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ABSTRACT

COMMUTATIVE AND NON-COMMUTATIVE INTEGRABLE EQUATIONS: LAX
PAIRS, RECURSION OPERATORS

Ünal, Gönül

M.Sc., Department of Physics

Supervisor : Prof. Dr. Atalay Karasu

July 2011, 57 pages

In this thesis, we investigate the integrability properties of some evolutionary type nonlinear

equations in (1+1)-dimensions both with commutative and non-commutative variables. We

construct the recursion operators, based on the Lax representation, for such equations. Fi-

nally, we question the notion of integrability for a certain one-component non-commutative

equation. [We stress that calculations in this thesis are not original.]

Keywords: Integrability, Commutative, Non-commutative, Recursion operator, Lax pair
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ÖZ

KOMUTATİF OLAN VE KOMUTATİF OLMAYAN İNTEGRALLENEBİLİNİR
DENKLEMLER: LAX ÇİFTLERİ, SİMETRİ ADIM OPERATÖRLERİ

Ünal, Gönül

Yüksel Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Atalay Karasu

Temmuz 2011, 57 sayfa

Bu tez çalışmasında bazı evrimsel tipdeki çizgisel olmayan denklemlerin integrallenebilir-

lik özelliklerini (1+1) boyutta, komutatif ve komutatif olmayan değişkenlerle inceledik. Bu

denklemler için Lax temsilini esas alarak, simetri adım operatörlerini kurduk. Son olarak, in-

tegrallenebilirlik kavramını bir bileşenli belli bir komutatif olmayan denklem için sorguladık.

[Bu tezdeki hesaplar orijinal değildir.]

Anahtar Kelimeler: İntegrallenebilirlik, Komutatif olan, Komutatif olmayan, Simetri adım

operatörü, Lax çifti
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CHAPTER 1

INTRODUCTION

A soliton is a solitary wave which preserves its shape and velocity upon nonlinear interaction

with other solitary waves. The first observation of solitary waves was made by John Scott

Russell, a naval engineer, in 1834 [1]. He observed that waves in one direction on the surface

of a shallow channel keep their shape and velocity for a long time. In 1895, two Dutch

scientists Korteweg and de Vries derived the equation for the propagation of waves in one

direction on the surface of a shallow channel [2]; the dimensionless form of Korteweg-de

Vries(KdV),

ut = u3x + uux,

where u represent the (small) elevation of the surface of the water above the normal depth,

ux ≡
∂u
∂x and u3x ≡

∂3u
∂x3 . In 1965, Zabusky and Kruskal were studying the Fermi-Pasta-Ulam

problem [3] to investigate numerical solution of the KdV equation in [4]. They constructed

the numerical solution of a train of solitary waves interacting elastically with periodic ini-

tial conditions. The solution they found is named solitons by Zabusky and Kruskal. After

this introductory work on the KdV equation, Inverse Spectral Transformation(IST) method,

a new method of solving a class of nonlinear partial differential equations was discovered for

the exact solutions of the initial value problem for the KdV equation by Gardner, Greene,

Kruskal and Miura [5]. The Lax pair theory was developed by Peter Lax [6] in 1968 as a

way of generalizing the early work [5]. Later, the IST method was formulated in an algebraic

form by Lax [6] who made it possible to obtain solvable physical models such as the modified

KdV(mKdV), the nonlinear Schrödinger, Boussinesq, Kadomtsev-Petviashvili, sine-Gordon

and many other equations. Since solitons theory arise in nonlinear theories, they have impor-

tant applications in all areas of physics: fluid mechanics, nonlinear optics, plasma physics,
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classical and quantum field theories, solid state physics, astrophysics, biophysics, etc.

1.1 Integrability

The origin of the theory of integrable commutative nonlinear equations is based on the out-

standing properties of the KdV equation: It possesses

a) N-soliton solutions

b) infinitely many symmetries and conserved quantities

c) Hamiltonian and bi-Hamiltonian structure

d) recursion operator

e) Lax pair representation

f) many other properties (Painleve property, Prolongation structure, Bäcklund transformation

. . .)

We note that many of the interrelations among these properties have not been rigorously estab-

lished. Moreover, not all of these properties are shared by the other known nonlinear evolution

equations. For example, Burgers equation is integrable but does not possess a Hamiltonian

structure and Harry-Dym equation is integrable but does not possess the Painleve property.

Based on each (or two) of these properties of KdV, one can define the concept of integrability

and solvability. The most common definition of integrability is based on the existence of soli-

ton solutions, i.e. the equations that can be solved by inverse scattering transform. We know

that an equation is solvable by IST if it possesses a Lax pair, i.e. two linear operators L and A

satisfy

Lt = [A, L] ≡ AL − LA.

Example 1.1.1 The Korteweg-de Vries (KdV) equation

ut = u3x + uux,

has the Lax pair (L, A)

L = 4D2
x +

2
3

u, A = 4D3
x + uDx +

1
2

ux,

2



we can find the isospectal Lax equation

Lt + [L, A] =
2
3

(ut − u3x − uux) = 0.

However in the literature, there is no systematic way of finding whether a given evolution

equation possesses a Lax representation and how one can construct the operators L, and A.

In general, L, and A are determined by inspection. Therefore, the definition of the integra-

bility in the sense of the existence of a Lax pair is too strong. Similarly one can define the

term integrability with respect to the other properties of KdV. Furthermore, according to the

terminology of Calogero [7] an equation is called S-integrable if it is solvable by IST and

C-integrable if it can be linearized by a substitution (Cole-Hopf type).

Example 1.1.2 The Burgers equation

ut = u2x + 2uux (1.1)

is an example of C-integrable equation which is reduced to the linear differential equation

by nonlinear transformation, namely by Cole-Hopf transformation [8]. This transformation

maps Burgers equation onto the linear heat equation. First let’s introduce u = ψx, inserting

it in (1.1) and then integrating, we obtain

ψt = ψ2x + ψ2
x,

where integration constant is zero, then introduce ψ = log φ to obtain

φt = φ2x.

In addition, according to the terminology of Fokas [9], ”an equation is integrable if and only

if it possesses infinitely many time-independent non-Lie point symmetries”. At this point, we
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can say that there is no consensus on the definition of integrability and solvability.

The definition of integrability, we use in this thesis is the existence of infinitely many symme-

tries (generalized symmetries) generated by a recursion operator.

Certain developments in string theory motivated the study of integrable nonlinear equations

on non-commutative space-time [10, 11]. In connection with these developments many non-

commutative integrable equations are obtained from the commutative integrable equations

by replacing the ordinary product of dependent variables by the non-commutative Moyal

?-product. Moreover, there are many possible approaches to obtain the non-commutative

integrable equations from commutative ones. In this thesis, we use the Olver-Sokolov [12]

approach in which dependent variables take values in any non-commutative associative alge-

bra (e.g. an algebra of matrices of functions).

The main concern of this thesis is to investigate the notion of integrability for a class of

commutative and non-commutative nonlinear differential equations in (1+1)-dimensions in

the context of recursion operators, produced by Lax representation. In chapter 2, we review

the basic concepts about the symmetry and integrability of commutative nonlinear differen-

tial equations. The notion of the recursion operators is mentioned to obtain the generalized

symmetries of such equations. Moreover, we deal with the correction of weak recursion

operator which is an operator that does not give correct symmetries for a given integrable

nonlinear differential equation. Then in the final section of chapter 2, we present the way

of constructing recursion operators of integrable nonlinear differential equations from their

Lax representations. In addition, this thesis is concerned with various integrable systems in a

non-commutative setting. In chapter 3, we develop the non-commutative integrable nonlinear

differential equations using the commutative integrable nonlinear equations where dependent

variables take values in any non-commutative associative algebra and discuss their integrabil-

ity. Non-commutativity is a well-known notion in quantum physics. Heisenberg uncertainty

relation is the mostly encountered example of non-commutativity in nature where any pair

of conjugate variables, such as position and momentum do not commute with each other.

Non-commutative space and physics on such spaces has also been studied for over a decade

now. Motivated also by results in string theory, formulation of and various aspects of non-

commutative quantum field theories have been under investigation [10].
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CHAPTER 2

PRELIMINARIES

2.1 Basic Definitions

In this chapter, we give some basic definitions about the symmetry and integrability of com-

mutative nonlinear differential equations in a more general form for completeness.

Following the notation of Olver [13], a general system of n-th order nonlinear differential

equations in p independent and q dependent variables,

∆α(x, u(n)) = 0 , α = 1, 2, . . . ,N, (2.1)

where p-independent variables x = (x1, x2, . . . , xp) are local coordinates on the Euclidean

space X and q-dependent variables, u = (u1, u2, . . . , uq) are coordinates on Euclidean space.

u(n) denotes the derivatives of the u’s with respect to p independent variables up to the order n.

The system of N differential equations (2.1) can be abbreviated as ∆ = 0, and can be viewed

as a smooth map from the prolongations of the total Euclidean space (jet space) X × U(n) to

some N dimensional Euclidean space:

∆ : X × U(n) → RN .

A specific form of the general system of nonlinear differential equations (2.1) is said to be of

evolution type if
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∆ = ut − F[u] = 0, (2.2)

where t, x = (x1, . . . , xp−1) are p-independent and u = (u1, u2, . . . , uq) are q-dependent vari-

ables and F[u] = (F1[u], F2[u], . . . , Fq[u]) depend upon t, x, u and the x-derivatives of u only.

In order to study the Lie symmetries and generalized symmetries of a given system of differ-

ential equations, we introduce the vector fields and their prolongations.

2.1.1 Vector Fields

A vector field, defined on X × U, has a formal expression of the form:

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα
,

where ξi and φα depend on only x and u. If we generalize that ξi and φα which are smooth

differential functions depend on also derivative of u, then we define a formal expression of

the generalized vector field:

v =

p∑
i=1

ξi[u]
∂

∂xi
+

q∑
α=1

φα[u]
∂

∂uα
. (2.3)

The prolongation of generalized vector field can be defined as

prv =

p∑
i=1

ξi ∂

∂xi
+

q∑
α=1

∑
J

φJ
α

∂

∂uαJ
,

where

φJ
α = DJ(φα −

p∑
i=1

ξiuαi ) +

p∑
i=1

ξiuαJ,i,
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J = ( j1, . . . , jp) are multi-indices and DJ is total derivative operator

DJ = D j1
x1 D j2

x2 . . .D
jp
xp .

