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Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Zafer Nurlu
Head of Department, Mathematics

Prof. Dr. Bülent Karasözen
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ABSTRACT

SPACE-TIME DISCRETIZATION OF OPTIMAL CONTROL OF BURGERS EQUATION
USING BOTH DISCRETIZE-THEN-OPTIMIZE AND OPTIMIZE-THEN-DISCRETIZE

APPROACHES

YILMAZ, FİKRİYE NURAY

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Bülent Karasözen

June 2011, 113 pages

Optimal control of PDEs has a crucial place in many parts of sciences and industry. Over the

last decade, there have been a great deal in, especially, control problems of elliptic problems.

Optimal control problems of Burgers equation that is as a simplifed model for turbulence

and in shock waves were recently investigated both theoretically and numerically. In this

thesis, we analyze the space-time simultaneous discretization of control problem for Burg-

ers equation. In literature, there have been two approaches for discretization of optimization

problems: optimize-then-discretize and discretize-then-optimize. In the first part, we follow

optimize-then-discretize appoproach. It is shown that both distributed and boundary time de-

pendent control problem can be transformed into an elliptic pde. Numerical results obtained

with adaptive and non-adaptive elliptic solvers of COMSOL Multiphysics are presented for

both the unconstrained and the control constrained cases. As for second part, we consider

discretize-then-optimize approach. Discrete adjoint concept is covered. Optimality condi-

tions, KKT-system, lead to a saadle point problem. We investigate the numerical treatment

for the obtained saddle point system. Both direct solvers and iterative methods are consid-
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ered. For iterative mehods, preconditioners are needed. The structures of preconditioners for

both distributed and boundary control problems are covered. Additionally, an a priori error

analysis for the distributed control problem is given. We present the numerical results at the

end of each chapter.

Keywords: Optimal control, Burgers equation, COMSOL, all-at-once method
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ÖZ

AYRIKLAŞTIRDIKTAN SONRA EN İYİLEŞTİRMEK VE EN İYİLEŞTİRDİKTEN
SONRA AYRIKLAŞTIRMAK YÖNTEMLERİ KULLANILARAK, BURGERS

DENKLEMLERİNİN OPTİMAL KONTROL PROBLEMLERİNİN UZAY-ZAMAN
EŞZAMANLI AYRIKLAŞTIRILMASI

YILMAZ, FİKRİYE NURAY

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Haziran 2011, 113 sayfa

Bilim ve endüstrinin birçok dalında kısmi türevli denklemlerin en iyilemeli kontrol prob-

lemleri önemli bir yere sahiptir. Süregelen çalışmaların önemli bir kısmı eliptik denklem-

lerin kontrol problemine yöneliktir. Türbülans ve şok dalgalarının basit bir denklemi olarak

Burgers denklemlerinin kontrol teorisi üzerine de son yıllarda hem teorik hem de nümeriksel

çalışmalar yapılmıştır. Bu tezde, Burgers denklemlerinin kontrol problemlerinin uzay-zaman

eşzamanlı ayrıklaştırması üzerinde odaklanmaktadır. Optimizasyon problemlerinde genelde

iki farklı yaklaşım takip edilmektedir: en iyileştirdikten sonra ayrıklaştırma ve ayrıklaştırdıktan

sonra en iyileştirme. Hem dağıtılan hem de sınır kontrollü zamana bağlı en iyilemeli kon-

trol problemin eliptik bir probleme dönüşebildiği gösterilmiştir. Tezin ilk bölümünde, COM-

SOL paket programı kullanılarak hem kısıtlamasız hem de kontrol kısıtlamalı problemler için

sayısal sonuçlar elde edildi. İkinci kısımda, ayrıklaştırdıktan sonra en iyileştirme yaklaşımı

izlendi. Ayrık adjoint kavramı üzerinde duruldu. En iyileme koşulları, Karush-Kuhn-Tucker

sistemi, bir semer nokta problemi oluşturdu. Elde edilen sistem için uygun sayısal yöntem

araştırıldı. Hem doğrudan çözen metotlar hem de yinelemeli yöntemler incelenmiştir.
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CHAPTER 1

INTRODUCTION

Optimal control theory has been an important field of applied mathematics. It is a mathe-

matical optimization technique usually used to create control policies. The optimal control

consists of a set of equations describing the paths of the variables that take the cost functional

to a minimum. The cost functional is basically a function of variables related to state and

control. Optimal control has found applications in numerous field including process control,

robotics, bioengineering, economics, finance, etc.. The set of equation in a control prob-

lem may be an ordinary or partial differential equations. In many cases, the modeling of the

problems by an ordinary differential equation are not adequate. Fluid flows, electromagnetic

waves, diffusion and many other physical quantities can be modeled by partial differential

equations(PDE).

There have been many researches related optimal control of PDE’s. The optimal control of

heating process, two phase problems and fluid flows were discussed in [58]. The control the-

ory of linear and semi-linear partial differential equations are covered in that work. Necessary

functional analysis and first-second order optimality conditions are derived. The work [21]

provides a modern introduction to optimal control of PDE’s. Beside a deep coverage for func-

tional analysis and optimal control theory for some certain problems, it gives an introduction

to discrete concepts in control problems.

An optimal control problem is called a constrained problem if the state or control variable is

bounded. It is said to be control constrained and state constrained problem if control vari-

able and state variable are bounded, respectively. The problem is said to be unconstrained
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if there does not exist any bounds for the variables. For the unconstrained problem, it is

standard to find necessary optimality conditions. Sufficient conditions are investigated for

control constrained problem by Bonnans [5], Casas, Unger and Tröltzsch [7], Goldberg and

Tröltzsch [14]. For the state constrained problems sufficient optimality conditions are con-

sidered in Casas, Tröltzsch and Unger [9], Raymond and Tröltzsch [46], Casas and Mateos

[8], Casas, De los Reyes and Tröltzsch [10]. We refer to Bergounioux, Ito and Kunisch [3] or

Bergounioux and Kunisch [4] for associated numerical methods.

Many of the works consist of optimal control of elliptic problems. There have been some

researches concerning control of parabolic problems [1, 16, 30, 31, 32, 41]. However, the op-

timal control of nonlinear equations has a more recent history [60, 61, 62]. Also, there have

been some works related control problem of Navier-Stokes equations as [15, 19, 51, 63].

Burgers equation plays an important role in fluid dynamics as a first approximation to com-

plex diffusion convection phenomena. It was used as a simplified model for turbulence and in

shock waves. Analysis and numerical approximation of optimal control problems for Burgers

equation are important for the development of numerical methods for optimal control of more

complicated models in fluid dynamics like Navier-Stokes equations.

Recently, several papers appeared dealing with the optimal control of the Burgers equation.

A detailed analysis of distributed and boundary control of stationary and unsteady Burgers

equation and the approximation of the optimality system with augmented Lagrangian SQP

(sequential quadratic programming) method are given in [66]. In [50], the SQP, primal-dual

active set and semi-smooth Newton methods are compared for the distributed control prob-

lems related with the stationary Burgers equation with pointwise control constraints. Dis-

tributed control problems for the unsteady Burgers equation with and without control con-

straints are investigated numerically using SQP methods in [20, 57, 68]. Different time in-

tegration methods like the implicit Euler and Crank-Nicholson methods were considered for

solving the adjoint equations arising from the optimal control of the unsteady Burger equation

in [36]. In contrast to linear parabolic control problems, the optimal control problem for the

Burgers equation is a non-convex problem with multiple local minima due to the nonlinearity
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of the differential equation. Numerical methods can only compute minima close to the start-

ing points [57].

For the discretization of the optimal control problems there are two different approaches:

optimize-then-discretize and discretize-then-optimize. In the optimize-then-discretize approach,

first the necessary optimality conditions are established on the continuous level consisting of

the state, adjoint and the optimality equations, and then these equations are discretized usu-

ally by finite elements. The optimality system consists of the state and adjoint equations as

coupled by an algebraic equation. Usually, this system is integrated iteratively forward and

backward in time by gradient based algorithms. It is known that this requires storage of data

containing the state and adjoint variables computed at discrete time point, which would be in-

feasible for two and three dimensional problems. Another approach which appeared recently

in the literature is to solve both equations at once as systems of coupled elliptic equation in

space and time. The transformation of the optimality system into an elliptic PDE for lin-

ear parabolic optimal control problems with pointwise control constraints was considered in

[37, 38, 39, 40]. This approach treats the coupled optimality system in the whole space-

time cylinder, where the time variable was interpreted as additional space variable. It is also

known as one-shot approach. As for numerical solutions a specialized FEM package, called

COMSOL multiphysics, was used. The simulation and modeling package COMSOL allows

an easy way to define, discretize and solve stationary and time-dependent partial differential

equations. For a simple linear parabolic equation, Neitzel, Prüfert and Slawig successfully

used this package to get numerical results. We refer to [38] for a detailed COMSOL scripts.

The advantages of COMSOL Multiphysics in adaptive and non adaptive solvers, discretiza-

tions, and post processing strategies were used in their works. The one-shot approach with

space-time discretization was applied to the distributed optimal control problem with the un-

steady Burgers equation in [71].

In the discretize-then-optimize approach the state equation is discretized and then the opti-

mality system for the finite dimensional optimization problem is derived. Treating the control

and state as independent of optimization variables the discrete optimality conditions yield a

3



system


E LT

L 0


︸       ︷︷       ︸

A

x = b.

This system is usually is a kind of saddle point problem, whereA is symmetric and has sparse

structure. This kind of system usually requires preconditioning. There have been many works

concerning block iterative solutions of Ax = b [12, 33, 34, 35]. Recently, Wathen, Stoll and

Rees have made many researches related to all-at-once preconditioning of linear control prob-

lems [47, 48, 49, 52, 53]. The structure of the control constrained problems are covered. They

showed how to handle control constraints. Different preconditioning methods were covered.

Especially elliptic problems were worked since it is easy to implement without having mem-

ory problems. However, considering parabolic problems if every time step is considered in a

block matrix then the system Ax = b is obtained. This is done for heat equation in [34, 52].

For the non linear control problems it is not as easy as in the linear case. In [2], control prob-

lem of steady Navier-Stokes equation was considered. In every linearization step, an Oseen

problem was solved. But a detailed implementation was not given.

In this work, we consider the all-at-once type solutions of unsteady control problems for Burg-

ers equation by using both optimize-then-discretize and discretize-then-optimize approaches.

We first cover some related functional analytical results and provide a discussion for the exis-

tence and uniqueness results of the Burgers equation. Then, we can consider this work in two

main parts:

In the first part of the thesis, we use optimize-then-discretize approach to solve control prob-

lem. We transform the parabolic problem into an elliptic problem by linearizing the state equa-

tion. We cover both distributed and boundary control problems. We use different linearization

techniques for the distributed and boundary control problems. We show the existence of the

solutions to transformed elliptic equation in both distributed and boundary control problems.

Both unconstrained and control constrained problems are considered. For implementation of

the control constraints projection method is used. After obtaining elliptic problem, we use

COMSOL Multiphysics for numerical solutions. We discuss the mesh independence issue

and verify in the numerical results.

For the second part we focus on discretize-then-optimize approach. We provide a detailed dis-

4



cussion for finite element discretization and time approximations. In order to have a symmet-

ric saddle point problem, we apply Crank-Nicolson time approximation to linearized problem

and semi-implicit time scheme to nonlinear control problem. Both distributed and boundary

control problems are covered. We use active set algorithm to handle control constraints. Af-

ter obtaining the saddle point system, we use both direct solver and an iterative solver for

implementation. Moreover, we provide an a priori error analysis for the distributed control

problem. We check the order of convergence in the numerical treatment part.
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CHAPTER 2

PRELIMINARY RESULTS

In this chapter, we cover some functional analysis preliminaries with basic theoretical results.

Then we give the existence and uniqueness results for the control problem of Burgers equa-

tion. Moreover we discuss some known methods for the optimization problem such as: the

gradient method and the active set strategy.

2.1 Functional Analysis Preliminaries

We now introduce the function spaces that we shall use in our work. We use the same notations

as [44].

2.1.1 Lp spaces

Let Ω be an open set contained in Rd, d ≥ 1. For 1 ≤ p < ∞, consider the set of measurable

functions w such that

∫

Ω

|w(x)|pdx < ∞

and, when p = ∞,

sup{|w(x)| | x ∈ Ω}.

These spaces are denoted by Lp(Ω) with the associated norm being
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‖w‖Lp(Ω) :=
( ∫

Ω

|w(x)|pdx
)1/p

, 1 ≤ p < ∞,

and, when p = ∞,

‖w‖L∞(Ω) := sup
{|w(x)| | x ∈ Ω

}
.

The Hölder inequality.

If 1 ≤ p < ∞, the dual space of Lp(Ω) is given by Lp′(Ω), with (1/p) + (1/p′) = 1. The

following inequality holds

∣∣∣∣∣
∫

Ω

w(x)v(x)dx
∣∣∣∣∣ ≤ ‖w‖Lp(Ω)‖v‖Lp′ (Ω).

For p = 2, the Hölder inequality is called as Cauchy-Schwarz inequality.

2.1.2 Sobolev spaces

The classical Sobolev space Wk,p(Ω), k is non-negative integer and 1 ≤ p ≤ ∞, on a domain

Ω ⊂ Rd is defined as

Wk,p(Ω) :=
{
w ∈ Lp(Ω)| Dσw ∈ Lp(Ω) for each

non-negative multi-index σ such that |σ| ≤ k
}

with the norm

‖w‖k,p,Ω :=
( ∑

|σ|≤k

∥∥∥Dσw
∥∥∥p

Lp(Ω)

)1/p
.

For the case p = 2 we write Hk(Ω) = Wk,2(Ω). We denote the subspace of H1(Ω) vanishing

on ∂Ω as H1
0(Ω). The space H1(Ω) is associated with the following norm:
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‖w‖1 :=
√
‖w‖2 + ‖∇w‖2.

Similarly, we can consider the time dependent case. We introduce Q = (0, T ) ×Ω and

Lq(0, T ; Wk,p(Ω)) :=
{
w : (0, T )→ Wk,p(Ω)| w is measurable

and satisfies
∫ T

0
‖w(t)‖qk,p,Ωdt < ∞

}

for 1 ≤ q < ∞ with the norm

‖w(t)‖Lq(0,T ;Wk,p(Ω)) :=
( ∫ T

0
‖w(t)‖qk,p,Ωdt

)1/q
.

For a Banach space V , the space H1(0, T ; V) can be defined as

H1(0, T ; V) :=
{
w ∈ L2(0,T ; V)| ∂w

∂t
∈ L2(0, T ; V)

}
.

2.1.3 Some inequalities

In this part, we recall some inequalities that we shall use in the following chapters.

Young’s inequality.

Let a, b ∈ [0,∞) and ε > 0. Then, we have

ab ≤ 1
ε p

ap

p
+ εq bq

q
, where 1 < p < ∞ and

1
p

+
1
q

= 1.

Poincaré-Friedrichs inequality.

There exists a constant C(|Omega) > 0 such that

‖w‖ ≤ C‖∇w‖ ∀ w ∈ Ω.
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Gronwall lemma [44].

Let w ∈ L1(t0,T ) be a non-negative function, f and g be continuous functions in [t0,T ]. If g

satisfies

g(t) ≤ f (t) +

∫ t

t0
w(τ)g(τ)dτ ∀t ∈ [t0, T ],

then,

g(t) ≤ f (t) +

∫ t

t0
w(s) f (s) exp

( ∫ t

s
w(τ)dτ

)
, ∀t ∈ [t0, T ].

If g is non-decreasing, then,

g(t) ≤ f (t) exp
( ∫ t

t0
w(τ)dτ

)
, ∀t ∈ [t0,T ].

Discrete Gronwall lemma [44].

Let kn be a non-negative sequence, f and the sequence pn satisfies


f0 ≤ g0

fn ≤ g0 +
∑n−1

s0
ps +

∑n−1
s0

ks fs, n ≥ 1,

then, fn satisfies


f1 ≤ g0(1 + k0) + p0

fn ≤ g0
∏n−1

s=0(1 + ks) +
∑n−2

s0
ps

∏n−1
τ=s+1(1 + kτ) + pn−1, n ≥ 2,

if for n ≥ 0 with g0 ≥ 0 and pn ≥ 0 it follows

fn ≤
(
g0 +

n−1∑

s0

ps

)
exp

( n−1∑

s0

ks

)
.

2.2 Unconstrained optimal control of unsteady Burgers equation

We first summarize the existence and uniqueness of solutions of the unsteady Burgers equa-

tion following [57, 67, 70]. Then, we discuss both the distributed and boundary control prob-
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lems. After deriving optimality conditions, we obtain the optimality system.

2.2.1 Distributed control

Given Ω = (0, 1) and T > 0, we define Q = (0, T ) × Ω and Σ = (0,T ) × ∂Ω. Let H = L2(Ω)

and V = H1
0(Ω) be Hilbert spaces. We make use of the following Hilbert space:

W(0,T ) =
{
ϕ ∈ L2(0, T ; V);ϕt ∈ L2(0, T ); V∗)

}
,

where V∗ denotes the dual space of V . The inner product in the Hilbert space V is given with

the natural inner product in H as

(ϕ, ψ)V = (ϕ′, ψ′)H , for ϕ, ψ ∈ V.

The expression ϕ(t) stands for ϕ(t, ·), considered as function in Ω only when t is fixed.

We consider the unsteady viscous Burgers equation

yt + yyx − νyxx = f + bu in Q (2.1)

with homogenous Dirichlet boundary conditions

y(t, 0) = 0 on Σ,

and with the initial condition

y(0) = y0 in Ω,

where f ∈ L2(Q) is a fixed forcing term, ν = 1
Re > 0 denotes the viscosity parameter and Re is

the Reynolds number. The location and intensity of the controls u ∈ L2(Q) are expressed by

the function b ∈ L∞(Q). For example b might be chosen as

bu =


u in Ω̃,

0 in Ω\Ω̃,

where Ω̃ is the set of active controls [50, 57, 66].

For the unsteady Burgers equation (2.1) with the corresponding initial and boundary condi-

tions there exists a weak solution y ∈ W(0, T ) satisfying

< yt(t), ϕ >V∗,V +ν(yt(t), ϕ)V + (y(t)yx(t), ϕ)H = (( f + bu)(t), ϕ)H
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for all ϕ ∈ V, and t ∈ [0,T ], and (y(0), χ)H = (y0, χ) for all χ ∈ H [57].

The distributed control problem for Burgers equation without inequality constraints and with

homogeneous Dirichlet boundary conditions can be stated as follows [66]:

min J(y, u) =
1
2
‖y − yd‖2Q +

α

2
‖u‖2Q (P1)

subject to yt − νyxx + yyx = f + bu in Q,

y = 0 on Σ,

y(0) = y0 in Ω,

(2.2)

with the regularization parameter α > 0. Here, y and u denote the state and control variables,

yd is the desired state.

In order to show the existence of the optimal solutions, the operator e : X → Y (see [67], p.

130) was introduced by

e(y, u) = (e1(y, u), e2(y, u)) = (yt − νyxx + yyx − f − bu, y(0) − y0),

where X = W(V) × L2(Ω̄) and Y = L2(V) × H identified with Y∗ = L2(V∗) × H the dual of Y .

Then, the optimal control system above can be interpreted as a minimization problem with

equality constraints

minimize J(y, u), such that e(y, u) = 0.

Let (y∗, u∗) be an optimal solution. It was proved that there exist Lagrange multipliers p∗ and

λ∗ satisfying the first-order necessary optimality conditions [20, 66, 67]

L′(y∗, u∗, p∗, λ∗) = 0, e(y∗, u∗) = 0

with the Lagrangian

L(y, u, p, λ) = J(y, u) − (e1(y, u), p)L2(V∗),L2(V) − (e2(y, u), λ)H .

