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ABSTRACT

CRITICAL BEHAVIOUR OF THE THERMODYNAMIC QUANTITIES FOR THE
THERMOTROPIC AND FERROELECTRIC LIQUID CRYSTALS CLOSE TO THE

PHASE TRANSITIONS

Kilit, Emel

Ph.D., Department of Physics

Supervisor : Prof. Dr. Hamit Yurtseven

February 2011, 109 pages

The specific heat Cp has been showed at various temperatures in the literature, which shows a

sharp increase labeled as the λ-transition at the critical temperature. This transition has been

observed previously among the phases of solid-nematic-isotropic liquid in p-azoxyanisole

(PAA) and anisaldazine (AAD), and among the phases of solid-smectic-cholesteric-isotropic

liquid in cholesteryl myristate (CM). In this thesis work, we analyze the experimental data for

the temperature dependence of Cp and the thermal expansion αp and also pressure dependence

of αp by a power-law formula. From the analysis of pressure dependence of αp, we calculate

the temperature dependencies of specific heat Cp and of the isothermal compressibility κT for

the phase transitions considered in PAA, AAD and CM. Our calculations for the temperature

dependence of the αp and κT can be compared with the experimental data when available in

the literature.

Polarization, tilt angle and the dielectric constant have been reported in the literature at var-

ious temperatures close to the solid-smectic C*-smectic A-isotropic liquid transition in the

ferroelectric liquid crystals of A7 and C7. The mean field model with the free energy ex-
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panded in terms of the order parameters (polarization and tilt angle) has been reported in the

literature previously. In this thesis work, we apply the mean field model first time by fit-

ting the expressions derived for the temperature dependence of the polarization, tilt angle and

the dielectric constant to the experimental data for A7 and C7 from the literature. Since the

mean field model studied here describes adequately the observed behaviour of A7 and C7, the

expressions for the temperature dependence of the polarization, tilt angle and the dielectric

constant which we derive, can also be applied to some other ferroelectric liquid crystals to

explain their observed behaviour.

Keywords: Phase Transitions, Liquid Crystals, Thermodynamic Quantities, Polarization, Di-

electric Constant
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ÖZ

TERMOTROPİK VE FERROELEKTRİK SIVI KRİSTALLERİ İÇİN FAZ GEÇİŞLERİ
YAKININDA TERMODİNAMİK NİCELİKLERİN KRİTİK DAVRANIŞI

Kilit, Emel

Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Hamit Yurtseven

Şubat 2011, 109 sayfa

Kritik sıcaklıkta λ- geçişi olarakta adlandırılan öz ısının ani artış göstermesi literatürde farklı

sıcaklıklar için ölçülmüştür. Bu geçiş daha önce p-azoxyanisole (PAA) ve anisaldazine’nin

(AAD) katı-nematik-izotropik sıvı fazları arasında ve cholesteryl myristate’in (CM) katı-

smektik-kolesterik-izotropik sıvı fazları arasında gözlenmiştir. Bu tez çalışmasında, sıcaklığa

bağlı öz ısı Cp ve ısısal genleşme αp ile, basınca bağlı αp deneysel verilerini literatürden

alarak güç-yasası formülüyle analiz ediyoruz. Bu analizden PAA, AAD ve CM sıvı kristal-

lerinde göz önüne alınan faz geçişleri için sıcaklığa bağlı αp ve eşsıcaklıklı sıkıştırılabilirlik

κT değerlerini hesaplıyoruz. Sıcaklığa bağlı κT için değerlerimiz literatürde elde edilebilir

deneysel verilerle karşılaştırılabilir.

A7 ve C7 ferroelektrik sıvı kristallerinin katı-smektik C*-smektik A-izotropik sıvı geçişleri

yakınında polarizasyon, eğim açısı ve dielektrik sabitinin çeşitli sıcaklıklarda ölçümü lit-

eratürde verilmiştir. Düzen parametreleri (polarizasyon ve eğim açısı) terimlerinde serbest en-

erjinin açılımından elde edilen ortalama alan modeli daha önce literatürde rapor edilmiştir. Bu

tez çalışmasında, ortalama alan modelini ilk kez, sıcaklığa bağlı olarak türetilen polarizasyon,
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eğim açısı ve dielektrik sabiti bağıntılarını literatürde bulunan A7 ve C7’nin deneysel veriler-

ine fit etmek suretiyle uyguluyoruz. Burada çalışılan ortalama alan modeli A7 ve C7’nin

gözlenen davranışlarını yeterince betimlediğinden, türetmiş olduğumuz sıcaklığa bağlı polar-

izasyan, eğim açısı ve dielektrik sabiti bağıntıları diğer ferroelektrik sıvı kristallere gözlenen

davranışlarını açıklamak için uygulanabilir.

Anahtar Kelimeler: Faz Geçişleri, Sıvı Kristaller, Termodinamik Nicelikler, Polarizasyon,

Dielektrik Sabiti
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CHAPTER 1

INTRODUCTION

In this thesis, the critical behaviour of the thermodynamic quantities such as the specific

heat Cp, thermal expansion αp and the isothermal compressibility κT is investigated close

to the phase transitions in some liquid crystals. In particular, the λ-type specific heat Cp

is studied as a function of temperature for p-azoxyanisole (PAA), anisaldazine (AAD) and

cholesteryl myristate (CM) close to the solid-nematic-isotropic (PAA and AAD) and solid-

smectic-cholesteric-isotropic (CM) transitions. Additionally, the temperature dependence of

the thermal expansion αp and of the isothermal compressibility κT is studied for PAA, and the

Pippard relations are applied close to its solid-nematic-isotropic transitions.For calculating

the specific heat Cp, thermal expansion αp and the isothermal compressibility κT of PAA, the

experimental data from the literature for the pressure dependence of αp is used. Our calcu-

lated αp values are compared with the results of Maier-Saupe model for the nematic-isotropic

(NI) transition of PAA. Also, our calculated Cp values are compared with the experimentally

measured values for the NI transition of PAA. For the anisaldazine (AAD) and the cholesteryl

myristate (CM), the experimental data for the specific heat Cp is analyzed by a power-law

formula. For those analyses, we used the experimental data of Pruzan, Ph., Liebenberg, D.H.,

and Mills, R.L., J. Phys. Chem. Solids 47, 949-961, (1986) and Barrall, E.M., Porter, R.S.,

and Johnson, J. F., J. Phys. Chem. 71, 895,(1967) from the literature. There are also some

other experimental data of specific heat for p-azoxyanisole (Youngkyu Do, Mu Shik Jhon and

Taikyue Ree, Journal of Korean Chemical Society, 20, 118-128, (1976) and P. Tuomikoski,

J. Phys. Chem., 99, 16504-16506, (1995)) and thermal expansion data for p-azoxyanisole

(Shao-Mu Ma and H. Eyring, Proc. Nat. Acad. Sci. 72, 78-82, (1975) ) , specific heat

data for cholesteryl myristate (W. L. McMillan, Physics Review A, 6, 936-947, (1971)). For

anisaldazine, there is no experimental data of specific heat except that of the Barrall E. M. et
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al. We used the experimental data of Barrall, E.M., Porter, R.S., and Johnson, J. F., J. Phys.

Chem. 71, 895,(1967) since they measured the specific heat for p-azoxyanisole, anisaldazine

and cholesteryl myristate for all the phases included and in the phase transition regions for

those thermotropic liquid crystals.

Regarding the ferroelectric liquid crystals of A7, C7 and a binary mixture of 2f+3f which

we study here, the temperature dependencies of the polarization P, the tilt angle θ , dielec-

tric constant ε (electric susceptibility χ) are calculated at constant electric fields close to the

AC* transition.The experimental data from the literature at zero electric field is used to cal-

culate the polarization and the tilt angle as a function temperature at constant electric fields

for A7. Also, the temperature dependence of the dielectric constant at constant electric fields

is calculated by using the experimental data for this ferroelectric liquid crystal. Similarly,

the temperature dependencies of the polarization and the electric susceptibility are analyzed

using the experimental data for C7. Also, by analyzing the experimental data for the electric

field dependence of the polarization, the specific heat Cp is predicted in this liquid crystal.

Finally, the specific heat data for a binary mixture of 2f+3f is analyzed at various tempera-

tures using a power-law formula close to the AC* phase transition. For the ferroelectric liquid

crystals studied here, mean field model with the P2θ2 coupling is used to describe the criti-

cal behaviour of the thermodynamic quantities considered close to the AC* phase transitions.

For those calculations we used the experimental data from the literature especially, Bahr Ch,

Heppke G and Sharma NK, Ferroelectrics 76, 151-157, (1987), Bahr, Ch., and Heppke, G.,

Phys. Rev. A 44, 3669, (1991) and Goates, J. B., Garland, C. W., and Shashidhar, R., Phys.

Rev. A 41, 3192, (1990). Again this data includes all the phases and phase transitions that we

analyzed.

1.1 Phase Transitions

A phase is a state of material where the physical properties are unique and chemical properties

are uniform. A phase transition is the change of the phase from one to another. During a phase

transition generally energy is taken by or released from a system. Phase transition occurs as

a result of an external condition as temperature, pressure etc. changes. The value of that
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external condition at which the transformation occurs is called as the phase transition point.

It is known as there are four phases of matter, that is solid, liquid, gas and plasma. But there

are also mesophases (of liquid crystals) such as nematic, smectic etc., which is explained in

section 1.2.1.

There are two types of classification of phase transitions. One of them is Ehrenfest classifica-

tion and the other is modern classification. According to Ehrenfest, phase transitions are clas-

sified according to the behavior of the free energy as a function of thermodynamic variables.

Ehrenfest divided the phase transitions into two classes. First-order phase transitions exhibit

a discontinuity in the first derivative of the free energy with respect to some thermodynamic

variable [1]. Second-order phase transitions are continuous in the first derivative but exhibit

discontinuity in a second derivative of the free energy [1]. According to modern classifica-

tion, phase transitions are also divided into two categories, named similarly to the Ehrenfest

classes: First-order phase transitions are those that involve a latent heat, second-order phase

transitions are continuous phase transitions [2].

Phase transitions can be analyzed by means of critical point exponents, which describe the be-

haviour of any thermodynamic quantity near the transition point. Close to the transition point,

critical exponent dominates and log-log plots of experimental data display straight- line be-

haviour. From these plots critical exponent values can easily be determined. Thermodynamic

quantities sometimes may not be measurable around phase transitions, but critical points are

measurable [3].

Types, calculation methods and numerical values according to theoretical models are ex-

plained in section 2.1.2. Thus, by knowing the value and type of the critical exponent, one can

get information about the relevant thermodynamic quantities and characterization of a phase

transition.

1.2 Liquid Crystals

Liquid crystals are materials which do not have a direct phase change from solid to liquid.

They show transitions involving new phases between the solid and liquid phases, which is

also called mesophase. The symmetry and mechanical properties of these phases are between
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liquid and solid phases [4].

In 1888, Friedrich Reinitzer was performing some experiments on substances based on choles-

terol, trying to find the value of the melting point, he saw that this substance had two melting

points. At 145.5oC the solid crystal melted into a cloudy liquid then at 178.5oC cloudiness

suddenly disappeared, turned into a transparent liquid. At first he thought that this might be

happened because of impurities in the material. But after purification nothing was changed.

The Otto Lehmann started working on this subject and realized that the cloudy liquid was a

new state of matter which has the properties of liquid and solid phases. In a normal liquid

the properties are isotropic but in a liquid crystal the properties depend on direction even the

substance is fluid.

Liquid crystals are partly ordered materials, somewhere between solid and liquid phases.

Their molecules are often shaped like rods or plates or some other forms that provide them to

align together along a certain direction. The order of liquid crystals can be manipulated with

mechanical, magnetic or electric forces.

Between 1910 and 1930 new types of liquid crystalline phases were discovered. Liquid crys-

tals have very variety of application areas. Most known application fields are liquid crystal

screens and liquid crystal thermometers [5].

1.2.1 Types of Liquid Crystals

To understand the types of liquid crystals, first we need some definitions. The positional order

is the arrangement of the molecules according to the type of the ordered lattice. Orientational

order is the direction in which the molecules are mostly ordered. All molecules do not usually

point the same direction. Chosen an imaginary direction is called director. The angle between

the molecule and the director is called tilt angle . To describe the liquid crystals, the order

parameter must be analyzed, which is defined as

S = ⟨3 cos2 θ − 1
2

⟩ (1.1)

Thermotropic Liquid Crystals: Thermotropic liquid crystals are pure substances and un-
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dergo phase transitions due to the temperature changes.

Nematic Phases: In the nematic liquid crystal phase, molecules do not have positional order

but they tend to head towards in the same direction, so they have orientational order. Thus, the

molecules flow like liquids, but differently from liquids, they all point in the same direction.

Smectic Phases: Smectic phase occurs at lower temperatures than nematic phases. In the

smectic phases, the arrangement of the molecules form layers (there is a positional order)

and those layers can slide over one another. There are many different smectic phases. They

have different positional and orientational order. Some of the well known ones are smectic

A, B and C. In smectic A, the layer of the phase is perpendicular to the director. In smectic

B, again layer is perpendicular to the director but the arrangement of the molecules are like

hexagons within the layer. In the smectic C there is an angle (tilt angle) between the layer and

the director [6].

Chiral Phases (Cholesteric Phase) : In this phase, there is a twisting of the molecules per-

pendicular to the director when the molecular axis is parallel to the director. A liquid crystal

can have smectic or nematic phase together with chiral phase. As an example, if the liquid

crystal is in the smectic C and chiral phase then this phase is shown as smectic C* in the

literature [7].

Figure 1.1: Structure and directors of some liquid crystal phases [8].
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Blue Phases: Blue phases are liquid crystal phases which take place in the temperature range

between a cholesteric nematic phase and an isotropic liquid phase.

Discotic Phases: The molecules of a liquid crystal can be like disk-shaped. The phases

formed by these disk-shape molecules are called discotic phases. Discotic phases can be ne-

matic if there is an orientational order but no positional order. And also they can be smectic

(columnar) if there is a positional and orientational order.

Lyotropic Liquid Crystal: When two different substances are mixed, the mixture can exhibit

a different phase with both the change of the temperature and also the change of the con-

centration of one compound in this mixture. These liquid crystals are called lyotropic liquid

crystals [4, 9].

1.3 Properties of P-Azoxyanisole (PAA), Anisaldazine (AAD) and Cholesteryl

Myristate (CM)

P-Azoxyanisole: P-Azoxyanisole (PAA) is one of the first-known liquid crystal. The prop-

erties of this liquid crystal have been studied for many years. This is a thermotropic liquid

crystal. PAA undergoes phase transitions from the solid phase to the nematic phase and to the

isotropic liquid.

Figure 1.2: Phases and transition temperatures of p-azoxyanisole.

In the nematic mesophase of PAA, the orientation of the molecular axes is nearly parallel, but
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the molecular centers are arranged arbitrarily. Because of this arrangement, there is a nearly

complete freedom of translational movement of molecules, but rotational movement is only

about the long molecular axis.

In the solid phase, PAA has a monoclinic structure with four molecules per unit cell. The cell

dimensions are a=15.776 Å , b=8.112 Å, c=11.018 Å, β= 114.5700.

The molecular weight of PAA is 258.27 g/mol. Its chemical formula C14H14N2O3. PAA con-

sists of elongated rod-like molecules.

Figure 1.3: Chemical structure of p-azoxyanisole.

The functional groups that exist in chemical structure of the PAA are two benzene rings, two

ether gruops and an azoxy group. N-O group which exists in the azoxy group produces a

molecular dipole moment [10]. The most important application area of the PAA is liquid

crystal displays [11].

Anisaldazine: Anisaldazine is a thermotropic liquid which crystal, undergoes phase transi-

tions as the temperature changes. Anisaldazine changes its phases from the solid phase to the

nematic phase and to the isotropic liquid.

7



Table 1.1: Properties of some thermotropic liquid crystals such as PAA, AAD and CM.

PAA AAD CM

Thermotropic Thermotropic Thermotropic

Type of LC Nematic Nematic Cholesteric

LC LC LC

Solid Solid Solid

Phases Nematic Nematic Smectic

Isotropic Isotropic Cholesteric

Isotropic

Molecular Monoclinic Monoclinic Monoclinic

Structure

Benzene rings, Aniline, Arene, Alkene,

Functional Ether groups, Benzene rings, Carbonyl,

Groups Azoxy group. Amine, Hydrazine, Ester.

Ether.

Phase First order First order First order

Transitions (Nematic-Isotropic) (Nematic-Isotropic) (Cholesteric-Isotropic)

By an external By an external

Ordering magnetic field magnetic field By temperature

and temperature and temperature

Shape of Rod-Like Rod-Like Rod-Like

Molecules

λ-Type X X X

Specific Heat

Supercooling- X X X

Superheating

Figure 1.4: Phases and transition temperatures of anisaldazine.

Because of the geometrical non-symmetry of the molecules of anisaldazine, variation of the

electrical conductivity occurs when a strong magnetic field is applied. Anisaldazine forms an

anisotropic liquid between 168.90C and 180.50C. In a magnetic field, anisaldazine acts as a

strongly doubly refracting crystal, and its optical axis is parallel with the magnetic lines of

force. The amount of ionisation as a result of this conductivity of anisaldazine is very small
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[12]. The anisaldazine crystals are monoclinic with a= 17.46 Å, b= 10.76 Å, c=8.45 Å, β =

1130 48
′

and there are 4 molecules per unit cell. The molecules are nearly planar and forms

chains parallel to a [13]. The molecular weight of anisaldazine is 268.31 g/mol.

Figure 1.5: Chemical structure of anisaldazine.

The chemical structure of the anisaldazine is C16H16N2O2. In the chemical structure of the

anisaldazine there are aromatics namely aniline, arene and benzene rings and according to

CHN containing amine and hydrazine and also according to CHO containing ether as func-

tional groups.

P-Azoxyanisole and anisaldazine are the mesophase systems which are in the same family of

molecular organic compounds. These organic compounds undergo the same phases, namely

solid, nematic and isotropic phases. Although their molecular structure are similar, the molec-

ular forces are different. Both compounds have benzene rings, and ether in their chemical

structure.

Cholesteryl Myristate: Cholesteryl myristate (CM) undergoes phase transitions from isotropic

liquid to cholesteric at TCI=850C, from cholesteric to smectic at TCS=800C, and from smectic

to crystal at TS C=720C.

Crystals of the cholesteryl myristate are monoclinic with lattice parameters a= 10.260, b=

7.596, c= 101.43 Å, β = 94.410 [14]. Molecular weight of cholesteryl myristate is 599.03

g/mol. Cholesteryl myristate has a cholesteric liquid crystal phase.

The chemical formula of the cholesteryl myristate is C41H72O2. The chemical structure of
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Figure 1.6: Phases and transition temperatures of cholesteryl myristate.

Figure 1.7: Chemical structure of cholesteryl myristate.

cholesteryl myristate consists of some functional groups as alkene (CH only) carbonyl and

ester (CHO- containing).