Also the abbreviations uαJ = ∂ j1+...+ jp uα

∂ j1 x1...∂
jp xp

and uαJ,i =
∂uαJ
∂xi

are partial derivatives.

2.1.2 Generalized Infinitesimal Symmetry

We are now ready to give definition of an infinitesimal symmetry of a given system of differ-

ential equations.

Definition 2.1.1 A generalized vector field v (2.3) is a generalized symmetry of a system of

differential equations (2.1) if and only if

prv[∆α[u]] = 0, α = 1, 2, . . . ,N,

on every smooth solution u = f (x)

A similar definitions can be given for the Lie symmetry of a system of differential equations

Any generalized vector field (2.3), has an evolutionary representative vector field VQ of the

form

VQ =

q∑
α=1

Qα[u]
∂

∂uα
,

where the differential function Q = (Q1,Q2, . . . ,Qq) is the characteristic of the vector field

with:

Qα = φα −

p∑
i=1

ξiuαi , α = 1, . . . , q,
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where uαi = ∂uα
∂xi .

We noticed that these two vector fields v and VQ generate the same generalized symmetry Q.

In other words

prv(∆α[u]) = prVQ(∆α[u]).

An alternative method for the construction of generalized symmetries of a given nonlinear

differential equations is related to the linearization of nonlinear of differential equations.

2.1.3 Fréchet Derivative

Definition 2.1.2 Let A be the space of differential functions depending on dependent vari-

ables, independent variables and derivatives of dependent variables. Let P[u] be a r-tuple

of differential functions and Q[u] be a q-tuple of differential functions. Then the Fréchet

derivative of P is the linear differential operator FP[u] = F∗ : Aq → Ar so that

FP[u](Q) =
d
dε

P[u + εQ[u]]|ε=0, (2.4)

=
∑

J

∂P
∂uJ

DJQ, (2.5)

where the summation is taken over all multi-indices J.

It is noticeable that prolongation of evolutionary vector field VQ is equal to the Fréchet deriva-

tive of it.

prVQ(P) = FP[u](Q) = F∗(Q),

where ∆v = P[u].

Using above observation, we can define the symmetry of a evolutionary differential equation

ut = F[u] as follows.

If a differential function σ[u] satisfies the symmetry condition

8



σt = F∗σ. (2.6)

Then, it is called a symmetry of evolutionary differential equation ut = F[u].

Example 2.1.3 The vector field X = x∂x + 2t∂t is a symmetry of the Potential Burgers’ equa-

tion

ut = u2x + u2
x.

We should use the condition in the equation (2.6) to check this vector field is symmetry. First

of all, this vector field is generalized vector field, let’s transform it into evolutionary vector

field:

X = σ[u]
∂

∂u
, σ = φ[u] − ξ[u]ux − τ[u]ut,

X = x
∂

∂x
+ 2t

∂

∂t
= σ[u]

∂

∂u
,

= (φ − ξux − τut)
∂

∂u
,

= φ
∂

∂u
− ξ

∂

∂x
− τ

∂

∂t
,

so φ = 0 , ξ = −x , τ = −2t

σ = −xux − 2tut.

The right-hand side of (2.6) with Potential Burgers’ equation can be written as

9



F∗[u]σ =
d
dε

F[u + εσ]|ε=0,

= σ2x + 2uxσx,

= (−xux − 2tut)2x + 2ux(−xux − 2tut)x,

= −2u2x − 2u2
x − 2xuxu2x − 2tu2xt − xu3x − 4tuxuxt,

= −2(u2x + u2
x) − x(u2x + u2

x)x − 2t(u2x + u2
x)t,

F∗σ = −2ut − xuxt − 2tutt.

The left-hand side of (2.6) is;

σt = (−xux − 2tut)t,

σt = −xuxt − 2ut − 2tutt = F∗σ.

Since right side and left side of (2.6) is equal, the vector field X and its representation σ are

the symmetries of the Potential Burgers’ equation.

2.2 Recursion Operator

The method, given in (2.1.1), for the construction of the generalized symmetries of a given

system of differential equations, is systematic but fails to characterize an infinite hierarchy of

symmetries. To construct an infinite hierarchy of symmetries (if exists) for a given system, we

introduce the notion of a recursion operator which connects symmetries. Therefore it guaran-

tees the existence of infinite hierarchy of generalized symmetries.

The general form of the recursion operator first appeared in the context of generalized symme-

tries [13]. In general, recursion operators have local and non-local terms (pseudo-differential

operator). Also, the recursion operator sometimes appear as the ratio of two differential op-

erators which led to the construction of bi-Hamiltonian. In this section, we are interested in

describing the notion of recursion operator for a class of nonlinear differential equations and

hierarchies of their symmetries as well. Construction of recursion operator are investigated in

the subsection (2.2.1).
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Definition 2.2.1 Let ∆ be a system of differential equations. A recursion for ∆ is a linear

operator R : Aq → Aq in the space of q-tuples of differential functions with the property that

whenever σi is an evolutionary symmetry of ∆, so is σi+1 with

σi+1 = Rσi. (2.7)

As the definition makes clear, If we know the initial symmetry of a system of differential

equation, we can construct a new symmetry of this system by applying the recursion operator

to the initial symmetry. Also, we can form the infinite hierarchy of symmetries by applying

the recursion operator on the last symmetry again and again endlessly.

There is a criteria for an operator to be a recursion operator:

Theorem 2.2.2 Suppose ∆ = ut − F[u] = 0 is a system of differential equations. A linear

operator R : Aq → Aq is a standard recursion operator of the system if

Rt = [F∗,R], (2.8)

on the solutions of ∆ = 0.

Proof.According to (2.6)

σt = F∗σ,

(Dt − F∗)σ = 0.

If R satisfies (2.8), we get

(Rt − [F∗,R])σ = 0,

Rtσ − F∗Rσ + RF∗σ = 0,

Dt(Rσ) − F∗(Rσ) = 0,

(Dt − F∗)(Rσ) = 0,

where Rσ is also symmetry. Therefore, R is a recursion operator [13].
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Example 2.2.3 It is possible to find the several symmetries of Korteweg-de Vries(KdV) equa-

tion ut = u3x + uux with the recursion operator R = D2
x + 2

3 u + 1
3 uxD−1

x where Dx is the total

derivative operator with respect to x, and D−1
x is the inverse of Dx. First of all, criteria of

recursion operator (2.8) gives that

Rt =
2
3

ut +
1
3

utxD−1
x ,

=
2
3

(u3x + uux) +
1
3

(u4x + uu2x + u2
x)D−1

x ,

is equal to

[F∗,R] = (D3
x + uDx + ux)(D2

x +
2
3

u +
1
3

uxD−1
x ) − (D2

x +
2
3

u +
1
3

uxD−1
x )(D3

x + uD + ux).

Therefore, starting with the x-translation symmetry −∂x which has characteristic σ0 = ux, we

obtain

σ1 = Rσ0,

= (D2
x +

2
3

u +
1
3

uxD−1
x )ux,

= u3x +
2
3

uux +
1
3

uxu,

= u3x + uux,

σ2 = Rσ1,

= (D2
x +

2
3

u +
1
3

uxD−1
x )(u3x + uux),

= u5x +
5
3

uu3x +
10
3

uxu2x +
5
6

u2ux,

and

σ3 = Rσ2,

= (D2
x +

2
3

u +
1
3

uxD−1
x )(u5x +

5
3

uu3x +
10
3

uxu2x +
5
6

u2ux,

= u7x +
35
3

u2xu3x +
7
3

uu5x + 7uxu4x +
35
18

u2u3x +
70
9

uuxu2x +
35
18

u3
x +

35
54

uxu3.
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The KdV equation ut = u3x+uux possesses infinitely many symmetries produced by a recursion

operator R = D2
x + 2

3 u + 1
3 uxD−1

x .

Example 2.2.4 The symmetries of Burgers equation ut = u2x+2uux can be found by recursion

operator R = Dx + u + uxD−1
x . However, firstly we should check that this recursion operator

is correct by using condition (2.8). The left hand sides of (2.8) gives us

Rt = ut + uxtD−1
x = u2x + 2uux + (u3x + 2u2

x + 2uu2x)D−1
x ,

and using Fréchet derivative (2.4), we obtain the right hand sides as follows

[F∗,R] = (D2
x + 2uDx + 2ux)(Dx + u + uxD−1

x ) − (Dx + u + uxD−1
x (D2

x + 2uDx + 2ux),

= u2x + 2uxu + (u3x + 2u2
x + 2uu2x)D−1

x .

Both sides of (2.4) equal to each other , hence R = D + u + uxD−1 is correct recursion

operator for Burgers equation. First basic symmetry is the x-translation symmetry −∂x which

has characteristic σ0 = ux, we can find the other symmetries by using (2.7). The first few are:

σ1 = Rσ0,

= (Dx + u + uxD−1
x )ux,

= u2x + 2uux,

σ2 = Rσ1,

= (Dx + u + uxD−1
x )(u2x + 2uux),

= u3x + 3u2
x + 3uux + 3u2ux,

σ3 = Rσ2,

= (Dx + u + uxD−1
x )(u3x + 3u2

x + 3uux + 3u2ux),

= u4x + 10uxu2x + 4uu3x + 12uu2
x + 6u2u2x + 4u3ux.