First-order optimality conditions lead to the following optimality system:

y∗t − νy∗xx + y∗y∗x = f + bu∗ in Q,

y∗(t, 0) = y∗(t, 1) = 0 on Σ,

y∗(0) = y0 in Ω,

(2.3)
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p∗t + νp∗xx + y∗p∗x = yd − y∗ in Q,

p∗(t, 0) = p∗(t, 1) = 0 on Σ,

p∗(T ) = 0 in Ω,

(2.4)

with the gradient condition

αu∗ + p∗ = 0.

Here, u∗ is the optimal control and y∗ denotes the associated optimal state, p∗ is the adjoint

state.

The adjoint equation (2.4) can be transformed by the time transformation τ = T − t into an

initial-boundary value problem

−p∗τ + y∗p∗x + νp∗xx = ỹd − ỹ∗ in Q,

p∗(τ, 0) = p∗(τ, 1) = 0 on Σ,

p∗(τ = 0) = 0 in Ω,

where ỹ∗(τ, x) = y∗(T − t, x).

There are different approaches in order to solve the optimality system (2.3) and (2.4): inte-

grating the state equation (2.3) forward in time and the adjoint equation (2.4) backward in

time by an iterative method, and solving the whole optimality system as an elliptic pde by

taking time as an additional space variable.

2.2.2 Boundary control

We consider the unsteady Burgers equation with Robin boundary conditions

yt + yyx − νyxx = f in Q (2.5)

with Robin boundary conditions

yt + yyx − νyxx = f in Q,

νyx(·, 0) + σ0y(·, 0) = u in (0,T ),

νyx(·, 1) + σ1y(·, 1) = v in (0, T ),
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y(0, ·) = y0 in Ω,

with σ0, σ1 ∈ L∞(0,T ) and f ∈ L2(Q), y0 ∈ L2(Ω) is the forcing function, and u, v ∈
L2(0,T ).

Special cases of the optimal control problems for the Burgers equation were considered for

the Neumann boundary conditions (σ0 = σ1 = 0) in [36] and the Dirichlet boundary condi-

tions y(·, 0) = u, y(·, 1) = v in [24, 45].

The results about the existence and uniqueness of the unsteady Burgers equation (2.5) are

summarized below [68].

Let H = L2(Ω) be a Hilbert space, then we make use of the following Hilbert space

W(0, T ) =
{
ϕ ∈ L2(0,T ; H1(Ω));ϕt ∈ L2(0,T ); H1(Ω)∗

}
,

where H1(Ω)∗ denotes the dual space of H1(Ω). The expression ϕ(t) stands for ϕ(t, ·), consid-

ered as function in Ω only when t is fixed.

There exists a weak solution y ∈ W(0,T ) of the state equation (3.11) satisfying (Theorem 2.2,

[70])

< yt(t), ϕ >H1(Ω)∗,H1(Ω) +σ1(t)y(t, 1)ϕ(1) − σ0(t)y(t, 0)ϕ(0) +

∫

Ω

νyx(t)ϕ
′
+ y(t)yx(t)ϕdx

=

∫

Ω

f (t)ϕdx + v(t)ϕ(1) − u(t)ϕ(0)

for all ϕ ∈ H1(Ω), t ∈ [0, T ], and y(0) = y0 in L2(Ω), where < ·, · >H1(Ω)∗,H1(Ω) denotes the

dual pair associated with H1(Ω) and its dual.

We consider the following optimal control problem for the unsteady Burgers equation with

Robin boundary conditions [70]

min J(y, u, v) =
1
2

∫

Q
(y − yd)2dx +

1
2

∫ T

0
βu |u|2 + βv |v|2 dt (Pb1)
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subject to

yt + yyx − νyxx = f in Q,

νyx(·, 0) + σ0y(·, 0) = u in (0, T ),

νyx(·, 1) + σ1y(·, 1) = v in (0, T ),

y(0, ·) = y0 in Ω.

(2.6)

The first order optimality conditions for the optimal control problem (Pb1) given in [70] are

summarized below.

Abstract formulation of the control problem (Pb1) is given by introducing the Hilbert spaces

X = W(0,T ) × L2(0, T ) × L2(0,T ), Y = L2(0,T ; H1(Ω)) × L2(Ω)).

Let ẽ : X → L2(0,T ; H1(Ω)∗) be defined by

〈ẽ(y, u, v), p〉L2(0,T ;H1(Ω)∗),L2(0,T ;H1(Ω)) =

∫ T

0
〈yt(t), p(t)〉H1(Ω)∗,H1(Ω) dt+

∫ T

0

∫

Ω

νyx px + (yyx − f )pdxdt +

∫ T

0
(σ1y(·, 1) − v)p(·, 1) + (u − σ0y(·, 0))p(·, 0)dt

for p ∈ L2(0,T ; H1(Ω)). We set e : X → Y, (y, u, v) 7→ (N ẽ(y, u, v), y(0) − y0) where N :

H1(Ω)∗ → H1(Ω) is the Neumann solution operator, that is for g ∈ H1(Ω)∗ the function

w = Ng solves
∫

Ω

(wxϕx + wϕ)dx = 〈g, ϕ〉H1(Ω)∗,H1(Ω) for all ϕ ∈ H1(Ω).

There exists at least one globally optimal solution z∗ = (y∗, u∗, v∗) of (1-3) (Theorem 2.6,

[70]).

We introduce now the Lagrangian functional L to obtain the optimality conditions as

L(y, u, v, p) = J(y, u, v) −
∫ T

0
〈y(t), p(t)〉H1(Ω)∗,H1(Ω) dt

−
∫ T

0

∫

Ω

(νyx px + yyx − f )pdxdt −
∫ T

0
(σ1y(·, 1) − v)p(·, 1) + (u − σ0y(·, 0))p(·, 0)dt.

For each p ∈ W(0,T ) the Lagrangian is twice continuously Fréchet-differentiable with respect

to z = (y, u, v) ∈ X and its second derivative is Lipschitz continuous. The first order optimality

conditions are obtained by the taking the partial derivatives of the Lagrangian with respect to

the state variable y, to the adjoint variable p and to the control variables u and v.
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Let z∗ = (y∗, u∗, v∗) be a local solution to control constrained problem (Pb1). Then there exist

p∗ ∈ W(0,T ) × L2(Ω) satisfying

p∗t + νp∗xx + p∗p∗x = yd − y∗ in Q,

νp∗x(t, 0) + (y∗(t, 0) + σ0)p∗(t, 0) = 0 in (0,T ),

νp∗x(t, 1) + (y∗(t, 1) + σ1)p∗(t, 1) = 0 in (0,T ), (2.7)

p∗(T ) = 0,

with the gradient equations

p∗(·, 0) + βuu∗ = 0, (2.8)

−p∗(·, 1) + βvv∗ = 0. (2.9)

We note that the optimal control problem (Pb1) is a non-convex optimization problem, so

that different local minima might occur. We do not consider the global solutions of (Pb1),

numerical methods considered in the next sections can find a local minimum close to its

starting value.

2.3 Constrained optimal control problem of Burgers equation

2.3.1 Distributed control

We consider now distributed optimal control problem with pointwise bilateral control con-

straints [57]

min J(y, u) =
1
2
‖y − z‖2Q +

α

2
‖u‖2Q (P2)

subject to yt + yyx − νyxx = f + bu in Q,

y = 0 in Σ,

y(, ·) = y0 in Ω,

ua(t, x) ≤ u(t, x) ≤ ub(t, x) in Q.

First-order necessary conditions for the optimality system of the local solution (y∗, u∗) have to

be satisfied with the adjoint variable p∗ in form of the optimality system including the control
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constraints u∗ ∈ Uad = {u ∈ L2(Q) : ua(t, x) ≤ u(t, x) ≤ ub(t, x)}. Because of the pointwise

constraints, additionally we have the variational inequality [57]
∫

Q
(αu∗ + bp∗)(u − u∗)dxdt ≥ 0 for all u ∈ Uad. (2.10)

The last inequality can be expressed in the form of a projection [57]:

u∗(t, x) = P[ua(t,x),ub(t,x)]

(−b(t, x)
α

p∗(t, x)
)
.

First order optimality conditions for the control constrained Burgers equation are stated as

follows [57]:

yt − νyxx + yyx = f + bu in Q,

y(t, 0) = y(t, 1) = 0 on Σ,

y(0) = y0 in Ω,

(2.11)

pt + νpxx + ypx = yd − y in Q,

p(t, 0) = p(t, 1) = 0 on Σ,

p(T ) = 0 in Ω,

(2.12)

with the gradient condition

αu + p + µb − µa = 0.

and complementary slackness conditions

(µa, ua − u)L2(Q) = 0 , u ≥ ua µa ≥ 0 a.e. in Q,

(µb, u − ub)L2(Q) = 0 , u ≤ ub µb ≥ 0 a.e. in Q.
(2.13)

In [50], different solution algorithms like primal dual-SQP, SQP-primal dual methods and

semi smooth Newton method are applied and compared for solving the optimality system of

the steady Burgers equation with control constraints.

2.3.2 Boundary control

Since the control constraints are present, then

(u, v) ∈ Uad × Vad ⊂ L2(0, T ) × L2(0,T ). (2.14)

The sets of admissible controls are given by

Uad = {u ∈ L∞(0, T ) : ua ≤ u ≤ ub, a.e. in (0, T )},
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Vad = {v ∈ L∞(0, T ) : va ≤ v ≤ vb, a.e. in (0,T )},

with ua, ub, va, vb ∈ L∞(0,T ) and ua ≤ ub and va ≤ vb almost everywhere (a.e.) in Q,

and the subset Kad is defined as

∅ , Kad = W(0,T ) × Uad × Vad ⊂ X.

Now the optimal control problem can be written as equality constrained optimization problem:

min J(x) subject to x ∈ Kad and e(x) = 0. (Pb2)

Let z∗ = (y∗, u∗, v∗) ∈ Kad be a local solution to control constrained problem (Pb2). Then,

there exist p∗ ∈ W(0,T ) × L2(Ω) and (µ, ξ) ∈ L2(0, T ) × L2(0,T ) satisfying

p∗t + νp∗xx + p∗p∗x = yQ − y∗ in Q,

νp∗x(t, 0) + (y∗(t, 0) + σ0)p∗(t, 0) = 0 in (0,T ),

νp∗x(t, 1) + (y∗(t, 1) + σ1)p∗(t, 1) = 0 in (0,T ), (2.15)

p∗(T ) = 0,

with the gradient equations

p∗(·, 0) + βuu∗ + µ = 0, (2.16)

−p∗(·, 1) + βvv∗ + ξ = 0. (2.17)

2.4 The sequential or iterative approach: the gradient method

In order to implement optimality system we give a summary of well-known gradient based

method. This kind of methods are usually used to solve optimization problems. Although it

may cost to compute gradient, this method provides an efficient and fast solver.

After introducing the control to state operator G : L2(Q) → H that assigns to each u ∈ L2(Q)

of the corresponding Burgers solution y(u), the functional J(G(u), u) will be minimized by the

gradient method:
(

d
du

J(G(u), u), h
)

= (G(u) − yd,Gh) + α(u, h) = (G∗(G(u) − yd), h) + α(u, h),
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where h ∈ L2(Q) is a directional vector. The descent direction is given by

ν = G∗(G(u) − yd) + αu.

The adjoint state is p := G∗(G(u)− yd) = G∗(y− yd). We use the gradient method as described

in [38] where for the Burgers equation at each iteration step a nonlinear system of equation is

to be solved.

The following algorithm is implemented:

Algorithm 1 (Gradient Method in function space)

1. Choose ε > 0. Choose uold arbitrarily.

2. Initialize yold by solving yold = G(uold).

3. while v > ε

4. solve the adjoint equation p = G ∗ (G(uold) − yd)

5. set v = p + κ(uold − ud)

for k = 1, 2, ...

unew = uold + σv

solve the state equation ynew = G(unew)

if J(ynew, unew) < J(yold, uold)

break

end

set σ = σ/2

end

7. set uold = unew, yold = ynew.

8. end
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2.5 Active set strategy to implement control constraints

There have been significant changes in methods for solving nonlinear constrained problems.

Most of them are based on SQP (sequential quadratic programming) [17, 23, 25, 56, 57].

The SQP-algorithm is sequential and each of its iterations requires the solution of a quadratic

minimization problem subject to linearized constraints. For the numerical treatment of the

control constraints we apply the well-known method, primal dual active set strategy. This

method was proposed by Bergounioux, Ito, and Kunisch [3, 4, 27]. For a general class of

problems it has been shown that primal dual active set strategy and semi-smooth Newton

methods lead to the same algorithms [28, 51].

A reformulation of the complementary conditions (3.9) can be stated as

µ = max(0, µ + (ū − ub)) + min(0, µ + (ū − ua)).

The following sets are defined

A− := {~x ∈ Q : µ + c(u − ua) < 0}

and

A+ := {~x ∈ Q : µ + c(u − ub) > 0},

where c > 0.

The primal-Dual Active Set Strategy.

1. Initialize u0, µ0 and n := 0 and choose c > 0

2. while n < 1 or ‖residual‖ > tol do

Determine the active sets

Solve the equality constrained problem
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Update Lagrange multiplier µ

Evaluate residual

Set n := n + 1

3. end while
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CHAPTER 3

OPTIMIZE-THEN-DISCRETIZE APPROACH USING

SPACE-TIME DISCRETIZATION

The optimality system of an optimal control problem is usually integrated iteratively for-

ward and backward in time by gradient based algorithms. Another approach which appeared

recently in the literature is to solve both equations at once as systems of coupled elliptic equa-

tion in space and time. The transformation of the optimality system into an elliptic pde for

linear parabolic distributed optimal control problems with pointwise control constraints was

considered in [37, 38, 39, 40]. For distributed optimal control of the unsteady Burgers equa-

tion the same approach was used in [71]. It was shown there, that by linearizing the Burgers

equation, the forward-backward system containing the state and adjoint equations can be ex-

pressed by an elliptic boundary value problem in space-time domain. The elliptic system is

then simultaneously discretized in space and time.

This chapter is organized as follows. In Section 1, by using Cole-Hopf transformation the el-

liptic boundary value problem in space-time domain is obtained for distributed control prob-

lem of the unsteady Burgers equation. We obtain biharmonic equation. Because the linear dis-

tributed control problems are studied in [39, 40] we do not cover the existence and uniqueness

steps for the distributed problem. In Section 2, we consider the boundary control problem.

Since the Cole-Hopf transformation yields a nonlinearity in boundary for boundary case we

use Taylor approximation for linearizing the boundary control problem. Control constrained

and unconstrained problems are covered for both distributed and boundary control problems.

Finally, we give the numerical results in Section 3. We compare the gradient-based method

and one-shot-approach.

21



3.1 Distributed control problem

The results obtained in this section are studied in [71].

In the sequential approach, the optimality system is solved iteratively using the gradient

method. The control variable u is first initialized and the state equation is solved for y for-

wards; the adjoint equation backwards for p until convergence. In the one-shot approach, the

optimality system in the whole space-time cylinder is solved as an elliptic equation by inter-

preting the time as an additional space variable. This approach was used in [37, 38, 39, 42]

by deriving a biharmonic pde from the optimality system for parabolic linear pde control

problems. Therefore we will use the nonlinear Cole-Hopf transformation which converts the

Burgers equation to a linear parabolic problem.

Cole-Hopf transformation is a Backlünd transformation between Burgers equation and the

linear heat equation, and it was used to show the existence of the equivalent optimal control

problems for the Burgers equation and the transformed linear parabolic pde in [65].

Using the change of variable ỹ(x, t) = y(x, t) − yd(x) and instead of ỹ(x, t) we use y(x, t), then,

the optimal control problem (P1) defined in Chapter 2 can be stated as follows [65]:

min J(y, u) =
1
2
‖y‖2Q +

α

2
‖u‖2Q

subject to yt − νyxx + yyx + (yyd)x + yd(yd)x − ν(yd)xx = u in Q,

y(t, 1) = y(t, 0) = 0 on Σ,

y(0, x) = y0(x) in Ω.

(3.1)

The optimal control problem with a linear diffusion type equation is obtained using the Cole-

Hopf transformation [65]

y(t, x) = −2ν
φx

φ
= −2ν(ln(φ(t, x)))x.

Substituting this in (3.1), multiplying both side by φ2

2ν and integrating with respect to x, we

obtain
∫

Q
φx(φt − νφxx) −

∫

Q
φ(φt − νφxx)x =

∫

Q
φ(φxyd)x − φ2

xyd +
φ2

2
(yd)xx − φ

2

4ν
(y2

d)x +
φ2

2ν
u.

Integration by parts with φx(t, 0) = φx(t, 1) = 0, φ(0, x) = 0 leads to

2
∫

Q
φx(φt − νφxx) = −2

∫

Q
φ2

xyd −
∫

Q
φφx(yd)x +

∫

Q

1
2ν
φφxy2

d +

∫

Q

φ2

2ν
u,
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and we obtain

φt − νφxx = −φxyd − 1
2
φ(yd)x +

φ

4ν
y2

d +
φ2

4νφx
u.

Optimal control problem becomes

min J(φ, u) =
1
2
‖−2ν(ln(φ(t, x)))x‖2Q +

α

2
‖u‖2Q (3.2)

subject to φt − νφxx + ydφx − g(x)φ − m(x, t)φ = 0 in Q,

φx(t, 1) = φx(t, 0) = 0 on Σ,

φ(0, x) = φ0(x) in Ω,

where

g(x) =
1
4ν

y2
d −

1
2

(yd)x, m(x, t) = − 1
2ν

(∫

Ω

udx
)
.

Because the cost function in (3.2) is a complicated expression, a simplified equivalent form

was used in [65]. Let J[φ, u] be given by (3.2) and

C[φ, u] =
1
2
‖φ‖2Q +

α

2
‖u‖2Q .

A function φ∗ is defined as P-optimal if P[φ∗] = minφ P[φ]. Let u∗ be a fixed control function.

Then φ∗ is C-optimal implies φ∗ is J-optimal also, (see Theorem 1 in [65]). That is

C[φ∗, u∗] = min J[φ, u∗] ⇒ J[φ∗, u∗] = min J[φ, u∗].

The transformed optimal control problem with state and adjoint equations is now given by

min J(φ, u) =
1
2
‖φ‖2Q +

α

2
‖u‖2Q

subject to φt − νφxx + ydφx − g(x)φ − m(x, t)φ = 0 in Q,

φx(t, 1) = φx(t, 0) = 0 on Σ,

φ(0, x) = φ0(x) in Ω,

(3.3)

ψt + νψxx + (ydψ)x + g(x)ψ + m(x, t)ψ − φ = 0 in Q,

ψx(t, 1) = ψx(t, 0) = 0 on Σ,

ψ(T, x) = 0 in Ω.

(3.4)

It was shown in [42] that the optimality system for linear parabolic containing equations

can be transformed to a biharmonic elliptic pde. The existence and uniqueness of the weak

solutions of the optimality systems and its regularization was proved [42]. Following the
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same approach we will show that after the Cole-Hopf transformation of the Burgers equation

the optimality system (3.3)-(3.4) is equivalent to an elliptic pde. For this purpose, we use the

same function spaces defined in [42] as:

H1,0(Q) = L2(0,T,H1(Ω)),

Hk,1(Q) = L2(0, T,Hk(Ω)) ∩ H1,0(0,T, L2(Ω)).

On H2,1(Q) we use the inner product

(u, v)H2,1(Q) :=
∫ ∫

Q
uv +

d
dt

u
d
dt

v + ∇u∇v +

N∑

i, j=1

(
∂2u
∂xi∂x j

∂2v
∂xi∂x j

)
dxdt,

and natural norm

‖u‖H2,1(Q) =

‖u‖
2 +

∥∥∥∥∥
d
dt

u
∥∥∥∥∥

2
+ ‖∂u‖2 +

∑

i, j

∥∥∥∥∥∥
d2u

dxidx j

∥∥∥∥∥∥
2


1/2

.

