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ABSTRACT

FIXED POINT SCHEME OF THE HILBERT SCHEME UNDER A 1-DIMENSIONAL
ADDITIVE ALGEBRAIC GROUP ACTION

Özkan, Engin

Ph.D, Department of Mathematics

Supervisor : Prof. Dr.Ersan Akyıldız

Co-Supervisor : Assoc. Prof. Dr. Özgür Kişisel

March 2011, 45 pages

In general we know that the fixed point locus of a 1-dimensional additive linear algebraic

group,Ga, action over a complete nonsingular variety is connected. In thesis, we explicitly

identify a subset of the Ga-fixed locus of the punctual Hilbert scheme of the d points,Hilbd(P2, 0),in

P2. In particular we give an other proof of the fact that Hilbd(P2, 0) is connected.

Keywords: Hilbert Scheme, Fixed Point Scheme, Ga- action
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ÖZ

HILBERT ŞEMASI’NIN BELİRLİ BİR 1-BOYUTLU TOPLAMSAL CEBİRSEL GRUP
ETKİSİ ALTINDAKİ SABİT NOKTA ŞEMASI

Özkan, Engin

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ersan Akyıldız

Ortak Tez Yöneticisi : Doç. Dr. Özgür Kişisel

Mart 2011, 45 sayfa

Genel olarak, 1-boyutlu toplamsal lineer cebirsel grubun ,Ga, tam ve düzgün olan bir varyete

üzerindeki sabit nokta lokusunun bağlantılı olduğu bilinmektedir. Tezimizde, projektif uzayda

verilen d noktayı parametrize eden panktual Hilbert şemasının, Hilbd(P2, 0), Ga-etkisi altında

sabit kalan lokusun bir altkümesini belirtiyoruz. Bu altküme yardımıyla Hilbd(P2, 0)’nin

bağlantılı olma özelliğinin farklı bir ispatını veriyoruz.

Anahtar Kelimeler: Hilbert Şeması, Sabit Nokta Lokusu , Ga-grup etkisi
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In the introduction we will give some basic information about subschemes of P2, and their

Hilbert polynomials, and afterwards we will give the functorial definition of the Hilbert

scheme. See Hartshorne, R [1] for more details.

Let R = C[x0, ..., xn] be the polynomial ring over the complex field C and m =< x0, ..., xn >

the irrelevant ideal of R. A homogenous ideal I of R not containing m defines a closed

subscheme of Pn via the surjection R → R/I. Conversely, for any subscheme X ⊂ Pn

, the corresponding ideal sheaf IX is the kernel of the map OPn → OX. The direct sum

I =
⊕

k≥0 H0(Pn,IX(k)) is a homogenous ideal of R.

We should remark that the correspondence explained above is not a bijection. This is because

of the irrelevant ideal m. In fact this correspondence gives a bijection between the subschemes

of Pn and the saturated homogenous ideals of R. An ideal J of R is saturated if (J : m∞) = J

where (J : m∞) = { f ∈ R : f mi ⊆ J for some i > 0 }.

The Hilbert polynomial of a homogenous ideal of R, ( or of a subscheme of Pn) is an invariant

of the ideal (subscheme). The Hilbert polynomial is determined by the Hilbert function of

the ideal. This is the function HR/I : N→ N given by

HR/I(t) = dimC(R/I)t,

where (R/I)t is the t-th graded piece of R/I which is a vector space over C. The key fact is

that the function HR/I agrees with a polynomial PR/I for large t, i.e HR/I(t) = PR/I(t) for t � 0

( See Eisenbud,D [2], pg 42-43). The polynomial PR/I is called the Hilbert polynomial of

R/I. If X is the subscheme of Pn corresponding to I, then PR/I(t) = χ(OX(t)).
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1.2 Functorial Definition and Existence of the Hilbert Scheme

Before passing to the definition of the Hilbert scheme, we will give some basic definitions

about categories.

Definition 1.2.1 A category C consists of:

• A collection Ob(C) of objects,

• Sets Mor(X,Y) of morphisms for each pair X,Y of objects, and also an identity morphism

1X for each X ∈ C

• A composition operation ◦ of morphisms such that for each X,Y,Z,W ∈ Ob(C) and h ∈

Mor(X,Y), g ∈ Mor(Y,Z), f ∈ Mor(Z,W), we have f ◦ (g ◦ h) = ( f ◦ g) ◦ h and h ◦ 1X = h,

1Y ◦ h = h.

Example 1.2.2 Let Ob(Sets) consist of all sets and for any pair of sets A, B , Mor(A, B) be

the set of functions from A to B. Then Sets is a category called the category of sets.

Example 1.2.3 Let Ob(Sch) consist of all schemes and for any pair of schemes X,Y, let

Mor(X,Y) be the set of morphisms of schemes from X to Y. Then Sch is a category called the

category of schemes.

Definition 1.2.4 Let C be a category. The opposite category C◦ is a category such that its

objects are the same as the objects of C ( Ob(C) = Ob(C◦)) and its morphisms are given by

MorC◦(X,Y) = MorC(Y, X).

Definition 1.2.5 Let C and D be two categories. A covariant (contravariant)functor F from

C toD consists in

• a map F : Ob(C)→ Ob(D).

• for every X,Y ∈ Ob(C), a map

F : Mor(X,Y)→ Mor(F(X), F(Y))

(F : Mor(X,Y)→ Mor(F(Y), F(X)))

such that

(i) F(1X) = 1F(X), ∀X ∈ Ob(C)

2



(ii) The following diagram commutes

X
f

−−−−−→ YyF
yF

F(X)
F( f )
−−−−−→ F(Y)

(covariant)


X

f
−−−−−→ YyF

yF

F(X)
F( f )
←−−−−− F(Y)

contravariant

 .

Definition 1.2.6 Let X be a scheme. Let us define the functor hX from the opposite category

of the category of schemes Sch to the category of sets Sets by

hX(Y) = Mor(Y, X)

and for any morphism of schemes f : Y −→ Z, hX( f ) : Mor(Y, X) −→ Mor(Z, X) is the

induced function (see the diagrams below). The functor hX is called the functor of points of

the scheme X.
Y

f
−−−−−→ ZyhX

yhX

Mor(Y, X)
hX( f )
−−−−−→ Mor(Z, X)

(in Sch◦)

Z
f

−−−−−→ YyhX

yhX

Mor(Z, X)
hX( f )
←−−−−− Mor(Y, X)

(in Sch)

where hX( f )(g) = g ◦ f for g ∈ Mor(Y, X).

Example 1.2.7 Say X = SpecR is an affine variety and Y = Spec(k) where k is a field. Then

hX(Y) = Mor(S peck(k), S pec(R)) which is in 1-1 correspondence with morphisms R → k.

This in turn gives us the k-valued points of the scheme X.

The relative version is also defined as follows: Let S be any scheme. If X is an S -scheme, the

functor of points on the category of S -schemes is defined as:

hX/S (Y) = (S −morphisms f : Y → X)

3



where S −morphisms are the morphisms such that the following diagram commutes:

Y

��
??

??
??

?
// X

��

S

Example 1.2.8 Let S = Spec(B) for any ring B, and X = Spec(A) where A = B[x1, ..., xn]/( f1, ..., fr).

If R is a B-algebra, then an R-valued point of X/S is a B-algebra homomorphism; this corre-

sponds exactly to a solution of the equations { fi = 0}i=1,...,r in Rn.

Definition 1.2.9 Let C, D be two categories, and F,G two functors of the same type from

C to D ( assume both are covariant for the sake of exposition). A natural transformation

α from F to G consists of a collection of morphisms αX : F(X) → G(X) such that for any

f ∈ Mor(X,Y),

F(X)

F( f )
��

αX // G(X)

G( f )
��

F(Y)
αY // G(Y)

commutes.

Definition 1.2.10 Let F,G be two functors of the same type from the category C to the cate-

goryD. We say that F and G are isomorphic functors if there exists natural transformations

α : F → G and γ : G → F such that their compositions are identity transformations

(αγ = 1G(X) and γα = 1F(X) ∀ X ∈ Ob(C)).
(
We write F � G

)

Definition 1.2.11 A covariant functor F : Sch◦ → Sets is called representable if F � hX

for some scheme X.

Definition 1.2.12 Let M be a module over an arbitrary ring R. We say that M is flat over R

if for every R- module monomorphism f : A→ B the induced map 1× f : M ⊗R A→ M ⊗R B

given by m ⊗ a→ m ⊗ f (a) is again a monomorphism.

4



Definition 1.2.13 Let X and Y be any schemes. We say that a morphism of scheme f : X → Y

is flat morphism if for every subvariety U ⊆ X with f (U) = V ⊆ Y, OU,X is a flatOV,Y - module

via the pull back f ∗ of f .

Example 1.2.14 Let X = SpecC[x, t]/(t− x) and Y = SpecC[t] then the morphism f : X → Y

induced by the homomorphism C[t]→ C[x, t]/(t − x) taking t to t is a flat morphism.

Example 1.2.15 Say X = SpecC[x, t]/(xt − t) and Y = SpecC[t] then the morphism f : X →

Y induced by C[t]→ C[x, t]/(xt − t) taking t to t is not a flat morphism. Because, the inverse

image of the point p corresponding to the prime ideal (t) has dimension 1 but for the points

associated to primes (t − c) where c , 0 the inverse image has dimension 0.

Definition 1.2.16 Suppose that the ground field is an arbitrary algebraically closed field k.

Let X be a scheme over S . An algebraic family of closed subschemes of X/S , parameterized

by an S -scheme T , is a closed subscheme Z of the fiber product X×S T . The algebraic family

is flat if the projection morphism π : Z → T is a flat morphism. A fiber of the family is the

pullback (1 × t)∗(Z) of Z defined by the commutative diagram:

(1 × t)∗(Z) ⊆ X ×S Spec(k) −−−−−→ Spec(k)y(1×t)
yt

Z ⊆ X ×S T −−−−−→ T

where t : Spec(k)→ T is a (k-valued) point of T .

Definition 1.2.17 Let HilbX/S (T ) be the set of flat algebraic families of closed subschemes Z

of X ×S T parameterized by the S -scheme T . So we can visualize HilbX/S as a map:

HilbX/S : Ob(Sch) −→ Ob(Sets)

T 7−→ HilbX/S (T )

If f : T ′ → T is any morphism of S -schemes, the diagram below

Z ×T T ′ −−−−−→ Zy y
T ′

f
−−−−−→ T

5



says that Z ×T T ′ ⊂ X ×T T ′ is flat over T ′.

Define

HilbX/S ( f ) : HilbX/S (T ) −→ HilbX/S (T ′)

Z 7−→ HilbX/S ( f )(Z) = Z ×T T ′

This consideration of HilbX/S and the map makes HilbX/S a contravariant functor on the

category of S -schemes. Now let us check that HilbX/S is a functor:

(i) HilbX/S (idT ) = idHilbX/S (T ).

Since Z ×T T is isomorphic to Z, we have that HilbX/S (idT ) is equal to idHilbX/S (T ).

(ii) Is the composition operation preserved under HilbX/S ?

For any given morphisms, T ′′
g

−−−−−→ T ′
f

−−−−−→ T

Z ×T T ′ ×T ′ T ′′ −−−−−→ Z ×T T ′ −−−−−→ Zy y y
T ′′

g
−−−−−→ T ′

f
−−−−−→ T

This diagram says that Z ×T T ′′ is flat over T ′′ and since Z ×T T ′ ×T ′ T ′′ ' Z ×T T ′′, so

the composition operator is preserved. The main question at this point is: Is HilbX/S is

representable?

