, 

tracking is first step and behavior recognition is the final goal [44, 100].  

Study of gait is a relatively new area for computer vision research. Gait analysis is inspired 

by the human ability to recognize other people from their movements, especially from their 

walking patterns, even at very coarse resolutions [3, 39, 40, 112].  

Activity recognition can be described as the analysis and recognition of human motion 

(gait) patterns. The aim of the analysis is to represent the human motion effectively for 

recognition. The main challenges of analyzing and comparing activities are the temporal 

and spatial variations of the human motion. Temporal variation is caused by the difference 

in duration of performing actions and spatial variation is due to the fact that people have 

different ways of performing activities and different physics [2]. 

Approaches to human activity recognition can be classified as top-down methods based on 

geometric body reconstruction [62-76], and bottom-up methods based on low level features 

such as image differences, edges, corners or local motion [100-146]. 

Most systems based on the top-down approach employ a geometrical model of the human 

body; model parameters are determined from images. One approach is to placing markers 

on the moving body; however, this approach is generally impractical and moreover 

impossible for some applications [2, 76]. Marker free approaches mainly determine 

body/part orientation by tracking the edges or uniform color regions [62, 74, 70]. However, 
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those methods suffer from the inaccuracy of the body model. More sophisticated model 

based methods, having higher computational complexity, matches 2D image sequences to a 

model to automatically find feature correspondences [63, 64, 66, 67]. Reconstructing the 

human body shape yields rich and useful representation such as joint angle parameters if 

the reconstruction is successful, then pattern classification techniques can be used to 

recognize a sequence of model parameters extracted from image sequences. However, the 

reconstruction procedures are neither robust nor reliable for real images. Since the purpose 

is to recognize human actions from time sequential images, not obtaining geometric 

representation of human bodies, geometric reconstruction is not essential.  

Bottom-up approaches which utilize low level features extracted from image sequences 

have been the subject of various studies [102, 103, 104, 105]. Those methods are inspired 

by approaches to the image based object recognition that relies on spatial features; 

however, video and images have distinct properties. In video analysis, compared to the 

spatial features, local spatio-temporal features capture both characteristic shape and motion 

in video and provide relatively robust representation of events [97]. 

The main challenge about the feature based approaches is that the relations between low 

level features and the high level action description category are not explicit. 

The problem of describing action categories with low level features can be eliminated with 

a learning procedure. The goal is to classify observed spatio-temporal features into human 

activity categories. Majority of the methods based on the spatio-temporal features follow a 

similar trajectory: detect local interest points, compute a representation of a window of 

pixels around each of these points using a descriptor. A commonly used approach is to 

quantize the local space-time features to model each sequence as a spatio-temporal “bag of 

features” [130, 125, 153, 136], and then feed to a classifier. Most of the effort has been 

made in designing space-time feature detectors [138, 3, 4, 102, 124] and descriptors 

[5,125], rather than modeling the spatial and temporal relations between them.  

In most of the methods based on spatio-temporal features, activity video is modeled as a 

whole (with histograms of visual words, word co-occurrence matrix, etc.) [81, 87, 114, 116, 

119, 122, 123, 127, 128, 131, 133, 137, 139]. Although some recent works proved that 

temporal relations between spatio-temporal features are also valuable information for 

activity recognition, instead of modeling temporal order [147], those works mainly focused 

on extracting additional features based on temporal relations [126]. Other methods based on 

state-space representation use fixed number of states by clustering or sampling, or introduce 
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end point constrains to align different length sequences [112, 120, 125, 126, 130, 132, 134, 

135, 140, 142, 143, 145].  

In this work an activity is considered as a time evolving structure composed of temporal 

texture primitives. A novel state-space representation of the activity is achieved by 3D 

Gabor filtering and a two step feature selection algorithm. Proposed feature selection 

algorithm both eliminates redundancy in space and time, and segments the video sequence 

in time into temporal texture primitives of the underlying activity, number of those 

segments are not predetermined. Activities are modeled and recognized by a Profile Hidden 

Markov Model structure, which provides a flexible tool to learn and compare unaligned 

activity sequences with different lengths. Codebook of each activity class is also learned 

incrementally though the Profile HMM training.     

1.1. What is Human Gait? 

Since the gait analysis studies are covered by a range of disciplines (medical, mechanical, 

computer vision etc.) for a various applications (training, treatment, simulation, human 

identification, activity recognition, etc.), gait has some different definitions from different 

aspects, and those definitions are generally based on the analyzed parameters. Therefore it 

is found to be required to state the definition of the gait on which this work is built up. 

Human Gait is the way locomotion is achieved using human limbs. In other words, Gait is 

the way in which human move their body from one point to another. Most often, this is 

done by walking, although it may also be run, skip, hop etc. 

1.2. Problem Definition 

A general statement of the problem can be formulated as follows: automatically 

recognizing a set of human activities such as walking, running, hand waving, using gait 

analysis, in a video stream taken from a natural scene by a fixed camera, invariant of the 

human subject.  

General activity recognition, a task that is done by humans in daily activities, comes from 

virtually uncontrolled environment. Systems which automatically recognizes actions from 

uncontrolled environment, must detect moving humans in the video. Moving person 

segmentation from the scene is considered as a preprocessing step of activity recognition 

studies and mostly considered as a different problem with respect to activity recognition in 

the literature. Some recent works based on spatio temporal features claim moving subject 
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segmentation is not required; however those methods also considers while the process of 

action modeling there is only the probe motion in the scene. 

Human activity recognition is a difficult problem due to the variation in the way people 

perform actions: temporal and spatial variation. Temporal variation is caused by the 

difference in duration of performing actions and it is usually effectively compensated by 

using Hidden Markov Models or Dynamic Time Warping. Spatial variation in the other 

hand is due to the fact that people have different ways of performing activities and different 

physics, and more difficult to compensate. It must be noted that even the same person never 

performs an action exactly the same again. On the other hand recognition of activities from 

an uncontrolled environment is a very complex task; lighting conditions may vary 

tremendously, activities may appear at different orientations and subject can be occluded. 

In this thesis, moving subject is segmented with a preprocessing step. We aim to provide 

the correct label associated with the activity in case of occlusions and illumination changes.       

1.3. Our Approach  

Our approach is based on modeling the activity as a pattern composed of time sequential 

temporal texture primitives. Therefore our first objective is to analyze texture of the motion. 

This is achieved by 3D Gabor filtering followed by a two step feature selection algorithm to 

eliminate redundancy and extract relevant features. 3D Gabor filters are inspired from the 

human visual system [93, 98, 147]; they give high responses at spatio-temporal locations 

with high variation at different scales and orientation.  

The proposed feature selection algorithm locates the temporal texture primitives in both 

spatial and temporal domains, and represents them with local spatio-temporal features. In 

the first step, local maximums of 3D Gabor kernel responses of each frame are detected as 

the interest points to eliminate spatial redundancy. Then a feature vector is extracted at each 

interest point as a composition of 3D Gabor kernel responses at that point. In the second 

step, Genetic Chromodynamics, a recent evolutionary unsupervised clustering algorithm, is 

adopted to cluster local spatio-temporal features in time to extract relevant features of time 

ordered temporal texture primitives. Elimination of temporal redundancy and irrelevant 

spatio-temporal features are continued throughout the clustering stage.  

To model and recognize the activities, an HMM approach, which is one of the most 

successful algorithms on sequential data modeling [2], is proposed. However in this work 

the number of the local spatial-temporal features is not predetermined, and since they are 



5 
 

found through a fully automatic feature selection method, can be alter for different 

sequences. This is a handicap to apply the standard HMM approach [70, 106]. On the other 

hand another well known sequential data modeling method, Dynamic Time Wrapping 

(DTW) can handle such differences between sequences by operations of deletion-insertion, 

in exchange for the consideration of inter actions between nearby subsequences occurring 

in time [69, 154]. However DTW requires the beginning and the end of each sequence is 

rigidly fixed, which makes it inapplicable for our problem since labeling the end points of 

the activity from a given sequence is not an easy task. Inspired from the success of DTW 

handling different length sequences we proposed a Profile HMM structure which also has 

inserting and deleting states to align different length sequences, while still considering 

correlation between adjacent temporal instances. Proposed structure also enables to 

recognize sub-sequences and does not require end point constrains. Moreover applying 

Viterbi Path Counting algorithm for training is lead to the incremental learning of the 

underlying common pattern of each activity class as well as its codebook. Overview of the 

proposed method is given in figure 1.     

1.4. Contributions 

The following are our main contributions: 

1. A novel spatio-temporal feature detector and descriptor is proposed: spatio-temporal 

texture representation is achieved through 3D Gabor filters. 

2. A novel state-space based representation is proposed: activity is segmented into time 

ordered temporal texture primitives by a two step unsupervised feature selection 

algorithm, and each segment is represented by a set of spatio-temporal features. The 

number of temporal texture primitives involved in a sequence is not predetermined.  

3. A novel action modeling and recognition method based on a Profile Hidden Markov 

Model with Viterbi Path Counting algorithm is proposed: at the training stage of the 

Profile HMM, the common pattern of each activity class is learned from different length 

sample sequences and an HMM structure is constructed accordingly. Codebook is also 

learned incrementally for each activity class, at the training stage. Proposed Profile 

HMM structure does not require end point constrains and can handle and missing data 

by accepting sub-sequences.  
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1.5. Organization of the thesis 

Understanding human gait is the starting point of understanding human activities. Studies 

on the analysis of the human gait were started by the psychophysics community, and then 

various computational methods were proposed as the result of medical, human recognition 

and finally activity recognition studies on human gait. In the next chapter first we 

summarize the literature on both human and machine analysis of human gait, and we 

survey some main approaches on human activity recognition.  

In chapter 3, background about the algorithms used in the proposed method is given.   

Chapter 4 introduces the proposed approach based on spatio-temporal representation of 

human actions with 3D Gabor filters and profile HMM learning. Our main contributions on 

feature selection and action learning are given. The algorithm is explained in detail. 

Performance of our method is examined on two different publicly available human action 

datasets. Simulation results and their comparisons to well known action recognition 

methods are presented in Chapter 5. 

In Chapter 6, concluding remarks are stated. Future works, which may follow this study, 

are also presented.  
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CHAPTER 2 

 

LITERATURE SURVEY 

 

 

 

Studies on the ability of humans to recognize others style of walking were started by the 

psychophysics community. Medical studies on gait were arising by a need for an improved 

understanding of locomotion for the treatment of World War II veterans. Inspired from the 

medical studies computer vision society focused on the people recognition problem using 

gait. With the increasing number of surveillance systems need for more intelligent systems 

emerged, which results in the recent studies of activity recognition by human gait analysis. 

2.1. Perceptual Activity Recognition 

Human observers exhibit an impressive level of visual sensitivity to human movement. 

Johansson [3, 4] created displays of human movement by attaching point lights to the major 

joints of human models. The experiments of Johansson then extended by other researchers 

to analyze different aspects of perceptual activity recognition [159].  

In [3] the models were filmed so that only these point lights were visible to observers. 

Although observers rarely perceived a human form when these displays were static, when 

the displays were set in motion, observers were rapidly able to detect and identify various 

human movements. Moreover, with stimulus duration of only 200 ms, observers could 

perceptually organize and accurately identify the particular action, such as walking or 

running. 

As the result of the early studies it is stated that although a person’s affective state can be 

discerned from static pictures, motion provides even more reliable and compelling 

information. 

Observers can easily identifying what an actor is doing in a given PL display [5, 6], even 

when the number of possible activities is quite large. People can also easily discern 

activities (e.g., dancing) involving two or more individuals [7], and they can judge the 
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emotional implication of an action when viewing PL animations of the whole body [8, 9, 

10] or even the movements of individual limbs [11].  

Sensitivity to human motion increases with the number of illuminated joints as well as with 

the exposure duration of the animation. But even under potentially ambiguous conditions, 

perception of human motion is remarkably robust. Observers can recognize human activity 

when a PL animation is presented for less than one-tenth of a second [3], when the dots are 

blurred or randomized in contrast polarity over time [12], or when stereoscopic depths of 

the dots marking the joint positions of a PL walker are altered such that the 3D locations of 

the dots are unrelated to their implied depth orderings for the human figure [13]. 

Observers can easily recognize a walking person when the PL animation is embedded in an 

array of dynamic noise dots that far outnumber the dozen or so dots defining the person 

[14]. At least for PL walkers, the points defining the wrists and ankles are crucially 

important when judging the direction of walking [12], while the points defining the mid-

limb joints (elbow and knees) and the torso (shoulder and hips) contribute significantly to 

detection of PL walkers embedded within noise [15]. Although human action can be 

recognized most easily when the PL tokens are placed on the joints of the body, observers 

can still detect PL human figures when tokens are placed on positions other than the joints, 

such as intermediate positions on the limbs [16].  

Perception of human motion is seriously disrupted by perturbations in the temporal 

relations of the PL tokens [17]. Introducing spatiotemporal jitter into the phase relations of 

the moving dots disturbs the quality of human motion [19]. Moreover, PL animations 

depicting abnormally slow walking movements produce perception of rotation in depth 

about a vertical axis, not perception of slow human gait [18].  

One of the important characteristics of human motion perception is its vulnerability to 

inversion: Human action is difficult to perceive in inverted PL animations. In this respect, 

bodily motion perception resembles face perception, which is also highly susceptible to 

inversion [20]. This orientation dependence operates in egocentric, not environmental, 

coordinates: PL animations shown upright with respect to gravity are not difficult to 

perceive when the observer’s head is turned so that the retinal image of those animations is 

no longer upright with respect to head position [21]. Prior knowledge cannot counteract this 

inversion effect: Informing observers ahead of time that they’ll be seeing upside-down 

people does not help them identify what they’ve seen, which implies that they cannot 

mentally rotate the images [22]. With practice, observers can learn to detect inverted human 
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motion [23], but in so doing observers are relying on detection of conspicuous clusters of 

dots, not on global impression of a human figure. 

Visual sensitivity to human motion is also affected when a PL figure is imaged in the visual 

periphery, and this impairment is not simply attributable to the periphery’s reduced visual 

resolution; increasing the sizes of the PL dots and the overall size of the human figure 

cannot compensate for this loss in sensitivity [14].  

Perception of human motion is also impaired when PL animations are viewed under dim 

light conditions [19]. Observers can use kinematics information to infer properties of 

objects with which PL actors are interacting. For example, people can accurately estimate 

the weight of a lifted object from observing the lifting motion alone [24], and they can 

judge the elasticity of a support surface by watching a PL person walking on that surface 

[25]. There is disagreement whether observers are directly perceiving kinetic object 

properties from human kinematics information or, instead, are deploying heuristics to infer 

object properties from kinematics. In either event, however, there is no doubt that 

kinematics can accurately specify the act of lifting and, moreover, the effort required to do 

so [26]. 

Accurate perception of PL figures is not limited to human activity. Mather et al. [27] 

demonstrated that people could identify animals, such as a camel, goat, baboon, horse, and 

elephant, whose movements were represented by PL animations. People found this task 

impossible, however, when viewing a single, static frame from the PL sequence. 

The ability to perceive PL depictions of human motion arises early in life. Infants four 

months old will stare at human motion sequences for longer durations than they will at the 

same number of dots undergoing random motions, a preference not exhibited when infants 

view an inverted PL person [17]. Using behavioral testing, Pavlova et al. [28] have shown 

that young children between the ages of three and five steadily improve in their ability to 

identify human and nonhuman forms portrayed by PL animations, with adult levels of 

performance achieved by age five. At the other end, observers older than 60 years are quite 

good at discriminating among various forms of human motion even when the PL sequences 

are brief in duration or the dots are partially occluded [29]. Moreover the ability to perceive 

human motion stands in contrast to age-related deficits in speed discrimination [30], 

coherent motion detection, detection of low-contrast moving contours, and perception of 

self-motion from optic flow.  
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The decreased sensitivity to inverted displays of human movement suggests that low-level 

visual mechanisms may not be sufficient to account for action perception. There is debate 

in the literature about the involvement of top-down influences in perception of human 

motion, where top down means conceptually driven processing. 

As with so many of these kinds of debates, the emerging resolution entails a synthesis of 

bottom-up and top-down determinants [31].  

Evidence for the role of low-level visual processes in the perception of human movement 

comes from several lines of research. Johansson [3] thought that perceptual process 

underlying human motion sequences involved vector analysis of the component body parts, 

with those vectors then incorporated into a single structured percept.  

To determine whether low-level motion analyses underlie the perception of human 

movement, [12] inserted blank intervals between successive frames of a PL animation, 

reasoning that low-level motion analysis is restricted to very brief interstimulus intervals 

(ISIs), whereas high-level motion favors longer ISIs. On direction discrimination tasks 

involving a PL walker, Mather et al. [16] found that perception of human gait was best at 

the shortest ISIs and deteriorated with longer ISIs. Mather et al. concluded that the 

perception of human motion relies on signals arising within low-level visual mechanisms 

whose response properties are constrained to operate over short spatial and temporal 

intervals. 

