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ABSTRACT

INVESTIGATION OF ELECTROMIGRATION AND STRESS INDUCED SURFACE

DYNAMICS ON THE INTERCONNECT BY COMPUTER SIMULATION

ÇELİK, Aytaç

Ph.D., Department of Metallurgical and Materials Engineering

Supervisor : Prof. Dr. Tarık Ömer OĞURTANI

Co-Supervisor : Prof. Dr. Mehmet Kadri AYDINOL

March 2011, 179 pages

Purpose of this work is to provide a comprehensive picture of thin film (interconnect) and solid

droplet surface evolution under the several external applied forces with anisotropic physical

properties so that one can eventually be able to predict main reasons and conditions under

which stability of surface is defined.

A systematic study based on the self-consistent dynamical simulations is presented for the

spontaneous surface evolution of an thin film and isolated thin solid droplet on a rigid sub-

strate, which is driven by the surface drift diffusion induced by the anisotropic diffusivity, the

anisotropic capillary forces (surface stiffness) and mismatch stresses under electron winding.

The effect of surface free energy anisotropies (weak and strong (anomalous)) on the devel-

opment kinetics of the Stranski-Krastanow island type morphology are studied. Although,

various tilt angles and anisotropy constants were considered during simulations, the main em-

phasis was given on the effect of rotational symmetries associated with the surface Helmholtz

free energy topography in 2D space.

The investigations of dynamics of surface roughness on concurrent actions of the applied
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elasto- and electro- static fields clearly indicate that applied misfit stress level is highly im-

portant effect on resultant surface form which may be smooth wave like or crack like. The

droplet simulations revealed the formation of an extremely thin wetting layer during the de-

velopment of the bell-shaped Stranski-Krastanow island through the mass accumulation at

the central region of the droplet via surface drift-diffusion. The developments in the peak

height, in the extension of in the wetting layer beyond the domain boundaries, and the change

in triple junction contact angle, one clearly observes that these quantities are reaching cer-

tain saturation limits or plateaus, when the growth mode turned-off. Islanding differences for

weak anisotropy constant levels and the strong (anomalous) anisotropy constant domains are

discussed.

Keywords: Interfaces and surfaces, Instability of surface morphology, Non-equilibrium ther-

modynamics, Electromigration, Continuum mechanics
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ÖZ

ARABAĞLANTI ELEMANLARININ ELEKTROGÖÇ VE STRESS NEDENLİ YÜZEY

DİNAMİĞİNİN BİLGİSAYAR SİMÜLASYONU ARACILIĞI İLE ARAŞTIRILMASI

ÇELİK, Aytaç

Doktora, Metalurji ve Malzeme Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Tarık Ömer OĞURTANI

Ortak Tez Yöneticisi : Prof. Dr. Mehmet Kadri AYDINOL

Mart 2011, 179 sayfa

Bu çalışmanın amacı, ince filmlerin ve ince katı damlacıkların elektron rüzgarı, uyumsu-

zluk gerilimi, eşyönsüz yüzey kayma difüzyonu, yüzey kararlılığı eşyönsüzlüğü altında yüzey

evriminin kapsamlı bir tablosunun ortaya koymaktır, böylece kişi yüzey kararlılığının bağlı

olduğu ana nedenleri ve koşulları tahmin edilmesini sağlıyacaktır.

Katı altlık üstündeki ince filmlerin ve ince katı damlacıkların yüzeylerinin elektron rüzgarı,

uyumsuzluk gerilimi, eşyönsüz yüzey kayma difüzyonu, yüzey kararlılığı eşyönsüzlüğü altında

evrimi dinamik modelleme ile araştırılmıştır. Stranski-Krastanow adacıklarının oluşumunda

eşyönsüz serbest yüzey enerjisinin etkisi gözlemlenmiştir. Örgü yapı ile altlık arasındaki

birçok açı ve farklı eşyönsüzlük şiddeti göz önünde bulundurulmuşdur.

Yüzey pürüzlüğünün elektrostatik ve elastostatik alanlar altındaki dinamikleri göstermiştir

ki; ince filmin maruz kaldığı uyumsuzluk stress miktarı oldukça önemlidir ve bu gerilimin

basınç yada çekme kuvveti olması düzgün dalga şeklinde yada çatlak benzeri formda olan

sonuç morfolojini derinden etkilemektedir. Damlacık deneylerinde, damlacık kenarlarından

madde transferi ile damlacık ortasında çan şekilli Stranski-Krastanow adacıklarının oluşumu
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sırasında oldukça ince ıslanma katmanı oluşumu gözlemlenmiştir. Buhar yağunlaşması de-

vre dışı bırakıldığında, adacık yüksekliği, ıslanma açısı ve ıslanma katmanı uzunluğu belli

değerlerde sabitlendiği gözlemlenmiştir. Adacık şekillenmelerindeki fark düşük eşyönsüzlük

sabiti değerleri ile yüksek eşyönsüzlük sabiti değerlerinden nasıl etkilendiği tartışılmış.

Anahtar Sözcükler: Yüzeyler, Yüzey morfolojisi kararsızlığı, Denge dışı termodinamik, Elek-

trogöç, Sürekli medya
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Can AVAR, Gökalp ULUCAN, Mustafa Serhan DEMIREL, Sencer TURUNÇ, Dr. Şener
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

The thin films have been inserted into engineering systems in order to accomplish a wide

range of practical service functions. Among these are microelectronic devices and packages;

micro-electro-mechanical systems (MEMS) or nano-electro-mechanical systems (NEMS). To

a large extent, the success of this endeavor has been enabled by research leading to reliable

means for estimating forces in small material systems and by establishing frameworks in

which to satisfy the integrity or functionality of the systems. The material failure due to

electromigration and stress continue to be a technology-limiting barrier. Due to continuing

miniaturization of ultra large scale integration (ULSI) circuits, interconnects are subject to

increasingly high current densities. Under these conditions, electromigration can lead to the

electrical failure of interconnects in very short times by reducing the circuit lifetime to an

unacceptable level. And the role of mechanical stress on the process is another important

reliability issue. In systems with very small size scale and high temperature, stress of large

magnitude can have a significant influence on the thin film surface evolution. Besides the

reliability issues, mechanical stress has an important application in surface morphology con-

trol which provide potential opportunity for the controlled formation of patterned surfaces

for many functional application. For example: evolution of nano-crystalline islands on sur-

faces which can be used as quantum dot. Small size, high temperature, large stress and high

current densities are characteristics of interconnects, where the phenomenon of surface evo-

lution is considerable scientific and practical importance. In this study, free surface evolution

dynamics in connection with the morphological evaluation is investigated under the applied

capillary force, electromigration force, and elastostatic force with anisotropic surface energy
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and anisotropic diffusion by the use of unified theory of linear instability (LISA theory). The

central question is the stability of the free surface under sinusoidal perturbations of its shape

resulting from mass rearrangement and its evolution kinetics under the several combination of

system variable (such as anisotropic surface energy, anisotropic diffusion coefficient, crystal

structure texture, and initial sinusoidal wave amplitude-to-wavelength ratio, etc.). For this

purpose, free surface morphology evolution and the sinusoidal perturbation drift and decay

behaviors are tracked.

1.2 Epitaxial growth of thin films

Epitaxial growth process is a deposition of new material as a crystal on an underlying crys-

talline surface. The first study of this process was 150 years ago, but systematics of epitaxial

growth was revealed by the work of Louis Royer in the 1920s. Royer used the term ’epitaxy’

to define the notion of growing a new crystal whose orientation is determined by a crystalline

substrate and to separate epitaxial growth from noncrystalline and amorphous growth.

Morphology of the film depends on a number of factors, including the deposition rates of

the species, the surface temperature, the surface material, and its crystallographic orientation.

The dependence of the morphology on the deposition rate of new material means that epitaxial

growth is inherently nonequilibrium process. So it has an important distinction from crystal

growth with solution, and is therefore a near-equilibrium process. Growth near equilibrium

is almost governed by thermodynamics. For epitaxial growth process, the overall driving

force for the morphological evolution of the surface is also provided by thermodynamics, but

equilibrium is attained by kinetics.

Numerous experiments (Kern et al. [1], Venables et al. [2]) have showed that the epitaxial

growth morphology shows the three distinct growth types for small amounts of one material

deposited onto the surface of another material. These are referred to as: Frank-van der Merwe

morphology, with flat single crystal films consisting of successive complete layers; Volmer-

Weber morphology, with three-dimensional island that leave part of the substrate exposed; and

Stranski-Krastanov morphology, with 3D island atop a thin flat ’wetting’ film that completely

covers the substrate (Fig.1.1).

For lattice-matched systems, Frank-van der Merwe and Volmer-Weber morphologies can be

2



(a)

(b)

(c)

Figure 1.1: Schematic evolution of the (a) Frank-van der Merwe, (b) Volmer-Weber, and (c)

Stranski-Krastanov growth morphologies [3].

understood from thermodynamic wetting arguments based on interfacial free energies. The

Frank-van der Merwe growth mode is seen if γ f +γ f s < γs. Here, the free energy of epitaxial

layer/vacuum interface denoted by γ f , epitaxial layer/substrate interface dentoed by γ f s and

substrate/vacuum interface denoted by γs. In The Frank-van der Merwe growth mode, the free

energy decreases initially as the epilayers are formed before attaining a steady-state value for

thicker films. Alternatively, if γ f + γ f s > γs then Volmer-Weber growth is observed. Here,

the free energy increases if epilayers are formed on the substrate. The Stranski-Krastanov

morphology is observed in systems where there is appreciable lattice mismatch between the

epilayer and the substrate. The Stranski-Krastanov growth mode is seem to be related to mis-

fit strain, which changes the balance between interfacial free energies and the surface as the

strain energy increases due to the film thickness. Therefore, although the growth of wetting

layers is favored initially, the increasing of strain energy eventually makes subsequent layer

growth undersireble. The deposition of additional material leads to the appearance of 3D is-

lands within which strain is relaxed by the formation of misfit dislocations. However, there is

another scenario within the Stranski-Krastanov morphology: the formation of islands without

dislocations -called coherent islands (Fig. 1.2)- one or more wetting layers (Eaglesham and

Cerullo [4], Madhukar and Rajkumar [5]). This phenomenon has been observed for a num-

ber of systems (Petroff and DenBaars [6], Seifert et al. [7]) and has the potential for many

applications.

Although wetting arguments based on interfacial free energies provide a useful classification

scheme for the equilibrium morphology of thin films, the inherently kinetic nature if epitaxial
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Figure 1.2: Cross-section micrograph of an uncapped InP island on GaInP grown by MOVPE

at 580 ◦C along the (a) [110] and (b) [110] directions (Georgsson et al. [8]).

growth means that fundamental issues are left open. Foremost among there is the competi-

tion between different strain relaxation mechanisms. For example, the growth of InAs on the

three low-index surfaces of GaAs. The Stranski-Krastanov morphology is observed only on

the (001) surface; on the other two orientations strain relaxation involves misfit dislocation

formation and a two-dimensional (2D) growth mode (Belk et al. [9], Yamaguchi et al. [10]).

For the growth of Ge and SiGe alloys on Si(001), strain relaxation can occur by several mech-

anisms of dislocation formation whose relative effects are determined by the morphology of

the epilayer which, in turn, depends on the magnitude of the strain (Tersoff and LeGouges

[11], LeGoues [12]). These observations suggest that heteroepitaxial phenomena particularly

those involving materials with appreciable lattice mismatch occupy a far richer and much

more complex arena than arguments based solely on thermodynamics would suggest.

1.2.1 Heteroepitaxy

The fabrication of heterostructures requires growing crystalline materials on the surfaces of

different materials, a process called as heteroepitaxy. The morphology is central to the pro-

duction of all quantum heterostructures. This morphology is determined by the interface
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energies of the materials and the surface, strain is formed if the materials have different lattice

constants, and any effects of segregation and alloying. Controlling the morphology during

heteroepitaxy need understanding the atomistic mechanisms.

Kinetics of atomic processes on the surfaces of strained systems are not determined simply

by the local environment of the atoms, as in the case of homoepitaxy, but may incorporate

non-local information, such as the height of a terrace above the initial substrate or the size

and shape of 2D and 3D islands. Then there is the issue of lattice relaxation at heterogeneous

interfaces has relied largely on the minimization of energy functionals with various degrees

of sophistication to determine equilibrium atomic positions near the interface as a function of

the lattice mismatch.

Quantum dots formed from 3D islands during Stranski-Krastanov growth of InAs on GaAs

(001) with 7% misfit have a number of fascinating and potentially useful characteristics

(Leornard et al. [13], Moison et al. [14]). They are small enough to exhibit quantum effects

in confined carriers. The dispersion about the size averages is between ±10% and ±20%.

The dot shapes are elongated truncated pyramides with well oriented sidewalls along one di-

rection. This suggests that the structures of the individual dots are strongly influenced by

thermodynamics, though the appearance of different facets suggests that kinetic factors can-

not be neglected. Most important properties of these quantum dots is that they are coherent.

The growth of InAs on GaAs(001) starts by nucleation of 2D islands which coalesce into co-

herently strained layers. These are the wetting layers in the conventional SK formation. An

important property of the growth of the 3D islands is that at low temperatures, the material

within the 3D islands can be accounted for simply from the accumulation of deposited mate-

rial, but at high temperatures the volume of the island far exceeds the volume of InAs actually

deposited. The conclusion is that the additional material comes from the wetting layers, so

the 3D islands are InGaAs alloys. This demonstrates the active role of wetting layers in the

final stage of SK growth (Joyse et al. [15]).

The tendency of 3D islands to form near atomic steps suggests that their positions may be

influenced by an appropriately modified substrate. The controlled positioning of individual

quantum dots reveal new opportunities for utilizing their properties, for example, as the active

components in single-electron and resonant tunneling devices. Two strategies that have been

used to manipulate the position of 3D islands are the strain-induced nucleation, and the local
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large modification of substrate by etching.

Strain-induced nucleation provides a natural way of ordering 3D islands in the vertical growth

direction. If two or more layers of 3D islands are grown sufficiently close to each other, then

the islands on successive layers align with the extent of the alignment decreasing with in-

creasing interlayer separation (Xie et al. [16]). When vertical separation increased alignment

diminishes and the positioning of the islands becomes more statistical. Reason for this obser-

vation might be that the strain relaxation of 3D island is greatest in a region where the strain

energy is a maximum. Thus just as the formation of 3D islands appears to be favored near

steps of the wetting layer, so the strain relaxation caused by underlaying 3D islands creates

preferred regions for island formation on subsequent layers.

Figure 1.3: STM image (1600 Å x 1600 Å) of Ge hut clusters grown in Si(001) at 575 K (B

Voigtländer [17]).

The strain-induced 2D to 3D transformation during growth in the SiGe system with 4% misfit

is manifested in a variety of surface morphologies whose characteristic feature size depends

on the lattice misfit between the epilayer and the substrate. The growth of pure Ge on Si(001)

follows SK growth with hut clusters (Mo et al. [18]) which appears quickly after the wetting

layer formed. Structurally, they exhibit {105} facets and they are elongated along the < 100 >

directions, with rectangular bases having up to 8:1 aspect ratio, therefore they show hut-

like morphology. Their kinetics include metastability, since they dissolve during annealing,

and self-limiting growth mechanism which causes larger islands to grow more slowly than

small islands. Thus, smaller islands catch up to bigger ones, this cause uniform island size.
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Therefore hut clusters natural candidates for producing arrays of quantum dots.

1.3 Role of stress on thin film morphology

Force per unit area is the definition of stress. Its unit is pressure, and in reality pressure is

one variety of stress. However, it varies both with direction and with the surface it acts on

so stress is a much more complex quantity than pressure. Mechanical stress in thin films is

known as one of the most important issues when it comes to the application and reliability of

thin film devices. The basic theory that accounts for the elastic-plastic changes in the bilayer

was introduced by Frank and van der Merwe. It attempts to account for the accommodation

of misfit between two lattices rather than being a theory of epitaxy per se. The theory predicts

that any epitaxial layer having a lattice parameter mismatch with the substrate of less than

∼ 9% would grow pseudomorphically, i.e., for very thin films the deposit would be elastically

strained to have the same interatomic spacing as the substrate. The interface would, therefore,

be coherent with atoms on either side lining up. With increasing film thickness, the total

elastic strain energy increases, eventually exceeding the energy associated with a relaxed

structure consisting of an array of so-called misfit dislocations separating wide regions of

relatively good fit. At this point, the initially strained film would ideally decompose to this

relaxed structure where the generated dislocations relieve a portion of the misfit. As the film

continues to grow, more misfit is relieved until at infinite thickness the elastic strain is totally

eliminated. In the case of epitaxial growth without interdiffuson, pseudomorphism exists only

up to some critical film thickness hc , beyond which misfit dislocations are introduced.

1.3.1 Morphology and surface stability of a stressed body

Two lattice planes of A and B and at least two lattice rows come in contact and in case of

coherent epitaxy accommodate their two dimensional (2D) misfit. By this means the couple

A/B stores a certain amount of elastic energy. The so-stored elastic energy has been recog-

nized so far as a source of mechanical problems such as cracking, blistering, peeling. Then

for many years the main problem of crystal growers was to avoid strain by choosing very

low-mismatched systems. Nevertheless it has also been recognized that stress can modify

some crystal properties. This is the case of the functional performance of devices such as the
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possibility of band-gap engineering involving strained structures or the correlation between

mechanical stress and magnetic anisotropy in ultra-thin films. These technological consid-

erations have stimulated crystal growers to consider also crystal growth properties induced

by stress. Nevertheless the problem of formation of a strained crystal on a single crystal is

complex. The difficulties basically have three origins.

The first difficulty arises from the fact that since the equilibrium shape of a crystal essentially

depends upon surface energy considerations, a good description of the thermodynamic state

of a strained crystal needs to accurately define the role of stress and strain on specific surface

energies. This can be done by properly defining surface stress and strain quantities as partially

done by Gibbs, Shuttleworth , Herring and others.

The second difficulty arises from the fact that most strains are anisotropic and inhomogeneous.

Because of the Poisson effect the in-plane strain due to misfit accommodation is accompanied

by a vertical opposite strain. On the other hand, islands or nuclei can relax by their edges.

Obviously this elastic relaxation depends on the shape of the island and therefore cannot be

homogeneous. Thus a good description of the bulk elastic energy needs to calculate accurately

elastic relaxation.

The third difficulty arises from the fact that, even weak, the elastic effects dominate at long

range. Thus elasticity may also affect long-range behavior usually driven by surface diffusion

considerations. In other words not only the energetics of crystal growth may be altered by

elasticity but kinetics behavior may also be altered.

1.3.2 Elastic interactions of elastic defects

Since surface defects create a displacement field in the underlying substrate, surface defects

interact by way of the underlying deformation. The interaction energy between two defects

is simply the work done by the force distribution of first defect due to the displacement field

generated by the other defect.

A lot of literature on elastic interactions between point defects exists for many situations. For

defects at the surface, Rickman and Srolovitz have proposed a generalized approach. Each

surface defect is characterized by its dimension (D) and its multipole order (m). An adatom

thus is characterized by D=0 and m=l (dipole), whereas a step (D=1) can be characterized by
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m=l (dipoles) or m=0 (monopoles) according to the nature of the step (step on a stress free

surface or boundary in between two stressed domains).

d

d
d

d

a)

b)

c)

Figure 1.4: Elastic interaction in between: a) 2 adatoms considered as elastic dipoles (D=0,

m=l), b) 2 steps bearing dipoles (D=l, m=l) of same sign or (and) monopoles (D=l, m=0) of

same sign when the solid is stressed, c) 2 steps of opposite sign [19].

Integration along the line gives the interaction of a line of dipoles (step) and a dipole and

result fives an interaction in d−2. The elastic interaction between two steps on a stress free

body is obtained by integration over the step of infinite length of the d−3 law then multiplied

by the number of dipoles in the other step giving again a d−2 law. The interaction of adatoms

(dipoles) with step of a stressed body (the step bears monopoles) gives an x−1 law interaction,

so interaction changes sign with x axis. This result shows similar the interaction of a dipole

and a semi-infinite sheet of dipoles. Indeed as in electrostatics a semi-infinite sheet of dipoles

is equivalent to a distribution of monopoles located at the border of the sheet. Thus the

interaction between a dipole and a step on a stressed body can be obtained by a supplementary

integration of the d−2 law over the various rows of dipoles constituting the domain and thus

give a x−1 interaction law. More recently Peyla et al showed that for very thin substrates

things change too. For example identical adatoms deposited onto a true 2D isotropic layer

may attract or repel each other according to the in-plane direction. The local force distribution

seems to be responsible. For thicker sheets this effect goes backwards to usual d−3 repulsion

valid for thick isotropic substrates.
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1.3.3 Effects on diffusion constant

Strain also have an effect on the diffusion coefficient itself as shown by Schroeder and Wolf,

they calculated the activation barriers for diffusion on strained high symmetry plane surfaces.

The activation energy for diffusion is calculated by minimal energy path saddle point. They

showed that for tensile stress activation energy is increased on the other hand for compressive

stress cause lower activation. The diffusion barrier change is mainly due to a change of the

saddle point energy whereas the minima are shifted only very little. In the same paper the

authors have also studied theoretically diffusion on top of a stressed island. Since the finite

size island can elastically relax by its free edge the strain along the top surface of the island

becomes inhomogeneous and thus diffusion may vary from the center of the island towards its

edges. For compressive strain the diffusion is faster near the island center whereas for tensile

stress it is faster towards the edges. Thus it should be easier to nucleate on top of a tensile

strained island than on top of a compressive strained island.

These two effects are second order effects in comparison to elastic interaction in between

adatoms and steps. The simple surface diffusion change cannot modify the growth mecha-

nism. More precisely since adatom density essentially depends upon the ratio Diffusion/Flux

a strain-induced change of the surface diffusion constant (D) is exactly equivalent to an ap-

propriate change of flux (F) and thus may only weakly shift the transition between step flow

and 2D nucleation or change the nucleation density. At the same since the taller a crystal, the

more relaxed its top face, this kind of elasticity-induced Schwoebel barrier thus can only help

the first stages of the thickening of tensile islands.

1.4 Role of electromigration on thin film morphology

Electromigration is forced atomic diffusion with the driving force due to an electric field and

associated electric current in metals (Arzt and Nix [20]). Electromigration is an important

failure mechanism in integrated circuit metallization for two reasons. The first is that metal

thin films can dissipate enormous power densities without melting and in turn can carry large

current densities (> 10 MA/cm2 for aluminum). Thus, the driving force can be quite large.

Second, the ratio of grain boundary/interface area to film cross-sectional area is large, leading

to fast diffusion paths and high average mobility. Thus, the diffusion process itself is faster in
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the interconnects which also enhance the effect.

In any transport process, the flux of material, Je, can be described by the Nernst-Einstein

diffusion relationship

Je =
NMF

kT
(1.1)

Where N is the density of moving species, M is their mobility and F is the driving force for

migration on each of these species. In electromigration, F is the force exerted on a metallic

atom by the passage of an electron flux and this force is made up of two contributions. The

ionic core of the metal atom experiences a force due to the potential gradient across the con-

ductor. This force is proportional to the valence of the metal and is directed in the opposite

direction to the electron flux. The second contribution to F comes from the electron wind

force, which may be thought of as being due to collisions between the electrons and polarized

vacancy-metal ion complexes. The momentum transfer between electron and ion usually re-

sults in a force directed in the same direction as the electron flux. In gold and aluminum the

electron wind force is measured to be much greater than the field-ion force and so dominates

the electromigration process.

FWind FDirect

e-

interconnect

Figure 1.5: The driving force for electromigration.

Ftotal = Fdirect + Fwind (1.2)

The electron wind force per atom, F, is proportional to the applied electrostatic field:

Ftotal = Z∗eE (1.3)

where the dimensionless number Z∗ is known as the effective valance or the effective charge,

e is the unit electrostatic charge and E is the electrostatic field.

The Value of Z∗ has been expressed by Huntington and Grone [21], as

Z∗ =
1

2

(
ρdN
ρNd

)
m∗

|m∗| (1.4)
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Surface Electromigration

Vacancy

Bulk Electromigration

Figure 1.6: The diffusion paths of electromigration.

where N is the density of conduction electrons, ρd is the specific defect resistivity, Nd the

defect density, ρ is the metal resistivity, and m∗ is the effective mass of the electrons near

the Fermi surface taking part in the momentum exchange. This equation makes clear the

close relationship between the fundamental process of electron scattering which contributes

to electrical resistivity and the electronic scattering event that is the cause of the electron

wind force. It is also clear that the vacancy-ion complex is important in electromigration

just as it is in ordinary diffusion transport. Electromigration requires both a force on the

metallic atom to encourage it to migrate and a mechanism for migration, in this case vacancy

diffusion. The effective charge Z∗ characterizes the momentum transfer, its value which is

not well understood, can be inferred from experimental data. The Einstein - Nerst relation for

diffusion in a potential field relates the drift velocity to the electron wind force, F:

vdri f t = MF =
D
kT

F =
DZ∗eE

kT
=

DZ∗eρ j
kT

(1.5)

where D = D0 exp
(−Q

kT

)
is the diffusion coefficient, M is the mobility, k is Boltzman’s con-

stant, T is absolute temperature and j is the current density. In equation 1.5, electromigration

induced mass flow is seen to be directly proportional to the current density and the diffusion

constant D. The drift velocity, vdri f t, will be a function of the diffusion pathway and the tem-

perature dependence of vdri f t will be characterized by the activation energy of the predominant

diffusion mechanism, Q.

In the interconnect, atoms may diffuse along several paths: the surface of metal, the bulk

crystal, and the grain boundaries. The schematic picture of these diffusion paths can be seen

in Fig. 1.6. Since atoms are more loosely bonded at the grain boundaries than in the lattice,
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atoms migrate along grain boundaries more easily than through the grain bulk lattice. There-

fore, the grain structure is a critical factor in electromigration. But the surface diffusion is the

fastest one due to the easy movement of adatoms at the surface. According to Lloyd [22], the

activation energies, E, for the pathways are in general,

Esur f ace =
3

2
Egrainboundary = 3Ebulk (1.6)

Mass transport on the surface of interconnects is the sum of the electron field force and capil-

lary forces:

J =
Dδ
ΩkT

(
−eZ∗ + Ωγ

dκ
dl

)
(1.7)

where J is the surface flux of atoms (the number of atoms passing per unit length per time),

D is the surface diffusivity, δ is the thickness of the surface layer taking part in the diffusion

process Ω is the atomic volume, γ is the surface energy, κ is the curvature of the surface

(positive for a rounded void), and l is the arc length. The physical meaning of (1.7) is that

atoms will diffuse in the direction of electron flow if the electric wind force dominates, but

toward the position with large curvature if the capillary forces dominate.

From the above discussions it is clear that electromigration could not cause a failure unless

there is a divergence in the flux somewhere in the interconnect that allows voids or hillocks

to form. Flux divergence will occur whenever there are changes in F, the driving force for

electromigration, or in D, the mobility of the diffusing species in the grain boundaries. F

depends on Z∗ and this parameter can vary both from grain boundary to grain boundary in a

polycrystalline film and at contacts between two dissimilar metals. Therefore contact points

of substrate and the interconnect, temperature gradient in the interconnect, grain structure,

and photolithography or etch defects are some examples to the source of flux divergence (Fig.

1.7).

These weak sites lead to the nucleation of edge voids or hillocks. After the nucleation, growth

and movement of the defect is highly dependent on the microstructure and applied electro-

migration stress. By decreasing the interconnect width, electromigration failure depends on

the grain structure is partially overcome, because interconnect width is strongly related to

the grain structure. As the interconnect width decreases or the grain size increases, the grain

structure changes from polycrystalline to a near-bamboo structure, and finally bamboo struc-

ture (Fig. 1.8). In polycrystalline interconnect grain boundaries form a continuous network.

And as discussed above diffusion on grain boundary is faster than diffusion in lattice so the
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Figure 1.7: Schematic illustrations of several sites at which flux divergence is expected in

metallization systems: (a) triple points in conductor layers; (b) regions where the conductor

changes in width; (c) a gold wire/aluminum film contact; (d) at defects in an interconnect.

latter is negligible (Wang and Suo [23]). By contrast, a narrow interconnect has a bamboo-like

grain structure, where grain boundaries are far apart and nearly perpendicular to the intercon-

nect direction and hence do not aid in the diffusion process, thus in bamboo-like interconnects

grain boundary diffusion becomes negligible. It is observed that the lifetime decreases to a

minimum and then increases as the interconnect width decreases (Vaidya et al. [24]). This

means that bamboo structured lines tend to show the greatest resistance to the electromigra-

tion induced damage. However, bamboo interconnects are not immortal yet. They still show

Figure 1.8: Increasing ratio of w/d.

various type failure modes. After the line is subject to an electric current, the void exhibit

extra ordinarily complex dynamics: they disappear, re-form, drift, change shape, coalesance,

and break up (Marieb et al. [25]). A particular behavior has captured much attention. A
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void sometimes takes the shape of a slit, lying inside a single grain, severing the interconnect

(Sanchez et al. [26], Rose [27]). Arzt et al. [28] reported that a void is round initially; it

moves, grows, and then changes shape to become a slit.

Edge void or hillock migration may be understood in terms of surface diffusion. Atoms diffuse

on the surface of the void or hillock from one portion to another, so that the void or hillock

appears to translate in the grain.

1.5 Thermodynamics of surface stress

In this introduction the Gibbs convention will be used. In this convention the two phases α

and β are thought to be separated by the Gibbs dividing plane, an infinitesimal thin boundary

layer. The Gibbs dividing plane is an idealization, called an ideal interface. Guggenheim

proposed and alternative model which defines the extended interfacial region.

α βσ σα β

Gibbs ideal interface Guggenheim

Figure 1.9: Left: Gibbs definition of the two phases α and β are separated by an ideal interface

σ Right: Guggenheim defined interface as an extended interphase with a volume.

There is a quantity γ that represents the excess free energy per unit area due to the existence

of a surface in the Gibbsian formulation. It can also be defined as the reversible work per unit

area needed to create a new surface. The amount of reversible work dw performed to create

new area dA of surface can be expressed as

dw = γ ∗ dA (1.8)

The total work needed to create a planar surface of area A (equivalently, the total excess free

energy of the surface) is equal to γ ∗ dA.

Gibbs was the first to point out that for solids, there is another type of surface quantity, dif-

ferent from γ, that is associated with the reversible work per unit area needed to elastically

15



stretch a pre-existing surface. The elastic deformation of a solid surface can be expressed in

terms of a surface elastic strain tensor εi j, where i, j = 1, 2. Consider a reversible process that

causes a small variation in the area through an infinitesimal elastic strain dεi j.

One can define a surface stress tensor fi j that relates the work associated with the variation in

γA, the total excess free energy of the surface, owing to the strain dεi j:

d(γA) = A fi jdεi j (1.9)

Both f and γ can each be considered as representing a force per unit length, the former exerted

by a surface during elastic deformation, and the latter exerted by a surface during plastic

deformation. As a result, both f and γ have been referred to as surface tension. This has

undoubtedly contributed to some of the confusion in the literature concerning the difference

between them, and it is probably best not to use the term when discussing solid surfaces.

According to the thermodynamics of interfaces, γi j can be described as the area derivative

of the surface free energy per unit area of an interface, either a solid-vapour, solid-liquid,

liquid-liquid or liquid- vapor interface, respectively:

γi j =

(
δG
δAi j

)
T,p,n

(1.10)

or

γi j =

(
δF
δAi j

)
T,V,n

(1.11)

where G is the Gibbs free energy of the system and F the Helmholtz free energy, and Ai j

the area of the interface between phases i and j. The subscript n denotes the assumption of

adsorption equilibrium, in the case of multi-component systems. In the thermodynamics of

interface-containing systems, both quantities, i.e. the Gibbs and the Helmholtz free energies,

are defined as excess quantities, thus drawing an imaginary and arbitrary dividing mathemat-

ical surface (Gibbs surface) between the two phases separated by the interface.

When three phases are coexisting along an edge, we have three interfacial tensions. Assuming

that one of the three phases is a vapor, we will write these as γβ, γα, and γαβ. The edge of

the mobile a phase is at equilibrium under the tensions directed along the three interfaces.

Equating the horizontal components of the forces in Fig. 1.10, we have

16



β

α

Vapor

θ

Figure 1.10: Interface among three phases.

γβ = γα cos θ + γαβ (1.12)

θ is called as equilibrium angle; cos θ > 1 shows a non-equilibrium situation and seen if

γβ − γαβ > γα (1.13)

or

γα + γβ − γαβ > 2γα (1.14)

2γα is called as cohesive energy, Wαcoh, of α phase. It is the required energy to separate the

α phase and γα + γβ − γαβ is called as adhesive energy, Wαβadh , of αβ interface. Spreading

coefficient, S αβ, can be defined as

S αβ ≡ +γβ − γα − γαβ = Wαβadh −Wαcoh (1.15)

If S αβ > 0 , in the horizontal case, α phase will spread over the surface β and this is called

complete wetting.

1.6 Thermodynamics of Irreversible Processes

Generally, thermodynamics is divided into statistical and phenomenological description. The

statistical description begins with initial events, like molecular encounters, and describes
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larger systems with statistical methods. The phenomenological description of thermodynamic

processes starts with experimental observations and continuum assumption, and follows a

more technical perspective. The foundation of irreversible thermodynamics is the concept of

entropy production. The consequences of entropy production in a dynamic system lead to a

natural and general coupling of the driving forces and corresponding fluxes that are present in

a non-equilibrium system.

Irreversible thermodynamics introduce the term dissipative structures to contrast such struc-

tures from the equilibrium structures. They provide an example of non-equilibrium as a source

of order. They can exist in far from equilibrium conditions only through a sufficient flow of

energy and matter.

1.6.1 The fundamental principles of irreversible thermodynamics

For certain processes, the fluxes at any given instant depend on the values of the forces (affini-

ties) at that instant. These processes have no memory and are called Markoffian processes.

A non-Markoffian system or process has memory in the sense that the fluxes will depend on

the forces applied at previous times as well as on those applied at the present. A resistor is an

example of a Markoffian system, whereas a capacitor is non-Markoffian.

Generally, the fluxes Ji can be expanded in a power series as functions of the forces with no

constant terms all Ji are known to vanish as the forces F j vanish. The results give

Ji = Li jF j +
1

2!
Li jkF jFk +

1

3!
Li jklF jFkFl + ..., (1.16)

where Li j = (∂Ji/∂F j)F=0 and Li jk = (∂2Ji/∂F j∂Fk)F=0 are the kinetic coefficients and

second-order kinetic coefficients, respectively, and so forth.

Because the applied forces are usually very small, a truncated form of the power series of Eq.

1.16 gives to a very good approximation the phenomenological relation

Jαi = Lαβi j Fβj (1.17)

which represents a linear Markoff process. Here, Jαi and Fβj are the fluxes and driving forces,
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respectively. The Lαβi j are the phenomenological coefficients that are related to the conduc-

tivities Kαβi j but will not, in general, be identical to them.The phenomenological coefficients

Li j are mostly of empirical nature and must be determined experimentally depending on the

material characteristics. This relationship may be classified by the following:

Lαα Related to the conjugate or proper conductivities σ, k,D

Lαβ(α � β) Related to the cross or interference conductivities as, for example,

thermoelectric, electrodiffusive, and thermodiffusive coefficients.

The gap between thermodynamic equilibrium and an irreversible (steady-state) process is

bridged by considering the micro fluctuations in a system at local equilibrium. With this, we

may state the principle of microscopic reversibility as follows.

For a system in thermodynamic equilibrium, every type of micro motion occurs
just as often as its reverse.(Principle of microscopic reversibility)

Using fluctuation theory for the small spontaneous motions around thermodynamic equilib-

rium, Onsager (after Lars Onsager, 1903 − 1976) proved what is now referred to as Onsagers

principle.

A simple statement of Onsagers theorem is given as follows: Provided a proper choice is

made for the fluxes Ji and driving forces F j, the matrix of phenomenological coefficients (Li j

) is symmetrical, that is

Jαβi j = Lβαji and Jααi j = Lααji (i, j = 1, 2, ...n), but Jβαi j = Lαβji (1.18)

The relationships, Eqs. 1.18, are called Onsagers reciprocal relations in the absence of a

magnetic field. Note that only the Lαα phenomenological coefficients have self-symmetry in

the sense of Lααi j = Lααji .

The criterion for Onsagers reciprocal relations is contained in the expression for entropy den-

sity production inside the system undergoing an irreversible process. This is expressed in

quadratic form as
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Ṡ =
∂s
∂t
=

∑
α

JαFα =
∑
αβ

LαβFαFβ > 0 (s in units o f energy/ l3tT ) (1.19)

where l is length (e.g., meter, m), t is time (e.g., second, s), and T is temperature (e.g., K) as

in the SI system of units for which energy is given in joules, (1 W = 1 J/s). Thus, entropy

density production is taken as the time variation of unrecoverable work per unit volume per

unit temperature inside the system and whose quadratic form must be positive definite. In

general, following requirements are asserted

S = 0 (reversible process)

S > 0 (irreversible process)

S < 0 (a process that cannot occur without altering the system conditions)

The quadratic form of the entropy production is positive definite and implies that the matrix

of phenomenological coefficients Lαβ also be positive definite. Therefore determinant of the

Lαβ matrix and all of its minors be positive definite. Take, for example, a two-flow process

involving a two-dimensional matrix Lαβ given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ J1

J2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ L11 L12

L21 L22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ F1

F2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1.20)

where L12 = L21 according to Onsager’s principle. The necessary and sufficient condition for

Eq. 1.20 to be positive definite is that the 2X2 determinant of Lαβ be positive definite. Thus,

∣∣∣∣∣∣∣∣∣
L11 L12

L21 L22

∣∣∣∣∣∣∣∣∣ = L11L22 − (L12)2 > 0 (1.21)

Generally, the diagonal coefficients Lαα > 0 (i.e., are positive), but the Lαβ coefficients can be

positive or negative.

For thermoelectric coupling of electrical currents (J2 = Iel, F2 = ΔUel) with heat transfer

(J1 = Q, F1 = ΔT ), the electrical measurement and the direct heat conduction over a ther-

mocouple gives the conductivity values for L11 and L22. In the case of absence of electrical

current Iel , the voltage ΔUel gives the Seebeck coefficient L12 in [V/K] for a given temper-

ature difference ΔT . The temperature difference with given voltage ΔUel and vanishing heat
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flux gives the Peltier coefficient L21. Measuring the heat flux and the voltage In the case of

absence of electrical current gives additional experimental data for the coupling coefficients

L12 and L21.

1.7 Fluxes and driving forces for diffusion

Surface flux may arise from several different types of driving forces. For instance, a charged

ions has tendency to flow due to an electrostatic field; a solute atom stimulate local volume

dilation and tends to flow toward regions of lower hydrostatic compression. Chemical compo-

nents tend to flow toward regions with lower chemical potential. All the driving forces can be

collected and attributed to the generalized diffusion potential because different driving forces

can arise for a chemical species.

1.7.1 Diffusional mass transport by capillarity

Capillarity is an important motivation for diffusion in many materials systems containing

interfaces. The diffusion potentials of the components depend on the local interface curvature

in the direct vicinity of an interface. Differences in diffusion potential will drive mass transport

between these regions which has different curvatures so that system reduces the amount of

energy.

μ γΩ κ κ+ | + |1 2

μ γΩ κ κ- | + |1 2

J

Figure 1.11: Positive and negative surface curvature. The curvature differences cause diffu-

sion potential gradients that cause surface smoothing by mass transport.

Fig. 1.11 presents a pure crystalline material with an curved surface in which self-diffusion

occur by the vacancy exchange mechanism. Here, the diffusion potential of the atoms just

21



below the concave surface is lower than in the region where the surface is convex. This

cause to establish a diffusion flux through the bulk from the convex area to the concave area

to smooth the surface and reducing the total interfacial energy for isotropic case. Finding

expressions for the atom flux and the diffusion equation in the crystal gives the rate of surface

smoothing, and then solving the diffusion equation subject to the boundary conditions at the

surface.

1.7.2 Diffusional mass transport in an electrical potential gradient

A gradient in electrostatic potential can produce a driving force for the mass diffusion of a

species.

1.7.2.1 Charged ions in ionic conductors

The diffusion potential will be the electrochemical potential, if an electric field, E = −∇φ, is

applied :

J1 = L11F1 = −L11∇Φ = −L11∇(μ1 + q1φ) (1.22)

which takes form

J1 = −D1∇C1 − D1c1q1
2

kT
∇φ (1.23)

in the case of absence of significant concentration gradient, the resultant flux of charge is then

Jq = q1J1 = −D1c1q1
2

kT
∇φ (1.24)

By the help of Ohm’s law, Jq = −ρ∇φ, the electrical conductivity, ρ, is

ρ =
D1c1q1

2

kT
(1.25)

Result shows that the diffusivity is directly proportional to the conductivity.
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1.7.2.2 Electromigration in metals

Due to a cross effect between the diffusing species and the flux of conduction electrons, an

applied electrical potential gradient can induce mass transport in metals. There are two fluxes

in the system: a flux of conduction electrons, Jq, and a flux of the atoms, J1 when an elec-

tric field is applied to a ionic core of the metal atoms in a metal. For a system at constant

temperature with Fq = −∇φ

J1 = −L11∇μ + L1qE (1.26)

Evaluating the quantity L1, requires understanding the physical mechanism that couples the

mass flux of the metallic atoms to the electron current. A force Fe on a diffusing particle which

is proportional to the local current density is caused by the electron current in a metal. The

force arises from the change in the self-consistent electronic charge distribution surrounding

the defect. The defect scatters the current-carrying electrons and creates a dipole, which

in turn creates a resistance and a voltage drop across the defect. This dipole, known as a

Landauer resistivity dipole, exerts an electrostatic force on the nucleus of the interstitial.

This current-induced force is usually described phenomenologically by ascribing an effective

charge to the defect, which couples to the applied electric field to create an effective force.

When this force is averaged over all jumps of a diffusing interstitial, an average force 〈Fe〉 is

obtained which is proportional to E, so that

〈
Fe〉 = βE (1.27)

where β is a constant. This force, in turn, induces a diffusional drift flux of interstitials given

by

Je
1 = 〈ν1〉 c1 = M1

〈
Fe〉 c1 =

D1c1β

kT
E (1.28)

so

L1q =
D1c1β

kT
(1.29)

Consider now the interstitial flux in a material subjected to both an electrostatic driving force

23



and a concentration gradient.

Je
1 = −D1(∇c1 − c1β

kT
E) (1.30)

1.7.3 Diffusional mass transport in the presence of stress

Because stress affects the mobility, the diffusion potential, and the boundary conditions for

diffusion, it both induces and influences diffusion. One can study the main aspects of diffusion

in stressed systems by examining selected effects of stress in isolation. The elastic strain

energy density can be given by

dw = σ1dε1 (1.31)

When this work term is added to the chemical potential term, μ1dc1 , and the procedure

leading to

F1 = −∇(μ1 + σnnΩ1) (1.32)

Therefore;

J1 = L11F1 = −D1(∇c1 +
c1ΔΩ

kT
∇σ) (1.33)

1.7.3.1 Stress effect on mobility

For the diffusion of atoms in an isothermal unstressed crystal, flux equation is given as

J̄1 = −L11∇μ1 = −M11c1∇μ1 (1.34)

M1 will be a tensor in non-uniform stress field because the stress will cause differences in the

rates of atomic migration in different directions. When the jumping atom squeezes its way

from one interstitial site to another there will be a distortion of the host lattice, and work must

be done during the jump against any elements of the stress field that resist this distortion.

Different amounts of work must be done against the stress field during these jumps because

jumps in different directions will cause different distortions in the fixed stress field. So, the

mobility should vary linearly with stress and be expressible as a tensor in the very general

linear form

24



Mi j = Mo
i j +

∑
kl

Mi jklσkl (1.35)

where the stress dependent terms in the sum are relatively small.

1.8 Literature review

1.8.1 Theoretical works

The reliability of the interconnects in integrated circuits has become a major concern for the

microelectronics industry since 1966, when for the first time the failure of thin aluminum

stripes on oxidized silicon due to electromigration is reported. The grainy structure of the

interconnects have changed from polycrystalline to a bamboo structure with shrinking di-

mensions. The reduced number of grain boundaries increase the lifetime of such conductor

lines. Nevertheless, these lines eventually fail because of electromigration, very often by the

occurrence of slit-like transgranular voids.

The formation of the slits can be explained by several possible process. Slits may form be-

cause of stress induced grain diffusion if the void is on a grain boundary. Slits may also form

due to electromigration induced surface diffusion. Suo et al. [29] have pointed out that there

are two driving forces for diffusion: electromigration tends to promote the formation of slits,

while surface energy tends to favor rounded voids. They suggest that a rounded void will

collapse into slit if the electric current density exceeds a critical value. Detailed computations

showed that if the surface diffusivity is isotropic, slits form parallel to the line and do not

causes open circuits. However, if the surface diffusivity is anisotropic, Kraft and Arzt [32]

and Gungor and Maroudas [35] pointed out that open circuits may form by this mechanism.

They showed that slit voids will only form in grains with certain crystallographic orientations.

Kraft and Arzt [32] examined electromigration mechanism in unpassivated interconnects by

both experimental and theoretical. Both theoretically and experimentally observed voids

showed a typical asymmetric shape with respect to the direction of the electron flow. They

conclude that shape of growing voids is largely determined by electromigration induced sur-

face diffusion. Beside shape changes, the simulations also described void motion and growth.

And also their TEM and SEM observations showed that interconnects usually contain large
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number of voids, and that the behavior of voids is extremely complex. Voids continuously nu-

cleate and heal during the life of the interconnect. Voids also migrate along the interconnect

in the direction of current flow, changing their shape as they do so (Kraft and Arzt [28]).

During the theoretical studies, they applied finite difference and finite element formulations,

and compared the results of numerical simulations with experimental studies. And they de-

veloped a model to predict lifetimes of interconnects and to describe the microscopic damage

behavior, considering nucleation and growth of voids.

Oren and Ogurtani [78, 137] developed a mathematical model of the mass flow and accu-

mulation on void surfaces under the action of applied electrostatic force field and capillary

effects that follows from the conservation laws, and from fundamental postulates of linear

irreversible thermodynamics, accounting for the effects of applied electric field, mechani-

cal and thermal stress. Numerical simulations were run with and without the surface diffusion

anisotropy, with the initial void shape critical asymmetric with respect to the direction of elec-

tron flow. These numerical experiments show that the two fold asymmetry in the anisotropic

diffusion coefficient becomes a main factor in the development of a straight advancing slit,

which accelerates the early open circuit failure due to a sharp slit hitting the upper edge of the

interconnect.

Gungor and Maroudas [35] studied the complex problem of linear and non-linear dynamics of

transgranular voids in thin films with bamboo grain structure. They simulated the formation of

various morphological features: void faceting, formation of wedge-shaped voids, propagation

of slit like and soliton like features. They presented the effects of anisotropy of void surface

diffusivity on the stability of the interconnects. They show that morphological instabilities

caused by simultaneous action of applied mechanical stress and electric field on transgranular

dynamics of voids and propagation of slits (Gungor and Maroudas [36]).

Schimschak and Krug [37] proposed a continuum model of evolution of the surface that takes

into account capillary driven diffusion and electromigration. They applied a one dimensional

model of interface dynamics, which can be parameterized by a height function. The one

dimensional geometry is convenient and relevant to the modeling of shape changes at the edge

of an effectively two dimensional conductor line, but becomes inappropriate if the dynamics

create overhangs. They studied numerically the motion and the shape evolution of an infinitely

long isotropic interconnects.
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The electromigration induced shape evolution of cylindrical voids was numerically examined

in their work at 1998 with the same theoretical background in the previous work [38]. They

observed two main routes. Protrusion develops at the leading end of the void, and forms

a separate daughter void if the initial deformation is an elongation in the current direction.

Since daughter is smaller, it moves rapidly and runs ahead of the mother void. If, on the other

hand, the void is initially elongated perpendicular to the current, invagination develops which

eventually splits the void horizontally.

Schimschak and Krug [39] add crystal anisotropy to their calculations in the work at 2000

and they simulate edge voids in addition to the voids in the interconnects. In this study, they

allow the entire upper edge to evolve, and periodic boundary conditions are imposed along

the current direction. And they observe that edge instability can lead to the formation of

overhangs which subsequently pinch off and release voids into the interior of the strip.

Their calculations showed that most important parameter effecting void stability and evolution

was to be founded to be the ratio of the void size to the characteristic length scale. Also

crystalline anisotropy has a decisive influence both on the formation of voids at the edge of

the line and on the evolution of fatal slits out of large edge voids.

Mahadevan et al. [40] studied edge instability in single crystal metal lines, applying a nu-

merical phase field technique. They defined the critical value of the applied current when

the edge perturbation grows to become a slit shaped void, and cause the circuit lifetime to an

unacceptable level.

Mahadevan and Bradley [41] used a phase field method by accounting for electromigration,

surface diffusion, and current crowding to simulate the time evolution of perturbation to the

edge of a current carrying interconnects. They provided a fabrication criterion that guarantee

the wire will not fail by formation of voids.