If HilbX/S � hY for some S -scheme Y, then Y is called the Hilbert scheme of X/S .

Definition 1.2.18 Let C be a category and F be a functor from C to the category of sets. A

functor G from C to the category of sets is called a subfunctor of F if;

(i) For all objects X ∈ C, G(X) ⊆ F(X) ( as sets)

(ii) For any morphism f : X → Y, G( f ) is the restriction of F( f ) : F(X)→ F(Y).

Let again Z ⊆ X ×S T be a flat family over T and let p : Z → T be the projection. The

Hilbert polynomial of Z at t is defined by Pt(Z)(m) = χ(OZt (m)) here Zt = p−1(t). For every

polynomial P(x) ∈ C[x] let us define HilbP
X/S to be the following subfunctor of HilbX/S :

HilbP
X/S (T ) =

{
Z ⊆ XT = X ×S T

∣∣∣Z is f lat over T and Pt(Z) = P f or all t ∈ T
}

Theorem 1.2.19 (Grothendieck [3]) Assume that X is projective over S . Then HilbP
X/S (T ) is

representable by a scheme Hilbd(P2) and Hilbd(P2) is projective over S .

6



Proof 1.2.20 See Grothendieck ,A [3] �

1.3 Hilbert Schemes of Points On Surfaces

In this subsection we will introduce the Hilbert scheme of points in the plane and we’ll show

that this is a smooth and irreducible variety.

Let A2= Spec C[x, y] be the affine plane over the complex field C. As a set the Hilbert scheme

of d-points in the plane, Hilbd(A2), is the set of ideals I ⊆ C[x, y] such that the dimension

of C[x, y]/I as a vector space over C is d. This scheme can also be viewed in another way:

Hilbd(A2) is the scheme parameterizing subschemes X ⊆ A2 such that X=Spec(C[x, y]/I) is

zero dimensional of length d. Moreover if we put the condition
√

I = (x, y) in algebraic defi-

nition then Supp(X) = (0, 0) and the resulting scheme is called the Punctual Hilbert scheme.

Denote it by Hilbd(A2, 0) .

Before giving more details about Hilbd(A2), we should remark that this Hilbert scheme has

special properties. In fact Fogarty, J [4] showed that it is smooth and irreducible but for

general n, Hilbd(An) is neither smooth nor irreducible. For example Iarrobino, A [5] showed

that the Hilbert scheme parameterizing 0-dimensional subschemes of length d of a nonsingu-

lar projective variety of dimension bigger than 2 is reducible.

First of all, we will see the variety structure on Hilbd(A2) explicitly by identifying it with a

subvariety of a Grassmannian.

For any partition λ of d, define the set Bλ = {xkys : (k, s) ∈ λ} and the ideal Iλ generated by

monomials not belonging to Bλ . Let k index the rows of λ, and s the columns.

Example 1.3.1 For d = 14, consider the partition λ : 4 + 3 + 3 + 2 + 2, B(4,3,3,2,2) consists of

the monomials
x4 x4y

x3 x3y

x2 x2y x2y2

x xy xy2

1 y y2 y3

The ideal Iλ is generated by x5, x3y2, xy3, y4 and its diagram is of the following form:

7



x^6

.

.

.

.

. ...

.

..

.

.

.

y^41

x

x^2

x^3

x^4

x^5

x^7

x^8

y y^2 y^3

Figure 1.1: diagram of I =< x5, x3y2, xy3, y4 >

For each nonnegative integer n, let Vn be the subspace of C[x, y] spanned by the
(
n + 2

2

)
-

monomials of degree at most n.

Example 1.3.2 For n = 3, Vn is spanned by the 1, x, y, xy, x2, y2, x2y, xy2, x3, y3.

.

y^3y^2y

x^4

x^3

x^2

x

1 y^4

.

. ..

.

Figure 1.2: Figure of Vn

Lemma 1.3.3 For any ideal I of length d, the image of Vn in C[x, y]/I spans C[x, y]/I as a

vector space whenever n ≥ d.

8



x^n

(l,k)

y^l

x^k

y^n

Figure 1.3: Such figures not possible when n ≥ d

Proof 1.3.4 Suppose not .Then the figure 1.3 of I is over the figure of Vn.The graph of Vn

crosses the x-axis and y-axis respectively at points (n, 0) and (0, n). If the figure of I has at

least one point, say (k,l), above the line y = n − x then k + l > n. But the length of I is d, so

we have d ≥ k + l > n when n ≥ d.So we get a contradiction. �

1.3.1 Smoothness and Connectedness

In this subsection, the references mainly consulted are [6] and Haiman, M [7] Now we define

the following set for each partition λ

Uλ = {I ∈ Hilbd(A2) : Bλ spans C[x, y]/I}

Since dimCC[x, y]/I = d, Bλ is a basis. This means that the monomials outside Iλ constitutes

a vector space basis for C[x, y]/I.

Since Bλ is a basis for C[x, y]/I, if we mod out any given monomial xrys with respect to I,

the class xrys + I can be written uniquely as a linear combination of the elements of Bλ . This

means that the given monomial can be written as follows:

xrys ≡
∑

(h,k)∈λ

crs
hkxhykmod(I) (2.1)

Here, (h, k) ∈ λ means that xhyk ∈ Bλ.

Lemma 1.3.5 The sets Uλ are open affine subvarieties which cover Hilbd(A2). The affine

9



coordinate ring OUλ is generated by the functions crs
hk, for (h, k) ∈ λ and all (r, s) such that

{xrys} is a generating set of monomials for Iλ.

Proof 1.3.6 Let us first show that {Uλ}|λ|=d set theoretically covers Hilbd(A2). Let B be the

set of monomials not in I′ =< in(I) >. Note that every divisor of a monomial in B is also in

B. Therefore B = Bλ for some partition λ of d. Therefore I ∈ Uλ. By this fact the sets Uλ

cover Hilbd(A2).

Now let us show that {Uλ} is a subvariety of a Grassmanian. The intersection I ∩ Vn is a

vector subspace in Vn of codimension d. Because of the lemma 1.3.3 above I is generated by

I ∩ Vn when n ≥ d. Thus Hilbd(A2) is contained as a set in the Grassmanian, Grd(Vn), of

codimension d subspaces of Vn.

The set of codimension d subspaces W ⊂ Vn for which the monomials outside Iλ span Vn/W

constitutes a standard open affine subvariety of Grd(Vn). Here in(I) is the initial ideal of I

with respect to grlex order. This means that W has a unique C-basis consisting in elements of

the form

xrys −
∑

(h,k)∈λ

crs
hkxhyk (∗)

The affine chart of the Grassmanian is the affine space such that its coordinate ring is the

polynomial ring in the coefficients crs
hk. Here xsyr are monomials in I ∩ Vn so #{(r, s)} =(

n + 2
2

)
− d. Since #{(h, k)} = d we retrieve dim

(
Grd(Vn)

)
= d.(

(
n + 2

2

)
− d).

If in addition W = I∩Vn then this situation gives rise to some relations in the polynomial ring

C[crs
hk] and these relations generate a radical ideal. Let us see how we can get these relations.

The ideal imposes the multiplication relation. This means multiplication with x or y preserves

the ideal. Explicitly, if xr+1ys ∈ Vn, then multiplying (*) with x we get xr+1ys −
∑

crs
hkxh+1ys

inside Vn ∩ I. Now some terms xh+1ys lie in Iλ, so using (*) again we have to expand such

terms.

xr+1ys −
( ∑

h+1,k∈λ

crs
hkxh+1yk +

∑
h+1,k<λ

crs
hk

∑
p,q∈λ

ch+1,k
pq xpyq

)
∈ I (∗∗)

If we equate the coefficients of xhyk in (*) and (2.2) we get the relations in C[crs
hk]. So Uλ is

an algebraic subset of an open cell in the Grassmannian. �

Example 1.3.7 (See Miller.E, Strumfels,B [6] pg 359) Let d = 4 and λ partition 2 + 2. Every

10



ideal I in U2+2 is generated by the four polynomials:

x2 − c20
11xy − c20

01y − c20
10x − c20

00 (1.1)

x2y − c21
11xy − c21

01y − c21
10x − c21

00 (1.2)

y2 − c20
11xy − c20

10x − c20
01y − c20

00 (1.3)

xy2 − c02
11xy − c02

10x − c02
01y − c02

00 (1.4)

Let us call a = c20
11, e = c20

01, p = c20
10, t = c20

00, b = c21
11, f = c21

01, q = c21
10, u = c21

00, c = c02
11, g =

c02
01, r = c02

10, v = c02
00, d = c11

11, h = c11
10, s = c11

01,w = c11
00. Before continuing the example we will

show that these four polynomials are enough to generate I.

Lemma 1.3.8 The generators numbered with (1.1), (1.2), (1.3), (1.4) are enough to generate

I.

Proof 1.3.9 Let us show first we do not need generators of the form:

x2y2 − c22
11xy − c22

01y − c22
10x − c22

00 (1.5)

Suppose we have a such generator. Then by multiplying (1.2) by y we get

x2y2 − bxy2 − f y2 − qxy − uy (1.6)

now rewriting xy2 and y2 in terms of {1, x, y, xy} in (1.6) we get the following expression:

x2y2 − b(dxy + hx + sy + w) − f (cxy + gx + ry + v) − qxy − uy (1.7)

If we use (1.5) and (1.7) we obtain relation:

xy(bd + f c + q − c22
11) + x(bh + g f − c22

10) + y(bs + f r + u − c22
01) + (bw + f v − c22

00) = 0

The coefficents in last equality are nonzero so we have a relation between 1, x, y, xy. This says

us that the length of I is less than or equal 3 but this is a contradiction. In general to prove

that we do not need generators of the form xmyn − cmn
11 xy− cmn

10 x− cmn
01 y− cmn

00 , we use the same

method inductively. �

Remark 1.3.10 For a general d, if we have such a diagram for a partition λ of d, we omit

the corners of the diagram labeled by (×) and we take all monomials on the boundary of Iλ

labelled by (o) to get all generators of I. See the following figure

11



x^k

y^l

Figure 1.4: General case

The quotient ring C[x, y]/I has a C-basis (1, x, y, xy) if and only if

p = b − ad − ec, q = ah + eg, r = d − ag − bc, s = c f + eg

t = f − ed − ac f + bce, u = aw + adeg − aceh − beg + eh

v = h − bg − ach + adg,w = cu − bceg − ac f d + deg + f g

The parameters p, q, r, s, t, u, v can be written in terms of {a, b, c, d, e, f , g, h}. We have also

one further relation

w(1 − ac) = P(a, b, c, d, e, f , g, h)

where P(a, b, c, d, e, f , g, h) denotes a polynomial with variable set {a, b, c, d, e, f , g, h}.

Therefore the affine chart U2+2 is a smooth hypersurface in C9.

