

SOLUTION OF SPARSE SYSTEMS ON GPU ARCHITECTURE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ANDAÇ LÜLEÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

CIVIL ENGINEERING

JUNE 2011

Approval of the thesis:

SOLUTION OF SPARSE SYSTEMS ON GPU ARCHITECTURE

Submitted by ANDAÇ LÜLEÇ in partial fulfillment of the requirements for the

degree of Master of Science in Civil Engineering Department, Middle East

Technical University by,

Prof. Dr. Canan Özgen ____________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Güney Özcebe ____________________

Head of Department, Civil Engineering

Asst. Prof. Dr. Özgür Kurç ____________________

Supervisor, Civil Engineering Dept., METU

Examining Committee Members:

Asst. Prof. Dr. Afşin Sarıtaş _____________________

Civil Engineering Dept., METU

Asst. Prof. Dr. Özgür Kurç _____________________

Civil Engineering Dept., METU

Asst. Prof. Dr. Ayşegül Askan Gündoğan _____________________

Civil Engineering Dept., METU

M.Sc Onur Pekcan _____________________

Civil Engineering Dept., METU

Asst. Prof. Dr. Alptekin Temizel _____________________

Informatics Institute, METU

 Date: Jun 24, 2011

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last name: Andaç LÜLEÇ

 Signature

iv

ABSTRACT

SOLUTION OF SPARSE SYSTEMS ON GPU ARCHITECTURE

Lüleç, Andaç

M.Sc., Department of Civil Engineering

Supervisor: Asst. Prof. Dr. Özgür Kurç

June 2011, 93 pages

The solution of the linear system of equations is one of the core aspects of Finite

Element Analysis (FEA) software. Since large amount of arithmetic operations are

required for the solution of the system obtained by FEA, the influence of the solution

of linear equations on the performance of the software is very significant.

In recent years, the increasing demand for performance in the game industry caused

significant improvements on the performances of Graphical Processing Units (GPU).

With their massive floating point operations capability, they became attractive

sources of performance for the general purpose programmers. Because of this reason,

GPUs are chosen as the target hardware to develop an efficient parallel direct solver

for the solution of the linear equations obtained from FEA.

Keywords: GPGPU, Sparse Solver, multifrontal, multiple front

v

ÖZ

SEYREK SİSTEMLERİN GPU KULLANILARAK ÇÖZÜMLENMESİ

Lüleç, Andaç

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Özgür Kurç

Haziran 2011, 93 sayfa

Doğrusal denklemlerin çözümü, sonlu elemanlar metodunun kullanıldığı analizlerin

önemli bir bölümünü oluşturmaktadır. Bu bölümde yapılan aritmetik işlemlerin

çokluğu sebebiyle, doğrusal denklemlerin çözüm başarımı, sonlu elemanlar

metodunu kullanan yazılımların toplam başarımını önemli ölçüde etkilemektedir.

Son yıllarda bilgisayar oyun endüstrisinin gelişmesi, ekran kartlarının hesaplama

güçlerinde önemli bir yükselişe sebep olmuştur. Ekran kartlarında bulunan

işlemcilerin sahip oldukları bu güç, günümüzde genel amaçlı program tasarlayıcıların

da dikkatini çekmektedir. Bu sebeple sonlu elemanlar metodunun kullanıldığı

analizlerle elde edilen doğrusal denklemlerin çözülebilmesi amacıyla, bu çalışmada

ekran kartlarındaki işlemciler ile çalışan aşamalı ve çoklu aşamalı çözüm

algoritmalarının kullanıldığı seyrek çözücüler geliştirilmiştir.

Anahtar Kelimeler: GPGPU, Seyrek Çözücü, Çoklu Aşamalı Çözüm, Aşamalı

Çözüm

vi

To My Family

vii

ACKNOWLEDGMENT

I wish to express my deepest gratitude to my supervisor Asst. Prof. Dr. Özgür Kurç

for his guidance, encouragement, criticism, support and patience during this research.

I would like to thank my dear roommates Alper Aldemir, İsmail Ozan Demirel, Emre

Özkök, Uğur Akpınar, Emrah Erşan Erdoğan, Taylan Solmaz and Efe Gökçe Kurt

who make this research much more enjoyable with their friendship.

I would like to thank my colleagues Tunç Bahçecioğlu and Semih Özmen for their

support and inspiring discussions during this study.

I would like to thank my dearest friend Dinçay Akçören, for his companionship

during writing this work.

I would like to thank my beloved Zeynep, for her patience for my absence while I am

working on this study and her love which gave me strength to finish this dissertation.

I wish to thank my family, especially my mother, Neşe Lüleç. Without their

encouragement and support this study could not be completed.

viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. v

ACKNOWLEDGMENT .. vii

TABLE OF CONTENTS .. viii

LIST OF FIGURES ... x

LIST OF SYMBOLS/ACRONYMS ... xii

CHAPTERS

1. INTRODUCTION ... 1

1.1 Problem Definition ... 1

1.2 Background .. 2

1.2.1 Parallel Architectures ... 2

1.2.2 Solution of Linear Equations ... 5

1.2.3 Sparsity and Parallel Sparse Solutions... 6

1.2.4 Sparse Solvers running on GPU .. 9

1.3 Objective & Scope .. 10

1.4 Thesis Organization .. 12

2. GPU HARDWARE & GPGPU ... 13

2.1 Introduction .. 13

2.2 Architecture of a GPU .. 14

2.3 GPGPU ... 19

3. IMPLEMENTATION OF MULTIPLE FRONT SOLVER 27

ON GPU ARCHITECTURE ... 27

3.1 Introduction .. 27

3.2 The Multiple Front Algorithm .. 27

3.2.1 Partitioning.. 29

3.2.2 Condensation ... 32

3.2.3 Assembly and Solution of Interface System .. 38

ix

3.2.4 The Solution of Internal Equations .. 41

3.3 GPU Implementation .. 43

3.3.1 Sparse Condensation .. 43

3.3.2 Assembly and Solution of Interface Equations.. 45

3.3.3 Back Substitution ... 46

3.4 Test Problems and Results ... 46

4. GPU MULTIFRONTAL SOLVER ... 52

4.1 Introduction .. 52

4.2 The Multifrontal Algorithm .. 52

4.2.1 Partitioning... 54

4.2.2 Sparse Condensation .. 59

4.2.3 Assembly of Intermediate Substructures ... 61

4.2.4 Dense Condensation .. 63

4.2.4 Assembly and Solution of Interface Equations.. 64

4.2.5 Dense Back Substitution .. 66

4.2.6 Sparse Back Substitution (Recovery) .. 67

4.3 GPU Implementation .. 67

4.3.1 Dense Condensation .. 69

4.3.2 Dense Back Substitution .. 73

4.4 Test Problems and Results ... 73

5. CONCLUSION .. 82

5.1 Summary .. 82

5.2 Conclusion .. 84

5.3 Future Work ... 87

REFERENCES ... 88

x

LIST OF FIGURES

FIGURES

Figure 1.1: CSC Format for a 5×5 matrix .. 7

Figure 2.1: Architecture of a streaming processor (SP) [50] 14

Figure 2.2: Architecture of a streaming multiprocessor (SM) [50] 15

Figure 2.3: Architecture of a texture/processor cluster (TPC) [50] 16

Figure 2.4: Architecture of a GPU from GT200 series [47] 18

Figure 2.5: Execution of an example kernel by multiple threads 19

Figure 2.6: Organization of Grid and Thread Blocks [18] ... 20

Figure 2.7: Memory Hierarchy of GPU [55] ... 22

Figure 2.8: Transparent Scalability [54] .. 22

Figure 2.9: Use of both CPU and GPU [18] .. 24

Figure 2.10: Sample code for the example in Figure 2.5 ... 26

Figure 3.1: Multiple Front Algorithm .. 28

Figure 3.2: 160×160 meshed structure with 16, 64 and 128 substructures 29

Figure 3.3: Assembly tree with four substructures .. 30

Figure 3.4: Assembly tree with eight substructures ... 31

Figure 3.5: Example structure with 4×4 mesh ... 32

Figure 3.7: Condensation of the first substructure ... 33

Figure 3.8 Non-zero elements in the stiffness matrix of the first substructure in CSC

format ... 36

Figure 3.9: Transpose of the unit lower triangular matrix ... 37

Figure 3.10: Assembly of Substructures .. 39

Figure 3.11: Assembly of Interface Matrix .. 40

Figure 3.12: System of Equations for Substructure 1 .. 42

Figure 3.13: Subroutines used for GPU implementation of multiple front algorithm 44

Figure 3.14: Solution time values obtained from the solution of the structure with

50×50 elements .. 47

Figure 3.15: Solution time values obtained from the solution of the structure with

160×160 elements .. 48

Figure 3.16: The effect of solution steps to the solution time of structure with 50×50

elements with 8 and 64 substructures .. 49

Figure 3.17: The sparse condensation time and solution time of the interface

equations for 160×160 structure .. 50

Figure 3.18: Sizes of interface equations of both structures for various numbers of

substructures ... 51

Figure 4.1: Multifrontal Algorithm .. 53

file:///C:/Users/Andac/Desktop/chapters040711/Tezv13.docx%23_Toc297730746
file:///C:/Documents%20and%20Settings/Andac/Desktop/chapters060711/Tezv14.docx%23_Toc297758852
file:///C:/Documents%20and%20Settings/Andac/Desktop/chapters060711/Tezv14.docx%23_Toc297758858
file:///C:/Documents%20and%20Settings/Andac/Desktop/chapters060711/Tezv14.docx%23_Toc297758858
file:///C:/Documents%20and%20Settings/Andac/Desktop/chapters060711/Tezv14.docx%23_Toc297758859
file:///C:/Documents%20and%20Settings/Andac/Desktop/chapters060711/Tezv14.docx%23_Toc297758861
file:///C:/Documents%20and%20Settings/Andac/Desktop/chapters060711/Tezv14.docx%23_Toc297758862
file:///C:/Documents%20and%20Settings/Andac/Desktop/chapters060711/Tezv14.docx%23_Toc297758866
file:///C:/Documents%20and%20Settings/Andac/Desktop/chapters060711/Tezv14.docx%23_Toc297758866

xi

Figure 4.2: Assembly tree for a 4×4 square mesh with three levels 54

Figure 4.3: Assembly tree for a 10×10 square meshed structure with 8 57

Figure 4.4: Assembly of 160×160 structure with 16 substructures 58

Figure 4.5: Example structure with 4×4 mesh ... 59

Figure 4.6: Substructure 1 and a bilinear 4-node membrane element........................ 60

Figure 4.7: Condensation of the first substructure ... 61

Figure 4.8: Assembly of the first two substructures .. 62

Figure 4.9: Assembly of the last two substructures ... 62

Figure 4.10: Condensation of the fifth substructure... 63

Figure 4.11: Condensation of the sixth substructure .. 63

Figure 4.12: Assembly of the fifth and sixth substructures 65

Figure 4.13: Subroutines used for GPU implementation of multifrontal algorithm .. 68

Figure 4.14: Sequential dense condensation algorithm.. 69

Figure 4.15: The condensation operations when i=0 ... 70

Figure 4.16: The condensation operations when i=1 ... 71

Figure 4.17: The condensation operations when i=2 ... 72

Figure 4.18: Solution time of the structure with 160×160 elements with GTX 275 . 73

Figure 4.19: Solution time of the structure with 160×160 elements with GTX 580 . 74

Figure 4.20: Solution time of the structure with 160×160 elements with Tesla C2050

 .. 74

Figure 4.21: The effect of solution steps to the solution time of structure with

160×160 elements with 128 substructures ... 75

Figure 4.22: The ratio of dense condensation time values to total dense condensation

time ... 77

Figure 4.23: Two different assembly trees for the structure with eight initial

substructures ... 79

Figure 4.24: The shortest solution times obtained from the solution of 160×160

meshed structure with the three methods ... 80

Figure 4.25: The solution time of the 200×200 structure with different architectures.

