
i

DEVELOPMENT OF FREE/LIBRE AND OPEN SOURCE SPATIAL DATA
ANALYSIS SYSTEM FULLY COUPLED WITH GEOGRAPHIC

INFORMATION SYSTEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

VOLKAN OSMAN KEPOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

GEODETIC AND GEOGRAPHIC INFORMATION TECHNOLOGIES

MARCH 2011

ii

Approval of the thesis:

DEVELOPMENT OF FREE/LIBRE AND OPEN SOURCE SPATIAL DATA
ANALYSIS SYSTEM FULLY COUPLED WITH GEOGRAPHIC INFORMATION

SYSTEM

Submitted by VOLKAN OSMAN KEPOĞLU in partial fulfilment of the requirements
for the degree of Doctor of Philosophy in Geodetic and Geographic Information
Technologies Department, Middle East Technical University by,

Prof. Dr. Canan Özgen ____________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Vedat Toprak ____________________
Head of Department, Geodetic and Geographic Information Technologies

Prof. Dr. ġebnem Düzgün ______________________
Supervisor, Mining Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Oğuz IĢık ______________________
City and Regional Planning Dept., METU

Prof. Dr. ġebnem Düzgün ______________________
Mining Engineering Dept., METU

Assoc. Prof. Dr. Ahmet CoĢar ______________________
Computer Engineering Dept., METU

Assoc. Prof. Dr. Nurunnisa Usul ______________________
Civil Engineering Dept., METU

Assoc. Prof. Dr. Çiğdem Varol ______________________
City and Regional Planning Dept., Gazi University

Date: _____31 / 03 / 2011_____

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name: Volkan Osman Kepoğlu

 Signature :

iv

ABSTRACT

DEVELOPMENT OF FREE/LIBRE AND OPEN SOURCE SPATIAL DATA

ANALYSIS SYSTEM FULLY COUPLED WITH GEOGRAPHIC INFORMATION

SYSTEM

Kepoğlu, Volkan Osman

Ph.D., Department of Geodetic and Geographic Information Technologies

Supervisor: Prof. Dr. ġebnem Düzgün

March 2011, 220 pages

Spatial Data Analysis (SDA) is relatively narrower and constitutes one of the areas

of Spatial Analysis. Geographic Information System (GIS) offers a potentially

valuable platform for supporting SDA techniques. Integration of SDA with GIS helps

SDA to benefit from the data input, storage, retrieval, data manipulation and display

capabilities of GIS. Also, GIS can benefit from SDA techniques in which the

integration of these techniques can increase the analysis capabilities of GIS. This

integration serves for disseminating and facilitating improved understanding of

spatial phenomena.

How SDA techniques should be integrated with GIS arise the coupling problem. The

complete integration of SDA techniques in GIS can be applied without the support of

GIS vendor when the free/libre and open source software (FLOSS) development

methodology is properly followed. This approach causes to interpret the coupling

problem in a new way. This thesis aims to develop a fully coupled SDA with GIS in

FLOSS environment. A fully coupled SDA in free GIS software as FLOSS system is

developed by writing nearly 13,000 line Python code in 2.5 years. Usage of this

system has reached to nearly 1600 unique visitors, 3000 visits and 8600 page views

in two years.

v

As the current status of development in GIS is considered, it is unlikely in

commercial market to have full coupled SDA techniques in GIS software. However, it

is expected to have more SDA developments in proprietary GIS software in the near

future as there is an increasing trend for requesting more sophisticated SDA tools.

Keywords: GIS, Spatial Data Analysis, Free Software, Open Source Development

vi

ÖZ

COĞRAFİ BİLGİ SİSTEMİ İLE ENTEGRE ÖZGÜR VE AÇIK KAYNAK KODLU

MEKANSAL VERİ ANALİZ SİSTEMİNİN GELİŞTİRİLMESİ

Kepoğlu, Volkan Osman

Doktora Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü

Tez Yöneticisi: Prof. Dr. ġebnem Düzgün

Mart 2011, 220 sayfa

Mekansal Veri Analizi (MVA) mekansal analiz alanına göre daha dar bir alandır.

Coğrafi Bilgi Sistemi (CBS) MVA tekniklerini iĢlemek için potansiyeli yüksek ve

değerli bir platformdur. MVA teknikleri CBS ile tamamen entegre edildiğinde, MVA,

CBS‟nin veri giriĢi, depolama, geri getirme, veri iĢleme ve görüntüleme

yeteneklerinden yararlanabilecektir. Ayrıca, MVA tekniklerinin entegrasyonu

sayesinde CBS kendi analiz yeteneklerini daha da artırabilir. Bu entegrasyon,

mekansal olayların daha iyi anlaĢılarak yaygınlaĢtırılmasına ve kolaylaĢtırılmasına

hizmet edecektir.

MVA tekniklerinin CBS ile nasıl entegre edileceği bağlantı probleminin konusudur.

Özgür ve açık kaynak kodlu yazılım (ÖAKKY) geliĢtirme metodolojisi uygun bir

Ģekilde gerçekleĢtirilebilirse ticari bir CBS yazılım firmasının desteği olmadan CBS

ile MVA teknikleri tümüyle entegre edilebilir. Bu yaklaĢım bağlantı probleminin yeni

bir Ģekilde yorumlanmasına neden olmaktadır. Bu tezde, MVA ile CBS‟nin ÖAKKY

ortamında tamamen entegrasyonun sağlanması amaçlanmıĢtır. 2,5 yıl içinde MVA

teknikleri ile entegre özgür bir GIS yazılımının ÖAKKY sistemi olarak geliĢtirilmesi

için yaklaĢık 13.000 satır Python kodu yazılmıĢtır. GeliĢtirilen bu sistemin kullanımı

iki yıl içerisinde yaklaĢık 1600 tekil ziyaretçi, 3000 ziyaret ve 8600 web sayfası

izlenim sayısına ulaĢmıĢtır. Bu rakamlar MVA tekniklerinin kullanıcı dostu CBS

yazılımı ile entegre edilmesine duyulan bir ihtiyacın kanıtıdır.

vii

CBS alanındaki mevcut durumun geliĢimi dikkate alındığında, tüm MVA tekniklerinin

CBS yazılımları ile entegre edilmesinin ticari pazarda mümkün olmadığı

gözükmektedir. Ancak, MVA için daha geliĢmiĢ araçlara artan eğilim nedeniyle yakın

gelecekte daha fazla MVA geliĢtirmelerinin sahipli CBS yazılımlarında da

gerçekleĢebileceği düĢünülmektedir.

Anahtar Kelimeler: CBS, Mekansal Veri Analizi, Özgür Yazılım, Açık Kaynak Kodlu

Yazılım GeliĢtirme

viii

ACKNOWLEDGEMENTS

I would hereby like to express my sincere appreciations to my supervisor Prof. Dr.

ġebnem Düzgün for her great guidance and support. This development could not be

completed in the FLOSS environment without her encouragement and motivation.

I would like to thank to Chair of my committee, Prof. Dr. Oğuz IĢık and committee

members; Assoc. Prof. Dr. Ahmet CoĢar, Assoc. Prof. Dr. Nurunnisa Usul and Assoc.

Prof. Dr. Çiğdem Varol for their guidance, critics, motivations and invaluable

discussions.

I would also like to thank all members of QGIS community, especially to Gary

Sherman for setting up user friendly environment of QGIS, to Barry Rowlingson,

Martin Dobias, Carson Farmer, Anne Ghisla, Borys Jurgiel, Horst Düster, Adrian

Baddeley, Roger Bivand, Giovanni Manghi and all my users for testing the system,

using the plug-in, reporting bugs and motivating me to add more tools.

I would like to add special thanks UlaĢ Alagöz for his help, Servet Ahmet Çizmeli for

setting access to Debian Server, Burak Beyhan for motivation in the FLOSS subject

and Osman Yalçın for valuable contribution to FLOSS.

Finally, I would like to thank to my family especially my father, Günaydın Kepoğlu for

his strong patience, my wife, Arzu Kepoğlu for her great support and my daughter,

Nil Kepoğlu for her understanding and love. Without their encouragements and

motivations, this thesis could not be completed.

ix

To My Dear Wife and Lovely Daughter

x

TABLE OF CONTENT

ABSTRACT ... iv

ÖZ ... vi

ACKNOWLEDGEMENTS... vii

TABLE OF CONTENT .. x

LIST OF TABLES ... xii

LIST OF FIGURES ... xiii

LIST OF ABBREVATIONS .. xv

CHAPTERS

1. INTRODUCTION .. 1

1.1. INTRODUCTION .. 1

1.1.1. Coupling of SDA and GIS ... 4

1.1.2. Need for FLOSS Development ... 7

1.2. MOTIVATION AND OBJECTIVE OF THE THESIS ... 9

1.3. ORGANIZATION OF THE THESIS ... 14

2. SPATIAL DATA ANALYSIS (SDA) ... 15

2.1. SDA VERSUS SPATIAL ANALYSIS .. 15

2.2. TYPES OF SPATIAL DATA ANALYSIS ... 16

2.3. COUPLING OF SDA SOFTWARE WITH GIS .. 18

2.4. OVERVIEW OF EXISTING SDA SOFTWARE ... 25

2.4.1. Standalone SDA Software .. 27

2.4.2. Close Coupled SDA Extension ... 36

2.4.3. Proprietary Desktop GIS Software: ArcGIS .. 38

2.4.4. FLOSS Product ... 40

3. FREE/LIBRE AND OPEN SOURCE SOFTWARE (FLOSS) 44

3.1. DEFINITION OF FLOSS ... 44

3.2. BENEFITS OF USING FLOS GIS SOFTWARE FOR UTILIZATION OF GIS

FIELD ... 50

3.3. BASICS OF FLOSS DEVELOPMENT .. 57

3.3.1. Continuity of FLOSS Project ... 60

xi

3.3.2. Developments in the FLOSS Project .. 68

3.4. FLOS GIS LIBRARIES AND APPLICATIONS .. 73

4. DEVELOPMENT OF SDA SYSTEM .. 81

4.1. DEFINITION OF SDA SYSTEM ... 81

4.2. FLOS SDA SYSTEM DEVELOPMENT METHODOLOGY 83

4.3. LINUX DISTRIBUTIONS .. 90

4.4. REASONS TO CHOOSE QGIS AS MAIN GIS COMPONENT 93

4.5. ARCHITECTURE OF SDA SYSTEM AND PROPERTIES OF

COMPONENTS ... 98

4.5.1. Main GIS Component of FLOS SDA System: QGIS 100

4.5.2. Cross Platform Application Development Framework: Qt 102

4.5.3. Programming Language: Python .. 103

4.5.4. Python Development with Qt Framework: PyQt 109

4.5.5. QGIS Development Environment with Python: PyQGIS 111

4.5.6. FLOS Spatial Libraries: GDAL and PROJ.4 112

4.5.7. FLOS Statistical Software: R and Spatial Packages 114

5. IMPLEMENTATION AS SDA4PP PLUG-IN .. 117

5.1. DEVELOPMENT OF PYTHON PLUG-IN IN QGIS 117

5.2. ARCHITECTURE OF SDA4PP PLUG-IN ... 136

5.3. FLOS DEVELOPMENT OF SDA4PP PLUG-IN .. 143

6. CONCLUSION ... 156

6.1. ANALYSIS OF SDA SYSTEM USER STATISTICS..................................... 156

6.1.1. Statistics about Registered Users ... 156

6.1.2. Usage Statistics of Web Site of SDA System 158

6.2. DISCUSSION AND CONCLUSION .. 163

6.3. FURTHER RECOMMENDATIONS ... 167

REFERENCES ... 171

APPENDICES .. 184

A. MAIN GIS MODULE OF SDA4PP PLUG-IN ... 184

B. DISTRIBUTION OF VISITS PER COUNTRY .. 199

C. INTEGRATED SDA TECHNIQUES; GUI AND ANALYSIS RESULT 202

CURRICULUM VITAE .. 220

xii

LIST OF TABLES

TABLES

Table 2. 1. SDA Software Examples and Their Executable Status 26

Table 2. 2. Release Date of Microsoft Windows Operating System (Microsoft 2011)

 ... 31

Table 2. 3. The Number of SDA and GIS Tools in ArcGIS Desktop Version 9.1, 9.2,

9.3, 9.3.1 and 10.0 (ESRI ArcGIS Desktop Functionality Matrix 2010) 40

Table 3. 1. Comparison of Total Cost of Ownership (Cybersource 2004) 58

Table 3. 2. Motivation Reasons of Turkish Free Software Developers (GözükeleĢ

2006) .. 64

Table 3. 3. FLOS Desktop GIS Software Products Mentioned in GIS Web Portals

and Research Studies .. 76

Table 3. 4. Marketing Potential of FLOS Desktop GIS/RS and GIS Software

Products (Cascadoss 2007b) ... 78

Table 3. 5. Technical Potential of FLOS Desktop GIS/RS and GIS Software Products

(Cascadoss 2007b) .. 78

Table 3. 6. Economical Potential of FLOS Desktop GIS/RS and GIS Software

Products (Cascadoss 2007b) ... 79

Table 4. 1. Most Widely Visited Linux Distribution for Last 1, 6 and 12 Months

Periods in May 2008 (Distrowatch 2010) .. 91

Table 4. 2. Ohloh Project Figures for QGIS and GRASS GIS in 2008 and 2010

(Ohloh 2010a and 2010b) .. 95

Table 4. 3. Position of Top 10 Programming Languages for 5, 15 and 25 Years Ago

(TIOBE 2010) ... 105

Table 5. 1. List of Input and Output Formats for each Developed SDA Tool 140

Table 5. 2. The Structure of Spatial Point Data Frame of S4 Class 141

Table 5. 3. The Structure of “ppp” format of S3 Class .. 142

Table 5. 4. Development Progress of Plug-in according to Major Releases 152

xiii

LIST OF FIGURES

FIGURES

Figure 2. 1. SpaceStat Interface and Analysis Tools .. 28

Figure 2. 2. Snapshot of GeoDa Version 0.9.5-i ... 29

Figure 2. 3. Snapshot of OpenGeoDa .. 32

Figure 2. 4. GeoDa Users across the Globe between February 2003 and March

2007 (GeoDa 2008b) .. 34

Figure 2. 5. Snapshot of CrimeStat .. 35

Figure 2. 6. Data (Upper Side) and SpaceStat (Below Side) Menu Items of

SpaceStat Extension in ArcView GIS Series 3 ... 37

Figure 2. 7. DynESDA Extension in ArcView GIS Series 3 38

Figure 2. 8. Snapshot of ArcInfo Licensed ArcGIS Desktop Version 9.3 39

Figure 2. 9. Snapshot of R GUI .. 41

Figure 2. 10. Snapshot of GRASS GIS in Ubuntu Operating System 42

Figure 3. 1. Distribution of Free Software Developers by Nationality (%) (Infonomics

2007) .. 66

Figure 3. 2. Distribution of Free Software Developers by Countries Where They Live

or Work (%) (Infonomics 2007) ... 66

Figure 3. 3. Distribution of Mostly Preferred Countries by Free Software Developers

to Work in (Infonomics 2007) .. 67

Figure 4. 1. Summary of FLOS SDA System Development Methodology 84

Figure 4. 2. Architectural Schema of Developed FLOS SDA System 99

Figure 4. 3. The Length of Code Comparison between Python and C# Programming

Languages (AktaĢ 2010) .. 108

Figure 4. 4. Snapshot of Qt Designer in Ubuntu Distribution 110

Figure 5. 1. Snapshot of Plug-in Manager in QGIS Version 1.7.0 in March 2011 .. 121

Figure 5. 2. Available External Authors‟ Python Plug-in Repositories (Snapshot of

Repositories Tab in Python Plug-in Installer in QGIS Version 1.7.0 in March 2011)

 ... 122

xiv

Figure 5. 3. List of Plug-in in External Authors‟ Python Plug-in Repositories

(Snapshot of Plug-ins Tab in Python Plug-in Installer in QGIS Version 1.7.0 in March

2011) ... 122

Figure 5. 4. List of External Author Repositories in August 2010 (Quantum GIS

2010a) .. 123

Figure 5. 5. Source Code of Python File; __init__.py ... 125

Figure 5. 6. Source Code of Resource File (Left Side) and Result of Conversion to

Python Syntax (Right Side) .. 126

Figure 5. 7. GUI of Kernel Smoothed Density in Qt Designer 126

Figure 5. 8. Source Code of GUI for Qt (Left Side) and Python (Right Side) 127

Figure 5. 9. Simplified Version of Code for Starting Main Python Module of Plug-in

 ... 129

Figure 5. 10. Simplified Version of Code for GIS Part of Density Tool 130

Figure 5. 11. Simplified Version for Source Code of SDA Part of Density Tool 134

Figure 5. 12. Inner Design Schema of SDA4PP Plug-in .. 136

Figure 5. 13. Main Page of Web Site Developed for FLOS SDA System 146

Figure 5. 14. List of Recorded Bugs ... 147

Figure 5. 15. Revision History of the Plug-in .. 149

Figure 5. 16. Python Plug-in Repository of the Plug-in ... 150

Figure 5. 17. Source Code of Plug-in Repository ... 151

Figure 5. 18. Major Release of SDA4PP Plug-in .. 153

Figure 5. 19. Latest Revision of SDA4PP Plug-in in Windows (Top) and Ubuntu

(Bottom) .. 155

Figure 6. 1. Information about Registered Users; How Heard the SDA System (Top

Left), Job Title (Top Right), Application Area (Bottom Left), Organization (Bottom

Right) .. 157

Figure 6. 2. The Number of Absolute Unique Visitors per Month to Web Site of SDA

System ... 159

Figure 6. 3. The Number of Visits per Month to Web Site of SDA System 160

Figure 6. 4. The Number of Visits Coming from Top Twenty Countries 161

Figure 6. 5. The Number of Visits across the Globe ... 161

Figure 6. 6. The Number of Pageview per Month in Web Site of SDA System 162

xv

LIST OF ABBREVATIONS

API Application Programmers Interface

ASCII American Standard Code for Information Interchange

CRAN Comprehensive R Archive Network

ESDA Exploratory Spatial Data Analysis

ESRI Environmental Systems Research Institute

FLOS Free/Libre and Open Source

FLOSS Free/Libre and Open Source Software

GDAL Geospatial Data Abstraction Library

GIS Geographic Information System

GNU Recursive Acronym for GNU is Not UNIX

GPL General Public Licence

GRASS Geographic Resources Analysis Support System

GUI Graphical User Interface

OS Operating System

POSIX Portable Operating System Interface for UNIX

QGIS Quantum GIS

RS Remote Sensing

SDA Spatial Data Analysis

SDA4PP Spatial Data Analysis for Point Pattern

XML Extendable Markup Language

1

CHAPTER 1

INTRODUCTION

1.1. Introduction

Spatial analysis is the quantitative study of phenomena located in the space. Spatial

Data Analysis (SDA) is relatively narrower and constitutes one of the main areas of

spatial analysis. SDA is the combination of statistical description and modeling of

spatial data. SDA requires very tedious computation processes and Geographic

Information System (GIS) offers a potentially valuable platform for processing SDA

techniques. SDA should benefit from the data input, storage, retrieval, data

manipulation and display capabilities of GIS. Also, GIS can benefit from SDA

techniques in which, the integration of these techniques can increase the

capabilities of GIS in exploring, analyzing and predicting the behavior of the spatial

processes. This integration serves for disseminating and facilitating the SDA field.

The complete integration of SDA in GIS approach is eliminated from the initial stage

of GIS software development process. Most of the SDA techniques were developed

when the GIS is at the initial stage. In 1960s, the urgent need of GIS was to perform

the geometry related operations such as overlay, point-in-polygon, intersection etc.

At that time, the computation power of computer was very limited. Since 1980, GIS

vendor‟s main motivations have become in the utilities and local government, rather

than in the SDA research community (Fotheringham and Rogerson 1995). These

areas are more profitable for GIS vendors than the scientific research (Bailey and

Gatrell 1995). These are historical reasons that have avoided integrating SDA

techniques in GIS.

GIS users gradually have started to request more SDA techniques in GIS software.

However, the number of SDA techniques in the GIS software is not adequate

2

especially when the number is compared with the available SDA techniques coming

from different application areas such as geography, biology, epidemiology, statistics,

geographic information science, remote sensing, computer science, mathematics,

and scientific modeling. For example, although Environmental Systems Research

Institute (ESRI), a commercial GIS company, is the world leader in GIS and

developing GIS software since 1969, ArcGIS, a group of famous GIS software

products, has no SDA tools in version 8.0 released at the end of 1999. Two

extensions, namely; spatial and geostatistical analyst, are available which are both

related with the field of spatial analysis. SDA tools are added in a new toolbar,

named as spatial statistics analysis, with the release of version 9.0 in May 2004.

The number of available SDA tools in version 9.1 is 10. This figure has increased to

14 with the version 10.0, released in June 2010. However, available SDA techniques

over total number of all tools in ESRI ArcInfo licensed ArcGIS Desktop Version 10.0

is only 1.01% (14/1387). Until 2004, there was no SDA tool in ArcGIS Desktop, but

after 2004, the number of available SDA tools is gradually increasing, although the

progress of adding new SDA tools is slow and not adequate in number. SDA

techniques were not known among GIS users because of not having enough SDA

tools in GIS software. In order to disseminate and facilitate the SDA field, there

should be a system that many SDA tools should be available in GIS software. The

request of having SDA tools in the GIS software is continuously increasing with the

growth of GIS at the last decade.

Spatial analysis tools such as point in polygon, buffer, slope, intersection, union, etc.

can be used easily because they are available in GIS software; however, a few SDA

techniques have been implemented in the GIS Software. The demand of requesting

more SDA tools for doing spatial research in the GIS software has gradually

increased as geospatial industry grows. Several SDA tools can be found either in

GIS software or in statistical package in the form of a script file, add-on, package,

extension, toolbar, module, or development library. SDA techniques are scattered all

over these applications. Some of them are in the specialized niche SDA programs

that have limited in number of SDA techniques and GIS functionality.

Quadrat Based Methods, Kernel Estimation, Adaptive Density, Nearest Neighbor

Distance, Estimate Empty Space, Ripley‟s K and L Functions and their local

functions, Clustering, Space-Time Clustering, Variance/mean Ratio Tests for

Quadrat Counts and Tests, Simulation Envelope of Complete Spatial Randomness,

3

Poisson Model and Spatial Kolmogorov and Smirnov Test are some of the examples

for SDA techniques. These techniques are not applicable as spatial analysis tool in

the GIS software, because these tools could not be found in the generic GIS

software. The usage of these functions as compared with buffer tool is not common

and also many GIS users do not know that there is such an analysis technique.

These are the practical difficulties to apply the SDA techniques, because they do not

exist in the GIS software. SDA techniques can be used widely among GIS users

when SDA techniques become available in GIS software.

Many GIS users become accustomed to use menu driven GIS software, so that, the

GIS users want SDA techniques to apply in the user friendly, visual and interactive

software. However, the cost of developing such a software product could not be

recovered with the selling of license fee, because the request is not strong enough

to support the new development expenses of standalone SDA software. The recent

and famous development example for creating such software in exploratory SDA

field is GeoDa. The development cost of GeoDa is financed by a grant provided by

US National Science Foundation. The amount of grant was $4,335,573 (NSF 2007).

The grant was initialized in 1999 and finalized in September, 2004. The

development of GeoDa is ongoing in order to reach more mature and stable

architecture in August, 2010.

Haining (1989) states that specialized SDA software development has been

demanded since the late 1980s. This necessity has come from GIS researchers.

GIS researchers have requested more available tools to perform spatial analysis in

a GIS environment in order to increase their understanding of spatial processes.

The need for computer software to facilitate SDA field has also been mentioned by

Anselin (1992), Goodchild et al. (1992), Fotheringham and Rogerson (1993), and

Anselin et al. (2006). Integrating SDA techniques with GIS environment is discussed

conceptually by these SDA theorists. It can be concluded from these discussions

that an easy to use, visual and interactive software package is required in order to

disseminate and facilitate the SDA field.

Fotheringham and Rogerson (1993) explain that spatial (data) analysis is less rapid

developed area then GIS. The lack of integrating SDA with GIS has hindered the

spread of GIS, but the progress of integration is inevitable due to demand for

increasing the analytical capabilities of GIS. Fotheringham and Rogerson (1993)

4

mention that when SDA techniques are integrated within GIS, future users of GIS

may misuse these techniques due to major problems of SDA like “modifiable areal

unit problem, boundary problems, spatial interpolation, spatial sampling procedures,

spatial autocorrelation, goodness-of-fit in spatial modeling, context-dependent

results and nonstationarity, and aggregate versus disaggregate models”. They hope

that GIS may circumvent these problems by helping the users to learn these types

of fundamental problems in SDA. It is worried that while using SDA techniques in the

simplistic environment of GIS, these problems will be ignored and the result of the

analysis will be interpreted poorly and in an inaccurate way. Fotheringham and

Rogerson (1993) give an example for the similar situation which occurred in the

statistical software packages. Misuse of statistical methods are facilitated in these

packages, however, they also helped to disseminate the statistical methods that

otherwise would not have been applied.

1.1.1. Coupling of SDA and GIS

In 1990s, SDA theorists discussed the integration of SDA and GIS widely. Goodchild

et al. (1992) conceptualized the coupling problem into four strategies:

1. Loose coupling of proprietary GIS software with statistical software

2. Close coupling of GIS and statistical software

3. Standalone spatial analysis software

4. Complete integration of statistical spatial analysis in GIS

First coupling strategy is to exchange the data between GIS software and statistical

package. This exchange can be done based on ASCII or common spatial binary

format. The spatial data in GIS software is converted as input into statistical

package. The analysis is done in the statistical package. Mostly, this kind of analysis

in the statistical package causes spatial autocorrelation problem. And then, the

output of package is converted as an input for GIS software. Although this

conversion provides a solution, it is impractical and inefficient.

The conversion between GIS software and statistical package can be done at the

background without inferring the user when the statistical analysis routines are

embedded in the GIS software. This is known as second coupling strategy. SDA

theorists demonstrated some close coupling software examples. SpaceStat and

DynESDA are two extension examples developed for ESRI ArcView GIS series 3.

5

These examples are developed by SDA theorists, not by GIS vendors. These close

coupling examples do not convince the GIS vendors to add extensions in the main

source code of their program, because the integration of extension will increase the

complexity of program and they are not profitable for vendors to spend effort to add

these tools that will be rarely used by the users. When the architecture of GIS

software is changed radically by ESRI, the close coupling strategy has become

obsolete and the development effort could not be continued, because the extension

could not be upgraded to new version of GIS software. The final version of ArcView

GIS was version 3.0a in 1997 and the last release of this software was version 3.3 in

2002. Instead of developing ArcView GIS series 3, ESRI has decided to develop

new, visual and easy to use GIS product, named as ArcGIS, which is the integration

of window based use of ArcView GIS series 3 and command line of ArcInfo

workstation. ArcGIS Desktop version 8.0 is released in late 1999. The architecture of

ArcGIS and ArcView GIS is totally different which caused that the SDA extensions

could not work with next new version of GIS software.

Third coupling strategy is the development of standalone spatial analysis software.

Info-Map is one of standalone SDA software examples. It is distributed with a book,

written by Bailey and Gatrell, and published in 1995. Info-Map is a remarkable

example which runs only in the Microsoft DOS operating system. However, the

software can perform the following SDA techniques; kernel estimation, K functions,

variogram estimation, kriging, spatial autocorrelation analysis, spatial regression,

principal components analysis, multivariate classification and non-spatial regression.

It is surprising that all these tools are available in 1995 and working only in the

Microsoft DOS operating system. However, today, Microsoft DOS operating system

does not exist anymore and nobody can use this operating system properly. Info-

Map software cannot be used now, because the originators did not upgrade the

architecture of the software in parallel with the changes in the operating system.

Another standalone SDA software product is SpaceStat, which is developed by

Anselin with the support of a number of grants from the US National Science

Foundation between 1983 and 1994. Anselin (1992) explains that SpaceStat is first

released by the US National Center for Geographic Information and Analysis in

1992. SpaceStat is updated to version 1.8 and 1.9 in 1995 and 2000, respectively.

SpaceStat is purely a 32 bit DOS product, which runs in Windows 95, 98 and NT.

6

SpaceStat version 1.91 has a command line interface like Microsoft DOS operating

system in 2002. SpaceStat has also become out-dated like Info-Map.

Another example for the third coupling strategy is GeoDa software. This software

has been developing by Anselin since 1999. Anselin et al. (2006) explain that

GeoDa is developed in order to provide a needed tool for disseminating and

facilitating SDA field. This package should be easy-to-use, visual, and interactive

software for GIS users. The cost of developing GeoDa software is financed by a

grant provided by US National Science Foundation. The first official release of

GeoDa version 0.9 was in February, 2003. The bug free or stable version of the

GeoDa was announced in September, 2004. The development methodology of this

software is for the closed source environment. This version can work only on

Microsoft Windows operating system version XP. In every 2.18 years, Microsoft

develops a new version of operating system which means that radical change may

occur in the structure of operating system within this period.

Like Info-Map and SpaceStat, GeoDa also become out-dated software. The problem

was related with the MapObjects-Java library which was not included deliberately by

Microsoft in the Windows Vista. Not only GeoDa but also ESRI's products rely on

the MapObjects-Java libraries. The problem was so severe that even the power of

ESRI was not enough to solve the problem of not running ESRI ArcGIS Desktop 9.2

in Windows Vista in May 2007. ESRI could fix the problem with the next release of

their products. ESRI ArcGIS products have supported Windows Vista with the

release of version 9.3 in June 2008. The sustainability of GeoDa has broken with

Windows Vista in March 2007 after two and a half years from the release of stable

version. The cost of adapting such a modification is insuperable when especially the

support of fund is cut and there is no support from any commercial vendor or

community. The cost of keeping the software functional could be unmanageable

without the support of any vendor in every 2.18 years in Windows operating system.

This phenomenon, becoming out-dated, is very common for SDA software like Info-

Map, SpaceStat and GeoDa that is designed to work only in Microsoft environment.

Much SDA software working only in closed source environment has become quite

out-dated. Under a closed source software development methodology, the decision

of either upgrading or updating the architecture of the software belongs to only the

originator/owner of the software, which is one of the constraints for the sustainability

of standalone SDA software. Although the development of GeoDa has created

7

valuable contributions to the SDA community and made many of the SDA

researchers‟ works easier, the software has become quite out-dated in a short time

due to applying misleading software development methodology in 2000s as well as

applied in 1990s.

Fourth type of coupling problem is the complete integration of SDA in GIS which is

unrealistic from the GIS vendors‟ point of view for the time being. The main reason is

that there is a weak demand from the market for the use of SDA techniques in GIS.

The integration request has only come from the scientific research community. This

community is not big enough to support the new developments. For example,

GeoDa is one of the most famous world-wide, user friendly, closed source, freeware

and standalone SDA software. The number of GeoDa users grows over 52,000 in

7.5 years between February 2003 and August 2010. This number is not huge

enough to be a market for the GIS vendors. That's why; applying this integration by

the GIS vendors has not become profitable.

1.1.2. Need for FLOSS Development

A software environment is required for SDA field which have many tools performing

SDA techniques in GIS software. This software environment should be provided at

no cost or very low fee in order to reach more GIS users. In this environment, GIS

users can perform both GIS and SDA tools in user friendly and menu driven system.

Also, SDA researchers should have a right to access the source code of each SDA

technique in order to examine and understand the analysis techniques and develop

new ones. This software development environment should be open even to external

developers. SDA field can become more known and widely used application area

among GIS users when SDA techniques are available to use in user friendly GIS

software.

Accessing the source code of technique is vital for SDA field in order to understand

exactly how the SDA technique is applied. This characteristic property is valid for

SDA field, because many application areas have contributed to the development of

SDA field. Many areas have caused to develop different style of analysis. Bailey and

Gatrell (1995) explain the meaning of this variety as that some of existing SDA

techniques are re-invented. The subject of SDA field is scattered in different fields.

Newcomers think that this field is made up from different techniques without basic

8

any theory. This historical development is one of the drawbacks of SDA which

complicates the techniques to be understood easily and used widely. Therefore,

accessing the source code of SDA technique is a predominant factor in the

development of specialized GIS software for dissemination and facilitation of SDA

field.

Researchers, SDA theorists, GIS experts and developers can examine the SDA tool,

improve the algorithms, develop new techniques and eliminate the possible errors

and bugs, if they can access the source code of the tool. This group can also

enhance the GIS software by integrating new SDA techniques. In order to provide

such an opportunity, accessing the source code of the software is the compulsory

starting point. The opportunity of accessing and modifying the source code of the

tools and redistributing the derived source code is naturally provided as a right for

everyone only in the Free/Libre and Open Source Software (FLOSS) development

environment. This right is granted legally by free and open source licenses. There

are hundreds of FLOSS licenses. Each type of license gives different rights for their

users. For example, the license of Python programming language gives the right to

use the language for free also for commercial purposes. If the development is done

in Free/Libre and Open Source (FLOS) GIS Software, GIS users can use this

product without paying any license fee for each copy of the software. This is the cost

advantage of FLOSS environment, which could accelerate the dissemination and

facilitation of SDA field.

Dissemination and integration of SDA techniques with GIS arises the coupling

problem. The full coupling problem of SDA in GIS has not been fully solved,

because the development of SDA techniques in user friendly GIS software has not

been achieved yet due to the lack of support from the commercial market. The

support of any vendor is not the essential factor. The complete integration of SDA

techniques in GIS can be applied without the support of any commercial GIS vendor

when FLOSS development methodology is properly followed. In this thesis, SDA

System refers to integration of SDA techniques in GIS software in the FLOSS

environment. The development of SDA system in other words integrating SDA

techniques in GIS software in FLOSS environment is the new interpretation of

coupling problem. This is the most appropriate way in order to disseminate and

facilitate the SDA field. The sustainability of SDA system could be guaranteed in

FLOSS environment, if the support of researchers, SDA theorists, GIS experts and

9

developers could be made up as a community around the FLOSS project. Binding

FLOS spatial analysis libraries with FLOS GIS software have tremendous potential

for disseminating and facilitating SDA field. This kind of development strategy can

create user friendly and FLOS SDA system for GIS users, developers and

researchers.

In this thesis, it is significant to know the distinction between freeware and free

software. The distinction between these two terms can sometimes be misused.

Freeware is software that is available for use at no cost, whereas free software can

be used, copied, studied, modified, distributed and redistributed in modified or

unmodified without any restriction both with in the form of binary and source code.

Sole freedom provided by freeware is to use the software for free. The source code

of freeware software is never distributed to the users. For example; Anselin et al.

(2006) define that GeoDa is a free software program. This definition is misleading,

because GeoDa is freeware software, but not free software. This difference creates

to follow up different software development methodology. This thesis emphasizes

this distinction in favor of free software due to available freedoms in this

environment.

1.2. Motivation and Objective of the Thesis

In this thesis, it is aimed at developing a fully coupled SDA with GIS in FLOSS

environment. The integration of SDA techniques in GIS can be done with FLOSS

tools without the support of any vendor, which causes to interpret the coupling

problem in a new way. As the current status of GIS is considered, it is unlikely in the

commercial market to have full coupled SDA techniques in GIS software. However, it

is expected to have such integrations in near future as there is an increasing trend

for more sophisticated tools for spatial analyses. The development carried out in this

thesis has showed that SDA techniques should be completely integrated in GIS with

applying FLOSS development methodology.

This thesis focuses on the development of SDA system where many SDA

techniques are applied in FLOS GIS software in FLOSS environment. This

statement has been demonstrated by developing SDA System with FLOS tools. The

development of FLOS SDA System has been done by writing approximately 13,000

lines as Python code (12835 lines in the latest revision 0.196 in 2.5 years) between

10

January 2008 and June 2010. The developed system communicates with FLOS

statistical package and GIS Software. Source code of the system is open to use for

everyone in any time, since the source code can be accessed in the repository

through the Internet since June 2008. This openness is provided by publishing the

source code in the repository under the web site of the Department of Geodesy and

Geography Information Technologies in Middle East Technical University in order to

apply FLOSS development methodology properly. The outcome of the system is

used and mostly tested by QGIS community. The progress of the development with

screenshots of implemented tools and the revision history can be followed at the

web site of the developed FLOS SDA system under the following web address;

http://ggit.metu.edu.tr/~volkan/index.html.

The amount of interest of SDA system is related with the size of QGIS community,

because the development has used QGIS community resources. It is difficult to

guess the size of QGIS community; however, one statistical figure can be given in

order to give an idea for the size of community. Windows standalone installer of

QGIS version 1.4 is downloaded 71,433 times between January and August 2010.

This download number has reached to 96,791 for QGIS version 1.5 in 4 months

after the release date in 01.08.2010. This figure shows that how the QGIS

community is growing in time. Nearly 100,000 QGIS user is quite fascinating for

FLOS desktop GIS software product. It is thought that the size of SDA market is

much smaller than this figure. The number of GeoDa users can be accepted as the

sign for determining the size of SDA users, because GeoDa is the most famous

world-wide used, user friendly, closed source, freeware and standalone SDA

software. The number of GeoDa users grew over 52,000 in 7.5 years between

February 2003 and August 2010. The number is not large enough to be a market for

the GIS vendors. That's why; the integration of SDA in GIS has not become

profitable for the GIS vendors.

Alternative of developing FLOS SDA system is the development carried out in the

closed source environment. This environment is not sustainable for standalone SDA

software due to weak support of SDA market. For example, if the coupling of SDA

techniques in GIS had been done in proprietary GIS product like ESRI's desktop

GIS software; ArcGIS Desktop, the outcome of the development would be an

extension, which could work only in Microsoft Windows operating system and the

development of extension could be naturally designed for closed source

http://ggit.metu.edu.tr/~volkan/index.html

11

environment. In this environment, the sustainability of the development does belong

to either GIS vendor or Microsoft Company, but not to the developer of the

extension. The originator's responsibility is only to follow their architectural changes

which will occur in approximately every two years. This adaptation should be carried

out as maintenance work in the closed source environment in order to keep the

software up-to-date. If this maintenance effort has not been carried out, the

extension will become out-dated and have antiquated architecture in time like what

happened in several SDA extension and standalone SDA software. Keeping up-to-

date the software is not an easy task for the developers, especially where there is a

lack of market support and in every two years the architectural schema of operating

system changes dramatically. The same situation becoming out of date has been

seen in several SDA applications like Info-Map, SpaceStat Extension, DynESDA

Extension and GeoDa. These SDA applications are designed to run only in Microsoft

Windows operating system. All of them have become out-dated with their antiquated

architecture. SDA market is not strong enough to compensate the upgrade cost of

these software architectures.

Another reason of becoming out-dated is that all these software are designed to

develop in the closed source environment. When the originator has decided not to

develop the software anymore, it is not possible to continue to develop and maintain

the SDA software. At first, technically, it is not practical, because source code of the

software is closed, and secondly, legally, continuing to develop the software by other

developers requires the permission of the originator. Without the permission and the

use of source code, it is forbidden and impractical to upgrade and develop the SDA

software.

Info-Map, SpaceStat Extension, DynESDA Extension and GeoDa are designed to

work only in one operating system. When a dependent library has not included or

changed either in the operating system or in the GIS software, the development

would face the risk of becoming out-dated. Who would carry out the further

maintenance work and upgrade the architecture of the software is not clear in the

closed environment, when the originator of the software has decided to stop

developing the software. The originator of the software is only the person who

decides to continue to develop the software in the close source environment. Due to

lack of market for SDA field, a different software development methodology and

environment is required in order to carry out maintenance work, to provide continuity

12

of software and to upgrade the architecture of the software. In order to provide more

sustainable environment for SDA software, there are several requirements:

 When the originator of the software has decided to stop developing the

software, other developers can continue to develop, upgrade and maintain

the software without the permission of the originator. This opportunity should

be sustained legally with licenses.

 Source code of the software should be accessible from the Internet, and can

be changed and distributed via Internet.

 Software development process should be open to every developer and they

can follow the progress of the development.

 Each developer can participate to take the strategic decisions about the

development of the software.

 Software should be cross-platform running in several operating systems like

Windows, Linux and Mac OS.

These requirements are met in the Free/Libre and Open Source Software (FLOSS)

environment. FLOSS licenses especially GNU (a recursive acronym for GNU is Not

UNIX) General Public License (GPL) provides these requirements as a right for

every user. In the GNU GPL, there are four types of freedom:

1. The freedom to run the program, for any purpose,

2. The freedom to study how the program works,

3. The freedom to redistribute copies so you can help your neighbor,

4. The freedom to distribute copies of your modified versions to others.

All these freedoms match with the SDA software requirements. This sustainability is

the first motivation factor for this thesis to make the coupling in the FLOSS

environment.

The second motivation factor is the commercialization of FLOSS environment. In the

last decade, Linux has showed a rapid progress, reached to many users from

different countries and in each day Linux support has grown. The use of Linux has

spread to worldwide and the number of Linux distributions formed by different

organizations has exceeded couple of hundreds. Red Hat, IBM, Novell, Intel, Google

and Oracle have supported the FLOSS development methodology. ESRI has

changed the script languages of ArcGIS Desktop from Arc Macro Language to

Python programming language since May 2004 due to benefits of FLOS and the

capabilities of Python programming language.

13

A commercial business can find high quality and specialized applications in various

subjects in the FLOSS world. Today FLOSS reached such an enormous variety that

all daily used products and tools such as operation system, office application, web

browser, e-mail application, database application, programming language, editor,

image, music and graphic tools are offered by FLOSS world. For example, Mozilla

Firefox (web browser), Mozilla Thunderbird (e-mail application), OpenOffice (free

alternative to Microsoft Office), Ubuntu (operating system; one of Linux distribution),

MySQL (database application), PHP (programming language) and Apache (HTTP

server) are several examples for the well known FLOS applications. Firefox is the

reinvention of the Netscape by Mozilla Company. Owner of the MySQL and

OpenOffice is Sun Microsystems which is bought by the Oracle Company. Ubuntu is

sponsored by private company whose owner is multi-millionaire Mark Shuttleworth.

In opposition to these projects, PHP and Apache projects have initiated by several

enthusiast developers, not with the support of commercial corporate companies.

They succeeded to keep going continuous development ever since the beginning of

the project to today, because their product has created a valuable thing and filled the

gap better in quality and performance than other products could do. For example,

Netcraft (2010) states in July 2010 Web Server Survey that Apache has been the

most popular HTTP server in use since 1996 and served more than half of all the

websites. There are some FLOS projects like Apache that the project is supported

by active community all around the world, which makes them the most well known

and used programs in their application areas.

FLOSS development methodology is started to be used also as a business model.

This model is based on mainly providing technical service rather than making profit

by selling license fee. Many commercial software developer companies have

adopted this method with parallel traditional software development method, because

this method decreases the cost of software development, allows widest distribution

of software with lost cost and provides more user oriented approach.

The third motivation of this thesis is the development date of GeoDa. Anselin

explains in 2006 that the outcome of effort for the development of GeoDa is to

create visual, interactive and user friendly standalone SDA software. Therefore, the

development of SDA system is still valid in 2000s as well as in 1990s. In addition to

14

these, the development of GeoDa is still continuing in August 2010 in order to have

cross platform support and to reach mature state with the stable release of GeoDa.

1.3. Organization of the Thesis

First chapter introduces the subject briefly and continues to explain the motivation

and objective of the thesis.

Literature review is composed of Chapter II and III. Chapter II reviews a brief

overview of SDA field. Review is also associated with coupling problem in this

chapter. Last part of this chapter explores several SDA extensions and standalone

applications, and their executable status.

Chapter III defines the term “free software” and “open source”. FLOSS development

and its benefits are discussed in the following sections. This chapter ends with the

examples of FLOSS GIS libraries and applications.

Methodology of the thesis is explained in Chapter IV. This chapter also addresses

the properties of the components of SDA system.

Implementation part for the development of FLOS SDA system is explained in

Chapter V in which the outcome of the system, SDA4PP Plug-in, is explained based

on the example of the source code of one of implemented SDA tools.

In the last chapter, the statistics of SDA system‟s users are examined in detail as a

sign for the success of the development of FLOS SDA system. This chapter ends

with a discussion and conclusion part as well as recommendations provided for

further studies.

15

CHAPTER 2

SPATIAL DATA ANALYSIS (SDA)

2.1. SDA versus Spatial Analysis

Spatial Data Analysis (SDA) is one of the applied spatial research fields, which is

different from geostatistics, artificial intelligence, network analysis, computational

geometry, spatial econometrics and space time fields. Goodchild (1987 cited in

Goodchild et al. 1992) refers to SDA as “a set of techniques devised to support

spatial perspective on data”. Goodchild et al. (1992) emphasize the distinction of this

field that SDA techniques “are dependent on the locations of the objects or events

being analyzed”. Therefore, SDA techniques should require accessing to “both the

locations and the attributes of objects”. Bailey and Gatrell (1995) explain that the

objective of SDA is to increase basic understanding of the spatial process, to assess

hypotheses and to predict unknown values of the location. Fischer (2006) explains

that SDA identifies the characteristics of spatial data, finds the patterns and

relationships by testing with hypothesis and models. Goodchild et al. (1992) state by

referencing Ripley (1981), and Getis and Boots (1978) that the range of SDA

techniques covers “from simple descriptive measures of patterns of events to

complex statistical tests”. Goodchild et al. (1992) also add that SDA “does not

include statistical techniques that use only the attributes of objects”.