In the following section we will investigate the hierarchy of symmetries of integrable equa-

tions generated by time-dependent recursion operators (i.e. the coefficients of recursion oper-

ators depend on time explicitly).
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2.2.1 Weak Recursion Operator

The time-dependent recursion operators, under the rule D−1
x Dx = 1, do not generate the

hierarchy of symmetries of integrable evolution equations. This type of recursion operators

is called weak recursion operators in the work of Sanders and Wang [14]. They introduced a

method to construct the time-dependent hierarchy of symmetries from a corrected recursion

operator obtained from the weak one. Later, Gürses, Karasu and Turhan [15] showed that

time-dependent recursion operators need modification due to the violation of associativity.

For illustration, let’s consider the cylindrical KdV(cKdV) equation in the form

υτ = υξξξ + υυξ −
υ

2τ
.

The point transformation

t = −2τ−
1
2 , x = ξτ−

1
2 , u = τυ +

1
2
ξ (2.9)

transforms the cKdV equation to the KdV equation

ut = u3x + uux.

In example 2.2.3, some of the symmetries of KdV equation have been already calculated.

Now, using the invertible point transformations (2.9) with a relation δu = τδυ, we can derive

the symmetries of cKdV from those of KdV.
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ρ1 = τ
1
2υξ +

1
2
τ−

1
2 ,

ρ2 = τ
3
2υτ + τ

1
2 (υ +

ξ

2
υξ) + τ−

1
2
ξ

4
,

ρ3 = τ
5
2 (υ5ξ +

5
3
υυ3ξ +

10
3
υξυ2ξ +

5
6
υ2υξ)

+ τ
3
2 (

5
6
ξυ3ξ +

5
3
υ2ξ +

5
6
ξυυξ +

5
12
υ2)

+ τ
1
2 (

5
12
ξυ +

5
24
ξ2υξ) + τ−

1
2

5
48
ξ2,

ρ4 = τ
7
2 (υ7ξ +

7
3
υυ5ξ + 7υξυ4ξ +

35
18
υ2υ3ξ +

35
3
υ2ξυ3ξ +

70
9
υυξυ2ξ

+
35
18
υ3
ξ +

35
54
υ3υξ) + τ

5
2 (

7
6
ξυ5ξ +

7
2
υ4ξ +

35
18
ξυυ3ξ +

35
9
ξυξυ2ξ

+
35
9
υυ2ξ +

35
12
υ2
ξ +

35
36
ξυ2υξ +

35
108

υ3) + τ
3
2 (

35
72
ξ2υ3ξ +

35
18
ξυ2ξ

+
35
72
ξ2υυξ +

35
24
υξ +

35
72
ξυ2) + τ

1
2 (

35
432

ξ3υξ +
35

144
ξ2υ +

35
144

)

+ τ−
1
2

35
864

ξ3,

where all ρ are the symmetries of the system. We have used the transformation (2.9) to get

these symmetries; however, let’s check whether they satisfy the symmetry condition (2.6).

ρ1τ = F∗ρ1. (2.10)

The Fréchet derivative of cKdV system is

F∗[υ]ρ =
d
dε

F[υ + ερ]|ε=0,

= ρ3ξ + υρξ + ρυξ −
ρ

2τ
.

The right hand sides of (2.10) becomes

F∗ρ = τ
1
2υ4ξ + τ

1
2υυ2ξ + (τ

1
2υξ +

1
2
τ−

1
2 )υξ −

1
2τ

(τ
1
2υξ +

1
2
τ−

1
2 ),

= τ
1
2υ4ξ + τ

1
2υυ2ξ + τ

1
2υ2 −

1
4
τ−

3
2 ,

and by using υτ = υ3ξ + υυξ −
υ
2τ , the left hand sides of (2.10) can be obtained as follows
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ρτ = τ
1
2υ4ξ + τ

1
2υυ2ξ + τ

1
2υ2 −

1
4
τ−

3
2 .

The right hand sides and left hand sides are equal to each other. Therefore, ρ1 is the correct

symmetries of the cKdV system. For the second symmetry ρ2 = τ
3
2υτ+τ

1
2 (υ+ 1

2ξυξ)+ 1
4τ
− 1

2 ξ,

ρτ = F∗ρ,

= ρ3ξ + ρξυ + υξρ −
ρ

2τ
,

= (τ
3
2υτξξξ + τ

1
2 (

5
2
υ3ξ +

1
2
ξυ4ξ) + [τ

3
2υτξ + τ

1
2 (

3
2
υξ +

1
2
ξυ2ξ) +

1
4
τ−

1
2 )]υ

+ υξ[τ
3
2υτ + τ

1
2 (υ +

1
2
ξυξ) +

1
4
τ−

1
2 ξ] −

1
2τ

[τ
3
2υτ + τ

1
2 (υ +

1
2
ξυξ) +

1
4
τ−

1
2 ξ],

= τ
3
2 (υτξξξ + υτξυ + υτυξ) + τ

1
2 (2υ3ξ + 2υξυ +

1
2
ξυ4ξ +

1
2
ξυυ2ξ +

1
2
ξυ2

ξ) −
1
8
τ−

3
2 ξ.

If we take the derivative of ρ2 with respect to τ, we get

ρτ =
3
2
τ

1
2υτ + τ

3
2υττ +

1
2
τ−

1
2 (υ +

1
2
ξυξ) + τ

1
2 (υτ +

1
2
υξτ) −

1
8
τ−

3
2 ξ,

= τ
3
2 (υτξξξ + υτξυ + υτυξ) + τ

1
2 (2υ3ξ + 2υξυ +

1
2
ξυ4ξ +

1
2
ξυυ2ξ +

1
2
ξυ2

ξ) −
1
8
τ−

3
2 ξ.

So, ρ2 is also one of the symmetries of cKdV system. Similarly, for the symmetries ρ3 and

ρ4, it is possible to show that they satisfy symmetry condition. Hence, ρ3 and ρ4 are also

symmetries of this system.

By using the transformation (2.9), we can also transform the recursion operator of KdV

RKdV = D2
x +

2
3

u +
1
3

uxD−1
x ,

to cKdV with Dx = τ
1
2 Dξ, D2

x = τD2
ξ and D−1

x = τ−
1
2 D−1

ξ .

RcKdV = τD2
ξ +

2
3

(τυ +
1
2
ξ) +

1
3
τ

1
2 (τυξ +

1
2

)τ−
1
2 D−1

ξ , (2.11)

RcKdV = τD2
ξ +

2
3
τυ +

1
3
ξ +

1
6

(1 + 2τυξ)D−1
ξ . (2.12)
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Although this recursion operator satisfies the condition (2.8), it is not the correct recursion

operator. The third symmetry σ3 which are obtained by the recursion operator (2.12) does not

satisfy the symmetry condition (2.6). As a result of this problem, the correction terms should

be added to a weak recursion operator so as to give the correct symmetries, or symmetries

which do not satisfy condition (2.6) should be corrected by adding some terms. In this section,

we will correct some weak recursion operators and symmetries respectively.

2.2.1.1 Construction of Corrected Recursion Operator

In general a recursion operator may have more complicated nonlocal terms; however, let’s

consider a recursion operator in the form Rw = R1 + aD−1
x where R1 is the local part of the

recursion operator and a is a function of jet coordinates, x and t. Now, let R = Rw + a
g H where

H is an operator and g is required function so that a
g is a symmetry. If we use our assumption

in the eigenvalue equation Rσ = λσ where σ ∈ A (the space of symmetries of an evolution

equation) are the symmetries of a system, then we get

Rwσ +
a
g

Hσ = λσ.

Taking the derivative of the eigenvalue equation with respect to time, we obtain

Rwt(σ) + Rwσt + (
a
g

)t(Hσ) +
a
g

(Hσ)t = λσt.

Using (2.6) and (2.8) and paying attention to the order of parenthesis because of nonlocal

terms (D−1
x ) in recursion operator, the above equation becomes

a(H(σ))t + g[As(Rw, F∗, σ) − As(F∗,Rw, σ)] = 0, (2.13)

where As(P,Q, σ) = P(Q(σ)) − (PQ)(σ) for any operators P,Q and any σ. The associators

As(P,Q, σ) is vanished for local cases. For the correction of recursion operator, only a time-

dependent constant should be added, therefore, the operator H contains a projection operator

Π such that Πσ = limx,q,qx,...→0 σ = a time-dependent function. As a result of this, (2.13)

becomes
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(Hσ0)t + g[As(D−1
x , F∗0 , σ0) − As(F∗0 ,D

−1
x , σ0)] = 0, (2.14)

where F∗0 = limq,qx,...→0 F∗ and σ0 is the part of the symmetries depends only x and t. We

can add correct terms a
g H to the recursion operator by calculating H in (2.14) [15].

Example 2.2.5 There are two well known recursion operators of Burgers equation in the

form ut = u2x + uux such that

R1 = Dx +
1
2

u +
1
2

uxD−1
x , R2 = tDx +

1
2

tu +
1
2

x +
1
2

(1 + tux)D−1
x ,

for the first one, there is no problem in the calculation of symmetries as we have done in the

example 2.2.4. On the other hand, second recursion operator does not investigate the correct

symmetries of the Burgers equation. To find the correction of R2, we first choose g such that
a
g is a symmetry of the system with a = 1

2 (1 + tux). For g = 1, the symmetry condition (2.6)

should be true. Now, let σ0 = a1(t) + a2(t)x + a3(t)x2 + . . . then by using (2.14), we obtain

(Hσ0)t + D−1
x (F∗0(σ0)) − (D−1

x F∗0)(σ0) − F∗0(D−1
x σ0) + (F∗0 D−1

x )σ0 = 0,

with F∗0 = limu,ux,...→0F∗[u] = limu,ux,...→0(ux + uDx + D2
x) = D2

x, equation (2.14) becomes

(Hσ0)t = a2,

which means

H = D−1
t ΠDx.

Therefore, the corrected second recursion operator of Burgers equation is
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R2 = tDx +
1
2

tu +
1
2

x +
1
2

(1 + tux)D−1
x +

1
2

(1 + tux)D−1
x ΠDx.