Theorem 3.1.1 (Biharmonic equation in H2,1(Q))

Let (φ, ψ, u) are smooth solution of the control problem (3.3-3.4) with φ, ψ ∈ H2,1(Q), u ∈
L2(Ω). Then ψ satisfies the following elliptic pde:

−ψtt + ν2∆2ψ + c4∆ψ + c3ψxt + c2ψx + c1ψt + c0ψ = 0, (3.5)

with the boundary conditions

ψt + νψxx + (yd)xψ + (g + m)ψ = 0 on Σ,

ψx(t, 1) = ψx(t, 0) = 0 , ψ(T, x) = 0, (3.6)

ψt + νψxx + (ydψ)x + (g + m)ψ = y0 in Ω,

where

c0 = ν(yd)xxx + ν(g + m)xx − yd(yd)xx − yd(g + m)x + (g + m)(yd)x + (g + m)2 − mt − (yd)tx,

c1 = g − (yd)x,

c2 = 2ν(gx + mx) + 3ν(yd)xx − 2yd(yd)x − (yd)t,

c3 = −2yd,

c4 = 3ν(yd)x + 2ν(g(x) + m(x, t)) − y2
d.
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Proof. Take the derivative of the adjoint equation with respect to t

−ψtt = νψxxt + (ydψ)xt + (gψ + mψ)t − φt,

inserting φt in the state equation, yielding,

ψtt + νψxxt + (ydψ)xt + (gψ + mψ)t = νφxx − ydφx + (g + m)φ,

and using the adjoint equation to eliminate φ give

ψtt + νψxxt + (ydψ)xt + (gψ + mψ)t = ν(ψt + νψxx + (ydψ)x + g(x)ψ + m(x, t)ψ)xx

−yd(ψt + νψxx + (ydψ)x + g(x)ψ+ m(x, t)ψ)x + (g + m)(ψt + νψxx + (ydψ)x + g(x)ψ + m(x, t)ψ).

After taking derivatives and simplifying, we obtain the elliptic pde (3.5). Applying the bound-

ary conditions of φ and ψ in Eq. (3.3) and Eq. (3.4), the boundary conditions are obtained for

the elliptic pde (3.5). ¥

3.1.1 Inequality constrained problem and regularization

We consider now distributed optimal control problem with pointwise bilateral control con-

straints [57]

min J(y, u) =
1
2
‖y − z‖2Q +

α

2
‖u‖2Q

subject to yt + yyx − νyxx = f + bu in Q,

y = 0 in Σ,

y(, ·) = y0 in Ω,

ua(t, x) ≤ u(t, x) ≤ ub(t, x) in Q.

First-order necessary conditions for the optimality system of the local solution (y∗, u∗) have to

be satisfied with the adjoint variable p∗ in form of the optimality system including the control

constraints u∗ ∈ Uad = {u ∈ L2(Q) : ua(t, x) ≤ u(t, x) ≤ ub(t, x)}. Because of the pointwise

constraints, additionally we have the variational inequality [57]
∫

Q
(αu∗ + bp∗)(u − u∗)dxdt ≥ 0 for all u ∈ Uad.

The last inequality can be expressed in the form of a projection [57]:

u∗(t, x) = P[ua(t,x),ub(t,x)]

(−b(t, x)
α

p∗(t, x)
)
.
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First order optimality conditions for the control constrained Burgers equation are stated as

follows [57]

yt − νyxx + yyx = f + bu in Q,

y(t, 0) = y(t, 1) = 0 on Σ,

y(0) = y0 in Ω,

(3.7)

pt + νpxx + ypx = yd − y in Q,

p(t, 0) = p(t, 1) = 0 on Σ,

p(T ) = 0 in Ω,

(3.8)

with the gradient condition

αu + p + µb − µa = 0,

and complementary slackness conditions

(µa, ua − u)L2(Q) = 0 , u ≥ ua µa ≥ 0 in Q,

(µb, u − ub)L2(Q) = 0 , u ≤ ub µb ≥ 0 in Q.
(3.9)

In [50], different solution algorithms like primal dual-SQP, SQP-primal dual methods and

semi smooth Newton method are applied and compared for solving the optimality system the

steady Burgers equation with control constraints. We will apply the projection method in

[39]. This method is an implementation of the active set strategy as a semi smooth Newton

method [28]. The projection method replaces the complementary slackness conditions by a

projection. In other words, we will find equivalent conditions to the complementary slackness

conditions.

After getting an equivalent form of complementary conditions, we have to solve the following

system of equations

yt − νyxx + yyx = f + bu in Q,

y(t, 0) = y(t, 1) = 0 on Σ,

y(0) = y0 in Ω,

pt + νpxx + ypx = yd − y in Q,

p(t, 0) = p(t, 1) = 0 on Σ,

p(T ) = 0 in Ω,

αu + p + µb − µa = 0,

µa = max(0, p + αua) , µb = max(0,−p − αub).
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3.2 Boundary control problem

We recall (Pb2)

min J(y, u, v) =
1
2

∫

Q
(y − yd)2dx +

1
2

∫ T

0
βu |u|2 + βv |v|2 dt (3.10)

subject to

yt + yyx − νyxx = f in Q,

νyx(·, 0) + σ0y(·, 0) = u in (0, T ),

νyx(·, 1) + σ1y(·, 1) = v in (0, T ),

y(0, ·) = y0 in Ω,

(3.11)

and

(u, v) ∈ Uad × Vad ⊂ L2(0, T ) × L2(0,T ). (3.12)

For the control constraint case, the sets of admissible controls are given by

Uad = {u ∈ L∞(0, T ) : ua ≤ u ≤ ub, a.e. in (0, T )},

Vad = {v ∈ L∞(0, T ) : va ≤ v ≤ vb, a.e. in (0,T )},

with ua, ub, va, vb ∈ L∞(0,T ) and ua ≤ ub and va ≤ vb almost everywhere (a.e.) in Q.

3.2.1 Linearization of the Burgers equation

In order to apply the one-shot approach, Burgers equation is linearized and the linearized

parabolic problem is interpreted as an elliptic equation. Before we present the linearized state

equation, we denote u = (u, v)T , σ = (σ0, σ1)T . We consider the state equation

yt − νyxx + yyx = f in Q,

νyx + σy = u in (0,T ),

y(0, ·) = y0(x) in .Ω

(3.13)

The Cole-Hopf transformation is used in [71] to linearize Burgers equation with homogeneous

Dirichlet boundary conditions. Because this leads to a nonlinearity in the boundary, we apply

standard linearization of [55] to the state equation by using Taylor expansions. The nonlinear

term yyx in can be written as yyx = 1
2 (y2)x.
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Taylor expansion of the product of functions p(t)q(t) at (k + 1) up to the second order terms

can be written as

pk+1qk+1 = pkqk + [
∂

∂p
(pq)k](pk+1 − qk) + [

∂

∂q
(pq)k](qk+1 − qk) + O(δp2, δq2)

= pk+1qk + pkqk+1 − pkqk + O(δp2, δq2),

where δp = pk+1 − pk and δq = qk+1 − qk. Then (y2)k+1
x can be linearized as

(y2)k+1
x = (yk+1yk + ykyk+1 − ykyk)x

= yk+1
x yk + yk+1yk

x + yk
xyk+1 + ykyk+1

x − yk
xyk − ykyk

x

= 2yk+1
x yk + 2yk+1yk

x − 2yk
xyk + O(δy2

x, δy
2).

(3.14)

Inserting in the state equation (2.5) gives

yk+1
t − νyk+1

xx + yk+1
x yk + yk+1yk

x − yk
xyk = f , (3.15)

where yk
x = η , yk = β , f = f̃ − yk

xyk. We obtain by defining ȳ = yk+1 and denoting ȳ = y,

with ỹ = yk+1 − yd the linearized state equation

ỹt − νỹxx + βỹx + ηỹ = f̃ − d
dt

yd + ν(yd)xx − ηyd − β d
dx

yd ,

νỹx + σỹ = u − ν(yd)x − σyd in (0, T ) ,

ỹ(0, ·) = y0(x) − yd.

(3.16)

In order to handle the boundary control problem, the initial condition has to be homogenized

as in [71] with y = ỹ + δ where δ satisfies the necessary boundary conditions

yt − νyxx + βyx + ηy = s in Q,

νyx + σy = u in (0, T ),

y(0, ·) = 0 in Ω,

(3.17)

where s = f̃ − d
dt yd + νyd − ηyd − β d

dx yd + d
dtδ − νδxx + βδx + ηδ.

Then, corresponding adjoint system becomes

−pt − νpxx + ηp − βpx = y in Q,

νpx + (σ + β)p = 0 in (0,T ),

p(T, ·) = 0 in Ω.

(3.18)
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3.2.2 Equivalence to the biharmonic pde

It was shown in [40, 42] that the optimality system for linear parabolic equations can be

transformed to a H2,1-elliptic pde. Similarly for the distributed control problem with the

unsteady Burgers equation [71], the linearized optimality system was transformed to a H2,1-

elliptic pde in the adjoint variable p, so that the time variable can be treated as an additional

space variable as in [40, 42, 71]. Following the approach in [42] we will prove the existence

and uniqueness of the weak solutions of the optimality conditions and their regularization. In

fact, a control problem subject to the following linear parabolic problem

yt + νyxx + c0y = u in Q,

~n · ∇y = g in (0, T ),

y(0) = y0 in Ω,

was studied in [40, 42]. In this section we will extend works in [40, 42] to a control problem

having a linearized parabolic pde as constraint. Since we handle boundary control problem,

the main difference from [40, 42] is non homogeneous boundary terms. So that our results

will be an extension of [40, 42] to a linearized boundary control problem.

We introduce two Hilbert spaces that we need in the weak formulation of the optimality sys-

tem.

Definition 3.2.1

H2,1(Q) := L2(0, T,H2(Ω)) ∩ H1(0, T, L2(Ω))

is a Hilbert space with the inner product

(u, v)H2,1(Q) :=
"

Q
uv +

∂

∂t
u
∂

∂t
v + ∇u∇v +

N∑

i, j=1

(
∂2u
∂xi∂x j

∂2v
∂xi∂x j

)
dxdt,

and with the natural norm

‖u‖H2,1(Q) =

‖u‖
2 + ‖ ∂

∂t
u‖2 + ‖∇u‖2 +

∑

i, j

‖ ∂2u
∂xi∂x j

‖2


1/2

,

H̄2,1(Q) := {u ∈ H2,1(Q) : νux + (β + σ)u = 0 and u(T ) = 0}.
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The Laplace and gradient operator are given by ∆ = ∂2

∂x2 and ∇ = ∂
∂x , respectively. Since

H1(0,T ) is continuously embedded in C(0,T ), for u ∈ H2,1(Q) the functions u(0) := u(0, ·),
u(T ) := u(T, ·) both are well defined in L2(Ω). The space H̄2,1(Q) is an analog to the space

used in [6] for a problem with homogenous Dirichlet boundary conditions.

For u, v ∈ H2,1(Q) we define

(u, v)H2,1
M (Q) :=

"

Q

(
uv + utvt + ∇u · ∇v + ∆u∆v

)
dxdt

which is clearly an inner product on H2,1(Q). And a norm on H2,1(Q) is defined as

‖u‖H2,1
M

=

(
‖u‖2 + ‖ ∂

∂t
u‖2 + ‖∇u‖2 + ‖∆u‖2

)1/2

.

Theorem 3.2.2 Let (y, u, p) be smooth solution of the control problem (3.17)-(3.18) with

y, p ∈ H̄2,1(Q) and u ∈ L2(0,T ). Then p satisfies the following PDE

−ptt + ν2∆2 p − (2ην + β2)∆p − 2βpxt + η2 p = s, in Q (3.19a)

with the boundary conditions

−ν2∇(∆p) − ν(β + σ)∆p + (νη − σβ)∇p + βpt + σηp = u in (0, T ), (3.19b)

ν∇p + (σ + β)p = 0 in (0,T ), (3.19c)

−pt(0, ·) − ν∆p(0, ·) − β∇p(0, ·) + ηp(0, ·) = 0 in Ω, (3.19d)

p(T, ·) = 0 in Ω. (3.19e)

Proof. Taking the derivative of the adjoint equation with respect to t

−ptt − ν d
dt

∆p + ηpt − β d
dt

px = yt,

and inserting yt in the state equation, we obtain

−ptt − ν d
dt

∆p + ηpt − β d
dt

px = ν∆y − β∇y − ηy + s.

We eliminate y by using the adjoint equation (3.18)

−ptt − ν
d
dt

∆p + ηpt − β d
dt
∇p = ν∆(−pt − ν∆p + ηp − β∇p)

− β∇(−pt − ν∆p + ηp − β∇p) − η(−pt − ν∆p + ηp − β∇p) + s.

After taking derivatives and simplifying, we obtain the elliptic pde (3.19a).
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We evaluate y = −pt − ν∆p + ηp − β∇p on the boundary to obtain

ν(−ptx − ν∇(∆)p − β∆p + η∇p) + σ(−pt − ν∆p − β∇p + ηp) = u.

Using the original boundary condition ν∇p + (σ + β)p = 0, (3.19b) and (3.19c) are obtained.

By setting t = 0 gives y = −pt − ν∆p− β∇p + ηp = 0 and t = T we get (3.19d) and (3.19e). ¥

Lemma 3.2.3 The solution p of the equation (3.19a) satisfies

a[p,w] = F(w) ∀w ∈ H̄2,1(Q),

where F(w) =
!

Q swdxdt +
∫ T

0 uw
∣∣∣1
0dt and

a[p,w] =

"

Q

( d
dt

p
d
dt

w + ν2∆p∆w + (2ην + β2)∇p∇w + η2 pw + 2β∇p
d
dt

w
)
dxdt

+

∫

Ω

(
pt(0, x) + 2β∇p(x, 0)

)
w(x, 0)dx +

∫ T

0

(
γp + βpt

)
w
∣∣∣1
0dt

Proof. We apply a test function w ∈ H̄2,1(Q) to (3.19a) to obtain the weak form

"

Q
− d2

dt2 pw + ν2∆2 pw − β2∆pw − 2βpxtw + η2 pwdxdt =

"

Q
swdxdt.

Integration by parts yields

"

Q
− d2

dt2 pw + ν2∆2 pw − (2ην + β2)∆pw − 2βpxtw + η2 pwdxdt

= −
∫

Ω

d
dt

pw
∣∣∣T
0 dx +

"

Q

d
dt

p
d
dt

wdxdt +

∫ T

0
ν2∇(∆p)w

∣∣∣1
0dt −

∫ T

0
ν2∆p∇w

∣∣∣1
0dt

+

"

Q
ν2∆p∆wdxdt − (2ην + β2)

∫ T

0
∇pw

∣∣∣1
0dt +

"

Q
(2ην + β2)∇p∇wdxdt

− 2β
∫

Ω

∇pw
∣∣∣T
0 dx +

"

Q
2β∇p

d
dt

w)dxdt +

"

Q
η2 pwdxdt.

From the boundary conditions νwx + (σ+β)w = 0, we obtain ∇w = −σ+β
ν w. Using ν2∇(∆p) +

ν(σ+β)∆p = (νη−σβ)∇p +βpt +σηp−u and ∇p = −σ+β
ν p and letting γ =

ην(β+2σ)+σβ(σ+2β)
ν

gives

∫ T

0
(ν2∇(∆p) + ν(σ + β)∆p − (2νη + β2)∇p)w

∣∣∣1
0dt =

∫ T

0
(γp + βpt − u)w

∣∣∣1
0dt.
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Also, w(x,T ) = 0 implies

−
∫

Ω

d
dt

pw
∣∣∣T
0 dx − 2β

∫

Ω

∇pw
∣∣∣T
0 dx =

∫

Ω

(
d
dt

p(x, 0) + 2β∇p(x, 0))w(·, 0)dx.

Defining

F(w) :=
"

Q
sw +

∫ T

0
uw

∣∣∣1
0dt

gives the desired result. ¥

Lemma 3.2.4 The bilinear form is H2,1-elliptic, i.e. there is a constant c > 0 such that

a[v, v] ≥ c ‖v‖2
H1,2

∆
(Q)

for all v ∈ H̄2,1(Q).

Proof. By choosing v ∈ H2,1(Q) we evaluate a[v, v].

a[v, v] =
!

Q(( d
dt v)2 + ν2(∆v)2 + (2ην + β2)(∇v)2 + η2v2 + 2β∇v d

dt v)dxdt

+
∫
Ω

(−ν∆v(0, x) + β∇v(x, 0) + ηv(x, 0))v(x, 0)dx +
∫ T

0 (γv + βvt)v
∣∣∣1
0dt.

The last term becomes
∫ T

0
(γv + βvt)v

∣∣∣1
0dt =

∫ T

0
γvv

∣∣∣1
0dt +

∫ T

0
βvtv

∣∣∣1
0dt =

∫ T

0
γvv

∣∣∣1
0dt − β

2
v2(0, ·)|10.

Also ∫

Ω

(−ν∆v + β∇v + ηv)vdx

= −ν∇vv
∣∣∣1
0 + ν

∫

Ω

∇v∇vdx + β

∫

Ω

∇vvdx + η

∫

Ω

vvdx

= (β + σ)vv
∣∣∣1
0 + ν

∫

Ω

∇v∇vdx +
β

2
v2

∣∣∣1
0 + η

∫

Ω

vvdx,

where all terms above are evaluated at t = 0.

For the ellipticity we need the following assumptions:

• appropriate choice of σ gives γvv
∣∣∣1
0 ≥ 0 and (β + σ)vv

∣∣∣1
0 ≥ 0,

• β∇v d
dt v ≤ 0 in Q.

By using these assumptions, we obtain

a[v, v] ≥ min {1, ν2, 2ην + β2, η2}
"

Q
((

d
dt

v)2 + (∆v)2 + (∇v)2 + v2dxdt

= c‖v‖2
H2,1

M (Q)
≥ c‖v‖2H2,1(Q),

which proves the H2,1 ellipticity ¥
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Lemma 3.2.5 The bilinear form a[v,w] is bounded in H̄2,1(Q), i.e.,

a[v,w] ≤ c ‖v‖H2,1(Q) ‖w‖H2,1(Q)

for all v,w ∈ H̄2,1(Q).

Proof. The proof is similar to the Lemma 3.5. in [40, 42].

In the following let c be a generic constant. We have v,w ∈ H2,1(Q) ↪→ C([0, T ],H1(Ω)).

Using the inner product on the space H2,1(Q) we obtain

∣∣∣(∇v(0),w(0))L2(Ω)

∣∣∣ ≤ ‖∇v(0)‖L2(Ω)‖w(0)‖L2(Ω)

≤ c‖v(0)‖H1(Ω)‖w(0)‖H1(Ω)

≤ c‖v‖C(0,T ;H1(Ω))‖w‖C(0,T ;H1(Ω))

≤ c‖v‖H2,1(Q)‖w‖H2,1(Q).

By a similar argument, the terms
∣∣∣( d

dt v(0),w(0))L2(Ω)

∣∣∣,
∣∣∣γ(v,w)L2(0,T )

∣∣∣,
∣∣∣ d
dt v,w)L2(0,T )

∣∣∣
and

∣∣∣2β(∇v,wt)L2(Q)

∣∣∣ are bounded by c‖v‖H2,1(Q)‖w‖H2,1(Q).

Proceeding the same structure as in [42], the bilinear form can be bounded as

∣∣∣a[v,w]
∣∣∣ ≤ c‖v‖H2,1(Q)‖w‖H2,1(Q).

¥

Using the Lemma 3.2.4, Lemma 3.2.5 and the Lax-Milgram theorem the main theorem can

be stated as

Theorem 3.2.6 By continuity and coercivity of a, for all F ∈ (H̄2,1(Q))∗ the bilinear equation

a[p,w] = F(w) ∀w ∈ H̄2,1(Q)

has a unique solution p ∈ H̄2,1(Q).