The term “spatial analysis” is mostly used in GIS field, because spatial analysis has

a history in geography that goes to the 1950s (Haining 2003). Definitions of spatial

analysis made by Haining in Fotheringham and Rogerson (1995) and Haining

(2003) are similar with the definition of SDA. However, Fotheringham et al. (2000)

state that the meaning of “spatial analysis” has changed in time by the GIS vendors.

GIS vendors advertised that their GIS software products have advanced spatial

analysis tools; however, these tools perform mostly geometric operations and

16

manipulation on spatial data. The term “spatial analysis” and SDA can be used as

the similar meaning and are interchangeable words in some cases.

The difficulty of explaining SDA comes from the close meaning of spatial analysis.

There is a particular distinction between spatial analysis and SDA which is clarified

by Bailey and Gatrell (1995). SDA tries to explain the spatial processes and the

relationships between other spatial phenomena. In order to emphasize this

distinction, in this thesis, the term, Spatial Data Analysis (SDA) is adopted instead of

using spatial analysis.

Many areas have contributed to the development of spatial analysis and similarly to

SDA. When the historical development of spatial analysis is reviewed, the trace of

the fields can be seen in many different application areas. Longley and Batty (1996)

state that spatial analysis mainly belongs to quantitative geography, the ecology,

transportation and urban studies. Also, other areas helped to develop this field. SDA

techniques have been developed in various application areas such as geography,

biology, epidemiology, statistics, geographic information science, remote sensing,

computer science, mathematics, scientific modeling, etc. Many areas have caused

to develop different style of analysis. Bailey and Gatrell (1995) explain the meaning

of this variety as that some of existing SDA techniques are re-invented.

Wise and Haining (1991 cited by Haining in Fotheringham and Rogerson 1995)

classify the spatial analysis in three main categories; SDA, map based analysis, and

mathematical modeling. Although this categorization of spatial analysis is different

from Fischer‟s classification that spatial analysis has two major areas namely; SDA

and spatial modeling, the classification of spatial analysis into three groups is more

convenient, because the map based analysis tools in a GIS environment should not

be included in the SDA field.

2.2. Types of Spatial Data Analysis

According to the Bailey and Gatrell (1995), Spatial Data Analysis (SDA) can be

structured under four subjects:

1. Point Pattern Analysis

2. Spatially Continuous Data Analysis

3. Areal Data Analysis

17

4. Spatial Interaction Data Analysis

First subject in SDA is the point pattern analysis. Bivand et al. (2008) defines a point

process as “a stochastic process in which the locations of some events are

observed in a closed region”. Point pattern analysis investigates the proximity of the

events and their locations in relation to each other. This analysis deals with the

spatial configuration or arrangement of the events (Bailey and Gatrell 1995). The

benefit of the analysis is that if the clustering is found, then which spatial and/or

temporal processes cause this significant pattern are started to be researched. For

example; quadrat methods, kernel estimation, nearest neighbor distances, the K

function, complete spatial randomness and their tests, space-time clustering and

clustering around a specific point source are some of SDA techniques in the point

pattern analysis.

Second one is the continuous measurement for point locations, which is known as

spatially continuous data analysis. This analysis is mainly used to estimate the

values at unmeasured locations. Continuous surfaces such as soil, climate, geology,

air pressure, temperature, soil acidity, etc. are modeled according to this analysis.

The techniques like various types of kriging analysis such as ordinary, simple,

global, block, co-kriging, etc., whose result produces a spatially continuous data are

mostly accepted as in the content of geostatistics field. For example; spatial moving

averages, tessellation methods, kernel estimation, covariogram and variogram,

trend surface analysis, generalized least squares, models for variograms, simple

kriging, general spatial prediction, ordinary and universal kriging, block kriging, co-

kriging, principal components, factor analysis, principal coordinates and

multidimensional scaling, procrustes analysis, canonical variates and canonical

correlation are example techniques for the analysis of spatially continuous data.

Third subject is areal data. The problem of this area is to understand the spatial

arrangement of aggregated values in areal unit, to detect patterns, and to examine

relationships among the set of variables. This subject deals with whether the sets of

neighboring areas tend to have the same similar values or not. For example;

proximity measures with area data, spatial moving averages, median polish, kernel

estimation, spatial correlation and the correlogram, generalized least squares, tests

for spatial correlation, spatial regression models, probability mapping, empirical

18

bayes estimation and generalized linear models are some of the SDA techniques

used to analyze areal data.

The last subject is the spatial interaction data which refer to the data on flows that

link a set of locations. Flow is a realized movement of people, goods, services or

information between an origin and a destination. The objective of this analysis is to

model the pattern of flows in terms of the geographical accessibility, the demand at

origins and the attractiveness of destinations (Bailey and Gatrell 1995). For

example; gravity models, location-allocation problems and network problems are

example ones for the analysis of spatial interaction data.

In addition to these, SDA also deals with the relationship between the attributes of

the spatial objects and the spatial arrangement of the object. Bailey and Gatrell

(1995) explain that the information for both locations and attributes is required as a

minimum in order to perform SDA techniques. When only the attributes are

statistically analyzed, this kind of analysis cannot be accepted as a part of SDA. If

the attribute data are detached from spatially referenced objects, the attribute will

lose its value and the meaning of spatial context will disappear. If the aim is to

compare the arrangements of different types of entities, the variables describing the

spatial objects as the attribute value can be considered as the part of SDA. In

contrast, when the aim of the research area is only to study the spatial arrangement

or the pattern of the spatial objects, there is no need to collect any attribute

information about the location.

2.3. Coupling of SDA Software with GIS

There is a coupling problem of SDA with GIS, which means that SDA techniques

should fully be integrated with GIS, because SDA requires very tedious computation

processes and GIS offers a potentially valuable platform for SDA techniques. Both

SDA and GIS will benefit from this integration. SDA should benefit from the data

input, storage, retrieval, data manipulation and display capabilities of GIS. This

integration also serves for proper tools of disseminating the SDA techniques. GIS

can also benefit from SDA techniques in which, the integration of these techniques

can make GIS to explore, analyze and predict the behavior of the spatial processes.

This will lead to increase analytical capabilities of GIS. SDA techniques can

accelerate the progress of analyzing spatial processes of GIS.

19

There is a widespread agreement on the benefits of coupling of SDA with GIS (Wise

and Haining 1991 cited by Haining in Fotheringham and Rogerson 1995). The clear

contribution of GIS to form SDA can be considered as the manipulation, integration

and exploration of spatial data (Fotheringham et al. 2000). Without a system and

associated SDA software, the initial costs for analyzing spatial data can be

unaffordable (Haining in Fotheringham and Rogerson 1995).

Academic community sees that current GIS functionality is very limited in terms of

providing SDA techniques. The integration of SDA in GIS will also extend the utility

of GIS. Goodchild et al. (1992), and Fotheringham and Rogerson (1995) have

complained about the lack of analytical power of GIS. Goodchild (1987) observes

that GIS places more emphasis on efficient data input and retrieval than on

sophisticated analysis (cited by Gatrell and Rowlingson in Fotheringham and

Rogerson 1995). GIS clearly needs stronger analysis and modeling capabilities

(Goodchild et al. 1992). The wider research scientific community can use SDA

techniques, when they are implemented in the GIS software. In addition to these,

the most important contribution of integrating SDA techniques in GIS software is the

use of GIS with spatial models (Fotheringham et al. 2000).

SDA researchers have tried to find an appropriate way in order to succeed the

complete integration of SDA techniques in GIS software. After all discussions,

Goodchild et al. (1992) formulated their integration approaches into four types of

coupling strategy as follows:

1. Loose coupling of proprietary GIS software with statistical software

2. Close coupling of GIS and statistical software

3. Standalone spatial analysis software

4. Complete integration of statistical spatial analysis in GIS

First type of coupling problem is the loose coupling of proprietary GIS software with

statistical software (Goodchild et al. 1992). Since the fourth strategy is unrealistic

from vendors point of view, most attention focuses on the question of whether loose

coupling or close coupling is desired (Fotheringham and Rogerson 1995). One of

the approaches to the problem may be referred to as loose coupling between the

GIS software and statistical package (Bailey and Gatrell 1995). In the loose

coupling, some kind of interface or reasonably seamless link is sought between

20

statistical package and GIS software (Fotheringham and Rogerson 1995). While this

offers some flexibility, it is inefficient (Bailey and Gatrell 1995). One way of doing

conversion is to use ASCII files. The other way is to convert to common spatial

binary format. The data conversion is done by using importing and exporting tools.

Spatial data are exported to common format by GIS software. The format is read by

statistical package. It can be needed to make corrections in the structure of the data

in the package. After completing the analysis in the package, if there is a spatial

output, the result is exported to GIS data format in order to overlay as a map with

other spatial layers in the GIS software. Fotheringham et al. (2000) state that there

is no reason why this conversion should be done at the same time.

Second type of coupling problem is the close coupling of GIS and statistical

software. In close coupling, SDA theorists might seek to embed statistical analysis

functions into GIS (Fotheringham and Rogerson 1995). Close coupling is a better

strategy then loose coupling, because it involves calling spatial analysis routine from

within the GIS (Bailey and Gatrell 1995). SDA techniques are implemented within

the GIS by scripts or macro language of GIS software. This kind of development

work can be called as the creation of an extension, add on, plug-in, or package.

SDA researchers demonstrated some integration examples in order to convince the

GIS vendors that this integration could be easily made. The problem is that this

integration is done by the SDA community not by the GIS vendor. These attempts

have not convinced the GIS vendors. They did not include the algorithms of SDA

techniques inside the GIS software.

The close coupling strategy did not work, when the architecture of the GIS software

has changed with the next revision. For example, DynESDA is a SDA extension for

ESRI ArcView GIS series 3 and will never run in ESRI ArcGIS, because the

architectures of ArcView GIS series 3 and ArcGIS are totally different. From the GIS

vendor's point of view, the commercial GIS software has become so much

complicated that none of the vendor wants to increase this complexity by adding

more tools that will be rarely used by the users. This trend has started to change

with the development of GIS and with the changes of the needs of the users. GIS

users have started to request to do more advanced spatial researches.

Third type of coupling strategy is the development of standalone SDA software

which is mainly developed by SDA theorists. Software maintenance is required in

21

order to keep the software to work properly. As much as 80 percent of software

costs are related with the on-going maintenance of the software throughout its

lifetime (Deitel et al. 2002). The developing and maintaining the standalone SDA

software is too much costly and requires spending a lot of time to have full featured

program. The needs of users, the structure of GIS data formats, external

dependencies related with utilities, libraries, programming languages and operating

system can change in time which leads to break down the architecture of the SDA

software. New and revised versions of GIS data formats, standards and protocols

can be emerged in the GIS environment. This kind of possible changes and

improvement requirements makes the software maintenance very tedious and costly

job. It is very difficult to renew the software especially when radical changes have

occurred in the operating system or in one of the external dependencies of used

library.

Performance of the software while working especially with spatial data has become

one of the most important factors. The performance of the software depends on the

architecture of software. In order to upgrade the performance of the software, new

technologies and architectural innovations should be included in the SDA software.

In many cases, SDA theorists‟ efforts do not overcome the difficulty of doing

continuous development and maintenance work. This task is very hard to achieve

solely by the SDA theorists. Without applying these improvements, the architecture

of SDA software will become out-dated and have performance constraints. Much

SDA software has stacked with these difficulties. In the long term period, the

standalone SDA software products like Info-Map, SpaceStat and GeoDa have

become out-dated due to not being upgraded according to the changes in the

operating system.

Developed standalone SDA software is mostly designed to work for Microsoft

Windows Operating System (OS) which is a closed source environment. Microsoft

has the power of doing any changes in his operating system. When this

monopolistic power is applied on behalf of the company interest like not including

one of dependencies of GIS libraries in operating system, the SDA software may

become out-dated. The architecture of the new revision of operating system has

sometimes changed so dramatically that the efforts to adapt these changes could

not be done solely by several SDA developers. In addition to this, applying such

modifications from the vendor is unrealistic, because there is weak demand from the

22

market and it is not much profitable for GIS vendor. This is one of the weaknesses of

the closed source environment in terms of sustainability of standalone SDA software

without the support of market for SDA field.

When the SDA software is designed to be developed with the closed source

software development methodology, third party developers could not contribute for

the development of SDA software. Developing any algorithm in the main source

code of the proprietary software by external developer is almost impossible in the

closed source environment, since there is no freedom to use or even to see the

piece of source code of proprietary software. This is another weakness of the closed

source environment.

Another problem of such an integration approach in the closed source environment

is that the user has to rely on the manner how the software vendors have

implemented the SDA techniques in their software. The user does not have a right to

examine how these SDA techniques are running from the source code of the tool.

The algorithm of techniques could not be accessed by the user of the software. In

some cases, out of the box approach creates more severe problems. Fotheringham

et al. (2000) state that although the same SDA technique is used in different

software, the results could be different with the same data.

In addition to these difficulties, when the third type of coupling strategy is followed,

the capabilities of GIS such as data entry, editing, display, mapping, reading and

writing different GIS data formats, management of coordinate systems, connection

with database systems, performing geometrical operations, etc., should be

reinvented from the scratch which leads to increase the development cost and

required time for the development of the software. While the GIS software has

succeeded to become predominant software in the geospatial industry, SDA should

benefit from the capabilities of GIS. In the third coupling strategy, it is required to re-

invent the whole capabilities of GIS.

Fourth type of coupling problem is the complete integration of SDA techniques in

GIS. This integration requires the participation of the GIS vendor which should

incorporate SDA techniques within their software products. But, their main

motivations are in the utilities and local government rather than in the SDA research

community (Fotheringham and Rogerson 1995). It is unrealistic to expect from the

23

GIS vendors to make this integration, because these areas are more profitable for

GIS vendors than the scientific research (Bailey and Gatrell 1995). The main reason

is that there is a weak demand from the market for the use of SDA techniques in

GIS. The integration request has only come from the scientific research community,

but the request is gradually increasing at the last decade.

This integration approach is eliminated from the initial stage of GIS software

development process. Most of the SDA techniques were developed when the GIS is

at the initial stage. In 1960s, the urgent need of GIS is to perform the geometry

related operations such as overlay, point-in-polygon, intersection etc. At that time,

the computation power of computer was very limited. For this reason, the GIS

vendors could not deal with SDA techniques.

Bailey and Gatrell (1995) add that some researchers have taken statistical package

and have developed SDA techniques in that package. But, the package has limited

GIS functionality. Analyzing spatial data in statistical package may cause misleading

results, because the analysis may not be valid when the variables are spatially

correlated with each other. According to the fundamental statistical methods, the

following steps are performed; in the first stage, a scatter plot of searched variables

against each other is drawn, and then, if there is a reasonable degree of

association, a correlation coefficient is calculated and statistical significant test is

applied. Finally, the relationship between them is explained by fitting regression

equation. This kind of fundamental statistical method should be applied to only the

attributes of spatial data, because spatial data often have special properties and

need to be analyzed in different ways from tabular data. The main problem for the

integration of SDA in the statistical systems is that the spatial data are mostly

analyzed from the statistical perspective in this environment. The space can make a

difference and should be interpreted in a different environment.

Some of the SDA tools have historical roots in 1960s and were continuously

developed since then. At past, the way of integrating SDA with statistical systems

was tried, because at that time GIS was in the early stages and struggling with the

geometry related problems. This approach was seen as a kind of compulsory way

due to the limitations of the computers for the geography related systems in 1960s.

Several modules or extensions for this integration were developed in statistical

packages such as SPSS, Minitab, S-plus etc. That‟s why; statistical software vendor

24

states that their software also does the spatial data analysis, which is true in some

sense. However this kind of integration is the same as “loose coupling”, because the

geography related data formats should be transformed from GIS application to

statistical package. It is impossible for statistical packages to have all kinds of GIS

tools. For this reason, in addition to the spatial auto-correlation problem, the

integration of SDA with statistical systems is not the proper way. That‟s why; this

approach is eliminated from the beginning in the classification of the coupling

problem.

The SDA techniques require the knowledge of statistics and are explained with

sophisticated mathematical equations, which makes difficult to be understood by the

GIS users. Even many academic geographers, who have limited quantitative and

scientific backgrounds, have perceived SDA techniques to be relatively difficult. The

applications of SDA techniques require very intensive mathematical calculations.

The programming of such mathematics into real application is a work that a few

researchers can handle. For this reason, some geographers lost interest in

quantitative work when it became too mathematically demanding (Fotheringham et

al. 2000). This is one of the constraints that avoided the dissemination of SDA.

There are several reasons why coupling of SDA with GIS cannot be accomplished.

The market has played a major role in the development of GIS software, which is

mostly interested in resource, infrastructure and facility management, and land

information rather than scientific research. However, mostly academic and scientific

communities were interested with SDA field since 1960s. Goodchild et al. (1992)

explain that “SDA remains an obscure field”, which makes very difficult to organize

the SDA field. Many such techniques were originally developed outside of the field of

statistics; for example in geography, geostatistics, econometrics, epidemiology, or

urban and regional planning and the wide range of relevant literature reflects this

(Fotheringham and Rogerson 1995). This range of variety complicates to follow the

SDA techniques in which some of them can be found in one application area and

others are in another area. Development of SDA techniques has started before GIS

has evolved into a mature stage (Goodchild et al. 1992). GIS was not mature

enough in computer system to integrate these techniques in 1960s and 1970s. The

lack of enough computational power for processing spatial data is another problem

for GIS field at that time. SDA techniques require additional programming effort in

the computation environment. In 1970, statistical packages such as SAS and SPSS

25

have integrated SDA routines in their applications. However, integrated environment

does not mainly support the coordinate systems and the spatial objects. This

environment has limited functionality such as mapping and displaying of spatial

data. In addition, statistical environment is non-spatial and there is spatial

autocorrelation problem between the events located in the space. In the statistical

environment, it is tried to avoid this problem while analyzing the spatial data, but,

Goodchild et al. (1992) explain that this problem should be accepted as “an

inescapable property of spatial data”.

As a result, in order to succeed the complete integration of SDA techniques in GIS,

a chance to modify the source code of the SDA techniques or to add new SDA tools

to GIS software by different SDA developers should be possible. Many SDA

techniques are developed and used in different application areas. These kinds of

range and varying interests in SDA have meant that many analysis tools have been

developed independently and with their own distinctive styles of analysis. This kind

of variety causes different terminology and usage. Some tools are implemented for

specific model and data driven systems. This means that the implementation of SDA

tools are scattered throughout different fields. For this reason, in order to integrate

SDA techniques in GIS, more collaborative software development methodology is

required. With FLOSS development methodology, SDA researchers and developers

coming from different application areas can work together to develop the software.

Other factors like being cross platform, user friendly, easy to use, free in terms of

cost to use software and interoperable with the Open Source Geospatial Consortium

standards should also be solved in the same development environment.

2.4. Overview of Existing SDA Software

There are a lot of niche SDA software products that have limited in number of SDA

tools and GIS functionality. These software products specific to one application area

like crime, health, etc. are not considered in this thesis. The SDA extensions,

standalone and generic SDA software are reviewed as shown in Table 2.1. These

software examples are studied according to four subjects; standalone SDA software,

close coupled SDA extension, proprietary desktop GIS software and FLOSS

product.

26

Table 2. 1. SDA Software Examples and Their Executable Status

Type of
Software

Software Advantages Disadvantages
Executable

status

Standalone
SDA
Software

Info-Map

software package
distributed with a book
for interactive spatial
data analysis

closed source
package and
DOS-based
product

quite out-dated;
antiquated
architecture and
performance
constraints

SpaceStat

Provides tools for
creation of spatial
weights matrices,
exploratory SDA,
spatial econometric
analyses.

closed source
package and
Windows-based
product

quite out-dated;
antiquated
architecture and
performance
constraints

GeoDa

free and user friendly
software, supporting
interactive exploratory
SDA

closed source
package and
Windows-based
product

running on only
Windows XP
operating
systems, quite
out-dated

CrimeStat

spatial statistics
program used in crime
mapping, links with
most of desktop GIS
software like ArcGIS
and MapInfo

closed source
package and
Windows-based
product, no
display
capability

running on
recent operating
systems

Close
Coupled
SDA
Extension

SpaceStat
Extension

Provides tools for
exploratory SDA, an
extension program for
ArcView GIS series 3

closed source
package and
close coupling

quite out-dated;
antiquated
architecture and
performance
constraints

DynESDA
Extension

Dynamic exploratory
SDA, an extension
program for ArcView
GIS series 3, brushing
and linking maps

closed source
package and
close coupling

quite out-dated;
antiquated
architecture and
performance
constraints

Proprietary
Desktop
GIS
Software

ArcGIS

Advanced Desktop GIS
program, full rich of
GIS tools, worldwide
used

closed source
package and
very expensive
product

running on
recent operating
systems

FLOSS
Product

R

An FLOS statistical
package, have many
tools in variety of fields
including SDA, cross
platform support

Not user-friendly
environment,
requires
programming

running on
recent operating
systems

GRASS
GIS

FLOS GIS software,
cross platform support

A few SDA tools,
Unix style
usage, different
data format

running on
recent operating
systems

27

2.4.1. Standalone SDA Software

First reviewed standalone and generic SDA software example is Info-Map, which is

developed in 1995 by Bailey and Gatrell to analyze spatial data. It is not a fully

functioning GIS package in the sense of providing a wide variety of spatial data

manipulation options. However, it possesses a wide variety of SDA tools, controlled

through a simple command line interface. Info-Map has some simple mapping

facilities for the exploration of data and the display of the results of the analysis

(Fotheringham et al. 2000). Info-Map is remarkable example which runs only on the

Microsoft DOS operating system. However, the software can perform the following

SDA techniques; kernel estimation, K functions, variogram estimation, kriging,

spatial autocorrelation analysis, spatial regression, principal components analysis,

multivariate classification and non-spatial regression. It is surprising that all these

tools are available in 1995 and working only in the Microsoft DOS operating system.

However, today, Microsoft DOS operating system does not exist anymore and

nobody can use this operating system properly. So, the most predominant factor for

the dissemination of SDA is not only the creation of the software but also the

provision of the sustainable software development methodology, especially in which

there is a weak support from the market for the field that the development will be

carried out. Info-Map software cannot be used now, because the originators did not

upgrade the architecture of the software in parallel with the changes in the operating

system. The software should continuously be developed, maintained and upgraded

by the originator of the programmer. Without the support of market, the durability

and availability of SDA software cannot be achievable in the closed source

environment. That's why; the SDA software should not be performed to develop in

the closed source environment.

Second reviewed standalone SDA software is SpaceStat, which is developed by

Anselin with the support of a number of grants from the U.S. National Science

Foundation in 1983, 1986, 1988, 1990, 1994 (Figure 2.1). Anselin (1992) explains

that SpaceStat is first released in 1992 by US National Center for Geographic

Information and Analysis. The updated version of SpaceStat is 1.80 in October 1995

and 1.90 in 2000. SpaceStat is purely a 32 bit DOS product, which runs in Windows

95, 98 and NT. SpaceStat version 1.91 has a command line interface like Microsoft

DOS operating system in 2002. The SpaceStat Extension requires ESRI ArcView

series 3, but SpaceStat itself does not, which is completely self-contained.

28

SpaceStat is developed according to the traditional software development method

and designed to work for only closed source environment, which means that the

development of software is not opened to everyone, but can be done only by the

originator. When the source code of the software is not opened to external

developers, it is becoming nearly impossible to continue the development process in

which stage is left. However, developing the software within the open and

collaborative environment may guarantee to continue to develop the software. The

architecture of the software is structured at the beginning and may evolve in time

during development process. With the help of the collaborative development

environment, external developers can follow the progress of development work from

the changes in the source code. By this way, they can learn how to develop the

software like the originator. This collaborative environment can be provided by

setting up required tools in the software development project if the project opens the

source code of the software as well as the changes in the source code to be

accessed through the Internet to the external developers.

Figure 2. 1. SpaceStat Interface and Analysis Tools

29

Another standalone SDA software example is GeoDa (Figure 2.2). GeoDa has a

user-friendly, graphical and menu driven interface. It is aimed to be developed for

non-GIS users. This software is being developed by Anselin since 1999. GeoDa is

running on Windows operating system version XP. The disadvantage of this

software is that GeoDa is designed to run only closed source environment, which

means that it will be in danger of becoming out-dated like Info-Map, SpaceStat, or

DynESDA. GeoDa has already struggled with such a problem in 2007.

Figure 2. 2. Snapshot of GeoDa Version 0.9.5-i

Anselin et al. (2006) explain that “GeoDa is a reinvention of the SpaceStat”.

SpaceStat package has become out-dated with its antiquated architecture. GeoDa

is the successor to and a replacement for the DynESDA extension coupled with

ESRI ArcView GIS series 3. GeoDa is freeware standalone software. It is built on

ESRI's MapObjects technology and uses most common ESRI Shapefile format as

the standard for storing spatial information (GeoDa 2008a). The cost of re-writing of

GeoDa software from scratch is financed by a Center for Spatially Integrated Social

Science, which is founded with a grant provided by US National Science

Foundation. The awarded amount was $4,335,573 (NSF 2007). The project was

initialized in 1999, finalized in September, 2004, and extended one year at no cost.

GeoDa project is a five year research infrastructure project and promotes an

30

integrated spatial approach to social science researches (CSISS 2002). The center

was established in 1999. The aim of the center is to establish an infrastructure for

social sciences with a spatial analytical perspective (Goodchild 2000). One of

objective of the project is to develop a powerful and easy to use software doing SDA

(CSISS 2002).

The first official release of GeoDa version 0.9 was in February, 2003. The bug free

or stable version of the GeoDa was announced in September, 2004. The

development methodology of this software is for the closed source environment.

GeoDa version 0.9.5-i can work only on Microsoft Windows operating system

version XP. During the development period of GeoDa, the version of operating

system is Windows XP. In a closed source environment like Windows operating

system, sustainability of such a development process is not strong enough to

sustain the software without continuous support of any vendor or community. As

average in every 2.18 years, Microsoft develops a new version of operating system

which means that radical change may occur in the structure of operating system‟s

libraries within this period (Table 2.2). In this case, when GeoDa has reached the

stable version at such a time that the support of fund was completed. If one of

geography related library is not added in the next new version of the operating

system, the program will not function properly, because the cost of adapting such a

modification is insuperable when especially the support of fund is cut and there is no

support from commercial vendor or community. The cost of keeping the software

functional can be unmanageable without the support of any vendor as average in

every 2.18 years in Windows operating system. This phenomenon, becoming out-

dated, is very common for SDA software like Info-Map, SpaceStat and DynESDA

that is designed to work only in Microsoft environment. Much SDA software working

only in Microsoft closed source environment has become quite out of dated. Under a

closed source software development methodology, the responsibility of either

upgrading or updating the architecture of the software belongs to only the originator

of the software, which is one of the constraints of the closed source development

system.

31

Table 2. 2. Release Date of Microsoft Windows Operating System (Microsoft 2011)

Windows Versions Based on Release Date
Release Periods

In Days In Years

Windows 1.0 DOS 20.11.1985 - -

Windows 2.0 DOS 09.12.1987 749 2,05

Windows 3.0 (DOS 3.1) DOS 22.05.1990 895 2,45

Windows NT 3.1 NT Kernel 27.07.1993 1162 3,18

Windows 95 (DOS 7.0, 7.1) DOS 24.08.1995 758 2,08

Windows NT 4.0 NT Kernel 24.08.1996 366 1,00

Windows 98 (DOS 7.1) DOS 25.06.1998 670 1,84

Windows 2000 (NT 5.0) NT Kernel 17.02.2000 602 1,65

Windows Me (DOS 8.0) DOS 19.06.2000 123 0,34

Windows XP (NT 5.1 & 5.2) NT Kernel 25.10.2001 493 1,35

Windows Vista (NT 6.0) NT Kernel 08.11.2006 1840 5,04

Windows 7 (NT 6.1) NT Kernel 22.10.2009 1079 2,96

AVERAGE 794,27 2,18

The same situation becoming out-dated has happened also for GeoDa software.

The first complaining e-mail about GeoDa that could not work on Windows operating

system version Vista was in March, 2007 (Bobholz 2007). The experts have tried to

find the reason why GeoDa did not work on Windows Vista during two months. The

problem is related with the MapObjects-Java libraries which are not included

deliberately by Microsoft in the Windows Vista. Not only GeoDa but also ESRI's

products rely on the MapObjects-Java libraries. ESRI explains the problem with an

announcement in May, 2007 that there are known issues with Windows Vista that

ESRI ArcGIS version 9.2 does not support Vista. Then, next announcement was

done in December, 2007, which explains that Windows Vista could not be supported

until the next release of ArcGIS version 9.3 (ArcGIS Resource Center 2007). The

problem is so much severe that even the power of ESRI is not enough to solve the

problem of not running all ArcGIS products version 9.2 in Windows Vista due to not

including MapObjects-Java libraries in the next revision of operating system after

Windows XP. ESRI can only fix the problem with the release of next new version of

their product. ESRI ArcGIS products have supported Windows Vista with the release

of version 9.3 in June 2008. Not including such an important GIS related library can

only be done by the Microsoft, who has the power of monopoly in such an

environment.

32

In order to fix this problem, Center for Spatially Integrated Social Science has

started to implement FLOS wxWidgets cross-platform GUI library to GeoDa instead

of using proprietary library, MapObjects. This maintenance work is named as

creating a new software package OpenGeoDa. By means of using wxWidgets

library, GeoDa has become to support the cross-platform. So, OpenGeoDa can run

Windows (XP, Vista and 7), Linux (with both 32 and 64 bit) and Mac OS X (Intel and

PPC). Current released version of OpenGeoDa in August, 2010 has reached to

alpha release 0.9.8.14. The meaning of alpha version is that the software may not

be free of errors. After alpha release, there is beta release, and after then, the

software could be reached to stable version. This alpha release contains the

functionality of GeoDa 0.9.5-i (GeoDa 2010b). Fixing the breakdown of GeoDa on

Windows Vista by upgrading the architecture of GeoDa to FLOSS environment is

required to spend more than three and half year. This maintenance work could not

be completed in August 2010, since the stable version of OpenGeoDa has not been

released yet. GeoDa can work in Windows operating system only in two and half

year between the date of stable version of GeoDa in September 2004 and the date

of first complaining e-mail in March 2007.

Anselin and McCann (2009) advertise that OpenGeoDa is the FLOS successor to

GeoDa (Figure 2.3). This is true in some sense, but, the main distinct component is

missing; having a freedom to access the source code of software. Without providing

this requirement, OpenGeoDa software could not be accepted as FLOSS product.

Figure 2. 3. Snapshot of OpenGeoDa

According to the research done in August 2010 through Internet, the following traces

are found about OpenGeoDa. It is hoped that these traces are the sign that

OpenGeoDa will be FLOSS product of SDA field in the near future. OpenGeoDa is

registered as FLOSS project in the SourceForge.net at the end of 2005, but no

activity can be seen since then (OpenGeoDa 2010a). There is an e-mail list named

as Openspace List, in which discusses all aspects of developing methods for spatial

data analysis and their implementation in the form of FLOS software tools with the

users of GeoDa (OpenGeoDa 2010b). The last trace is to use the project hosting

33

infrastructure of Google Code in order to inform the progress and problems during

the development process of OpenGeoDa since September 2009 (OpenGeoDa

2010c). Although subversion check-in and check-out operation is defined in the

OpenGeoDa of Google Code, the source code is removed from this repository.

Source code files could not be obtained when read-only check-out operation is

completed successfully with the subversion application. The repository of

OpenGeoDa could not be accessed through the Internet in August, 2010 from FLOS

collaborative development environments; SourceForge.net and code.google.com. In

every valid FLOSS project, there is information which explains how to access to the

source code of the software through the Internet. In addition to these, OpenGeoDa

is distributed as only one binary file in the official home site of GeoDa (GeoDa

2010b). Distributing with binary file hides the source code of the software from the

users. One binary file is advantage for users, since OpenGeoDa does not require

any installation and simply works as one executable file, but, this kind of binary

distribution prevents the software to be accepted as FLOSS product. OpenGeoDa

uses only FLOS GUI library in order to be cross platform and distributed at no cost

like any freeware application.

Development work carried out for GeoDa is as the same as Goodchild‟s motivation

to develop user friendly software in 1992.The distribution of GeoDa across the globe

in the map is very fascinating (Figure 2.4). The number of GeoDa users has crossed

19,000 (19,058) in between the first official release in February 2003 and March

2007. The figure continues to grow exponentially and has reached to nearly 52,000

(51,988) in August 2010. More than 705 new users downloaded the software every

month from May 2006 to March 2007, 360 monthly downloads between December

2004 and July 2005, 220 between September and December 2004, and 170

between May and September 2004. The majority of GeoDa users are affiliated with

a university (84%), compared to 11% who work for government agencies (GeoDa

2008b). Although the development of GeoDa has created valuable contributions to

the SDA community and made many of the SDA researchers‟ works easier, the

software has become quite out-dated in a short time due to applying wrong software

development methodology in 2000s as well as happened for Info-Map, DynESDA

and SpaceStat in 1990s.

34

Figure 2. 4. GeoDa Users across the Globe between February 2003 and March

2007 (GeoDa 2008b)

Last reviewed standalone SDA software is CrimeStat (Figure 2.5). It is mainly used

for the analysis of crime mapping, but, statistical tools of CrimeStat can also be used

in the point pattern analysis. Therefore, this software is accepted as generic

standalone SDA software. First release of CrimeStat was done in November 1999

and the last one was in March 2005 (Levine 2006). Levine (2005) explains that the

development of CrimeStat was supported three times with grants provided by US

National Institute of Justice. The development of latest version 3 is made possible

through the support of several public organizations and programs (CrimeStat

2011a). Levine (2006) informs that the purpose of whole development is to provide

SDA techniques to assist “law enforcement agencies and criminal justice

researchers in the crime mapping works”. Levine (2005) adds that many police

departments, criminal justice and other researchers use this software in their works.

35

Figure 2. 5. Snapshot of CrimeStat

Point locations are accepted as input in the software and statistical analysis results

are shown spatially as output in other desktop GIS software products (Levine 2006).

The software can read “DBF”, “SHP”, ASCII or ODBC-compliant formats (Levine

2005). Output is exported to related GIS data formats that have interfaces with most

desktop GIS software products such as ArcView, ArcGIS, MapInfo, Atlas GIS and

Surfer for Windows (CrimeStat 2011b).

CrimeStat has five basic groupings with seventeen program tabs and one option

tab. The five basic groupings are data setup, spatial description, spatial modeling,

crime travel demand modeling and options. Data setup part includes reading the

data as input from primary, secondary and reference file. Spatial description part

contains the spatial distribution, distance analysis and hot spot analysis. Spatial

modeling part is interpolation, space-time analysis and journey to crime analysis.

And lastly, crime travel demand modeling part contains trip generation, trip

distribution, mode split and network assignment.

36

Disadvantage of CrimeStat is that it does not have any display capability, but the

result of analysis can be exported to common GIS data formats. Another

disadvantage is that the source code of all analysis routines is closed, so, the

techniques could not be studied from the source code. Also, it is not cross platform

and works only in Microsoft Windows operating system. The development of

CrimeStat is continuing due to support of US public organization; National Institute

of Justice.

2.4.2. Close Coupled SDA Extension

First reviewed close coupled SDA extension example is the SpaceStat extension,

which is developed to couple between the SpaceStat standalone SDA software and

ESRI ArcView GIS series 3. The extension exchanges spatial data and visualizes

the analysis results between SpaceStat and ArcView GIS series 3. Integrated

techniques were mainly composed of exploratory SDA tools (Anselin 2000). Spatial

data is transferred from ArcView GIS series 3 to SpaceStat for analysis, and the

result is sent from SpaceStat to ArcView GIS series 3 for visualization (Anselin and

Bao 1997). The SpaceStat Extension adds two menu items to graphical interface of

ArcView GIS series 3; “Data” menu is for data transfer (Upper Side of Figure 2.6)

and “SpaceStat” menu is for the visualization of the results of the integrated several

exploratory SDA tools such as box map, spatial lag bar chart, LISA map, Moran

significance map, residual map and predicted values map (Below Side of Figure 2.6)

(Terraseer 2010). Script language of ArcView GIS series 3 is Avenue. Both Avenue

and C programming languages are used for the development of this extension. C

programming language is required to use for specialized functions and organized in

a dynamic link library (Anselin 2000).

37

Figure 2. 6. Data (Upper Side) and SpaceStat (Below Side) Menu Items of

SpaceStat Extension in ArcView GIS Series 3

Another reviewed SDA extension is DynESDA extension which is developed by

Anselin and Smirnov to work in ESRI ArcView GIS series 3. The DynESDA

extension for ArcView GIS series 3 was developed according to the idea of dynamic

graphics used in exploratory data analysis (Anselin 2000). The extension can

produce histogram, box plot, scatter plot, Moran scatter plot and local Moran plot

with dynamic linking and brushing between the charts, tables and maps (Figure 2.7)

(Matthews 2002). Anselin (2000) defines dynamic linking and brushing as any

highlight in the chart or table is also simultaneously highlighted in the map or vice

versa. Development purpose of this extension is to realize this dynamic linking and

brushing with exploratory SDA tools also in the GIS environment.

38

ESRI has started to develop new desktop GIS products named as ArcGIS in 1999.

The development of ArcView GIS series 3 was stopped in 2002. The software

architecture of ArcView GIS series 3 and ArcGIS is completely different. For this

reason, SpaceStat and DynESDA extensions could not be continued for further

development. These two extensions have become out-dated in time due to

structural change in the part of coupled GIS software.

Figure 2. 7. DynESDA Extension in ArcView GIS Series 3

2.4.3. Proprietary Desktop GIS Software: ArcGIS

Most famous proprietary desktop GIS software is ArcGIS which has started to be

developed by ESRI since 1999 (Figure 2.8). In late 1999, ESRI released ArcGIS

version 8.0 which has a new GUI and composed of several software applications.

This package combines ArcView GIS series 3 and ArcInfo workstation version 7.2.

ESRI is continuing to develop ArcGIS series as both desktop and server application.

ESRI ArcGIS Desktop is one of the most widely used proprietary GIS software

products in the world.

39

Figure 2. 8. Snapshot of ArcInfo Licensed ArcGIS Desktop Version 9.3

In version 8.0, two extensions named as Geostatistics and Spatial Analysis, are

available. The tools in these extensions are related with spatial analysis but not SDA

field. Until 2004, there is no SDA tool in ArcGIS Desktop. With the release of ArcGIS

version 9.0 in May 2004, a new toolbar named as Spatial Statistics Analysis was

added which has several SDA tools. Since then, ESRI has started to add SDA

techniques in this toolbar. The progress of integrating SDA techniques in ArcInfo

licensed ArcGIS Desktop version from 9.1 to 10.0 can be seen in Table 2.3. The

total number of SDA tools is 10 in version 9.1 released in 2005, and 14 in version

10.0 released in 2010. The number of newly added SDA tools in five years is only 4.

Similarly, the percentage of number of SDA tools over all GIS tools is very low and

the ratio is almost constant in every version of ArcGIS Desktop. Grand total number

of all tools in ArcInfo licensed ArcGIS Desktop is 954 in version 9.1 and 1387 in

version 10.0. The percentage of SDA tools over all tools is only 1.05 in version 9.1

and 1.01 in version 10.0. These figures prove that the progress of ESRI Company

for integrating SDA tools into their products is very slow and the full integration could

not be achieved by the company in the near future, if the market has not boosted

with an incremental demand from the GIS users.

40

Table 2. 3. The Number of SDA and GIS Tools in ArcGIS Desktop Version 9.1, 9.2,

9.3, 9.3.1 and 10.0 (ESRI ArcGIS Desktop Functionality Matrix 2010)

Spatial Statistics
Analysis Toolbar in
ESRI ArcGIS Desktop
(ArcInfo Licensed)

ArcGIS Desktop Versions and Their Release Date

Ver. 9.1
in May,05

Ver. 9.2
in Nov,06

Ver. 9.3
in June,08

Ver. 9.3.1
in May,09

Ver. 10.0 in
June,10

Number of SDA Tools 5 6 8 8 8

Number of Exploratory
SDA (ESDA) Tools

5 5 5 5 6

Number of Utility Tools 8 9 12 12 12

Number of New Added
Tools

- 2 5 0 1

Total Number of SDA
Tools (including ESDA)

10 11 13 13 14

Total Number of Tools
in the Toolbar

18 20 25 25 26

Grand Total Number of
All Tools

954 1202 1238 ? 1387

% (SDA+ESDA / Grand
Total)

1.05% 0.92% 1.05% - 1.01%

2.4.4. FLOSS Product

First reviewed FLOSS product related with SDA field is R, which is one of most

widely used statistical package in the FLOSS environment (Figure 2.9). It is the

FLOS version of S-plus. R is worldwide voluntarily supported FLOS software system

(Chambers 2008). R is free and runs on almost any computer, including Windows,

Macintosh, Linux and UNIX (Muenchen 2009). Venables et al. (2008) explain that R

is mainly used for “data manipulation, calculation and graphical display”. Primarily, R

is designed for scientific computing and graphics (Maindonald and Braun 2006).

The origin of R has started with a research project in 1990s and has been a GNU

project since 1997 (Chambers 2008).

41

Figure 2. 9. Snapshot of R GUI

R is an environment and has a language with its own syntax. R language is adopted

from S language, which is developed by AT&T Bell Laboratories in 1975. S language

is the basis for the commercial S-PLUS, a statistical package software (Maindonald

and Braun 2006). Chambers (2008) explains that R language remains “largely

compatible with S language”. According to the award of John Chambers' 1998

Association for Computing Machinery Software, S language has altered how

researchers analyze, visualize and manipulate data (Maindonald and Braun 2006).

R reflects this philosophy and has evolved the S language (Chambers 2008). R

Core group as the central control team handles the base system (Maindonald and

Braun 2006). Many statistical techniques are supplied by packages (Venables et al.

2008). Thousand packages in the central repository of R project support the base

system (Chambers 2008). The support of community is very huge and R has many

different packages for variety of fields including SDA.

The main disadvantage of R is that the operations in the R environment are done

with the command line interface which is not user-friendly environment. The

interface requires sort of the knowledge of programming while using command

prompt. This is not easy for the GIS users who have no programming or statistical

knowledge. Learning R can be a difficult task, especially if the user does not have

any programming experience. Another important disadvantage of R is that it is not a

42

GIS software product and has got a different mentality or style of handling spatial

data that is too much complicated and different for many GIS users, who have get

accustomed to work with user friendly menu driven GIS software.

Another reviewed FLOS desktop GIS software product is GRASS, which is the

abbreviation of Geographic Resources Analysis Support System (Figure 2.10). The

software is generally used for “data management, image processing, graphics

production, spatial modeling, and visualization” of variety of spatial data formats

(GRASS GIS 2008a). GRASS GIS manipulates raster and vector data, processes

multi spectral image data, creates, manages, and stores spatial data (GRASS GIS

2008b). GRASS GIS have both windows interface and command line terminal.

GRASS GIS supports a wide range of applications and used both in academic and

commercial world (GRASS GIS 2008a).

Figure 2. 10. Snapshot of GRASS GIS in Ubuntu Operating System

GRASS GIS has started to be developed in a UNIX environment in 1982. The

software is ported to many other systems like Windows and Mac OS X (GRASS GIS

2008b). At first, the software can run in Windows operating system by means of a

Cygwin emulator, and then, the development for the native port of GRASS GIS for

43

Windows OS has started. Native windows port named as WinGRASS is in the

experimental stage in August 2008. The software has unique properties in terms of

portability, which makes GRASS GIS that can work under different OS (Neteler et. al

2008). GRASS GIS is written with ANSI-C programming language and has a

preliminary C++ interface (GRASS GIS 2008a). GRASS GIS is integrated with

GDAL and PROJ libraries (Neteler and Mitasova 2008). By this way, the software

can support range of raster and vector formats, as well as projections.

The development of GRASS GIS has started in US Army Construction Engineering

Research Laboratories in 1982 and continued until 1995 in this laboratory (GRASS

GIS 2008a). The aim of development is to disseminate the usage of GIS in the land

management and environmental planning. When ArcView GIS series 3 is released

by ESRI in 1995, the development of GRASS GIS was terminated. Within a couple

of years, the development was transformed into an FLOSS project by the University

of Hannover. And since then, the project is managed by the international GRASS

Development Team (GRASS GIS 2008c). The software was published as free

software under GNU GPL in 1999 (Neteler et al. 2008).

The disadvantage of GRASS GIS is that the visual style of GRASS GIS interface

and usage manner belong to old fashioned UNIX. Although there is a port of GRASS

GIS to Windows OS, it is still in the experimental stage in August 2008. That kind of

radical change in the structure of GRASS GIS makes any development effort very

unstable for the external developers. This difficulty will continue until the software

will have mature structure and reach to stable version. Another disadvantage of

using this software is that it has different usage style and manner. For example,

GRASS GIS requires learning new GIS data format. This format is a sort of

database structure based on a group of files. The format requires getting familiar

with new features such as “location” and “mapset”. Although GRASS GIS has a lot

of GIS tools, the architectural structure of this software is very old. It is hoped that

renewal structure of GRASS GIS is succeeded with the WinGRASS project.