1.4 Properties of 4-(3-methyl-2-chlorobutanoyloxy)-4’-heptyloxybiphenyl (A7),

4-(3-methyl-2-chloropenta- noyloxy)-4’-heptyloxybiphenyl (C7) and a bi-

nary mixture of 2f+3f

Ferroelectric Liquid Crystals: Robert Meyer and co-workers discovered ferroelectricity in

liquid crystals in 1975. In a certain temperature range, they observed a very large linear elec-

trooptic effect. For a given polarity of the field, the originality uniaxial conical figure tilted as

a whole in a plane perpendicular to the direction of the applied field. At large fields, the con-

ical image became biaxial and saturated. At saturation, the tilt of the conical image roughly

corresponded to the molecular tilt. By reversing the electric field, the direction of the tilt of

the conical image would reverse, which was a direct evidence of a very large, linear electroop-

tic effect. Meyer’s explanation was as follows: In chiral tilted smectic phases, molecules are
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arranged in liquid-like smectic layers. Each smectic layer can posses an in-plane spontaneous

polarization. By symmetry, the in-plane polarization is allowed in a direction perpendicular to

the molecular tilt [15]. In the smectic A and C* phases, the molecules are positioned in layers

and their long axes are oriented parallel to the layer normal (Sm A) or they make an angle

(tilt angle θ) with the layer normal if the liquid crystal contains optically active molecules

(Sm C*). In terms of a one-dimensional density wave describing smectic A and C* phases,

its wave vector makes a tilt angle θ with the layer normal and the long axes of the molecules

precess around the direction of the one-dimensional density wave in the smectic C* phase.

This is a helical structure and the molecules are chiral in the C* phase [6].

For a ferroelectric liquid crystal with high spontaneous polarization, the two order parameters,

namely, the tilt angle θ and the polarization P can couple which drives the system to the AC*

phase transition. This coupling between θ and P is due to the reduced symmetry of the liquid

crystal containing the chiral molecules in the smectic C* phase. There have been suggestions

in the literature for this coupling as linear Pθ and biquadratic P2θ2 in the free energy expansion

in terms of the polarization P and the tilt angle θ using the mean field models [16, 17]. A

biquadratic P2θ2 coupling has been used in the mean field models and it has been shown that

it agrees better with the experimental data for the polarization as functions of temperature

[18] and concentration [19].

At zero electric field, a ferroelectric liquid crystal with high spontaneous polarization does

not exhibit a quasi-piezoelectrical behaviour [20] since the tilt angle θ is zero in the smectic

A phase. As the external electric field increases, the long axes of the molecules become tilted

in the smectic A phase so that the electroclinic effect takes place.

By analyzing the temperature dependence of the polarization P and tilt angle θ under an elec-

tric field close to the smectic AC* phase transition in the ferroelectric liquid crystal of 4-(3-

methyl-2-chlorobutanoyloxy)-4
′
-heptyloxybiphenyl (A7), θ and P were calculated at various

temperatures under some other constant electric fields for this ferroelectric liquid crystal [18].

For this calculation, a mean field model was used in the case of nonzero electric field [19]

by using data for the tilt angle θ and for the polarization P at zero electric field [18]. The

tilt angle and the polarization were calculated as a function of temperature for the AC* phase

transition of A7 for constant electric fields at which the measurements of dielectric constant

were performed [21].
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Phase transitions between smectic A and C* phases in some ferroelectric liquid crystals have

been observed experimentally as a second order [22-24]. On the other hand, many ferro-

electric liquid crystals have also been obtained experimentally, which exhibit a first order

transition between smectic A and chiral C (C*) phases [16, 25-29]. Those liquid crystalline

materials exhibit a first order phase transition since their spontaneous polarization is con-

siderably low. Those liquid crystals which exhibit a first order phase transition, have high

spontaneous polarization, as observed in A7 [25, 30].

Close to the AC* phase transition in ferroelectric liquid crystals, the dielectric constant in-

creases as the temperature decreases from the smectic A phase to the ferroelectric smectic C

(C*) phase, as observed experimentally [21]. It has been indicated that this increase in the

dielectric constant is due to a soft mode (phase fluctuations in the amplitude of the tilt angle

θ) and also due to a Goldstone mode (phase fluctuations in the azimuthal orientation of the

tilt angle θ) [21]. In both smectic A and C* phases, phase fluctuations in the amplitude of the

tilt angle θ exist, whereas the phase fluctuations in the azimuthal orientation of the tilt angle θ

exist in the smectic C* phase only [21].

The tilted smectic phases possess a spontaneous polarization if the molecules possess a perma-

nent transverse dipole and are chiral [16]. It has been observed experimentally that transitions

to the ferroelectric phase occur at higher temperatures by increasing the spontaneous polar-

ization in the chiral systems [16]. It has also been indicated that the ferroelectric transition

temperatures are shifted when an external electric field is applied [16]. Here, we calculate

the dielectric constant as a function of temperature under some constant electric fields for the

AC* phase transition of A7. For the calculation of the dielectric constant we use the mean

field model with the P2θ2 coupling for nonzero electric field, which has been developed in an

earlier study [19]. By using the calculated values of the tilt angle θ and the polarization P at

various temperatures for zero electric field (E=0) from a previous study for A7 [19], we cal-

culate in this study the temperature dependence of the dielectric constant at constant electric

fields in this liquid crystal.

By examining the critical behaviour of the polarization, tilt angle, electric susceptibility and

the specific heat close to the SmA- ferroelectric SmC (SmC*) phase transitions, we also in-

vestigate the temperature dependence of the order parameters, namely, polarization P and the

tilt angle θ, and that dependence of the electric susceptibility in the presence of the applied
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electric field for the ferroelectric liquid crystals close to the AC* phase transitions. This is

done by the mean field model with the P2θ2 coupling in the expansion of the Landau free

energy. With this mean field model, the electric field dependence of the polarization and the

temperature dependence of the specific heat Cp are investigated. As an application of our

mean field model, in particular we analyze the temperature dependences of the polarization

and of the electric susceptibility using the experimental data for C7 (TC=55.9250C). We also

analyze the electric field dependence of the polarization using the experimental data for C7

[31] and we predict the critical behaviour of the specific heat Cp in this crystalline system

by means of our mean field model. This model given here is applied to a binary mixture of

2f+3f to describe its critical behaviour close to the AC* phase transition (TC=393.845 K).

By analyzing the experimental data for the specific heat of this mixture [32], we predict the

critical behaviour of the susceptibility and the order parameter within the framework of our

mean field model.

A7 (4-(3-methyl-2-chlorobutanoyloxy)-4’-heptyloxybiphenyl): A7 is a ferroelectric liquid

crystal. A7 has a large spontaneous polarization. Its phase range is ≈80C that has been found

to exhibit a first-order A-C* transition. Spontaneous polarization of A7 is 140nC/cm2 at 0.2

K below the Sm A-Sm C* transition temperature.

Figure 1.8: Phases and transition temperatures of A7.

Pure optically active A7 undergoes phase transitions from isotropic (I) (81.60C) to SmA

(73.040C) and from SmA to SmC* (71.10C). Lastly, it undergoes from SmC* to solid. 50

% optically active A7 has a transition sequence as I (81.90C)-SmA (72.70C)-SmC. The tran-

sition sequence of racemic mixture is similar, namely, I (82.00C)-SmA (72.230C) - SmC

(70.20C)-Solid.

A7 has the transition as a first order in chiral (nonracemic) A7 and while the chiral com-

pound shows a weakly first-order smectic-A-chiral-smectic-C transition (AC*), the racemic
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A7 exhibits a continuous smectic-A-smectic-C transition.

Figure 1.9: Chemical formula of A7.

The functional groups that exist in chemical structure of the A7 are methyl and phenyl groups.

C7 (4-(3-methyl-2-chloropenta- noyloxy)-4’-heptyloxybiphenyl ): C7 is a ferroelectric

crystal, exhibiting large spontaneous polarization. Spontaneous polarization in the smectic-

C* phase of pure chiral C7 changes between 130 and 290 nC/cm2 with decreasing tempera-

ture. The range of the A phase for C7, which exhibits a first-order A-C* transition, is ≈70C.

Figure 1.10: Phases and transition temperatures of C7.

The molecules are chiral and thus a ferroelectric spontaneous polarization exists in the smectic

C phase [22]. The direction of this polarization is perpendicular to both the tilt direction and

the layer normal and by applying a dc electric field along the smectic layers, one can align the

tilt direction by the polarization direction and the external field [33].

Chiral 4-(3-methyl-2-chloropenta- noyloxy)-4
′
-heptyloxybiphenyl (C7) possesses the follow-

ing sequence of liquid-crystalline phases: isotropic (620C) smectic-A (54.60C) smectic-C*(430C)-

smectic-G (SmG denotes a more-ordered smectic phase possessing, in contrast to SmA and

SmC, a three dimensional long range positional order of the molecules)

The transition of C7 can be examined as a first order or weakly first order due to the amplitude

of the spontaneous polarization, or a mixture with another material.
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Table 1.2: Properties of some ferroelectric liquid crystals such as A7, C7 and a binary mixture
of 2f+3f.

A7 C7 2f+3f

Thermotropic Thermotropic Thermotropic

Type of LC Smectic Smectic and Lyotropic

LC LC Smectic LC

Solid Solid Solid

Phases Smectic C* Smectic C* Smectic C*

Smectic A Smectic A Smectic A

Isotropic Isotropic Isotropic

Functional Methyl, Methyl, Methyl,

Groups Phenyl Phenyl Phenyl

First order First order

Phase (SmA-Isotropic) (SmA-Isotropic) Second order

Transitions Weakly first order and (SmA-SmC*)

(SmA-SmC*) (SmA-SmC*)

By an external By an external By an external

Ordering electric field electric field electric field

and temperature and temperature and temperature

Shape of Rod-Like Rod-Like Rod-Like

Molecules

Polarization Large spontaneous Large spontaneous Large spontaneous

Polarization Polarization Polarization

Tilt Angle SmC, SmC* SmC, SmC* SmC, SmC*

Figure 1.11: Chemical formula of C7.

The functional groups that exist in chemical structure of the C7 are methyl and phenyl groups.

2f+3f: 2f+3f is a two chiral esters of 2.5-diphenyl pyrimidine. 2f is the abbrevation of 2-(p-n-

hexyloxyphenyl)5-[p-(2-chloro-4-methylpentanoyloxy)-phenyl] pyrimidine and 3f is the ab-

brevation of 5-(p-n-hexylphenyl)2-[p-(2-chloro-4-methylpentanoyloxy)-phenyl]pyramidine.

The SmA-SmC* transition in pure 3f is of a second order, while mixtures with compositions

(mol % 2f) X2 f=58.27 and 60.2 show near-tricritical and strongly first-order behaviour, re-

spectively. Thus, the result for pure 3f indicates that a large spontaneous polarization need
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Figure 1.12: Chemical formula of 2f.

Figure 1.13: Chemical formula of 3f.

not impose a first order character on the SmA-SmC* transition. This fact coupled with the

existence of the tricritical point in the mixed system, suggests that there may be a competition

between the effects arising from polarization and the SmA temperature range since 3f has a

large SmA temperature range (≈40 K) and 2f has no SmA phase [32].

The functional groups that exist in chemical structure of the C7 are methyl and phenyl groups.
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CHAPTER 2

THEORY

2.1 Phase Transition Phenomena

Phase transition occurs when one state of matter (phase) changes to another. At the phase

transition, there is a singularity on the first or higher order derivatives of the thermodynamic

potential. According to Ehrenfest, phase transitions are divided into two groups, namely,

first-order and second-order phase transitions [2].

2.1.1 Classification of Phase Transitions

First-Order Phase Transitions: The first derivative of a thermodynamic potential with re-

spect to the thermodynamic variables is discontinuous [34]. So, the phase transitions with the

latent heat are first order transitions. Solid-liquid-gas transitions belong to this group.

Second-Order Phase Transitions: The first derivatives of a thermodynamic potential are

continuous, but the second derivatives are discontinuous at the transition point [34]. So, the

phase transitions without latent heat are second order phase transitions. Ferromagnetic phase

transitions belong to this type [2].

Gibbs free energy measures the useful work attainable from a thermodynamic system without

increasing its total volume or allowing heat to pass to or from external systems. Gibbs energy

is also the chemical potential that is minimized when a system reaches equilibrium at constant

pressure and temperature. When a system is identified with the Gibbs free energy (G) as a

thermodynamic potential, if the entropy or the specific volume are discontinuous then there is

a first order transition since the entropy is equal to S=-
(
∂G
∂T

)
P and specific volume is the first
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derivative of Gibbs free energy with respect to the pressure, i.e. V=
(
∂G
∂P

)
T .

If the thermodynamic quantities of a system such as the specific heat or isothermal compress-

ibility are discontinuous, then there is a second order phase transition. Since the thermal ex-

pansion and isothermal compressibility are obtained from the second derivative of the Gibbs

free energy, with respect to the temperature and pressure, respectively, i.e. Cp=-T
(
∂2G
∂T 2

)
P and

κT=- 1
V

(
∂2G
∂P2

)
T .

Also, when the discontinuity in the specific heat occurs as an infinite peak, this type of second-

order transition is called the λ-type phase transitions [35].

2.1.2 Critical Point Exponents

Critical point exponents describe the critical behavior of the transition and of the thermody-

namic quantities at the critical (transition) point. Near the transition temperature it is more

sufficient to use the reduced temperature, ε=|T-Tc|/Tc, which is a dimensionless variable and it

gives the difference of the temperature from the transition temperature. The critical exponent

is the limit form of the ratio of any thermodynamic function (f) to the reduced temperature or

the temperature difference such as |T-Tc|, which can be expressed as λ=limε→0
ln f (ε)

ln ε . Then,

the thermodynamic function can be expressed as f(ε)∼ελ [3].

When the specific heat, isothermal compressibility etc. are considered as the thermodynamic

function, then the symbol and the value of the critical exponent (α, γ) change correspondingly.

Table 2.1: Summary of definitions of some critical exponents for fluid systems, ε is reduced
temperature and defined as ε=|T-Tc|/Tc [3]

Exponent Definition Conditions Quantity
ε P-Pc ρ-ρc

α′ Cv∼(-ε)−α
′

<0 0 0 specific heat
α Cv∼ε−α >0 0 0
β ρL-ρG∼(-ε)β <0 0 ,0 liquid-gas

density difference
γ′ κT∼(-ε)−γ′ <0 0 ,0 isothermal
γ κT∼ε−γ >0 0 0 compressibility
δ P-Pc∼|ρL-ρG |δsgn(ρL-ρG) 0 ,0 ,0 critical isotherm
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Table 2.2: Summary of definitions of some critical exponents for magnetic systems, ε is
reduced temperature and defined as ε=|T-Tc|/Tc [3]

Exponent Definition Conditions Quantity
ε H M

α′ CH∼(-ε)−α
′

<0 0 0 specific heat
at constant magnetic field

α CH∼ε−α >0 0 0
β M∼(-ε)β <0 0 ,0 zero field magnetization
γ′ χT∼(-ε)−γ′ <0 0 ,0 zero field
γ χT∼ε−γ >0 0 0 isothermal susceptibility
δ H∼|M|δsgn(M) 0 ,0 ,0 critical isotherm

The values of the critical exponents change according to the theoretical models. Some of

those values can be seen in the next tables, Tables 2.3 and 2.4.

Table 2.3: Summary of values of some critical exponents.[36]

Exponents Mean Field Ising Ising Heisenberg Spherical
d=2 d=3 d=3, D=3 d=3, D=∞

α(C,T) 0 (disc) 0 (log) 0.119±0.60 -0.08±0.04 -1
β(M,T) 1/2 1/8=0.125 0.326±0.004 0.38±0.03 1/2
γ(χ,T) 1 7/4 1.239±0.003 1.38±0.02 2
δ(B,M) 3 15 4.80±0.05 4.63±0.29 5

Power-Law Formula As can be seen from Tables 2.1 and 2.2, the critical behaviour of the

response thermodynamic quantities can be expressed by the critical exponents.

When one takes the logarithm of both sides, then the values of critical exponents can be

obtained easily. In this thesis, a power-law formula of the specific heat Cp and dielectric

susceptibility χ is used. The analysis of the specific heat Cp as a function of temperature can

be performed according to a power-law formula [37-39]

Cp = A|T − Tt|−α (2.1)

In Eq.2.1, α denotes the critical exponent for the specific heat Cp and A is the amplitude. Here
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Table 2.4: Critical exponents of the models.[36]

Exponents XY Model Tricritical Model Classical model
α 0 (log) 1/2 d=∞
β 0.33 1/4 1/2
γ 1.32 1 1

Tt is the phase transition temperature. By taking the logarithm of Eq.2.1, one gets

logCp = logA − α log |T − Tt| (2.2)

(Also, instead of |T-Tt|, one can use the reduced temperature which is defined as ε=|T-Tt|/Tt

so that Eq.2.1 is written as

Cp = Aε−α (2.3)

After taking the logarithm, we get

logCp = logA − α log ε (2.4)

and for the dielectric susceptibility [40],

χ = A|T − Tt|−γ (2.5)

where γ is the critical exponent for the dielectric susceptibility. By taking the logarithm of

both sides again we get,

logχ = logA − γ log |T − Tt|. (2.6)

Thus, the specific heat Cp (the dielectric susceptibility χ) can be plotted in a log-log scale as

a function of temperature (or the reduced temperature ε) according to Eq. 2.2 (Eq. 2.6) from
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which the slope α (γ) and the intercept logA can be extracted for phase transitions of a liquid

crystal.

2.1.3 Models

Mean Field Model: When a system contains a large number of interacting particles, then it is

difficult to solve the system exactly. The difficulty arises from the addition of the interaction

terms. Mean field theory reduces many-body system to a one-body system by considering the

average of the interaction fields [41].

Ising Model: Ising model deals in ferromagnetic systems with the spins oriented with the

spin variables either +1 or -1, which lie on a lattice point on a d-dimensional lattice when

they interact only with its nearest neighbors. Ising model is sufficient to analyze the phase

transitions as a simplified version of the real systems [42].

The energy of the Ising model is as follows:

E = −
∑
i, j

Ji jS iS j (2.7)

where J is the interacting parameter and Si are the spin variables.

One-dimensional Ising model is can be taken as a one dimensional lattice:

E = −
∑

i

S iS i+1 (2.8)

Two dimensional Ising model has been solved exactly by Onsager. He first calculated the

partition function for the zero field which allows to calculate the specific heat [3].

Three and more dimensional Ising models have not been solved yet. For an infinite dimen-

sional system, Ising model is considered as a mean field model.

Heisenberg model: Heisenberg model deals with the magnetic moments in the form of quan-

tum mechanical three-dimensional spin operators. Similar to an Ising model, in Heisenberg

model the energy is related to the scalar product of these spin operators [43] .
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E � −
∑
<i j>

σiσ j (2.9)

As Ising model, Heisenberg model does not have an exact solution for a 3-dimensional lattice.