3.2.3 Inequality constrained problem and regularization

In this subsection, we consider the regularization of inequality constrained optimal control

problems.
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We first describe the optimality system in terms of projections, which is a source of non-

differentiability when solving the optimality systems. We therefore introduce a regularized

projection formula in the following subsection and show convergence of the associated solu-

tions. The projection defined below differs in space from the projection defined in [42].

Definition 3.2.7 Let a, b, z ∈ R be given real numbers. We define the projection

P[a,b]{z} := π[a(t),b(t)]{z(t)} ∀t ∈ (0,T ).

Let us state without proof some helpful properties of the projection.

The projection P[a,b]{z} satisfies

(i) −P[a,b]{−z} = P[−b,−a]{z},

(ii) P[a,b]{z} is strongly monotone increasing, i.e., by z1 < z2 follows P[a,b]{z1} ≤ P[a,b]{z2}
and P[a,b]{z1} = P[a,b]{z2} iff z1 = z2,

(iii) P[a,b]{z} is continuous and measurable.

From variational inequality we have

u∗ = P[ua(t),ub(t)]{ p(0, t)
βu
} and v∗ = P[va(t),vb(t)]{− p(1, t)

βv
}.

Similar to Theorem 3.2.2, we obtain the biharmonic pde

−ptt + ν2∆2 p − (2ην + β2)∆p − 2βpxt + η2 p = s (3.20)

with the boundary conditions

−ν2∇(∆p) − ν(β + σ)∆p + (νη − σβ)∇p + βpt + σηp = P[ua(t),ub(t)]{ p(0, t)
βu
},

−ν2∇(∆p) − ν(β + σ)∆p + (νη − σβ)∇p + βpt + σηp = P[va(t),vb(t)]{− p(1, t)
βv
},

νpx + (σ + β)p = 0,

−p0,· − νpxx(0, ·) − βpx(0, ·) + ηp(0, ·) = 0,

p(T, ·) = 0.
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Theorem 3.2.8 We define the operators as

A = A1 + A2, 〈A1r,w〉 = a[r,w] and weak formulation of (3.20) as

〈A2r,w〉 =

∫ T

0

(
P[−vb,−va]{r(1, t)

βv
}w(1, t) + P[ua,ub]{r(0, t)

βu
}w(0, t)

)
dt.

Then biharmonic form is equivalent to

Ap = F̄, (3.21)

where F̄ =
!

Q swdxdt

Lemma 3.2.9 The operator A defined in Theorem 1 is strongly monotone, coercive, and hemi-

continuous.

Proof. Let us first show that A is strongly monotone. From Lemma 3.2.4 we have

〈A1(w1 − w2),w1 − w2〉 = a[w1 − w2,w1 − w2] ≥ c ‖w‖2H1,2(Q) .

By monotonicity of the projection we have

∫ T

0
(P[ua,ub]{−w1(0, t)

βu
} − P[ua,ub]{w2(0, t)

βu
})(v1(0, t) − v2(0, t))dt ≥ 0.

Similarly,

∫ T

0

(
P[−vb,−va]{w1(1, t)

βv
} − P[−vb,−va]{w2(1, t)

βv
})(v1(1, t) − v2(1, t)

)
dt ≥ 0.

To prove coercivity we have to estimate 〈A2w,w〉. We observe first that

P[ua,ub]{ w
βu
}w =



uaw in Σua := {t ∈ (0, T ) : w < ua},

ubw in Σub := {t ∈ (0, T ) : w > ub},
w2

βu
in (0,T )\{Σua ∪ Σub}.

(3.22)

Similarly

P[−vb,−va]{w}w =



−vaw in Σva := {t ∈ (0, T ) : w > −va},

−vbw in Σvb := {t ∈ (0, T ) : w < −vb},
w2

βv
in (0,T )\{Σva ∪ Σvb}.

(3.23)
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Hence,
∫ T

0

(
P[ua,ub]{w(0, t)

βu
}w(0, t)

)
dt

=

∫

Σua

ua(0, t)w(0, t)dt +

∫

Σub

ub(0, t)w(0, t)dt +

∫

(0,T )\{Σua∪Σub }
w(0, t)2dt

≥
∫

Σua

ua(t, 0)w(t, 0)dt +

∫

Σub

ub(t, 0)w(t, 0)dt

and, similarly,
∫ T

0

(
P[−vb,−va]{w(t, 1)

βv
}w(t, 1)

)
dt ≥ −

∫

Σva

va(t, 1)w(t, 1)dt −
∫

Σvb

vb(t, 1)w(t, 1)dt.

From Theorem 3.2.8 we have

〈Aw,w〉 = 〈A1w,w〉 + 〈A2w,w〉

= a[w,w] +

∫ T

0

(
P[−vb,−va]{w(t, 1)

βv
}w(t, 1)

)
dt +

∫ T

0

(
P[ua,ub]{w(t, 0)

βu
}w(t, 0)

)
dt

≥ c ‖w‖H2,1(Q) −
∫

Σva

va(t, 1)w(t, 1)dt −
∫

Σvb

vb(t, 1)w(t, 1)dt

+

∫

Σua

ua(t, 0)w(t, 0)dt +

∫

Σub

ub(t, 0)w(t, 0)dt.

If the integrals
∫
Σua

ua(t, 0)w(t, 0)dt and
∫
Σub

ub(t, 0)w(t, 0)dt are positive then

〈Aw,w〉 ≥ c ‖w‖2H2,1(Q) − (‖va‖L2(Σva ) + ‖vb‖L2(Σvb )) ‖w‖H2,1(Q) .

We get
〈Aw,w〉
‖w‖H2,1(Q)

≥ c ‖w‖H2,1(Q) −
ca,b ‖w‖H2,1(Q)

‖w‖H2,1(Q)

with ca,b = ‖va‖L2(Σva ) + ‖vb‖L2(Σvb ).

Similarly, if the integrals are negative then

ca,b = ‖va‖L2(Σva ) + ‖vb‖L2(Σvb ) + ‖ua‖L2(Σua ) + ‖ub‖L2(Σub ) ,

and if one of them is negative and the other is positive then the constants are

ca,b = ‖va‖L2(Σva ) + ‖vb‖L2(Σvb ) or ca,b = ‖ua‖L2(Σua ) + ‖ub‖L2(Σub ) .

The hemi-continuity of A can be shown as in [37]. ¥

Now we are able to use the main theorem on monotone operators to show the existence of a

unique solution of (3.21).
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Theorem 3.2.10 The biharmonic equation (3.21) has a unique solution p ∈ H̄2,1(Q) for all

F̄ ∈ (H̄2,1(Q))∗.

Proof. This follows by applying Theorem 4.1 from [58] to

Ap = F̄,

where A is defined in Theorem 1 ¥

3.3 Implementation details

Numerical solutions are obtained with equation based modeling and simulation environment

COMSOL Multiphysics. This software provides an easy discretization and a fast solution for

both steady and unsteady time dependent control problems. We show that the finite element

package of COMSOL Multiphysics can be used for solving time-dependent non-linear opti-

mal control problems after transforming to a linear problem. When the optimality conditions

are available in for of PDE’s, the specialized finite elements solvers can be easily imple-

mentable.

Quadratic finite elements are used for the state y and the adjoint variable p. We use two

different solvers of COMSOL Multiphysics; adaption, which solves the elliptic PDE using

adaptive mesh refinement , and the femnlin that solves nonlinear problems without adapta-

tion.

fem.xmesh=meshextend(fem);

fem=adaption(fem);

OR fem.sol=femnlin(fem);

The fem structure in COMSOL Multiphysics contains the geometry of the domain, the co-

efficients of the PDE’s, etc. As an example we give the following lines from the one-shot

approach for control contrained problem:

fem.form=’general’; fem.globalexpr= {’u’ ’-(p+mu)/alpha’ };

fem.equ.ga= { { {’-nu*yx’ ’0’} {’-nu*px ’ ’0’ } {’0’ ’0’ } }};
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fem.equ.f= { {’-ytime-(p+mu)/alpha-y*yx’ ’ptime+y-zd(x,time)+y*px’

...’(1/alpha)*mu-max(0,-0.3-(1/alpha)*p)’ } };

fem.bnd.ind=[1 2 3 2];

%Boundary conditions

fem.bnd.r= { {’y-y0(x)’ 0 0 };{’y’ ’p’ 0 }; {0 ’p’ 0 } };

fem.bnd.g= { {0 0 0 }; {0 0 0 };{0 0 0 } };

% Postprocessing

postplot(fem,’tridata’,’y’,’triz’,’y’)

For the control constrained problem we used quadratic finite elements like in the unconstraint

case for state and adjoint state variables, but for the Lagrange multiplier µ, linear finite ele-

ments are taken as in [39].

The projection method [38] that is an implementation of the active set strategy as a semi-

smooth Newton method [28] for a boundary control problem is implemented in COMSOL

multiphysics as

fem.globalexpr={’mu_a’ ’max(0,ua(time)*alpha0-p)’

’mu_b’ ’max(0,-ub(time)*alpha0+p)’ ’$\xi_a$’

’max(0,va(time)*alpha1+p)’ ’$\xi_b$’’max(0,-vb(time)*alpha1-p)’}

3.3.1 Mesh indepedence

We obtain a finite dimensional optimal control problem by using finite element methods. If

we let xk and xk
h be the solutions to infinite and finite dimensional problems respectively, it is

natural to ask about the behaviours of solutions as h→ 0. We say that the solution method is

mesh independent if the convergence behavior of xk and xk
h gets more alike when h→ 0. The

mesh independence of Newton-like methods are studied in [22]. Similarly, the mesh indepen-

dence of SQP and semi-smooth Newton methods are analyzed in [67] and [64], respectively.

The built-in nonlinear solver femnlin is an affine invariant form of the damped Newton

method. In order to show the mesh-independence as in [66], we use the relative error es-
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timator in femnlin, according this the nonlinear iterations terminate.

The solver femnlin we use is an affine invariant form of the damped Newton method. We

used different tolerances to end the algorithm. The value in the relative tolerance edit field

applies to a convergence criterion based on a weighted Euclidean norm for the estimated rel-

ative error; the solver iterations stop when the relative error is less than the relative tolerance.

Let U be the current approximation to the true solution vector, and let E be the estimated

error in this vector. The software stops the iterations when the relative tolerance exceeds the

relative error computed as the weighted Euclidean norm :

err =

(
1
N

ΣN
i=1(|Ei|/Wi)2

)1/2

.

Here, N is the number of degrees of freedom and Wi = max(|Ui|, S i), where S i denotes the

scaling which is the average of |U j| for all degrees of freedom j.

Mesh-independence was observed numerically for the one-shot approach for the unconstrained

and control constrained problems.

3.4 Numerical Results

Parabolic optimal control problems with and without constraints were solved using COMSOL

Multiphysics [37, 38, 39, 40]. COMSOL Multiphysics was used in [71] for the solution of

distributed optimal control of the unsteady Burgers equation.

Both classical gradient based approach solving the state equation forward in time and the ad-

joint equation backward in time and solving the the whole optimality system as an biharmonic

equation produces satisfactory results for the Burgers equation.

Run 3.1 (Distributed control problem without control constraint)
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We have chosen the following optimal control problem in [66] with the parameters α = 0.05,

ν = 0.01, f = 0, with the desired state yd(t, x) = y0 and with the initial condition

y0 =


1 in

(
0, 1

2

]
,

0 otherwise.

The numerical results for different space and time meshes are given in Table 3.1. The same

Table 3.1: Gradient method for the unconstrained optimal control problem.

∆xmax = ∆tmax ||J(yh, uh)||Q # iterations
2−2 0.09393 22
2−3 0.06725 32
2−4 0.07233 46
2−5 0.06926 73
2−6 0.06778 74
2−7 0.06716 53
2−8 0.06687 117
2−9 0.06674 126

problem was solved in [66] with augmented Lagrangian SQP method, and for a given tol-

erance ε, mesh-independence, the convergence of the number of steps required in the finite

dimensional optimization methods for sufficiently small meshes and for different mesh-sizes,

was observed numerically. In our case, the convergence of the gradient method is controlled

by the difference of the current value of J(u) and the average of the last and first values of

J(u) as in [38]. Therefore, a similar behavior for the number of iterations as in [66] is given

in Table 3.1.

Figure 1 shows the computed optimal control uh, the computed optimal state yh and the asso-

ciated adjoint state uh for the one-shot approach with adaptation for h = ∆xmax = 2−6. The

numerical solutions obtained by the gradient method and by the one-shot approach without

adaptation are similar to those in Figure 3.1. The adaptive mesh for h = ∆xmax = 2−4 is given

in Figure 3.2. The numerical results for the optimal control and optimal state shown in the

Figure 3.1 are similar to those obtained in [66].

The numerical results for different mesh sizes are given in Table 3.2.

As indicated in [67], when a solution method is applied to a nonlinear equation and to a finite
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Figure 3.1: One-shot approach with adaptation for the unconstrained problem with distributed
control.
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Figure 3.2: Adaptive mesh of the one-shot approach for the unconstrained problem with
distributed control.
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Table 3.2: One-shot approach for the unconstraint control problem with distributed control.

∆xmax ||J(y, u)||Q ||J(y, u)||Q
with adaption with femnlin

2−2 0.0683 0.0276
2−3 0.0663 0.0651
2−4 0.0667 0.0686
2−5 0.0667 0.0671
2−6 0.0667 0.0669
2−7 0.0667 0.0667

dimensional discretization of the equation, the behavior of the discretized process is asymp-

totically the same. As a consequence of this, the number of steps required needed to satisfy a

given stopping criterion to converge, tends asymptotically to a constant value, which is known

as mesh-independence. In Table 3.3, for different mesh-sizes and tolerances the number of

iterations are given. For sufficiently small mesh-sizes and tolerances, mesh-independence can

be observed numerically.

Table 3.3: Mesh independence for Run 3.1.

tol \∆xmax 2−2 2−3 2−4 2−5 2−6 2−7

1e-1 4 4 4 4 4 4
1e-3 5 5 5 5 5 5
1e-5 5 5 5 5 5 5
1e-7 6 6 6 6 6 6
1e-9 6 6 6 6 6 6
1e-11 6 6 6 6 6 6

Run 3.2. (Distributed control problem with control constraint)

We consider the unilaterally control constrained bounded problem (u ≤ ub) with the initial

condition y0 = sin(13x), ν = 0.1, ub = 0.3 and regularization parameter α = 0.01 in [50]. The

desired state is taken as the initial condition yd = y0.

As for the unconstrained optimal control of Burgers equation, we use one shot approach and

iterative approach.
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In the following code, the state equation is solved using the iterative approach:

fem.equ.f = { {’u-y*yx’;0;0;0;0} }

fem=femdiff(fem)

fem.bnd.r = { {’y’;0;0;0;0} }

fem.xmesh = meshextend(fem)

fem.sol = femtime(fem,’solcomp’,{’y’},’outcomp’,

{’y’,’p’,’u’,’uold’,’mu’},’u’,fem.sol,’tlist’,[0,1],

...’tout’,’tsteps’,’maxstep’, 2ˆ(-6))

Similarly, we have solve for adjoint, control and Lagrange multiplier variables. For a detailed

COMSOL script we refer to [38] and [39].

Numerical results of the gradient method are given in Table 3.4:

Table 3.4: Gradient method for the control constrained problem.

∆xmax = ∆tmax ||J(yh, uh)||Q # iterations
2−2 0.2466 55
2−3 0.2155 52
2−4 0.2082 65
2−5 0.2023 219
2−6 0.2006 524
2−7 0.2004 489
2−8 0.2003 580

Table 3.5: One-shot approach for Run 2.

∆xmax ||J(y, u)||Q ||J(y, u)||Q
with adaption with femnlin

2−2 0.1994 0.1684
2−3 0.2000 0.1985
2−4 0.2002 0.2000
2−5 0.2003 0.2002
2−6 0.2003 0.2003

From Table 3.6, the mesh-independence can be also observed numerically for the control

constrained problem as in [50] by using SQP methods.

In Figure 3.3, the computed solutions are given for the control constraint problem for ∆xmax =
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Table 3.6: Mesh independence for Run 3.2.

tol \∆xmax 2−2 2−3 2−4 2−5 2−6

1e-1 4 4 4 4 4
1e-3 5 5 5 5 5
1e-5 6 6 6 6 6
1e-7 6 6 6 6 6
1e-9 7 7 7 7 7

1e-11 7 7 7 7 7

2−6. The numerical solutions obtained by the gradient method and by the one-shot approach

without adaptation are similar to those in Figure 3.3. The adaptive mesh for h = ∆xmax = 2−4

is given in Figure 3.4.

The numerical solutions for the optimal control and optimal state in Figure 3.3, are similar to

those in [50].

Run 3.3 (Boundary control problem with control constraint)

We have chosen the space-time domain as Q = (0, 1) × (0, 1). We consider a Robin-type

boundary control problem with βu = 0.05, βv = 0.01, σ0 = −0.1, σ1 = 0. The viscosity

parameter is ν = 0.05. The initial condition is taken as y0(·, 0) = sin(6x) and the desired state

is yd(x, t) = y0(·, 0). The bounds for the pointwise bilateral control constraints are:

ua = −0.04, ub = 0.06, va = −0.04, vb = 0.05.

A similar problem without inequality constraints is examined in [36].

We note that the controls are not descretized. This concept is studied in [21]. The variational

discretization concept is introduced. The state and adjoint state are discretized but an explicit

discretization is avoided for controls. Variational discretization considered in [21] allows the

easiest analysis of the discretization error. This discretization approach can be understood as

a generalization of the discretize-then optimize approach in which it avoids discretization of

the control space U.

The control variables on the boundary are defined in COMSOL as
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Figure 3.3: One-shot approach with adaptation for the control constrained problem.
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Figure 3.4: Adaptive mesh of the one-shot approach for the control

constrained problem.
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fem.globalexpr={’u’ ’(p+mu0-mu1)/alpha0’

’v’ ’(-p+eta0-eta1)/alpha1’ ’mu0’ ’max(0,ua(time)*alpha0-p)’

’mu1’ ’max(0,-ub(time)*alpha0+p)’ ’eta0’

’max(0,va(time)*alpha1+p)’ ’eta1’’max(0,-vb(time)*alpha1-p)’}

The Robin-type boundary conditions, ~n · (∇y) + αy = g, are implemented as follows:

fem.bnd.r={{’y-y0(x)’ 0};{0 0};{0 ’p’};{0 0}}

fem.bnd.g={{0 0};{’v/nu’ ’y*p/nu’};{0 0}

{’(-u-0.1*y)/nu’ ’(-y+0.1)*p/nu’}}

We have chosen the same step size for in space and time, i.e., h = ∆x = ∆t. The computed

optimal state and control variables are denoted by ȳh and ūh respectively. Here, the subindex

h indicates the computed state and control variables with step sizes h.

Finally the postprocessing follows as

figure(1)

postplot(fem,’tridata’,’y’,’triz’,’y’)

figure(2)

postplot(fem,’liny’,’u’,’bdl’,4)

hold on

postplot(fem,’liny’,’v’,’bdl’,4)

Since the exact solution of the optimal control problem under consideration is not known, the

values of the cost functional J are listed in Table 3.7. for a sequence of uniformly refined

meshes with h tending to zero.