44

CHAPTER 3

FREE/LIBRE AND OPEN SOURCE SOFTWARE

(FLOSS)

3.1. Definition of FLOSS

The development of free/libre and open source software (FLOSS) is a new and

different software production methodology and has started to be used with

GNU/Linux Project. There is a slight difference between the term “free software” and

“open source”. Free software is thought of most appropriately as freedom. Open

Source definition is supported mainly in the developer community (Cascadoss

2007a).

Richard Stallman, founder of Free Software Foundation, mentions that there are four

types of freedom to define the term "free software" (Free Software Foundation

2008):

Freedom 0: The freedom to run the program, for any purpose,

Freedom 1: The freedom to study how the program works,

Freedom 2: The freedom to redistribute copies so you can help your

neighbor,

Freedom 3: The freedom to distribute copies of your modified versions to

others.

Stallman (2002) explains that free software provides to their users “a freedom to run,

copy, distribute, study, change and improve the software”. The software can be

installed and run on unlimited number of computers through Freedom 0. Free

Software Foundation underlines that license of the software produced or modified

derivatively must be identical with license of previous software in order to maintain

45

aforementioned freedoms. This necessity signifies surrender of copyright. Freedom

2 mentions that the software must clearly indicate license to users when it is

distributed. Publishing of the software derived source code is a necessity, when it is

distributed. Richard Stallman frequently uses his famous slogan; “think „free‟ as in

„free speech‟ not as in „free beer‟” in order to explain the meaning of free software

(Chopra and Dexter 2008). In other words, “free as in free speech” refers to that

there is no restriction in to use, modify and distribute the software. “Not as in free

beer” refers to that a business model can be established by using free software

products. The term “free” does not mean to no fee in the free software.

Proprietary software is restricted and protected from the users with the copyright

law. Copyright sustains the privatization of the software. Stallman has made an

analogy with the term “copyright” and produced “copyleft”. The term “copyleft” is

known as providing source code so that users could modify, enhance, and

customize their software without any restriction. This term also includes the

distribution of a modified version with the source code (Moody 2002 cited in Chopra

and Dexter 2008). Copyleft is the opposite meaning of copyright law. According to

Stallman (2002), copyleft becomes a meaning of keeping the software free.

In 1998, a group of free software developers launched Open Source Initiative

(Chopra and Dexter 2008). They have requested to gain a higher profile from free

software movement. Open Source Initiative is an organization founded by Eric

Raymond to promote open source software and development strategies (Sandred

2001). Open source is defined by Open Source Initiative according to 10 criteria

which the distribution terms of open source software must comply (Open Source

Initiative 2010a):

1. Free redistribution

2. Including source code

3. Allowing modifications and derived works

4. Integrity of the author's source code

5. No discrimination against persons or groups

6. No discrimination against fields of endeavor

7. Distribution of license

8. License must not be specific to a product

9. License must not restrict other software

10. License must be technology-neutral

46

There are nearly 70 open source licenses approved by Open Source Initiative

(2010b). The licenses evolve in time and some of them have become superseded

and retired. Imposed restrictions of open source licenses vary in different degrees.

For example, Artistic license imposes few restrictions (Deitel et al. 2002).

Eric Raymond is a founder of Open Source Initiative, also a FLOSS developer and

one of the first observers in the FLOSS political economy (Chopra and Dexter

2008). Eric Raymond‟s article “Cathedral and Bazaar” is regarded as the manifesto

of the open source movement (Vries et. al 2008). The article compares two ways of

development; cathedral (proprietary) and bazaar (open source) style development.

Koch (2005) describes that little hierarchy exists in the bazaar style and

development appears chaotic. Cathedral style development happens in isolation

from users and with rigid authority from the top (Bates and Stone 2006). According

to Raymond, Linux was the first large scale project that demonstrated the efficiency

of the bazaar style (Söderberg 2008). Raymond (2001) defines that main difference

between the cathedral and bazaar styles is that in the cathedral style, “the

programming, bugs and development problems are tricky, insidious and deep

phenomena”. For this reason, upgrades of cathedral software must be realized a

long period of testing to ensure that all bugs are removed from the program

(Söderberg 2008). However, in the bazaar style, the bugs are generally accepted as

normal phenomena and fixed in time (Raymond 2001). In this model, anyone with

Internet access and programming skills can participate in the development process

(Söderberg 2008). This is the advantageous of open source software over

proprietary software. By this way, “the bugs are more rapidly detected and fixed” in

the open source style development (Koch 2005). Raymond (2001) advices that

release should be done often in open source software in order to get more

corrections.

Free Software Foundation (2008) “recommends using the term „free software‟

instead of „open source‟”. Open source focuses on technical issues, but ignores the

value of freedom. "Libre" is mostly used within the free software movement in order

to emphasize the freedom. Whereas Open Source Initiative has preferred to declare

a new word “open source” instead of using “free software” due to ambiguity meaning

of the word “free” in English language. The Open Source Initiative claimed the term

“free software” was too confusing for managers. For this reason, the initiative offered

a new term “open source” to increase the attractiveness of the free software

47

development model to the business community (Chopra and Dexter 2008). Stallman

(2002) mentions that “open source is a development methodology, whereas free

software is a social movement”.

The choice of using both terms “free software” and “open source” together in this

thesis is done deliberately in order to avoid ambiguity meaning of “free”. The term

“free” refers to “libre”, which is the freedom to run, copy, distribute, study, change

and improve the source code of the software. Alternative term for “free software” and

“open source” is to use "Free/Libre and Open Source Software (FLOSS)”. In this

thesis, the term “FLOSS” is used to refer to both “free software” and “open source”

which are accepted as in the same meaning.

Briefly, free software provides all users freedom to run, distribute, modify and

redistribute copies of modified versions to others. The free software underlines to

have a right to access source code, to modify the source code and also to

redistribute the modified source code. Source code is a human-readable instruction

determining how software would run and which tasks would do by the program in

the computer. Krysa and Sedek (2008) define source code as the uncompiled, non-

executable code of a computer program stored in source files. It is not possible to

develop the software without accessing the source code. Any modifications could

not be carried out on compiled binary code, but this could be done on the source

code (Krysa and Sedek 2008). Therefore, access to the source code is a

fundamental condition for the freedom to study how the software works and to

redistribute the derived works.

In free software world, a person who knows how to develop a program has the

freedom to develop new features in the software completely free of charge without

facing any legal obstacle. If developer can use and improve codes written by others,

then other developers should be able to use codes written by that developer. This is

a necessary in the free software in order to maintain the continuity of the software

development. This necessity is legally sustained with the GNU General Public

License (GPL). When the software is licensed under the GNU GPL, the derived

development work originated from that software should also be licensed under the

GNU GPL (Chopra and Dexter 2008). This is the protection of GNU GPL for free

software that is guaranteed legally with this license. This protection avoids free

software to be used with the proprietary software. Although this kind of restriction

48

limits the use of free software, it provides the guarantee of accessing to the source

code of the software as well as modified versions of the original software. GNU GPL

also gives a right to the programmer to develop the software without requesting any

permission from the author (Söderberg 2008). Free software movement uses GNU

GPL software licenses to control over the source code or in other words the

knowledge of developing the software (Koch 2005). However, open source licenses

do not oblige any license to attach the derivatives of the original code (Söderberg

2008). For example, Berkeley Standard Distribution license permits the creation of

proprietary derivative works from open source software (Vries et. al 2008).

Permitting to create derivative works mean to rip, mix, burn, and release the open

source software under the development of proprietary software (Söderberg 2008).

Vries et al. (2008) mention that the advantage of this license is to allow “maximum

freedom in using the source code to create derivative works” within the closed

source software. However, this kind of freedom could cause in danger of not sharing

the source code of this derivate works with the public. This is the risk for continuity

of software development from the point of view of free software.

Most of GPL products are distributed free, because it is difficult to sell the license of

software whose source code is provided to be accessible for everyone through the

Internet. Software can be charged as follows when considered from perspective of

GPL definition; a charge can be requested when distributing copies of the software

physically (CD, DVD media, etc.) as well as a charge might be demanded when

giving guarantee for the software or to provide technical service to users.

The opposite of free software is proprietary software or closed source software.

Source code of the proprietary software is distributed as binary. When the source

code is compiled, it is converted into binary code. Binary distribution completely

prevents for developers to access to the source code of the software. Also,

unauthorized access the source code of the proprietary software is prohibited with

both the copyright law and the license of the software. Even if a developer adds a

feature to proprietary software, the developer would not have the right to redistribute

this improvement legally. Proprietary software imposes many restrictions to the

developers and users by means of license agreements. Since nobody except

manufacturers of the software has the right or the authorization to examine how the

program works, it is impossible for users to know exactly which tasks are performed

in the computer. As a natural result of this prohibition, when an error is occurred, it is

49

hard to guess the reason of this problem by the user. Only the developer of that

software can know the reason of failure and explain the error how to fix it in the

proprietary software. Fixing and developing the proprietary software are under the

monopoly of manufacturer of that proprietary software (Dalgıç 2007). Free software

world is the name of other world that does not include these restrictions. Moreover,

the users do not have to pay high usage fees for each copy of the closed source

program in this world.

There are many benefits to apply FLOSS development methodology for analyzing

spatial data. According to the Bioconductor Project, which is an open source

software development project for the analysis of biological data, the benefits of

applying FLOSS development methodology are explained as (Bioconductor 2008):

 Full access to algorithms and their implementation

 The ability to fix bugs, extend and improve the supplied software

 To encourage good scientific computing and statistical practice by providing

appropriate tools and instructions

 To provide tools which allow researchers to explore and expand the methods

used to analyze the data

 To ensure that the international scientific community is the owner of the

software tools needed to carry out research

 To lead and encourage the commercial support for the development of tools

 To promote reproducible research by providing open and accessible tools

that are carrying out scientific research

 To encourage users to become developers, either by contributing packages

or preparing documentation

The same benefits can be obtained also for SDA field. In order to gain these

benefits, the FLOSS development methodology should be applied while developing

specialized software for SDA field. Those benefits are gained with free software

revolution. This revolution is shortly explained by Deitel et al. (2002) that the concept

of free source technologies is not new. The development of free source technologies

was an important factor in the growth of modern computing in 1960s. After the

Internet was established, closed-source technologies and software became the

norm in the software industry, and free source fell from popular use in the 1980s and

early 1990s. In response to the closed nature of most commercial software and

50

programmers' frustrations with the lack of responsiveness from closed source

vendors, FLOS software regained popularity today.

Developing software is a right that should be shared with the public and everybody

should have freedom to use this right in this environment. When developing new or

derivative software, it is not required to develop everything from scratch. It should be

possible to take advantage of software developed by others, to produce new

software, to improve the software by adding new features and to redistribute the

software for reuse by others. These possibilities exist with FLOSS development

methodology. A right for the development of the software is protected by GNU GPL

in this system. FLOSS ecosystem owes its presence to this concept.

3.2. Benefits of Using FLOS GIS Software for Utilization of

GIS Field

Free/Libre and Open Source (FLOS) GIS software can increase the utilization of

GIS field by providing cost reduction, supporting open standards, offering variety of

products for free. The most important advantage of FLOSS compared to proprietary

software is that a license fee payment is not required necessarily. FLOS GIS

software eliminates the software license fee which is one of the factors preventing

the spread of GIS world. Unlimited usage of FLOSS refers to two opportunities.

First, the software can be used on any computer for any private or commercial

purpose. Second, the software can be installed and run on unlimited number of

computers. When the use of FLOS GIS software has increased, GIS field can

become more widespread. In addition to this benefit for utilization, all these products

support the open standards. Open standards are the best way to cover different

spatial data formats and great variety of users. Also, complete utilization of GIS field

in any organization requires different type of applications like web, desktop,

database and mobile applications. This kind of variety increases total cost of the

whole system, especially when it is requested to pay licensee fee for each copy of

the application. FLOSS products can provide great amount of cost reduction for

enterprise GIS. All FLOSS GIS products can be developed according to the demand

of the organization, because source code of the product can be accessible from the

Internet. Source codes are the valuable information resources for the developers to

learn how the application works.

51

There are several key factors affecting the spread of FLOS GIS software such as

which GIS software learned in universities, taught in hands-on GIS trainings and

used by researchers on their studies. Manufacturers of proprietary GIS software

offer their GIS products to be used in the universities of their homelands free of

charge or for a very low fee in order to popularize their GIS products. However, the

same charging policy is not always applied to the countries where the software is

exported. This situation limits the use of GIS application especially in the public

sector. Public organizations can buy only a few licenses which decrease product

variety or completely prevent utilization of this technology. GIS experts cannot find a

chance to access and learn different variety of products due to limited number of

licenses or they are pushed to commit crime by using illegal copies. High license fee

prevents the spread of GIS in the public and especially in the private sector. While

relative discounts are available for public sector and universities, there is not such a

price regulation for private sector. This situation causes an unavoidable dependency

on government in terms of dissemination of GIS field.

Spread of FLOSS should first start in universities in order to utilize the GIS field.

FLOSS world provides great opportunities to researchers. FLOSS saves

researchers from reproducing an algorithm that was already applied. FLOSS is a

great information resource for researchers working on GIS field to learn how SDA

technique works. Moreover, researcher using FLOSS owns a testing environment in

which they can try new techniques and develop new techniques. FLOSS has a

comprehensive documentation for researchers. The best source explaining how

algorithm works is the source code of the software. Source code of FLOSS can be

examined by everyone freely. FLOSS can be extended and modified in accordance

with requirements of the research without any limitation. New developments and

techniques invented in FLOSS can be published and shared with other researchers

instantly. Reproducible results can be obtained when the researchers have a chance

to setup the same software environment. This is the basic requirement in the

discovery of new scientific methods; accessing to the same environment and having

an opportunity to develop the techniques by applying with different algorithms.

Second way of utilization of GIS by the FLOSS products is to use open standards.

Open standards are the best way to support every GIS user and data formats. Most

of the FLOS GIS software supports open standards and open geographical data

52

formats described by Open Source Geospatial Consortium. When FLOSS products

supporting open standards are chosen to build national or regional spatial data

infrastructures, the advantages provided by these products to GIS world are much

more than those of proprietary products. Aim of establishing such a system is to

access all GIS users and integrate many GIS data formats into one common

platform. In order to reach this goal, spatial data infrastructure system must support

open standards, commonly used GIS data formats and provide various solutions to

convert to different GIS data formats. Nearly all of the FLOS GIS software is

developed to support according to the specifications of Open Source Geospatial

Consortium.

The utilization of GIS can be divided into four groups according to the use of GIS

applications in the public organization in Turkey. However, there is no clear

difference among the groups; some of listed features can take place in other groups

as well. The purpose of grouping the utilization of GIS is to show which level of use

can be reached when product variety is achieved in an organization.

The use of GIS in the first group is at the most basic level. This group represents

that one or several personnel carry out GIS works in one unit of the organization.

These users perform the required task by using GIS software and generally GIS

data are stored in personal computers. In this case, the use of GIS remains quite

limited within the organization. This group needs only desktop GIS software as

minimum.

In the second group, a department is responsible for performing GIS related tasks in

the organization. GIS department serves to meet requirements of other units within

the organization. GIS data are stored on a server and shared within the department

by a central and single database. Second group represents transition between

personnel usage to enterprise GIS. It is possible to establish the aforementioned

unit in charge, since the usage level of GIS in this group is higher than the one in the

first group in terms of having several GIS software licenses and variety of GIS

related products. This group requires desktop GIS software plus database

application and interface for converting and storing spatial data in the database

application.

53

In the third group, the use of GIS is not limited with one responsible department.

One or more personnel in different departments can use GIS software and access

geographical data. GIS users in different departments can access geographical data

stored in multiple spatial databases distributed within several servers. GIS can be

used by several units instead of a single responsible unit. In this group the use of

GIS is spread to most of organization. Personnel can quickly access to geographic

data via Intranet, Internet and perform spatial analyses. GIS software is customized

according to requirements of the organization. GIS is integrated with other

enterprise systems like electronic document management system, enterprise

resource planning and customer relationship management. Also customers can

access to geographic data via Internet. GIS works like decision support system for

the managers in the organization. This group requires variety of GIS applications

like desktop GIS software, database, web mapping application, customized user

interface and probably mobile GIS application.

Fourth and also the last group represents the most advanced GIS use. In this group,

GIS is not a tool but a goal. This group uses GIS to conduct spatial research and

development projects, to prepare and to provide national or regional geographic

data infrastructures, to explore new analysis method, to develop new GIS software,

to discover spatial technologies, to test new GIS applications. Some of the GIS

usage listed for this group can only be achieved through studies performed in the

universities. This group also contains the private commercial companies which

perform to sell GIS products, to provide technical support about their products, to

develop new GIS software, to make localization, to translate the manual and GUI, to

customize the software by developing improvement such as add-on, plug-in,

extension, custom toolbar, etc.

In order to utilize GIS more functional as in the second group in the public

organizations in Turkey, an organization should have a complete information

technologies infrastructure like server, personnel computers connected with each

other via network, fast and stable Intranet and internet connection, database

application, qualified personnel. Organization could have difficulty in reaching to this

GIS level due to several reasons. License fee of proprietary GIS software can be

very expensive. For example, one concurrent license of ESRI ArcGIS Desktop GIS

program licensed with ArcInfo functionality is $30,000 plus value added tax in 2010

in Turkey. However, FLOS GIS software can dramatically lower the prices. The

54

closed source software license fee is one of the drawbacks in the spread of GIS in

Turkey. There can be other reasons which prevent the utilization of GIS in the public

organization. The public organization has not yet setup a network and could not

have enough number of personnel computers and not have any powerful servers.

The organization does not have specific hardware like plotter, scanner and GPS

which are required while creating the geographical data. Also organization could

have difficulty in employing qualified GIS experts and developers.

Third way of utilization of GIS by the FLOSS products is to develop enterprise GIS.

Enterprise GIS can be utilized in the organization when several software products

are owned by the organization. Enterprise GIS contains web mapping applications,

desktop software, database application, interface converting spatial data into the

database, development libraries and applications developed for specialized fields

like 3D analyses, spatial modeling, network analysis and artificial intelligence. These

applications could not be provided within single product up to now. Some of

aforementioned applications were included within one product and some are

marketed as a plug-in or a standalone product. This means to pay many licensee

fees for variety of products in order to setup enterprise GIS in the organization. Also

license fee for each copy of desktop GIS software should be paid to the GIS vendor.

GIS software is released generally in every two years, which means that license fee

should be renewed in every two years. This is the total cost of owning proprietary

enterprise GIS software. When all these costs are taken into account, it is obviously

seen that one of the most important factors preventing to facilitate enterprise GIS in

the organization is software license fees itself.

Although it is considered that the abilities of FLOS GIS software are relatively limited

in certain subjects, cost advantageous of owning FLOS GIS software as enterprise

GIS is significant. Moreover, missing features can be developed by programmer or it

can be requested from the community developer. Cost of adding needed features to

FLOS GIS software and total cost of proprietary GIS software should be compared

before deciding which software to use. Proprietary GIS software meets general

demands of users. Proprietary GIS software should also be customized and adopted

in order to do specific tasks in accordance with the demands of the organization.

The development work should also be carried out in order to use the proprietary GIS

software as enterprise system. This situation shows that development work is

required for both proprietary and FLOS GIS software as well. It is not possible to

55

avoid development cost for enterprise GIS whether the software is a proprietary or

free.

When FLOSS products are preferred for setting up enterprise GIS, it is possible to

access source code permanently and this situation prevents any monopolization in

regard to continuity of development work. A programmer with experience of

developing in the same programming language can continue to carry out the

maintenance work. FLOSS product eliminates the necessity of having technical

support from the manufacturer of the software. Enterprise systems should

continuously be developed to adopt the changes that can occur in the structure of

the organization. Enterprise application, which is not adopted according to new

needs, becomes unusable over time, lose reliability and after a while they become

completely useless. They have become to be replaced by a new system partially or

completely. The most important advantage of system development with FLOSS is

that the system can continuously be developed by the programmer and new

features developed by the FLOS community can be integrated with the implemented

system in the organization, because there is no obstacle to access to the source

code of newly developed part of the system.

Software products to establish enterprise GIS application can be obtained from

FLOSS world. Different programs are required to establish enterprise GIS

application from different information technology fields like web server, internet

security applications, database application, web and desktop GIS software. These

products can be found in FLOSS world and configured to run together. The cost of

establishing enterprise system in terms of software license fee can be eliminated

when FLOSS products are used.

Enterprise GIS application can be realized by using FLOSS products. In this case,

one of the FLOS Web GIS software publishing geographical data within web

browser over a network such as internet or Intranet through one or more servers

integrated with database should be preferred to realize this task. Several FLOSS

products should be installed on the server and configured to run together.

Necessary configuration settings should be carried out. This can be difficult for GIS

expert to setup the environment such as installation of additional plug-in needed to

provide extra features to the software, setting up user‟s security configuration in the

56

database and establishing GIS interfaces which provides the storage of spatial data

in the database, etc.

There are several FLOSS products that can be used to implement as enterprise

GIS. In order to decide which FLOSS products would be used, the product should

be evaluated according to the several selection criteria. Quality of documentation,

features provided by software product, compatibility to run with other products,

supporting status for open standards, performance of the software for large size GIS

data are very important subjects when deciding about which GIS product should be

chosen to be implemented in the enterprise GIS. FLOSS project should be mature,

supported by a broadly-participated community and have up-to-date configuration

and compilation instructions explained properly. It will be better to learn installation

and configuration tasks before deciding to use the software. If these tasks could not

be carried out correctly, it would require asking a professional technical support from

the community.

In FLOSS world, a lot of developed products are available for different fields. The

most important subject to be searched while deciding which GIS product is used, is

to look at whether the project is supported by a mature community and have

sufficient documentation or not. Moreover, FLOSS projects can also be supported

by private commercial companies. Technical service can be acquired from these

companies. To pay technical service for FLOSS can be meaningless for managers

in software environment where most products are free of charge. Requesting

technical service from the community with fee speeds up the development work for

your organization. Most appropriate way to benefit from FLOSS projects for any

organization is to be a sponsor or donors to the project. This will make many

development tasks easy and create strong communication between community

developer and the programmer of the organization.

Establishing enterprise GIS in the organization is challenging task. Enterprise GIS

requires harmonizing several application areas like web, GIS, database and even

mobile products. The variety of products causes to increase total cost of proprietary

licensee fee and the amount of development work carried out. FLOSS can sustain

huge cost reduction in terms of licensee fee. This provides great flexibility for

managers in the organization to support the development cost of the system.

Development work should be carried out both for proprietary products and FLOSS.

57

This necessity is unavoidable part for the establishment of enterprise GIS. When it is

decided to use FLOSS to setup enterprise GIS, it could be important to take

technical support from the community developers. This kind of support would

determine the success of the system and cuts the spent time for the completion of

the system.

FLOS GIS software can not be enough mature as compared to proprietary GIS

products in some parts, but if FLOSS are supported to develop more, there is no

reason to have full functional program like proprietary products, because they are

open to be developed by everyone freely.

3.3. Basics of FLOSS Development

The most important advantage brought by FLOSS world is to provide the capability

and possibility of taking intellectual and proprietary rights of software from a single

corporation and sharing these rights with the public. FLOSS provides the freedom to

develop software over again in any way to all people. The aim of FLOSS is not to

consume but to produce. FLOSS philosophy emphasizes on several freedoms such

as a right to access, to modify and to redistribute the source code, and organizes

how these freedoms can be used as a social production tool.

Other advantages and freedoms brought by FLOSS are possibility and opportunity

of reducing costs, improving the software in regard to personal needs or asking a

programmer to do this economically and quickly instead of you, understanding

whether the software is safe by studying how it runs, having a secure software since

it was tested and studied by many programmers, receiving updates and new

features much more faster due to their delivery over Internet freely. Also, if users

prefer to use FLOSS products on Linux instead of proprietary operating systems,

then they do not have to challenge computer viruses as well. This provides an extra

safety environment. The greatest benefit of FLOSS for the users is to have the

software free of charge or they demand a much lower charge compared to

proprietary software.

Accessing to the development libraries and tools in FLOSS environment is relatively

much easier and cheaper as compared with proprietary software environment. Cost

advantages of FLOSS against proprietary software should be considered with

58

reference to “Total Cost of Ownership” concept. According to a research conducted

in 2001 by Financial Audit Bureau of Baviera in Germany, FLOSS has lower total

cost of ownership and a higher investment return compared to their alternatives.

This report underlines that cost comparisons between free and proprietary software

is much more beyond license fees. Also, it emphasizes that indirect costs (hardware

upgrades, access to data in old format) have to be considered besides direct costs

(license fees, installation cost, training and support).

Another study about the total cost of ownership values have been carried out by

Cybersource Company (GözükeleĢ 2004). In this study, a business enterprise has

been modeled by considering criteria such as personnel with 250 computers,

servers and workstations with Internet connection, e-business system, network

wiring and equipment, standard software, wages of information technology

specialists required to maintain continuity of infrastructure. This model has been

developed through two alternatives. In first alternative, it was assumed that the

enterprise already had an existing system. In second alternative, a starting from

scratch approach has been used. A comparative result of study conducted by

Cybersource Company is shown in Table 3.1 (Cybersource 2004). Total cost of

ownership of FLOSS is 36% cheaper in the first alternative and 26% cheaper in the

second one with respect to proprietary software. This model has been calculated as

per 250 computers only. Savings would be even more striking if hundreds of

thousands of computers are considered.

Table 3. 1. Comparison of Total Cost of Ownership (Cybersource 2004)

Total Cost of Ownership for

Three Years

Microsoft

Solution

Linux

Solution

Savings by

Open Source

Savings as

percentage

Use of existing hardware

equipment and infrastructure
$1,066,712 $682,090 $384,622 % 36

New hardware equipment

and infrastructure is bought
$1,366,883 $1,012,260 $354,623 % 26

FLOSS is a continuously expanding information source for those who know how to

use this source. Today all legal and technical means required to develop software

are available in FLOSS development environment, as in the past. Developers who

are in capable of writing code collectively and voluntarily are always in demand. By

59

means of technical tools provided by FLOSS, code writing can be carried out

collectively independent of time and location.

The possibility of having a right to use development tools makes FLOSS

development technically easier. In order to protect these freedoms, philosophy for

developing FLOSS should be understood and owned by the users. This philosophy

can be supported in the simplest term by using FLOSS and contributing to the

FLOSS projects. In order to benefit from these utilities, the rules of FLOSS world

must be perceived. Support from developers and users should become widespread

in order to carry out FLOSS development. Motivation of members of community

depends on contributions received from the users. Difficulties related with

developing the software continuously can be overcome only when the members are

satisfied economically and socially.

Software needs to be developed continuously to sustain its presence. Each program

needs continuous maintenance due to improving performance, major changes in the

dependent library or in the operating system and implementing possible new

standards and data formats, etc. The cost of showing initial efforts to develop the

software, keeping continuously to maintain the software, spending efforts to make

the software free of bug and fixing security vulnerabilities, adding new features,

briefly improving the software can be overcome by applying FLOSS development

methodology. These costs can be eliminated when the project has become well

known, their products are widely used, and the project is supported by active and

rapid growing community. This progress can be realized when more users learn

their rights, own the FLOSS philosophy, contribute the FLOSS projects and prefer to

use more FLOSS products in their daily works instead of using proprietary software.

FLOSS products gain more importance in many different fields by offering similar

service quality as proprietary products can do. Today, some FLOSS products

compete against proprietary products. Developers and users have great

responsibilities for the development and spread of FLOSS products. Hopefully,

many developers will start to contribute to develop more FLOSS project and users

will prefer to use more frequently FLOSS products due to freedoms and social

benefits provided by FLOSS.

60

3.3.1. Continuity of FLOSS Project

A FLOSS project should have an active community in order to continue to maintain

the development of their product. In the project, project governance structure should

be setup and shared with the users. The project governance structure includes a

mission statement, a conflict resolution procedure, and a procedure that explains

how new developer can be accepted as a member in the core development team

(Cascadoss 2007a). For example; QGIS Project is organized under these

responsibilities; packaging team leader and members, code maintainers, manual

team leader and contributors, manual and GUI translator team leader and members,

financial advisor and assistants, release manager and assistants (Quantum GIS

2010b). Newcomers should contribute to the project free of charge according to their

talents. Contribution of newcomers can be in many different ways such as code

development, contributing the documentation, reporting bug, advertising the product

and the project, donating, translation, etc. The aim of organizing the members of the

community is to gain these contributions coming from new users and adopt them to

be a new member of the community.

The responsibilities of members of this community should be organized by either the

originator/leader of the project, the core development group or the most experienced

developer in the project. The decisions can be discussed via e-mail and are taken

by consensus of the members of the group. Most FLOSS projects leadership is

meritocratic in nature (Cascadoss 2007a). This means that the member, who has

made more valuable contributions to the project, has a more right to advice strategic

decisions. Strategic decisions are taken according to the consensus between the

members of the community. Consensus is vital for the management of FLOSS

projects, because there is a potential risk to occur a fork. Fogel (2006) defines the

term “fork” as anyone can take a copy of the source code and start a competing

project. Fork is a bad thing in the project and tried to avoid it by organizing the

project as democratic way, because the available developer‟s manpower is limited

and with the fork, one group of developers and users are lost from the original

project. Fogel (2006) adds that the possibility of being a fork is the main reason for

not being true dictators in FLOSS projects.

Continuing the development of FLOSS product depends on the motivation of the

members of the community. In order to satisfy the members economically, the

61

project should be managed to gain the financial support from users, private

commercial companies and public organizations. The most logical way to get

financial support while developing FLOSS products is to provide technical services

to customers. Although there are not enough corporate businesses providing

technical support service for FLOS GIS software in Turkey, it is thought that

technical service for FLOS GIS software will increase and become more widespread

due to benefits provided by FLOSS development method.

A counter thought in this regard states that technical support services cannot be

provided by corporate businesses. This view claims that this technical support

service should continue to be provided by small companies which employ a few

people who are talent in the development of free software. The release of new

version of FLOSS products in active projects is much faster compared to proprietary

software products. This speed can also be seen while fixing the errors. Therefore, it

is considered that any corporate business cannot provide technical support as cost

effective as a small company. Corporate businesses cannot compete against

originality and innovation of technology that small companies can produce in FLOSS

world. Adaptability skill, speed and maneuverability of small companies are much

higher than large corporations. This is the power of small companies provided with

the use of FLOSS development tools.

The power of large corporations comes from their wide range of customers.

Presenting the software as a brand in the market requires an investment apart from

software development area which makes small companies dependent on large

corporations. The cost for developing and maintaining continuously the software and

advertising can be hard to overcome especially until the project has become

popular. However, when FLOSS development methodology is applied, FLOSS

allows the widest possible distribution of a software package at very low cost with

minimal marketing (Cascadoss 2007a). There is always a keen competition between

small companies and large corporations in regard to providing technical support

service and marketing the technology. When considered from this point of view, both

situations can be possible in future. It seems that technical service for FLOS GIS

software continues to be provided both small companies and large corporations.

In addition to the provision of technical service, the project can be managed on the

based on different business models. FLOSS development methodology has created

62

several business models observed in the market and identified in the literature by

Cascadoss (2007a) Project as follows;

 The Dual Licensing Model: Companies make their products with both free

and commercial license like Qt and PyQt.

 The Support Seller Model: Companies that provide paid support for FLOSS

products they developed.

 The Third Party Support Seller Model: Similar model with the support

seller but the paid support is provided by the third party companies.

 The Platform Provider Model: Companies bundle several FLOSS products

into a complete platform and guarantee the quality of the integrated platform.

 The Consulting Model: Companies provide consultancy with respect to

FLOSS products based on knowledge or experience of working with FLOSS.

 The Software as a Service Model: FLOSS is used to provide access to

revenue generating online services.

 The Added Value Provider Model: Companies that create proprietary

software derived from FLOSS.

 The Accessorizing Model: Selling services or physical items related to

FLOSS such as books, hardware, etc.

 The Loss Leader Model: FLOSS product is not charged and used to market

a proprietary product which offers more functionality.

 The Widget Frosting Model: Selling a combined offering of high value

software and/or hardware components together with low cost FLOSS

offerings. For example, selling Oracle Database application bundled with

Linux operating system.

In order to continue to maintain the software, economical support can directly be

taken from public organization with government policies. For example, China,

Germany and Brazil adopt and support FLOSS as part of their national policies.

Most European countries especially Germany, France and Spain have grown their

own communities (Gonzalez-Barahona and Robles 2006). The contributions of

Europe to the history of FLOSS are extensive. For example; the kernel of Linux is

developed by Linus Torvalds, Finnish; Python by Guido van Rossum, Dutch; MySQL

by Michael Monty Widenius, Swedish; PHP by Rasmus Lerdorf, Danish; KDE by

Matthias Ettrich, German (Gonzalez-Barahona and Robles 2006).

63

In Turkey, FLOSS is not supported with national policies. Pardus project is one of

the unique examples in Turkey that is developing with the support of one of public

institution. If Pardus could become widespread among public bodies in future, this

can lead to initiate many developments in the FLOSS projects. Pardus has been

developing since 2004 in the TUBITAK National Electronics and Cryptology

Research Institute. Pardus is one of Linux distribution licensed under GNU GPL and

it can be downloaded from project official web site and installed for free of charge.

The first release of this operating system was in December, 2005 (UEKAE 2010a).

Names and release dates of Pardus versions are listed below (UEKAE 2010b):

1. Pardus 1.0, December 2005,

2. Pardus 2007, December 2006,

3. Pardus 2007.1 FetisChaus, March 2007,

4. Pardus 2007.2 Caracal, July 2007,

5. Pardus 2007.3 Lynx, November 2007,

6. Pardus 2008, June 2008,

7. Pardus 2008.1 Hyaena, September 2008,

8. Pardus 2008.2 Canis aureus, January 2009,

9. Pardus 2009, July 2009,

10. Pardus 2009.1 Anthropoides virgo, January 2010,

11. Pardus 2009.2 Geronticus eremite, June 2010,

12. Pardus 2011-RC, December 2010.

National Linux distribution, Pardus is a leading project which has started in FLOSS

development environment with the support of public institutions. Pardus has started

to become a known operating system not only in Turkey but also throughout the

world. DistroWatch.com is web portal listing statistics for usage frequency of Linux

distributions, and in every month several new distributions are added to this list. In

August 2010, Pardus Linux was at rank 66 in the last one month, 41 in the last 3

months, 53 in the last 6 months, 41 in the last 12 months among 320 Linux

distributions (Distrowatch 2010). It is an important success to be in the first 50

among all distributions of the last year.

Gelecek and Truva Linux Distributions are other two FLOS distribution examples

that are still being developed in August 2010. Gelecek Distribution is developed by

Gelecek Company and serves with two separate products named Desktop Vision

and Enterprise Linux. Truva Distribution is a local Linux distribution based on

64

Slackware since 2004 and version 2.0 release candidate has been released in

March 2008. In DistroWatch.com, Gelecek and Truva distributions also take place in

the list (Distrowatch 2008). Several Linux distribution projects like Turkuaz, Turanid

and Turkix distributions in Turkey have been terminated as it happened in the world.

Projects like these and similar ones are terminated due to insufficient support and

lack of broad community participation. Contributions and supports are the most

crucial factors determining the continuity of FLOSS projects.

The support can come from public organization, private company and non-

governmental organization. The support of users and developers can be in the form

of making volunteer contribution to the project. GözükeleĢ (2006) explains the

reasons of volunteer contributions of Turkish free software developers (Table 3.2).

According to this study, the main reason of Turkish free software developers making

volunteer contribution is the information share, cooperation and will to contribute for

a better world. Minority of Turkish free software developers‟ motivation reason is to

develop the business opportunities. It seems that Turkish free software developers

do not concern the business model of FLOSS development methodology.

Table 3. 2. Motivation Reasons of Turkish Free Software Developers (GözükeleĢ

2006)

Motivation Reasons Percentage (%)

Information share, cooperation and will to contribute for a better world 67.2

To spend good time during programming 21.8

To learn new skills and self development 10.9

Due to thought that software is not proprietary 7.8

By nationalist feelings 4.7

To solve a problem that cannot be solved by proprietary software 4.7

To develop business opportunities 1.6

When its social and economic dimensions are considered, maintaining to develop a

FLOSS project is a challenging and laboring work. Major challenge for developing a

FLOSS project is to maintain code-writing with patience and discipline continuously.

In Turkey, many FLOSS projects ended without reaching a certain maturity due to

insufficient interest of users and not achieving a community around the project.

Starting and developing a FLOSS project requires a very long time period. It is

65

estimated that it can take 5 to 10 years depending on conditions, situation and

software in question. It cannot be possible to create a community supporting a

FLOSS project within a time period shorter than similar durations.

Software development requires qualified human resource. Contribution of

developers to FLOSS project as qualified human resources could be very low in the

software industry. Developing FLOSS and creating a community around the FLOSS

project is a very labor intensive work which requires too much time. Thus it cannot

be possible for this qualified human resource to offer their services free of charge for

a long time. This situation is one of the difficulties for FLOSS project to develop

mature software as full featured program. It is considered that financial support

especially at the beginning phase of the project coming from a public organization,

university, government or private company will be generally inevitable to maintain

FLOSS projects.

The exact number and qualifications of free software developers in Turkey are not

known. A study that can be connected to this subject was conducted by International

Institute of Infonomics in 2002 (Infonomics 2007). Findings of this study's final report

on FLOSS are based on results of a survey which involves approximately 500 free

software developers. This Internet survey was announced through well-known

internet portals and e-mail lists in FLOSS world. Aim of the study is to collect basic

data which will determine importance and role of FLOSS in current economy.

According to this report, the percentage of Turkish free software developers

participated in this survey is only 0.4. Distribution of numbers of programmers by

nationality is shown in Figure 3.1. While 71% of free software developers in survey

are from Europe, 13% is from North America and remaining 16% is from other

countries. Turkey is at third rank from the last after Luxembourg and Greece

respectively. A similar rank appears for Turkey in regard to distribution of locations

where these programmers live or work (Figure 3.2). The percentage of developer

living or working in Turkey is 0.3. Similarly, Turkey is at third rank from the last after

Luxembourg and Greece respectively.

66

Figure 3. 1. Distribution of Free Software Developers by Nationality (%) (Infonomics

2007)

Figure 3. 2. Distribution of Free Software Developers by Countries Where They Live

or Work (%) (Infonomics 2007)

0.0 5.0 10.0 15.0 20.0

FRANCE

GERMANY

USA

ITALY

SPAIN

ENGLAND

NETHERLANDS

BELGIUM

SWEDEN

AVUSTRALIA

AVUSTRIA

CANADA

INDIA

DENMARK

NORWAY

RUSSIA

PORTUGAL

IRELAND

TURKEY

GREECE

LUXEMBURG

OTHERS

16.4

12.4
10.3

7.8
6.7

6.5

6.5
4.0

3.5
2.5

2.2
2.2

1.9
1.6

1.3
1.2

0.8
0.5
0.4
0.3

0.1 10.8

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

FRANCE

USA

GERMANY

ITALY

ENGLAND

NETHERLANDS

SPAIN

BELGIUM

SWEDEN

AVUSTRALIA

AVUSTRIA

CANADA

NORWAY

INDIA

DENMARK

RUSSIA

PORTUGAL

IRELAND

TURKEY

GREECE

LUXEMBURG

OTHERS

15.4
12.7

12.6
8.0

6.6
6.5

6.43.6
3.5

2.4
2.2

2.0
1.6

1.5
1.4

0.9
0.8

0.6
0.3
0.3

0.2
10.7

67

Distribution of more preferred countries of free software developers for working

purpose and their mobility patterns were determined through information on their

nationalities and countries they work in (Infonomics 2007). This pattern was found

out by comparison of Figure 3.1 and Figure 3.2. There is not a big difference

between the countries where free software developers work and their nationalities.

The percentage of free software developers working in a foreign country is 10. While

Germany and United States replaces each other's rank, Spain and Russian

Federation are less preferred by free software developers to work in relatively

(Figure 3.3). While United States is the most preferred country as seen in

distribution of more preferred countries to work in, France is the least preferred

country by free software developers.

Figure 3. 3. Distribution of Mostly Preferred Countries by Free Software Developers

to Work in (Infonomics 2007)

Turkey is at fourth rank in less preferred countries after Greece, Netherlands and

Austria. Any European country was not as attractive as United States in terms of

more preferred country by free software developers to work in. The reason for this

result is unknown since related questions were not included in the survey

(Infonomics 2007). As it can be seen from the figures, the number of free software

USA

NORWAY

ITALY

GERMANY

LUXEMBURG

IRELAND

ENGLAND

SWEDEN

PORTUGAL

GREECE

NETHERLANDS
AVUSTRIA

TURKEY

AVUSTRALIA

CANADA

DENMARK

RUSSIA

SPAIN

BELGIUM

INDIA

FRANCE

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

68

developer in Turkey is low and Turkey is the least preferred country to work or live

by the free software developers.

3.3.2. Developments in the FLOSS Project

Development in the FLOSS project can continue with an active community. The

failure for creating a community around the project can terminate the FLOSS

project. Creating a community requires a different management approach rather

than programming skills. Management of this community composed of users and

volunteer contributors generally requires extra time and effort. Software

development environment should be designed in such a way that when a user visits

the environment for the first time, the user can find a path to help the project. All

software development processes should be observable by users. Software

development decisions should be open and accessible. For example, if the

developer member of the community uses communication (chat) programs to take

strategic decisions about new direction of software development, written messages

should be recorded and shared with everybody by publishing through the Internet.

There can be many casual reasons preventing formation of a community. Software

without users cannot survive for a long time. If the software or development

environment draws attention of users, then the project can gain contribution.

Therefore, instructions on how to contribute should be prepared for new comers. By

this way, it is possible to create a community around the software. This also creates

a decrease in the work load of developers by transferring routine part of

development works to members of the community. If a developer has more free

time, more features could be possibly added to the software.

FLOSS world grows by both voluntary and commercial contributions, and enlarges

more day by day. This economy always requires specialists and voluntary

contributions. Preparing reference manuals, tutorials, user guides, frequently asked

questions, providing end-user support by answering the questions of users in the e-

mail lists and forum, advertising the program to be used more widely, testing the

program, reporting bug, preparing packages, translating the interface and

documentation into his native language, announcing news about the project and

advertising the developed product are considered as some of tasks that should be

carried out in the project by voluntary contributions that members of the community

69

can provide for free. Each task requires specialized talent. For example, the person,

who prepares the manual, is mostly native speaker, knows the features of the

program and how to use the program very well. In order to gain these contributions,

version control system, error tracking and reporting system, communication

channels, test tools, package management systems, document management,

debugging, memory error management, forums, and blogs are some of the features

that are required to be implemented in the FLOSS project. FLOSS development

methodology can be established by means of these features which can be provided

with FLOSS products. For example, Subversion and Concurrent Versions System

are two FLOSS product examples that are used for setting up version control

system. Existence of these features maintains continuity of FLOSS project and

helps the project to survive.

Each user can become a good contributor and take active role in the development of

project. The user can contribute to the project in several ways; preparation of

documentation, packaging, contributing to localization and translation tasks,

program testing and error reporting, directly donating some money to the project and

requesting new features. The purpose of these contributions can be a member of

community, to educate himself, to apply academic study, or to learn the software

development, etc. Contributions can return as reputation and prestige at first, and

then can be financial gain in this sector. Prestige and possible financial gain are

related to amount of contribution that is done.

Another development task in the FLOSS project is to setup e-mails as a searchable

e-mail list. Members help between each other mainly by using e-mails in the project.

The most essential and new information about the development of software can be

found in the e-mails. New users should be able to search the e-mails in order to find

a particular topic that has been discussed among the members in the past

(Behlendorf 1999). Many strategic decisions about the development issues are

taken by communicating through either e-mails or using chat programs between the

community members. All those e-mails and the logs of chats should be shared with

the public and can be accessible through web. Therefore, e-mails are archived as a

researchable list in the FLOSS projects, and several e-mail lists are setup in order to

separate each discussion topic. Particular topics are discussed in specific e-mail

lists. When the user has subscribed to these e-mail lists, the user can learn and

follow the development of project in his/her preferred topic.

70

Many FLOSS projects have valuable but messy documentation and spread all over

the web. The documentation can be accessible from the web, although some of

them become out dated and some of them are not documented. In the FLOSS

environment, when the project is very active like QGIS, releasing of new version is

very fast. For example, QGIS community released version from 0.9.1 to 0.9.2 and

finally to 0.10.0 nearly in one year. In addition, each version has several release

candidates. For this reason, the documentation could not reach the speed of

development. Developers are very busy to develop the software and they are

reluctant to write the documentation. Volunteer users contribute to the

documentation when they learned the new feature while using the software.

Both the users and the developers can access to code repositories through Internet

connection. But, only community developers have write permission to those

repositories. The term “developer/programmer” and “community developer” are

clearly different from each other in terms of works they do. It is important to reveal

this difference in terms of expansion and development of FLOSS. Programmer

researches FLOSS and uses the product which provides the best solution for his/her

clients‟ requests and s/he develops the software to add new features upon

requested demands. Programmer delivers the fastest and most efficient solutions to

his/her client. Community developer, on the other hand, commits himself to develop

the software to be a product, continuously develops the software and publishes new

versions rather than benefiting from it. Community developer can be described as a

permanent member made him accepted among community and has authorization to

write to repository of source code of the FLOS GIS software.