Before saying that Hilbd(A2) is connected and smooth, we will give two basic definitions,

tools and lemmas that will be used in the proofs. Fix a vector v ∈ Nn. For any polynomial

f =
∑

u∈Nn cuxu, we set the initial term of f to be inv f =
∑

cuxu where the sum is taken over

u ∈ Nn such that the scalar product v.u is maximal for all u with coefficient nonzero i.e cu , 0

12



Example 1.3.11 For n = 5, v = (1, 1, 0, 0, 1), f = x0x1x2 + x1x2x3x4 − x0x4 + x0x1x4 then

inw f is equal to x0x1x4.

Definition 1.3.12 The initial ideal of I is the ideal inv(I) := (inv f : f ∈ I).

Generally, invI does not have to be generated by the initial terms of the minimal generating set

of I. Given a setG = { f1, ..., fs} of polynomials in the ideal I, we say thatG is a Gröbner basis

for I if invI =< inv f1, ..., inv fs >. For any ideal I and for any polynomial f =
∑

u cuxu ∈ I

define the f ′ = td ∑
u cuxut−v.u, where d = maxcu,0v.u. By this definition at least one term has

no t term. Set It = ( f ′ : f ∈ I).

Theorem 1.3.13 For any ideal I ⊆ C[x, y], the C[t]-algebra C[x, y][t]/It is flat C[t]-module,

we also have;

C[x, y][t]/It ⊗C[t] C[t, t−1] � C[x, y]/I[t, t−1]

and

C[x, y][t]/It ⊗C[t] C[t]/(t) � C[x, y]/inv(I)

Therefore C[x, y][t]/It is a flat family over C[t] such that its fiber over 0 is C[x, y]/inv(I) and

over any point (t − a) of Spec(C[t]) for 0 , a ∈ C is C[x, y]/I

Proof 1.3.14 See Eisenbud, D [2] pg: 343-344 �

Remark 1.3.15 The theorem says that we have a degeneration from an ideal to its initial

ideal. Such a degeneration is called a Gröbner degeneration. If I is homogenous, we replace

S pec(R[t]/It) by Pro j(R[t]/It) and in that case t has degree 0.

Lemma 1.3.16 Every ideal I ∈ Hilbd(A2) can be connected to a monomial ideal by a rational

curve.

Proof 1.3.17 Without loss of generality fix a monomial order ”≺”, i.e it is a total order on

the monomials in C[x, y] compatible with multiplication. With this monomial order define

the ideal J = in≺(I). Since the Gröbner degeneration is a flat family It over A1 we stay in

Hilbd(A2). For t = 0, it gives I and for t = 1 we get the monomial ideal J. �
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Lemma 1.3.18 For every partition λ of d , the point Iλ ∈ Hilbd(A2) lies in the closure of the

locus of all radical ideals in the Hilbert scheme Hilbd(A2).

Proof 1.3.19 First of all let us choose any monomial order ”≺”. Now consider the exponents

(h, k) of monomials xhyk which is outside of Iλ. The collection of these exponents is a subset

E of C2 and the order of the set E is d. Call the radical ideal of these points the distraction of

Iλ and denote it by I′λ. Suppose that the ideal Iλ is of the form < xa1yb1 , ..., xanybn >. Consider

the polynomials

fi = x(x − 1)(x − 2)...(x − ai + 1)y(y − 1)...(y − bi + 1)

Since these polynomials vanish at E =, so < f1, ..., fm >⊆ I′λ. The leading terms of the fi’s are

the generators of the ideal Iλ which has length d. So the length of the ideal < f1, ..., fm > is

less than or equal to d. Therefore

< f1, ..., fm >= I′λ

Moreover, for the given monomial order ≺, Iλ is the initial monomial ideal of I′λ. The ideal (I′λ)t

constructed from Gröbner degeneration is radical for each t , 0. So the proof is completed.

�

Example 1.3.20 The distraction of the ideal I2+1+1 =< x4, x2y, xy2, y3 > is the ideal

I′2+1+1 =< x(x − 1)(x − 2)(x − 3), x(x − 1)y, xy(y − 1), y(y − 1)(y − 2) >

Theorem 1.3.21 The Hilbert scheme Hilbd(A2) is connected.

Proof 1.3.22 For any two points I and J in Hilbd(A2) we can find a path as follows. First go

from the ideal I to the initial monomial ideal Iλ and then to its distraction I′λ. Do the same for

J. After these process we have two radical ideals I′λ and J′µ of the d points in A2. By passing

from one point configuration to the another we can connect these two radical ideals. So we

are done. �

Let us consider the C∗ torus action on Hilbd(A2). We have such an action since the action of

C∗ on A2 induces an action on S = C[x, y] and this action on S induces a C∗-action on ideals

I ∈ S with dimk(S/I) = d. So we have a C∗- action on Hilbd(A2). The following will give all

fixed points of C∗.
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Lemma 1.3.23 The fixed points of the C∗-action on Hilbd(A2) are monomial ideals of length

d.

Proof 1.3.24 Since the torus action scales each monomial in C[x, y], monomial ideals are

fixed under this action. To show the other inclusion, consider w ∈ N2, and let us consider the

one parameter subgroup φw : C∗ → C∗2 given by the formula φw(t) = (tw1 , tw2), so the action

of C∗ on R is φw(t)(x, y) = (t−w1 x, t−w2y). Let’s consider limt→0φw(t)I. This limit is equal to

inwI for any given ideal in Hilbd(A2). If we choose w sufficiently generic then the ideal inwI

is a monomial ideal. So if I ∈ Hilbd(A2) is not a monomial ideal then limt→0φw(t)I , I,this

means that I is not a fixed point of the C∗-action. Therefore the fixed point set of Hilbd(A2)

under the torus action just consists of monomial ideals. �

Remark 1.3.25 If Hilbd(A2) is smooth at every monomial ideal then Hilbd(A2) is smooth.

Since the singular locus of Hilbd(A2) is fixed under the torus action ( torus action is a kind of

automorphism so it must preserve geometric properties of points) and it is closed, so if it not

empty then the singular locus must contain a C∗-fixed point and so a monomial ideal.

By the remark above it is enough to check smoothness of Hilbd(A2) only at monomial ideals.

To prove smoothness we will compute the dimension of the cotangent space at a monomial

ideal of the form Iλ and we will put a bound on the dimension of Hilbd(A2) via the Hilbert-

Chow morphism. For each element I ∈ Hilbd(P2), we can define a 0-cycle
∑

i mixi where xi

are the points of A2 in the support of the subscheme determined by the ideal I, and mi are

the multiplicities equal to the length of the local ring OR,xi = (C[x, y]/I)xi so
∑

mi = d. The

symmetric group S d acts on (A2)d by permuting the coordinates and we can parameterize the

0-cycle of A2 by (A2)d/S d. Let us define the morphism:

Hilbd(A2)→ (A2)d/S d

sending I ∈ Hilbd(A2) to its 0-cycle. This morphism is called the Hilbert-Chow morphism.

This morphism is surjective.

Lemma 1.3.26 Hilbd(A2) is at least 2d dimensional.

Proof 1.3.27 (A2)d/S d is 2d-dimensional and the Hilbert-Chow morphism is surjective, so

dim(Hilbd(A2) ≥ 2d �
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Now for a monomial ideal I in Hilbd(A2) we will give a combinatorial description of cotan-

gent space and show that its dimension is at most 2d.

Lemma 1.3.28 For any partition λ of d, dimC(mIλ/m
2
Iλ

) ≤ 2d. Here mIλ is the maximal ideal

corresponding to the monomial ideal Iλ ∈ Hilbd(A2).

Proof 1.3.29 We know from lemma 1.3.4 that Uλ is an affine cover for Hilbd(A2) and its

coordinate ring is generated by crs
hk for all (h, k) ∈ λ and all (r, s). Here (h, k) ∈ λ means that

xhyk is not in the ideal Iλ.

We associate an arrow for each crs
hk starting from the box (h, k) and ending at (r, s).

We set crs
hk=0 when h < 0 or k < 0 or (r, s) ∈ λ and set crs

hk = 1 when (r, s) = (h, k) . The

maximal ideal mIλ associated to the point Iλ ∈ Hilbd(A2) contains the crs
hk for which (h, k) ∈ λ

and (r, s) < λ so we can omit these coordinate functions from mIλ .

Now let us make the following analysis:

If we multiply xrys ≡
∑

(h,k)∈λ crs
hkxhyk(modIλ) by x we get xr+1ys −

∑
crs

hkxh+1ys. Now some

terms xh+1ys are not in Iλ so expanding these terms again with respect to (2.1) and comparing

the coefficients we get that

cr+1,s
hk =

∑
(l,m)∈λ

crs
lmcl+1,m

hk (2.2).

Apply the similar process for y in order to get the relation

cr,s+1
hk =

∑
(l,m)∈λ

crs
lmcl,m+1

hk . (2.3)

Since the terms crs
lmcl+1,m

hk are in m2
λ for (l+1,m) < λ and for (l+1,m) ∈ λ but (l+1,m) , (h, k)

in the quotient mλ/m
2
λ such terms reduce to zero. Taking quotient in (2.2) the remaining term

is crs
h−1,k. This means that:

cr+1,s
hk ≡ crs

h−1,kmod(mλ/m
2
λ). (2.4)

Similarly the process of multiplying by y gives the equality

cr,s+1
hk ≡ crs

h,k−1mod(mλ/m
2
λ). (2.5)

This analysis says that if we move the tail and head of an arrow one box corresponding to the

function crs
hk horizontally or vertically, this movement does not effect the residue class of the
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arrow ( or crs
hk) as long as the head of the arrow is outside and the tail is inside the staircase

diagram of Iλ.

We should remark that this analysis also contains the case where h < 0 or k < 0 i.e the arrow

crosses the x or y-axis. For example c45
13 ≡ c35

03 ≡ c36
04 ≡ c37

05 ≡ c38
06 ≡ 0 from the equalities

(2.4) and (2.5). So we have a restriction when we move the arrow. First of all if the arrow

crosses an axis then it is zero and such an arrow does not effect the quotient mλ/m
2
λ. Count

the number of arrows such that for each (h, k) the tail of the north-west pointing arrow lies

inside the square (h, k) and the head of the arrow lies just above square of column 1 outside

λ and the south-east pointing arrows such that its tail lies inside column k and its head lies

inside row 1 outside λ. The total number of such north-west and south-east pointing arrows

is equal to 2d. Therefore the cotangent space has at most dimension 2d. �

In the light of lemmas 1.3.26 and 1.3.28 the combinatorial tangent space has dimension 2d.

So Hilbd(A2) is smooth.

1.3.2 Homology Groups of Hilbd(P2) and the B-B Decomposition

Ellingsrud and Strømme in [8] computed the Betti numbers of Hilbd(P2) by using the Bialynicki-

Birula decomposition [9], [10].We would like to explain this computation below.

Definition 1.3.30 Let X be projective scheme over C. A cell decomposition of X is a filtration

X = Yn ⊃ Yn−1 ⊃ Yn−2 ⊃ ... ⊃ Y0 ⊃ Y−1 = ∅

such that each Yi − Yi−1 is a disjoint union of affine schemes Ami j for all i = 0, ..., n. We call

these affine schemes the cells of the decomposition.

Theorem 1.3.31 (Fulton,W [11]) Let X be a scheme over C with a cell decomposition. Then

for 1≤ i ≤ dimX we have

(1)The cycle map cl : A∗(X)→ H∗(X) is an isomorphism

(2)H2i+1(X) = 0

(3)H2i(X) is free abelian group generated by the homology classes of the i-dimensional cells.