We give the numerical results of the one-shot approach in Table 3.7

In [66], the mesh independence is obtained with respect to a stopping criteria defined in that

paper.
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Table 3.7: Run 3.3

hmax ||J(ȳh, ūh)|| ||J(ȳh, ūh)||
femnlin adaption

2−2 3.8556e-2 3.8560e-2
2−3 1.7930e-1 1.8192e-1
2−4 3.9390e-2 3.9326e-2
2−5 3.8772e-2 3.8709e-2
2−6 3.8735e-2 3.8718e-2

Table 3.8: Run 3.3: mesh independence.

hmax 2−3 2−4 2−5 2−6 2−7

tol=1e-3 6 7 7 6 7
tol=1e-5 6 8 7 7 7
tol=1e-7 7 8 8 7 8
tol=1e-9 7 8 8 7 8
tol=1e-11 7 9 8 7 8

The optimal state y(t), the optimal controls controls u(t), v(t) and the adaptive mesh are given

in Figures 3.5-3.7, computed with the one-shot approach with the adaptive solver for hmax.

For a comparison we give the numerical results of iterative method that is covered in [38, 71].

Table 3.9: Run 3.3: Iterative solution results.

h (||J(ȳh, ūh))|| # of iterations
2−2 1.0096e-1 12
2−3 5.4849e-2 12
2−4 4.4446e-2 25
2−5 3.3385e-2 49
2−6 3.1437e-2 63

Run 3.4. (Boundary control problem with control constraint)

We solve the boundary control problem in [70], Run 8.1, p.24. The same space-time domain
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Figure 3.5: Run 3.3: optimal state

Figure 3.6: Run 3.3. optimal controls: (solid lines) v(t), (dotted lines) u(t)
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is used as in above example. We consider a Robin-type boundary control problem with βu =

0.05, βv = 0.01, σ0 = −0.1, σ1 = 0. The viscosity parameter is ν = 0.05. The initial condition

is given by

y0(·, 0) =


1 in

(
0, 1

2

]
,

0 otherwise.

The desired state is yQ(x, t) = y0(·, 0). The bounds for the unilaterally constraint pointwise

control constraints are:

ua(t) =



−0.2 in [0, 0.5] ,

−0.1 + 5(t − 0.52) in [0.5, 0.52] ,

−0.1 in [0.52, 1] ,

and

ub = 0, va = −0.25, vb = 0.

We note that since ua is not given exactly in ([70], Run 8.1 p. 24), we here solve a slightly

different problem. The results are almost the same. The cost function is computed as 0.0638

in cited paper. For our case the numerical results are presented in the following tables and in

the Figure 4.

Table 3.10: Run 3.4.

hmax ||J(ȳh, ūh)|| ||J(ȳh, ūh)||
femnlin adaption

2−2 8.0100e-2 6.760e-2
2−3 1.7930e-1 1.7930e-1
2−4 6.7900e-2 6.4900e-2
2−5 6.5500e-2 6.4900e-2
2−6 6.5300e-2 6.4900e-2

Letting hmax = 2−4 mesh-independence can be seen from Table 3.11.

We remark that because of the restrictions in Lemma 2 the choices of box constraints and

initial condition effect the existence of solutions in both examples. That is randomly chosen

initial values can not guarantee existence of solutions.
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Figure 3.7: Run 3.4: adaptive mesh

Figure 3.8: Run 3.4.: optimal state
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Table 3.11: Run 3.4 : mesh independence

hmax 2−3 2−4 2−5 2−6 2−7

tol=1e-3 13 9 9 9 9
tol=1e-5 13 10 10 10 10
tol=1e-7 13 10 10 11 11
tol=1e-9 13 11 11 11 11
tol=1e-11 13 11 11 12 12

Figure 3.9: Run 3.4.: optimal controls: (solid lines) v(t), (dotted lines) u(t)
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CHAPTER 4

DISCRETIZE-THEN-OPTIMIZE APPROACH: ONE-SHOT

METHOD

In this chapter, we follow the discretize-then-optimize approach. This approach was suc-

cessfully applied to optimal control problem of Burgers equation with non-linear conjugate

gradient method in [13]. We will show by applying the discretize-then-optimize to Burgers

equation, the so called all-at-once type solution of the control problem leads to a saddle sys-

tem point problem with a symmetric, positive definite matrix A. The systemAx = b is usually

very large, sparse and bad conditioned.

The all-at-once approach was applied to elliptic linear optimal control problems in [48, 49,

47]. In [52] the all-at-once approach was applied to parabolic control problems.

We consider in this chapter both linearized and nonlinear control problem because of nonlin-

earity in the state equation. This leads to different control problems after semidiscretization

in space. Standard linear finite element approach is used for the space discretization. In first

section we consider the unconstrained and control constrained distributed control problems.

After linearization of the nonlinear term, we use Crank-Nicolson scheme for time discretiza-

tion. In the second part of the first section, the nonlinear state equation is discretized. We

use then semi-implicit time approach to obtain fully discrete scheme. At the end of the first

section we provide an a priori error analysis for the distributed control problem of Burgers

equation in order to see the accuracy order of all-at-once approach. The saddle point system

is solved either directly by using sparse LU-decomposition or by the iterative solver MIN-

RES (minimum residual method). The second section covers the boundary control problems.

Numerical results confirm the a priori error estimates and mesh independence of the solutions
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4.1 The distributed control problem

4.1.1 Semi-discretization of the linearized state equation

We consider the linearized Burgers equation (3.17) from Chapter 3:

yt − νyxx + (ȳy)x = ȳȳx + u in Q,

y = 0 on Σ,

y(0) = y0 in Ω.

The state y, linearized state ȳ and control u are disretized by using standard Galerkin method

with linear finite elements on the interval (0, 1) with n uniform subdivisions.

y(x, t) ∼
n∑

j=0

y j(t)φ j(x), ȳ(x, t) ∼
n∑

k=0

ȳk(t)φk(x), and u(x, t) ∼
n∑

l=0

ul(t)φl(x).

The test functions for the homogeneous Dirichtlet boundary conditions. The weak formula-

tion of the linearized Burgers equation becomes then

∫ 1

0

∂

∂t
( n∑

j=0

y jφ j
)
φidx + ν

∫ 1

0

∂

∂x
( n∑

j=0

y jφ j
) d
dx
φidx +

∫ 1

0

∂

∂x
( n∑

k=0

ȳkφk

n∑

j=0

y jφ j
)
φidx

=

∫ 1

0

( n∑

k=0

ȳkφk
) ∂
∂x

( n∑

k=0

ȳkφk
)
φidx +

∫ 1

0

( n∑

l=0

ulφl
)
φidx, i = 1, ..., n + 1.

(4.1)

The semi-discrete system of ordinary differential equations are given by defining the vectors

y = (y1(t), ..., yn+1(t)), u = (u1(t), ..., un+1(t)) and ȳ = (ȳ1(t), ..., ȳn+1(t)),

Myt + S y + C(ȳ)y = q(ȳ) + Mu, (4.2)

with the matrices S , M ∈ R(n+1)×(n+1) are defined as

S :=
ν

h



2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2



, M :=
h
6



4 1

1 4 1
. . .

. . .
. . .

1 4 1

1 4



,
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C(ȳ) :=
1
6



ȳ1 − 4ȳ0 ȳ0 + 2ȳ1 0 . . . 0

−(2ȳ0 + ȳ1) ȳ2 − ȳ0 ȳ1 + 2ȳ2
. . .

...

0
. . .

. . .
. . . 0

...
. . . −(2ȳn−2 + ȳn−1) ȳn − ȳn−2 ȳn−1 + 2ȳn

0 . . . 0 −(2ȳn−1 + ȳn) 4ȳn − ȳn−1



and

q(y) :=
1
6



y2
1 + y0y1 − 2y2

0
...

y2
i + yi−1(yi − yi−2) − y2

i−2
...

2y2
n − yNyN−1 − y2

N−1



∈ Rn+1.

The semi-discrete control problem can be formulated as

min Jh =

∫ T

0

1
2

(y − yd)T M(y − yd)dt +

∫ T

0

α

2
uT Mudt (4.3)

subject to Myt + S y + C(ȳ)y = q(ȳ) + Mu,

y(0) = y0.

4.1.2 Time discretization using Crank-Nicolson scheme

The Crank-Nicholson scheme is one of the most used method for the time discretization of

the Burgers equation, which is an implicit and second order method, [44].

Given 0 = t0 < t1 < ... < tN+1 = T , we define

∆ti = ti+1 − ti, i = 0, ...,N, with ∆t−1 = ∆tN+1 = 0.

Application of the Crank-Nicholson scheme to 4.3 gives

(
M +

∆ti
2

S +
∆ti
2

C(ȳi+1)
)
yi+1 +

( − M +
∆ti
2

S +
∆ti
2

C(ȳi)
)
yi

=
∆ti
2

(
q(ȳi+1) + q(ȳi)

)
+

∆ti
2

M(ui + ui+1)

y(0) = y0 i = 0, ...,N.

(4.4)
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We define

Y = (y1, ..., yN) and U = (u1, ...,uN),

where yi and ui correspond to vector valued functions at the time step i.

Then the full-discrete system in matrix-vector form becomes

KY − ∆t
2
MU =

∆t
2



q(ȳ0) + q(ȳ1)

q(ȳ1) + q(ȳ2)
...

q(ȳN−1) + q(ȳN)


︸                    ︷︷                    ︸

Q

+



( − M + ∆t
2 S + ∆t

2 C(ȳ0)
)
y0

0
...

0


︸                                  ︷︷                                  ︸

d

with

K =



Z1

Z̄2 Z2

. . .
. . .

Z̄N ZN



andM =



M

M M
. . .

. . .

M M

M M



,

where

Zi = M +
∆t
2

S +
∆t
2

C(ȳi+1), Z̄i = −M +
∆t
2

S +
∆t
2

C(ȳi)

for i = 2, ...,N.

Thus, we obtain the representation of the unsteady Burgers equation with Dirichlet boundary

conditions in the following form

KY − ∆t
2
MU =

∆t
2

Q + d.

For discretization of the cost function, we use the trapezoidal rule

min
u1,...,uN

N+1∑

i=0

∆ti + ∆ti+1

2

(
1
2

(y − yd)T M(y − yd) +
α

2
uT Mu

)
. (4.5)

When we collect every time step in a block, the functional Jh(Y,U) can be stated as
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Jh(Y,U) =
∆t
2

(Y − Yd)TM1/2(Y − Yd) +
α∆t

2
UTM1/2U

with the matrix

M1/2 =



1
2 M

M
. . .

1
2 M



∈ R(n+1)×N,(n+1)×N .

Remark 1. If rectangular rule instead of trapezoidal rule is usedM1/2 has the last block to

be 0.

Both trapezoidal and rectangular rules give the same results. Therefore, we have performed

our computations with the trapezoidal rule.

The optimality system containing first order optimality conditions is obtained by introducing

the extended Lagrangian containing the Lagrange multiplier P [58].

L(Y,U, P) : =
∆t
2

(Y − Yd)TM1/2(Y − Yd) +
α∆t

2
UTM1/2U

+ PT ( − KY + ∆tMU + Q + d
)
.

(4.6)

The optimality conditions are given as

∇Y L(Y∗,U∗, P∗) = ∆tM1/2(Y∗ − Yd) − KT P∗ = 0,

∇PL(Y∗,U∗, P∗) = −KY∗ + ∆tMU∗ + Q + d = 0,

∇U L(Y∗,U∗, P∗) = α∆tM1/2U∗ + ∆tMP∗ = 0.

The first optimality condition gives the discrete adjoint equation

−KT P∗ = ∆tM1/2(Y∗ − Yd). (4.7)

Remark 2. The matrix formulation of discrete adjoint (4.7) corresponds to a backward Euler

scheme as

− pi+1 − pi

∆t
− ∆pi = yi − yd.
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This scheme is not consistent with the continuous adjoint mentioned in Chapter 1. Another

difference occurs at time level t = T . When the trapezoidal rule is used the system (4.8) shows

that p is not necessarily equal to 0 at t = T . This obstacle can be overcame by letting ∆t → 0.

However, we remark that when rectangular rule is used, the final block of the matrixM1/2 is

0. This shows that final time condition of discrete adjoint is satisfied. Numerically, there is

not big differences when we choose sufficiently small ∆t.

Finally, the optimality system can be written as



M 0 −KT

0 α∆tM1/2
∆t
2M

−K ∆t
2M 0


︸                             ︷︷                             ︸

T



Y

U

P


=



M1/2Yd

0

Q + d


. (4.8)

The solution of the above system will be handled in the implementation part.

4.1.3 Time discretization with the semi-implicit method

We give first the space discretization of the nonlinear state equation using linear finite ele-

ments

∫ 1

0

∂

∂t
( n∑

j=0

y jφ j
)
φidx + ν

∫ 1

0

∂

∂x
( n∑

j=0

y jφ j
) d
dx
φidx

+

∫ 1

0

∂

∂x
(

n∑

j=0

y jφ j)(
n∑

j=0

y jφ j)φidx =

∫ 1

0

( n∑

l=0

ulφl
)
φidx,

where i = 1, ..., n + 1.

Using the vector valued variables defined in the previous subsection, we get

Myt + S y + q(y) = Mu. (4.9)

Then, semi-discrete control problem follows as
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min Jh =

∫ T

0

1
2

(y − yd)T M(y − yd)dt +

∫ T

0

α

2
uT Mudt (4.10)

subject to Myt + S y + q(y) = Mu,

y(0) = y0,

where M and S are mass and stiffness matrices, respectively.

Semi-implicit time approximation [44] consists in evaluating the diffusive part yxx, at the

time level ti+1, whereas the remaining parts are considered at time ti. When this scheme is

applied to a non-linear advection, it provides an efficient linearization. Full discretization of

the Burgers equation with Dirichlet boundary conditions can be stated as



1
∆t

(
yi+1

h − yi
h, φh

)
+ ν

(∇yi+1
h ,∇φh

)
+

(
yi

h∇yi
h, φh

)
=

(
f (tti+1), φh

)
,

y0
h = y0,h , for any φh ∈ Vh, for i = 0, ...,N.

Discretizing the variables we obtain

(M + ∆tS )yi+1 − Myi + ∆tq(yi) = ∆tMui+1,

y(0) = y0 for i = 0, ...,N.
(4.11)

Let Q̃ = (q(y1), ..., q(yN)) for N time-steps. Then



Z

−M Z
. . .

. . .

−M Z


︸                        ︷︷                        ︸

K̃

Y − M̃U =



−My0 + ∆tq(y0)

0
...

0


︸                    ︷︷                    ︸

d̃

+Q̃,

where Z = M + ∆tS , and M̃ = blockdiag{M, . . . ,M}.

Optimality conditions result in the optimality system as



M̃ 0 −K̃T

0 α∆tM1/2 ∆tM̃
−K̃ ∆tM̃ 0





Y

U

P


=



M1/2Yd

0

d̃ + Q̃


. (4.12)
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4.1.4 Solution of the optimality system

In general, there exists two general approaches for solving optimization problems. The first

is to use an existing PDE solver for the constraints to compute y as a function of u and eval-

uate cost function J(y(u), u). This approach is referred to as the ”black-box” approach. In

other words, an existing algorithm for the solution of the state equation is embedded into an

optimization loop. To obtain an efficient and fast optimization algorithm, gradients are re-

quired. Computation of the gradients can be done by adjoint or sensitivity approaches. When

the PDE is non-linear as for the Burgers equation, the state equation has to be solved several

times, which might be costly.

The second approach is all-at-once methods. This method threats the control and state vari-

able as independent of optimization variables. The obvious advantage of all-at-once approach

is avoiding the repeated solution of (non-linear) state equation. Optimization algorithms of

this class requires the solution of the linearized state equations. In recent years, there have

been an interest in all-at-once type methods for solving optimal control problems. There are

many concerning elliptic problems [53, 2, 33, 47, 49]. However there are only a few published

results for parabolic problems [52, 13, 35, 34].

To implement an optimization problem, the gradient based methods are usually applied. Al-

though their performance is efficient and fast it is usually cost to compute gradients. Because

all-at-once methods treat the control and state as independent optimization variables, the op-

timization problem is explicitly constrained. That is the state Y , the control U and the adjoint

state P can be solved explicitly. The systems (4.8) and (4.12) solve the optimization variables

in one-step. We note that they are very large and contain zero blocks because of the matrices

M and S coming from the finite element discretizations. Indeed, the discretization of many

problems lead to large dimensional systems which are usually of saddle-point type. In recent

years, many efficient solution methods were developed for optimal control problems using

all-at-once type methods [48, 49, 34, 35, 52, 53].

Both (4.8) and (4.12) lead to a saddle point type problem. A saddle point problem is Ax = b
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with

A =


E LT

L C

 ,

where the matrix A is a symmetric and indefinite, which is usually bad conditioned and in-

vertible when L has full rank. The matrix C is usually 0.

For Crank-Nicolson discretization (4.8), we have

E :=


M 0

0 α∆tM1/2

 .

By defining

x :=



Y

U

P


, L :=

(
−K ∆tM

)
and b :=



MYd

0

d



we obtain the saddle point formulation. It is also called KKT-matrix, which corresponds to

Karush-Kuhn-Tucker first order necessary optimality conditions. Similar saddle point system

is also obtained for the semi-implicit discretization (4.12) with a different matrix E.

For a saddle point system both direct solver and iterative methods can be considered. When

the dimension of the problem is not huge, direct solver can be used. That is the system Ax = b

can be solved by sparse LU-decomposition. Direct solvers are faster than the iterative solvers.

However when the dimension of the problem is large then an iterative solver has to be used

because of memory problems. In the following subsection, we present first the direct solver.

4.1.4.1 Direct Solver

Since we have one-dimensional parabolic problem, the optimality system Ax = b can be

solved directly by using sparse LU decomposition. We note that due to the linearization there

has to be an outer iteration in the solution algorithm. The direct solution of Ax = b can be

summarized as follows:

Direct solver for the all-at-once method with Crank-Nicolson discretization
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1. Given U0, Y0, tol > 0. Set k = 0

2. Set done = in f

3. While done > tol

3.1 Set k = k + 1

3.2 Update K using computed Y , in the place of Ȳ

3.3 By using LU decomposition solve



M 0 −K̃T

0 α∆tM1/2
∆t
2 M̃

−K̃ ∆t
2 M̃ 0





Y

U

P


=



MYd

0

Q̃ + d̃


(4.13)

3.4 Set done = ‖Yk+1 − Yk‖ + ‖Pk+1 − Pk‖ + ‖Uk+1 − Uk‖

4. End while.

We note that the block matrixK depends on Ȳ , i.e. it has to be updated after every calculation

of the state variable.

4.1.4.2 Iterative method

Generally, the KKT matrix is bad conditioned. When an iterative solver is used, the conver-

gence may be slow. In this case, preconditions must be used to accelerate the convergene.

A preconditioner is a matrix that transforms the saddle point problem into a system hav-

ing better spectral property. The preconditioned solver will then solve an equivalent system

P−1AX = P−1F. The matrix P has to be cheap to be inverted and has to cluster the eigenval-

ues of P−1A [2, 18].

We note that when A is nonsingular then the following block triangular factorization holds


E LT

L 0

 =


I 0

LE−1 I




E 0

0 S




I E−1LT

0 I

 ,
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where S = LE−1LT is the Schur complement of E. This factorization gives an idea about

preconditioning. As for solution method various preconditioned Krylov subspace methods or

multilevel methods can be considered to increase the convergence rate [2, 12, 33]. Among the

Krylov subspace methods there are several preconditioning techniques:

• CG, MINRES, and SYMMLQ require positive semi definiteness,

• SQMR requires symmetric matrix,

• GMRES.

We use the minimal residual method (MINRES) for solving the saddle point problem (4.13).

MINRES computes a sequence Xk for each residual rk = AXk−B by constructing the following

Krylov subspace

span {r0, Ar0, A2r0, ..., Akr0},

where k = 1, 2... denotes iteration number. Within the MINRES algorithm the residual norm

‖rk‖ is minimized over the Krylov subspace.