An improvement made by a programmer can be a part of a product if only s/he

meets two requirements. The first one is to publish the source code of improvement

done by the programmer. It is not possible to progress next step without meeting this

requirement. The second requirement is that the new improvement must correspond

with the interest of the community. New improvement must be functional for the

community and it should not affect performance of the software negatively. New

improvements done by the programmer can be integrated into the main code of the

software only by community developers. This is exactly fundamental difference

between programmer and community developer. Improvement made by

programmer get lost after a time as long as it is not integrated into software's code

71

or published as a FLOSS project. The most permanent way for code contribution to

FLOSS world is to share the improvement with FLOSS project‟s community or to

transform the improvement as a FLOSS project and create a community around this

project. Today, FLOSS world provides all tools required to transform any

development into a FLOSS project to all programmers free of charge. When FLOSS

project is setup, it becomes possible to work with volunteers all around the world at

any time and to form an open and expandable team with external developers.

More collaborative development environment should be setup in the project in order

to continue to develop the FLOSS product. Many developers from different countries

can work together in the same source code repositories through Internet connection.

This can be possible with the version control system. Concurrent versioning system,

Git and Subversion are several FLOSS product examples that are mostly used for

setting up version control system in the FLOSS projects. Subversion has become

more popular FLOSS product than concurrent versioning system due to being more

user friendly application. Version control system enables developers to work as a

team on the same source files by keeping track of any changes in the code,

integrating the changes that are done by the developers within the existing code,

storing all codes with changes as a repository and informing any changes in the

code to other developers by sending e-mails. Informing the changes in the code via

e-mails as a mailing list allows for a type of passive peer review of changes for other

developers (Behlendorf 1999).

To prepare a package/installer is another specialized development task that should

also be provided by community members in the FLOSS project. It is one of the time

consuming and important service provision for the project. This setup file makes

easy for users to install the program to the computer. In order to prepare such a

setup file, the source code of the software should be compiled separately for each

operating system. The same source code can be used for the compilation in

different operating system if the software is developed in the structure of supporting

cross platform. After compilation of source code, all produced binary codes in the

files are structured with executable file known as setup file, which installs the

program to the computer. As a result of this process, the setup file has specific

format and structure for the operating system in which the source code is compiled.

For example, the extension of setup file is “EXE” for Microsoft Windows OS, “RPM”

for Red Hat, Fedora, openSUSE, Mandriva distribution, “DEB” for Debian and

72

Ubuntu distribution, “DMG” for Apple Mac OS X, etc. If the setup file is missing for

your OS or not provided for the users by the project, the user should compile the

source code himself or request to do from the developers.

Compiling the source code of FLOS GIS software can be sometimes very tedious

and nearly impossible task for the newcomers. While compiling any GIS software,

the error can occur in many different ways such as one of the dependencies of the

library can be missing, true version of the external library is not used, and a small

error can exist in the unstable repository. Each dependent library of FLOS GIS

software is developed by different communities and each community tries to enrich

the library with many features. Some of the functions in the library can be changed

in time with the new version of library. Previous versions of library may become out-

dated and not supported by the community anymore. For this reason, new release

of all dependencies should be followed, tested and integrated with the application

properly. If any error occurs while compiling from the source code of the software,

the compiler will immediately stop doing his job and state the error message. The

most accurate solution to fix the error is either to ask help from the community via e-

mail or to find the most updated compilation instructions that can be found

somewhere among the web pages of the project. Although all steps are followed in

the instruction, it can be faced with another error message. It is advised to search

the similar error messages from the Internet, since nobody can answer your e-mail

to help to solve the compilation error if the same problem is explained recently as

before. Asking help by using community e-mail list from the packager, release

manager or code contributor can be the most effective way to complete the

compilation of source code. Once the compiling from the source code of the

software is succeeded, it would be used to prepare the setup file.

Requesting help via e-mail is also one of the important issues in the FLOSS

projects. There is no guarantee that they will answer, since they are not your

workers. There are rules for asking help in the e-mail lists which are explained in the

web page of the project. It could be vital for you to obey these rules in order to get

proper information from the community. The rules can change from project to

project, but there are common rules. The e-mail should be polite, not very long and

very informative about the error, and state the version of the source code, compiler,

operating system and the environment that is used to compile the software. The

error should be posted to the relevant e-mail list.

73

Another development task in the FLOSS project is to release the software often,

since the distribution of the software is done through the Internet. This gives

opportunity to revise the new release of the software very easily and cheaper way.

When several bugs are resolved, the only thing to distribute the software having less

error to their users is to put the new installer in the Internet. For this reason,

releasing new version is very speedy in FLOSS environment.

The term “release” may refer to different branches in the source code of repositories

for the same version of the software. Before publishing the official stable version,

there may be several release candidates. Deciding to use which one of the release

such as stable, testing and unstable or release candidates is important in terms of

stability and choosing the right version of the dependencies. In general, the stable

version of the source code is preferred. There may be stable, unstable and

experimental versions. Other communities can call different words for the type of

releases like experimental, testing, nightly build, etc. For example, Debian (2008)

system prefers to use the term “stable”, “testing” and “unstable”. Although wording is

sometimes different, their meanings are almost the same. The term “stable” is the

latest official and production release of the distribution, which is primarily

recommended to use for the users. Debian (2008) defines the term “testing”

distribution as that “the distribution contains packages that have not been accepted

into a stable release yet, but they are in the queue for that”. The main advantage of

using this release is that it has more recent versions of software. The “unstable”

release is where active development of the distribution continues. Generally, this

release is run by developers and those who like to live to get error messages. It may

be more secure and easy to work and develop the stable release of the product.

3.4. FLOS GIS Libraries and Applications

Available Free/Libre and Open Source (FLOS) development resources like libraries,

applications and projects are enormous in FLOSS environment. Many of them are

free. First meaning of the term “free” is priceless and second one is to have a

chance to read, modify and distribute the code. There are hundreds of FLOS GIS

libraries and applications in FLOSS environment. Each has different license,

capabilities and features. FreeGIS.org, OpenSourceGIS.org, MapTools.org,

GISDevelopment.net and Open Source Geospatial Foundation are several

74

examples for GIS web portals that support the FLOS GIS software products. Other

resources related with FLOS GIS libraries and applications are researched by the

studies carried out by Ramsey in 2007 and Steiniger in 2008, and Cascadoss

Project. In order to decide the most suitable FLOS GIS software, the

aforementioned resources like GIS web portals, research studies and projects are

searched. The aim of the research is to find the most well known and used FLOS

desktop GIS software product.

FLOS GIS software products are presented as a list at FreeGIS.org and

OpenSourceGIS.org. In these lists, various GIS software can be found ranging from

having limited functionality to advance ones. In September 2008, 339 FLOS GIS

software and in August 2010, 351 FLOS GIS software were listed at FreeGIS.org.

This number was 238 at OpenSourceGIS.org in May 2007. After 16 months, the

number increased to 256 in September 2008. These figures and increase rates

show how great effort was put into development of FLOS GIS software and the

degree of importance given by the developers in the FLOSS world.

MapTools.org is the web GIS portal announcing new developments about FLOS GIS

projects and hosting several of these applications. Several important applications

listed at MapTools.org are grouped under three headings as follows (MapTools

2008):

 Web Tools (CartoWeb, Chameleon, Fusion, ka-Map, MapBender,

MapBuilder, MapServer, MapStorer, OpenLayers, OWTChart, PHP

MapScript)

 Desktop Tools (GRASS GIS, OpenEV, QGIS, uDig)

 Utilities and Libraries (AVCE00, DGNLib, GDAL, GeoTiff, MITAB, OGR,

PROJ.4, Shapelib)

GISDevelopment.net is another web GIS portal. The portal listed several FLOS GIS

software products in alphabetical order without any classification under free GIS

software category in 2008 as follows; OSSIM Image Processing, degree, GRASS

GIS, gvSIG, ILWIS, JUMP GIS, MapWindow GIS, PostGIS, QGIS, SAGA GIS,

Topology Framework .NET and uDig (GISDevelopment 2008). OSSIM Image

Processing program is a Lesser GPL FLOSS product developed for Remote

Sensing. Degree is a server based web GIS application. PostGIS is a plug-in which

spatially enables PostgreSQL database. Topology Framework .Net is a software

75

development library. Other listed products are FLOS desktop GIS software like

GRASS GIS, gvSIG, ILWIS, JUMP GIS, MapWindow GIS, QGIS, SAGA GIS and

uDig.

Another researched resource is a study conducted by Steiniger in 2008 which

compares FLOS GIS software in detail according to various specifications. FLOS

desktop GIS software products evaluated in this study was listed in 2008 as follows;

GRASS GIS, QGIS, uDig and derivatives; JGrass and DivaGIS, gvSIG, Kosmo,

SAGA GIS, ILWIS, MapWindow GIS, JUMP/OpenJUMP and derivatives; JCS,

Single JUMP, Pirol JUMP, DeeJUMP, SkyJUMP (Steiniger 2008).

Also another study has been conducted by Ramsey in 2007. FLOSS GIS software

products have been classified according to the used programming language as

follows (Ramsey 2007):

1. Projects developed by C

1. Libraries (GDAL, PROJ.4, GEOS, Mapnik, FDO)

2. Applications (MapGuide, MapServer, GRASS, QGIS, OSSIM, GMT,

PostGIS)

2. Projects developed by Java

1. Libraries (JTS Topology Suite, GeoTools)

2. Applications (GeoServer, deegree, OpenJUMP, gvSIG, OpenMap,

uDig)

3. Projects developed by .Net

1. Libraries (NTS, Proj.Net, SharpMap)

2. Applications (WorldWind, MapWindow)

4. Web GIS (products publishing geographic data over Internet)

1. Libraries (MapBuilder, ka-Map, OpenLayers, MapBender, CartoWeb)

2. Servers (TileCache, FeatureServer)

As a result, available FLOS desktop GIS software products listed in several GIS

Web Portals like GISDevelopment.net and MapTools.org, and research studies

carried out by Ramsey in 2007 and Steiniger in 2008 are summed in Table 3.3.

GRASS GIS, QGIS and uDig are three software products which exist in all lists.

Following software products like MapWindow GIS, gvSIG and JUMP GIS exist

almost in all lists; missing only in one of the lists. So, these applications can be

accepted the most well known and used FLOS desktop GIS software products.

76

Table 3. 3. FLOS Desktop GIS Software Products Mentioned in GIS Web Portals

and Research Studies

FLOS Desktop GIS

Software Products

Ramsey

2007

Steiniger

2008

GIS

Development

Map

Tools

GRASS GIS x x x x

QGIS x x x x

uDig x x x x

MapWindow GIS x x x

gvSIG x x x

JUMP GIS x x x

SAGA GIS x x

ILWIS x x

Kosmo x

OpenEV x

WorldWind x

GMT x

OpenMap x

In order to decide which FLOS GIS software is the most advance developed

desktop GIS application, it is needed to find a study that is carried out by comparing

the different aspects of the products and evaluating the projects according to more

objective criteria. This kind of study is carried out by The Development of

Transnational Cascade Program on Open Source GIS and RS Software for

Environmental Applications (Cascadoss Project), which is financed by the European

Commission under the Sixth Framework Program, Identification of New Methods of

Promoting and Encouraging Transnational Technology Transfer.

Cascadoss Project evaluates GIS and Remote Sensing (RS) FLOSS products

according to three evaluation criteria; namely, marketing, technical and economical

potential. Marketing potential refers to the maturity of the project, the strength of

community, level of support, existing market share, the business options that the

license makes possible and collaboration with other projects. Technical potential

depends on the software quality which is assessed according to the Quality

Requirement Definition of ISO 9126 like the generalized user needs and the typical

environment for the software provided by GIS and RS FLOSS products. The last

criterion, economical potential refers to how economical is the adoption and

77

operation of FLOSS software in subject comparing to proprietary ones (Cascadoss

2007b). The evaluated GIS and RS FLOSS products are grouped under four

headings; namely, Desktop Applications, Development Libraries, Server Application

and Environmental Applications. The list of evaluated FLOSS products is shown

below according to project classification:

1. Desktop Applications

1. GIS/RS App. (GRASS, gvSIG, OSSIM, SAGA GIS, OpenEV, Fmaps)

2. GIS App. (QGIS, uDig, Thuban, Kosmo, JUMP, OpenMap)

3. RS App. (ILWIS, ISIS, Octave, RAT, IVICS)

2. Development Libraries

1. RS Library (GDAL, GSF, IVICS, ORFEO, PROJ.4)

2. GIS/RS library (tclSADIE)

3. Server Application

1. Web Services (deegree, GeoServer, MapGuide, MapServer)

2. Web Tools (OpenLayers, MapBuilder, Mapbender, Chameleon,

CartoWeb, ka-Map, kvwmap, FlashMapping)

4. Environmental Applications

1. GRASS, gvSIG, HidroSIG, SAGA GIS, ILWIS, uDig, Virtual Terrain

Project, Calypso Simulation Platform, EpiGrass, r.terraflow, DIVA GIS

and Basins

The main subject of this thesis is FLOS desktop GIS software products. For this

reason, the software products which belong to only Remote Sensing field are not

included in the thesis. Both categories; GIS/RS and GIS software products under

Desktop Applications are reviewed according to three evaluation criteria in which

each score of software products are shown in Tables 3.4-3.6.

78

Table 3. 4. Marketing Potential of FLOS Desktop GIS/RS and GIS Software

Products (Cascadoss 2007b)

Type
Software

Maturity

of project

Strength of

Community

Market

Share

Licence

issues

Collaboration

with projects
Total

Max. Score 15.0 15.0 12.0 9.0 9.0 60

GIS/RS

GRASS 15.0 14.3 12.0 9.0 9.0 59.3

OSSIM 11.7 9.0 12.0 9.0 9.0 50.7

OpenEV 10.7 9.4 12.0 9.0 9.0 50.1

gvSIG 12.8 9.0 10.0 9.0 9.0 49.8

Saga GIS 11.3 5.6 10.0 9.0 9.0 44.9

Fmaps 3.6 0.8 4.0 9.0 0.0 17.4

GIS

QGIS 14.0 11.6 12.0 9.0 9.0 55.6

Thuban 14.0 13.1 10.0 9.0 9.0 55.1

OpenMap 14.0 11.1 7.9 6.0 9.0 48.0

uDig 12.5 5.8 6.0 9.0 9.0 42.3

JUMP 10.5 6.8 0.0 9.0 9.0 35.3

Kosmo 6.8 3.0 2.0 9.0 9.0 29.8

Table 3. 5. Technical Potential of FLOS Desktop GIS/RS and GIS Software Products

(Cascadoss 2007b)

Software Functionality Reliability Usability Efficiency Maintainability Portability Total

Max. score 15 9 9 9 9 9 60

GRASS 11.7 4.2 8.2 6.9 7.4 8.4 46.9

gvSIG 8.8 4.2 5.6 7.9 6.4 6.9 39.8

OSSIM 8.6 3.6 5.0 6.4 6.7 6.4 36.7

SAGA GIS 5.6 1.8 5.4 6.9 5.6 5.1 30.4

OpenEV 4.7 1.2 4.3 5.8 4.5 6.6 27.1

Fmaps 1.9 3.0 1.5 6.4 1.2 1.9 15.8

QGIS 8.6 3.3 7.4 7.5 7.2 6.7 40.8

uDig 5.4 1.5 7.1 5.6 4.6 6.4 30.6

Thuban 6.4 2.4 4.7 6.8 4.0 6.0 30.2

Kosmo 8.1 0.6 4.4 5.4 6.0 4.1 28.6

JUMP 4.2 1.4 3.7 5.4 4.9 6.0 25.6

OpenMap 5.7 3.2 3.5 4.5 4.2 4.2 25.4

79

Table 3. 6. Economical Potential of FLOS Desktop GIS/RS and GIS Software

Products (Cascadoss 2007b)

Type
Software

Cost of

installation

Cost of

migration

Cost of

operation
Total

Evaluated

Version of

Products Max. score 24.0 18.0 18.0 60.0

GIS/RS

OpenEV 24.0 5.9 10.8 40.7 1.8

GRASS 24.0 7.1 9.0 40.1 6.2.3

OSSIM 24.0 5.9 7.2 37.1 1.7.4

gvSIG 24.0 5.9 7.2 37.1 1.1.2

SAGA GIS 24.0 4.8 7.2 36.0 2.0.2

Fmaps 18.0 4.8 5.4 28.2 0.0.2

GIS

QGIS 24.0 14.0 12.6 50.6 0.9.1

JUMP 24.0 15.0 10.8 49.8 1.2

Thuban 24.0 13.0 10.8 47.8 1.2.1

OpenMap 24.0 13.0 10.8 47.8 4.6.4

Kosmo 24.0 9.1 10.8 43.9 1.2

uDig 24.0 13.0 5.4 42.4 1.1-RC 14

As it can be seen from the tables, first, second and third order of having total highest

score in the evaluation criteria are GRASS GIS, QGIS and Thuban for marketing

potential, GRASS GIS, QGIS and gvSIG for technical potential, and QGIS, JUMP

and Thuban - OpenMap (last two have same score) for economical potential,

respectively. GRASS GIS and QGIS are two FLOS desktop GIS software products

that have almost the highest score in all evaluation criteria.

Finally, Open Source Geospatial Foundation is another important research area for

this thesis. This foundation was established with the aim of producing FLOS spatial

software, and providing collective development of FLOS GIS projects supported by

communities under one umbrella. The Foundation provides an environment where

users and developers can contribute development of projects and share their

opinions via web portal. The establishment aim of the Foundation is the same with

the philosophy of free software act and the foundation challenges to continue this

philosophy in GIS field. FLOSS projects supported by the Foundation in 2008 are

shown below in a classified manner (OSGEO 2008a):

 Web Mapping (deegree, Mapbender, MapBuilder, MapGuide Open Source,

MapServer, OpenLayers)

80

 Desktop Applications (GRASS GIS, OSSIM, QGIS, gvSIG)

 Spatial Libraries (FDO, GDAL, GEOS, GeoTools)

 Metadata Catalogue (GeoNetwork)

 Other Projects (Public Geospatial Data, Education and Curriculum)

Within six months time frame, several FLOSS projects are added under the

foundation‟s umbrella like deegree and MapGuide Open Source in Web Mapping

category, gvSIG in Desktop Application and GEOS in Spatial Libraries. These are

the sign of how the mapping community is active and has the accelerating

development speed. OSGEO (2008b) explains the aim of foundation is that “the

foundation provides a legal and administrative framework to support ongoing

development of FLOSS projects”.

In January, 2008, the foundation supports three FLOSS projects, namely, GRASS

GIS, QGIS and OSSIM under Desktop Application category. The gvSIG project is

added later that date under the foundation‟s umbrella. OSSIM is an advanced

geospatial image processing for remote sensing, photogrammetry and GIS (OSSIM

2008).

As a result, GRASS GIS and QGIS are two products that are mostly listed and

researched as FLOS desktop GIS software by various references. The gvSIG,

JUMP/OpenJUMP GIS family, Thuban, uDig, MapWindow GIS and OpenMap are

also valuable FLOS desktop GIS software products. These products can be

downloaded from their web site, installed to the computers in unlimited numbers and

are ready to use by the users freely in any time.

81

CHAPTER 4

DEVELOPMENT OF SDA SYSTEM

4.1. Definition of SDA System

The following opportunities are possible in nowadays such as having sufficient

computational power for performing SDA techniques, the ease of use of

development tools, the availability of enormous geography related FLOS libraries,

having no restriction to use these FLOS resources and the possibility of gaining the

support of SDA developers coming from different application areas. These

opportunities make possible that the fourth type of coupling problem, the complete

integration of SDA techniques in GIS, can be successfully implemented without the

support of any vendor in the FLOSS environment. In other words, the complete

integration of SDA techniques in GIS can be applied without the support of

commercial GIS vendor when FLOSS development methodology is properly applied.

In this thesis, SDA system refers to the development of SDA techniques in GIS in a

FLOSS environment. SDA should be integrated with GIS in order to disseminate

these techniques not only for researchers but also for GIS users. This thesis

succeeded to integrate SDA techniques within the FLOS GIS software as FLOS

SDA system in order to provide more functional GIS software for both researchers

and GIS users, to get a chance to use these techniques in a user friendly GIS

software for users, to learn how the techniques work and to develop new ones for

theorists and developers. SDA can be disseminated and facilitated more widely, if

their techniques are part of GIS software according to this thesis‟s coupling strategy.

In general, a generic SDA system should have the following properties:

• performing with graphical user friendly interface in the GIS environment,

• providing a modular environment,

82

• integrating different SDA algorithms or libraries written with several

languages like FORTRAN, C/C++, Java, etc.,

• providing a chance to create a test environment in order to develop new SDA

techniques for SDA theorists and developers,

• easy to use,

• cross platform support meaning that the same source code should run in

different operating systems like Windows, Linux and Mac OS,

• legally licensed and have no license fee,

• having not only SDA tools but also GIS tools,

• detailed explanatory descriptions supported with examples,

• support of multi language in the GUI,

• a right to access the source code of the SDA techniques, study and modify

the program,

• freedom to run the program for any purpose including commercial purposes,

• freedom to copy the program without any cost as much as s/he wants,

• a right to improve the program and share his/her improvements by releasing

source code to the public,

• easy installation for different operating systems,

• a right to download the installer from the Internet,

• a freedom to install the program to the computers in unlimited number,

• possibility to develop the program with the contribution of researchers

coming from different disciplines,

• a right to access the main repository of the source code of the software in

order to add new SDA tools by external developers,

• setting up collaborative development environment for the developers working

at the same source code accessible from Internet independent of time and

place,

• And last, but not least, interoperable with existing GIS data formats and open

standards.

These requirements strive to use FLOSS development methodology. The most

obvious advantage of using FLOSS products while developing FLOS SDA system is

to discover the SDA techniques by exploring from their source code, possible to

integrate with other libraries and no license fee required using all software products.

There is a gap in the literature of SDA field about explanation of how these

techniques are applied. The explanations for the geocomputation of these analyses

83

are either missing or poorly documented. For the proprietary SDA products, the

situation is worse than free software. Different results can be taken for the same

analysis that is done in different software with the same data. Finding the reasons

why the results are different in the proprietary software is something like digging a

hole with a needle. For free software products, if the user has the knowledge of

reading source code, s/he can learn the reasons of different results from the source

code of the tool.

The development of FLOS SDA system carried out in this thesis has met all

requirements of defined generic SDA system except three requirements which are

detailed explanatory descriptions, support of multi language in the GUI and setting

up collaborative development environment for external developers working in the

same code at the same time due to time limitation of the thesis. However, the

development study has completed the integration of a set of 14 SDA techniques in

FLOS GIS software in the FLOSS environment in 2.5 years. The complete

integration of SDA techniques in GIS can be done in the FLOSS environment

without the support of GIS vendor, which is the new interpretation of the fourth type

of coupling problem. The support of any vendor is not an essential factor in order to

achieve the complete integration of SDA techniques in GIS. Next section reviews

FLOSS development methodology based on the development of FLOS SDA system.

4.2. FLOS SDA System Development Methodology

SDA techniques are incorporated with GIS in the FLOSS environment in order to

disseminate and facilitate the SDA field. The methodology followed during the

development of SDA system is summarized as shown in Figure 4.1. At first, the

reasons of why SDA could not been coupled with GIS are reviewed and then, the

requirements of SDA software are defined. These requirements can be met in the

FLOSS environment. The need for FLOSS development is explained. The meaning

of free software and open source are studied. After then, the FLOS GIS Software,

spatial libraries, applications and tools are tried in the Linux operating system. In

order to achieve this integration in the FLOSS environment, at first, the development

has started in Linux operating system and then, continued in Microsoft Windows OS.

By this way, cross platform support of the system is sustained. Which FLOS GIS

software products should be used as the main GIS component of the system is

selected and then, other components of the system are decided. When the structure

84

of system is completed with selected components, the inner architectural design

schema of the system is evolved in time and revised several times in order to reach

more mature and stable version. When the source code of the development is

distributed with developed repository through Internet and opened to use with QGIS

community, FLOSS development methodology is started to be applied. The

information about the development is shared with the users in the prepared web

site. This methodology has established for this thesis to provide a FLOS SDA

system which couples SDA techniques within user friendly GIS software product by

using FLOSS products. By this way, the usage of the developed system has

reached to more than 1600 users.

Figure 4. 1. Summary of FLOS SDA System Development Methodology

Problem definition; Coupling of SDA and GIS

Provision of FLOS SDA system which couples SDA techniques with GIS

Requirements of SDA software are defined

Need for FLOSS development

The term like free software and open source are learned

FLOS geospatial libraries and applications are tried

Development started at Linux operating system and continued in

Microsoft Windows OS

Selection of FLOS GIS software and other components of SDA

system are completed

Architecture of SDA system is setup

FLOSS development methodology is applied

85

The work carried out during the development of this system in this thesis has started

with the learning of Linux operating system. It may be difficult to get accustomed to

learn and use the Linux at the beginning. Newcomers face with new interfaces and

manner of usage. Although there are windows based graphical user interface for

some of the tasks related with managing the operating system, it still requires to use

command prompt in parallel with graphical user interface. It requires a time to learn

Linux operating system for the person who gets custom to work only in Windows

operating system. Learning period changes from person to person. In this thesis, it

is required to spend approximately 6 months. In this time frame, several Linux

distributions like Mandriva, Fedora, Debian and Ubuntu are personally tried in the

first half year of 2007. Ubuntu distribution is found as the most user friendly Linux

distribution. First development stage has started in Ubuntu distribution. After then,

development environment has shifted to setup in the Windows operating system.

With the learning from Linux, the main development environment has become in

Windows. Linux knowledge has helped the developed FLOS SDA system to have

cross-platform support. Ubuntu distribution has become a test environment for the

developed system to ensure that the system is also working in the Linux. Linux

knowledge is also served to solve the programming differences between two

operating systems faced during the development of the system at specific points like

defining folder path, GUI clearing, refreshing plotting mechanism and output of

command prompt for logging purposes.

Next step is to decide which FLOS GIS software products should be used. The most

widely known FLOS desktop GIS software products are searched from the research

studies carried out by Ramsey in 2007 and Steinger in 2008, and GIS web portals

like GISDevelopment.net, MapTools.org, FreeGIS.org and OpenSourceGIS.org, and

Open Source Geospatial Foundation and Cascadoss Project. According to findings

from the research of these resources completed in 2008, QGIS is selected as the

primary desktop GIS component of the developed FLOS SDA system. The

architectural schema of SDA system is setup in 2008 and the inner design of

schema has changed several times in 2.5 years in order to create a systematic of

adding a new tool and making the development more stable as changes in the QGIS

interface.

The next step is to decide SDA related components of the system. Tremendous

development effort is ongoing on the development of spatial libraries and

86

applications. There are a lot of scripts, spatial libraries and applications. Feature

Data Object Data Access Technology, GDAL, GEOS, GeoTools, MetaCRS, PROJ.4

and PostGIS are some of the examples for comprehensive and advanced spatial

libraries. GDAL and PROJ.4 are two FLOS spatial libraries used in the developed

FLOS SDA system. GDAL supports many raster and vector GIS data formats.

PROJ.4 deals with the geographic and projected coordinate systems. It is tried to

find SDA library among these kinds of libraries. However, the main motivation of

these libraries are rendering of spatial data, GIS data formats, coordinate systems,

database back-end, GIS utilities and spatial data infrastructure, but not the SDA

field.

Mostly, SDA techniques are scattered all over in the statistical packages and

numerical computing environment such as S-Plus, Matlab, etc. The SDA techniques

are attached to these environments as add-on, module, toolbar or extension. For

example; S-Plus has SpatialStats module and Tests for Spatial Correlation package.

However, all these examples are closed source applications. This means that the

SDA techniques could not be studied from their source code. To access the source

code is the key factor for testing the techniques and developing the new ones. This

kind of barrier breaks down one of the objectives of the SDA system.

When SDA system is developed with proprietary statistical package and GIS

software, the use of the system could be limited due to license fees. To pay both

proprietary statistical package and GIS software license fees would be costly for the

users. For example, the license fee of ESRI ArcInfo licensed ArcGIS Desktop is

$30,000 plus value added tax for commercial usage in Turkey in 2010. License fee

is charged for each copy of application in the closed source environment which

breaks down other objectives of SDA system which are that the system should be

free to use and free to redistribute among the users. For these reasons, proprietary

statistical packages could not be used as a SDA component in the development of

SDA system. Instead of proprietary statistical package, R, FLOS version of S-Plus,

is used as the SDA component of developed system.

R is an environment and a programming language. The processes in the R

environment are done with the command line interface which is not user-friendly and

requires sort of the knowledge of programming. R is not appropriate for the GIS

users who have no programming knowledge. R is not a GIS software product and

has got a different mentality and style of handling spatial data that is too much

87

complicated and different for many GIS users, who have get accustomed to use

user friendly menu driven GIS software.

The development of FLOS SDA system is made up with the following components;

the development framework is Qt, FLOS GIS Software is QGIS, FLOS statistical

package is R and additionally used two FLOS spatial libraries are GDAL and

PROJ.4. The last important component is the programming language itself which is

Python. Python programming language is high-level object oriented and dynamic

programming language. The most important advantage of using Python for the

development of SDA system is to call any function that is available in another library

or application which are developed with another programming language. This ability

of Python is known as the extendibility property of Python programming language

and can be called as wrapping or binding. Wrapping is required in order to

communicate two different programs with each other; namely QGIS and R. SWIG,

Boost Python and SIP are the software development tools that connects

applications written in C and C++, and communicates with Python. Wrapped C or

C++ modules can be called with Python code. The development framework of QGIS

is Qt. The Qt framework is wrapped with SIP tool. In order to create seamless

integration, QGIS is also wrapped with this tool. In SIP terminology, wrapped

modules are often called bindings for the library. SIP creates Python bindings for

QGIS library. A binding of Qt framework is named as PyQt and QGIS is PyQGIS.

Another advantage of using Python programming language is to embed the

interpreter of Python in any application. Python is embedded in QGIS. By this way,

Python codes can be interpreted in the QGIS. With the extendibility and embeddable

properties of Python, QGIS and R application's classes and methods can be called

with Python codes.

Another advantage of using Python is to have world-wide support. With this support,

Python is used in many application domains. There were 12,616 Python modules in

December 2010. RPy2, one of Python module, is also used in the development of

SDA system. Similarly, RPy2 is used to bind the R language and its external

packages. Another Python module required only for Microsoft Windows OS is

PyWin32 which is the Python extensions for Windows OS. NumPy is also optional

Python module which speeds up the array processing for numbers, strings, records

and objects.

88

Python is used as “glue” language in the system. Python sticks to QGIS with binding

of PyQGIS and to Qt4 with binding of PyQt4 with the help of SIP tool, and to GDAL

and PROJ.4 through R with RPy2 interface. Each component of SDA system; QGIS,

PyQGIS Bindings, Qt, PyQt Bindings, Python, Python modules, R and R packages

are explained in detail in “Architecture of SDA System and Properties of

Components” section of this chapter.

After the architectural schema of SDA system is determined, the FLOSS

development methodology is followed. SDA system source codes are published

through Internet and can be accessible in any time during the development. The

visible part of SDA system is the development of plug-in in the QGIS. Plug-in is the

outcome development of the system, because this thesis's coupling strategy is to

integrate SDA techniques in the GIS software. The plug-in is named as SDA4PP

which is the abbreviation of “Spatial Data Analysis for Point Pattern”. The

implemented techniques in the system are based on point pattern analysis. This

limitation is done, because SDA field is so much wide and covers many different

techniques. In order to overcome this variety, the implementation is limited

according to the subject of SDA. Adding new techniques is systematically designed

in the inner architectural schema of the plug-in. This schema can be applied not only

techniques of point pattern analysis but also other subjects of SDA field. To add one

more SDA technique is only related with spending more time and effort.

SDA4PP plug-in is revised 196 times in 2.5 years. The source code of plug-in can

be accessed through repository and shared with QGIS community. The plug-in is

mainly tested with this community. Some of the revisions are done to fix the bugs

reported by the community, some of them are revised to add new tools and some

are to change the inner structure of the design.

A fetching mechanism is established inside of the QGIS that is to communicate

between the user and repositories. By this way, installing and updating the plug-in

has become more easy and user friendly way for the users. Repository is formed in

the structure of Extendable Markup Language (XML). One XML file structures the

properties of plug-in. Communication between QGIS and repositories are done

according to this file. XML file paths to the compressed zip file which has Python

plug-in source code. The linkage mechanism downloads the zip file through Internet

and extracts the zip file into the specific path of user computer. The plug-in code is

89

interpreted by embedded Python interpreter to make ready to use the plug-in in the

QGIS. If an error is found while interpreting the code, the plug-in is disabled.

Interpretation also covers to check whether all dependencies of plug-in exist and

can be imported or not. If the interpretation is successful, the plug-in is ready to use

in the QGIS.

FLOSS development method requires publishing the source code of the

development, giving information about how the development is ongoing, and

attracting the users and developers to help to the development process by adapting

each person as a member of the project. Source code is published under a

dedicated repository which is prepared to realize this specific purpose. Information

about the development is provided mainly in prepared web site, which is devoted for

the development of the system. Explained facilities such as revision history,

development environment, snapshots, blog, reporting a bug, etc. are setup in the

web site to inform the user about the development.

Home page of web site has links to blog, wiki, and stores several pages like report a

bug, repository and download pages. Announcements about the new release of

system, plug-in and installer are announced in the blog. Report a bug web page

keeps the information related with the error that is reported by the users. Some of

the bugs are also reported via e-mails. Bugs are recorded by using the infrastructure

of code.google.com. Repository web page stores the source code of the plug-in and

is created with one XML file formatted with extensible stylesheet programming

language. The plug-in source code can be downloadable from the repository page.

Download web page has the installer which is prepared to ease the installation of

the SDA system to Microsoft Windows OS. Installer is developed by using Nullsoft

Scriptable Install System. Installer gathers the installer of each component of the

system into one executable setup file. While installing the components of the

system, the installer adds the path of R statistical package into path variable in the

Windows OS. Installer is prepared for only Windows OS. For Ubuntu distribution, the

installation instruction is given in the page. The instruction explains how to install the

SDA system with command line interface in Ubuntu distribution.

Other pages in the web site are revision history, development environment and

snapshots. Revision history web page lists the reasons of revision, version number

and revision date. Development environment page displays all dependencies of the

90

system with their versions. Snapshots web page shows the GUI and analysis results

of integrated tools. Snapshots web page also demonstrates how the integrated tools

are evolved through revisions and the number of tools are increased in time. All web

pages in the site help to explain how the system has developed in time.

The most important meaning of FLOS is to create a collaborative environment for

developers as well as users. There is no direct message in the web site of SDA

system for both user and developer that development of the system requires any

help or demanding collaborative development with other programmers. This choice

is done deliberately in order to preserve the originality of the work. The development

work is carried out within the scope of thesis. In addition to this, no request has

come from any person to develop the system together. Absence of FLOS

collaborative tools in the web site may cause to support this situation stronger.

Within the scope of this extent, FLOSS development methodology is applied in this

manner for the development of FLOS SDA system during 2.5 years from the

learning of QGIS community.

4.3. Linux Distributions

Linux distributions are searched to decide which one of them should be used in

order to support cross platform while developing FLOS SDA system. Selected

distribution is used to create a test environment for developed SDA system. Whether

the developed SDA system is working or not is tested in this selected distribution. By

this way, it is guaranteed that the system is working in both operating systems;

Windows and Linux.

There are hundreds of Linux distributions. The most widely used and user-friendly

distribution is searched. The exact number of Linux distribution was 348 in June

2008 at DistroWatch.com (Distrowatch 2010). Linux distributions can be used in

different forms; from desktop and server operating system to embedded system as

well as booting from a floppy disk. Well known distributions can be listed as Red

Hat, Fedora, Debian, Ubuntu, Mandriva, SUSE, Gentoo and Slackware. Red Hat,

now, is in the business market and one of the oldest. It has also free distribution,

which is Fedora. Debian is the most popular, one of the oldest and mature

distribution. SUSE distribution is the Novell Company‟s answer to Red Hat and in

the business market like Red Hat. Free version of SUSE is openSUSE. Slackware

91

based distributions are mostly for advanced Linux users and servers. Ubuntu is

relative late comer Linux distribution but has gained fame for focusing on immediate

usability on the desktop and tag lines as “Linux for human beings”. The power of

Ubuntu comes from the Debian. Ubuntu is Debian-derived distribution and is the

best place for complete new comers to start. Top ten Linux distributions are listed in

Table 4.1 according to average number of hits per day. This statistic is calculated by

Distrowatch according to the counting of all visits on the main site, as well as on

mirrors. Only one hit per IP address per day is counted and figures are updated

daily (Distrowatch 2010). The most widely visited Linux distribution in May 2008 is

Ubuntu for three time frames; last 1, 6 and 12 months as seen in Table 4.1.

Table 4. 1. Most Widely Visited Linux Distribution for Last 1, 6 and 12 Months

Periods in May 2008 (Distrowatch 2010)

Last 1 month Last 6 month Last 12 months

Rank Distribution Visits Rank Distribution Visits Rank Distribution Visits

1 Ubuntu 2,056 1 Ubuntu 2,348 1 Ubuntu 2,324

2 openSUSE 1,863 2 openSUSE 1,485 2 PCLinuxOS 2,115

3 Fedora 1,842 3 Fedora 1,382 3 openSUSE 1,510

4 PCLinuxOS 1,175 4 PCLinuxOS 1,360 4 Fedora 1,321

5 Mint 1,100 5 Mint 1,314 5 Mint 1,216

6 Mandriva 835 6 Mandriva 935 6 Sabayon 951

7 Debian 784 7 Debian 834 7 Mandriva 863

8 Puppy 764 8 Sabayon 730 8 Debian 829

9 OpenSolaris 693 9 Dreamlinux 683 9 Damn Small 679

10 Sabayon 673 10 Damn Small 671 10 MEPIS 646

Fedora, Debian, Mandriva and Ubuntu are personally tried. Ubuntu has been found

the most user friendly Linux distribution on the desktop. The community support is

relatively fast. There are great numbers of FLOSS packages in the specific format

“DEB” in Ubuntu repositories due to being the Debian-derived distribution. Ubuntu is

chosen as Linux distribution to be used to test whether the developed SDA system

will work or not also in Linux operating system. By this way, the cross platform is

supported with the developed SDA system in this thesis. Which Linux distribution is

used for this development is not so much important. In order to achieve this

development, any of them can be chosen, because each of them has the same

Linux kernel. Each distribution is designed to run the software properly when the

source code is successfully complied in that distribution. However, building from

92

source code can be difficult in Linux environment, because most of the GIS software

have many dependencies. Each dependency should be either complied or linked

with main source code of software to work together. In addition to this difficulty, it

may be required to use exact version of dependent library which is compatible only

with specific version of GIS software. So, while building the source code of GIS

software, it is not a good idea to use the latest version of library in order to have the

new features of libraries. Which versions are compatible with each other is mostly

known by the community developers of GIS software.

Building from source code is mostly documented. However, the documentation may

become out-dated in terms of the specified version of dependent libraries and the

version of GIS software. While building the GIS software from source code, to know

exact version of each dependency could be essential. When the compiler gives an

error, it may be related with using wrong version of library. So, a help should be

asked by sending a polite and informative e-mail to the community. E-mail should

have the version of operating system, complier, GIS software, the dependencies and

the error message. The error may be a known and reported as a bug to the GIS

community. But, GIS community could not solve the problem, because this bug

could only be fixed by other community developer, and that developer could have

other priorities. At the final stage, all bugs are fixed, but it requires time.

FLOS GIS software has many dependencies. For example, QGIS software‟s

dependencies are Flex, Bison, GRASS, GEOS, GDAL, SQLITE, GSL, PROJ.4,

PostGIS and Expat. Each dependency should be installed in the Linux distribution.

Actually, each dependency is developing in another FLOSS project with another

community. They have separate installer, compilation process and other

dependencies. Compiling each dependency from source code requires a lot of time.

For this reason, it can be vital for the developer whether used Linux distribution have

an installer for each dependency of FLOS GIS software or not. Instead of dealing

with the difficulties of compilation, these installers can be used while installing the

FLOS GIS software. Choosing user friendly Linux distribution and having an installer

for variety of application in distribution‟s package repositories are very important for

developer which makes the development work easier. To have an installer for each

dependency of FLOS GIS software is an important criterion while deciding to select

which Linux distribution should be used. The installer for each dependency of the

components of SDA system is provided for Ubuntu distribution. This distribution is

93

appropriate for developing SDA system in terms of providing user friendly

environment and supporting huge variety of application.

4.4. Reasons to Choose QGIS as Main GIS Component

Several GIS web portals and researches are examined in order to find the well

known, mostly used and advance FLOS desktop GIS software. QGIS and GRASS

GIS are two FLOS applications that are mentioned in all searched resources such

as MapTools.org, GISDevelopment.net, Cascadoss Project, Open Source

Geospatial Foundation and research studies conducted by Steiniger in 2008 and

Ramsey in 2007. QGIS is selected as the main GIS component of the SDA system

according to research done in the mentioned resources.

The most important selective decision is taken according to the foundation whether

they are supporting the project or not. The foundation was supporting only GRASS

GIS, QGIS and OSSIM as the FLOS desktop GIS software products in January

2008. In September 2008, gvSIG was added in the desktop application category as

the new incubation projects by the foundation. OSSIM software is a FLOS remote

sensing product. The gvSIG project supported by the foundation after the

implementation started in the thesis. Therefore, two software products; namely

OSSIM and gvSIG, were excluded from the selection of the main GIS component of

FLOS SDA system.

The gvSIG project started at the end of 2003 to be developed with the financial

support of Spanish government. The regional administration has planned to change

all computer infrastructures to Linux environment. The purpose of developing gvSIG

is to create a FLOS desktop GIS software product like having features of ESRI

ArcView GIS series 3 free of charge for the FLOSS world. The project is trying to

create GIS software as powerful as aforementioned proprietary GIS software for

municipalities that will use the software in the Linux operating system. This aim has

been accomplished in spite of several drawbacks. Though the project is supervised

by only one country, participation to community is at international level.

Disadvantage of this software is lack of sufficient documentation for developers in

2008. Moreover the software is dependent on about hundred C++ and Java

libraries. This makes difficult to develop gvSIG software by the developer who are

not member of the community.

94

QGIS and GRASS GIS have taken highest scores in the evaluation of Cascadoss

Project. At the last comparison, QGIS has been chosen instead of GRASS GIS.

When the history of GRASS GIS is reviewed, the reason can be easily understood

why GRASS GIS has not been chosen in spite of its power and widespread use.

GRASS GIS was started to be developed by US Army Construction Engineering

Research Laboratories on UNIX environment in 1982. The aim for developing the

GRASS GIS between 1982 and 1995 is to create an alternative against proprietary

desktop GIS software of that time and lower the prices. Development of GRASS GIS

was terminated due to the prices decreased by the release of ESRI ArcView GIS

series 3. After then, GRASS GIS Software has started to be developed in 1997 as

the first FLOS GIS project. When GRASS GIS and QGIS are compared in terms of

their capabilities, GRASS GIS has more comprehensive content. However, all tools

of GRASS GIS can be called via community developed plug-in and executed within

the user friendly graphical interface of QGIS.

The architecture of GRASS GIS is old and complicated since it has long software

development process. Appearances of GUI and window system are based on old-

fashioned UNIX. It takes a long time for users familiar with Windows operating

system to adapt them to this system composed of many separate window sections

and command lines in UNIX style. GRASS GIS community attempts to develop a

new version to overcome this out of date architecture by integrating wxPython GUI

library. The wxPython is cross platform GUI toolkit developed with Python

programming language that wraps wxWidgets GUI library written in C++ (wxPython

2010). With this library, GRASS GIS looks like native view in which operating system

is installed. Another aim of developing this version of GRASS GIS is to produce

native binary code for Microsoft Windows operating system. Until now, GRASS GIS

can be run in Windows OS with the help of emulator, Cygwin, which creates

temporarily Linux environment for the software to run in the Windows OS. Since

these types of renewals can affect the source code of GRASS GIS, developing SDA

techniques in GRASS GIS could not be stable until these improvement studies have

finalized.

In order to decide which software is the most mature, well known and used desktop

GIS software, it is needed more objective statistics about GRASS GIS and QGIS.

The available statistics about FLOS software could be found by Ohloh Project. The

95

aim of Ohloh Project is to connect people through the software they create and use.

Ohloh Project is online community platform that aims to map the landscape of FLOS

software development. In September 2008, the site lists 12,820 FLOS projects.