Subsequent work showed, however, that higher-level visual processes also support 

perception of human motion. Thornton et al. [32] found that human gait can be perceived 

with PL animations over a range of temporal display rates that exceed the value typically 

associated with low-level, local motion analysis. 

Thornton et al. [32] found that when a PL sequence is embedded among dynamic noise 

dots, attention is crucial for perceiving the human figure at long ISIs but not at short ISIs. 

The same pattern of results was found when Thornton et al. used a very brief ISI but varied 

the type of masking noise. To perceive a human figure in a mask of scrambled dots (i.e., 

dot motions with vectors identical to the PL dots), observers had to attend to the animation. 

Conversely, in random noise mask (i.e., dots randomly replaced each frame), distracted 

attention had no effect on walker detection.  

Thus, both bottom-up and top-down processes are employed during the perceptual analysis 

of PL animations of human motion. Human motion itself can also exert a top-down 
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influence on other aspects of perception. For example, Watson et al. [33] found that while 

viewing PL walkers differing in color and in heading direction, observers saw one PL 

walker or the other over time. Based on this and related results, Watson et al. [160] 

concluded that dominance during rivalry resulted from the integration of high-level 

perceptual organization (responsible for perception of human motion) with lower-level 

inhibition between cortical representations of input from the two eyes. Human motion can 

also influence the perceived direction of translational motion. Thus, when a coherent PL 

person walks in front of a counter phase flickering grating with no net directional energy, 

the grating appears to translate in the direction opposite the walker’s heading, just as the 

physical environment flows past us when we walk [34]. In a similar study, the global 

motion engendered by a PL walker provides an effective reference frame for judging 

whether or not local dot motions are coherent [35]. All of these studies imply that human 

motion exerts a significant influence on putatively low-level motion processing. 

PL animations of human activity seemingly contain little form information about the human 

body, yet people can easily detect PL figures appearing within a cloud of moving “noise” 

dots whose local motions are identical to those defining the PL figures. Based on motion 

alone, detection of a PL figure should be extraordinarily difficult under these conditions. 

Evidently, the visual analysis of human motion is constrained by the hierarchical structure 

of the human body. When PL animations contain motion vectors that violate the 

hierarchical structure of the human body, observers experience great difficulty detecting the 

presence of a PL body part [15]. Several lines of evidence underscore the importance of 

bodily form. Sequential presentation of two static pictures of a person performing some 

action is sufficient for the perception of human action, even though such displays contain 

minimal motion information. On the other hand, changing positions of the moving points in 

a PL animation convey sufficient form cues for the detection of a PL walker. To dissociate 

position and motion, Beintema & Lappe [36] designed a variant of the point-light animation 

in which the positions of the dots are not confined to the joint but instead can appear 

anywhere along the limbs. Moreover, the dots change their positions along the limbs 

unpredictably from frame to frame. While these two manipulations should not disrupt 

specification of body shape, they make it virtually impossible to perceive coherent motion 

of the dots defining an activity. Nonetheless, observers viewing these displays can judge 

with reasonable accuracy the direction (left versus right) in which a PL figure is walking. In 

fact, detection performance measured using these special PL animations is well predicted 
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by the total number of points seen in a trial, irrespective of the distribution of these points 

over time [18].  

Additional evidence for the importance of bodily form is from a work by Hiris et al. [23]. 

They created “arbitrary” motion sequences by relocating the dots from a PL walker. Thus, 

for example, a wrist dot might be placed at the location of the shoulder dot and the shoulder 

dot relocated to the position of the knee, and so on. The resulting arbitrary figure comprised 

the same dot motions as the walker in the absence of a human form. Following the design 

of studies with masked PL walkers, the arbitrary figures were presented within a mask of 

dynamic dots. With practice, observers learned to discriminate whether or not the arbitrary 

figure was presented in a mask, with performance eventually approaching that achieved 

with an ordinary PL walker. However, observers described performing this task by looking 

for a characteristic cluster of dots at a given location, a strategy very dissimilar from that 

used with upright PL walkers in noise. Moreover, inverting the arbitrary figure had no 

effect on detection performance. When a display change forced observers to detect the 

global pattern of motion in the arbitrary figures, performance hovered near chance levels 

regardless of practice. 

The human form is important for the perception of human motion, especially when it is 

impossible to rely on local motion regularities. Such results further suggest that different 

processes are employed during the analyses of human motion and object motion [37]. 

Taken together, current research indicates that both form and motion play critical roles in 

the perception of human action.  

2.2. Computational Activity Recognition  

Activity recognition is a relatively new area to computer vision researchers. In the general 

framework of the activity recognition systems motion detection and tracking is the first 

step. Once the subject of the motion is segmented the next step is the gait analysis to 

achieve a good representation to differentiate different activities. Final step is the activity 

modeling and recognition with the gait analysis results (figure 2). 

Since there is a considerable background on motion detection and tracking algorithms in 

the literature, leaving it as a preprocessing step, current activity recognition studies mostly 

focused on gait analysis.  
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Early studies, inspired from the medical gait analysis with markers, proved that joint angles 

are sufficient for gait recognition [2]. However reliably recovering joint angles from a 

monocular video without markers is a hard problem.  

One approach to markerless gait analysis is body part tracking. Body-part tracking based 

gait analysis can be broadly classified as being either model based or model free. Various 

approaches for tracking the whole body have been proposed in the literature using a variety 

of 2D and 3D shape models and image models [2, 76]. Other approaches determine 

body/part orientation by tracking the edges or the same color regions [62, 70, 74]. Both 

methodologies follow the general framework of feature extraction, feature correspondence 

and high-level processing. The major difference is with regard to feature correspondence 

between two consecutive frames. Methods based on a priori models match the 2D image 

sequences to the model data. Feature correspondence is automatically achieved once 

matching between the images and the model data is established. Model free methods 

establish correspondence between successive frames based upon the prediction or 

estimation of features related to position, velocity, shape, texture and color; they assume 

some implicit notion of what is being observed.  

Although model free approaches reduce the computational complexity of the model based 

approaches, body part tracking still suffers from the low resolution of the surveillance 

video. 

On the other hand, recent gait analysis studies for activity recognition are shifted to holistic 

approaches, mainly because of their ease of application and simplicity. Holistic approaches 

does not focused on individual body parts, instead they analyze the whole frame to find 

some low level features, such as corners, edges, temporal differences, binary silhouettes 

and optical flow [97]. Spatio-temporal feature detectors and descriptors are the main 

building blocks of the holistic approaches.  

Many different spatio-temporal feature detectors and descriptors have been proposed in the 

past few years [100-105]. Feature detectors usually select spatio-temporal locations in 

video by maximizing specific saliency functions. Feature descriptors capture shape and 

motion in the neighborhoods of selected points using image measurements such as spatial 

or spatio-temporal image gradients and optical flow. A spatio-temporal feature is a short, 

local video sequence such as a knee bending.  
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Regardless of the gait analysis approach there are some common tools in the literature used 

to model and recognize the activity. The most common tools employed by the methods rely 

on sequential representation, are Hidden Markov Model and Dynamic Time Warping [69, 

70, 78]. Principle Component Analysis and Support Vector Machines are the common tools 

used by the methods rely on time holistic representation [116, 117, 137]. 

In the next section a brief summary of the approaches to segment motion from the rest of 

the video is given. In section 2.2.2 gait analysis methods are reviewed under two main 

categories; body-part based approaches and holistic approaches, and for the sake of 

completeness activity classification algorithms used by those methods are also mentioned.  

In section 2.2.3 activity modeling and recognition algorithms are reviewed with the 

emphasis on sequential representation.  

     

 

 

 

 

 

 

 

 

 

 

 

Figure 2: General framework of activity recognition 
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2.2.1. Preprocessing 

Nearly every activity analysis system starts with motion detection. The aim of the motion 

detection is to segment regions corresponding to the moving objects from the rest of the 

image. Subsequent processes such as tracking and behavior recognition are dependent on it. 

Motion detection generally involves environment modeling and motion segmentation, 

which intersect each other during processing.  

2.2.1.1. Environment Modeling 

Environment models can be classified into two: 2D models in the image plane and 3D 

models in the world coordinates. Due to their simplicity 2D models have more applications. 

For fixed cameras the key problem is to automatically recover and update background 

images from a dynamic sequence. Illumination variance, shadows and shaking branches, 

bring many difficulties to the acquirement and updating of background images.  

The roots of background segmentation go back to 19th century. It was shown that the 

background image could be obtained simply by exposing a film for a period of time much 

longer than the time required for the moving objects to traverse the field of view. Thus in 

its simplest form, the background image is the long-term average image: 

                     (2.1) 

),,( tyxI  is the instantaneous pixel value for the (x,y) pixel at time t. This can also be 

computed incrementally: 

                  (2.2)
 

One obvious problem of this approach is that lighting conditions change over time. This is 

handled using a moving window average or more efficiently using exponential forgetting. 

Each image‘s contribution to the background image is weighted so as to decrease 

exponentially as it recedes into the past. 

                                              (2.3) 

α/1  is the time constraint of the forgetting process. 

Another serious problem arises when objects are slow moving or temporary stationary. The 

solution proposed by Koller et al. [38] updates the background image with only those 
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pixels not identified as moving objects. This approach becomes effective but still suffers 

from very slow motion. Adaptive background updating approach is studied at [41]. 

Presented method uses Gaussian distribution for background generation. Instead of using 

all the pixels in the image actively, they divide the pixels into active and inactive ones. 

Gaussian distributions are used to model the history of active pixels and to state whether 

they belong to background or foreground. According to the classification of the previous 

active pixel, the inactive pixels are also classified as a part of the background or 

foreground. They also reduce the frame frequency and use only every nth frame in the 

image sequence to construct the adaptive background.  

In [42] the proposed method is robust to noise and the intensity change of the image, which 

can be affected by the illumination or the function of a camera. The method is based on the 

assumption that pixels of the same intensity in the original background image will keep the 

same intensity even with a change in intensity of the whole image.  

Toyama et al. [43] propose the Wallflower algorithm in which background maintenance 

and background subtraction are carried out at three levels: the pixel level, the region level, 

and the frame level. Haritaoglu et al. [44] build a statistical model by representing each 

pixel with three values: its minimum and maximum intensity values, and the maximum 

intensity difference between consecutive frames observed during the training period. These 

three values are updated periodically. McKenna et al. [45] use an adaptive background 

model with color and gradient information to reduce the influences of shadows and 

unreliable color cues. 

Regarding 3-D environmental models [46, 47], current work is mostly limited to indoor 

scenes because of the difficulty of 3-D reconstructions of outdoor scenes.   

2.2.1.2. Motion Segmentation 

Motion segmentation in image sequences aims to detect regions corresponding to moving 

objects. Detecting moving regions provides a focus of attention for later processes such as 

tracking and behavior analysis because only these regions are required to be considered in 

the later processes [48]. 

2.2.1.2.1. Background subtraction  

Background subtraction is a popular method for motion segmentation, especially under 

those situations with a relatively static background. 
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It detects moving regions in an image by taking the difference between the current image 

and the reference background image in a pixel-by-pixel fashion. It is simple, but extremely 

sensitive to changes in dynamic scenes derived from lighting and extraneous events etc. 

Therefore, it is highly dependent on a good background model to reduce the influence of 

these changes. 

In [48] moving object detection is handled by the use of an adaptive background 

subtraction scheme which reliably works both in indoor and outdoor environments. 

2.2.1.2.2. Temporal differencing  

Temporal differencing makes use of the pixel-wise differences between two or three 

consecutive frames in an image sequence to extract moving regions. Temporal differencing 

is very adaptive to dynamic environments, but generally does a poor job of extracting all 

the relevant pixels. In [49] after the absolute difference between the current and the 

previous frame is obtained, a threshold function is used to determine changes. By using a 

connected component analysis, the extracted moving sections are clustered into motion 

regions. An improved version uses three-frame instead of two-frame differencing. 

Temporal differencing is carried on edges detected from the observed image sequence to 

find object boundaries. 

In [50], motion is segmented in an entire sequence. Rather than segmenting the image plane 

into a set of disjoint regions, they propose to segment the spatio-temporal volume into a set 

of disjoint phases of homogeneous motion. Compared to the iteration of the two-frame 

model, this introduces an additional temporal regularity of the estimated motion 

boundaries.  

2.2.1.2.3. Optical flow  

Optical-flow-based motion segmentation uses characteristics of flow vectors of moving 

objects over time to detect moving regions in an image sequence. [51, 52] computes the 

displacement vector field to initialize a contour based tracking algorithm, called active rays, 

for the extraction of articulated objects. The results are used for gait analysis.  

Optical-flow-based methods can be used to detect independently moving objects even in 

the presence of camera motion. However, most flow computation methods are 

computationally complex and very sensitive to noise, and cannot be applied to video 

streams in real time without specialized hardware [53].  
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Besides the basic methods described above, there are some other approaches for motion 

segmentation. Using the extended expectation maximization (EM) algorithm, Friedman et 

al. [54] implement a mixed Gaussian classification model for each pixel. This model 

classifies the pixel values into three separate predetermined distributions corresponding to 

background. 

In [55] the key of the motion segmentation is to find the same moving region in each frame, 

and the projection transforms mapping this region between frames. They used a layered 

approach for motion segmentation; the goal is finding 2D layers corresponding to different 

non-rigid motion of the human body parts. Their method is to model the apparent motions 

in video based on optical flow and random sample consensus (RANSAC). They are using 

affine and homography models to describe motions of body parts. They combine tracking 

with motion segmentation, in order to obtain better motion features. 

2.2.2. Gait Analysis  

Here we summarize the gait analysis and motion representation approaches in the literature 

by diving them into two main categories according to their activity representation 

strategies; body-part based approaches and holistic approaches.   

2.2.2.1. Body-Part Based Approaches 

Body-part based approaches generally track human body parts from one frame to another in 

a video stream. These methods represents underlying action by computing some properties 

of moving body parts such as joint trajectory, body part orientation, joint angles, velocities.  

The tracking algorithms usually have considerable intersection with motion detection 

during processing. Tracking over time typically involves matching objects in consecutive 

frames using features such as points, lines or blobs. Useful mathematical tools for tracking 

include the Kalman filter, the Condensation algorithm, the dynamic Bayesian network, etc. 

Some approaches followed the methods detecting silhouettes and body parts, while others 

used a motion capture system to circumvent the problems in view-invariant action 

recognition [76]. 

Niyogi et al. [62] use the spatio-temporal pattern in XYT space to track, analyze and 

recognize walking figures. They examine the characteristic pattern produced by the lower 

limbs of a walking human, the projections of head movements are then located in the 

spatio-temporal domain, followed by the identification of the joint trajectories; The contour 
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of a walking figure is outlined by utilizing these joint trajectories, and a more accurate gait 

analysis is carried out using the outlined 2-D contour for the recognition of the specific 

human. 

Motion models of human limbs and joints are widely used in tracking. They are effective 

because the movements of the limbs are strongly constrained. These motion models serve 

as prior knowledge to predict motion parameters [64, 64], to interpret and recognize human 

behaviors [65], or to constrain the estimation of low-level image measurements [66].  

Bregler [65] decomposes a human behavior into multiple abstractions, and represents the 

high-level abstraction by HMMs built from phases of simple movements. This 

representation is used for both tracking and recognition.  

Zhao et al. [63] learn a highly structured motion model for ballet dancing under the 

minimum description length (MDL) paradigm. This motion model is similar to a finite-state 

machine (FSM). Ong et al. [66] employ the hierarchical PCA to learn their motion model 

which is based on the matrices of transition probabilities between different subspaces in a 

global eigenspace and the matrix of transition probabilities between global eigenspaces. 

Ning et al. [68] learn a motion model from semi-automatically acquired training examples 

and represent it using Gaussian distributions. 

Wang et al. [74] computed a mean contour to represent the static silhouette information. 

Fourteen rigid body parts are used to construct a dynamic model; each part is represented 

by a truncated cone. Particle filter and K-nearest neighbor classifier are then applied for 

pose estimation and action classification. Davis and Taylor [124] proposed a human action 

recognition system to distinguish walking from nonwalking. Several body parts are 

detected from the silhouettes and four motion properties are then extracted based on feet 

locations. 

Ren and Xu [70] proposed a similar approach to compute a binary silhouette and detect the 

head, torso, hands and elbow angles. Then a coupled Hidden Markov Model is used to 

recognize predefined actions.  