Ellingsrud and Strømme constructed the cell decomposition of the Hilbd(P2) by using Gm-

actions where Gm is the 1-dimensional multiplicative algebraic group . In general if X is a
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smooth projective variety over C with an action of Gm and x ∈ X is a fixed point of this action,

then there exists an induced action of Gm on TX,x. Let T +
X,x denotes the positive weight space

of Gm. The following is proved by Bialynicki-Birula:

Theorem 1.3.32 ( B-B decomposition [9], [10])Let X be a smooth projective scheme over

C with a Gm-action. Assume that the fixed point set of Gm is a finite set {x1, ..., xr}, and let

Xi = {x ∈ X | limt→0t.x = xi}. Then

(i) X has a cellular decomposition with cells Xi

(ii) TXi,xi = T +
X,xi

⊕
T−X,xi

The main theorem in [8] is the following.

Theorem 1.3.33 (Ellingsrud,Strømme [8]) i) Let X denote the one of the schemes Hilbd(P2),

Hilbd(A2) or Hilbd(A2, 0). Then the cycle map cl : A∗(X) → H∗(X) is an isomorphism, and

in particular the odd homology vanishes.

ii)

b2k(Hilbd(P2)) =
∑

d0+d1+d2=d

∑
p+r=k−d1

P(p, d0 − p)P(d1)P(2d2 − r, r − d2)

and

χ(Hilbd(P2)) =
∑

d0+d1+d2=d

P(d0)P(d1)P(d2)

iii)

b2k(Hilbd(A2)) = P(2d − k, k − d) and χ(Hilbd(A2)) = P(d)

(iv)

b2k(Hilbd(A2, 0)) = P(k, d − k) and χ(Hilbd(A2, 0)) = P(d)

Here P(m, n) for m ≥ n denotes the number of partitions of m into n-parts and P(m) is the

number of the partitions of m. We assume that P(m, n) = 0 if m or n is negative.
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Proof 1.3.34 (sketch of proof)We will shortly give the sketch proof in [8]. Let us first show

that the part (i) of theorem 2.28. Let x0, x1, x2 homogenous coordinates for P2 and G ⊂

S L(3,C) be the maximal torus consisting of all diagonal matrices. Let ξ0, ξ1, ξ2 are characters

of G such that for all g ∈ G we have g = diag(ξ0(g), ξ1(g), ξ2(g)).Then the action of G on P2

is given by,

g.xi = ξi(g)xi

Clearly the fixed points of this action are p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1)

Let φ : Gm → G be a one-parameter subgroup of G such that this one parameter subgroup

has the same fixed point set as G.

Let L be the line x0 = 0, consider the sequence, ∅ = Y0 ⊂ Y1 = (p3) ⊂ Y2 = L ⊂ Y3 = P2.

Then Fi = Yi − Yi−1 ' Ai for i = 1, 2, 3 and by definition (2.25) these F′i s define a cell de-

composition of P2. Let us consider the one-parameter subgroups φ : Gm → G of the form

φ(t) = diag(tm0 , tm1 , tm2) where m0 < m1 < m2 and m0 + m1 + m2 = 0. We take such one-

parameter subgroup to get the same fixed point set with the maximal torus. Because if we

consider the limits we get the following conclusions when m0 < m1 < m2:

X0 =
{
[x0 : x1 : x2] ∈ P2 : limt→0t · [x0 : x1 : x2] = [0 : 0 : 1]

}
=

{
[x0 : x1 : x2] ∈ P2 : limt→0[tm0 x0 : tm1 x1 : tm2 x2] = [0 : 0 : 1]

}
=

{
[x0 : x1 : x2] ∈ P2 : limt→0[tm0−m2 x0/x2 : tm1−m2 x1/x2 : 1] = [0 : 0 : 1]

}
The only [x0 : x1 : x2] satisfying limt→0[x0 : x1 : x2] = [0 : 0 : 1] is [0 : 0 : 1]. This means

that X0 = [0 : 0 : 1]

X1 =
{
[x0 : x1 : x2] ∈ P2 : limt→0t · [x0 : x1 : x2] = [0 : 1 : 0]

}
=

{
[x0 : x1 : x2] ∈ P2 : limt→0[tm0 x0 : tm1 x1 : tm2 x2] = [0 : 1 : 0]

}
=

{
[x0 : x1 : x2] ∈ P2 : limt→0[tm0−m1 x0/x1 : 1 : tm2−m1 x2/x1] = [0 : 1 : 0]

}
This limit is equal to [0 : 1 : 0] if and only if X1 = L − [0 : 0 : 1] where L = {x0 = 0}.

X2 = {[x0 : x1 : x2] ∈ P2 : limt→0t · [x0 : x1 : x2] = [1 : 0 : 0]}

= {[x0 : x1 : x2] ∈ P2 : limt→0[tm0 x0 : tm1 x1 : tm2 x2] = [1 : 0 : 0]}

= {[x0 : x1 : x2] ∈ P2 : limt→0[1 : tm1−m0 x1/x0 : tm2−m0 x2/x0] = [1 : 0 : 0]}

As a conclusion the above limit is equal to [1 : 0 : 0] if and only if X2 = P2 − L.

By theorem 2.27 these Xi = Fi are cells of P2. The action of G induces an action on Hilbd(P2)

because G acts on the ideals in C[x0, x1, x2]. If a point of Z ∈ Hilbd(P2) is fixed under G then

the corresponding homogenous ideal IZ is generated by monomial ideals and the number of
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such ideals is finite so the number of fixed points set of G on Hilbd(P2) is finite. By using

Theorem 2.27, part (i) of Theorem 2.28 is proved since we know that Hilbd(P2) is smooth and

projective.

For any finite length subscheme Zi supported at pi, we have supp(limt→0φ(t).Zi) = limt→0(φ(t).supp(Zi)) =

pi. Therefore for any subscheme Z ⊂ Hilbd(P2) fixed under the G-action, the support of

Z is contained in the fixed point set {p1, p2, p3}. So we can write any such Z of the form

Z = Z1 ∪ Z2 ∪ Z3 where support of each closed subscheme Zi is contained in Xi for i = 1, 2, 3.

Let us put di(Z) = lenght(OZi). For each triple (d1, d2, d3) satisfying d1 + d2 + d3 = d ,

we define W(d1, d2, d3) to be the subset of Hilbd(P2) corresponding to the finite length sub-

schemes Z with di = dZi , for i = 1, 2, 3. So we can write Hilbd(P2) as a union of W′s i.e

Hilbd(P2) = ∪d1+d2+d3=dW(d1, d2, d3).

Since we have an isomorphism

W(d0, d1, d2) = W(d0, 0, 0) ×W(0, d1, 0) ×W(0, 0, d2)

so we have

Lemma 1.3.35

b2k(Hilbd(P2) =
∑

d0+d1+d2=d

∑
p+q+r=k

b2p(W(d0, 0, 0))b2q(W(0, d1, 0))b2r(W(0, 0, d2)).

The last equality reduces the problem of computing b2k(Hilbd(P2) to the problem of comput-

ing the Betti numbers of W(d1, 0, 0),W(0, d2, 0),W(0, 0, d3).

Each W is a union of cells from the cell decomposition of Hilbd(P2). For example the cells

contained in W(d1, 0, 0) are the subschemes corresponding to the fixed points supported at

p0.Since every G-invariant subscheme concentrated at a fixed point is also contained in G-

invariant affine plane, we will deal with the ideals in R = C[x, y] of length d and invariant

under the action of the two dimensional torus T. The action of T, is given on R as t.x = χ(t)x

and t.y = η(t)y for two linearly independent characters χ and η of T.

Let I be such a T-invariant ideal, so it is generated by the monomials in x and y. We put

a j = min{k | x jyk ∈ I}

because of the invariance, such a number exists for all integers j ≥ 0. Let r be the least

integer making ar > 0.Then (a0, a1, ..., ar) is a partition of d and ya0 , xya1 , x2ya2 , ..., xr+1 are
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generators for the T-invariant ideal I. So we get a bijection between partitions of d and the

T-invariant ideals I of length d in R.

If T is the tangent space of Hilbd(A2) at the point I, we have an identification T ' HomR(I,R/I),

see [3]. Ellingsrud and Strømme calculated the representation of T on T. Before giving this

calculation we will give some conventions for the notation following Ellingsrud-Strømme.

Let us denote by R[α, β] the R-module R with the action of T is given by:

t.xmyn = χ(t)m−αη(t)n−βxmyn

for any pair of integers (α, β).

In the representation ring of T let us write R[α, β] =
∑

p≥−α,q≥−β χ
pηq.

Lemma 1.3.36 There is a T-equivariant resolution

0→
r⊕

i=1

R[−i,−ai−1]
M
→

r⊕
i=0

R[−i,−ai]→ I → 0

Furthermore if ei = ai−1 − ai for 1 ≤ i ≤ r then M =



x 0 0 . . . 0

ye1 x 0 . . . 0

0 ye2 x . . . 0
...

...
. . .

...

0 . . . . . . . . . x

0 . . . . . . . . . yer


.

Ellingsrud-Strømme gave the representation of T on the tangent space T as:

Lemma 1.3.37 In the representation ring of T we have the identity

HomR(I,R/I) =
∑

1≤i≤ j≤r

a j−1−1∑
s=a j

(χi− j−1ηai−1−s−1 + χ j−iηs−ai).

Proof 1.3.38 The following T-equivariant short exact sequence

0→ I → R→ R/I → 0

induce the sequence

0→ HomR(I,R/I)
g
→ Ext1

R(I, I)
f
→ Ext1

R(I,R)
h
→ Ext1

R(I,R/I)→ 0
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The map h is an isomorphism since

Ext1
R(I,R) � Ext2

R(R/I,R) � Ext2
R(R/I,R/I) � Ext1

R(I,R/I).

Now let us consider the following T equivariant complex to compute Ext1
R(I, I)

Ě0 ⊗ E1
A
→ (Ě0 ⊗ E0) ⊕ (Ě1 ⊗ E1)

B
→ Ě1 ⊗ E0

where E0 = ⊕r
i=0R[−i,−ai], E1 = ⊕r

i=1R[−i,−ai−1]. The maps A and B are given by respec-

tively A = (idĚ0
⊗M, M̌⊗ idE1),B = (M̌⊗ idE0 ,−idĚ1

⊗M). The cokernel of B is Ext1
R(I, I), the

middle homology is HomR(I, I) = R, and A is injective. So in the representation ring we have

Ext1
R(I, I) = R +

∑
1≤i≤r,0≤ j≤r R[i − j, ai−1 − ai] −

∑
1≤i, j≤r R[i − j, ai−1 − a j−1]

−
∑

0≤i, j≤r R[i − j, ai − a j] +
∑

1≤i≤r,0≤ j≤r R[ j − i, a j − ai−1]

For 1 ≤ i ≤ j ≤ r define

Ki j = R[ j− i + 1, a j−1 − ai−1]−R[ j− i, a j−1 − ai−1]−R[ j− i + 1, a j − ai−1] + R[ j− i, a j − ai−1]

and

Li j = R[i− j, ai−1 − a j]− R[i− j, ai−1 − a j−1]− R[i− 1− j, ai−1 − a j] + R[i− 1− j, ai−1 − a j−1]

By this formulation we get Ext1
R(I, I) =

∑
1≤i, j≤r Ki j + Li j and

Ki j =
∑

p≥i− j−1,q≥ai−1−a j−1

χpηq −
∑

p≥i− j,q≥ai−1−a j−1

χpηq −
∑

p≥i− j−1,q≥ai−1−a j

χpηq +
∑

p≥i− j,q≥ai−1−a j

χpηq

Ki j =
∑

q≥ai−1−a j−1 χ
i− j−1ηq −

∑
q≥ai−1−a j χ

i− j−1ηq

Ki j =
∑a j−1−1

s=a j χi− j−1ηai−1−s−1

If we compute Li j similarly we get that

Li j =
∑

p≥ j−i,q≥a j−ai−1

χpηq −
∑

p≥ j−i,q≥a j−1−ai−1

χpηq −
∑

p≥ j−i+1,q≥a j−ai−1

χpηq +
∑

p≥ j−i+1,q≥a j−1−ai−1

χpηq

Li j =
∑a j−1−1

s=a j χ j−iηs−ai−1

Using the formulation Ext1
R(I, I) =

∑
1≤i, j≤r Ki j + Li j we get the conclusion

Ext1
R(I, I) � HomR(I,R/I) =

∑
1≤i≤ j≤r

a j−1−1∑
s=a j

(χi− j−1ηai−1−s−1 + χ j−iηs−ai)

�
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Proposition 1.3.39 b2k(W(0, 0, d)) = P(2d − k, k − d).