Also the stability of stressed solid surfaces under a variety of environmental conditions is

still a challenging theoretical problem. Asaro and Tiller [42] made the first serious attempt

to develop an equilibrium thermodynamic model of interfacial morphological evolutions dur-

ing stress corrosion cracking by adding the elastic strain energy density (ESED) directly to

the so-called chemical potential defined only at the surface layer. Like most authors, notably

Srolovitz [43],[44] and Grinfeld ESED appear with a positive sign in their formula. That
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means they are implicitly referring the molar Helmholtz free energy density rather than the

molar Gibbs free energy density in their treatment. Therefore, their formulations are strictly

valid for the isochoric systems that are bounded by the fixed rigid walls and/or the traction

free surfaces in the absence of the external body forces. As shown by Ogurtani and Oren that

the main reason for this apparent sign conflict between isobaric and isochoric systems, which

starting with Herring in the literature is due to the fact that the interface displacement process

has been treated as an isothermal reversible process by minimizing the total Helmholtz free

energy function. This approach is further elaborated by Rice and Chuang in later studies.

Their analysis produced an additional positive contribution such as ESED to the chemical

potential as presented by Herring. The system studied by Rice and Chuang is related to the

diffusive cavity growth under the uniaxial loading (i.e., grain boundary voiding), and is an iso-

baric system by definition since the system is exposed to the constant surface traction forces

(i.e., uniaxial tension). The more realistic treatment of the isobaric problem would be the use

of the dissipation function approach for the nonequilibrium processes as indicated by Fowler

and Guggenheim. In such a treatment one should use the Planck criterion [δF − ΔW] < 0 for

natural isothermal changes by properly stating the necessary subsidiary conditions: the com-

posite closed system is 1) under the constant applied stresses (dead loading); and 2) enclosed

by diathermal boundaries to keep the temperature constant. Here the closed implies that no

matter exchange takes place between the composite system and its surrounding. Designates

the infinitesimal work done on the system. This proper nonequilibrium approach puts the

generalized Gibbs free energy [δF − ΔW] ⇒ δG < 0 back into a unique position for those

thermodynamics systems so-called isobaric systems, which are exposed to the constant sur-

face tractions and body forces, and evolving isothermally. It is strangely enough that the inner

product of stress σi j and strain εi j tensors enters into the volumetric Gibbs free energy density

with a negative sign. This generates a negative rather than positive contributions of the strain

energy density to the thermal part of the Gibbs free energy density (i.e., by definition, it is

the chemical potential for the single component systems) especially in those majority cases

where the stress dependence of the entropy density is almost negligible. One should also

mention here that this apparent sign conflict in the ESED also appears in other studies related

to the interfaces and the triple junctions, which are all basing their work on the equilibrium

treatment of Herring modified by Rice and Chuang, and dealing implicitly or explicitly with

the isobaric systems exposed to the constant external stress fields through the surface tractions

and body forces.
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Chuang and Fuller [45] realized that the ESED contribution on the driving force is inadequate

to explain the experimental findings. They postulated ad hoc reaction kinetic theory, where

the activation energy depends on the applied stress system through the fictitious activation

strain.

The motion of the interface between amorphous silicon (100) and crystalline under the non-

hydrostatic stress were studied by Aziz et al. [46]. They have observed that SPEG growth

rate on the compressive side of elastically bent wafers is lower on the tensile side. They have

developed an activation strain tensor concept in connection with the kinetic expression.

The role of mechanical stress gradients as a driving force in conjunction with electromigration

was first explored in a series of experimental and theoretical. It was reported (Blech [47];

Blech and Herring [48]) that a current density threshold exists below which Al mass transport

is arrested. This threshold was found to be inversely proportional to the Al stripe length.

Below a critical length there was no observable depletion or extrusion.

The dependence of depletion on strip length was explained by the effect of back stress. When

electromigration transports Al atoms in a strip from cathode to anode, the anode will be in

compression while the cathode will be in tension. On the basis of the Nabarro-Herring model

of equilibrium vacancy concentration in a stressed solid, the tensile region has more, and the

compressive region has fewer vacancies than the unstressed region. As a result, there exists

a vacancy concentration gradient decreasing from cathode to anode. The gradient induces

an atomic flux of Al diffusing from anode to cathode, and it opposes the Al flux driven by

electromigration from cathode to anode.

The formation of macroscopic cracks in a stressed single crystal at elevated temperature has

been discussed by Sun et al. [49]. They observed that small voids produced in the crystal dur-

ing fabrication can change shape and volume as atoms migrate under various circumstances.

Sun et al. [50] considered the morphological evolution of grains in a polycrystalline fiber, and

applied a variational analysis to microstructure development by using mass transport mecha-

nisms and thermodynamic forces. The free energy consist of the elastic, interfacial, chemical

components and electrostatic. The rate process included grain boundary motion, creep, dif-

fusion and interface reactions. In a later work, Sun et al. modeled the dynamics of thin film

with two grain on a substrate [50]. They formulate with a finite element with bulk phase free

energy density, surface tension anisotropy, and finite junction mobility. The authors formu-
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lated the laws for the motion of grain boundaries and grain void interfaces. Sun and Suo study

the large shape changes of solid due to matter diffusion on its surface.

Suo [51] investigate aluminum interconnects in the presence of insulator and shunts, subjected

to temperature change and a direct electric current. He studied the evolution of interconnects

into a segment of aluminum depleted near the cathode as a stable state with a linear pressure

distribution in the rest of the line, and no further mass diffusion, and predict time for the inter-

connects to evolve into the stable state. He described the mechanisms for diffusive processes

in solid structures of small sizes, between a few to hundreds of nanometers [52]. He applied

the concept of free energy for microelectronic and photonic devices. The change of free en-

ergy creates a thermodynamic force which drives the configurational change of the structure.

He made a physical description of forces of various origin that plays a role in morphological

dynamics of interconnect lines, including elasticity, electrostatics, capillary, electric current.

Srolovitz [44] first investigate a stress applied to the solid in the direction nominally in the

plane of the interface. The work of Herring (1950) on the stress assisted grain boundary dif-

fusion considers only the stress normal to the surface, Srolovitz tried to adapt the chemical

potential to work of Herring. Then by dropping Herring’s formula Srolovitz [44] proceed

alone the line of Asaro and Tiller [42] by adding the elastic strain energy density to the chem-

ical potential directly. All these models not only suffer from the sign conflict but also predict

identical behavior for solids under tension and compression, because the stress enters through

the elastic strain energy density quadratically.

Liniger et al. [53] studied the kinetics of void growth in unpassivated and electroplated cop-

per lines. The effect of line-width and sample temperature on the void growth rate is studied

by using the scanning electron microscope. Voids are observed to grow by consuming grains

in a stepwise fashion, either by thinning out from the top down, or through a simple edge

mechanism of displacement mechanism. In all cases, the primary diffusion path was surface

diffusion for void growth. Grain boundaries provided a secondary diffusion path for polycrys-

talline lines. Hillock formation was observed to the anode end of the lines. Over time, hillock

formation spread over the entire length of the line but the area just around the cathode end

of the test structure. Voiding was initiated at the cathode and of the line, and start to grow

along an apparent grain boundary. In the end, the void grew across the entire width of the

line, leaving behind a small copper island.
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Barviosa-Carter et.al. [54] in their recent publication tried to take into account the growth

rate orientation anisotropy by adding a cofactor to their phenomenological mobility, without

considering the additional importance of the surface tension anisotropy on the growth rate and

faceting

Gungor and Maroudas,and collaborators, studied the complex linear and nonlinear dynamics

and stability of transgranular voids in thin films exposed to the electromigration and external

stress systems (isobaric) in a series of papers. They successful simulated the formation of

various morphological features: void faceting, formation of wedge-shape voids and propaga-

tion of slit-like and soliton-like features causing open circuit failure, and the healing effects

of the electromigration on the stressed solid surfaces. Anisotropic properties are taken into

account in the surface diffusion. In the stress applications, even though they employed Her-

ring’s chemical potential as modified by Rice and Chuang in their treatments. Their results

are perfectly in agreement in predicting morphological instabilities caused by simultaneous

action of applied mechanical stress and electric fields on transgranular dynamics of voids with

the expense of the very high stresses. The main reason for their apparent success dealing with

the isobaric system in their treatment of the stress induced instability is due to fact that the

strain energy density because of the sign conflict enters into the governing equation with a

negative sign, which makes it effectively to behave similar to the compressive stresses and

thus results inherent instability if other subsidiary conditions are satisfied.

Spencer and Tekalign [55] have made extensive and very successful analysis on the morpho-

logical instability of growing epitaxially strained dislocation-free solid films. These analyses

were based on the surface diffusion driven by the capillary forces and misfit strains by elabo-

rating various type of wetting potentials associated with the thickness dependent surface spe-

cific free energy. In their work, similar to the simulation studies of the stability of epitaxially

strained islands by Chiu and Gao [56], Zhang and Bower [57], Srolovitz [43], Krishnamurthy

and Srolovitz [58], Medhekar and Shenoy [59], Golovin et al. [60], and Levine et al. [61]

elastic strain energy density appears to be additive. Almost without exception, including the

work on the equilibrium morphologies by Kukta and Freund [62], all numerical and analytical

studies reported in the literature for the so-called steady state solutions of the nonlinear free

moving boundary value problem utilized the periodic boundary conditions, and relied mostly

on the instabilities initiated by the white noise or the small amplitude initial perturbations,

where the film thickness is smaller than the wavelength of surface variations.
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Healing phenomenon has been first reported very recently by Tomar et al. [63] who also

produced very interesting linear instability analysis which reveals improved surface morpho-

logical stability over a range of misorientation angles between easy direction of surface drift

diffusion and the electric field. First Averbuch et al. [64],[65] observed the healing effect

of electromigration on the grain boundary grooving as a slowing down in the displacement

kinetics in their rather early terminated numerical experiments.

1.8.2 Experimental observations

It is commonly reported that self-assembling of quantum dots (QD) goes through the classical

stages of nucleation and growth of islands followed by a last sequence of coarsening. This

part of review summarizes the current status of research in the field of nucleation, growth,

and self-organization QDs. There are many theoretical and experimental works on the strain

relaxation mechanisms but the influence of substrate orientations poorly investigated.

Berbezier et al. [67] made extensive work on (001) and (111) surfaces of SiGe, during their

work they deposited S i1−xGex with a thickness between just below the critical thickness of

dislocation nucleation and higher than the theoretical critical thickness of island formation.

They observed evolution between (001) and (111) surfaces, their observations showed on

(001) surface unique formation of metastable coherent dislocation free islands. On Si (111)

only two growth regimes are reported: 2D layer-by-layer growth at low thickness and strain,

and classical SK growth at high thickness and strain values. Undulations and dislocation-free

islands were not observed on this substrate orientation.

On (001) the evolution of SiGe surfaces they observed four different regimes:

Regime I is characterized by a layer-by-layer growth with a gradual increase of surface rough-

ness. This surface roughness primarily consists of dimer vacancies, kinks, and additional

steps.

In regime II, ripple-like islands that show a extensive distribution in size and in shape are

observed at low (h, ε). The main feature of these is their side orientation along < 100 >

directions. Furthermore, they show elongation in chains or in square patterns oriented along

[100] and [010] at increasing thickness (Fig. 1.12). They state that such morphologies can

be equilibrium structures of (001) surfaces when thin film is subjected to biaxial compressive
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stress but it is evident that kinetic considerations cannot be ignored since kinetic instabilities

observed in Si homoepitaxy which give rise to similar morphological evolution of layers.

Figure 1.12: An AFM image of undulations elongated along < 100 > and < 010 > directions

obtained in regime II for S i0.85Ge0.15 [67].

Starting from a ripple-like as grown surface, after 1 h 30 min annealing formation of fully

strained hut islands are observed. After 18 h annealing, islands evolved towards large isolated

huts with well-defined (105) facets. No further evolution occurred during the following 46 h

annealing, they suggest that their morphology is stabilized by the compressive biaxial stress

applied by the substrate to the islands.

In regime III, huts and domes are observed together(Fig. 1.13(a)). The these island groups are

characterized by various aspect ratios and shapes: pyramidal huts (Fig. 1.13(b)) and round-

shaped homes (Fig. 1.13(c)) with the larger facets corresponding to {113} and {111} planes

(Fig. 1.13(d)). Domes are favored in the higher-stress regime, while huts are favored in the

lower-stress regime. Huts represent the steady-state morphology of this regime. Because

stress relaxation is energetically favored, the islands are largely relaxed and the steady-state

morphology consists of domes at higher misfit. So, even if the formation of huts is possible

during growth, they will rapidly transform into domes, during any annealing.

In regime IV, a bimodal size distribution of domes is observed. They correspond to dislocated

and coherent structures. Hut islands are never observed in this regime. The steady-state

morphology consists of larger-sized relaxed islands.

They also investigate the role of step density and of stress on the onset/evolution of the
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Figure 1.13: (a) An AFM image of the bimodal size distribution of islands due to the coex-

istence of square-based hut and round-shaped dome islands for S i0.6Ge0.4 (h = 5 nm). TEM

cross-section images of (b) huts and (c) domes. The enlargement of (c) presented in (d) evi-

dences the presence of (113) and (111) facets [67].

growth instability, initially they studied the homoepitaxial growth of Si/Si disoriented at

2o, 6o, and 10o (in the [1̄1̄2] direction). In all cases a small kinetic roughness is observed

which can be defined as a Gaussian roughness for a deposited thickness lower than 150 nm.

They then investigated the growth of S i0.7Ge0.3 layers when deposited at 2o, 6o, and 10o.

of Si substrates. Regarding the effect of stress, they observed that the biaxial compressive

stress which is applied to the growing film during S i1−xGex with heteroepitaxy dramatically

elevates the instability development.

Figure 1.14: (a) Hut form of Ge on a pseudomorphic Ge layer on Si(100). (b) Multifacet

dome [17].
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The huts are formed initially as square shaped because of the fourfold symmetry of the surface

with relatively low surface energy of {105} surface (Fig. 1.14(a)). The transition to the dome

is mainly because of the elastic deformation energy, the steeper sides of the dome allow better

relaxation of the strain in the 4% lattice mismatched Ge cluster (Fig. 1.14(b)).

Narayan et al. [68] developed two efficient and reliable methods of creating self-assembled

Ni nanodots of uniform size embedded in amorphous and crystalline matrices practically over

any substrate. The method is based on pulsed laser deposition, where the size of nanoparticles

and self-assembly are determined by the flux, interfacial energy, substrate temperature, and

pulsed laser deposition variables. The formation of epitaxial nanodots with a large misfit over

7 to 8 pct shows a major challenge until the discovery of domain matching epitaxy. Using

domain matching epitaxy, they demonstrate an epitaxial growth of nickel nanodots on TiN

with a lattice misfit over 16 pct, and they showed that these epitaxial nanodots can be self-

assembled to form three-dimensional nanostructures. The self-assembly of Ni nanodots is

possible by controlling the kinetics of clustering in a narrow range of deposition and substrate

variables to overcome thermodynamic driving forces leading to Ostwald ripening.

Figure 1.15: Ni clusters in the TiN metallic matrix: (a) low-magnification TEM image and

(b) STEM Z-contrast image [68].

Fig. 1.15 shows the low-magnification TEM (a) and STEM Z-contrast image (b) of Ni nan-

odots embedded in a metallic TiN matrix. Here, nickel nanodots grow as truncated pyramids.

The size of nanoparticles and separation between different monolayers can be controlled by

relative fluxes of two constituents. By changing the size distribution in different layers, they

can also create functionally gradient materials. They can create a smaller size near the top for
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blue light via quantum confinement, intermediate size in the middle for green light, and large

size for red light [68].

Figure 1.16: Evolution of the quantum fortress surface morphology for growth of

Ge0.3S i0.7/S i(100) at a growth temperature of 550 ◦C and a growth rate of 0.9 Ås−1. AFM

scans are 5 μmx5 mm in area. Ge0.3S i0.7 film thicknesses are (a) 0 nm; (b) 15 nm; (c) 30 nm;

d) 53 nm; (e) 100 nm [69].

Hull et al. [69] described new approach to patterning of Si(100) surfaces for controlled nu-

cleation of heteroepitaxial Ge semiconductor clusters (Fig. 1.16). The method create self-

assembly of strain-stabilized quantum quadruplet and quantum fortress structures, whereby

cooperative island nucleation around shallow strain-relieving pits is observed during GexS i1−x/S i(100)

heteroepitaxy. These configurations are kinetically limited structures that exist over a range

of compositions, growth temperatures, and growth rates, but they are destabilized by strain

relaxation. These formations are strain-stabilized, as the strain disappears due to the introduc-

tion of misfit dislocations, so do the quantum fortresses. These configurations are meta-stable

structures, they stabilized only through a relatively narrow range of kinetic pathways. For

example, at a composition of x = 0.3 and a growth temperature of 550 ◦C, they observe the

fortresses at growth rates of 0.9 and 3.0 Ås−1, but not at 0.15 Ås−1. These structures are not

present at temperature of 650 ◦C for a growth rate of 0.9 Ås−1. Thus, it is clear that if surface

diffusion lengths are high enough, the quadruplet fortress morphologies do not form, instead

the standard hut cluster-like morphologies are observed.
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Figure 1.17: InAs dot shape evolution from pyramid to dome transition on Si (001) [70].

Zhao et al. [71, 70] used MBE for InAs quantum dots on Si (001) surface, growth proceeded

with Volmer-Weber growth mode. Fig. 1.17 shows the InAs dots shape evolution. Islands go

through a pyramid shape which is bordered by {111} facets to multi faceted dome shape with

increase in size.

Initially ideal vicinal surface should have a step meandering instability according to Bales

and Zangwill [72]. The evidence of meandering instability was showed by Helium diffraction

experiments of Schwenger et al. [73] in 1997. Later they made detailed analysis of the

characteristic wavelength of meandering as a function of temperature with STEM images of

copper surfaces with uniformly meandering.

Figure 1.18: Cu(21 21 23) surface with meandering instability after 600 monolayer of copper

at 313 K (400nm × 400nm) [74].

Fig. 1.18 illustrates the meandering instability on Cu (21 21 23) surface which is vicinal to

Cu (111) with a terrace width of 21+2/3 atoms rows. The steps has a nearly strait segments

in the dense atom packing directions at 60◦ angle with horizontal step orientation.
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Figure 1.19: STEM image of Cu(1 1 17) surface (200x200 − nm2) after deposition of 80 ML

at F = 1.8x10−2 ML/s and T = 285 K sample temperature [75, 76].

Maroutian et al. [76, 75] observed BZ instability experimentally. They showed that homoepi-

taxial growth of Cu surfaces develops a surface instability, causing a patterning of surface

with temperature and flux dependent characteristic wavelength. Their observation showed

that according to the step stiffness anisotropy level, morphology of BZ instability can be seen

either smooth wave or sawtooth form. They also observed pyramidical formations.

Muller et al. [77] proposed a new method to obtain the surface stress anisotropy of silicon

based on modifications of the Si equilibrium shape by means of electromigration (Fig. 1.20).

To create faceting on Si surface they used electromigration. The main assumption is that

though electromigration is the driving force for faceting, the period remains fixed by elasticity.

They used following equation to predict surface properties.

λ =
2πc

sin(πδ)
exp(1 +

πEρ
2 f 2(1 − ν2)

) (1.36)

with f 2 = (sατ − sβτ)2 + 4sατ sβτ sin2(
α+β

2
), α and β the angles the facets form with the original

orientation, δ =
tgα

tgα+tgβ a geometrical factor and c an atomic unit. The surface-stress com-

ponents si
τ which appear in Equation 1.36 are the surface-stress components perpendicular to

the edge τ which separates the facets α and β.
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Figure 1.20: AFM image of a Si (118) surface heated by a direct current during 150 h at 1373

K. Faceted structure of period λ = 6 μm and height 0.6 μm created by electromigration due

to the ascending current. (001) and (113) are the so-formed facets. The period gives access

to the difference s(001)
τ − s(113)

τ with τ the common edge shared by the (001) and (113) facets

[77].

1.9 Outline of the thesis

Chapter 1 introduces the background of current research and gives literature review to re-

search works conducted by previous researchers. Chapter 2 introduces the theoretical basis

of computational model for the surface morphology evolution with both elastostatic and elec-

trostatic basis. Chapter 3 explains the numerical methods and some important functions used.

Chapter 4 investigates the surface dynamics and stability of an thin film and interconnect

which has sinewave perturbation at one surface under the applied mechanical and electrical

force. And some special effects of texture, mechanical load and applied potential combina-

tions are discussed. Chapter 5 investigates the island formation in epitaxially strained flat

droplets with crystallographic texture and misfit strain. Chapter 6 concludes the thesis and

suggests the future research directions.
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CHAPTER 2

IRREVERSIBLE THERMOKINETIC THEORY OF

INTERFACES

2.1 Introduction

To begin with, it will be useful to give a brief definition of the terms morphology and struc-

ture. The term morphology is associated with a macroscopic property of solids. The word

originates from the Greek μoρϕη, which means form or shape, and here it will be used to refer

to the macroscopic form or shape of a surface or interface. Structure, on the other hand, is

associated more with a microscopic, atomistic picture and will be used to denote; the detailed

geometrical arrangement of atoms and their relative positions in space.

The most general macroscopic approach to a problem in the physics of matter is that of

thermodynamics. The specific features associated with a thermodynamic description of an

interface are illustrated. This chapter focuses on the irreversible or non-equilibrium ther-

modynamic treatment of the morphological evolution dynamics of surfaces and interfaces

composed of ordinary points (Ogurtani and Oren, [78]). By relying only on the fundamental

postulates of linear irreversible thermodynamics as advocated by Prigogine [79] for the bulk

phases, Ogurtani (2000) has obtained a compact and rigorous analytical theory of a network of

interfaces by utilizing the more realistic monolayer model of Verschaffelt (1936) and Guggen-

heim [80] for the description of interfaces and surfaces. A brief summary of Ogurtani theory

is reported recently by Oren and Ogurtani 2002 in connection with their computer simulation

studies on the effect of various combinations of grain textures on the life time and the failure

mechanisms of thin film interconnects.
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2.2 Irreversible thermo-kinetics of micro-discrete open composite systems with

interfaces

The term microscopic region refers to any small two or three-dimensional region containing a

number of molecules sufficiently large not only for microscopic fluctuations to be negligible

but also all of the intensive properties are homogeneous in space. The composite system,

considered here, has at least two physico-chemically distinct domains (or phases in most

general sense) separated by thin layers of interfaces, that are not only mutually interacting

by the exchange of matter and energy but they are also completely open to the surroundings

through the moving or immobile boundaries.

In this theory, the general view points of Guggenheim , Van Der Waals and Bakker [81] are

adopted as far as the interface between any two phases or domains is concerned. Namely, the

interface is autonomous, finite but a thin layer across which the physical properties and/or the

structures vary continuously from those of the interior of one phase to those of the interior

of the other. Since the interfacial layer is a material system with well-defined volume and

material content, its thermodynamic properties do not require any special definition. One

may speak of its temperature, entropy, free energy, and composition and so on just as for a

homogeneous bulk phase. The only functions that call for special comment are the pressure

and the interfacial (surface) tension.

The total reversible work, δΔω, done on a flat surface phase with micro-extent, indicated in

terms of Δ space-scaling operator, by variations of its volume dΔVσ, and area dΔAσ (keep-

ing its material content unaltered, but stretching) is given by the following well known ex-

pression, assuming that the component of the stress tensor along the surface normal P is

quasi-homogeneous in the layer and other transverse two components denoted by P-Q are

equal (rotational symmetry) but heterogeneous (in the absence of electrostatic and other non-

mechanical force fields),

δΔω = −P̄dΔVσ + γdΔAσ (2.1)

where, P̄ is the mean isotropic pressure in the layer, and γ is called the surface tension, whose

value and the location of the surface in which it acts can be uniquely determined by the

knowledge of the transverse component of the stress tensor as demonstrated by Buff (1955).
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Its value may be given roughly by

γ =

hσ∫
0

Qdz (2.2)

where, Q is the deviatoric part of the stress tensor and hσ is the thickness of the surface layer

and the integration is performed along the surface normal. The above given expression for the

reversible work becomes −P̄dΔVα for a homogeneous bulk phase in the formulation of the

first law of thermodynamics. In the conventional theory of irreversible processes (Prigogine

[79] and Glansdorff and Prigogine [82], it has been postulated that the Gibbs formula, which

is derived for the reversible changes, is also valid for irreversible processes. However in

the present formulation, it is tacitly postulated that the differential form of the Helmholtz

free energy in equilibrium thermodynamics has the same validity for irreversible changes.

Mathematically this assumption is exactly equivalent to the Gibbs formula used extensively

in standard treatment.

The local anisotropic properties of the medium are now automatically embedded in the in-

tensive variables, which are characterized by second order tensors or dyadics. Hence the

Helmholtz free energy for an open surface phase of a micro-extent may be written as,

dΔFσ = −ΔS σdTσ − PσdΔVσ + γdΔAσ +
∑

i

μi
σdΔni

σ −
∑

j

ΔA j
σdξ j

σ (2.3)

where, ΔS σ denotes the entropy, μi
σ denotes the chemical potential, Δni

σ is the number of ith

chemical species in the micro-element, dξ j
σ is the extent of the homogeneous jth chemical

reaction taking place in the phase under consideration, and ΔA j
σ is the affinity of the homo-

geneous jth chemical reaction and is related to the chemical potentials and the stoichiometric

numbers as defined by Th. De Donder et al. (1936).

In above relationship, it is assumed that, in a single phase only the homogeneous chemi-

cal reactions take place and the phase transitions occurring at the mobile boundaries are not

considered in the last term. The Helmholtz free energy change due to the passage of the sub-

stance from the phase to the surroundings is accounted by the fourth term in above expression

(frozen chemical reactions). Therefore, in the case of a close system, one should subtract only
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the term given by
∑
i
μi
σdΔni

σ, which is closely related to the direct exchange of matter with

the surroundings.

For the bulk phase, b, (α or β), one may rewrite very similar expression namely,

dΔFb = −ΔS bdTb − PbdΔVb +
∑

i

μi
bdΔni

b −
∑

j

ΔA j
bdξ j

b (2.4)

In the case of a composite system as defined previously, the total Helmholtz free energy

differential can be immediately written down from Eqs. (2.3 and 2.4) by using the fact that

the extensive thermodynamic quantities are additive. If there would be thermal, hydrostatic

and physico-chemical equilibrium in the multi-phase system with plane interfaces there is

no need to add subscripts to T, P and μi; there must have values uniform throughout the

various phases (bulk and surface) present in the system. For the present non-equilibrium case,

first it will be assumed that no such restrictions on the system, but later a system at thermal

equilibrium will be treated. For the present problem the system is an open composite system,

and it is composed of two bulk phases and two surface phases (the interface between void and

interconnect, or interconnect and its surrounding).

The entropy of the system is an extensive property; therefore if the system consists of several

parts, the total entropy of the system is equal to the sum of the entropies of each part.

The entropy of any system whether it is close or open can change in two distinct ways, namely

by the flow of entropy due to the external interactions, dΔS ex, and by the internal entropy

production due to the changes inside the system, dΔS in. Symbolically, one may write this as,

dΔS = dΔS in + dΔS ex (2.5)

The entropy increase dΔS in due to changes taking place inside the system is positive for all

natural or irreversible changes, is zero for all reversible changes and is never negative. For

a close system external entropy contribution has a very simple definition, and it is given by

dΔS ex = δq/T where δq is the heat received by the system from its surroundings. Now, let

us generalize the first law of thermodynamics for any infinitesimal change associated with an

open system. For an open system, in which not only the energy but also the matter exchange

takes place between the system and its surroundings, the conservation of energy becomes,

43



δΔΦ = dΔU − δΔω = d [ΔF + TΔS ] − δΔω (2.6)

where, δΔΦ is the energy received by the system, in terms of heat and matter transfer pro-

cesses from the surroundings, dΔU is the internal energy change, and δΔω is the reversible

work done on the system by the external agents, and this work is equal to −PdΔV or −PdΔV−
γdΔ depending upon whether one deals with the bulk phase or the surface phase, respectively.

Eq. (2.6) and Eq. (2.3 or 2.4) results the following formula in regards to the total differential

of the total entropy for the phase, k (surface or bulk phases);

dΔS =
δΔΦ

Tk
−

∑
i

μi
k

Tk
dΔni

k +
∑

j

ΔA j
k

Tk
dξ j

k (Total Entropy Change) (2.7)

where the summations with respect to i and j indicate summation over different chemical

species and over different reactions taking place simultaneously in the same phase, respec-

tively.

The Eq. (2.7) can be divided into two parts, similar to the Prigogine (1961), who applied such

a splitting procedure to the systems consist of two open phases but the system is closed as a

whole:

The first two terms of (2.7), correspond to the rate of external entropy flow term (REF):

namely,

dΔS ex

dt
=

1

Tk

δΔΦ

dt
−

∑
i

μi
k

Tk

dΔni
k

dt
(Rate o f Entropy Flow (REF)) (2.8)

And the last term of Eq. (2.7), on the other hand constitutes to the internal entropy production

term (IEP): namely,

dΔS in

dt
=

∑
j

ΔA j
k

Tk

dξ j
k

dt
� 0 (Internal Entropy Production (IEP)) (2.9)

As one might expect that, the IEP in a single phase directly related to the chemical reactions

taking place in the region whether it is closed or open. Only the REF is affected from the

matter flow through the open boundary.
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One may also write down the power dissipation, ΔP, for natural changes, which is a very

useful function, which is also known as Helmholtz dissipation function (Haase, 1969)[83], for

the treatment of the isothermal processes taking place in multi-phase systems with uniform

and continuous temperature distribution, and it is given by the following expression.

ΔP = T
dΔS in

dt
=

∑
i

ΔAi dξi

dt
� 0 (2.10)

Inequalities given by Eqs. (2.9 and 2.10) are valid for any natural change, taking place in any

phase whether it is bulk or surface. Only difference between these two expressions is that the

first one is valid for any type of natural changes taking place in the system but the second one

is restricted only for the isothermal natural processes.

For a global composite system having discontinuous (heterogeneous) phases, there are two

additional IEP terms, one is due to the internal entropy flow associated with the transfer of

chemical species from one subdomain to another subdomain; and the other one is due to the

energy transfer between the subdomains of the composite system.

This second IEP term for a composite system immediately drops out if the subdomains have

identical temperatures. The total differential of the entropy for such a system is;

dΔS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∑
i,k

μi
k

Tk
dΔni

k↔s +
∑

k

δΔΩk↔s

Tk

−
∑
i,k

μi
k

Tk
dΔni

k +
∑

k

δΔΩk

Tk
+

∑
j,k

ΔA j
k

Tk
dξ j

k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(Total Entropy Change) (2.11)

where the double summations with respect to k and i or j indicate summation over various

phases (bulk or surface) and over different chemical species or reactions taking place simul-

taneously in the same phase, respectively. δΔΩk is the amount of energy transported to the

individual phase from the other phases present in the global system due to heat or matter ex-

change. In Eq. (2.11), the subscript k↔s indicates that the matter and energy exchange takes

place between the phases of the system, k, and the surrounding, s.

By performing the splitting procedure to the Eq. (2.11) similar to the single-phase systems:

The REF from the surrounding to an open composite system may be written as,
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dΔS ex

δt
= −

∑
i,k

μi
k

Tk

dΔni
k↔s

δt
+

∑
k

1

Tk

δΔΩk↔s

δt
(REF) (2.12)

and the IEP due to the irreversible processes:

dΔS in

δt
= −

∑
i,k

μi
k

Tk

dΔni
k

δt
+

∑
k

1

Tk

δΔΩk

δt
+

∑
j,k

ΔA j
k

Tk

dξ j
k

δt
(IEP) (2.13)

On the other hand the first term contributes to IEP of a composite system as long as one has

chemical potential differences between respective sub-domains regardless the transfer process

isothermal or not.

A comparison of the IEP expressions, for the single-phase system, Eq. (2.9), and the com-

posite system, Eq. (2.13), immediately shows us that the internal entropy production IEP

is not an additive property of a thermodynamic system composed of interacting open sub-

systems unless the whole system is in complete physico-chemical equilibrium state (uniform

temperature and chemical potential distributions).

At the onset, it should be clearly stated that in the case of an open composite system having

only homogeneous chemical reactions with inactive external boundaries (no chemical reaction

or phase transition occurring there) any ordinary exchange of matter and/or energy with its

surroundings only contributes to the total entropy flow term, and it is noting to do with the

IEP.

2.3 Ordinary point motion along the surface normal

During the derivation of the formula for the global IEP associated with the arbitrary virtual

displacement, dη, of the interfacial loop of a finite thickness, which separates the second

phase, denoted by β, from the interconnect, denoted by b, having multi-components, one has

to integrate the rate of local entropy density change along the curved interface in order to

obtain desired connection between generalized forces and conjugate fluxes. The rate of local

entropy density change is the only quantity, which has the additive property that allows to be

integrated. Therefore, not only the local internal entropy production (source term), but also

the external entropy flow term should be evaluated for the virtual displacement.
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Figure 2.1: Ordinary point motion along surface normal. a) Macro-structure, b) Micro-

structure. ABC: interfacial layer and δη: virtual displacement of the ordinary point along

surface normal [84].

2.3.1 Internal entropy production

The IEP of an open composite system is given by the Eq. (2.13). As far as the second phase

- interconnect surface layer is concerned, it is assumed that the whole system is in thermal

equilibrium, T , and there is no insitu chemical reactions is taking place. These assumptions

drop out the second and the third terms of Eq. (2.13), as discussed before. Then the only non-

vanishing term of IEP, which represents an additional contribution in the composite system

due to internal entropy flow associated with the transfer of chemical species from one sub-

domain to another sub-domain, is given by,

δΔS in

δt
= − 1

T

∑
i, j

μi
j

δΔni
j

δt
(2.14)

Double summations with respect to i and j indicate summations over different chemical

species and over various phases (b, β and σ), respectively.

Now, let us calculate the internal entropy variation for the left hand side sub-system when

the ordinary point moves along the surface normal with a distance δη+. From figure 2.1,

one immediately finds the following variational relationships among various quantities by

assuming that: Δ�+ >> δη+ and Δ�− >> δη−;
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δΔ�+ = δη+ cos θ+andδH+ = δη+ sin θ+ (2.15)

δΔn+b = −
1

2Ωb
Δ�+ sin θ+δη+ (2.16)

δΔn+β =
1

2Ωβ
Δ�+ sin θ+δη+ (2.17)

δΔn+σ =
hσ
Ωσ

cos θ+δη+ (2.18)

whereΩσ, Ωb and Ωβ are the mean atomic specific volumes, associated with the surface layer,

bulk and second phases, respectively. Δ�+ and Δ�− denote segment lengths of the surface

layer just next to the ordinary point right and left hand sides, respectively. hσ is the thickness

of the surface layer and assumed to be invariant. δΔn+β and δΔn+b are the number of atoms

gain in the reaction zones associated with the second phase - interfacial layer and the bulk -

interfacial layer respectively, while the transformation processes are taking place there during

the virtual displacement of the interfacial layer. δΔn+σ is equal to the net atomic gain by the

interfacial layer denoted by σ due to enlargement (extension without stretching) of that layer

during the displacement operation. δ and Δ are variational and micro-discretization operators,

respectively.

One can obtain exactly similar expressions for the other side of the ordinary point, which will

be identified by a negative sign as superscript in the following formulas:

δΔ�− = δη− cos θ−andδH− = δη− sin θ− (2.19)

δΔn−b = −
1

2Ωb
Δ�− sin θ−δη− (2.20)

δΔn−β =
1

2Ωβ
Δ�− sin θ−δη− (2.21)

δΔn−σ =
hσ
Ωσ

cos θ−δη− (2.22)

Also, one should recall that in the case of multi-component system, the variations in the

number of atomic species could be easily obtained by simply multiplying the total atomic

number variations by the respective atomic fractions denoted by xi
j. As an example, the

number of chemical species involved in the left and right hand side bulk phases due to the

virtual displacement may be given by
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δΔni+
j = xi

jδΔn+j (2.23)

and

δΔni−
j = xi

jδΔn−j (2.24)

Then, one can write down the rate of entropy production due to ordinary point virtual dis-

placement along the surface normal for the left as well as for the right hand side domains;

δΔS +in
δt
=

1

T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣∑
i

⎛⎜⎜⎜⎜⎜⎜⎝ xi+
b

Ωb
μi+

b −
xi+
β

Ωβ
μi+
β

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ 1

2
Δ�+ sin θ+

−Γσ cos θ+
∑

i

xi+
σ μ

i+
σ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
δη+

δt
(2.25)

and

δΔS −in
δt
=

1

T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣∑
i

⎛⎜⎜⎜⎜⎜⎜⎝ xi−
b

Ωb
μi−

b −
xi−
β

Ωβ
μi−
β

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ 1

2
Δ�− sin θ−

−Γσ cos θ−
∑

i

xi−
σ μ

i−
σ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
δη−

δt
(2.26)

where, Γσ = hσ/Ωσ corresponds to the specific mean atomic density associated with the

surface layer.

In above relationship, the special superscript + or - has been employed above the atomic

fractions as well as the chemical potentials in order to indicate explicitly that those quantities

may depend upon the orientation of the local surface normal. One should also recall that for

the multi-component surface phases,
∑
Γi
σμ

i
σ is exactly equal to the specific Gibbs free energy

density associated with the interfacial layer. This may be denoted by gσ. Here, Γi
σ = Γσxi

σ, is

by definition known as the specific surface concentration of chemical species in surface layer.

The terms appearing in the first group on the right side of Eq. (2.25) and (2.26) such as,∑
i
χi

bμ
i
b/Ωb and

∑
i
χi
βμ

i
β/Ωβ are the volumetric Gibbs free energy densities. These quantities

are denoted by
�gb and

�gβ, and associated with the bulk phase and void region having their

own instantaneous compositions just next to the hypothetical geometric boundaries of the

interfacial layer (reaction fronts or zones). Furthermore, these quantities are related to the

specific Gibbs free energy densities by the relationship: gσ = hσğσ. By using these definitions

the following equations are obtained,
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δΔS +in
δt
=

1

T

{(
ğ+b − ğ+β

) 1

2
Δ�+ sin θ+ − g+σ cos θ+

}
δη+

δt
(2.27)

and

δΔS −in
δt
=

1

T

{(
ğ−b − ğ−β

) 1

2
Δ�− sin θ− − g−σ cos θ−

}
δη−

δt
(2.28)

The total internal entropy production is:

δΔS in

δt
=
δΔS +in
δt
+
δΔS −in
δt

(2.29)

=
1

T

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−Δ�

2

(
ğ+βb sin θ+ + ğ−βb sin θ−

)
− (

g+σ cos θ+ + g−σ cos θ−
)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
δη

δt
(2.30)

(2.31)

where ğβb = (ğβ − ğb), and it corresponds by definition to the volumetric density of Gibbs

Free Energy of Transformation (GFET) (negative of the affinity of an interfacial reaction such

as condensation or adsorption, gβb ) associated with the transformation of the bulk phase into

the realistic second phase, which contains chemical species even though they are present in a

trace amount. In the case of thermostatic equilibrium between a second phase and an adjacent

bulk phase, GFET becomes identically equal to zero, if the reaction front would be a flat

interface. There is a very simple connection between this quantity GFET and the Specific

Gibbs Free Energy of transformation between the parent phase and the second phase that may

be given by gβb = ğβbhσ. By dividing both sides of the Eq. (2.29) by Δ�, it is obtained that,

δΔS in/Δ�

δt
= − 1

2T

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
�g
+

βb sin θ+ +
�g
−
βb sin θ−

)
+

(
g+σ

cos θ+

Δ�/2
+ g−σ

cos θ−

Δ�/2

)
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
δη

δt
(2.32)

Now if one applies the limiting procedures such as; first with respect to δt → 0, and then

Δ� → 0, and recalls the definition of the local radius of curvature, κ, which is given by;

κ = �im
Δ�→0

(
cos θ

Δ�/2

)
(2.33)
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and also keeps in mind that �im
Δ�→0

θ± = π
2
, ğ+βb = ğ−βb = ğβb and g+σ = g−σ = gσ, one immediately

obtains the following continuum relationship for the IEP,

dΔŜ in

dt
= − 1

T

(
�gβb + gσκ

) dη
dt

(erg/oK/cm/sec) (2.34)

where dΔŜ in/dt is the surface density of IEP associated with ordinary points.

2.3.2 Rate of entropy flow

Similarly, the external entropy accumulation in the surface phase due to flow of chemical

species, i, along the surface layer, Ji
σ, and the perpendicular incoming flux intensities from

the bulk, Ĵi
b, and the void, Ĵi

β, phases, can be calculated by using the law of conservation of

entropy without the source term or IEP.

Figure 2.2: Structure of micro-composite system [84].

From figure 2.2 it can be written as,

dΔŜ ex

dt
= − ∂
∂�

Jσ + Ĵb + Ĵβ (2.35)

= −
∑

i

∂

∂�

(
μi
σ

Tσ
Ji
σ

)
+

∑
i

μi
b

Tb
Ĵi

b +
∑

i

μi
β

Tβ
Ĵi
β (2.36)

= −
∑

i

∂

∂�

(
μi
σ

Tσ
xi
σJσ

)
+

∑
i

μi
b

Tb
xi

b Ĵb +
∑

i

μi
β

Tβ
xi
β Ĵβ (2.37)

(2.38)

where, Ĵv and Ĵb are the total atomic flux intensities is such directions that they are perpendic-

ular and oriented towards the interfacial layer, just at the reaction fronts between the second
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phase and the interfacial layer and the bulk phase and the interfacial layer, respectively.

By remembering the definitions of the volumetric Gibbs free energy densities,
�gk, given by∑

i
xi

kμ
i
k/Ωk, where k represents the different phases, and keeping in mind that the global sys-

tem is in thermal equilibrium, Eq. (2.35) can be rewritten as:

dΔŜ ex

dt
= −Ωσ

T

[
∂

∂�
(ğσJσ) + ğσ

(
Ĵb + Ĵβ

)]
(2.39)

where dΔŜ ex/dt is the surface density of REF associated with ordinary points.

In this formula it is also assumed that the mean atomic specific volumes of the bulk and the

second phases are nearly equal to that of the interfacial layer.

2.3.3 The local rate of change in the entropy density

The total entropy production has to be calculated since only this term has the additive property

that will be used to calculate the total entropy production of the whole surface layer under

isothermal condition by a path integration procedure. By using Eqs. (2.34 and 2.39);

dΔŜ
dt
=

dΔŜ in

dt
+

dΔŜ ex

dt
(2.40)

= − 1

T

{(
ğβb + gσκ

) dη
dt
+ Ωσ

[
∂

∂�
(ğσJσ) + ğσ

(
Ĵb + Ĵβ

)]}
(2.41)

In order to calculate the global rate of entropy change of the whole curved interfacial layer,

which is between the second phase region and the bulk phase, let first take the line integral of

Eq. (2.40) all along the closed curved interface, represented by C which may be situated at a

point denoted by the open interval (−ε,+ε), where ε→ 0. This interface is represented by Co

and equal to C − (−ε,+ε).
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∮
Co

d�
dΔŜ

dt
= �im
ε→0

−ε∫
+ε

d�
dΔŜ

dt
(2.42)

= − 1

T
�im
ε→0

−ε∫
+ε

d�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(
ğβb + gσκ

) dη
dt

+Ωσ

[
∂

∂�
(ğσJσ) + ğσ

(
Ĵb + Ĵβ

)]
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ (2.43)

In the absence of the particle source and sink terms, the atomic flux divergence is proportional

with the amount of mass accumulated or depleted on an interfacial layer, which causes the

interface to move in a local normal direction. However in this formulation a more general

situation, namely, the additional entropy source terms associated with the normal components

of the atomic flows coming from the bulk phase, and the void region due to condensation or

evaporation processes that may be summarized by, Ĵbβ = Ĵb + Ĵβ, is considered. Hence, the

following expression can be written for the conservation of atomic species during the virtual

displacement of curved interface having no stretching and thickness variations:

[(
cb − cβ

)
− hσκ̄cσ

] dη
dt
=

∑
i

∂Ji
σ

∂�
−

∑
i

(
Ĵi

b + Ĵi
β

)
=
∂Jσ
∂�
− Ĵbβ (2.44)

where, cb, cβ and cσ are the atomic volumetric concentrations associated with the bulk, sec-

ond phase and surface phases, respectively. Now if one considers the following plausible and

highly accurate approximations for second phase, which may be treated as polyatomic dilute

gas, such as: cβ = 0 and hσκ̄ = 0. One would get the following results using the fact that

Ωb = cb
−1, which is mostly adapted in the literature (Guggenheim [80] and Ogurtani and

Oren [78]):

dη
dt
= �n · d�r

dt
= Ωb

(
∂Jσ
∂�
− Ĵbβ

)
(2.45)

where, �n and �r are the surface normal and the position vectors, respectively.

Now, let us substitute above identity into Eq. (2.42), and also remember that it is assumed

that the mean atomic specific volume of the bulk phase is nearly equal to that of the interfacial

layer.

53



∮
C0

d�
dΔŜ

dt
= −Ωσ

T
�im
ε→0

−ε∫
+ε

d�

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
ğβb + gσκ

) (∂Jσ
∂�
− Ĵbβ

)

+

[
∂

∂�
(ğσJσ) + ğσ Ĵbβ

]
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

(2.46)

In order to apply the integration by parts let us write Eq. (2.46) in the following form,

∮
C0

d�
dΔŜ

dt
= −Ωσ

T
�im
ε→0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε∫
+ε

d�
[(
�gβb + gσκ

)
∂Jσ
∂�

]

−
−ε∫
+ε

d�
[(
�gβb + gσκ

)
Ĵbβ

]

+

−ε∫
+ε

d�
∂

∂�

(
�gσJσ

)
+

−ε∫
+ε

d�
(
�gσ Ĵbβ

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.47)

The first group of terms on the right side of the Eq. (2.47) can be integrated by parts, as shown

below; In order to save the space the left side of the equation are not shown in the following

two equations.

= −Ωσ
T
�im
ε→0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε∫
+ε

d�
∂

∂�

[(
�gβb + gσκ

)
Jσ

]
−
−ε∫
+ε

d�
[
Jσ
∂

∂�

(
�gβb + gσκ

)]

−
−ε∫
+ε

d�
[(
�gβb + gσκ

)
Ĵb f

]

+

−ε∫
+ε

d�
∂

∂�

(
�gσJσ

)
+

−ε∫
+ε

d�
(
�gσ Ĵbβ

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.48)

After some manipulations and rearrangements,

=
Ωσ

T
�im
ε→0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε∫
+ε

d�
[
Jσ
∂

∂�

(
�gβb + gσκ

)]
−

[(
�gβb + gσκ

)
Jσ

]−ε
+ε

+

−ε∫
+ε

d�
[(
�gβb + gσκ

)
Ĵbβ

]
−

[
�gσJσ

]−ε
+ε
−
−ε∫
+ε

d�
(
�gσ Ĵbβ

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.49)

At the final step after the integration by parts procedure, one should carefully split the global

rate of entropy change into two parts, namely the REF term and the IEP term by carefully

inspecting the individual contributions in Eq. (2.49).
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d
dt

S REF =
Ωσ

T
�im
ε→0

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
−ε∫
+ε

d�
(
�gσ Ĵbβ

)
−

[
�gσJσ

]
−ε
+

[
�gσJσ

]
+ε

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.50)

where, the first term is the integrated entropy flow to the interfacial layer from the embedding

parent phases through the incoming matter flux, Ĵbβ.

The remaining terms of Eq. (2.49) are related to the IEP and given by,

d
dt

S IEP =
Ωσ

T
�im
ε→0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε∫
+ε

d�
[
Jσ
∂

∂�

(
�gβb + gσκ

)]
+

−ε∫
+ε

d�
[(
�gβb + gσκ

)
Ĵbβ

]

−
[(
�gβb + gσκ

)
Jσ

]
−ε
+

[(
�gβb + gσκ

)
Jσ

]
+ε

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.51)

This original result clearly confirms that the bulk flow of particles or substances for nonvis-

cous systems appears to be a reversible phenomenon as first discovered by Prigogine [79], in

another content using the velocity of the centre of gravity as a reference system in the calcu-

lation of the possible singularity. In the absence of this singularity, the last two terms of Eqs.

(2.50 and 2.51), become identically zero and drop out completely.

Here it should be clearly stated that the singularities have to be treated individually as a special

case, where the discrete formulation of irreversible thermodynamics as suggested and devel-

oped by Ogurtani (2000), may be a very powerful tool to handle this problem successfully, as

it will be shown in the next section.

After these mentioned drop outs, the following formula obtained for the IEP

d
dt

S IEP =
Ωσ

T
�im
ε→0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ε∫
+ε

d�
[
Jσ
∂

∂�

(
�gβb + gσκ

)]
+

−ε∫
+ε

d�
[(
�gβb + gσκ

)
Ĵbβ

]⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.52)

Before proceeding further, let us turn back to postulates of irreversible thermodynamics: As

shown by Prigogine [79], the internal entropy production of the irreversible processes can be

written as a sum of the products of generalized forces or affinities and the corresponding rates

or generalized fluxes,

d
dt

S IEP =
∑

k

JkFk � 0 (2.53)
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By utilizing this postulate, which means by comparing the Eqs. (2.52 and 2.53), one obtains

the following forces from the integrated IEP expression (2.52), which is valid for any arbitrary

closed loop.

Fσ =
Ωσ

T
∂

∂�

(
�gβb + gσκ

)
(2.54)

and

Fβb =
Ωσ

T

(
�gβb + gσκ

)
(2.55)

where, Fσ and Fβb denote longitudinal and transverse generalized forces that are acting on

the interfacial layer respectively.