Some researchers recently performed human activity recognition based on manifold 

learning. Wang and Suter [72, 73] adopted Locality Preserving Projections (LPP) to 

achieve the low dimensional embedding of silhouette data. The spatio-temporal property 

and geometric structure in the low dimensional space are analyzed. Three methods namely 
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Hausdorff nearest manifold, Gaussian mixture model and Hidden Markov Model are then 

proposed to recognize motions in the lower dimensional feature space.  

Souvenir and Babbs [75] proposed a framework for learning a viewpoint-invariant 

manifold of primitive actions. The manifold provides a compact representation of human 

actions, action recognition and viewpoint estimation are then simultaneously performed.  

Jia and Yeung [71] proposed a local spatio-temporal discriminant embedding method for 

human action recognition. This method is able to find an optimal embedding in both local 

temporal and local spatial domains. 

In [69] Duygulu et al. proposed a “bag-of-rectangles” method for representing and 

recognizing human actions in videos, where each human pose in an action sequence is 

represented by oriented rectangular patches extracted over the whole body. Spatial oriented 

histograms are formed to represent the distribution of these rectangular patches. To 

recognize an action four different methods are proposed; frame by frame voting, global 

histogramming, a classifier based approach using SVMs, and Dynamic Time Warping on 

the temporal representation of the descriptor. Above all it is reported that the DTW methods 

achieved the best success. 

2.2.2.2. Holistic Approaches 

Holistic approaches were introduced to recognize human actions, with less computational 

complexity. These approaches does not focused on individual body parts, instead they 

analyze the whole frame to find some low level features, such as corners, edges, temporal 

differences, binary silhouettes and optical flow [97].  

Referring to the success of interest point detectors in object recognition from images, 

several spatio-temporal interest point (region and/or volume) detectors have been proposed 

to encode the contents of videos compactly. Laptev et al. [128] proposed a 3D interest point 

detector to detect local corner-like structures in the space-time dimensions by adding a 

temporal constraint to the Harris-Laplace 2D interest point detector. Oikonomopoulos et al. 

[113] proposed an approach to detect spatiotemporal regions with high entropy, which 

extended the Kadir and Brady saliency detector [107]. Recently, Willems et al. [108] 

proposed a detector based on the Hessian matrix rather than a spatiotemporal second-

moment matrix so that the interest points detected can be scale-invariant and densely cover 

the video contents. Instead of using interest point detectors, the dense sampling method can 

also be adopted to generate features in the spatio-temporal volume, as in [109].  
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Dollar et al. [139] proposed a detector to locate periodic frequency components in videos 

by applying a 2D Gaussian smoothing kernel along the spatial dimensions and a quadrature 

pair of 1D Gabor filters along the time dimension. 

Regarding descriptors based on spatio-temporal information of videos, there have been 

several approaches. Efros et al. [111] proposed a motion descriptor based on the optical 

flow in different frames. Ke et al. [109] proposed 3D volumetric features calculated on x 

and y optical flow channels. Scovanner et al. [110] applied sub-histograms to encode local 

temporal and spatial information to generate a 3D version of SIFT. Recently, Klaeser et al. 

[104] proposed a new descriptor based on the histogram of oriented 3D spatio-temporal 

gradients.  

Holistic methods can be divided into the space-time based approaches and the state space 

based approaches, according to their activity modeling strategies with spatio temporal 

features. 

2.2.2.2.1. Space-Time Based Approaches 

In [147] Chomat et al. proposed a probabilistic recognition method by using Gabor filters. 

A multi-dimensional histogram is computed from the outputs of the filter bank at each pixel 

(x,y,t) as a feature vector. Then probability of each action-feature vector is computed by 

Bayes rule. Final decision is according to the spatial average probability over a given 

frame. Although the authors report effective representation of the motion with Gabor filter 

responses, their method was suffering from redundancy, which results in inefficient 

representation of local features, and lack of a reliable recognition scheme.     

Laptev [127] proposed a space–time interest point detector, which locates local salient 

pixels in space–time volume with significant local variations in both spatial and temporal 

domain. The local saliency maxima are detected based on the Harris operator. However, 

this method detects a small number of stable interest points which may not be sufficient to 

characterize complex events.  

Niebles et al. [137] represented a video sequence as a collection of spatio-temporal words 

by extracting space–time interest points. By using probabilistic latent semantic analysis and 

latent dirichlet allocation, distributions of spatio-temporal words and intermediate topics 

are learned corresponding to human action categories in an unsupervised manner. The 

algorithm is able to localize multiple actions in complex motion sequences.  
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Uemura et al. [121] proposed a local feature tracking based method. Multiple interest point 

detectors (MSER, FAST, Harris Laplace, Hessian Laplace) are used to provide large 

number of features for every frame. The motion vectors for the features are estimated using 

optical flow and SIFT based matching. Motion compensated SIFT descriptors extracted and 

vocabulary trees are constructed. Their action recognition approach follows the standard 

paradigm using local features, vocabulary based representation and voting. Each frame is 

labeled by a vocabulary tree search, and final activity label is achieved by a voting of 5 

successive frames.  

In [117] a boosting EigenActions algorithm for human action recognition is proposed. A 

spatio-temporal Information Saliency Map (ISM) is calculated from a video sequence by 

estimating pixel density function. A continuous human action is segmented into a set of 

primitive periodic motion cycles from information saliency curve. Each cycle of motion is 

represented by a Salient Action Unit (SAU), which is used to determine the EigenAction 

using principle component analysis. A human action classifier is developed using multi-

class AdaBoost algorithm with Bayesian hypothesis as the weak classifier. Given a human 

action video sequence, method locates the SAUs in the video, and recognizes the human 

actions by categorizing the SAUs. 

Gorelick et al. [131] proposed a spatio-temporal patch correlation based method for human 

action recognition. Small spatio-temporal reference volumes are correlated against the 

entire video sequences in the target volume. The overall peak correlation value shows the 

matched actions. They utilized the properties of the poisson equation solution to analyze the 

spatio-temporal volume. Three dimensional space–time shapes are generated from the 

silhouettes of the spatio-temporal volume, and space–time salient features namely local 

space–time saliency, action dynamics, shape structure and orientation, are then extracted.  

Schuldt et al. [116] compute local space-time features at locations selected in a scale-space 

representation. These features are used in an SVM classification scheme.  

Yilmaz and Shah [103] extracted differential geometry features from the 3D contour of an 

action volume. The 3D contour is then projected to a 2D surface. The projection on the time 

axis forms the new spatio-temporal volume. Then the human moving speed, moving 

direction and human shape are extracted from the volume.  

Niebles and Li [129] proposed a mixture hierarchical model for human action recognition 

based on spatial and spatio-temporal features. They showed that static shape features can 
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improve the recognition performance when using spatio-temporal features. Liu et al. [161] 

proposed to use two types of feature sets for human action recognition. The first feature set 

is generated from the quantized vocabulary of local spatio-temporal volumes, while the 

second feature set is generated from spin images which capture the shape deformation of 

actions. It shows that action recognition accuracy can be improved by discovering 

relationships among the combined feature sets in the embedded Euclidian space.  

In [146] Wang et al. presented a hierarchical probabilistic model (semi-latent Dirichlet 

allocation) for action recognition based on motion words, where each word corresponds to 

a frame in the video sequence, rather than a collection of words from vector quantization of 

space-time interest points. Their model is trained in a semi-supervised fashion. A new topic 

model called Semi-Latent Dirichlet Allocation (S-LDA) is proposed. The major difference 

to the Latent Dirichlet Allocation (LDA) model is that some of the latent variables in LDA 

are observed during the training stage in S-LDA. 

In [118] a method for recognizing human actions based on pose primitives is proposed. In 

learning mode, the parameters representing poses and activities are estimated from videos. 

They obtain pose primitives by a Histogram of Oriented Gradient (HOG) based descriptor 

to better cope with articulated poses and cluttered background. Action classes are 

represented by histograms of poses primitives. Instead of having a look at individual pose 

primitives, to benefit from the temporal context they provide a sub-sequencing by means of 

n-gram expressions. Action recognition is based on a simple histogram comparison.  

There are also a large number of works addressing the human action categorization problem 

by either spatial or temporal template matching.  

Polana and Nelson [136], have developed methods for recognizing human motions by 

obtaining spatio-temporal templates of motion and periodicity features from a set of optical 

flow frames. These templates were then used to match the test samples with the reference 

motion templates of known activities. Efros et al. [111] proposed an approach to 

recognizing human actions at low resolutions which consisted of a motion descriptor based 

on smoothed and aggregated optical flow measurements over a spatio-temporal volume 

centered on a moving figure. This spatial arrangement of blurred channels of optical flow 

vectors is treated as a template to be matched via a spatio-temporal cross correlation against 

a database of labeled example actions. 
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In order to avoid explicit computation of optical flow, a number of template-based methods 

attempt to capture the underlying motion similarity amongst instances of a given action 

class in a non-explicit manner. Shechtman and Irani [123] avoid explicit flow computations 

by employing a rank-based constraint directly on the intensity information of spatio-

temporal cuboids to enforce consistency between a template and a target. Given one 

example of an action, spatio-temporal patches are correlated against a testing video 

sequence. Detections are considered to be those locations in space-time which produce the 

most motion consistent alignments. Given a collection of labeled action sequences, a 

disadvantage of these methods is their inability to generalize from a collection of examples 

and create a single template which captures the intra-class variability of an action. Effective 

solutions need to be able to capture the variability associated with different execution rates 

and the anthropometric characteristics associated with individual actors. Recent popular 

methods which employ machine learning techniques such as SVMs and AdaBoost, provide 

one possibility for incorporating the information contained in a set of training examples.  

Bobick and Davis [119] proposed to use temporal templates for representing and 

recognizing human actions. They constructed a binary motion-energy image (MEI) which 

represents the motion occurred in a video and generated a scalar-valued motion-history 

image (MHI) where intensity is a function of the motion history at each pixel. MEI and 

MHI together can be considered as a temporal template which is matched against the 

learned models of known movements.  

Recently, improved temporal template [138] methods based on MEI and MHI are proposed. 

Yi et al. [122] proposed a pixel change ratio map (PCRM) which is similar to the concept 

of MHI, but PCRM is computed based on motion histogram. Babu and Ramakrishnanb 

[141] computed a motion flow history (MFH) from motion information in the compressed 

domain. Then they classified human activities by using the MHI.  

In [115] Fathi et al. presented a method for human action recognition using mid-level 

motion features. Features are computed on a figure-centric representation, in which the 

human figure is stabilized inside a spatio-temporal volume. Mid-level motion features were 

constructed from low-level optical flow features computed on a local volume. For some 

small cuboids (of fixed size) inside the figure-centric volume, AdaBoost is applied to select 

a subset of the weak classifiers (low-level features) inside each figure-centric volume to 

construct better classifiers. Each mid-level feature is focused on a small cuboid inside the 

figure-centric volume, and is built from the low level features which best discriminate 
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between pairs of action classes. AdaBoost is also used for a second time to train a final 

classifier from the mid-level motion features. This time AdaBoost will choose the best 

subset of mid-level motion features that can separate the two action classes.  

In [144] authors extended the 2D Convolutional Neural Network approach to temporal 

domain by applying 3D convolutions. Their model extracts features from both spatial and 

temporal dimensions by performing 3D convolutions, capturing the motion information 

encoded in multiple adjacent frames. The developed architecture generates multiple 

channels, namely gray, gradient-x, gradient-y, opticalflow-x, and opticalflow-y, of 

information from adjacent input frames and perform convolution and subsampling 

separately in each channel. The final feature representation is computed by combining 

information from all channels. The output layer consists of the same number of units as the 

number of actions. For action recognition model parameters are trained by online error 

back-propagation algorithm.  

In a recent work Rodriguez et al. [133], introduced the Action MACH filter, a template-

based method for action recognition which is capable of capturing intra-class variability by 

synthesizing a single Action MACH filter for a given action class. Given a series of 

instances of a class, a MACH filter combines the training images into a single composite 

template by optimizing four performance metrics: the Average Correlation Height (ACH), 

the Average Correlation Energy (ACE), the Average Similarity Measure (ASM), and the 

Output Noise Variance (ONV). For activity recognition responses to the MACH filter is 

analyzed by thresholding.  

2.2.2.2.2. State-space based approaches 

The state–space based approach is a popular approach for human action recognition. An 

action is modeled as a set of states and connections in the state space using a Dynamic 

Probabilistic Network (DPN). Hidden Markov Model (HMM) is the most commonly used 

DPN has the advantages in modeling the time varying feature data.  

Kale et al. [112] used an HMM to model human gait. Each individual is trained with one 

HMM; five representative binary silhouettes are used as hidden states for HMM training. In 

the recognition phase, the HMM which gives the largest probability is identified as the 

individual. Because the HMM training process requires the training dataset to be very large 

and representative, the model learning is very dependent on the training data.  
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Brand and Kettnaker proposed a Multi-Observation-Mixture + Counter Hidden Markov 

Model (MOMC-HMM) [132] to factorize the observation space. To factorize both the state 

and the observation space, Oliver et al. [135] proposed a Coupled Hidden Markov Model 

(CHMM) to model the temporal and causal correlations among hidden states. Recently, 

Xiang and Gong [145] developed a Dynamically Multi-Linked Hidden Markov Model 

(DML-HMM) for modeling human activities. The number of temporal processes in the 

DML-HMM is the same with the number of actions detected in the scene. So the DML-

HMM has unsupervised manner and both the structure and the parameters are learned from 

training data. Ahmad and Lee [130] addressed action recognition by using combined shape 

flow and local-global motion flow. Based on the combined features, a set of 

multidimensional Hidden Markov Models were built to represent each action from multiple 

views. Shi et al. [140] proposed a semi-Markov discriminative approach to human action 

segmentation and recognition, by employing a Viterbi-like column generation algorithm. 

This approach gives efficient feature representation from motion segmentation. Ohet et al. 

[143] proposed a data-driven Markov chain Monte Carlo (MCMC) sampling method to 

enhance the duration modeling capabilities of switching linear dynamic systems. The 

proposed framework is robust to interpret complex human motions. Xiang et al. [142] 

constructed a contour graph from human contour sequences. The motion in the video is 

considered as an instance of random walks on the graph and sequence Monte Carlo method 

is used to estimate the random walks on the graph from the video. 

In [120] for realizing event detection, the video is initially segmented into shots and for 

every resulting shot appropriate motion features are extracted at fixed time intervals, to 

form a motion observation sequence. Then, Hidden Markov Models (HMMs) are employed 

for associating each shot with a semantic event based on its formed observation sequence. 

Regarding the motion feature extraction procedure, a new representation for providing 

local-level motion information to HMMs is presented, while motion characteristics from 

previous frames are also exploited. 

Yeffet et al. [126] proposed an activity recognition method inspired by local self similarity 

approach; every pixel at every frame is encoded as a short string of ternary digits (trits) by a 

process which compares this frame to the previous and to the next frame. The frame is then 

divided into (mxn) regions and the histograms of the trinary strings are computed for each 

of the mn region. These histograms are accumulated every few frames and the vector which 

contains all concatenated histograms serves as a video descriptor for a section of the video. 

They divide video to k equal time slices and compute the accumulated histograms for each 
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region among the frames of each time slice. All mn region histograms for the k time slices 

are accumulated to one vector of length 512mnk which is used to represent the entire video. 

In order to recognize an action, they apply a linear SVM classifier on the square-root values 

of the vectors. One of their contributions is to introduce the two additional unknowns (time 

shift and scale) by running several detectors in parallel, each observing different starting 

points and different scales of action length, which enables the system to label activity 

sequences with different end points and lengths. 

In [134] a max-margin learning framework applied for training classifiers with structured 

latent variables. Mori et al. introduces a learning algorithm based on the cutting plane 

method and decomposed dual optimization. Motion features based on optical flows are 

used. A frame in a video is represented by a global motion feature extracted from the whole 

frame and a set of salient local patches. Their model consists of a root filter and a 

constellation of several hidden parts. The root filter models the compatibility of the action 

label and the global motion feature of the whole frame. A hidden part assigns a latent “part 

label” to a local patch. Intuitively, those “part labels” correspond to local motion patterns 

that are useful for discriminating different actions. Given a learned model, the classification 

is achieved by first finding the best labeling of the hidden parts for each action, then 

picking the action label with the highest score. The learning algorithm aims to set the model 

parameters so that the scores of correct action labels on the training data are higher than the 

scores of incorrect action labels by a large margin. 

In [125] a framework for modeling motion by exploiting the temporal structure of the 

human activities is presented. Their main argument is that it is critical to incorporate 

temporal context information, particularly the temporal ordering of the movements. 