Proof 1.3.40 All subschemes of P2 corresponding to the points in W(0, 0, d) are contained in

S pecC[x0/x2, x1/x2]. We may take G = T and λ = ξ0ξ
−1
2 and µ = ξ1ξ

−1
2 .

Now choosing a one-parameter subgroup φ : Gm → G given by φ(t) = diag(tw0,w1,w2)

where w0 < w1 < w2 and w0 + w1 + w2 = 0. Then for any character χαηβ of G we have

χαηβ ◦ φ(t) = tα(w0−w2)+β(w1−w2).

Let U be a cell from the cell decomposition of Hilbd(P2) defined by φ and contained in

W(0, 0, d). The cell U corresponds to a fixed point of G in Hilbd(P2) and contained in

SpecC[x0/x2, x1/x2], so corresponds to an G-invariant ideal I in C[x, y] where x = x0/x2

and y = x1/x2. By B-B decomposition theorem dimU = dimT+. Again we have a G-invariant

identification T = HomR(I,R/I) where R = C[x, y], [ see {3]. Since wo < w1 < w2, it is

possible to take the quotient wo − w2/w1 − w2 so large if we need. Then any one dimensional

representation χαηβ has positive weight to the φ if and only if α < 0 or α = 0andβ < 0. From

lemma 1.27 it follows that

T+ =
∑

1≤i≤ j≤r

a j−1−1∑
s=a j

χi− j−1ηai−1−s−1 +

r∑
j=1

a j−1−1∑
s=a j

ηs−a j−1

. The number of summand in the first sum is
∑r

i=1
∑r

j=1(a j−1 − a j) =
∑r

i=1 ai−1 = d and in the

second sum
∑r

j=1(a j−1−a j) = b0. So the dimU = dimT+ = d + b0. Since there is a one-to-one

correspondence between invariant ideals of length d and partitions a0 ≥ a1 ≥ ... ≥ ar = 0

of d, and b2k(W(0, 0, d)) is equal to the number of k-dimensional cells b2k(W(0, 0, d)) is the

number of partitions of 2d − k in parts bounded by k − d.

Using same method in the case W(0, 0, d) it can be proved the other two cases i.e b2k(W(d, 0, 0)) =

P(k, d − k) and b2k(W(0, d, 0)) = P(d). �

Remark 1.3.41 Since W(0, 0, d) = Hilbd(A2),the (iii) part of Theorem 1.24 is proved.

If these computations are put in Lemma 1.26 we get the (ii) part of Theorem 1.24. �
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CHAPTER 2

A Ga-ACTION ON Hilbd(P2) AND ITS FIXED LOCUS

2.1 Multiplicative and Additive Group Actions on the Hilbert Scheme

Let Gm and Ga denote the 1-dimensional connected multiplicative and additive algebraic

groups respectively. The group GL(3,C) acts on C3 by matrix multiplication. Take linear

representations of Gm and Ga on C3,then view the images as subgroups of GL(3,C). So these

representations induce actions on P2. Let T ⊆ GL(3,C) be the maximal torus consisting of

the diagonal matrices and λ0, λ1, λ2 denote the characters of T such that any element t ∈ T is

given by;

t = diag(λ0(t), λ1(t), λ2(t))

Let x0, x1, x2 be the homogenous coordinates of P2. The torus T acts on P2 by;

λ : T × P2 → P2

(t, [x0 : x1 : x2])→ [λ0(t)x0 : λ1(t)x1 : λ2(t)x2]

This action of T on P2 induces an action on Hilbd(P2) because T acts on the homogenous

ideals in C[x0, x1, x2].

Now we will give some definitions and facts about (Gm,Ga)- varieties. These definitions and

facts based on references [12], [13], [14].

Definition 2.1.1 Let X be a nonsingular n-dimensional complex projective variety having Gm

and Ga-actions

λ : Gm × X → X, ((t, x)→ λ(t) · x)
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θ : Ga × X → X, ((u, x)→ θ(u) · x)

such that

(i) The Ga-action has a unique fixed point,say s0

(ii) There exists a positive integer p ≥ 1 such that

λ(t) · θ(u) · λ(t−1) = θ(tp · u) for all t ∈ Gm and u ∈ Ga.

We call such a variety X a (Gm,Ga)-variety.

In [12], it is shown that if X is a (Gm,Ga)-variety then the fixed points XGm of the Gm-action

is a finite set of points and s0 ∈ XGm .

Let XGm = (s0, s1, ..., sr).

Theorem 2.1.2 (Bialynicki − Birula decomposition) Let X be a smooth projective variety

over an algebraically closed field k with an action of Gm. Suppose that the fixed point set of

the Gm-action is the finite set (s0, s1, ..., sr). Let

X−i :=
{
x ∈ X | lim

t→∞
t.x = si

}
f or i = 1, · · · , r

Then X has a cell decomposition such that its cells are the X−i .

Proof 2.1.3 See [9], [10]. �

The Gm-action λ induces an action dλ of Gm, via derivation, on the tangent space Tsi(X) of X

at the fixed points si for all i = 0, ..., r. By [5], all the weights of the induced action on Tsi X

are nonzero. Let Tsi(X)− denote the negative weight space of the induced action on Tsi(X).

Theorem 2.1.4 (i) Ts0(X) = Ts0(X)−

(ii)Each minus cell X−i is Gm-equivariantly isomorphic to Tsi(X)−

(iii)X−0 is Zariski open in X.

Proof 2.1.5 See [9], [10]. �

Now let V be the holomorphic vector field associated to θ i.e V = dθ
du |u=0, and let Z be the zero

scheme of V . In [14], it is shown that the fixed point scheme XGa is equal to Z as a scheme

and the support of Z is (s0). From the identity λ(t).θ(u).λ(t−1) = θ(tp.u) we can say that the
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fixed point scheme XGa is a Gm-invariant closed subscheme of X. So Z is a Gm-invariant

subscheme of X−0 . After this point let X−0 = U. The Gm-action λ on the affine space U induces

a Gm- action on the coordinate ring A(U) of U as below;

(λ(t) · f )(x) = f (λ(t−1) · x)

This Gm-action induces a graded algebra structure on A(U) =
⊕∞

l=0 A(U)l, where

A(U)l = ( f ∈ A(U) : λ(t) · f = tl · f ∀t ∈ Gm)

is the l-weight space. Then the coordinate ring A(Z) of Z has a graded algebra structure, since

Z is a Gm-invariant subscheme of U. The ideal I(Z) is homogenous ideal in A(U).

By theorem 1.1.7, we can identify A(U) with S ym(Ts0(X)∨) as follows: If e1, e2, ..., en is an

eigenbasis of Ts0(X) with weights a1, a2, ..., an, respectively, and x1, x2, ..., xn is the dual basis,

then S ym(Ts0(X)∨) = C[x1, ..., xn] such that each xi is homogenous of degree −ai. Since all

weights of the Gm-action on Ts0 are negative, each xi has positive degree.

Viewing V as a derivation of S = C[x1, ..., xn], define φi = V(xi). So V = Σφiei

Lemma 2.1.6 φ1, φ2, ..., φn is a homogenous regular sequence in S with deg(φi) = deg(xi)+p.

Proof 2.1.7 See, [13] �

The following lemma is a general rule for the factorization of the Poincare polynomial of a

graded algebra satisfying certain conditions.

Lemma 2.1.8 Let S be the polynomial ring C[x1, ..., xn] graded by the degree of xi = bi ≥

1 f or i = 1, . . . , n. If φ1, φ2, ..., φn is a homogenous regular sequence in S , then the

Poincare polynomial P(S/(φ1, φ2, ..., φn), t) of the graded algebra S/(φ1, φ2, ..., φn) has the

following factorization:

P(S/(φ1, φ2, ..., φn), t) =

n∏
i=1

1 − tdeg(φi)

1 − tdeg(xi)
.

The basic result for a (Gm,Ga)-variety X is:

Theorem 2.1.9 There exists an algebra isomorphism ϕ : A(Z) → H∗(X,C) which carries

A(Z)pi onto H2i(X,C). In particular A(Z)l is trivial unless l = ip for some i, 0 ≤ i ≤ n.
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Proof 2.1.10 See [12] and [13]. �

An easy corollary for a (Gm,Ga)-variety X is the following: The Poincare polynomial

P(X, tp/2) of X has the following factorization:

P(X, tp/2) =

n∏
i=1

1 − tp−ai

1 − t−ai

2.2 Ga-Fixed Point Locus

2.3 Questions about the Ga-fixed locus of Hilbd(P2)

The Ga and Gm-actions on P2 naturally induce compatible Ga and Gm-actions on Hilbd(P2).

However, Hilbd(P2) is not a (Gm,Ga)-variety in the manner described, since in general there

is more than one Ga-fixed point. The most general fact known for the fixed point scheme

XGa in general is that XGa is connected. Nevertheless it is interesting to answer the following

questions in order to uncover the structure of Hilbd(P2) ,

i) What is the dimension of fixed locus of the Ga-action on a given smooth scheme X?

ii) If the fixed locus 1-dimensional then is it rational?

iii) What can be said about the Ga-fixed locus in question(irreducible, rational, uniruled etc.)?

In this thesis we try to get a path to questions formulated above.

2.3.1 An Example

In this section we’ll try to see the fixed points, the weights of the Gm-action and the factoriza-

tion pattern of Poincare polynomial by assuming that the Ga-action has unique fixed point on

Hilb2(P2), the Hilbert scheme of 2-points in projective space over complex field.We conjec-

ture that there is indeed a unique fixed point.

Let us fix the Ga and Gm -action on P2 as:

θ : Ga × P2 −→ P2

( 
1 a a2/2

0 1 a

0 0 1

 , [x0 : x1 : x2]
)
→ [x0 + ax1 +

a2

2
x2 : x1 + ax2 : x2]
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λ : Gm × P2 −→ P2

(t, [x0 : x1 : x2])→ [x0 : tx1 : t2x2]

where a ∈ Ga, t ∈ Gm and [x0 : x1 : x2] are the homogenous coordinates of P2

[1 : 0 : 0], [0 : 0 : 1], [0 : 1 : 0] are Gm fixed points and [1 : 0 : 0] is the unique Ga-fixed

point.