If one considers the additional contributions due to external forces, denoted by �Fext,

Fσ = Ωσ

[
1

T
∂

∂�

(
�gβb + gσκ

)
+ �t · �Fext

]
(2.56)

and

Fβb = Ωσ

[
1

T

(
�gβb + gσκ

)
+ �n · �Fext

]
(2.57)

Here �t and �n denote unit tangent and normal vectors at the surface. The external forces were

discussed by Ogurtani and Oren [78] in Appendix B of that reference for various kind of

external forces, such as electrostatic, and magnetic in nature.

The external generalized forces per particle, i, associated with electromigration is given by,

�Fi
em = −

eZi

T
∇ϑ (2.58)

Where, ϑ is the electrostatic potential and eZi is the effective charge of the particle i. The

external generalized total force density (per unit volume) associated with electromigration

and acting on particles may have the following form for a multi- component system whether

it is a bulk phase or an interfacial layer,
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�Fem = − 1

TΩσ

⎛⎜⎜⎜⎜⎜⎝∑
i

xieZi

⎞⎟⎟⎟⎟⎟⎠∇ϑ = − 1

TΩσ
eZ∗∇ϑ (2.59)

where, eZ∗ is the effective charge in multi-component systems.

The external generalized forces per particle, i, associated with strain energy interaction is

given by,

�Fi
ε = ∇(

¯̄
λi ⊗ ¯̄σ)/T (2.60)

where ¯̄λi is the elastic dipole tensor of the individual chemical species denoted by ”i”.

The contribution of �Fem in Eq. (2.57), �n · �Fem, becomes identically zero since the normal

component of the electric field intensity vanish at the surface. In the same manner, The

contribution of �Fε in transverse flux is equal to zero if the normal component of traction at

surface is zero.

Then, according to the Onsager theory (de Groot [85] and Prigogine [79]), which connects

generalized forces and conjugate fluxes through generalized mobilities, the conjugate fluxes

associated with the above forces can immediately be written down, by neglecting the cross-

coupling terms between generalized forces and fluxes, as:

Jσ =
Mσ

kT
Ωσ
∂

∂�

[(
�gβb + gσκ

)
− 〈

eZ∗
〉 ϑ
Ωσ
+ 〈 ¯̄λ〉 ⊗ ¯̄σ

]
(S ur f ace Flux) (2.61)

and

Ĵβb =
Mβb

kT
Ωσ

(
�gβb + gσκ

)
(Incoming net lateral f lux density) (2.62)

where, Mσ/k and Mβb/k are the generalized phenomenological mobilities associated with the

respective conjugated forces and fluxes, 〈eZ∗〉 is the mean value of the effective electromigra-

tion charge associated with the interacting species and k is the Boltzman’s constant. 〈 ¯̄λ〉 is the

elastic dipole tensor associated with the interacting species.

For multi-component systems, where one is interested only in the net atomic (mass) transport

regardless to the contributions of individual chemical species, the first generalized-mobility,

Mσ, may not be easily connected to any combination of the intrinsic surface diffusivities of
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individual chemical species in the interfacial layer or in the bulk phase. However, for one

component system having minor amount of doping elements or impurities, the situation is

rather simple where one can easily identify the existence of the following relationship between

generalized mobility and the surface self-diffusivity of host matter denoted by D̃σ,

M̂σ =
Mσ

kT
=

D̃σ
kT

hσ
Ωσ
=

D̃σ
kT
Γσ (2.63)
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CHAPTER 3

MATHEMATICAL MODEL AND NUMERICAL

PROCEDURES

3.1 Introduction

3.2 Mathematical model

According to this discrete microfinite elements method formulation of the irreversible thermo-

dynamics of surfaces and interfaces by Ogurtani and Oren, the evolution kinetics of traction

free surfaces exposed to the electrostatic and elastostatic fields in addition to the capillary

forces may be described in terms of surface normal displacement velocities V̄ord by the fol-

lowing well-posed moving boundary value problem in 2D space for ordinary points, using

normalized and scaled parameters and variables, which are indicated by the bar signs over the

letters.

V̄ord =
∂

∂�̄

[
D̄(θ, φ,m)

∂

∂�̄

(
Ξσ̄h + Σσ̄

2
h + χϑ̄ + γ̄ f↔s(ȳ) γ̂(θ, φ,m) κ̄ + ω̄(ȳ)

)]

− M f v
(
Ξσ̄h + Σσ̄

2
h + γ̄ f↔s(ȳ) γ̂(θ, φ,m) κ̄ + ω̄(ȳ)

)
(Ordinary points) (3.1)

V̄long = −M̄longΩ̄
−1{λT J − cos(θW)} ∀ λT J ≥ 1 (Triple junction contour line) (3.2)

In Eq. (3.1), the first and second terms represent the elastic dipole tensor (EDTI) and elastic

strain energy density (ESED) interactions, and the third and fourth terms are associated with
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the electromigration, and capillary forces, respectively. In the governing equation Eq. (3.1),

the normalized hoop stress is denoted by σ̄h ≡ (σh/σo), where σo is the applied stress (missfit

ot uniaxial). The hoop stress in plane strain condition is defined by σh = t̂ · σs · t̂, where t̂ is

the unit surface tangent vector, and σs is 2D-stress tensor evaluated at the region just adjacent

to the surface layer. The dimensionless parameters Σ and Ξ correspond, respectively, the

intensities of the ESED and the EDTI contributions on the stress-driven surface drift diffusion.

χ is the electron wind intensity (EWI) parameter, ϑ̄ is the normalized electrostatic potential

generated at the surface layer due to the applied electrostatic field intensity designated by

E0. κ̄ is the normalized local curvature and is taken to be positive for a convex void or a

concave solid surface (troughs). Similarly the positive direction of the surface displacement

is assumed to be towards the bulk (matrix) phase, and implies void growth. D̄(θ, φ,m) is

the diffusion coefficient. In the above expression, �̄ is the curvilinear coordinate along the

surface (arc length) in 2D space scaled with respect to �0. Where �0 is the arbitrary length

scale, and in the present paper the line width of the thin single crystal film ω0 is chosen as a

natural scaling length, namely; �0 = ω0. ω̄(ȳ) is the normalized wetting potential, which is

given by ω(y) = Ωσ ny · γ′f↔s(y) in particle representation. The generalized mobility,M̄ f v ,

associated with the interfacial displacement reaction (adsorption or desorption) is assumed to

be independent of the orientation of the interfacial layer in crystalline solids.

Eq. (3.2) defines the in-plane displacement velocity of the contour line (i.e., the TJ line shared

by the droplet, substrate and vapor phases). The TJ longitudinal velocity, V̄long, associated

with the natural motion of the film-substrate contour line may be given in terms of the wetting

parameter λT J =
[
(γs − γ f s)/γ f

]
, and the temporal one-sided dihedral or wetting contact angle

as a dynamical variable. Here γs is the Helmholtz surface free energy of the substrate, and

γ f s(� 0) is the interfacial free energy between the film and the substrate, and γ f is the surface

free energy of the thick solid film; γ f → γ f↔s(∞), where γ f↔s(y) is the height dependent

surface Helmholtz free energy of the film.

In the present formulation of the problem, the bar sign over the letters still indicates the

following scaled and normalized quantities:

t̄ = t/τ0, �̄ = �/�0, κ̄ = κ�0, ω̄0 = ω0/�0, L̄ = L/�0 (3.3)
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ϑ̄ =
ϑ

E0�0
, χ =

e|Ẑ|E0�
2
0

Ωsgs
, σ̄h =

σh

σ0
, Ξ = (1 + ν)

�0σ0

3gs
|TrλV

s |, (3.4)

Σ =
(1 − ν2)�0

2Egσ
σ2

0, ω0 =
(1 − ν2σ)σ2

0

2Eσ
(3.5)

Where, gs is the specific surface Gibbs free energy density.

In above expressions, E0 denotes the electric field intensity directed along the longitudinal

axis of the specimen, e|Ẑ| is the effective charge, which may be given in terms of the atomic

fractions,xi , by Ẑ = 〈|xiẐi〉| for multi-component alloys. In the present study, M̂σ denotes the

minimum value of the mobility of the surface diffusion and is given by: M̂σ = (D̄σhσ/ΩσkT ).

Here, Ω̄σ is the mean atomic volume of chemical species in the void surface layer, D̂σ is the

isotropic part (i.e., the minimum value) of the surface diffusion coefficient. In the formulation

of the problem, we adopted a convention such that the positive direction of motion is always

towards the bulk material whether one deals with inner voids or outer surfaces or interfaces.

We scaled the time and space variables {t, �} in the following fashion: first of all, M̂σ, an

atomic mobility associated with the mass flow at the surface layer, is defined, and then a new

time scale is introduced by τ0 = �
4
0
/(Ω2

σM̂σgσ), where the space variable � is scaled with

respect to the specimen (line) width denoted as �0 = ω0.

According to the definitions of the time constant t and the surface mobility M̂σ introduced

previously, one may write τ0 ≡
[
kT�4

0
/(ΩσDσhσg0

σ)
]
, which may be easily calculated us-

ing the published physico-chemical data available in the literature, where the following ten-

tative atomistic structural constants might be considered without going to much into de-

tails; {Ω � 1.66x10−29m3, hσ � 2.56x10−10m}. For the copper interconnect line, the sur-

face diffusivity and the surface specific Gibbs free energy may be taken as equal to DCu
σ =

5.85x10−5exp(−0.95eV/kT ) and g0
σ = 1.725Jm−2, respectively, for the uncontaminated free

surfaces, then one finds depending upon the selected scale length �0 [100nm − 1000nm] in

above given range at T = 573◦K, that is standard device accelerated test temperature. At the

room temperature, T = 300◦K, one obtains about seven orders of magnitudes lower values

for the normalized time such as τ = 8.36x[109 − 1013]s.
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3.3 Fundamental solutions of potential and elastic problems

3.3.1 Steady state potential solution

The electrostatic potentials at the surface is governed by Laplace equation.

∇2ϑ(r) = 0 (3.6)

With the following boundary conditions, namely Neumann boundary conditions,

n̂∇ϑ(r) = n̂
∂ϑ(r)

∂r
r̂ = 0 (3.7)

The simplest solution we can find is that of a concentrated source at point P (source point)

of magnitude one in an infinite homogeneous domain. This means that internal potential

generation only occurs at one point (P) in the domain and is zero elsewhere. The function

describing this variation is also referred to a Dirac Delta function which is defined as

δ(P − Q) = 0 when P � Q (3.8)∫
Ω

δ(P − Q)dΩ = 1 (3.9)

where Q is a point in the domain Ω. Due to a unit point source at P, electrostatic potentials at

point Q (field point) can be written for the two-dimensional case as

U(P,Q) =
1

2π
ln

1

r
(3.10)

where r is the distance from source point to field point. For two-dimensional isotropic prob-

lems, the flow is computed by

T (P,Q) = n̂∇U(P,Q) = − 1

2π

cos θ

|�r| (3.11)

where θ is defined as the angle between the normal vector n and the distance vector r, It

can be seen that both solutions decay very rapidly from the value of infinity at the source.

Whereas the fundamental solution for U is symmetric with respect to polar coordinates, the

solution for T with the vector n pointing in x-direction (thus meaning flow in x-direction) is

antisymmetric.
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It can be shown that for potential problems, the following single integral equation is obtained

u(P) =

∫
S

t(Q)U(P,Q)dS (Q) −
∫
S

u(Q)T (P,Q)dS (Q) (3.12)

where u(Q) and t(Q) are the potential and the normal derivative respectively at point Q on

S, and U(P,Q) and T(P,Q) are the fundamental solutions at Q for a source at point P. The

integration is carried out over a line S for two-dimensional problems.

3.3.2 Static elastic solution

In solid mechanics applications, a relationship between stress and strain must be established.

Stresses are forces per unit area inside a solid. They can be visualized by cutting the solid on

planes parallel to the axes and by showing the traction vectors acting on these planes.

The traction vectors acting on the three planes are defined as:

�t1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
σx

τ̈xy

τ̈xz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ; �t2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
τ̈yx

σy

τ̈xz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ; �t3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
τ̈zx

τ̈zy

σz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ; (3.13)

The components of the traction vectors are also known as stress components.

Infinitesimal strains are defined in terms of displacement components in the x, y, z directions

(ux, uy, uz) by
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εx =
∂ux

∂x
(3.14)

εy =
∂uy

∂y
(3.15)

εz =
∂uz

∂z
(3.16)

γxy =
∂ux

∂y
+
∂uy

∂x
(3.17)

γyz =
∂uy

∂z
+
∂uz

∂y
(3.18)

γzx =
∂uz

∂x
+
∂ux

∂z
(3.19)

The elastic material response is governed by Hooke’s law. For an isotropic material, this is in

three dimensions.

εx =
1

E

[
σx − ν(σy + σz)

]
(3.20)

εy =
1

E

[
σy − ν(σx + σz)

]
(3.21)

εz =
1

E

[
σz − ν(σy + σx)

]
(3.22)

γxy =
1

G
τ̈xy , γyz =

1

G
τ̈yz , γzx =

1

G
τ̈zx (3.23)

where E is the modulus of elasticity, v the Poisson’s ratio and G the shear modulus, given by

G =
E

2(1 + ν)
(3.24)

The governing differential equations are obtained from the condition of equilibrium. For two-

dimensional problems these are

∂σx

∂x
+
∂τ̈xy

∂y
+ bx = 0 (3.25)

∂σy

∂y
+
∂τ̈xy

∂x
+ by = 0 (3.26)

where bx and by are components of body force in x and y directions. Substitution of the

equations for strain 3.14 and the Hooke’s law for plane strain conditions gives
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G
(
∂2ux

∂x2
+
∂2ux

∂y2

)
+ (

νE

(1 + ν)(1 − 2ν)
+G)

⎛⎜⎜⎜⎜⎝ ∂2uy

∂x∂y
+
∂2uy

∂x∂y

⎞⎟⎟⎟⎟⎠ + bx = 0 (3.27)

(G +
νE

(1 + ν)(1 − 2ν)
)

(
∂2ux

∂x∂y
+
∂2ux

∂y∂x

)
+G

⎛⎜⎜⎜⎜⎝∂2uy

∂x2
+
∂2uy

∂y2

⎞⎟⎟⎟⎟⎠ + by = 0 (3.28)

For the plane strain problem, the fundamental solution is obtained for point unit loads in x

and y directions of magnitude 1, which are distributed to infinity in the +z and −z directions.

The solution was first worked out by Lord Kelvin. The solutions for the displacements in x

x

y

Px=1

r

P(x ,y )P P

Q(x ,y )Q Q

Tx

Txy

θ

n

Txx

Figure 3.1: Notation for two-dimensional Kelvin solution [86].

and y directions due to a unit load in x direction can be written as

Uxx(P,Q) = C
[
C1ln(

1

r
) + r2

x

]
(3.29)

Uxy(P,Q) = Crxry (3.30)

C = 1/(8πG(1 − ν)), C1 = 3 − 4ν (3.31)

For the boundary element method we also need the solutions for the boundary stresses (trac-

tions) acting on a surface with an outward normal direction of n. The fundamental solutions

for the tractions are obtained by first computing the fundamental solutions for the strains and

then applying Hooke’s law. The fundamental solutions for strains are obtained by taking the

derivative of the displacement solution.

The tractions at point Q due to a unit load at P in x direction are given by
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�Txx(P,Q) =
C2

r
(C3 + 2r2

x) cos θ (3.32)

�Txy(P,Q) =
C2

r

[
2rxry cos θ +C3[nyry − nxrx]

]
(3.33)

C2 = 1/(4π(1 − ν)) , C3 = 1 − 2ν , cos θ =
1

r
r · n (3.34)

where θ is defined in Figure 3.1 If we assume that there are no body forces acting in the

domain, then integral equation becomes

ux(P) =

∫
S

[
�tx(Q)Uxx(P,Q) + uy(Q)Uxy(P,Q)

]
dS −

∫
S

[
ux(Q)�Txx(P,Q) + uy(Q)�Txy(P,Q)

]
dS

(3.35)

Using matrix algebra we can combine x direction and y direction so

u(P) =

∫
S

U(P,Q)�t(Q)dS −
∫
S

�T (P,Q)u(Q)dS (3.36)

Equations (3.36) represent for the two-dimensional problem discussed here a system of two

integral equations which relate tractions�t and displacements u at the boundary directly, thereby

removing the need to compute fictitious forces.

3.4 Numerical procedures

At the initial state, system composed of the film surface which is simulated by a finite number

of nodes using predetermined segment lengths. The positions of the nodes are defined by

reference to the cartesian coordinates and represented by the three dimensional vectors. After

knowing the node position vectors, it is straight forward to calculate the segment lengths, s ,

the centroid position vectors, �rc. Some other important system parameter calculation methods

are discussed in the following subsections.

Calculation of node curvatures: The curvatures at the nodes can be evaluated at each node

by using a discrete geometric relationship in connection with the fundamental definition of

radius of curvature and the normal vector.

Let us define some geometric relationships; first of all the curvature of a circle with radius ρi

(radius of curvature) is 1/ρi and furthermore three points in the plane define a unique circle
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whose circumference pass from all of these three points. Figure 3.2 shows such a circle that

passes from the three successive surface nodes i − 1, i, at which the local curvature is wanted

to calculate, and i + 1 by using the known values of the segment lengths, si, and the segment

turning angle θi. From figure 3.2 one can immediately write down the following identities.

i+1

i-1

i

Figure 3.2: The unique circle that pass from the three successive void nodes [84].

ρi =
si

2 sin(αi)
(3.37)

and

κi =
1

ρi
=

2 sin(αi)

si
(3.38)

The tangent of the angle αi can be formulated as follows:

tan(αi) =
sin(θi)

si−1

si
+ cos(θi)

(3.39)

Using the Eq. 3.38 and 3.39, the local curvature is given by

κi =

2 sin

(
atan

(
sin(θi)

si−1
si
+cos(θi)

))
si

(3.40)

Anisotropic surface diffusivity: The anisotropic diffusivity of surface atoms is incorpo-

rated into the numerical procedure by adapting the following relationship,

D̄(θ, φ,m) = Do
σ

{
1 + Acos2 [

m (θ − φ)]} (3.41)

Where θ is the angle between the tangent vector of the contour line (diffusion path) of the

sidewalls on the top surface and the global x-axis, which lays along the longitudinal axis of the
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thin film line having a length designated by L, and in the direction of the applied electrostatic

intensity vector. A is an anisotropy constant, which may be a few orders of magnitude. Where

n = 2m corresponds to the 2π/n degrees of rotational folding associated with the zone axis of

a given family of planes over which diffusion takes place.
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Figure 3.3: Diffusion anisotropy: a) {110} Two-fold rotational symmetry in cubic structures

with parameters D0
σ = 1, A = 5,m = 1, θ = 3.93π/10. b) {100} Four-fold rotational symmetry

in cubic structures with parameters D0
σ = 1, A = 7,m = 2, θ = π/4. c) {111} Six-fold

rotational symmetry in cubic structures with parameters D0
σ = 1, A = 3,m = 3, θ = π/6.

Similarly, the tilt angle φ is the angle between the major axis of the 2D diffusion map, along

which diffusivity is maximum, and the global x-axis. The stability and instability regimes

for the finite amplitude perturbations may be defined, respectively, by the following open

intervals for the tilt angles: (0 < φ < π/2m) and (π/2m < φ < π/m), plus their periodic

extensions.

Anisotropic surface stiffness: The surface energy of a rough surface can be written as

Es =

∫
A

γ(θ)
dA

cos(θ)
≈ γ(0)dA +

∫
A

θ
∂γ

∂θ

∣∣∣∣∣
0

dA + 0.5

∫
A

θ2
[
γ(0) +

∂2γ

∂θ2

∣∣∣∣∣∣
0

]
dA (3.42)

Therefore, the energy change

ΔE = 0.5

[
γ +
∂2γ

∂θ2

]
θ=0

∫
A

θ2dA (3.43)

Sign of energy change depends on the sign of the quantity:

γ̃ = γ +
∂2γ

∂θ2
(3.44)

68



Equation 3.44 called surface stiffness. if γ̃ > 0 then ΔE > 0 so the surface stable against

undulation, if γ̃ < 0 then ΔE < 0 then surface is unstable against undulation. Latter case, the

surface will minimize its energy by developing facets.

In Eq. (3.1), the expression denoted by ¯̂γ(θ̂, φ̂,m) = {γ̄(θ̂, φ̂,m) + γ̄θ̂θ̂(θ̂, φ̂,m)} is the angular

part of the surface stiffness, namely given by
[
γ̂(θ̂, φ̂,m)/γo

]
. By following the general trend,

one may introduce the trigonometric representation by defining the tilt angle φ̂ as such that

the surface normal of a selected vicinal plane coincides with the x-axis, when theta becomes

equal to zero, φ̂ = 0;

γ̄(θ̂, φ̂,m) = γ(θ̂, φ̂,m)/γ0 = {1 + B sin2
[
m(θ̂ − φ̂)

]
} (3.45)

Where γ0 is the minimum value of the surface Gibbs free energy density, and B ≥ 0 is the

surface stiffness anisotropy constant, which is a positive quantity. Using above relationship

denoted as Eq. (3.45), one may easily deduced the surface stiffness formula as presented

below;

γ̂(θ̂, φ̂,m) = γ0(1 + B/2)

[
1 − B(1 − 4m2)

B + 2
cos

[
2m(θ̂ − φ̂)

]]
(3.46)

Where θ̂ = π/2 − θ is the angle between the line normal vector of the diffusion plane of

a generalized cylindrical surface projected into 2-D space (surface normal in 3-D) and the

x-axis of the global Cartesian reference system. In Fig.3.4, the normalized specific surface

Gibbs free energy γ̄ and the angular part of the surface stiffness ¯̂γ = (γ̂/γ0) are illustrated in

the polar plot for the sidewalls planes of a metallic single crystal, thin film interconnect line,

having a surface texture denoted by (001) , where m̂ ≡ 2m = 2.

According to Eq. (3.46), the surface stiffness can be positive definite, regardless the orienta-

tion of the surface with respect to the EM direction, if the surface Gibbs free energy anisotropy

constant satisfies the following inequality: B ≤ 2/
[
|(1 − 4m2)| − 1

]
. That means one should

have the following set of upper limits for B ≤ {1; 1/7; 1/17} in the case of two, four and six

fold symmetries, respectively. As can be seen from Fig 3.4 for the given anisotropy constant

B = 0.2 > 1/7 for the set of planes belonging to the [001] zone axis, the imperfect faceting

may occur at the cusps orientations (vicinal planes) because of the appreciable negative sur-

face stiffness appears at the directions 〈∓110〉, where one has concave topography (maxima in
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Figure 3.4: Typical behavior of the surface specific Gibbs free energy and the surface stiffness

for the set of four fold symmetry planes {0∓10} and {∓100} in a fcc crystal having [001] zone

axis normal to the thin film surface. The anisotropy constant: B = 0.2. The negative spikes

of the surface stiffness are clearly seen along the 〈1∓ 10〉 directions, which indicates inherent

instability.

free energy profile), because of the relatively weak representation of the cusp regions by the

trigonometric function. These negative surface stiffness spikes may cause inherent instability

along those directions.

Wetting potential: Surface energy of thin film undergoes rapid transition from γ f to γs,

this transition depends on the film thickness.

γ f↔s(y) =
γ f + γs

2γ f
+

[
γ f − γs

γ f

]
1

π
arctan y/δ (3.47)

To model for the wetting layer, wetting potential ω(y) is defined as

ω(y) = ny · dγ f↔s(y)

dy
(3.48)

ω(y) =
1√

1 + y2

γ f − γs

πγ f

δ

δ2 + y2
(3.49)

where ny = −n · j is the projection of the surface normal along y axis. By employing this

potential, surface energy change from the value of substrate to the value of film shows smooth

transition. Derivation of the wetting potential formulation is done by Golovin [60].
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Adaptive remeshing: For keeping the experiment time and error in an acceptable level,

adaptive remeshing system employed in the simulations. For this purpose, first energy term

μn is defined for each node in the system at given time step n. The energy term is naturally

calculated in the program as a chemical potential. Then, the gradient of the energy, ∇μn
i , is

approximated at the thin film surface by the usage of finite difference expression.

∇μn
i =
μn

i+1
− μn

i

S i
(3.50)

Where S i is the segment length which connects the nodes. Defining thresholds ξ and ζ ,

segment is marked for remeshing if the following criteria are met:

|∇μn
i | > ξ Gn and |μn

i | > ζ Qn (3.51)

for dividing the segment and

|∇μn
i | < ξ Gn and |μn

i | < ζ Qn (3.52)

for erasing the segment.

Where

Gn = max|∇μn
i | (3.53)

Qn = max|μn
av| (3.54)

μm
av =

1

N

∑
i

|μn
i | (3.55)

The adaptive remeshing is executed in a segment when an instantaneous threshold are ex-

ceeded. Therefore, fast evolving high energy gradient surfaces will have smallest possible

segment length, on the other hand slow evolving and low energy gradient surfaces will have

largest possible segment length.
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Explicit euler’s method: Explicit Euler’s method (Mathews, 1992) is used to perform the

time integration of Eq. (3.1) for the surface evolution. The time step is determined from

the maximum surface velocity and minimum segment length such that the displacement in-

crement is kept constant for all time step increments. This so-called adapted time step auto-

control mechanism combined with the self-recovery effect associated with the capillary term

guarantees the long time numerical stability and the accuracy of the explicit algorithm even

after performing several hundred to several millions steps.
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CHAPTER 4

THE ORIENTATION DEPENDENT INTERACTION OF

ELECTROMIGRATION AND THE UNIAXIAL

COMPRESSIVE STRESSES IN SINGLE CRYSTAL

METALLIC THIN FILMS

4.1 Physical model

Physically, the thin film is attached to the substrate with a coherent interface, and the top sur-

face is subjected to the surface drift diffusion, and it is exposed to a vapor environment, whose

pressure may be neglected. Since simulations are performed in 2D space (equivalent to paral-

lel ridges or quantum wires in three dimensions), no variation of the interface profile and the

displacement fields in the film and substrate occurs in the direction (i.e., ẑ axis) perpendicular

to the plane of the schematics in Fig.4.1. Similarly, to simplify the numerical computations it

is assumed that the film/substrate interface is flat and the substrate is stiff. These assumptions

guarantees that the initial displacement along the interface associated with the misfit strain εo

stays constant during the evolution process (i.e., Dirichlet boundary condition).

The morphology of an initially perfectly flat surface having a perturbation in the shape of a

sinusoidal wave is demonstrated in Fig.4.1, where the positive direction of electric field is

from the left (anode) to the right (cathode).The scaled interconnect width is denoted as h̄0,

and the wave vector and the wave length are given by k̄ and λ̄, respectively. These are all

scaled with respect to the arbitrary length denoted by �0.
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Figure 4.1: Side view of metallic thin film with sinewave perturbation.

4.2 Linear stability analysis

In this section linear stability analysis of the relevant equation (Eq. (4.2)) is presented. Travel-

ing plane wave with complex argument is injected to the system as an initial data (Eq. (4.1)).

Where the scaled thin film thickness is denoted as h0 = 1, and the wave vector and the wave-

length are given by k̄ = k h0 and λ̄ = λh0, respectively. These are all scaled with respect to the

arbitrary length chosen as �0 = h0 for convenience. Here h0 is the initial uniform thickness of

the metallic thin-film before it is exposed to any surface disturbances.

h(x, t) = 1 + M̄vbΔḡbv t + εaε{exp [i k(x − v t)] + c.c.} (4.1)

where aε , the amplitude of the traveling wave, is k = 2π/λ̄ = k h0, which is the normalized

wave number, and 0 ≤ ε ≤ 1 is the perturbation order operator. v is a complex number

(i.e.,phase velocity), which carries the most important information concerning the dynamical

behavior of the system. ω = k v is called the frequency index. The real part of the complex

velocity, v�, corresponds to the phase velocity (dispersion), and the imaginary part, v�, deals

with the dissipation or growth rate Γ = k v�.

74



V̄ord =
∂

∂�̄
D̄(θ, φ,m)

[
∂

∂�̄

(
Ξσ̄h − Σσ̄2

h + κ̄ + χϑ̄
)]

(Ordinary points) (4.2)

Above equation can be converted to cartesian coordinate system with initial perturbation

h(x, t) as follows:

V̄ord =
∂h(x, t)
∂t̄

=
∂

∂x̄
D̄(θ(x, t), φ,m)

[
∂

∂x̄

(
Ξσ̄h − Σσ̄2

h + κ̄ + χϑ̄
)]

(Ordinary points) (4.3)

where

θ(x, t) = arcsin

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 2√
1 + (∂h(x,t)

∂x )2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4.4)

So following transformations must be defined:

∂x ≡ (1 + hx
2)−1hxx∂θ, ∂� ≡ (1 + hx

2)−1/2∂x (4.5)

and f (hx) called structure function is defined as

f (hx) = (1 + h2
x)−1/2 (4.6)

So the equation 4.2 takes the following form in cartesian coordinates.

− f (hx)ht = f (hx)∂x[D(.) f (hx)∂x
[
Ξσ̄h − Σσ̄2

h + f (hx)2hxx + χϑ̄
]

(4.7)

The quasielectrostatic potential ϕ satisfies the Laplace equation ∇2ϕ = 0 in 2D space and the

Neumann boundary conditions at the inactive and active surfaces, respectively:

ϑy(0, x; t) = 0, and ϑy(h, x; t) = hx(x, t) ϕx(h, x; t) (4.8)

So, the normalized quasielectrostatic potential at the active sidewall (or upper surface) may be

represented by the following expression, which was firs presented by Schimschak and Krug

and later further elaborated by Brush and Oren [87]:

ϑ̄(x, y : t) = −x − iεaε
coth(ky)

sinh(k)
exp[ik(x − vt)] + c.c. (4.9)

for the upper surface y = 1 therefore

ϑ̄(x : t) = −x − iεaε
1 + k

k
exp[ik(x − vt)] + c.c. (4.10)
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Evolution equation takes the following form :

ht = lim
θ→0
{−χ

[
D(θ, φ,m)∂xx + ∂xD(θ, φ,m)∂C

x

]
ϑ − D(θ, φ,m)hxxxx

+
[
D(θ, φ,m)∂xx + ∂xD(θ, φ,m)∂C

x

] [
Ξσ̄h − Σσ̄2

h

]
} (4.11)

In the above relationship the superscript over the partial differential operator ∂C
x implies the

extraction of the constant term from the gradient of the operand function. In the case of

homogenous fields, this term drops out automatically. In addition, if one assumes that the

thermal part of the Gibbs free energy of the transformation Δḡ◦bv is homogeneous along the

surface layer and the transformation mobility M̄0
vb is independent of the applied stress and

orientation of the surface, then one may write

i k v − M̄0
vb(ḡ0

bv + w̄0
b) = iχk2coth(k)[1 + A cos2(mφ)]+

χmk2A sin(2mφ) + [1 + A cos2(mφ)]k4+

{[1 + A cos2(mφ)]∂xx + mA sin(2mφ)∂C
x }[Ξσ̄h − Σσ̄2

h] (4.12)

In Eq. (4.12), Σσ̄2
h represents the first-order contribution to the ESED due to the formation

of surface undulations on the surfaces, otherwise flat and traction free. ω̄0
b is the elastic strain

energy density for the flat surface. The above general relationship yields the following expres-

sions, for the growth rate and the phase velocity, by separating the real and imaginary parts

of the complex velocity such as v = v� + iv�, where the real part corresponds to the propa-

gation or phase velocity and the imaginary part is related to the growth rate constant denoted

by Γ. Electromigration induced disturbance drift and disturbance growth rate associated with

electromigration, elastostatic forces and capillarity effects may be easily deduced as follows:

Γ ≡ k v� � −χmk2A sin(2mφ)− [1+A(cos2(mφ))][Ξ−2Σ]2k3− [1+A cos2(mφ)]k4 (4.13)

and

vdri f t = v� � χk2coth(k)[1 + A cos2(mφ)] (4.14)
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Figure 4.2: Growth rate vs. wavenumber in the absence of electrotatic force.

The sign of the growth rate depends on the sign of the applied stress system acting along the

interfacial layer denoted by σ, whether it is tension Ξ > 0 or compression Ξ < 0. Equation

4.13 shows that the elastic dipole interraction always favors surface smoothing under tension,

on the other hand if there is a compression, enhancement of the roughness occur regardless

of the wave number or the tilt angle (Fig. 4.3). For copper under σ = 100 MPa (E =

130GPa, ν = 0.34) compressive load growth rate constant Γ vs. wave number k is shown in

Fig. 4.2 for isotropic diffusivity. Growth rate at k=0 is always zero, often this is the indication

of conservation law.

Figure 4.3: The instability growth rate Γ is plotted for isotropic diffusion with respect to the

wave number k = 0 − 4 and applied misfit stress Ξ = ±6. The elastostatic data for copper

used: E0 = 130G Pa, ν = 0.34, g0
σ = 1.6JM−2, and |TrλCu

σ | = 0.4.
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In the absence of electromigration, Fig. 4.4 shows the stress induced growth rate of instability

of hypothetical copper thin film having (110) under σ = −100 MPa load and range of wave

numbers. Here, Diffusion anisotropy intensity A = 10 is selected and plot generated for

φ = ±pi. For the high values of wave number k > 2, surface shows stability at given stress

load Ξ = 1.116 with any texture angle.

Figure 4.4: Growth rate constant Γ is plotted with respect to the tilt angle φ and wave number

k for the sidewall surface morphological evolution of thin film having (110) plane which has

2 fold symmetry.

And the critical wavelength may be calculated with following equation in the absence of

electric potential:

λc =
π

2Σ − Ξ (4.15)

λm =
4π

6Σ − 3Ξ
(4.16)

Under the critical wavelength λc, Surface perturbation shows instability. So λc represents

the maximum wavelength leading to growth of the perturbation. And λm defines the wave-

length with maximum growth rate at a given stress. For the compressive stress values σ0 =
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−100 MPa − −1000 MPa, critical wavelength varies from 280 nanometer to 27 nanometer

in real dimensions in the absence of electric potential. These calculated wavelengths are in

good agreement with the experimental observations of Maroutian et al. [76].

Figure 4.5 shows both healing and worsening effect of the electromigration force when cou-

pled with stress field. Healing effect of electromigration even at high EDTI Ξ = −11.16 values

at which instability is expected is observed at φ = 0.25−1.5 interval for wave number k = 25.

On the other hand, at EDTI Ξ > −7 values at which stability is expected instability regions

appears at certain tilt angle interval φ > 1.5 due to the electromigration.

Figure 4.5: Growth rate constant Γ is plotted with respect to the tilt angle φ and EDTI Ξ for

the sidewall surface morphological evolution of thin film having (110) plane which has 2 fold

symmetry with and without electromigration (χ = 0 and χ = 150) for constant wave number

k = 25.

An alternative way to summarize the information in Eq. (4.13) is to plot neutral stability

curve where the real part of the growth rate is zero. Neutral stability curve does not give

information about the growth rate, but it gives the picture of the range of modes that could

grow from uniform state that might be available for pattern formation.
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Figure 4.6: Neutral stability plot for (110) plane at different angles between texture and sub-

strate. Uniform state is stable below the plane and above the plane pattern formation is possi-

ble.

4.3 Results and discussion

In this section, it is assumed that the sample is sandwiched between top and bottom high

resistance coatings, which constitute diffusion barrier layers with the substrate. It is also

assumed here that only the one edge (sidewall) of the interconnect line is subjected to the

surface drift diffusion, and it is exposed to an environment whose conductivity is neglected.

Different combination of misfit stress (compression or tension) σ⇒ {Ξ,Σ}, electron wind in-

tensity χ, drift diffusion anisotropy coefficients {φ, A}, various combination of wavelengths

λ = 1 − 4 and amplitudes Amp = 0.01 − 0.5 are considered in this section. Electron

wind intensity covers very large interval from low to high current densities by taking χ =

1 − 50 which corresponds to J = 109 − 1012 A/M2. Applied misfit stress taken in the

range of σ0 = ±1 MPa − ±1000 MPa which corresponds to the following parame-

ters for copper thin film with width of w0 = 10−6 m; having EDTI Ξ = ±0.1 − ±11.16,

and ESED Σ = 2.12 ∗ 10−9 − 0.212 assuming that elastic dipole tensor constant for cop-

per is given by |Trλ| = 0.4. The specific surface Gibbs free energy of copper is taken as

gCu = 1.6J/M2, and Young modulus ECu = 70 GPa, and Poisson’s ratio νCu = 0.35. In
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adition to isotropic case, anisotropic structure is taken as FCC structure with three different

groups of crystal planes ({110}, {100}, {111}) for the surface of single crystal thin film. There-

fore, 〈110〉, 〈100〉, and 〈111〉 are the zone axis of perturbed sidewall where the diffusion take

place.

4.3.1 Epitaxially strained thin film with isotropic texture on rigid substrates

In this section, isochoric system is considered such that no external traction applied to the

evolving surface, surface diffusivity is defined as isotropic. System evolution is investigated

under only applied misfit strain.

Evolution of the boundary is described in terms of displacement velocities with following

formula:

V̄ord =
∂

∂�̄

[
∂

∂�̄

(
Ξσ̄h − Σσ̄2

h + κ̄
)]

(Ordinary points) (4.17)

In Eq. 4.17, �̄ is the arc length in 2D space which is scaled with respect to �o. First part of the

equation describes the evolution behavior of strained thin films by surface diffusion which is

driven by the gradient of ESED Σ(σ̄h)2 and capillary potential κ̄.

Figure 4.7: Side wall morphological evolution of single crystal copper thin film with isotropic

diffusivity, wave number k = 1.7 and amplitude of Amp = 0.05, which is subjected to misfit

tensile Ξ = 0.56 along the longitudinal axis. (a) shows morphological evolution in 3D plot.

(b) shows the normalized displacement of trough and crest tips as a function of normalized

time in logarithmic scale.

Fig. 4.7 demonstrates the behavior of wave patterned surface under 50MPa (Ξ = 0.56) tensile
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load. Experimental growth rate is calculated as Γcrest = −14.26 and Γtrough = −14.21, which

are excellent agreement with the LISA value ΓLIS A = −14.23. Negative growth rate term

indicate that surface roughness decay. Surface roughness slowly decay off in due time and

finally perfect flat surface is formed.

Figure 4.8: Side wall morphological evolution of single crystal copper thin film with isotropic

diffusivity, wave number k = 5.14 and amplitude of Amp = 0.05, which is subjected to misfit

tensile Ξ = −0.11 along the longitudinal axis. (a) shows morphological evolution in 3D plot.

(b) shows the normalized displacement of trough and crest tips as a function of normalized

time in logarithmic scale.

Even at higher wave number k = 5.14 and compressive stress 10MPa (Ξ = −0.11) LISA

successfully predict the behavior of the surface evolution (Fig. 4.8) which is Γcrest = −382.6

and Γtrough = −393.7 and theoretical value is ΓLIS A = −397.8. In both case surface evolution

takes place under the dominant effect of capillary forces. Increase in wave number (k) increase

the tendency to stability, so perturbed surface with large wave number has tendency to decay.

Isotropic thin film experiments shows that decay rate of the surface can be precisely predicted

by LISA for −0.56 ≤ Ξ ≤ 11.16 stress range and wave amplitudes Amp ≤ 0.1.
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Figure 4.9: Side wall morphological evolution of single crystal copper thin film with isotropic

diffusivity, wave number k = 5.14 and amplitude of Amp = 0.01, which is subjected to misfit

tensile Ξ = −11.16 along the longitudinal axis. (a) shows morphological evolution in 3D plot.

(b) shows normalized the displacement of trough and crest tips as a function of normalized

time in logarithmic scale.

In Fig. 4.9(a) surface crack like formation can be seen under the high misfit stress Ξ =

−11.16 with the grooving at the sides of crack. These crack like formations appear with

different forms for high compressive forces σ < −100 MPa (≈ Ξ < −1.1). Due to the fast

growth of grooving with respect to initial crest tip after the sharp elbow formed at crest height

change, Fig. 4.9(b) defines the growth rate of the grooving. This phenomenon is called as ”tip

splitting” in literature. The sharp elbow on the normalized crest height plot is closely related

to the onset of tip-splitting regime (τ = 5.8 10−4 ), which also shows accelerated displacement

kinetics of crack and grooving. After that point, trough tips transform into crack like form

and deviates from the LISA, which predicts growth rate as ΓLIS A = 2451, with growth rate

Γtrough = 3698.78.

In Fig. 4.10 summarize the trough splitting of the surface at σ0 = 500 MPa misfit stress. Fig.

4.10(c) the surface profile, which shows no sign of tip splitting at trough, is plotted. On the

other hand, in same figure sign of tip splitting of trough can be seen at hoop stress plot. Here,

crest growth rate (Γcrest = 68.97) fits to LISA with some deviation after tip splitting, trough

growth rate (Γtrough = 218.8) show large deviation from the calculated growth rare of LISA

ΓLIS A = 48.63. Again formation of elbow can be seen at normalized surface displacement

graph (Fig. 4.10). Under high compressive stress values surface perturbation with low wave

number tends to multiple crack form which may be called as trough splitting. Concentration
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Figure 4.10: Side wall morphological evolution of single crystal copper thin film with

isotropic diffusivity, wave number k = 1.7 and amplitude of Amp = 0.1, which is subjected to

misfit tensile Ξ = −5.58 along the longitudinal axis. (a) Morphological evolution in 3D plot.

(b) Normalized the displacement of trough and crest tips as a function of normalized time in

logarithmic scale. (c) Instantaneous hoop stress and surface profile along the thin film at the

on set of trough tip splitting (τ = 0.0019).

of stress give rise to instability of trough so multiple crack formation observed.

Figure 4.11: Side wall morphological evolution of single crystal copper thin film with

isotropic diffusivity, wave number k = 3.99 and amplitude of Amp = 0.01, which is sub-

jected to misfit tensile Ξ = −3.35 along the longitudinal axis. (a) Morphological evolution

in 3D plot. (b) Normalized displacement of trough and crest tips as a function of normalized

time in logarithmic scale. (c) Instantaneous hoop stress and surface profile along the thin film

at the on set of trough tip splitting (τ = 0.052).
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Fig. 4.11 illustrate the transition regime experiment which has σ0 = −300 MPa (Ξ =

−3.35), k = 3.99 and Amp = 0.01 as a experiment parameter, here some troughs try to decay

on the other hand other troughs transform into the crack like shape. This tendency can be

summarized as surface perturbation with large wave numbers under low compressive stress

values tends to decay off.
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Figure 4.12: Growth rate Γ versus EDTI (Ξ) values represented for different values of ampli-

tude and wave numbers. (a) Trough growth rate for wave number k = 1.71. (b) Crest growth

rate for wave number k = 1.71. (c) Trough growth rate for wave number k = 5.14. (d) Crest

growth rate for wave number k = 5.14.

At low wave number k = 1.71 growth rate values of different amplitude surfaces shows almost

identical growth rate at EDTI values over Ξ ≥ −1.116 and it shows linear dependency to

the applied misfit stress at both crest and trough (Fig. 4.12(a)-(b)). On the other hand, at

high compressive stress growth rate changes quadratically with applied misfit stress. Same

nonlinear respond to applied high compressive misfit stress is seen at experiments with wave

number k = 5.14 (Fig. 4.12(c)-(d)). At EDTI values higher than Ξ ≥ −1.116 experiments

with amplitude value Amp = 0.5 deviates from the linear behaviors, rest of the growth rate

change with respect to Ξ values behaves similar with small slope change. Crest behavior at

amplitude values Amp = 0.5 deviates from the general behavior at all experiments and LISA
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predictions. LISA assume that Angle of the surface tangent with substrate surface is about to

0, so at Amp = 0.5 this angle greater then the assumption. Deviation from general behavior is

due to the high
Amp
λ ratio, at which capillary forces increase due to the increased curvature of

surface.
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Figure 4.13: Growth rate Γ versus Amp/λ plot for Ξ = −0.5558 for different amplitudes and

their power series fittings.

Amplitude dependency of growth rate is obeying power law at EDTI values Ξ > −3.35. At

lower Ξ ≤ −3.35 values growth rate does not change with amplitude because after the crack

formation growth rate represents the crack propagation at trough which is mainly driven by

crack tip stress concentration.
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Figure 4.14: Experiment normalized failure and equilibrium reach time plot with respect to

amplitude and surface wave number for different misfit stress values Ξ.
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Fig. 4.14 shows final time at which case surface became flat with decaying of perturbation

or perturbation reach to the substrate with growing cracking. Large distinction of final time

between stress values Ξ ≤ −3.35 and Ξ > −3.35 is observed. at Ξ ≤ −3.35 high compressive

stress values crack formation observed due to the instability of the surface, so thin films crack

and divided into smaller pieces in a short time. On the other hand, under tensile stresses and

low compressive stresses (Ξ ≥ −1.12) surface perturbation tends to stable by decaying off.

Figure 4.15: Normalized time plot with respect to misfit stress values Ξ < −1 (EDTI) for

different amplitudes and their power series fittings at wave number k = 1.7136.

Fig. 4.15 represents the normalized time vs. EDTI graph and their regression analysis for

EDTI values in the range −12 < Ξ < −1. As a result of analysis following set of equations

obtained.

87



τAmp=0.5 = 0.8567|Ξ|−3.543 ∀ − 12 < Ξ < −1 (�2 = 1) (4.18)

τAmp=0.1 = 0.9349|Ξ|−2.668 ∀ − 12 < Ξ < −1 (�2 = 1) (4.19)

τAmp=0.05 = 0.7934|Ξ|−2.193 ∀ − 12 < Ξ < −1 (�2 = 0.99) (4.20)

τAmp=0.01 = 0.8372|Ξ|−1.995 ∀ − 12 < Ξ < −1 (�2 = 0.99) (4.21)

For the compression values in the range of 11.16 < Ξ < −3.35, these functions predict the

failure time of the thin film by cracking. As the thin film perturbation amplitude increase

exponent of 1
Ξ

increase. This shows that as the amplitude increase time to reach substrate

decrease.
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Figure 4.16: Experiment normalized failure time plot with respect to amplitude and surface

wave number for 11.16 ≥ Ξ ≤ −3.35 misfit stress values and its fitting surface.

General form might be defined as τ = 0.7794Ξ−2 − 4.6610−5(Ξ Amp)−1.

For the tensile stress, Fig. 4.17 shows the normalized time vs. Ξ values.
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Figure 4.17: Normalized time plot with respect to misfit stress values Ξ > 0 (EDTI) for

different amplitudes and their power series fittings.

Analysis gave following set of functions:

τAmp=0.5 = 0.283 − |Ξ|−0.759 ∀ 0 < Ξ < 12 (�2 = 0.99) (4.22)

τAmp=0.1 = 1.077|Ξ|−0.1227 − 0.763 ∀ 0 < Ξ < 12 (�2 = 0.98) (4.23)

τAmp=0.05 = 1.071|Ξ|−0.1356 − 0.7543 ∀ 0 < Ξ < 12 (�2 = 0.98) (4.24)

τAmp=0.01 = 2.027|Ξ|−0.0457 − 1.811 ∀ 0 < Ξ < 12 (�2 = 0.98) (4.25)

In this case, normalized time gives the time to reach flat surface. Same increase in the expo-

nent of 1
Ξ

is observed but here exponent values under unity. This shows that in this case lower

amplitude perturbation has faster decay.

In between described two regime there is third transition regime where −1.116 ≤ Ξ ≥ 0.1116

(Fig. 4.18). In which normalized decay time change with EDTI value linearly.
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Figure 4.18: Normalized time plot with respect to misfit stress values −1.116 ≥ Ξ ≤ 0 (EDTI)

for different amplitudes and their power series fittings.

4.3.2 Epitaxially strained thin film with anisotropic texture on rigid substrates

In this section, isochoric system is considered such that no external traction applied to the

evolving surface, surface diffusivity is defined as anisotropic. System evolution is investigated

under only applied misfit strain.

Evolution of the boundary is described in terms of displacement velocities with following

formula:

V̄ord =
∂

∂�̄

[
D̄(θ, φ,m)

∂

∂�̄

(
Ξσ̄h − Σσ̄2

h + κ̄ + χϑ̄
)]

(Ordinary points) (4.26)

Where D̄(θ, φ,m) is the anisotropic surface diffusion.

4.3.2.1 Two-fold rotational symmetry in cubic structures: Zone axis
〈
11̄0

〉

In this section, single crystal thin film attached to the substrate is described by the zone axis

〈11̄0〉which is associated with the set of vicinal (singular) planes such as (111)∪(110)∪(001)∪
(112̄) in FCC structure. In this plane, change in diffusion constant calculated by Eq. 3.41 with
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parameter m = 1. In two fold symmetry Eq. 3.41 defines lowest diffusion direction as [001]

direction, and highest diffusion direction as [1̄10]. Difference between highest an lowest

diffusion constants defined by parameter A which is called diffusion anisotropy intensity.

Figure 4.19: The evolution of side wall surface of thin film with (110) plane as a top plane

with a tilt angle φ = 0◦ and A = 5, subjected to a compression Ξ = −5.58 misfit, without

electromigration (χ = 0, Amp = 0.05, k = 2.85). (a) Morphological evolution in 3D plot.

(b) Normalized displacement of trough and crest tips as a function of normalized time in

logarithmic scale. (c) Hoop stress and surface profile on the evolving surface.