 .. 81

file:///C:/Documents%20and%20Settings/Andac/Desktop/chapters060711/Tezv14.docx%23_Toc297757849
file:///C:/Documents%20and%20Settings/Andac/Desktop/chapters060711/Tezv14.docx%23_Toc297757856
file:///C:/Documents%20and%20Settings/Andac/Desktop/chapters060711/Tezv14.docx%23_Toc297757856

xii

LIST OF SYMBOLS/ACRONYMS

ALU: Arithmetic Logical Unit

COO: Coordinate List sparse matrix storage algorithm

CPU: Central Processing Unit

CSC: Compressed Sparse Column sparse matrix storage algorithm

CSR: Compressed Sparse Row sparse matrix storage algorithm

CUDA: Compute Unified Device Architecture

D: Diagonal matrix obtained from LDLT decomposition

DirectCompute: Microsoft Direct Compute

DOF: Degree of Freedom

FEA: Finite Element Analysis

FPU: Floating Point Unit

GPGPU: General Purpose computing on Graphics Processing Units

GPU: Graphical Processing Unit

L: Unit lower triangular matrix

MF: Multifrontal Algorithm

MF2: Multifrontal Algorithm with assembly tree formation algorithm

MPF: Multiple Front Algorithm

MPI: Message Passing Interface

MPICH2: Message Passing Interface Chameleon 2

MUMPS: a Multifrontal Massively Parallel sparse direct Solver

OpenCL: Open Computing Language

xiii

OpenMP: Open Multi Programming

PC: Personal Computer

PVM: Parallel Virtual Machine

RAM: Random Access Memory

SFU: Special Function Units

SM: Streaming Multiprocessor

SP: Streaming Processor

SPA: Streaming Processor Array

SPOOLES: SParse Object Oriented Linear Equations Solver

TPC: Texture/Processor Cluster

WSMP: Watson Sparse Matrix Package

[] :Matrix

{} :Vector

n :number of degree of freedoms

nrhs :number of right hand side vectors

[K]: stiffness matrix

{d}: displacment vector

{F}: Force vector

1

CHAPTER 1

INTRODUCTION

1.1 Problem Definition

In recent years, production of multi core processors caused a significant change in

the software development paradigm. Nowadays, almost every personal computer has

multi-core processors which offer users a significant increase in computational

power. The benefits of this increase took effect not only in our daily lives but also in

science and engineering. The computationally hard problems can be solved easily

and the computation time decreased significantly. Since CPU technology is limited

with temperature and it is hard to increase transistors in one core, processor

manufacturers are planning to increase the number of cores to satisfy the demand for

performance. This fact challenges programmers to move towards multi-core

programming.

As the computational power increases with the use of multi core processors in the

central processing units (CPU), the recent improvements in game industry enforced

graphical processing units (GPU) designed to complete massive floating operations

simultaneously for a video frame in a game. Today, most of the modern graphic

cards are manufactured with the hundreds of processing units on them. Since the

GPUs have such a computational power with cheaper prices relative to multi-core

CPUs, they have become attractive sources of high performance for not only

graphical computations but also software used for solution of problems in mechanics,

fluid dynamics, finance and etc. According to the recent developments, with the

2

concept of general purpose computing on graphics processing units (GPGPU),

programmers started to use GPUs to handle problems requiring the large number of

floating point operations such as solution of linear systems.

Solution of large number of linear equations plays a major role in finite element

analysis (FEA) software. Since large amount of floating point operations must be

completed, solution of linear equations is a significant factor affecting the

performance of the FEA software. Although there are high performance solvers

available, most of these solvers were developed for parallel CPU architectures. Since

GPUs offer developers higher performance with cheaper prices and ease to

manufacture/assembly of the system, use of GPUs in the solution of sparse systems

seems to be profitable by means of performance and budget. Because of this reason,

in this study, a parallel general purpose direct sparse solver running on GPU was

implemented to provide the mentioned advantages of GPU architecture and increase

the performance of the FEA software.

1.2 Background

1.2.1 Parallel Architectures

The word “parallelism”, meaning use of more than one processors to deal with a

single problem, was first used by two IBM researchers, John Cocke and Daniel

Slotnick in 1958 [1-2]. For 30 years, after the first personal computer (PC) was

developed, a lot of improvements were achieved in the technologies for PCs and

workstations. Most of the desktop computers have CPUs with clock speeds changing

between 1 GHz and 4 GHz, running approximately 1000 times faster their 30 year

old ancestor [3]. These improvements in processor speeds, however, were able to

continue until 2003. Since then, due to high energy consumption and heat-dissipation

problems, processor manufacturers has changed their models to ones those include

3

more than one processing units, referred to as processor cores [4-5]. Although it was

expected that this change would decrease the execution time of programs, the

performance of applications was below expectations, since these programs were

sequential. On the contrary, parallel programs benefit from the improvement about

multi processors. This caused a trend about parallel program development and

referred to as concurrency revolution [4-5]. Although parallel programming is not a

new term and applications have been written as parallel codes for a long time, the use

of such applications was not very common. These programs were run on expensive,

large scale computers. With the recent improvements, every microprocessor became

parallel computers now and every programmer can benefit from the performance of

multi core processors running concurrently [4].