Differently from Ising model, Heisenberg model is not capable to solve even two dimensional

lattices [43].

Spherical Model: Berlin and Kac [3] solved two and three dimensional lattices, developing

and using a nonphysical model, spherical model. In most aspects, the spherical model looks

like an Ising model, but around the transition point, exponents of the spherical model agree

better with the experimental results. And also the spherical model is sufficient for solving

lattice problems in the presence of an external field. In this model, every sites of the lattice

system have a spin σ j interacting with the nearest neighbors and with an external field H.

Values of σ j are not restricted to the values of -1,0,1 but they can take all real values. That is

why, the spherical model is not physical [3, 44].

XY Model: In this model the magnetic compasses are attached to the lattice sites. Again,

nearest neighbor interactions are considered [43]:

E = −J
∑
<i j>

S iS j =
∑
<i j>

cos(θi − θ j) (2.10)

where θi is the ith spin phase which can be measured in this model .

Tricritical Model: Tricritical model is an approximation in a mean field model, which is used

in the three-phase coexistence region or around a triple point [3].

2.2 Pippard Relations

Critical behaviour of the thermal expansivity αp can be described as [45]

αp = A1(P − Pt)γ (2.11)

where γ is the critical exponent for the thermal expansivity, A1 is the amplitude and Pt is the
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transition pressure.

Close to the transition point, an approximate relation for the slope can be written as

Pt(T ) − P
T − Tt(P)

=
dPt

dT
(2.12)

By means of Eq. 2.12, the temperature dependence of the thermal expansivity can be obtained

as

αp(T ) = A1

(dPt

dT

)−γ
(T − Tt)−γ (2.13)

The temperature and pressure dependence of the isothermal compressibility κT can be calcu-

lated from the thermodynamic relation

αp

κT
=

(
∂P
∂T

)
V
=

(
∂P
∂T

)
S

(2.14)

close to the transition point [45]. Using Eq. 2.11, the pressure dependence of κT will become

κT =
1

(∂P/∂T )S
[A1(P1 − P)−γ] (2.15)

Also, by substituting Eq. 2.13 into Eq. 2.14, the temperature dependence of κT can be ob-

tained as

κT =
1

(∂P/∂T )S
A1

(dPt

dT

)−γ
(T − Tt)−γ (2.16)

Using the definitions of the thermal expansivity αp≡ 1
V (∂V∂T )P and of the isothermal compress-

ibility κT≡- 1
V (∂V∂P )T , we can derive the temperature and pressure dependence of volume as

Vp(T ) = Vtexp
[A1(dPt/dT )−γ(T − Tt)1−γ

1 − γ

]
(2.17)
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and

VT (P) = Vtexp
[ 1
(∂P/∂T )S

A1(pt − p)1−γ

1 − γ

]
(2.18)

respectively [46].

Finally, the temperature and pressure dependence of the specific heat Cp can be obtained from

the thermodynamic relation

Cp = TVαp

(
∂P
∂T

)
S

(2.19)

Using Eqs. 2.13 and 2.17 in Eq. 2.19, Cp is obtained as a function of temperature [46].

Cp = A1TV(∂pm/∂T )−γ+1(T − Tm)−γ (2.20)

Similarly, using Eqs. 2.11 and 2.18 in Eq. 2.19, Cp is obtained as a function of pressure [46].

Cp = A1TV
(
∂pm

∂T

)
(pm − p)−γ (2.21)

Close to the phase transitions, the specific heat Cp can be related to the thermal expansivity

αp (first Pippard relation) by [35]

Cp = TV
(dP
dT

)
λ
αp + T

(dS
dT

)
λ

(2.22)

where subscript λ denotes the λ-type transition and αp can be related to the isothermal com-

pressibility κT (second Pippard relation ) by [35]

αp =

(dP
dT

)
λ
κT +

1
V

(dV
dT

)
λ

(2.23)

Thus, the temperature and pressure dependencies of those thermodynamic quantities, namely,

Cp, αp and κT can be related to each other for the phase transitions according to Eqs. 2.22
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and 2.23. From a linear variation of Cp with αp (Eq. 2.22) and also a linear variation of αp

with κT (Eq. 2.23), we can deduce the values of the slope dP/dT for the phase transitions.

Calculated dP/dT values can then be compared with the experimentally determined values of

dP/dT for the phase transitions.

2.3 Stability Limits of Thermal Expansion, Specific Heat and Isothermal Com-

pressibility

Metastable states have a continuous line of stability limits. The locus of that is Ps(T), where

the isothermal compressibility κT diverges there [47].

The isobaric temperature dependence of several thermodynamic quantities (TQ) have been

fitted to equations of the form [48-50]

T Q = CT Q(|T − Ts(P)|)−γT Q + T Qb (2.24)

where CT Q, and γT Q are constants, Ts is the stability temperature and TQb is a background

correction term.

Thermodynamic reasoning is valid up to a value where κT → ∞. When κT diverges, then α

and Cp also diverge. Because of this reason, the ratios α/κT and Cp/κT remain finite [47].

α, Cp and κT are asymptotically proportional to each other near the line Ps(T)

α ∼ Cp ∼ κT (2.25)

as P → Ps(T). When Eq. 2.24 is appropriate, then X=α, Cp and κT have the same exponent

values of γT Q. The limiting forms of α, Cp, and κT along isochores and isobars can be

obtained by using Eq. 2.25. At this point some assumptions are necessary:

* At the line of stability limits (the locus of points), measured values of κT extrapolate to

infinity.

* The Helmholtz potential A(V,T) can be expanded along an isotherm as a Taylor series in

Vs(T) - V [47].
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A(V,T ) =
∑
n=0

Cn(T )[Vs(T ) − V]n (2.26)

where

Co(T ) = limV→Vs(T )A(V, T ) (2.27)

Cn(T ) = limV→Vs(T ){−(1/n!)[∂nA(V,T )/∂Vn]}T (2.28)

where n≥1. (For simplicity, the T dependence of Vs and Cn is not explicitly indicated). The

pressure P = -(∂ A/∂ V)T is obtained by differentiating Eq. 2.26.

P =
∑
n=1

nCn(Vs − V)n−1 (2.29)

The term C1 is determined by (Vs - V)o = 1 so that p→ C1 as V→ Vs. Thus, C1=Ps at Vs.

The reciprocal of the isothermal compressibility κT−1 =-V(∂ P/ ∂ V )T is obtained by differ-

entiating Eq. 2.29

κ−1
T = V

∑
n=2

n(n − 1)Cn(Vs − V)n−2 (2.30)

The term C2 is determined by (Vs - V)o = 1 so that κT → 2VC2 as V→ Vs. But, by the first

assumption, κT−1 → 0 as V→ Vs, so C2 = 0.

Close to the stability limit lines, merely the first nonzero term in Eq. 2.30 contributes to κT−1

so

κ−1
T = 6VC3(Vs − V) + ... (2.31)

κT = (6VC3(Vs − V) + ...)−1 (2.32)
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The limiting form is

α ∼ Cp ∼ κT ∼ (Vs − V)−1 (2.33)

along an isotherm. The limiting form along an isochore is obtained by the line Vs(T) is locally

linear, so that for points (V,T) sufficiently close to Vs(T)

[Vs(T ) − V] ∝ |T − Ts(V)| (2.34)

since (V,T), Vs(T), and Ts(V) are similar [47]. Therefore

α ∼ Cp ∼ κT ∼ (|T − Ts(V)|)−1 (2.35)

along an isochore. The corresponding isobaric limiting form can be obtained from Eq. 2.29,

remembering that C2 = 0

P − Ps(T ) = 3C3(Vs − V)2 + ... (2.36)

so that, from Eq. 2.33 and 2.36

α ∼ Cp ∼ κT ∼ (|P − Ps(T )|)−1/2 (2.37)

along an isotherm. The locus of Ps(T) is locally linear so |P-Ps(T)| ∝ |T-Ts(P)|, and, from Eq.

2.37, along an isobar we get [47],

α ∼ Cp ∼ κT ∼ (|T − Ts(P)|)−1/2 (2.38)

Thus, the temperature dependence of the specific heat Cp can be expressed as

Cp = A|T − Ts|−α (2.39)
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with α=1/2. In a log-log scale, this gives

logCp = logA − α log |T − Ts| (2.40)

2.4 Mean Field Model

2.4.1 The Landau Energy in the Mean Field Model for the First Order Phase Transi-

tions

The free energy in the mean field model to describe the critical behaviour of the smectic

A-smectic C* (AC*) phase transition when the electric field E is applied to the ferroelectric

liquid crystals, can be written as

g =
1
2
αθ2 +

1
4

bθ4 +
1
6

cθ6 +
1

2χ0ε0
P2 − DP2θ2 +

1
4

eP4 − EP (2.41)

where θ is the tilt angle of the smectic C* phase and P is the polarization, which have a

quadratic coupling P2θ2. The temperature-dependent coefficient α is defined as α=a(T-T0)

where T0 is the transition temperature for the AC* phase transition and a is a constant [51].

The coefficient b is negative since we consider here the AC* transition as a first order. So, we

have the additional θ6 term in our expansion, and the coefficients c, D and e are all positive.

The temperature dependence of the polarization P and the tilt angle θ in the presence of the

electric field, can be obtained by minimizing the free energy g (Eq.2.41). We first minimize

the free energy with respect to the tilt angle θ, which gives

a(T − T0)θ + bθ3 + cθ5 − 2DP2θ = 0 (2.42)

We then minimize the free energy with respect to the polarization P, expressed as

1
χ0ε0

P − 2DPθ2 + eP3 − E = 0 (2.43)

We can evaluate the temperature dependence of the tilt angle θ and the polarization P using
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the coupled equations 2.42 and 2.43. But, Eqs. 2.42 and 2.43 require to solve the θ5 and P3,

respectively, which is too complicated for the study given here. Instead, we make an approx-

imation here to calculate the electric field dependence of the polarization by eliminating the

tilt angle θ in Eq. 2.43. As performed in an earlier study [18], we follow the same procedure

and give the expressions derived previously. By writing Eq. 2.43 as,

P2 =
E
eP
+

2D
e
θ2 − 1

eχ0ε0
(2.44)

and setting E=0, we have

P2(E = 0) =
2D
e
θ2 − 1

eχ0ε0
. (2.45)

By substituting Eq. 2.45 into Eq. 2.44, the electric-field dependence of the polarization can

be obtained as

P2(E) = P2(E = 0) +
E

eP(E)
(2.46)

Eq. 2.46 can be further approximated to the expression in terms of the polarization at zero

electric field only, P(E=0). By writing Eq. 2.46 in the form

P(E) = P(E = 0)[1 +
E

eP2(E = 0)P(E)
]1/2 (2.47)

and expanding the parenthesis in a Taylor series in the case of large e value, P(E) will be

approximately equal to

P(E) � P(E = 0)[1 +
1
2

E
eP2(E = 0)P(E)

]. (2.48)

Eq. 2.48 can be compared with the expression P(E) expanded in terms of P(E=0), written as

P(E) � P(E = 0)[1 + E(
∂P
∂E

)|E=0(
1

P(E = 0)
)] (2.49)

This comparison gives the susceptibility χ at zero electric field as
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χ =
∂P
∂E
|E=0 =

1
2eP(E)P(E = 0)

(2.50)

Since the susceptibility is calculated at zero electric field according to Eq. 2.50, the polariza-

tion P should be independent of the electric field on the right-hand side of this equation [51].

So, by writing approximately , Eq. 2.50 becomes

χ =
∂P
∂E
|E=0 �

1
2eP2(E = 0)

(2.51)

Thus, with this approximation of P(E), we arrive at the expression written as [51]

P2(E) � P2(E = 0) +
E

eP(E = 0)
(2.52)

from Eq. 2.46. So, Eq. 2.52 gives the electric field dependence of the polarization P(E) and

Eq. 2.51 expresses the polarization dependence of the susceptibility at zero electric field. Eq.

2.50 can be used for the polarization dependence of the susceptibility in the presence of the

electric field by using Eq. 2.52.

The transition temperature Tc for constant electric fields E are determined for a first order

AC* transition which we consider here according to the relation [51]

Tc = T0 +
3

16ac
(b − 4D2

e
)2 − 2D

eaχ0ε0
(2.53)

2.4.2 The Landau Energy in the Mean Field Model for the Weakly First Order or Close

to Second Order Phase Transitions

For the electric-field induced SmA-SmC* transitions which can be of, a weakly first order or

close to second order, the coefficient b in the Landau free energy can be taken as positive and

there is no additional θ6 term [52]. So, we have the expression as follows:

g = g0 +
1
2

a(T − T0)θ2 +
1
4

bθ4 +
1
2

P2

χ
− 1

2
eP2θ2 − EP (2.54)
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In this expansion χ=χ0ε0 is the electric susceptibility. Using ∂g∂P=0, we have

P
χ
− ePθ2 − E = 0 (2.55)

This gives

P =
E

1/χ − eθ2
(2.56)

Also, using ∂g∂θ=0, we have

a(T − T0) + bθ2 − eP2 = 0 (2.57)

This then gives

θ2 =
eP2 − a(T − T0)

b
(2.58)

By substituting Eq. 2.58 into Eq. 2.55, we find

(
ea
b

(T − T0) +
1
χ

)P − e2

b
P3 = E (2.59)

This is the electric field dependence of the polarization for the SmA-SmC* phase transitions

in liquid crystalline systems [52]. When the electric field is zero (E=0), the Landau free

energy can be minimized [52] using ∂g∂θ=0, which gives

a(T − T0) + bθ2 − eP2 = 0 (2.60)

Also, by using the minimization condition, ∂g∂P=0 , we then get

θ2 =
1
eχ

(2.61)

By substituting Eq. 2.61 into Eq. 2.60, we find
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P2 =
a
e

(T − T0) +
b

e2χ
(2.62)

Eqs. 2.61 and 2.62 represent the temperature dependences of the tilt angle (θ) and of the

polarization (P), respectively [52].

The temperature dependence of the nematic susceptibility χ (E=0) can also be obtained from

the Landau free energy (Eq. 2.54). By taking the derivative of g-g0 with respect to θ, we get

∂

∂θ
(g − g0) = a(T − T0)θ + bθ3 − eP2θ (2.63)

The second derivative gives the inverse nematic susceptibility [52] as

χ−1 =
∂2

∂θ2
(g − g0) = a(T − T0) + 3bθ2 − eP2 (2.64)

Using Eq. 2.58 in Eq. 2.64 gives

χ−1 = 2(eP2 − a(T − T0)) (2.65)

This expresses the temperature dependence of the nematic susceptibility of the liquid crystals

which undergo SmA-SmC* phase transitions [52].

Finally, the specific heat Cp can be derived from the Landau free energy (Eq. 2.54) when the

electric field is zero (E=0). By substituting Eqs. 2.61 and 2.62 into Eq. 2.54, we obtain the

free energy written as

g = g0 +
b

4e2χ2 +
a

2eχ
(T − T0) (2.66)

By means of the temperature dependence of the electric susceptibility χ, the temperature

dependence of the specific heat Cp can be derived according to the definition Cp≡T(∂g2/∂T2).

The temperature dependence of the polarization jump △Pθ can be analyzed using

∆Pθ = A(Tc − T )β (2.67)
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where β is the critical exponent for the order parameter (polarization) and A is the amplitude

[52]. The electric susceptibility χθ can be analyzed at various temperatures close to the AC*

phase transition by means of a power-law

(χ−2
θ − χ−2

θC)1/2 = A|T − Tc|γ (2.68)

where γ is the critical exponent for the susceptibility, A is the amplitude and χθC is the critical

value of the electric susceptibility. The electric field dependence of the polarization can be

analyzed according to a power-law

|E − EC | = A(P − PθC)δ (2.69)

where δ denotes the critical isotherm, A is the amplitude,PθC is the critical value of the polar-

ization and Ec is the critical value of the electric field applied. The temperature dependence

of the specific heat Cp can also be investigated according [52] to a power-law

∆Cp/A∗ = A(Tk − T )−α (2.70)

where the excess heat capacity ∆ Cp is scaled with the amplitude A* [24], α is the critical

exponent for the specific heat, A is the amplitude and Tk is transition temperature in the

metastability limit [52].

2.4.3 The Landau Energy in the Mean Field Model for the Isotropic Liquid Phase

If there is no electric field, then we can write the Landau free energy relation (Eq.2.41) as

follows:

g =
1
2
αθ2 +

1
4

bθ4 +
1
6

cθ6 +
1

2χ0ε0
P2 − DP2θ2 +

1
4

eP4 (2.71)

In the isotropic liquid phase, the free energy is zero (F1=0) since it is assumed that there is

no orientational order and no spontaneous polarization in this phase [40]. The free energy g

(Eq.2.71) can be minimized with respect to θ and P, which then becomes
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g =
1
2
α′θ2 +

1
4

b′θ4 +
1
6

c′θ6 (2.72)

where

α′ = α +
2D

eχoεo
, b′ = b − 4D2

e
, c′ = c (2.73)

In terms of these coefficients α′, b′ and c′, the condition for a first order transition can be

obtained [18]. If we take the experimentally measured transition temperature as Tc, then the

coefficient α becomes a constant given by α=a(To-Tc) at T=Tc. This gives the temperature

difference at the transition point for a first order transition [40] as

Tc = To +
3
16

b′2

ac
− 2D

eaχoεo
(2.74)

The inverse susceptibility χ−1 can be derived from the free energy g (Eq.2.72) by taking the

second derivative of g with respect to θ. We then have

χ−1 = α′ + 3b′θ2 + 5c′θ4 (2.75)

In Eq. 2.75 α′ is the temperature dependent term according to Eq. 2.73 and the other coeffi-

cients b′ and c′ are all constants, as stated above [40]. In Eq.2.75, the temperature dependence

of the orientational order parameter θ can be calculated from the mean field theory [53] as

θ =
[
3
(
1 − T

Tc

)]1/2, 0 < (Tc − T ) << Tc (2.76)

Thus, the temperature dependence of the inverse susceptibility χ−1 or the dielectric constant

ε can be evaluated using Eq. 2.75 by means of Eq. 2.76 [40].
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CHAPTER 3

CALCULATIONS AND RESULTS

3.1 Analysis of Some Thermotropic Liquid Crystals

3.1.1 P-Azoxyanisole

3.1.1.1 Pippard Relations for the C-N And N-I Phase Transitions in PAA

To apply the first and second Pippard relations (Eqs. 2.22 and 2.23) in PAA, we analyzed the

experimental data for the thermal expansivity αp [45] as a function of pressure at T=413 K,

according to the power-law formula (Eq. 2.11), for the nematic-isotropic (N-I) (TNI=407.1 K)

and the solid-nematic (S-N) (TS N=390.6 K) phase transitions. The experimental data which

are taken from the literature are given in Figs.3.1 and 3.2 and the data which we analyzed

are given in Tables 3.1 and 3.2. For the analysis of the N-I and S-N transitions, we obtained

the values of the critical exponent γ and the values of the amplitude A1, within the pressures

between 16 MPa and 54 MPa, are given in Table 3.3 [46].