Fig. 4.19 demonstrate the sharp crack like formation for experiment parameters: φ = 0◦, A =

5, k = 2.85 Ξ = −5.58, Amp = 0.05. Diffusion anisotropy effect can be seen as a high surface

roughness and sharp crack like formation at stress value σ0 = 500 MPa. Experimental

trough growth rate is calculated as Γtrough = 10888, this value far beyond the calculated

theoretical trough growth rate ΓLIS A = 2841. This observation is the general consequence

of crack formation and resultant stress concentration at the crack tip. Here, crack surface

has low diffusion constant and there is high driving force due to misfit stress caused stress

concentration at trough therefore there is no time to release energy with smoothing crack tip

by diffusion.

Here, Same amount misfit stress is applied to the thin film with φ = 90◦ tilt angle (Fig.

4.20). In this case, trough growth rate shows negative deviation. LISA predicts faster growth

rate ΓLIS A = 847.52 but for φ = 90◦ tilt angle trough and crest growth rates (Γcrest =

712 and Γtrough = 1048) are lower than the calculated value. Height increase mainly due

to the grooving at side of crack like formation. even though same amount misfit stress applied
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Figure 4.20: The evolution of side wall surface of thin film with (110) plane as a top plane

with a tilt angle φ = 90◦ and A = 5, subjected to a compression Ξ = −5.58 misfit, without

electromigration (χ = 0, Amp = 0.01, k = 5.1). (a) Morphological evolution in 3D plot.

(b) Normalized displacement of trough and crest tips as a function of normalized time in

logarithmic scale.

with previous experiment, here there is no sharp crack formation due to relatively easy mass

transport at crack surface. So the rather crack tip formed to release stress concentration at

crack tip and escaping mass form rather high grooving at the sides of crack.

Figure 4.21: The evolution of side wall surface of thin film with (110) plane as a top plane

with a tilt angle φ = 77◦ and A = 5, subjected to a compression Ξ = −3.35 misfit, without

electromigration (χ = 0, Amp = 0.1, k = 1.71). (a) Morphological evolution in 3D plot.

(b) Normalized displacement of trough and crest tips as a function of normalized time in

logarithmic scale. (c) Hoop stress and surface profile on the evolving surface.
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Fig. 4.21 utilizes φ = 77◦ as a tilt angle. Again crack formation is observed but this time

grooving at the side of the crack grows with different rate so the upper surface of thin film

for an angled plateau which has (1̄10) plane. Right side of the crack wall form by (001)

plane which has the highest transverse diffusion constant on the other hand left side of the

crack formed on (1̄12̄) plane which has relatively lower transverse diffusion constant. This

diffusion constant difference explain the formation of different grooving height.

4.3.2.2 Four-fold rotational symmetry in cubic structures: Zone axis 〈001〉

In this section, four fold rotational symmetrical investigated by thin film having top surface

as (100) ∪ (21̄0) ∪ (11̄0) which are belong to the [001] zone axis.

Figure 4.22: The evolution of side wall surface of thin film with (001) plane as a top plane

with a tilt angle φ = 0◦ and A = 5, subjected to a compression Ξ = −11.16 misfit, without

electromigration (χ = 0, Amp = 0.05, k = 2.85). (a) Normalized displacement of trough and

crest tips as a function of normalized time in logarithmic scale. (b) Morphological evolution

in 3D plot. (c) Hoop stress and surface profile on the evolving surface.

At the zero tilt angle case (Fig. 4.22), high misfit stress (Ξ = −11.16 � σ = 1000 MPa) is

applied, as a result again increased surface waviness is observed because both the crest and

the cracking induced grooving are tend to grow with time. Morphologically almost identical

to the 2-fold symmetry with zero tilt angle. Fig. 4.22(c) shows the hoop stress concentration

at the crack tip and at the side of the tips tendency to create grooving. Growth rate of crest
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(Γcrest = 2676.93) is good agreement with LISA value (ΓLIS A = 2841.28). Trough has much

more faster with Γtrough = 10742 due to the crack propagation.

Fig. 4.23 illustrate the dome like formations at the compressive stress value Ξ = −1.116. In

this case, mass flow from the trough to the crest gradually and system evolve into the dome

like formation due to the low wave number and diffusion anisotropy coupling.

Figure 4.23: The evolution of side wall surface of thin film with (001) plane as a top plane

with a tilt angle φ = 45◦ and A = 5, subjected to a compression Ξ = −1.116 misfit, without

electromigration (χ = 0, Amp = 0.01, k = 1.71). (a) Morphological evolution in 3D plot.

(b) Normalized displacement of trough and crest tips as a function of normalized time in

logarithmic scale.

4.3.2.3 Six-fold rotational symmetry in cubic structures: Zone axis 〈111〉

In this case top plane has the highest symmetry elements {11̄0} ∪ {1̄1̄2}, thin film attached to

the substrate with surface normal of {111} top plane.

High surface roughness of thin film with φ = 0◦ tilt angle six fold symmetry surface is illus-

trated at Fig. 4.24. Due to high misfit stress value Ξ = −11.16, formation and annihilation of

troughs are observed. Eventually some of them transform into the crack like form and grow

very fast. Growth rate predicted value is ΓLIS A = 648.2, but crest and trough growth rates

observed as Γcrest = 1817 and Γtrough = 2439.28, respectively.
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Figure 4.24: The evolution of side wall surface of thin film with (111) plane as a top plane

with a tilt angle φ = 0◦ and A = 5, subjected to a compression Ξ = −11.16 misfit, without

electromigration (χ = 0, Amp = 0.01, k = 1.71). (a) Morphological evolution in 3D plot.

(b) Normalized displacement of trough and crest tips as a function of normalized time in

logarithmic scale. (c) Surface profile and hoop stress along the thin film surface.

Figure 4.25: The evolution of side wall surface of thin film with (111) plane as a top plane

with a tilt angle φ = 30◦ and A = 5, subjected to a compression Ξ = −3.35 misfit, without

electromigration (χ = 0, Amp = 0.01, k = 1.71). (a) Morphological evolution in 3D plot.

(b) Normalized displacement of trough and crest tips as a function of normalized time in

logarithmic scale. (c) Instantaneous hoop stress and surface profile along the thin film at the

on set of trough tip splitting (τ = 0.003).
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Fig. 4.25(c) shows the trough and crest splitting tendency at early stages of evolution for

the φ = 30◦ angled thin film under the Ξ = −3.35 compressive stress, but at the later stage

formed double trough transform back into one and increase the growth rate of trough. these

transformation stages can be observed as a change in slope at Fig. 4.25(a).

4.3.3 Epitaxially strained thin film with anisotropic texture under electromigration on

rigid substrates

In previous sections thin film under only the misfit stress is considered, in this section ob-

servations on electromigration and its coupling with stress under anisotropic diffusion are

presented.

Figure 4.26: The evolution of side wall surface of thin film with (110) plane as a top plane with

a tilt angle φ = −10◦ and A = 10, subjected to a compression Ξ = −1.11 due to misfit, with

electromigration χ = 20.( Amp = 0.05, k = 4). (a) Normalized displacement of trough and

crest tips as a function of normalized time in logarithmic scale. (b) Morphological evolution

in 3D plot.

In Fig. 4.26 (110) plane of thin film is tilted by φ = −10◦(≡ 170◦) to get the same surface

configuration with experiment done by Muller et al. (Fig. 1.20) [77]. And then σ = 100 MPa

compression and electron wind intensity χ = 20 is applied to the thin film, similar morpho-

logical facets are observed. Both crest and trough growth rates (Γcrest = 723.8 and Γtrough =

760.97) are predicted with small deviation from the calculated by LISA (ΓLIS A = 663.05).

When tilt angle changed to the φ = 50◦, edges of the facets gets sharper and pyramid like

structure formed (Fig. 4.27). When tilt angle of texture get close to the 90◦, after some
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Figure 4.27: The evolution of side wall surface of thin film with (110) plane as a top plane

with a tilt angle φ = 50◦ and A = 10, subjected to a compression Ξ = −1.11 due to misfit, with

electromigration χ = 20.( Amp = 0.05, k = 4). (a) Normalized displacement of trough and

crest tips as a function of normalized time in logarithmic scale. (b) Morphological evolution

in 3D plot.

shape transformation of surface wave (Fig. 4.27(a)), which might involve one or more among

growth, decay and tilting, shape change stops and resultant shape starts to drift without any

change in its shape.

Figure 4.28: The evolution of side wall surface of thin film with (100) plane as a top plane

with a tilt angle φ = 62◦ and A = 10, subjected to a compression Ξ = −3.35 due to misfit, with

electromigration χ = 6.( Amp = 0.27, k = 1.71). (a) Normalized displacement of trough and

crest tips as a function of normalized time in logarithmic scale. (b) Morphological evolution

in 3D plot.

Fig. 4.28 illustrates the film evolution which has four fold symmetry plane (100) with φ = 62◦

tilt angle under Ξ = −3.35 and χ = 6. Trough growth rate Γtrough = 209.43 shows large
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deviation form the LISA predicted value ΓLIS A = 445.1 due to the crack like formation. But

crest instead of showing growing behavior starts to decay until the crack formation, and then

make sharp elbow due to the grooving created by crack formation. At the same time applied

electrostatic potential difference keeps the surface flat by restraining the grooving from further

growth.

Figure 4.29: The evolution of side wall surface of thin film with (111) plane as a top plane

with a tilt angle φ = 37.8◦ and A = 10, subjected to a compression Ξ = −5.58 due to misfit,

with electromigration χ = 46 ( Amp = 0.37, k = 1.71). (a) Normalized displacement of

trough and crest tips as a function of normalized time in logarithmic scale. (b) Morphological

evolution in 3D plot. (c) Final configuration.

Fig. 4.29 shows evolution of thin film with the six fold symmetry and φ = −46◦ under high

electrostatic potential χ = 46 and compressive misfit stress Ξ = −5.58. Here, surface wave

transforms into the sharp cornered trapezoid shape with flat surfaces, and from the left side

of the lower surface crack emanates. Left side of the trapezoid with [1̄1̄2] surface normal has

highest possible transverse diffusion constant, on the other hand upper surface of trapezoid

and the flat trough surface are almost parallel to the substrate surface and have nearly lowest

possible transverse diffusion constant. These quantum dot like structures has roughly 150 nm

length and 50 nanometer height in real space.

In addition to the drastic surface shape formation due to the electromigration, there is another

important phenomena is healing effect of it. Fig. 4.30 shows two experiment, first one with
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two fold symmetry system with φ = 120◦ tilted with respect to substrate undergo shape

change due to the applied compressive misfit stress Ξ = −1.16 (Fig. 4.30(a-b)). In this

situation surface perturbation tends to grow and form dome like shape till the trough reach

to the substrate. On the other hand, when electrostatic potential applied χ = 20 to the same

system surface perturbation starts to decay instead of growing (Fig. 4.30(c-d)).

Figure 4.30: The evolution of side wall surface of thin film with (111) plane as a top plane

with a tilt angle φ = 37.8◦ and A = 10, subjected to a compression Ξ = −5.58 due to misfit,

with electromigration χ = 46 ( Amp = 0.37, k = 1.71). (a) Normalized displacement of

trough and crest tips as a function of normalized time in logarithmic scale. (b) Morphological

evolution in 3D plot. (c) Final configuration.

In the light of listed experiments, one can design an experiment to get surface structure with

desired dimensional parameters. For example; in a micrometer 3 quantum dot like structures

desired so desired width of QD is about 330 nm length then one can calculate the stress value

by taking 300 nm as a λm. So the needed stress value calculated as σ � −100 MPa by the

λm Eq. (4.16). For determining the height one must use the growth rate equation (4.13).

After calculating time τ = 0.37 for the desired height h = 80 nm, electrostatic potential

application should be started at that time. For the case of 4 QDs, parameters can be calculates

as σ � −140 MPa and τ = 0.1. For these two experiments (Fig. 4.31), Diffusion anisotropy

intensity is taken as A = 10, surface of thin film with (111) plane as a top plane with a tilt
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angle φ = 40◦ is defined with random noise as a perturbation.

Figure 4.31: The evolution of side wall surface of thin film with (111) plane as a top plane

with a tilt angle φ = 40◦ and A = 10, (a) subjected to a compression Ξ = −1.165 due to misfit,

with electromigration χ = 50 which is applied from τ = 0.37. (b) subjected to a compression

Ξ = −1.56 due to misfit, with electromigration χ = 50 which is applied from τ = 0.1.
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CHAPTER 5

SURFACE DYNAMICS IN EPITAXIALLY STRAINED FLAT

DROPLETS

5.1 Physical model

Physically, the droplet is attached to the substrate with a coherent interface, and the top sur-

face is subjected to the surface drift diffusion, and it is exposed to a vapor environment, whose

pressure may be neglected. Since simulations are performed in 2D space (equivalent to paral-

lel ridges or quantum wires in three dimensions), no variation of the interface profile and the

displacement fields in the film and substrate occurs in the direction (i.e., ẑ axis) perpendicular

to the plane of the schematics in Fig.5.1. Similarly, to simplify the numerical computations it

is assumed that the film/substrate interface is flat and the substrate is stiff. These assumptions

guarantees that the initial displacement along the interface associated with the misfit strain εo

stays constant during the evolution process (i.e., Dirichlet boundary condition).
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Figure 5.1: Side view of metallic droplet.

In these computer simulation studies, it is assumed that the thin film on top of the substrate

is represented by a flat crystalline droplet (i.e., bump), which may be described by a sym-
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metrically disposed, halve-wave length Cosine-function having a wave length and a height

(i.e., amplitude) denoted by 2L and hp, respectively. The droplet aspect ratio may be defined

by: β = L/hp, which prescribes a finite contact angle θ = arctan(π/β) between film and the

substrate at the onset of the simulation run. Therefore, in the normalized and scaled time-

length space, the initial shape of a droplet is uniquely described by one single parameter,

namely the aspect ratio β, since h̄p = 1 according the scheme adopted in this study. Simi-

larly, a close inspection of the normalized governing equation without the growth term shows

that there is only one more additional parameter left for the complete predetermination of

the morphological evolution process as an initial data, which is the ESED parameter denoted

by Σ = �o/�
∗ → hp/�

∗. In real space, the size of the droplet may be described by hp = �o

for a given value of the aspect ratio, but now it is solely determined by Σ keeping the shape

invariant (i.e, zooming) due to the fact that the characteristic length �∗ is an internal variable

for the isochoric systems, and it depends only on the material properties of the film and the

substrate including the misfit strain. Therefore, this unitless parameter Σ completely dictates

the possible size effects of the droplet on the evolution process in real space; where one has:

hp ← �o = Σ�∗. Hence, in the absence of the growth term, the aspect ratio β (i.e., shape) and

the strain energy density parameter Σ (i.e., size) are two basic numbers capable to dictate the

topographic features of the final stationary states.

5.2 Results and discussion

5.2.1 Island formation in epitaxially strained flat droplets with isotropic texture on

rigid substrates

In this section, isochoric system is considered such that no external traction applied to the

evolving surface, surface diffusivity is defined as isotropic. System evolution is investigated

under the wetting effect potential, the potential related with the film/substrate interface misfit

and curvature with or without condensation/evaporation.

Evolution of the boundary is described in terms of displacement velocities with following

formula:
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V̄ord =
∂

∂�̄

[
∂

∂�̄

(
−Σσ̄2

h + χϑ̄ + γ̄ f↔s(ȳ) κ̄ + ω̄(ȳ)
)]

− M f v
(
Δγ̄o

f v − Σσ̄2
h + γ̄ f↔s(ȳ) κ̄ + ω̄(ȳ)

)
(Ordinary points) (5.1)

V̄long = −M̄longΩ̄
−1{λT J − cos(θW)} ∀ λT J ≥ 1 (Triple junction contour line) (5.2)

In Eq. 5.1, �̄ is the arc length in 2D space which is scaled with respect to �o. First part of the

equation describes the evolution behavior of strained thin films by surface diffusion which is

driven by the gradient of ESED Σ(σ̄h)2 and capillary potential γ̄ f↔s(ȳ) κ̄. And second part

defines the local phase change which is called growth term, Physically this term describes the

evaporation or condensation of vapor phase. Δγ̄o
f v(T ) = (γ̄o

v − γ̄o
f )T represents the thermal part

of the helmholz free energy density related with the evaporation/condensation process. The

positive value favors the condensation so growth of the film.

5.2.1.1 Morphological evolution of droplet without growth:

In this section, the results obtained from a set of special computer experiments done on the

specimens having large aspect ratios (i.e., in the range of β = (10 − 28)), and subjected to

the misfit strain at the interface between the thin film and the stiff substrate will be presented.

Different elastic strain energy density parameters (ESED) that represents different parts of the

spectrum of morphologies will be discussed; (i.e., Σ = 0.075, 0.175, ||0.250||, 0.300, 0.350,

0.400, ||0.413||, 0.425, 0.450, ..., 0.70). The doubled vertical lines roughly indicate the tran-

sient states found. The lowest ESED value presented here is Σ = 0.075, which destabilize

the initial droplet configuration by activating the TJ towards the Frank-van der Merwe layer

structure by spreading over the substrate surface before switching to the island formation.

Also transition to double islands (i.e., twins, etc) are observed. During our simulations, be-

sides film morphologies, also the kinetics of the peak height development, the displacement

of the TJ singularity during wetting layer extension, and the strain energy release during

the evolution process are monitored. In order to relate simulations with the actual physi-

cal size of the islands, following parameters are considered, which are the paremeters of Ge

film grown epitaxially on a stiff silicon substrate. Namely: εo = −0.042, EGe = 103GPa,
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νGe = 0.273, fGe = 1.927Jm−2, and fSi = 2.513Jm−2. These numbers imply a characteristic

length of �∗ = 12.11 nm, which may be used to calculate the heights and the base lengths of

the droplets that are corresponding to the range of the strain energy intensity parameters for a

given aspect ratio (i.e., β = 28), namely; for the singlet islands one has: {Σ : 0.25 − 0.40} ⇒
{ho = 1.91 nm − 3.08 nm} ∩ {L : 84 nm − 134 nm}.

Figure 5.2: (a) The island profile change with transition stage just before the onset of the SK

islands formation regime. The final profile is fitted by a Gaussian bell-shape curve having

following parameters: h̄p = 2.30, w̄ = 3.25, which corresponds to the peak height-to-peak

width ratio of ξ = 0.354. (b) Instantaneous velocity and the hoop stress distributions along

the final droplet profile. (c) Evolution of the contact angle is shown on the left y-axis. On

the right y-axis, the strain energy and surface free energy changes are given for Ge/Si(100)

system, and scaled by nm2 → 10−18. (d) Time evolution of peak height and TJ displacement.

Simulation Data: Σ = 0.25, h̄p = 1, β= 28, ν= 0.273, M̄T J = 2, λT J= 1, δ̄ = 0.005, γs = 1.2

and γ f = 1.

The results of a computer simulation, which is done on a hypothetical sample by assigning

a critical value for the elastic strain energy density parameter (ESED) such as are presented

in Fig.5.2. Fig.5.2(a) shows development of a premature or transient island profile with-

out having any indication of the wetting layer formation even after 246 � 7 × 1013 runs.

This profile, which was obtained by performing numerous experiments in the vicinity of the
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stability-instability turn-over point for the linearized systems, corresponds to the transient

stage between the SK islands and the FM type layers structures. This final profile as demon-

strated in Fig.5.2. (a) may be described by a Gaussian curve (i.e., second degree) given by

G(x; h̄p, w̄) = h̄p. exp
(
−ln(2)x2/w̄2

)
, having a halve-width of w̄ = 3.25, and a peak height

of h̄p = 2.30, in normalized space. These two value, corresponds to the peak height to peak

width ratio of ξ = 0.354. According to the Prigogine description, this is a genuine station-

ary non-equilibrium state since even though the height of droplet reached a plateau region

(Fig. 5.2(d)), the TJ contour line is still active with a temporal wetting angle of θW ≈ 0.58o

(Fig. 5.2(c)). This TJ activity is the main indicator that the system is in the non-equilibrium

state. To reveal the real physical system parameters, the data given above are employed for

the Ge/Si(100) system to the normalized and scaled parameters and obtained hp � 6.9 nm for

the peak height, 2W = 18.98 nm for the peak width of and L ≡ λ � 86.5 nm for the base

(or the wave length that describes the spacing between islands) length with the help of Fig.

5.2(b). These values are in the range of numbers reported by Kukta and Freund, who were

defining the base of the island as its width, which may create some confusion if there is no

sharp turning point at the corners that separate island from the wetting layer. As seen in Fig.

5.2(d), the peak height showed logarithmic time dependence during the intermediate regime

before the onset of the plateau region, namely; h̄p(t̄) � 2 log(t̄)+ 3.6. In Fig. 5.2 (c), the nega-

tive cumulative strain energy release, −
(
ΔF f /wo

)
nm2, and the surface free energy variation

(ΔFs/wo) nm2, both scaled with respect to wo. This plot shows almost perfectly linear de-

crease for the cumulative strain energy release with time compared to the surface free energy

variation that indicates a leveling off in the early stages of the development followed by a pos-

itive change due to the surface layer extension during the evolution process. The free energies

are plotted by considering the critical length of Ge/Si (100) system, which is about 12.11 nm

for the present case. At the end of the test run the total strain energy release is calculated to

be about ΔF f � −3.203 × 10−5J, which is very large compared to the total surface energy

gain that amounts to ΔFs � 3.36 × 10−9J. This figure also shows that the global Helmholtz

free energy is negative all the way through the natural change as one should expect from the

thermodynamic considerations.

In Fig.5.3, a typical morphological evolution behavior of the SK island is presented in terms

of the final droplet profile, the peak height, the base extension, and the TJ contact angle with

respect to the normalized logarithmic scale. In this experiment, an elastic strain energy density
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Figure 5.3: (a) Spontaneous formation of the SK island with an almost perfect flat wetting

layer from a single crystal droplet on a stiff substrate by the isotropic surface drift diffusion

driven by the combined actions of the misfit strain (isochoric) and the capillary forces. The

inset details the structure of the wetting layer at the TJ. Gaussian bell-shape curve representing

the final profile has the following parameters: h̄p = 3.15, w̄ = 2.90 and thus the peak height-

to-peak width ratio of ξ = 0.543. (b) Instantaneous velocity and the hoop stress distributions

along the final droplet profile. (c) Evolution of the contact angle is shown on the left y-axis.

On the right y-axis, the strain energy and surface free energy changes are given for Ge/Si(100)

system. (d) Time evolution of peak height and TJ displacement. Simulation Data: Σ = 0.40,

h̄p = 1, β= 28, ν= 0.273, M̄T J = 2, λT J= 1 , δ̄ = 0.005, γs = 1.2 and γ f = 1.

parameter of Σ = 0.40 is used that was picked out from the upper edge of the stable singlet SK

island formation range {Σ : 0.30, 0.35, 0.40}. The SK profile reported in this figure shows a

very thin simultaneously-formed wetting layer having a normalized thickness of Δh̄ � 0.026.

This wetting layer thickness is about a factor of 5 greater than the adopted boundary layer

thickness in our computer simulations. In real space, the wetting layer thickness for the

Ge/Si(100) system may be computed as follows: Δh � 0.026�o → 0.026Σ�∗ � 0.12 nm,

which may be easily improved by taking the boundary layer thickness 5 times smaller than the

desired effective wetting layer thickness,15 namely that is about one atomic spacing, 0.6 nm.

That means one should rather take δ̄→ 0.025.
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The insert in Fig. 5.3(a) demonstrates the structure of the wetting layer at the TJ contour line,

which has a temporal contact angle of θ � 0.74o instead of zero degree, which indicates that

the TJ is still active. A close inspection of Fig. 5.3(d) shows that the TJ displacement motion

indicates three different time exponent stages, L̄(t̄) = At̄n where n = 1; 1/2; 6, before it enters

to the plateau region. Similarly, the peak height shows a logarithmic time dependence during

the intermediate regime before the onset of the plateau region, namely; h̄p(t̄) ∼ 2 log(t̄) + 5.6.

Using the physicochemical data given for Ge/Si(100) system, one may calculate the critical

film thickness as: hGe
c = 0.56 nm, and the integrated thickness of the droplet as: hGe

o =

(2/π)Σ�∗ ≈ 3.08 nm. The critical parameter, which is given by hGe
o /h

Ge
c ≈ 5.546 ≥ 5 is in

the range where the wetting parameter does not play any role. The normalized wave number

k ≡ k�∗, which corresponds to the maximum growth rate constant, may be calculated from

the expression kmax =

{
3 +

√
9 − 8(hc/ho)−3

}
, which yields kmax ≈ 2.996. This result is

very close to the theoretical value of 3. The perturbation wave length for the maximum

growth rate constant now becomes about λmax = 25.4 nm. This figure is about a factor of five

smaller than the domain length of L = 28Σ�∗ → 135.7 nm. According to the linear instability

theory the system should be completely in the instability regime, therefore no stationary non-

equilibrium state SK island formation would be possible. This is completely contrary to the

findings demonstrated in this work, which implies that for the large amplitudes as well as for

the certain initial configurations such as the flat droplets the linear instability theory is not

reliable in predicting evolution behavior of the system.

In Fig. 5.3(c), the cumulative strain energy change, −
(
ΔF f /wo

)
nm2 as well as the increase in

the surface free energy, (ΔFs/wo) nm2, of the droplet due to the island formation are presented.

This figure clearly shows that there is a large increase in the surface free energy due to the

island formation compared to Fig. 5.2(c) because of a factor of two peak height enhancement

during the evolution process. Even though the surface free energy levels off after reaching the

stationary non-equilibrium state, still the strain energy release continuous to increase due to

the readjustment of the system through the TJ activities.

Fig. 5.4(a and b) illustrate a fully developed SK doublet at the stationary state separated

by a thin wetting layer having a thickness of Δh̄ � 0.0314 → 0.17 nm. The wetting layer

thickness between the peaks, and the peak tails are found to be almost same. In this case, an

ESED parameter of Σ = 0.45, which is selected from a range {Σ : ‖4.125‖ ; 4.25; 0.45..}, where

the doublet formation appears to be the stationary state instead of singlets is used. Above
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Figure 5.4: (a) Spontaneous formation of the SK doublets with an almost perfect flat wetting

layer from a single crystal droplet. The inset details the structure of the wetting layer between

the individual peaks. The fourth degree Gaussian fitting have the following parameters: h̄p =

2.07, w̄ = 2.06 and thus the peak height-to-peak width ratio of ξ = 0.502. (b) 3D time

evolution of island profile. (c) Evolution of the contact angle is shown on the left y-axis. On

the right y-axis, the strain energy and surface free energy changes are given for Ge/Si(100)

system. (d) Time evolution of peak height and TJ displacement. Simulation Data: Σ = 0.45,

h̄p = 1, β= 28, ν= 0.273, M̄T J = 2, λT J= 1, δ̄ = 0.005, γs = 1.2 and γ f = 1.

this range not only the multiples but also the Volmer-Weber type island formation may seen

depending on the ESED value, which should be further investigated. The extended plateau

in the TJ wetting angle plot in Fig. 5.4(c) indicates that at the stationary state equilibrium

contact angle may not be necessarily realized, which should be otherwise zero degree. These

doublet peaks may be represented by the fourth degrees Gaussian type function G(x; h̄p, w̄) =

h̄p. exp
(
−ln(2)x4/w̄4

)
, where the peak height and the halve width found to be h̄max = 2.07→

11.18 nm and w̄ = 2.06→ 11.12 nm respectively.

There is a strange peak on the wetting angle plot in Fig. 5.4(c), and the same phenomenon

is also occurred in the formation of the singlet without the sign fluctuation in the global

Helmholtz free energy. This event is strongly correlated with the TJ motion as may seen from

Fig. 5.4 (d), which shows drastic enhancement in the displacement velocity just at the onset
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of the stationary non-equilibrium regime.

Figure 5.5: (a) The stationary island profile at the transient stage just before the onset of the

SK island formation regime. Gaussian bell-shape curve representing the final profile has the

following parameters: h̄p = 1.47, w̄ = 2.20 and thus the peak height-to-peak width ratio of

ξ = 0.334. (b) 3D time evolution of island profile. (c) Evolution of the contact angle is shown

on the left y-axis. On the right y-axis, the strain energy and surface free energy changes

are given for Ge/Si(100) system. (d) Time evolution of peak height and TJ displacement.

Simulation Data: Σ = 0.4, h̄p = 1, β= 10, ν= 0.273, M̄T J = 2, λT J= 1, δ̄ = 0.005, γs = 1.2

and γ f = 1.

In Fig. 5.5,a new set of computer simulation studies are presented utilizing an aspect ratio

of β = 10 which is 2.8 times smaller than the first set reported above. As expected, this

modification pushed the onset of the SK island formation threshold described by the ESED

parameter to higher values of Σ → 0.40. This is a factor of 1.6 enhancement compared to

the case presented in Fig. 5.2(a). As seen in Fig. 5.5,a bell shape profile extended all over

the computation domain without the existence of any wetting layer. This is very typical for

this transient regime as observed previously. Figure 5.5(a and b) shows that there is only

a transformation of the Cosine-shape droplet into the second degree Gaussian shape profile

with a minor increase in height and a very small stretching of the base line or the computa-

tion domain due to TJ motion. Fig. 5.5(c) indicates that the wetting contact angle reached
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a value of θW � 1.52o, showing some sort of trend towards the plateau behavior. The most

interesting event observed here is the sign of the global Helmholtz free energy change during

the evolution process: In general it is negative indicating that the decrease in the strain energy

is greater than the increase in the surface free energy of the system. However, only in one

narrow region, one observes a sign inversion, which indicates the dynamical nature of the

simulation experiment due to TJ displacement motion and may be interpreted as this abrupt

change is unnatural. Nevertheless, this is a transient region mostly controlled by the TJ mo-

tions and involves additional positive entropy production, which is not accounted in the global

Helmholtz free energy as presented above. A careful inspection of Fig. 5.5(c) may show that

the surface free energy slowly deviates from linearity by making a turn towards the station-

ary non-equilibrium state region, and eventually it may be stabilized. This event is closely

correlated with the behavior of the base line extension in Fig. 5.5(d). It is clear that this ex-

periment prematurely terminated before the system reaches to the stationary non-equilibrium

state, which is indicated by the plateau regions in the kinetic parameters such as the base ex-

tension, the TJ contact angle, and finally the peak height. The reason for this rather premature

termination was the need for excessive computation time and memory, otherwise one may get

a profile having little more flattened tails. In this experiment, the peak height and the peak

halve-width are found to be, respectively, hp � 1.47 → 7.12 nm, and w̄ � 2.20 → 10.65 nm

for Ge/Si(100) system.

In Fig. 5.6, the effect of decrease in the aspect ratio on the threshold level of ESED is pre-

sented for the formation of SK islands, which shows a substantial increase in ESED parameter

from Σ = 0.30 for β = 28 to Σ = 0.50 for β = 10. Findings on the stationary values, which

describes the morphology of SK in terms of a fourth degree Gaussian profile, may be sum-

marized as: h̄max = 1.76, w̄ = 1.80 and L̄ = 10.784. These parameters may be converted

into the real space by employing the length scale, �o ≡ Σ�∗ → 6.06 nm, obtained for the

Ge/Si(100) system. This conversion results a peak height of hmax = 10.49 nm, halve-peak

width of w = 10.82nm and the extended domain length of L = λ � 65.30nm for the SK island

formed during the evolution of the droplet having integrated thickness of ho � 3.85 nm, and

the base length of L = 60.55 nm (i.e., the original area A � 233.18 nm2). At the stationary

non-equilibrium state the stationary height-to-base length aspect ratio becomes βS = 5.93

instead of β = 10.

A careful examination of Fig. 5.6(c and d) clearly shows that this experiment is also prema-
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Figure 5.6: (a) Spontaneous formation of the SK island with an almost perfect flat wetting

layer from a single crystal. The inset details the structure of the wetting layer at the TJ.

The singlet has fourth degree Gaussian bell-shape curve having the following parameters:

h̄p = 1.76, w̄ = 1.80 and thus the peak height-to-peak width ratio of ξ = 0.489. (b) 3D time

evolution of island profile. (c) Evolution of the contact angle is shown on the left y-axis. On

the right y-axis, the strain energy and surface free energy changes are given for Ge/Si(100)

system. (d) Time evolution of peak height and TJ displacement. Simulation Data: Σ = 0.50,

h̄p = 1, β= 10, ν= 0.273, M̄T J = 2, λT J= 1, δ̄ = 0.005, γs = 1.2 and γ f = 1.

turely interrupted at the onset of the stationary non-equilibrium state due to the same compu-

tational requirements. Even though the kinetic parameters such as the base line extension and

the wetting angle indicate that they have reached the stationary non-equilibrium state region,

the global Helmholtz free energy change still does not show any sign reversal. This situation

is closely correlated with Fig. 5.6(a), where one does not see any well developed flat wetting

layer formation compared to its counterpart in Fig. 5.3(a). The case reported in Fig. 5.3(c)

also shows different kinetic behavior even though topologically both SK islands appear to be

very similar, with the exception of the depth and extend of the wetting layers.

In order to correlate two different SK states having exactly the same size in real space, a

special test run is performed using an ESED parameter of Σ = 0.30, which corresponds to

the onset of the SK island formation regime, where the droplet has an aspect ratio of β = 28,
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and the normalized peak height of h̄p = 1. These figures in real space match up to a droplet

having an initial integrated thickness of ho � 2.31 nm, and base length of L = 101.72 nm

(i.e., the original area A � 235.18 nm2). This test run resulted following output data for the

stationary state, which exhibits a fourth degree Gaussian profile: h̄max = 2.85 (peak height)

and w̄ = 3.0 (halve peak width), and L̄ � 10.784 (extended domain size). In the real space,

for the Ge/Si(100) system, these data amounts to: hmax = 10.35 nm, w = 10.96 nm, and

L ≡ λ = 101.72 nm with a stationary aspect ratio of βS = 9.82.

This is a very interesting result, and clearly shows that two droplets having two different initial

shapes, characterized by the two different aspect ratios in the normalized space, but having

exactly the same sizes (i.e., area in 2D space) in real space evolved into the SK islands having

almost exactly the same shape and size. The only difference between these two systems is

in the extensions of the wetting layer platforms, which are defined by the original domain

sizes with slight enlargements due the TJ activities. This behavior may be summarized by an

analytical expression for the adopted Cosine-shape droplet by writing:

A =
2

π
β�2o ⇒

A

�∗2
=

2

π
βΣ2
β � 1.59

In above Equation, the subscript β attached to the ESED parameter, Σ, and the numeric value

of 1.59 indicates the onset value for the appearance of the SK island formation regime (i.e.,

Σ10 → 0.50;Σ28 → 0.30), which may have well defined range or band structure for the singlet

and doublet, etc. depending upon the height-to-base length aspect ratio of the droplet. Kukta

and Freund found a parabolic connection between the aspect ratio, which defines the shape of

the equilibrium island, and the normalized island area: A/�∗2. Their aspect ratio is completely

different than ours, and it relies on the ratio of the height-to-base width of the island, which is

obtained by a numerical searching technique that is also based on the Cosine-shape initial film

morphology, but it is nothing to do with self-evolution of the system towards the stationary

non-equilibrium states.

In Fig. 5.7, the results of a computer experiment, which is executed by using a relatively

low value for the ESED parameter (i.e, Σ = 0.175), are presented. In the case of Ge/Si(100)

system, this value for the ESED represents a droplet having a peak height of hp = 2.12nm and

the base length of L = 59.34 nm, which may be described by a height-to-width aspect ratio

of ξ = 0.036, and the normalized area of A/�∗2 = 0.546. The profile of this island looks very

similar to those described by Kukta and Freund in their remarkable work on the equilibrium
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Figure 5.7: (a) Evolution of the Cosine-shape droplets towards the stationary equilibrium

state by readjustment of the base length trough the TJ motion. Gaussian bell-shape curve

representing the final profile has the following parameters: h̄p = 1.10, w̄ = 8.00 and thus the

peak height-to-peak width ratio of ξ = 0.069. (b) Instantaneous velocity and the hoop stress

distributions along the final droplet profile. (c) Evolution of the contact angle is shown on the

left y-axis. On the right y-axis, the strain energy and surface free energy changes are given

for Ge/Si(100) system. (d) Time evolution of peak height and TJ displacement. Simulation

Data: Σ = 0.175, h̄p = 1, β= 10, ν= 0.273, M̄T J = 2, λT J= 1, δ̄ = 0.005, γs = 1.2 and γ f = 1.

island shapes for very small size droplets. The wetting layers at the domain edges are very

narrow and about 1.04 nm. This tiny droplet as may be deduced from Fig. 5.7(c and d) is

stabilized spontaneously by small adjustments in the base length as well as in the wetting

contact angle by the TJ motion. At the start, TJ displacement is linear with time and then

turns to a new regime where it demonstrates a new slope of 1
2

as may be seen from the double

logarithmic plot in Fig. 5.7(d). The TJ has a constant velocity up to knee point then slows

down by showing a connection such as VT J ∼ 1/
√

t̄ up to the onset of the stationary state

regime, then levels off. The calculated value of the integrated thickness is ho � 1.35 nm,

which is greater than the critical film thickness calculated previously as hGe
c = 0.56 nm. These

values results ho/hGe
c � 2.428, and the growth rate versus film thickness plot for this ratio
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is given in Fig. 1 for demonstration. According to the linear theory presented previously,

the droplet should be in the instability regime, on the other hand this experiment shows that

the system is evolving towards the stationary non-equilibrium state with a large and negative

global Helmholtz free energy release.

5.2.1.2 Morphological evolution of droplet with growth:

To show the effect of growth on the morphological evolution of droplet, an experiment us-

ing the same input data as it was employed previously to obtain Fig.5.3 is performed. But

this time, the growth term is fully considered in the governing equation by employing the

following values for the growth mobility and the Helmholtz free energy of condensation, re-

spectively, M̄b = 1 and ΔF̄o
v f = 2.

Fig. 5.8(a) illustrates two profiles with (red) and without (blue) the growth term. In fact,

the no growth case was already discussed in the case presented in Fig. 5.3. In the growth

case, a primary peak at the center accompanied by two subsidiary or satellite peaks in each

side which altogether covers the computation domain is observed. By zooming this figure,

one observes very narrow and thin wetting layers (δh̄Ge � 0.0587 → 0.28 nm) separating

the satellites from the primary peak. This clearly indicates that system is still in the domain

of the SK islands formation regime. As can be seen from the kinetics data presented in Fig.

5.8(c and d), this system shows some intermediate stationary non-equilibrium state for the

time interval of t̄ ≈ {0.05 − 0.1}, where the wetting contact angle θw ≈ 0.998o as well as the

size of the computation domain δL/Lo ≈ 0.01 seem to be stabilized as clearly indicated by

the appearance of the plateau regions. Similarly, up to the onset of this rather short living

intermediate regime, the height of the primary peak does not show any appreciable increase.

Otherwise, the system there on evolving continually unless one turn-off the condensation

process completely. In Fig. 5.8(b), the instantaneous velocity and the hoop stress distributions

are plotted with respect to the position of the collocation points along the droplet surface. The

normalized hoop stress is compressive in sign, since the Ge/Si(100) system is in the mind,

which has a negative misfit strain of εo = −0.042. One observes very high tension stresses

concentrated only at the edges of the interface, where the contact between droplet and the

substrate takes place through the TJ, which goes up to the level of σ̄ � 2.25 → 13.389GPa,

and are not illustrated in this diagram. The velocity diagram (Fig. 5.8(b)) shows two positive

114



Figure 5.8: (a) The effect of the growth on the SK island morphology: formation of two

satellites shouldering the primary pea, and separated by almost perfectly flat wetting layers.

Gaussian bell-shape curve representing the final profile has the following parameters: h̄p =

1.10, w̄ = 8.00 and thus the peak height-to-peak width ratio of ξ = 0.069. (b) Instantaneous

velocity and the hoop stress distributions along the final droplet profile. (c) Evolution of the

contact angle is shown on the left y-axis. On the right y-axis, the strain energy and surface

free energy changes are given for Ge/Si(100) system. (d) Time evolution of peak height and

TJ displacement. Simulation Data: Σ = 0.40, h̄p = 1, β= 28, ν= 0.273, M̄T J = 2, λT J= 1,

δ̄ = 0.005, γs = 1.2 and γ f = 1 and the growth parameters M̄b = 1, ΔF̄o
v f = 2.

maxima, which correspond to the shoulders of the satellites next to the primary peak sides.

This indicates that there is a high rate of shrinkage or flatting taking place there, which causes

not only the better development of the satellites by rounding off but also the enlargement of

the wetting layers next to the primary peak. The velocity distribution shows plateau regions

with zero growth rate at the wetting layers, which indicates the stabilization there.
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5.2.2 Island formation in epitaxially strained flat droplets with anisotropic texture on

rigid substrates

In this section, isochoric system is considered such that no external traction applied to the

evolving surface. System evolution is investigated under the wetting effect potential, the

potential related with the film/substrate interface misfit and curvature with or without conden-

sation/evaporation.

Evolution of the boundary is described in terms of displacement velocities with following

formula:

V̄ord =
∂

∂�̄

[
∂

∂�̄

(
−Σσ̄2

h + χϑ̄ + γ̄ f↔s(ȳ) γ̄ f (θ, φ,m) κ̄ + ω̄(ȳ)
)]

(Ordinary points) (5.3)

V̄long = −M̄longΩ̄
−1{λT J − γ̄ f↔s(ȳ) γ̄ f (θ, φ,m) cos(θW) + γ̄ f↔s(ȳ) ∂θγ̄ f (θ, φ,m) cos(θW)}

∀ λT J ≥ 1 (Triple junction contour line)

(5.4)

In Eq. 5.3, �̄ is the arc length in 2D space which is scaled with respect to �o. First part of

the equation describes the evolution behavior of strained thin films by surface diffusion which

is driven by the gradient of ESED Σ(σ̄h)2 and capillary potential γ̄ f↔s(ȳ) γ̄ f (θ, φ,m)κ̄, where

γ̄ f (θ, φ,m) is the anisotropic surface stiffness.

5.2.2.1 Two-fold rotational symmetry in cubic structures: Zone axis
〈
11̄0

〉

In this section, the results of the extensive computer simulation experiments performed on

the single crystal thin film droplets attached to the substrate top surfaces described by two-

fold rotational symmetry designated by the zone-axis
〈
11̄0

〉
are presented. This zone axis is

associated with the set of vicinal (singular) planes such as (111) ∪ (110) ∪ (001) ∪
(
112̄

)
in

cubic crystal structures. In the present study it is assumed that {111} crystallographic planes

have the lowest surface free energy as observed experimentally in fcc and bcc metals and

alloys. Therefore zero tilt angle, which designates the orientation of the cusp in the surface
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free energy map in 2D space is associated with the (111) plane in the present simulation

studies. The tilt angles, φ, which are in the range of (0o − 180o) are specially selected for

demonstration purposes.

Figure 5.9: (a) Spontaneous formation of the SK island from a single crystal droplet on a

stiff substrate via the surface drift diffusion driven by the combined actions of the misfit strain

(isochoric) and the anisotropic capillary forces. (b) Instantaneous velocity and the hoop stress

distributions along the final droplet profile. (c) Evolution of the contact angle is shown on the

left y-axis. On the right y-axis, the strain energy and surface free energy changes are given

for the Ge/Si(111) system. (d) Time evolution of peak height and TJ displacement. Data:

Σ = 0.40, B = 0.05, B = 0.05, h̄p = 1, β= 28, ν= 0.273, M̄T J = 2, λT J= 1, δ̄ = 0.005,

γs = 1.2 and γ f = 1.

In Fig. 5.9, a typical morphological evolution behavior of the SK island deposited on the top

of the Ge/Si vicinal plane is presented in terms of the final droplet profile. Here the peak

height, the base extension, and the TJ contact angle are given with respect to the normalized

logarithmic scale.

Fig.5.9(c) demonstrates evolution behavior of the wetting layer at the TJ contour line, which

has a temporal contact angle of θ = 0.74o instead of zero degree, which indicates that the

TJ is still active. In Fig. 5.9(c), the cumulative strain energy change, −
(
ΔF f /wo

)
nm2, as

well as the increase in the surface free energy, (ΔFs/wo) nm2, of the droplet due to the island
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formation are also presented. Here the strain energy reduction shows a linear dependence

on the normalized elapse time up to the onset of the stationary state regime. This fact may

be easily anticipated by looking at the relevant plot, which with the exception of the initial

transient stage has a slope of unity in the double logarithmic scale. A close inspection of

Fig. 5.9(d) shows that the TJ displacement motion associated with the base extension has

three different time exponent stages, L̄(t̄) = At̄nhere n = 1; 1/2; 6, before it enters to the

plateau region. Similarly, the peak height shows a logarithmic time dependence during the

intermediate regime before the onset of the plateau region, namely; h̄p(t̄) = 2 log(t̄) + 5.6.

Figure 5.10: Spontaneous formations of the right- and left- shifted SK islands from single

crystal droplets for (a and b) very low, B = 0.05, and (d and c) very high, B = 1.0, surface

free energy anisotropy constants at ±45o tilt angles. At the threshold level of the anomalous

instability regime, very sharp faceting at the right and left edges may be easily seen. Data:

Σ = 0.40, h̄p = 1, β= 28, ν= 0.273, M̄T J = 2, λT J= 1, δ̄ = 0.005, γs = 1.2 and γ f = 1.

Fig. 5.10(a-d) illustrate fully developed SK singlet islands, developed over those top substrate

surfaces having φ = ±45o tilt angles with respect to a member of the vicinal {111} form of

planes, which are assumed to be having smallest surface free energy.

The selected tilt angle φ = ±45o is very close to the angle between (111) and (110) planes

belonging to the
〈
11̄0

〉
zone axis, namely φ � 35.26o. Therefore, the results obtained here

may easily be extrapolated to the SK islanding taking place in Ge/Si (110) system. Compar-

ison between Fig. 5.10(a,b) and Fig. 5.10(c,d) shows that there is a substantial drop in the
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final SK peak height, and the large shift in the peak position if one goes from very low value

of B = 0.05 to the high anisotropy constants of B = 1.0 even though the system still stays

in the normal Asaro-Tiller-Grinfeld (ATG) instability regime. From the SK profiles reported

in Fig. 5.10(c,d), one may easily see that the very sharp faceting with 90o inclination to the

platform is taking place on the right- and left-shoulders, respectively. The faceting planes

may be identified as
(
1̄10

)
vicinal plane, which also belongs to the zone-axis

〈
11̄0

〉
. At the

stationary state regime, this faceted SK island is separated from the substrate by a thin wet-

ting layer having a thickness of Δh̄ = 0.030 → 0.17 nm. In these last two cases, an ESED

parameter of Σ = 0.40 is utilized, and a surface free energy anisotropy constant of B = 1.0,

which is just at the onset of the anomalous instability regime. The peak height and the halve

width for the low anisotropy constant B = 1.0 found to be about h̄S K = 2.74 → 13.27 nm

and w̄ = 2.06 → 9.8 nm, respectively, compared to the one obtained for B = 0.05, namely:

h̄S K � 3.03→ 14.53 nm.

Figure 5.11: (a) Spontaneous formation of the SK doublets with an almost perfect flat wetting

layer from a single crystal droplet having exposed to the anisotropic surface stiffness with a tilt

angle of φ = 90o. (b) Evolution of the contact angle is shown on the left y-axis. On the right

y-axis, the strain energy and surface free energy changes are given for Ge/Si
(
112̄

)
system.

Data: Σ = 0.40, B = 0.05, φ = 90o, h̄p = 1, β= 28, ν= 0.273, M̄T J = 2, λT J= 1, δ̄ = 0.005,

γs = 1.2 and γ f = 1.

Fig. 5.11 illustrate a fully developed SK doublet at the stationary state separated by a thin

wetting layer having a thickness of Δh̄ = 0.0314 → 0.17 nm. The wetting layer thickness

between the peaks, and the peak tails are found to be almost same in magnitude. In this case,

an ESED parameter of Σ = 0.40 is utilized, and a rather weak anisotropy constant of B = 0.05,

with a tilt angle of φ = 90o. This tilt angle corresponds to
(
112̄

)
vicinal plane, which belongs

to
〈
11̄0

〉
zone axis, and it is normal to the (111) plane.

The extended plateau in the TJ wetting angle plot in Fig. 5.11(b) indicates that the stationary
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state equilibrium contact angle may not be necessarily realized, which should be otherwise

equal to zero degree. These doublet peaks may be represented by the fourth degrees Gaussian

type function G(x; h̄p, w̄) = h̄p exp
(
−ln(2)x4/w̄4

)
, where the peak height and the halve width

found to be h̄S K = 1.98→ 9.59 nm and w̄ = 2.06→ 11.12 nm, respectively.

5.2.2.2 Four-fold rotational symmetry in cubic structures: Zone axis 〈001〉

In this section, computer simulations are performed on single crystal thin film droplets having

(100) ∪
(
21̄0

)
∪

(
11̄0

)
top substrate surfaces belonging to the [001] zone axis, characterized

by the four-fold rotational symmetry. In the first set of simulation experiments, a very low

anisotropy constant such as B = 0.05 is selected in connection with the various tilt angles

in the range of φ ⊃ (0o − 90o) to see the orientation effects on the morphological evolutions

in the SK islanding. In the second set of experiments, the effects of the surface free en-

ergy anisotropy constant, which is chosen below and above the anomalous threshold level of

Bth = 1/7 are examined in great details for the special tilt angle of φ = 0o. This orientation,

which corresponds to the cusp in the Wullf free energy mapping is assumed to coincide with

the top
(
11̄0

)
surface of the substrate. This assumption as justified for fcc and bcc metals and

alloys implies that
(
11̄0

)
plane has the lowest surface free energy among the all vicinal sur-

faces belonging to the [001] zone axis. A typical top plane of a substrate that has a practical

interest in Ge/Si(100) system may be described by any member of the form of planes {100}
as illustrated in Fig. 5.12.