The demand for performance of CPU has been satisfied with the multi core CPUs

recently [6-7]. Moreover the semiconductor industry decided on two main

manufacturing options since 2003 [4, 8] i.e. multi core and many core processors. All

processors in such systems use a single random access memory (RAM), this systems

are classified as shared memory architecture. Intel Core i7 microprocessors are good

examples of multi-core machines designed for increasing the performance of

sequential codes. Rather, the many core devices such as recent GPUs were designed

for increasing the performance of parallel codes. By 2009, while the peak

performance of an Intel Quad-Core CPU for floating point operations was around

100 gigaflops, computing speed of 1 teraflops was reached by an AMD GPU [4].

The difference between the peak performances was mainly due to the difference in

the design architectures. Since CPUs are designed for parallel execution of sequential

codes, their control units and cache memories cover larger spaces on the chip than

the arithmetic logical units (ALU) where the floating point operations are computed.

Because of this reason, GPUs were designed to satisfy the demand for massive

floating point operations in a video game frame, while space of the control units and

cache memories was decreased; the number of ALUs was increased [4].

4

Besides the multi-core or many-core architecture, there is also another parallel

architecture called distributed memory architecture. In this architecture two or more

processors having their own memories are connected to each other by a network. The

processors may be CPU, GPU or both. The fastest computers in the world are

distributed memory architectures [9]; they are not easily manufactured and used by

every programmer who wants performance for the applications used in their daily

life. Today, this demand is satisfied by the dual core or quad core CPUs even by

GPUs in the desktop computers and laptops.

In order to benefit from the computational powers of the parallel architectures,

applications must be developed with suitable parallel computing technique. For

shared memory architectures there are mainly two programming approaches. In the

first one, threads were created as execution units, and executed by cores or

processors. In this approach since whole system uses single RAM and can be

accessed by only one processor at a time, writing to and reading from the memory

has to be sequential. Consequently concepts like race conditions, deadlocks,

synchronization, etc. compromises from use of multiple sources at a time [10].

OpenMP (Open Multi Processing [11]) is an example for shared memory

programming methods for controlling and executing threads for C++ and FORTRAN

languages. In a different approach instead of creating multiple threads at computers,

multiple processes created and data is transferred from one process to another by

message passing libraries. MPI (Message Passing Interface [12]) is a library

specification for message passing. MPICH2 (Message Passing Interface Chameleon

2 Library [13]) is a widely portable implementation of MPI standard to support

different computation and communication platforms such as commodity clusters,

high-speed networks and proprietary high-end computing systems. Besides MPI,

another standard is also available for message passing in distributed memory

architectures, which is PVM (Parallel Virtual Machine [14]). The differences

between two standards were discussed by Gropp et al. [15].

5

Since graphical cards have their own memory and processors, programming methods

for GPUs differ from the methods of other architectures. The most common methods

for programming GPUs are CUDA (Compute Unified Device Architecture [17, 18])

and OpenCL (Open Computing Language [19]). Karimi et al. [20] compared these

two methods; and concluded that CUDA had better performance than OpenCL.

Besides CUDA and OpenCL, another method for GPU programming is

DirectCompute (Microsoft Direct Compute [21]). CUDA can be used for only

NVidia graphical cards, whereas DirectCompute and OpenCL can be used for other

graphical cards too. Although DirectCompute and OpenCL are better choices from

portability point of view, CUDA has better performance; it is easier to developing a

program with it, used by the majority and is updated frequently.

1.2.2 Solution of Linear Equations

The system of linear equations obtained from FEA can be expressed as:

 FdK (1.1)

In Equation 1.1, for a system with n degrees of freedom (DOF), K is the n by n

stiffness matrix; d and F are the n by 1 sized displacement vector and n by 1 force

vector respectively. If there are more than one loading conditions, the displacement

vector d and force vector F become n by nrhs matrices where nrhs is the number of

loading conditions.

Iterative and the direct methods are the two main methods for the solution of linear

system of equations. Iterative methods solve the system of equations with trial and

error approach. They are based on converging correct solution by iterations after

starting from an initial guess. Since they are scalable and needs less storage, they are

appropriate for solution of large problems. On the other side, iterative methods may

be inefficient for multiple loading cases, since they have to start the solution over for

6

each right hand side vector. In addition, problem dependent preconditioning

techniques must be used to reduce the number of iteration and these techniques affect

the convergence and solution time of iterative methods. Moreover, since the solution

is obtained in an iterative manner, the solution time cannot be estimated [22, 23].

In direct methods the coefficient matrix, which is K in FEA, is first factorized with

LDL
T
, LU or Cholesky Factorization and then the solution is obtained by forward

and backward substitutions. Although, such methods need larger memory than

iterative methods, they are efficient for solution of multiple loading conditions.

Second, execution time for exact solution is predictable. Moreover, direct solvers can

manage numerical challenges such as nearly-singular matrices while iterative solvers

inefficient. Because of these reasons, direct solvers are used by most of the FEA

software [22, 23].

1.2.3 Sparsity and Parallel Sparse Solutions

The systems of linear equations obtained from FEA are generally sparse which have

large number of zero terms and this fact can be used for decreasing the required

memory and number of operations. Because of this reason different storage formats

and solution algorithms are used for sparse systems. The common storage formats

are Coordinate List (COO), Compressed Sparse Row (CSR) and Compressed Sparse

Column (CSC). In COO format, non-zero values, their row and column indices

stored and this format is efficient for modifications. CSC and CSR formats are

efficient for matrix vector operations and they are the most commonly used sparse

formats. In these formats non-zero values, cumulative ID of the first non-zero value

in column or row and the row or column addresses are stored. An example for CSC

format is presented in Figure 1.1.