Let us define U as the open set (x0 , 0) and say x =
x1
x0

, y =
x2
x0

are the affine coordinates of

U. Then the induced Gm and Ga-actions are of the following form:

θ : Ga × A2 −→ A2

(a, (x, y)) −→ (
x + ay

1 + ax + a2

2 y
,

y

1 + ax + a2

2 y
)

λ : Gm × A2 −→ A2

(t, (x, y)) −→ (tx, t2y)

Using these actions on A2 we will try to compute the fixed locus of Hilb2(A2). It is equivalent

to finding the Ga-invariant ideals I in R = C[[x, y]]
(1+ax+ a2

2 y)
such that dimC

R
I = 2 by definition

of the Hilbert scheme. We want to look at the Ga and Gm-fixed locus. Since these ideals are

Gm-invariant they must be monomial ideals. Also we look at the ideals supported at (0, 0)

since (0, 0) is the only Ga-fixed point.

Let us consider the monomial ideal I = (x2, y).

Lemma 2.3.1 dimC
R

(x2,y) = 2.

Proof 2.3.2 (1, x) is a C-basis for R
(x2,y) . Since y, x2 ∈ I then y, x2 ≡ 0 in R

(x2,y) . The only

monomials which are not in I are 1 and x. So we can write every element of R
(x2,y) as f ≡

C.1 + C.x. And also 1 and x are C-linearly independent. �

Lemma 2.3.3 I = (x2, y) is Ga-invariant.

Proof 2.3.4 Under the Ga-action I = (x2, y) is sent to the ideal J = ( (x+ay)2

(1+ax+ a2
2 y)2

,
y

1+ax+ a2
2 y

).

Since 1 + ax + a2

2 y is invertible in R , J = ((x + ay)2, y) so y ∈ J. Since y ∈ J we can cancel
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out all y terms in (x + ay)2 so x2 ∈ I. This shows that I ⊂ J.

For the other direction; Since (x + ay)2 = x2︸︷︷︸
∈I

+ 2ax︸︷︷︸
∈R

y︸︷︷︸
∈I

+ y︸︷︷︸
∈R

. y︸︷︷︸
∈I

, so (x + ay)2 ∈ I

and also y ∈ I, J ⊂ I. �

We assumed that the Ga-action has a unique fixed point. So I = (x2, y) is the unique fixed

point. We have seen before that X = Hilb2(A2) is smooth and of dimension 4. So in order to

apply corollary 2.11, we have to find the Gm-weights of TIX. So we look at all possible first

order deformations at the point I = (x2, y).

Lemma 2.3.5 The first order deformations at the point I = (x2, y) are as follows;

I1
ε = (x2, y − ε)

I2
ε = (x2 − ε, y)

I3
ε = (x2 − εx, y)

I4
ε = (x2, y + εx)

where ε2 = 0.

Proof 2.3.6 First of all we have to show that these elements are in the Hilbert scheme i.e their

lengths are equal to 2. Claim: Length of Ii
ε is equal to 2 i.e dimC

R[ε]/(ε2)
Ii
ε

for i = 1, ..., 4 and Ii
ε

for all i = 1, 2, 3, 4 are linearly independent. Let us say S =
R[ε]/(ε2)

Ii
ε

For i = 1 :

1 and x are not in (x2, y − ε). (y − ε)︸ ︷︷ ︸
∈I1
ε

(y + ε)︸ ︷︷ ︸
∈I1
ε

= y2 − ε2 ≡ y2 in so y2 ∈ I1
ε . Also,

(y − ε)︸ ︷︷ ︸
∈I1
ε

(x − ε)︸ ︷︷ ︸
∈I1
ε

= xy − εx − εy + ε2 ≡ −εx − ε 1ε︸︷︷︸
y=1ε

≡ −εx so xy is equivalent to x in S .

Therefore every element in I1
ε can be written as a C-linear combination of 1 and x. i.e (1, x)

is a basis for I1
ε . So the length of I1

ε is equal to 2.

For the case i = 2 :

Since y ∈ I2
ε , xy and y2 are in I2

ε . x2 = 1.ε so 1 and x2 are equivalent in S . The only remaining

elements which are not in I are (1, x). Since 1 and x are linearly independent, the length of I2
ε
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is equal to 2.

Similarly, we look at the case i = 3 :

Since y ∈ I we can cancel out all powers of y in S . Also x2 = εx, so all powers of x in S can

be represented by x. So length of I3
ε is equal to 2.

Finally the case i = 4 :

Since y = −εx , y and x are equivalent in S . So {1, x} is a basis for I4
ε .

Now let us show that Ii
ε for all i = 1, 2, 3, 4 is linearly independent. This is equivalent to show

that these 4 deformations are independent in the tangent space of Hilbert scheme.

Suppose that there exists nonzero a, b, c, d ∈ C such that

(x2 − aεx + bε, y − cεx + dε)︸                                ︷︷                                ︸
J

= (x2, y)︸︷︷︸
I

i.e suppose that they are dependent. where this equivalence is in C[[x, y]][ε]/ε2.

Since x2 ∈ J, then we get that aεx + bε ∈ J. Let us take into a bε paranthesis. Then,

aεx + bε = bε( a
b x + 1). Since a

b x + 1 is invertible in C[[x, y]][ε]/ε2 we get bε ∈ J = I. But bε

is in I if and only if b = 0.

Similarly, since y ∈ J we get that −cεx + dε = dε (−
c
d

x + 1)︸      ︷︷      ︸
invertible

∈ J. So dε is in J = I. This holds

if and only if d = 0.

Since b = d = 0, J is, now, of the form J = (x2 − aεx, y − cεx). But since x2 and y is in I = J,

so aεx and cεx is in J = I. In the ideal I, the smallest degree of x is 2. So aεx and cεx is

in I if and only if a = c = 0. So we showed these four deformations are independent. Recall

that the tangent space to an ideal in the Hilbert scheme can be identified with the first order

deformations of I, see [9] section VI. Since X = Hilb2(A2) is smooth of dimension 4 there

exists no other deformation. �

Now let us compute the weights of the Gm-action for each Ii
ε .
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t.I1
ε = (t2x2, t2y − ε) = (x2, y − εt−2x) = I1

εt−2

t.I2
ε = (t2x2 − ε, t2y) = (x2 − t−2ε, y) = I2

εt−2

t.I3
ε = (t2x2 − εtx, t2y) = (x2, εt−1x, y) = I3

εt−1

t.I4
ε = (t2x2, t2y + εtx) = (x2, y + εt−1x) = I4

εt−1

So I1
ε and I2

ε have weight -2, I3
ε and I4

ε have weight -1.

Therefore, the Poincaré polynomial has the following factorization,

P(Hilb2(A2), t1/2) =
1 − t2

1 − t
.
1 − t2

1 − t
.
1 − t3

1 − t2 .
1 − t3

1 − t2 = t4 + 2t3 + 3t2 + 2t + 1

These coefficients agree with the numbers given in table 1 in [8]. This motivates our conjec-

ture that there is a unique Ga-fixed point.

2.4 Ga -invariant monomial ideals

In this section we will answer the following question: ”Which monomial ideals in Hilbd(P2)

are Ga invariant”?

Lemma 2.4.1 I = (xd, y) is Ga-invariant.

Proof 2.4.2 Under the Ga-action this ideal goes to J = ( (x+ay)d

(1+ax+ a2
2 y)d

,
y

1+ax+ a2
2 y

). Now let us

check these two ideals are equal in R. We can cancel out denominators 1 + ax + a2

2 y and

(1+ax+ a2

2 y)d since 1+ax+ a2

2 y is invertible in R. So it is enough to consider J = ((x+ay)d, y).

It is obvious that J ⊂ I. So we need to show I ⊂ J.

Look at the power

(x + ay)d = xd + d.xd−1y +
d.(d − 1)

2
xd−2y2 + ... +

d.(d − 1)
2

xyd−1 + yd

= xd + y (d.xd−1 +
d.(d − 1)

2
xd−2y + ... +

d.(d − 1)
2

xyd−2 + yd−1)︸                                                                    ︷︷                                                                    ︸
f (x,y)
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So

xd = xd + y (d.xd−1 +
d.(d − 1)

2
xd−2y + ... +

d.(d − 1)
2

xyd−2 + yd−1)︸                                                                    ︷︷                                                                    ︸
f (x,y)

−y. f (x.y) Since y ∈ J then

xd ∈ J, therefore we are done. �

Lemma 2.4.3 Ideals of the form I = (xm0 , xm1y, xm2y2, ..., xmk−1ys−2, xmk ys−1, ys) are Ga-invariant

where the powers of y are increasing by 1 and the sum of the powers of the x’s is equal to

d(= length) such that m0 > m1 > ... > mk−1 > mk > 0 are positive integers.

Proof 2.4.4 Under the Ga-action the ideal I goes to:

J = (
(x + ay)m0

(1 + ax + a2

2 y)m0
,

(x + ay)m1

(1 + ax + a2

2 y)m1

y

(1 + ax + a2

2 )
, ...,

ys

(1 + ax + a2

2 y)s
)

By the same reason as in proof 5.2 we can forget all denominators, so;

J = ((x + ay)m0 , (x + ay)m1y, (x + ay)m2y2, ..., (x + ay)mk−1ys−2, (x + ay)mk ys−1, ys)

Let us show that J ⊂ I.

(x + ay)m0 = xm0︸︷︷︸
∈I

+
(
m0
1

)
axm0−1y +

(
m0
2

)
a2xm0−2y2 + ... + am0ym0

= xm0︸︷︷︸
∈I

+
(
m0
1

)
a xu︸︷︷︸

u+m1=m0−1

xm1y︸︷︷︸
∈I

+
(
m0
2

)
a2 xv︸︷︷︸

v+m2=m0−2

xm2y2︸︷︷︸
∈I

+... + am0 ys︸︷︷︸
sincem0≥s

ym0−s︸︷︷︸
∈I

so (x + ay)m0 ∈ I.

(x + ay)m1y = xm1y︸︷︷︸
∈I

+m1a xu︸︷︷︸
m1−1≥m2

xm2y2︸︷︷︸
∈I

+
(
m1
2

)
a2 xv︸︷︷︸

m1−2≥m3

xm3y3︸︷︷︸
∈I

+... + am1ym1−s ys︸︷︷︸
∈I

. i.e

(x + ay)m1y ∈ I.

(x+ay)mk ys−1 = xmk ys−1+mkaxmk−1ys+
(
mk
2

)
a2xmk−2ys+1+...+amk ymk+s−1 = xmk ys−1︸  ︷︷  ︸

∈I

+ ys︸︷︷︸
∈I

( f (x, y))

for some polynomial f (x, y).

Thus every generator of J is an element of I. So J ⊂ I.

In the other direction look at the term (x + ay)mk ys−1.