Using the values of γ and A1, we then calculated the pressure dependence of the isothermal

compressibility κT for both transitions of N-I and S-N in PAA, according to Eq. 2.15, where

the experimental value of (∂P/∂T)S=10 MPa/K [45] was used. By means of Eq. 2.18, the

pressure dependence of the volume VT (P) was also calculated with the same parameters γ,

A1, and (∂P/∂T)S for the N-I and S-N transitions in PAA. The volume value at the transi-

tion pressure was taken as Vt=225 cm3/mol [54] in Eq. 2.18. For those calculations of the

isothermal compressibility κT (Eq. 2.15) and the volume VT (P) (Eq. 2.18) at various pres-

sures (T=413 K), we used the values of γ and A1 for the various pressure ranges in the S-N

transition of PAA, as given in Table 3.3.
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For the C-N transition, as can be seen from Table 3.3, as the pressure approaches the tran-

sition pressure PCN since at phase transition points, some thermodynamic quantities, such

as thermal expansion, isothermal compressibility and specific heat,diverge so the γ values

increase gradually except for the pressure range of 17 MPa to 51 MPa, where γ has a large

value of 1.58. This is due to the fact that within this pressure range our analysis shows that the

experimental data points are more scattered compared to our analysis for the other pressure

ranges.

Figure 3.1: Experimental data for the thermal expansivity αp as a function of pressure along
the isotherm 413K in solid PAA and at melting. Pt represents the transition pressure [45].

Figure 3.2: Experimental data for the thermal expansivity αp as a function of pressure along
the isotherm 413K in PAA across the nematic isotropic (NI) transition [45].
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Table 3.1: Experimental data for the thermal expansivity as a function of pressure along
the isotherm 413K in solid PAA and at melting. PCN represents the crystal (C)-nematic (N)
transition pressure [45].

P-PCN (MPa) αp x 104 (K−1)
3.13 276.39
7.16 167.10
10.99 84.88
15.72 61.18
17.31 43.12
16.85 38.62
20.16 31.73
22.82 24.93
28.46 15.10
36.48 9.74
48.72 6.87
68.78 4.34
98.48 2.99
128.00 2.46
157.38 2.16
190.80 1.98
222.19 1.77
255.11 1.73
284.74 1.70
335.94 1.66

Finally, by using our calculated values of αp (Eq. 2.11) and VT (P) (Eq. 2.18) as a function

of pressure (T=413K), we then calculated the specific heat Cp as a function of pressure,

according to Eq. 2.19 by using values of γ and A1 for various pressure ranges given in Table

3.3, for the N-I and S-N transitions.

Once, we calculated values of the thermal expansivity αp, the volume V and the specific heat

Cp, as a function of pressure (T=413K), we then applied the first Pippard relation (Eq. 2.22).

Fig. 3.3 gives Cp plotted versus Vαp (Eq. 2.22) for the N-I transition for the pressure range of

16 MPa to 54 MPa in PAA. We plot Cp against Vαp for the S-N transition for all the pressure

ranges from 3 MPa to 357 MPa (Table 3.3) in PAA, according to Eq. 2.22, in Fig. 3.5.

We also applied the second Pippard relation (Eq. 2.23) by plotting the thermal expansivity

αpagainst the isothermal compressibility κT for the N-I and S-N transitions in PAA, as given

in Figs. 3.4 and 3.6, respectively [46]. Both figures give αp and κT values at various pressures

37



Table 3.2: Experimental data for the thermal expansivity αp as a function of pressure along the
isotherm 413K in PAA across the nematic isotropic (NI) transition. PNI denotes the nematic
(N)-isotropic liquid (I) transition pressure [45].

P-PNI (MPa) αp x 104 (K−1)
1.856 19.42
6.70 10.91
16.18 4.52
25.78 3.16
35.96 2.41
46.17 2.15
54.50 1.76

Table 3.3: Values of the critical exponent γ and the amplitude A1 for the pressure ranges indi-
cated for the nematic-isotropic liquid (N-I) and for the crystal-nematic (C-N) phase transitions
in PAA from the analysis of the experimental data for the thermal expansivity αp according
to Eq. 2.11

Pressure range (MPa) γ A1 (MPa/K)
16<P-PNI<54 0.85±0.06 8.99x102±0.21
3<P-PCN<17 0.96±0.14 4.34x104±2.28
17<P-PCN<51 1.58±0.09 1.00x109±1.58
72<P-PCN<201 0.75±0.08 2.93x102±1.46
239<P-PCN<357 0.36±0.03 0.20±0.58

(Table 3.3) for T=413K in PAA. From our plots (Figs.3.3-3.6), we deduced the values of the

slope dP/dT and of the intercept T(dS/dT) (Figs. 3.3 and 3.5) and 1
V ( dV

dT ) (Figs. 3.4 and 3.6).

Our values of dP/dT calculated from Eqs. 2.22 and 2.23 are given in Table 3.4. Our intercept

values are tabulated in Table 3.5 [46].

Table 3.4: Values of the slope (dP/dT)λ calculated from Eqs. 2.22 and 2.23 for the nematic-
isotropic (N-I) and crystal-nematic (C-N) phase transitions in PAA.

Transition T(K) Calculated (Eq. 2.22) Calculated (Eq. 2.23)
(dP/dT)λ (MPa/K) (dP/dT)λ (MPa/K)

N-I 407.1 10.39 9.38
C-N 390.6 10.35 9.46
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Figure 3.3: Specific heat Cp versus Vαp(=∂V/∂T) for the nematic-isotropic liquid (NI) phase
transition for the pressure range PNI given in Table 3.3 at T= 413 K in PAA (TNI=407.1 K)
according to the first Pippard relation (Eq. 2.22)

Figure 3.4: Thermal expansivity αp versus the isothermal compressibility κT for the nematic-
isotropic liquid (NI) phase transition for the pressure range PNI given in Table 3.3 at T=413
K in PAA (TNI= 407.1 K) according to the second Pippard relation (Eq. 2.23).

Using our linear plots, the values of the slope dP/dT, which we deduced are very close to each

other for N-I and C-N transitions in PAA. As can be seen from Table 3.4, those slope values

are very close to the experimental value of slope which is equal to 10 MPa/K.
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Figure 3.5: Specific heat Cp versus Vαp (=∂V/∂T) for the crystal-nematic (CN) phase tran-
sition for the pressure ranges PCN given in Table 3.3 at T=413 K in PAA (TCN= 390.6 K)
according to the first Pippard relation (Eq. 2.22).

Figure 3.6: Thermal expansivity αp versus the isothermal compressibility κT for the crystal-
nematic (CN) phase transition for the pressure ranges PCN given in Table 3.3 at T=413 K in
PAA (TCN=390.6 K) according to the second Pippard relation (Eq. 2.23).

Table 3.5: Values of the intercept T( dS
dT )λ (Eq. 2.22) and 1

V

(
dV
dT

)
λ (Eq. 2.23) for the nematic-

isotropic (N-I) and crystal-nematic (C-N) phase transitions in PAA

Transition T(K) −T( dS
dT )λ (J/mol.K) 1

V

(
dV
dT

)
λ x 10−4 (K−1)

N-I 407.1 14.77 0.25
C-N 390.6 89.89 1.56
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3.1.1.2 Temperature Dependence of the Thermal Expansivity and the Specific Heat

Near the Nematic-Isotropic (NI) Phase Transition in PAA

While applying the Pippard relations we analyzed the thermal expansivity and specific heat as

a function of pressure. For this study we calculated the thermal expansivity αp as a function

of temperature for the nematic-isotropic (NI) phase transition in PAA, according to Eq. 2.13.

For the calculation of the thermal expansivity αp, we used the values of γ and A1 from our

previous analysis, as given in Table 3.3. We plot our calculated αp as a function of temperature

in Fig. 3.7. The experimental data for the thermal expansion αp and the specific heat Cp

which are taken from the literature for this analysis, are given in Table 3.6. The values of

αp calculated by Maier and Saupe [54] are also given in Fig. 3.7 for comparison [55]. Our

calculated αp values were normalized to compare with the values of Maier and Saupe [54].

So, the background thermal expansivity α0 (α0=6.3651x10−4 oC−1) was introduced in Eq.

2.13 as follows [55].

αp(T ) = α0 + A1(
dPt

dT
)−γ(Tt − T )−γ (3.1)

Also, since the transition temperature was Tc=408.2 K or 135.05oC for the thermal expan-

sivity data [54], we shifted our calculated αp by ∆T=1.15oC according to the TNI value of

133.9oC for the specific heat Cp data [56].

We also calculated the specific heat Cp as a function of temperature for the nematic- isotropic

(N-I) phase transition in PAA, according to Eq. 2.20, as shown in Fig. 3.8. For this calcu-

lation, in Eq.2.20 we used the values of the critical exponent γ and the amplitude A1 (Table

3.3) which we deduced from our analysis of the experimental data for the thermal expansiv-

ity αp [45] in the pressure range of 16<P-PNI<54 MPa, according to Eq. 2.11, as before.

The experimental data for Cp using differential scanning calorimetry [57] are also shown in

Fig. 3.8. We normalized our calculated specific heat Cp with the experimental Cp at 150oC

and compared with the experimental data. So, in Eq. 2.20 the background specific heat C0

(C0=0.3867 cal/g.deg) was introduced, as follows [55]

Cp = C0 + A1TV(dPm/dT )1−γ(T − Tm)−γ (3.2)

As can be seen from Fig. 3.8, at the transition point Cp diverges, since Cp and αp have the

same divergence property close to the transition points (Eq. 2.25), one can expect, αp, to
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Table 3.6: Experimental data for the thermal expansivity αp and the specific heat Cp as a
function of temperature for the nematic-isotropic (NI) phase transition in PAA [54, 56].

T(oC) αp x 10−4 (oC−1) T (oC) Cp (cal/g.deg)
106.12 7.305 118.2 0.460
108.58 7.345 120 0.462
111.15 7.359 125.5 0.474
113.5 7.399 127 0.480
116.17 7.522 128 0.484
118.63 7.617 129 0.493
121.29 7.823 130 0.497
123.31 7.970 131 0.512
126.6 8.343 131.47 0.524
128.51 8.653 132.390 0.541
131.55 9.353 132.4 0.544
132.08 9.492 133.17 0.533
133.53 10.019 133.3 0.628
134.56 10.543 133.82 0.674
135.26 11.094 135.34 0.858
135.75 11.643 135.49 0.731
136.02 12.245 135.5 0.585
136.27 13.066 136.4 –
136.39 14.187 136.54 –
136.44 14.843 137 0.485
136.99 9.682 137.4 –
137.25 9.164 138 0.468
137.73 8.539 138.5 –
138.29 8.241 139.3 –
138.52 8.160 140 0.465
139.06 8.026 142 0.466
139.94 7.813 144 0.466
140.26 7.787 146 0.466
140.8 7.708 148 0.466
141.24 7.655 150 0.467
142.1 7.605 – –
142.64 7.581 – –
143.18 7.529 – –
143.5 7.5580 – –
143.82 7.533 – –
144.250 7.508 – –
144.79 7.510 – –

diverge to infinity at the transition temperature. Fig. 3.7 shows that αp diverges to infinity at

the transition point as expected. Also Figs.3.7 and 3.8 show, both calculated values of αp and
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Figure 3.7: Our calculated thermal expansivity αp as a function of temperature for the
nematic-isotropic (NI) phase transition in PAA according to Eq. 2.13. Calculated αp val-
ues (TNI=135.1oC) due to Maier and Saupe [54] are also shown here for comparison.

Figure 3.8: Our calculated specific heat Cp represented by solid lines as a function of temper-
ature for the nematic-isotropic (NI) phase transition in PAA (TNI=133.9oC) according to Eq.
2.20. Experimental data [56] are also shown here for comparison.

Cp are in a good agreement with the experimental data of αp [54] and Cp [56].

Some discrepancy occurs between our calculated thermal expansivity αp with the αp calcu-
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lated previously [54]. In particular, below TNI from the melting temperature the discrepancy

occurs for the N-I transition in PAA. Above TNI both calculated values of the thermal expan-

sivity are in better agreement (Fig.3.7).

As can be seen from Fig. 3.8, as the temperature increases from the nematic phase, our cal-

culated Cp values get larger up to the transition temperature where both the calculated and

experimental Cp values diverge. Above TNI , there is a sharp decrease in the observed Cp val-

ues in comparison with our calculated Cp values which decrease gradually up to nearly 150oC,

where the background specific heat C0 was determined using both observed and calculated

Cp values.

The discrepancy between our calculated and the observed Cp may be due to the lack of ex-

perimental data for the isobaric expansivity αp which we used for the nematic-isotropic (N-I)

transition in PAA to calculate the specific heat Cp as a function of temperature. Also, the

approximations used for the slopes according to our analysis of the experimental thermal ex-

pansivity αp within the pressure range of 15<P-PL<54 MPa, may not be fully satisfied to

calculate the specific heat Cp in PAA close to the melting point. Around the melting point,

orientational disorder increases. Our calculations of the thermal expansivity αp and the spe-

cific heat Cp exhibit an anomalous behaviour in PAA, which can be considered as a second

order phase transition with a particular type of orientational disorder.

3.1.1.3 Analysis of the Specific Heat of P-Azoxyanisole (PAA) Near the Phase Transi-

tions

After analyzing the specific heat Cp using the power-law formula for the nematic-isotropic

liquid (NI) and the crystal-nematic (CN) phase transitions in PAA, in this study we also used

a renormalization-group expression with a corrections to scaling term [39]. From the analysis

of the specific heat Cp, we then calculated the enthalpy H and the entropy S as a function of

temperature in the nematic phase for T<TNI and for T>TCN in PAA. The experimental data

for the specific heat taken from the literature is given in Fig. 3.9 and in Tables 3.7 and 3.8.

Analysis of the specific heat Cp

We analyzed the specific heat Cp using a power-law formula, with the reduced temperatures

in Eq. 2.3 for the isotropic liquid-nematic (TNI=133.9oC) and solid-nematic (TS N=117.6oC)
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Figure 3.9: Experimental data for the specific heat Cp as a function of temperature above and
below the transition temperature of the nematic-isotropic phase transition in PAA [56].

Table 3.7: Experimental data for the specific heat Cp as a function of temperature above and
below the transition temperature of the nematic-isotropic phase transition in PAA [56].

T (oC) Cp (cal/g.deg) T (oC) Cp (cal/g.deg)
T>TNI T<TNI

154.93 0.863 133.72 0.562
158.27 0.733 133.71 0.557
164.72 0.586 133.54 0.555
175.18 0.484 133.53 0.554

– – 133.52 0.548
– – 133.35 0.546
– – 133.34 0.541
– – 133.33 0.538
– – 133.15 0.533
– – 133.14 0.528

phase transitions in PAA. The experimental Cp data [56] was used for our analysis. Table 3.9

gives the values of α and A within the interval of the reduced temperature ε above and below

TNI (TS N) for PAA. We plot in a log-log scale Cp against ε according to the Eq. 2.3 for both

N-I and S-N transitions. Figs. 3.10 and 3.11 give our plots above and below TNI , respectively.
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Table 3.8: Experimental data for the specific heat Cp as a function of temperature above and
below the transition temperature of the nematic-solid (SN) phase transition in PAA [56].

T (oC) Cp (cal/g.deg) T (oC) Cp (cal/g.deg)
T>TS N T<TS N

128.68 0.482 113.87 0.410
128.16 0.479 111.41 0.391
127.64 0.475 109.85 0.385
126.77 0.474 107.93 0.379
125.90 0.472 107.06 0.373

– – 104.80 0.368
– – 101.15 0.358
– – 95.26 0.350
– – 91.44 0.346
– – 88.32 0.344

Figure 3.10: The specific heat Cp in a log-log scale as a function of the reduced temperature,
ε=
∣∣∣T-TNI

∣∣∣/TNI ,above TNI for the nematic-isotropic liquid phase transition in PAA according
to Eq. 2.4. Uncertainties in Cp calculated from the uncertainties in α and logA (Table 3.9),
are shown as vertical lines.

logCp is plotted against logε in Figs. 3.12 and 3.13 above and below TS N , respectively for

PAA [39].

In Figs. (3.10-3.13) we represent with vertical lines the uncertainties in the specific heat Cp,

which we determined when Eq. 2.4 was fitted to the experimental data [56]. Uncertainties

in the critical exponent α and in logA, as given in Table 3.9, which is also given in Table
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Figure 3.11: The specific heat Cp in a log-log scale as a function of the reduced temperature,
ε=
∣∣∣T-TNI

∣∣∣/TNI , below TNI for the nematic-isotropic liquid phase transition in PAA according
to Eq. 2.4. Uncertainties in Cp calculated from the uncertainties in α and logA (Table 3.9),
are shown as vertical lines.

Figure 3.12: The specific heat Cp in a log-log scale as a function of the reduced temperature,
ε=
∣∣∣T-TS N

∣∣∣/TS N , above TS N for the solid-nematic phase transition in PAA according to Eq.2.4.
Uncertainties in Cp calculated from the uncertainties in α and logA (Table 3.9), are shown as
vertical lines.

3.15 were used to determine the uncertainties in the specific heat values (Figs. 3.10-3.13).

In particular in Figs. 3.11 and 3.12, because of the data dispersion, the uncertainties in the

specific heat Cp are much larger and the solid lines represent the best fits to the experimental
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Figure 3.13: The specific heat Cp in a log-log scale as a function of the reduced temperature,
ε=
∣∣∣T-TS N

∣∣∣/TS N , below TS N for the solid-nematic phase transition in PAA according to Eq.2.4.
Uncertainties in Cp calculated from the uncertainties in α and logA (Table 3.9), are shown as
vertical lines.

Figure 3.14: The enthalpy difference (∆H=H-Ho) calculated from Eq. 3.5 as a function of
temperature in the nematic phase (T>TS N) of PAA (TS N=117.6oC).

data [56]. The critical specific heat associated with the nematic-isotropic liquid (N-I) and

solid-nematic (S-N) phase transitions can also be described by the expression [58]

Cp =

 Aε−α(1 + Dε∆) + B, f orT > Tc

A′ε−α
′
(1 + D′ε∆) + B′, f orT < Tc

(3.3)
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Figure 3.15: The entropy difference (∆S=S-So) calculated from Eq. 3.7 in the nematic phase
(T>TS N) of PAA (TS N=117.6oC).

Table 3.9: Values of the critical exponent α for the specific heat Cp and the amplitude A
within the interval of the reduced temperature ε according to the power-law formula (Eq. 2.3)
for the nematic-isotropic (TNI=133.9oC) and nematic-solid (TS N=117.6oC) phase transitions
in PAA. Uncertainties in α and logA are given from fitting Eq. 2.3 to the experimental Cp

data [56].