Example 2.2.6 We have obtained the recursion operator of Cylindirical Korteweg de Vries

(cKdV) equation υτ = υ3ξ + υυξ −
1
2τυ by using the transformation (2.9) as follows

Rw = τD2
ξ +

2
3
τυ +

1
3
ξ +

1
6

(1 + 2τυξ)D−1
ξ ,

where a = 1
6 (1 + 2τυξ) and F∗0 = D3

ξ −
1
2τ . Because of a

g should be a symmetry, g must take

the value g =
√
τ. Using similar assumption for σ0 in the above example, equation (2.14)

can be written

(Hσ0)τ +
√
τ[As(Dξ,D3

ξ −
1
2τ
, σ0) − As(D3

ξ −
1
2τ
,D−1

ξ , σ0)] = 0,

(Hσ)τ = 2τa3,

this means that

H = D−1
τ

√
τΠD2

ξ .

Hence the recursion operator of cKdV equation with correction term is

R = τD2
ξ +

2
3
τυ +

1
3
ξ +

1
6

(1 + 2τυξ)D−1
ξ +

1
6
√
τ

D−1
τ

√
τΠD2

ξ .

2.2.1.2 Construction of Corrected Symmetries

We have added some terms in nonlocal part of a weak recursion operator to get correct one,

another way is keeping recursion operators as they are and introduce correction on the sym-

metries. Firstly, let’s introduce the action of D−1
x such that we take D−1

x Gx = G where G ∈ A1

and D−1
x Hx = H + h(t) where H ∈ A0 and h is a function of t.
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Definition 2.2.7 Let Rw be a recursion operator of the form

Rw = R1 + R0,

where R0 = Rw |q,qx,···→0, and let σn be symmetries of the system, generated by the Rw, of the

form

σn = σ1
n + σ0

n,

where σ0 = σn |q,qx,···→0.

The following proposition is necessary at this point.

Proposition 2.2.1 Let the function F vanish in the limit when the jet space coordinates go to

zero, i.e limq,qx,··· F = 0. Then the operator R0 = limq,qx,···→0 Rw satisfies σ0
n+1 = R0σ

0
n and

R0t = [F∗0 ,R0] where F∗0 is the Fréchet derivative when q and all the derivatives of q also go

to zero.

Now, using this proposition we can find the missing terms in symmetries and the difference

between the weak symmetries (the ones obtained by Rw) and the corrected symmetries comes

from σ0 part of the symmetries. The general corrected symmetry σ should be in the form

σ = σ̄ +
a
g

h, (2.15)

where σ̄ is obtained by the weak recursion operator, when we find the correction term h(t) for

σ0. The corresponding corrected recursion operator takes the form

R = Rw +
a
g

H, (2.16)

and h = Hσ [15].
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Example 2.2.8 The Burgers equation

ut = u2x + uux

possesses a recursion operator of the form

Rw = tDx +
1
2

tu +
1
2

x +
1
2

(1 + tux)D−1
x ,

so

R0 = tDx +
1
2

x +
1
2

D−1
x .

Let σ0
n = a1(t) + a2(t)x + a3(t)x2 + · · · . Using (2.6) we obtain σ0

nt
= σ0

n2x
where F∗ =

ux + uDx + D2
x and F∗0 = D2

x.

a1t + a2t x + a3t x
2 + · · · = 2a3 + 6a4x + 12a5x2 + · · · ,

As a result of this, the undetermined coefficients related to each other as follows

a1t = 2a3, a2t = 6a4, a3t = 12a5, (2.17)

by using 2.2.1, we can obtain

σ0
n+1 = (tDx +

1
2

x +
1
2

D−1
x )σ0

n,

= t(a2 + 2a3x + 3a4x2 + · · · ) +
1
2

x(a1 + a2x + a3x2 + · · · ) +
1
2

(a1x +
1
2

a2x2

+
1
3

a3x3 + · · · + h(t)),

σ0
n+1 = (ta2 +

h
2

) + (2a3t + a1) + (3a4t +
3
4

a2)x2 + · · · ,

again using (2.6) for σ0
n+1 and the following system of equations for ai and h can be found by

equating the coefficients at power of x to zero
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(ta2 +
1
2

h)t = 2(3a4t +
3
4

a2),

(2ta3 + a1)t = 6(4a5t +
2
3

a3),

... =
...

with (2.17) the first equation gives ht = a2 and all the others are satisfies identically. There-

fore, h is

h = D−1
t (ΠDxσ

0
n).

The equation (2.15) can be rewritten for σ0
n+1 such as

σ0
n+1 = ¯σn+1

0 +
1
2

D−1
t (ΠDxσ

0
n).

It can be generalized for σn by adding the constant of integration h(t) in general symmetry

equation (2.15)

σn+1 = ¯σn+1 +
1
2

(1 + tux)D−1
t (ΠDxσ

0
n),

where ¯σn+1 is the symmetry obtained by standard application of the operator D−1
x . The cor-

rection of symmetries allows us to define corrected recursion operator by (2.16)

R = Rw +
1
2

(1 + tux)D−1
t ΠDx.

.

Example 2.2.9 The cylindrical Korteweg-de Vries equation (cKdV)

ut = u3x + uux −
1
2t

u
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possesses a recursion operator of the form

Rw = tD2
x +

2
3

tu +
1
3

x +
1
6

(1 + 2tux)D−1
x ,

where R0 = tD2
x + 1

3 x + 1
6 D−1

x . Let’s use similar ansatz σ0 in (2.2.8)

σ0
n = a1(t) + a2(t)x + a3(t)x2 + · · · .

.

The symmetry condition (2.6) gives us the relation:

σ0
nt

= σ0
n3x
−

1
2t
σ0

n,

because of F∗ = ux −
1
2t + uDx + D3

x and F∗0 = limq,qx,···→0 F∗ = D3
x −

1
2t . Inserting our ansatz

for σ0 in this equation we get

a1t = 6a4 −
1
2t

a1, a2t = 24a5 −
1
2t

a2, a3t = 60a6 −
1
2t

a3, · · · .

Then

σ0
n+1 = R0σ

0
n,

= (2a3t +
1
6

h) + (6a4t +
1
2

a1)x + · · · .

Using (2.6) for σn+1, we obtain

σ0
n+1t = F∗0σ

0
n+1,

σ0
n+1t = (D3

x −
1
2t

)σ0
n+1,

(2a3t +
1
6

h)t + (6a4t +
1
2

a1)t x + (12a5t +
5

12
a2)t x2 + · · · = 6(20a6t +

7
18

a3) − a3 −
h

12t
+ · · · ,
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and ht + 1
2t h = 2a3. It gives h = 1√

t
D−1

t (
√

tΠD2
xσ

0
n). Hence the symmetry equation for cKdV

equation and corresponding recursion operator are respectively

σn+1 = ¯σn+1 +
1
6

(2tux + 1)
1
√

t
D−1

t (
√

tΠD2
xσ

0
n),

and

R = Rw +
1
6

(1 + 2tux)
1
√

t
D−1

t
√

tΠD2
x.

2.3 Lax pairs, Recursion operator

A Lax pair contains two linear operators L and A such that

Lψ = λψ, (2.18)

ψt = Aψ. (2.19)

Here (2.18) represents the spectral equation for L and (2.19) represents the time evolution of

the eigenfunctions ψ.

Differentiating (2.18) with respect to t gives

Ltψ + Lψt = λtψ + λψt.

Using (2.19), we obtain

Lt + (LA − AL)ψ = λtψ.

Hence, if λt = 0, then

Lt = [A, L] (2.20)
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is called Lax equation and contains commutative nonlinear evolution equation for suitable L

and A . Another form of the isospectral problem is

φx = U(u, λ)φ, λt = 0,

φt = V(u, λ)φ,

and then necessary condition for Lax pair is

Ut − Vx + [U,V] = 0.

This equation is called zero-curvature equation [16].

The basic problem in the Lax representation of an integrable evolution equation is to find

all the operators A for a given L. Lax found such a family of operators, say An, for KdV

equation. Later, Gel’fand-Dikii [17] gave a construction of all the operators for KdV-type

equations, based on the fractional powers of differential operator L. In this construction the

linear operator L has the form

L = Dm
x + um−2Dm−2

x + . . . + u0,

and all the operators An, n is a positive integer, has the form

An = (L
n
m )+. (2.21)

.

Here L
n
m has the pseudo differential series form

L
n
m =
∑

uiDi
x,

where (L
n
m )+ is the formal series containing the differential operator of degree greater than or

equal to zero. Therefore, the set of system

Ltn = [An, L], (2.22)
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with fixed m and all n is called the nth KdV-type hierarchy equation. Now, we can rewrite the

fractional power of L as follows

L
n
m = (L

n
m )+ + (L

n
m )−,

then, we get

Ltn = [An, L] = [L
n
m , L] − [(L

n
m )−, L].

Since, by construction, [L
n
m , L] = 0, we have

Ltn = [An, L] = −[(L
n
m )−, L]. (2.23)

The left-hand side of (2.23) is a differential operator of order n−2 but right-hand side contains

the commutator of two operator of orders Ord((L
n
m )−) + Ord(L). Its order is equal to or less

than −1+n−1 = n−2. Therefore, both sides of (2.22) are differential operators of order≤ n−2,

for each positive integer n [18].

Example 2.3.1 The Lax operator of KdV equation ut = 1
4 (u3x + 6uux) is L = D2

x + u, to

construct the differential operator An, let’s start with trying to find square root of Lax operator

L. The square root of this operator can be written as an infinite series in inverse powers of

Dx;

L
1
2 = Dx + a0(u) +

∞∑
n=1

an(u)D−n
x .

To determine a0(u) and the each of the an(u)’s, we should square this formal series and require

it to be equal to L. Firstly, let’s expand L
1
2 up to the D−1

x terms, we get

L
1
2 = Dx + a0(u) + a1(u)D−1

x ,

(L
1
2 )+ = Dx + a0(u),

26



then,

L = L
1
2 L

1
2 ,

D2
x + u = (Dx + a0(u) + a1(u)D−1

x )(Dx + a0(u) + a1(u)D−1
x ),

equating coefficients of order Dx, we can find a0(u) = 0 and a1(u) = u
2 , then the differential

operator A1 should be constructed as

A1 = (L
1
2 )+ = Dx.