(x + ay)mk ys−1 = (xmk + mkxmk−1y +
(
mk
2

)
a2xmk−2y2 + ... + amk−1mkxymk−1 + amk ymk )ys−1

= xmk ys−1 + ys (xmk−1 +

(
mk

2

)
a2xmk−2y + ... + amk−1mkxymk−2 + ymk−1)︸                                                                  ︷︷                                                                  ︸

g(x,y)

Since ys ∈ J, xmk ys−1 = (x + ay)mk ys−1 − ys.g(x, y) ∈ J. (∗)

Similarly;

(x + ay)mk−1ys−2 = (xmk−1 + mk−1xmk−1−1y + ... + amk−1−1mk−1xymk−1−1 + amk−1ymk−1)ys−2

= xmk−1ys−2 + xmk−1−1ys−1 + ys(h(x, y))
.
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Since mk−1 − 1 ≥ mk, write xmk−1−1ys−1 as xmk−1ys−1 = xmk−1−mk−1. xmk ys−1︸  ︷︷  ︸
∈J(∗)

So

J 3 xmk−1ys−2 = (x + ay)mk−1ys−2 − ys︸︷︷︸
∈J

h(x, y)︸︷︷︸
∈C[x,y]

−xmk−1−mk−1. xmk ys−1︸  ︷︷  ︸
∈J

Applying the same process inductively for each monomial generator of J we get a monomial

generator of I. Thus J ⊂ I, and consequently, I = J. �

Lemma 2.4.5 Suppose that the ideal is of the form

I = (xm0 , xm1ys1 , xm2ys2 , ..., xmsysk , xms+1ysk+1 , ..., xml−1ysl−1 , ysl)

where m0 > m1 > ... > ms+1 > ... > ml > 0 and 1 < 2 < ... < sk < sk+1 < ... < sn.

If there exists at least one consequtive pair (sk, sk+1),sk ≥ 1 in the power of y such that

sk+1 − sk ≥ 2 then the ideal I is not Ga-invariant.

Proof 2.4.6 Under the Ga-action I is sent to:

J = (
(x + ay)m0

(1 + ax + a2

2 y)m0
, ...,

(x + ay)msysk

(1 + ax + a2

2 y)ms+sk
,

(x + ay)ms+1ysk+1

(1 + ax + a2

2 y)ms+1+sk+1
, ...,

ysn

(1 + ax + a2

2 y)sn
).

Forgetting denominators;

J = ((x + ay)m0 , ..., (x + ay)msysk , (x + ay)ms+1ysk+1 , ..., ysn).

Suppose that I = J and the ideal I contains consequtive terms,xmsyk and xms+1yu such that

u ≥ k + 2.

Under the Ga-action these terms are sent to (x + ay)msyk ∈ J and (x + ay)ms+1yu ∈ J, respec-

tively.

Now let us expand the term, (x + ay)msyk ∈ J

(x + ay)msyk︸         ︷︷         ︸ = xmsyk + amsxms−1yk+1 +

(
ms

2

)
xms−2yk+2 + ... + amsyms+k︸                                                                   ︷︷                                                                   ︸

∈J

.

Since we have assumption that I = J so,

xmsyk + amsxms−1yk+1 +

(
ms

2

)
xms−2yk+2 + ... + amsyms+k︸                                                                   ︷︷                                                                   ︸

∈I

. Therefore we can write this term as:
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xmsyk+amsxms−1yk+1+
(
ms
2

)
xms−2yk+2+...+amsyms+k = xm0 f0(x, y)+xm1y f1(x, y)+...+ys fs(x, y),

then amsxms−1yk+1 = xm0 f0(x, y) + xm1y f1(x, y) + ... + ys fs(x, y) − xmsyk −
(
ms
2

)
xms−2yk+2 − ... −

amsyms+k.

If we consider this equality modula the ideal P = (xms , yk+2) and forgetting the coefficients,

we have that

xms−1yk+1︸     ︷︷     ︸
,0(modP)

= xm0 f0(x, y) + ... + ys fs(x, y) − xmsyk − xms−2yk+2 − ... − yms+k︸                                                                           ︷︷                                                                           ︸
=0(modP)

,

which is a contradiction. Therefore the ideals I in the lemma are not Ga-invariant. �

2.4.1 Patterns of Degeneration

In lemma 5.2 and 5.3 we determined all the Ga-invariant monomial ideals. Since the Ga-

fixed point scheme is connected these monomial ideals must be connected at least via some

curves in the Hilbert scheme. Here we will demonstrate explicitly rational curves that connect

monomial ideal locus.

Example 2.4.7 Let us fix the length as d. If I = (xd, y) and J = (xd−1, xy, y2) we can connect

I and J by the degeneration Jt = ((xd−1 + ty, xy, y2), and Jt is Ga-invariant for all t ∈ C.

Proof 2.4.8 First of all dimC
R
Jt

= d.

Now let us show that Jt is Ga-invariant. Under the Ga-action, Jt is sent to

J
′

t = (
(x + ay)d−1

(1 + ax + a2

2 y)d−1
+ t

y

1 + ax + a2

2 y
,

x

1 + ax + a2

2

y

1 + ax + a2

2 y
,

y2

(1 + ax + a2

2 y)2
)

Since we work in C[[x, y]]
1+ax+ a2

2 y
we cancel out the denominators. After some simplification,

we get

J
′

t = ((x + ay)d−1 + ty(1 + ax +
a2

2
y)d−2, xy, y2).

Look at the power expansion of (x + ay)d−1 + ty(1 + ax + a2

2 y)d−2:

(x + ay)d−1 + ty(1 + ax + a2

2 y)d−2 = xd−1 + xy f (x, y) + ad−1yd−1 + ty + xy.g(x, y) + tyd−1 for

certain polynomials f (x, y), g(x, y).

Since xy ∈ J
′

t and d − 1 ≥ 2,

xd−1 + ty = (x+ay)d−1 + ty(1+ax+
a2

2
y)d−2− xy︸︷︷︸

∈J′t

( f (x, y)+g(x, y))− y2︸︷︷︸
∈J′t

(ad−1yd−3 + tyd−3).
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i.e xd−1 + ty ∈ J
′

t .This shows that Jt ⊂ J
′

t .

Conversely, we will show that J
′

t ⊂ Jt.

Since xy and y2 are in both J
′

t and Jt, it is enough to check that (x+ay)d−1 + ty(1+ax+ a2

2 y)d−2

is in Jt or not. Let us call this term as z(x, y, t),then

z(x, y, t) = xd−1 + xy( f (x, y)) + ad−1yd−1 + ty[(1 + ax)d−2 + ... + ( a2

2 )d−2yd−2]

= xd−1 + xy f (x, y) + ad−1yd−1 + ty[1 + xg(x) + a2

2 y + xyh(x, y) + ... + ( a2

2 )d−2yd−2]

= xd−1 + xy( f (x, y)) + ad−1yd−1 + ty + xy(tg(x)) + a2

2 y2 + ... + t( a2

2 yd−1)

= xd−1 + ty︸    ︷︷    ︸
∈Jt

+ xy︸︷︷︸
∈Jt

( f
′

(x, y)) + y2︸︷︷︸
∈Jt

(g
′

(y))

where f
′

(x, y) = f (x, y) + tyh(x, y) + tg(x) and for certain polynomials f
′

(x, y), g
′

(y). Here we

can take y2 parentheses since d − 1 ≥ 2.

So J
′

t ⊂ Jt. Therefore, J
′

t is Ga-invariant.i.e J
′

t = Jt.

For t = 0 we get J.When t , 0, Jt = ( (xd−1

t + y, xy, y2). If we take the limit t → ∞ we see

that y ∈ the limiting ideal. Also x(xd−1 + ty) − y(xy) = xd, so xd is in Jt for all t hence in the

limiting ideal. So the limit of Jt is equal to J. Namely we found a rational curve in Hilbd(P2)

connecting (xd, y) to (xd−1, xy, y2). �

Remark 2.4.9 If I = (xu, xm1y︸︷︷︸
1st−position

, ..., xmk yk︸︷︷︸
kth−position

, ..., xms−1ys−1, ys) then there are two cases

for the ideal J such that its first monomial is of the form xu−1. The first case is that the

other monomial generators of J is equal to monomial generators of I except one monomial

generator since length of I= length of J. Say the difference is at position k, 1 ≤ k ≤ s. This

means that xmk yk ∈ I is different from xm
′

k yk ∈ J.Since I and J have the same length we must

have m
′

k − mk = 1.

Lemma 2.4.10 If

I = (xu, xm1y, xm2y2, ..., xmk yk, ..., xms−1ys−1, ys)

and

J = (xu−1, xm1y, xm2y2, ..., xm
′

k yk, ..., xms−1ys−1, ys)

such that 1 ≤ k ≤ s Then there a exists a rational curve in Hilbd(P2) connecting I and J, all

of whose points are Ga-invariant. Explicitly, its points are:

Jt = (xu−1 + txmk yk, xm1y, xm2y2, ..., xm
′

k yk, ..., xms−1ys−1, ys).
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Proof 2.4.11 Let us show that Jt is Ga-invariant. Forgetting and equalizing denominators, Jt

is sent to:

J
′

t = ((x + ay)u−1 + t(x + ay)mk yk(1 + ax +
a2

2
y)u−mk−k−1, (x + ay)m1y, ..., (x + ay)m

′

k yk, ..., ys)

Start from (x + ay)ms−1ys−1 = xms−1ys−1 + ys( f (x, y)). Subtracting ys︸︷︷︸
∈J′t

( f (x, y)) from (x +

ay)ms−1ys−1 we see that xms−1ys−1 is in J
′

t . Similarly, (x+ay)ms−2ys−2 = xms−2ys−2 + xms−2−1ys−1 +

ys(g(x, y)). Since ms−2 − 1 ≥ ms−1 write this one as:

(x + ay)ms−2ys−2 = xms−2ys−2 + xms−2−1−ms−1(xms−1ys−1) + ys(g(x, y)).

So we get that xms−2ys−2 is in J
′

t . Continuing like that we see easily that xm1y, xm2y2, ..., xm
′

k yk, ..., xms−1ys−1, ys

are in J
′

t .

Let us expand the term:

(x + ay)u−1 + t(x + ay)mk yk(1 + ax + a2

2 y)u−mk−k−1. Let us call it as z(x, y, t)

z(x, y, t) = xu−1 + ... + yu−1 + t(x + ay)mk yk(1 + x( f (x) + y(g(x, y))))

= xu−1 + axu−2y + ... + yu−1 + t(xmk + ... + ymk )yk(1 + x( f (x) + y(g(x, y)))) (∗)
Since u − i ≥ mi ,u − 1 ≥ s we can cancel the terms xu−2y, ..., yu−1: We can rewrite (*) as:

xu−1 + txmk yk + t(axmk−1y + ... + ymk )(yk + xyk f (x) + yk+1g(x, y))

xu−1 + txmk yk + taxmk−1yk+1 + taxmk yk+1 f (x) + ... + ymk+k+1g(x, y)︸                                                            ︷︷                                                            ︸
We can cancel out all the underbraced terms by the monomials xmk yk, xmk+1yk+1, ..., ys by de-

gree reasons, mk+i ≤ mkfor all i ≥ 0 and mk + k ≥ s.

So xu−1 + txmk yk ∈ J
′

t .Therefore Jt ⊂ J
′

t .

Now we will show that Jt ⊃ J
′

t

(x + ay)mk yk = xmk yk + amkxmk−1yk+1 + ... + amk ymk+k

= xmk yk︸︷︷︸
∈Jt

+amk xu︸︷︷︸
mk+1+u=mk−1

xmk+1yk+1︸    ︷︷    ︸
∈Jt

+... + amk yv︸︷︷︸
mk+k=v+s

ys︸︷︷︸
∈Jt

.