Ohloh Project retrieves the statistical data from revision control repositories. This

statistic gives information about the longevity of projects, their licenses and lines of

source code. The comparison is done according to “project cost” category of the

project. Ohloh Project defines this category as used for “estimating how much it

would cost to hire a team to write the software from scratch”. According to the Ohloh

Project‟s results, the comparison of two FLOS GIS projects like QGIS and GRASS

GIS is summarized in Table 4.2. Required efforts to develop GRASS GIS is almost 4

times bigger than QGIS in terms of the number of line in source code, the number of

person in a year and total cost in September 2008. This situation is the result of

early commencing the software development of GRASS. This project started in

1982, while QGIS is in 2002. This causes that the number of available tools in

GRASS has outnumbered the QGIS. However, this disadvantage has overcome

from QGIS community by embedding those tools in QGIS. Those tools can also run

from inside of QGIS. Moreover, these figures are changed in favor of QGIS in

August 2010. The number of codebase, estimated personnel effort and total cost of

QGIS project have tripled the GRASS GIS development efforts. QGIS has increased

more than 10 times estimated personnel effort, written code line and total cost

between September 2008 and August 2010. However, the same figures for GRASS

GIS have decreased slightly within the same time period.

Table 4. 2. Ohloh Project Figures for QGIS and GRASS GIS in 2008 and 2010

(Ohloh 2010a and 2010b)

Project Cost Category of Ohloh Project
QGIS GRASS GIS

2008 2010 2008 2010

Number of Code Line 161,122 1,585,531 576,369 551,458

Estimated Effort of Person in a year 42 447 156 149

Total Cost ($) 2,283,668 24,566,207 8,599,648 8,204,984

Ohloh Project (2010a) states that “QGIS is mostly written in C++, has mature and

well established codebase, increasing year over year development activity, and has

large and active development team”. Ohloh Project (2010b) states that “GRASS GIS

96

is also mostly written in C, has mature and well established codebase, and has large

and active development team, but decreasing year over year development activity”.

The major improvement done in the structure of QGIS in 2008 is to add Python

programming language with version 0.9.0. This improvement has made to

outnumber the figures and grow the development rapidly. The trace of growing

development efforts can also be seen in the number of QGIS core plug-in. The

number of QGIS core plug-in version 0.9.0 is 11 and version 1.5.0 is 23. The

number of developed core plug-in has doubled in two years.

Early commencing the software development of GRASS GIS leads to its

architecture to compliant with POSIX which is variants of UNIX operating system like

Linux, FreeBSD, etc. However, this is disadvantageous for the Microsoft Windows

OS. In order to operate GRASS in Windows OS, there should be an emulator like

Cygwin. This would be difficult for users who are custom to have user friendly GIS

software in Windows OS. Many POSIX‟s oriented products differs from windows

based applications in terms of programming and mentality; ease of usage and

terminology. That could be a problem for GIS users who get custom to use user

friendly menu driven GIS software in the Windows OS. Another disadvantage is the

appearance of GUI of the application which does not have a native look like of

installed operating system.

Since the development of QGIS started in 2002, QGIS has advanced architecture

and is relatively more up-to-date, which makes easier to develop with QGIS. Since

there is no need to make fundamental changes in software architecture as in

GRASS GIS for Windows OS, it can be claimed that development environment of

QGIS is much more stable with respect to GRASS GIS. With release of QGIS

version 1.0, the code stability in the QGIS library has become more mature level. In

brief, QGIS was chosen as the main GIS component of SDA system to be

developed in this thesis due to its features listed below:

 Supported by Open Source Geospatial Foundation

 Developed by a broadly-participated international community

 Having GNU GPL

 Developing in a modular structure

 Accessible descriptions for the methods and classes in QGIS library through

the Internet

97

 Development possibility for creating a new FLOS GIS software or a plug-in

 Using all tools of GRASS GIS within QGIS user friendly interface

 Availability of detailed and updated manuals

 Having extensive documentation

 Supporting Python programming language which provides Rapid and Agile

Application Development

 Having a newer software architecture with respect to GRASS GIS

 More user friendly GUI

 Having multi platform support

 An active project and developing quickly

The main reason of selecting QGIS is that QGIS enables to extend its functionality

with plug-in architecture by using also with Python programming language. User

contributed plug-in in the QGIS can be created by using Python or C++

programming language. Even new GIS software can be created by QGIS library with

both languages. But, the aim of this thesis is to couple SDA techniques in the GIS

software. For this reason, instead of developing a new GIS software, a new plug-in

is developed in QGIS, which is named as SDA4PP that is the abbreviation of Spatial

Data Analysis for Point Pattern. The implementation details of this plug-in are

explained in the following chapter.

Developing a plug-in with Python programming language fits with the aim of this

thesis. Developing with Python is surely much easier than with C++ programming

language, because interpreting the plug-in with Python on every change is much

faster than compilation of C++ programming language. Python has much shorter

code than C++ which makes a less error prone code (Langtangen 2006). Python

has faster development environment which matches with the Rapid and Agile

Application Development strategies. For these reasons, QGIS is chosen as the main

GIS component of the SDA system in which the integration of SDA techniques is

implemented. The properties of each component forming the whole SDA system are

explained in detailed in the next section of this chapter.

98

4.5. Architecture of SDA System and Properties of

Components

QGIS, Qt and R are the main components of the developed FLOS SDA system. All

of them can be called together with several python bindings, PyQGIS, PyQt4 and

RPy2, respectively. PyQt4 is used for GUI development of SDA system. RPy2 is

used to bind the statistical package. Python programming language is used as the

“glue” between these products. For statistical part, four external R packages are

used, namely; “sp”, a package for spatial data regulating the structure of spatial

class and methods under one package, “maptools”, tools for reading and handling

spatial objects, “spatstat”, a package about spatial point pattern analysis, model-

fitting, simulation and tests, and “rgdal”, bindings for GDAL.

The architecture of SDA system is graphically summarized in Figure 4.2 based on

the selected FLOSS products. The spatial data display and data entry is done in

QGIS environment. By this way, GIS software plays a role as the data integrator.

Different spatial data formats can be overlaid in this environment with the help of

GDAL that is used by both products; QGIS and R. The SDA routines are executed in

R environment. The conversion of spatial data from GIS environment to statistical

package or vice versa is done automatically at the background by using GDAL

through Python. Displaying the output as a result of the analysis is also done in

QGIS which means that GIS software can be used as visual evaluation tool. The

SDA system has following several dependencies;

1. QGIS: FLOS GIS software as main GIS component of FLOS SDA system

2. Qt: Cross platform application development framework

3. Python: Programming languages and its modules; RPy2, and optional two

modules; NumPy and Pywin32 required for Windows OS

4. PyQt: Python binding for Qt framework

5. PyQGIS: Python binding for QGIS library

6. Two FLOS Spatial Libraries: GDAL and PROJ.4

7. R: FLOS statistical package as the main SDA component of FLOS SDA

system and its four external spatial packages; sp, maptools, spatstat and

rgdal

99

Figure 4. 2. Architectural Schema of Developed FLOS SDA System

SDA techniques are run in the R statistical packages, because there is no need to

reinvent the algorithms of each SDA tool from the scratch, which is a very time

consuming effort and will cause possible errors. This kind of work is out of the scope

of the thesis. The disadvantage of R is that the processes are done with the

command line interface, which is not user-friendly environment. It requires to have

programming knowledge and is not appropriate for the GIS user who has no

programming or statistical knowledge. Although R has many different packages for

variety of fields, it is not GIS software and has got a different mentality or style of

handling spatial data that is too much complicated and different for many

100

researchers and GIS experts, who have become accustomed to use windows based

user friendly GIS software.

One of the objectives of SDA system is to have cross platform support. SDA system

should work in Windows, Linux and Mac OS X. There should be only one version of

source code, not different versions for each platform. For this reason, which FLOSS

product is the most appropriate for the realization of this integration, is widely

researched at first in Linux operating system. QGIS, Qt, R and Python support cross

platform. But it does not mean that the developer can develop such a code that will

run also in different platforms. The developed source code should be tested under

different platforms. In this thesis, the SDA system‟s source code is tested under

Windows and Linux. There is no access to Mac OS X, so, this operating system is

not tested. Theoretically, the system should also work in that OS. At first, the

development stage has started in Ubuntu distribution version 7 Gutsy Gibson in

January, 2008. After then, Windows XP Professional is used to develop the SDA

system. At the final stage the system is working with the same source code at both

operating system; Windows and Linux. The development stage of SDA system has

been ongoing in both operating systems.

Each component is required to form SDA system. The properties of each component

are explained in this section. The intention of this section is to review briefly the

properties of each component. More detailed information about how the plug-in

works with these components is given in Chapter 5.

4.5.1. Main GIS Component of FLOS SDA System: QGIS

QGIS is user friendly FLOS GIS software product which can be executed on Linux,

UNIX, Mac OS X and Windows OS. QGIS uses GDAL library to read and write to

many raster and vector formats. QGIS supports raster GIS data formats such as

GeoTiff, Erdas Imagine Images, ArcInfo ASCII Grid, etc. and vector GIS data

formats such as ESRI Shapefile, MapInfo, GML, etc. QGIS is licensed under GNU

GPL. QGIS includes features such as connecting geographical databases like

PostgreSQL by means of PostGIS plug-in and Spatialite database applications,

overlaying data with different coordinate systems by automatically transforming data

at the background (on the fly projection), creating and editing ESRI Shapefile format,

etc. QGIS supports the Open Source Geospatial Consortium standards like web

101

map service and web feature service. QGIS continues its activities under the

umbrella of Open Source Geospatial Foundation. The development process of

QGIS has started in May of 2002. Although this software is very new, the

development process is on going fast due to having large, active and growing

international community.

QGIS is developed by applying FLOSS development methodology. QGIS

community serves to their users and developers with e-mail lists, forum, blog, wiki,

preparing user guide, providing binary code with an installer and source code. QGIS

is developed using the Qt framework with C++ programming language. This means

that QGIS has a pleasing and easy to use GUI. Quantum GIS (2008) explains the

aim of QGIS development as creating “easy to use GIS software which provides

common functions and features”. Customized plug-in and GIS enabled applications

using Python or C++ programming language can be created by accessing to the

QGIS libraries.

QGIS has been designed in modular structure. Many features can be added to the

software with plug-in. For example, one of core plug-in produces configuration file

for MapServer application, which is powerful FLOSS developed for web GIS field.

There are many QGIS core plug-in developed with either C++ or Python

programming language. It is also possible to develop third party plug-in by the

external developers who are not members of the community. All plug-in can be

accessible from the repositories through the Internet. Apart from the project's official

plug-in repository, external developers can publish their plug-in by creating plug-in

repositories on their own web sites. For example, the plug-in repository of this thesis

is published under the Department of Geodesy and Geographic Information

Technologies in Middle East Technical University. This plug-in repository can be

accessed from this web address; http://www.ggit.metu.edu.tr/~volkan/plugins.xml.

QGIS can be customized in two ways by using two programming languages. First

method is to create a new GIS software, while the other one is to develop a new

plug-in within QGIS. In the first method, the standard functions such as zoom in,

zoom out, panning, querying, etc. required for generic GIS software can be added

by calling related classes in QGIS library. The second method is to develop a new

plug-in in the existing GUI of QGIS which includes all available tools provided by

native interface of QGIS. This development can be carried out by anybody who

http://www.ggit.metu.edu.tr/~volkan/plugins.xml

102

knows how to develop in the QGIS. GNU GPL guarantees to develop a new

software product by using existing source code of libraries and applications. QGIS

can be developed with Python or C++ programming language. Development support

with Python programming language has started in QGIS version 0.9.0 in 2008.

4.5.2. Cross Platform Application Development Framework: Qt

Trolltech (2008a) defines Qt as “the standard framework for developing high

performance, cross platform applications and provides portability across many

different operating systems”. The framework is capable of running on different

operating systems with the same code. The framework is developed by Trolltech

Company founded in 1994 in Oslo, Norway (Riverbank 2008a). Riverbank (2008a)

defines this framework as Linux‟s answer to Windows. It also offers a development

environment that provides advanced and fast performance for C++ developers. The

classes and methods in the framework are fully object oriented (Trolltech 2008a).

Unlike some other GUI libraries, Qt was built using an object oriented design from

the beginning (Riverbank 2008a).

History of Qt development environment dates back to ancient times in Linux world.

Most applications developed in Linux world are written by use of two different

application development frameworks; GTK and Qt (Vardar 2006). While GTK

framework is used to develop Gnome desktop environment, the Qt framework

constitutes the base of “K” development environment. Qt framework was first a fully

paid product and then, the GNU GPL version has also been released (Vardar 2006).

By this way, Qt has two licenses; GNU GPL version of Qt can be used in FLOSS

projects, a license fee must be paid in proprietary projects (Riverbank 2008a). Qt

commercial edition allows traditional commercial software distribution, whereas Qt

open source edition is provided free of charge under Q public license and GNU GPL

conditions (Trolltech 2008a). All Qt software development tools like Qt Designer, Qt

Linguist, Qt Assistant and qmake are also included in open source edition and can

be used free of charge to develop FLOSS products.

The Qt framework provides to programmers to develop a full functional application in

many different application areas such as database, script, network, openGL, XML,

multimedia, web applications, etc. The framework is also integrated with software

development editors such as Visual Studio and Eclipse (Trolltech 2008c). Moreover,

103

Qt framework develops and provides the Qt Designer which is a product that can

design GUI visually (Riverbank 2008a). It also makes possible to develop with Java

language by means of Jambi application (Trolltech 2008c). Corporations like Adobe,

Google, Skype, Lucas, NASA, Walt Disney Feature Animation, IBM, Sharp, Siemens

and Mathematica are well-known customers of Qt (Trolltech 2008b). Qt as a

development environment had proven its power through its experience and the

extensiveness of applications developed.

Application framework of QGIS is Qt that is naturally used while developing SDA

system. QGIS can be used on both desktop environment and portable handheld

devices because of Qt's capability to run on different platforms. This framework is

not developed or specialized for GIS field. Therefore, other FLOS libraries and

applications have been included within the QGIS project in order to have specific

functionality such as managing geographic data, defining coordinate systems and

realizing spatial applications specific to GIS field. Integrated FLOS libraries and

applications in QGIS are Flex, Bison, GRASS, GEOS, GDAL, SQLITE, GSL,

PROJ.4, PostGIS and Expat. These are the FLOSS products developed by other

communities' members and used to enrich functionality of QGIS.

4.5.3. Programming Language: Python

Python is mostly known as an object oriented scripting language, although it is

completely general purpose programming language. Actually, Python is a dynamic

object oriented and high level programming language. Python programming

language can be used for many purposes; web programming, database, GUI

development, scientific applications, training, network, software and game

development, etc. Main distinct capability of Python programming language is to

integrate with other languages and installed with extensive standard libraries

(Python 2008a). Python is commonly used as "glue" for other software components

in the application (Lutz 2001). Python is being used by organizations and

corporations such as NASA, Google, YouTube, Industrial Light and Magic, Firaxis

Games, Infoseek, Yahoo, Red Hat, etc (Python 2008a). Main module of Python has

been written with C programming language. Python runs fast due to shortness of the

module and advantages brought by C. Subsequent coding have been carried out by

Python language.

104

The name, Python, comes from the BBC comedy series named “Monty Python's

Flying Circus”. Guido van Rossum, creator of Python programming language, has

chosen this name since he enjoyed this comedy series so much. Rossum has

started to develop Python at the end of 1989. Rossum has decided to develop a

new programming language since ABC language in the Institute could not be

extended and he needed to create a better method instead of C or Bourne shell

scripts for the operating system (Deitel et al. 2002). His aim is to create a new

language that includes data types at very high level and capable of interfering at

system level. Therefore, Python language includes the features of C, C++, ABC,

Modula-3, Icon and other languages (Lutz 2001). Also, it will have mobility at system

level as C and capability to be used with different languages. Python language is

designed at the beginning to be used as extensible language. Also, all source code

of Python interpreter is open which makes to possible to embed the interpreter in

any application and can be used as script language of that application.

License of Python has been adapted to GNU GPL and its use is not subject to any

limitation. It can be used free of charge even for commercial purpose. Source code

of Python and installation files can be obtained from the official website of Python.

Python language was announced at USENET on February 1991 (Python 2008b).

Python is nearly 20 years old sufficiently stable, mature, powerful and flexible

programming language. It is advised as the first programming language to be

learned because of its ease of learning. The number of Pythonists (Python

developers and users) even cannot be estimated, since Python comes as default

installed language in many Linux distributions such as Fedora, Debian, Pardus, etc.

TIOBE (2010) provides a programming community index which is used to determine

the popularity of programming languages. This index ranks the programming

languages according to their popularities as shown in Table 4.3. Python position was

at 7th rank in August 2010, 8th rank in 2005, and 24th rank in 1995. Popularity of

Python programming language is increasing in time.

105

Table 4. 3. Position of Top 10 Programming Languages for 5, 15 and 25 Years Ago

(TIOBE 2010)

Programming

Language

Position

Aug

2010

Aug

2005

Aug

1995

Aug

1985

Java 1 1 - -

C 2 2 3 1

C++ 3 3 2 11

PHP 4 5 - -

(Visual) Basic 5 6 1 4

C# 6 7 - -

Python 7 8 24 -

Perl 8 4 8 -

Objective-C 9 43 - -

Delphi 10 10 - -

Lisp/Scheme/Clojure 16 14 6 2

Ada 29 17 7 3

Since Python is a FLOS programming language, it is possible to learn how it runs by

examination of its source code. Python can be used in two ways. Firstly, the

applications and libraries written with different languages such as C, C++,

FORTRAN, Java (with Jython) and .Net (with IronPython) can be called with Python

language. This extendibility feature is one of the most distinctive aims of Python

programming language. This feature makes Python so powerful programming

language that it has the ability to take existing libraries, written in C or C++

programming language.

The second way is to embed Python interpreter in another application. Benefit of this

process is the capability to use Python utilities and libraries with another language

within an application. The programmer can use Python as a script language by

embedding it into the applications (Brown 2001). SIP and SWIG are two FLOSS

examples that simplify work of programmer to use C or C++ libraries with Python.

SWIG is one of the most frequently used software for extendibility. SIP is developed

by Riverbank Computing Limited to provide access to Qt framework with Python.

SIP is specifically designed for bringing together Python and C/C++. SIP was

106

originally developed to create PyQt, the Python bindings for the Qt framework, but it

can be used to create bindings for any C or C++ library.

There are many applications that are developed with Python. One example can be

given from Turkey. For example, Pardus distribution is developed by Python

programming language in TUBITAK National Electronics and Cryptology Research

Institute. Python language has started to become increasingly popular in Turkey.

Another example is from GIS field. Script language of ESRI ArcGIS, proprietary

desktop GIS software, has become Python. ESRI has shifted from using Arc Macro

Language in their products to Python as script language starting from ArcGIS

version 9.0 since May 2004 due to the potential and capability of Python. Another

example is Thuban that is the example from FLOS GIS software which is developed

only with Python programming language. It has also become possible to develop

QGIS software with Python programming languages with the release of version

0.9.0. QGIS integrated the expandable and embeddable properties of Python.

Python programming syntax does not require use of a lot of different punctuation

marks frequently that make difficult to understand the source code. Python‟s syntax

is easy to read, since its language structure is very close to English. It allows

carrying out more tasks by much less code with respect to C++. It provides garbage

collection tools and various GUI development environments like Java. It comes with

an extensive development library. Codes can be executed without compilation.

Python can run on many different operating systems. In fact, the programs

developed with Python run today in every notebook, personal computers and

handheld personal digital assistants (Lutz 2001).

Since Python is an interpreted programming language, it can run a little bit slower

with respect to compiled languages like C/C++ programming language. This

performance constraint can be important for the ones dealing with large amounts of

data, expecting fast performance and planning to use it in embedded systems. This

disadvantage may not create a huge performance difference due to today's powerful

computers. Python can be a preferred programming language with respect to C/C++

due to software development utilities and speed provided to programmers. The

slowness is related to running performance of the program. Python modules are

recurrently tested to provide best performance and continuously checked by

thousands of programmers. It cannot be sure to achieve more performance by a

107

code written in C only with one developer with respect to Python modules against

this accumulation of experience.

To overcome the performance constraint, the code can be developed quickly with

Python like producing prototype. Complicated and advance algorithms and

applications can be written quickly first in Python and then they can be rewritten with

C programming language. Principles of agile application development method can

be easily realized by the use of Python language. Today, when high processing

speeds of computers are considered, it is more logical to develop software in a

programming language which gives priority to performance of the programmer

instead of working performance of machines.

Python is an interpreted programming language. Python does not need compilation

to binary (Swaroop 2005). Brown (2001) explains the interpretation process as that

“Python source code is always translated into a byte code representation, and then,

this code is executed by the Python virtual machine”. This process is faster in

Python, because this byte code is written into a file whose extension is “PYC”. If

there is no change in the code for the module stored as in the file, that file is not

parsed. The use of both interpretation and byte code stages helps to improve

performance of Python. As compared with pure interpreters such as BASIC, Python

is faster, but slower when compared with compiled languages such as C and Pascal

(Brown 2001). All this makes using Python much easier, because the programmer

does not have to wait to compile the program (Swaroop 2005). While programming

with Python, there is no such a waiting time for compilation, because Python is

interpreted language. Another time saving advantage of Python is to have interpreter

shell. This shell is useful especially if the programmer wants to test the code quickly.

The programmer can easily check the code in the interpreter shell and get the

results immediately before making real changes in the program. This property also

decreases the consumed time during the development of application. The benefit of

interpreted and high level languages is much more valuable when compared with

the computation speed. At least half of the development schedule would be gain

with Python as compared with C programming language (Brown 2001).

Another benefit of using Python programming language is that Python solution is

about half size of a comparable C++ solution, which means that more functionality

can be obtained with less code, causing more maintainable software (Riverbank

108

2008a). Langtangen (2006) mentions that “Python enables to write programs that

are significantly shorter code than programs written with FORTRAN, C, C++ or

Java”. Another shortest code comparison between Python and C# code is given as

an example in Figure 4.3. These two codes do the same work. The code opens the

file, read the text inside of the file, changes all texts to upper case and displays the

upper cased text in the screen. C# code has 219 characters without space, whereas

Python code is 38 characters. Python code is nearly six times smaller than C#. Lutz

(2001) summarizes the advantageous of using Python programming language for

developers as that “the system can be implemented quickly and the resulting system

will be maintainable, portable, and easily integrated with other application

components”.

C# Code Python Code

using System;

using System.IO;

class Hello { static void Main (){FileStream file = new

FileStream ("sample.txt", FileMode.OpenOrCreate,

FileAccess.Read);

 StreamReader sr = new StreamReader (file);

 Console.WriteLine (sr.ReadToEnd ().ToUpper ());

} }

Print open ('sample.txt').read

().upper ()

Figure 4. 3. The Length of Code Comparison between Python and C# Programming

Languages (AktaĢ 2010)

Python developers can find many FLOS GUI toolkits. Tkinter is the default GUI

toolkit for Python (Langtangen 2006). PyGtk, PyQt and wxPython are the most

known and used other FLOS Python GUI examples. These GUI examples are the

Python bindings for Gtk, Qt and wxWindows libraries, respectively (Lutz 2001).

Langtangen (2006) states that Tkinter is easier GUI toolkit than PyGtk, PyQt, and

wxPython, however, PyGtk, PyQt, and wxPython have become more popular than

Tkinter. These libraries are developed with C/C++ and should be installed in the

system in order to use them with Python (Langtangen 2006). Swaroop (2005)

defines the term “Python binding” as an ability to use the libraries with Python which

are written in C/C++ or other languages. Langtangen (2006) defines two ways for

developing GUI; “either the developer writes a Python program calling up

functionality in the GUI toolkit, or applies a graphical designer tool to design the GUI

109

interactively and visually on the screen”. For example, Qt Designer is such a

graphical designer tool in the framework of Qt. The GUI file of Qt Designer can be

converted to Python syntax with the help of PyQt tools.

Advantage of high level programming language such as Java and Python is to

perform more tasks with less code due to extensive library support. It is more

advantageous to use a high level programming language such as Python in order to

quickly and easily develop a product like QGIS which utilizes many libraries.

Therefore, Python programming language has been chosen instead of C++ to

develop QGIS.

4.5.4. Python Development with Qt Framework: PyQt

PyQt is a binding library which provides access to C++ libraries of Qt application

development framework by use of Python programming language (Riverbank

2008a). PyQt is being developed by Riverbank Computing Limited Company. This

company is specialized in FLOS software technologies. PyQt development

environment allows access to more than 600 classes in Qt library by using Python

language (Riverbank 2008a). PyQt combines all potentials and advantages of Qt

framework and Python language. Thus, developers find an opportunity to use power

of Qt and simplicity of Python language together. PyQt is ideal to develop powerful,

flexible and fast GUI applications. PyQt runs on all operating systems on which

Python and Qt can be installed. It supports all Windows editions, most of Unix and

its derivatives running with X11, Mac OS X, Linux, Solaris and HP-UX operating

systems (Riverbank 2008a). General appearances of products developed by PyQt

are in harmony with self appearances of aforementioned operating systems. In

background, PyQt itself carries all processes needed to provide this harmony

without being a burden to programmer (Riverbank 2008a). Python is suitable for fast

software development method due to its capability of using C or C++ libraries.

PyQt developer can build up entire program by coding and also the developer can

use the tools provided by Qt framework. For example, Qt Designer attached in the

Qt framework designs GUI visually (Figure 4.4) and produces a project file in XML

structure (Riverbank 2008a). One of PyQt tools can convert this XML file to Python

code. The same process can be applied to resource collection file as well as

translation file. While icons and images are described in a resource collection file in

110

the XML structure for Qt Designer application, the resource collection file can be

converted to Python code with another PyQt tool. For example, PyQt tools such as

pyrcc4, pyuic4 and pylupdate4 can be used to convert the collection, GUI and

translation file to Python code, respectively (Riverbank 2008b).

Figure 4. 4. Snapshot of Qt Designer in Ubuntu Distribution

PyQt is also dual licensed like Qt. PyQt is licensed under GNU GPL for FLOSS

projects and commercial software license for proprietary software projects

(Riverbank 2008a). In other words, if proprietary software will be developed by using

Python language with Qt framework, since PyQt is necessary, it is also required to

pay to both developers of Qt and PyQt (Riverbank 2008b).

In fact, there are many GUI libraries available for using with Python programming

language. According to Rempt (2001), these GUI libraries like Tkinter, PyQt and

wxPython are the really serious options for the programmer. His personnel choice is

PyQt due to based on criteria of performance, programming model, rich functionality

of the widgets and ease of installation. Rempt (2001) explains the most important

features of PyQt as follows:

111

 Based on Qt framework developed with C++ programming language

 Runs on different operating systems with the same code

 Uses signal and slot mechanism to couple GUI items with event driven

actions

 Binds almost the complete Qt library

 Allows sub classing of Qt classes in Python

 Allows applications to look like native feel of operating system

 Comes with full rich of advanced GUI controls

In the development of SDA system, PyQt is also used as the Python GUI toolkit in

QGIS. However, this choice is not deliberately done according to either the features

of PyQt or Rempt‟s criterion. PyQt is applied in the development, because initial

development of QGIS has started with Qt framework. Instead of trying to use

another GUI toolkit, Qt framework is accepted by default as the main GUI toolkit for

SDA system in order to provide seamless integration between the developed system

and the QGIS. Probably, Gary Sherman, who is the founder of the QGIS, has been

impressed from the features of Qt, while deciding to choose this framework for the

development of QGIS software.

4.5.5. QGIS Development Environment with Python: PyQGIS

The main development environment of QGIS is Qt framework. PyQt is the Python

binding for Qt libraries. The classes in the Qt framework written with C++

programming language can be called, accessed and used by Python commands

due to extendibility feature of Python language. Usage of Qt libraries with Python

language has become possible by Qt version 4.2 since October 2006. PyQt feature

has been added to QGIS library with version 0.9.0 since 2008. Since then, it has

become possible to develop the QGIS software with Python language. QGIS library

is continuously binded with SIP tool in order to be called with Python language. The

structure of Python QGIS Application Programmers Interface (API) is 99% same

with the structure of C++ QGIS API.

PyQGIS is created by linking QGIS library to Python language with the use of SIP

tool. For this binding task, the SIP, one of FLOSS applications, is preferred instead

of SWIG application, which is more popular and broadly used program than SIP. SIP

tool has been preferred, since PyQt has been binded to Qt by use of SIP tool. While

112

Qt is converted to PyQt by SIP tool, QGIS is also converted to PyQGIS by the same

tool in order to continue a solid integration and provide a complete compatibility

(Dobias 2008). By this way, both QGIS and Qt libraries are brought together at

Python programming language. This binding makes possible for Python language to

develop new GIS application by using QGIS library, to perform certain tasks

automatically within QGIS and to create plug-in within the main window of existing

QGIS interface.

Python is also embedded in the QGIS as an interpreter which interprets Python

plug-in source code at the start up of the QGIS. Python interpreter can also be

accessed and used with integrated console in the main interface of QGIS. By means

of using this console, the programmers can see the results of Python commands by

testing them in QGIS (Dobias 2006). Python console should exist in the “Plug-in”

menu of QGIS. If this command is not available, it means that Python support is not

installed. Python is required to install to have this console. With the help of this

binding, either a new plug-in or a new GIS application can be developed by using

QGIS and Qt libraries with Python language.

4.5.6. FLOS Spatial Libraries: GDAL and PROJ.4

Geospatial Data Abstraction Library (GDAL) is one of implemented FLOS spatial

libraries used for converting both raster and vector GIS data formats in SDA system.

OSGEO (2011) defines GDAL as “a cross platform C++ translator library for raster

and vector GIS data formats”. The license of this library is Massachusetts Institute of

Technology, one of open source licenses. This license makes possible to use the

library even with proprietary software. The development of this library is continuing

under the umbrella of Open Source Geospatial Foundation. A variety of useful

command line utilities are available for data translation (Warmerdam 2008). OGR

Library is a C++ FLOS library used for data translation of vector GIS data format.

Mitchell (2005) explains that “OGR library is part of the GDAL Project and is

packaged with GDAL”. The library has also command line tools, which provide for

reading and writing to a variety of vector file formats. For example, ESRI Shapefile,

S-57, SDTS, PostGIS, Oracle Spatial, and MapInfo MID/MIF and TAB formats are

some of the supported vector GIS data formats in OGR library (GDAL 2011d). The

GDAL project was launched in 1998 by Frank Warmerdam and includes 20

contributing developers in 2008 (Warmerdam 2008).

113

GDAL deals with raster data, whereas OGR deals with vector data. Common

operations on raster formats such as warping, converting, merging, and applying

coordinate transformation are also provided by command line utilities of GDAL

(Sherman 2008). GDAL supports 118 raster formats and OGR supports 56 vector

formats as in February 9, 2011. Sherman (2008) lists some of the popular raster

formats supported by GDAL such as ArcInfo ASCII Grid, ArcInfo Binary Grid (.adf),

First Generation USGS DOQ (.doq), New Labelled USGS DOQ (.doq), ERMapper

Compressed Wavelets (.ecw), ESRI .hdr labelled, ENVI .hdr labelled Raster, GMT

Compatible netCDF, GRASS Rasters, TIFF/GeoTiff (.tif), GXF – Grid eXchange File,

Hierarchical Data Format Release 4 and 5 (HDF4 and 5), Erdas Imagine (.img),

JPEG, JFIF (.jpg), JPEG2000 (.jp2, .j2k), MrSID, NetCDF, Portable Network

Graphics (.png), ArcSDE Raster, USGS SDTS DEM (*CATD.DDF), and USGS

ASCII DEM (.dem). OGR provides tools to manipulate vector GIS layers (Sherman

2008). In some cases, the OGR library can create and write to the formats, while

some of the vector data formats are supported as read-only. Mitchell (2005) lists the

vector data formats supported by OGR such as ArcInfo Binary Coverage, ESRI

Shapefile, DODS/OPeNDAP, FMEObjects Gateway, GML, IHO S-57 (ENC),

MapInfo, MicroStation DGN, OGDI vectors, ODBC, Oracle Spatial, PostgreSQL,

SDTS, UK .NTF, US Census TIGER/Line and Virtual Datasource (VRT).

GDAL runs on all modern flavours of UNIX; Linux, Solaris, Mac OS X, and most

versions of Microsoft Windows (GDAL 2011b). GDAL library can be directly linked

which helps to be included both in proprietary and FLOS GIS software products

(Mitchell 2005). OSGEO (2011) explains that GDAL is used as “data access engine

for many applications including MapServer, GRASS, QGIS, and OpenEV”. It is also

used to varying degrees by a variety of proprietary software products such as FME,

ESRI ArcGIS, and Cadcorp SIS (Warmerdam 2008). GDAL is considered as one of

major projects used in both FLOS and commercial GIS community due to

comprehensive set of functionalities. GDAL is written in ANSI C and C++ and can be

compiled with all modern C/C++ compilers (GDAL 2011b).

Mitchell (2005) explains the most three important features of GDAL library; firstly, the

library supports dozen of raster and vector formats; secondly, it is available for other

applications to use; thirdly, prebuilt utilities help the users to use the functionality of

the GDAL library without writing any code. The bindings of GDAL in other languages

114

such as Perl, Python, Visual Basic, R, Ruby, Java and C-Sharp are also available

(GDAL 2011a). This is accomplished using the SWIG utility (Warmerdam 2008).

Python bindings have a substantial user base (Warmerdam 2008). Python was the

first set of bindings supported by GDAL. Although the bindings were generated with

SWIG, the process was very Python specific and contained a significant amount of

hand written wrapped code (GDAL 2011c).

Another implemented FLOS geospatial library in development of SDA system is

PROJ.4. It is a cartographic projections library that is used in many FLOS GIS

software products (Sherman 2008). Since May 2008, the project has become part of

the MetaCRS project, which tries to organize projection related libraries (PROJ4

2011a). MetaCRS is in the incubation stage in the Open Source Geospatial

Foundation in February 2011. PROJ.4 was originally developed by the US

Geological Survey and is now maintained by a group of volunteers (Sherman 2008).

PROJ.4 is actively used by number of FLOSS projects such as GRASS GIS,

MapServer, PostGIS, Thuban, OGDI, Mapnik, TopoCad, etc. (PROJ4 2011a). Datum

shifts can be approximated with 3 and 7 parameter transformations by means of

PROJ.4 library (PROJ4 2011b). Conversion between EPSG and PROJ.4 format is

also possible (PROJ4 2011a). The library also comes with some command line

utilities for experimenting with projections and doing interactive transformations

(Sherman 2008). It is released under a Massachusetts Institute of Technology

license, which allows to make proprietary derivatives (PROJ4 2011a).

4.5.7. FLOS Statistical Software: R and Spatial Packages

R is an environment and programming language for data analysis and graphics

(Everitt and Hothorn 2006). R can run on many different operating systems such as

UNIX, Windows and Mac OS (R-CRAN 2008b). The base distribution of R and user

contributed packages are licensed under GNU GPL (Everitt and Hothorn 2006). A

core R development team is formed in 1997 (R-CRAN 2008a). This team is formed

by a small group of statisticians who can modify the source code and maintains the

base distribution of R. Much functionality is implemented by user contributed

packages as add-on. These add-on packages are authored and maintained by a

large group of volunteers (Everitt and Hothorn 2006). The packages are developed

for different variety of specific purposes (R-CRAN 2008a). The complete source

code of add-on packages and the base distribution of R can be accessible through

115

the Internet. The implementation of special methods can be investigated from the

source codes of add-on packages through Internet (Everitt and Hothorn 2006).

Add-on packages of R are mainly formed in four ways; base distribution of R,

Comprehensive R Archive Network (CRAN), Omegahat Project and Bioconductor

Project. The number of packages was 12 in base distribution of R, 1,451 in CRAN,

46 in Omegahat Project, and 244 packages in Bioconductor Project in May 2008.

The Omegahat Project provides a variety of FLOS software for statistical

applications (R-CRAN 2008b). CRAN contains great number of user contributed

add-on packages. The number of user contributed add-on packages in CRAN is

growing day by day. Each package may depend on several other packages. In order

to install one package, each dependency should also be installed. The Bioconductor

Project produces an FLOS software framework for biologists and statisticians

working in bioinformatics (R-CRAN 2008b).

Although R has dedicated data structures for specialized methods, the similar

approach is not valid for spatial data. There are a lot of R packages dealing with

spatial statistical methods and GIS data formats, but, there is little coordination

between them (Bivand 2007). It is trying to organize the structure of spatial data in

one package which is called as “sp” package which is based on S4 classes. The sp

package will become the base package for other spatial packages. While dealing

with spatial packages in R, it is advised to use the structure of sp package for

handling spatial data.

The SDA system uses mainly four packages; namely, sp, maptools, spatstat and

rgdal. The implementation is focused on point pattern analysis. Spatstat package is

used for SDA. Maptools is a package that contains tools for converting and handling

spatial objects. This package is used to handle projection system and conversion

between S4 classes of sp package and ppp format of spatstat package. Rgdal

package is the R binding for GDAL. Rgdal package is used to read and write vector

GIS data format like ESRI Shapefile and MapInfo, and raster GIS data format like

georeferenced TIFF image file and ERDAS Imagine Images.

R is binded with Python by using RPy2, one of Python module. Another Python

module binding R is RSPython which is developed in the Omegahat project. RPy2

Python module is used instead of RSPython module, because it is more robust and

116

has easy interface for using R from Python (RPy 2008). All R objects and functions

available in add-on packages and the base distribution of R can be executed with

Python language through RPy2 module. By this way, R language‟s errors can also

be handled with Python code.

117

CHAPTER 5

IMPLEMENTATION AS SDA4PP PLUG-IN

5.1. Development of Python Plug-in in QGIS

Spatial Data Analysis for Point Pattern (SDA4PP) plug-in is the outcome of

development of FLOS SDA system. Development of SDA4PP plug-in started in

January 2008 and first announcement was done to QGIS community in September

2008. During the development of system, all revisions of source codes of the plug-in

are published in the QGIS Python repository which can be accessed any time

through Internet connection to download and install the plug-in. During testing and

debugging by the user and member of QGIS community, several bugs are found

and reported to the author of this thesis via e-mail. These bugs are corrected as

soon as possible and revised versions are distributed as well in the repository.

Development of plug-in is completed in 2.5 years between January 2008 and June

2010. During this period, the plug-in is revised 196 times as 5 major releases in

every 6 month periods.

Selection of integrated SDA tools is done according to the definitions of Bailey and

Gatrell, and the availability of techniques in the spatstat package. SDA field has

wide range of different analysis techniques. In order to ease the development of

SDA system, the integrated tools are limited according to the point pattern analysis.

Graphical user interface of integrated SDA tools and their analysis results are given

in Appendix C. Integrated tools can be classified into four headings; SDA,

exploratory SDA, GIS and Utility tools. Following tools are developed in the plug-in

by using Python programming language:

A. SDA Tools

1. Uniform Intensity: Displays intensity value and useful summary of a

point pattern dataset.

118

2. Kernel Smoothed Density: Computes a kernel smoothed intensity

function from a point pattern.

3. Adaptive Density: Computes an adaptive estimate of the intensity

function of a point pattern.

4. G and F Estimate Functions: G function estimates the nearest

neighbour distance distribution function G(r) and F function estimates the

empty space function F(r) from a point pattern in a window of arbitrary

shape.

5. Ripley's K and L Functions: K function estimates Ripley's reduced

second moment function K(r) from a point pattern in a window of arbitrary

shape and L function calculates an estimate of Ripley's L-function for a

spatial point pattern.

6. Local Ripley's K and L: Computes the neighbourhood density function,

a local version of the K-function defined by Getis and Franklin in 1987.

7. Quadrat Test: Performs a chi-squared test of Complete Spatial

Randomness for a given point pattern, based on quadrat counts.

Alternatively the tool performs a chi-squared goodness-of-fit test of a

fitted inhomogeneous Poisson model.

8. Kolmogorov-Smirnov Test: Performs a Kolmogorov-Smirnov test of

goodness-of-fit of a Poisson point process model. The test compares the

observed and predicted distributions of the values of a spatial covariate.

9. Simulation Envelope of CSR: Computes simulation envelopes of a

summary function for complete spatial randomness.

10. Fit Poisson Model: Creates an instance of the Poisson point process

model which can then be fitted to point pattern data.

11. Kriging: Performs automatic kriging on the given dataset. The variogram

is generated automatically using autofitVariogram function.

B. Exploratory SDA Tools

1. Rggobi: Bindings of GGobi which is an FLOS visualization program for

exploring high-dimensional data. It provides highly dynamic and

interactive graphics such as tours, as well as familiar graphics such as

the scatterplot, barchart and parallel coordinates plots. Plots are

interactive and linked with brushing and identification.

2. Linked Statistical Display: Provides high interaction statistical graphics.

It offers a wide variety of plots, including histograms, barcharts,

119

scatterplots, boxplots, fluctuation diagrams, parallel coordinates plots

and spineplots. All plots support interactive features, such as querying,

linked highlighting, color brushing, and interactive changing of

parameters.

3. Interactive Identify: Gives customizeable feature information for all

overlapping raster and vector layers at the same time in one window.

C. GIS Tools

1. Generate Random Point: Generates random point according to two

Poisson Processes; (In)Homogeneous Poisson Process generates a

random point pattern using the (homogeneous or inhomogeneous)

Poisson process, and Gauss Poisson Process generates a random point

pattern, a simulated realisation of the Gauss-Poisson Process.

2. Generate Regular Point: Generates regular point according to either

distance between points or the number of point in a specified extent of

layer.

3. Nearest Point and Distance: Finds the nearest neighbour of each point,

computes the distance from each point to its nearest neighbour and

creates the matrix of distances between all pairs of points in a point

pattern. The tool also finds the nearest neighbour in Y of each point of X

in given two point patterns X and Y.

4. Polygon to Point (Centroid): Computes the centroid of polygon feature

and saves the computation as point layer.

5. Point to Polygon (Delaunay or Dirichlet): Computes the

Dirichlet/Voronoi tessellation or the Delaunay triangulation of a spatial

point pattern.

D. Utility Tools

1. R Console: Provides a console to R environment thorugh RPy2 Python

module. R code syntax is required to call R objects.

2. Graphic Display Option: Setups the settings for native R graphic device

3. Components/Install Missing R Packages: Checks the components of

the system and if a component is missing, the dialog displays the

information about the missing component. If not, continues to check R

packages and if missing, the dialog gives options for users to download

missing packages from the Internet and installs them.

120

The structure of QGIS plug-in is explained in the QGIS user guide (Quantum GIS

2008). New features can be added to QGIS with plug-in architecture that are two

types of plug-in; core and user contributed plug-in. Core plug-in is developed by

QGIS team and user contributed one by external developers. QGIS is distributed

with entire core plug-in, whereas user contributed plug-in is in source form.

Compilation of user contributed plug-in is not required for the plug-in developed with

Python, but required for C++ programming language. While QGIS is opening, the

system interprets the Python plug-in code. If any error is found in the plug-in, the

system specifies the error and its line with the name of source file where the error

occurred, and disables the plug-in. This plug-in could not be used until the error is

fixed. The source code of Python plug-in is available under QGIS Python plug-in

directory, so that, the developer has a chance to fix the error. The binary code of

Python plug-in can also be installed under this directory. Although it is against the

GNU GPL, there is no mechanism for checking not to use the binary code of Python

plug-in in QGIS. Distributing the source code of plug-in is the social responsibility of

the programmer who is developing plug-in licensed with GNU GPL in the QGIS

environment.

All plug-in (the core and the user contributed plug-in) can be activated in the plug-in

manager. The plug-in manager can be reached from the tools menu in QGIS. When

the plug-in is checked in the manager window, it is loaded and becomes ready to be

used in the QGIS. The plug-in manager dialog displays all installed plug-in as shown

in Figure 5.1. When a listed plug-in in the plug-in manager is checked, the plug-in

becomes ready to use in the main window of QGIS.

121

Figure 5. 1. Snapshot of Plug-in Manager in QGIS Version 1.7.0 in March 2011

External developer‟s plug-in developed with Python can be installed by QGIS plug-in

installer. The QGIS Python plug-in installer communicates with the repositories

through the Internet connection which first lists available all repositories (Figure 5.2)

and then, the plug-in in these repositories (Figure 5.3). When the user prefers to

install one of the plug-in, the installer downloads the source code of plug-in as a zip

file under the specified plug-in path and extracts the zip file. When QGIS is

restarted, it recognizes this newly installed plug-in and has become ready to activate

in the QGIS plug-in manager by user in order to use it in the QGIS. Downloading

from the Internet and interpreting the source code of the plug-in use the QGIS users‟

credits. This linkage mechanism could be dangerous from security point of view,

because it requires downloading and running the source code from the repositories

owned by external developers.

122

Figure 5. 2. Available External Authors‟ Python Plug-in Repositories (Snapshot of

Repositories Tab in Python Plug-in Installer in QGIS Version 1.7.0 in March 2011)

Figure 5. 3. List of Plug-in in External Authors‟ Python Plug-in Repositories

(Snapshot of Plug-ins Tab in Python Plug-in Installer in QGIS Version 1.7.0 in March

2011)

User contributed plug-in is first structured under one official repository of the project.

After the wide spread development of Python plug-in, there are several QGIS plug-in

repositories in 2008. Repository requires a storage area in the web server and one

definition file written in the structure of XML. QGIS Python Plug-in Repositories are

123

shown in Figure 5.4. The plug-in that is available in these repositories can be

installed with the Python plug-in Installer.