Information from motion segments are considered both for their visual features as well as 

their temporal composition. They represent activities as temporal compositions of motion 

segments. 3-D Harris corner detector is used to find interest points and each interest point is 

described by HoG (Histogram of Gradients) and HoF (Histogram of Flow) descriptors. A 

descriptor codebook is obtained by k-means clustering of the descriptors in the training set. 

During model learning and matching, histograms of codebook memberships over particular 

temporal ranges of a given video are computed. A video sequence is first decomposed into 

many temporal segments of variable length (including the degenerate case of the full 

sequence itself). Each video segment is matched against one of the motion segment 

classifiers by measuring image-based similarities as well as the temporal location of the 

segment with respect to the full sequence. The best matching scores from each motion 
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segment classifier are accumulated to obtain a measure of the matching quality between the 

full action model and the query video. 

2.2.3. Activity Modeling and Recognition  

In this section some basic activity modeling and recognition methods are summarized. 

Since proposed method is based on the state space representation of the activity, we focused 

on only the methods that can be applied to the state space based approaches.    

Understanding of activities may simply be thought as the classification of time varying 

feature data, i.e., matching an unknown test sequence with a group of labeled reference 

sequences representing typical activities. It is then obvious that a fundamental problem of 

activity recognition is to learn the reference activity sequences from training samples, and 

to devise both training and matching methods for coping effectively with small variations 

of the feature data within each class of motion patterns.  

Dynamic time warping is a method for computing nonlinear time normalization between a 

template vector sequence and a test vector sequence. These two sequences could be of 

differing lengths. Forner-Cordero et al. [153] show experiments that indicate that the 

intrapersonal variations in gait of a single individual can be better captured by DTW rather 

than by linear warping. The DTW algorithm which is based on dynamic programming 

computes the best nonlinear time normalization of the test sequence in order to match the 

template sequence by performing a search over the space of all allowed time normalizations 

[154]. The space of all time normalizations allowed is cleverly constructed using certain 

temporal consistency constraints. Some of the temporal consistency constraints are given 

below: 

• End point constraints. The beginning and the end of each sequence is rigidly fixed. For 

example, if the template sequence is of length N and the test sequence is of length M, 

then only time normalizations that map the first frame of the template to the first frame 

of the test sequence and also map the Nth frame of the template sequence to the Mth
 

frame of the test sequence are allowed. 

• The warping function (mapping function between the test sequence time to the 

template sequence time) should be monotonically increasing. In other words, the 

sequence of “events” in both the template and the test sequences should be the same. 

• The warping function should be continuous. 
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Finite-state machine (FSM) is another tool that is used to model activities with its state-

transition function. The states are used to decide which reference sequence matches with 

the test sequence. Wilson et al. [90] analyze the explicit structure of natural gestures where 

the structure is implemented by an equivalent of a FSM but with no learning involved. 

State-machine representations of behaviors have also been employed in higher level 

description; Bremond et al. [77] use handcrafted deterministic automata to recognize 

airborne surveillance scenarios describing vehicle behaviors in aerial imagery. 

A HMM is a kind of stochastic state machines [78]. It allows a more sophisticated analysis 

of data with spatio-temporal variability. The use of HMMs consists of two stages: training 

and classification. In the training stage, the number of states of a HMM must be specified, 

and the corresponding state transition and output probabilities are optimized in order that 

the generated symbols can correspond to the observed image features of the examples 

within a specific movement class. In the matching stage, the probability with which a 

particular HMM generates the test symbol sequence corresponding to the observed image 

features is computed. HMMs generally outperform DTW for undivided time series data, 

and are therefore extensively applied to behavior understanding. Starner et al. [79] propose 

HMMs for the recognition of sign language. Oliver et al. [80] propose and compare two 

different state-based learning architectures, namely, HMMs and coupled Hidden Markov 

Models (CHMMs) for modeling people behaviors and interactions such as following and 

meeting. The CHMMs are shown to work much more efficiently and accurately than 

HMMs [70, 78]. Brand et al. [81] show that, by the use of the entropy of the joint 

distribution to learn the HMM, a HMM’s internal state machine can be made to organize 

observed behaviors into meaningful states. This technique has found applications in video 

monitoring and annotation, in low bit-rate coding of scene behaviors, and in anomaly 

detection. 

In [82] delay units are added to a general static neural network, and some of the preceding 

values in a time-varying sequence are used to predict the next value for the hand gesture 

recognition. Similar structure is used successfully for lip-reading in [83]. 

Brand [132] uses a simple nonprobabilistic grammar to recognize sequences of discrete 

behaviors. Ivanov et al. [84] describe a probabilistic syntactic approach to the detection and 

recognition of temporally extended behaviors and interactions between multiple agents. The 

fundamental idea is to divide the recognition problem into two levels. The lower level is 

performed using standard independent probabilistic temporal behavior detectors, such as 
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HMMs, to output possible low-level temporal features. These outputs provide the input 

stream for a stochastic context-free parser. The grammar and parser provide longer range 

temporal constraints, disambiguate uncertain low-level detection, and allow the inclusion of 

a priori knowledge about the structure of temporal behaviors in a given domain. 

Wada et al [85] employ non-deterministic finite automata (NFA) as a sequence analyzer, 

because it is a simple example satisfying the following properties: instantaneousness and 

pure-nondeterminism. They present an approach for multiobject behavior recognition based 

on behavior driven selective attention. 

Johnson et al. [86] describe the movement of an object in terms of a sequence of flow 

vectors, each of which consists of 4 components representing the positions and velocities of 

the object in the image plane. A statistical model of object trajectories is formed with two 

competitive learning neural networks that are connected with leaky neurons. Sumpter et al. 

[87] introduce feedback to the second competitive network giving a more efficient 

prediction of object behaviors. Hu et al. [88] introduced a new neural network structure that 

has smaller scale and faster learning speed, and is thus more effective. Owens et al. [89] 

apply the Kohonen self-organizing feature map to find the flow vector distribution patterns. 

These patterns are used to determine whether a point on a trajectory is normal or abnormal.  

2.3. Discussion 

Understanding human activities is one of the key challenges of the new generation 

intelligent systems.  

Despite the fact that good results were achieved by traditional activity recognition 

approaches, they still have some limitations. Many of them involve computation of optical 

flow, whose estimation is difficult due to, e.g., aperture problems, smooth surfaces, and 

discontinuities. Others employ feature tracking and face difficulties in cases of self-

occlusions, change of appearance, and problems of reinitialization. Methods that rely on 

key frames or eigenshapes of foreground silhouettes lack information about the motion. 

Some approaches are based on periodicity analysis and are thus limited to cyclic actions. 

Some of the recent successful work done in the area of activity recognition have shown that 

it is useful to analyze actions by looking at a video sequence as a space-time volume (of 

intensities, gradients, optical flow, or other local features), they result in a very compact 

representation but are too few to build activity models robust to background clutter, 

occlusion, and lack information about the temporal order of the data.   



32 
 

There is a main discussion on whether the dynamics or the shape features have better 

representation, and researches have shown a common conclusion that shape has rich 

information about the underlying action however introducing dynamics has lead to better 

recognition [2]. This conclusion is also supported by the studies on human activity 

perception.     

To summarize approaches to the activity recognition problem; early body-part based 

methods suffer from the computational complexity, and lack of reliable segmentation of 

body parts in low resolution surveillance videos. More recent holistic methods achieve 

better results on unconstrained environments. These holistic methods process each frame 

(or segmented part of each frame as the moving subject) without focusing on the individual 

body parts.  

Moreover some methods also supports holism on time domain by modeling each action as a 

“bag of features” where others have frame based time sequential representation or state 

sequential representation based on time segmented video. Time holistic representation has a 

main drawback that different time sequential data can produce the same feature set. On the 

other hand frame by frame representations have redundancy and comparing different length 

high dimensional continuous data is a complex task. State sequential representation is more 

appropriate for the action recognition problem, however segmenting video into states and 

getting a good representation of those states are the two main problems one must overcome 

to achieve a good performance. Frame sequential and state sequential representations must 

also handle unaligned video sequences, while this is not an issue in time holistic 

representation. 

To recognize an action time holistic representation can be combined with either 

discriminative [155, 128] classifiers, semi-latent topic models [156] or unsupervised 

generative [137] models. Again such holistic representation of video sequences ignores 

temporal ordering and arrangement of features in the sequence.         

To handle high dimensionality of the video data, most methods apply a simple feature 

selection based on filtering and/or dimensionality reduction (PCA) algorithm. Other 

methods employ clustering (SVM, kNN are the two common algorithms) or sampling data 

in fixed intervals. However there is not much work that is focused to eliminate redundant, 

irrelevant features which will help better representation.       
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Many approaches based on sequential representation of the activity, use the methods of 

Dynamic Time Warping (DTW) [154] or Hidden Markov Model (HMM) [2] to exploit 

temporal constraints. DTW deals with differences between sequences by operations of 

deletion-insertion, compression expansion, and substitution, of subsequences. By defining a 

metric of how much the sequences differ before and after these operations, DTW classifies 

the sequences. DTW lacks, however, the consideration of inter actions between nearby 

subsequences occurring in time. HMM considers this correlation between adjacent time 

instances by formulating a Markov process. The success of HMM models in dealing with 

speech data motivated vision researchers to apply HMMs to visual recognition problems. In 

contrast to speech recognition, computer vision lacks a general underlying modeling unit, 

i.e. how to map the images into symbols. Therefore, in order to recognize complex actions 

and interactions, researchers combine various HMM structures. Markov models have 

shown promise but require manual design by experts. 

There are several outcomes of the state of the art literature: 

• Considering both dynamics and shape features will lead to better representation. 

• High dimensionality of the activity data must be handled properly. 

• Temporal ordering of the features is also discriminative information. 

• Training and recognition algorithm should handle unaligned samples of activity 

video of different lengths.   

As the conclusion of our literature survey on activity recognition there are two main 

questions: which features will be used to represent the motion? And, how the underlying 

motion will be represented with extracted features?  
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CHAPTER 3 

 

BACKGROUND 

 

 

Nearly every activity recognition method starts with background/foreground segmentation. 

The aim of background/foreground segmentation is to segment moving parts from the rest 

of the image. Common approaches to background/foreground segmentation problem are 

summarized in section 2.1.1. Since our main contributions are on activity representation 

and modeling, algorithm applied at the preprocessing step is given in this chapter as a 

background. 

Using spatio-temporal features is a popular approach to human activity recognition 

problem. One of the main motivations of spatio-temporal feature based methods is due to: 

representation of motion in a very compact way and application simplicity. Although model 

based approaches provide a very rich data for recognition of actions, model matching and 

tracking trough the video is a difficult and computationally complex task. Implicitly 

extracting body-part orientation or joint angles also lack of accuracy for low resolution 

video which is the most common case when considering surveillance data. Spatio-temporal 

feature based methods are based on finding interest points of the motion and representing 

corresponding information in an efficient way. However, choosing suitable interest points 

and representing spatio-temporal properties at those points are extremely critical for the 

performance of a recognition system.  

Searching nature for finding an answer has lead researchers to examine behavior of human 

visual system. Physiological studies found simple cells, in human visual cortex, that are 

selectively tuned to orientation as well as to spatial frequency. It was suggested that the 

response of a simple cell could be approximated by 2D Gabor filters [103, 91, 92]. As the 

result of their success to represent spatial texture properties of images [93], their application 

to temporal domain emerges. In section 3.2. a brief background about the Gabor filters is 

given.  
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After achieving an initial spatio-temporal representation, next step is to find salient 

features, to effectively and compactly model each activity class. Feature selection 

algorithms are the tools to eliminate redundant and noisy features, and to choose an elite set 

of features that are necessary and sufficient to describe the concept. Feature selection 

provides great advantage over classification accuracies, as well as training and 

classification times [99]. However optimal feature selection can be seen as a search in a set 

of possible solutions and requires an exponentially large search space. In this work an 

evolutionary clustering method, Genetic Chromodynamics [94, 95], is adopted for activity 

feature selection problem. Original Genetic Chromodynamics procedure is given in section 

3.3.1. 

For activity recognition, evaluating the temporal ordering of the representation provides 

better discrimination between different activity classes. Hidden Markov Models are 

successful tools to model sequential data. Because of their applicability to wide range of 

applications there are many extended structures derived from the standard HMM structure 

[106]. One of such structures is profile HMM [96]. Profile HMM is originally proposed to 

model distant protein structures of the same family. Their sequence aligning ability and 

flexible learning strategy make them a suitable choice for the activity modeling problem. 

Standard HMM algorithm and its profile HMM extension is explained in sections 3.4.1 and 

3.4.2 respectively. 

3.1. Background/Foreground Segmentation 

In this work as a preprocessing step, Adaptive Gaussian Mixture Model is used to model 

the background of the scene and pixels do not fit the model are assigned as the foreground 

[41]. 

3.1.1. Adaptive Gaussian Mixture Model 

This method is based on modeling each background pixel by a mixture of K Gaussian 

distributions (K is a small number from 3 to 5). Different Gaussians are assumed to 

represent different colors. The weight parameters of the mixture represent the time 

proportions that those colors stay in the scene. The background components are determined 

by assuming that the background contains B highest probable colors. The probable 

background colors are the ones which stay longer and more static. Static single-color 

objects trend to form tight clusters in the color space while moving ones form widen 

clusters due to different reflecting surfaces during the movement. The measure of this was 

called the fitness value in their papers. To allow the model to adapt to changes in 
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illumination and run in real-time, an update scheme was applied. It is based upon selective 

updating. Every new pixel value is checked against existing model components in order of 

fitness. The first matched model component is updated. If it finds no match, a new 

Gaussian component is added with the mean at that point and a large covariance matrix and 

a small value of weighting parameter. 

Each pixel in the scene is modeled by a mixture of K Gaussian distributions. The 

probability that a certain pixel has a value of xN at time N can be written as  

����� = ∑ �	
���; �	�
	�� ,                             (3.1)  

where wk is the weight parameter of the kth  Gaussian component. 
���; �	� is the Normal 

distribution of kth component represented by 
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where �� is the mean and Σ! = σ!�I is the covariance of the k
th component. 

The K distributions are ordered based on the fitness value ��/$� and the first B 

distributions are used as a model of the background of the scene where B is estimated as 

% = &'()*+,-∑ �	,	�� > /0,                              (3.3)  

the threshold T is the minimum prior probability that the background is in the scene. 

Background subtraction is performed by marking a foreground pixel any pixel that is more 

than 2.5 standard deviations away from any of the B distributions. The first Gaussian 

component that matches the test value will be updated by the following update equations. 
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where wk is the kth Gaussian component. 1/5 defines the time constant which determines 

change. 

If none of the K distributions match the pixel value, the least probable component is 

replaced by a distribution with the current value as its mean, an initially high variance, and 

a low weight parameter. 

Algorithm begins estimating of the Gaussian mixture model by expected sufficient statistics 

update equations then switch to L-recent window version when the first L samples are 

processed. The expected sufficient statistics update equations provide a good estimate at the 

beginning before all L samples can be collected. This initial estimate improves the accuracy 

of the estimate and also the performance of the tracker allowing fast convergence on a 

stable background model. The L-recent window update equations gives priority over recent 

data therefore the tracker can adapt to changes in the environment. 

�1��2� = �1�� + �
L -�̂���|��2�� − �1��0,                  (3.8) 

�̂��2� = �̂�� + �
L MN<�O�|�PQ���PQ�

O1�PQ� R,                  (3.9) 

Σ9!
:2� = Σ9!

: + �
S MN<�O�|�PQ���TUQ��µ<�UQ���TUQ��µ<�UQ��V

O1�PQ� − Σ9!
:R,             (3.10) 

3.2. Gabor Filters 

Since the discovery of crystalline organization of the primary visual cortex in mammalian 

brains forty years ago by Hubel and Wiesel [90], an enormous amount of experimental and 

theoretical research has greatly advanced our understanding of this area and the response 

properties of its cells. On the theoretical side, an important insight has been advanced by 

Marcelja [91] and Daugman [92] that simple cells in the visual cortex can be modeled by 

Gabor functions. The Gabor functions proposed by Daugman are local spatial bandpass 

filters that achieve the theoretical limit for conjoint resolution of information in the 2D 

spatial and 2D Fourier domains. 

Gabor functions fist proposed by Denis Gabor as a tool for signal detection in noise. Gabor 

[152] showed that there exists a “quantum principle” for information; the conjoint time-

frequency domain for 1D signal must necessarily be quantized so that no signal or filter can 

occupy less than certain minimal area in it. However, there is a trade of between time 

resolution and frequency resolution. Gabor discovered that Gaussian modulated complex 

exponentials provide the best trade off. For such a case, original Gabor elementary 
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functions are generated with a fixed Gaussian, while the frequency of the modulating wave 

varies. 