If we expand L
1
2 up to the D−2

x , then our undetermined coefficients can be found as follows:

(L(t))
1
2 = Dx + a0(u) + a1(u)D−1

x + a2(u)D−2
x ,

we know that

L(t) = (L(t))
1
2 (L(t))

1
2 ,

D2
x + u = (Dx + a0(u) + a1(u)D−1

x + a2(u)D−2
x )(Dx + a0(u) + a1(u)D−1

x + a2(u)D−2
x ),

D2
x + u = D2

x + (a0)x + a0Dx + (a1)xD−1
x + a1 + (a2)xD−2

x + a2D−1
x + a0Dx + (a0)2

+ a0a1D−1
x + a0a2D−2

x + a1 + a1(D−1
x a0) + a1(D−1

x a1)D−1
x + a1(D−1

x a2)D−2
x

+ a2D−1
x + a2(D−2

x a0) + a2(D−2
x a1)D−1

x + a2(D−2
x a2)D−2

x ,

and by equating the terms of the different power of Dx, we obtain the undetermined coefficient

as follows: For the order of Dx

2a0Dx = 0,

a0 = 0.
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For the order of D0
x

a2
0 + 2(a1)x = u,

a1 =
u
2
.

For the order of D−1
x

(a1)x + 2a2 + a0a1 = 0,

a2 = −
ux

4
.

So we get,

(L(t))
1
2 = Dx +

1
2

uD−1
x −

1
4

uxD−2
x .

This expansion gives us again the differential operator A1, on the other hand, the differential

operator A3 can be constructed by expansion of 3
2 powers of L as follows

(L(t))
3
2 = (D2

x + u)(L(t))
1
2 ,

= D3
x +

1
2

(u2xD−1
x + 2ux + uDx) −

1
4

(u3xD−2
x + 2u2xD−1

x + ux) + uDx +
1
2

u2D−1
x

−
1
4

uuxD−2
x ,

= D3
x +

3
2

uDx +
3
4

ux +
1
2

u2D−1
x −

1
4

(u3x + uux)D−2
x .

The positive powers of differential operator of this equation gives us the Lax operator A3. i.e

A3 = (L(t))
3
2
+ = D3

x +
3
2

uDx +
3
4

ux = D3
x +

3
4

(Dxu + uDx).
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In the previous example 2.3.1, we exemplify the constructing A operator from L operator by

Gel’fand-Dikii formalism. However, Gel’fand-Dikii formalism is based on an ansatz for the

operator L. In general, there are three types of formalism for operator L [16] in the forms

k = 0 : L = cmDm
x + cm−1Dm−1

x + um−2Dm−2
x + · · · + u0,

k = 1 : L = cmDm
x + um−1Dm−1

x + · · · + u0 + D−1
x u−1,

k = 2 : L = umDx + um−1Dm−1
x + · · · + u0 + D−1

x u−1 + D−2
x u−2.

with the three admissible Lax hierarchies

Ltn = [(L
n
m )≥k, L] = −[L

n
m
<k, L], (2.24)

k = 0 is the case for Gel’fand-Dikii formalism and the cases k = 1, 2 were introduced by

Kupershmidt [19]. For illustration, the three choice of k provides us evaluate the hierarchies

of Lax equations for three nonlinear differential equations; k = 0 for the KdV equation,

k = 1 for the modified KdV equation and k = 2 for the Harry-Dym equation. Constructing

a recursion operator for a given integrable nonlinear differential equation is a nontrivial task.

Recently, Gürses, Karasu and Sokolov gave a construction for the recursion operator for such

equations which is based on Lax representation [20].

Proposition 2.3.1 For any n

An+m = LAn + Rn,

where Rn is a differential operator of order≤ m − 1, called remainder.

Proof. Since L
n+m

m = LL
n
m , then using (2.21) we write

An+m = (LL
n
m )+ = (L(L

n
m )+)+ + (L(L

n
m )−)+.

It gives

Ltn+m = [An+m, L] = LLtn + [(L(L
n
m )−)+, L].
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For any n, we can rewrite the Lax operator Am+n like this

Am+n = L(L
n
m )+ + (L(L

n
m )−)+,

by using (2.21)

An+m = LAn + (L(L
n
m )−)+.

If we substitute Rn = (L(L
n
m )−)+ with the Ord(Rn) ≤ Ord(L) + Ord(L

m
n ) = m − 1, the proof is

finished.

The result of this proposition leads to

Ltn+m = [An+m, L] = [LAn + Rn, L] = L[An, L] + [Rn, L] = LLtn + [Rn, L],

Ltn+m = LLtn + [Rn, L], (2.25)

and it is called the recursion relation.

Remark 2.3.1 It follows from the formula

An+m = (L
n
m L)+ = (L

n
m )+L + ((L

n
m )−L)+,

that

An+m = AnL + Rn, (2.26)

and
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Ltn+m = Ltn L + [L,Rn],

where Rn is a differential operator of order≤ m − 1.

By equating the coefficient of different powers of Di
x, i = 2m − 2, . . . ,m − 2 in (2.25), we

can easily determine Rn in terms of the coefficient of operator Ltn . The necessary condition

of the resulting formula is the linearity in the coefficient of Ltn . The remaining coefficients of

Di
x, i = m − 2, . . . , 0 in (2.25) give us the relation


u0
...

um−2


tn+m

= R


u0
...

um−2


tn

,

where R is a recursion operator. Also, we can use proposition (2.26) instead of (2.25), the

corresponding recursion operators coincide [20].

Example 2.3.2 The KdV equation

ut =
1
4

(u3x + 6uux),

has a Lax representation with

L = D2 + u, A = (L
3
2 )+.

Since Ltn = utn ≡ un and Ltn+2 = utn+2 ≡ un+2, (2.25) becomes

un+2 = (D2 + u)un + [Rn, L], (2.27)

with Rn = anD + bn (note that Rn ≤ 1).
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To determine the Rn, let’s find unknowns in (2.27)

[Rn, L] = RnL − LRn,

= (anD + bn)(D2 + u) − (D2 + u)(anD + bn),

= anux − anxxD − 2anxD2 − bnxx − 2bnxD,

then, (2.27) becomes

un+2 = unxx + 2unxD + unD2 + uun + anux − anxxD − 2anxD2 − bnxx − 2bnxD.

Now, if we equate to zero the coefficients of D2
x, Dx, and D0

x in above equation, we get

an =
1
2

D−1(un), bn =
3
4

un,

and

un+2 = (
1
4

D2 + u +
1
2

uxD−1)un,

that gives the standard recursion operator for the KdV equation:

R =
1
4

D2 + u +
1
2

uxD−1.

Example 2.3.3 Recursion operators of the Burgers equation ut = u2x + 2uux with the Lax

operator L = Dx + u can be found by

Ltn+1 = LLtn + [Rn, L], (2.28)

where Rn = anDx + bn, Ltn+1 = utn+1 = un+1, and Ltn = utn = un, to define Rn we should find

[Rn, L],
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[Rn, L] = RnL − LRn = (anDx + bn)(Dx + u) − (Dx + u)(anDx + bn),

= anux − anx Dx − bnx ,

then, (2.28) becomes

un+1 = unx + unDx + uun + anux − anx Dx − bnx .

There is no order of Dx in the left hand sides of this equation, therefore we can easily define

an such that an = D−1
x (un), and for the choice bn = 0, we get one of the recursion operators of

general Burgers equation.

un+1 = unx + uun + D−1
x (un)ux,

un+1 = (Dx + u + uxD−1
x )un,

R = Dx + u + uxD−1
x .

The other recursion operator for the Burgers equation by inspection is given by R = tDx +

tu + x
2 + (tux + 1

2 )D−1
x . Later, we have seen that this time-dependent recursion operator does

not connect the symmetry correctly.

2.3.1 Symmetric and skew-symmetric reductions of differential Lax operator

There are two conditions, L∗ = L or L∗ = −L for the standard reductions of the Gel’fand-Dikii

systems. Here ∗ denotes the adjoint operation defined as follows.

Definition 2.3.4 Let L be a differential operator, L =
∑

aiDi
x, then its adjoint L∗ is given by

L∗ =
∑

(−Dx)i · ai.
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It is noticeable that the order of L; m must be an even integer when L∗ = L, and odd integer

when L∗ = −L. The compatibility of (2.21) provides that (An)∗ = −An, so all possible An are

defined by (2.21), where n takes odd integer values.

If L∗ = L, the recursion operator can be found from (2.25) and (2.26) because n + m is an odd

integer in the formula An+m = (LL
n
m )+ = (L

n+m
m )+. Therefore, in this case proposition (2.3.1)

is still valid and this formula gives the correct An-operator . On the other hand, if L∗ = −L,

m + n is even integer because both m and n are odd. Hence, (L
n+m

m )+ is not suitable to be an

An-operator. As a result of this, we have to work on An+2m = (L
n+2m

m )+ = (L2L
n
m )+ to find the

recursion operator.

Proposition 2.3.2 If L∗ = −L, then

An+2m = L2An + Rn, (2.29)

where ord(Rn) < 2ord(L). It follow from (2.29) that

Ltn+2m = L2Ltn + [Rn, L].

Remark 2.3.2 Instead of (2.29), we can use the ansatz

An+2m = LAnL + Rn, (2.30)

or

An+2m = AnL2 + Rn. (2.31)

then, recursion operator obtained by the utility of (2.29), (2.30) and (2.31) all coincide.

2.3.2 Matrix L-operator of the first order

In previous section, we have worked on the scalar L-operator in the form L = Dm
x +um−2Dm−2

x +

· + u0 to define recursion operator. In this section, we consider L is a matrix operator of the

form
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L = Dx + λa + q(x, t), (2.32)

where q and a belong to a Lie algebra, λ is the spectral parameter.