7

10} 7, 4, 2, 1, {0, = col_ptr

4} 3, 1, 0, 3, 2, 1, 2, 0, 1, {0, = row_ind

3.88} 1.90, 0.36, 2.48, 0.05, 0.94, 0.87, 2.46, {1.25, = val_A

88.3

90.148.2.

005.064.1

36.094.0046.2

0087.0025.1

Sym

A

Figure 1.1: CSC Format for a 5×5 matrix

In Figure 1.1, an example for CSC format is given for a 5×5 matrix; three arrays are

stored which are val_A, row_ind and col_ptr. val_A stores the value of the non-zero

terms, row_ind stores the row addresses of the non-zero term and col_ptr stores ID of

first non-zero term in that column.

There are two types of parallel solution algorithms, these are iterative and direct

methods. As it was mentioned before, although iterative methods require less

memory, they are not as robust as direct methods and they need preconditioning

techniques. Global-Subdomain Implementation (GSI), Primal Subdomain

Implementation (PSI) and the FETI method [24] can be given as examples of

iterative methods. Bitzarakis et al. [25] discussed about these three methods and

concluded that the FETI method was better for the solution of large systems because

of its numerical stability and less sensitivity to the quality of preconditioning.

Direct methods for sparse matrix factorization were classified into three groups, left

looking (fan-in), right looking (fan-out) and multifrontal methods by Duff and van

der Vorst [26,27]. In left looking algorithm (fan-in), first, update of column is

8

completed by using previous columns then factorization of that column is completed

and the data on the left is accessed. SPOOLES (SParse Object Oriented Linear

Equations Solver [28, 29]) and SuperLU [30, 31] are two examples for sparse solvers

using left-looking algorithm. On the other hand, in right looking algorithm (fan-out),

first, factorization of the column is completed and then update of the following

columns is completed and the data on the right is accessed. Oblio [32] is an example

for sparse solvers using right-looking algorithm.

The third method for direct sparse factorization is multifrontal method. The frontal

method [33], is based on assemble and solution of a dense matrix called frontal

matrix. In the parallel version of the frontal method, namely multifrontal method [34]

several frontal matrices are assembled and solved simultaneously. The main

advantage of multifrontal methods is utilizing highly optimized dense linear algebra

routines during solution. This way the requirement of indirect addressing for sparse

matrices is eliminated. WSMP (Watson Sparse Matrix Package [35, 36]) and

MUMPS (a Multifrontal Massively Parallel sparse direct Solver [37, 38]), are two

examples for commonly used parallel multifrontal sparse solvers.

As sparse solvers use different factorization algorithms, they are also developed as

different platforms. While CHOLMOD [39, 40], Oblio, UMFPACK [41, 42] and

SuperLU were developed as serial platforms, MUMPS, SPOOLES and WSMP were

designed as parallel platforms. There are several studies where the performances of

the solvers are compared in the literature. The serial performances of the solvers

were compared by Gould et al. [43]. According to this study CHOLMOD had best

performance among the other solvers. But when the parallel performances of the

solvers were tested by Gupta and Muliadi [44], it was concluded that MUMPS and

WSMP had better performances due to use of optimized dense solver routines.

9

1.2.4 Sparse Solvers running on GPU

As a massively parallel architecture GPU, offers high performance for applications

requiring large number of floating point operations such as solution of linear sparse

systems. While there are numerous CPU implementations of parallel sparse solvers,

the situation is not pretty same for GPU implementations. Moreover, most of the

implementations are not direct solvers.

Bolz et al. [45] implemented two iterative sparse solvers running on GPU, a sparse

matrix conjugate gradient solver and a regular-grid multigrid solver. They reached

better performances with GPU than CPU implementation in conjugate gradient

solver. Krüger and Westermann [46] implemented linear algebra operators for

solution of equations. They focused on developing matrix and vector layouts for

efficient matrix-vector and vector-vector operations in the implementation of

iterative methods such as conjugate gradient and Gauss-Seidel. Buatois et al. [47]

implemented an optimized linear sparse solver running on GPU. An iterative method,

preconditioned conjugate gradient algorithm with an optimizer was preferred in this

study due to ease of parallelization of iterative methods than direct methods. The

results obtained GPU implementation had a better performance than the high

performance CPU functions. Couturier and Domas implemented generalized minimal

residual algorithm which is also an iterative method, obtaining speedups ranging

from 8 up to 23 for solution of sparse systems [48]. Lucas et al. [49] implemented a

multifrontal solver on GPUs. In this study the workload is distributed to multi core

CPU and GPU. While the factorization of smaller matrices was completed on CPU,

the larger dense matrices were factorized by GPUs. In GPU, the factorization process

was completed 5.91 times faster than the CPU using single core and it was 1.34 times

faster than the CPU using the 8 cores.

10

1.3 Objective & Scope

The main goal of this study is to develop a high performance direct sparse solver

running on GPU for FEA. Moreover, it is aimed in supreme level to propose an

alternative way of efficient parallel solution of linear equations with GPU which is a

cheaper and more portable hardware.

Hence, the objective of this study can be summarized as:

 Developing a multiple front sparse solver and a multifrontal sparse solver

both running on GPU for FEA. Moreover, investigating limits of the solver

caused by the GPU hardware and the variables influencing the performance

of the solver such as number and size of the substructures.

 Implementing parallel algorithms for sparse system condensation and frontal

matrix assembly algorithms on GPU for multiple front and multifrontal

methods. Furthermore, developing the subroutines of these algorithms in a

way that allowing to be used separately as parts of different algorithms and

heterogeneous architectures.