Gabor filters, rediscovered and generalized to 2D, are now being used extensively in 

various computer vision applications. Daugman generalized the Gabor function to the 

following 2D form in order to model the receptive fields of orientation selective simple 

cells: 

(��, W� = Kexp�−π�a��x − x]��̂ + b��y − y]��̂��exp-a�2c�J]� + d]W� + >�0,       (3.11)  

where �J], d]� and P define the spatial frequency and the phase of the sinusoid 

respectively. ��], W]� is the peak of the Gaussian function, a and b are scaling parameters of 

the Gaussian, and the r subscript stands for a rotation operation such that: 

�� − �]�e = �� − �]�HKE� + �W − W]�E*+�,               (3.12) 

�W − W]�e = −�� − �]�E*+� + �W − W]�HKE�,               (3.13) 

Recent neurophysiological evidence suggests that the spatial structure of the receptive cells 

having different sizes virtually invariant. Daugman [92] have proposed that ensemble of 

simple cells best modeled as a family of 2D Gabor filters sampling frequency domain in a 

log polar manner. This class is equivalent to a family of affine coherent states that 

generated by rotation and dilation.  

 

 

Figure 3: 2D Gabor kernels at 5 different scales and 8 different orientations
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Each member of this family of Gabor filters models the spatial receptive field structure of a 

simple cell in the primary visual cortex. The Gabor decomposition can be considered as a 

directional microphone with an orientation and scaling sensitivity. Due to the end-inhibition 

property of these cells, they respond to short lines, line ending and sharp changes in 

curvature. Since such curves correspond to some low level salient features in an image, 

these cells can be assumed to form a low level feature map of the intensity image. 

3.3. Feature Selection 

Feature extraction (or dimensionality reduction) is an important research topic in computer 

vision and pattern recognition fields. Because the curse of high dimensionality is usually a 

major cause of limitations of many practical technologies and the large quantities of 

features may even degrade the performances of the classifiers when the size of the training 

set is small compared to the number of features.  

Many feature extraction methods have been proposed, in which the most well-known ones 

are Principal Component Analysis (PCA) [148] and Linear Discriminant Analysis (LDA) 

[149]. However, there are still some limitations for directly applying them to solve vision 

problems. 

Firstly, although PCA is a popular unsupervised method which aims at extracting a 

subspace in which the variance of the projected data is maximized (or, equivalently, the 

reconstruction error is minimized), it does not take the class information into account and 

thus may not be reliable for classification. On the contrary, LDA is a supervised technique 

which has been shown to be more effective than PCA in many applications. It aims to 

maximize the between class scatter and simultaneously minimize the within-class scatter.  

These methods do not deal directly with eliminating irrelevant and redundant variables, but 

are rather concerned about transforming the observed variables into a small number of 

“projections”, or “dimensions”. The linear methods are not able to reduce the number of 

original features as long as all the variables have non-zero weights in the linear 

combination. 

Feature selection methods are used to find the set of features that yield the best 

classification accuracy for a given data set. There are many feature selection algorithms in 

the literature based on two main approaches: filter and wrapper [99].  

Filter methods are independent of the learning algorithm and can be seen as a pre-

processing step: elimination of non-useful features. On the other hand wrapper methods, 
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which use a learning algorithm as a subroutine, have higher computational complexity but 

better classification performance. Recent studies on feature selection also suggest using 

embedded algorithms which combines wrapper methods with a preprocessing step of 

filtering.  

In most wrapper methods, a prototypical vector (the cluster center) identifies a cluster. The 

problem of cluster optimization can be divided into two: optimization of cluster centers and 

determination of number of clusters. The determination of number of clusters has often 

been neglected in standard approaches (static clustering methods, i.e. the c-means 

algorithm, Kohonenmaps, elastic nets and fuzzy c-means), as these typically fix the number 

of clusters a priori. 

Genetic algorithms (GA), a form of inductive learning strategy, are adaptive search 

technique [150]. Genetic Algorithms are designed to simulate A Hybrid Feature Selection 

Algorithm the evolutionary processes that occur in nature. The basic idea is derived from 

the Darwinian theory of survival of the fittest. 

There are three fundamental operators in GA: selection, crossover and mutation within 

chromosomes. As in nature, each operator occurs with a certain probability. There must be 

a fitness function to evaluate individuals’ fitness. The evaluation function is a very 

important component of the selection process since offspring for the next generation are 

determined by the fitness values of the present population. Crossover and mutation are used 

to generate new individuals (offspring) for the next generation. Crossover operates by 

randomly selecting a point in the two selected parents and exchanging the remaining 

segments of the parents to create new individuals. Mutation operates by randomly changing 

one or more components of a selected individual.  

Evolutionary algorithms represent ideal tools for solving difficult optimization problems. 

Several optimization problems for which classical methods do not work very well or are 

simply inapplicable can be solved with evolutionary techniques. However standard 

evolutionary algorithms find only one solution, even if the search space is a highly 

multimodal domain. Genetic Chromodynamics (GC) is a recent evolutionary unsupervised 

clustering procedure that maintains population diversity and forces the formation of stable 

sub-populations [94]. 
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3.3.1. Genetic Chromodynamics 

The GC framework has demonstrated success in application to function optimization, 

clustering and classification [95].  

The main idea of the GC strategy is the formation and maintenance of stable 

subpopulations. In particular, GC is able to concentrate search on many basins of attraction 

in parallel, so that several optima are found simultaneously.   

Each subpopulation will evolve towards the optimum of the region. A characteristic of the 

method is that the number of individuals decreases: very similar/closed individuals are 

unified, thus, dimension of the population decreases. Using a local scheme of chromosomal 

crossover and a unification mechanism of similar individuals, the strategy makes every 

subpopulation to contain finally just one chromosome, which represents the corresponding 

local optimum. The advantage of this method is the fact that finally both multiple optima 

and their number in the searching space could be determined [94]. 

In the beginning, the population size is high and, as the algorithm progresses, the number of 

solutions (chromosomes) can be reduced by each generation. In GC algorithm, each 

individual participates in the forming of the new generation: its mate is searched by 

applying a local selection scheme; if a second chromosome is found within its local range 

(called the mating region), they recombine and the competition for survival of the fittest is 

held between the resulting offspring and the first parent only. If no chromosome can be 

found in the local range of the considered chromosome, it is mutated. The removal of less 

fit solutions is performed by introducing a special operator that merges very similar 

chromosomes into one chromosome; this chromosome is usually considered to be the fittest 

one of the chromosomes to be merged. 

 

Algorithm 1: Merging Procedure 

Repeat 

a chromosome F is considered as the current chromosome; 

select all m chromosomes in the merging region of F, including itself; 

combine chromosomes 

remove all but the best chromosome from the selection; 

until merging cannot be applied at all 
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Algorithm 2: GC algorithm 

k = 0; 

initialize population P(k); 

Repeat 

for all chromosomes F in the population do 

if mating region of F is empty then  

apply mutation to F; 

if obtained F’ is fitter than F then  

replace F; 

end if 

Else 

choose one chromosome from the mating region of F for 

crossover; 

obtain and evaluate one offspring; 

if the offspring has better fitness than F then  

replace F 

end if 

end if 

end for 

merging; 

k = k + 1; 

until there is no change 

 

3.4. Hidden Markov Models 

There are many different HMM structures in literature proposed for modeling different 

kinds of data. HMMs are well suited for recognition of complex human actions because 

they can efficiently characterize motion profiles in spite of the broad variation in the space 

and time domains in which actions are performed. 

Variations between different performances of the same activity, with the possible effects of 

unaligned sequences, make it hard to select an initial model and maintain a static structure 

throughout the training. The nature of the data analyzed in this work also requires sequence 

aligning.   
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In traditional HMM approaches structure learning is independent of parameter learning and 

learning is first performed off-line and then system switches to a utilization stage where no 

further learning is performed [1].  

3.4.1. Standard Hidden Markov Models 

Hidden Markov Model is a statistical model which characterizes the statistical properties of 

the signal [1]. The underlying assumption is that the signal can be well characterized as a 

parametric random process, and that the parameters of the stochastic process can be 

determined in a precise, well defined manner.   

An HMM can be characterized by the following: 

1) N, the number of states in the model 

f = gf�, f�, … , f�i                             (3.14) 

2) M, the number of distinct observation symbols per state 

j = gj�, j�, … , jki                            (3.15) 

3) The state transition probability distribution l = m&n	o, where 

&n	 = >pqr2� = f	|qr = fns           1 ≤ *, a ≤ u              (3.16) 

4) The observation probability distribution in state j, % = mv	(w)o, where v	(w) = >pj� &F F|qr = f	s    1 ≤ a ≤ u, 1 ≤ w ≤ x             (3.17) 

5) The initial state distribution c = gcni where cn = >gq� = fni  1 ≤ * ≤ u                          (3.18) 

Process moves from one state to another generating a sequence of states. According to the 

Marcov chain property, probability of each subsequent state depends only on what was the 

previous state. To define Markov model, the transition probabilities and initial probabilities 

have to be specified. 

There are three basic problems of interest that must be solved for the model to be useful in 

real-world applications. 

Evaluation problem. Given the HMM  y = (l, %, c) and the observation sequence z = z�z�z{ … zr, calculate the probability that observed sequence was produced by the 

model >(z|y). Scoring how well a given model matches a given observation sequence. To 

solve this problem efficiently forward backward procedure is used.  
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Consider the variable 5r(*) defined as the probability of the partial observation sequence 

until time t and state Si at time t, given the model y. 

5r(*) = >(z�z�z{ … zr , qr = fn|y)                           (3.19) 

5r(*), can be solved inductively with forward recursion. 

Forward recursion 

Initialization: 5�(*) = cnvn(z�)     1 ≤ * ≤ u                                                                                              (3.20) 

Recursion: 5r2�(a) = p∑ 5r(*)&n	�n�� sv	(zr2�)     1 ≤ F ≤ / − 1,   1 ≤ a ≤ u                         (3.21) 

Termination: >(z|y) = ∑ 5|(*)�n��                                                                                                 (3.22) 

 

In a similar manner backward variable }r(*), which will be used in the solution of the 3rd 

problem, is defined as the probability of the partial observation sequence from t+1 to the 

end, given state Si at time t and the model y. 
}r(*) = >(zr2�zr2�zr2{ … z| , qr = fn|y)             (3.23) 

}r(*), can be solved inductively with backward recursion. 

Backward recursion 

Initialization: }|(*) = 1     1 ≤ * ≤ u                                                                                             (3.24) 

Recursion: }r(*) = ∑ &n	�	�� v	(zr2�)}r2�(*)   F = / − 1, / − 2, … ,1   1 ≤ * ≤ u                  (3.25) 

Termination: >(z|y) = ∑ β�(*) vn(z�) πn�n��                                                                                 (3.26) 

  

Decoding problem. Given the HMM  y = (l, %, c) and the observation sequencez =z�z�z{ … zr, calculate the most likely sequence of hidden states Si that produced this 

observation sequence O. The solution to this problem depends upon the way “most likely 

state sequence” is defined. One approach is to find the most likely state qr at t=t and to 

concatenate all such qr. But some times this method does not give a physically meaningful 
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state sequence. In a better method, commonly known as Viterbi algorithm, the whole state 

sequence with the maximum likelihood is found. In order to facilitate the computation we 

define an auxiliary variable, δk(i)  as the maximum probability of producing observation 

sequence O  when moving along any hidden state sequence q1… qk-1 and getting into qk= Si . 

��(*) = max >(q� … q��� , q� = fn,  z�z� … z�)                          (3.27) 

where max is taken over all possible paths q1… qk-1. 

Viterbi Algorithm 

Initialization: ��(*) = max >( q� = fn,  z�) = cnvn(z�)        1 ≤ * ≤ u                                             (3.28) 

Forward recursion: ��(a) = max >(q� … q��� , q� = f	,  z�z� … z�) =                                               (3.29) max�p&n	v	(z�) max >(q� … q��� = f	,  z�z� … z���)s = max�p&n	v	(z�)����(a)s        1 ≤ a ≤ u, 2 ≤ w ≤ � 

  

Termination: 

choose best path ending at time K max���
(*)�                                                                                                              (3.30) 

Back-track best path. 

 

Learning problem. Given some training observation sequence z = z�z�z{ … zr, and 

general structure of HMM (numbers of hidden and visible states), determine HMM 

parameters y = (l, %, c)  that best fit training data.  

Define �r(*, a) = >-qr = fn, qr2� = f	�z, y0, from the definitions of the forward-backward 

variables  

�r(*, a) = ��(n)���,�(��Q�)��Q�(	)�(�|�) = ��(n)���,�(��Q�)��Q�(	)∑ ∑ ��(n)���,�(��Q�)��Q�(	)P���P���                         (3.31) 

The probability of being in state Si at time t, �r(*), can be related to �r(*, a) by summing 

over j, 

�r(*) = ∑ �r(*, a)�	�� ,                 (3.32) 
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∑ �r(*)|��r�� = ����HF�� +J)v�' KC F'&+E*F*K+E C'K) fn,                        (3.33) 

∑ �r(*, a)|��r�� = ����HF�� +J)v�' KC F'&+E*F*K+E C'K) fn  FK f	,                       (3.34) 

Using above formulas a set of reasonable reestimation formulas for c, l and B are 

c�n = ����HF�� C'�qJ�+HW (+J)v�' KC F*)�E)*+ EF&F� fn &F F*)� (F = 1) =  ��(*),  

&�n	 = ��N��r�� ���,�e �� re���nrn��� �e�� �r�r� �� r� ����N��r�� ���,�e �� re���nrn��� �e�� �r�r� �� = ∑ ��(n,	)� ����∑ ��(n)� ����                                  (3.35) 

v�	(w) = ��N��r�� ���,�e �� rn��� n� �r�r� 	 ��� �,��e n�¡ �¢�,�£ ¤���N��r�� ���,�e �� rn��� n� �r�r� 	 = ∑ ��(n)� �����,r,���¤�∑ ��(n)� ����                 (3.36) 

If current model is defined as y = (l, %, c)  and the reestimated model is defined as  y̅ = (l̅, %�, c�). According to the Baum-Welch method if we iteratively use  y̅ in place of y 

and repeat the reestimation calculation, we then improve the probability of O being 

observed from the model until some limiting point is reached. Because either the initial 

model y defines a critical point of the likelihood function (y = y̅) or model  y̅ is more likely 

than model y. The final result of this reestimation procedure is called a maximum 

likelihood estimate of the HMM. This method can be derived using simple ``occurrence 

counting'' arguments or using calculus to maximize the auxiliary quantity 

¦-y, y̅0 = ∑ >(¦|z, y§ )¨K(p>(¦|z, y̅)s                (3.37) 

over y.©  

 

 

Figure 4: Standard profile HMM structure 
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3.4.2. Profile Hidden Markov Models 

In order to model real sequences one must need to consider the possibility that, gaps might 

occur when a model is aligned to a sequence. Two types of gaps may arise. The first type 

occurs when the sequence contains a region that is not present in the model (an insertion in 

the sequence). The second type occurs when there is a region in the model that is not 

present in the sequence (a deletion in the sequence).  

A Profile HMM is a standard topology for modeling sequence motifs [96]. Aligning a 

sequence to a profile HMM is done by a Viterbi algorithm that finds the most probable path 

that the sequence may take through the model, using the transition and emissions 

probabilities to score each possible path. In general, if the sequence is equivalent to the 

consensus of the original alignment, the path through the model will pass from match state 

to match state in a linear fashion. If the sequence contains a deletion relative to the 

consensus, the path passes through one or more delete states before transitioning to the next 

match state; if the sequence contains an insertion relative to the consensus, the path passes 

through an insert state between two match states.  

There are three kinds of states in profile HMM (figure 4): matching states (M), deletion 

states (D) and insertion states (I). Matching states are the ones that emit codebook symbols. 

When there is a region in the model that is not present in the sequence model transits to the 

Deletion state. Insertion states (I) handle the cases when the sequence contains a region that 

is not present in the model.  

Constructing a Profile HMM from an unlabeled data: 

Profile HMM formalism can be used to model a shared pattern in sequences. If the 

sequences are already aligned, then we have labeled data. In other words, one can 

determine from the alignment which state is associated with each symbol in each sequence. 

In that case, required initialization is to determine the number of match states in the Profile 

HMM, set up the topology, and determines the parameters from the labeled data. 

Given unlabeled sequences that are known to share a pattern, Profile HMM can be used to 

discover the pattern, label the data, and construct a multiple sequence alignment.  

To discover a pattern in unlabeled data requires the following steps: 

1. Estimating the length: Given a set of unaligned sequences, where each sequence is 

an instance of the pattern, let L, the length of HMM (i.e., the number of match 
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states) be the average length of sequences. If the given sequences contain a pattern 

but are much longer than the pattern, then some approach to estimating the length is 

required.  