Phase Transitions T(K) α LogA ε=| T-Tc |/Tc

(Tc=TNI ,TS N)
Nematic-Isotropic T>TNI 0.85 ± 0.07 -1.604 ± 0.12 1.57x10−2 < ε < 3.08x10−2

Liquid (NI) T<TNI 0.04 ± 0.005 -0.354 ± 0.014 1.34x10−3 < ε < 5.68x10−3

Nematic-Solid T>TS N -0.07 ± 0.01 -0.246 ± 0.016 7.06x10−2 < ε < 9.42x10−2

(SN) T<TS N 0.09 ± 0.002 -0.518 ± 0.002 3.17x10−2 < ε < 2.48x10−1

where Dε∆ is a corrections-to-scaling term in which ∆≈0.5 and B is a nonsingular critical

contribution [59]. When D=0, which was the constraint to analyze the Cp data [59], the

above relation reduces to Eq. 2.3 with the coefficient B [39].

For this analysis again we examined the specific heat Cp, using the experimental data [56]

at various temperatures for the NI and S-N transitions of PAA . From this nonlinear fitting

the values of the critical exponent α for Cp and, the parameters A, B and D are given within

the temperature intervals ε in Table 3.10. Some parameters are given in the table with their

uncertainties. Those without uncertainties were held constant and the remaining parameters
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were varied in Eq. 3.3 during the fitting procedure [39].

The exponent values of α=0.04 (T<TNI), -0.07 (T>TS N) and 0.09 (T<TS N), are all nearly

equal to 0.1 which is not expected from the mean field theory (α=α′=0). Those exponent

values can be compared with the value of α=1/8 predicted from a three-dimensional Ising

model. The negative exponent value of -0.07 is in agreement with the helium analogy and the

inverted XY model for liquid crystals which can be renormalized according to the Fisher’s

renormalization formula,αR=-α/(1-α), which gives the value of α=0.06. This value is also

close to the value of the three-dimensional Ising model.

Our exponent value of α=0.85 (T>TNI) is too large to compare with the predictions of the

models considered above. This may be due to the fact that the observed Cp drops rapidly just

above TNI=133.90C and it does not vary considerably with the temperature in the isotropic

liquid phase from 137 to 1500C. This large value of the critical exponent led us to investigate

the mechanism of the nematic-isotropic liquid (NI) phase transition in PAA. We used the

renormalization- group expression and adopted it to analyze the observed Cp data for the NI

and SN transitions in PAA. From our analysis, we obtained α=0.5 for T<TNI and T<TS N , as

the mean-field-tricritical value. Unexpected behaviour occurs above TS N in the nematic phase

with a large negative value of α=-0.85 according to the renormalization- group-analysis. This

is also associated with the mean field tricritical behaviour ( α=0.5) below TS N . On the other

hand, the renormalization-group-analysis does not give the expected critical behaviour above

TS N with the exponent value of -0.85 if one assumes a mean field tricritical transition below

TS N . So, the simple power-law formula describes adequately the solid-nematic transition with

the α values.

Calculation of the enthalpy H

We calculated the temperature dependence of the enthalpy H in the nematic phase from the

specific heat Cp for the solid-nematic (S-N) phase transition in PAA. By defining Cp=∂H/∂T

and using the power-law formula for the specific heat (Eq. 2.3), the temperature dependence

of the enthalpy H can be calculated from the integral expression:

H =
∫ Tc

T
A
∣∣∣∣∣T − Tc

Tc

∣∣∣∣∣−αdT + H0 (3.4)

where TC=TS N . From Eq. 3.4, the temperature dependence of the enthalpy in the nematic
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phase of PAA for T>TS N can be calculated as

H = H0 +
ATS N

1 − α

(T − TS N

TS N

)1−α
(3.5)

where H0 denotes the enthalpy at the transition temperature TS N when α<1. We calculated

the temperature dependence of the enthalphy difference, ∆H=H-H0, in the nematic phase

for T>TS N using our values of α, A (Table 3.9), TS N=117.60C and H0=28.1 cal.g−1 [56]

according to Eq. 3.4. Our calculated ∆H values are plotted as a function of temperature

(T>TS N) in Figure 3.14 [39].

Calculation of the entropy S

We also calculated the temperature dependence of the entropy S in the nematic phase above

the solid-nematic (S-N) phase transition in PAA. By defining Cp=T(∂S/∂T)P, the entropy S

can be calculated from the specific heat Cp at T=TC using the power-law formula (Eq. 2.3)

according to the integral expression:

S =
∫

A
Tc

(T − Tc

Tc

)−α
dT + S 0 (3.6)

where TC=TS N . The entropy expression can be obtained above the solid-nematic transition

(T>TS N) from Eq. 3.6, which gives:

S = S 0 +
A

1 − α

(T − TS N

TS N

)1−α
(3.7)

where S0 denotes the entropy at T=TS N when α<1. As we performed for the calculation of

the enthalpy H, we calculated the entropy difference ∆S=S-S0, as a function of temperature

by using the values of the critical exponent α and the amplitude A for T>TS N (Table 3.9)

according to Eq. 3.7. Fig. (3.15) gives the entropy difference ∆S (entropy S with respect to

the entropy value S0 at the transition temperature) as a function of temperature in the nematic

phase for T>TS N in PAA [39].

Figs. 3.14 and 3.15 show that the enthalpy difference ∆H and the entropy difference ∆S

increase with increasing temperature.
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Table 3.10: Values of the critical exponent α for the specific heat Cp and the parameters A, B
and D within the interval of the reduced temperature ε according to Eq. 3.3 for the nematic-
isotropic liquid (N-I) and nematic-solid (S-N) phase transitions, respectively, in PAA.

T(K) α A B D ε=|T-Tc|/Tc

(cal.g−1oC−1) (cal.g−1oC−1) (Tc=TNI ,TS N)
T>TNI 0.006 (1.69±0.22) (-1.74±0.23) 0.067±0.003 9.0x10−3<ε<4.6x10−2

x102 x102

T<TNI 0.5 0.025±0.013 -7.4x104 2.9x106 2.2x10−3<ε<4.4x10−2

T>TS N -8.05 -0.85x107 8.05x107 -1.13±0.02 5.1x10−3<ε<9.4x10−2

T<TS N 0.5 -1.32x106 1.32x106 -1.02±0.01 2.2x10−2<ε<2.5x10−1

3.1.1.4 Analysis of the Specific Heat of PAA in the Supercooled Solid Phase of Liquid

Crystals

The specific heat was analyzed in the supercooled and solid regions for PAA by a power-law

formula using the experimental data [56] for the specific heat taken from the literature, which

is given in Table 3.11. For PAA, we were in particular interested in the stability limit for the

supercooled solid. Using Eq. 2.1 and taking Ts instead of the transition temperature Tt, the

Figure 3.16: The specific heat Cp in a log-log scale as a function of the temperature with
respect to the stability temperature Ts for the supercooled solid phase of PAA using the ex-
perimental data [56] analyzed according to Eq. 2.39 (see Table 3.18).
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Cp data [56] was analyzed with the stability temperature of Ts=90oC for PAA in the solid

phase.Then, the fitted parameters were determined, as given in Table 3.18. Fig. 3.16 gives

a plot of Cp against T-Ts in the log-log scale according to Eq.2.2 for the supercooled region

of PAA. We also analyzed the Cp data for the solid phase of PAA through Eq.2.1 with the

Ts=90oC. The fitted parameters α and A in the temperature interval studied, are given in

Table 3.18 for the solid phase of PAA. Finally, Fig. 3.17 gives our plot of logCp against

log(T-Ts) for the solid phase of this liquid crystal [56].

Figure 3.17: The specific heat Cp in a log-log scale as a function of the temperature with
respect to the stability temperature Ts for the solid phase of PAA using the experimental data
[56] analyzed according to Eq. 2.39 (see Table 3.18).

Our analysis gave us the values of -0.02 (supercooled solid phase) and ∼0 (solid phase). The

power-law formula for the stability limit was not satisfactory for the supercooled solid phase

of PAA.
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Table 3.11: Experimental data for the specific heat Cp as a function of temperature for the
supercooled solid phase and solid phase of PAA[56].

Supercooled Solid Phase of PAA Solid Phase of PAA
T (oC) Cp (cal/g.deg) T (oC) Cp (cal/g.deg)
101.84 0.451 90.23 0.344
105.79 0.453 91.26 0.345
106.65 0.455 92.29 0.345
107.68 0.452 93.32 0.346
110.08 0.455 95.38 0.347
113.00 0.456 – –
116.26 0.457 – –

3.1.2 Anisaldazine

3.1.2.1 Temperature Dependence of the Specific Heat of Anisaldazine Close to Phase

Transitions

The analysis of the specific heat Cp measured as a function of temperature for the nematic-

isotropic liquid (TNI=180.5oC) and the solid-nematic (TS N=168.9oC) transitions in anisal-

dazine, was performed here according to a power-law formula [37].

In this study we analyzed the experimental data for the specific heat Cp taken from the lit-

erature, which is given in Fig. 3.18 and Table 3.12. For this analysis, we used the linear

relation (Eq. 2.4) above and below the transition temperature for the nematic-isotropic and

solid- nematic transitions in anisaldazine. Table 3.15 gives the values of the critical exponent

α and the amplitude A above (T>TNI) and below (T<TNI) the transition temperature TNI and

also above (T>TS N) and below (T<TS N) the transition temperature TS N in anisaldazine [37].

Since the experimental data for Cp was scattered above TNI [56], it was analyzed in two

temperature intervals and, the values of α and A were extracted according to Eq. 2.4, as

tabulated in Table 3.15. Fig. 3.19 gives our plot of the specific heat Cp against the temperature

in a log-log scale according to Eq. 2.4 in the temperature interval considered here (T>TNI)

for the nematic-isotropic liquid transition in anisaldazine. We have given here Fig. 3.19 only

as the representative plot for the nematic-isotropic liquid transition of anisaldazine. As we

extracted the values of α and A from Fig. 3.19, those α and A values were also extracted

from our plots of Cp against the temperature for the nematic-isotropic liquid transition in the
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Figure 3.18: Specific heat Cp of anisaldazine from 47 to 237o [56].

Figure 3.19: The specific heat Cp in a log-log scale as a function of reduced temperature
(TNI=180.5oC) in the temperature interval for T>TNI in anisaldazine according to a power-
law formula (Eq. 2.4).
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Table 3.12: Experimental data for the specific heat Cp as a function of temperature above TNI

and below TS N in anisaldazine [56].

T>TNI T<TS N

T (oC) Cp (cal/g.deg) T (oC) Cp (cal/g.deg)
181.03 16.85 168.31 0.654
181.03 14.81 168.32 0.882
181.04 10.32 168.34 1.189
181.04 9.51 168.36 1.604
181.05 6.66 168.37 2.164
181.06 4.65 168.39 2.919
181.07 3.46 168.41 3.937

– – 168.42 5.311
– – 168.43 7.163
– – 168.45 9.662
– – 168.46 13.032
– – 168.48 17.578
– – 168.49 23.710
– – 168.50 31.982
– – 168.51 43.138
– – 168.52 58.186
– – 168.54 78.484
– – 168.55 105.862
– – 168.56 142.791
– – 168.57 192.602

temperature intervals indicated in Table 3.15 according to Eq. 2.4. In Fig. 3.20 we plot Cp in a

log-log scale as a function of temperature for T<TS N in the temperature interval studied here.

Again, as for the nematic-isotropic liquid transition, Fig. 3.20 is a representative plot of the

specific heat at various temperatures for the solid-nematic transition in a given temperature

interval for anisaldazine [37].

Values of the critical exponent α are nearly equal to 0.1 for T>TNI and T<TS N . Below the

nematic-isotropic liquid transition, our exponent value gets larger and it becomes α=0.2. Our

values of α∼0.1 and α=0.2 are not equal to the value expected from the mean field theory

(α=α′=0). On the other hand, the value of α=-0.02 which we extracted for the solid-nematic

transition within the temperature interval studied (T>TS N), agrees with the value expected

from the helium analogy and the inverted XY model for liquid crystals. Our exponent value

of -0.02 (T>TS N) changes to 0.2 (T<TNI) from the solid phase to the nematic phase as the

temperature increases in anisaldazine. This rapid change in the values of the critical exponent
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Figure 3.20: The specific heat Cp in a log-log scale as a function of reduced temperature
(TS N=168.9oC) in the temperature interval for T<TS N in anisaldazine according to a power-
law formula (Eq. 2.4).

α within the temperature intervals, is due to the fact that there is a jump discontinuity in the

specific heat Cp data as the solid phase is transformed into the nematic phase, in particular

in the supercooled region. At low temperatures in the solid phase and at high temperatures

in the isotropic liquid, similar critical behaviour of the specific heat Cp occurs within the

temperature intervals studied.

3.1.3 Cholesteryl Myristate

3.1.3.1 Temperature Dependence of the Specific Heat of Cholesteryl Myristate Close

to Phase Transitions

The temperature dependence of the specific heat of cholesteryl myristate was analyzed ac-

cording to a power-law formula above and below the transition temperatures (TCI and TS C)

and the values of the critical exponent α were extracted by using the experimental data [56]

for the specific heat. This data was taken from the literature, which is given in Fig. 3.21 and

in Tables 3.13 and 3.14. Figs. 3.22 and 3.23 give Cp as a function of |T-TCI | above and below

the transition temperature (TCI=85.5oC), respectively. For the transition between the smectic

and cholesteric phases (TC=79.7oC) in cholesteryl myristate, we also plot the specific heat as
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a function of |T-TS C | in a log-log scale, as given in Figs. 3.24 and 3.25 (T>TS C) and Fig. 3.26

(T<TS C). We had two plots of Cp against T-TS C because of the two different temperature

intervals according to Eq. 2.2. This gave us the two different α values, as given in Table 3.15

[38].

Figure 3.21: Specific heat of cholesteryl myristate from -3 to 97o [56].

The values of the critical exponent α for the specific heat Cp, which we extracted vary from

0.03 to 0.50 for the CI and SC transitions in different temperature intervals. Above TCI

and below TS C , the exponent values of 0.03 and 0.05, respectively, are close to the mean

field value of α=α′=0.In between below TCI and above TS C the exponent values which vary

from 0.1 to 0.5, are not in agreement with the mean field value. This means that below

TCI and above TS C , the critical behaviour of the specific heat Cp changes from a second

order transition (α=α′=0 from the mean field theory) toward a first order through a tricritical

transition (α=0.5 tricritical mean field theory). In particular, our exponent value of α=0.5 just

above the smectic-cholesteric (SC) transition (TS C=79.70C) within the temperature interval

(80.43 < T(0C) < 80.99), is the tricritical mean field value.
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Table 3.13: Experimental data for the specific heat Cp as a function of temperature above and
below the transition temperature of cholesteric-isotropic liquid phase transition in Cholesteryl
Myristate. TCI denotes the cholesteric-isotropic liquid transition temperature [56].

T>TCI T<TCI

T (oC) Cp (cal/g.deg) T (oC) Cp (cal/g.deg)
86.061 3.320 84.842 1.049
86.063 2.880 84.851 1.093
86.068 2.410 84.866 1.050
86.074 1.760 84.883 1.570
86.075 0.890 84.894 2.000
86.088 1.150 84.895 2.520
86.0958 0.850 – –
86.103 0.380 – –

Table 3.14: Experimental data for the specific heat Cp as a function of temperature above and
below the transition temperature of cholesteric-solid phase transition in Cholesteryl Myristate.
TS C represents the cholesteric-solid transition temperature [56].

T>TS C T<TS C

T (oC) Cp (cal/g.deg) T (oC) Cp (cal/g.deg)
80.381 1.290 78.969 0.010
80.417 1.210 79.092 0.650
80.503 0.910 79.113 1.000
80.555 0.820 79.129 1.640
80.626 0.730 79.144 2.640
80.306 2.760 79.155 4.670
80.315 2.330 79.161 5.750
80.345 1.810 – –
80.382 1.290 – –
80.417 1.210 – –

Our values of the critical exponent α for the specific heat Cp indicate that the cholesteric-

isotropic liquid (T>TCI) and the smectic-cholesteric (T<TS C) transitions can be of a second

order type. Our exponent values also indicate that below TCI and above TS C , the transition

tends to change toward a first order in cholesteryl myristate.
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Table 3.15: Values of the critical exponent α for the specific heat Cp and the amplitude
A within the interval of the reduced temperature ε according to a power-law formula (Eq.
2.4) for the all phase transitions of Cholesteryl Myristate (CM), Anisaldazine (AAD) and
P-Azoxyanisole (PAA).

Liquid Phase Temperature A

Crystal Transition Region (oC) α [cal/g.oC] ε=|T-Tc|/Tc

Cholesteric- T>TCI 0.03±0.01 0.585±0.002 4.4x10−3<ε<3.0x10−2

CM Isotropic Liquid T<TCI 0.09±0.02 0.649±0.004 3.0x10−2<ε<1.2x10−2

Smectic- 0.50±0.03 0.779±0.003 9.1x10−3<ε<1.6x10−2

Cholesteric- T>TS C 0.19±0.02 0.728±0.007 1.5x10−2<ε<3.4x10−2

SC T<TS C 0.050±0.001 0.587±0.001 7.2x10−2<ε<1.3x10−4

Smectic- 0.06 0.368 1.2x10−2<ε<2.0x10−1

Solid T<TS S 0.10 0.336 6.5x10−2<ε<3.0x10−1

Nematic- 0.050±0.003 0.608±0.004 1.9x10−2<ε<9.3x10−2

AAD Isotropic T>TNI 0.09±0.02 0.809±0.03 1.1x10−2<ε<2.4x10−2

Liquid T<TNI 0.19±0.01 0.732±0.03 1.9x10−3<ε<2.2x10−2

Solid- T>TS N -0.020±0.003 0.549±0.010 8.6x10−3<ε<4.3x10−2

Nematic T<TS N 0.10±0.01 0.569±0.01 0.14<ε<0.71

Nematic- T>TNI 0.85±0.07 -1.604±0.12 1.57x10−2<ε<3.08x10−2

PAA Isotropic Liquid T<TNI 0.04±0.005 -0.354±0.014 1.34x10−3<ε<5.68x10−3

Nematic- T>TS N -0.07±0.01 -2.246±0.016 7.06x10−2<ε<9.42x10−2

Solid T<TS N 0.09±0.002 -0.518±0.002 3.17x10−2<ε<2.48x10−1

Figure 3.22: The specific heat Cp in a log-log scale as a function of the temperature accord-
ing to Eq. 2.1 above the cholesteric-isotropic liquid (CI) phase transition (TCI=85.5oC ) for
cholesteryl myristate.
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Figure 3.23: The specific heat Cp in a log-log scale as a function of the temperature accord-
ing to Eq. 2.1 below the cholesteric-isotropic liquid (CI) phase transition (TCI=85.5oC) for
cholesteryl myristate.