Figure 5. 4. List of External Author Repositories in August 2010 (Quantum GIS

2010a)

The development of SDA4PP plug-in is explained according to one implemented

SDA tools, named as Kernel Smoothed Density. When this tool is explained as an

example to demonstrate the structure of plug-in, the rest of implemented tools can

also be understood as the same manner in the structure of the plug-in. The list of

required files shown below is the minimum requirements for the developments of

Python plug-in in QGIS. This simplified version is listed in order to explain the

development of SDA4PP plug-in easily. Four files, namely density.py,

densityRpart.py, density.ui and ui_density.py, are required for one of implemented

SDA tools which is Kernel Smoothed Density Tool. Rest of listed files is necessary

for any Python plug-in. The following files are needed at minimum in order to have a

Python plug-in in QGIS:

 Initial Python Module; __init__.py (making the plug-in recognizable)

124

 Resource File; resources.qrc (defining icons), resources.py (resource file

converted to Python syntax) and icon_1.png (can be several icons and each

icon is used for one tools)

 Starting Main Python Module; sda4pp.py (creating menu window in QGIS,

listing tools in window and setting up event driven actions in the menu)

 One of implemented SDA tools: Kernel Smoothed Density Tool; density.py

(for GIS part), densityRpart.py (for SDA part), density.ui (for GUI with XML

code) and ui_density.py (for GUI with Python code)

QGIS scans certain directories for finding C++ and Python plug-in. Each Python

plug-in should be placed under a subdirectory of QGIS Python plug-in directory

(default value is ~/.qgis/python/plugins, but, it may change according to used

installer and operating system) and has its own directory. While QGIS starts, it

scans the directory and finds the plug-in by reading __init__.py Python file. This file

makes QGIS to recognize the plug-in in the QGIS plug-in manager. The user can

activate the listed plug-in in the plug-in manager to use them in the QGIS. Figure 5.5

displays the source code of Python file, __init__.py that is developed for the

SDA4PP plug-in. Name, description, version, required minimum version of QGIS to

work for the plug-in, author name, icon and homepage of the plug-in should be

defined in the __init__.py (Line 1 to 15) in order to make a connection with the plug-

in manager. Other requirements are to add “classFactory” method (Line 16), import

the main Python file, sda4pp.py, where the real work is carried out (Line 17) and

sent “iface” object to “SDA4PP” class as reference object (Line 18). The “iface”

object is the starting reference object for Python plug-in in order to start to

communicate with the QGIS interface.

125

1 def name ():

2 return "Spatial Data Analysis for Point Pattern"

3 def description ():

4 return "SDA4PP with R functions. Requires R, RPy2 and

R packages; Rgdal, Maptools, Spatstat"

5 def version ():

6 return "0.196"

7 def qgisMinimumVersion ():

8 return "1.0"

9 def authorName ():

10 return "Volkan Osman Kepoglu"

11 def icon ():

12 import resources

13 return ":/icons/mainMenu.png"

14 def homepage ():

15 return "http://ggit.metu.edu.tr/~volkan"

16 def classFactory (iface):

17 from sda4pp import SDA4PP

18 return SDA4PP (iface)

Figure 5. 5. Source Code of Python File; __init__.py

Second required file in the Python plug-in is the resource file. This file is needed in

order to define the icon for each SDA tool. It uses a prefix as path definition in order

to prevent name mixtures with other plug-in. For example, several icons are defined

in the resource file as shown in the left side of Figure 5.6. 22 x 22 pixel sized PNG

image format is convenient for icons, but other image formats can also be used.

After defining the resource file, it should be converted to Python syntax. PyQt

resource compiler makes this conversion with the following commands; “pyrcc4 –o

resources.py resources.qrc”, and the result of conversion as the source code of

resources.py is shown in the right side of Figure 5.6.

126

<RCC>

<qresource prefix="/icons" >

 <file>icon_1.png</file>

 ...

 <file>icon_n.png</file>

 </qresource>

</RCC>

from PyQt4 import QtCore

qt_resource_data = "\

\x00\x00\x04\x7d\

\x89\

\x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\

x0d\x49\x48\x44\x52\x00\

\x00\x00\x20\x00\x00\x00\x20\x08\x02\x00\

x00\x00\xfc\x18\xed\xa3\

...

Figure 5. 6. Source Code of Resource File (Left Side) and Result of Conversion to

Python Syntax (Right Side)

Qt Designer, which is the same tool that C++ developer uses and comes with the

installation of Qt Framework, is used to create the GUI for each tool. It is a visual

design tool and allows dragging and dropping predefined widgets on dialog box and

defining their properties. The GUI of Kernel Smoothed Density tool is shown as an

example in Qt Designer in Figure 5.7. Text labels, text edit controls, combo boxes

and push buttons as widgets are placed, sized and adjusted on the dialog box.

Figure 5. 7. GUI of Kernel Smoothed Density in Qt Designer

127

All settings of widgets are stored by Qt Designer as XML based GUI file. This file

(density.ui) is converted to Python (ui_density.py) with pyuic4 utility of PyQt with this

command; “pyuic4 –o ui_density.py density.ui”. Several code lines of these two files

are shown below in Figure 5.8 in order to display as examples for the structure of

GUI of Qt and PyQt. Left side of the figure shows XML based source code of GUI

file of Qt and right side is for Python source code of GUI file of PyQt. Python GUI

files can also be developed by writing the code without using Qt Designer.

<? Xml version="1.0" encoding="UTF-8"?>

<ui version="4.0">

 <author>Volkan Kepoglu</author>

 <class>densityDialog</class>

 <widget class="QDialog"

name="densityDialog">

 <property name="geometry">

 <rect>

 <width>394</width>

 <height>574</height>

 </rect>

 </property> ...

-*- coding: utf-8 -*-

from PyQt4 import QtCore, QtGui

class Ui_densityDialog(object):

 def setupUi(self, densityDialog):

 densityDialog.setObjectName

 ("densityDialog")

 densityDialog.resize(394, 574)

 ...

Figure 5. 8. Source Code of GUI for Qt (Left Side) and Python (Right Side)

Figure 5.9 is simplified version for source code of starting main Python module of

plug-in; sda4pp.py. The source code of module is much longer that shown in this

figure. Complete source code of main Python module for GIS part of the plug-in is

shown in Appendix A. The aim of simplifying the source code in the figure is to

demonstrate the most important part of the module by not repeating the similar

declarations. Python programming language is structured according to the

indentation. The language is case sensitive and comment line starts with “#”

character. The main function of this module is to create a new menu in the main

window of QGIS and make a connection for user to access to each SDA tool. This

module imports PyQt4 interface (Line 3, 4), QGIS interface (Line 5), resource file

(Line 7), each module for implemented SDA tool separately (Line 9) and several

modules found in Python standard library (Line 11). As explained previously,

resource file is needed to access the icons. Each SDA tool is implemented in

separate Python module. Therefore, each of them should be imported to sda4pp in

128

order to execute the tool by linking from the menu. Two Python modules are

imported to take additional functionality; one of them is “os” module which is the

miscellaneous operating system interfaces. This module is mainly used for reading

and writing a file, and manipulating paths. Other one is “time” module which is used

for time related functions.

In Figure 5.9, only one of the implemented tools (density) is imported as an example

(Line 9). Reference object of QGIS interface (iface) is sent as argument to

“SDA4PP” class of this module in Line 13 and saved within variable in Line 15. In

similar way, QgsMapCanvas class which is the main class for displaying all GIS data

types is referenced and saved in the first function of class of this module (Line 16).

Following “initGui” function initializes the settings related with GUI of new menu for

the plug-in (Line 17). Line 19 creates an action for starting of density tool. In this

line, QAction class takes three arguments; the icon for the tool shown in the menu,

text that is shown in the menu and a reference to the parent main window of QGIS.

Line 22 is the signal and slot mechanism of Qt Framework. When user clicks to

“Kernel Density” text in the menu, triggered signal is emitted in “densitytool” action

and slot part responds this signal to execute new function named as “doDensityTool”

declared in Line 31. These declarations (action and signal/slot definitions) should be

repeated for each tool (Line 20 and 23). A new menu named as “SDA4PP” is

created in Line 25. Each action as a list in the order is added to new created menu

in Line 26. The menuBar of QGIS is referenced and “SDA4PP” menu is added

before the last menu of QGIS (Line 27 – 30). When “doDensityTool” function is

called, “DensityTool” class in the density module is initialized (Line 32) and executed

(Line 33). The “iface” object should also be sent as an argument to “DensityTool”

class, because density dialog (GUI part of the tool) needs to make a connection with

the QGIS interface. This is the brief explanation of initializing user event handling for

each tool and creating a new menu as written in the starting main Python module of

plug-in; sda4pp.py.

129

1 # -*- coding: utf-8 -*-

2 # imports interface of PyQt and QGIS

3 from PyQt4.QtCore import *

4 from PyQt4.QtGui import *

5 from qgis.core import *

6 # initialize Qt resources from resource file

7 import resource

8 # import each developed SDA tool: e.g., density tool

9 import density...

10 # python modules from python standard library

11 import os, time

 12 class SDA4PP:

13 def __init__ (self, iface):

14 # save reference to the QGIS interface

15 self.iface = iface

16 self.canvas = iface.mapCanvas ()

17 def initGui (self):

18 # create action for starting of density tool

19 self.densitytool = QAction (QIcon (":/icons/menuDensity.png"),

 "Kernel Density", self.iface.mainWindow ())

20 ...

21 # event part: Signal and Slot mechanism

22 QObject.connect (self.densitytool, SIGNAL ("triggered ()"),

 self.doDensityTool)

 23 ...

 24 # setup a new menu in the main window of QGIS

25 self.menu = QMenu ("SDA4PP")

26 self.menu.addActions ([self.densitytool ...])

27 menuBar = self.iface.mainWindow ().menuBar ()

28 actions = menuBar.actions ()

29 lastAction = actions [len (actions) - 1]

30 menuBar.insertMenu (lastAction, self.menu)

 31 def doDensityTool (self):

32 d = density.DensityTool (self.iface)

33 d.exec_ ()

34 ...

Figure 5. 9. Simplified Version of Code for Starting Main Python Module of Plug-in

130

Last listed files are required for Kernel Density tool. Each tool is composed of two

Python modules; one file is used for GIS tasks and other one is for SDA tasks. The

simplified version for the source code of GIS part of Density Tool is shown in Figure

5.10. This module imports the GUI part of the tool in Line 2, the SDA part of the tool

in Line 4, and main Python module of plug-in which organizes all functions related

with the QGIS interface for each tool (sda4ppReadQGISLayer) in Line 6. The class

of this module is declared in Line 7 with two GUI arguments. GUI interface is

initiated in Line 9 and iface object is saved as argument of the class in Line 11. Line

13 and 14 setups the user interface settings. The size of the dialog cannot be

changed due to declaration in Line 14. Many variables are initialized with their

default values and stored in one Python dictionary typed variable (self.index) in Line

16.

1 # GUI part: import the code for the dialog

2 from ui_density import Ui_densityDialog

3 # Run R code

4 import densityRpart

5 # Read qgis layer

6 import sda4ppReadQGISLayer

7 class DensityTool (QtGui.QDialog, Ui_densityDialog):

8 def __init__ (self, iface):

9 QtGui.QDialog.__init__ (self)

10 # save reference to the QGIS interface

11 self.iface = iface

12 # set up the user interface

13 self.setupUi (self)

14 self.setFixedSize (self.size ())

15 # Init variables

16 self.index = {"inputFilePath":"","inputFileName":"", "projText":"",

 "rstExtension":"tif", "plot": True, “save”: False ...}

17 # Read the properties of qgis layer before displaying the dialog

18 self.readInputFile ()

19 # Event part

20 QtCore.QObject.connect (self.btnApply, QtCore.SIGNAL ("clicked ()"),

self.runApply)

21 # Set signal and slot mechanism for other GUI widgets

Figure 5. 10. Simplified Version of Code for GIS Part of Density Tool

131

 22 ...

23 def readInputFile (self):

24 # Init rpy2

25 import rpy2.robjects as robjects

26 self.R = robjects.r

27 # Get point layer

28 self.ReadPointLayer = sda4ppReadQGISLayer.ReadQgisLayer

(self.iface)

29 layers = self.ReadPointLayer.getLayerList

(CheckNumericField="YES")

30 if layers == []:

31 QtGui.QMessageBox.information (self.iface.mainWindow (),

"SDA4PP Plug-in Error",

"Please add point typed vector layers.")

32 return

33 for layer in layers:

34 self.cmbPointLayer.addItem (layer)

 35 # get other properties of layer required for this type of analysis

36 ...

37 # Projection

38 self.index ["projText"] = self.ReadPointLayer.getProj ()

39 def runApply (self):

40 # InputFile

41 if self.cmbPointLayer.currentIndex () == -1:

42 QtGui.QMessageBox.information (self.iface.mainWindow (),

43 "SDA4PP Plug-in Error",

"Please add point typed vector layer in QGIS.")

44 return

45 # check other controls related with dialog options

 46 ...

47 # Apply analysis part with R

49 densityRpart.doSpatialAnalysis (self.R, index= self.index)

50 # Save

51 if self.index ["save"]:

52 resSave = self.ReadPointLayer.saveRaster

(self.index ["outputFilePath"])

Figure 5. 10. Simplified Version of Code for GIS Part of Density Tool (continued)

132

Before setting signal and slot mechanism for each widget in Line 20, the properties

of QGIS layers should be read by referencing to the main GIS part of Python

module; sda4ppReadQGISLayer. Therefore, a new function named as readInputFile

is called in Line 18. First two lines of this function imports RPy2 module (Line 25)

and saves the RPy2 objects as reference object (Line26). RPy2 is the Python

bindings for R interface. The “ReadQGISLayer” class is initialized in Line 28. By

using this class, the properties of vector map layer are taken with calling the related

functions of the module. For example, this class gets the name of layer as list

variable by calling “getLayerList” function of module in Line 29. In the next line, “if”

statement checks whether any layer name is returned or not. If there is no point

typed vector map layer in the QGIS, the tool gives an informative message about

the situation (Line 31) and the execution of the tool is stopped (Line 32). If there is

the layer in the QGIS, their names are added to combo box widget by iterating each

name (Line 33 and 34). Other properties of layers required for the analysis are taken

in a similar way; calling the related function in sda4ppReadQGISLayer module. For

example, the coordinate reference system of first added layer to combo box is taken

and saved as variable in the Python dictionary variable (Line 38). When all related

properties are called, some of the properties are assigned to load in the widgets and

some of them are stored as variable for further use in the analysis. This function

ends when all properties are taken. The execution of module returns to Line 20, and

continues from here.

Line 20 is the place where the declaration of event part has started.

QObject.connect method takes three arguments; the name of widgets, type of signal

specific to widget and the name of function. This function is executed when the

signal is triggered by the widget. In this example, when “Apply” push button is

clicked by the user, runApply function would be executed. This function is declared

in Line 39. There are many control sections in this function which checks all

variables related with the dialog options. For example, if statement in Line 41 checks

that whether there is a point layer in the combo box widget or not. If there is no point

typed vector layer in QGIS, an error message is displayed to the user and the

execution of the tool is stopped. Otherwise, the flow continues to check other

controls related with dialog options.

133

At the final stage, index variable and reference of RPy2 module object are sent as

arguments to start to process the analysis of the SDA part of the tool (Line 49). If the

“plot” option is kept in its state (by default it is checked), the output of analysis is

displayed as graphics by using native R graphics device. The graphics can be saved

as image file. The displayed graphic can be either a chart or view of spatial data.

Another common option in the dialog of tool is the “save” option. If this option is

checked, the output of analysis is converted to GIS data format in the SDA part of

tool and asked to user to add as a map layer in the QGIS or not. If accepted by the

user the newly created GIS data format either ESRI Shapefile or georeferenced

TIFF image file is added as map layer in the table of content and the output is

displayed in the map render of QGIS (Line 51 and 52).

Figure 5.11 is the simplified version for source code of SDA part of Kernel Density

Tool. In Line 2, sda4ppRoptions module is imported. This is the main SDA part of

Python module for organizing common functions related with R interface like

converting GIS data format to spatial object, plotting the graphics, setting the size of

R native graphic device and closing the R device. Line 4 imports another plug-in

module named as “wl” which is developed to get the results of any object. This

module returns the value of variable or object as a string and writes this value in a

text file. It is developed to help the programmer for logging purposes. Similarly, the

result of returned value of any object can be seen in the terminal by using native

“print” command of Python in Linux OS, whereas, the same mechanism is not

working during the execution of the tool in the QGIS environment for Windows OS.

For this reason, the “wl” module is developed to get the values of the variables or

object in the Windows OS.

134

1 # R options

2 import sda4ppRoptions

3 # write to logFile.log

4 import wl

5 def doSpatialAnalysis (r, index):

6 wl.wl ("index: " +str (index), dt)

7 # Projection

8 r ("p4s <- CRS (\"" + str (index ["projText"]) + "\")")

9 r ("rect <- as (v_spdf [\"" + str (index ["fieldName"]) + "\"], \"ppp\")")

10 ...

11 # Plot

12 if index ["plot"]:

13 rcodes = ["plot (z, main=\"Kernel Density for” \

+ str (index ["inputFileName"]) + "\")"]

14 sda4ppRoptions.plotGraphics (r, rcodes)

15 # Save

16 if index ["save"]:

17 r ("sgdf <- as (z, \"SpatialGridDataFrame\")")

18 r ("proj4string (sgdf) = CRS (\"" + str (index ["projText"]) + "\")")

19 r ("writeGDAL (sgdf, \"" + str (index ["outputFilePath"]) + "\",

drivername = \"" + str (index ["rstfile"]) + "\", type = \"Float32\")")

Figure 5. 11. Simplified Version for Source Code of SDA Part of Density Tool

R reference object and Python dictionary variable are taken as arguments in the

function of SDA part of tool (Line 5). When R code is executed by calling R objects

in the related packages, R code is closed in parenthesis with “r” object of RPy2

module. For example, the projection of map layer is sent to R environment in Line 8.

The path of GIS vector layer is sent to R to read into a suitable spatial vector object

by using “readOGR” function in the “sda4ppRoptions” module. The module calls the

“readOGR” function of rgdal package. By this way, spatial object in the format of

vector spatial point data frame named as “v_spdf” can be directly called in the SDA

part of tool. This object is converted to native format of spatstat package (Line 9).

The execution of the module continues to process the analysis until reaching the

end of module where the common dialog options like “plot” and “save” options are

found. The “plot” option is controlled with “if” statement in Line 12, whether this

135

option is checked or not. Plotting the analysis result of density tool is declared as R

code and stored in the Python list variable (Line 13). This code is sent to the

“plotGraphics” function of “sda4ppRoptions” module for execution of the code (Line

14). Similarly, the execution of “save” option is controlled with “if” statement in Line

16. If “save” option is checked in the dialog of tool, the analysis result is saved as

GIS data format. The analysis result of density tool is real-valued pixel image, which

is the raster layer of spatstat package. At first, pixel image format is converted to

spatial raster object (Line 17), its projection is defined (Line 18), and then, spatial

raster object as grid data frame is converted to raster GIS data format either

georeferenced tagged image file or Erdas Imagine file according to selected options

in the GUI of the tool (Line 19). The pixel number of X and Y axis at the raster layer

can also be changed. Default pixel value is 100. At the final stage, the analysis

result of the tool is added as map layer in the main window of QGIS. By this way, the

execution of density tool is completed by showing the result of analysis as raster

layer in the QGIS.

In general, all needed modules are imported at the beginning section of the module,

before the declaration of class of module. After class declaration, referenced objects

are saved, GUI part of tool is initialized, and the used variables with their default

values are declared. Initial properties of map layer are read and saved as variable

before displaying the GUI. Then, event part is declared with signal and slot

mechanism of Qt framework. At this stage, the class of tool‟s declaration is finalized

and the GUI of tool is displayed. According to the choices of users in the dialog,

events are emitted as signals and related slots are executed. The result of

interaction between the widgets and the user is saved as variable under one Python

dictionary variable. Dictionary variable storing all options are sent to SDA part of tool

for execution of the analysis. Analysis part starts with converting GIS data format to

suitable spatial objects. Analysis options are sent to R environment as parameters

for the main execution of analysis function. After the analysis is executed, the result

is displayed as output in the form of drawing charts, displaying statistical figures and

maps or converting objects back to GIS data format. Each analysis tool has specific

options, properties and related widgets in their dialog. Repeating common properties

and options are organized under specific module. Common functions for GIS related

tasks can be found in Python module named as sda4ppReadQGISLayer and for

SDA related tasks are in sda4ppRoptions module.

136

5.2. Architecture of SDA4PP Plug-in

QGIS, PyQGIS, PyQt and Qt Framework are required for the development of plug-in

on the GIS part. R, R packages and RPy2 are required for SDA part of the plug-in.

This seperation has also shaped the inner design schema of the plug-in as shown in

Figure 5.12. Each developed tool in the plug-in is composed of two Python modules;

GIS and SDA module. This makes simple to find where the error comes from. The

result of all GUI actions performed by the user are stored as variables in the GIS

part. All options of each tool are gathered under one Python dictionary variable and

sent to SDA part to proceed as parameters. GIS part of each tool can interface

seperately with QGIS, but, this will cause to repeat the similar functions many times

for each tool. Instead of distributing the same functions to many files, one Python

module is developed which organizes all QGIS interface functions under one

module. Each tool links to this module and interfaces to QGIS through this module.

By means of developing this one Python module, sda4ppReadQGISLayer, a new

tool can be systemmatically added to the plug-in and the structure of the plug-in has

become more stable for the changes in the interface of QGIS.

Figure 5. 12. Inner Design Schema of SDA4PP Plug-in

137

Accessing to QGIS API with Python can be possible with iface object. At first, iface

object is used in the Python module named as __init__.py, which is the initial Python

module of the plug-in that initiates to communicate with QGIS API. This module

passes the iface object to starting main Python module named as sda4pp, which

creates a new menu window in the QGIS and provides the signals and slots

mechanism of Qt Framework to interact with the user. High level event handling

mechanism in the Qt framework is called as signals and slots (Summerfield 2008).

The term “signal” is defined by Qt as that specific signals are attached to related

Qt‟s widgets and they are emitted when a particular event occurs. The term “slot” is

defined as a function that is called in response to a particular signal (Qt 2011). In Qt,

slots are methods that must be declared with a special syntax. But, in PyQt, slots

can be callable like any function or method, and no special syntax is required

(Summerfield 2008).

In order to communicate with required interfaces, the GIS part of tool imports the

core and gui classes of PyQt4 and qgis, whereas the SDA part of tool imports only

RPy2 Python module. QgsMapCanvas is the main class for displaying all GIS data

types. This class is accessed through iface object. In general, SDA tools developed

in the plug-in starts at first executing the display of GUI of tool, and then, selecting

point layer from the combo box widgets in the GUI, selecting other options, and

finally applying to perform to analysis and the result is shown as a new map layer in

the QGIS or plotting a graphic with some descriptive statistics. The selected map

layer in the table of content of QGIS can be found by looping the layers in

QgsMapCanvas class. QgsMapLayer is base class for all map layer types. The map

layer in the loop can be catched according to the layer types like vector and raster

layer. Vector layers can be filtered according to the shape of feature geometry like

point, line and polygon typed vector map layer.

Each map layer has the following properties such as extent, coordinate reference

system, source, etc. Extent of layer defines all features entire rectangular

geographic extent with reference to minimum and maximum coordinates of the

edges of rectangular. Coordinate system of layer is a mathematical formula that

transforms feature locations between the earth and map flat surface. This

transformation is handled by means of using PROJ.4 library. Coordinate system and

extent of layer can be obtained respectively with “srs” and “extent” functions of

QgsMapLayer class. Another property of the layer is the source of layer, which

138

means that each map layer has also file name and path that can be derived from the

“source” function of QgsMapLayer class. Other common property for vector layer is

to have an attribute table. Attribute table of vector layer is provided by

QgsDataProvider which is another abstract base class for spatial data provider

implementations. It has two types; vector and raster data provider. Each vector layer

has attribute table provided by vector data provider class. Each attribute table has

field name and type like integer, real and string. These are the most used common

properties of each map layer of QGIS.

The sda4ppReadQGISLayer Python module interfaces with these properties of the

layer through mentioned classes. This has prevented to develop same functions

many times for each tool. During development of plug-in in 2.5 years, QGIS

interface has changed several times; especially before reaching most mature stable

version 1.0. Any change in the implemented part of QGIS interface should also be

adopted for each tool. Forming sda4ppReadQGISLayer module as one module

handling all connections with QGIS for all tools has avoided to correct many

functions for each tool when any changes has occurred in QGIS interface. With this

structure, the plug-in has become more stable to any break down of QGIS interface

changes. The sda4ppReadQGISLayer Python module interfaces with QGIS for all

tools in order to initiate the following functions for each developed tool; getting layer

names as Pyhon list variables, filtering the selection of layer according to the feature

shape of geometry and the name of layer, having the source of layer, extent of layer,

projection of layer, counting the number of features in the layer, getting field names

and types in the attribute table, returning raster layer names and sources, selecting

features according to unique identifier of feature, saving the vector map layer as

ESRI Shapefile, zooming to the extent of layer, adding the map layer to the table of

content of QGIS, and saving the raster map layer as either georeferenced tagged

image or Erdas imagine file format.

SDA part of each tool is executed with R thorugh RPy2 Python module. Similarly,

common tasks related with SDA part of the plug-in are organized under two modules

that prevented to interface to R seperately for each tool. Converting GIS data format

to spatial data frame format of R and plotting the graphics as a result of the analysis

are some of the common tasks of SDA part that are handled with a separate Python

module named as sda4ppRoptions. Another developed Python module for SDA part

is named as sda4ppLoadRlib whose function is to load the specific R packages

139

required for the related tool before executing the analysis. Every tool does not need

to load all packages. Rgdal, maptools and spatstat packages are mostly required

packages for many tools. Other packages like rggobi and iplots are used for a few

tools. Rgdal package handles to input and output of spatial objects. Maptools is

required to convert from spatial object of S4 classes to an object of class “ppp”

format for point pattern of spacestat package or vice versa. Spatstat package is

used to perform the execution of the analysis part of the tool.

In the SDA part of the plug-in, GIS data format is first converted to spatial data frame

objects by means of rgdal package, and then to point pattern format by means of

maptools package. The SDA analysis is done at the point pattern format by using

spacestat package. The output is produced in the R and sent to GIS part of the tool

for displaying the result in the QGIS. The list of input and output formats for each

SDA tool is summarized in Table 5.1. The output of analysis can be either producing

a new GIS data or plotting a graphics and maybe with some explorative statistical

numbers and texts. Graphics are drawn by using native R plot graphic device.

Statistical explanations are extracted from the point pattern format. It is processed

either converting as string for displaying in the GUI of executed tool or attaching as

attribute table of vector layer. Derived new GIS data is converted either from point

pattern format to ESRI Shapefile as vector layer or from spatial grid data frame to

raster layer by means of using rgdal package. Raster layer can be in the format of

either georeferenced TIFF image file or Erdas Imagine Images. This produced GIS

data is added in the table of content of QGIS, zoomed to its extent and displayed as

a new map layer of QGIS as a result of the performed analysis.

140

Table 5. 1. List of Input and Output Formats for each Developed SDA Tool

Developed SDA Tools

Input Output

Point
Layer

Polygon
Layer

Raster
Layer

User
Input

Raster
File

SHP
File

CSV
File Stat.

Uniform Intensity x x

Kernel Smoothed Density x x x

Adaptive Density x x

G & F Estimate Function x

Ripley's K & L Function x

Local Ripley's K and L x

Quadrat Test x x x

Kolmogorov-Smirnov Test x x

Sim. Envelope of CSR x

Fit Poisson Model x x x

Kriging x x x

Generate Random Point x x

Generate Regular Point x x

Nearest Point & Distance x x x

Polygon to Point x x

Point to Polygon x x

Rggobi x x

Linked Stat. Distance x

R Console x x

Some spatial packages like spatstat and splancs data types belong to old style S3

classes. Bivand et. al (2008) explain that first version of S language did not include

the use of class/method mechanisms and adds that S3 classes are implementation

of S language version 3 that is known as old-style classes. Disadvantage of S3

class is that this class has no formal description and their methods could not

recognize the inheritance (Chambers 2008). That‟s why, maptools package is

required for conversion from S4 classes of rgdal package to ppp format of S3 class

of spacestat package. Spatial objects based on S4 classes are regulated under sp

package which rgdal and maptools use this structure. It is trying to organize all

spatial related S3 objects under the structure of S4 classes of sp package. For

example, vector map storing fire locations as point data layer in the format of ESRI

Shapefile, is read with “readOGR” function of rgdal package and the output is spatial

point data frame (SPDF). Attribute table of vector map layer is attached as spatial

data frame in the data slot of SPDF. Bivand et. al (2008) define spatial data frame as

designed to behave like data frame. Chambers (2008) defines data frame as a two-

141

way array with columns corresponding to variables. Data frame have attributes like

rows and columns. SPDF should be converted to spatial point object and then to the

ppp format. The structure of SPDF and ppp format is shown in Table 5.2 and 5.3

respectively. Data slot of SPDF keeps the attribute table of layer, coords slot stores

the coordinates of each feature location, bbox is the extent of layer, proj4string slot

is the reference of coordinate system, whereas in point pattern format, the window is

the extent of layer, the list named as “n” is the number of feature, x and y lists have

the coordinates of each feature location.

Table 5. 2. The Structure of Spatial Point Data Frame of S4 Class

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

 ..@ data :'data.frame': 30 obs. of 5 variables:

 $ MAHALLE: Factor w/ 4 levels "A","C","D","E": 4 4 4 1 1 4 1 1 3 4 ...

 $ IDS : int [1:30] 8000000 40 53 58 70 92 93 101 106 109 ...

 $ POINT_X: num [1:30] 487088 487026 487054 487573 487840 ...

 $ POINT_Y: num [1:30] 4417100 4416718 4417443 4416843 4418123 ...

 $ VALUE : int [1:30] 80000000 90000000 95780000 87409000 89120 22571

74997000 92375100 33250000 112604 ...

 ..@ coords.nrs : num(0)

 ..@ coords : num [1:30, 1:2] 487088 487026 487054 487573 487840 ...

 - attr(*, "dimnames")=List of 2

 $: NULL

 $: chr [1:2] "coords.x1" "coords.x2"

 ..@ bbox : num [1:2, 1:2] 486983 4416614 488042 4418769

 - attr(*, "dimnames")=List of 2

 $: chr [1:2] "coords.x1" "coords.x2"

 $: chr [1:2] "min" "max"

 ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

 @ projargs: chr " +proj=utm +zone=36 +ellps=intl +units=m +no_defs"

In conclusion, the conversion of spatial data from QGIS to R or vice versa is

proceeded at the background by using specified processes. As mentioned, there is

also a conversion in the structure of spatial objects in the R environment. This

conversion like from S4 to S3 type classes and vice versa is handled by using

specified R packages.

142

Table 5. 3. The Structure of “ppp” format of S3 Class

List of 5

 $ window :List of 4

 ..$ type : chr "rectangle"

 ..$ xrange: num [1:2] 486983 488042

 ..$ yrange: num [1:2] 4416614 4418769

 ..$ units :List of 3

 $ singular : chr "unit"

 $ plural : chr "units"

 $ multiplier: num 1

 - attr(*, "class")= chr "units"

 ..- attr(*, "class")= chr "owin"

 $ n : int 30

 $ x : num [1:30] 487088 487026 487054 487573 487840 ...

 $ y : num [1:30] 4417100 4416718 4417443 4416843 4418123 ...

 $ markformat: chr "none"

 - attr(*, "class")= chr "ppp"

As a summary, the GUI of tool is prepared in the Qt Designer. XML based GUI

format is converted to Python code by using PyQt utilities. The GIS part of the tool

imports the GUI and required all other modules at the beginning section of the

module. It setups event handling mechanism and GUI options. GIS part also reads

the properties of map layer of QGIS through main Python module of plug-in,

sda4ppReadQGISLayer. All stored options are sent as variables to SDA part of tool.

Common SDA tasks are also developed under one Python module named as

sda4ppRoptions. This module deals with the conversion between GIS format and

spatial object. The analysis is executed according to coding R syntax. R code is sent

by both SDA part of tool and sda4ppRoptions Python module to R environment

through using RPy2 Python module. The result of the analysis is converted to GIS

data and displayed in the QGIS environment. As a result, this architecture schema

has created a systematic for adding a new analysis tool. Adding new tool is a matter

of spending more effort and time. New analysis tools can be added in the same

manner with the explained structure.

143

5.3. FLOS Development of SDA4PP Plug-in

The benefit of FLOSS development is not only made the software freely available,

but more important than is a platform which provides public collaboration. FLOS

developers believe that if they allow other developers to modify their code, the

software will be free of error and more useful. In this thesis, during the development

of SDA system by following FLOSS methodology, it is seen that the information

provided by the members of GIS and SDA community is overwhelming. Amazing

FLOS GIS resources are available online. Members of QGIS, Python and R

communities are eager to help the users and especially to newcomers. The

responsibility of helping to the requested user is taken as a very serious task by

these communities. They care about the development of their product and know that

anyone can criticize anything in any time in this environment, because all result of

carried work can be accessible from the Internet.

This is a matter of prestige for the member of the project. The person who knows

the best gains a respect from other members of the developer and his opinion about

the discussed subject is more important than others. The management of this

FLOSS project is purely democratic but the respect to the most experienced

developer and traditional rules that are shaped from the past achievements during

the development of the project are also kept in mind. These thoughts have

strengthened the quality of many FLOSS products in every day.

During the development of SDA system in 2.5 years by using FLOSS products, it is

realized that the most important meaning of FLOS for the members of the

community is to help each other. By this way, it is assumed that more useful and

successful product can be developed. FLOS is a new form of freedom movement for

learning and spreading their knowledge between the members. The simplest way of

being a member of this community is to leave a good comment. This helping

mechanism can become stronger either to find a solution to asked problem, explain

how to fix the error or in other worlds help them to develop the software on their

environments. The meaning of helping to develop the software is not only writing a

code but also making donations to the project or it can be translating the documents

or any other things related with the development of the project. In return, learned

knowledge should be shared in similar way with them by documenting the

144

information. Documenting and sharing the information is necessary especially for

the newcomers to adopt them as a member of the community.

There are many ways to spread and share their knowledge such as by using blogs,

forums, e-mail lists, preparing manuals and tutorials, even publishing all IRC logs.

Simplest and most active way of learning and sharing the knowledge in the FLOSS

environment is to use e-mails. At first, project‟s e-mail lists should be subscribed,

and then, messages between members followed and e-mails should be searched

before asking a question and finally an e-mail message should be posted. E-mail

lists are the most important infrastructures of the FLOSS projects, because they are

mostly used and have latest information about development. The member of the

communities provides free technical support to their users by using this

communication media. For example, users request new features and share their

ideas with the developers. Developers discuss the bugs and decide the new

direction of development also in these e-mails. Separate groups have specific aims

to use these e-mails. For this reason, e-mail lists are divided according to the

specific discussion subjects. For example, QGIS community has ten e-mail lists in

February 2011; User, Fossgis-talk-liste, Developer, Community team, Translation,

Education, Release Team, Project steering Committee, Commits and Bug Tracking.

E-mail lists are open to everyone and store the history of related subject for the

project.

Communities are using all forms of digital tools for disseminating and facilitating

their products. In this environment, all content can be discussed publicly between

members and also be searched online. Especially the developers are expecting

from their users to offer helpful suggestions. These suggestions are sometimes to

become guidelines for them to make further development and sometimes to earn

more profit. But, this feedback mechanism could not work automatically, unless an

infrastructure system is setup and provided for newcomers to be adopted as a

member of the community. Infrastructure systems such as blogs, forums, wikis, e-

mail lists, etc. are also setup for this purpose; to get feedback from the users and

develop the project together.

During the development of plug-in, FLOSS environment has helped the author of the

thesis to learn how to make developments in the QGIS. New GIS software,

customized version of QGIS, can be developed by using QGIS interface. This

145

requires compiling the source code of QGIS. Another development option in the

QGIS environment is to develop a new plug-in by using either Python or C++

programming language. The development of plug-in is preferred due to decided

coupling strategy of the thesis. How to develop the plug-in and fix the compilation

error is learnt from the members of the QGIS community. It is a self-learning

experiment and when a dead end has reached, a help is requested from the

community by using e-mail lists. The developers of the QGIS community explained

clearly and in time how to solve the problems. Without interaction between the

members in the e-mails, this development could not be achieved.

Applying FLOSS development methodology during the development of plug-in has

resulted in several benefits. The users and members of the QGIS community have

used, tested and reviewed the plug-in; especially, Paolo Cavallini and Giovanni

Manghi have found several errors and reported via e-mails. Also, some of the errors

are recorded as a bug entered by the users into the bug page of the plug-in web

site. Several new features are requested by the users like the development of

kriging tool and the support of using PostGIS layer during the analysis. Although

Kriging tool belongs to Geostatistics field, it is developed in the plug-in, whereas the

implementation of PostGIS layer could not be completed in time.

Two feedback mechanisms is setup for getting the information about the plug-in

users. First mechanism is to collect information about the users like the name, e-

mail address, job title, application area, organization and country of the users who

filled the registration form in order to download the installer of SDA system. Second

way is to record statistical figures by the Google Analytics about the visitors who

viewed the web site of the developed plug-in. These figures about the usage of the

plug-in are explained in detail in the next chapter.

The development of Python plug-in in QGIS has started by using FLOSS

development methodology that is learnt while developing the plug-in by following the

developments of QGIS, Python, PyQt, R and other FLOS GIS resources. The

source code of SDA4PP plug-in can be accessible through Internet connection since

June 2008. The implementation of the plug-in has started in January 2008. Six

months later, the development is carried out according to the FLOSS development

methodology. This method requires publishing the source code of the development,

giving information about how the development is ongoing, and attracting the users

146

and developers to help the development process by adapting each person as a

member of the project. Source code is published under a dedicated repository which

is prepared to realize this specific purpose. Information about the development is

provided mainly with the developed web site. However, no message exists for the

users and developers to develop the plug-in together. This is done deliberately in

order to keep the originality of the thesis.

Dedicated web site is prepared under the domain of ggit.metu.edu.tr with the

following web address; http://www.ggit.metu.edu.tr/~volkan/index.html. Snapshot of

the main page of web site is shown in Figure 5.13. In this web site, developed tools

are explained, screenshots of each tool are displayed, development environment

with their versions of used components are listed, installation of SDA system for

Ubuntu OS is explained, and an installer is distributed. The installer is prepared to

install the SDA system in Windows OS. The installer is a setup file which re-

packages all installer of each component under one executable file. It also installs all

required R packages, defines “R_HOME” variable as system variable, and adds the

path of R program to the path variable. In order to download the installer, a

registration form should be filled by the user. This form is prepared to get the

information about the user. This information is interpreted in detail in the next

chapter.

Figure 5. 13. Main Page of Web Site Developed for FLOS SDA System

147

Web site has links to the blog, wiki, reporting a bug, revision history of plug-in, and

the repository. FLOS tools are used for setting up these facilities. For example, blog

is the free version of Wordpress. News about the development and new revisions of

installer are announced in the blog. Wiki and reporting a bug pages are integrated to

web site by using the structure of code.google.com. Bug reporting is a readymade

form provided by the code.google.com to facilitate FLOSS projects. Several users

have reported bugs to the author of this thesis by filling the form as shown in Figure

5.14. In the form, description, status and effects of the bugs can be setup by the

user. When the bug is fixed, the status of the bug is changed as “fixed” to end the

reporting. There are 12 bugs as of February 2011. For example, first error reported

by Paolo Cavallini in June 11, 2009 via e-mail in the qgis-developer e-mail list is

entered as a bug by the author of this thesis. The bug occurs when Rggobi tool is

selected from the menu without any layer loaded and qgis crashes. The error is

fixed one hour later and new revision 0.113 is put in the repository. Half an hour

later, he confirmed with another mail that the bug is fixed.

Figure 5. 14. List of Recorded Bugs

Some bugs are directly entered by the user. For example, Luca Scoz reported an

error as a bug in December 15, 2009 which is related with coordinate reference

system. After several commenting in the bug form, the solution is found. The

148

problem is related with the layer which is defined with wrong coordinate system. For

this reason, the plug-in gives an error that this coordinate system is not conformant

for this layer. Actually this error is not a bug, instead of this, it is a false usage done

by the user. Other bugs are related with how to define “R_HOME” variable as

system variable, add the path of R and Python to the path variable and install the R

packages and Python modules. Storing reported errors as a bug in the web helps to

identify the similar problems for different users.

Sometimes, users do not make any search about the errors that they have faced

while installing the SDA system. Instead of using the installer of SDA system, some

users have chosen to install the system by themselves, however, the installer setups

the path variables. When the related path variables are not correctly setup, the

system could not be worked. How to setup the path variables as system variable is

explained several times in the QGIS user e-mail list and in the bug system as well.

Explaining how to fix the same error several times could be boring. However, when

the same error is asked in the e-mail lists and were not replied in a short time by the

author of the thesis, some of the members of QGIS community explained the

solution again to the users. This has become a kind of self growing support system

between the members of the community.

Utility commands can be called with Python language at the terminal level, which

makes possible to process some specific tasks automatically like revising the plug-

in, converting Qt files to Python syntax and increasing the number of version in the

definition of repository file. Numbering format of the version of the plug-in is

configured as suitable for doing such automatic process. The first version of the

plug-in has started with 0.001. In the next revision, the number is increased by one.

The final version has reached to number 0.196. This version numbering format has

helped to automate revising the plug-in. To achieve this purpose, a Python module

named as Release Manager is developed in order to execute several tasks

automatically. This module adds all icons to resource file and converts all GUI files

of Qt to Python syntax as well as resource file. And then, it selects all required files

like the source code of developed Python modules, resource file of Qt, converted

Python version of resource file, log file, Python GUI of each tool, and compresses

them as zip file. It also reads the version of the plug-in from __init__ Python file, and

increments by one in the definition of repository file.

149

Another link of web site is the revision history of SDA4PP page as shown in Figure

5.15. The reasons of revising the plug-in are explained in this web page. This page

is actually a customizable web form which is provided by sites.google.com. This

form displays the texts as a list within the format of several user specified columns.

The version number, published date and description for the reasons of revising the

plug-in are documented within this format. By this way, the users have a chance to

follow what is changed and added in the plug-in.

Figure 5. 15. Revision History of the Plug-in

Another link to web site of the plug-in is the repository web page as shown in Figure

5.16. The source code of the plug-in version 0.068 is published in the Python plug-in

repository in June 2008. Since then, all Python codes of plug-in can be accessed

any time by the QGIS users. Repository is an XML file formatted with extensible

stylesheet programming language. In the repository, the name, version, description,

download link for compressed zip file and author of the plug-in are defined.

Specified version number in the repository and in the initial Python module of plug-in

(__init__.py) should match with each other, because the plug-in installer needs

consistent version number between two resources while installing the plug-in.

150

Figure 5. 16. Python Plug-in Repository of the Plug-in

The compressed zip file should contain the source code of Python files, but not the

binary Python files. If Python binary codes are added to the repository which can

create an error for Linux users if these files are interpreted in the Windows OS. For

this reason, the Python source code of the plug-in as in the compressed zip file

should be distributed to have cross platform support in the repository.

The source code of XML file as an example for explaining the structure of the plug-in

repository is shown in Figure 5.17. Several plug-in can be published under one

repository. In this code, two plug-in, named as SDA4PP and Interactive Identify, are

defined. The same structure is repeated twice with the different parameters. First

line is the declaration of XML version and the file name written with extensible

stylesheet programming language. The plug-in properties should be defined within

“plugins” tag (Line 2 and 19). Declaration of one plug-in starts within the enclosed

tag of “pyqgis_plugin”. This is defined in Line 3 by specifying the name and version

of the plug-in. Description of the plug-in as “description” tag (Line 4), home page of

web site address of the plug-in as “homepage” tag (Line 5), minimum version of

QGIS that the plug-in requires to work as “qgis_minimum_version” tag (Line 6), the

name of compressed zip file as “file_name” tag (Line 7), the developer of the plug-in

as “author_name” tag (Line 8), and lastly, web address for downloading the

compressed zip file as “download_url” tag (Line 9) are defined as the properties of

151

Python QGIS plug-in. Similarly, each property is defined from Line 12 to 17 in the

same manner for other plug-in, named as Interactive Identify.