For elliptic problems the preconditioners for the MINRES algorithm have the following:

P =


A 0

0 S

 ,

with S = BA−1BT . For the matrix

A =



M 0 −KT

0 α∆tM1/2 ∆tM
−K ∆tM 0


,

the following preconditioner is proposed in [52]

P =



M 0 0

0 α∆tM 0

0 0 S



with S −1 := K−TMK−1.

64



4.1.5 Control constrained problem

In case of box constraints for the control variable

ua(t, x) ≤ u(t, x) ≤ ub(t, x) in Q,

the variational inequality gives rise to the following optimality condition (see Chapter 1, Eq.

2.10)

(U − U∗)T∇U L(Y∗,U∗, P∗) = (U − U∗)T (
α∆tM1/2U∗ + ∆tMP∗

) ≥ 0. (4.14)

Similar to unconstrained problem the augmented Lagrange function is introduced [58]

L(Y,U, P, µa, µb) : =
∆t
2

(Y − Yd)TM1/2(Y − Yd) +
α∆t

2
UTM1/2U

+ PT ( − KY + ∆tMU + d
)

+ µT
a (Ua − U) + µT

b (U − Ub),

where µa and µb represent the Lagrange multipliers for the inequality constraints on the con-

trol variable defined as

µa :=
(
α∆tM1/2U∗ + ∆tMP∗

)+ and µb :=
(
α∆tM1/2U∗ + ∆tMP∗

)−.

We consider an extension of theorem in [58] about the optimality conditions to N time-steps.

Theorem 4.1.1 For an optimal solution (y∗, u∗), there exists Lagrange multipliers p, µa, and µb

such that

∇yL(y∗, u∗, p∗, µa, µb) = 0,

∇uL(y∗, u∗, p∗, µa, µb) = 0,

µa ≥ 0, µb ≥ 0,

µT
a (ua − u∗) = µT

b (u∗ − ub) = 0.

4.1.5.1 Active set method

The optimality system with the control constraints are solved usually with the active set meth-

ods. This method was introduced in [3]. For a detailed discussion of active set methods we
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refer [3, 58].

We define the following sets

A+ : = {i ∈ {1, . . . ,N} : (U∗ − µ)i > (Ub)i},

A− : = {i ∈ {1, . . . ,N} : (U∗ − µ)i < (Ua)i},

I : = {1, 2, . . . ,N}\(A+ ∪ A−).

Then, the optimality system [26] can be written as

∆tM1/2(Y∗ − Yd) − KT P∗ = 0,

−KY∗ +
∆t
2
M̃U∗ = d,

α∆tM1/2U∗ +
∆t
2
χIM̃P∗ = α∆tM1/2

(
χA−Ua + χA+

Ub
)
,

where χ denotes the characteristic function of the given set. The following algorithm consists

of the solution procedure of active set strategy applied to inequality constrained problem with

semi-implicit discretization.

Inequality constrained problem with active set strategy.

1. Solve


M 0 −KT

0 α∆tM1/2 ∆tχIM
−K ∆tM 0





Y

U

P


=



MYd

α∆tM1/2
(
χA−Ua + χA+

Ub
)

d + Q



2. Set A+ = {x ∈ Q : −α∆tM1/2Ua − ∆t
2 M̃P < 0}

3. Set A− = {x ∈ Q : −α∆tM1/2Ub − ∆t
2 M̃P > 0}

4. Set I = Q\(A+ ∪ A−).

It is similar for Crank-Nicolson scheme. We change just the matrix formulation.
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4.1.6 A priori error analysis of the control problem

Error analysis of optimal control problems has a recent history. Hinze and Tröltzsch provide

error estimations for optimization variables considering different discretization techniques

for control variable [21]. Maidner and Vexler examine a priori error analysis for optimal

control problems using discontinuous Galerkin methods in space and time [30, 31, 32]. In this

subsection, we first find error estimations for Burgers equation. Then we consider the discrete

adjoint and show the stability and convergence of adjoint state. Then, en error estimation

for control variable is given. At the end of subsection, we obtain error bounds for control

constrained problems.

4.1.6.1 Error analysis for the state equation

In this subsection, we shall show the stability and convergence for both semi-discretized and

fully discretized Burgers equation. We first let the control u = 0 to analyze Burgers equation.

We later find error estimates for control u.

Burgers equation equation with homogeneous Dirichlet boundary conditions follows

yt − νyxx + yyx = f in Q,

y(t, 0) = y(t, 1) = 0 on Σ,

y(0) = y0 in Ω.

(4.15)

Now we multiply both sides of the state equation (4.15) by a test function w ∈ H1
0(Ω) to get

(yt,w) + ν(yx,wx) + (yyx,w) = ( f ,w) ∀w ∈ H1
0(Ω) a.e. t ∈ [0, T ],

where (·, ·) is the inner product in L2(Ω). We assume y0(x) ∈ L∞(Ω) and f (x, t) ∈ L∞(Q). The

weak formulation follows

(yt,w) + ν(yx,wx) + (yyx,w) = ( f ,w) ∀w ∈ H1
0(Ω),

y(0, ·) = y0(x).

4.1.6.2 Semi-discretization

After selecting the space Sh ⊂ H1
0(Ω), we let yh(t) ∈ Sh satisfying

67



(yh
t ,w) + ν(yh

x,wx) + (yhyh
x,w) = ( f ,w) ∀w ∈ H1

0(Ω),

yh(0, ·) = y0h,
(4.16)

where |y0h|L∞(Ω) ≤ |y0|L∞(Ω).

We assume that the polynomials of degree ≤ p over any mesh have the following property

inf
χ∈Sh

{‖v − χ‖ + h‖∇(v − χ)‖} ≤ Chs‖v‖s (4.17)

for 1 ≤ s ≤ p + 1 = r and v ∈ Hs(Ω) ∪ H1
0(Ω), where ‖ · ‖s is the norm on Hs. Then, the

problem (4.16) has at least a solution [Lemma 4.3,p. 52 of [29]].

Theorem 4.1.2 (Stability) The approximate solution yh of (4.16) is stable. For any t > 0,

‖yh(t)‖2 + 2ν
∫ t

0
‖∇yh(τ‖2dτ ≤ ‖yh(0)‖2 + |

∫ t

0
( f , yh)|dτ

and

sup
0≤t≤T

‖yh‖ ≤ C( f , y0)

for a constant C that does not depend on h.

Proof. We take wh = yh in (4.16). Then

(yh
t , y

h) + ν(yh
x, y

h
x) + (yhyh

x, y
h) = ( f , yh)

⇒ 1
2

d
dt
‖yh‖2 + ν‖∇yh‖2 = ( f , yh).

We obtain the first result after taking integral from 0 to t. Taking supremum of each side and

applying Cauchy-Schwarz inequality on the right hand side gives the second result. ¥
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Theorem 4.1.3 (Convergence) Let yh and y be solutions of (4.16) and (4.15), respectively.

Then,

‖yh(t) − y(t)‖ ≤ C‖y0h − y0‖ + hr−1

with C = C(y).

Proof. For the purpose of the proof we introduce the Ritz projection P1 from H1
0(Ω) into Sh

as the orthogonal projection with respect to the inner product (vx, ux) so that :

(
(P1u)x,wx

)
=

(
ux,wx

) ∀w ∈ Sh.

This projection has the following properties ([54])

‖(P1v − v)x‖ ≤ C̄hs−1‖v‖s,

‖P1v − v‖ ≤ C̄hs‖v‖s,

for 1 ≤ s ≤ r and v ∈ Hs(Ω) ∩ H1
0(Ω).

Let

yh − y = (yh − P1y) + (P1y − y) = vh + ρ.

The second term is bounded by the properties of the projection P1,

‖ρ(t)‖ ≤ C1(y)hr and ‖ρx‖ ≤ C1(y)hr−1.

Then, it is enough to estimate vh. We note that

(vh
t ,w) + ν(vh

x,wx)

= (yh
t ,w) + ν(yh

x,wx) − (P − 1yt,w) − ν((P1y)x,wx)

= −(yhyh
x,w) − (P1yt,w) − ν(yx,wx)

= −(yhyh
x,w) − (P1yt,w) + (yt,w) + (yyx,w)

= (yyx − yhyh
x,w) + (yt − P1yt,w)

= −(ρt,w) + (y(y − yh)x − yh
x(y − yh),w).
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Let w = vh. Then, by Young’s inequality we get

1
2

d
dt
‖vh‖2 + ν‖vh

x‖2

= −(ρt, vh) + (y(y − yh)x − yh
x(y − yh), vh)

≤ ‖ρt‖‖vh‖ + |(y(y − yh)x, vh)| + |(yh
x(y − yh), vh)|

≤ Cε‖vh
x‖2 +

C
ε
‖ρt‖2 + |(y(y − yh)x, vh)| + |(yh

x(y − yh), vh)|,

and, yh − y = vh − ρ implies that

|(y(y − yh)x, vh)| ≤ |(yρx, vh)|︸    ︷︷    ︸
L1

+ |(yvh
x, v

h)|︸    ︷︷    ︸
L2

|(yh
x(y − yh), vh)| ≤ |yh

xρ, v
h)|︸   ︷︷   ︸

L3

+ |(yh
xvh, vh)|︸      ︷︷      ︸

L4

.

For a trilinear term defined by b(y, u, v) =
∫

Q yuxvdxdt the following estimates can be used

[11]:

|b(y, u, v)| ≤ C‖y‖1/2‖yx‖1/2‖ux‖‖v‖,

|b(y, y, v)| ≤ C‖yx‖3/2‖y‖1/2‖ux‖.

Then, by using Young’s inequality

L1 = |(yρx, vh)|

≤ C‖vh‖1/2‖vh
x‖1/2‖ρx‖‖y‖

≤ Cε1‖vh
x‖2 +

C
ε1
‖ρx‖2‖y‖2,

and,

L2 = |(yvh
x, v

h)|

≤ C‖vh‖1/2‖vh
x‖3/2‖y‖

≤ Cε2‖vh
x‖2 +

C
ε3

2

‖vh‖2‖y‖4.

Similarly, we obtain

L3 = |yh
xρ, v

h)|

≤ C‖ρx‖‖yh
x‖‖vh

x‖

≤ Cε3‖vh
x‖2 +

C
ε3
‖ρx‖2‖yh

x‖2.
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Writing yh = vh + P1y and using (yh
xyh, yh) = 0 give

((vh + P1y)xvh, vh) = (vh
xvh, vh) + ((P1y)xvh, vh)

= ((P1y)xvh, vh).

Using the definition of the projection operator P1 and letting w = P1y we get ‖(P1y)x‖ ≤
C‖yx‖. Then,

L4 ≤ C‖vh‖1/2‖vh
x‖3/2‖(P1y)x‖

≤ C‖vh‖1/2‖vh
x‖3/2‖yx‖

≤ Cε4‖vh
x‖2 +

C
ε3

4

‖vh‖2‖yx‖4.

It follows that

1
2

d
dt
‖vh‖2 + ν‖vh

x‖2

≤ Cε‖vh
x‖2 +

C
ε
‖ρt‖2 + L1 + L2 + L3 + L4

≤ Cε‖vh
x‖2 +

C
ε
‖ρt‖2 + Cε1‖vh

x‖2 +
C
ε1
‖ρx‖2‖y‖2 + Cε2‖vh

x‖2 +
C
ε3

2

‖vh‖2‖y‖4

+ Cε3‖vh
x‖2 +

C
ε3
‖ρx‖2‖yh

x‖2 + Cε4‖vh
x‖2 +

C
ε3

4

‖vh‖2‖yx‖4.

Letting ε = ε1 = ε2 = ε3 = ε4 = ν
5C gives

1
2

d
dt
‖vh‖2 ≤ C(ν)

{‖ρt‖2 + ‖ρx‖2(‖y‖2 + ‖yh
x‖2) + ‖vh‖2(‖y‖4

+ ‖yx‖4) + ‖ρ‖2 + ‖vh‖2‖yx‖4 + ‖yh
x‖2‖vh‖2}.

Integrating over [0, t], t ≤ T implies that

‖vh(t)‖2 ≤ ‖vh(0)‖2 + C(ν)
∫ t

0

{‖ρt‖2 + ‖ρx‖2(‖y‖2 + ‖yh
x‖2) + ‖vh‖2(‖y‖4

+ ‖yx‖4) + ‖ρ‖2}dτ.

Cauchy-Schwarz inequality and Theorem 4.1.2 give the following
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∫ T

0
‖ρx‖2(‖y‖2 + ‖yh

x‖2)dτ

≤ C‖ρx‖2L4(0,T ;L2(Ω))(‖y‖2L4(0,T ;L2(Ω)) + ‖yh
x‖2L4(0,T ;L2(Ω))).

By assumption y, yx ∈ L4(0,T ; L2(Ω)), Gronwall’s inequality, see Chapter 2, shows that

‖vh(t)‖2 ≤ C̄‖vh(0)‖2+C̄(ν)
∫ t

0

{‖ρt‖2 + ‖ρx‖2 + ‖ρ‖2}dτ.

Also,

‖vh(0)‖ ≤ ‖y0h − P1y(0)‖

≤ ‖y0h − y0‖ + ‖P1y(0) − y0‖

≤ ‖y0h − y(0)‖ + C̃hr‖y0‖r.

Thus,

‖vh(t)‖ ≤ C(‖y0h − y0‖ + hr−1),

which completes the proof.

¥

4.1.6.3 Fully discretization

We formulate two different fully discrete finite element schemes arising from Crank-Nicolson

and semi-implicit time approaches.

Similar to linearized Burgers equation in Chapter 3, Eq. (3.17), we can write the linear prob-

lem with homogenous Dirichlet boundary conditions as
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yt − νyxx + βyx + γy = f̃ in Q,

y = 0 on Σ,

y(0) = y0 in Ω.

Scheme 1 : (Crank-Nicolson method) Given Find yi
h ∈ Vh such that



1
∆t

(
yi+1

h − yi
h,wh

)
+ ν

2
(∇yi+1

h + ∇yi
h,∇wh

) − β
2
(
yi+1

h + yi
h,∇wh

)

+
γ
2
(
yi+1

h + yi
h,wh

)
= 1

2
(
f̃ (ti) + f̃ (ti+1),wh

)
,

y0
h = y0,h , for any wh ∈ Vh.

(4.18)

Scheme 2 : (Semi-implicit time approximation) For each i = 0, . . . ,N−1 evaluate the second

order term at the time level ti+1, whereas the remaining parts considered at the time tn. Find

yi
h such that



1
∆t

(
yi+1

h − yi
h,wh

)
+ ν

(∇yi+1
h ,∇wh

)
+

(
yi

h∇yi
h,wh

)
=

(
f (ti+1),wh

)
,

y0
h = y0,h , for any wh ∈ Vh.

(4.19)

We consider first Crank-Nicolson scheme. The error estimates are covered in [44] for the lin-

ear parabolic problems with Crank-Nicolson scheme. So that we refer to [44] for the proofs

of the stability and convergence results.

Theorem 4.1.4 (Stability of the Crank-Nicolson scheme) Let y0,h be given and n > 0. Then,

approximate solution of (4.18) is stable and satisfies

‖yn
h‖2 ≤ C

(‖y0,h‖2 +
T
2ν
‖ f ‖2L2(0,T ;Ω)

)
,

with a constant C independent of h and n

Theorem 4.1.5 (Convergence of the Crank-Nicolson scheme)
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Assume that y0 ∈ H1
0(Ω) and the solution to (3.11) is such that ∂y

∂t ∈ L2(0, T ; H1
0(Ω)) and

∂2y
∂t2 ∈ L2(0,T ; L2(Ω)). Then yn

h satisfies

‖yn
h − y(tn)‖2 ≤ ‖(I − P1)y(tn)‖2 + exp(C∗tn)

{
‖yh,0 − P1y0‖2

+
C
ν
‖(
∫ ti+1

tn
(I − P1)

∂y
∂t

(s)ds‖2 +
C(∆t)4

ν
‖
∫ ti+1

tn

∂3y
∂t3 (s)ds‖2

}
,

where C∗ and C only depend on ∇y and ν.

Remark. As a corollary of the Theorem we can state that the expected order of convergence

is O(h + k2).

Now, we shall obtain the stability and convergence of the semi-implicit scheme.

Theorem 4.1.6 (Stability of semi-implicit scheme) The solutions to Scheme 2 is uncondition-

ally stable and

‖yn
h‖2 ≤ C∗

(‖y0,h‖2 +
TC
2ν
‖ f ‖2L2(0,T ;Ω)

)
, (4.20)

where C and C∗ are constants independent of h,∆t and ν.

Proof.

Letting wh = yi+1
h gives

1
2∆t
‖yi+1

h ‖2 −
1

2∆t
‖yi

h‖2 +
1

2∆t
‖yi+1

h − yi
h‖2 + ν‖yi+1

h ‖2

= −(yi
h∇yi

h, y
i+1
h ) + ( f (ti+1), yi+1

h )

≤
∣∣∣(yi

h∇yi
h, y

i+1
h )

∣∣∣ +
∣∣∣( f (ti+1), yi+1

h )
∣∣∣.

Note that, using Young inequality implies

∣∣∣(yi
h∇yi

h, y
i+1
h )

∣∣∣ ≤ C
2ε
‖yi

h‖2‖∇yi
h‖2 +

ε

2
‖∇yi+1

h ‖2,
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and

∣∣∣( f (ti+1), yi+1
h )

∣∣∣ ≤ C
2ε
‖( f (ti+1)‖2 +

ε

2
‖∇yi+1

h ‖2.

It follows that

1
2∆t
‖yi+1

h ‖2−
1

2∆t
‖yi

h‖2 +
1

2∆t
‖yi+1

h − yi
h‖2 + ν‖yi+1

h ‖2

≤ C
2ε
‖yi

h‖2‖∇yi
h‖2 +

ε

2
‖∇yi+1

h ‖2 +
C
2ε
‖ f (ti+1)‖2 +

ε

2
‖∇yi+1

h ‖2.

Choosing ε = ν gives

1
2∆t
‖yi+1

h ‖2 −
1

2∆t
‖yi

h‖2 ≤
C
2ν
‖yi

h‖2‖∇yi
h‖2 +

C
2ν
‖( f (ti+1)‖2.

Let now m be a fixed index, 1 ≤ m ≤ N. Summing over n from 0 to m − 1, we find

‖ym
h ‖2 ≤ ‖y0,h‖2 +

C∆t
2ν

m−1∑

n=0

(
‖yi

h‖2‖∇yi
h‖2 +

∆tC
2ν
‖( f (ti+1)‖2

)
.

We use discrete Gronwall inequality to get

‖yn
h‖2 ≤

(
‖y0,h‖2 +

TC
2ν
‖ f ‖2L2(0,T ;Ω)

)
exp

(CT
2ν

m−1∑

n=0

‖∇yi
h‖2

)
.

We let C∗ = exp
(CT

2ν
∑m−1

n=0 ‖∇yi
h‖2

)
to get

‖yn
h‖2 ≤ C∗

(‖y0,h‖2 +
TC
2ν
‖ f ‖2L2(0,T ;Ω)

)
,

¥
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Theorem 4.1.7 (Convergence of semi-implicit scheme)

Assume that y0 ∈ H1
0(Ω) and the solution to (4.15) is such that ∂y

∂t ∈ L2(0,T ; H1
0(Ω)) and

∂2y
∂t2 ∈ L2(0,T ; L2(Ω)). Then, yn

h satisfies

‖yn
h−y(tn)‖2

≤ ‖(I − P1)y(tn)‖2 + exp(C∗tn)
{
‖yh,0 − P1y0‖2 +

C
ν
‖(
∫ ti+1

tn
(I − P1)

∂y
∂t

(s)ds‖2

+
C(∆t)2

ν
‖
∫ ti+1

tn

∂2y
∂t2 (s)ds‖2 +

(∆t)2C̃(∇y(ti))
ν

‖
∫ ti+1

tn

∂y
∂t

(s)ds‖2
}
,

where C∗ only depends on ∇y and ν.

Proof.