Proposition 2.3.3 Let L be a matrix operator of the form (2.32) then corresponding recursion

relation is

Ltn+1 = λLtn + [Rn, L], (2.33)

where Rn is a matrix operator.

Using proposition 2.3.3, one can easily find the corresponding recursion operator [20].

Example 2.3.5

ut = −
1
2

u2x + u2v,

vt =
1
2

v2x − v2u, (2.34)

is equivalent to the nonlinear Schrödinger equation, has a Lax operator

L = Dx +

1 0

0 −1

 λ +

0 u

v 0

 .
Let’s use the proposition 2.3.3 to construct the recursion operator of the nonlinear Schrödinger

equation with Rn =

an bn

cn −an

, Ltn =

 0 un

vn 0

 and Ltn+1 =

 0 un+1

vn+1 0

. We can find the un-

determined coefficients by comparing the coefficients of the powers of λi, i = 0, 1 as follows

an =
1
2

D−1
x (unv + vnu),

bn =
1
2

un, cn = −
1
2

vn,

hence, the recursion operator of the system (2.34) can be found like this
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R =

uD−1
x −

1
2 Dx uD−1

x u

−vD−1
x v −vD−1

x u + 1
2 Dx

 .
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CHAPTER 3

NON-COMMUTATIVE INTEGRABLE EQUATIONS

So far, we have examined the integrability properties of some commutative nonlinear evolu-

tion equations in (1+1)-dimensions with dependent variables taking values in a commutative

associative algebra. For the criterion of integrability, we have used the existence of recur-

sion operators based on the Lax representations of such equations. In this chapter, we shall

examine the same properties of non-commutative nonlinear evolution equations in (1+1)-

dimensions with dependent variables taking values in a non-commutative algebra.

Flat non-commutative space is spanned by the coordinates x0, x1 which fulfill the?-commutation

relations

[xi, x j] = xi ? x j − x j ? xi = iθi j,

where θi j are real constants, called the NC parameters [21]. To obtain the non-commutative

multiplication, ordinary products of the coordinates and their functions in commutative space

is replaced with the Moyal ?-product which is given as

f ? g(x) := exp(
1
2

iθi j∂(x′)
i ∂(x′′)

j ) f (x′)g(x′′) |x′=x′′=x,

= f (x)g(x) +
1
2

iθi j∂i f (x)∂ jg(x) + 0(θ2).

Hence, for non-commutative nonlinear evolution equations, products of dependent variables

should be replaced with the Moyal ?-product. There are various methods to construct non-

commutative integrable equations from a commutative one. To give some example, we can

mention that Lax pair generating technique, non-commutative version of the usual Lax repre-

sentation, bicomplex method, non-commutative zero curvature representation and the reduc-

tion of self-dual Yang-Mills equations.
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In this chapter, we will use the Lax pair generating technique and non-commutative version

of the usual Lax representation with non-commutative multiplication for all products. e.g

uux , uxu. To distinguish the non-commutative multiplication, we introduce the operators of

left and right multiplication [12] such as

Lu(v) = uv, Ru(v) = vu,

where u, v are the element of a linear associative algebra, L is the left multiplication operator

and R is a right multiplication operator. Moreover, we have

Lα·β(v) = Lα(v) · Lβ(v), Rα·β(v) = Rα(v) · Rβ(v),

Lα+β(v) = Lα(v) + Lβ(v), Rα+β(v) = Rα(v) + Rβ(v)

where α, β is any component of jet space.

Now, we are ready to exemplify the recursion operators for non-commutative nonlinear dif-

ferential equations, namely, the non-commutative KdV equation and the non-commutative

nonlinear Schrödinger equation [20].

Example 3.0.6 In the example 2.3.2, we have found the recursion operator of KdV equation.

Let’s work out the non-commutative version of this equation given by

ut =
1
4

(u3x + 3uux + 3uxu),

with Lax pairs L = D2
x + Lu, A = (L

3
2 )+. According to the technique which is mentioned in

[20], the recursion relation (2.25) of the NC KdV equation is

Ltn+1 = LLtn + [Rn, L]. (3.1)

.

By inserting the remainder Rn = anDx + bn in (3.1), we obtain
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un+1 = (D2
x + Lu)un + [Rn, L],

un+1 = (D2
x + Lu)un + (anDx + bn)(D2

x + Lu) − (D2
x + Lu)(anDx + bn),

un+1 = un2x + 2unx Dx + uun + anux + bnu − ubn − bn2x + anuDx − an2x Dx − uanDx

+ unD2
x − 2anx D2

x − 2bnx Dx.

Let’s equate the terms of different powers of Dx,

For the order of D2
x,

un = 2anx ,

an =
1
2

D−1
x un.

For the order of Dx,

2unx + anu − an2x − uan − 2bnx = 0,

bn =
3
4

un +
1
4

D−1
x (Lu − Ru)(D−1

x un),

then, equation (3.1) becomes

un+1 =
1
4

un2x +
1
2

uun +
1
2

unu +
1
4

D−1
x (un)ux +

1
4

uxD−1
x (un) +

1
4

D−1
x (Lu − Ru)(D−1

x un)u

− u
1
4

D−1
x (Lu − Ru)(D−1

x un),

un+1 = (
1
4

D2
x +

1
2

(Lu + Ru) +
1
4

(Rux + Lux)D
−1
x +

1
4

(Lu − Ru)D−1
x (Lu − Ru)D−1

x )un.

Hence, the recursion operator of non-commutative KdV equation is

R =
1
4

D2
x +

1
2

(Lu + Ru) +
1
4

(Rux + Lux)D
−1
x +

1
4

(Lu − Ru)D−1
x (Lu − Ru)D−1

x .

Now, we can construct the generalized symmetries of non-commutative KdV equation by using

the recursion operator as follows: Starting with x-translation symmetry σ0 = ux and using

the property of recursion operator (2.7), we can get the first few symmetries
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σ1 = Rσ0,

σ1 = (
1
4

D2
x +

1
2

(Lu + Ru) +
1
4

(Rux + Lux)D
−1
x +

1
4

(Lu − Ru)D−1
x (Lu − Ru)D−1

x )ux,

σ1 =
1
4

(u3x + 3uux + 3uxu),

and

σ2 = Rσ1,

σ2 = (
1
4

D2
x +

1
2

(Lu + Ru) +
1
4

(Rux + Lux)D
−1
x

+
1
4

(Lu − Ru)D−1
x (Lu − Ru)D−1

x )
1
4

(u3x + 3uux + 3uxu),

σ2 =
1
16

u5x +
5
8

uxu2x +
5
8

u2xux +
5

16
uu3x +

5
16

u3xu +
5
8

u2ux +
5
8

uxu2 +
5
8

uuxu.

Example 3.0.7 In the section 2.3.2, we have found the recursion operator of the nonlin-

ear Schrödinger equation which has L operator in matrix form. Let’s work on the non-

commutative version of this equation given by

ut = −
1
2

u2x + uvu,

vt =
1
2

v2x + vuv,

and the Lax operator of this system is given by

L = Dx +

1 0

0 −1

 λ +

0 u

v 0

 .
To construct the recursion operator we should find the matrix operator in the proposition

2.3.3 with Rn =

an bn

cn dn

. Because of Ltn =

 0 un

vn 0

 and Ltn+1 =

 0 un+1

vn+1 0

, we get

 0 un+1

vn+1 0

 =

 bnv − anx − ucn λun − 2bnλ + anu − bnx − udn

λvn + 2cnλ + dnv − van − cnx cnu − vbn − dnx

 ,
by comparing the coefficients of the powers of λi, i = 0, 1, we find that
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an =
1
2

D−1
x (unv + uvn),

bn =
1
2

un,

cn = −
1
2

vn,

dn = −
1
2

D−1
x (vnu + vun)

then, recursion operator of the non-commutative Schrödinger equation is constructed as

R =
1
2

−Dx + RuD−1
x Rv + LuD−1

x Lv RuD−1
x Lu + LuD−1

x Ru

−RvD−1
x Lv − LvD−1

x Rv Dx − RvD−1
x Ru − LvD−1

x Lu

 .

3.1 Non-commutative Burgers Equation and Non-commutative Mixed Burgers

Equation

In this section, we present the non-commutative version of Burgers equation, then construct

the recursion operators, symmetries of the non-commutative Burgers equation and discuss its

integrability. Two non-commutative versions of Burgers equation are formed by the classifica-

tion of non-commutative extension of the integrable nonlinear evolution in (1+1) dimensions

according to symmetry based integrability in [12]. The forms of these types are

ut = u2x + 2uxu, ut = u2x + 2uux,

and are called left- and right-handed, respectively. Let’s work on the right-handed NC Burg-

ers ut = u2x + 2uux to investigate the generalized symmetries of NC Burgers equation by

constructing recursion operators because the recursion operators for left-handed one is ob-

tained by only interchanging of left multiplication Lψ(φ) = ψφ with the right multiplication

Rψ(φ) = φψ in all the results for the right-handed one. Let’s start the Lax representation and

hierarchy of the right-handed NC Burgers equation.

The Lax representation for the right-handed NC Burgers hierarchy with
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L = Dx + Lu,

is given by

Ltn = [An, L]. (3.2)

In section 2.3, we have mentioned that Gel’fand-Dikii method to generate the hierarchy of a

given system with its Lax representation. For this method, a second operator of Lax pair, A,

is defined by choosing the power n
m of L and taking its series part which contains differential

operators greater than or equal to zero. Hence, the hierarchy of Lax equation could be written

by (2.23) and more general by (2.24). For k = 0, when we start with purely differential

operators, integer powers of L does not generate the Lax hierarchy because L
n
m
≥0 = L

n
m and

Ltn = [L
n
m , L] = 0. There are two way to eliminate this problem. One of them is consider

the fractional power of L for the second operator of Lax pair (like we have done in example

(2.3.1) for the KdV equation) and the second one is choosing k different than zero [16].