 Developing a parallel dense system condensation algorithm on GPU allowing

condensation of multiple frontal matrices at the same time for multifrontal

method.

In this study, GPU implementations of multiple front and multifrontal sparse solvers

were developed. A sparse solver requires additional algorithms such as work

balancing and ordering algorithms, besides the matrix factorization and solution

algorithms, however, these additional algorithms were not considered. Thus, this

11

study mainly focused on the matrix factorization and solution algorithms which are

condensation of sparse matrices, assembling of frontal matrices, condensation of

frontal matrices, solution of frontal matrices and finally solution of the system.

Consequently, the algorithm takes preordered substructure stiffness matrices, load

vectors and assembly tree of the system as input data and gives the displacement

vector as output.

Since the GPU memory is limited and very small compared to main storage units

(hard disk), it was preferred using memory for testing larger system of equations,

rather storing multiple loading conditions. Because of this reason, the algorithms

were designed for single loading case. However, they can be adopted for multiple

loading conditions with slight modifications. All functions used in the solver were

decided to be developed for GPUs rather than using CPU implementations. There are

two reasons for this decision; first, it is preferred that functions to be used separately

as parts of heterogeneous solution procedures like completion of one task in GPU,

another task in CPU, second, to minimize overhead caused by data transfer between

GPU and host machine.

For GPU hardware, NVidia graphical cards were used and GPU kernels were

developed in CUDA. Although both NVidia and AMD support OpenCL, CUDA is

more common and more frequently updated improving the performance. The test

problems were selected from the structures composed of 2D elements. Structures

with different sizes were tested for different number of substructures. The

performances of kernels were investigated.

12

1.4 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, general information about

the GPU hardware was given and the graphical cards used in this study as GPU

hardware were introduced. General concepts about multiple frontal method and its

GPU implementation, also test problems and the performance of the method can be

found in Chapter 3, In the following chapter, multifrontal method and its GPU

implementation were explained. The performance of the method was included in this

chapter too. In the final chapter the conclusion of this study and the future work was

presented.

13

CHAPTER 2

GPU HARDWARE & GPGPU

2.1 Introduction

GPU hardware was selected as target architecture for their portability and lower price

than other parallel architectures. While they have much more processing cores than

multi core CPUs, the architecture of processing cores of GPU is different from the

CPUs. As CPUs are much more efficient for parallel execution of sequential

programs, with many processing units GPU becomes an attractive source of high

performance for massive floating number operations. The information about the

processors, their components and the properties of the storage devices on the

graphical cards were presented in the first part of this chapter. Besides, the

information about the general GPU architecture, the hardware properties and

limitations of the graphic cards, used in this study, are also introduced at this section

of the chapter.

As developing parallel programs, different aspects of the problem should be

considered. While, since only one processor was used in sequential coding,

completion of operations and access to memory are both sequential, but in parallel

programming sequence of memory access and operations of each thread should be

considered carefully. In addition to the circumstances caused by parallel

programming, the difference in the architecture requires use of CUDA specific

functions for developing codes running on GPU. Because of these reasons it is

convenient to give information about general concepts of GPGPU. As a result, in the

14

second section of the chapter general information about some important built-in

CUDA functions, concurrent execution of threads, communication between them,

data transfer between GPU and CPU, and type of kernels such as host, device and

global kernels was presented.

2.2 Architecture of a GPU

It is more appropriate to explain parallel GPU architectures in several levels for the

sake of clarity. The first level is formed by streaming processors (SP) [50]; these

processors are the smallest processing particles on the GPU. In Figure 2.1

architecture of a SP is illustrated.

Figure 2.1: Architecture of a streaming processor (SP) [50]

SPs include two arithmetic logic units (ALU) and a floating-point unit (FPU). The

ALUs are responsible for integer operations and logical comparisons and they are

denoted as “Int” and “move cmp” in the figure respectively. On the other hand, a

FPU is responsible for floating point operations and denoted as “FP” in the figure. As

shown in the Figure 2.1, streaming processors do not have any cache memory,

because of this reason a single streaming processor can only be used for arithmetic

15

operations. That is why several streaming processors were gathered and form

streaming multiprocessors for performing numerical computations in parallel.

Figure 2.2: Architecture of a streaming multiprocessor (SM) [50]

In Figure 2.2, a streaming multiprocessor (SM) was illustrated. A SM can be defined

as array of SPs [50], Most of the GPUs have eight SPs in a SM. A SM also includes

two special processors called Special Function Units (SFUs). SFUs are responsible

for special functions such as sin and cosine. The MT issue unit distributes the

instructions to all SPs and SFUs in the block. Moreover, there are a small instruction

cache (I cache), a read only data cache (C cache) and a 16 KB low latency read/write

shared memory in a SM. The cache memories are kept very small to increase the

number of SMs on the chip. Since the datasets dealt by the GPU are very small

compared to CPU, by decreasing the cache memory and increasing the number of

SMs, additional performance was obtained for a small sacrifice.

16

Figure 2.3: Architecture of a texture/processor cluster (TPC) [50]

At a higher level, multiple SMs form texture/processor clusters (TPC) [50]. In Figure

2.3 a TPC was shown. Different architectures may have different number of SMs on

TPCs, for example, while GT200 family includes three SMs on a single TPC; G80

family includes two SMs on a single TPC. In addition to SMs, there are one control

logic unit and one texture unit, which include a L1 texture cache for graphical

operations, on a single TPC. While number of the SMs on a single TPC may vary,

the components of the TPCs are same for all of the production families.

Streaming processor arrays (SPAs) are formed of TPCs. SPAs do not include any

other components than TPCs. The number of TPCs can vary from one production

family to another. This situation provides the modularity of the NVidia graphical

cards, changing just the number of the components yields performance differences

between the products.