We define ei = yi
h − y(ti). Let ηi = yi

h − P1y(ti). Then, ei = ηi + P1y(ti) − y(ti). Since

‖P1y(ti) − y(ti)‖ ≤ Ch‖y(ti)‖,

ηi is bounded. We have

1
∆t

(ηi+1 − ηi,wh) + ν(∇ηi+1
h ,∇wh)

= − 1
∆t

(P1y(ti+1) − P1y(ti),wh) − ν(∇P1y(ti+1),∇wh) − (yi
h∇yi

h,wh) + ( f (ti+1),wh).

Also, we note that by definition of P1,

ν(∇(P1y(ti+1),∇wh) = ν(∇y(ti+1),∇wh)

= −(
∂

∂t
y(ti+1),wh) − (y(ti+1)∇y(ti+1),wh) + (u(ti+1),wh).

(4.21)

Then,

1
∆t

(ηi+1 − ηi,wh) + ν(∇ηi+1
h ,∇wh)

= − 1
∆t

(P1y(ti+1) − P1y(ti),wh) + (
∂

∂t
y(ti+1),wh) + (y(ti+1)∇y(ti+1),wh) − (yi

h∇yi
h,wh).

The first two terms of the right hand-side can be written as
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− 1
∆t

(P1(y(ti+1) − P1(y(ti),wh) + (
∂

∂t
y(ti+1),wh)

=
1
∆t

( ∫ ti+1

tn
(I − P1)

∂y
∂t

(s)ds,wh
)

+
(∂y
∂t

(ti+1) − y(ti+1) − y(ti)
∆t

,wh
)

=
1
∆t

( ∫ ti+1

tn
(I − P1)

∂y
∂t

(s)ds,wh
)

+ ∆t
( ∫ ti+1

tn

∂2y
∂t2 (s)ds,wh

)
.

Let wh = ηi+1. It follows that

1
2∆t
‖ηi+1‖2 − 1

2∆t
‖ηi‖2 + ν‖∇ηi+1

h ‖2

≤ 1
∆t

∣∣∣(
∫ ti+1

tn
(I − P1)

∂y
∂t

(s)ds, ηi+1)
∣∣∣ + ∆t

∣∣∣(
∫ ti+1

tn

∂2y
∂t2 (s)ds, ηi+1)

∣∣∣

+
∣∣∣(y(ti+1)∇y(ti+1) − yi

h∇yi
h, η

i+1)
∣∣∣.

Consider the term (y(ti+1)∇y(ti+1) − yi
h∇yi

h, η
i+1). Adding and subtracting terms yield

(y(ti+1)∇y(ti+1), ηi+1) − (yi
h∇yi

h, η
i+1)

= −1
2
(
y(ti+1)y(ti+1) − yi

hyi
h,∇ηi+1)

= −1
2
(
(y(ti+1) − y(ti))y(ti+1) + (y(ti) − yi

h)yi
h + y(ti)(y(ti+1) − yi

h),∇ηi+1).

Also,

(y(ti+1) − yi
h) = (y(ti+1) − y(ti) + y(ti) − yi

h).

Then, using the boundedness of ∇yi
h we get

∣∣∣(y(ti+1)∇y(ti+1), ηi+1) − (yi
h∇yi

h, η
i+1)

∣∣∣

≤ C‖∇ηi+1‖
(
‖∇y(ti+1)‖‖y(ti+1) − y(ti)‖ + ‖∇yi

h‖‖y(ti) − yi
h‖

+ ‖∇y(ti)‖‖y(ti+1) − y(ti)‖ + ‖∇y(ti)‖‖y(ti) − yi
h‖

)

≤ C(∇y(ti))‖∇ηi+1‖‖y(ti+1) − y(ti)‖ + C̄(∇y(yi))‖∇ηi+1‖ ‖y(ti) − yi
h‖︸       ︷︷       ︸

ηi

.

Now, using y(ti+1) − y(ti) = ∆t
∫ ti+1

tn
∂y
∂t (s)ds
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1
2∆t
‖ηi+1‖2 − 1

2∆t
‖ηi‖2 + ν‖∇ηi+1

h ‖2

≤ 1
∆t

∣∣∣(
∫ ti+1

tn
(I − P1)

∂y
∂t

(s)ds, ηi+1)
∣∣∣ + ∆t

∣∣∣(
∫ ti+1

tn

∂2y
∂t2 (s)ds, ηi+1)

∣∣∣

+ ∆tC(∇y(ti))‖∇ηi+1‖‖
∫ ti+1

tn

∂y
∂t

(s)ds‖ + C̄(∇y(ti))‖∇ηi+1‖ηi‖

≤ C
ν∆t
‖(
∫ ti+1

tn
(I − P1)

∂y
∂t

(s)ds‖2 +
ν

4
‖∇ηi+1‖2 +

C∆t
ν
‖
∫ ti+1

tn

∂2y
∂t2 (s)ds‖2 +

ν

4
‖∇ηi+1‖2

+
∆tC̃(∇y(ti))

ν
‖
∫ ti+1

tn

∂y
∂t

(s)ds‖2 +
ν

4
‖∇ηi+1‖2 +

C̄(∇y(ti))
ν

‖ηi‖2 +
ν

4
‖∇ηi+1‖2.

Then,

‖ηi+1‖2 − ‖ηi‖2 ≤ C
ν
‖(
∫ ti+1

tn
(I − P1)

∂y
∂t

(s)ds‖2 +
C(∆t)2

ν
‖
∫ ti+1

tn

∂2y
∂t2 (s)ds‖2

+
(∆t)2C̃(∇y(ti))

ν
‖
∫ ti+1

tn

∂y
∂t

(s)ds‖2 +
∆tC̄(∇y(ti))

ν
‖ηi‖2.

Summing over n from 0 to m − 1 and using discrete Gronwall inequality imply that

‖ηn‖2 ≤ ‖η0h‖2 + exp(C∗tn)
{C
ν
‖(
∫ ti+1

tn
(I − P1)

∂y
∂t

(s)ds‖2

+
C(∆t)2

ν
‖
∫ ti+1

tn

∂2y
∂t2 (s)ds‖2 +

(∆t)2C̃(∇y(ti))
ν

‖
∫ ti+1

tn

∂y
∂t

(s)ds‖2
}
.

¥

4.1.6.4 Error analysis for the control problem

We first obtain weak formulation of the discrete adjoint with respect to both time approaches.

We obtain error estimations for adjoint then.

4.1.6.5 Discrete adjoint and error estimates

In this subsection, the semi-implicit scheme is covered in detail and the results for the Crank-

Nicolson scheme are presented only.

78



The optimality conditions obtained in Eqn. (4.11) leads to an adjoint for each time step as:

(M + ∆tS )pi − Mpi+1 = ∆tM(yi − yd)

p(T ) = 0 for i = N, ..., 1.

This corresponds to a weak formulation following as



1
∆t

(
pi

h − pi+1
h ,wh

)
+ ν

(∇pi
h,∇wh

)
=

(
y(ti) − yd(ti),wh

)
,

pT
h = 0 , for any wh ∈ Vh.

(4.22)

Theorem 4.1.8 (Stability with respect to Semi-implicit scheme) The solution to (4.23) is sta-

ble and satisfies

‖pn
h‖2 ≤ C∗

(‖pT,h‖2 +
TC
2ν
‖ f ‖2L2(0,T ;Ω)

)
.

Proof. We let wh = pi
h. We perform the same strategy as in Theorem 3 and result follows.

¥

Now we find an error bound for adjoint variable.

Theorem 4.1.9 (Convergence for the semi-implicit scheme)

Assume that the solution to (4.23) is such that ∂p
∂t ∈ L2(0,T ; H1

0(Ω)) and
∂2 p
∂t2 ∈ L2(0, T ; L2(Ω)). Then pn

h, satisfies

‖pn
h − p(tn)‖2 ≤ ‖(I − P1)p(tn)‖2 + exp(T )

{C
ν
‖(
∫ tn

0
(I − P1)

∂y
∂t

(s)ds‖2

+
C(∆t)2

ν
‖
∫ tn

0

∂2 p
∂t2 (s)ds‖2 + (∆t)2‖y(ti)∇p(ti)‖2

}
,

where C∗ only depends on ∇y and ν.
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Proof. Since yn
h is stable then for simplicity let us consider the following weak formulation

1
∆t

(
pi

h − pi+1
h ,wh

)
+ ν

(∇pi
h,∇wh

)
=

(
f̃ ,wh

)

Following the same procedure as in the proof of convergence theorem of state equation, for

i = N, ..., 1 we get

1
∆t

(ηi − ηi+1,wh) + ν(∇ηi
h,∇wh)

= − 1
∆t

(P1 p(ti) − P1 p(ti+1),wh) − ν(∇P1 p(ti),∇wh) + ( f̃ (ti),wh).

Using the definition of P1 and continuous adjoint equation given by

p∗t + ν∆p∗ + y∗∇p∗ = yd − y∗ in Q,

p∗(t, 0) = p∗(t, 1) = 0 on Σ,

p∗(T ) = 0 in Ω.

It follows that

1
∆t

(ηi − ηi+1,wh) + ν(∇ηi
h,∇wh)

= − 1
∆t

(P1 p(ti) − P1 p(ti+1),wh) + (
∂

∂t
p(ti),wh) + (y(ti)∇p(ti),wh),

then,

1
2∆t
‖ηi‖2 − 1

2∆t
‖ηi+1‖2 +

1
2∆t
‖ηi − ηi+1‖2 + ν‖∇ηi

h‖2

≤ 1
∆t

∣∣∣(
∫ ti

ti+1
(I − P1)

∂p
∂t

(s)ds, ηi)
∣∣∣ + ∆t

∣∣∣(
∫ ti

ti+1

∂2 p
∂t2 (s)ds, ηi)

∣∣∣ +
∣∣∣(y(ti)∇p(ti), ηi)

∣∣∣.

Considering the term (y(ti)∇p(ti), ηi) gives

∣∣∣(y(ti)∇p(ti), ηi)
∣∣∣

=
∣∣∣(y(ti)∇p(ti), ηi − ηi+1 + ηi+1)

∣∣∣

≤
∣∣∣(y(ti)∇p(ti), ηi − ηi+1)

∣∣∣ +
∣∣∣(y(ti)∇p(ti)), ηi+1)

∣∣∣

≤ ∆t
2
‖y(ti)∇p(ti)‖2 +

1
2∆t
‖ηi − ηi+1‖2 +

∆t
2
‖y(ti)∇p(ti)‖2 +

1
2∆t
‖ηi+1‖2.

Then,
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‖ηi‖2 − ‖ηi+1‖2 + 2∆tν‖∇ηi
h‖2

≤ 2
∣∣∣(
∫ ti

ti+1
(I − P1)

∂p
∂t

(s)ds, ηi)
∣∣∣ + 2(∆t)2

∣∣∣(
∫ ti

ti+1

∂2 p
∂t2 (s)ds, ηi)

∣∣∣

+ (∆t)2‖y(ti)∇p(ti)‖2 + ‖ηi+1‖2.

Summing over N to 0 and using Gronwall’s lemma give

‖ηn‖2 ≤ ‖ηTh‖2 + exp(N)
{C
ν
‖(
∫ ti

ti+1

(I − P1)
∂y
∂t

(s)ds‖2

+
C(∆t)2

ν
‖
∫ ti

ti+1

∂2 p
∂t2 (s)ds‖2 + (∆t)2‖y(ti)∇p(ti)‖2

}
.

¥

Remark. As a corollary of the Theorem we can state that the expected order of convergence

is O(h + k).

Similar to semi-implicit scheme, we can derive the stability and convergence results of dis-

crete adjoint obtained from the control problem with Crank-Nicolson time scheme.

We consider the continuous adjoint equation

p∗t + ν∆p∗ + β∇p∗ = yd − y∗ in Q,

p∗(t, 0) = p∗(t, 1) = 0 on Σ,

p∗(T ) = 0 in Ω.

Then, the weak formulation follows as


1
∆t

(
pi

h − pi+1
h ,wh

)
+ ν

(∇pi
h,∇wh

)
+ β

(∇p,wh
)

=
(
yi

h − yd,wh
)
,

pT
h = 0 , for any wh ∈ Vh.

(4.23)

Note that Crank-Nicolson scheme applied to above formulation satisfies the stability result as

in Theorem 4.1.4 and convergence follows from [Theorem 11.3.2, [44]].
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Theorem 4.1.10 (Stability for the Crank-Nicolson scheme) Let pT,h be given. The solution to

(4.23) is stable and satisfies

‖pn
h‖2 ≤ C

(‖pT,h‖2 +
T
ν
‖ f ‖2L2(0,T ;Ω)

)
,

where C is a constant independent of h,∆t and ν.

Theorem 4.1.11 (Convergence for the Crank-Nicolson scheme)

Assume that the solution to (4.23) is such that ∂p
∂t ∈ L2(0,T ; H1

0(Ω)) and
∂2 p
∂t2 ∈ L2(0, T ; L2(Ω)). Then pn

h satisfies

‖pn
h − p(tn)‖2

≤ ‖(I − P1)p(tn)‖2 + exp(C∗tn).
{
‖ph,T − P1 pT ‖2

+
C
ν
‖(
∫ tn

0
(I − P1)

∂p
∂t

(s)ds‖2 +
C(∆t)4

ν
‖
∫ tn

0

∂3 p
∂t3 (s)ds‖2

}}
,

where C∗ only depends on ∇y and ν.

4.1.6.6 Error in the control variable

In this section, we find an error estimate for the control variable. Actually the error analysis

of control variable is related to adjoint equation. The following theorem shows this relation.

Theorem 4.1.12 The solutions to continuous and discretized control problem satisfy

‖ū − ūn
h‖ ≤

1
α
‖p − pn

h‖ + ‖ū − P1ū‖. (4.24)

In order to prove the Theorem 4.1.12, we need some results related to the cost function. We

recall the continuous cost function

J(y, u) =
1
2
‖y − yd‖2Q +

α

2
‖u‖2Q .

82



The reduced cost function can be stated as

j(u) = J(S (u), u),

where S is the solution operator as defined in chapter 1. The derivative of the reduced cost

function can be stated as

j′(u)(δu) = (p, δu) + α(u, δu),

where p corresponds to the adjoint variable. The necessary and sufficient optimality condi-

tions read as

j′(ū)(δu − ū) ≥ 0 ∀δu ∈ Q, (4.25)

and

j′′(u)(δu, δu) ≥ α‖δu‖2 ∀δu ∈ Q, (4.26)

where ū is the optimal solution.

We can derive similar results for the discretized problem. We assume that S hn is the discrete

solution operator between control and state variables. We let jhn(un
h) = Jhn(S hn(un

h), un
h). Then,

the optimality conditions give

j′hn(ūn
h)(δun

h − ūn
h) ≥ 0 ∀δun

h ∈ Vh (4.27)

and

j′′hn(un
h)(δun

h, δu
n
h) ≥ α‖δun

h‖2 ∀δun
h ∈ Vh. (4.28)

Lemma 4.1.13 The error between the solutions of the continuous and discretized control

problem satisfies

‖ j′(u)(r) − j′hn(u)(r)‖ ≤ ‖p(u) − pn
h(u)‖‖r‖ for u, r ∈ Q.
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Proof. Since

j′(u)(r) = (p(u), r) + α(u, r) and j′hn(u)(r) = (pn
h(u), r) + α(u, r)

implies directly

‖ j′(u)(r) − j′hn(u)(r)‖ = ‖(p(u) − pn
h(u), r)‖ ≤ ‖p(u) − pn

h(u)‖‖r‖.

¥

Lemma 4.1.14 Let u be a given control. The error between the continuous state y and the

discrete state yn
h can be estimated as:

For semi-implicit scheme

‖y − yn
h‖ ≤ C(∆t)1/2‖u − q‖ + O(h + ∆t),

where q ∈ Q and O denotes the order.

Similarly, for Crank-Nicolson scheme

‖y − yn
h‖ ≤ C(∆t)1/2‖u − q‖ + O(h + (∆t)2)).

Proof.

We take u instead of f in the Eq. (3.11) and q in the place of f (ti+1) in (4.19). Then we have

additional terms to Theorem 2.2. Proceeding the same steps gives the desired result. It is

obtained similarly for Crank-Nicolson scheme.

¥

Lemma 4.1.15 Let q be a given control. The error between the continuous adjoint state p

and the discrete adjoint state pn
h can be estimated as:
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For semi-implicit scheme

‖p − pn
h‖ ≤ C∆t‖u − q‖ + O(h + ∆t),

where q ∈ Q and O denotes the order and C is independent of h and ∆t.

Similarly, for Crank-Nicolson scheme

‖p − pn
h‖ ≤ C∆t‖u − q‖ + O(h + (∆t)2).

Proof. The same procedure holds as in the proof of Lemma 4.1.15 ¥

We now come to proof of the Theorem 4.1.12. Let ū and ūn
h be the optimal solutions to discrete

and continuous control problems, respectively. For an arbitrary q we write

ū − ūn
h = ū − q + q − ūn

h.

From (4.28)

α‖q − ūn
h‖2 ≤ j′′hn(q)(q − ūn

h, q − ūn
h) = j′hn(ū)(qn

h − ūn
h) − j′hn(ūn

h)(qn
h − ūn

h).

From optimality we have

j′hn(ūn
h)(qn

h − ūn
h) = 0 = j′(ū)(qn

h − ūn
h). (4.29)

Then,

α‖qn
h − ūn

h‖2 ≤ j′hn(ū)(qn
h − ūn

h) − j′(ū)(qn
h − ūn

h)

≤ ‖p(ū) − pn
h(ū)‖‖qn

h − ūn
h‖.

Finally, ‖qn
h − ūn

h‖ ≤ 1
α‖p(ū) − pn

h(ū)‖. We let q = P1(ū) and use Lemma 4.1.13 to get the

desired result.
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Corollary 4.1.16 The solutions to continuous and discretized control problem satisfy the fol-

lowing estimations:

For the semi-implicit scheme

‖ū − ūn
h‖ ≤ O(h + h∆t + ∆t),

and for the Crank-Nicolson scheme

‖ū − ūn
h‖ ≤ O(h + h∆t + (∆t)2).

Proof. This corollary is a result of the projection P1 property and Lemma 4.1.15. ¥

4.1.7 Error analysis for the control constrained problem

In this section, we provide an error estimate for the control constrained case. Since (4.29)

does not hold any more, we can not use the same argument as in the unconstrained problem.

We recall that there exists an additional constraint as

ua(t, x) ≤ u(t, x) ≤ ub(t, x) in Q. (4.30)

This condition leads to a variational inequality as

j′(ū)(u − ū) ≥ 0 for all u ∈ Uad,

where j(u) is represented as

min J(y, u)↔ min j(u).

It is known that the inequality above is equivalent to

ū = ΠQad

(
− 1
α

p̄
)
, (4.31)
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where ΠQad (t, x) := max(ua,min(ub, r(t, x))) is the projection into the admissible space Qad.

As in the continuous case we can deduce a projection formula as

ūn
h = ΠQad

(
− 1
α

p̄n
h

)
.

This projection ΠQad satisfies the regularity properties

∥∥∥∥∥ΠQad

(
− 1
α

p̄
)
− ΠQad

(
− 1
α

p̄n
h

)∥∥∥∥∥
L(Q)
≤ 1
α
‖p̄ − p̄n

h‖L2(Q). (4.32)

Theorem 4.1.17 Let ū and ūn
h be the solutions to continuous and discrete optimal control

problems respectively. Then

‖ū − ūn
h‖ ≤

1
α
‖p̄ − p̄n

h‖,

where p̄ and p̄n
h are the corresponding continuous and discrete adjoint state variables, respec-

tively.

Proof.

This proof is a simple result of (4.31) and (4.32). ¥

4.1.8 Numerical examples for the distributed control problems

We carried out some numerical tests for both unconstrained and control constrained control

problems of Burgers equation. Because the exact solution of the optimal control problems are

unknown, we have used the cost function to show the convergence of the numerical solutions.