Let’s evaluate the Lax hierarchy of NC Burgers by using second way. Starting Lax operator

L = Dx + Lu , We can find the powers of L as follows

L2 = LL = (Dx + Lu)(Dx + Lu) = D2
x + 2uDx + ux + u2,

L3 = LL2 = (Dx + Lu)(D2
x + 2uDx + ux + u2),

= D3
x + 3uxDx + 3uD2

x + 3u2Dx + u2x + 2uux + uxu + u3,

L4 = LL3 = (Dx + Lu)(D3
x + 3uxDx + 3uD2

x + 3u2Dx + u2x + 2uux + uxu + u3),

= D4
x + 5u2xDx + 6uxD2

x + 4uD3
x + 4uxuDx + 8uuxDx + 6u2D2

x + 4u3Dx + 3u2ux

+ 2uuxu + 3uu2x + 3u2
x + u2xu + uxu2 + u3x + u4.

Instead of k = 0, let’s choose k = 1 in (2.24) with m = 1, then we get

Ltn = [Ln
≥1, L],
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or

Ltn = −[Ln
<1, L].

Both of these equation give the same results for Lax hierarchy, choosing the second equation

with L2
<1 = ux +u2, L3

<1 = u2x +2uux +uxu+u3 and L4
<1 = 3u2ux +2uuxu+3uu2x +3u2

x +u2xu+

uxu2 + u3x + u4, we obtain the first few Lax hierarchy of NC Burgers equation as follows

ut2 = −[ux + u2,Dx + u],

ut2 = 2uux + u2x,

for A2 = L2
<1

and

ut3 = −[u2x + 2uux + uxu + u3,Dx + u],

ut3 = u3x + 3u2
x + 3uu2x + 3u2ux,

for A3 = L3
<1,

and

ut4 = −[3u2ux + 2uuxu + 3uu2x + 3u2
x + u2xu + uxu2 + u3x + u4,Dx + u],

ut4 = 4u3ux + 6u2u2x + 8uu2
x + 4uu3x + 4uxuux + 6uxu2x + 4u2xux + u4x,

for A4 = L4
<1.

Now, we investigate the recursion operators of NC Burgers equation using the methods intro-

duced in [20]. In previous chapter, we have used it to construct the recursion operator of KdV

and Burgers equations. Now, let’s try to apply this method for NC Burgers equation.

According to the technique which is mentioned in [20], the recursion relation 2.25 of the NC

Burgers equation is
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Ltn+1 = LLtn + [Rn, L]. (3.3)

Inserting the ansatz the remainder Rn = anDx + bn in (3.3), the undetermined coefficients

an, bn could be found as follows

un+1 = (Dx + Lu)un + [Rn, L],

un+1 = (Dx + Lu)un + (anDx + bn)(Dx + Lu) − (Dx + Lu)(anDx + bn),

un+1 = unx + unDx + uun + anux + bnu − ubn − bnx + anuDx − anx Dx − uanDx.

By equating the terms at the order of Dx, we get

un = (Dx + Lu − Ru)an.

Using the notation adL = [L, ·], an can be rewritten such as

an = ad−1
L un,

then (3.3) becomes

un+1 = (Dx + Lu)un + Ruxad−1
L un − adLbn. (3.4)

The different choice of bn gives the time independent or time dependent recursion operators

of NC Burgers equation. Firstly, Let’s choose bn = 0, then the time independent recursion

operator of NC Burgers equation is

R1 = Dx + Lu + Ruxad−1
L .

To check that this recursion operator is a conventional recursion operator for the NC Burgers

hierarchy, it should satisfy the condition (2.8) Rt = [F∗,R] with the Fréchet derivative of the

right-handed NC Burgers equation F∗ = D2
x +2LuDx +2Rux . In spite of using this formulation,
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it is more convenient to transform its equivalent form [22] where recursion operator take in

the form R =MN−1. By inserting R =MN−1 in (2.8), we get

Mt − F∗M =MN−1(Nt − F∗N), (3.5)

where (N−1)t = −N−1NtN
−1. For the time independent recursion operator R1 = Dx + Lu +

Ruxad−1
L ,M and N can be defined as follows

M = (Dx + Lu)adL + Rux , N = adL.

It is more useful to multiply both sides of (3.5) by a function f (x) so that the differential

operator Dx reduces to partial derivative of functions f (x) and u, ux, u2x · · · . The right hand

sides of (3.5) should be found as follows

MN−1(Nt − F∗N) f (x) =MN−1(− f2x − u f2x + f2xu − 2ux fx − 2u f2x − 2u2 fx + 2u fxu),

= −MN−1(N( f2x + 2u fx)),

= −M(( f2x + 2u fx)),

= −[(Dx + Lu)adL + Rux]( f2x + 2u fx),

MN−1(Nt − F∗N) f (x) = −[ f4x + 4u f3x + 5(ux + u2) f2x + (2u2x + 4uux + 2u3) fx − f3xu

− 3u f2xu − 2ux fxu − 2u2 fxu + 2uxu fx],

and the left hand sides of (3.5) is
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(Mt − F∗M) f (x) = [(Dx + Lu)adL]t f (x) + Ruxt
f (x) − (D2

x + 2LuDx + 2Rux)[((Dx + Lu)adL

+ Rux) f ],

= 2u2x fx + 4uux fx + u2xu f − u2x f u + 2uuxu f − 2uux f u + u3x f − fxu2x

+ 2u2
x f + 3uu2x f − 2 fxuux − u f u2x + 2u2ux f − 2u f uux − ( f4x + u3x f

+ 4u2x fx + 5ux f2x + 4u f3x − f3xu − fxu2x + u2xu f + 2u2
x f + 2uxu fx

+ 3uu2x f − 3u f2xu + 5u2 f2x + 8uux fx − u2x f u − 2ux fxu − u f u2x

+ 2uuxu f − 2uux f u + 2u2ux f − 2u2 fxu − 2 fxuux − 2u f uux + 2u3 fx),

(Mt − F∗M) f (x) = −[ f4x + 4u f3x + 5(ux + u2) f2x + (2u2x + 4uux + 2u3) fx − f3xu

− 3u f2xu + 2uxu fx − 2ux fxu − 2u2 fxu].

The right and left hand sides of (3.5) equal to each other, so R1 is one of the recursion oper-

ators of NC Burgers equation and generates an infinite hierarchy of symmetries by mapping

a symmetry to another. Starting from the symmetries σ0 = ux and using (2.7) , we get new

symmetries:

σ1 = Rσ0,

= (Dx + Lu − Ruxad−1
L )σ0,

= u2x + uux + RuxadL−1ux,

σ1 = u2x + 2uux,

where ad−1
L ux = u. Similarly, other symmetries σ2 could be found

σ2 = Rσ1,

= (Dx + Lu − Ruxad−1
L )(u2x + 2uux),

= u3x + 2u2
x + 3uu2x + 2u2ux − Ruxad−1

L (u2x + 2uux),

σ2 = u3x + 3u2
x + 3uu2x + 3u2ux,

where ad−1
L ux = ux + u2 and for σ3

46



σ3 = Rσ2,

= (Dx + Lu − Ruxad−1
L )(u3x + 3u2

x + 3uu2x + 3u2ux),

= u4x + 6uxu2x + 4uu3x + 3u2xux + 3uxuux + 6uu2
x + 6u2u2x + 3u3ux

+ Ruxad−1
L (u3x + 3u2

x + 3uu2x + 3u2ux),

σ3 = u4x + 4uu3x + 4uxuux + 4u2xux + 6u2u2x + 4u3ux + 6uxu2x + 8uu2
x.

Another recursion operator of the NC-Burgers equation which is explicitly time-dependent

like the commutative Burgers equation is found by inspection such as

R2 = adL(tDx + tLu +
x
2

)ad−1
L .

To check that R2 is conventional recursion operator, it is more convenient to verify

Mt − F∗M =MN−1(Nt − F∗N), (3.6)

in spite of Rt = [F∗,R] because this recursion operator also in the form R = MN−1. With

M = (Dx + Lu − Ru)(tDx + tLu + x
2 ) and N = (Dx + Lu − Ru), the right hand sides of (3.6)

becomes

MN−1(Nt − F∗N) f (x) =M(− f2x − 2u fx),

= (Dx + Lu − Ru)(tDx + tLu +
x
2

)(− f2x − 2u fx),

= t(− f4x − 5ux f2x − 4u f3x − 2u2x fx − 2uxu fx − 4uux fx − 5u2 f2x

− 2u3 fx + f3xu + 3u f2xu + 2ux fxu + 2u2 fxu) + x(−
1
2

f3x − ux fx

−
3
2

u f2x − u2 fx +
1
2

f2x + u fxu) −
1
2

f2x − u fx,

and the left hand sides of (3.6) could be found as follows
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(Mt − F∗M) f (x) = (Dx + Lu − Ru)t(tDx + tLu +
x
2

) f (x) + (Dx + Lu − Ru)(tDx + tLu

+
x
2

)t f (x) − (D2
x + 2LuDx + 2Rux)(Dx + Lu − Ru)(tDx + tLu +

x
2

) f (x),

= t(− f4x − 5ux f2x − 4u f3x − 2u2x fx − 2uxu fx − 4uux fx − 5u2 f2x

− 2u3 fx + f3xu + 3u f2xu + 2ux fxu + 2u2 fxu) + x(−
1
2

f3x − ux fx

−
3
2

u f2x − u2 fx +
1
2

f2x + u fxu) −
1
2

f2x − u fx.

Both sides of equation (3.6) equal to each other which is essential to be conventional recursion

operator. However, this time-dependent recursion operator R2 is a weak recursion operator

because it fails to generate higher order symmetries correctly. Let’s start with the first sym-

metry σ0 = 1/2 + uxt to get symmetries of NC Burgers and then check that they are correct

symmetries or not by using (2.6). By action of the recursion operator to the symmetry, we

obtain the first few symmetries of NC Burgers such as

σ1 = R2σ0 = t2(u2x + 2uux) + t(uxx + u) +
x
2
,

σ2 = R2σ1 = t3(u3x + 3u2
x + 3u2ux + 3uu2x) + t2(

3
2

u2xx +
5
2

ux +
3
2

u2 + 3uuxx)

+ t(
3
4

uxx2 +
3
2

ux +
1
2

) +
3
8

x2.