 
2. The topology: Construct a Profile HMM with L+2 match states. M0 and ML+1 are 

silent states corresponding to the start state and the end state. 

 
3. Learn parameters Guess “good” initial parameters The model should be encouraged 

to use ‘sensible’ transitions; for instance transitions into match states should be 

large compared to other transition probabilities. 

 
4. Train model using Baum Welch. 

 
5. Determining the motif Use the Viterbi algorithm or posterior decoding to find path 

most likely to produce each sequence. The Viterbi recurrence can be greatly 

simplified and expressed in terms of log odds for the special case of Profile HMMs. 

The log odds formulation avoids underflow and to reduces length effects.  

 
6. Multiple Sequence Alignment: The most paths for each sequence obtained from 

decoding can be used to obtain a multiple alignment of the input sequences.  

 
7. Model surgery: The topology of the model can be iteratively refined. If more than 

half of the sequences enter the delete state at a particular position remove that 

match state from the topology. If more than half of the sequences enter the insert 

state at a given position, add match states (number equal to average length of the 

insertion). 

 
8. Re-estimate the parameters: If the states change due to model surgery, re-

estimation of the parameters would be required. Label the multiple alignment with 

the new states and calculate the transition and emission probabilities as described 

above for labeled data. If the number of states that are changed is a significant 

percentage of the entire HMM, structure can be retrained. 

Compared with the exact dynamic programming algorithm for multiple sequence 

alignment, which runs in exponential time, this approach can align many sequences 

quickly. Note that this method doesn’t say how to align sequences of different length. 

Correspond to unconserved portions, not meaningfully alignable; often just left-justified 

and shaded. 
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Model surgery 

After training a model we can analyze the alignment it produces: 

• From counts estimated by the forward-backward procedure how much a certain 

transition is used by the training sequences can be seen. 

• The usage of a match state is the sum of counts for all letters emitted in the state. 

• If a certain match state is used by less than half the number of given sequences, the 

corresponding module (triplet of match, insert, delete states) should be deleted. 

• Similarly, if more than half (or some other predefined fraction) of the sequences 

use the transitions into a certain insert state, this should be expanded to some 

number of new modules (usually the average number of insertions). 

 

Profile HMM training from unaligned sequences 

Initialization: 

• Choose the length of the profile HMM (i.e., the number of match states), and initialize 

the transition and emission parameters. 

• A commonly used rule is to set the profile HMM’s length to be the average length of 

the training sequences. 

Training: 

• Estimate the model using the Baum-Welch algorithm or its Viterbi alternative. 

• Start Baum-Welch from multiple different points to see if it all con verges to 

approximately the same optimum. 

• If necessary, use a heuristic method for avoiding local optima. 

Multiple alignment: 

Align all sequences to the final model using the Viterbi algorithm and build a multiple 

alignment. 

 

Profile HMM Forward Algorithm 

Initialization: 5kª(0) = 1                                                                                            (3.38) 

Recursion: 5k�(*) = �k�(�n) «5k� �(* − 1)&k� �k� + 5¬� �(* − 1)&¬� �k� + 5­� �(* − 1)&­� �k�®         (3.39) 

5¬�(*) = �¬�(�n) «5k�(* − 1)&k�¬� + 5¬�(* − 1)&¬�¬� + 5­�(* − 1)&­�¬�®                     (3.40) 
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5­�(*) = 5k� �(*)&k� �­� + 5¬� �(*)&¬� �­� + 5­� �(*)&­� �­�                      (3.41) 

Termination: 5k¯Q�(+ + 1) = 5k¯ (+)&k¯k¯Q� + 5¬¯ (+)&¬¯k¯Q� + 5­¯ (+)&­¯k¯Q�                     (3.42) 

 

Profile HMM Backward Algorithm 

Initialization:  }k¯Q�(+ + 1) = 1                                                                             (3.43) }k¯ (+) = &k¯k¯Q�, }¬¯ (+) = &¬¯k¯Q�, }­¯ (+) = &­¯k¯Q�                                           (3.44) 

Recursion: }k�(*) =}k�Q�(* + 1)&k�k�Q��k�Q�(�n2�) + }¬�(* + 1)&k�¬��k�(�n2�) + }­�Q�(*)&k�­�Q�     (3.45) 

}¬�(*) = }k�Q�(* + 1)&¬�k�Q��k�Q�(�n2�) + }¬�(* + 1)&¬�¬��k�(�n2�) + }­�Q�(*)&¬�­�Q�        (3.46) 

}­�(*) = }k�Q�(* + 1)&­�k�Q��k�Q�(�n2�) + }¬�(* + 1)&­�¬��k�(�n2�) + }­�Q�(*)&­�­�Q�     (3.47) 

 

Profile HMM Viterbi Algorithm   

Initialization: dkª(0) = 1                                                                                            (3.48) 

Recursion:  

dk�(*) = �k�(�n)  )&� °dk� �(* − 1) &k� �k�d¬� �(* − 1) &¬� �k�d­� �(* − 1) &­� �k�
B                        (3.49) 

d¬�(*) = �¬�(�n) )&� °dk� �(* − 1) &k� �¬�d¬� �(* − 1) &¬� �¬�d­� �(* − 1) &­� �¬�
B                                     (3.50) 

d­�(*) = )&� °dk� �(* − 1) &k� �­�d¬� �(* − 1) &¬� �­�d­� �(* − 1) &­� �­�
B                          (3.51) 

Termination: 

Final score is dk¯Q�(+), calculated using the top recurtion relation. 

Track back the optimal state sequence. 
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CHAPTER 4 

 

PROPOSED HUMAN ACTIVITY RECOGNITON METHOD  

 

 

 

Compared to the spatio-temporal feature based approaches, which models the activity as the 

“bag of features”, proposed algorithm also considers their temporal order. Our 3D Gabor 

based feature extraction maintains locality on both space and time. However to recognize 

an activity, frame by frame modeling is not an adequate solution, mainly because of the 

huge redundancy and high dimensionality of the data. Instead a feature selection algorithm 

is proposed to achieve state based representation.  

In this thesis a recent evolutionary feature selection method, genetic Chromodynamics, is 

adopted to obtain state-space based representation of the underlying human activity by local 

spatio-temporal feature clusters. Spatio temporal features and state representation of the 

action sample is not though a predefined structure; i.e. number of spatio temporal features 

and number of states are not fixed. 

A profile HMM, is used to learn the underlying common pattern for each action class. In 

the literature, Profile HMM formalism is used to model a shared pattern in biomolecular 

sequences. Profile HMM structure provides an effective tool for action modeling to 

overcome the restrictions of common HMM methods. Standard profile HMM further 

adopted to handle repeating subsequences and unlabeled end points of the activity in a 

given sequence.        

At the end of the learning proposed method automatically builds an activity specific model 

for each class of activity. Recognition is done by evaluating the probe activity by each 

model.  

In the following sections, the proposed activity recognition method will be explained and 

details about building blocks of our algorithm namely: 3D Gabor filters, Genetic 

Chromodynamics and Profile HMM will be given.  
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4.1. Preprocessing 

In this work as a preprocessing step, regions of probe action are segmented, and in the 

following sections only those regions are processed. We used the approach in [41] which 

improves the adaptive background mixture model, since it learns faster and more accurately 

as well as adapts effectively to changing environments. Details of the algorithm are given in 

section 3.1. The reason for the segmentation of the moving region is to obtain person 

centered coordinate frame in the later processes. 

 

 

                        

(a)                                                          (b) 

 

(c) 

 

Figure 5: Preprocessing of a frame a) original frame, b) foreground mask, c) region that will 
be processed in the later steps of the algorithm. 
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4.2. Spatio-Temporal Action Representation 

4.2.1. 3D Gabor Filters 

Using 3D Gabor filters are similar to enhancing edge contours, as well as valleys and ridge 

contours in both spatial and temporal domain. Such an approach enables finding interest 

points as well as extracting their local representation.  

3D Gabor filters has very similar aspects with 2D Gabor filters. Studies on the spatio-

temporal model of the human visual system (HVS) suggest that the 3D Gabor filters unify 

the treatment of spatial and spatiotemporal aspects of the response selectivity of the V1 

cells.  

Our motivation is to simulate the behavior of the HVS with a 3D Gabor filter bank which 

decomposes the data into perceptual channels, each one being tuned to a specific spatial 

frequency, orientation and temporal frequency. 3D Gabor filters allows the description of 

temporal frequency structure and temporal relations, in addition to the description of the 

spatial frequency structure and spatial relations. 

A 3D Gabor is the product of a 3D Gaussian and a 3D harmonic function. The length of the 

axes is controlled by the Gaussian and the frequency is controlled by the harmonic 

function.  

�(�) = exp(−c�|�),                    (4.1) E(�) = ��� (a2cJ]| �),                   (4.2) ((�) = ����(a>)�-l(� − �])0E(�),                  (4.3) 

where K scales the magnitude of the Gaussian envelope, A is the height of the peak of the 

Gaussian,  �±] = (�], W], F]) is the location of the peak of the Gaussian envelope, J²±] =(J], d], �]) spatial and temporal frequencies of the sinusoid carrier in Cartesian, P is the 

phase of the sinusoid carrier. J²±] can also be expressed in spherical coordinates with 

magnitude ³] and directions }, �: 

J] = ³]E*+�HKE},                    (4.4) d] = ³]E*+�E*+},                   (4.5) �] = ³]HKE�,                    (4.6) 
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The Gabor function as defined above may have a non-zero DC response (<(0) = 
‖µ‖ exp(a>) exp(a2cJ]|�]) �(l�|J]),                (4.7)  

where w(x)=w(-x). By eliminating the DC response filters will not respond to the absolute 

intensity of the image. One approach to doing so is to subtract from the original filter the 

output of a low pass filter. 

ℎ(�) = ((�) − ¶C(�),                    (4.8)  

where C is a constant and f(.) is the low-pass filter. A convenient and popular low-pass 

filter is as follows 

C(�) = 
‖µ‖ �-l(� − �])0,                  (4.9) 

Using (3.8) 

C(�) = 
‖µ‖ �-l(� − �])0(exp(a>) exp(a2cJ]|�]) − ¶),             (4.10)  

Corresponds to subtracting a complex constant from the complex sinusoid carrier. Note f is 

a Gabor filter with zero phase and zero peak response. Therefore it has the following 

Fourier Transform; 

C·(J) = 
‖µ‖ exp(−a2cJ|�]) �(l�|J),                        (4.11)   

Thus the DC response of the combined filter is as follows 

ℎ?(0) = (<(0) − ¶C·(0) = 
‖µ‖ (exp(a>) exp(a2cJ]|�]) �(l�|J]) − ¶),                     (4.12)  

And to get a zero DC response C must be set to; 

¶ = exp ¸a(> + 2cJ]|�])¹ �(l�|J]),                (4.13)       

In this work we set �] = W] = F] = 0, P=0, and scales of the Gaussian magnitude are same 

for each axes. The rotation angle has no effect. $� = $¢ = $r = $ 

((�, W, F) = ����-−c$�(�� + W� + F�)0  

Mexp-2ca(J]� + d]W + �]F)0 − exp ¸− �º� (J]� + d]� + �]�)¹R,           (4.14) 
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3D Gabor function will be: 

((�, W, F) = ����(−c$�(�� + W� + F�)) »exp-a2c³](�E*+�HKE} + WE*+�E*+} +
FHKE�)0 − exp ¸− º�� ¹R,                 (4.15) 

(	(�¼ ) = ����(−c$��¼�) »exp-a2cw²¼	�¼0 − ��� ¸− º�� ¹½                (4.16) 

w²¼	 = ¾w   E*+�HKE}w   E*+�E*+}w   HKE� ¿                  (4.17) 

w²¼	 is the spatial and temporal frequencies of the sinusoid carrier in spherical coordinates with 

magnitude w  and directions }, �. 

To find 3D Gabor responses spatio-temporal convolution of the video sequence and the 3D 

Gabor kernels is computed. 

À	(�], W], F]) = ∑   ∑   ∑ (	(�, W, F)ÁÂ�¢�] j ¸�]− OÃ� + �, W] − OÂ� + W, F] − O�� + F¹ÁÃ���]Á��r�]            (4.18) 

Where À	(�], W], F]) is response of the video sequence, V, to the arÄ 3D Gabor filter, (	, at 

spatio-temporal location �± = (�], W], F]). wT, wÆ, wÇ are the window sizes of the 3D Gabor 

kernel at x, y and t dimensions respectively.  

In figure 6 slice of a 3D Gabor kernel is given. Responses of a simple moving bar is shown 

in figure 7, it can be seen that responses are maximized when both spatial and temporal 

orientations of the moving bar and 3D Gabor kernel are matched.  

Responses of 42 consecutive frames from a walking sequence to a 3D Gabor filter (spatio-

temporal orientation and scale same for all frames) can be seen in figure 8; as the body 

moves at different time instances 3D Gabor filter matches different parts of the body. 

In figure 8 responses of a frame from a walking sequence is given for two 3D Gabor 

kernels with different spatio-temporal orientations. It can be seen that salient locations of 

the motion are highlighted by 3D Gabor responses. 
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Figure 6: Slice of a 3D Gabor filter 
 

 

 

 

 

Figure 7: Responses of a moving bar to 3D Gabor filters with different orientations. 
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Figure 8: Responses to a 3D Gabor filter frames from t=1 to 42 
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4.2.2. Spatio-Temporal Feature Selection 

In this work a two step feature selection algorithm is applied to find the representative 

features of the activity: in the first step interest points are found by filtering 3D Gabor 

responses, in the second step by applying clustering, discriminative spatio-temporal 

features are found as the symbols of the underlying action. Locality of the features is 

assured in both spatial and temporal domains. 

Since proposed feature selection algorithm is fully automatic, numbers of final feature 

clusters and number of feature vectors of the final feature clusters are not set a priori. With 

our feature selection algorithm each class of activity is represented according to its specific 

temporal texture properties effectively. 

4.2.2.1. Filtering 

Filtering is applied to 3D Gabor responses to obtain a local spatio-temporal feature map of 

each frame. 3D Gabor filters gives high response at the locations of sharp changes in 

curvature in spatio-temporal domain. Since such locations correspond to some low level 

salient features, by filtering, peaks of 3D Gabor responses selected as spatio-temporal 

interest points.  

Local maximums of each 3D Gabor response in a window  )( yx ww ×  are found as the 

points with high information. A feature point is located at (x0, y0,t0), if 

1. À	-�0, W0, F00 = max(�,W)∈É0 Àa(�, W, F)                  (4.19) 
2. À	(�], W], F]) > �¬Ã¬Â ∑ ∑ À	(�, W, F)¬Â¢��¬Ã���                                     (4.20)   

where Rj is the response of the video frame to the jth Gabor filter. Ix Iy is the size of the 

segmented region of the action at t=t0, the center of the window, W0 is at (x0, y0,t0).  

Feature vectors are generated at the feature points as a composition of Gabor filter response 

coefficients. k
th
 feature vector of ith  frame is defined as, 

 dn,� = mÀ	(��, W� , *)�a = 1, … , u¡ Bo     k=1,…,Ni,                         (4.21)  

 

where (xk, yk, tk=i) shows the coordinates of a feature point and Rj are the samples of the 

Gabor filter responses at that point. Ng is the total number of 3D Gabor filters; in this work 
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96 3D Gabor filters are used with 3 different values of kv, 4 different values of θ, and 8 

different values of β (eqn 4.17).  Ni is the number of feature vectors for frame i. Another 

parameter, dk, associated with each feature vector is computed as the normalized distance of 

the feature point from the center of the body: 

 

�� = E*(+ ¸W� − ¬Â� ¹ �Ê¬Ã�2¬Â� Ê¸�� − ¬Ã� ¹� + ¸W� − ¬Â� ¹�
,             (4.22) 

dk has a sign indicating its location in y axis with respect to the center of the body; this sign 

enable us to differentiate between upper and lower parts of the body. Therefore arm 

features could not match to leg features (eqn. 4.27).    

Filtering is applied to responses of a frame to each 3D Gabor filter separately (figure 10). 

Feature points found from each response then combined to achieve a feature point map. 

Feature vectors (eqn. 4.21) are then extracted at each location on the feature point map 

(figure 11).  

 

 

  

(a) 

 

(b) 

Figure 9: 3D Gabor responses a) original frames, b) Response samples of the middle frame 
of (a) to 3D Gabor filters of different spatio-temporal orientations 
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Figure 10: Exemplary thresholded responses of a frame (5 spatial frequencies, 8 spatial 
orientations)  

 

 

 

Figure 11: Spatio-temporal feature locations of a frame after filtering 
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4.2.2.2. Clustering 

As a general definition clustering is a tool to divide a data set into regions of high 

similarity, as defined by a distance metric. In this work a dynamic clustering method is 

applied, since the number of clusters is not determined a priori.  