Vapor phase

hp

(100)

[0
11

][011]

Substrate

Crystallographic orientation

Figure 5.12: Side view of a metallic droplet. This configuration corresponds to the four-fold

rotation symmetry designated by [100] zone axis. Where n = 2m = 4 and the tilt angle

φ = 45o if one takes the
{
11̄0

}
form has lower free energy than the form of planes {100}, as

far as the diffusion and the specific surface Helmholtz free energy dyadics are concerned.

To investigate the effects of the tilt angle on the morphological evaluation of a droplet experi-
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ments are performed where the test modulo is assumed to be exposed to an elastic strain en-

ergy density of Σ = 0.4, and the selected surface stiffness anisotropy constant B = 0.05 ≤ 1/7

is below the threshold level of the anomalous regime. At the zero tilt angle case, these parame-

ters result in a well-developed SK singlet islanding having exactly the same shape parameters

as reported in Fig. 5.9(a).

Figure 5.13: (a) Spontaneous formation of a tilted SK singlet towards the right edge with an

almost perfect flat wetting layer from a single crystal droplet having exposed to the anisotropic

surface stiffness with tilt angle of φ = 22.5o. (b) Where the same droplet is exposed to a tilt

angle φ = −22.5o by keeping all other system parameters same. Data: Σ = 0.40, B = 0.05,

h̄p = 1, β= 28, ν= 0.273, M̄T J = 2, λT J= 1, δ̄ = 0.005, γs = 1.2 and γ f = 1.

In Fig. 5.13, the results obtained from a simulation experiments performed on a sample

oriented with two different tilt angles, namely φ = 22.5o and φ = −22.5o, are presented.

These orientations almost correspond to the set of vicinal planes
(
1̄20

)
∪

(
21̄0

)
symmetrically

disposed with respect to the
(
1̄10

)
plane with the tilt angles of φ � ±18.4o. Fig. 5.13(a-

b) clearly show the asymmetric morphologies associated with the SK singlet islands, having

slightly tilted towards the right and the left edge, respectively for the tilt angles of φ = 22.5o

and φ = −22.5o. The kinetics output data, which are not reported here, resembles those

reported in Fig. 5.10(c-d), and indicates that the surface free energy has reached to a stationary

state, and TJ-contact angle is almost zero. On the contrary, the elastic strain energy release

shows linear increase having a slope of unity on a double-logarithmic scale. That means there

is no saturation in the energy release rate rather than it is a constant of time up to the onset of

the stationary non-equilibrium SK-state.

In Fig. 5.14(a,b) one can clearly see the morphology associated with the SK doublet islanding

for the tilt angle of φ = 45o, which corresponds to the (100) top plane as illustrated in Fig.

5.12. The kinetics data, which is reported in Fig. 5.14(c) indicates that the surface free

energy has reached to a stationary state, and TJ-contact angle is almost zero. Similarly, the
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Figure 5.14: (a,b) Spontaneous formation of the SK doublets with an almost perfect flat wet-

ting layer from a single crystal droplet having exposed to the anisotropic surface stiffness

with tilt angle of φ = 45o. (c) Evolution of the contact angle is shown on the left y-axis. On

the right y-axis, the strain energy and surface free energy changes are given for Ge/Si(100)

system. (d) Time evolution of peak height and TJ displacement. Data: Σ = 0.40, B = 0.05,

h̄p = 1, β= 28, ν= 0.273, M̄T J = 2, λT J= 1, δ̄ = 0.005, γs = 1.2 and γ f = 1.

elastic strain energy released shows linear increase with the normalized elapse time on a semi-

logarithmic scale, which means some sort of saturation in the energy release rate. Fig. 5.14(d)

shows the behavior of TJ displacement motion associated with the base extension and the peak

height.

In Fig. 5.15(a-d), the SK singlets at the stationary states are supported by the thin wetting

layer having a thickness of about Δh̄ = 0.0314 → 0.17 nm. In these simulation experiments,

an ESED parameter of Σ = 0.40 with a tilt angle of φ = 0o are utilized. Fig. 5.15(c) cor-

responds to the case just below the threshold level, where one observes rather dome-shape

island morphology having slight lower peak height, which is mostly takes places in isotropic

systems and/or for the very low values of the surface free energy anisotropy constant as a

typical example illustrated in Fig. 5.15(a,b).

In Fig. 5.16(a), a droplet is attached to the (11̄0) top plane of a substrate for very high values

of the surface free energy anisotropy constant in the anomalous regime such as B ≥ 1. As

122



Figure 5.15: (a-c) Spontaneous formation of the SK singlets with an almost perfect flat wet-

ting layer from a single crystal droplet having exposed to the anisotropic surface free energies

having various intensities below the threshold level with the tilt angle of φ = 0o ⇒
(
11̄0

)
. d)

The formation of the pyramidal shape faceted islanding just above the onset of the anomalous

instability regime without the wetting layer. Data: Σ = 0.40, B = {0.01 − 0.25}, h̄p = 1,

β= 28, ν= 0.273, M̄T J = 2, λT J= 1, δ̄ = 0.005, γs = 1.2 and γ f = 1.

one can see from Fig. 5.16(d), the overall system is in the transient nonequilibrium state.

Namely, the droplet shows apparently no shape changes other than the monotonic decrease

in the peak height, which is in cooperated by the simultaneous base length extension that is a

linear function of time. The temporal value of this extension amounts to 10%. On the other

hand, the wetting angles at the TJ’s show practically no departure from the initial value of

about φ � 6.4o other than some erratic fluctuations at the edges.

In Fig. 5.16(c), there is another very interesting case, which is the behavior of the capillary

surface free energy change during the evolution process. The capillary surface free energy

shows a linear increase with the normalized time, and has a same slope with the strain energy

release. The strain energy release exhibits some erratic oscillations at t̄ ≤ 10−3, and otherwise

it is about two orders of magnitude larger than the capillary free energy. In Fig. 5.16(d) one

also observes steady decrease in the peak height in contrast to the base length, which shows

linear time dependent increase, which is somewhat a slow evolution process. Nevertheless,

that gives us a strong clue for the existence of the Frank-van der Merwe mode of thin film

formation by the flatting or the base extension mechanism operating in the anomalous surface

stiffness regime.
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Figure 5.16: (a) The droplet at the zero tilt angle designated as φ = 0o ⇒¡ 11̄0 shows no

shape change even for the very large values of the anisotropy constant other than the slight

spreading. (b) Surface free energy and stiffness are illustrated in polar plot, which shows

〈100〉 spikes having rather strong negative intensities that indicates the anomalous regime.

(c) Evolution of the contact angle is shown on the left y-axis. On the right y-axis, the strain

energy and surface free energy changes are given for Ge/Si( 11̄0) system. (d) Monotonic

decrease in the peak height followed up by the substantial increase in the base length. Data:

Σ = 0.40, B = 2.0, h̄p = 1, β= 28, ν= 0.273, M̄T J = 2, λT J= 1, δ̄ = 0.005, γs = 1.2 and

γ f = 1.

5.2.2.3 Six-fold rotational symmetry in cubic structures: Zone axis 〈111〉

In this final section, computer simulations are performed on a single crystal thin film droplet

attached to one of those
{
11̄0

}
form of planes as the top surface of a substrate described by the

six-fold [111] rotational symmetry axis in cubic crystal structures by using various tilt angles

in the range of φ ⊃ (0o − 60o). Here zero tilt angle corresponds to any one of those six planes

belong to the
{
11̄0

}
form. From now on, only those experiments with an anisotropy constant

of B = 0.05 < 1/17 will be reported. This anisotropy constant is specially chosen in order to

amplify the effects since it is just below threshold level of the anomalous instability regime.

Similarly, to illustrate the role of the surface free energy anisotropy constant alone on the

morphological evolution of droplets, a series of simulations experiments are executed by using

values {B ⊂ 0.001 − 1.0} well below and above the anomalous threshold level of Bth = 1/17,
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Figure 5.17: (a-d) Spontaneous formations of the SK singlets having different morphological

appearances depending upon the tilt angles are presented for an anisotropy constant, , which

is just below the anomalous threshold level of Bth = 1/17. Data: Σ = 0.40, h̄p = 1, β= 28,

ν= 0.273, M̄T J = 2, λT J= 1, δ̄ = 0.005, γs = 1.2 and γ f = 1.

for the special tilt angle of φ = 0o that is the most interested substrate configuration in practice,

namely
{
11̄0

}
. Fig. 5.17 illustrate the non-equilibrium stationary states of the single crystal

droplets for a surface anisotropy constant of B = 0.05 after the morphological evolutions

taking place at the four different tilt angles, which are specially selected configurations having

six-fold rotational symmetries. Fig. 5.17(a-d) clearly shows that the tilt angle φ = 30o, which

corresponds to the form of planes
{
112̄

}
that belongs to [111] zone axis, plays a special role,

and acts as a quasi-reflection-symmetry axis for the final shapes of SK-islanding. That means

the shape modifications and distortions on the SK-island singlets are symmetrically disposed

in terms of their respective tilt angles relative to this orientation. The morphology of the

SK-island obtained for the zero tilt angle as illustrated in Fig. 5.17(a) is very similar to the

isotropic case, and it has a dome shape rounded top contour, which may be represented by a

fourth degrees Gaussian type curve. On the other hand the SK-island presented in Fig. 5.17(c),

which is obtained for the tilt angle φ = 30o has a sharply pointed top counter, and looks like

a cross section of a rounded hoot-shape islanding at 3D space as observed numerically by

Golovin et al. for (001) surface orientation in the literature.

Fig. 5.18 present the results of a simulation carried out with a very high value of the anisotropy

constant, B = 1, and at the zero degree tilt angle. The applied anisotropy constant is well
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Figure 5.18: (a) The droplet at the zero tilt angle shows no shape change even for the very

large values of the anisotropy constant in the anomalous regime. (b) Instantaneous velocity

and the hoop stress distributions along the final droplet profile. (c) Evolution of the contact

angle is shown on the left y-axis. On the right y-axis, the strain energy and surface free

energy changes are given for the Ge/Si(100) system. (d) Time evolution of peak height and

TJ displacement, which indicates the monotonic decrease in the peak height, and the steady

increase in the base length, followed by some erratic variations in the wetting angles at the

triple junctions.

above of the lower limit or the threshold level of the anomalous instability regime designated

by B ≥ 1/17. Even with such a high value of B, the crystalline droplet shows no indication of

the morphological changes in the original Cosine-shape other than the adjustment of the triple

junctions at the edges, and the substantial extension in the base length. This TJ adjustment

as may be seen from Fig. 5.18(c) manifests itself by a major departure from the equilibrium

configuration that is characterized by a wetting angle almost equal to zero degree. According

to our observations, which are supported by our further simulation experiment that is not re-

ported here, the base spreading increases with the anisotropy constant. Namely, the fractional

changes in base length become: δ�/� = 0.01for B = 0.01 and δ�/� ≥ 0.1 for B = 1.0. That

means no SK-islanding may be possible for the high anisotropy constants in the anomalous

regime for the six-fold symmetries without having superimpose to the random undulations

or white noise ripples over the droplet surfaces. In that case, one may talk about the Frank-

van der Merwe mode of thin film formation by base-extension as a dominant morphological
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scenario instead of the Volmer-Weber islanding and/or the Stranski-Krastanow growth modes.
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CHAPTER 6

CONCLUSION

Irreversible thermodynamics treatment of thin film surface morphological evolution under

elastostatic and electrostatic force fields with considering isotropic and anisotropic material

properties are presented in this thesis. Results of this work is very useful to give guidance to

understand thin film mechanics and growth under the applied forces and the control of surface

morphologies.

Chapter 4 represents the investigations of dynamics of surface roughness on concurrent ac-

tions of the applied elasto- and electro- static fields clearly indicate that applied misfit stress

level is highly important effect on resultant surface form which may be smooth wave like or

crack like. Simulation experiments clearly presents the major role of the elastic dipole ten-

sor interactions on crack like cavity formations. Surface diffusion anisotropy shows minor

effect on the crack formation and growth rate under the elastostatic forces without the electro-

static forces. On the other hand, when electrostatic loads applied surface diffusion anisotropy

became a major parameter which define the resultant surface formation.

Most important physical outcome of these experiments is the dominant role of the EDTI,

which represents the mobile lattice defects contribution to the generalized driving force com-

pared to the elastic strain energy density for the surface diffusion, in those thin film structures

exposed to the surface tractions and body forces. The importance of the elastic dipole tensor

interactions for the surface drift-diffusion by adatom hopping motion is also supported by the

first principle calculations by Shu et al [88]. Due to the EDTI, crack like formation take place

under the compressive forces, sharp crack tip creates high stress concentration zone as a result

crack growth take place with high speed. As a result of this, surface roughness growth dy-

namics deviate from the predicted by LISA. LISA predict linear relation between growth rate
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Γ and applied stress σ but at high compressive stresses σ < −100 MPa growth rate change

becomes quadratically dependent on stress. Also surface roughness with high amplitude val-

ues deviate from LISA which assume the surface roughness is sine wave like with low angle

surface tangent. When surface diffusion anisotropy taken into account in stress calculation,

main difference from the isotropic one is that flux divergence caused by anisotropy of dif-

fusion cause highest probability of observing crest and trough splitting phenomena. Texture

tilt angle effects the surface perturbation by trying to minimize the surface area where the

transverse diffusion constant is minimum.

Last section of chapter 4 represents the investigations of the actions of the applied electro-

static fields on the surface roughness clearly indicate that the proper selection of the tilt angle

has vital importance; this fact is also demonstrated very recently by Tomar et al. and Ogurtani

et al. [63]. On the other hand, the improper application of electron wind force direction in

regards to the orientation of the texture of the single crystal film may generate adverse ef-

fects on the surface roughness rather than causing healing. Therefore, the healing effect of

the electrostatic field is solely restricted to the properly oriented single crystal surfaces, and it

may not be realized for the polycrystalline materials unless they have well controlled strong

cubic sheet textures. In this respect, LISA gives very helpful clues on the proper selection

of the rotational symmetry of the top surfaces of the thin film metallic lines exposed to the

detrimental effects of compressive stresses, and then the direction of the applied electric field

with respect to the tilt angle for the optimization of healing process. Through the interaction

of stress and electric field there appear a very special type of structure called solitary wave,

these structures are formed by transformation of surface perturbation to a new stable form at

the transition regime between dissipation and regenerative regimes. This solitary structures

are previously observed and reported in interconnect by TO Ogurtani and A Celik [89]. LISA

predicts accurately according to the experiments done that at certain stress levels correspond

to perturbations with the certain wavelength which has the highest growth rate. This phe-

nomenon might be used as a pattern formation tool by combining the applied electric field.

In chapter 5, the physico-mathematical model, developed by Ogurtani based on the irre-

versible thermodynamics treatment of surfaces and interfaces with singularities, is applied

to describe the dynamical and spontaneous evolution of flat solid droplets driven by the sur-

face drift diffusion induced by capillary forces and mismatch stresses, during the development

of the Stranski-Krastanow island morphology on a rigid substrate. The study showed great
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potential to shade some more lights on the fundamental roles played by those parameters,

which describe the shape β and the size Σ of epitaxially grown droplets, in SK island for-

mation. These parameters, as demonstrated here, dictate selectively what type of SK island

would be formed among a large pool of different possibilities (i.e., singlet, doublet, etc.), by

the spontaneous evolutions of this isochoric system without having exposed to any external

and/or internal perturbations. Work also demonstrated that for a given aspect number,β, de-

fined as the height-to-length ratio of the droplet, any desired number of SK island multiples

formation may be realized if the strain energy density parameter Σ belongs to the well defined

closed (bonded) and continuous set of real numbers in the normalized and scaled length-time

space. It is also revealed that the droplets (i.e., furnished by proper sets of shape and size

parameters), having exactly the same size, regardless of their initial shapes may evolve spon-

taneously into the same SK island morphologies (i.e., same size and shape) in real space. The

only difference is the extend of the wetting layer platform. The small aspect ratios result in

narrow wetting layer platforms than the large aspect ratio constituents.

The non-equilibrium stationary state morphologies of isolated thin solid droplets are studied

below and above the anomalous surface stiffness threshold level. It is assumed that the evolu-

tion process is initiated by the nucleation route and a self-consistent 2D dynamical simulations

having the free-moving boundary condition at the triple junction contour line were used. The

anisotropic surface Helmholtz free energy, and the surface stiffness are all represented by the

well accepted trigonometric functions. While various tilt angles and anisotropy constants are

considered during simulation experiments, the main emphasis were given on the two-fold,

four-fold and six-fold rotational symmetries associated with the surface Helmholtz free en-

ergy topography in 2D space, to see their impacts on the final shapes of the SK islands. The

following findings are observed as main features and/or characteristics of the morphological

transitions taking place isothermally and spontaneously:

i. Simulations in the two-fold and four-fold rotational symmetries revealed that for a given

tilt angle, there are two well-defined domains in the surface free energy anisotropy constant.

The first domain is below the threshold level of anomalous regime and characterized by the

morphological transition of a droplet into the SK island formation embedded in a wetting

layer platform. This transition may occur as both singlets and/or doublets depending upon

the tilt angle. In the second domain (i.e., the anomalous regime), a partial stabilization of

the initial shape of the droplet occurs if the anisotropy constant is just above the threshold
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level. Otherwise the Frank-van der Merwe mode of thin film formation by base-extension

takes place by following a linear kinetic law. Conversely, in the case of six-fold symmetry,

the SK singlet islanding takes place regardless of the tilt angle as long as one stays in the

normal stability regime.

ii. Six-fold rotational symmetry associated with the
{
11̄0

}
form of planes as the top substrate

planes with zero tilt angle in the anomalous regime has a unique property of showing absolute

nonequilibrium stability of the original droplet even for very high values of the anisotropy

constant, with the major base extension by almost keeping the original wetting angles at TJ-

edges. This behavior implies the formation of Frank-van der Merwe mode of thin film as

dominant scenario during the strain-heteroepitaxial growth if one have high anisotropies in

the surface free energies.

iii. In general for a given anisotropy constant, the tilt angle may have profound effects on the

morphology of the SK islanding. Arbitrarily selected tilt angle may cause distortion on the

peaking shape rather than producing sharp faceting. Similarly, there are certain orientations

exist, which may result doublet formation rather than the singlet islanding that is especially

the typical case for the zero tilt angle.

iv. A careful examination of the simulation results also demonstrated that SK-singlet always

prefers to those vicinal planes (i.e., cusps), which have the lowest surface free energy in a

given set of planes associated with the rotational symmetry axis designated as the zone axis.

On the other hand, the SK-doublets prefer to base on those substrate planes, which have higher

surface free energies. This could be easily understood by looking at the surface stiffness map,

which shows that the cusp corresponds to maxima in the stiffness plot, and the maxima in the

surface free energy between cusps produces minima in the surface stiffness mapping. Since

normalized curvature in the governing equation is augmented by the stiffness the capillary

potential is totally controlled by the stiffness along the SK-profile but not by the surface free

energy itself.

In conclusion, simulation experiment in this thesis presents the observations about what and

how growth conditions of QD like structures from either SK islands or droplet are effected

under the change of applied forces (electro- and elasto- static forces) and anisotropic physical

properties (diffusivity, surface free energy). In addition to these, Stress effect on thin films

and interconnect are investigated in large spectrum of stress values with anisotropic physical
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properties, considering the reliability issues.

As a final point, in order to obtain more realistic morphological surface appearances one

should have rather perform three dimensional simulations. This will provide geometrically

realistic structures. In practice, physical experiments show very large variety of surface struc-

tures such as domes, huts, pyramids, pits, rings, and their complex variations due to the

anisotropic nature of physical properties. Therefore one should assume for realistic simu-

lations in mesoscopic level non-uniform athermal vacancy distributions, in addition to the

orientation dependent specific surface gibbs free energies combined with the an anisotropic

elasticity by taking into account discrete nature of the crystalline solids.

In addition to these, dislocation dynamics are very important in misfit stress relaxation process

and play dominant role on quantum dot formation and their stability. For the sake of taking

account these, coupled model of an atomistic model and current model can be designed.
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APPENDIX A

PROGRAM CODE

C++ code of thin film simulation

1 # i n c l u d e < s t d l i b . h>
# i n c l u d e < i o s t r e a m >

3 # i n c l u d e < f s t r e a m >
# i n c l u d e <math . h>

5 # i n c l u d e < s t d i o . h>
# i n c l u d e < t ime . h>

7 # i n c l u d e < iomanip>
# i n c l u d e < s t r i n g >

9 # i n c l u d e < d i r e n t . h>
# i n c l u d e < s y s / t y p e s . h>

11 # i n c l u d e < f c n t l . h>
# i n c l u d e < u n i s t d . h>

13 # i n c l u d e <p r o c e s s . h>
# i n c l u d e <windows . h>

15
# i f n d e f NULL

17 # d e f i n e NULL ’ \0 ’
# e n d i f

19
# i n c l u d e < s t d i o . h>

21 # i f n d e f MSDOS / / i f we a r e n o t MS − DOS
# d e f i n e UNIX / / t h e n we a r e UNIX ∗ /

23 # e n d i f MSDOS

25 # i n c l u d e < s t d l i b . h> / ∗ ANSI S t a n d a r d C f i l e ∗ /

27 # i f d e f UNIX
# i n c l u d e < s y s / t y p e s . h> / ∗ f i l e d e f i n e s f o r UNIX f i l e s y s t e m ∗ /

29 # i n c l u d e < s y s / s t a t . h>
# i n c l u d e < f c n t l . h>

31 # e n d i f UNIX

33 # i f d e f MSDOS
# i n c l u d e < f c n t l . h> / ∗ f i l e d e f i n e s f o r DOS f i l e s y s t e m ∗ /

35 # i n c l u d e < s y s \ s t a t . h>
# i n c l u d e < i o . h>

37 # e n d i f MSDOS

39
# i f d e f UNIX

41 # d e f i n e mkdir ( x ) mkdir ( ( x ) , 0755 )
# e n d i f

43
# i f d e f i n e d ( u n i x ) && d e f i n e d ( GNUC )

45
# e n d i f

47
# d e f i n e NMAX 2000

49 # d e f i n e NRHMAX 1
c o n s t i n t l d a = NMAX ∗ 2 , l d b = 2 ∗ NMAX;

51 i n t i n f o , n , n r h s = 1 / ∗ means 1 d i m e n t i o n ∗ / ;
double ibemMat [NMAX ∗ NMAX ∗ 4] , mu [NMAX ∗ NRHMAX ∗ 2] , ibemMatt [NMAX ∗ NMAX ∗ 4] , muu←↩

[NMAX ∗ NRHMAX ∗ 2] ;
53 double f t t [NMAX ∗ NMAX ∗ 4] , t r [NMAX ∗ NRHMAX ∗ 2] , uuD [NMAX ∗ NMAX ∗ 4] , i n t M a t [NMAX←↩

∗ NMAX ∗ 4] ;
i n t i p i v [NMAX] , WORK [NMAX ∗ NMAX ∗ 4] ;

55
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57
/ ∗ These macros a l l o w a c c e s s t o 1 − d a r r a y s as though

59 t h e y a r e 2 − d a r r a y s s t o r e d i n column − major o r d e r ,
a s r e q u i r e d by ACML C r o u t i n e s . ∗ /

61 # d e f i n e A ( I , J ) ibemMat [ ( J ) ∗ l d a + ( I ) ]
# d e f i n e B ( I , J ) mu [ ( J ) ∗ l d a + ( I ) ]

63 # d e f i n e d a r r a y ( a , I , J ) a [ ( J ) ∗ l d a + ( I ) ]
# d e f i n e M a t d i s t ( a , i , j , k ) a [ ( 3 ∗ j + k ) ∗ l d a + i ]

65
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

67 / ∗
∗ Macros

69 ∗ /
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

71
# d e f i n e E 1

73 # d e f i n e nu 0 . 3
# d e f i n e G E / ( 2 + 2 ∗ nu )

75 # d e f i n e p i 3.1415926535897932384626433832795
# d e f i n e s q r ( x ) ( ( x ) ∗ ( x ) )

77 # d e f i n e cube ( x ) ( ( x ) ∗ ( x ) ∗ ( x ) )
# d e f i n e minP ( a , b ) ( a< ∗ b ) ? a : ∗ ( b++ )

79 # d e f i n e maxP ( a , b ) ( a> ∗ b ) ? a : ∗ ( b++ )
# d e f i n e minR ( a , b ) ( a<b ) ? a : b

81 # d e f i n e magni tude ( a ) s q r t ( ( a ) [ 0 ] ∗ ( a ) [ 0 ] + ( a ) [ 1 ] ∗ ( a ) [ 1 ] + ←↩
( a ) [ 2 ] ∗ ( a ) [ 2 ] )

# d e f i n e sqr mag ( a ) ( ( a ) [ 0 ] ∗ ( a ) [ 0 ] + ( a ) [ 1 ] ∗ ( a ) [ 1 ] + ( a ←↩
) [ 2 ] ∗ ( a ) [ 2 ] )

83 # d e f i n e d o t P r o ( a , b ) ( ( a ) [ 0 ] ∗ ( b ) [ 0 ] + ( a ) [ 1 ] ∗ ( b ) [ 1 ] + ( a ←↩
) [ 2 ] ∗ ( b ) [ 2 ] )

# d e f i n e a n g l e ( a , b ) ( d o t P r o ( a , b ) < = 0 ) ? ( p i − ( a s i n ( ( ( a ) [ 0 ] ∗←↩
( b ) [ 1 ] − ( a ) [ 1 ] ∗ ( b ) [ 0 ] ) / ( magn i tude ( a ) ∗ magni tude ( b ) )←↩
) ) ) : ( a s i n ( ( ( a ) [ 0 ] ∗ ( b ) [ 1 ] − ( a ) [ 1 ] ∗ ( b ) [ 0 ] ←↩

) / ( magn i tude ( a ) ∗ magni tude ( b ) ) ) )
85 # d e f i n e C0 ( 1 / ( 8 ∗ p i ∗ G ∗ ( 1 − nu ) ) )

# d e f i n e C1 ( 3 − 4 ∗ nu )
87 # d e f i n e C2 ( 1 / ( 4 ∗ p i ∗ ( 1 − nu ) ) )

# d e f i n e C3 ( 1 − 2 ∗ nu )
89 # d e f i n e C ( 1 / ( 8 ∗ p i ∗ G ∗ ( 1 − nu ) ) )

# d e f i n e ex ( 1 − nu ∗ nu )
91

93 # d e f i n e uu ( r c ) { \
tempDouble [ 0 ] = magni tude ( r c ) ; \

95 tempDouble [ 1 ] = r c [ 0 ] / tempDouble [ 0 ] ; \
tempDouble [ 2 ] = r c [ 1 ] / tempDouble [ 0 ] ; \

97 tempDouble [ 3 ] = − 1 ∗ C1 ∗ SPEEDlog ( tempDouble [ 0 ] ) ; \
us [ 0 ] [ 0 ] = C ∗ ( tempDouble [ 3 ] + s q r ( tempDouble [ 1 ] ) ) ; \

99 us [ 1 ] [ 1 ] = C ∗ ( tempDouble [ 3 ] + s q r ( tempDouble [ 2 ] ) ) ; \
us [ 0 ] [ 1 ] = C ∗ ( tempDouble [ 1 ] ∗ tempDouble [ 2 ] ) ; \

101 us [ 1 ] [ 0 ] = us [ 0 ] [ 1 ] ; } \

103 # d e f i n e TTSS ( rc , noc ) { \
tempDouble [ 0 ] = sqr mag ( r c ) ; \

105 tempDouble [ 1 ] = magni tude ( r c ) ; \
tempDouble [ 2 ] = − 1 ∗ ( d o t P r o ( rc , noc ) ) ; \

107 t s [ 0 ] [ 0 ] = ( C3 + 2 ∗ s q r ( r c [ 0 ] ) / tempDouble [ 0 ] ) ∗ tempDouble [ 2 ] /←↩
tempDouble [ 0 ] ; \

t s [ 1 ] [ 1 ] = ( C3 + 2 ∗ s q r ( r c [ 1 ] ) / tempDouble [ 0 ] ) ∗ tempDouble [ 2 ] /←↩
tempDouble [ 0 ] ; \

109 t s [ 0 ] [ 1 ] = 2 ∗ r c [ 0 ] ∗ r c [ 1 ] ∗ tempDouble [ 2 ] / s q r ( tempDouble [ 0 ] ) ; \
t s [ 1 ] [ 0 ] = t s [ 0 ] [ 1 ] ; \

111 t a [ 0 ] [ 1 ] = C3 ∗ ( r c [ 0 ] ∗ noc [ 1 ] − r c [ 1 ] ∗ noc [ 0 ] ) / tempDouble [ 0 ] ; \
t a [ 1 ] [ 0 ] = − t a [ 0 ] [ 1 ] ; \

113 t a [ 1 ] [ 1 ] = 0 ; \
t a [ 0 ] [ 0 ] = 0 ; \

115 t t [ 0 ] [ 0 ] = ( t s [ 0 ] [ 0 ] + t a [ 0 ] [ 0 ] ) ∗ C2 ; \
t t [ 0 ] [ 1 ] = ( t s [ 1 ] [ 0 ] + t a [ 1 ] [ 0 ] ) ∗ C2 ; \

117 t t [ 1 ] [ 0 ] = ( t s [ 0 ] [ 1 ] + t a [ 0 ] [ 1 ] ) ∗ C2 ; \
t t [ 1 ] [ 1 ] = ( t s [ 1 ] [ 1 ] + t a [ 1 ] [ 1 ] ) ∗ C2 ; } \

119
# d e f i n e SSc ( r c ) { \

121 tempDouble [ 0 ] = magni tude ( r c ) ; \
rx = r c [ 0 ] / tempDouble [ 0 ] ; \

123 ry = r c [ 1 ] / tempDouble [ 0 ] ; \
tempDouble [ 0 ] = C2 / tempDouble [ 0 ] ; \

125 s s [ 0 ] [ 0 ] = ( C3 ∗ rx + 2 ∗ cube ( rx ) ) ∗ tempDouble [ 0 ] ; \
s s [ 0 ] [ 1 ] = ( − C3 ∗ ry + 2 ∗ s q r ( rx ) ∗ ry ) ∗ tempDouble [ 0 ] ; \
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127 s s [ 1 ] [ 0 ] = ( − C3 ∗ rx + 2 ∗ s q r ( ry ) ∗ rx ) ∗ tempDouble [ 0 ] ; \
s s [ 1 ] [ 1 ] = ( C3 ∗ ry + 2 ∗ cube ( ry ) ) ∗ tempDouble [ 0 ] ; \

129 s s [ 2 ] [ 0 ] = ( C3 ∗ ry + 2 ∗ s q r ( rx ) ∗ ry ) ∗ tempDouble [ 0 ] ; \
s s [ 2 ] [ 1 ] = ( C3 ∗ rx + 2 ∗ s q r ( ry ) ∗ rx ) ∗ tempDouble [ 0 ] ; } \

131
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

133 / ∗
∗ C o n s t a n t s and v a r i a b l e s

135 ∗ /
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

137
us ing namespace s t d ;

139
o f s t r e a m o u t ;

141 i f s t r e a m i n ;

143 t y p e d e f double Number ;
t y p e d e f Number v e c t 3 [ 3 ] ;

145 t y p e d e f Number v e c t n [NMAX] ;
t y p e d e f v e c t 3 v e c t n 3 [NMAX] ;

147 t y p e d e f v e c t 3 m a t r i x 3 [ 3 ] ;
t y p e d e f Number m a t r i x 4 [NMAX] [NMAX] ;

149

151 i n t t ryme = 0 , PRINT = 0 , Pr in tName = 0 , FINE = 1 , voidBool , ca lcUpper , ca lcLower , ←↩
c a l c S i d e s , r emeshboo l = 1 , voidFound = 0 , e x p S t a t e = 0 , R , ca lcJumpBool = − 1 , ←↩
s inwave = 0 , p e r i o d i c = 0 , g ibbsType = 0 ;

153
s t a t i c i n t

155 numCathodeNodes , sideDivNum , numAnodeNodes , numSurfCentStack ,
numVoidCentStack , ca lcJump = 50 , ca l cR = 5000 , i , j , k , m, l , i i , j j ,

157 mm, l l , textNum , s t a r t N o d e , f i n i s h N o d e , integSegmentNumSt , k i , k j ,
kk , numMatrix , newdata , c o n t r o l , i n i t i a lLoopNum , dataRecNum ,

159 maxLoopNum , integSegmentNum , in tegSegmentNumSt t , p e r t S t a r t N o d e ,
pertEndNode , s t r ipDivNum , pertDivNum , foldSymNum , upperDivNum ,

161 lowerDivNum , numUpperNodes , numLowerNodes , numVoidNodes ,
numNodeStack , numCentStack , H, numLowerCent , numVoidCent ,

163 numUpperCent , t u r n P o i n t [ 5 ] , t e m p I n t [ 1 0 ] , remBool [ 6 0 0 ] , t S t e p = 1 ,
las tOutNum = 0 , Msin , nsw , voidDivNum , numContData = 0 , TYPE , intM , i n i t i a l N o d e N u m ;

165
s t a t i c i n t p e r t T y p e ;

167 s t a t i c Number

169 nnn , dummy , i n t e r L e n g t h , i n t e r W i d t h , p e r t H e i g t h , vMin , vMax , del M ,
phi , M o b i l i t y , f h i , ch i , r ea lT ime , a n i s o t I n t e n s i t y , t e x T i l t A n g l e ,

171 b u l k M o b i l i t y , v o i d M o b i l i t y , de l T , mpow = 1 , tempv = 10000 , vMaxx , minima = 0 ,
bu lkGibbsEnergy , ∗ a p t r , minSegLength , maxSegLength , s c a l e F a c t o r ,

173 tempDouble [ 1 0 ] , Loader [ 1 0 ] [ 3 ] , t i m e S t e p C o r r e c t = 1 , maxSegLengthr ,
minSegLengthr , r cos , rcms , e t a , sur fKntxT , voidKntxT , eps T , insVoidArea ,

175 i n i t V o i d A r e a , t x t T i l t , tempD , Bsurf , maxSegLengthi , minSegLength i ,
e q u i l V e l = 0 . 0 0 0 0 1 , normTime = 0 , chiE , chiQ , vAvg , Asurf , epsTime , Wn, Beta ,

177 Ln , LLamda , GammaSubstrate = 0 , de lAlpha , GammaFilm = 0 , del taW ,
Amp, LamdaU = 10 , Lamda , kv , s ca l eL , scaleW , g i b b s B s u r f , Sigma , Xi , eps ,

179 delTime , delMean , powerT , MaxpowerGav = 0 , Maxpowerav = 0 , Maxpower ,
Minpower , MaxpowerG , MinpowerG , voidX , voidY , ro , v s l , voidE , voidShape ,

181 vo idRad ius , p o i s s o n , a l f a I , maxY , minY , insAmp , eps Ttemp , endTime = 100 ,
tempChi , kappaAv ;

183
s t a t i c v e c t 3 anx = {1 , 0 , 0 } , normKappa , r c i j , su r fKn tx , voidKntx , v o i d C e n t e r ;

185 s t a t i c v e c t n segLength , d i f T h e t a , difMag , s u r f E n e r g y , the taAtNode , normEF ,
a lpha , kappa , ekap , t r i o , f i e l d I , f i e l d I I , f i e l d T , f i e l d T I I , f i e l d T I , f i e ldTN ,

187 nodeVel , ddd , TN, fSigma , UB, epsc , qTar ik , energy , traXS , gibbsGamma , gibbsGammaS ,
gibbsGammaGamma , hoop , T r s i g , s ighoop , s i g T r s i g , tempSYS , WU, WUU;

189
s t a t i c v e c t n 3 anodeNodes , ca thodeNodes , a s i g , asigXY , var , c e n t e r s ,

191 s t a c k V e c t o r , de l R , upperNodes , lowerNodes , voidNodes , c e n t S t a c k , centNormal ,
loca lLineNorm , tempVect , tempVectNew , t r a c , de l C , ubXS , t r a a , p e r i o d i c N o d e s ;

193
s t a t i c m a t r i x 3 a n t i R o t ;

195 s t a t i c m a t r i x 4 del U , f t t p ;

197 s t a t i c v e c t 3 j u u = {0 , 1 , 0 } , i u u = {1 , 0 , 0 } ;

199 t y p e d e f Number v e c t 2 x 2 [ 3 ] [ 3 ] ;
v e c t 2 x 2 temp2x2 , t t s s , uuss , us , t s , t a , t t , s s ;

201
Number rx , ry , s i g x ;

203
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s t r i n g textName , dirName , outName , PIDname , comand ;
205 t i m e t rawt ime ;

207 DIR ∗ d i r p ;
FILE ∗ fp ;

209
char l i n e [ 2 5 6 ] = ” ” ;

211
i n t mkdir ( c o n s t char ∗ pathname , mode t mode ) ;

213 double d c l o c k ( v o i d ) ;

215 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
/ ∗

217 ∗ S t r u c t u r e f o r r emesh ing and vo id c r e a t i o n
∗ /

219 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

221
t y p e d e f s t r u c t Node

223 {
Number r a d i u s ;

225 Number kappa ;
Number power ;

227 Number powerG ;
i n t b o o l r ;

229 i n t rem ;
Number segLeng th ;

231 Number segLengthF ;
Number segLengthB ;

233 Number P o i n t [ 2 ] ;
Number C e n t e r [ 2 ] , CenterNorm [ 2 ] ;

235 i n t i m m or t a l ;
i n t p e r i o d i c ;

237 i n t pro ;

239 s t r u c t Node ∗ back , ∗ f o r w a r d ;

241 v o i d c a l c P o i n t ( )
{

243 i f ( ( ∗ back ) . r a d i u s ! = 0 ) {

245 ( ∗ t h i s ) . P o i n t [ 0 ] = ( ( ∗ back ) . C e n t e r [ 0 ] + ( ∗ back ) . r a d i u s ∗ ( ∗ ←↩
back ) . CenterNorm [ 0 ] ) ;

( ∗ t h i s ) . P o i n t [ 1 ] = ( ( ∗ back ) . C e n t e r [ 1 ] + ( ∗ back ) . r a d i u s ∗ ( ∗ ←↩
back ) . CenterNorm [ 1 ] ) ;

247
i f ( ( ∗ f o r w a r d ) . r a d i u s ! = 0 ) {

249
( ∗ t h i s ) . P o i n t [ 0 ] = ( ( ( ∗ back ) . C e n t e r [ 0 ] + ( ∗ back ) . r a d i u s ∗ ( ←↩

∗ back ) . CenterNorm [ 0 ] )
251 + ( ( ∗ f o r w a r d ) . C e n t e r [ 0 ] + ( ∗ f o r w a r d ) . r a d i u s ∗ ( ∗ back ) . CenterNorm ←↩

[ 0 ] ) ) ∗ 0 . 5 ;
( ∗ t h i s ) . P o i n t [ 1 ] = ( ( ( ∗ back ) . C e n t e r [ 1 ] + ( ∗ back ) . r a d i u s ∗ ( ←↩

∗ back ) . CenterNorm [ 1 ] )
253 + ( ( ∗ f o r w a r d ) . C e n t e r [ 1 ] + ( ∗ f o r w a r d ) . r a d i u s ∗ ( ∗ back ) . CenterNorm ←↩

[ 1 ] ) ) ∗ 0 . 5 ;

255 }

257 } e l s e i f ( ( ∗ f o r w a r d ) . r a d i u s ! = 0 ) {

259 ( ∗ t h i s ) . P o i n t [ 0 ] = ( ( ∗ f o r w a r d ) . C e n t e r [ 0 ] + ( ∗ f o r w a r d ) . r a d i u s ∗ ←↩
( ∗ back ) . CenterNorm [ 0 ] ) ;

( ∗ t h i s ) . P o i n t [ 1 ] = ( ( ∗ f o r w a r d ) . C e n t e r [ 1 ] + ( ∗ f o r w a r d ) . r a d i u s ∗ ←↩
( ∗ back ) . CenterNorm [ 1 ] ) ;

261 }
e l s e {

263 ( ∗ t h i s ) . P o i n t [ 0 ] = ( ( ∗ back ) . P o i n t [ 0 ] + ( ∗ f o r w a r d ) . P o i n t [ 0 ] ) ∗ ←↩
0 . 5 ;

( ∗ t h i s ) . P o i n t [ 1 ] = ( ( ∗ back ) . P o i n t [ 1 ] + ( ∗ f o r w a r d ) . P o i n t [ 1 ] ) ∗ ←↩
0 . 5 ;

265 }

267 ( ∗ t h i s ) . i m m o r t a l = 0 ;
} ;

269
v o i d c a l c P o i n t n ( )

271 {
( ∗ t h i s ) . P o i n t [ 0 ] = ( ( ∗ back ) . P o i n t [ 0 ] + ( ∗ f o r w a r d ) . P o i n t [ 0 ] ) ∗ ←↩
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0 . 5 ;
273 ( ∗ t h i s ) . P o i n t [ 1 ] = ( ( ∗ back ) . P o i n t [ 1 ] + ( ∗ f o r w a r d ) . P o i n t [ 1 ] ) ∗ ←↩

0 . 5 ;
( ∗ t h i s ) . i m m o r t a l = 0 ;

275 } ;

277 v o i d c a l c S e g L e n g t h ( )
{

279 tempVect [ 0 ] [ 0 ] = ( ( ∗ f o r w a r d ) . P o i n t [ 0 ] − ( ∗ t h i s ) . P o i n t [ 0 ] ) ;
tempVect [ 0 ] [ 1 ] = ( ( ∗ f o r w a r d ) . P o i n t [ 1 ] − ( ∗ t h i s ) . P o i n t [ 1 ] ) ;

281 segLeng th = magni tude ( tempVect [ 0 ] ) ;
segLengthF = segLeng th ;

283
tempVect [ 0 ] [ 0 ] = ( ( ∗ back ) . P o i n t [ 0 ] − ( ∗ t h i s ) . P o i n t [ 0 ] ) ;

285 tempVect [ 0 ] [ 1 ] = ( ( ∗ back ) . P o i n t [ 1 ] − ( ∗ t h i s ) . P o i n t [ 1 ] ) ;
segLengthB = magni tude ( tempVect [ 0 ] ) ;

287
} ;

289
Number c a l c D i s t a n c e ( s t r u c t Node ∗ n ) {

291 tempVect [ 0 ] [ 0 ] = ( ( ∗ n ) . P o i n t [ 0 ] − ( ∗ t h i s ) . P o i n t [ 0 ] ) ;
tempVect [ 0 ] [ 1 ] = ( ( ∗ n ) . P o i n t [ 1 ] − ( ∗ t h i s ) . P o i n t [ 1 ] ) ;

293 r e t u r n magni tude ( tempVect [ 0 ] ) ;
} ;

295
v o i d addNode ( s t r u c t Node ∗ p )

297 {
( ∗ p ) . back = t h i s ;

299 ( ∗ p ) . f o r w a r d = ( ∗ t h i s ) . f o r w a r d ;
( ∗ ( ( ∗ p ) . f o r w a r d ) ) . back = p ;

301 ( ∗ t h i s ) . f o r w a r d = p ;
( ∗ p ) . CenterNorm [ 0 ] = ( ∗ t h i s ) . CenterNorm [ 0 ] ;

303 ( ∗ p ) . CenterNorm [ 1 ] = ( ∗ t h i s ) . CenterNorm [ 1 ] ;
( ∗ p ) . C e n t e r [ 0 ] = ( ∗ t h i s ) . C e n t e r [ 0 ] ;

305 ( ∗ p ) . C e n t e r [ 1 ] = ( ∗ t h i s ) . C e n t e r [ 1 ] ;
( ∗ p ) . r a d i u s = ( ∗ t h i s ) . r a d i u s ;

307
( ∗ p ) . c a l c P o i n t ( ) ;

309 ( ∗ p ) . c a l c S e g L e n g t h ( ) ;
( ∗ ( ∗ p ) . back ) . c a l c S e g L e n g t h ( ) ;

311 } ;

313 v o i d addNoden ( s t r u c t Node ∗ p )
{

315 ( ∗ p ) . back = t h i s ;
( ∗ p ) . f o r w a r d = ( ∗ t h i s ) . f o r w a r d ;

317 ( ∗ ( ( ∗ p ) . f o r w a r d ) ) . back = p ;
( ∗ t h i s ) . f o r w a r d = p ;

319
( ∗ p ) . c a l c P o i n t n ( ) ;

321 ( ∗ p ) . c a l c S e g L e n g t h ( ) ;
( ∗ ( ∗ p ) . back ) . c a l c S e g L e n g t h ( ) ;

323 } ;

325 v o i d addBack ( s t r u c t Node ∗ p )
{

327 ( ∗ p ) . f o r w a r d = t h i s ;
( ∗ p ) . back = ( ∗ t h i s ) . back ;

329 ( ∗ ( ( ∗ p ) . back ) ) . f o r w a r d = p ;
( ∗ t h i s ) . back = p ;

331
( ∗ p ) . c a l c P o i n t ( ) ;

333 ( ∗ p ) . c a l c S e g L e n g t h ( ) ;
( ∗ ( ∗ p ) . back ) . c a l c S e g L e n g t h ( ) ;

335 } ;

337 s t r u c t Node ∗ n o d e S h i f t ( i n t i ) {
i f ( i <0 ) r e t u r n ( ∗ ( n o d e S h i f t ( i + 1 ) ) ) . back ;

339 i f ( i >0 ) r e t u r n ( ∗ ( n o d e S h i f t ( i − 1 ) ) ) . f o r w a r d ;
i f ( i == 0 ) r e t u r n t h i s ;

341 } ;

343 v o i d remNode ( ) {
i f ( ! i m m o r t a l ) {

345 ( ∗ ( ( ∗ t h i s ) . f o r w a r d ) ) . P o i n t [ 0 ] = ( ∗ t h i s ) . C e n t e r [ 0 ] ;
( ∗ ( ( ∗ t h i s ) . f o r w a r d ) ) . P o i n t [ 1 ] = ( ∗ t h i s ) . C e n t e r [ 1 ] ;

347
( ∗ back ) . f o r w a r d = ( ∗ t h i s ) . f o r w a r d ;

349 ( ∗ ( ∗ t h i s ) . back ) . c a l c S e g L e n g t h ( ) ;
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( ∗ f o r w a r d ) . back = ( ∗ t h i s ) . back ;
351 }

} ;
353 } Node type ;

355 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
/ ∗

357 ∗ CPU and OS p a r a m e t e r s
∗ /

359 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

361 # d e f i n e LINUX 0
# d e f i n e BITS 32

363

365 # i f ( LINUX == 1 )
# d e f i n e mkdir ( x ) mkdir ( ( x ) , 0755 )

367 # e l s e
# d e f i n e mkdir ( x ) mkdir ( ( x ) )

369 # e n d i f

371
# i f ( BITS == 64 )

373 # i n c l u d e <acml . h>
# i n c l u d e <acml mv . h>

375 # d e f i n e SPEEDsin ( x ) f a s t s i n ( x )
# d e f i n e SPEEDcos ( x ) f a s t c o s ( x )

377 # d e f i n e SPEEDlog ( x ) f a s t l o g ( x )

379 # e l s e
# d e f i n e SPEEDsin ( x ) s i n ( x )

381 # d e f i n e SPEEDcos ( x ) cos ( x )
# d e f i n e SPEEDlog ( x ) l o g ( x )

383 # e n d i f

385 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
/ ∗

387 ∗ C r e a t i o n o f e x p e r i m e n t f o l d e r and p r i o r i t y p r o c e d u r e s
∗ /

389 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

391 s t r i n g c o n v e r t ( char ∗ b u f f e r , i n t dec imal , i n t s ign , i n t p r e c i s i o n ) {
s t r i n g o u t ;

393 i f ( dec imal <0 ) {
i f ( s i g n ) o u t = ” − ” ;

395 o u t += ” . ” ;
f o r ( k = d e c i m a l ; k<d e c i m a l + p r e c i s i o n ; k++ ) {

397 i f ( k<0 ) o u t += ” 0 ” ;
e l s e o u t += b u f f e r [ k ] ;

399
}

401 }
e l s e {

403 i f ( s i g n ) o u t = ” − ” ;
f o r ( k = 0 ; k< p r e c i s i o n ; k++ ) {

405 i f ( k == d e c i m a l ) k = p r e c i s i o n ;
e l s e o u t += b u f f e r [ k ] ;

407 }
}

409 r e t u r n o u t ;
}

411
v o i d p r i n t e l a p s e d t i m e ( )

413 {
double e l a p s e d ;

415 double r e s o l u t i o n ;

417 / / Ob t a i n and d i s p l a y e l a p s e d e x e c u t i o n t ime
e l a p s e d = ( double ) c l o c k ( ) / CLK TCK ;

419 r e s o l u t i o n = 1 . 0 / CLK TCK ;

421 p r i n t f ( ” E l a p s e d t ime : %8.4 f s e c ( %6.4 f s e c r e s o l u t i o n ) \n ” ,
e l a p s e d , r e s o l u t i o n ) ;

423 }

425 v o i d p r i o r i t y D e a m o n ( )
{

427 i n t dec imal , s i g n ;
char ∗ b u f f e r ;
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429 i n t p r e c i s i o n = 5 ;
p r i n t f ( ” P r o c e s s i d : %d\n ” , g e t p i d ( ) ) ;