Figure 3.24: The specific heat Cp in a log-log scale as a function of the temperature according
to Eq. 2.1 above the smectic-cholesteric (SC) phase transition (TS C=79.7oC) for cholesteryl
myristate.
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Figure 3.25: The specific heat Cp in a log-log scale as a function of the temperature according
to Eq. 2.1 above the smectic-cholesteric (SC) phase transition (TS C=79.7oC) for cholesteryl
myristate.

Figure 3.26: The specific heat Cp in a log-log scale as a function of the temperature according
to Eq. 2.1 below the smectic-cholesteric (SC) phase transition (TS C=79.7oC) for cholesteryl
myristate.
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3.1.3.2 Analysis of the Specific Heat of Cholesteryl Myristate in the Supercooled Solid

Phase of Liquid Crystals

The specific heat was analyzed close to the smectic-solid transition and, in the rapidly and

slowly cooled regions for CM according to a power-law formula using the experimental data

[56] taken from the literature, which is given in Tables 3.16 and 3.17. Close to the smectic-

solid (TS S=73.6oC) transition, the temperature dependence of the Cp was analyzed using the

power-law expression (Eq. 2.3) in the logarithmic form for the two temperature intervals,

with the values of α and A, as given in Table 3.15. The temperature range was divided into

the two for our analysis to get a linear variation of Cp with the temperature in the log-log scale

according to Eq. 2.4. In Figs. 3.27 and 3.28 we give our plots of the Cp as a function of the

reduced temperature ε (in the log-log scale) for the temperature intervals indicated. In this

study, we were particularly interested in the stability limit for the rapidly cooled and slowly

cooled solid phases of CM [60]. So, the experimental data for the Cp [56] was analyzed using

the power-law formula for the stability limit [47]. In the power-law formula Tc was taken as

Ts, which is the stability temperature. α=1/2 is the critical exponent and A is the amplitude,

as before. From our analysis, we determined the stability temperature as Ts=-19.6oC from

the Cp data for the rapidly cooled solid [56] according to the Eq. 2.39. Table 3.18 gives the

fitted parameters (Eq. 2.39) in the temperature interval indicated for the rapidly cooled CM.

A plot of logCp against log(T-Ts) is given in Fig. 3.28, according to 2.40.

Table 3.16: Experimental data for the specific heat Cp as a function of temperature in the
smectic A-solid phase transition and rapidly cooled solid phase in Cholesteryl Myristate [56].

Smectic A-Solid Phase Transition Rapidly Cooled Solid Phase
T (oC) Cp (cal/g.deg) T (oC) Cp (cal/g.deg)

108.121 0.012 19.967 66.015
107.646 0.026 19.976 61.136
105.924 0.040 19.996 56.282
105.628 0.065 20.024 51.036
104.737 0.096 20.037 46.373
103.313 0.163 20.069 41.338
102.364 0.233 20.092 36.285
102.126 0.233 20.128 31.464
101.355 0.303 – –
101.057 0.303 – –
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Table 3.17: Experimental values for the specific heat Cp as a function of temperature in the
rapidly and slowly cooled solid phase in Cholesteryl Myristate [56].

Rapidly Cooled Solid Phase Slowly Cooled Solid Phase
T (oC) Cp (cal/g.deg) T (oC) Cp (cal/g.deg) T (oC) Cp (cal/g.deg)
125.59 0.545 99.07 0.688 127.54 0.544
119.42 0.566 101.35 0.791 125.55 0.566
105.61 0.590 104.77 0.854 125.49 0.591
89.49 0.620 114.26 1.077 115.77 0.620
83.14 0.650 – – 103.95 0.652
69.50 0.689 – – – –
61.50 0.735 – – – –
50.73 0.789 – – – –

Table 3.18: Values of the critical exponent α and the amplitude A for the rapidly cooled,
supercooled and solid phases of CM and PAA in the stability limit according to a power-law
formula Eq. 2.40

.

Phase Stability α A (cal/g.oC) Temperature

Temperature interval (oC)

Ts (oC)

Rapidly cooled solid (CM) -19.6 0.50±0.02 2.98 11.9<T<46.4

Supercooled (PAA) -0.020±0.004 0.43 101.8<T<116.3

Solid (PAA) 90 0.0030±0.0004 0.345 90.2<T<95.38

We have also plotted Cp as a function of (1-T/Ts)−1/2 for the rapidly cooled solid (CM) in Fig.

3.28. Furthermore, we analyzed the experimental Cp [56] for the slowly cooled solid (CM)

according to Eq. 2.39 with the α=1/2 and we used the stability temperature as Ts=-19.6oC.

For the two different temperature regions, we plot Cp as a function of (1-T/Ts)−1/2 in Fig.

3.29 for the slowly cooled solid. In these figures, the solid lines represent the curves fitted to

the experimental data [56].

For the rapidly cooled solid, Cp varies linearly with the (1-T/Ts)−1/2 in the temperature in-

terval given. For slowly cooled solid, because of the kink that occurs around 25 oC in the

experimental Cp [56], almost linear variation of Cp with the (1-T/Ts)−1/2 changes towards a

nonlinear behaviour at higher temperatures. The Cp curves increasing in the solid phase and

decreasing in the slowly cooled solid phase with decreasing temperature, construct a kink at
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Figure 3.27: The specific heat Cp as a function of the reduced temperature (ε=|Tc-T|/Tc)
in a log-log scale close to the smectic A-solid transition (TS S=73.6oC) for the cholesteryl
myristate (CM) using the experimental data [56] analyzed according to Eq.2.39 (see Table
3.15).

Figure 3.28: The specific heat Cp in a log-log scale as a function of the temperature with re-
spect to the stability temperature Ts for the rapidly cooled solid phase of cholesteryl myristate
(CM) using the experimental data [56] analyzed according to Eq.2.39 (see Table 3.18).

around 25 oC. This can be due to the fact that long-range ordering of the molecules is not

completed in the solid phase or to some extent the molecules are still disordered (increasing
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Figure 3.29: The specific heat Cp as a function of the reduced temperature with respect to
the stability temperature Ts for the rapidly cooled solid phase (� and •) and for the slowly
cooled solid phase (N) of CM. The solid lines represent the best fit to the experimental data
[56] analyzed according to Eq. 2.39 (see Table 3.18).

Cp), whereas in the slowly cooled solid phase the molecules are more ordered (decreasing

Cp), as the temperature decreases. Thus, the occurrence of the kink in Cp indicates a kind of

transition from the solid phase with some disorder to the slowly cooled solid phase with the

molecules oriented orderly.

3.2 Analysis of Some Ferroelectric Liquid Crystals

3.2.1 4-(3-methyl-2-chlorobutanoyloxy)-4′-heptyloxybiphenyl (A7)

3.2.1.1 Temperature Dependence of the Polarization and Tilt Angle Under an Elec-

tric Field Close to the Smectic AC* Phase Transition in a Ferroelectric Liquid

Crystal

While calculating the temperature dependence of the tilt angle θ and the polarization P for

the AC∗ phase transition of the ferroelectric liquid crystal 4-(3-methyl-2-chlorobutanoyloxy)-

4′-heptyloxybiphenyl (A7) under the fixed electric fields [51], we used the polarization data

at zero electric field according to Eq. 2.52. In a previous study [18], expression for the
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temperature-dependent θ derived from the mean field model was fitted to the experimental

data [16] for the tilt angle θ of the compound A7 in the case of zero electric field for the

AC* phase transition, and the values of the coefficients a, b, c, D and e were determined

[18], as also tabulated in Table 3.20. Then, the temperature dependence of the polarization P

was calculated for this liquid crystalline material [18]. The experimental data taken from the

literature and analyzed in this study is given in Fig. 3.30 and Table 3.19.

Table 3.19: Experimental values of the tilt angle and the polarization as a function of temper-
ature for the smectic A-smectic C* phase transition of A7 [21].

T (oC) Tilt Angle θ (rad) Polarization P x 10−4 (C/m2)
71.81 0.443 14.85
72.01 0.432 14.43
72.11 0.428 14.26
72.21 0.419 13.96
72.40 0.411 13.63
72.59 0.398 13.16
72.69 0.390 12.85
72.89 0.374 12.23
73.20 0.341 11.01
73.30 0.329 10.54
73.40 0.314 9.93
73.50 0.290 9.01

Table 3.20: Values of the parameters given in Eq. 2.41, which were obtained from an earlier
study [18] at zero electric field for 4-(3-methyl-2-chlorobutanoyloxy)-4′-heptyloxybiphenyl
(A7) for the AC* transition.

a 2.65x107 J/(m3.K.rad2)
b -1.67x108 J/(m3.rad4)
c 2.09x109 J/(m3.rad6)
D 7.45x1011 J.m/(C2.rad2)
e 1.20x1017 J.m5/C4

In this study, we first calculated the polarization P, by using in Eq. 2.45 the θ values at E=0 as

a function of temperature. θ and P are plotted as a function of temperature for the zero electric

field in Figs. 3.31 and 3.32, respectively for the AC* phase transition of A7 [51].
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Figure 3.30: Plot of 1/∆ε⊥ versus temperature at different dc voltages for the ferroelectric
liquid crystal of A7 [21].

Figure 3.31: The temperature dependence of the tilt angle calculated for constant electric
fields E0=0, E1=150/9, E2=100/3, E3=50, E4=200/3 kV/cm for the AC* phase transition
in 4-(3-methyl-2-chlorobutanoyloxy)-4′-heptyloxybiphenyl. Our calculated θ values for zero
electric field are taken from a previous study [18]. The observed θ values for zero electric
field are also shown here.

In accordance with the experimental measurements of the dielectric constant ε for the AC*

transition of this ferroelectric liquid crystal with high spontaneous polarization [21], we per-
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Figure 3.32: The temperature dependence of the polarization calculated for constant electric
fields E0=0, E1=150/9, E2=100/3, E3=50, E4=200/3 kV/cm for the AC* phase transition in
4-(3-methyl-2-chlorobutanoyloxy)-4′-heptyloxybiphenyl. Our calculated P values for zero
electric field are taken from a previous study [18]. The observed P values for zero electric
field are also shown here.

formed here our calculations of the tilt angle θ and the polarization P for constant electric

fields (at dc voltages of 0, 15, 30, 45 and 60V). Table 3.23 gives the transition temperatures

for the dc voltages and correspondingly the applied electric fields for a sample of thickness 9

µm [21] of the ferroelectric compound for its AC* phase transition [51].

The polarization at different electric fields was calculated as a function of temperature by

Eq. 2.52 using the polarization values at zero electric field [18]. Also, the tilt angle θ was

calculated at different electric fields by Eq. 2.44 where the polarization values (Eq. 2.52)

were used as a function of temperature for A7. As indicated in the experimental study [21],

this material is pure optically active for the AC* phase transition. Fig. 3.31 gives our plots

of the tilt angle θ calculated using Eq. 2.44 as a function of temperature for constant electric

fields studied (Table 3.23). Also, in Fig. 3.32 we plot our calculated polarization P (Eq. 2.52)

as a function of temperature for the compound studied for various electric fields (Table 3.23)

[51].

Figs.3.31 and 3.32 show that as the electric field increases, the value of the tilt angle and/or
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polarization correspond to a higher value of temperature. Increasing of the electric field causes

an increasing the value of the tilt angle and/or the polarization.

3.2.1.2 Calculation of the Dielectric Constant as a Function of Temperature Near the

Smectic AC* Phase Transition in Ferroelectric Liquid Crystals

We calculated the temperature dependence of the dielectric constant for the AC* phase tran-

sition in A7 under constant electric fields [52]. The dielectric constant ε was calculated from

the dielectric susceptibility χ using the values of the polarization P(E=0) and P(E) at various

temperatures for the fixed dc voltages of 15, 30, 45 and 60V in accordance with the experi-

mental measurements of ε for this compound, which are taken from the literature [21]. This

data was analyzed here, as given in Tables 3.21 and 3.22.

Figure 3.33: The constant ε calculated from Eq. 2.50 as a function of temperature for a con-
stant electric field of E1=50/3 kV/cm for the smectic C* phase close to the AC* phase transi-
tion (Tc=73.9oC) in 4-(3-methyl-2-chlorobutanoyloxy)-4′-heptyloxybiphenyl. Observed data
[21] are also shown here.

The values of the polarization P(E) were calculated at constant electric fields as a function of

temperature according to Eq. 2.52 for this liquid crystal. For those values of the polarization

calculated (Eq. 2.52) at different electric fields, the polarization values at zero electric field
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Table 3.21: Experimental values of dielectric constant ε as a function of temperature for the
electric field values of 50/3 kV/cm and 100/3 kV/cm for A7 [21].

E=50/3 kV/cm E=100/3 kV/cm
T (oC) ε T (oC) ε

72.025 11.106 73.351 9.072
72.163 11.066 73.351 9.155
72.266 11.026 73.369 9.251
72.369 11.007 73.395 9.351
72.481 11.007 73.421 9.457
72.567 11.026 73.438 9.578
72.644 11.046 73.49 9.683
72.721 11.086 73.49 9.818
72.79 11.127 73.508 9.961

72.849 11.21 73.517 10.113
72.909 11.253 73.56 10.273
72.977 11.361 73.586 10.445
73.028 11.52 73.612 10.645
73.079 11.59 73.664 10.879
73.104 11.76 73.664 11.154
73.155 11.887 73.69 11.434
73.181 12.019 73.716 11.691
73.206 12.212 73.733 12.023
73.256 12.417 73.734 12.451
73.307 12.634 73.786 12.863
73.349 12.795 73.812 13.401
73.349 13 73.829 13.887
73.348 13.216 73.829 14.437
73.399 13.521 73.855 15.223
73.432 13.85 73.882 15.887
73.465 14.3 73.908 16.571
73.49 14.956 73.934 17.430

73.488 16.103 73.96 18.233
73.537 17.295 73.985 18.827
73.561 18.672 74.003 19.830
73.568 20.658 74.055 20.709
73.61 22.786 74.193 23.166

73.617 25.355 – –
73.667 28.487 – –
73.666 31.171 – –
73.683 33.185 – –
73.716 35.533 – –
73.827 39.566 – –
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Table 3.22: Experimental values of the dielectric constant ε as a function of temperature for
the electric field values of 50 kV/cm and 200/3 kV/cm for A7 [21].

E=50 kV/cm E=200/3 kV/cm
T (oC) ε T (oC) ε

73.472 9.017 73.739 9.067
73.489 9.098 73.79 9.140
73.515 9.172 73.834 9.24
73.541 9.268 73.877 9.304
73.567 9.359 73.86 9.376
73.584 9.465 73.877 9.471
73.61 9.576 73.903 9.560

73.636 9.680 73.903 9.652
73.662 9.815 73.929 9.773
73.688 9.931 73.981 9.860
73.714 10.052 74.024 9.978
73.74 10.180 74.05 10.102

73.758 10.346 74.05 10.248
73.81 10.505 74.076 10.386

73.836 10.692 74.102 10.531
73.827 10.893 74.128 10.667
73.853 11.068 74.128 10.829
73.879 11.317 74.146 11.000
73.879 11.542 74.198 11.180
73.931 11.733 74.198 11.351
73.949 11.988 74.249 11.554
73.957 12.293 74.25 11.746
74.001 12.593 74.276 11.923
74.001 12.921 74.327 12.109
74.053 13.275 74.345 12.336
74.079 13.583 74.371 12.515
74.122 14.001 74.397 12.735
74.122 14.369 74.448 12.933
74.174 14.764 74.474 13.179
74.174 15.198 74.518 13.599

74.2 15.608 74.595 14.106
74.2 15.989 74.621 14.529

74.252 16.464 – –
74.278 16.908 – –
74.347 17.551 – –
74.381 17.899 – –

[18] were used for this material. For this calculation, we fitted Eq. 2.50 to the experimental

data for the dielectric constant ε [21], our calculated values of the polarization at electric field,
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Figure 3.34: The constant ε calculated from Eq. 2.50 as a function of temperature for a con-
stant electric field of E2=100/3 kV/cm for the smectic C* phase close to the AC* phase transi-
tion (Tc=74.3oC) in 4-(3-methyl-2-chlorobutanoyloxy)-4′-heptyloxybiphenyl. Observed data
[21] are also shown here.

P(E=0) [18] and the electric field dependence of the polarization, P(E), which we calculated

according to Eq. 2.52. This fitting was performed for the observed ε [21] and, the calculated

P(E=0) and P(E) at various temperatures for constant electric fields (15, 30, 45, 60V) in the

smectic C* phase of A7 close to its AC* phase transition. For each constant electric field,

we determined the value of the coefficient e subject to the shifts in the transition temperature

Tc (Eq. 2.53). Table 3.23 gives the transition temperatures Tc and the values of the fitting

parameter e for constant electric fields (dc voltages) for the liquid crystalline material studied

here. For the e values we obtained, we first fitted the dielectric constant ε against P(E=0)P(E)

according to Eq. 2.50 we plot the dielectric constant as a function of temperature for constant

electric fields considered here [52].

Figs. (3.33-3.36) give our calculated dielectric constant ε as a function of temperature for

constant electric fields or the dc voltages of, respectively, 15, 30, 45 and 60V for A7 in the

smectic C* phase close to its AC* phase transition [52]. We also plot here the observed ε⊥

values [21]. At the electric field of E1=150/9 kV/cm, calculated dielectric constant ε increases

smoothly whereas the observed ε gets sharper, as the temperature increases from the smectic

C* phase toward the transition temperature. Also, for the electric field of E2=100/3 kV/cm,
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Figure 3.35: The constant ε calculated from Eq. 2.50 as a function of temperature for a con-
stant electric field of E3=50 kV/cm for the smectic C* phase close to the AC* phase transition
(Tc=74.6oC) in 4-(3-methyl-2-chlorobutanoyloxy)-4′-heptyloxybiphenyl. Observed data [21]
are also shown here.

Figure 3.36: The constant ε calculated from Eq. 2.50 as a function of temperature for a con-
stant electric field of E4=200/3 kV/cm for the smectic C* phase close to the AC* phase transi-
tion (Tc=74.9oC) in 4-(3-methyl-2-chlorobutanoyloxy)-4′-heptyloxybiphenyl. Observed data
[21] are also shown here.
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Table 3.23: Transition temperatures and the values of the fitting parameter e (Eq. 2.50)
for constant electric fields indicated close to the AC* phase transition in 4-(3-methyl-2-
chlorobutanoyloxy)-4′-heptyloxybiphenyl.

dc voltage (V) E (kV/cm) Tc (oC) e x 104 (V.m5/C3)
0 0 73.5 –
15 50/3 73.9 2.01±0.04
30 100/3 74.3 2.88±0.06
45 50 74.6 2.95±0.06
60 200/3 74.9 3.19±0.06

our calculated and the observed dielectric constant ε both increase smoothly, as the temper-

ature increases in the smectic C* phase from about 73.4 0C to the transition temperature.

Agreement is better when the electric field gets larger.