So (x + ay)mk yk ∈ Jt for all 1 ≤ k ≤ s − 1

For the term , (x + ay)u−1 + t(x + ay)mk yk(1 + ax + a2

2 y)

p︷            ︸︸            ︷
u − mk − k − 1, if we expand powers

and put the necessary parenthesis it can be written of the the following form:

xu−1 + axu−2y + a2xu−3y2 + ... + au−1yu−1 + tyk(xmk + xmk−1y + ... + ymk )(1 + f (x, y)) for cer-

tain polynomial f (x, y). It is equal to the term xu−1 + txmk yk︸          ︷︷          ︸
∈Jt

+t xmk−1yk+1︸     ︷︷     ︸
∈Jt ,mk−1≥mk+1

(1 + f (x, y)) + ... +

t ymk+k︸︷︷︸
∈Jt ,mk+k≥s

(1 + f (x, y)) + axu−2y + a2xu−3y2 + ... + au−1yu−1︸                                       ︷︷                                       ︸
∈Jt

.
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So all generators of the J
′

t is also in Jt. Hence J
′

t ⊂ Jt. Therefore, J
′

t is Ga invariant. Also

length( I)= length( J
′

t ). Let’s show that in the limiting positions J
′

t gives I and J. For t = 0 we

have J. If t , 0,

x(xu−1 + txmk yk) − t(xm
′

k yk) = xu + tx

=m
′

k︷ ︸︸ ︷
mk + 1yk − t(xm

′

k yk) = xu.

So xu is in Jt for all t, hence also in the limiting ideal.

When t → ∞, xu−1

t + xmk yk → xmk yk, therefore xmk yk is in the limiting ideal. We have had an

assumption that all monomials in I and J are equal except one monomial. Therefore we can

connect I and J by Jt. �

Remark 2.4.12 If I = (xu, xm1y, ..., xmk yk, ..., xms−1ys−1, ys) then the second case for the ideal

J such that it’s first monomial is xu−1 is that;

J = (xu−1, xm1y, ..., xmk yk, ..., xms−1ys−1, xys︸︷︷︸
newterm

, ys+1)

Lemma 2.4.13 The ideals I and J in remark 6.6 are connected with the rational curve of

Ga-invariant ideals

Jt = (xu−1 + tys, xm1y, ..., xmk yk, ..., xms−1ys−1, xys, ys+1).

Proof 2.4.14 First we need to show that Jt is Ga-invariant.

Applying the action we get

J
′

t = ((x + ay)u−1 + tys(1 + ax +
a2

2
y)u−s−1, (x + ay)m1y, ..., (x + ay)ys, ys+1)

(x + ay)ys = xys + ays+1 so subtracting a ys+1︸︷︷︸
∈J′t

we see that xys ∈ J
′

t .

xmsys−1 = (x + ay)msys−1 − xms−2 (xys)︸︷︷︸
∈J′t

− f (x, y) ys+1︸︷︷︸
∈J′t

.

Therefore xmsys−1 ∈ J
′

t .

Continuing this process we see that all monomial generators of J
′

t up to up to (x + ay)u−1 +

tys(1 + ax + a2

2 y)u−s−1 is in J
′

t .

Now consider the term:(x + ay)u−1 + tys(1 + ax + a2

2 y)p. Let us call it as z(x, y, t) then

z(x, y, t) = xu−1 + xu−2y + ... + yu−1 + tys((1 + ax)p + (1 + ax)p−1y + ... + yp)

= xu−1 + xu−2y + ... + yu−1 + tys(1 + ax)p + ys+1( f (x, y))

= xu−1 + xyu−2 + yu−1 + tys + xys(g(x)) + ys+1( f (x, y))
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We can cancel out the term ys+1( f (x, y)) since ys+1 ∈ J
′

t .

Since u − 2 ≥ m1, u − 3 ≥ m2, ..., u − 1 ≥ s, we can also cancel out xu−2y, ..., xyu−2, yu−1

by elements of J
′

t , xm1y, xm2y2, ..., xys, ys+1 as a conclusion we get that xu−1 + tys is in J
′

t .

So Jt is invariant under the Ga-action. The length of J
′

t is equal to length of I. Since

x(xu−1 + tys) − txys = xu, so the term xu is in the limiting ideal. For t = 0 we get the

ideal J.

For t , 0, if take the limit of xu−1

t +ys as t → ∞we get ys. Other monomials xm1y, xm2y2, ..., xms−1ys−1

are also in limiting ideal. Since ys is in we can forget the monomial xys. Therefore the limiting

ideal gives us the ideal I. �

Example 2.4.15 For length d = 8 we will show all invariant monomial ideals and their

degenerations described above.

I1 = (x8, y)

I2 = (x7, xy, y2)

I3 = (x6, x2y, y2)

I4 = (x5, x3y, y2)

I5 = (x5, x2y, xy2, y3)

I6 = (x4, x3y, xy2, y3)

I1

(x7+ty,xy,y2)︷︸︸︷
←− I2

(x6+txy,x2y,y2)︷︸︸︷
←− I3

(x5+tx2y,x3y,y2)︷︸︸︷
←− I4

(x4+ty2,x3y,xy2,y3)︷︸︸︷
←− I6

also we can connect I5 and I3 by the degeneration (x5+ty2, x2y, xy2, y3). So we get a connected

graph for the fixed point locus of Ga.

The followings figures are Ferrer’s diagrams of I′i s.

1 y

x^8

x^7

x^6

x^5

x^4

x^3

x^2

x

Figure 2.1: Figure
of I1

y y^21

x

x^2

x^3

x^4

x^5

x^6

x^7

x^8

Figure 2.2: Figure
of I2

y y^21

x

x^2

x^3

x^4

x^5

x^6

x^7

x^8

Figure 2.3: Figure
of I3
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1 y^3y^2y

x^8

x^7

x^6

x^5

x^4

x^3

x^2

x

Figure 2.4: Figure
of I4

1 y^3y^2y

x^8

x^7

x^6

x^5

x^4

x^3

x^2

x

Figure 2.5: Figure
of I5

1 y^3y^2y

x^8

x^7

x^6

x^5

x^4

x^3

x^2

x

Figure 2.6: Figure
of I6

Now we will try to see how we can connect each figure to others by playing on figures: For

example in order to connect I2 to I1, we take out the shaded region in the figure of I2 and

put it into first column of figure of I2 to get the figure of I1. This gives a quick visulation of

degeneration. On figures we have;

1 y^3y^2y

x^8

x^7

x^6

x^5

x^4

x^3

x^2

x

−→

1 y

x^8

x^7

x^6

x^5

x^4

x^3

x^2

x

1 y^3y^2y

x^8

x^7

x^6

x^5

x^4

x^3

x^2

x

−→

y y^21

x

x^2

x^3

x^4

x^5

x^6

x^7

x^8
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1

x^6

y^3y^2y

x^8

x^7

x^5

x^4

x^3

x^2

x

−→

y y^21

x

x^2

x^3

x^4

x^5

x^6

x^7

x^8

1

x^6

y^3y^2y

x^8

x^7

x^5

x^4

x^3

x^2

x

−→

1 y^3y^2y

x^8

x^7

x^6

x^5

x^4

x^3

x^2

x

1

x^6

y^3y^2y

x^8

x^7

x^5

x^4

x^3

x^2

x

−→

1 y^3y^2y

x^8

x^7

x^6

x^5

x^4

x^3

x^2

x
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2.4.2 Connectedness of Hilbd(P2, 0)

Lemma 2.4.16 Every ideal of the form

I =< xs0 , xs1ym1 , ..., xsk ymk , xsk+1ymk+1 , ..., ymp >

where si > s j for i < j and mi < m j for i < j ,can be connected to

J =< xs0 , xs1ym1 , ..., xsk+1ymk , xsk ymk+1, xsk−1ymk+1−1, xsk+1ymk+1 , ..., ymp >

by a family

It =< xs0 , xs1ym1 , ..., xsk ymk + txsk−1ymk+1−1, xsk+1ymk+1 , ..., ymp >

when mk+1 − mk ≥ 2.

Proof 2.4.17 First of all the family It is a flat family. In the case that t = 0 we get the ideal

I. Now we will show that when t → ∞ we get the ideal J. If we multiply the term xsk ymk +

t.xsk−1ymk+1−1...(∗) with y we get that xsk ymk+1 + txsk−1ymk+1 ...(∗∗). Since sk − 1 ≥ sk+1 and

xsk+1ymk+1 ∈ It, the monomial xsk−1ymk+1 is also in It. If we subtract the xsk−1ymk+1 from (**) we

get that xsk ymk+1 ∈ It. Now let us multiply (*) with x then we have xsk+1ymk +txsk ymk+1−1...(∗∗∗).

By subtracting txsk ymk+1−1︸      ︷︷      ︸
∈It

from (***) we get that xsk+1ymk ∈ It. Here xsk ymk+1−1 ∈ It, since

mk+1 − mk ≥ 2.Finally if we take the limit of xs1ym1 + t.xslyml−1 when t → ∞ we see that

xsk ymk + t.xsk−1ymk+1−1 is in I∞. So in the case t → ∞ we get that I∞ = J. �

Remark 2.4.18 The above lemma has the following meaning in terms of Ferrer’s diagrams

of I and J. We can get the diagram of J from the diagram of I by taking out the square which

it’s left bottom corner at point (xsk−1, ymk+1−1) in the diagram of I and put it into place such

that new left bottom corner coordinate of taken square is (xsk , ymk ). The final diagram is the

diagram of J.

Remark 2.4.19 In the Ferrer’s diagram of a monomial ideal

I =< xs0 , xs1ym1 , ..., xsk ymk , ..., ymp >

we have line segments connecting monomial generators of I. We have horizontal and vertical

line segments. Each inner corner point and the intersection points with the axes are monomial
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generators of I. At the horizontal line segments we will define steps. It is a part of a horizontal

line segment such that the difference of powers of y’s corresponding to its end points is one.

We will give a different positive integer to the left end of each step if there is another step

before it. This positive integer is the power of y corresponding to the left end of the step. So

we have increasing positive integers from left to right.

In the lemma above we have seen that we could connect two ideals if one of them can be gotten

by the other one by moving one square in Ferrer’s diagram. Also before we had determined

which kinds of Ferrer’s diagrams are invariant under the Ga-action.

Now suppose that we have a general Ferrer’s diagram corresponding to an arbitrary ideal

I =< xs0 , xs1ym1 , ..., xsk ymk , ...xsp−1ymp−1 , ymp >

and we have a number of finite positive integers m1 < m2 < ... < mp−1 for each step. Let

us start from the right-most horizontal line and move the square in this horizontal line such

that its left bottom corner coordinate is (xsp−1 , ymp−1). Sliding this square to some other place

to the left of itself will kill the integer mp−1 and introduce a smaller integer. In this way we

get a new ideal J and by the lemma above we can connect these two ideals I and J. If the

right-most horizontal line has length bigger than 1 then continue this process. In each step we

strictly decrease the sum of mi’s. We can continue this process until all horizontal lines in the

Ferrer’s diagram of I has length one. We had seen before that Ferrer’s diagrams are invariant

if all horizontal lines have length one.So together with lemma 2.4.16, we proved that

Theorem 2.4.20 Hilbd(P2, 0) is connected.
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