17

At the end, with the composition of SPAs and some other components, the end

product, a GPU from GT200 series was obtained and illustrated in Figure 2.4.

Instructions from the CPU and the data in the system memory are transferred to GPU

via PCIe bus. Below the PCIe Interface, there are schedulers and control logic to

distribute workloads to the TPCs. Processing cores are in the middle. At the lower

part there are L2 texture caches and raster operation processors (ROPs) for final

filtering and output of the data. Last, there is dynamically random access memory

(DRAM), referred as global memory of the GPU with a higher latency than shared

memory or cache memories.

In this study three different GPUs were used. These are:

 GeForce GTX 275: It has 30 SMs with totally 240 SPs. Maximum amount of

shared memory for a single SM is 16 KB and 1024 threads can be created for

a single SM [18]. Its memory bandwidth is 127 GB/sec and capable of

1010.88 GFLOPS [51].

 GeForce GTX 580 Amp: It has 16 SMs with totally 512 SPs. Maximum

amount of shared memory for a single SM is 48 KB and 1536 threads can be

created for a single SM [18]. Its memory bandwidth is 192 GB/sec and

capable of 1581.06 GFLOPS [52].

 Tesla C2050: It has 14 SMs with totally 448 SPs. Maximum amount of

shared memory for a single SM is 48 KB and 1536 threads can be created for

a single SM [18]. Its memory bandwidth is 144 GB/sec and capable of 1030

GFLOPS [53].

18

Figure 2.4: Architecture of a GPU from GT200 series [47]

F
ig

u
re

 2
.4

 A
rc

h
it

e
ct

u
re

 o
f

a
 G

P
U

 f
ro

m
 G

T
2
0
0
 s

er
ie

s
[5

0
]

19

2.3 GPGPU

As GPUs are becoming very attractive sources of high performance in general

purpose programming with many cores on it, developing a code running on GPU

requires additional information according to the sequential coding in CPU.

Parallelism in GPGPU is based on concurrent execution of a kernel, which is parallel

code portion executed on GPU, by threads [54]. Generally a GPU program have

some portions to be run on “host”, referred as CPU, and some kernels to be run on

“device”, referred as GPU. Although, a thread can execute only one kernel at a time,

the execution of the same kernel by many threads provides high performance. Since

every thread has an ID, each thread can compute different memory addresses and can

make different control decisions. This situation transforms the kernel, executed by all

threads, unique for each thread.

2 1 8 6 3 7

4 1 64 36 9 49

threads

input

y

output

ID=threadID;

x=input[ID];

y=x*x;

output[ID]=y;

f(2) f(1) f(8) f(6) f(3) f(7)

0 1 2 3 4 5

kernel

Figure 2.5: Execution of an example kernel by multiple threads

In Figure 2.5 execution of a simple kernel by multiple threads was illustrated. In this

figure, with the execution of the kernel, a thread takes the corresponding value on the

20

input array according to its ID and assigns it to variable x, consequently, x value for

each thread is different. Then, y value is calculated by multiplication of x by itself for

every thread. Finally, y value is written to corresponding place on the output array. In

this simple example six arithmetic operations are completed during the calculation of

y at a time. For the sequential implementation of this code, one operation cycle

would be needed for each arithmetic operation.

Figure 2.6: Organization of Grid and Thread Blocks [18]

As increasing number of threads, the efficient use of GPU becomes challenging. The

use of thread blocks and grids are very useful to organize the threads. In Figure 2.6,

21

an example of thread blocks and grid of thread blocks was illustrated. As threads,

blocks have also ID. In addition to ID values, dimension information is also kept for

blocks. For example in Figure 2.6, “Block (1, 1)” has a dimension of (4, 3) and

“Grid” has a dimension of (3, 2) for x and y. CUDA allows create three dimensional

blocks, however there is a limiting value for the maximum number of the threads in a

dimension of the blocks. These limiting values vary from one GPU model to another.

In addition to ease of organization, the use of thread blocks has other important

benefits. One of them is accessibility of the threads in the same block to shared

memory. Unfortunately, all problems cannot be divided into independent parts so

easily. Sometimes the operation of a thread may depend on another thread’s

operation; in other words, output of a thread may be input of another thread. In those

cases, to avoid unnecessary calculations, thread cooperation is needed [54]. Roughly,

after a thread writes its output to memory, this output can be accessed by other

threads, this concept is thread cooperation. For efficiency the latency of the memory

access should be low, this low latency memory demand is satisfied with shared

memory within the thread blocks. While every thread in the same thread block can

write and read from the shared memory of that block, they cannot access to shared

memory of other blocks. In Figure 2.7 memory hierarchy of the threads, thread

blocks and grids are presented. Each thread have its own local memory, each thread

block has its own shared memory accessible by threads within the block. Moreover,

each thread can access to global memory, constant memory and texture memory of

the device. Since the data transferred between the host and device via global

memory, global memory is the one of the most commonly used memory types.

Furthermore a thread can access to constant memory and texture memory directly.

All of these memory types have advantages and disadvantages. Shared memory

allows very low latency memory access, however its capacity is very small. The

global memory has very large storage capacity, but it is much slower than shared

memory. Constant and texture memories are faster than the global memory but they

are read only.

22

Figure 2.7: Memory Hierarchy of GPU [55]

Figure 2.8: Transparent Scalability [54]

23

In Figure 2.8 Transparent Scalability [54] was illustrated. According to this concept

thread blocks are allocated automatically according to the number of streaming

multiprocessors of the hardware. While two thread blocks are executed concurrently

for the device with two multiprocessors (on the left), four thread blocks are executed

concurrently for the device with four SMs (on the right).