Run 4.1. (Distributed unconstrained problem) As a numerical example we have chosen the

following optimal control problem in [13] with the parameters α = 0.05, ν = 0.01, f = 0,

with the desired state yd(t, x) = y0 and with the initial condition

y0 =


1 in

(
0, 1

2

]
,

0 otherwise.

We use both direct solver and MINRES to solve control problem. We present the direct

solver results in the following table because both solvers give the same result. In Table 1 we
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compare the numerical results of Crank-Nicolson (CN) and semi-implicit (SI) schemes for a

fixed space mesh ∆x = 2−7. Let Jhk be computed value at the corresponding ∆x = h and

∆t = k. The order of convergence of both schemes are as expected. When ∆t → 0, the order

of the CN scheme is around two, whereas the order of the SI scheme is one, as predicted by

the a priori error estimates.

Table 4.1: Unconstrained distributed control problem with a fixed ∆x = 2−7

∆t ‖Jhk‖ ‖Jhk − Jh(k+1)‖ Observed order
CN(SI) CN(SI) CN(SI)

2−4 6.153e-2(7.062e-2) - -
2−5 6.701e-2 (6.892e-2) 5.486e-4(1.706e-3) -
2−6 6.900e-2(6.960e-2) 1.989e-4(6.794e-4) 1.46(1.32)
2−7 6.976e-2(6.999e-2) 7.579e-5(3.992e-4) 1.40(0.76)
2−8 6.999e-2( 7.019e-2) 2.323e-5(1.916e-4) 1.70(1.05)

Now we fix ∆t at 2−7 in order to see the order of convergence for space variable. As we expect

we have first order convergency in space.

Table 4.2: Unconstrained distributed control problem with a fixed ∆t = 2−7

∆t ‖Jhk‖ ‖Jhk − J(h+1)k‖ Observed order
CN(SI) CN(SI) CN(SI)

2−3 6.983e-2(5.210e-2) - -
2−5 7.266e-2 (6.390e-2) 2.830e-3(8.880e-3) -
2−5 7.139e-2(6.744e-2) 1.273e-3(3.540e-3) 1.15(1.12)
2−6 7.061e-2(6.901e-2) 7.830e-4(1.570e-3) 0.70(1.38)
2−7 7.023e-2( 6.999e-2) 3.753e-4(9.840e-4) 1.06(0.67)

The mesh independence concept was discussed in Chapter 3. When we store the iteration

numbers corresponding to the a given tolerance we see the mesh independence in Table 4.3.

These numbers result from the necessary iteration for convergence of the nonlinear problem.

We fix ∆t = 2−6. We give the Crank-Nicolson results in Table 4.3.

We present the CPU times for an iterative solver MINRES in Figure 4.1. We compare the

CPU times of CN and SI for MINRES with respect to various mesh size. As expected CPU

time for CN is much more than for SI. This is a result of that the system matrix for CN scheme

is updated at every iteration, whereas it is constant for SI scheme.
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Table 4.3: Mesh independence for Run 4.1

tol/∆x 2−4 2−5 2−6 2−7

1e-5 9 9 9 9
1e-6 11 11 11 11
1e-7 13 13 13 13
1e-8 14 14 14 15
1e-9 15 16 16 16
1e-10 17 18 18 18
1e-11 18 19 20 20

The difference of iteration numbers between two consecutive mesh sizes is at most 1 for
varying convergence criteria

We present the graphical interpretation for direct solver, which are similar to the results in

[13], in Figure 3. We have the same results for MINRES. Optimal state, adjoint state and

control solutions are given.

Run 4.2. (Distributed control constrained problem) We choose the problem in [57]. We

consider the same space as in example of unconstrained problem. We let ν = 0.01, α = 0.0175

and y0 = 0. As a desired function we choose

We compare the CN and SI for the control constrained problem. Table 4.4 also compares the

order of convergence of both schemes.
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Figure 4.1: The full line and dotted line correspond to Crank-Nicolson and semi-implicit
schemes, respectively

Table 4.4: Distributed control constrained problem with a fixed ∆x = 2−7

∆t ‖Jhk‖ ‖Jhk − Jh(k+1)‖ Observed order
CN(SI) CN(SI) CN(SI)

2−4 1.212e-1(1.186e-1) - -
2−5 1.161e-1 (1.149e-1) 5.170e-4(3.706e-4) -
2−6 1.142e-1(1.125e-1) 1.900e-4(2.410e-4) 1.44(0.62)
2−7 1.096e-1(1.089e-1) 4.700e-4(3.529e-4) 1.30(0.90)
2−8 1.083e-1( 1.067e-1) 1.130e-4(2.209e-5) 1.85(1.03)
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We now give the observed order for space variable in the Table 4.5. We let ∆t = 2−7 to see

the expected space order which is 1.

Table 4.5: Constrained distributed control problem with a fixed ∆t = 2−7

∆t ‖Jhk‖ ‖Jhk − J(h+1)k‖ Observed order
CN(SI) CN(SI) CN(SI)

2−3 9.635e-2(9.634e-2) - -
2−5 1.027e-1 (1.013e-1) 2.521e-3(2.605e-3) -
2−5 1.056e-1(1.040e-1) 1.476e-3(1.464e-3) 0.84(0.83)
2−6 1.071e-1(1.055e-1) 2.877e-3(2.754e-3) 0.96(0.91)
2−7 1.096e-1( 1.081e-1) 6.414e-3(4.988e-3) 1.15(0.85)

The Table 4.6. shows the mesh independence for Crank-Nicolson scheme. Similar results are

obtained for semi-implicit method.

We present the state and adjoint variables in the following figures. The results are similar to

the results in [57].
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Table 4.6: Mesh independence for Run 4.2

∆xmax 2−4 2−5 2−6 2−7

tol=1e-5 9 6 7 6
tol=1e-6 - 7 7 7
tol=1e-7 - 7 7 7
tol=1e-8 - 7 7 7
tol=1e-9 - 8 8 7

tol=1e-10 - 8 8 8
tol=1e-11 - 9 9 9

4.2 Boundary control problem

We consider the unconstrained and control constrained boundary control problems.

4.2.1 Space-discretization for the linearized state equation

We use the same finite element discretization as in the distributed control problem. The dif-

ference occurs at the control variables, as they are not discretized. We use the vector valued

variables defined in the previous subsection. It follows that

Myt + S y + C(ȳ)y = q(ȳ) + fh(u, v), (4.33)

where

fh(u, v) :=



−u(t) − σ1y(1, t)

0
...

0

v(t) − σ2y(nx + 1, t)



.

Defining the vectors v = (0, . . . , 0, v(t)) and u = (u(t), 0, . . . , 0) give the semi-discrete control

problem as

min Jh =

∫ T

0

1
2

(y − yd)T M(y − yd)dt +

∫ T

0
βu |u|2 + βv |v|2 dt (4.34)
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s.t. Myt + S y + C(ȳ)y = q(ȳ) + fh(u, v),

y(0) = y0.

4.2.2 Crank-Nicolson scheme for the linearized problem

We define V := (v1, . . . , vN) for N time-steps. Similarly we get

KY +
∆t
2
L̃1U − ∆t

2
L̃2V = Q +



( − M + ∆t
2 S + ∆t

2 C(ȳ0)
)
y0

0
...

0



,

with

L1 :=



L1

L1 L1

. . .
. . .

L1 L1

L1 L1



and L2 :=



L2

L2 L2

. . .
. . .

L2 L2

L2 L2



,

where

L1 :=



1 0 . . . 0

0 0
...

. . .

0 0



, L2 :=



0 . . . 0
...

. . .

0 0

0 0 1



.

After time integration the fully discrete control problem is obtained by

min
u1,...,uN

N∑

i=0

∆ti + ∆ti+1

2

(
1
2

(y − yd)T M(y − yd) + βu |u|2 + βv |v|2
)
, (4.35)

with the discrete state equation

KY +
∆t
2
L̃1U − ∆t

2
L̃2V = Q + d.
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Then the discrete control problem can be stated as

min Jh(Y,U,V) =
∆t
2

(Y − Yd)TM1/2(Y − Yd) +
βu∆t

2
UTL1U +

βv∆t
2

VTL2V.

In a similar way, the optimality conditions for the Lagrangian can be stated as

∇Y L(Y∗,U∗,V∗, P∗) = ∆tM1/2(Y∗ − Yd) − KT P∗ = 0,

and,

∇PL(Y∗,U∗,V∗, P∗) = −KY∗ + ∆tL2V∗ − ∆tL1U∗ + Q + d = 0,

with the gradient equations

βu∆tL1U∗ − ∆tL1P∗ = 0,

and

βv∆tL2V∗ + ∆tL2P∗ = 0.

The optimality system can be written as



∆tM 0 0 −KT

0 βv∆tL2 0 ∆t
2 L2

0 0 βu∆tL1 −∆t
2 L1

−K ∆t
2 L2 −∆t

2 L1 0





Y

V

U

P



=



M1/2Yd

0

0

Q + d



. (4.36)

4.2.3 Space-discretization for the nonlinear state equation

The semi-discrete control problem follows

min Jh =

∫ T

0

1
2

(y − yd)T M(y − yd)dt +

∫ T

0
βu |u|2 + βv |v|2 dt (4.37)

s.t. Myt + S y + q(y) = fh(u, v),

y(0) = y0.
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4.2.4 Semi-implicit scheme

Using semi-implicit time approximation the following scheme can be obtained as:



Z

−M Z
. . .

. . .

−M Z


︸                        ︷︷                        ︸

K̃

Y + ∆tL̃1U − ∆tL̃2V = Q̃ + d̃,

where Z = M + ∆tA, L̃1 = blockdiag{L1, . . . , L1} and L̃2 = blockdiag{L2, . . . , L2}

with

d̃ =



−My0 + ∆tq(ȳ0)

0
...

0



The discrete control problem follows as

min
u1,...,uN

N+1∑

i=0

∆ti + ∆ti+1

2

(
1
2

(y − yd)T M(y − yd) +

∫ T

0
βu |u|2 + βv |v|2

)
. (4.38)

Using the optimality conditions, the optimality system follows



∆tM̃ 0 0 −K̃T

0 βv∆tL̃2 0 ∆tL̃2

0 0 βu∆tL̃1 −∆tL̃1

−K̃ ∆tL̃2 −∆tL̃1 0





Y

V

U

P



=



MYd

0

0

Q̃ + d̃



. (4.39)

4.2.5 Implementation

As we discussed in the previous subsection the system matrices arising from Crank-Nicolson

and semi-implicit time approximation schemes for boundary control problem correspond to a

saddle point system. Indeed, for the discrete problem we let
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We can choose E :=



M 0 0

0 βv∆tL1 0

0 0 βv∆tL2


. Also defining

x :=



Y

V

U

P



, L :=
(
−K ∆tL1 ∆tL2

)
and b :=



M1/2Yd

0

0

Q + d



.

It follows that 
E LT

L 0


︸       ︷︷       ︸

A

x = b.

4.2.5.1 Direct solver

We present he solution algorithm for Crank-Nicolson scheme, it is similar for the semi-

implicit scheme.

(All-at-once method with the Crank-Nicolson scheme)

1. Given U0, V0, Y0, and tol > 0. Set k = 0

2. Set done = in f

3. While done > tol

3.1. Set k = k + 1

3.2. Compute K

3.3. By using LU decomposition solve


∆tM 0 0 −KT

0 βv∆tL2 0 ∆t
2 L2

0 0 βu∆tL1 −∆t
2 L1

−K ∆t
2 L2 −∆t

2 L1 0





Y

V

U

P



=



M1/2Yd

0

0

Q + d



3.4. Set done = ‖Yk+1 − Yk‖ + ‖Pk+1 − Pk‖ + ‖Uk+1 − Uk‖
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4. End while.

4.2.5.2 Iterative solver

We propose the following preconditioner

P =



∆tM 0 0 0

0 βv∆tL̄2 0 0

0 0 βv∆tL̄1 0

0 0 0 S



with S −1 := K−TMK−1, and

L̄1 :=



L̄1

L̄1 L̄1

. . .
. . .

L̄1 L̄1

L̄1 L̄1



and L̄2 :=



L̄2

L̄2 L̄2

. . .
. . .

L̄2 L̄2

L̄2 L̄2



,

where

L̄1 :=



1 0 . . . 0

0 σ
...

. . .

0 σ



, L̄2 :=



σ . . . 0
...

. . .

σ 0

0 0 1



.

We note that we choose σ as a very small number in order to preserve consistency.

4.2.6 Control constrained problem

We can obtain the optimality conditions in a similar way. We introduce the following param-

eters

µa :=
(
βu∆tL1U∗ + ∆tL1P∗

)+ and µb :=
(
βu∆tL1U∗ + ∆tL1P∗

)−
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ηa :=
(
βv∆tL2V∗ + ∆tL2P∗

)+ and ηb :=
(
βv∆tL2V∗ + ∆tL2P∗

)−

with η = ηa − ηb. Then

Then the implementation of the constrained problem can be given as

Inequality constrained problem.

1. Solve


M 0 0 −KT

0 βv∆tL2 0 ∆t
2 χĨM

0 0 βu∆tL1
∆t
2 χIM

−K ∆t
2 L2

∆t
2 L1 0





Y

V

U

P



=



M1/2Yd

βv∆tL2
(
χÃ−Va + χÃ+

Vb
)

βu∆tL1
(
χA−Ua + χA+

Ub
)

Q + d



2. Set A+ = {x ∈ Q : −βu∆tL1Ua − ∆t
2 L1P < 0}

3. Set A− = {x ∈ Q : −βu∆tL1Ub − ∆t
2 L1P > 0}

4. Set Ã+ = {x ∈ Q : −βv∆tL2Va − ∆t
2 L2P < 0}

5. Set Ã− = {x ∈ Q : −βv∆tL2Vb − ∆t
2 L2P > 0}

6. Set I = Q\(A+ ∪ A−) and Ĩ = Q\(Ã+∪̃A−)

4.2.7 Numerical examples for the boundary control problem

Run 4.3. (Unconstrained problem) Let Q = (0, 1) × (0, 1). We consider a Neumann-type

boundary control problem with βu = 0.01, βv = 0.01, σ0 = σ1 = 0. The viscosity parameter

is ν = 0.1. The initial condition is taken as y0(·, 0) = x2(1 − x)2 and the desired state is

yd(x, t) = y0(·, 0).
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Let the desired state yd = 0.035.

We compare the numerical results of Crank-Nicolson (CN) and semi-implicit (SI) schemes

for a fixed space mesh ∆x = 2−7 and with fixed ∆t = 2−7.

Table 4.7: Mesh independence for Run 4.3

tol/∆xmax 2−4 2−5 2−6 2−7

1e-5 2 2 2 2
1e-6 2 2 2 2
1e-7 2 2 2 2
1e-8 2 2 2 2
1e-9 2 2 2 2
1e-10 3 2 2 2
1e-11 3 3 3 3

We give the inner iteration number of MINRES with Crank-Nicolson scheme with respect to

given mesh sizes in the Table 4.7.

Table 4.8: Inner iteration numbers for MINRES of Run 4.3

∆x 2−4 2−5 2−6 2−7

# of iteration 36 35 34 34

We present the graphical interpretation, which are similar to the results in [67], in Figure 4.5.

Optimal state and control solutions are also presented.

Run 4.4 (Control constrained problem) We solve the boundary control problem in [70], Run

8.1, pp.24. The same space-time domain is used as in above example. We consider a Robin-

type boundary control problem with βu = 0.05, βv = 0.01, σ0 = −0.1, σ1 = 0. The viscosity

parameter is ν = 0.05. The initial condition is given by

y0(·, 0) =


1 in

(
0, 1

2

]
,

0 otherwise.

101



0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.02

0.04

0.06

t

Optimal state

x

0 0.2 0.4 0.6 0.8 1
−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01
Control u

t

Figure 4.5: Unconstrained problem.
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The desired state is yQ(x, t) = y0(·, 0). The bounds for the unilaterally constraint pointwise

control constraints are:

ua(t) =



−0.2 in [0, 0.5] ,

−0.1 + 5(t − 0.52) in [0.5, 0.52] ,

−0.1 in [0.52, 1] .

and

ub = 0, va = −0.25, vb = 0.

Due to the less regularity in boundary control problem comparing to distributed control prob-

lem, direct solver does not converge for the mesh size bigger then ∆x = 2−6. We present the

MINRES with Crank-Nicolson results. First we cover the iteration numbers in Table 4.9. As

discussed before the mesh independence can be seen from the table.

Table 4.9: Mesh independence for Run 4.4

tol/∆xmax 2−4 2−5 2−6 2−7

1e-5 6 5 5 5
1e-6 7 6 6 6
1e-7 8 6 6 7
1e-8 9 7 7 8
1e-9 9 8 7 8
1e-10 10 9 8 8
1e-11 10 9 8 8

We also point out the inner iteration numbers for MINRES solver. Because of nonlinearity

MINRES performs unless the convergence criteria is satisfied. We give the inner number of

iterations in the Table 4.10. We remark that for a given mesh size, until convergence criteria

is satisfied for the nonlinear problem, the inner iteration number is the same MINRES.

Table 4.10: Inner iteration numbers for MINRES of Run 4.4

∆x 2−4 2−5 2−6 2−7

# of iteration 70 64 65 56

The numerical solutions are presented in Figure 4.6. When we compare the obtained results

of [70] which are very similar.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

In this thesis, we have discussed optimal control problems of unsteady Burgers equations us-

ing two both optimize-then-discretize and discretize-then-optimize approaches. We first cov-

ered some related functional preliminaries and existence and uniqueness results for Burgers

equation in Chapter 2. We summarized well-known results for both distributed and boundary

control problems of Burgers equation. We obtained optimality systems for both unconstrained

and control constrained problems. In order to solve optimization problem, a classical method,

gradient method, was given. Implementation of control constraints is done by using active set

strategy.

The main issue of the work at hand was the application of all-at-once type method to control

problems of unsteady Burgers equation in Chapter 3 and 4. In Chapter 3, one-step method

was used after applying optimize-then-discretize. First the nonlinear problem control prob-

lem is linearized and then first order optimality conditions are obtained. Instead of solving

a parabolic problem, the system of equations were transformed to an elliptic system. Both

distributed and boundary control problems were investigated. Then, solution algorithm were

constructed by space-time discretization which pretends time as a space variable. Using an ef-

ficient simulation environment, COMSOL Multiphysics, the numerical results were obtained.

We followed discretize-then-optimize approach in Chapter 4. It is the first time that by follow-

ing discretize-then-optimize approach, all-at-once method for control problems of unsteady

Burgers equation was investigated. We focused on the discretization issue. Standard Galerkin

method was applied to control problem for space discretization. As for time approach, we

considered two different methods: Crank-Nicolson and semi implicit time schemes. Our aim

was to obtain a problem Ax = b, where A is a symmetric matrix. To get a symmetric system

105



we had to linearize the control problem when using Crank-Nicolson scheme. After obtaining

the fully discrete problem, we transformed the systems of equations arising from time itera-

tions into a matrix formulation. By pretending the state and control variables as independent

optimization variables, we obtained the solution algorithms. Moreover, we provided an a pri-

ori error estimation for the distributed control problem. We verified the expected convergence

orders for space and time approximations.

Distributed control problem with optimize-then-discretize approach was developed in paper

[71]. We submitted a paper concerning boundary control problem of Burgers equation. We

have two more papers in preparation concerning all-at-once approach.

As for future work, All-at-once type method with discontinuous Galerkin methods for space

and time in order to solve control problems of Burgers equation will be considered. Error

analysis for boundary control problem may be handled.

Efficient solution of optimal control problems with two dimensional Burgers equation using

the all-at-once approach is also in our agenda.
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