431 / / DWORD MainThreadId = G e t C u r r e n t T h r e a d I d ( ) ;
/ / S e t T h r e a d P r i o r i t y ( G e t C u r r e n t T h r e a d ( ) , THREAD PRIORITY ABOVE NORMAL ) ;

433 comand = ” p r o c e s s − p ” ;
b u f f e r = e c v t ( g e t p i d ( ) , p r e c i s i o n , &dec imal , &s i g n ) ;

435 PIDname = c o n v e r t ( b u f f e r , dec imal , s ign , p r e c i s i o n ) ;
comand += PIDname ;

437 comand += ” AboveNormal ” ; / / BelowNormal
sys tem ( comand . c s t r ( ) ) ;

439 sys tem ( ” c l s ” ) ;
}

441
v o i d a f i n i t y D e a m o n ( i n t argcg , char ∗ a rgvg [ ] )

443 {
i n t dec imal , s i g n ;

445 char ∗ b u f f e r ;
i n t p r e c i s i o n = 5 ;

447
p r i n t f ( ” P r o c e s s i d : %d\n ” , g e t p i d ( ) ) ;

449 DWORD MainThreadId = G e t C u r r e n t T h r e a d I d ( ) ;
S e t T h r e a d P r i o r i t y ( G e t C u r r e n t T h r e a d ( ) , THREAD PRIORITY ABOVE NORMAL ) ;

451 i f ( a r g c g == 2 ) {
comand = ” p r o c e s s − a ” ;

453 comand += PIDname ;
comand += ” ” + ( s t r i n g ) a rgvg [ 1 ] ;

455 sys tem ( comand . c s t r ( ) ) ;
}

457 sys tem ( ” c l s ” ) ;
}

459

461 v o i d i n t 2 s t r ( i n t i ) {
char i n d e x [ 1 0 ] [ 2 ] = { ” 0 ” , ” 1 ” , ” 2 ” , ” 3 ” , ” 4 ” , ” 5 ” , ” 6 ” , ” 7 ” , ” 8 ” , ” 9 ” } ;

463 textName = ( s t r i n g ) i n d e x [ i /1 0 0 ] ;
i −= ( i /1 0 0 ) ∗ 100 ;

465 textName += ( s t r i n g ) i n d e x [ i / 1 0 ] ;
i −= ( i /1 0 ) ∗ 1 0 ;

467 textName += ( s t r i n g ) i n d e x [ i ] ;
textName += ” c s l . t x t ” ;

469 }

471

473 v o i d d i r e c t o r y N a m e ( ) {

475 char i n d e x [ 1 0 ] [ 2 ] = { ” 0 ” , ” 1 ” , ” 2 ” , ” 3 ” , ” 4 ” , ” 5 ” , ” 6 ” , ” 7 ” , ” 8 ” , ” 9 ” } ;

477 d i r p = o p e n d i r ( textName . c s t r ( ) ) ;
i n t d i r P a r ;

479 i = 1 ;
j = 0 ;

481 w h i l e ( j == 0 ) {
d i r P a r = i ;

483 i f ( s inwave == 1 ) dirName = ” . / SinWave ” ;
e l s e i f ( p e r t T y p e == 0 ) dirName = ” . / Line ” ;

485 e l s e i f ( p e r t T y p e == 1 ) dirName = ” . / H i l l o c k ” ;
e l s e i f ( p e r t T y p e == − 1 ) dirName = ” . / EdgeVoid ” ;

487 i f ( vo idBoo l == 1 ) dirName += ” + I n n e r V o i d ” ;
dirName += ” − ” ;

489
dirName + = ( s t r i n g ) i n d e x [ d i r P a r /1 0 0 ] ;

491 d i r P a r − = ( d i r P a r /1 00 ) ∗ 100 ;
dirName + = ( s t r i n g ) i n d e x [ d i r P a r / 1 0 ] ;

493 d i r P a r − = ( d i r P a r /1 0 ) ∗ 1 0 ;
dirName + = ( s t r i n g ) i n d e x [ d i r P a r ] ;

495 dirName + = ” / ” ;
d i r p = o p e n d i r ( dirName . c s t r ( ) ) ;

497 i f ( d i r p == NULL ) {
mkdir ( dirName . c s t r ( ) ) ;

499 j = 1 ;
}

501 e l s e i++ ;

503 }
}

505
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

507 / ∗
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∗ U s e f u l l p r o c e d u r e s
509 ∗ /

/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
511 v o i d c r e a t e A n t i R o t M a t ( Number ∗ w ) {

a n t i R o t [ 0 ] [ 0 ] = SPEEDcos ( w [ 0 ] ) ;
513 a n t i R o t [ 0 ] [ 1 ] = − SPEEDsin ( w [ 0 ] ) ;

a n t i R o t [ 0 ] [ 2 ] = 0 . 0 ;
515 a n t i R o t [ 1 ] [ 0 ] = − a n t i R o t [ 0 ] [ 1 ] ;

a n t i R o t [ 1 ] [ 1 ] = a n t i R o t [ 0 ] [ 0 ] ;
517 a n t i R o t [ 1 ] [ 2 ] = 0 . 0 ;

a n t i R o t [ 2 ] [ 0 ] = 0 . 0 ;
519 a n t i R o t [ 2 ] [ 1 ] = 0 . 0 ;

a n t i R o t [ 2 ] [ 2 ] = 1 . 0 ;
521 }

523 v o i d ext remumAtSurf ( ) {
tempDouble [ 0 ] = s t a c k V e c t o r [ 0 ] [ 1 ] ;

525 t e m p I n t [ 0 ] = 0 ;
f o r ( i = 0 ; i < numUpperNodes ; i++ ) {

527 i f ( p e r t T y p e == 1 ) {
i f ( s t a c k V e c t o r [ i ] [ 1 ] > tempDouble [ 0 ] ) {

529 tempDouble [ 0 ] = s t a c k V e c t o r [ i ] [ 1 ] ;
t e m p I n t [ 0 ] = i ;

531 }
}

533
i f ( p e r t T y p e == − 1 ) {

535 i f ( s t a c k V e c t o r [ i ] [ 1 ] < tempDouble [ 0 ] ) {
tempDouble [ 0 ] = s t a c k V e c t o r [ i ] [ 1 ] ;

537 t e m p I n t [ 0 ] = i ;
}

539 }
}

541 }

543 v o i d c a l c V o i d C e n t e r ( ) {
v o i d C e n t e r [ 0 ] = 0 ;

545 v o i d C e n t e r [ 1 ] = 0 ;
v o i d C e n t e r [ 2 ] = 0 ;

547 t e m p I n t [ 0 ] = numUpperNodes + numLowerNodes ;
f o r ( i = 0 ; i < numVoidNodes ; i++ ) {

549 v o i d C e n t e r [ 0 ] += s t a c k V e c t o r [ i + t e m p I n t [ 0 ] ] [ 0 ] ;
v o i d C e n t e r [ 1 ] += s t a c k V e c t o r [ i + t e m p I n t [ 0 ] ] [ 1 ] ;

551 }

553 v o i d C e n t e r [ 0 ] / = Number ( numVoidNodes ) ;
v o i d C e n t e r [ 1 ] / = Number ( numVoidNodes ) ;

555 v o i d C e n t e r [ 2 ] / = Number ( numVoidNodes ) ;
}

557
i n l i n e v o i d v e c t o r p r o ( Number ∗ a , Number ∗ b ) {

559 tempVect [ 0 ] [ 0 ] = a [ 1 ] ∗ b [ 2 ] − a [ 2 ] ∗ b [ 1 ] ;
tempVect [ 0 ] [ 1 ] = − a [ 0 ] ∗ b [ 2 ] + a [ 2 ] ∗ b [ 0 ] ;

561 tempVect [ 0 ] [ 2 ] = a [ 0 ] ∗ b [ 1 ] − a [ 1 ] ∗ b [ 0 ] ;
}

563
i n l i n e Number vo idArea ( ) {

565 tempDouble [ 0 ] = 0 . 0 ;

567 f o r ( i = 0 ; i < numVoidNodes − 1 ; i++ ) {
tempVect [ 0 ] [ 0 ] = s t a c k V e c t o r [ i + t u r n P o i n t [ 3 ] ] [ 0 ] − v o i d C e n t e r [ 0 ] ;

569 tempVect [ 0 ] [ 1 ] = s t a c k V e c t o r [ i + t u r n P o i n t [ 3 ] ] [ 1 ] − v o i d C e n t e r [ 1 ] ;
tempVect [ 1 ] [ 0 ] = s t a c k V e c t o r [ t u r n P o i n t [ 3 ] + i + 1 ] [ 0 ] − v o i d C e n t e r [ 0 ] ;

571 tempVect [ 1 ] [ 1 ] = s t a c k V e c t o r [ t u r n P o i n t [ 3 ] + i + 1 ] [ 1 ] − v o i d C e n t e r [ 1 ] ;
v e c t o r p r o ( tempVect [ 0 ] , tempVect [ 1 ] ) ;

573 tempDouble [ 0 ] += f a b s ( tempVect [ 0 ] [ 2 ] ) ;
}

575
tempVect [ 0 ] [ 0 ] = s t a c k V e c t o r [ numVoidNodes + t u r n P o i n t [ 3 ] ] [ 0 ] − v o i d C e n t e r [ 0 ] ;

577 tempVect [ 0 ] [ 1 ] = s t a c k V e c t o r [ numVoidNodes + t u r n P o i n t [ 3 ] ] [ 1 ] − v o i d C e n t e r [ 1 ] ;
tempVect [ 1 ] [ 0 ] = s t a c k V e c t o r [ t u r n P o i n t [ 3 ] ] [ 0 ] − v o i d C e n t e r [ 0 ] ;

579 tempVect [ 1 ] [ 1 ] = s t a c k V e c t o r [ t u r n P o i n t [ 3 ] ] [ 1 ] − v o i d C e n t e r [ 1 ] ;
v e c t o r p r o ( tempVect [ 0 ] , tempVect [ 1 ] ) ;

581 tempDouble [ 0 ] = ( tempDouble [ 0 ] + f a b s ( tempVect [ 0 ] [ 2 ] ) ) ∗ 0 . 5 ;

583 r e t u r n tempDouble [ 0 ] ;
}

585
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
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587 / ∗
∗ Wri te methods

589 ∗ /
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

591
v o i d p r i n t S c r e a n ( v e c t n 3 a , i n t b ) {

593 f o r ( i = 0 ; i <b ; i++ )
c o u t << a [ i ] [ 0 ] <<” ”<< a [ i ] [ 1 ] <<” ” << a [ i ] [ 2 ] << e n d l ;

595 }

597 v o i d p r i n t S c r e a n ( v e c t n a , i n t b ) {
f o r ( i = 0 ; i <b ; i++ ) c o u t << a [ i ] << e n d l ;

599 }

601 v o i d p r i n t F i l e ( v e c t n 3 a , i n t b , s t r i n g name ) {
o u t . open ( name . c s t r ( ) ) ;

603 o u t << s e t i o s f l a g s ( i o s : : showpo in t ) ;
f o r ( i = 0 ; i <b ; i++ )

605 o u t << s e t p r e c i s i o n ( 20 ) << a [ i ] [ 0 ] <<” ”<< a [ i ] [ 1 ] <<” ” << a [ i ] [ 2 ] << e n d l ;
o u t . c l o s e ( ) ;

607 }

609 v o i d p r i n t F i l e ( Number ∗ ∗ a , i n t b , s t r i n g name ) {
o u t . open ( name . c s t r ( ) ) ;

611 o u t << s e t i o s f l a g s ( i o s : : showpo in t ) ;
f o r ( i = 0 ; i <b ; i++ ) {

613 f o r ( j = 0 ; j <b ; j++ ) o u t << s e t p r e c i s i o n ( 20 ) << a [ i ] [ j ] <<” ” ;
o u t << e n d l ;

615 }
o u t . c l o s e ( ) ;

617 }

619 v o i d p r i n t F i l e ( m a t r i x 4 a , i n t b , s t r i n g name ) {
o u t . open ( name . c s t r ( ) ) ;

621 o u t << s e t i o s f l a g s ( i o s : : showpo in t ) ;
f o r ( i = 0 ; i <b ; i++ ) {

623 f o r ( j = 0 ; j <b ; j++ ) o u t << s e t p r e c i s i o n ( 20 ) << a [ i ] [ j ] <<” ” ;
o u t << e n d l ;

625 }
o u t . c l o s e ( ) ;

627 }

629 v o i d p r i n t F i l e ( v e c t n a , i n t b , s t r i n g name ) {
o u t . open ( name . c s t r ( ) ) ;

631 f o r ( i = 0 ; i <b ; i++ ) o u t << a [ i ] << e n d l ;
o u t . c l o s e ( ) ;

633 }

635 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
/ ∗

637 ∗ Read i n p u t p a r a m e t e r s
∗ /

639 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

641 v o i d g e t I n p u t P a r ( ) {
fp = fopen ( ” i n p u t . t x t ” , ” r ” ) ;

643
f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

645 s s c a n f ( l i n e , ”%Lg” , &Wn ) ; / / d oub l e
f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

647 s s c a n f ( l i n e , ”%Lg” , &Beta ) ; / / do ub l e
f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

649 s s c a n f ( l i n e , ”%d ” , &ca lcLower ) ; / / i n t
f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

651 s s c a n f ( l i n e , ”%d ” , &upperDivNum ) ; / / i n t
f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

653 s s c a n f ( l i n e , ”%d ” , &lowerDivNum ) ; / / i n t
f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

655 s s c a n f ( l i n e , ”%d ” , &sideDivNum ) ; / / d oub l e
/ / f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

657 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
s s c a n f ( l i n e , ”%Lg” , &delTime ) ; / / do ub l e

659 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
s s c a n f ( l i n e , ”%Lg” , &epsTime ) ; / / do ub l e

661 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
s s c a n f ( l i n e , ”%d ” , &H ) ; / / i n t

663 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
s s c a n f ( l i n e , ”%Lg” , &minSegLengthr ) ; / / do ub l e

665 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

151



s s c a n f ( l i n e , ”%Lg” , &maxSegLengthr ) ; / / do ub l e
667 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

s s c a n f ( l i n e , ”%Lg” , &Amp ) ; / / dou b l e
669 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

s s c a n f ( l i n e , ”%d ” , &nsw ) ; / / i n t
671 / / f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
673 s s c a n f ( l i n e , ”%Lg” , &p o i s s o n ) ; / / do ub l e

f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
675 s s c a n f ( l i n e , ”%Lg” , &a l f a I ) ; / / doub l e

f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
677 s s c a n f ( l i n e , ”%d ” , &foldSymNum ) ; / / i n t

f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
679 s s c a n f ( l i n e , ”%Lg” , &a n i s o t I n t e n s i t y ) ; / / dou b l e

f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
681 s s c a n f ( l i n e , ”%Lg” , &t e x T i l t A n g l e ) ; / / doub l e

f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
683 s s c a n f ( l i n e , ”%Lg” , &b u l k M o b i l i t y ) ; / / doub l e

f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
685 s s c a n f ( l i n e , ”%Lg” , &bu lkGibbsEnergy ) ; / / dou b l e

f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
687 s s c a n f ( l i n e , ”%d ” , &gibbsType ) ; / / i n t

f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
689 s s c a n f ( l i n e , ”%Lg” , &g i b b s B s u r f ) ; / / dou b l e

f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
691 s s c a n f ( l i n e , ”%Lg” , &B s u r f ) ; / / doub l e

/ / f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;
693 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

s s c a n f ( l i n e , ”%d ” , &integSegmentNum ) ; / / i n t
695 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

s s c a n f ( l i n e , ”%d ” , &integSegmentNumSt ) ; / / i n t
697 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

s s c a n f ( l i n e , ”%d ” , &in tegSegmentNumSt t ) ; / / i n t
699 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

s s c a n f ( l i n e , ”%Lg” , &c h i ) ; / / dou b l e
701 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

s s c a n f ( l i n e , ”%Lg” , &Xi ) ; / / d oub l e
703 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

s s c a n f ( l i n e , ”%Lg” , &Sigma ) ; / / doub l e
705 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

s s c a n f ( l i n e , ”%Lg” , &GammaSubstrate ) ; / / do ub l e
707 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

s s c a n f ( l i n e , ”%Lg” , &GammaFilm ) ; / / d oub l e
709 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

s s c a n f ( l i n e , ”%Lg” , &del taW ) ; / / do ub l e
711 f g e t s ( l i n e , s i z e o f ( l i n e ) , fp ) ;

s s c a n f ( l i n e , ”%d ” , &newdata ) ; / / i n t
713 integSegmentNum++ ;

in tegSegmentNumSt++ ;
715 in tegSegmentNumSt t++ ;

}
717

/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
719 / ∗

∗ Wri te i n p u t p a r a m e t e r s t o e x p e r i m e n t f o l d e r
721 ∗ /

/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
723

v o i d w r i t e I n p u t P a r a m e t e r s ( ) {
725 outName = dirName + ” i n p u t . t x t ” ;

fp = fopen ( outName . c s t r ( ) , ”w” ) ;
727 f p r i n t f ( fp , ”% − 10Lg i n t e r c o n n e c t wid th − i n t e r W i d t h ( i n t e r c o n n e c t wid th ) \n ” , Wn ) ←↩

;
f p r i n t f ( fp , ”% − 10Lg a s p e c t r a t i o − b e t a \n ” , Be ta ) ;

729 f p r i n t f ( fp , ”% − 10d b o o l e a n f o r c a l c u l a t i o n o f lower s u r f a c e − ALT \n ” , ca lcLower ) ;
f p r i n t f ( fp , ”% − 10d i n t e r c o n n e c t uppe r d i v i s i o n number − upperDivNum \n ” , upperDivNum )←↩

;
731 f p r i n t f ( fp , ”% − 10d i n t e r c o n n e c t lower d i v i s i o n number − lowerDivNum \n ” , lowerDivNum ) ←↩

;
f p r i n t f ( fp , ”% − 10d i n t e r c o n n e c t s i d e d i v i s i o n number − sideDivNum \n ” , sideDivNum ) ;

733 f p r i n t f ( fp , ”% − 10Lg i n i t i a l t ime i n t e r v a l − d e l T \n ” , de lTime ) ;
f p r i n t f ( fp , ”% − 10Lg t ime s t e p c o r r e c t i o n − eps T \n ” , epsTime ) ;

735 f p r i n t f ( fp , ”% − 10d Maximum H Loop Number − H \n ” , H ) ;
f p r i n t f ( fp , ”% − 10Lg minimum segment l e n g t h f o r r emesh ing − rmin SegLength \n ” , ←↩

minSegLeng th i ) ;
737 f p r i n t f ( fp , ”% − 10Lg maximum segment l e n g t h f o r r emesh ing − rmax SegLength \n ” , ←↩

maxSegLengthi ) ;
f p r i n t f ( fp , ”% − 10Lg s inewave a m p l i t u d e − Amp \n ” , Amp / s c a l e F a c t o r ) ;

739 f p r i n t f ( fp , ”% − 10d number o f s inewave − nsw \n ” , nsw ) ;
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f p r i n t f ( fp , ”% − 10Lg P o i s s o n ’ s r a t i o − p o i s s o n \n ” , p o i s s o n ) ;
741 f p r i n t f ( fp , ”% − 10Lg Wul l f s u r f a c e t o p o g r a p h y i n d e x − a l f a ( bu programda c u r t a t e yok ←↩

d o l a y i s i y l a c a l i s m i y o r ) \n ” , a l f a I ) ;
f p r i n t f ( fp , ”% − 10d d i f f u s i o n a n i s o t r o p y : 0 f o r i s o t r o p i c , 1 f o r 2 foldsym , 2 f o r 4 ←↩

foldsym , 3 f o r 6 fo ldsym − foldSymNum \n ” , foldSymNum ) ;
743 f p r i n t f ( fp , ”% − 10Lg d i f f u s i o n a n i s o t r o p y i n t e n s i t y − a n i s o t I n t e n s i t y \n ” , ←↩

a n i s o t I n t e n s i t y ) ;
f p r i n t f ( fp , ”% − 10Lg g r a i n t i l t a n g l e t o t h e a p p l i e d e l e c t r i c f i e l d − t e x T i l t A n g l e \n ” , ←↩

t e x T i l t A n g l e / p i ∗ 180 ) ;
745 f p r i n t f ( fp , ”% − 10Lg n o r m a l i z e d bu lk m o b i l i t y c o e f f i c i e n t − b u l k M o b i l i t y \n ” , ←↩

b u l k M o b i l i t y ) ;
f p r i n t f ( fp , ”% − 10Lg n o r m a l i z e d bu lk g i b b s f r e e e n e r gy − bu lkGibbsEnergy \n ” , ←↩

bu lkGibbsEne rgy ) ;
747 f p r i n t f ( fp , ”% − 10d b o o l e a n f o r g i b b s f r e e s u r f a c e en e r gy c a l c u l a t i o n ( TOO = 0 , SHE ←↩

= 1 ) − g ibbsType \n ” , g ibbsType ) ;
f p r i n t f ( fp , ”% − 10Lg Gibbs F ree Energy A n i s o t r o p y c o n s t a n t ( <1 , <1 /7 and <1 /17 f o r 110←↩

( 1 ) , 100 ( 2 ) and 111 ( 3 ) ) − g i b b s B s u r f \n ” , g i b b s B s u r f ) ;
749 f p r i n t f ( fp , ”% − 10Lg S u r f S t i f f n e s s OFF = 0 − ON = 1 \n ” , B s u r f ) ;

f p r i n t f ( fp , ”% − 10d i n t e g r a t i o n segment number − integSegmentNum \n ” , integSegmentNum ←↩
− 1 ) ;

751 f p r i n t f ( fp , ”% − 10d i n t e g r a t i o n segment number − integSegmentNum \n ” , ←↩
in tegSegmentNumSt − 1 ) ;

f p r i n t f ( fp , ”% − 10d i n t e g r a t i o n segment number − integSegmentNum \n ” , ←↩
in tegSegmentNumSt t − 1 ) ;

753 f p r i n t f ( fp , ”% − 10Lg e l e c t r o n wind i n t e n s i t y − c h i \n ” , c h i ) ;
f p r i n t f ( fp , ”% − 10Lg E l a s t i c D ip o l e I n t e n s i t y P a r a m e t e r − Xi \n ” , Xi ) ;

755 f p r i n t f ( fp , ”% − 10Lg E l a s t i c S t r a i n Energy I n t e n s i t y P a r a m e t e r − Sigma \n ” , Sigma ) ;
f p r i n t f ( fp , ”% − 10Lg w e t t i n g p a r a m e t e r − GammaSubstrate \n ” , GammaSubstrate ) ;

757 f p r i n t f ( fp , ”% − 10Lg w e t t i n g p a r a m e t e r − GammaFilm \n ” , GammaFilm ) ;
f p r i n t f ( fp , ”% − 10Lg w e t t i n g p a r a m e t e r − del taW \n ” , del taW ) ;

759 f p r i n t f ( fp , ”% − 10d use c o n t . t x t \n ” , 1 ) ;
f c l o s e ( fp ) ;

761
outName = dirName + ” i n p u t t . t x t ” ;

763 fp = fopen ( outName . c s t r ( ) , ”w” ) ;
f p r i n t f ( fp , ”% − 10d \n ” , newdata ) ;

765 f p r i n t f ( fp , ”% − 10d \n ” , c o n t r o l ) ;
f p r i n t f ( fp , ”% − 10d \n ” , r emeshboo l ) ;

767 f p r i n t f ( fp , ”% − 10Lg \n ” , Wn ) ;
f p r i n t f ( fp , ”% − 10Lg \n ” , Be ta ) ;

769 f p r i n t f ( fp , ”% − 10d \n ” , ca lcLower ) ;
f p r i n t f ( fp , ”% − 10d \n ” , upperDivNum ) ;

771 f p r i n t f ( fp , ”% − 10d \n ” , lowerDivNum ) ;
f p r i n t f ( fp , ”% − 10d \n ” , sideDivNum ) ;

773 f p r i n t f ( fp , ”% − 10Lg \n ” , de lTime ) ;
f p r i n t f ( fp , ”% − 10Lg \n ” , epsTime ) ;

775 f p r i n t f ( fp , ”% − 10d \n ” , H ) ;
f p r i n t f ( fp , ”% − 10Lg \n ” , minSegLeng th i ) ;

777 f p r i n t f ( fp , ”% − 10Lg \n ” , maxSegLengthi ) ;
f p r i n t f ( fp , ”% − 10Lg \n ” , Amp / s c a l e F a c t o r ) ;

779 f p r i n t f ( fp , ”% − 10d \n ” , nsw ) ;
f p r i n t f ( fp , ”% − 10Lg \n ” , p o i s s o n ) ;

781 f p r i n t f ( fp , ”% − 10Lg \n ” , a l f a I ) ;
f p r i n t f ( fp , ”% − 10d \n ” , foldSymNum ) ;

783 f p r i n t f ( fp , ”% − 10Lg \n ” , a n i s o t I n t e n s i t y ) ;
f p r i n t f ( fp , ”% − 10Lg \n ” , t e x T i l t A n g l e / p i ∗ 180 ) ;

785 f p r i n t f ( fp , ”% − 10Lg \n ” , b u l k M o b i l i t y ) ;
f p r i n t f ( fp , ”% − 10Lg \n ” , bu lkGibbsEne rgy ) ;

787 f p r i n t f ( fp , ”% − 10d \n ” , g ibbsType ) ;
f p r i n t f ( fp , ”% − 10Lg \n ” , g i b b s B s u r f ) ;

789 f p r i n t f ( fp , ”% − 10Lg \n ” , B s u r f ) ;
f p r i n t f ( fp , ”% − 10d \n ” , integSegmentNum − 1 ) ;

791 f p r i n t f ( fp , ”% − 10d \n ” , integSegmentNumSt − 1 ) ;
f p r i n t f ( fp , ”% − 10d \n ” , in tegSegmentNumSt t − 1 ) ;

793 f p r i n t f ( fp , ”% − 10Lg \n ” , c h i ) ;
f p r i n t f ( fp , ”% − 10Lg \n ” , Xi ) ;

795 f p r i n t f ( fp , ”% − 10Lg \n ” , Sigma ) ;
f p r i n t f ( fp , ”% − 10Lg \n ” , GammaSubstrate ) ;

797 f p r i n t f ( fp , ”% − 10Lg \n ” , GammaFilm ) ;
f p r i n t f ( fp , ”% − 10Lg \n ” , del taW ) ;

799 f c l o s e ( fp ) ;
}

801
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

803 / ∗
∗ I n t e r r u p t e d e x p e r i m e n t c o n t i n u e by t h i s p r o c e d u r e

805 ∗ /
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

807
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v o i d c o n t i n u e s ( ) {
809 i n t n u l l l ;

Number n u l l l l ;
811

i n . open ( ” c o n t . t x t ” ) ;
813 i n >> s t a c k V e c t o r [ 0 ] [ 0 ] >> s t a c k V e c t o r [ 0 ] [ 1 ]

>> numUpperNodes >> numCathodeNodes >> numLowerNodes
815 >> numAnodeNodes >> numVoidNodes >> t S t e p >> las tOutNum

>> normTime >> numCentStack >> minSegLeng th i >> maxSegLengthi ;
817

t u r n P o i n t [ 0 ] = numUpperNodes ;
819 t u r n P o i n t [ 1 ] = t u r n P o i n t [ 0 ] + numCathodeNodes ;

t u r n P o i n t [ 2 ] = t u r n P o i n t [ 1 ] + numLowerNodes ;
821 t u r n P o i n t [ 3 ] = t u r n P o i n t [ 2 ] + numAnodeNodes ;

numNodeStack = t u r n P o i n t [ 3 ] + numVoidNodes ;
823

825 f o r ( i = 1 ; i <numNodeStack ; i++ ) {
i n >> s t a c k V e c t o r [ i ] [ 0 ] >> s t a c k V e c t o r [ i ] [ 1 ] ;

827 }

829 i n . c l o s e ( ) ;

831
numVoidCent = numVoidNodes ;

833 numCentStack = numNodeStack ;
numSur fCen tS tack = t u r n P o i n t [ 3 ] ;

835 numVoidCentStack = numVoidNodes ;
mpow = i n t ( pow ( 1 . 2 , ( Number ) las tOutNum ) ) ;

837
e x p S t a t e = 0 ;

839 }

841 v o i d i n i t i a t e I n t e r c o n n e c t ( ) {

843 i f ( s inwave ) {

845 numUpperNodes = 2 ∗ Msin + 1 ;
double jump = 1 − 2 / ( double ( numUpperNodes ) ) ;

847 f o r ( i n t i = 0 ; i < numUpperNodes ; i++ ) {
upperNodes [ i ] [ 0 ] = − i n t e r L e n g t h ∗ jump ∗ SPEEDcos ( p i ∗ 0 . 5 + p i ∗ 0 .125 ∗ Number ( ←↩

i − Msin ) /Number ( Msin ) ) / SPEEDcos ( p i ∗ 0 . 5 + p i ∗ 0 .125 ∗ Number ( − Msin ) /←↩
Number ( Msin ) ) ;

849 upperNodes [ i ] [ 1 ] = i n t e r W i d t h + Amp ∗ SPEEDsin ( upperNodes [ i ] [ 0 ] ∗ p i ∗ nsw / ( ←↩
i n t e r L e n g t h ∗ jump ) + 3 ∗ p i /2 ) ;

upperNodes [ i ] [ 2 ] = 0 . 0 ;
851 }

} e l s e i f ( c a l c U p p e r && ! vo idBoo l && p e r t T y p e ) {
853 / / U p p e r S t r i p fo rming

s t r ipDivNum = upperDivNum ;
855 Number ups ;

v e c t n hx ;
857 Number h = i n t e r L e n g t h / upperDivNum ;

Number hw = ( per tEndNode − p e r t S t a r t N o d e ) ∗ h / 6 ;
859 Number hym = p e r t H e i g t h ∗ p e r t T y p e ;

Number d e l h = h / pertDivNum ;
861 i n t s i = p e r t S t a r t N o d e + 1 ;

i n t f i = p e r t S t a r t N o d e + ( per tEndNode − p e r t S t a r t N o d e ) ∗ pertDivNum ;
863

f o r ( i n t i = 0 ; i < = 2 ∗ upperDivNum ; i++ ) hx [ i ] = i ∗ h ;
865 f o r ( i n t i = s i ; i < = f i ; i++ ) hx [ i ] = hx [ p e r t S t a r t N o d e ] + ( i − p e r t S t a r t N o d e ←↩

) ∗ d e l h ;
i n t i = f i ;

867 w h i l e ( hx [ i ] < = 2 ∗ i n t e r L e n g t h ) {
hx [ i + 1] = hx [ f i ] + ( i + 1 − f i ) ∗ h ;

869 i++ ;
}

871
i n t i f i n a l = i − 1 ;

873 Number hxm = ( hx [ f i ] + hx [ s i ] ) / 2 ;
f o r ( i n t i = 0 ; i < = i f i n a l ; i++ ) {

875 i f ( ( i > = p e r t S t a r t N o d e − 10 ) && ( i < = f i + 10 ) ) {
upperNodes [ i ] [ 0 ] = hx [ i ] − i n t e r L e n g t h ;

877 ups = hx [ i ] − hxm ;
upperNodes [ i ] [ 1 ] = i n t e r W i d t h + hym ∗ exp ( ( − s q r ( ups ) ) / s q r ( hw ) ) ;

879 upperNodes [ i ] [ 2 ] = 0 . 0 ;
}

881 e l s e {
upperNodes [ i ] [ 0 ] = hx [ i ] − i n t e r L e n g t h ;
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883 upperNodes [ i ] [ 1 ] = i n t e r W i d t h ;
upperNodes [ i ] [ 2 ] = 0 . 0 ;

885 }
}

887 numUpperNodes = i f i n a l + 1 ;
}

889 e l s e {
numUpperNodes = 2 ∗ upperDivNum + 1 ;

891 f o r ( i n t i = 0 ; i < numUpperNodes ; i++ ) {
upperNodes [ i ] [ 0 ] = ( Number ( i − upperDivNum ) ) ∗ i n t e r L e n g t h / ( Number ( ←↩

upperDivNum ) ) ;
893 upperNodes [ i ] [ 1 ] = i n t e r W i d t h ;

upperNodes [ i ] [ 2 ] = 0 . 0 ;
895 }

}
897 s t r ipDivNum = lowerDivNum ;

numLowerNodes = 2 ∗ lowerDivNum + 1 ;
899

f o r ( i n t i = 0 ; i < numLowerNodes ; i++ ) {
901 lowerNodes [ i ] [ 0 ] = i n t e r L e n g t h ∗ SPEEDcos ( p i ∗ i / ( numLowerNodes − 1 ) ) ;

lowerNodes [ i ] [ 1 ] = − i n t e r W i d t h ;
903 lowerNodes [ i ] [ 2 ] = 0 . 0 ;

}
905 numCathodeNodes = 2 ∗ sideDivNum + 1 ;

f o r ( i n t i = 0 ; i < numCathodeNodes + 2 ; i++ ) {
907 ca thodeNodes [ i ] [ 0 ] = i n t e r L e n g t h ;

ca thodeNodes [ i ] [ 1 ] = i n t e r W i d t h ∗ SPEEDcos ( p i ∗ Number ( i + 1 ) /Number ( ←↩
numCathodeNodes + 1 ) ) ;

909 ca thodeNodes [ i ] [ 2 ] = 0 . 0 ;
}

911
numAnodeNodes = 2 ∗ sideDivNum + 1 ;

913 f o r ( i n t i = 0 ; i < numAnodeNodes + 2 ; i++ ) {
anodeNodes [ i ] [ 0 ] = − i n t e r L e n g t h ;

915 anodeNodes [ i ] [ 1 ] = − i n t e r W i d t h ∗ SPEEDcos ( p i ∗ Number ( i + 1 ) /Number ( ←↩
numAnodeNodes + 1 ) ) ;

anodeNodes [ i ] [ 2 ] = 0 . 0 ;
917 }

i n i t i a l N o d e N u m = numUpperNodes ;
919 }

921 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
/ ∗

923 ∗ System nodes augmented
∗ /

925 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

927 v o i d c o n s t r S t a c k ( ) {
i f ( Pr in tName ) cout << ” c o n s t r S t a c k ” << e n d l ;

929 t u r n P o i n t [ 0 ] = numUpperNodes ;
t u r n P o i n t [ 1 ] = t u r n P o i n t [ 0 ] + numCathodeNodes ;

931 t u r n P o i n t [ 2 ] = t u r n P o i n t [ 1 ] + numLowerNodes ;
t u r n P o i n t [ 3 ] = t u r n P o i n t [ 2 ] + numAnodeNodes ;

933 numNodeStack = t u r n P o i n t [ 3 ] + numVoidNodes ;

935 f o r ( i = 0 ; i <numNodeStack ; i++ ) {
i f ( i < t u r n P o i n t [ 0 ] ) {

937 s t a c k V e c t o r [ i ] [ 0 ] = upperNodes [ i ] [ 0 ] ;
s t a c k V e c t o r [ i ] [ 1 ] = upperNodes [ i ] [ 1 ] ;

939 s t a c k V e c t o r [ i ] [ 2 ] = upperNodes [ i ] [ 2 ] ;
}

941 e l s e i f ( i > = t u r n P o i n t [ 0 ] && i < t u r n P o i n t [ 1 ] ) {
t e m p I n t [ 0 ] = i − t u r n P o i n t [ 0 ] ;

943 s t a c k V e c t o r [ i ] [ 0 ] = ca thodeNodes [ t e m p I n t [ 0 ] ] [ 0 ] ;
s t a c k V e c t o r [ i ] [ 1 ] = ca thodeNodes [ t e m p I n t [ 0 ] ] [ 1 ] ;

945 s t a c k V e c t o r [ i ] [ 2 ] = ca thodeNodes [ t e m p I n t [ 0 ] ] [ 2 ] ;
}

947 e l s e i f ( i > = t u r n P o i n t [ 1 ] && i < t u r n P o i n t [ 2 ] ) {
t e m p I n t [ 0 ] = i − t u r n P o i n t [ 1 ] ;

949 s t a c k V e c t o r [ i ] [ 0 ] = lowerNodes [ t e m p I n t [ 0 ] ] [ 0 ] ;
s t a c k V e c t o r [ i ] [ 1 ] = lowerNodes [ t e m p I n t [ 0 ] ] [ 1 ] ;

951 s t a c k V e c t o r [ i ] [ 2 ] = lowerNodes [ t e m p I n t [ 0 ] ] [ 2 ] ;
}

953 e l s e i f ( i > = t u r n P o i n t [ 2 ] && i < t u r n P o i n t [ 3 ] ) {
t e m p I n t [ 0 ] = i − t u r n P o i n t [ 2 ] ;

955 s t a c k V e c t o r [ i ] [ 0 ] = anodeNodes [ t e m p I n t [ 0 ] ] [ 0 ] ;
s t a c k V e c t o r [ i ] [ 1 ] = anodeNodes [ t e m p I n t [ 0 ] ] [ 1 ] ;

957 s t a c k V e c t o r [ i ] [ 2 ] = anodeNodes [ t e m p I n t [ 0 ] ] [ 2 ] ;
}
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959 e l s e i f ( vo idBoo l == 1 && i > = t u r n P o i n t [ 3 ] ) {
t e m p I n t [ 0 ] = i − t u r n P o i n t [ 3 ] ;

961 s t a c k V e c t o r [ i ] [ 0 ] = voidNodes [ t e m p I n t [ 0 ] ] [ 0 ] ;
s t a c k V e c t o r [ i ] [ 1 ] = voidNodes [ t e m p I n t [ 0 ] ] [ 1 ] ;

963 s t a c k V e c t o r [ i ] [ 2 ] = voidNodes [ t e m p I n t [ 0 ] ] [ 2 ] ;
}

965 }

967 s t a c k V e c t o r [ t u r n P o i n t [ 0 ] ] [ 1 ] = s t a c k V e c t o r [ t u r n P o i n t [ 0 ] − 1 ] [ 1 ] ;
s t a c k V e c t o r [ t u r n P o i n t [ 3 ] − 1 ] [ 1 ] = s t a c k V e c t o r [ 0 ] [ 1 ] ;

969 s t a c k V e c t o r [ t u r n P o i n t [ 0 ] + 1 ] [ 1 ] = ( s t a c k V e c t o r [ t u r n P o i n t [ 0 ] ] [ 1 ] + s t a c k V e c t o r←↩
[ t u r n P o i n t [ 0 ] + 1 ] [ 1 ] ) ∗ 0 . 5 ;

s t a c k V e c t o r [ t u r n P o i n t [ 3 ] − 2 ] [ 1 ] = ( s t a c k V e c t o r [ t u r n P o i n t [ 3 ] − 2 ] [ 1 ] + ←↩
s t a c k V e c t o r [ t u r n P o i n t [ 3 ] − 1 ] [ 1 ] ) ∗ 0 . 5 ;

971 i f ( PRINT ) p r i n t F i l e ( s t a c k V e c t o r , numNodeStack , ” s t a c k . t x t ” ) ;
}

973
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

975 / ∗
∗ C e n t r o i d p o s i t i o n s c a l c u l a t i o n

977 ∗ /
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

979
v o i d c a l c C e n t r o i d ( ) {

981 i f ( Pr in tName ) cout << ” c a l c C e n t r o i d ” << e n d l ;

983 numSur fCen tS tack = t u r n P o i n t [ 3 ] ;
numVoidCentStack = numVoidNodes ;

985 numCentStack = numSur fCen tS tack + numVoidCentStack ;

987 f o r ( i = 0 ; i <numCentStack ; i++ ) {
i f ( i < t u r n P o i n t [ 3 ] − 1 ) {

989 c e n t S t a c k [ i ] [ 0 ] = ( s t a c k V e c t o r [ i ] [ 0 ] + s t a c k V e c t o r [ i + 1 ] [ 0 ] ) ∗ 0 . 5 ;
c e n t S t a c k [ i ] [ 1 ] = ( s t a c k V e c t o r [ i ] [ 1 ] + s t a c k V e c t o r [ i + 1 ] [ 1 ] ) ∗ 0 . 5 ;

991 }
e l s e i f ( i == ( t u r n P o i n t [ 3 ] − 1 ) ) {

993 c e n t S t a c k [ i ] [ 0 ] = ( s t a c k V e c t o r [ 0 ] [ 0 ] + s t a c k V e c t o r [ i ] [ 0 ] ) ∗ 0 . 5 ;
c e n t S t a c k [ i ] [ 1 ] = ( s t a c k V e c t o r [ 0 ] [ 1 ] + s t a c k V e c t o r [ i ] [ 1 ] ) ∗ 0 . 5 ;

995 }
e l s e i f ( vo idBoo l == 1 && i == numCentStack − 1 ) {

997 c e n t S t a c k [ i ] [ 0 ] = ( s t a c k V e c t o r [ i ] [ 0 ] + s t a c k V e c t o r [ t u r n P o i n t [ 3 ] ] [ 0 ] ) ∗ 0 . 5 ;
c e n t S t a c k [ i ] [ 1 ] = ( s t a c k V e c t o r [ i ] [ 1 ] + s t a c k V e c t o r [ t u r n P o i n t [ 3 ] ] [ 1 ] ) ∗ 0 . 5 ;

999 }
e l s e i f ( vo idBoo l == 1 && i > = t u r n P o i n t [ 3 ] ) {

1001 c e n t S t a c k [ i ] [ 0 ] = ( s t a c k V e c t o r [ i ] [ 0 ] + s t a c k V e c t o r [ i + 1 ] [ 0 ] ) ∗ 0 . 5 ;
c e n t S t a c k [ i ] [ 1 ] = ( s t a c k V e c t o r [ i ] [ 1 ] + s t a c k V e c t o r [ i + 1 ] [ 1 ] ) ∗ 0 . 5 ;

1003 }
/ / F i e l d c a l c u l a t i o n

1005 i f ( c h i ! = 0 ) f i e l d I [ i ] = 1 ∗ c e n t S t a c k [ i ] [ 0 ] ;
}

1007
i f ( PRINT ) p r i n t F i l e ( c e n t S t a c k , numCentStack , ” c e n t e r . t x t ” ) ;

1009 }

1011 v o i d c a l c I n t e r M a t r i x ( ) {
i f ( Pr in tName ) cout << ” c a l c I n t e r M a t r i x ” << e n d l ;

1013 f o r ( i = 0 ; i <numCentStack ; i++ )
f o r ( j = 0 ; j <numCentStack ; j++ ) {

1015 M a t d i s t ( in tMat , i , j , 0 ) = ( s t a c k V e c t o r [ j ] [ 0 ] − c e n t S t a c k [ i ] [ 0 ] ) ;
M a t d i s t ( in tMat , i , j , 1 ) = ( s t a c k V e c t o r [ j ] [ 1 ] − c e n t S t a c k [ i ] [ 1 ] ) ;

1017 }

1019 i f ( PRINT ) {
o u t . open ( ” i n t M a t . t x t ” ) ;

1021 f o r ( i = 0 ; i <numCentStack ; i++ ) {
f o r ( j = 0 ; j <numCentStack ; j++ )

1023 f o r ( k = 0 ; k<3; k++ ) o u t << M a t d i s t ( in tMat , i , j , k ) << ” ” ;
o u t << e n d l ;

1025 }
o u t . c l o s e ( ) ;

1027 }
}

1029
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1031 / ∗
∗ Segmenth v e c t o r and i t s l e n g t h c a l c u l a t i o n s

1033 ∗ /
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1035
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v o i d c a l c D e l R s e g L e n g t h ( ) {
1037 i f ( Pr in tName ) cout << ” c a l c D e l R s e g L e n g t h ” << e n d l ;

f o r ( i = 0 ; i <numCentStack ; i++ ) {
1039 i f ( i < t u r n P o i n t [ 3 ] − 1 ) {

de l R [ i ] [ 0 ] = ( s t a c k V e c t o r [ i + 1 ] [ 0 ] − s t a c k V e c t o r [ i ] [ 0 ] ) ;
1041 d e l R [ i ] [ 1 ] = ( s t a c k V e c t o r [ i + 1 ] [ 1 ] − s t a c k V e c t o r [ i ] [ 1 ] ) ;

}
1043 e l s e i f ( i == ( t u r n P o i n t [ 3 ] − 1 ) ) {

de l R [ i ] [ 0 ] = ( s t a c k V e c t o r [ 0 ] [ 0 ] − s t a c k V e c t o r [ i ] [ 0 ] ) ;
1045 d e l R [ i ] [ 1 ] = ( s t a c k V e c t o r [ 0 ] [ 1 ] − s t a c k V e c t o r [ i ] [ 1 ] ) ;

}
1047 e l s e i f ( vo idBoo l == 1 && i == numCentStack − 1 ) {

de l R [ i ] [ 0 ] = ( s t a c k V e c t o r [ numSur fCen tS tack ] [ 0 ] − s t a c k V e c t o r [ i ] [ 0 ] ) ;
1049 d e l R [ i ] [ 1 ] = ( s t a c k V e c t o r [ numSur fCen tS tack ] [ 1 ] − s t a c k V e c t o r [ i ] [ 1 ] ) ;

}
1051 e l s e i f ( vo idBoo l == 1 && i > = t u r n P o i n t [ 3 ] ) {

de l R [ i ] [ 0 ] = ( s t a c k V e c t o r [ i + 1 ] [ 0 ] − s t a c k V e c t o r [ i ] [ 0 ] ) ;
1053 d e l R [ i ] [ 1 ] = ( s t a c k V e c t o r [ i + 1 ] [ 1 ] − s t a c k V e c t o r [ i ] [ 1 ] ) ;

}
1055 i f ( i == t u r n P o i n t [ 0 ] − 1 ) {

de l R [ i ] [ 0 ] = de l R [ 0 ] [ 0 ] ;
1057 d e l R [ i ] [ 1 ] = de l R [ 0 ] [ 1 ] ;

}
1059 segLeng th [ i ] = magni tude ( d e l R [ i ] ) ;

}
1061 i f ( PRINT ) {

p r i n t F i l e ( de l R , numCentStack , ” d e l r . t x t ” ) ;
1063 p r i n t F i l e ( segLength , numCentStack , ” s . t x t ” ) ;

}
1065 }

1067 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
/ ∗

1069 ∗ Segmenth normal v e c t o r c a l c u l a t i o n s
∗ /

1071 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1073 v o i d calcNormOfCent ( ) {
i f ( Pr in tName ) cout << ” calcNormOfCent ” << e n d l ;

1075 f o r ( i = 0 ; i <numCentStack ; i++ ) {
cen tNormal [ i ] [ 0 ] = ( d e l R [ i ] [ 1 ] ) / segLeng th [ i ] ;

1077 cen tNormal [ i ] [ 1 ] = ( − de l R [ i ] [ 0 ] ) / segLeng th [ i ] ;
i f ( i == t u r n P o i n t [ 0 ] − 1 ) {

1079 cen tNormal [ i ] [ 0 ] = ( d e l R [ 0 ] [ 1 ] ) / segLeng th [ 0 ] ;
cen tNormal [ i ] [ 1 ] = ( − de l R [ 0 ] [ 0 ] ) / segLeng th [ 0 ] ;

1081 }
}

1083 i f ( PRINT ) p r i n t F i l e ( centNormal , numCentStack , ” cen tNormal . t x t ” ) ;
}

1085
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1087 / ∗
∗ C r y s t a l l o g r a p h i c t e x t u r e c a l c u l a t i o n s

1089 ∗ /
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1091
v o i d c a l c D i f f u s i v i t y ( ) {

1093 i f ( Pr in tName ) cout << ” c a l c D i f f u s i v i t y ” << e n d l ;
f o r ( i = 0 ; i <numCentStack ; i++ ) {

1095 i f ( foldSymNum == 0 ) {
difMag [ i ] = a n i s o t I n t e n s i t y + 1 ;

1097 gibbsGamma [ i ] = 1 ;
gibbsGammaS [ i ] = 1 ;

1099 s u r f E n e r g y [ i ] = 1 ;
} e l s e {

1101 d i f T h e t a [ i ] = a n g l e ( anx , de l R [ i ] ) ;

1103 i f ( d i f T h e t a [ i ] > p i ) d i f T h e t a [ i ] −= 2 ∗ p i ;
i f ( d i f T h e t a [ i ] < 0 . 0 ) d i f T h e t a [ i ] += 2 ∗ p i ;

1105
difMag [ i ] = 1 . 0 + a n i s o t I n t e n s i t y ∗ s q r ( SPEEDcos ( foldSymNum ∗ ( d i f T h e t a [ i ] − ←↩

t e x T i l t A n g l e ) ) ) ;
1107 s u r f E n e r g y [ i ] = ( 1 + B s u r f /2 ) ∗ ( 1 + pow ( − 1 , Number ( foldSymNum ) ) ∗ ←↩

B s u r f ∗ ( 1 − 4 ∗ s q r ( foldSymNum ) )
/ ( B s u r f + 2 ) ∗ ( SPEEDcos ( 2 ∗ foldSymNum ∗ ( d i f T h e t a [ i ] + t e x T i l t A n g l e ) ) ) ←↩

) ;
1109

i f ( g ibbsType == 0 ) {
1111 gibbsGammaGamma [ i ] = g i b b s B s u r f ∗ foldSymNum ∗ ( SPEEDsin ( 2 ∗ foldSymNum ∗ ( ←↩
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d i f T h e t a [ i ] − t e x T i l t A n g l e ) ) ) ;
gibbsGamma [ i ] = 1 + g i b b s B s u r f ∗ s q r ( SPEEDsin ( foldSymNum ∗ ( d i f T h e t a [ i ] − ←↩

t e x T i l t A n g l e ) ) ) ;
1113 gibbsGammaS [ i ] = ( 1 + g i b b s B s u r f /2 ) ∗ ( 1 − ( g i b b s B s u r f ∗ ( 1 − 4 ∗ s q r ( ←↩

foldSymNum ) ) / ( g i b b s B s u r f + 2 ) ) ∗ ( SPEEDcos ( 2 ∗ foldSymNum ∗ ( d i f T h e t a [←↩
i ] − t e x T i l t A n g l e ) ) ) ) ;