When the electric field increases, values of the tilt angle and polarization increase. Since in

this analysis we used the Landau free energy with the P2θ2 coupling, as the electric field

increases, the influence of P2θ2 coupling increases. At the same time, interaction of the

molecules in small distances increases. Because of these reasons, the agreement of the calcu-

lated and the observed values of dielectric constant is better when the electric field is higher.

Also, the validity of the approximate relation for the polarization at higher electric fields

starting from the zero electric field and the expression for the dielectric susceptibility χ or the

dielectric constant ε which was essentially derived at zero electric field from our mean field

model can be argued when we compare our calculated values with the experimental data.

3.2.1.3 Calculation of the Dielectric Constant of a Ferroelectric Liquid Crystal from a

Mean Field Model

The temperature dependence of the orientational order parameter θ (Eq. 2.76) and the in-

verse susceptibility χ−1 (Eq. 2.75) were calculated for pure optically active compound of A7

(Tc=81.6oC). Fig. 3.38 gives a plot of θ calculated (Eq. 2.76) as a function of temperature

(T<Tc) for this compound. The calculated values of θ as a function of temperature were then

used in Eq.2.75. Eq.2.75 was fitted to the experimental data which is taken from the liter-

ature, as given in Fig. 3.37 and Table 3.24. For ε⊥ [21] below the transition temperature

(Tc=81.6oC) where the order parameter θ is nonzero, the coefficients were then determined
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[61]. By using the definition of α′ (Eq. 2.73) with the temperature-dependent coefficient α in

Eq.2.75, the reciprocal susceptibility χ−1 can be rewritten as

Figure 3.37: Temperature dependence of ε⊥ of the pure optically active compound, the 50%
optically active mixture and the racemate at the smectic A-isotropic transition [21].

χ−1 = a(T − To) +
2D

eχoεo
+ a1θ

2 + a2θ
4 (3.8)

where a1=3b′ and a2=5c′ . At the transition temperature (T=To) the order parameter θ is

zero (Fig.3.38), which gives a constant value for χ−1 (Eq. 3.8) as χ−1
∣∣∣∣∣T=To=

2D
eχoεo

. Using the

experimental values of ε⊥ or χ−1 at T=81.57oC [21], and also using the calculated θ values

as a function of temperature (Eq. 2.76), Eq.3.8 was fitted to the experimental data [21] for ε⊥

(or χ−1), and the coefficients a, a1 and a2 were determined, which are tabulated in Table 3.25.

We plot our calculated values of the dielectric constant ε⊥ as a function of temperature in the

smectic A phase (T<Tc) in Fig.3.39. The observed ε⊥ data is also given in this plot for the

SmA-I transition of A7. Using the values of the coefficients a, a1, a2 and χ−1 (Tc=81.57oC)

(Table 3.25), the transition temperature was calculated as To=84.3oC from Eq. 2.74 where

the experimental value of Tc=81.6oC [21] was used [61], as also given in Table 3.25.

Since there is no discontinuous change in ε⊥, the SmA-I transition tends to be a nearly second

order type. A first order condition for the SmA-I transition was also tested here using the

values of the coefficients α′, b′ and c′. This gave us the values of 0.96 and 0.51 at the transition

temperature (Tc=81.6o C) and at Tc=80.03o C, as the upper and lower limits of the SmA
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Table 3.24: Experimental values of the temperature dependence of the dielectric constant ε⊥
of the pure optically active compound at the smectic A-isotropic transition[21].

T (oC) ε⊥
80.032 6.35
80.282 6.281
80.475 6.228
80.677 6.179
80.823 6.155
80.944 6.115
81.065 6.09
81.137 6.074
81.25 6.062

81.436 5.997
81.468 5.977
81.565 5.888
81.717 5.648
81.821 5.449
81.869 5.298
81.917 5.14
81.949 5.002
82.021 4.888
82.045 4.823

Table 3.25: Values of the coefficients a, a1 and a2 determined by fitting the experimental data
[21] for the dielectric constant ε⊥ of A7 according to Eq.(3.8). The experimental ε⊥ and χ−1

values at Tc=81.57oC are given here. We also give the observed Tc and calculated To (Eq.
2.74) values for this pure optically active compound at the smectic A-isotropic liquid (SmA-I)
transition.

Tc a (oC−1) a1 a2 ε⊥ χ−1 To(oC)
81.6 0.061 1.160 3.496 5.89 0.205 84.3

phase, respectively. Compared to the value 3/16=0.1875, the above values are much higher

for a first order SmA-I transition of A7. The value of the ratio α′c′/ b′2 even increases to

1.73 if one uses To=84.3 oC for α′. This deviates largely from the expected value of 3/16

for a first order transition. On the other hand, we found the temperature difference ∆T=Tc-

To=2.7oC using the coefficients. This temperature difference between the experimental Tc

and the calculated To values, is relatively large. This, however, indicates that the first order

features are still significant for the SmA-I transition so that this transition can be considered
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Figure 3.38: The temperature dependence of the orientational order parameter θ calculated
from the mean field theory (Eq. 2.76) close to the smectic A-isotropic liquid (SmA-I) transi-
tion (Tc=81.6oC) for A7.

Figure 3.39: The temperature dependence of the dielectric constant ε⊥ calculated from
the mean field theory (Eq. 3.8) below the smectic A-isotropic liquid (SmA-I) transition
(Tc=81.6oC) for A7. The experimental data [21] for ε⊥ is also shown here.

as a weak first order or close to a second order in pure optically active compound of A7.
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3.2.1.4 Critical Behaviour of the Dielectric Susceptibility for the Ferroelectric Liquid

A7

In order to investigate the critical behaviour of the dielectric susceptibility of A7, we ana-

lyzed the experimental data [21] for the temperature dependence of the dielectric constant ε⊥

of the pure optically active A7 and its 50% mixture near the smectic A- isotropic liquid phase

transition which is taken from the literature and is given in Fig. 3.40 and Table 3.26. We per-

formed our analysis according to a power-law formula for the dielectric susceptibility given

in Eq. 2.5. Since the dielectric constant ε is directly related to the dielectric susceptibility χ

according to ε=χ+1, using the experimental data for the dielectric constant ε⊥, we deduced

the values of the critical exponent γ for the pure optically active A7 and its 50 % mixture. Ta-

ble 3.27 gives our values of the critical exponent γ and the amplitude A above and below the

transition temperature within the reduced temperature for the 50% mixture and pure optically

active A7 [40]. We plot the dielectric susceptibility χ as a function of |T-Tc| above and below

Tc in a log-log scale according to a linear relation given in Eq. 2.6.

Figure 3.40: Experimental data for the reciprocal of the dielectric constant ε⊥ [21] as a func-
tion of temperature for the pure optically active compound and the 50 % optically active
mixture at the smectic A -isotropic liquid transition.
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Table 3.26: Temperature dependence of the dielectric constant ε⊥ of the pure optically active
compound and the 50% optically active mixture of A7 at the smectic A-isotropic transition
[21].

T (oC) 1/ε⊥ (Pure) T (oC) 1/ε⊥ (50 %)
80.217 0.1589 80.213 0.1853
80.345 0.1597 80.406 0.1857
80.426 0.1601 80.503 0.1859
80.611 0.1617 80.599 0.1861
80.747 0.1622 80.744 0.1864
80.828 0.1626 80.881 0.1867
80.908 0.1633 81.066 0.1871
81.005 0.1639 81.243 0.1874
81.126 0.1646 81.388 0.1877
81.238 0.1649 81.485 0.1880
81.56 0.1699 81.967 0.1949
81.64 0.1722 81.991 0.1960

81.712 0.1770 82.015 0.1973
81.792 0.1810 82.039 0.1984
81.815 0.1835 82.047 0.2010
81.839 0.1861 82.095 0.2034
81.863 0.1888 82.706 0.2088
81.919 0.1945 82.9 0.2089
81.942 0.2000 83.157 0.2091
82.014 0.2045 83.52 0.2093
82.706 0.2088 84.035 0.2094
82.9 0.2089 84.268 0.2096

83.157 0.2091 – –
83.52 0.2093 – –

84.035 0.2094 – –
84.268 0.2096 – –

Figs. 3.41 and 3.42 give lnχ against ln|T-Tc| above and below the transition temperature

(Tc=81.9oC), respectively, for 50% optically active mixture of A7. We plot in Figs. 3.43 and

3.44, lnχ against ln|T-Tc| above and below Tc for the pure optically active A7 (Tc=81.6oC).

We give here Figs. 3.43 and 3.44 as representative plots within the temperature intervals

indicated (Table 3.27) for the pure optically active A7 [40].

We also analyzed the experimental data for the dielectric constant ε⊥ [21] using the renormal-

ization group relation from the scaling theory [58] according to
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Figure 3.41: Dielectric susceptibility χ as a function of T-Tc in a log-log scale for the smectic
A-isotropic liquid transition (Tc= 81.9oC) according to Eq. 2.6 for the 50 % optically active
A7 (T>Tc).

Figure 3.42: Dielectric susceptibility χ as a function of Tc-T in a log-log scale for the smectic
A-isotropic liquid transition (Tc= 81.9oC) according to Eq. 2.6 for the 50 % optically active
A7 (T<Tc).
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Figure 3.43: Dielectric susceptibility χ as a function of T-Tc in a log-log scale for the smectic
A-isotropic liquid transition (Tc= 81.6oC) according to Eq. 2.6 for the pure optically active
A7 (T>Tc).

Figure 3.44: Dielectric susceptibility χ as a function of Tc-T in a log-log scale for the smectic
A-isotropic liquid transition (Tc= 81.6oC) according to Eq. 2.6 for the pure optically active
A7 (T<Tc).
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Figure 3.45: Dielectric susceptibility χ as a function of the reduced temperature, close to the
smectic A- isotropic liquid transition for the pure optically active A7. Eq. 3.9 was fitted to the
experimental data for the dielectric constant ε⊥ [21] with the fitted parameters given in Table
3.28.

χ = koε
−γ(1 + k1ε

∆ + k2ε
2∆ + ...) (3.9)

In this equation ε∆ and ε2∆ are corrections-to-scaling terms with ∆=0.5, ko, k1 and k2 are

constants. Eq. 3.9 reduces to Eq. 2.5 when the correction terms are not considered [40].

For our first analysis of the ε⊥ experimental data [21] by Eq.2.5 as plotted in Figs. (3.41-3.44)

with the values given in Table 3.27 in different temperature intervals, it can be argued whether

a non-linear behaviour of lnχ versus ln|T-Tc| occurs. In the case of a non-linear variation of

lnχ with ln|T-Tc|, correction terms are needed as given in Eq. 3.9 by which the ε⊥ data [21]

was reanalyzed here. Table 3.28 gives the values of the fitted parameters according to Eq. 3.9

for the pure and 50 % optically active A7 in the temperature intervals indicated. Uncertainties

in the parameters ko, k1 and k2 are given. Since the uncertainties in the critical exponent

γ are very small, they are not indicated. Figs. 3.45 and 3.46 give our fits of the dielectric

susceptibility χ (Eq. 3.9) to the experimental data [21] for the dielectric constant ε⊥ as a

function of reduced temperature, for pure and 50% optically active A7, respectively [40].
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Figure 3.46: Dielectric susceptibility χ as a function of the reduced temperature, close to the
smectic A- isotropic liquid transition for the 50 % optically active A7. Eq. 3.9 was fitted to
the experimental data for the dielectric constant ε⊥ [21] with the fitted parameters given in
Table 3.28

We also determined the slopes of the 1/ε⊥ versus temperature T (Fig. 3.40) in the smectic

A and the isotropic liquid for both pure and 50% optically active mixture of A7. The slope

values determined in both phases of smectic A and the isotropic liquid according to a linear

variation of 1/ε⊥ with the temperature,

1/ε⊥ = a + bT (3.10)

where a and b are constants. Eq. 3.10 was used for both the pure and the 50% optically active

A7. Since the experimental data [21] gives the same variation of 1/ε⊥ with T in the isotropic

liquid (Fig. 3.40), the coefficients a and b (slope) should be the same in the same temperature

interval, as given in Table 3.29. The slope values were also determined in the smectic A

(SmA) phase for the pure and 50% optically active A7. The coefficients are determined in

the temperature interval studied, as given in Table 3.30. We then constructed the ratio of the

slope of the SmA phase to that of the isotropic liquid (I), as given in Table 3.31.

Our values for the critical exponent γ which vary from 0.01 to 0.21 (Tables 3.27 and 3.28)
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Table 3.27: Values of the critical exponent γ and the amplitude A for the dielectric suscep-
tibility χ within the reduced temperature ε close to the smectic A-isotropic liquid transition
according to Eq. 2.5 for the 50 % and pure optically active A7.

A7 T(oC) Tc(oC) γ A(oCγ) ε=|T-Tc|/Tc

50% Optically T>Tc 81.9 0.06±0.01 3.5463 1.1x10−3<ε<3.4x10−3

Active T<Tc 0.010±0.001 4.3689 7.3x10−4<ε<2.3x10−2

Pure Optically T>Tc 81.6 0.05±0.01 4.0915 3.9x10−4<ε<3.3x10−3

Active 0.21±0.01 3.2381 2.5x10−3<ε<5.6x10−3

Pure Optically T<Tc 81.6 0.05±0.01 5.2158 8.9x10−3<ε<1.9x10−2

Active 0.020±0.001 5.1588 1.1x10−3<ε<5.8x10−3

Table 3.28: Values of the critical exponent γ for the dielectric susceptibility χ and the ampli-
tudes ko, k1 and k2 according to the scaling relation (Eq. 3.9) within the reduced temperature
ε in the smectic A phase close to the SmA-I transition for pure and 50 % optically active
A7. Transition temperatures of pure and 50 % optically active A7 are 81.6 oC and 81.9 oC,
respectively.

A7 γ ko k1 -k2 ε=(Tc-T)/Tc

Pure
optically 0.30 0.14±0.02 133.06±9.28 954.75±43.57 4.9x10−4<ε<5.1x10−3

active
50%

optically 0.20 0.44±0.03 59.37±0.38 511.73±18.62 8.1x10−4<ε<2.4x10−3

active

Table 3.29: Values of the coefficients a and b for a linear variation of the reciprocal dielectric
constant (1/ε⊥) with the temperature interval indicated for the isotropic liquid of both pure
and 50% optically active A7 from the experimental data [21], as shown in Fig. 3.40. △T
represents the temperature difference given here.

A7 a bx10−4(oC) Temperature interval(oC) △T(oC)
Isotropic Liquid 0.17 4.9 82.7<T<83.5 0.8

are too small compared to the theoretical models such as the mean field theory (γ=1), the

3-d Ising model (γ=1.2390.003), Heisenberg model (γ=1.380.02) and helium analogy or XY

model (γ=1.32). So, these models are unable to describe the critical behaviour of the dielec-

tric susceptibility for the pure and 50 % optically active. Since these models are designed

essentially for a second order transition, our values of the critical exponent for the dielectric
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Table 3.30: Values of the coefficients a and b for a linear variation of the reciprocal dielectric
constant (1/ε⊥) with the temperature (Eq. 3.10) in the temperature interval indicated for the
Smectic A (SmA) phase of A7 from the both pure and 50% optically active A7 from the
experimental data [21], as shown in Fig. 3.40. △T represents the temperature difference given
here.

A7 (SmA) a bx10−3(oC) Temperature interval(oC) △T(oC)
Pure optically active -0.33 6.1 80.2<T<81.3 1.1
50% optically active 0.02 2.1 80.2<T<81.5 1.3

Table 3.31: Ratio of the slopes b (Eq. 3.10) deduced for the SmA (Table 3.28) and the
isotropic liquid (Table 3.29) for the pure and 50% optically active A7 in the temperature
difference indicated (Tables 3.29 and 3.30).

SmA/I Slope ratio Temperature range, △T(oC)
Pure optically active 12:1 0.8-1.1
50% optically active 4:1 0.8-1.3

susceptibility indicate that smectic A-isotropic liquid transition of the pure and 50 % optically

active A7 is of a nearly second order or weakly first order in character.

3.2.2 4-(3-methyl-2-chloropenta- noyloxy)-4′-heptyloxybiphenyl (C7)

3.2.2.1 Critical Behaviour of the Polarization, Tilt Angle, Electric Susceptibility and

the Specific Heat Close to the SmA- Ferroelectric SmC ( SmC*) Phase Transi-

tions

We analyzed here the temperature dependence of the polarization jump ∆Pθ according to Eq.

2.67. we used the temperature dependence of the polarization jump and the susceptibility for

the AC* phase transition of C7, which were obtained experimentally, as given in the literature

[31] (Figs. 3.47 and 3.49 and Tables 3.32 and 3.33), and analyzed in this study. The values

of β and A [62] were determined as given in Table 3.36. We plot in a log-log scale the

polarization jump ∆Pθ as a function of temperature for C7 (Tc= 55.925oC) in Fig. 3.50.

The electric susceptibility χθ was analyzed at various temperatures using the experimental

data for C7 [31] close to the AC* phase transition in this liquid crystalline system. This
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Figure 3.47: Temperature dependence of the polarization jump values for the C7 [31].

Figure 3.48: Experimental values of susceptibility and polarization as a function of tempera-
ture for C7 [31].

analysis was performed both below (T<Tc) and above (T>Tc) the transition temperature

(Tc=55.925oC) by means of Eq. 2.68. From our analysis the values of γ and A which were

extracted, are given in Table 3.36. Log-log plots of
(
χθ
−2 - χθC−2 )1/2 as a function of temper-

ature are presented in Fig. 3.51 (T<Tc) and Fig. 3.52 (T>Tc) for C7 [62].

Our final analysis for C7 close to its AC* phase transition was the electric field dependence of

the polarization, according to Eq. 2.69. For this analysis, we used the experimental measure-

ments for C7 with the values of Ec=50.1kV/cm, PθC=72 nC/cm2 and Tc=55.56oC [31]. Table

3.37 gives the values of the critical isotherm δ and the amplitude A. We plot in Figs. 3.53 and
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Figure 3.49: Experimental data of the excess heat capacity △Cp as a function of the tempera-
ture for the binary mixture of 2f+3f [32].

Table 3.32: Temperature dependence of the polarization jump values for the C7 [31].

-ln(Tc-T) x 10−1 ln(∆Pθ) x 10−1(nC/cm2)
39.12 21.97
28.13 32.19
24.08 34.34
21.20 36.64
18.33 36.89
16.09 39.12
14.27 39.51
12.73 40.60
10.22 41.90
9.17 42.20
8.21 42.91
7.13 43.57
6.54 43.70
5.80 44.19
4.94 44.54
4.31 44.89
3.43 45.33
2.74 45.64
0.94 46.05

3.54 the electric field E as a function of the polarization P with respect to their critical values

in a log-log plot below and above Ec, respectively [62].
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Table 3.33: Experimental values of the thermal susceptibility χ as a function of temperature
for C7 [31].