1 <? Xml version="1.0”?><? Xml-stylesheet

type="text/xsl" href="plugins.xsl”?>

2 <plugins>

3 <pyqgis_plugin name="SDA4PP" version="0.196">

4 <description>Spatial Data Analysis for Point Pattern with R. Also

requires RPy2 and several R packages; sp, maptools, spatstat & rgdal

 </description>

 5 <homepage>http://ggit.metu.edu.tr/~volkan/index.html</homepage>

6 <qgis_minimum_version>1.0</qgis_minimum_version>

7 <file_name>SDA4PP.zip</file_name>

8 <author_name>Volkan Osman Kepoglu</author_name>

9 <download_url>http://ggit.metu.edu.tr/~volkan/SDA4PP.zip

 </download_url>

10 </pyqgis_plugin>

11 <pyqgis_plugin name="Interactive Identify" version="1.2">

12 <description>Customizable descriptive information for feature in the

intersecting several vector/raster layers in the same window

 </description>

13 <homepage>http://sites.google.com/site/pyqgis/Home</homepage>

14 <qgis_minimum_version>1.0</qgis_minimum_version>

15 <file_name>infotool.zip</file_name>

16 <author_name>Volkan Osman Kepoglu</author_name>

17 <download_url>http://ggit.metu.edu.tr/~volkan/pyqgis/infotool.zip

 </download_url>

18 </pyqgis_plugin>

19 </plugins>

Figure 5. 17. Source Code of Plug-in Repository

Nearly in every six months period, the major release of the plug-in has been

developed. Major release of the plug-in with version number, release date and used

version of QGIS is shown in Table 5.3. During the development of plug-in in 2.5

years, the version of QGIS is changed from 0.9.2 to 1.5.0. As of February 2011, the

latest version of QGIS is 1.7.0. The plug-in is still working with the latest version of

the QGIS. Third major release of the plug-in has become more stable with the

http://ggit.metu.edu.tr/~volkan/index.html
http://ggit.metu.edu.tr/~volkan/SDA4PP.zip
http://sites.google.com/site/pyqgis/Home
http://ggit.metu.edu.tr/~volkan/pyqgis/infotool.zip

152

release of QGIS version 1.0.2. The number of written Python code lines according to

the major release of the plug-in is shown in Table 5.4. Grand total of code line of the

plug-in has reached to 12,835 lines with the latest version 0.196.

Table 5. 4. Development Progress of Plug-in according to Major Releases

Major

Release
1 2 3 4 5 Latest

SDA4PP

Version
0.068 0.092 0.120 0.141 0.192 0.196

Release

Date
23.06.08 30.01.09 22.06.09 16.11.09 23.06.10 08.09.10

QGIS

Version

0.9.2 &

0.10.0

1.0.0

preview2
1.0.2

1.2.0 &

1.3.0
 1.4.0

1.4.0 &

1.5.0

Total

Code Line
1,993 3,409 5,113 7,958 12,055 12,835

Snapshots of SDA4PP menu according to the major release of the plug-in is also

shown in Figure 5.18. Latest revision of SDA4PP plug-in in Windows and Ubuntu

OS is shown in Figure 5.19. These snapshots and figures demonstrate how the

plug-in is developed in time.

153

Revisions Snapshots

First

Major

Release;

0.068

Second

Major

Release;

0.092

Third

Major

Release;

0.120

Figure 5. 18. Major Release of SDA4PP Plug-in

154

Revisions Snapshots

Fourth

Major

Release;

0.141

Fifth

Major

Release;

0.192

Figure 5. 18. Major Release of SDA4PP Plug-in (Continued)

155

Operating

System
Snapshot of Latest Revision; 0.196

In

Windows

In

Ubuntu

Figure 5. 19. Latest Revision of SDA4PP Plug-in in Windows (Top) and Ubuntu

(Bottom)

156

CHAPTER 6

CONCLUSION

6.1. Analysis of SDA System User Statistics

The users of SDA system are researched in order to understand how much interest

is seen from the users and who uses the system. The statistics about the user of

SDA system is interpreted from two resources; the users who registered themselves

by filling a form and the users who entered to the web site of SDA system.

Registration statistics are recorded by the web page developed by the author of this

thesis. Users‟ visits statistics are recorded by using Google Analytics that is a free

service provided by Google to track the traffic of users for the linked web site. The

number of registered users between January 2010 and February 2011 is 127. These

users have downloaded the installer of SDA system prepared for Windows operating

system 144 times. According to the statistics of Google Analytics recorded in

February 2009 and January 2011, the number of absolute unique visitors who

visited the web site is nearly 1,600. These figures are explained in detailed in the

following sections.

6.1.1. Statistics about Registered Users

A registration form is developed in the web site of SDA system in January 2010.

Users are required to fill a registration form in order to install the SDA system from

the web site. Two options are available in the registration. The users can prefer

either to download the Windows installer or to read the command line installation

instructions of Ubuntu distribution.

157

Figure 6. 1. Information about Registered Users; How Heard the SDA System (Top

Left), Job Title (Top Right), Application Area (Bottom Left), Organization (Bottom

Right)

While users are filling the form, six subjects about the registered users, namely,

preferred operating system to install the SDA system, how heard the system, job

title, application area, organization and country where the user visited the web site

are recorded in nearly one year. There are 127 registered users which are recorded

168 times. 92% (117/127) of the users has preferred to download Windows installer

and 8% (10/127) is Ubuntu distribution. Majority of the registered users (53.3%)

have heard the SDA system from QGIS resources like forum, Python plug-in

repository, e-mail, plug-in installer, web site, 25% of them from web search engine,

12.5% of users from friends, 9.2% of them from directly web (Figure 6.1 – Top Left).

Job title of registered users is mainly (65.8%) related with the scientific research like

academician, researcher and student. The rest of them are composed of expert

(20%), engineer (5.8%), consultant (5%) and manager (3.3%) (Figure 6.1 – Top

Right). Registered users‟ application areas are too wide and differ from in the field of

geosciences, ecology, environment, engineering, agriculture, archeology, planning,

QGIS
53.3%Search

Engine
25.0%

Friends
12.5%

Web
9.2%

Researc.
35.8%

Student
23.3%

Expert
20.0%

Academ.
6.7%

Engineer
5.8%

Consult.

5.0%
Manager

3.3%

Geosci.
22,8%

Ecology
17.6%

Environ.
13.4%

Engineer.
8.4%

Agricult.
6.7%

Archeol.
6.7%

Planning
6.7%

Others
5.9%

Health
5.0%

Forestry
4.2%

Meteoro.
2.5%

University
38.6%

Private
Company

21.9%

Research
Organiza.

18.4%

Public
Institut.
13.2%

Municip.
4.4%

Inter.
Organiza.

1.8%

Others
1.8%

158

health and forestry to meteorology (Figure 6.1 – Bottom Left). Variety of application

areas is a distinctive property for the SDA field. The same situation can be seen in

this figure. According to the figure of organization that the registered user works in,

38.6% of users is from university, 21.9% from private company, 18.4% from public

institution, 4.4% from municipality and 1.8% from international organization (Figure

6.1 – Bottom Right). UNICEF, UN and GTZ are some of the examples for most

known organizations that exist in the registration records. Registered users are from

34 different countries. Top 10 countries are Italy, France, Turkey, Brazil, United

States, India, United Kingdom, Japan, Poland and Portugal (Table 6.1).

Table 6. 1. Registered Users‟ Countries

Countries Frequency Percentage

Italy 15 11.8%

France 12 9.4%

Turkey 11 8.7%

Brazil 10 7.9%

United States 9 7.1%

India 8 6.3%

United Kingdom 6 4.7%

Japan 5 3.9%

Poland 5 3.9%

Portugal 5 3.9%

Spain 5 3.9%

Germany 4 3.1%

Australia 3 2.4%

Canada 3 2.4%

Others 26 20.5%

Total 127 100.0%

6.1.2. Usage Statistics of Web Site of SDA System

A web site is prepared to inform the users about the development of SDA system.

This site is published under the domain of ggit.metu.edu.tr with the following web

address; http://ggit.metu.edu.tr/~volkan/index.html. The statistics about the users of

SDA system who viewed the web site are recorded by Google Analytics. Several

code lines are embedded inside of home page of web site. These codes create a

mechanism for Google Analytics service to collect the information about the user

who has entered to the site. Statistics are recorded between February 2009 and

January 2011. With this linkage mechanism, Google Analytics has provided the

http://ggit.metu.edu.tr/~volkan/index.html

159

statistical figures about the number of absolute unique visitors, visits, average visit

per day, countries where the visits come, viewed page number, average spent time

in the site by the visitors, returning and new visitors.

Google Analytics (2011) defines absolute unique visitors as “the number of

unduplicated visitors to the website in a specified time period like 30 minutes”. The

visitors are determined using cookies. Total number of absolute unique visitors to

the web site of SDA system is 1,593. It is reached to this figure in nearly two years.

The distribution of unique visitors per month is shown in Figure 6.2. As it can be

seen from the figure, there is an increasing trend and each month the number of

visitors has increased. The highest visitor is detected in November 2010.

Figure 6. 2. The Number of Absolute Unique Visitors per Month to Web Site of SDA

System

1,593 absolute unique visitors visited the site 3,042 times. An average visit per day

is 4.16. The distribution of visits per month to the site is shown in Figure 6.3. The

number of highest visits per month to the web site of the SDA system is 266.

Similarly, the number of visits per month is increasing in time.

17
10 13

20

53
38

20

51
62

99

64

81

48

71

91

142

102
114114

123

143

170

137

0

20

40

60

80

100

120

140

160

180

Feb
 1

, 2
0

0
9

 -
Feb

 2
8

, 2
0

0
9

M
ar 1

, 2
0

0
9

 -
M

ar 3
1

, 2
0

0
9

A
p

r 1
, 2

0
0

9
 -

A
p

r 3
0

, 2
0

0
9

M
ay 1

, 2
0

0
9

 -
M

ay 3
1

, 2
0

0
9

Ju
n

 1
, 2

0
0

9
 -

Ju
n

 3
0

, 2
0

0
9

Ju
l 1

, 2
0

0
9

 -
Ju

l 3
1

, 2
0

0
9

A
u

g 1
, 2

0
0

9
 -

A
u

g 3
1

, 2
0

0
9

Sep
 1

, 2
0

0
9

 -
Sep

 3
0

, 2
0

0
9

O
ct 1

, 2
0

0
9

 -
O

ct 3
1

, 2
0

0
9

N
o

v 1
, 2

0
0

9
 -

N
o

v 3
0

, 2
0

0
9

D
ec 1

, 2
0

0
9

 -
D

ec 3
1

, 2
0

0
9

Jan
 1

, 2
0

1
0

 -
Jan

 3
1

, 2
0

1
0

Feb
 1

, 2
0

1
0

 -
Feb

 2
8

, 2
0

1
0

M
ar 1

, 2
0

1
0

 -
M

ar 3
1

, 2
0

1
0

A
p

r 1
, 2

0
1

0
 -

A
p

r 3
0

, 2
0

1
0

M
ay 1

, 2
0

1
0

 -
M

ay 3
1

, 2
0

1
0

Ju
n

 1
, 2

0
1

0
 -

Ju
n

 3
0

, 2
0

1
0

Ju
l 1

, 2
0

1
0

 -
Ju

l 3
1

, 2
0

1
0

A
u

g 1
, 2

0
1

0
 -

A
u

g 3
1

, 2
0

1
0

Sep
 1

, 2
0

1
0

 -
Sep

 3
0

, 2
0

1
0

O
ct 1

, 2
0

1
0

 -
O

ct 3
1

, 2
0

1
0

N
o

v 1
, 2

0
1

0
 -

N
o

v 3
0

, 2
0

1
0

D
ec 1

, 2
0

1
0

 -
D

ec 3
1

, 2
0

1
0

160

Figure 6. 3. The Number of Visits per Month to Web Site of SDA System

Distribution of the number of visits by top twenty countries is shown in Figure 6.4.

The highest visit has come 609 times from Turkey. Top five countries can be listed

as Turkey with 609 visits, Italy with 401 visits, United States with 224 visits, Japan

with 212 visits and France with 197 visits. 3,042 visits came from 77 countries. The

distribution of countries is fully documented in Appendix B and map overlay is shown

in Figure 6.5. As it can be seen from the map, the web site of SDA system is used

across the world wide.

25 23 21

49

127

58
35

98
123

171

120

151

74

128133

248

170
183

149

230

193

266

224

0

50

100

150

200

250

300

Feb
 1

, 2
0

0
9

 -
Feb

 2
8

, 2
0

0
9

M
ar 1

, 2
0

0
9

 -
M

ar 3
1

, 2
0

0
9

A
p

r 1
, 2

0
0

9
 -

A
p

r 3
0

, 2
0

0
9

M
ay 1

, 2
0

0
9

 -
M

ay 3
1

, 2
0

0
9

Ju
n

 1
, 2

0
0

9
 -

Ju
n

 3
0

, 2
0

0
9

Ju
l 1

, 2
0

0
9

 -
Ju

l 3
1

, 2
0

0
9

A
u

g 1
, 2

0
0

9
 -

A
u

g 3
1

, 2
0

0
9

Sep
 1

, 2
0

0
9

 -
Sep

 3
0

, 2
0

0
9

O
ct 1

, 2
0

0
9

 -
O

ct 3
1

, 2
0

0
9

N
o

v 1
, 2

0
0

9
 -

N
o

v 3
0

, 2
0

0
9

D
ec 1

, 2
0

0
9

 -
D

ec 3
1

, 2
0

0
9

Jan
 1

, 2
0

1
0

 -
Jan

 3
1

, 2
0

1
0

Feb
 1

, 2
0

1
0

 -
Feb

 2
8

, 2
0

1
0

M
ar 1

, 2
0

1
0

 -
M

ar 3
1

, 2
0

1
0

A
p

r 1
, 2

0
1

0
 -

A
p

r 3
0

, 2
0

1
0

M
ay 1

, 2
0

1
0

 -
M

ay 3
1

, 2
0

1
0

Ju
n

 1
, 2

0
1

0
 -

Ju
n

 3
0

, 2
0

1
0

Ju
l 1

, 2
0

1
0

 -
Ju

l 3
1

, 2
0

1
0

A
u

g 1
, 2

0
1

0
 -

A
u

g 3
1

, 2
0

1
0

Sep
 1

, 2
0

1
0

 -
Sep

 3
0

, 2
0

1
0

O
ct 1

, 2
0

1
0

 -
O

ct 3
1

, 2
0

1
0

N
o

v 1
, 2

0
1

0
 -

N
o

v 3
0

, 2
0

1
0

D
ec 1

, 2
0

1
0

 -
D

ec 3
1

, 2
0

1
0

161

Figure 6. 4. The Number of Visits Coming from Top Twenty Countries

Figure 6. 5. The Number of Visits across the Globe

609

401

224 212 197

133 125 114 111 105 87
64 64 51 47 32 31 28 27 26

0

100

200

300

400

500

600

700

162

Google Analytics (2011) defines pageview as an instance of page loaded by browser

and adds that the pageview is logged in every time the tracking code is executed.

Total number of pageview is 8,574. The distribution of pageview per month to the

web site of SDA system is shown in Figure 6.6. An average pageview per visit is

2.82. The range of average pageview per month changes from 1.74 to 4.61.

Figure 6. 6. The Number of Pageview per Month in Web Site of SDA System

The average spent time by the visitors in the site is 3:27 minutes. The range of

average time on site per month changes from 2:22 minutes to 6:57 minutes. 1,177

of 3,042 (39%) visits came from referring sites, 1,062 of 3,042 (35%) from direct

traffic, 803 of 3,042 (26%) from search engines. Google Analytics (2011) defines

new visitor as “recorded when any page on the site has been accessed for the first

time by a web browser” and returning visitor as “recorded when the cookie exists on

the browser accessing the site”. 1,578 of 3,042 (52%) visits is done by a new visitor,

while 1,464 of 3,042 (48%) belongs to a returning visitor. Nearly half of the visitors

have looked at the site more than once. Mostly used operating system during visits

to the site belongs to Windows. 2,076 of 3,042 (68%) operating system is Windows,

669 of 3,042 (22%) is Linux, 254 of 3,042 (8%) is Macintosh, 28 visits‟ operating

system are not set, 11 visits is iPad and 4 visits made from other operating systems.

Mozilla Firefox is the mostly used web browser during visits to the web site of SDA

58 40 38

226

412

166

77

261256

367396

638

220

313
353

829

468
517

407

547551

755

592

0

100

200

300

400

500

600

700

800

900

Feb
 1

, 2
0

0
9

 -
Feb

 2
8

, 2
0

0
9

M
ar 1

, 2
0

0
9

 -
M

ar 3
1

, 2
0

0
9

A
p

r 1
, 2

0
0

9
 -

A
p

r 3
0

, 2
0

0
9

M
ay 1

, 2
0

0
9

 -
M

ay 3
1

, 2
0

0
9

Ju
n

 1
, 2

0
0

9
 -

Ju
n

 3
0

, 2
0

0
9

Ju
l 1

, 2
0

0
9

 -
Ju

l 3
1

, 2
0

0
9

A
u

g 1
, 2

0
0

9
 -

A
u

g 3
1

, 2
0

0
9

Sep
 1

, 2
0

0
9

 -
Sep

 3
0

, 2
0

0
9

O
ct 1

, 2
0

0
9

 -
O

ct 3
1

, 2
0

0
9

N
o

v 1
, 2

0
0

9
 -

N
o

v 3
0

, 2
0

0
9

D
ec 1

, 2
0

0
9

 -
D

ec 3
1

, 2
0

0
9

Jan
 1

, 2
0

1
0

 -
Jan

 3
1

, 2
0

1
0

Feb
 1

, 2
0

1
0

 -
Feb

 2
8

, 2
0

1
0

M
ar 1

, 2
0

1
0

 -
M

ar 3
1

, 2
0

1
0

A
p

r 1
, 2

0
1

0
 -

A
p

r 3
0

, 2
0

1
0

M
ay 1

, 2
0

1
0

 -
M

ay 3
1

, 2
0

1
0

Ju
n

 1
, 2

0
1

0
 -

Ju
n

 3
0

, 2
0

1
0

Ju
l 1

, 2
0

1
0

 -
Ju

l 3
1

, 2
0

1
0

A
u

g 1
, 2

0
1

0
 -

A
u

g 3
1

, 2
0

1
0

Sep
 1

, 2
0

1
0

 -
Sep

 3
0

, 2
0

1
0

O
ct 1

, 2
0

1
0

 -
O

ct 3
1

, 2
0

1
0

N
o

v 1
, 2

0
1

0
 -

N
o

v 3
0

, 2
0

1
0

D
ec 1

, 2
0

1
0

 -
D

ec 3
1

, 2
0

1
0

163

system. Used web browsers during visits to the site with their number of visits are

Firefox with 1,752 of 3,042 (58%), Internet Explorer with 497 of 3,042 (16%),

Chrome with 483 of 3,042 (16%), Safari with 177 of 3,042 (6%), Opera with 66 of

3,042 (2%) and others with 67 of 3,042 (2%).

6.2. Discussion and Conclusion

The aim of this thesis is to develop a fully coupled SDA with GIS in FLOSS

environment. In order to achieve this purpose, a FLOS SDA system is developed by

using FLOSS products and by following FLOSS development methodology. GIS

users have started to request more SDA tools in their GIS software at the last

decade. Until 2004, none of SDA tools are implemented in ESRI ArcGIS Desktop.

The lack of SDA functionality in GIS software is the main motivation of this thesis to

start a development of SDA system. In this thesis, within 2.5 years, it is succeeded

to integrate 14 SDA tools (including exploratory techniques) in FLOS GIS software.

The contributions of developing SDA software in the FLOSS environment can be

listed as follows:

 Disseminating SDA techniques more widely and easily to GIS users,

 Providing an user friendly FLOS GIS software doing SDA techniques for GIS

users without requiring any programming,

 Providing an environment for SDA theorists, researchers and developers a

chance to test, control and modify the algorithm of SDA techniques, and to

add more SDA tools within GIS environment,

 Developing well documented SDA library from the source code of analysis

techniques,

 Sharing SDA knowledge with GIS users,

 Providing interoperable and cross-platform software,

 Achieving FLOS software development.

Used FLOSS products are QGIS as main GIS component of the system, Qt as

development framework, Python as programming language, R as SDA component

of the system, GDAL and PROJ.4 as two geospatial libraries, and Python bindings

for QGIS, Qt and R. SDA system is developed between January 2008 and June

2010. During 2.5 years period, nearly 13,000 Python code lines are written and 14

SDA tools are implemented in the system. The outcome of the development of

164

FLOS SDA system is creating a plug-in in the main window of QGIS. The plug-in is

named as SDA4PP which is the abbreviation of Spatial Data Analysis for Point

Pattern. The plug-in is revised 196 times with 5 major releases. In nearly every 6

months a new major version is released.

Development is carried out according to FLOSS development methodology. In

general, this method requires publishing the source code of the development, giving

information about how the development is ongoing, and attracting the users and

developers to help the development process by adopting each person as a member

of the project. The source code of the plug-in is published in the repository in June

2008. Since then, all source codes in the repository can be accessible through the

Internet. This openness is sustained by forming a Python plug-in repository under

the domain of ggit.metu.edu.tr. In order to give information about how the

development is ongoing, a dedicated web site is prepared. In this site, each

implemented tool is explained briefly, and the snapshots of the tools with the result

of the analysis are also shown. In addition, the reasons of new version of the plug-in

are explained, bugs can be reported by the users, and news about the development

is announced in the blog. In order to attract more developers, the development

environment of the system is clarified with their used version of each component. An

installer for Windows OS is provided for users to download and install the system

more easily.

The statistics about the users of SDA system who viewed the web site are recorded

by Google Analytics. According to these statistics, 1,593 absolute unique visitors

visited the web site of SDA system between February 2009 and January 2011. In

summary, 1,593 visitors came from 77 countries, 3,042 visits, 8,574 page views

have recorded nearly in two years. As it can be seen from these statistics, the web

site of SDA system is used across the world wide.

Nearly 1,600 visitors have followed the results of the development from the web site

of SDA system within a short time like two years. However, this statistic is not a true

figure for the usage of plug-in; because this figure belongs to the users who visited

web site of the SDA system, but, the figure does not show how many times the plug-

in is downloaded and installed. There is no figure about this subject, because

repository is in the XML file and Google Analytics could not record the connection to

an XML file, but counts the visits that are done to HTML coded web pages. The

165

number of connection to plug-in should be much more than 1,600 users, because

there is no need to look at the web site of the SDA system in order to install the

plug-in. As it is explained previously, there is a fetching mechanism between the

plug-in repository and the user inside of the QGIS. This mechanism downloads the

source code of the plug-in from Python plug-in repository and installs the plug-in

automatically without entering any HTML page in the site. In other words, the users

who installed the plug-in but not additionally looked at the site are not recorded by

the Google Analytics. For this reason, it is assumed that the user of plug-in is much

higher than 1,600. These figures show that coupling of SDA in GIS takes an

attention from many users. The development of SDA system has also seen an

interest from the members of the QGIS community. The members of the community

were interested with the development of SDA4PP plug-in. They reported bugs and

errors, requested new features and tools, replied plug-in users‟ help messages and

accepted the plug-in repository as external author repository in their project.

Integration of SDA in GIS could not be succeeded in the past. Although some of the

reasons have out-dated, the integration is still not progressed in that pace. At

present, GIS is at the advanced stage as compared in 1960s and 1970s, and

computation power is enough to perform all SDA techniques. Although there are

many desktop GIS applications, the number of SDA tools in these applications is not

enough as compared with the number of GIS tools. GIS vendors‟ motivations are not

still in the scientific research; because the support of SDA market is not strong

enough to convince the GIS vendors to couple complete SDA techniques in their

GIS products. However, GIS users have started to request more SDA tools in their

GIS software. Several standalone SDA software products like Info-Map, SpaceStat

and GeoDa are developed as pioneer example applications in order to disseminate

and facilitate the SDA field, but, all of them are designed to work only in closed

source environment which is subject to break down in their structure as changes

occur in operating system in every two years. The cost of upgrading the structure of

standalone SDA software could not be met from the market. For this reason, many

of them have become out-dated in time with their antiquated architecture.

There is still a gap in the provision of standalone SDA software. This gap is tried to

be filled with the development of GeoDa which is a million granted projects. The

sustainability of software has broken with Windows Vista in March 2007 after two

and half years from the release of stable version in September 2004 due to applying

166

misleading software development methodology in terms of providing sustainability of

standalone SDA software. In order to fix the breakdown of software architecture, a

new development work is carried out, but the stable version of new GeoDa could not

be finished in August 2010. However, the sustainability of the development could not

be established with only the development of new version of GeoDa, whose

architecture is replaced by adopting FLOS GUI library in order to have cross

platform support. An active community should be created around the FLOSS project.

If this community is formed in the FLOSS environment by applying FLOSS

development methodology, the sustainability of standalone SDA software could be

guaranteed. When the scientific SDA research community is grasped around the

FLOSS project, the development and the maintenance of the GIS software

specialized for SDA field can be continued by the community. The chance to sustain

the availability of GIS software fully coupled with SDA techniques in FLOSS

environment is higher than closed source if the project has succeeded to create a

community supporting the development of software, since the development of

software can be done with collaboratively and free of charge when several

enthusiasts SDA researchers and developers have adopted to contribute the project.

The commercialization of FLOSS came up at the last decade. This situation has

showed a rapid progress, reached to many users from different countries and in

each day support of this environment is growing. For example, the use of Linux has

spread all over the world and the number of Linux distributions formed by different

organizations has exceeded couple of hundreds. This thesis' motivation arises from

the development progresses in the FLOSS environment. Development progresses

in the geospatial field of FLOSS environment can create an opportunity of window

for the development of SDA system in order to facilitate and disseminate the SDA

field. Available FLOS spatial libraries and applications are mature enough to develop

the SDA system. The number of spatial libraries and applications are increasing

everyday within the FLOSS environment.

The major utility of developing SDA software in FLOSS environment should not be

only providing the software free but also sharing the SDA knowledge among the

researchers coming from different fields. The most predominant factor of SDA field

is that many application areas have contributed to the development of SDA field.

Many areas have caused to develop different style of analysis. This kind of variety is

one of the drawbacks of SDA which requires developing the software working with

167

many researchers coming from different application areas. This collective

development work can be carried out easily especially when the chance to read,

modify and redistribute the source code of SDA techniques is possible during the

development process of the software. Also, this opportunity gives the flexibility of

testing the algorithms of SDA tools and provides an environment to discover new

SDA techniques for both developers and researchers. Therefore, accessing,

studying and distributing the source code of SDA technique is a predominant factor

at the coupling of SDA with GIS. Openness of the source code is granted as a right

for everyone only in the FLOSS environment. The opportunity to look at the source

code of the analysis can also help to learn the analysis among more researchers,

avoid reinventing the SDA techniques, implement the technique from existing

algorithms and accelerate the teaching of the GIS users.

The freedoms provided by free software are legitimized with free licensees. The

invaluable advantage of QGIS is to have these freedoms. The freedoms that QGIS

provides as the development tool for the developer, the price advantageous and the

simplicity for easy to use GIS software that provide for their users are superior which

makes QGIS valuable application as much as commercial proprietary desktop GIS

software product for the development of SDA system.

6.3. Further Recommendations

This thesis has proved that the coupling of SDA with GIS could be done by using

FLOS GIS software products. Nearly 13,000 line Python code is written in 2.5 years,

distributed within the repository via Internet, shared with the QGIS community,

tested and used by more than 1,600 users. At the beginning of development, it is not

expected to reach that amount of users. This number can be increased by attracting

more developers and users with facilitating more collaborative software

development environment such as setting up version control system, which makes

possible for many programmers to develop the code together, using e-mail lists

dedicated to the development, not concentrating on one application area of SDA

field, making announcements and advertisements about the project. Especially not

limiting the implementation of SDA tools according to one subject of the SDA field

could attract more users. SDA system should have many tools including from other

application areas of SDA field like spatially continuous data analysis, areal data

analysis and spatial interaction data analysis. For example, although there are

168

variety forms of kriging tool in the proprietary GIS software, this tool is requested to

be implemented in the plug-in by the community, because it is stated that there is no

good implemented example for kriging tool in the FLOSS environment. Adding more

popular analysis tools could attract more users to use the developed system. How to

contribute to the project should be directly explained to newcomers in the web site.

In the FLOSS projects, the contribution can be in the form of code contributions, bug

fixes, bug reports, contributing to manuals and documentation, making translation

and packaging, preparing tutorials and wiki pages, supporting other users on e-mail

lists and forums, and financially sponsoring and funding. All forms of contributions

should be organized in the web site by setting up related FLOS tools.

It is recommended to consider that not only the development of SDA system should

be done in the FLOSS environment but also the development should be managed

as FLOSS project, because continuity of the software development in the FLOSS

environment mostly depends on the formation of the community. Some of the

mentioned FLOS collaborative methods like setting up a collaborative repository and

dedicated e-mail list, making advertisement are not applied during this thesis‟s

development, because the main motivation of this work is to make a development,

but not to consider managing the FLOSS project and creating a community around

the project. Also, required time for creating a community around the project is much

longer than 2 years. It is guessed that between 5 and 10 years could be required to

realize this task. Therefore, it should be considered that before starting to improve

the developed SDA system of this thesis as the FLOSS project, a couple of SDA

enthusiastic developers should be collaborated and they should be ready to spend

their spare time both on the development of software and the management of

FLOSS project for between 5 to 10 years. FLOSS project requires a long term

support to be a known product. For example, QGIS has started to be developed in

2002. After 9 years, the project has reached to be downloaded nearly 100,000

times, whereas GeoDa has reached to 52,000 in 7.5 years, but, GeoDa is not an

FLOSS project and QGIS is in the GIS field. The figures give an overall idea about

how much effort should be spent in the development of SDA system to be a well

known product in the FLOSS environment.

Forming a community around the project is important in terms of providing

sustainability for the development of SDA system. Whether more than 1,600 visitors

can be accepted as community for this development or not is not clear. This

169

uncertainty can be tested with an announcement to QGIS community stating that it

is time to hand over the development of SDA4PP plug-in to requesting developer.

Whether any developer will own the development and continue to develop the

system is unknown, but this kind of transition mechanism is possible in any time,

because source code of the development can be accessible from the Internet. This

kind of sustainability has established as a mechanism from the beginning in the

FLOSS environment. This is the chance of providing continuity of the development

of SDA system in the FLOSS environment.

More than 1,600 users in 2.5 years prove that there is still wide interest for the

coupling of SDA in GIS in the FLOSS environment. It is assumed that complete

integration of SDA with GIS could be done in the FLOSS environment with a

community, when more professional FLOSS development methodology is followed

like using appropriate FLOS collaborative tools, making announcements and

advertisements, and designing the web site to invite the users and developers to

work together. It is hoped for the near future that the complete integration of SDA in

GIS can be achieved in the FLOSS environment by creating an active and

worldwide supported SDA community. The creation of a SDA community around the

FLOSS project should be carried out in order to guarantee the sustainability of SDA

system. It can be concluded from the development experiences that are learned

while developing the SDA system in the QGIS environment that the development

could be achieved in the FLOSS environment with FLOS tools, but organizing a

community around the FLOSS project requires setting up a collaborative

environment and is a matter of different culture then carrying out the software

development.

Another recommendation is to inform that both the developers and users have a

right to study the source code of SDA techniques in the FLOS spatial products. The

source code of the tool is hundred percent true instructions for understanding how

the technique is working. It could be required to examine the source code of SDA

techniques because the explanations of SDA techniques are either poorly

documented or explained by emphasizing too much mathematical sophistication.

The right of examining the source code of SDA tool can help the researchers and

developers to understand the SDA techniques more easily, test the techniques, and

even to develop new techniques by trying different algorithms. The freedoms that

are legitimized by the FLOS licensees match with the merit of scientific research

170

especially required for the SDA field. For example, R is one of FLOS statistical

package, which provides great resource and invaluable knowledge about the SDA

field. Although the learning curve of R is very steep, it is worth to learn this

programming language and environment for the researchers who are interested in

the geo-computation area of SDA field.

As a final recommendation, FLOS desktop GIS software products should not be

compared with proprietary software in terms of the number and capability of features

that they provide. Lack of functionality in FLOS GIS applications is valid in the

desktop GIS area. However, in other application areas like programming API's,

libraries, spatial databases and web mapping, the quality of FLOSS products are

comparable or even superior then the proprietary products. This thesis is interested

in the area of desktop GIS. QGIS as the FLOS desktop GIS software product needs

many improvements and requires much longer development period in order to have

full richness of commercial proprietary desktop GIS software. However, the power of

QGIS comes from GNU GPL which provides all freedoms that come with free

software. QGIS is a development tool for the developers, has the price

advantageous as compared with the commercial proprietary desktop GIS software

products and provides the simplicity for easy to use GIS software for GIS users as

well as non-GIS users.

171

REFERENCES

AktaĢ, V., (2010), Python Nedir? Bir Yazılımcının Günlüğü,

http://www.volkanaktas.com/post/Python-Nedir-.aspx, last accessed on August 23,

2010.

Anselin, L., (1992), SpaceStat, a Software Program for Analysis of Spatial Data,

National Center for Geographic Information and Analysis (NCGIA), University of

California, Santa Barbara, CA.

Anselin, L., (2000a), Computing Environments for Spatial Data Analyses, Journal of

Geographical Systems, 2, 201-220.

Anselin, L., (2000b), GIS, Spatial Econometrics and Social Science Research,

Journal of Geographical Systems, 2:11-15.

Anselin, L., and Bao, S., (1997), Exploratory Spatial Data Analysis Linking

SpaceStat and ArcView, in Fisher M., Getis A., (eds.) Recent developments in

spatial analysis, Springer, Berlin Heidelberg, New York.

Anselin, L. and McCann, M., (2009), OpenGeoDa, Open Source Software for the

Exploration and Visualization of Geospatial Data, In GIS '09: Proceedings of the

17th ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems, pp.550-551, Seattle, Washington, US.

Anselin, L., Syabri, I., and Kho, Y., (2006), GeoDa: An Introduction to Spatial Data

Analysis, Geographical Analysis, 38-1: 5-22.

ArcGIS Resource Center, (2007), FAQ: Does ArcGIS support Microsoft Windows

Vista, http://resources.arcgis.com/content/kbase?fa=articleShow&d=34020, last

accessed on September 3, 2008.

http://www.volkanaktas.com/post/Python-Nedir-.aspx
http://resources.arcgis.com/content/kbase?fa=articleShow&d=34020

172

Bailey, T. C., and Gatrell, A. C., (1995), Interactive Spatial Data Analysis, Pearson

Education Limited, England.

Bates, J., and Stone, M., (2006), Communicating Many to Many, in Open Sources

2.0: The Continuing Evolution, ed. by Chris Dibona, Danese Cooper and Mark

Stone, O‟Reilly Media inc., USA.

Behlendorf, B., (1999), Open Sources as a Business Strategy, in Open Sources:

Voices from the Open Source Revolution, ed. by Chris Dibona, Sam Ockman and

Mark Stone, O‟Reilly Media inc., USA.

Bioconductor, (2008), what is Bioconductor? Bioconductor: Open Source Software

for Bioinformatics, http://www.bioconductor.org/whatisit, last accessed on September

8, 2008.

Bivand, R. S., (2007), spatial data in R, R-CRAN, http://r-spatial.sourceforge.net/,

last accessed on September 25, 2008.

Bivand, R. S., Pebesma, E. J., and Gomez-Rubio, V., (2008), Applied Spatial Data

Analysis with R, Springer Science and Business Media, New York.

Bobholz, M. S., (e-mail, March 5, 2007) complains that GeoDa does not working on

Vista, http://geodacenter.asu.edu/openspace/2007-March/000978.html, last

accessed on January 5, 2011.

Brown, M. C., (2001), Python: The Complete Reference, McGraw-Hill Companies,

USA.

Cascadoss, (2007a), Business Models, CASCADOSS, Development of

Transnational Cascade Program on Open Source GIS & RS Software for

Environmental Applications, Sixth Framework Program, Identification of New

Methods of Promoting and Encouraging Transnational Technology Transfer,

http://www.cascadoss.eu/en/index.php?option=com_content&task=view&id=60&Ite

mid=67, last accessed on August 11, 2010.

http://www.bioconductor.org/whatisit
http://r-spatial.sourceforge.net/
http://geodacenter.asu.edu/openspace/2007-March/000978.html
http://www.cascadoss.eu/en/index.php?option=com_content&task=view&id=60&Itemid=67
http://www.cascadoss.eu/en/index.php?option=com_content&task=view&id=60&Itemid=67

173

Cascadoss, (2007b), Desktop Applications, CASCADOSS, Development of

Transnational Cascade Program on Open Source GIS & RS Software for

Environmental Applications, Sixth Framework Program, Identification of New

Methods of Promoting and Encouraging Transnational Technology Transfer,

http://www.cascadoss.eu/en/index.php?option=com_content&task=view&id=14&Ite

mid=14, last accessed on August 11, 2010.

Chambers, J. M., (2008), Software for Data Analysis Programming with R, Springer,

New York, USA.

Chopra S., and Dexter S. D., (2008), Decoding Liberation: The Promise of Free and

Open Source Software, Taylor & Francis Group, New York, USA.

CrimeStat, (2011a), CrimeStat III Version 3.3,

http://www.icpsr.umich.edu/CrimeStat/, last accessed on January 8, 2011.

CrimeStat, (2011b), CrimeStat III Part I: Program Overview,

http://www.icpsr.umich.edu/CrimeStat/files/CrimeStatChapter.1.pdf, last accessed on

January 8, 2011.

CSISS, (2002), Specialist Meeting on Spatial Data Analysis Software Tools, Center

for Spatially Integrated Social Science, http://www.csiss.org/events/meetings/spatial-

tools/, last accessed on September 1, 2008.

Cybersource, (2004), Linux vs. Windows Total Cost of Ownership Comparison,

Cybersource: Australia‟s Leading Linux and Open Source Solutions Company,

http://www.cyber.com.au/about/linux_vs_windows_tco_comparison.pdf, last

accessed on August 17, 2010.

Dalgıç, S., (2007), Özgür Yazılım Nedir? E-bergi, Nisan 2007, ODTÜ Bilgisayar

Topluluğu Elektronik Dergisi, http://e-bergi.com/2007/Nisan/Ozgur-Yazilim-Nedir, last

accessed on April 9, 2007.

Debian, (2008), Debian Dağıtımları, Debian, http://www.debian.org/releases/, last

accessed on September 11, 2008.

http://www.cascadoss.eu/en/index.php?option=com_content&task=view&id=14&Itemid=14
http://www.cascadoss.eu/en/index.php?option=com_content&task=view&id=14&Itemid=14
http://www.cascadoss.eu/en/index.php?option=com_content&task=view&id=14&Itemid=14
http://www.icpsr.umich.edu/CrimeStat/
http://www.icpsr.umich.edu/CrimeStat/files/CrimeStatChapter.1.pdf
http://www.csiss.org/events/meetings/spatial-tools/
http://www.csiss.org/events/meetings/spatial-tools/
http://www.cyber.com.au/about/linux_vs_windows_tco_comparison.pdf
http://e-bergi.com/2007/Nisan/Ozgur-Yazilim-Nedir
http://www.debian.org/releases/

174

Deitel, H. M., Deitel, P. J., Liperi, J. P., Wiedermann, B. A., (2002), Python How to

Program, Prentice Hall, New Jersey, USA.

Distrowatch, (2010), Linux Distributions - Facts and Figures, DistroWatch.com 2001

– 2010, http://distrowatch.com/stats.php?section=popularity, last accessed on

August 17, 2010.

Dobias, M., (2006), The New Era: QGIS and Python, Quantum GIS Blog,

http://blog.qgis.org/?q=node/29#comment-5185, last accessed on August 26, 2010.

Dobias, M., (2008), Python Bindings, QGIS Wiki,

http://www.qgis.org/wiki/Python_Bindings, last accessed on August 26, 2010.

ESRI ArcGIS Desktop Functionality Matrix, (2010), Version 9.1;

http://www.esri.com/library/fliers/pdfs/arcgis91-functionality-poster.pdf, Version 9.2;

http://www.systematics.co.il/gis/Support/arcgis/pdf/arcgis92-functionality-

matrix_1206.pdf, Version 9.3; http://www.esri.com/library/brochures/pdfs/arcgis93-

functionality-matrix.pdf, Version 9.3.1;

http://www.esri.com/library/brochures/pdfs/arcgis931-functionality-matrix.pdf,

Version 10.0; http://www.esri.com/library/brochures/pdfs/arcgis10-functionality-

matrix.pdf,last accessed on August 8, 2010.

Everitt, B. S. and Hothorn T., (2006), A Handbook of Statistical Analyses Using R,

Chapman & Hall/CRC Taylor & Francis Group, USA.

Fischer, M. M., (2006), Spatial Analysis and Geocomputation: Selected Essays,

Springer Berlin – Heidelberg.

Fogel, K., (2006), Producing Open Source Software: How to Run a Successful Free

Software Project, O‟Reilly, USA.

Fotheringham, A. S., and Rogerson, P., (1993), GIS and Spatial Analytical Problems,

International Journal of Geographical Information Systems, 7:3–19.

Fotheringham, A. S., and Rogerson, P., (1995), Spatial Analysis and GIS, Taylor and

Francis Limited, UK.

http://distrowatch.com/stats.php?section=popularity
http://blog.qgis.org/?q=node/29
http://www.qgis.org/wiki/Python_Bindings
http://www.esri.com/library/fliers/pdfs/arcgis91-functionality-poster.pdf
http://www.systematics.co.il/gis/Support/arcgis/pdf/arcgis92-functionality-matrix_1206.pdf
http://www.systematics.co.il/gis/Support/arcgis/pdf/arcgis92-functionality-matrix_1206.pdf
http://www.esri.com/library/brochures/pdfs/arcgis93-functionality-matrix.pdf
http://www.esri.com/library/brochures/pdfs/arcgis93-functionality-matrix.pdf
http://www.esri.com/library/brochures/pdfs/arcgis931-functionality-matrix.pdf
http://www.esri.com/library/brochures/pdfs/arcgis10-functionality-matrix.pdf
http://www.esri.com/library/brochures/pdfs/arcgis10-functionality-matrix.pdf

175

Fotheringham, A. S., Brunsdon, C., Charlton, M., (2000), Quantitative Geography:

Perspectives on Spatial Data Analysis, SAGE Publications Inc, London.

Free Software Foundation, (2008), The Free Software Definition, GNU Operating

System, http://www.gnu.org/philosophy/free-sw.html, last accessed on March 3,

2008.

GDAL, (2011a), GDAL – Geospatial Data Abstraction Library, http://www.gdal.org,

last accessed on February 9, 2011.

GDAL, (2011b), FAQ - General, http://trac.osgeo.org/gdal/wiki/FAQGeneral, last

accessed on February 9, 2011.

GDAL, (2011c), GDAL/OGR in Python,

http://trac.osgeo.org/gdal/wiki/GdalOgrInPython, last accessed on February 9, 2011.

GDAL, (2011d), OGR Simple Feature Library, http://www.gdal.org/ogr, last accessed

on February 9, 2011.

GeoDa, (2008a), GeoDa 0.9.5-i: - ESDA with Dynamically Linked Windows, Center

for Spatially Integrated Social Science, http://www.csiss.org/clearinghouse/GeoDa/,

last accessed on September 2, 2008.

GeoDa, (2008b), User numbers, GeoDa, https://www.geoda.uiuc.edu/geoda/user-

numbers, last accessed on September 4, 2008.

GeoDa, (2010a), GeoDa Users across the Globe, ASU: GeoDa Center for

Geospatial Analysis and Computation, http://geodacenter.asu.edu/, last accessed on

August 3, 2010.

GeoDa, (2010b), Download GeoDa, ASU: GeoDa Center for Geospatial Analysis

and Computation, http://geodacenter.asu.edu/software/downloads, last accessed on

August 3, 2010.

http://www.gnu.org/philosophy/free-sw.html
http://www.gdal.org/
http://trac.osgeo.org/gdal/wiki/FAQGeneral
http://trac.osgeo.org/gdal/wiki/GdalOgrInPython
http://www.gdal.org/ogr
http://www.csiss.org/clearinghouse/GeoDa/
https://www.geoda.uiuc.edu/geoda/user-numbers
https://www.geoda.uiuc.edu/geoda/user-numbers
http://geodacenter.asu.edu/
http://geodacenter.asu.edu/software/downloads

176

GISDevelopment, (2008), Free Open Source Software, Geospatial World,

http://www.gisdevelopment.net/downloads/opensource, last accessed on September

12, 2008.

Goodchild, M. F., (1987), Spatial Analytical Perspective on Geographical Information

Systems, International Journal of Geographical Information Systems, 1,335–354.

Goodchild, M. F., (2000). The Current Status of GIS and Spatial Analysis, Journal of

Geographical Systems, 2:5-10.

Goodchild, M. F., Haining, R. P., Wise, S., and 12 others (1992), Integrating GIS and

Spatial Analysis: Problems and Possibilities, International Journal of Geographical

Information Systems, 6:407–423.

Google Analytics, (2011), Glossary, Analytics Help, Google Analytics,

http://www.google.com/support/analytics/bin/topic.py?hl=en&topic=11285, last

accessed on March 24, 2011.

Gonzalez-Barahona, J. M., and Robles, G., (2006), Libre Software in Europe, in

Open Sources 2.0: The Continuing Evolution, ed. by Chris Dibona, Danese Cooper

and Mark Stone, O‟Reilly Media inc., USA.

GözükeleĢ, Ġ. Ġ., (2006), Free and Open Source Software Hackers in Turkey, Free /

Open Source Research Community, http://opensource.mit.edu/papers/WP.pdf, last

accessed on August 14, 2010.

GözükeleĢ, Ġ., (2004), Özgür/Açık Kaynak Kodlu Yazılım ve Ulusal Yazılım

Politikaları, Sendika.org, http://www.sendika.org/yazi.php?yazi_no=313, last

accessed on August 14, 2010.