}
1115 e l s e i f ( g ibbsType == 1 ) {

gibbsGammaGamma [ i ] = 0 . 5 ∗ g i b b s B s u r f ∗ foldSymNum ∗ ( SPEEDsin ( 0 . 5 ∗ foldSymNum ∗ ←↩
( d i f T h e t a [ i ] − t e x T i l t A n g l e ) ) ) ∗ ( SPEEDcos ( 0 . 5 ∗ foldSymNum ∗ ( d i f T h e t a←↩

[ i ] − t e x T i l t A n g l e ) ) ) ∗ ( 1 /
1117 ( f a b s ( SPEEDsin ( 0 . 5 ∗ foldSymNum ∗ ( d i f T h e t a [ i ] − t e x T i l t A n g l e ) ) ) ) − 1 /←↩

( f a b s ( SPEEDcos ( 0 . 5 ∗ foldSymNum ∗ ( d i f T h e t a [ i ] − t e x T i l t A n g l e ) ) ) ) ←↩
) ;

gibbsGamma [ i ] = 1 − g i b b s B s u r f + g i b b s B s u r f ∗ ( f a b s ( SPEEDsin ( 0 . 5 ∗ ←↩
foldSymNum ∗ ( d i f T h e t a [ i ] − t e x T i l t A n g l e ) ) ) + f a b s ( SPEEDcos ( 0 . 5 ∗ ←↩
foldSymNum ∗ ( d i f T h e t a [ i ] − t e x T i l t A n g l e ) ) ) ) ;

1119 gibbsGammaS [ i ] = 1 − g i b b s B s u r f + g i b b s B s u r f ∗ ( 1 − 0 . 2 5 ∗ s q r ( foldSymNum ) ←↩
) ∗ ( f a b s ( SPEEDsin ( 0 . 5 ∗ foldSymNum ∗ ( d i f T h e t a [ i ] − t e x T i l t A n g l e ) ) ) ←↩
+ f a b s ( SPEEDcos ( 0 . 5 ∗ foldSymNum ∗ ( d i f T h e t a [ i ] − t e x T i l t A n g l e ) ) ) ) ←↩

;
}

1121 }
}

1123
f o r ( i = 0 ; i <numNodeStack ; i++ ) {

1125 i f ( i < t u r n P o i n t [ 3 ] | | i > t u r n P o i n t [ 3 ] )
tempSYS [ i ] = ( s u r f E n e r g y [ i − 1] ∗ segLeng th [ i ] + s u r f E n e r g y [ i ] ∗ segLeng th [ i − ←↩

1] ) / ( s egLeng th [ i ] + segLeng th [ i − 1] ) ;
1127 i f ( i == 0 )

tempSYS [ i ] = ( s u r f E n e r g y [ t u r n P o i n t [ 0 ] − 2] ∗ segLeng th [ i ] + s u r f E n e r g y [ i ] ∗ ←↩
segLeng th [ t u r n P o i n t [ 0 ] − 2] ) / ( s egLeng th [ i ] + segLeng th [ t u r n P o i n t [ 0 ] − 2] )←↩

;
1129 i f ( i == t u r n P o i n t [ 3 ] )

tempSYS [ i ] = ( s u r f E n e r g y [ numNodeStack − 1] ∗ segLeng th [ i ] + s u r f E n e r g y [ i ] ∗ ←↩
segLeng th [ numNodeStack − 1] ) / ( s egLeng th [ i ] + segLeng th [ numNodeStack − 1] ) ;

1131 }
tempSYS [ t u r n P o i n t [ 0 ] − 1] = tempSYS [ 0 ] ;

1133 f o r ( i = 0 ; i <numNodeStack ; i++ ) s u r f E n e r g y [ i ] = tempSYS [ i ] ;

1135
f o r ( i = 0 ; i <numNodeStack ; i++ ) {

1137 i f ( i < t u r n P o i n t [ 3 ] | | i > t u r n P o i n t [ 3 ] )
tempSYS [ i ] = ( gibbsGammaS [ i − 1] ∗ segLeng th [ i ] + gibbsGammaS [ i ] ∗ segLeng th [ i −←↩

1] ) / ( s egLeng th [ i ] + segLeng th [ i − 1] ) ;
1139 i f ( i == 0 )

tempSYS [ i ] = ( gibbsGammaS [ t u r n P o i n t [ 0 ] − 2] ∗ segLeng th [ i ] + gibbsGammaS [ i ] ∗ ←↩
segLeng th [ t u r n P o i n t [ 0 ] − 2] ) / ( s egLeng th [ i ] + segLeng th [ t u r n P o i n t [ 0 ] − 2] )←↩

;
1141 i f ( i == t u r n P o i n t [ 3 ] )

tempSYS [ i ] = ( gibbsGammaS [ numNodeStack − 1] ∗ segLeng th [ i ] + gibbsGammaS [ i ] ∗ ←↩
segLeng th [ numNodeStack − 1] ) / ( s egLeng th [ i ] + segLeng th [ numNodeStack − 1] ) ;

1143 }
tempSYS [ t u r n P o i n t [ 0 ] − 1] = tempSYS [ 0 ] ;

1145 f o r ( i = 0 ; i <numNodeStack ; i++ ) gibbsGammaS [ i ] = tempSYS [ i ] ;

1147
f o r ( i = 0 ; i <numNodeStack ; i++ ) {

1149 i f ( i < t u r n P o i n t [ 1 ] )
tempSYS [ i ] = ( gibbsGammaGamma [ i − 1] ∗ segLeng th [ i ] + gibbsGammaGamma [ i ] ∗ ←↩

segLeng th [ i − 1] ) / ( s egLeng th [ i ] + segLeng th [ i − 1] ) ;
1151 i f ( i == 0 )

tempSYS [ i ] = ( gibbsGammaGamma [ t u r n P o i n t [ 1 ] − 1] ∗ segLeng th [ i ] + gibbsGammaGamma ←↩
[ i ] ∗ segLeng th [ t u r n P o i n t [ 1 ] − 1] ) / ( s egLeng th [ i ] + segLeng th [ t u r n P o i n t [ 1 ] −←↩

1] ) ;
1153 i f ( i == t u r n P o i n t [ 1 ] )

tempSYS [ i ] = ( gibbsGammaGamma [ numNodeStack − 1] ∗ segLeng th [ i ] + gibbsGammaGamma [ i←↩
] ∗ segLeng th [ numNodeStack − 1] ) / ( s egLeng th [ i ] + segLeng th [ numNodeStack − 1] )←↩

;
1155 }

1157 f o r ( i = 0 ; i <numNodeStack ; i++ ) gibbsGammaGamma [ i ] = tempSYS [ i ] ;
i f ( PRINT ) {

1159 p r i n t F i l e ( d i f T h e t a , numCentStack , ” d i f T h e t a . t x t ” ) ;
p r i n t F i l e ( gibbsGammaS , numCentStack , ” gibbsGammaS . t x t ” ) ;

1161 p r i n t F i l e ( gibbsGamma , numCentStack , ” gibbsGamma . t x t ” ) ;
p r i n t F i l e ( s u r f E n e r g y , numCentStack , ” s u r f E n e r g y . t x t ” ) ;

1163 p r i n t F i l e ( gibbsGammaGamma , numCentStack , ”gibbsGammaGamma . t x t ” ) ;
}
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1165 }

1167 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
/ ∗

1169 ∗ Angle c a l c u l a t i o n s a t nodes
∗ /

1171 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1173 v o i d c a l c P s i r ( ) {

1175 i f ( Pr in tName ) cout << ” c a l c P s i r ” << e n d l ;
f o r ( i = 0 ; i <numNodeStack ; i++ ) {

1177 i f ( i == 0 ) the t aAtNode [ i ] = a n g l e ( de l R [ t u r n P o i n t [ 0 ] − 2] , de l R [ i ] ) ;
e l s e i f ( i < t u r n P o i n t [ 3 ] | | i > t u r n P o i n t [ 3 ] ) t he t aAtNode [ i ] = a n g l e ( de l R [ i − 1]←↩

, d e l R [ i ] ) ;
1179 e l s e i f ( i == t u r n P o i n t [ 3 ] ) t he t aAtNode [ i ] = a n g l e ( de l R [ numCentStack − 1] , ←↩

de l R [ i ] ) ;
i f ( i == t u r n P o i n t [ 0 ] − 1 ) the t aAtNode [ i ] = t he t aAtNode [ 0 ] ;

1181 i f ( t he t aAtNode [ i ] < 0 . 0 ) the t aAtNode [ i ] += 2 ∗ p i ;
i f ( t he t aAtNode [ i ] > p i ) t he t aAtNode [ i ] −= 2 ∗ p i ;

1183 }
i f ( PRINT ) p r i n t F i l e ( the taAtNode , numCentStack , ” the t aAtNode . t x t ” ) ;

1185 }

1187
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1189 / ∗
∗ Boundary c o n d i t i o n s f o r e l e c t r o m i g r a t i o n

1191 ∗ /
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1193
v o i d calcNormEF ( ) {

1195 i f ( Pr in tName ) cout << ” calcNormEF ” << e n d l ;
f o r ( i = 0 ; i <numCentStack ; i++ ) {

1197 B ( i , 0 ) = − 1 ∗ cen tNormal [ i ] [ 0 ] ;
i f ( i > = t u r n P o i n t [ 0 ] − 1&&i < t u r n P o i n t [ 1 ] ) B ( i , 0 ) = 0 ;

1199 i f ( i > = t u r n P o i n t [ 2 ] − 1&&i < t u r n P o i n t [ 3 ] ) B ( i , 0 ) = 0 ;
}

1201 i f ( PRINT ) p r i n t F i l e ( mu , numCentStack , ”B . t x t ” ) ;
}

1203 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
/ ∗

1205 ∗ C u r v a t u r e C a l c u l a t i o n
∗ /

1207 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
v o i d ca lcKappa ( ) {

1209 i f ( Pr in tName ) cout << ” ca lcKappa ” << e n d l ;
f o r ( i = 0 ; i <numNodeStack ; i++ ) {

1211
i f ( i == 0 ) {

1213 a l p h a [ i ] = a t a n ( SPEEDsin ( the t aAtNode [ i ] ) / ( s egLeng th [ t u r n P o i n t [ 3 ] − 1] /←↩
segLeng th [ i ] + SPEEDcos ( the t aAtNode [ i ] ) ) ) ;

kappa [ i ] = 2 . 0 ∗ SPEEDsin ( a l p h a [ i ] ) / segLeng th [ i ] ;
1215 tempDouble [ 0 ] = ( a l p h a [ i ] − p i ∗ 0 . 5 ) ;

c r e a t e A n t i R o t M a t ( tempDouble ) ;
1217 normKappa [ 0 ] = d o t P r o ( a n t i R o t [ 0 ] , de l R [ t u r n P o i n t [ 3 ] − 1] ) ;

normKappa [ 1 ] = d o t P r o ( a n t i R o t [ 1 ] , de l R [ t u r n P o i n t [ 3 ] − 1] ) ;
1219 normKappa [ 2 ] = d o t P r o ( a n t i R o t [ 2 ] , de l R [ t u r n P o i n t [ 3 ] − 1] ) ;

tempDouble [ 0 ] = magni tude ( normKappa ) ;
1221 loca lL ineNorm [ i ] [ 0 ] = normKappa [ 0 ] / tempDouble [ 0 ] ;

l oca lL ineNorm [ i ] [ 1 ] = normKappa [ 1 ] / tempDouble [ 0 ] ;
1223 loca lL ineNorm [ i ] [ 2 ] = normKappa [ 2 ] / tempDouble [ 0 ] ;

}
1225

e l s e i f ( i == t u r n P o i n t [ 3 ] ) {
1227 a l p h a [ i ] = a t a n ( SPEEDsin ( the t aAtNode [ i ] ) / ( s egLeng th [ numCentStack − 1] /←↩

segLeng th [ i ] + SPEEDcos ( the t aAtNode [ i ] ) ) ) ;
kappa [ i ] = 2 . 0 ∗ SPEEDsin ( a l p h a [ i ] ) / segLeng th [ i ] ;

1229 tempDouble [ 0 ] = ( a l p h a [ i ] − p i ∗ 0 . 5 ) ;
c r e a t e A n t i R o t M a t ( tempDouble ) ;

1231 normKappa [ 0 ] = d o t P r o ( a n t i R o t [ 0 ] , de l R [ numCentStack − 1] ) ;
normKappa [ 1 ] = d o t P r o ( a n t i R o t [ 1 ] , de l R [ numCentStack − 1] ) ;

1233 normKappa [ 2 ] = d o t P r o ( a n t i R o t [ 2 ] , de l R [ numCentStack − 1] ) ;
tempDouble [ 0 ] = magni tude ( normKappa ) ;

1235 loca lL ineNorm [ i ] [ 0 ] = normKappa [ 0 ] / tempDouble [ 0 ] ;
l oca lL ineNorm [ i ] [ 1 ] = normKappa [ 1 ] / tempDouble [ 0 ] ;

1237 loca lL ineNorm [ i ] [ 2 ] = normKappa [ 2 ] / tempDouble [ 0 ] ;
}

1239 e l s e {
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a l p h a [ i ] = a t a n ( SPEEDsin ( the t aAtNode [ i ] ) / ( s egLeng th [ i − 1] / segLeng th [ i ]←↩
+ SPEEDcos ( the t aAtNode [ i ] ) ) ) ;

1241 i f ( i > = t u r n P o i n t [ 0 ] ) a l p h a [ i ] = 0 ;
kappa [ i ] = 2 . 0 ∗ SPEEDsin ( a l p h a [ i ] ) / segLeng th [ i ] ;

1243 tempDouble [ 0 ] = ( a l p h a [ i ] − p i ∗ 0 . 5 ) ;
c r e a t e A n t i R o t M a t ( tempDouble ) ;

1245 normKappa [ 0 ] = d o t P r o ( a n t i R o t [ 0 ] , de l R [ i − 1] ) ;
normKappa [ 1 ] = d o t P r o ( a n t i R o t [ 1 ] , de l R [ i − 1] ) ;

1247 normKappa [ 2 ] = d o t P r o ( a n t i R o t [ 2 ] , de l R [ i − 1] ) ;
tempDouble [ 0 ] = magni tude ( normKappa ) ;

1249 loca lL ineNorm [ i ] [ 0 ] = normKappa [ 0 ] / tempDouble [ 0 ] ;
l oca lL ineNorm [ i ] [ 1 ] = normKappa [ 1 ] / tempDouble [ 0 ] ;

1251 loca lL ineNorm [ i ] [ 2 ] = normKappa [ 2 ] / tempDouble [ 0 ] ;
}

1253 }
i f ( 1 ) {

1255 difMag [ t u r n P o i n t [ 0 ] − 1] = difMag [ 0 ] ;
s u r f E n e r g y [ t u r n P o i n t [ 0 ] − 1] = s u r f E n e r g y [ 0 ] ;

1257 the t aAtNode [ 0 ] = a n g l e ( de l R [ t u r n P o i n t [ 0 ] − 2] , de l R [ 0 ] ) ;
i f ( t he t aAtNode [ 0 ] < 0 . 0 ) the t aAtNode [ 0 ] += 2 ∗ p i ;

1259 i f ( t he t aAtNode [ 0 ] > p i ) t he t aAtNode [ 0 ] −= 2 ∗ p i ;
t he t a AtNode [ t u r n P o i n t [ 0 ] − 1] = t he t aAtNode [ 0 ] ;

1261
a l p h a [ 0 ] = a t a n ( SPEEDsin ( the t aAtNode [ 0 ] ) / ( s egLeng th [ t u r n P o i n t [ 0 ] − 2]

1263 / segLeng th [ 0 ] + SPEEDcos ( the t aAtNode [ 0 ] ) ) ) ;
kappa [ 0 ] = 2 . 0 ∗ SPEEDsin ( a l p h a [ 0 ] ) / segLeng th [ 0 ] ;

1265 tempDouble [ 0 ] = ( a l p h a [ 0 ] − p i ∗ 0 . 5 ) ;
c r e a t e A n t i R o t M a t ( tempDouble ) ;

1267 normKappa [ 0 ] = d o t P r o ( a n t i R o t [ 0 ] , de l R [ t u r n P o i n t [ 0 ] − 2] ) ;
normKappa [ 1 ] = d o t P r o ( a n t i R o t [ 1 ] , de l R [ t u r n P o i n t [ 0 ] − 2] ) ;

1269 normKappa [ 2 ] = d o t P r o ( a n t i R o t [ 2 ] , de l R [ t u r n P o i n t [ 0 ] − 2] ) ;
tempDouble [ 0 ] = magni tude ( normKappa ) ;

1271 loca lL ineNorm [ 0 ] [ 0 ] = normKappa [ 0 ] / tempDouble [ 0 ] ;
loca lL ineNorm [ 0 ] [ 1 ] = normKappa [ 1 ] / tempDouble [ 0 ] ;

1273 loca lL ineNorm [ 0 ] [ 2 ] = normKappa [ 2 ] / tempDouble [ 0 ] ;
a l p h a [ t u r n P o i n t [ 0 ] − 1] = a l p h a [ 0 ] ;

1275 kappa [ t u r n P o i n t [ 0 ] − 1] = kappa [ 0 ] ;
loca lL ineNorm [ t u r n P o i n t [ 0 ] − 1 ] [ 0 ] = l oca lL ineNorm [ 0 ] [ 0 ] ;

1277 loca lL ineNorm [ t u r n P o i n t [ 0 ] − 1 ] [ 1 ] = l oca lL ineNorm [ 0 ] [ 1 ] ;
loca lL ineNorm [ t u r n P o i n t [ 0 ] − 1 ] [ 2 ] = l oca lL ineNorm [ 0 ] [ 2 ] ;

1279 }
kappaAv = 0 ;

1281 f o r ( i = 0 ; i <numNodeStack ; i++ ) {
i f ( i < t u r n P o i n t [ 0 ] ) {

1283 WU [ i ] = ( GammaSubstrate + GammaFilm ) /GammaFilm ∗ 0 . 5 + ( GammaFilm − ←↩
GammaSubstrate ) / ( p i ∗ GammaFilm ) ∗ a t a n ( ( s t a c k V e c t o r [ i ] [ 1 ] + ←↩
i n t e r W i d t h ) / ( del taW ∗ s c a l e F a c t o r ∗ 1 ) ) ;

WUU [ i ] = l oca lL ineNorm [ i ] [ 1 ] ∗ ( GammaFilm − GammaSubstrate ) / ( p i ∗ GammaFilm ) ←↩
∗ ( del taW ∗ s c a l e F a c t o r ) / ( s q r ( del taW ∗ s c a l e F a c t o r ) + s q r ( s t a c k V e c t o r [ i←↩
] [ 1 ] + i n t e r W i d t h ) ) ∗ gibbsGamma [ i ] − l oca lL ineNorm [ i ] [ 0 ] ∗ ( GammaFilm − ←↩
GammaSubstrate ) / ( p i ∗ GammaFilm ) ∗ ( del taW ∗ s c a l e F a c t o r ) / ( s q r ( del taW ∗ ←↩
s c a l e F a c t o r ) + s q r ( s t a c k V e c t o r [ i ] [ 1 ] + i n t e r W i d t h ) ) ∗ gibbsGammaGamma [ i ] ;

1285 } e l s e {
WU [ i ] = 0 ;

1287 WUU [ i ] = 0 ;
}

1289 kappaAv += f a b s ( kappa [ i ] ) ;
}

1291 kappaAv / = numNodeStack ;
i f ( PRINT ) {

1293 p r i n t F i l e ( c e n t e r s , numNodeStack , ” c e n t e r s . t x t ” ) ;
p r i n t F i l e ( loca lLineNorm , numNodeStack , ” loca lL ineNorm . t x t ” ) ;

1295 p r i n t F i l e ( tempVectNew , 1 , ” s s . t x t ” ) ;
p r i n t F i l e ( kappa , numNodeStack , ” kappa . t x t ” ) ;

1297 p r i n t F i l e ( WU, numNodeStack , ”WU. t x t ” ) ;
p r i n t F i l e ( WUU, numNodeStack , ”WUU. t x t ” ) ;

1299 p r i n t F i l e ( a lpha , numNodeStack , ” a l p h a . t x t ” ) ;
p r i n t F i l e ( s t a c k V e c t o r , numNodeStack , ” s t a c k . t x t ” ) ;

1301 }
}

1303
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1305 / ∗
∗ E l e c t r o m i g r a t i o n C a l c u l a t i o n s

1307 ∗ /
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1309
v o i d formingIBEMmatr ix ( ) {

1311 i f ( Pr in tName ) cout << ” formingIBEMmatr ix ” << e n d l ;
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t e m p I n t [ 3 ] = integSegmentNum − 1 ;
1313 tempDouble [ 1 ] = 0 . 5 / ( p i ∗ t e m p I n t [ 3 ] ) ;

f o r ( i = 0 ; i <numCentStack ; i++ ) {
1315 f o r ( j = 0 ; j <numCentStack ; j++ ) {

/ / M a t r i x i n k o s e g e n i n n e d e g e r a t i y o r .
1317 i f ( i == j )

A ( i , j ) = 0 . 5 ;
1319 e l s e {

f o r ( m = 0 ; m<integSegmentNum ; m++ ) {
1321 tempVect [m] [ 0 ] = M a t d i s t ( in tMat , i , j , 0 ) + m ∗ de l R [ j ] [ 0 ] / t e m p I n t [ 3 ] ;

tempVect [m] [ 1 ] = M a t d i s t ( in tMat , i , j , 1 ) + m ∗ de l R [ j ] [ 1 ] / t e m p I n t [ 3 ] ;
1323 }

1325 f o r ( k = 0 ; k<2; k++ ) {
tempDouble [ 0 ] = 0 . 0 ;

1327 f o r ( m = 1 ; m< t e m p I n t [ 3 ] ; m++ )
tempDouble [ 0 ] += tempVect [m] [ k ] / sqr mag ( tempVect [m] ) ;

1329
r c i j [ k ] = tempDouble [ 0 ] ;

1331 r c o s = sqr mag ( tempVect [ 0 ] ) ;
rcms = sqr mag ( tempVect [ t e m p I n t [ 3 ] ] ) ;

1333 r c i j [ k ] += 0 . 5 ∗ ( tempVect [ 0 ] [ k ] / r c o s + tempVect [ t e m p I n t [ 3 ] ] [ k ] / rcms ) ;
/ / / burda d e g i s i k l i k y a p i l d i 1 8 . 0 2 . 2 0 0 8

1335 }
A ( i , j ) = − segLeng th [ j ] ∗ tempDouble [ 1 ] ∗ ( d o t P r o ( cen tNormal [ i ] , r c i j ) ←↩

) ;
1337 i f ( i > = t u r n P o i n t [ 1 ] &&i < t u r n P o i n t [ 2 ] − 1 ) A ( i , j ) ∗ = − 1 ;

i f ( i > = t u r n P o i n t [ 0 ] − 1&&i < t u r n P o i n t [ 1 ] ) A ( i , j ) = 0 ;
1339 i f ( i > = t u r n P o i n t [ 2 ] − 1&&i < t u r n P o i n t [ 3 ] ) A ( i , j ) = 0 ;

}
1341 }

}
1343

i f ( PRINT ) {
1345 o u t . open ( ”IBEM . t x t ” ) ;

o u t << s e t i o s f l a g s ( i o s : : showpo in t ) ;
1347 f o r ( i = 0 ; i <numCentStack ; i++ ) {

f o r ( j = 0 ; j <numCentStack ; j++ ) {
1349 o u t << s e t p r e c i s i o n ( 20 ) << d a r r a y ( ibemMat , i , j ) <<” ” ;

}
1351 o u t << e n d l ;

}
1353 o u t . c l o s e ( ) ;

}
1355

}
1357

v o i d c a l c E F i e l d ( ) {
1359 i f ( Pr in tName ) cout << ” c a l c E F i e l d ” << e n d l ;

1361 n r h s = 1 ;
/ ∗ F a c t o r i z e f t t ∗ /

1363 d g e t r f ( numCentStack , numCentStack , ibemMat , lda , i p i v , &i n f o ) ;
/ ∗ Solve f t t ∗ /

1365 d g e t r s ( ’N’ , numCentStack , nrhs , ibemMat , lda , i p i v , mu , ldb , &i n f o ) ;

1367 t e m p I n t [ 0 ] = integSegmentNum − 1 ;

1369 f o r ( i = 0 ; i < numCentStack ; i++ ) {
f o r ( j = 0 ; j < numCentStack ; j++ ) {

1371 tempVect [ 1 ] [ 0 ] = s t a c k V e c t o r [ j + 1 ] [ 0 ] − c e n t S t a c k [ i ] [ 0 ] ;
tempVect [ 1 ] [ 1 ] = s t a c k V e c t o r [ j + 1 ] [ 1 ] − c e n t S t a c k [ i ] [ 1 ] ;

1373
tempVect [ 0 ] [ 0 ] = M a t d i s t ( in tMat , i , j , 0 ) ;

1375 tempVect [ 0 ] [ 1 ] = M a t d i s t ( in tMat , i , j , 1 ) ;
tempDouble [ 0 ] = 0 . 5 ∗ ( l o g ( magn i tude ( tempVect [ 0 ] ) ) + l o g ( magni tude ( ←↩

tempVect [ 1 ] ) ) ) ;
1377 f o r ( m = 1 ; m< t e m p I n t [ 0 ] ; m++ ) {

tempVect [ 3 ] [ 0 ] = tempVect [ 0 ] [ 0 ] + m ∗ de l R [ j ] [ 0 ] / t e m p I n t [ 0 ] ;
1379 tempVect [ 3 ] [ 1 ] = tempVect [ 0 ] [ 1 ] + m ∗ de l R [ j ] [ 1 ] / t e m p I n t [ 0 ] ;

tempDouble [ 0 ] += l o g ( magn i tude ( tempVect [ 3 ] ) ) ;
1381 }

de l U [ i ] [ j ] = − 0 . 5 / ( p i ∗ ( t e m p I n t [ 0 ] ) ) ∗ ( s egLeng th [ j ] ) ∗ ( ←↩
tempDouble [ 0 ] ) ;

1383 }
f i e l d I I [ i ] = 0 . 0 ;

1385 f o r ( k = 0 ; k<numCentStack ; k++ )
f i e l d I I [ i ] += ( de l U [ i ] [ k ] ) ∗ mu [ k ] ;

1387 f i e l d T [ i ] = f i e l d I [ i ] + f i e l d I I [ i ] ;

161



}
1389

f o r ( i = 0 ; i <numNodeStack ; i++ ) {
1391 i f ( i < t u r n P o i n t [ 3 ] | | i > t u r n P o i n t [ 3 ] )

f i e l d T N [ i ] = ( f i e l d T [ i − 1] ∗ segLeng th [ i ] + f i e l d T [ i ] ∗ segLeng th [ i − 1] ) / (←↩
segLeng th [ i ] + segLeng th [ i − 1] ) ;

1393 i f ( i == 0 )
f i e l d T N [ i ] = ( f i e l d T [ t u r n P o i n t [ 3 ] − 1] ∗ segLeng th [ i ] + f i e l d T [ i ] ∗ segLeng th [←↩

t u r n P o i n t [ 3 ] − 1] ) / ( s egLeng th [ i ] + segLeng th [ t u r n P o i n t [ 3 ] − 1] ) ;
1395 i f ( i == t u r n P o i n t [ 3 ] )

f i e l d T N [ i ] = ( f i e l d T [ numNodeStack − 1] ∗ segLeng th [ i ] + f i e l d T [ i ] ∗ segLeng th [←↩
numNodeStack − 1] ) / ( s egLeng th [ i ] + segLeng th [ numNodeStack − 1] ) ;

1397 }

1399 i f ( PRINT ) {
p r i n t F i l e ( f i e ldTN , numNodeStack , ” f i e l d T N . t x t ” ) ;

1401 p r i n t F i l e ( del U , numNodeStack , ” de l U . t x t ” ) ;
p r i n t F i l e ( f i e l d I , numNodeStack , ” f i e l d I . t x t ” ) ;

1403 p r i n t F i l e ( f i e l d I I , numNodeStack , ” f i e l d I I . t x t ” ) ;
p r i n t F i l e ( mu , numNodeStack , ”mu . t x t ” ) ;

1405 }
}

1407
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1409 / ∗
∗ S t r e s s C a l c u l a t i o n s

1411 ∗ /
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1413
v o i d f o r m i n g S t r e s s I B E M m a t r i x ( ) {

1415 i f ( Pr in tName ) cout << ” f o r m i n g S t r e s s I B E M m a t r i x ” << e n d l ;

1417 t e m p I n t [ 1 ] = in tegSegmentNumSt − 1 ;

1419 f o r ( i = 0 ; i <numCentStack ; i++ ) {
f o r ( j = 0 ; j <numCentStack ; j++ ) {

1421
i f ( i < t u r n P o i n t [ 0 ] | | i == numCentStack − 1 ) {

1423 i f ( i == j ) {
d a r r a y ( f t t , i ∗ 2 , j ∗ 2 ) = 0 . 5 ; / / f t t [ i ∗ 2 ] [ j ∗ 2]

1425 d a r r a y ( f t t , i ∗ 2 + 1 , j ∗ 2 + 1 ) = 0 . 5 ; / / f t t [ i ∗ 2 + 1 ] [ j ∗ 2 + 1]
d a r r a y ( f t t , i ∗ 2 + 1 , j ∗ 2 ) = 0 ; / / f t t [ i ∗ 2 + 1 ] [ j ∗ 2]

1427 d a r r a y ( f t t , i ∗ 2 , j ∗ 2 + 1 ) = 0 ; / / f t t [ i ∗ 2 ] [ j ∗ 2 + 1]
}

1429 e l s e {

1431 f o r ( m = 0 ; m< in tegSegmentNumSt ; m++ ) {
tempVect [m] [ 0 ] = M a t d i s t ( in tMat , i , j , 0 ) + m ∗ de l R [ j ] [ 0 ] / t e m p I n t [ 1 ] ;

1433 tempVect [m] [ 1 ] = M a t d i s t ( in tMat , i , j , 1 ) + m ∗ de l R [ j ] [ 1 ] / t e m p I n t [ 1 ] ;
}

1435
TTSS ( tempVect [ 0 ] , cen tNormal [ i ] ) ;

1437
temp2x2 [ 0 ] [ 0 ] = t t [ 0 ] [ 0 ] ;

1439 temp2x2 [ 0 ] [ 1 ] = t t [ 0 ] [ 1 ] ;
temp2x2 [ 1 ] [ 0 ] = t t [ 1 ] [ 0 ] ;

1441 temp2x2 [ 1 ] [ 1 ] = t t [ 1 ] [ 1 ] ;

1443
TTSS ( tempVect [ t e m p I n t [ 1 ] ] , cen tNormal [ i ] ) ;

1445
temp2x2 [ 0 ] [ 0 ] += t t [ 0 ] [ 0 ] ;

1447 temp2x2 [ 0 ] [ 1 ] += t t [ 0 ] [ 1 ] ;
temp2x2 [ 1 ] [ 0 ] += t t [ 1 ] [ 0 ] ;

1449 temp2x2 [ 1 ] [ 1 ] += t t [ 1 ] [ 1 ] ;

1451 t t s s [ 0 ] [ 0 ] = temp2x2 [ 0 ] [ 0 ] ∗ 0 . 5 ;
t t s s [ 0 ] [ 1 ] = temp2x2 [ 0 ] [ 1 ] ∗ 0 . 5 ;

1453 t t s s [ 1 ] [ 0 ] = temp2x2 [ 1 ] [ 0 ] ∗ 0 . 5 ;
t t s s [ 1 ] [ 1 ] = temp2x2 [ 1 ] [ 1 ] ∗ 0 . 5 ;

1455 f o r ( k = 1 ; k< t e m p I n t [ 1 ] ; k++ ) {
TTSS ( tempVect [ k ] , cen tNormal [ i ] ) ;

1457 t t s s [ 0 ] [ 0 ] += t t [ 0 ] [ 0 ] ;
t t s s [ 0 ] [ 1 ] += t t [ 0 ] [ 1 ] ;

1459 t t s s [ 1 ] [ 0 ] += t t [ 1 ] [ 0 ] ;
t t s s [ 1 ] [ 1 ] += t t [ 1 ] [ 1 ] ;

1461 }

1463 tempDouble [ 0 ] = segLeng th [ j ] / t e m p I n t [ 1 ] ;
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d a r r a y ( f t t , i ∗ 2 , j ∗ 2 ) = t t s s [ 0 ] [ 0 ] ∗ tempDouble [ 0 ] ;
1465 d a r r a y ( f t t , i ∗ 2 , j ∗ 2 + 1 ) = t t s s [ 0 ] [ 1 ] ∗ tempDouble [ 0 ] ;

d a r r a y ( f t t , i ∗ 2 + 1 , j ∗ 2 ) = t t s s [ 1 ] [ 0 ] ∗ tempDouble [ 0 ] ;
1467 d a r r a y ( f t t , i ∗ 2 + 1 , j ∗ 2 + 1 ) = t t s s [ 1 ] [ 1 ] ∗ tempDouble [ 0 ] ;

}
1469 } e l s e {

f o r ( m = 0 ; m< in tegSegmentNumSt ; m++ ) {
1471 tempVect [m] [ 0 ] = M a t d i s t ( in tMat , i , j , 0 ) + m ∗ de l R [ j ] [ 0 ] / t e m p I n t [ 1 ] ;

tempVect [m] [ 1 ] = M a t d i s t ( in tMat , i , j , 1 ) + m ∗ de l R [ j ] [ 1 ] / t e m p I n t [ 1 ] ;
1473 }

1475 uu ( tempVect [ 0 ] ) ;

1477 temp2x2 [ 0 ] [ 0 ] = us [ 0 ] [ 0 ] ;
temp2x2 [ 0 ] [ 1 ] = us [ 0 ] [ 1 ] ;

1479 temp2x2 [ 1 ] [ 0 ] = us [ 1 ] [ 0 ] ;
temp2x2 [ 1 ] [ 1 ] = us [ 1 ] [ 1 ] ;

1481
uu ( tempVect [ t e m p I n t [ 1 ] ] ) ;

1483
temp2x2 [ 0 ] [ 0 ] += us [ 0 ] [ 0 ] ;

1485 temp2x2 [ 0 ] [ 1 ] += us [ 0 ] [ 1 ] ;
temp2x2 [ 1 ] [ 0 ] += us [ 1 ] [ 0 ] ;

1487 temp2x2 [ 1 ] [ 1 ] += us [ 1 ] [ 1 ] ;

1489 uuss [ 0 ] [ 0 ] = temp2x2 [ 0 ] [ 0 ] ∗ 0 . 5 ;
uus s [ 0 ] [ 1 ] = temp2x2 [ 0 ] [ 1 ] ∗ 0 . 5 ;

1491 uuss [ 1 ] [ 0 ] = temp2x2 [ 1 ] [ 0 ] ∗ 0 . 5 ;
uus s [ 1 ] [ 1 ] = temp2x2 [ 1 ] [ 1 ] ∗ 0 . 5 ;

1493
f o r ( k = 1 ; k< t e m p I n t [ 1 ] ; k++ ) {

1495 uu ( tempVect [ k ] ) ;
uus s [ 0 ] [ 0 ] += us [ 0 ] [ 0 ] ;

1497 uu ss [ 0 ] [ 1 ] += us [ 0 ] [ 1 ] ;
uus s [ 1 ] [ 0 ] += us [ 1 ] [ 0 ] ;

1499 uu ss [ 1 ] [ 1 ] += us [ 1 ] [ 1 ] ;
}

1501
tempDouble [ 0 ] = segLeng th [ j ] / t e m p I n t [ 1 ] ;

1503
d a r r a y ( f t t , i ∗ 2 , j ∗ 2 ) = uuss [ 0 ] [ 0 ] ∗ tempDouble [ 0 ] ;

1505 d a r r a y ( f t t , i ∗ 2 , j ∗ 2 + 1 ) = uuss [ 0 ] [ 1 ] ∗ tempDouble [ 0 ] ;
d a r r a y ( f t t , i ∗ 2 + 1 , j ∗ 2 ) = uuss [ 1 ] [ 0 ] ∗ tempDouble [ 0 ] ;

1507 d a r r a y ( f t t , i ∗ 2 + 1 , j ∗ 2 + 1 ) = uuss [ 1 ] [ 1 ] ∗ tempDouble [ 0 ] ;
}

1509
}

1511 }

1513 i f ( PRINT ) {
o u t . open ( ” f t t p . t x t ” ) ;

1515 o u t << s e t i o s f l a g s ( i o s : : showpo in t ) ;
f o r ( i = 0 ; i <2 ∗ numCentStack ; i++ ) {

1517 f o r ( j = 0 ; j <2 ∗ numCentStack ; j++ ) {
o u t << s e t p r e c i s i o n ( 20 ) << d a r r a y ( f t t , i , j ) <<” ” ;

1519 }
o u t << e n d l ;

1521 }
o u t . c l o s e ( ) ;

1523 }

1525 }

1527 v o i d ASYM ( ) {
i f ( Pr in tName ) cout << ”ASYM” << e n d l ;

1529 Number nm = i n t ( ( numLowerNodes − 1 ) /2 ) ;
Number nnn = i n t e r L e n g t h /nm ∗ ex ;

1531
f o r ( i = 0 ; i <numCentStack ; i++ ) {

1533 i f ( i < t u r n P o i n t [ 0 ] ) {
t r a c [ i ] [ 0 ] = 0 ;

1535 t r a c [ i ] [ 1 ] = 0 ;
t r a c [ i ] [ 2 ] = 1 ;

1537 }
e l s e i f ( i < t u r n P o i n t [ 1 ] ) {

1539 t r a c [ i ] [ 0 ] = 0 ;
t r a c [ i ] [ 1 ] = 0 ;

1541 t r a c [ i ] [ 2 ] = 1 ;
}
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1543 e l s e i f ( i < t u r n P o i n t [ 2 ] − 1 ) {
t r a c [ i ] [ 0 ] = nnn ∗ ( t u r n P o i n t [ 1 ] + nm − i + 0 . 5 ) ;

1545 t r a c [ i ] [ 1 ] = 0 ;
t r a c [ i ] [ 2 ] = nnn ;

1547 }
e l s e i f ( i < t u r n P o i n t [ 3 ] ) {

1549 t r a c [ i ] [ 0 ] = 0 ;
t r a c [ i ] [ 1 ] = 0 ;

1551 t r a c [ i ] [ 2 ] = 1 ;
}

1553 e l s e {
t r a c [ i ] [ 0 ] = 0 ;

1555 t r a c [ i ] [ 1 ] = 0 ;
t r a c [ i ] [ 2 ] = 1 ;

1557 }

1559 TN [ i ] = − 1 ∗ ( d o t P r o ( t r a c [ i ] , cen tNormal [ i ] ) ) ;
}

1561 i f ( 1 ) {
p r i n t F i l e ( t r a c , numNodeStack , ” t r a c . t x t ” ) ;

1563 p r i n t F i l e ( TN, numNodeStack , ”TN . t x t ” ) ;
}

1565 }

1567 v o i d AAASYM ( ) {
i f ( Pr in tName ) cout << ”AASYM” << e n d l ;

1569 nnn = i n t e r L e n g t h / i n t ( ( numLowerNodes − 1 ) /2 ) ∗ ex ;

1571 f o r ( i = 0 ; i <numCentStack ; i++ ) {
i f ( i < t u r n P o i n t [ 0 ] − 1 ) {

1573 t r a c [ i ] [ 0 ] = 0 ; / / ∗ R ;
t r a c [ i ] [ 1 ] = 0 ; / / ∗ 1 ∗ R ;

1575 t r a c [ i ] [ 2 ] = 1 ; / / ∗ R ;
}

1577 e l s e i f ( i < t u r n P o i n t [ 1 ] ) {
t r a c [ i ] [ 0 ] = ex ∗ 0 . 5 ∗ ( c e n t S t a c k [ i ] [ 0 ] / i n t e r L e n g t h ) ;

1579 t r a c [ i ] [ 1 ] = 0 ;
t r a c [ i ] [ 2 ] = nnn ;

1581 }
e l s e i f ( i < t u r n P o i n t [ 2 ] − 1 ) {

1583 t r a c [ i ] [ 0 ] = ex ∗ 0 . 5 ∗ ( c e n t S t a c k [ i ] [ 0 ] / i n t e r L e n g t h ) ;
t r a c [ i ] [ 1 ] = 0 ;

1585 t r a c [ i ] [ 2 ] = nnn ;
}

1587 e l s e i f ( i < t u r n P o i n t [ 3 ] ) {
t r a c [ i ] [ 0 ] = ex ∗ 0 . 5 ∗ ( c e n t S t a c k [ i ] [ 0 ] / i n t e r L e n g t h ) ;

1589 t r a c [ i ] [ 1 ] = 0 ;
t r a c [ i ] [ 2 ] = nnn ;

1591 }
e l s e {

1593 t r a c [ i ] [ 0 ] = 0 ;
t r a c [ i ] [ 1 ] = 0 ;

1595 t r a c [ i ] [ 2 ] = 1 ;
}

1597
TN [ i ] = − 1 ∗ ( d o t P r o ( t r a c [ i ] , cen tNormal [ i ] ) ) ;

1599 }

1601 i f ( PRINT ) {
p r i n t F i l e ( t r a c , numNodeStack , ” t r a c n . t x t ” ) ;

1603 p r i n t F i l e ( TN, numNodeStack , ”TNn . t x t ” ) ;
}

1605
}

1607
v o i d AASYM ( ) {

1609 i f ( Pr in tName ) cout << ”AASYM” << e n d l ;
nnn = i n t e r L e n g t h / i n t ( ( numLowerNodes − 1 ) /2 ) ∗ ex ;

1611
f o r ( i = 0 ; i <numCentStack ; i++ ) {

1613 i f ( i < t u r n P o i n t [ 0 ] | | i == numCentStack − 1 ) {
t r a c [ i ] [ 0 ] = 0 ;

1615 t r a c [ i ] [ 1 ] = 0 ;
t r a c [ i ] [ 2 ] = 1 ;

1617 }
e l s e {

1619 t r a c [ i ] [ 0 ] = ex ∗ 0 . 5 ∗ ( c e n t S t a c k [ i ] [ 0 ] / i n t e r L e n g t h ) ;
t r a c [ i ] [ 1 ] = 0 ;

1621 t r a c [ i ] [ 2 ] = nnn ;
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}
1623

TN [ i ] = − 1 ∗ ( d o t P r o ( t r a c [ i ] , cen tNormal [ i ] ) ) ;
1625 }

1627 i f ( PRINT ) {
p r i n t F i l e ( t r a c , numNodeStack , ” t r a c n . t x t ” ) ;

1629 p r i n t F i l e ( TN, numNodeStack , ”TNn . t x t ” ) ;
}

1631
}

1633
v o i d boundary ( ) {

1635 i f ( Pr in tName ) cout << ” boundary ” << e n d l ;
f o r ( i = 0 ; i <numCentStack ; i++ ) {

1637 d a r r a y ( fSigma , i ∗ 2 , 0 ) = t r a c [ i ] [ 0 ] ;
d a r r a y ( fSigma , i ∗ 2 + 1 , 0 ) = t r a c [ i ] [ 1 ] ;

1639 }
n = 2 ∗ numCentStack ;

1641 i f ( PRINT ) p r i n t F i l e ( fSigma , n , ” f s i g c . t x t ” ) ;
}

1643
v o i d f s i g ( ) {

1645
i f ( Pr in tName ) cout << ” f s i g ” << e n d l ;

1647 n = 2 ∗ numCentStack ;
n r h s = 1 ;

1649
/ ∗ F a c t o r i z e f t t ∗ /

1651 d g e t r f ( n , n , f t t , lda , i p i v , &i n f o ) ;

1653 / ∗ Solve f t t ∗ /
d g e t r s ( ’N’ , n , n rhs , f t t , lda , i p i v , fSigma , ldb , &i n f o ) ;

1655
i f ( PRINT ) p r i n t F i l e ( fSigma , n , ” f s i g p . t x t ” ) ;

1657 }

1659 v o i d d e l S g r a n d ( ) {
i f ( Pr in tName ) cout << ” d e l S g r a n d ” << e n d l ;

1661
t e m p I n t [ 1 ] = in tegSegmentNumSt t − 1 ;

1663 f o r ( i = 0 ; i <numCentStack ; i++ )
f o r ( j = 0 ; j <numCentStack ; j++ ) {

1665 i f ( i == j ) {
d a r r a y ( uuD , i ∗ 3 , j ∗ 2 ) = 0 ;

1667 d a r r a y ( uuD , i ∗ 3 , j ∗ 2 + 1 ) = 0 ;
d a r r a y ( uuD , i ∗ 3 + 1 , j ∗ 2 ) = 0 ;

1669 d a r r a y ( uuD , i ∗ 3 + 1 , j ∗ 2 + 1 ) = 0 ;
d a r r a y ( uuD , i ∗ 3 + 2 , j ∗ 2 ) = 0 ;

1671 d a r r a y ( uuD , i ∗ 3 + 2 , j ∗ 2 + 1 ) = 0 ;
}

1673 e l s e {
f o r ( m = 0 ; m< in tegSegmentNumSt t ; m++ ) {

1675 tempVect [m] [ 0 ] = ( M a t d i s t ( in tMat , i , j , 0 ) + m ∗ de l R [ j ] [ 0 ] / t e m p I n t [ 1 ] ) ;
tempVect [m] [ 1 ] = ( M a t d i s t ( in tMat , i , j , 1 ) + m ∗ de l R [ j ] [ 1 ] / t e m p I n t [ 1 ] ) ;

1677 }

1679 SSc ( tempVect [ 0 ] ) ;

1681 temp2x2 [ 0 ] [ 0 ] = s s [ 0 ] [ 0 ] ;
temp2x2 [ 0 ] [ 1 ] = s s [ 0 ] [ 1 ] ;

1683 temp2x2 [ 1 ] [ 0 ] = s s [ 1 ] [ 0 ] ;
temp2x2 [ 1 ] [ 1 ] = s s [ 1 ] [ 1 ] ;

1685 temp2x2 [ 2 ] [ 0 ] = s s [ 2 ] [ 0 ] ;
temp2x2 [ 2 ] [ 1 ] = s s [ 2 ] [ 1 ] ;

1687
SSc ( tempVect [ t e m p I n t [ 1 ] ] ) ;

1689
temp2x2 [ 0 ] [ 0 ] += s s [ 0 ] [ 0 ] ;

1691 temp2x2 [ 0 ] [ 1 ] += s s [ 0 ] [ 1 ] ;
temp2x2 [ 1 ] [ 0 ] += s s [ 1 ] [ 0 ] ;

1693 temp2x2 [ 1 ] [ 1 ] += s s [ 1 ] [ 1 ] ;
temp2x2 [ 2 ] [ 0 ] += s s [ 2 ] [ 0 ] ;

1695 temp2x2 [ 2 ] [ 1 ] += s s [ 2 ] [ 1 ] ;

1697
uus s [ 0 ] [ 0 ] = temp2x2 [ 0 ] [ 0 ] ∗ 0 . 5 ;

1699 uu ss [ 0 ] [ 1 ] = temp2x2 [ 0 ] [ 1 ] ∗ 0 . 5 ;
uus s [ 1 ] [ 0 ] = temp2x2 [ 1 ] [ 0 ] ∗ 0 . 5 ;
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1701 uu ss [ 1 ] [ 1 ] = temp2x2 [ 1 ] [ 1 ] ∗ 0 . 5 ;
uus s [ 2 ] [ 0 ] = temp2x2 [ 2 ] [ 0 ] ∗ 0 . 5 ;

1703 uu ss [ 2 ] [ 1 ] = temp2x2 [ 2 ] [ 1 ] ∗ 0 . 5 ;

1705 f o r ( k = 1 ; k< t e m p I n t [ 1 ] ; k++ ) {
SSc ( tempVect [ k ] ) ;

1707 uuss [ 0 ] [ 0 ] += s s [ 0 ] [ 0 ] ;
uus s [ 0 ] [ 1 ] += s s [ 0 ] [ 1 ] ;

1709 uuss [ 1 ] [ 0 ] += s s [ 1 ] [ 0 ] ;
uus s [ 1 ] [ 1 ] += s s [ 1 ] [ 1 ] ;

1711 uuss [ 2 ] [ 0 ] += s s [ 2 ] [ 0 ] ;
uus s [ 2 ] [ 1 ] += s s [ 2 ] [ 1 ] ;

1713 }

1715 tempDouble [ 0 ] = segLeng th [ j ] / t e m p I n t [ 1 ] ;

1717 d a r r a y ( uuD , i ∗ 3 , j ∗ 2 ) = uuss [ 0 ] [ 0 ] ∗ tempDouble [ 0 ] ;
d a r r a y ( uuD , i ∗ 3 , j ∗ 2 + 1 ) = uuss [ 0 ] [ 1 ] ∗ tempDouble [ 0 ] ;

1719 d a r r a y ( uuD , i ∗ 3 + 1 , j ∗ 2 ) = uuss [ 1 ] [ 0 ] ∗ tempDouble [ 0 ] ;
d a r r a y ( uuD , i ∗ 3 + 1 , j ∗ 2 + 1 ) = uuss [ 1 ] [ 1 ] ∗ tempDouble [ 0 ] ;