Data to be clustered (D) is composed of the feature sets (F) of an activity sequence 

extracted at each frame.  

Ë = g³r|F = 1, … , /Bi                  (4.23) 

³r = mdr,�  |w = 1, … , ur Bo                (4.24) 

Nt is the number of feature vectors at time t, T is the length of the activity sequence, vt is a 

feature vector. Our aim to cluster D, and finally represent each cluster by a single feature 

set FC. Although filtering reduces redundancy in space for each frame, there is still a huge 

redundancy in time at the feature vector level; to obtain FC one must combine feature sets 

of each cluster by eliminating this redundancy.   

Ë� = g³¶n |* = 1, … , /� ≪ /iB                (4.25) 

D
c is the clustered data set and Tc is the number of clusters.  

Clustering algorithm here must provide a tool to combine feature sets without redundancy, 

while maintaining the best discriminative feature vectors and eliminating the spurious ones. 

Proposed clustering method utilizes Genetic Chromodynamics procedure providing 

dimensionality reduction by both feature selection and data partitioning. 

4.2.2.2.1. Proposed GC procedure for Codebook Generation 

In this work filtered feature set (F) of each frame is considered as an individual. Locality is 

maintained in both time and space. Similarity between two individuals is computed as the 

mean similarity of its features. Following evaluation function is used to analyze fitness. 

�*EF�³�, ³�� = 1 − f*)�³�, ³��                                                    (4.26) 

f�d�, d�� = Ê ∑| �|| �|
∑| �|� ∑| �|� �&vE��� − ��� < Î��              (4.27) 

f*)�³�, ³�� = avg∀  �∈Ò�, �∈Ò� f�d�, d��                                                             (4.28)   
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Each spatio-temporal feature set, F, is composed of spatio-temporal feature vectors, v, their 

normalized distance from the center, d, and their weights, w. Î�  is the distance threshold. 

Weight indicating appearance frequency of a feature vector is set to N at the beginning and 

decreased by 1 at each similarity calculation if there is no match for that feature vector.  

Initial population is composed of every feature set Ft (eqn. 4.24) 

>] = g³r|F = 1, … , /Bi                 (4.29) 

Mating region, MT, is defined by temporal distance and feature similarity: 

x/�³r� = g³r2Ó | Ô = ±1  & B f*)�³r , ³r2Ó� > Îk|i             (4.30) 

If MT(Ft) is not an empty set, then the member, ³r2Ó, with the lowest similarity is selected 

as the mate. Selection of the least similar mate avoids local overfitness. Once a mate is 

selected for Ft crossover is applied to generate an offspring. A match for each feature vector 

of Ft is searched in ³r2Ó and the one with the higher response magnitude is selected for the 

offspring �³×r�. Then ³×r and ³r is evaluated; fittest one is survive for the next generation. 

The following evaluating function is used to find the fitness. 

  Ød&¨k|-³?0 = ��� «− ∑ �*EF ¸³?, ³�a�¹Ò�∉k|�Ò�� + ∑ �*EF ¸³?, ³�a�¹Ò�∈k|�Ò�� ®,          (4.31) 

Evaluation function in (eqn. 4.31) supports increased similarity in the mating region and 

increased distance to the rest of the population.  

If MR(Ft) is an empty set, then ³r is mutated. In our approach it is important to maintain 

actual feature values while extracting representative spatio-temporal feature sets, therefore 

mutation cannot be directly applied to feature vector values. To mutate, weight of the less 

frequent feature vectors of an individual �³r�, is set to 0 which indicates that they are 

eliminated. If weight of a feature is less than a threshold it is considered as noise. Since we 

compute feature values in a 3D space (x,y,t) if a feature is not locally consistent between 

consecutive frames it can be stated that it is not related to the probe motion.  

By mutation some individuals can be completely eliminated. However our motive is not to 

assign each feature set ³r to a cluster but to find feature clusters that will effectively 

represents the underlying motion texture.   

Above procedure is applied for every individual in the current population. Before iterating 

for the next generation merging is applied. Merging procedure is introduced by Genetic 
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Chromodynamics algorithm to remove less fit individuals, to decrease the population size. 

It must be noted that at the mating region only the first parent and the offspring is compete 

for the survivor. Without merging, at every generation, while the number of similar 

individuals increases as the result of mating, total number of individuals would stay the 

same.      

Merging region of ³r is defined similarly as the mating region: 

xI�³r� = g³r2Ó |−1 ≤ Ô ≤ 1  & B f*)�³r , ³r2Ó� > ÎkÚi            (4.32) 

To combine individuals in the merging region, first all but the best individual from the 

selection is removed, and then its feature vectors are compared to every feature vector in 

the merging region, the one that has higher response magnitude is selected if two feature 

vectors match. The best individual is selected according to the same evaluation function of 

survival (eqn. 3.43) but instead of mating region, merging region is considered. 

Ød&¨kÛ-³?0 = ��� «− ∑ �*EF ¸³?, ³�a�¹Ò�∉kÛ�Ò�� + ∑ �*EF ¸³?, ³�a�¹Ò�∈kÛ�Ò�� ®            (4.33) 

At the end of the merging a new generation is obtained. If population does not alter from 

the previous generation by mating and/or merging procedure is finalized, otherwise mating 

and merging applied for the new generation as well. 

At the end of GC clustering video sequence is partitioned into motion texture units and a 

spatio-temporal feature cluster (CF) for each partition is found; each cluster is modeled by 

a 3D Gabor feature set.  
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Figure 12: Genetic Chromodynamics algorithm 
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Figure 13: Overview of the training algorithm 
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Figure 14: Overview of the recognition algorithm 
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4.3. Human Activity Recognition with Profile HMM 

In our case, the observations are the spatio-temporal features of the motion texture units. As 

the body parts moves, 3D Gabor filters matches at some local points during the activity; at 

a certain instance they produce maximum response showing the points of maximum spatio-

temporal variations which characterize the motion texture. Each of such spatio-temporal 

features is found and clustered into local action units by our feature selection algorithm. 

Temporally ordered feature clusters correspond to the observation sequence.  

z = g¶³�, ¶³�, … , ¶³�i                            (4.34) 

where N is the number of feature clusters of the sequence. Codebook is obtained as the 

unique feature clusters (UCF).  

j = gj�, j�, … , jki = gÞ¶³�, Þ¶³�, … , Þ¶³ki               (4.35) 

Feature clusters of the observation sequence are associated to the codebook symbols as:  

¶³n = j	∗                   (4.36) 

a∗ = &'()&�	�f*)�¶³n, Þ¶³	��                (4.37) 

Once we have the initial codebook next step is to choose the best HMM structure for our 

problem. 

4.3.1. Adapting Profile HMM Procedure for Action Modeling 

Our objective is to build a model representing the consensus sequence for an action not the 

sequence of any particular member. It must be also noted that the initial observation 

sequences are considered as unaligned.  

Another important issue is; observation sequence can be derived beginning from any 

instance of the action and can also be ended at an arbitrary instance. That is videos are not 

labeled and/or segmented according to the start and finish of the activity. Assume we have 

two observation sequences of the walking action; first sequence can start with a symbol of 

left foot rising action unit while other starting with a symbol of right foot forward action 

unit. Moreover some observation sequence can be partial (i.e. half of the walking cycle); 

while other including repeated subsections (i.e. more than one walking cycle).   To handle 

such cases rather than a standard profile HMM, a profile HMM for repeat matches to 

subsections of the profile model is proposed in this work (figure 15). Proposed profile 

HMM structure allows local alignment. Our model incorporates the original profile HMM 
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together with a self-looping model. It behaves very like the insert state that is added to the 

profile itself. It is called flanking model state [96], because it is used to model the flanking 

sequences to the actual profile match itself.  

The flanking state is shown as shaded diamond. The self transition probability of the 

flanking is account for long stretches of sequence. There are also silent states, shown as 

shaded circles, as “switching points” to reduce the total number transitions.  

Sequence alignment is achieved by applying Profile HMM Viterbi Algorithm to find the 

optimal state path with current model parameters. Sequence alignment is embedded into the 

Viterbi Count Learning procedure. In figure 15 overview of the proposed training algorithm 

is given. 

Another obstacle is the nature of our codebook. Since the words of the codebook are the 

spatio-temporal features extracted from available action samples, at the beginning of the 

training codebook is neither universal nor complete. During the training, codebook must 

also be refined to effectively model the probe action. 

In the proposed algorithm there are two kinds of symbols; codebook symbols and unknown 

symbols. Unknown symbols appear at the stage of learning, as the observation samples that 

do not match to any codebook sample. If an unknown symbol is observed it is added to the 

codebook. Here observation symbols are compared to codebook symbols according to the 

average similarity (eqn. 4.37) of their vectors. 

In our approach initially the number of matching states is set to the number of clusters in 

the first sample. When a matching state removed from the model as the result of model 

surgery, if there exists any symbol exclusive to that matching state it is removed from 

codebook as well.  

Proposed structure can be characterized by the following: 

1) N, the number of matching states in the model; initially equals to the number of 

feature clusters in the first sequence. M, matching states, I insertion states, D 

deletion states, F flanking state. 

f = gx�, x�, … , x�, à�, à�, … , à���, Ë�, Ë�, … Ë���, ³i                        (4.38) 

2) M, the number of distinct observation symbols per state; unique feature clusters 

(UCF). (eqn. 3.35) 
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3) The state transition probability distribution 

l = @&k�k� , &k�¬� , &k�­� , &¬�k� , &¬�¬� , &¬�­� , &­�k� , &­�¬� , &­�­� , &ÒÒ , &Òk� , á,     (4.39) 

where 

&���� = >pqr2� = f	|qr = fns         f = gx, à, Ëi        1 ≤ *, a ≤ u           (4.40) 

4) The observation probability distribution in state j, % = mv	�w�o, where 

v	�w� = >pj� &F F|qr = f	s   f = gx, ài  1 ≤ a ≤ u, 1 ≤ w ≤ x           (4.41) 

5) The initial state distribution c = gcni where 

cn = >gq� = xni  1 ≤ * ≤ u                (4.42) 

 

 

 

Figure 15: A profile HMM for repeat matches to subsections of the profile model 
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4.3.2. Parameter Learning 

Viterbi Counting Algorithm is especially suitable for profile HMM structure since 

parameter learning is accordance to the best path. Moreover the Viterbi recurrence can be 

greatly simplified and expressed in terms of log odds for the case of Profile HMMs. The 

log odds formulation avoids underflow and reduces length effects. 

Viterbi Path Counting method simply counts states and transitions and estimates the model 

parameters from those total counts. Best path is found by Viterbi algorithm. Training 

sequences iteratively inserted into the model structure using Viterbi algorithm to select the 

path to be incremented. The dependence upon the initial value is minimized with this 

method. The flow of parameter learning algorithm is as follows: 

1. Set number of matching states equal to the number of symbols in the initial codebook; 

initial codebook is composed of symbols from first sequence only.  

2. Create profile HMM with parameters A,B,π. All parameters are set to small initial 

values in this work to ensure each path with limited possibility.  &ÒÒ = 1 − 
                    (4.43) &Òk� = â�                   (4.44) &k�k� = ã    &k��� = Ô, cn = ä,                 (4.45) 

(ä, ã, Ô) are small values,  ã ≫ Ô  and  f = gà, Ëi 

3. Create counter matrices and set values according to the symbol occurrences in the first 

sequence. 

4. Set current estimates l×, %,× ć to normalized values using counter matrices. 

5. Repeat 6 as many times as desired to achieve a good training. 

6. Repeat 7-11 for every observation sequence in the training set. 

7. If exists add unknown symbols to the codebook, set emission value of the new 

codebook symbol to a small value for every state. 

8. Find best path for the current observation sequence via Viterbi algorithm.  

9. Update counter matrices according to the best path; loop the best path add 1 to Ac for 

all transitions and add 1 to Bc for all emitted symbols appear in the current state. 

10. Set current estimates  l×, %,× ć  to normalized values using counter matrices. 

11. Apply model surgery if needed. 

While updating counter matrixes, and model parameters, there could be paths that are not 

visited by any of the training sequence, which are resulted zero transition and emission 

probabilities. This is not allowed in proposed structure, whenever a counter matrix element 
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becomes zero a small value is assigned to assure non-zero transition and/or emission 

probabilities.     

 

Table 1: Notations  

Notations dk�(F)  the probability of the best path matching the subsequence ��,…,r 

to the profile submodel up to the column j, ending with �r 

being emitted by state Mj. d¬�(F)  the probability of the best path in �r being emitted by state Ij. d­�(F)  the probability of the best path ending in state Dj. (�r is the last 

symbol emitted before Dj) jk�(F), j¬�(F), j­�(F)  the log-odds scores corresponding respectively to dk�(F), d¬�(F), d­�(F) 

 

 

Profile HMM Viterbi Algorithm To Find The Optimal State Path  

Initialization: jkª(0) = 0 

Recursion:  

jk�(*) = log �k�(�n) + )&�
éêë
êìjk� �(* − 1) + log &k� �k�j¬� �(* − 1) + log &¬� �k�j­� �(* − 1) + log &­� �k�jÒ(* − 1) + log &Òk�

B           (4.46) 

j¬�(*) = log �¬�(�n) + )&� °jk� �(* − 1) + log &k� �¬�j¬� �(* − 1) + log &¬� �¬�j­� �(* − 1) + log &­� �¬�
B           (4.47) 

j­�(*) = )&� °jk� �(* − 1) + log &k� �­�j¬� �(* − 1) + log &¬� �­�j­� �(* − 1) + log &­� �­�
B             (4.48) 

jÒ(*) = )&� íjk� �(* − 1) + log &k� �ÒjÒ(* − 1) + log &ÒÒ B             (4.48) 

Termination: 

Final score is jk¯Q�(+), calculated using the top recurtion relation. 

Track back the optimal state sequence. 
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Figure 16: Viterbi Count Learning procedure 
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4.3.3. Sequence Scoring and Action Recognition 

Pattern recognition with profile HMM is determining whether a new sequence contains the 

motif. Standard profile HMM forward algorithm (3.38-3.42) is applied to calculate 

probability of the observed sequence generated model P(O| λr
). Although this gives a score 

the states that generate the score must also be analyzed. Profile HMM structure has 

insertion and deletion states as explained before. However underlying motif of a human 

action is captured by matching states. If no symbols were emitted by matching states, then 

the motif is not present in the observation sequence. 

The most likely path is found by using the Viterbi algorithm; to trace the location of the 

motif corresponds to the symbols emitted by the match states.  

Each human action class is modeled by a distinct HMM (λr
). For each unknown action 

sample to be recognized, measurement of observation sequence O={O1,O2,…,OT} is carried 

out via feature selection. To recognize an action sample its final scores are calculated for all 

possible models, and the action whose final score is highest is selected as label.  

NM(λr
)=(1/N )Σ δ(Mi∈Viterbi path)     i=1,…,N              (4.49) 

Final score(λr
)=NM(λr

) P(O| λr
)                (4.50) 

r
*
=argmax[Final score(λr

)] r=1,…,R                           (4.51) 

where R is the number of learned motions. 

Proposed profile HMM structure allows subsequence recognition as well. Moreover our 

feature selection algorithm finally clusters spatio-temporal features in time domain to 

ensure temporal locality. Once the cluster boundary is reached, our algorithm generates an 

observation symbol, which forms a subsequence of observation symbols conjointly with the 

previously generated observation symbols, if any. Although observing the complete 

sequence will generate better results, it is still useful to match subsequences in order to 

achieve an early decision.  
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Figure 17: Proposed profile HMM recognition algorithm 
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CHAPTER 5 

 

RESULTS 

 

 

 

We evaluate the proposed method with two publicly available human action databases, 

namely Weizmann human action database [158] and KTH human action database [157]. 

5.1. KHT Action Dataset 

The KTH actions dataset is the most commonly used dataset in evaluating human action 

recognition. The KTH actions dataset consists of six human action classes: walking, 

jogging, running, boxing, waving, and clapping (figure 18). Each action class is performed 

several times by 25 subjects. The sequences were recorded in four different scenarios: 

outdoors, outdoors with scale variation, outdoors with different clothes and indoors. Each 

sequence is further divided into shorter “clips” for a total of 2391 sequences. We use the 

original training and test split so our results are directly comparable to the recent survey by 

Wang et al. [97]; divide the samples into test set (9 subjects: 2, 3, 5, 6, 7, 8, 9, 10, and 22) 

and training set (the remaining 16 subjects).  