GRASS GIS, (2008a), GRASS: Introduction: What‟s GRASS, Geographic

Resources Analysis Support System, http://www.grass.itc.it/intro/general.php, last

accessed on September 5, 2008.

http://www.gisdevelopment.net/downloads/opensource
http://www.google.com/support/analytics/bin/topic.py?hl=en&topic=11285
http://opensource.mit.edu/papers/WP.pdf
http://www.sendika.org/yazi.php?yazi_no=313
http://www.grass.itc.it/intro/general.php

177

GRASS GIS, (2008b), GRASS: Introduction: First time Users of GRASS,

Geographic Resources Analysis Support System,

http://www.grass.itc.it/intro/firsttime.php, last accessed on September 5, 2008.

GRASS GIS, (2008c), GRASS: History, Geographic Resources Analysis Support

System, http://www.grass.itc.it/devel/grasshist.html, last accessed on September 5,

2008.

Haining, R. P., (1989), Geography and Spatial Statistics: Current Positions, Future

Developments, In Macmillan, B., editor, Remodelling Geography, pages 191–203,

Basil Blackwell, Oxford.

Haining, R. P., (2003), Spatial Data Analysis: Theory and Practice, Cambridge

University Press, UK.

Infonomics, (2002), Free/Libre and Open Source Software: Survey and Study,

FLOSS Final Report, International Institute of Infonomics and Berlecon Research

GMBH, http://www.flossproject.org/report/index.htm, last accessed on August 14,

2010.

Koch, S., (2005), Free/Open Source Software Development, Idea Group Publishing,

USA.

Krysa, J., and Sedek, G., (2008), Source Code, in Software Studies ed. Matthew

Fuller, the MIT Press, USA.

Langtangen, H. P., (2006), Python Scripting for Computational Science, Springer,

Germany.

Levine, N., (2005), CrimeStat III: A Spatial Statistics Program for the Analysis of

Crime Incident Locations, http://www.nedlevine.com/nedlevine17.htm, last accessed

on January 8, 2011.

Levine, N., (2006) Crime Mapping and the CrimeStat Program, Geographical

Analysis, 38-1: 41-56.

http://www.grass.itc.it/intro/firsttime.php
http://www.grass.itc.it/devel/grasshist.html
http://www.flossproject.org/report/index.htm
http://www.nedlevine.com/nedlevine17.htm

178

Longley, P. A., and Batty, M., (2003), Advanced Spatial Analysis: the CASA book of

GIS, ESRI Press, Redlands, California, USA.

Lutz, M., (2001), Programming Python, O‟reilly & Associates, Inc., USA.

Maindonald, J., and Braun, W. J., (2006), Data Analysis and Graphics Using R An

Example-based Approach, Cambridge University Press, Cambridge, UK.

MapTools, (2008), MapTools.org, http://maptools.org/, last accessed on September

13, 2008.

Matthews, Stephen A., (2002), Introduction to Dynamic Exploratory Spatial Data

Analysis using DynESDA, http://www.pop.psu.edu/gia-core/pdfs/gis_rd_02-10.pdf,

last accessed on January 5, 2011.

Microsoft, (2011), a history of Windows, Windows, http://windows.microsoft.com/en-

US/windows/history, last accessed on March 21, 2011.

Mitchell, T., (2005), Web Mapping Illustrated, O‟Reilly Media, Inc., USA.

Moody, G., (2002), Rebel Code: Linux and the Open Source Revolution, New York:

Basic Books.

Muenchen, R. A., (2009), R for SAS and SPSS Users, Springer, New York, USA.

Netcraft, (2010), July 2010 Web Server Survey, Netcraft Ltd.,

http://news.netcraft.com/archives/2010/07/16/july-2010-web-server-survey-16.html,

last accessed on August 2, 2010.

Neteler, M., Beaudette, D. E., Cavallini, P., Lami, L., and Cepicky, J., (2008),

GRASS GIS, in Open Source Approaches in Spatial Data Handling, ed. by G. Brent

Hall and Michael G. Leahy, Springer, Berlin.

Neteler, M., and Mitasova, H., (2008), Open Source GIS: A GRASS GIS Approach,

Third Edition, Springer Science and Business Media, New York.

http://maptools.org/
http://www.pop.psu.edu/gia-core/pdfs/gis_rd_02-10.pdf
http://windows.microsoft.com/en-US/windows/history
http://windows.microsoft.com/en-US/windows/history
http://news.netcraft.com/archives/2010/07/16/july-2010-web-server-survey-16.html

179

NSF, (2007), Award Abstract #9978058, Center for Spatially Integrated Social

Science, USA National Science Foundation,

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=9978058, last

accessed on August 1, 2010.

Ohloh, (2010a), Quantum GIS, Ohloh: the Open Source Network,

http://www.ohloh.net/p/tatanike, last accessed on August 17, 2010.

Ohloh, (2010b), GRASS GIS, Ohloh: the Open Source Network,

http://www.ohloh.net/p/grass_gis, last accessed on August 17, 2010.

OpenGeoDa, (2010a), OpenGeoDa by Anselin, SourceForge: find and develop open

source software, http://sourceforge.net/projects/opengeoda/, last accessed on

August 3, 2010.

OpenGeoDa, (2010b), Openspace List, Google Groups,

http://groups.google.com/group/openspace-list?hl=en, last accessed on August 3,

2010.

OpenGeoDa, (2010c), OpenGeoDa, Project Home, Updates, Google Project

Hosting, http://code.google.com/p/opengeoda/updates/list, last accessed on August

3, 2010.

Open Source Initiative, (2010a), The Open Source Definition Introduction, Open

Source Initiative, http://www.opensource.org/docs/osd, last accessed on August 6,

2010.

Open Source Initiative, (2010b), Licenses by Name, Open Source Initiative,

http://www.opensource.org/licenses/alphabetical, last accessed on August 6, 2010.

OSGEO, (2008a), The Open Source Geospatial Foundation,

http://www.osgeo.org/home, last accessed on September 21, 2008.

OSGEO, (2008b), OSGEO FAQ, The Open Source Geospatial Foundation,

http://www.osgeo.org/content/faq/foundation_faq.html, last accessed on September

21, 2008.

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=9978058
http://www.ohloh.net/p/tatanike
http://www.ohloh.net/p/grass_gis
http://sourceforge.net/projects/opengeoda/
http://groups.google.com/group/openspace-list?hl=en
http://code.google.com/p/opengeoda/updates/list
http://www.opensource.org/docs/osd
http://www.opensource.org/licenses/alphabetical
http://www.osgeo.org/home
http://www.osgeo.org/content/faq/foundation_faq.html

180

OSGEO, (2008c), Quantum GIS Info Sheet, The Open Source Geospatial

Foundation, http://www.osgeo.org/content/faq/foundation_faq.html, last accessed on

September 21, 2008.

OSGEO, (2011), GDAL/OGR Info Sheet, OSGEO: Your Open Source Compass,

http://www.osgeo.org/gdal_ogr, last accessed on February 9, 2011.

OSSIM, (2008), Awesome Image Processing,

http://www.ossim.org/OSSIM/OSSIM_Home.html, last accessed on September 16,

2008.

PROJ4, (2011a), PROJ.4 - Cartographic Projections Library,

http://trac.osgeo.org/proj, last accessed on February 9, 2011.

PROJ4, (2011b), FAQ: Frequently Asked Questions,

http://trac.osgeo.org/proj/wiki/FAQ, last accessed on February 9, 2011.

Python, (2008a), Python Programming Language: Official Website,

http://www.python.org/, last accessed on September 20, 2008.

Python, (2008b), General Python FAQ, Python Documentation,

http://docs.python.org/faq/general, last accessed on September 20, 2008.

Python, (2008c), Extending and Embedding the Python Interpreter, Python

Documentation, http://docs.python.org/extending/index.html, last accessed on

September 20, 2008.

R-CRAN, (2008a), The R Project for Statistical Computing, http://www.r-project.org/,

last accessed on September 25, 2008.

R-CRAN, (2008b), frequently asked Questions on R, R FAQ, http://cran.r-

project.org/doc/FAQ/R-FAQ.html, last accessed on September 25, 2008.

Ramsey, P., (2007), A Survey of Open Source GIS, FOSS4G 2007: Free and Open

Source Software for Geospatial 2007,

http://www.osgeo.org/content/faq/foundation_faq.html
http://www.osgeo.org/gdal_ogr
http://www.ossim.org/OSSIM/OSSIM_Home.html
http://trac.osgeo.org/proj
http://trac.osgeo.org/proj/wiki/FAQ
http://www.python.org/
http://docs.python.org/faq/general
http://docs.python.org/extending/index.html
http://www.r-project.org/
http://cran.r-project.org/doc/FAQ/R-FAQ.html
http://cran.r-project.org/doc/FAQ/R-FAQ.html

181

http://2007.foss4g.org/presentations/view.php?abstract_id=136, last accessed on

September 14, 2008.

Raymond, E. S., (2001), the Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary, O‟Reilly, USA.

Rempt, B., (2001), GUI Programming with Python: QT Edition, Commandprompt

Inc., http://www.commandprompt.com/community/pyqt/, last accessed on June 24,

2008.

Riverbank, (2008a), PyQt Whitepaper, Riverbank Computing Limited,

http://www.riverbankcomputing.co.uk/static/Docs/PyQt4/pyqt-whitepaper-a4.pdf, last

accessed on September 19, 2008.

Riverbank, (2008b), what is PyQt, Riverbank Computing Limited,

http://www.riverbankcomputing.co.uk/software/pyqt/intro, last accessed on

September 19, 2008.

RPy, (2008), A Simple and Efficient Access to R from Python, RPy,

http://rpy.sourceforge.net/index.html, last accessed on September 27, 2008.

Quantum GIS, (2008), Quantum GIS User and Installation Guide Version 0.9.0

Ganymede, http://download.qgis.org/doc/user_guide_en.pdf, last accessed on

September 17, 2008.

Quantum GIS, (2010a), Python Plug-in Repositories, QGIS Wiki,

http://www.qgis.org/wiki/Python_Plugin_Repositories, last Access on August 29,

2010.

Quantum GIS, (2010b), Project Organigram, QGIS Wiki,

http://www.qgis.org/wiki/Project_Organigram, last Access on August 16, 2010.

Qt, (2011), Signals and Slots, Qt Reference Documentation,

http://doc.qt.nokia.com/4.7/signalsandslots.html, last accessed on February 15,

2011.

http://2007.foss4g.org/presentations/view.php?abstract_id=136
http://www.commandprompt.com/community/pyqt/
http://www.riverbankcomputing.co.uk/static/Docs/PyQt4/pyqt-whitepaper-a4.pdf
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://rpy.sourceforge.net/index.html
http://download.qgis.org/doc/user_guide_en.pdf
http://www.qgis.org/wiki/Python_Plugin_Repositories
http://www.qgis.org/wiki/Project_Organigram
http://doc.qt.nokia.com/4.7/signalsandslots.html

182

Sandred, J., (2001), Managing Open Source Projects: a Wiley tech brief, John Wiley

& Sons, Inc., Canada.

Sherman, G. E., (2008), Desktop GIS: Mapping the Planet with Open Source Tools,

Pragmatic Bookshelf, China.

SIP, (2008a), what is SIP? Riverbank Computing Limited,

http://www.riverbankcomputing.co.uk/software/sip/intro, last accessed on September

22, 2008.

Sourceforge, (2010), Top Downloads – For all time, updated daily, SourceForge.net,

http://sourceforge.net/top/topalltime.php?type=downloads, last accessed on August,

9, 2010.

Söderberg, J., (2008), Hacking Capitalism; the Free and Open Source Software

Movement, Taylor & Francis, UK.

Summerfield, M., (2008), Rapid GUI programming with Python and Qt; The

Definitive Guide to PyQt Programming, Pearson Education, USA.

Stallman, R. M., (2002), Free Software Free Society: Selected Essays of Richard M.

Stallman, ed. Joshua Gay, GNU Press, Free Software Foundation Inc., Boston, MA

USA.

Steiniger, S., (2008), An Overview of Free & Open Source Desktop GIS, GeoApt

LLC, http://www.spatialserver.net/osgis/, last accessed on September 15, 2008.

Swaroop, C. H., (2005), A Byte of Python, E-book,

http://www.swaroopch.com/byteofpython/, last accessed on June 23, 2008.

Terraseer, (2010), SpaceStat Extension,

http://www.terraseer.com/products_spacestat_extension.php, last accessed on

January 5, 2011.

http://www.riverbankcomputing.co.uk/software/sip/intro
http://sourceforge.net/top/topalltime.php?type=downloads
http://www.spatialserver.net/osgis/
http://www.swaroopch.com/byteofpython/
http://www.terraseer.com/products_spacestat_extension.php

183

TIOBE, (2010), Programming Community Index for August 2010, TIOBE Software,

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html, last accessed on

August 17, 2010.

Trolltech, (2008a), About Qt, Qt Reference Documentation (Open Source Edition),

Trolltech, http://doc.trolltech.com/4.3/aboutqt.html, last accessed on September 18,

2008.

Trolltech, (2008b), Qt Cross-Platform Application Framework, Qt,

http://trolltech.com/products/qt/, last accessed on September 18, 2008.

Trolltech, (2008c), Features, Qt, http://trolltech.com/products/qt/features, last

accessed on September 18, 2008.

UEKAE, (2010a), Hakkında, Pardus Özgürlük için,

http://www.pardus.org.tr/hakkinda, last accessed on August 17, 2010.

UEKAE, (2010b), Ürünler, Pardus Özgürlük için, http://www.pardus.org.tr/urunler,

last accessed on August 17, 2010.

Vardar, M., A., (2006), Qt‟ye GiriĢ, http://qt.comu.edu.tr/dosyalar/malivardar-qt.pdf,

last accessed on September 19, 2008.

Venables, W. N., Smith, D. M., and the R Development Core Team, (2008), an

Introduction to R, Notes on R: A Programming Environment for Data Analysis and

Graphics Version 2.8.1.

Vries, H., Vries, H., and Oshri, I., (2008), Standards Battles in Open Source

Software: The Case of Firefox, Palgrave Macmillan, UK.

Warmerdam, F., (2008), The Geospatial Data Abstraction Library, in Open Source

Approaches in Spatial Data Handling, ed. by G. Brent Hall and Michael G. Leahy,

Springer, Berlin.

WxPython, (2010), what is wxPython, wxPython, http://www.wxpython.org/what.php,

last accessed on August 20, 2010.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://doc.trolltech.com/4.3/aboutqt.html
http://trolltech.com/products/qt/
http://trolltech.com/products/qt/features
http://www.pardus.org.tr/hakkinda
http://www.pardus.org.tr/urunler
http://qt.comu.edu.tr/dosyalar/malivardar-qt.pdf
http://www.wxpython.org/what.php

184

APPENDIX A

MAIN GIS MODULE OF SDA4PP PLUG-IN

Complete source code of developed main Python module for GIS part of SDA4PP

plug-in named as sda4ppReadQGISLayer is shown as below:

from PyQt4 import QtCore

from PyQt4 import QtGui

from qgis.core import *

from qgis.gui import *

#handling outputFile: path name, file name and extension

import os, shutil, tempfile

write to logfile.log

import wl

class ReadQgisLayer():

 def __init__(self, iface, type="point"):

 dt = "ReadQGISLayer-__init__"

 self.iface = iface

 index = {"point":0,"line":1,"polygon":2,"all":-1}

 self.geomIndex = index[type]

 def getLayerList(self, checkNumericField=""):

 dt = "ReadQGISLayer-getLayerList"

 layerNameList = []

 layerNameControl = []

 mapCanvas = self.iface.mapCanvas()

 for i in range(mapCanvas.layerCount()):

 layer = mapCanvas.layer(i)

185

 if layer.type() == layer.VectorLayer:

 try:

 # for point, line and polygon layers

 if self.geomIndex == -1:

 if checkNumericField == "":

 layerNameControl.append(str(layer.source()))

 layerNameList.append(str(layer.name()))

 else:

 self.provider = layer.dataProvider()

 self.fieldDict = self.provider.fields()

 numericFound = 0

 for i in range(self.provider.fieldCount()):

 if self.fieldDict[i].typeName() in ["Integer","Real"]:

 layerNameControl.append(str(layer.source()))

 layerNameList.append(str(layer.name()))

 numericFound = 1

 break

 if numericFound == 0:

 QtGui.QMessageBox.information(self.iface.mainWindow(),

 "SDA4PP Plugin Error",

 "This tool requires at least one numeric field.\n" +\

 "Please, add one numeric field to the layer.\n\n" +\

 "The layer, '" + unicode(layer.name()) +\

 "', is excluded from the analysis.")

 # for one type of geometry layer

 elif self.geomIndex == layer.geometryType():

 if checkNumericField == "":

 layerNameControl.append(str(layer.source()))

 layerNameList.append(str(layer.name()))

 else:

 self.provider = layer.dataProvider()

 self.fieldDict = self.provider.fields()

 numericFound = 0

 for i in range(self.provider.fieldCount()):

 if self.fieldDict[i].typeName() in ["Integer","Real"]:

 layerNameControl.append(str(layer.source()))

186

 layerNameList.append(str(layer.name()))

 numericFound = 1

 break

 if numericFound == 0:

 QtGui.QMessageBox.information(self.iface.mainWindow(),

 "SDA4PP Plugin Error",

 "This tool requires at least one numeric field.\n" +\

 "Please, add one numeric field to the layer.\n\n" +\

 "The layer, '" + unicode(layer.name()) +\

 "', is excluded from the analysis.")

 except Exception, e:

 wl.wl("Exception: "+str(e),dt)

 error = "This plugin does not support unicode characters.\n" +\

 "Please, use only ASCII characters in the path and the name of file.\n\n" +\

 "The layer, '" + unicode(layer.name()) + "', is excluded from the analysis."

 QtGui.QMessageBox.information(self.iface.mainWindow(),

 "SDA4PP Plugin Error", error)

 wl.wl("layerNameList: "+str(layerNameList),dt)

 return layerNameList

 def updateLayer(self, layerName):

 ## tool: toolrandom, toolregular, toolnear

 dt = "ReadQGISLayer-updateLayer"

 mapCanvas = self.iface.mapCanvas()

 for i in range(mapCanvas.layerCount()):

 layer = mapCanvas.layer(i)

 if layer.type() == layer.VectorLayer:

 if self.geomIndex == -1:

 if layer.name() == layerName:

 self.userLayer = layer

 self.provider = layer.dataProvider()

 elif self.geomIndex == layer.geometryType():

 if layer.name() == layerName:

 self.userLayer = layer

 self.provider = layer.dataProvider()

 return self.userLayer

187

 def getFileSource(self, layerName):

 dt = "ReadQGISLayer-getFileSource"

 mapCanvas = self.iface.mapCanvas()

 for i in range(mapCanvas.layerCount()):

 layer = mapCanvas.layer(i)

 if layer.type() == layer.VectorLayer:

 if self.geomIndex == -1:

 if layer.name() == layerName:

 self.userLayer = layer

 self.provider = layer.dataProvider()

 self.fieldDict = self.provider.fields()

 if self.provider.name() == "postgres":

 (error, postLayerSource) = self.writeAsSHPfile(\

 description = "postgis")

 if error !=0:

 wl.wl("the error is: " + str(error),dt)

 return "error", error, layer.geometryType()

 else:

 (path, file) = self.removeLayerID(postlayerSource)

 wl.wl("path: "+str(path),dt)

 wl.wl("file: "+str(file),dt)

 wl.wl("layer.geometryType: "+str(layer.geometryType()),dt)

 return path, file, layer.geometryType()

 else:

 layerSource = QtCore.QFileInfo(self.userLayer.source())

 (path, file) = self.removeLayerID(layerSource)

 wl.wl("path: "+str(path),dt)

 wl.wl("file: "+str(file),dt)

 wl.wl("layer.geometryType: "+str(layer.geometryType()),dt)

 return path, file, layer.geometryType()

 elif self.geomIndex == layer.geometryType():

 if layer.name() == layerName:

 self.userLayer = layer

 self.provider = layer.dataProvider()

 self.fieldDict = self.provider.fields()

188

 if self.provider.name() == "postgres":

 (error, postlayerSource) = self.writeAsSHPfile(\

 description = "postgis")

 if error !=0:

 wl.wl("the error is: " + str(error),dt)

 return "error", error

 else:

 (path, file) = self.removeLayerID(postlayerSource)

 wl.wl("path: "+str(path),dt)

 wl.wl("file: "+str(file),dt)

 return path, file

 else:

 layerSource = QtCore.QFileInfo(self.userLayer.source())

 (path, file) = self.removeLayerID(layerSource)

 wl.wl("path: "+str(path),dt)

 wl.wl("file: "+str(file),dt)

 return path, file

 def removeLayerID(self, layerSource):

 ## tool: getFileSource

 dt = "ReadQGISLayer-removeLayerID"

 path = str(layerSource.filePath())

 if path.find("|") != -1:

 path = path.split("|")[0]

 file = str(layerSource.baseName())

 wl.wl("path: "+str(path),dt)

 wl.wl("file: "+str(file),dt)

 return path, file

 def getExtentObj(self):

 ## tool: toolregular, toolrandom

 return self.userLayer.extent()

 def getEncodingObj(self):

 ## tool: toolregular, toolrandom

 dt = "ReadQGISLayer-getEncodingObj"

189

 encoding = self.provider.encoding()

 wl.wl("encoding: "+str(encoding),dt)

 return encoding

 def getProj(self):

 ## tool: density, quadrattest

 dt = "ReadQGISLayer-getProj"

 layerProj = self.userLayer.srs().toProj4()

 wl.wl("layerProj: "+str(layerProj),dt)

 return str(layerProj)

 def getProjByPointLayerName(self, layerName):

 ## tool: kriging

 dt = "ReadQGISLayer-getProjByPointLayerName"

 mapCanvas = self.iface.mapCanvas()

 for i in range(mapCanvas.layerCount()):

 layer = mapCanvas.layer(i)

 if layer.type() == layer.VectorLayer:

 if layer.geometryType() == 0:

 if layer.name() == layerName:

 layerProj = layer.srs().toProj4()

 wl.wl("layerProj: "+str(layerProj),dt)

 return str(layerProj)

 def getFeatureCount(self):

 ## tool: localKL,

 dt = "ReadQGISLayer-getFeatureCount"

 featureNumber = self.provider.featureCount()

 wl.wl("featureCount: "+str(featureNumber),dt)

 return featureNumber

 def getFieldNameList(self, allFieldType="", returnFieldType=""):

 ## tool: density, iplot, kriging

 dt = "ReadQGISLayer-getFieldsNameWithCombo"

 fieldList = []

 fieldNameTypeDict = {}

190

 # all field types are required for tool: iplot

 if allFieldType == "":

 fieldstype = ["Integer","Real"]

 else:

 fieldstype = ["Integer","Real","String"]

 for i in range(self.provider.fieldCount()):

 ftype = self.fieldDict[i].typeName()

 if ftype in fieldstype:

 try:

 fieldList.append(str(self.fieldDict[i].name()))

 fieldName = str(self.fieldDict[i].name())

 fieldType = str(self.fieldDict[i].typeName())

 fieldNameTypeDict[fieldName] = fieldType

 except Exception, e:

 wl.wl("Exception: "+str(e),dt)

 error = "This plugin does not support unicode characters.\n" +\

 "Please, use only ASCII characters in the field name.\n\n" +\

 "The field name, '" + unicode(self.fieldDict[i].name()) +\

 "', in the point layer, '" + unicode(self.userLayer.name()) +\

 "',\nhas non-english characters." +\

 "This field is excluded from the analysis."

 QtGui.QMessageBox.information(self.iface.mainWindow(),

 "SDA4PP Plugin Error", error)

 # returning field names and types as the dict is required for tool: iplot

 if returnFieldType == "":

 return fieldList

 else:

 return fieldNameTypeDict

 def getRasterList(self):

 ## tool: kriging,

 dt = "ReadQGISLayer-getRasterList"

 layerNameList= []

 layerNameControl = []

 mapCanvas = self.iface.mapCanvas()

 for i in range(mapCanvas.layerCount()):

191

 layer = mapCanvas.layer(i)

 if layer.type() == layer.RasterLayer:

 try:

 layerNameControl.append(str(layer.source()))

 layerNameList.append(str(layer.name()))

 except Exception, e:

 wl.wl("Exception: "+str(e),dt)

 error = "This plugin does not support unicode characters.\n" +\

 "Please, use only ASCII characters in the path and the name of file.\n\n" +\

 "The layer, '" + unicode(layer.name()) + "', is excluded from the analysis."

 QtGui.QMessageBox.information(self.iface.mainWindow(),

 "SDA4PP Plugin Error", error)

 wl.wl("rasterNameList: "+str(layerNameList),dt)

 return layerNameList

 def getRasterSource(self, layerName):

 ## tool: kriging,

 dt = "ReadQGISLayer-getRasterSource"

 mapCanvas = self.iface.mapCanvas()

 for i in range(mapCanvas.layerCount()):

 layer = mapCanvas.layer(i)

 if layer.type() == layer.RasterLayer and layer.name() == layerName:

 return layer.source()

 def getSelectedDataFromIDField(self):

 ## tool: iplot,

 dt = "ReadQGISLayer-getDataFromSelectedField"

 featureIDlist = []

 if self.userLayer.selectedFeatureCount() > 0:

 features = self.userLayer.selectedFeatures()

 wl.wl("features: "+str(features),dt)

 for feature in features:

 featureIDlist.append(feature.id())

 wl.wl("featureIDlist: "+str(featureIDlist),dt)

 return featureIDlist, self.provider.featureCount()

 else:

192

 return "error", "No selection found in the map."

 def setSelectionFromQuery(self, recordList, zoom = "True"):

 ## tool: iplot, GFestimate, KLripley

 dt = "ReadQGISLayer-setSelectionFromQuery"

 self.userLayer.setSelectedFeatures(recordList)

 if zoom == "True":

 mapCanvas = self.iface.mapCanvas()

 mapCanvas.setCurrentLayer(self.userLayer)

 # set extent to the extent of our layer

 mapCanvas.setExtent(self.userLayer.extent())

 mapCanvas.zoomToSelected()

 mapCanvas.refresh()

 return 0

 def checkFeatureNumberInPolyLayer(self):

 ## tool: density,

 if self.provider.featureCount() == 1:

 return 0, 0

 else:

 if self.userLayer.selectedFeatureCount() == 1:

 (error, selectionLayerSource) = self.writeAsSHPfile(description = \

 "selected feature in polygon layer",

 useSelection = 1)

 if error != 0:

 return error, 0

 else:

 return 0, selectionLayerSource

 else:

 return "Either polygon layer should have only one feature\n" + \

 "Or select only one feature from the polygon layer.", 0

 def writeAsSHPfile(self, description = "new", useSelection = 0):

 ## tool: self.checkFeatureNumberInPolyLayer, self.getFileSource,

 dt = "ReadQGISLayer-writeAsSHPfile"

 # trying to found unique shp filename

193

 notFileExist = 0

 counter = 0

 file = self.createOutputDir() + str(self.userLayer.name()) + ".shp"

 if os.path.exists(file):

 while (notFileExist == 0):

 outputfilename = self.createOutputDir() + \

 str(self.userLayer.name()) + \

 "_" + str(counter) + ".shp"

 if not(os.path.exists(outputfilename)):

 file = outputfilename

 break

 else:

 counter = counter + 1

 wl.wl("unique filename and path for " + str(description) + \

 " layer to be saved as shp file: "+str(file),dt)

 layer2shpFileSource = QtCore.QFileInfo(file)

 newSHPfilePath = layer2shpFileSource.filePath()

 # writing new layer as shp file

 p4s = self.userLayer.srs()

 encoding = self.provider.encoding()

 if useSelection == 1:

 qgisFeature = self.userLayer.selectedFeatures()

 writer = QgsVectorFileWriter(newSHPfilePath, encoding,

 self.fieldDict, QGis.WKBPolygon, p4s)

 writer.addFeature(qgisFeature[0])

 error = writer.hasError()

 del writer

 else:

 error = QgsVectorFileWriter.writeAsShapefile(self.userLayer,

 newSHPfilePath,

 encoding, p4s)

 if error != 0:

 wl.wl("the error is: " + str(description) + \

 " layer could not be written as SHP file.",dt)

 return "The " + str(description) + \

 " layer could not be written as SHP file.", 0

194

 wl.wl("layer2shpFileSource: "+str(layer2shpFileSource),dt)

 return 0, layer2shpFileSource

 def createOutputDir(self):

 ## tool: self.writeAsSHPfile, rggobi, toolnear, density, toolrandom,

 ## toolregular

 dt = "ReadQGISLayer-createOutputDir"

 # creating a writable folder

 tempDir = tempfile.gettempdir()

 if os.name == "nt":

 tempDir = tempDir.replace("\\","/")

 outputpathdir = tempDir + "/SDA4PP/"

 if not(os.path.exists(outputpathdir)):

 os.mkdir(outputpathdir)

 wl.wl("outputpathdir: "+str(outputpathdir),dt)

 return outputpathdir

 def saveShape(self, outputFile):

 ## tool: toolrandom, toolregular, quadrat

 dt = "ReadQGISLayer-saveShape"

 fileInfo = QtCore.QFileInfo(outputFile)

 # add a (hardcoded) layer and zoom to its extent

 vlayer = QgsVectorLayer(fileInfo.filePath(),

 fileInfo.completeBaseName(), "ogr")

 if not vlayer.isValid():

 QtGui.QMessageBox.information(self.iface.mainWindow(),

 "SDA4PP Plugin Error",

 "Shape file: " + str(outputFile) + " is created.\n" + \

 "It seems that the layer is not valid or could not be added to Qgis.\n" + \

 "The problem can be related with gdal library or python-gdal binding.\n" + \

 "Please check the installation of gdal libraries.")

 return "error"

 addToTOC = QtGui.QMessageBox.question(self.iface.mainWindow(),

 "SDA4PP Plugin", "Shapefile: " + outputFile + \

 "\n\nWould you like to add the new layer to the TOC?",

 QtGui.QMessageBox.Yes, QtGui.QMessageBox.No,

195

 QtGui.QMessageBox.NoButton)

 # adding raster layer to TOC: yes

 if addToTOC == QtGui.QMessageBox.Yes:

 QgsMapLayerRegistry.instance().addMapLayer(vlayer)

 self.zoomToLayerExtent(vlayer)

 # adding raster layer to TOC: no

 return 0

 def zoomToLayerExtent (self, layer):

 ## tool: self.saveRaster, self.saveShape

 mapCanvas = self.iface.mapCanvas()

 mapCanvas.setCurrentLayer(layer)

 # set extent to the extent of our layer

 mapCanvas.setExtent(layer.extent())

 mapCanvas.zoomToSelected()

 mapCanvas.refresh()

 def saveRaster(self, outputFile, toolname=""):

 ## tool: adaptive, density, poisson, kriging

 dt = "ReadQGISLayer-saveRaster"

 fileInfo = QtCore.QFileInfo(outputFile)

 # add a (hardcoded) layer and zoom to its extent

 rstlayer = QgsRasterLayer(fileInfo.filePath(),

 fileInfo.completeBaseName())

 if not rstlayer.isValid():

 QtGui.QMessageBox.information(self.iface.mainWindow(),

 "SDA4PP Plugin Error",

 "Raster file: " + str(outputFile) + " is created.\n" + \

 "It seems that the layer is not valid or could not be added to Qgis.\n" + \

 "The problem can be related with gdal library or python-gdal binding.\n" + \

 "Please check the installation of gdal libraries.")

 return "error"

 addToTOC = QtGui.QMessageBox.question(self.iface.mainWindow(),

 "SDA4PP Plugin", "Raster file: " + outputFile + \

 "\n\nWould you like to add the new layer to the TOC?",

 QtGui.QMessageBox.Yes, QtGui.QMessageBox.No,

196

 QtGui.QMessageBox.NoButton)

 # adding raster layer to TOC: yes

 if addToTOC == QtGui.QMessageBox.Yes:

 # default: single band

 if toolname == "":

 rstlayer.setDrawingStyle(QgsRasterLayer.SingleBandPseudoColor)

 rstlayer.setColorShadingAlgorithm(QgsRasterLayer.PseudoColorShader)

 rstlayer.setContrastEnhancementAlgorithm(\

 QgsContrastEnhancement.StretchToMinimumMaximum, False)

 # three bands for kriging tool

 elif toolname == "kriging":

 pass

 # add layer to the registry

 QgsMapLayerRegistry.instance().addMapLayer(rstlayer);

 self.zoomToLayerExtent(rstlayer)

 # adding raster layer to TOC: no

 return 0

 def saveDialog(self, parent, extension = "shp"):

 # dirName, filtering, saveText, suffix

 dt = "ReadQGISLayer-saveDialog"

 index = {"shp":["UI/lastShapefileDir","Shapefiles (*.shp)",

 "Save output shapefile","shp"],

 "csv":["sda4pp/csvDir",

 "Comma Separated Values (*.csv)",

 "Save output comma separated values","csv"],

 "tif":["sda4pp/tifDir",

 "Geo-Tagged Image File (*.tif)",

 "Save output geo-tagged image file","tif"],

 "img":["sda4pp/imgDir",

 "Erdas Imagine Images (*.img)",

 "Save output erdas imagine images","img"], }

 settings = QtCore.QSettings()

 dirName = settings.value(index[extension][0]).toString()

 filtering = QtCore.QString(index[extension][1])

 encode = settings.value("UI/encoding").toString()

197

 fileDialog = QgsEncodingFileDialog(parent, index[extension][2],

 dirName, filtering, encode)

 fileDialog.setDefaultSuffix(QtCore.QString(index[extension][3]))

 fileDialog.setFileMode(QtGui.QFileDialog.AnyFile)

 fileDialog.setAcceptMode(QtGui.QFileDialog.AcceptSave)

 fileDialog.setConfirmOverwrite(True)

 if not fileDialog.exec_() == QtGui.QDialog.Accepted:

 return None, None

 files = fileDialog.selectedFiles()

 settings.setValue(index[extension][0], QtCore.QVariant(\

 QtCore.QFileInfo(unicode(files.first())).absolutePath()))

 try:

 (f,e) = str(files.first()), str(fileDialog.encoding())

 except Exception, e:

 wl.wl("Exception: "+str(e),dt)

 error = "This plugin does not support unicode characters.\n" +\

 "Please, use only ASCII characters in the path and the name of file.\n\n" +\

 "The output folder, '" + unicode(files.first()) + \

 "', is changed to default folder:\n" +\

 self.createOutputDir()

 QtGui.QMessageBox.information(self.iface.mainWindow(),

 "SDA4PP Plugin Error", error)

 return None, None

 return f,e

 def doDistanceMatrix(self, layer1, layer2, outPath):

 dt = "ReadQGISLayer-doDistanceMatrix"

 provider1 = layer1.dataProvider()

 provider2 = layer2.dataProvider()

 allAttrs = provider1.attributeIndexes()

 provider1.select(allAttrs)

 allAttrs = provider2.attributeIndexes()

 provider2.select(allAttrs)

 csvList = []

 distArea = QgsDistanceArea()

 inFeat = QgsFeature()

198

 outFeat = QgsFeature()

 inGeom = QgsGeometry()

 outGeom = QgsGeometry()

 first = True

 while provider1.nextFeature(inFeat):

 inGeom = inFeat.geometry()

 inID = inFeat.id()

 if first:

 featList = range(layer2.featureCount())

 first = False

 data = [""]

 for i in range(layer2.featureCount()):

 provider2.featureAtId(int(i), outFeat, True, [-1])

 data.append('"V' + str(outFeat.id())+'"')

 csvList.append(data)

 data = [inID]

 for j in featList:

 provider2.featureAtId(int(j), outFeat, True)

 outGeom = outFeat.geometry()

 dist = distArea.measureLine(inGeom.asPoint(), outGeom.asPoint())

 data.append(float(dist))

 csvList.append(data)

 csvtxt = ""

 for lines in csvList:

 for field in lines:

 csvtxt += str(field) + ","

 csvtxt = csvtxt[:-1] + "\n"

 f = open(outPath, "w")

 f.write(csvtxt)

 f.close()

 return 0

199

APPENDIX B

DISTRIBUTION OF VISITS PER COUNTRY

Distribution of visits done by absolute unique visitors in which country they visited

the web site of SDA system between February 2009 and January 2011 is shown

below in Table B.1.

Table B.1. Distribution of Visits per Country (Statistic Recorded by Google Analytics)

Rank Country Visits
Avgerage Time

on Site
% New
Visits *

Bounce
Rate **

1. Turkey 609 00:03:46 39.74% 49.26%

2. Italy 401 00:04:29 44.64% 41.40%

3. United States 224 00:01:56 66.07% 55.80%

4. Japan 212 00:03:20 41.51% 50.94%

5. France 197 00:03:26 60.91% 45.18%

6. Brazil 133 00:03:24 38.35% 54.89%

7. Germany 125 00:01:50 56.00% 66.40%

8. Portugal 114 00:04:03 53.51% 42.11%

9. Spain 111 00:04:16 48.65% 35.14%

10. Canada 105 00:04:31 71.43% 53.33%

11. Poland 87 00:02:51 52.87% 58.62%

12. India 64 00:03:36 79.69% 32.81%

13. United Kingdom 64 00:03:58 56.25% 51.56%

14. Belgium 51 00:02:19 47.06% 66.67%

15. Colombia 47 00:02:45 42.55% 63.83%

16. Netherlands 32 00:01:59 90.62% 37.50%

17. Australia 31 00:01:29 58.06% 41.94%

18. Philippines 28 00:04:08 67.86% 32.14%

19. Austria 27 00:02:30 59.26% 70.37%

20. Ecuador 26 00:00:57 15.38% 73.08%

21. Czech Republic 24 00:04:05 58.33% 41.67%

22. Romania 24 00:05:12 41.67% 37.50%

23. Greece 22 00:03:35 63.64% 36.36%

200

Table B.1. Distribution of Visits per Country (Statistic Recorded by Google Analytics)

(Continued)

Rank Country Visits
Avgerage Time

on Site
% New
Visits *

Bounce
Rate **

24. Taiwan 18 00:07:20 61.11% 27.78%

25. Switzerland 18 00:03:03 61.11% 55.56%

26. Venezuela 18 00:01:05 55.56% 77.78%

27. Peru 14 00:03:06 28.57% 50.00%

28. Norway 13 00:05:35 23.08% 23.08%

29. Laos 13 00:02:07 76.92% 53.85%

30. China 12 00:03:50 66.67% 41.67%

31. Mexico 11 00:02:47 63.64% 45.45%

32. Hungary 11 00:06:05 63.64% 63.64%

33. Indonesia 11 00:05:02 72.73% 36.36%

34. New Zealand 10 00:01:15 90.00% 40.00%

35. Sweden 10 00:01:09 80.00% 20.00%

36. Chile 9 00:03:19 55.56% 55.56%

37. Argentina 8 00:00:24 62.50% 50.00%

38. South Korea 7 00:01:20 42.86% 71.43%

39. Ireland 7 00:01:47 57.14% 42.86%

40. Moldova 7 00:06:14 100.00% 42.86%

41. Costa Rica 6 00:05:09 50.00% 50.00%

42. Serbia 6 00:04:14 83.33% 33.33%

43. Thailand 5 00:07:58 100.00% 40.00%

44. Nigeria 5 00:00:00 40.00% 100.00%

45. Russia 4 00:04:42 75.00% 75.00%

46. Kenya 4 00:00:02 50.00% 75.00%

47. Uruguay 4 00:07:14 75.00% 25.00%

48. Vietnam 4 00:00:00 100.00% 100.00%

49. Finland 3 00:02:45 66.67% 66.67%

50. Niger 3 00:06:10 66.67% 66.67%

51. Israel 3 00:08:34 100.00% 0.00%

52. South Africa 3 00:03:06 100.00% 33.33%

53. Finland 3 00:02:45 66.67% 66.67%

54. Iran 3 00:00:00 100.00% 100.00%

55. Luxembourg 3 00:03:01 100.00% 66.67%

56. Mali 2 00:00:19 50.00% 50.00%

57. Malaysia 2 00:00:00 100.00% 100.00%

58. Myanmar 2 00:06:02 50.00% 50.00%

59. Estonia 2 00:00:00 100.00% 100.00%

60. Egypt 2 00:00:00 100.00% 100.00%

61. Slovakia 2 00:00:00 100.00% 100.00%

62. Syria 1 00:02:02 100.00% 0.00%

201

Table B.1. Distribution of Visits per Country (Statistic Recorded by Google Analytics)

(Continued)

Rank Country Visits
Avgerage Time

on Site
% New
Visits *

Bounce
Rate **

63. Slovenia 1 00:00:00 100.00% 100.00%

64. Morocco 1 00:03:50 0.00% 0.00%

65. Pakistan 1 00:03:25 100.00% 0.00%

66. Lithuania 1 00:00:14 100.00% 0.00%

67. Singapore 1 00:00:00 0.00% 100.00%

68. Tanzania 1 00:00:00 100.00% 100.00%

69. Bangladesh 1 00:00:00 100.00% 100.00%

70. Saudi Arabia 1 00:00:00 100.00% 100.00%

71. Montenegro 1 00:00:00 100.00% 100.00%

72. New Caledonia 1 00:00:00 100.00% 100.00%

73. Cuba 1 00:00:00 100.00% 100.00%

74. Ethiopia 1 00:00:00 100.00% 100.00%

75. Denmark 1 00:00:00 100.00% 100.00%

76. Liberia 1 00:00:00 100.00% 100.00%

77. Dominican Rep. 1 00:00:00 100.00% 100.00%

TOTAL 3042

* Visit is a period of interaction between a visitor's browser and a particular website,

ending when the browser is closed or shut down, or when the user has been

inactive on that site for a specified period of time (Default is 30 minutes).

** Bounce Rate is the percentage of single-page visits or visits in which the person

left your site from the entrance (landing) page.

202

APPENDIX C

INTEGRATED SDA TECHNIQUES; GUI AND ANALYSIS

RESULT

During the development of FLOS SDA system, integrated tools in QGIS are listed

with their graphical user interface (GUI) and analysis result as follows:

1. Uniform Intensity: GUI and Analysis Result

203

2. Kernel Smoothed Intensity of Point Pattern: GUI

Analysis Result

204

3. Adaptive Estimate of the Intensity: GUI

Analysis Result

205

4. G and F Estimate Functions: GUI

Analysis Results: G (Left Side) and F (Right Side) Estimate Functions

206

5. Ripley’s K and L Functions: GUI

Analysis Result: Ripley‟s K (Left Side) and L (Right Side) Functions

207

6. Local Version of Ripley’s K and L Functions: GUI

Analysis Result: Local Version of Ripley‟s K (Left Side) and L (Right Side) Functions

208

7. Chi-Squared Test Using Quadrat Counts: GUI

Analysis Result

209

8. Simulation Envelope for CSR: GUI

Analysis Result: Simulation Envelope of G (Left Side) and F (Right Side) Function

for CSR

210

9. Fitted Poisson Model: GUI

Analysis Result

211

10. Generate Random Point Pattern: GUI

Result

212

11. Generate Regular Point Pattern: GUI

Result

213

12. Compute nearest Point and Distance: GUI

Result: Compute nearest Point (Left Side) and Distance (Right Side)

214

13. Compute Centroid (Polygon to Point): GUI

Result

215

14. Convert from Point to Polygon: GUI

Result: Convert from Point to Polygon according to the Delaunay Triangulation (Left

Side) and Dirichlet/Voronoi Tessellation (Right Side)

216

15. Rggobi Tool: GUI

Result

217

16. Iplots; Interactive Plotting: GUI

Result

218

17. Spatial Kolmogorov-Smirnov Test of CSR: GUI and Analysis Result

18. R Console: GUI

219

19. Interactive Identify Tool (Left Side) and Configuration (Right Side): GUI

20. Components (Left Side) and Install Missing R Packages (Right Side): GUI

21. Graphic Display Option: GUI

220

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Kepoğlu, Volkan Osman
Nationality: Turkish
Date and Place of Birth: 8 January 1977, Ankara
Marital Status: Married, One Child
Phone: +90 532 705 65 71
E-mail: vkepoglu@gmail.com

EDUCATION

Degree Institution Year of Graduation
MS METU, Urban Design 2003
BS METU, City and Regional Planning 2000
High School Gazi Anatolian High School, Ankara 1995

WORK EXPERIENCE

Year Place Enrollment
2009 – 2010 NABUCCO Natural Gas Pipeline Project Technical GIS Advisor
2004 – 2005 NABUCCO Natural Gas Pipeline Project Technical GIS Advisor
2003 – 2011 BTC Crude Oil Pipeline Project Mapping & GIS Manager
2001 – 2003 BTC Crude Oil Pipeline Project GIS Expert
2001 – 2001 Returning to Village & Rehabilitation Proj. City Planner
2000 – 2001 METU Cyprus Campus Design Project Urban Designer
2000 – 2000 Gallipoli Historical National Park Project Research Assistant

FOREIGN LANGUAGES

Advanced English, Beginner German

PUBLICATIONS

1. Kepoğlu, V. O., and Düzgün, S., (2008), “Development of Free GIS Software: The
Example of Quantum GIS”, 2nd Remote Sensing and Geographic Information
System Symposium 2008, Kayseri, Turkey, October, 13-15.

2. Kepoğlu, V. O., and Usul, N., (2005), “Representation of Socio Economic
Indicators on Health Status in Turkey”, ESRI International User Conference 2005,
San Diego, USA, July, 25-29.

HOBBIES

Swimming, Football, Chess, Movies, Bowling, Table Tennis

mailto:vkepoglu@gmail.com