Although the second symmetry σ1 satisfies the symmetry condition (2.6), the third symmetry

σ2 does not fulfill this condition.

In section 2.2, we have found the correct recursion operator for commutative Burgers equa-

tion. For NC Burgers, we should do the similar calculation with L = Dx+Lu, F∗ = ux+LuDx+

D2
x and a

g = 1
2 ( 1

2 + tLux) which is the symmetry of NC Burgers equation because it satisfies

the symmetry condition (2.6). With F∗0 = D2
x and ansatz σ0 = a1(t) + a2(t)x + a3(t)x2 + . . .

equation (2.14) becomes

(Hσ0)t + D−1
x (D2

xσ0) − (D−1
x D2

x)σ0 − D2
x(D−1

x σ0) + (D2
xD−1

x )σ0 = 0.

Then, we could find H as follows

(Hσ0)t = a2,

H = D−1
t ΠadL.
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With inserting H in the equation (2.2.1.1), the correct recursion operator can be written as

follows

R2 = adL(tDx + tLu +
x
2

)ad−1
L +

1
2

(
1
2

+ tLux)D
−1
t ΠadL.

Starting with the symmetry σ0 = 1
2 + tux and using the correct recursion operator R2, the first

few symmetries can be constructed:

σ1 = R2σ0,

= (adL(tDx + tLu +
x
2

)ad−1
L +

1
2

(
1
2

+ tLux)D
−1
t ΠadL)(

1
2

+ tux),

= t2(u2x + 2uux) + t(uxx + u) +
x
2
,

where ad−1
L ( 1

2 + tux) = tu + x
2 ,

σ2 = R2σ1,

= (adL(tDx + tLu +
x
2

)ad−1
L +

1
2

(
1
2

+ tLux)D
−1
t ΠadL)(t2(u2x + 2uux) + t(uxx + u) +

x
2

),

= t3(u3x + 3uu2x + 3u2
x + 3u2ux) + t2(3ux +

3
2

xu2x + 3xuux +
3
2

u2)

+ t(
3
4

+
3
4

x2ux +
3
2

uux) +
3
8

x2.

These all symmetries satisfy the symmetry condition (2.6).

In literature, one of the methods of obtaining the non-commutative integrable equations from

commutative ones is the Lax-pair generating technique [23, 24, 25]. Recently, Hamanaka and

Toda [21] have found a non-commutative version of Burgers equation (mixed NC Burgers

equation) by using this technique. This technique includes an ansatz for a corresponding

A-operator for a given L-operator:

A = A′ − Dn
i Lm. (3.7)
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The L-operator of the mixed NC Burgers equation is given by

LBurgers = Dx + u,

so, for the case n = 1 the general ansatz (3.7) reduces

ABurgers = A′ − DxLBurgers,

= A′ − (D2
x + ux + uDx).

Now, one can construct the Lax equation (2.20). The right hand sides of (2.20) can be written

as

[A, L] = AL − LA,

= (A′ − D2
x − ux − uDx)(Dx + u) − (Dx + u)(A′ − D2

x − ux − uDx),

= A′Dx + A′u − uxDx − uxu − DxA′ − uA′,

= [A′,Dx] + [A′, u] − uxDx − uxu.

The left hand sides of (2.20) is obviously equal to ut. By equating both sides of the Lax

equation (2.20), one can obtain the formula

Lt = ut = [A′,Dx + u] − uxDx − uxu, (3.8)

[A′,Dx + u] = ut + uxDx + uxu, (3.9)

which is useful to construct A′-operator. To find appropriate A′-operator, first of all, one

should define the form of it. Since the right hand sides of (3.9) contains Dx term, the form of

the A′-operator should take as following form

A′ = aDx + b, (3.10)
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where a and b are polynomials of u, ux, ut etc. This is the suitable form of A′-operator to

eliminate Dx term in the equation (3.9). The undetermined constants a, b can be defined by

inserting (3.10) in (3.9).

[A′,Dx + u] = ut + uxDx + uxu,

(aDx + b)(Dx + u) − (Dx + u)(aDx + b) = ut + uxDx + uxu,

(−ax + [a, u] − ux)Dx + [b, u] − bx + aux − ut − uxu = 0.

Then, the Lax equation takes in the form f Dx + g = 0, and the conditions f = 0 and g = 0

gives us some part of a, b and the Burgers equations respectively.

The condition f = 0 is

−ax + [u, a] = ux.

The solution is a = −u. The second condition g = 0 becomes

bx + [u, b] + uux + uxu + ut = 0,

by inserting a in it. If one chooses b = −cux − du2, then one can get the NC version of the

Burgers equation as follows

ut − cu2x + (1 + c − d)uxu + (1 − c − d)uux = 0, (3.11)

where c, d are constants, and Lax pairs of NC version of Burgers equation is

L = Dx + u, (3.12)

A = A′ − (D2
x + ux + uDx) = −(D2

x + 2uDx + (c + 1)ux + du2). (3.13)
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In commutative limit uux = uxu, the equation (3.11) reduces the Burgers equation;

ut − cu2x + 2(1 − d)uux = 0

[21].

Although in commutative limit equation (3.11) reduces the Burgers equation, one should also

consider the Cole-Hopf transformation for this equation. As mentioned before, in commuta-

tive case, the Burgers equation is linearized by the Cole-Hopf transformation

u =
1
a

Dxlogφ =
1
a
φx

φ
,

where a is constant, by taking this transformation for the Burgers equation (3.11), one can get

φt = cφ2x − (c −
d − 1

a
)
φ2

x

φ

The only way that equation (3.11) reduces to the heat equation is choosing ca = d − 1, then

(3.11) becomes

ut − cu2x − 2cauux = 0

In NC case, there are two possibilities to non-commutative version of Cole-Hopf transforma-

tion:

u =
1
a
φxφ

−1

or

u =
1
a
φ−1φx.

For both cases, the derivative of u with respect to x and t should be taken carefully because

derivative of φ−1 is different from the commutative case, for example, in the first cases, In the
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first case, the derivative of u with respect to x and t is given by

ut =
1
a
φxtφ

−1 −
1
a
φxφ

−1φtφ
−1,

ux =
1
a
φ2xφ

−1 −
1
a
φxφ

−1φxφ
−1,

then, taking the transformation for (3.11), it is noticeable that when c+d = 1, a = −1, equation

(3.11) reduces to the equation

(Dx − φxφ
−1)(φt − cφ2x) = 0,

so one can get the heat equation φt = cφ2x by using this transformation. Then, (3.11) becomes

ut − cu2x + 2cuxu = 0.

Similarly, in second case, one can get same equation when c − d = −1, a = 1.

Although, by the convenient choice of c, d, equation (3.11) can be reduced the right- and

left-handed NC Burgers equations ut = u2x + 2uux, ut = u2x + 2uxu, respectively, other

choice of c, d gives us a differential equation includes a parametric mixture of right- and left-

handed NC Burgers equations (mixed NC Burgers). As a result of this whole calculation for

non-commutative versions of (left- and right-handed) Burgers equation , we investigate their

integrability both obtaining infinitely many symmetries by recursion operator and lineariza-

tion by a non-commutative version of the Cole-Hopf transformation. For mixed NC Burgers

equation, integrability of this equation is a controversial subject. Although the mixed NC

Burgers equations admits Lax formulation (3.12), we can not construct the recursion operator

by using the method introduced in section (2.3). This method only provides the recursion

operator for left- and right-handed Burgers equation. Although, recently there is no recur-

sion operator for mixed NC Burgers equation, Gürses, Karasu and Turhan [15] tried to find

the possible integrable mixed version of NC Burgers equation for higher symmetry. They

generated the general form of the candidate symmetry to check that whether it satisfies the

symmetry condition (2.6) or not. As a result of this, they stated the following proposition.

Proposition 3.1.1 The equation of form

ut = u2x + auux + buxu
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with a, b ∈ R and ab , 0, u is non-commutative, does not admit any higher symmetry from

the class of equations

ut = ν(x, t) +

4∑
i=0

αi(x, t)uix +

4∑
i, j=0

βi j(x, t)uixu jx +

4∑
i, j,k=0

γi jk(x, t)uixu jxukx

+

4∑
i, j,k,l=0

δi jkl(x, t)uixu jxukxulx.

This proposition shows that there is no possible higher order symmetries for the mixed NC

Burgers equation, so it is claimed that there is no a recursion operator for the mixed NC

Burgers equation. We can say that the only integrable non-commutative versions of Burgers

equation are the left- and right-handed ones. Although the mixed NC Burgers equation admits

Lax representation (3.12), it is not an integrable nonlinear differential equation.
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CHAPTER 4

CONCLUSION

In this thesis, we have discussed the integrability of some commutative and non-commutative

nonlinear differential equations in (1+1)-dimensions in the context of recursion operator ob-

tained from Lax representations. Moreover, we have shown that the existence of a recur-

sion operator is a sufficient condition for integrability. It is well known that if an evolution

equation possesses a time-independent recursion operator, then a hierarchy of infinitely many

symmetries can be produced recursively. However, time-dependent recursion operators do

not generate the hierarchies of infinitely many symmetries correctly. In this thesis, we have

analyzed this case and found the corrected recursion operators for some integrable evolution

equations.

We have obtained the non-commutative evolutionary type integrable equations from the com-

mutative ones by using the non-commutative version of Lax representations. We have also

constructed the recursion operators for such equations. Finally, we have questioned the inte-

grability of mixed non-commutative Burgers equation obtained from the Lax representation.

We have shown that there does not exist either a hierarchy of symmetry or a recursion opera-

tor for this equation.

Motivated by the power of the recursion operators in (1+1)-dimensional integrable equa-

tions, one can construct the recursion operators of (2+1)-dimensional commutative and non-

commutative integrable equations from Lax representations. And also one can study their

algebraic and geometrical structures.
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