-ln(Tc-T) x 10−1 -ln(χθ −1-χθC −1)1/2 x 10−1 -ln(Tc-T) x 10−1 -ln(χθ−1-χθC−1)1/2 x 10−1

40.17 61.10 40.17 61.10
30.79 53.37 35.76 55.04
24.89 49.06 30.58 54.17
21.20 46.05 23.75 50.69
18.52 42.90 21.12 46.83
16.40 40.51 17.37 45.38
14.27 39.32 15.47 43.51
13.17 38.26 13.86 41.93
11.58 37.13 12.14 40.75
10.47 36.27 10.97 39.74
8.99 35.34 9.82 38.97
7.92 34.97 9.19 38.26

– – 8.10 37.42
– – 7.11 37.94
– – 6.03 36.12
– – 5.53 35.47
– – 3.64 33.81

Table 3.34: Experimental values of the polarization as a function of the electric field for C7
[31].

ln(Pθ-PθC) x 10−1 ln(EC-E) ln(Pθ-PθC) x 10−1 ln(EC-E)
(nC/cm2) (kV/cm) (nC/cm2) (kV/cm)

39.02 3.03 19.10 -2.21
35.77 2.67 25.65 0.59
33.84 1.90 29.58 1.13
32.39 1.52 30.80 1.65
30.91 0.90 33.32 1.75
38.23 2.50 34.18 2.29
24.85 0.46 34.58 2.49
15.04 -1.14 35.70 2.82

We also analyzed in this study the temperature dependence of the specific heat Cp for a mix-

ture of 2f+3f liquid crystal using the experimental data from the literature [32], as given in

Fig. 3.49 and Table 3.35 close to its AC* phase transition. By using Eq. 2.70, our analysis

was done for the mole % 2f of X2 f=38.72 in a mixture of 2f+3f close to its AC* phase tran-

sition (Tk=393.845 K) [32]. Values of the critical exponent α and the amplitude A, which we
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Table 3.35: Experimental data of the excess heat capacity ∆Cp as a function of the temperature
for the binary mixture of 2f+3f [32].

-ln(Tk-T) x 10−1 (K) ln(∆Cp/A∗) x 10−1 (K−1/2)
-20.83 -8.21
-17.10 -5.98
-12.73 -4.16
-6.73 -1.28
-0.68 0
3.43 4.38
6.35 9.36

Figure 3.50: The polarization jump △Pθ as a function of temperature in a log-log scale for C7
(Tc=55.925oC). β is the critical exponent for the order parameter according to Eq. 2.67 [31].

extracted from our analysis are given in Table 3.38. Fig. 3.55 represents in a log-log scale

∆Cp/A* plotted as a function of temperature for the AC* phase transition in a mixture of

2f+3f with the X2 f and Tk values given above [62].
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Figure 3.51: The electric susceptibility χθ as a function of temperature in a log-log scale for
C7 below the transition temperature (Tc=55.925oC). γ is the critical exponent for χθ according
to Eq. 2.68 where χθC is the critical value of the electric susceptibility [31].

Figure 3.52: The electric susceptibility χθ as a function of temperature in a log-log scale for
C7 above the transition temperature (Tc=55.925oC). γ is the critical exponent for χθ according
to Eq. 2.68 where χθC is the critical value of the electric susceptibility [31].
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Figure 3.53: Electric field as a function of polarization in a log-log scale for C7 below the
critical field (E<Ec), δ is the critical isotherm according to Eq. 2.69 where the critical values
of the electric field and the polarization are Ec=50.1 kV/cm and PθC=72 nC/cm2, respectively
[31].

Figure 3.54: Electric field as a function of polarization in a log-log scale for C7 above the
critical field (E>Ec), δ is the critical isotherm according to Eq. 2.69 where the critical values
of the electric field and the polarization are Ec=50.1 kV/cm and PθC=72 nC/cm2, respectively
[31].
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Figure 3.55: The excess heat capacity ∆Cp scaled with the amplitude A* as a function of
temperature in a log-log scale for 2f+3f (X2 f= 38.72). α is the critical exponent for the
specific heat according to Eq. 2.70 where Tk=393.845 K [32].

Table 3.36: Values of the critical exponent β for the polarization jump ∆Pθ and the amplitude
A (Eq. 2.67), and the values of the critical exponent γ for the electric susceptibility χ and
the amplitude A (Eq. 2.68) for C7 below and above the transition temperature for the AC*
transition (Tc=55.925oC). Our predicted values of the critical exponent α for the specific heat
Cp of C7, are also given here.

C7 Eq.(2.67) Eq.(2.67) Eq.(2.68) Eq.(2.68) Predicted
A (nC/cm2.oC) β A (nC/kV.cm) γ α

T<Tc 118.07±2.36 0.59±0.01 0.063±0.001 0.84±0.02 0.32±0.01
T>Tc — — 0.041±0.001 0.71±0.01 0.58±0.01

Using the values of β=0.59 and γ=0.84 (T<Tc) from our analysis, through the relation

P2∝χ−1≈(Tc-T)γ, we find 2β=γ=0.84, which gives β=0.42. This is lower than the value of

β=0.59 but both of them are closer to the mean field value of 0.5. For the analysis of the

electric susceptibility χθ of C7, we used a power-law formula which can also be interpreted

similarly in the sense that χ−1∝P2≈(Tc-T)2β . Using the value of β=0.59 from our analysis,

we find that γ=1.18 which is higher than the value of 0.84 (T<Tc). We also find that γ=0.71

for the electric susceptibility. Both values of γ=0.84 (T<Tc) and γ=0.71 (T>Tc), can be
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Table 3.37: Values of the critical isotherm δ and the amplitude A below and above the elec-
tric field applied for C7, according to Eq. 2.69 where Ec=50.1kV/cm, PθC=72nC/cm2 and
Tc=55.56oC [31].

C7 Eq.(2.69) Eq.(2.69)
A(kV.cm/nC) δ

E<Ec 0.0219±0.0004 1.70±0.03
E>Ec 0.00077±0.00002 2.79±0.06

Table 3.38: Values of the critical exponent α for the excess specific heat scaled with the A*,
∆Cp/A* and the amplitude A for a mixture of 2f+3f with the mole fraction X2 f=38.72, ac-
cording to Eq. 2.70 where Tk=393.845K [32] for its AC* phase transition. Our predicted
values of the critical exponents γ and β for the susceptibility and the order parameter, respec-
tively, are also given here.

2f+3f Eq.(2.70) Eq.(2.70) Predicted Predicted
A(K1/2) α γ β

T<Tc 1.36±0.03 0.56±0.01 0.72±0.01 0.36±0.01

compared with the mean field value of γ=1. Also, our analysis for the AC* transition of C7

gave the values for the critical isotherm as δ=1.70 (E<Ec) and δ=2.79 (E>Ec). This value of

2.79 is closer to the value of δ=3, as expected from the mean field model. From the power-

law expression, Cp≈|T-Tc|−(2−2γ) or Cp≈|T-Tc|−α, we have α=2-2γ. Using the γ=0.84 (T<Tc)

and γ=0.71 (T>Tc), our predicted values are α=0.32 (T<Tc) and α=0.58 (T>Tc). Using the

scaling relation α+2β+γ=2 and the values of β=0.59 and γ=0.84 (T<Tc), the value of α≈0 is

predicted. This is in accordance with the mean field value, together with the mean field values

of β=1/2 and γ=1 in the scaling relation.

We also analyzed a mixture of 2f+3f close to its AC* phase transition using a power-law. We

obtained α=0.56 (T<Tc) for 2f+3f, which then predicts γ=0.72 (T<Tc) according to γ=(2-

α)/2. By means of the scaling relation α+2β+γ=2, we also predicted the value of the critical

exponent for the order parameter as β=0.36 for the AC* phase transition in a mixture of 2f+3f

liquid crystalline system
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CHAPTER 4

DISCUSSION

By analyzing the experimental data for the thermal expansivity αp as a function of pressure

for the N-I and C-N transitions in PAA [45], we obtained a linear variation of the specific heat

Cp with the αp, and also a linear variation of αp with the isothermal compressibility κT for

the N-I and C-N phase transitions in PAA. The values of the critical exponent γ and the am-

plitude A1 were determined and we were able to calculate the pressure dependence of those

thermodynamic quantities. Then, we compared our calculated values of the thermal expansiv-

ity αp with those calculated on the basis of the Maier-Saupe model [54]. We also compared

our calculated specific heat Cp for the NI transition in PAA with the experimental data [56].

For both comparisons, we find that there occurs a discrepancy between the calculated and the

experimental values which are taken from the literature for the thermal expansivity and the

specific heat. Around the melting point in PAA,it was obtained that the orientational disorder

increases [56, 63]. Adjacent to the melting line, this indicates a second order transition prior

to melting accompanied with the orientational disorder in PAA.

For PAA, AAD and the CM the values of the critical exponent α were extracted and analyzed.

When we compare the results of these analyses, we saw that PAA and AAD have the same

characteric properties at their transition points, since their chemical and physical features are

very close to each other. Also, the CM has similar properties. Both PAA and AAD can be

analyzed on the basis of the three-dimensional Ising model, helium analogy and the inverted

XY model for liquid crystals and also the mean-field-tricritical model. For the CM, tricritical

mean field theory is valid to analyze the characterization of its phase transition.

The Cp data [56] was also analyzed for the rapidly cooled and slowly cooled solid of CM.

Close to the SmA-solid transition, the value of the critical exponent,α�0.1, indicates that this
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transition is of a second order. It is not a mean-field like (α=0), but it is rather of a λ-type tran-

sition, for the CI and SC transitions [56]. For the rapidly and slowly cooled samples of CM,

the exponent value becomes 1/2 and the stability limit was reached at the stability temperature

of Ts=-19.6oC for the CM. Similar analysis was performed for the supercooled solid phase

of PAA. Differently from the rapidly and slowly cooled solid phase of CM, supercooled solid

phase of PAA has a negative critical exponent (α=-0.02). For the solid phase, α is positive.

The power-law formula for the stability limit was appropriate for rapidly and slowly cooled

solid of CM. But, it was obtained that it was not satisfactory for the supercooled solid phase

of PAA.In general, this power-law formula can also be applied to some other systems which

exhibit superheating and supercooling phases.

In this thesis work, the temperature dependence of the enthalpy and the entropy in the nematic

phase were also calculated from the specific heat Cp. Both the difference in enthalpy ∆H and

in the entropy ∆S, increase with increasing temperature. As a part of this work, we analyzed

the observed specific heat Cp data for CM [56] and we obtained the values of the critical

exponent α.

In another part of this thesis work, by analyzing the experimental data for the ferroelectric

liquid crystal of A7, we calculated the tilt angle θ and the polarization P as a function of

temperature for some constant electric fields (Table 3.23). This was based on calculated

values of θ and P for zero electric field [18] for A7 at its AC* phase transition by using

the quadratic P2θ2 coupling in the free energy for the mean field model studied here. Our

calculated θ and P values at zero electric field are in very good agreement with the observed

data [16], as also given previously [18]. This is due to the fact that the P2θ2 coupling which

describes a quadrupolar interaction, is the dominant mechanism for the AC* phase transition

in A7 [18]. This compares with the calculated θ and P values using the Pθ coupling in the free

energy expansion for the mean field model of this liquid crystal, which is not in agreement

with the experimental data [16] for the AC* phase transition at zero electric field.

The calculated values of the polarization were then used to calculate the temperature depen-

dence of the dielectric constant at zero and nonzero electric fields. When compared with the

experimental data for the dielectric constant ε [21], our calculated values agree better, as the

electric field increases.

Since we started with the approximate relation for the polarization which was derived from

96



our mean field model [18], calculation of the dielectric constant ε should be examined. From

our fitting of Eq.(10) to the experimental data for the ε [21] and, the calculated values of

the polarization, P(E=0) and P(E), plots of ε against P(E=0)P(E) were not very satisfactory

for the electric field of E1=150/9 kV/cm. For a constant electric field of E2=100/3 kV/cm, ε

against P(E=0)P(E) graph was better, which improved agreement between our calculated and

the observed ε as a function of temperature. This was still better when plotted the dielectric

constant ε against P(E=0).P(E) for a constant electric field of E3= 50 kV/cm, which provided

that the calculated and observed dielectric constant agreed much better at various tempera-

tures. A very good fit was obtained for ε against P(E=0).P(E) for a constant electric field of

E4=200/3 kV/cm, which gave us a perfect agreement between calculated and the observed ε.

Calculation of ε⊥ was conducted in the SmA phase on the basis of the temperature dependence

of the nonzero values of θ. Above Tc in the isotropic liquid, since θ=0, we were unable to

calculate the dielectric constant in this phase using our mean field model. The observed data

for ε⊥ [21] decreases continuously as the temperature increases from SmA to I for A7. Finally,

regarding the calculated dielectric constant ε⊥ below Tc using our mean field model with the

biquadratic P2θ2 coupling, the observed behaviour of ε⊥ was described satisfactorily. This

indicates that the quadrupolar interaction between P and θ is the dominant mechanism for the

SmA-I transition in A7 with high spontaneous polarization. Also, the dielectric susceptibility

χwas analyzed using the experimental data for the dielectric constant ε⊥ of A7 [21] according

to a power-law formula and the values of the critical exponent γ were deduced. In our analysis

for the pure optically active A7, the values of the critical exponent varied from γ=0.05 to 0.02

below Tc. Above Tc, variation of γ was considerably large, which was between 0.2 and 0.05,

as the transition temperature Tc is approached. For the 50% optically active mixture of A7,

our exponent value of γ=0.06 above the transition temperature is close to the value extracted

for the pure optically active A7. Below the transition temperature, our exponent value for

50% optically active mixture is very close to that for the pure optically active A7 close to

the smectic A-isotropic liquid transition. This indicates that both pure and 50% optically

active A7 exhibit similar critical behaviour of the dielectric susceptibility close to the smectic

A- isotropic liquid transition. For the temperature intervals not very close to the transition

temperature Tc, the dielectric susceptibility does not exhibit similar critical behaviour for

pure and 50% optically active A7.

Using the free energy, we derived the tilt angle θ related to the electric susceptibility χ and also
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the polarizability P related to χ as a function of temperature for C7. The observed data was

analyzed by using a power-law formula for∆Pθ and for the electric susceptibility χθ. From this

analysis, values of the critical exponents β and γ were extracted for ∆Pθ and χθ, respectively.

Those values of the critical exponents are closer to the mean field values. Considering the

value of β=0.42 which we predicted from the electric susceptibility χ, corresponds to the

value of the critical exponent for the tilt angle θ, where θ2∝χ−1≈(Tc-T)γ, which is the same

as the polarization P.

For the analysis of the electric susceptibility χθ of C7, we used a power-law formula which

can also be interpreted similar to the χ−1∝P2≈(Tc-T)2β since the temperature dependence of

the polarization is dominant here. This value of δ is closer to the value of δ=3, as expected

from the mean field model.

Using the temperature dependence of the electric susceptibility χ≈|T-Tc|−γ, the second deriva-

tive of the free energy with respect to the temperature, gives Cp≈|T-Tc|−(2−2γ) or using a

power-law, Cp≈|T-Tc|−α , we then obtain α=2-2γ. The value of the critical exponent α is

also in accordance with the mean field value.
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CHAPTER 5

CONCLUSIONS

The experimental Cp data from the literature was analyzed in this thesis work according to a

power-law formula (in terms of the critical exponent γ) and the observed λ-type behaviour of

Cp was explained for the thermotropic liquid crystals of p-azoxyanisole (PAA), anisaldazine

(AAD) and cholesteryl myristate (CM). From this analysis, values of the critical exponent for

the specific heat Cp, were extracted for the transition between nematic and isotropic liquid,

and also in the supercooled region just above the solid-nematic transition for AAD. They

were compared with the expected values from the theoretical models. For PAA, our exponent

values for T<TNI and T<TS N can be described by a three-dimensional Ising model. For

T>TNI our exponent value is much larger than that predicted by theoretical models. For

T>TS N the negative exponent value is close to the expected value of the helium analogy or

XY model of liquid crystal. The negative value of the critical exponent for liquid crystals

may be due to the existence of supercooled region where there is a jump discontinuity in PAA

[54]. For the CM, the values of the critical exponent indicate that above CI and below SC, the

phase transition can be of a second order type. Thus, our exponent values indicate that below

CI and above SC, the transition tends to change toward a first order in CM. The specific heat

Cp was also analyzed for the rapidly cooled and slowly cooled solid phases of CM and for

the solid and supercooled solid phases of PAA. It was found that a power-law formula in the

stability limit with the critical exponent 1/2 was satisfactory for the CM, but it was inadequate

for PAA. With some accurate measurements of the specific heat Cp for the supercooled solid

phase of PAA, our method of analysis can be reexamined. From our findings, we suggest that

our method of analysis can be applied to some other liquid crystals exhibiting supercooling

and superheating phases.
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From the analysis of the experimental data and also from our calculations of the thermody-

namic quantities, we were able to apply the Pippard relations to PAA, AAD and CM. This was

based on the assumption that these thermodynamic quantities have the same critical exponent

since they exhibit similar divergence behaviour as the critical point is approached.

Our calculations for the temperature dependence of the αp and κT can be compared with the

experimental data when available in the literature.

In this thesis work, the tilt angle θ, polarization P and the dielectric constant ε were also

studied as a function of temperature at constant electric fields for the pure and 50% optically

active A7 near the smectic A-isotropic liquid transition using our mean field model with the

quadratic P2θ2 coupling.

Our calculated θ and P values at various temperatures for the fixed electric fields show similar

critical behaviour of A7, and the calculated ε values agree with the observed data. This

agreement is even better as the electric field increases. This indicates that the quadrupolar

interaction is the dominant mechanism for the SmA-I transition in A7 with high spontaneous

polarization. Our exponent values indicate that for pure and 50% optically active A7, the

SmA-I transition is of a nearly second order or weakly first order.

Another part of this thesis work was to analyze the experimental data for the temperature de-

pendence of the order parameters (polarization P and tilt angleθ) and the electric susceptibility

χ of C7 and also the temperature dependence of the specific heat Cp for a binary mixture of

2f+3f. The values of the critical exponents α for the specific heat, γ for the susceptibility

and β for the order parameter for C7 and a mixture of 2f+3f, were extracted using the scaling

relation close to their AC* phase transition. The observed behaviour of C7 and 2f+3f were

then described satisfactorily close to their AC* phase transitions by using this analysis.

Since the mean field model studied here describes adequately the observed behaviour of A7

and C7, the expressions for the temperature dependence of the polarization, tilt angle and

the dielectric constant which we derive, can also be applied to some other ferroelectric liquid

crystals to explain their observed behaviour.

The predictions and the calculations given in this thesis work show that this method of analysis

is adequate to describe the observed critical behaviour of the thermodynamic quantities for

the thermotropic and ferroelectric liquid crystals studied. A similar analysis can be used and
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also applied to some other thermodynamic and ferroelectric liquid crystals.
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Phone: +90 312 210 50 96

email: ekilit@metu.edu.tr

EDUCATION
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