5.1.1. Comparative Results 

We compare our method to the state of the art methods. The comparison of results between 

ours with others is listed in Table 3. Our confusion matrix on KTH database is given in 

figure 19. In figure 20-23 confusion matrixes of other methods can be seen. Proposed 

algorithm is achieved %96.98 average accuracy on KTH database. This is, to the best of our 

knowledge, the best performance on KTH amongst methods that uses spatio-temporal 

features. It must be also noted that for certain actions in KTH such as running vs. jogging, 

even humans have difficulties in distinguishing them.   
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Table 2: Number of sequences in KTH dataset 

Activity Number of training sequences Number of test sequences 

Boxing 254 143 

Handclapping 252 144 

Hand waving 254 144 

Jogging 256 144 

Running 256 144 

Walking 256 144 

Total 1528 863 

 

 

 

 

 

Figure 18: Samples from KHT database 
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w
alking

running

jogging

boxing

handclapping

hand w
aving

Walking 1.0 0 0 0 0 0 

Running 0 0.93 0.07 0 0 0 

Jogging 0 0.04 0.96 0 0 0 

Boxing 0 0 0 0.99 0.01 0 

Handclapping 0 0 0 0.02 0.97 0.01 

Hand waving 0 0 0 0 0.03 0.97 

 

(a) 

 

w
alking

running

jogging

boxing

handclapping

hand w
aving

Walking 144 0 0 0 0 0 

Running 0 134 10 0 0 0 

Jogging 0 6 138 0 0 0 

Boxing 0 0 0 141 2 0 

Handclapping 0 0 0 3 140 1 

Hand waving 0 0 0 0 4 140 

 

(b) 

Figure 19: Confusion matrix on KHT database a) performance, b) number of frames 
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w
alking

running

jogging

boxing

handclapping

hand w
aving

Walking 0.99 0 0 0 0 0 

Running 0.02 0.64 0.25 0.02 0.07 0.02 

Jogging 0 0.37 0.54 0 0 0 

Boxing 0 0 0 0.96 0.02 0.01 

Handclapping 0 0 0 0.01 0.97 0.03 

Hand waving 0 0 0 0 0 1 

 

(a) 

 

w
alking 

running 

jogging 

B
oxing 

handclapping 

hand w
aving 

Walking 0.99 0 0.01 0 0 0 

Running 0.03 0.81 0.14 0 0 0 

Jogging 0.05 0.17 0.78 0 0 0 

Boxing 0 0 0.02 0.97 0 0.02 

Handclapping 0 0 0 0 1.0 0 

Hand waving 0 0 0 0 0 1.0 

(b) 

 

Figure 20: Confusion matrix on KHT database a) s-LDA [146], b) MMHCRF [134] 
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w
alking

running

jogging

boxing

handclapping

hand w
aving

Walking 0.93 0.01 0.06 0 0 0 

Running 0.01 0.72 0.24 0.03 0 0 

Jogging 0.09 0.10 0.81 0 0 0.01 

Boxing 0 0 0 1.0 0 0. 

Handclapping 0 0 0 0.02 0.98 0 

Hand waving 0 0 0 0 0 1.0 

 

(a) 
 

 

w
alking 

running 

jogging 

boxing 

handclapping 

hand w
aving 

Walking 0.90 0.01 0.08 0 0 0.01 

Running 0.01 0.86 0.13 0.03 0 0 

Jogging 0.07 0.17 0.76 0 0 0.01 

Boxing 0 0 0 0.98 0.02 0. 

Handclapping 0 0 0 0.03 0.95 0.01 

Hand waving 0 0 0 0.02 0.02 0.96 

 

(b) 

 

Figure 21: Confusion matrix on KHT database a) Mid level motion features [115], b) Local 
trinary patterns [126] 
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w
alking

running

jogging

boxing

handclapping

hand w
aving

Walking 0.91 0.04 0.04 0.01 0 0.01 

Running 0.01 0.87 0.12 0.03 0 0 

Jogging 0.05 0.11 0.84 0 0 0.01 

Boxing 0.01 0.04 0 0.95 0.02 0. 

Handclapping 0 0.01 0 0.09 0.85 0.05 

Hand waving 0 0 0 0.04 0.06 0.90 

 

(a) 

 

w
alking

running

jogging

boxing

handclapping

hand w
aving

Walking 0.94 0.03 0.04 0.01 0 0 

Running 0.03 0.87 0.08 0.03 0 0 

Jogging 0.04 0.08 0.89 0 0 0 

Boxing 0.01 0 0 0.98 0 0 

Handclapping 0 0 0 0 0.98 0.02 

Hand waving 0 0 0 0 0.02 0.96 

 

(b) 

Figure 22: Confusion matrix on KHT database a) Action MACH [133], b) Feature tracking 
[121] 
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w
alking

running

jogging

boxing

handclapping

hand w
aving

Walking 0.76 0.07 0.04 0.01 0 0 

Running 0.06 0.79 0.11 0.04 0 0 

Jogging 0.12 0.15 0.73 0 0 0 

Boxing 0. 0 0 0.90 0.07 0.03 

Handclapping 0 0 0.01 0.10 0.84 0.05 

Hand waving 0 0 0 0.09 0.06 0.85 

 

(a) 

 

w
alking

running

jogging

boxing

handclapping

hand w
aving

Walking 0.97 0.01 0.02 0.01 0 0 

Running 0.04 0.90 0.06 0 0 0 

Jogging 0.08 0.04 0.88 0 0 0 

Boxing 0. 0 0 1.0 0 0 

Handclapping 0 0 0 0.03 0.96 0.01 

Hand waving 0 0 0 0.02 0 0.98 

 

(b) 

 

Figure 23: Confusion matrix on KHT database a) Boosted EigenActions [117], b) Extreme 
learning machine [58] 
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Table 3: Comparison of our results with others in the literature 

Method Accuracy 

Our method 96.98% 

Chen et al. [100] 95.8% 

Kim et al. [56]  95% 

Liu et al. [117] 94.16% 

Shindler [60] 92.7% 

Wang et al. [134] 92.51% 

Wang et al. [156]  
92.1% 

Laptev et al. [128]  91.8% 

Jhuang et al. [98] 91.7% 

Klaser et al. [104] 91.4 % 

Niebles et al.[125] 91.3% 

Ji et al. [144] 90.2% 

Yeffet et al. [126] 90.1% 

Wong et al. [101]  86.6% 

Nieble et al. [137] 83.3% 

Dollár et al. [139]  81.5% 

Schuldt et al. [116] 71.7% 

Ke et al. [109]  62.9% 
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5.2. Weizmann Action Dataset 

Weizmann contains two databases, namely classification database and robustness database. 

The Weizmann classification database is for testing action classification performance. It 

contains 93 low-resolution 180 x 144 video sequences from nine people, each performing 

10 natural actions: ‘‘run”, ‘‘walk”, ‘‘skip”, ‘‘jumping jack”, ‘‘jump forward on two legs”, 

‘‘jump in place on two legs”, ‘‘galloping sideways”, ‘‘wave one hand”, ‘‘wave two hands” 

and ‘‘bend” (figure 24). All the videos are captured from a fixed viewpoint. The Weizmann 

robustness database is for testing the robustness of an activity recognition method. The 

robustness dataset has 10 videos, which were captured in front of non-uniform 

backgrounds, with partial occlusions and non-rigid deformations. In particular, each of the 

video contains a walking person with different conditions: ‘‘normal walking”, ‘‘walking 

with a skirt”, ‘‘walking while carrying a briefcase”, ‘‘limping”, ‘‘walking while Legs 

occluded by boxes”, ‘‘walking with knees Up”, ‘walking with a dog”, ‘‘sleep walking”, 

‘‘walking while swinging a bag” and ‘‘walking when occluded by a pole” (figure 25).  

 

 

 

Figure 24: Weizmann dataset samples 
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5.2.1. Comparative Results 

Recently, several approaches reported close to perfect recognition rates on this relatively 

easy dataset. We employ the leave-one-out scheme for evaluation, by randomly taking one 

person (totally 10 actions) as the testing data, and the other eight persons for training, 

which is a common evaluation method used by other researchers as well.  

Note that existing approaches use slightly different evaluation methodologies on the data. 

Some evaluate on the whole sequences, others split sequences into multiple subparts, which 

is possible because most actions are periodic. We report here results for the full sequences, 

where our method yields perfect recognition rates that is 100%. In Table 4, we summarize 

our recognition results and compare them against other approaches. 

 

 

Table 4: Comparison of our results with others in the literature on Weizmann dataset 

Method Accuracy 

Our method 100% 

Yeffet et al. [126] 100% 

Fathi et al. [115] 100% 

Blank et al. [131] 100% 

Duygulu et al. [69] 100% 

Jhuan et al. [98] 98.8% 

Liu et al. [117] 98.3% 

Wang et al. [61] 97.8% 

Thurau et al. [118] 94.40% 

Ali et al. [59] 92.6% 

Dollar et al. [139] 86.7% 

Niebles et al. [129] 72.8% 

 

 

 



85 
 

5.2.2. Robustness test 

In this experiment, we demonstrate the robustness of our proposed method using 

Weizmann robustness testing dataset. This data set includes 10 different scenarios of 

“walk” activity: normal walk, walking in a skirt, carrying a briefcase, limping man, 

occluded legs, knees up, walking with a dog, sleep walking, swinging a bag, occluded by a 

pole (figure 25). Our method achieves perfect recognition rate (%100) on this database as 

well as other reported methods in the literature:  [57] %100, [131] 100% [117] 100%. 

Although this result shows that our algorithm applicable on the occluded cases, number of 

test samples is not enough for a proper performance evaluation. 

 
 
 
  

 
 
 

 
 
 

Figure 25: Samples from the robustness test set of the Weizmann dataset. 

 

 

5.3. Discussion 

Activity recognition accuracy of the proposed method is compared to the other methods on 

both KTH (table 3) and Weizmann datasets (table 4). 

To further analyze evaluation results it is required to look closer to the previous approaches. 

Instead of giving a detailed explanation of the methods, here only the key points of the 

algorithms that affect their performances are reviewed.   

It is seen that recent methods mostly focused on spatio-temporal representation of the 

activities. Although “bag of features” based approaches reports better results compared to 

the early activity recognition algorithms, such as silhouette based approaches or direct 

temporal quantization based approaches, their discriminative power over different activity 

classes still appear to have a limit of %80-%90 accuracy. Histogram of gradients and 

histogram of flow are the two commonly used feature descriptors of successful spatio 
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temporal representations. Methods mostly differ according to their interest point detectors. 

Locations with high variation such as spatial and/or temporal corners, corners of motion are 

found as successful interest point locations [139, 101, 128, 98, 125, 156].    

Main drawback of the “bag of features” representation is their holistic approach; lack 

information about the relations between features. Especially on relatively simple Weizmann 

dataset inefficiency of such holistic approaches became clear. Since “bag of features” 

representation does not consider temporal ordering different activities result in similar 

patterns.  

Methods based on temporal segmentation of the motion, “bag of words” representation, 

report intermediate performances [156, 128]. On the other hand the best results previously 

reported on the KTH dataset are based on the recent approaches which are also focused on 

capturing global structure of activities. Although those methods still depend on gradient 

and/or optical flow based descriptors, their activity representation utilizes relations between 

spatio-temporal features. In [100] Chen et al. constructs video codebook by k-means 

algorithm and use bigram to capture sequence information based on cooccurances of 

adjacent words. Kim et al. [56] inspect joint space-time linear relationships of two video 

volumes.  

Liu et al. [117] segment human action to primitive periodic motion cycles, and represent 

each segment as action units by applying PCA. In their work corners of the motion is 

detected and the video segment between those corners are modeled, in contrast in our work 

motion corners are detected and used to model the activity.  

Wang et al. [156] proposed a global motion feature for the entire frame and a set of salient 

patches to represent local motion patterns. The hidden part of their Maximum Margin 

Hidden Conditional Random Field (MMHCRF) model assigns a “part label” to a local 

patch. Relations between features are through an undirected graph.   

Although performance gain provided by temporal ordering of the spatio temporal features, 

have captured researchers attention, instead of modeling the temporally ordered data, 

studies are focused on extracting additional features by evaluating temporal relations, then 

recognition is done using SVM based classification, nearest neighbor classification, voting 

or even direct similarity calculation. Sequence alignment is considered in [100], however 

results were reported manually aligned sequences.  
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Number of interest points/feature vectors also appears to have an important impact over 

classification accuracy. For a successful spatio-temporal representation authors conclude 

that “sufficient” number of interest points must be selected, both more and less interest 

points reduces performance. While [56] and [117] employs AdaBoost algorithm for feature 

selection, in [100] randomly sampled %1 of interest points are used. Heuristic limitation of 

the number of interest points in a range is also a common method.  

Proposed method achieved the best accuracy on both datasets due to the following 

attributes: 

• Proposed unified local spatio-temporal description provides better representation, 

instead of treating spatial and temporal domain separately. 

• Proposed feature selection algorithm successfully captures distinctive features of 

each activity class and maintains a compact representation. 

• Proposed structural modeling of temporally ordered data yields effective and 

flexible classification of activities. 

• Proposed method automatically generates action specific representation without 

domain specific constraints. 
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CHAPTER 6  

 

CONCLUSIONS  

 

 

 

In this work a novel spatio-temporal activity representation based on 3D Gabor filters is 

proposed. 3D Gabor filters are inspired from the human visual system; they give high 

responses at spatio-temporal locations with high variation at different scales and 

orientation. Spatio-temporal features which includes both local shape and dynamics 

information is assigned as the primitives of the global motion pattern of the activity. 

Feature selection applied to locate the spatio-temporal texture primitives in both spatial and 

temporal domains.  

Proposed feature selection algorithm not only eliminates redundancy but also segments 

sequence by clustering features on time domain. Filtered features of successive frames are 

combined by a genetic algorithm, Genetic Chromodynamics, to obtain an elite set of 

representative local features. Genetic Chromodynamics algorithm was proposed as a 

multimodal optimization tool [91]. In this work Genetic Chromodynamics is used as a 

framework for feature clustering and adopted to spatio-temporal domain. While cross over 

ensures to combine features from different frames in a local temporal region without 

redundancy, mutation is used as a feature elimination tool. State-space representation of 

each sequence is achieved automatically, without any constraints on number of states or 

predetermined features. Number of states and number of feature vectors of each state are 

not fixed.  

While modeling the activity with these spatio-temporal features, their temporal ordering is 

also considered as additional discriminative information between different classes of 

activities. Common pattern of each activity class is learned with a Profile HMM, which is 

originally proposed by Durbin et al. [96] to align protein sequences in molecular biology. 

Profile HMM provides flexibility to extract the underlying common pattern of each activity 

class by dynamically enhancing the HMM structure with new sample sequences of different 

length. One of the important contributions of this work is the incremental learning of the 
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codebook as well as the underlying structure at the training stage of the Profile HMM. 

Profile HMM model is automatically specialized to each activity class. Proposed Profile 

HMM structure is also capable of sequence aligning.  

In general activity recognition problem, beginning and ending points of the activity in an 

observed sequence are not labeled. This is one of the main challenges of the activity 

recognition schemes. Proposed structure enables to recognize sub-sequences and does not 

require end point constrains. This also provides robustness to the missing data and 

occlusions.     

Proposed method is not domain specific and can be applied to wide range of activities. 

Moreover our method can also be applied to concatenated activities.  

Experimental results show that the proposed algorithm achieved the best result on KHT 

dataset, among the methods in the literature. The main reason is better representation of the 

local discriminative primitives of the activity; proposed spatio-temporal descriptor has an 

important effect on accuracy. Moreover in this work locality of the spatio-temporal features 

is not only considered in spatial domain but in the temporal domain as well. Instead of 

considering the activity as a whole, temporal occurrence pattern of its spatio-temporal 

features is analyzed by Profile HMM. This leads to better modeling and recognition 

performance. 

Weizmann dataset is a relatively easy dataset. Our method achieved 100% correct 

recognition rate on Weizmann dataset. There are also some altered samples of walking 

action included in the Weizmann dataset as robustness dataset. Our method again achieved 

100% correct recognition rate on robustness dataset, however number of test samples is 

very low and this result shows the applicability of the proposed method to such altered 

cases, rather than a performance result.  

As a future work proposed algorithm should be evaluated on different domains of actions. 

Sports videos are the popular application area of activity recognition algorithms; the main 

purpose is the video annotation. Activity recognition on sports video can also be used for 

athletic training. Tennis videos include well defined, highly structured player activities. 

Proposed algorithm will be evaluated to recognize tennis player activities. Our purpose will 

be both video annotation and statistical analysis of the game for player training. Since in a 

tennis video there are several successive activities, performance results to recognize 

concatenated activities can also be evaluated.  
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Today GPUs, which became a common PC component, provide a great low cost hardware 

tool to faster implementation of time consuming computer vision algorithms. Another 

future work could be the GPU implementation of the algorithm at least 3D Gabor filtering 

phase to achieve real time performance.  
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