1721 d a r r a y ( uuD , i ∗ 3 + 2 , j ∗ 2 ) = uuss [ 2 ] [ 0 ] ∗ tempDouble [ 0 ] ;
d a r r a y ( uuD , i ∗ 3 + 2 , j ∗ 2 + 1 ) = uuss [ 2 ] [ 1 ] ∗ tempDouble [ 0 ] ;

1723
}

1725 }

1727 f o r ( i = 0 ; i < 3 ∗ numCentStack ; i++ ) {
UB [ i ] = 0 ;

1729 f o r ( k = 0 ; k < 2 ∗ numCentStack ; k++ )
UB [ i ] += d a r r a y ( uuD , i , k ) ∗ fSigma [ k ] ;

1731 }

1733 i f ( PRINT ) {
o u t . open ( ” d e l q . t x t ” ) ;

1735 o u t << s e t i o s f l a g s ( i o s : : showpo in t ) ;
f o r ( i = 0 ; i <3 ∗ numCentStack ; i++ ) {

1737 f o r ( j = 0 ; j <2 ∗ numCentStack ; j++ ) o u t << s e t p r e c i s i o n ( 20 ) << d a r r a y ( uuD , i , j ) ←↩
<<” ” ;

o u t << e n d l ;
1739 }

o u t . c l o s e ( ) ;
1741

p r i n t F i l e ( UB, 3 ∗ numCentStack , ”UB. t x t ” ) ;
1743 }

}
1745

v o i d S i g m a S t r e s s ( ) {
1747

i f ( Pr in tName ) cout << ” S i g m a S t r e s s ” << e n d l ;
1749 f o r ( i = 0 ; i <numCentStack ; i++ ) {

a s i g [ i ] [ 0 ] = UB [ i ∗ 3] ;
1751 a s i g [ i ] [ 1 ] = UB [3 ∗ i + 1] ;

asigXY [ i ] [ 0 ] = UB [3 ∗ i + 2] ;
1753 a s i g [ i ] [ 2 ] = nu ∗ ( a s i g [ i ] [ 0 ] + a s i g [ i ] [ 1 ] ) ;

T r s i g [ i ] = ( 1 + nu ) ∗ ( a s i g [ i ] [ 0 ] + a s i g [ i ] [ 1 ] ) ;
1755 v a r [ i ] [ 0 ] = de l R [ i ] [ 0 ] ∗ de l R [ i ] [ 0 ] ;

v a r [ i ] [ 1 ] = de l R [ i ] [ 1 ] ∗ de l R [ i ] [ 1 ] ;
1757 v a r [ i ] [ 2 ] = de l R [ i ] [ 1 ] ∗ de l R [ i ] [ 0 ] ;

hoop [ i ] = ( a s i g [ i ] [ 0 ] ∗ v a r [ i ] [ 0 ] + 2 ∗ asigXY [ i ] [ 0 ] ∗ v a r [ i ] [ 2 ] + a s i g [←↩
i ] [ 1 ] ∗ v a r [ i ] [ 1 ] ) / magni tude ( v a r [ i ] ) ;

1759 }

1761 f o r ( i = 0 ; i <numNodeStack ; i++ ) {
i f ( i < t u r n P o i n t [ 0 ] )

1763 s i g h o o p [ i ] = ( hoop [ i − 1] ∗ segLeng th [ i ] + hoop [ i ] ∗ segLeng th [ i − 1] ) / ( ←↩
segLeng th [ i ] + segLeng th [ i − 1] ) ;

1765 i f ( i == 0 ) s i g h o o p [ i ] = ( hoop [ t u r n P o i n t [ 0 ] − 2] ∗ segLeng th [ i ] + hoop [ i ] ∗ ←↩
segLeng th [ t u r n P o i n t [ 0 ] − 2] ) / ( s egLeng th [ i ] + segLeng th [ t u r n P o i n t [ 0 ] − 2] ) ←↩
;

i f ( i > = t u r n P o i n t [ 0 ] ) s i g h o o p [ i ] = 0 ;
1767

}
1769 s i g h o o p [ t u r n P o i n t [ 0 ] − 1] = s i g h o o p [ 0 ] ;

1771 f o r ( i = 0 ; i <numNodeStack ; i++ ) {
i f ( i < t u r n P o i n t [ 3 ] | | i > t u r n P o i n t [ 3 ] )

1773 s i g T r s i g [ i ] = ( T r s i g [ i − 1] ∗ segLeng th [ i ] + T r s i g [ i ] ∗ segLeng th [ i − 1] ) / ( ←↩
segLeng th [ i ] + segLeng th [ i − 1] ) ;
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i f ( i == 0 )
1775 s i g T r s i g [ i ] = ( T r s i g [ t u r n P o i n t [ 0 ] − 2] ∗ segLeng th [ i ] + T r s i g [ i ] ∗ segLeng th [←↩

t u r n P o i n t [ 0 ] − 2] ) / ( s egLeng th [ i ] + segLeng th [ t u r n P o i n t [ 0 ] − 2] ) ;
i f ( i == t u r n P o i n t [ 3 ] )

1777 s i g T r s i g [ i ] = ( T r s i g [ numNodeStack − 1] ∗ segLeng th [ i ] + T r s i g [ i ] ∗ segLeng th [←↩
numNodeStack − 1] ) / ( s egLeng th [ i ] + segLeng th [ numNodeStack − 1] ) ;

}
1779 i f ( PRINT ) {

p r i n t F i l e ( s ighoop , numNodeStack , ” s i g h o o p . t x t ” ) ;
1781 p r i n t F i l e ( s i g T r s i g , numNodeStack , ” s i g T r s i g . t x t ” ) ;

}
1783

}
1785

1787
v o i d s t r e s s ( ) {

1789 i f ( Pr in tName ) cout << ”STRESS” << e n d l ;
f o r m i n g S t r e s s I B E M m a t r i x ( ) ;

1791 AASYM ( ) ;
boundary ( ) ;

1793 f s i g ( ) ;
d e l S g r a n d ( ) ;

1795 S i g m a S t r e s s ( ) ;
}

1797
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1799 / ∗
∗

1801 ∗ /
/ ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1803
v o i d ca l c E k a p ( ) {

1805 i f ( Pr in tName ) cout << ” c a l c E k a p ” << e n d l ;

1807 f o r ( i = 0 ; i <numNodeStack ; i++ ) {
i f ( B s u r f ) kappa [ i ] = ( kappa [ i ] ∗ gibbsGammaS [ i ] ) ;

1809 i f ( GammaSubstrate == 0 && GammaFilm == 0 )
ekap [ i ] = kappa [ i ] ∗ s c a l e F a c t o r ∗ 1 ;

1811 e l s e ekap [ i ] = ( kappa [ i ] ∗ WU [ i ] + WUU [ i ] ) ∗ s c a l e F a c t o r ∗ 1 ;

1813 i f ( c h i ! = 0 ) ekap [ i ] += c h i / s c a l e F a c t o r ∗ f i e l d T N [ i ] ; / /
i f ( Xi ! = 0 | | Sigma ! = 0 ) ekap [ i ] += Xi ∗ s i g h o o p [ i ] − Sigma ∗ s i g h o o p [ i ] ∗←↩

s i g h o o p [ i ] ;
1815 i f ( i > = t u r n P o i n t [ 0 ] ) ekap [ i ] = 0 ;

}
1817

i f ( PRINT ) {
1819 p r i n t F i l e ( ekap , numNodeStack , ” ekap . t x t ” ) ;

p r i n t F i l e ( kappa , numNodeStack , ” kappa . t x t ” ) ;
1821 p r i n t F i l e ( f i e ldTN , numNodeStack , ” f i e l d T N . t x t ” ) ;

p r i n t F i l e ( s ighoop , numNodeStack , ” s i g h o o p . t x t ” ) ;
1823 }

1825 }

1827 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
/ ∗

1829 ∗ V e l o c i t y c a l c u l a t i o n s a t nodes
∗ /

1831 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
v o i d c a l c V e l o c i t i e s ( ) {

1833
i f ( Pr in tName ) cout << ” c a l c V e l o c i t i e s ” << e n d l ;

1835 ekap [ t u r n P o i n t [ 0 ] − 1] = ekap [ 0 ] ;

1837 nodeVel [ 0 ] = ( difMag [ 0 ] ∗ ( ekap [ 1 ] − ekap [ 0 ] ) / segLeng th [ 0 ] ) − ( difMag [←↩
t u r n P o i n t [ 0 ] − 2] ∗ ( ekap [ 0 ] − ekap [ t u r n P o i n t [ 0 ] − 2] ) / segLeng th [ t u r n P o i n t ←↩
[ 0 ] − 2] ) ;

nodeVel [ 0 ] ∗ = 2 / ( s egLeng th [ 0 ] + segLeng th [ t u r n P o i n t [ 0 ] − 2] ) ;
1839 nodeVel [ 0 ] −= b u l k M o b i l i t y ∗ ( bu lkGibbsEne rgy + kappa [ 0 ] ∗ gibbsGammaS [ 0 ] ∗ ←↩

s u r f E n e r g y [ 0 ] ) / s q r ( s c a l e F a c t o r ) ;

1841 f o r ( j = 1 ; j < t u r n P o i n t [ 0 ] − 1 ; j++ ) {
nodeVel [ j ] = ( difMag [ j ] ∗ ( ekap [ j + 1] − ekap [ j ] ) / segLeng th [ j ] ) − ( ←↩

difMag [ j − 1] ∗ ( ekap [ j ] − ekap [ j − 1] ) / segLeng th [ j − 1] ) ;
1843 nodeVel [ j ] ∗ = 2 / ( s egLeng th [ j ] + segLeng th [ j − 1] ) ;

nodeVel [ j ] −= b u l k M o b i l i t y ∗ ( bu lkGibbsEnergy + kappa [ j ] ∗ gibbsGammaS [ j ] ∗ ←↩
s u r f E n e r g y [ j ] ) / s q r ( s c a l e F a c t o r ) ;
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1845 }

1847 nodeVel [ t u r n P o i n t [ 0 ] − 1] = nodeVel [ 0 ] ;

1849 vMax = 1 ;
vMin = 1000 ;

1851 tempDouble [ 0 ] = 0 ;

1853 f o r ( i = 0 ; i < t u r n P o i n t [ 0 ] ; i++ ) {
i f ( f a b s ( nodeVel [ i ] ) > vMax )

1855 vMax = f a b s ( nodeVel [ i ] ) ;
i f ( f a b s ( nodeVel [ i ] ) < vMin )

1857 vMin = f a b s ( nodeVel [ i ] ) ;
tempDouble [ 0 ] += nodeVel [ i ] ;

1859 }
tempDouble [ 0 ] / = t u r n P o i n t [ 0 ] ;

1861

1863 i f ( PRINT ) p r i n t F i l e ( nodeVel , numNodeStack , ” nodeVel . t x t ” ) ;
}

1865

1867 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
/ ∗

1869 ∗ New p o s i t i o n c a l c u l a t i o n s a t nodes
∗ /

1871 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1873 v o i d moveToNewPosi t ions ( ) {

1875

1877 i f ( Pr in tName ) cout << ” moveToNewPosi t ions ” << e n d l ;
f o r ( j = 0 ; j < t u r n P o i n t [ 0 ] ; j++ ) {

1879 i f ( j == 0 | | j == t u r n P o i n t [ 0 ] − 1 ) {
s t a c k V e c t o r [ j ] [ 0 ] = s t a c k V e c t o r [ j ] [ 0 ] + delTime ∗ nodeVel [ j ] ∗ l oca lL ineNorm [ j ] [ 0 ] ;

1881 s t a c k V e c t o r [ j ] [ 1 ] = s t a c k V e c t o r [ j ] [ 1 ] + delTime ∗ nodeVel [ j ] ∗ l oca lL ineNorm [ j ] [ 1 ] ;
} e l s e {

1883 s t a c k V e c t o r [ j ] [ 0 ] = s t a c k V e c t o r [ j ] [ 0 ] + delTime ∗ nodeVel [ j ] ∗ l oca lL ineNorm [ j ] [ 0 ] ;
s t a c k V e c t o r [ j ] [ 1 ] = s t a c k V e c t o r [ j ] [ 1 ] + delTime ∗ nodeVel [ j ] ∗ l oca lL ineNorm [ j ] [ 1 ] ;

1885 }

1887 i f ( s t a c k V e c t o r [ j ] [ 1 ] < − i n t e r W i d t h ) {
t S t e p = maxLoopNum ;

1889 cout << ” s u b s t r a t e ” ;
outName = dirName + ” s u b s t r a t e ” ; / /

1891 o u t . open ( outName . c s t r ( ) , i o s : : t r u n c ) ;
o u t . c l o s e ( ) ;

1893 }
}

1895
i f ( s t a c k V e c t o r [ t u r n P o i n t [ 0 ] ] [ 1 ] > − i n t e r W i d t h ) s t a c k V e c t o r [ t u r n P o i n t [ 0 ] ] [ 1 ] = ←↩

s t a c k V e c t o r [ 0 ] [ 1 ] ;
1897 i f ( s t a c k V e c t o r [ t u r n P o i n t [ 3 ] − 1 ] [ 1 ] > − i n t e r W i d t h ) s t a c k V e c t o r [ t u r n P o i n t [ 3 ] − ←↩

1 ] [ 1 ] = s t a c k V e c t o r [ t u r n P o i n t [ 0 ] − 1 ] [ 1 ] ;

1899 i f ( PRINT ) p r i n t F i l e ( s t a c k V e c t o r , numNodeStack , ” s tackVec to rNew . t x t ” ) ;
de lTime = epsTime ∗ delMean / vMax ;

1901 normTime += delTime ;
}

1903

1905 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
/ ∗

1907 ∗ Record ing new s t a t e
∗ /

1909 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

1911 v o i d r e c o r d ( ) {

1913 i f ( Pr in tName ) cout << ” r e c o r d ” << e n d l ;

1915 i f ( t S t e p == mpow | | t S t e p == maxLoopNum ) {

1917 t ime ( &rawt ime ) ;
i n t 2 s t r ( las tOutNum ) ;

1919
textName = dirName + textName ; / /

1921 o u t << s e t i o s f l a g s ( i o s : : showpo in t ) ;
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o u t . open ( textName . c s t r ( ) , i o s : : t r u n c ) ;
1923 outName = c t i m e ( &rawt ime ) ;

o u t << s e t p r e c i s i o n ( 20 )
1925 << s t a c k V e c t o r [ 0 ] [ 0 ] <<” ”<< s t a c k V e c t o r [ 0 ] [ 1 ] <<” ”

<< segLeng th [ 0 ] <<” ”
1927 << t he t aAtNode [ 0 ] <<” ”<< kappa [ 0 ] <<” ”

<< gibbsGammaS [ 0 ] <<” ”<< s u r f E n e r g y [ 0 ] <<” ”
1929 << difMag [ 0 ] <<” ”<< d i f T h e t a [ 0 ] <<” ”

<< f i e l d I [ 0 ] <<” ”<< f i e l d I I [ 0 ] <<” ”
1931 << f i e l d T N [ 0 ] <<” ”<< mu [ 0 ] <<” ”

<< fSigma [ 0 ] <<” ”<< fSigma [ 1 ] <<” ”
1933 << a s i g [ 0 ] [ 0 ] <<” ”<< a s i g [ 0 ] [ 1 ] <<” ”

<< asigXY [ 0 ] [ 0 ] <<” ”<< hoop [ 0 ] <<” ”
1935 << s i g T r s i g [ 0 ] <<” ”<< s i g h o o p [ 0 ] <<” ”

<< ekap [ 0 ] <<” ”<< nodeVel [ 0 ] <<” ”
1937 << numUpperNodes <<” ”

<< numCathodeNodes <<” ”<< numLowerNodes<<” ”
1939 << numAnodeNodes <<” ”<< numVoidNodes <<” ”

<< t S t e p <<” ”<< las tOutNum <<” ”
1941 << normTime <<” ”<< numCentStack <<” ”

<< del M <<” ”<< vo idBoo l <<” ”
1943 << v o i d C e n t e r [ 0 ] <<” ”<< v o i d C e n t e r [ 1 ] <<” ”

<< e n d l ;
1945

f o r ( i = 1 ; i <numNodeStack ; i++ ) {
1947 o u t << s e t p r e c i s i o n ( 20 )

<< s t a c k V e c t o r [ i ] [ 0 ] <<” ”<< s t a c k V e c t o r [ i ] [ 1 ] <<” ”
1949 << segLeng th [ i ] <<” ”

<< t h e t aAtNode [ i ] <<” ”<< kappa [ i ] <<” ”
1951 << gibbsGammaS [ i ] <<” ”<< s u r f E n e r g y [ i ] <<” ”

<< difMag [ i ] <<” ”<< d i f T h e t a [ i ] <<” ”
1953 << f i e l d I [ i ] <<” ”<< f i e l d I I [ i ] <<” ”

<< f i e l d T N [ i ] <<” ”<< mu [ i ] <<” ”
1955 << fSigma [2 ∗ i ] <<” ”<< fSigma [2 ∗ i + 1] <<” ”

<< a s i g [ i ] [ 0 ] <<” ”<< a s i g [ i ] [ 1 ] <<” ”
1957 << asigXY [ i ] [ 0 ] <<” ”<< hoop [ i ] <<” ”

<< s i g T r s i g [ i ] <<” ”<< s i g h o o p [ i ] <<” ”
1959 << ekap [ i ] <<” ”<< nodeVel [ i ] <<” ” << e n d l ;

}
1961 o u t << e n d l ;

1963 o u t . c l o s e ( ) ;

1965 lastOutNum++ ;

1967 mpow = las tOutNum + ( i n t ) pow ( 1 . 2 , ( double ) las tOutNum ) ;
}

1969
i f ( numContData == 20000 | | t S t e p == maxLoopNum ) {

1971
t ime ( &rawt ime ) ;

1973
i n t 2 s t r ( las tOutNum ) ;

1975
textName = dirName + ” c o n t . t x t ” ; / /

1977 o u t << s e t i o s f l a g s ( i o s : : showpo in t ) ;
o u t . open ( textName . c s t r ( ) , i o s : : t r u n c ) ;

1979 outName = c t i m e ( &rawt ime ) ;

1981 o u t << s e t p r e c i s i o n ( 20 ) << s t a c k V e c t o r [ 0 ] [ 0 ] <<” ”<< s t a c k V e c t o r [ 0 ] [ 1 ] <<” ”
<< numUpperNodes <<” ”<< numCathodeNodes <<” ” << numLowerNodes <<” ”

1983 << numAnodeNodes <<” ”<< numVoidNodes <<” ”
<< t S t e p <<” ”<< las tOutNum <<” ”<< normTime <<” ”

1985 << numCentStack <<” ”<< minSegLength i <<” ”<< maxSegLengthi << e n d l ;

1987 f o r ( i = 1 ; i <numNodeStack ; i++ ) {
o u t << s e t p r e c i s i o n ( 20 )

1989 << s t a c k V e c t o r [ i ] [ 0 ] <<” ”<< s t a c k V e c t o r [ i ] [ 1 ] << e n d l ;
}

1991 o u t << e n d l ;
o u t . c l o s e ( ) ;

1993 numContData = 0 ;
}

1995
numContData++ ;

1997
}

1999
v o i d f indMinSeg ( ) {
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2001 a p t r = segLeng th ;
maxSegLength = ∗ a p t r ;

2003 f o r ( i = 0 ; i <numUpperNodes − 1 ; i++ ) maxSegLength = maxP ( maxSegLength , a p t r ) ;
a p t r = segLeng th ;

2005 minSegLength = ∗ a p t r ;
f o r ( i = 0 ; i <numUpperNodes − 1 ; i++ ) minSegLength = minP ( minSegLength , a p t r ) ;

2007 delMean = minSegLength ;
}

2009
v o i d s e a r c h V o i d i n g ( ) {

2011
Node type i n t e r N o d e s [2 ∗ t u r n P o i n t [ 3 ] + 1] ;

2013
Node type ∗ f i r s t K = &i n t e r N o d e s [ 0 ] ;

2015 Node type ∗ secK = &i n t e r N o d e s [ t u r n P o i n t [ 0 ] − 1] ;
Node type ∗ t h i r d K = &i n t e r N o d e s [ t u r n P o i n t [ 1 ] ] ;

2017 Node type ∗ fourK = &i n t e r N o d e s [ t u r n P o i n t [ 2 ] − 1] ;

2019 f o r ( i = 0 ; i < t u r n P o i n t [ 3 ] ; i++ ) {

2021 i n t e r N o d e s [ i ] . P o i n t [ 0 ] = s t a c k V e c t o r [ i ] [ 0 ] ;
i n t e r N o d e s [ i ] . P o i n t [ 1 ] = s t a c k V e c t o r [ i ] [ 1 ] ;

2023 i n t e r N o d e s [ i ] . s egLeng th = segLeng th [ i ] ;

2025 i f ( i == 0 | | i == t u r n P o i n t [ 0 ] − 1 | | i == t u r n P o i n t [ 1 ] | | i == t u r n P o i n t [ 2 ] − 1 ←↩
)

{
2027 i n t e r N o d e s [ i ] . i m m o r t a l = 1 ;

}
2029 e l s e i n t e r N o d e s [ i ] . i m m o r t a l = 0 ;

2031 i f ( i == 0 ) {
i n t e r N o d e s [ i ] . back = &i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 1] ;

2033 i n t e r N o d e s [ i ] . f o r w a r d = &i n t e r N o d e s [ i + 1] ;
}

2035 e l s e i f ( i ! = t u r n P o i n t [ 3 ] − 1 ) {
i n t e r N o d e s [ i ] . back = &i n t e r N o d e s [ i − 1] ;

2037 i n t e r N o d e s [ i ] . f o r w a r d = &i n t e r N o d e s [ i + 1] ;
}

2039 e l s e {
i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 1] . back = &i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 2] ;

2041 i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 1] . f o r w a r d = &i n t e r N o d e s [ 0 ] ;
}

2043 }

2045 Node type ∗ secKl = ( ∗ secK ) . n o d e S h i f t ( − 8 ) ;

2047
Node type ∗ p t r ;

2049 Node type ∗ pp ;
Node type ∗ p o i n t 1 ;

2051 Node type ∗ p o i n t 2 ;
Node type ∗ p o i n t 3 ;

2053 Node type ∗ p o i n t 4 ;
Node type ∗ head ;

2055 p t r = f i r s t K ;

2057 tempDouble [ 1 ] = 1 0 . 0 ;

2059 do {
pp = ( ∗ p t r ) . n o d e S h i f t ( 7 ) ;

2061 do {
tempDouble [ 0 ] = ( ∗ p t r ) . c a l c D i s t a n c e ( pp ) ;

2063 i f ( tempDouble [ 0 ] <minSegLength ∗ 2 && tempDouble [ 0 ] < tempDouble [ 1 ] )
{

2065 tempDouble [ 1 ] = tempDouble [ 0 ] ;
p o i n t 1 = p t r ;

2067 p o i n t 2 = pp ;
p o i n t 3 = ( ∗ p t r ) . back ;

2069 p o i n t 4 = ( ∗ pp ) . f o r w a r d ;
vo idBoo l = 1 ;

2071 voidFound = 1 ;
}

2073 pp = ( ∗ pp ) . f o r w a r d ;
} w h i l e ( pp ! = secK ) ;

2075 p t r = ( ∗ p t r ) . f o r w a r d ;
} w h i l e ( p t r ! = secKl ) ;

2077
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2079
i f ( vo idBoo l ) {

2081
( ∗ p o i n t 3 ) . f o r w a r d = p o i n t 4 ;

2083 ( ∗ p o i n t 4 ) . back = p o i n t 3 ;

2085 head = p o i n t 1 ;
( ∗ p o i n t 1 ) . back = p o i n t 2 ;

2087 ( ∗ p o i n t 2 ) . f o r w a r d = p o i n t 1 ;

2089
p t r = p o i n t 1 ;

2091 do {
pp = ( ∗ p t r ) . f o r w a r d ;

2093 p t r = pp ;
} w h i l e ( p t r ! = p o i n t 1 ) ;

2095

2097 }

2099 i = 0 ;
p t r = f i r s t K ;

2101 do {
s t a c k V e c t o r [ i ] [ 0 ] = ( ∗ p t r ) . P o i n t [ 0 ] ;

2103 s t a c k V e c t o r [ i ] [ 1 ] = ( ∗ p t r ) . P o i n t [ 1 ] ;
i f ( p t r == secK ) t u r n P o i n t [ 0 ] = i + 1 ;

2105 e l s e i f ( p t r == t h i r d K ) t u r n P o i n t [ 1 ] = i ;
e l s e i f ( p t r == fourK ) t u r n P o i n t [ 2 ] = i + 1 ;

2107 i++ ;
p t r = ( ∗ p t r ) . f o r w a r d ;

2109 } w h i l e ( p t r ! = f i r s t K ) ;

2111 t u r n P o i n t [ 3 ] = i ;

2113
i f ( vo idBoo l ) {

2115
p t r = head ;

2117 do {
s t a c k V e c t o r [ i ] [ 0 ] = ( ∗ p t r ) . P o i n t [ 0 ] ;

2119 s t a c k V e c t o r [ i ] [ 1 ] = ( ∗ p t r ) . P o i n t [ 1 ] ;
i++ ;

2121 p t r = ( ∗ p t r ) . f o r w a r d ;
} w h i l e ( p t r ! = head ) ;

2123 }
numNodeStack = i ;

2125
numUpperNodes = t u r n P o i n t [ 0 ] ;

2127 numCathodeNodes = t u r n P o i n t [ 1 ] − t u r n P o i n t [ 0 ] ;
numLowerNodes = t u r n P o i n t [ 2 ] − t u r n P o i n t [ 1 ] ;

2129 numAnodeNodes = t u r n P o i n t [ 3 ] − t u r n P o i n t [ 2 ] ;
numVoidNodes = numNodeStack − t u r n P o i n t [ 3 ] ;

2131
numVoidCent = numVoidNodes ;

2133 numCentStack = numNodeStack ;
numSur fCen tS tack = t u r n P o i n t [ 3 ] ;

2135 numVoidCentStack = numVoidNodes ;

2137 i f ( vo idBoo l ) {
c a l c V o i d C e n t e r ( ) ;

2139 i n i t V o i d A r e a = vo idArea ( ) ;
i n sVo idA rea = i n i t V o i d A r e a ;

2141 }

2143 }

2145 v o i d checkArea ( ) {
i f ( insVoidArea <0.01 ) {

2147 t S t e p = maxLoopNum ;
outName = dirName + ” s t a t e . t x t ” ; / /

2149 o u t . open ( outName . c s t r ( ) , i o s : : t r u n c ) ;
o u t << ”Too much v o id a r e a d e c r e a s e ” ;

2151 c o u t << ”Too much vo id a r e a d e c r e a s e ” ;
o u t . c l o s e ( ) ;

2153 }
}

2155
v o i d voidTouch ( ) {

2157
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f o r ( i = 0 ; i < t u r n P o i n t [ 0 ] ; i++ )
2159 f o r ( j = t u r n P o i n t [ 3 ] ; j <numNodeStack ; j++ ) {

tempVect [ 0 ] [ 0 ] = s t a c k V e c t o r [ i ] [ 0 ] − s t a c k V e c t o r [ j ] [ 0 ] ;
2161 tempVect [ 0 ] [ 1 ] = s t a c k V e c t o r [ i ] [ 1 ] − s t a c k V e c t o r [ j ] [ 1 ] ;

i f ( tempVect [ 0 ] [ 1 ] <0 && magni tude ( tempVect [ 0 ] ) <minSegLength ) {
2163 t S t e p = maxLoopNum ;

outName = dirName + ” s t a t e . t x t ” ; / /
2165 o u t . open ( outName . c s t r ( ) , i o s : : t r u n c ) ;

o u t << ” Void r e a c h t o upper s u r f a c e ” ;
2167 c o u t << ” Void r e a c h t o uppe r s u r f a c e ” ;

o u t . c l o s e ( ) ;
2169 }

}
2171

f o r ( i = t u r n P o i n t [ 0 ] ; i < t u r n P o i n t [ 3 ] ; i++ )
2173 f o r ( j = t u r n P o i n t [ 3 ] ; j <numNodeStack ; j++ ) {

tempVect [ 0 ] [ 0 ] = s t a c k V e c t o r [ i ] [ 0 ] − s t a c k V e c t o r [ j ] [ 0 ] ;
2175 tempVect [ 0 ] [ 1 ] = s t a c k V e c t o r [ i ] [ 1 ] − s t a c k V e c t o r [ j ] [ 1 ] ;

i f ( tempVect [ 0 ] [ 1 ] >0 && magni tude ( tempVect [ 0 ] ) <minSegLength ) {
2177 t S t e p = maxLoopNum ;

outName = dirName + ” s t a t e . t x t ” ; / /
2179 o u t . open ( outName . c s t r ( ) , i o s : : t r u n c ) ;

o u t << ” Void r e a c h t o lower s u r f a c e ” ;
2181 c o u t << ” Void r e a c h t o lower s u r f a c e ” ;

o u t . c l o s e ( ) ;
2183 }

}
2185

2187 }

2189 v o i d s h o r t C i r c u i t ( i n t mm ) {
i f ( mm )

2191 f o r ( i = 0 ; i < t u r n P o i n t [ 0 ] ; i++ )
f o r ( j = t u r n P o i n t [ 0 ] ; j < t u r n P o i n t [ 3 ] ; j++ ) {

2193 i f ( ( j − i ) > 5 ) {
tempVect [ 0 ] [ 0 ] = s t a c k V e c t o r [ i ] [ 0 ] − s t a c k V e c t o r [ j ] [ 0 ] ;

2195 tempVect [ 0 ] [ 1 ] = s t a c k V e c t o r [ i ] [ 1 ] − s t a c k V e c t o r [ j ] [ 1 ] ;
i f ( tempVect [ 0 ] [ 1 ] <0 && magni tude ( tempVect [ 0 ] ) <minSegLength ) {

2197 t S t e p = maxLoopNum ;
outName = dirName + ” s t a t e . t x t ” ; / /

2199 o u t . open ( outName . c s t r ( ) , i o s : : t r u n c ) ;
c o u t << ” S h o r t c i r c u i t ” ;

2201 o u t << ” S h o r t c i r c u i t ” ;
o u t . c l o s e ( ) ;

2203 }
}

2205 }
}

2207
v o i d c o n t r o l s ( ) {

2209 i f ( c a l c U p p e r && ! vo idBoo l ) s e a r c h V o i d i n g ( ) ;
i f ( vo idBoo l ) {

2211 checkArea ( ) ;
voidTouch ( ) ;

2213 i f ( c a l c U p p e r ) s e a r c h S e c V o i d i n g ( ) ;
}

2215 s h o r t C i r c u i t ( c o n t r o l ) ;
c h e c k E q u i l i b r i u m ( ) ;

2217 }

2219 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /
/ ∗

2221 ∗ Remeshing
∗ /

2223 / ∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗ /

2225 v o i d powerMeshAdd ( ) {
i f ( Pr in tName ) cout << ” powerMeshX ” << e n d l ;

2227 i f ( PRINT ) p r i n t F i l e ( s t a c k V e c t o r , numCentStack , ” s t a c k V e c t o r 1 . t x t ” ) ;
c a l c D e l R s e g L e n g t h ( ) ;

2229
Node type i n t e r N o d e s [2 ∗ t u r n P o i n t [ 3 ] + 1] ;

2231
Node type ∗ f i r s t K = &i n t e r N o d e s [ 0 ] ;

2233 Node type ∗ secK = &i n t e r N o d e s [ t u r n P o i n t [ 0 ] − 1] ;
Node type ∗ t h i r d K = &i n t e r N o d e s [ t u r n P o i n t [ 1 ] ] ;

2235 Node type ∗ fourK = &i n t e r N o d e s [ t u r n P o i n t [ 2 ] − 1] ;
Node type ∗ endK = &i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 1] ;
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2237
f o r ( i = 0 ; i < t u r n P o i n t [ 3 ] ; i++ ) {

2239
i n t e r N o d e s [ i ] . P o i n t [ 0 ] = s t a c k V e c t o r [ i ] [ 0 ] ;

2241 i n t e r N o d e s [ i ] . P o i n t [ 1 ] = s t a c k V e c t o r [ i ] [ 1 ] ;
i n t e r N o d e s [ i ] . s egLeng th = segLeng th [ i ] ;

2243 i n t e r N o d e s [ i ] . power = f a b s ( segLeng th [ i ] ∗ segLeng th [ i ] ∗ ekap [ i ] ) ;

2245 i n t e r N o d e s [ i ] . CenterNorm [ 0 ] = cen tNormal [ i ] [ 0 ] ;
i n t e r N o d e s [ i ] . CenterNorm [ 1 ] = cen tNormal [ i ] [ 1 ] ;

2247
i n t e r N o d e s [ i ] . r a d i u s = 1 / kappa [ i ] ;

2249 i n t e r N o d e s [ i ] . C e n t e r [ 0 ] = c e n t e r s [ i ] [ 0 ] ;
i n t e r N o d e s [ i ] . C e n t e r [ 1 ] = c e n t e r s [ i ] [ 1 ] ;

2251

2253 i f ( i == 0 | | i == t u r n P o i n t [ 0 ] − 1 | | i == t u r n P o i n t [ 1 ] | | i == t u r n P o i n t [ 2 ] − 1←↩
)

{
2255 i n t e r N o d e s [ i ] . im m o r t a l = 1 ;

}
2257 e l s e i n t e r N o d e s [ i ] . i m m or t a l = 0 ;

2259 i f ( i == 0 ) {
i n t e r N o d e s [ i ] . back = &i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 1] ;

2261 i n t e r N o d e s [ i ] . f o r w a r d = &i n t e r N o d e s [ i + 1] ;

2263 }
e l s e i f ( i ! = t u r n P o i n t [ 3 ] − 1 ) {

2265 i n t e r N o d e s [ i ] . back = &i n t e r N o d e s [ i − 1] ;
i n t e r N o d e s [ i ] . f o r w a r d = &i n t e r N o d e s [ i + 1] ;

2267
}

2269 e l s e {
i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 1] . back = &i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 2] ;

2271 i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 1] . f o r w a r d = &i n t e r N o d e s [ 0 ] ;

2273 }

2275 }

2277 Node type ∗ p t r ;
i = t u r n P o i n t [ 3 ] ;

2279
Node type ∗ pp ;

2281
p t r = f i r s t K ;

2283 do {
( ∗ p t r ) . c a l c S e g L e n g t h ( ) ;

2285 pp = ( ∗ p t r ) . f o r w a r d ;
i f ( ( ( ∗ p t r ) . segLeng thF + ( ∗ p t r ) . segLengthB ) ∗ 0 . 5 > maxSegLengthr ) {

2287 i f ( ( ∗ p t r ) . segLengthF > ( ∗ p t r ) . segLengthB ) {
( ∗ p t r ) . addNoden ( &i n t e r N o d e s [ i ] ) ;

2289 }
e l s e {

2291 ( ∗ ( ∗ p t r ) . back ) . addNoden ( &i n t e r N o d e s [ i ] ) ;
i f ( p t r == f i r s t K ) f i r s t K = &i n t e r N o d e s [ i ] ;

2293 }
i++ ;

2295 }
p t r = pp ;

2297 } w h i l e ( p t r ! = secK ) ;

2299 p t r = ( ∗ f i r s t K ) . n o d e S h i f t ( − 2 ) ;
i f ( ( ∗ p t r ) . s egLeng th > maxSegLengthr ) {

2301 ( ∗ p t r ) . addNoden ( &i n t e r N o d e s [ i ] ) ;
i++ ;

2303 }

2305 p t r = ( ∗ secK ) . n o d e S h i f t ( 1 ) ;
i f ( ( ∗ p t r ) . s egLeng th > maxSegLengthr ) {

2307 ( ∗ p t r ) . addNoden ( &i n t e r N o d e s [ i ] ) ;
i++ ;

2309 }

2311 i = 0 ;
p t r = f i r s t K ;

2313 do {
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2315 s t a c k V e c t o r [ i ] [ 0 ] = ( ∗ p t r ) . P o i n t [ 0 ] ;
s t a c k V e c t o r [ i ] [ 1 ] = ( ∗ p t r ) . P o i n t [ 1 ] ;

2317 i f ( p t r == secK ) t u r n P o i n t [ 0 ] = i + 1 ;
e l s e i f ( p t r == t h i r d K ) t u r n P o i n t [ 1 ] = i ;

2319 e l s e i f ( p t r == fourK ) t u r n P o i n t [ 2 ] = i + 1 ;
i++ ;

2321 p t r = ( ∗ p t r ) . f o r w a r d ;

2323 } w h i l e ( p t r ! = f i r s t K ) ;

2325 t u r n P o i n t [ 3 ] = i ;

2327 numNodeStack = i ;

2329 numUpperNodes = t u r n P o i n t [ 0 ] ;
numCathodeNodes = t u r n P o i n t [ 1 ] − t u r n P o i n t [ 0 ] ;

2331 numLowerNodes = t u r n P o i n t [ 2 ] − t u r n P o i n t [ 1 ] ;
numAnodeNodes = t u r n P o i n t [ 3 ] − t u r n P o i n t [ 2 ] ;

2333 numVoidNodes = numNodeStack − t u r n P o i n t [ 3 ] ;

2335 numVoidCent = numVoidNodes ;
numCentStack = numNodeStack ;

2337 numSur fCen tS tack = t u r n P o i n t [ 3 ] ;
numVoidCentStack = numVoidNodes ;

2339
i f ( PRINT ) p r i n t F i l e ( s t a c k V e c t o r , numCentStack , ” s t a c k V e c t o r 2 . t x t ” ) ;

2341
}

2343
v o i d powerMeshRemove ( ) {

2345 i f ( Pr in tName ) {
cout << ”powerMeshXX” << e n d l ;

2347 }

2349 c a l c D e l R s e g L e n g t h ( ) ;

2351 Node type i n t e r N o d e s [2 ∗ t u r n P o i n t [ 3 ] + 1] ;

2353 Node type ∗ f i r s t K = &i n t e r N o d e s [ 0 ] ;
Node type ∗ secK = &i n t e r N o d e s [ t u r n P o i n t [ 0 ] − 1] ;

2355 Node type ∗ t h i r d K = &i n t e r N o d e s [ t u r n P o i n t [ 1 ] ] ;
Node type ∗ fourK = &i n t e r N o d e s [ t u r n P o i n t [ 2 ] − 1] ;

2357 Node type ∗ endK = &i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 1] ;

2359 f o r ( i = 0 ; i < t u r n P o i n t [ 3 ] ; i++ ) {

2361 i n t e r N o d e s [ i ] . P o i n t [ 0 ] = s t a c k V e c t o r [ i ] [ 0 ] ;
i n t e r N o d e s [ i ] . P o i n t [ 1 ] = s t a c k V e c t o r [ i ] [ 1 ] ;

2363 i n t e r N o d e s [ i ] . s egLeng th = segLeng th [ i ] ;

2365 i f ( i == 1 ) i n t e r N o d e s [ i ] . s egLeng th = segLeng th [ 0 ] ;
i f ( i == 0 | | i == t u r n P o i n t [ 3 ] − 1 | | i == t u r n P o i n t [ 0 ] | | i == t u r n P o i n t [ 0 ] −←↩

1 | | ( i > = t u r n P o i n t [ 1 ] && i < t u r n P o i n t [ 2 ] ) ) / /

2367 {
i n t e r N o d e s [ i ] . i mm o r t a l = 1 ;

2369 }
e l s e i n t e r N o d e s [ i ] . i m m or t a l = 0 ;

2371
i f ( i == 0 ) {

2373 i n t e r N o d e s [ i ] . back = &i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 1] ;
i n t e r N o d e s [ i ] . f o r w a r d = &i n t e r N o d e s [ i + 1] ;

2375 }
e l s e i f ( i ! = t u r n P o i n t [ 3 ] − 1 ) {

2377 i n t e r N o d e s [ i ] . back = &i n t e r N o d e s [ i − 1] ;
i n t e r N o d e s [ i ] . f o r w a r d = &i n t e r N o d e s [ i + 1] ;

2379 }
e l s e {

2381 i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 1] . back = &i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 2] ;
i n t e r N o d e s [ t u r n P o i n t [ 3 ] − 1] . f o r w a r d = &i n t e r N o d e s [ 0 ] ;

2383 }

2385
}

2387
Node type ∗ pp ;

2389 Node type ∗ p t r ;
i = t u r n P o i n t [ 3 ] ;

2391
i = 0 ;
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2393 p t r = f i r s t K ;
i f ( ( ∗ f i r s t K ) . s egLeng th < ( ∗ ( ( ∗ f i r s t K ) . f o r w a r d ) ) . s egLeng th )

2395 ( ∗ ( ( ∗ f i r s t K ) . f o r w a r d ) ) . s egLeng th = ( ∗ f i r s t K ) . s egLeng th ;

2397 do {

2399 i f ( ( ∗ p t r ) . i m m or t a l == 0 && ( ( ∗ p t r ) . s egLeng th < minSegLength i ∗ 0 . 8 | | ( ←↩
∗ ( ( ∗ p t r ) . back ) ) . s egLeng th < minSegLength i ∗ 0 . 8 ) ) p t r = ( ∗ p t r ) ←↩
. f o r w a r d ;

s t a c k V e c t o r [ i ] [ 0 ] = ( ∗ p t r ) . P o i n t [ 0 ] ;
2401 s t a c k V e c t o r [ i ] [ 1 ] = ( ∗ p t r ) . P o i n t [ 1 ] ;

2403 i f ( p t r == secK ) {
t u r n P o i n t [ 0 ] = i + 1 ;

2405 i f ( ( ∗ p t r ) . s egLeng th < minSegLeng th i ∗ 0 . 5 ) p t r = ( ∗ p t r ) . f o r w a r d ;
}

2407
e l s e i f ( p t r == t h i r d K ) t u r n P o i n t [ 1 ] = i ;

2409 e l s e i f ( p t r == fourK ) t u r n P o i n t [ 2 ] = i + 1 ;
i++ ;

2411 p t r = ( ∗ p t r ) . f o r w a r d ;

2413 i f ( ( ∗ p t r ) . i m m o r t a l == 0 && p t r == ( ( ∗ endK ) . back ) ) i f ( ( ∗ p t r ) ←↩
. s egLeng th < minSegLeng th i ∗ 0 . 5 ) p t r = ( ∗ p t r ) . f o r w a r d ;

2415 } w h i l e ( p t r ! = f i r s t K ) ;

2417 t u r n P o i n t [ 3 ] = i ;

2419 numNodeStack = i ;

2421 numUpperNodes = t u r n P o i n t [ 0 ] ;
numCathodeNodes = t u r n P o i n t [ 1 ] − t u r n P o i n t [ 0 ] ;

2423 numLowerNodes = t u r n P o i n t [ 2 ] − t u r n P o i n t [ 1 ] ;
numAnodeNodes = t u r n P o i n t [ 3 ] − t u r n P o i n t [ 2 ] ;

2425 numVoidNodes = numNodeStack − t u r n P o i n t [ 3 ] ;

2427 numVoidCent = numVoidNodes ;
numCentStack = numNodeStack ;

2429 numSur fCen tS tack = t u r n P o i n t [ 3 ] ;
numVoidCentStack = numVoidNodes ;

2431
i f ( PRINT ) p r i n t F i l e ( s t a c k V e c t o r , numCentStack , ” s t a c k V e c t o r 2 . t x t ” ) ;

2433 }

2435

2437 v o i d ca lcMinima ( ) {
tempDouble [ 0 ] = 110 ;

2439
f o r ( i = 0 ; i < ( numNodeStack / nsw ) ; i++ ) {

2441 i f ( tempDouble [ 0 ] > s t a c k V e c t o r [ i ] [ 1 ] )
tempDouble [ 0 ] = s t a c k V e c t o r [ i ] [ 1 ] ;

2443 e l s e break ;
}

2445 minima = i ;
}

2447
v o i d s i m u l a t e ( ) {

2449
d i r e c t o r y N a m e ( ) ;

2451 i f ( PRINT ) c o u t << dirName << e n d l ;

2453 i f ( e x p S t a t e == 0 ) {
w r i t e I n p u t P a r a m e t e r s ( ) ;

2455
w h i l e ( t S t e p < = maxLoopNum ) {

2457 i f ( t S t e p ! = 1 ) PRINT = 0 ;

2459 c a l c C e n t r o i d ( ) ;

2461 i f ( Xi ! = 0 | | Sigma ! = 0 | | c h i ! = 0 ) c a l c I n t e r M a t r i x ( ) ;
c a l c D e l R s e g L e n g t h ( ) ;

2463 calcNormOfCent ( ) ;
c a l c D i f f u s i v i t y ( ) ;

2465 c a l c P s i r ( ) ;
ca lcKappa ( ) ;

2467
i f ( c h i ! = 0 && ( t S t e p%calcJump == 1 | | t S t e p%calcJump == 0 | | t S t e p <18 ) ) ←↩
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calcNormEF ( ) ;
2469 i f ( c h i ! = 0 && ( t S t e p%calcJump == 1 | | t S t e p%calcJump == 0 | | t S t e p <18 ) ) {

formingIBEMmatr ix ( ) ;
2471 c a l c E F i e l d ( ) ;

}
2473

i f ( ( Xi ! = 0 | | Sigma ! = 0 ) && ( t S t e p%calcJump == 1 | | t S t e p%calcJump == 0 ←↩
| | t S t e p <18 ) ) s t r e s s ( ) ;

2475
ca l c E k a p ( ) ;

2477 c a l c V e l o c i t i e s ( ) ;
f indMinSeg ( ) ;

2479 moveToNewPosi t ions ( ) ;

2481 r e c o r d ( ) ;
i f ( t S t e p% ( ca lcJump ∗ 2 ) == 0 ) {

2483 powerMeshAdd ( ) ;
powerMeshRemove ( ) ;

2485 }

2487 t S t e p++ ;
i f ( maxLoopNum> t S t e p ) {

2489 i f ( ( ( numNodeStack > NMAX ) | | ( i n i t i a l N o d e N u m > numNodeStack ∗ 3 ) ) && !←↩
newdata ) t S t e p = maxLoopNum ;

i f ( t S t e p% ( ca lcJump ∗ 2 ) == 1 ) {
2491 i f ( ( ( maxSegLength / maxSegLengthi ) >3 ) ) {

cout << ” m a x s e g l e n g t h ” ;
2493 outName = dirName + ” m a x s e g l e n g t h ” ; / /

o u t . open ( outName . c s t r ( ) , i o s : : t r u n c ) ;
2495 o u t . c l o s e ( ) ;

}
2497 i f ( ( numUpperNodes > i n i t i a l N o d e N u m ∗ 3 ) ) {

outName = dirName + ”MAX numUpperNodes ” ; / /
2499 o u t . open ( outName . c s t r ( ) , i o s : : t r u n c ) ;

o u t . c l o s e ( ) ;
2501 cout << ” numUpperNodes ” ;

}
2503 }

i f ( ( numNodeStack > NMAX ) ) {
2505 cout << ”NMAX” ;

outName = dirName + ”NMAX” ; / /
2507 o u t . open ( outName . c s t r ( ) , i o s : : t r u n c ) ;

o u t . c l o s e ( ) ;
2509 }

}
2511 }

}
2513

outName = dirName + ” ok ” ; / /
2515 d i r p = o p e n d i r ( outName . c s t r ( ) ) ;

i f ( d i r p == NULL ) mkdir ( outName . c s t r ( ) ) ;
2517 }

2519 i n t main ( i n t argc , char ∗ a rgv [ ] )
{

2521 c o u t << a r g c << ” ” << a rgv [ 1 ] ;

2523 double s t a r t , f i n i s h , d u r a t i o n ;
p r i o r i t y D e a m o n ( ) ;

2525 a f i n i t y D e a m o n ( argc , a rgv ) ;

2527 s t a r t = c l o c k ( ) ;
g e t I n p u t P a r ( ) ;

2529
i f ( ! newdata ) {

2531 normTime = delTime ;
/ / c o n t ( ) ;

2533 i n i t i a t e I n t e r c o n n e c t ( ) ;
c o n s t r S t a c k ( ) ;

2535 c a l c C e n t r o i d ( ) ;
c a l c D e l R s e g L e n g t h ( ) ;

2537 ca lcMinima ( ) ;
a p t r = segLeng th ;

2539 maxSegLengthi = ∗ a p t r ;
f o r ( i = 0 ; i < numUpperNodes − 1 0 ; i++ ) maxSegLengthi = maxP ( maxSegLengthi , a p t r ) ;

2541 a p t r = segLeng th ;
minSegLeng th i = ∗ a p t r ;

2543 f o r ( i = 0 ; i <numUpperNodes − 1 0 ; i++ ) minSegLeng th i = minP ( minSegLength i , a p t r ) ;
delMean = maxSegLengthi ;
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2545 }
e l s e {

2547 c o n t i n u e s ( ) ;
c a l c C e n t r o i d ( ) ;

2549 c a l c D e l R s e g L e n g t h ( ) ;
delMean = maxSegLengthi ;

2551 }

2553 s i m u l a t e ( ) ;

2555 f i n i s h = c l o c k ( ) ;
d u r a t i o n = ( f i n i s h − s t a r t ) ;

2557 p r i n t e l a p s e d t i m e ( ) ;
cou t << d u r a t i o n << e n d l ;

2559 r e t u r n EXIT SUCCESS ;
}
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