As it was mentioned before generally a GPU program has some serial portions to be

executed on the host and some portions to be executed on device. In Figure 2.9 the

execution scheme of a GPU program was illustrated. While the serial portions are

executed on the host, parallel portions are executed on GPU.

Since the GPU hardware is different, there are some CUDA specific functions to

develop codes running on GPU. The most common ones of these functions are as

follows:

 cudaMalloc (void** pointer, size_t nbytes): Allocates device memory with

the size of “nbytes”.

 cudaMemset (void** pointer, int val, size_t nbytes): Initializes the nbytes of

memory with the integer val.

 cudaFree (void* pointer): Frees the allocated memory.

 cudaMemcpy (void *dst, void *src, size_t nbytes, enum cudaMemcpyKind

direction): Copies “nbytes” of memory from “src” to “dst”.

cudaMemcpyKind can be one of cudaMemcpyHostToDevice,

cudaMemcpyDeviceToHost and cudaMemcpyDeviceToDevice.

Kernels are C functions which cannot access host memory, they are not recursive,

they must return void, and they cannot take static variables as inputs [54].

24

Figure 2.9: Use of both CPU and GPU [18]

25

There are three types of kernel. These are:

__global__ : They must return void. They are called from host and executed on

device.

__device__ : They are called by device and executed on device.

__host__ : They are called by host and executed on host.

The syntax of a kernel as follows:

kernel0<<<dim3 dimGrid, dim3 dimBlock>>> (args)

In this syntax dimGrid is the dimension of grid, in other words the number of the

blocks in x and y directions. dimBlock is the dimension of the block, unlike grids,

blocks can be three dimensional.

In Figure 2.10 a sample code was given for the example problem in the Figure 2.5. In

the first part a kernel, called KernelSample, was defined. Memory allocations,

memory copying and invoke of the kernel are completed in the main function. The

kernel is executed for one block with 6 threads.

26

#include <stdio.h>

#include <cuda.h>

#include <cuda_runtime.h>

__global__ void KernelSample(int *input,int *output)

{

 int x=input[threadIdx.x];

 int y=x*x;

 output[threadIdx.x]=y;

}

int main()

{

 //input array on the host machine

 int h_input[6]={2,1,8,6,3,7};

 //output array on the host machine

 int h_output[6];

 //input array on the device machine

 int *d_input=0;

 //output array on the device machine

 int *d_output=0;

 //allocation of input array on the device memory

 cudaMalloc((void**)&d_input,6*sizeof(int));

 //allocation of output array on the device memory

 cudaMalloc((void**)&d_output,6*sizeof(int));

 //copy input array from host to device

 cudaMemcpy(d_input,h_input,6*sizeof(int),cudaMemcpyHostToDevice);

 // invoke kernel for 1 block of 6 threads

 KernelSample<<<1,6>>>(d_input,d_output);

 //copy output array from device to host

 cudaMemcpy(h_output,d_output,6*sizeof(int),cudaMemcpyDeviceToHost);

 // free input memory

 cudaFree(d_input);

 // free output memory

 cudaFree(d_output);

 return 0;

}

Figure 2.10: Sample code for the example in Figure 2.5

27

CHAPTER 3

IMPLEMENTATION OF MULTIPLE FRONT SOLVER

ON GPU ARCHITECTURE

3.1 Introduction

This chapter includes the detailed information about the multiple front solution

method and its implementation on GPU architecture. In the first section of this

chapter main steps of the multiple front algorithm, which are partitioning, local

assembly, condensation, assembly and solution of the interface equations and the

back substitution, are presented. In the following section, the implementation of the

multiple front solution method on GPU architecture is given. Finally, the test

problems are introduced and the results obtained from these tests are discussed in the

last section of this chapter.

3.2 The Multiple Front Algorithm

Multiple front solution method is actually the classical substructure based solution

method. The main steps of the multiple front algorithm was illustrated in Figure 3.1.

These parts are partitioning, condensation, assembly and solution of interface

equations. The first step of the multiple front algorithm is partitioning. In this step, a

structure is divided into multiple substructures. Partitioning is usually handled by

automatic graph partitioning algorithms [22] that basically attempt to equate the

28

number of elements in a substructure while keeping the interface sizes as small as

possible.

Partitioning

Condensation

Assembly and Solution of Interface

Equations

Back Substititution

Multiple Front Algorithm

Local Assembly

Figure 3.1: Multiple Front Algorithm

When a structure is partitioned into smaller substructures, some of the nodes become

common for multiple substructures and some of the nodes belong to only one

substructure. Such common nodes are called interface nodes and the others are called

internal nodes. After partitioning, local assembly step initiates. Stiffness matrices of

finite elements in each substructure are computed and assembled forming the

equation system of the substructure in such a way that the equations belonging to the

interface nodes were stored at the end of the stiffness matrix. The stiffness matrix of

each substructure is highly sparse. Since the internal DOFs of a substructure do not

affect other substructures, the internal equations of each substructure are reduced to

29

the interface equations by a procedure very similar to Gauss elimination. This

procedure is called condensation. After the condensation only interface equations of

the substructures remain. These equations are assembled together forming the system

of interface equations which is a dense matrix. With the solution of this system, the

displacement values of the interface DOFs are obtained. Then, the solution of the

internal equations is obtained by back substitution, also called recovery, procedure.

3.2.1 Partitioning

Beside the solution of the linear system of equations, formation of the stiffness

matrices and force vectors may also be very time consuming procedures in FEA.

Because of this reason substructuring methods become an attractive way of solution

for FEA. In multiple front method internal DOFs of each substructure are condensed

to the common DOFs forming the interface equations. Since the partitioning affects

the time required for condensation of internal equations and solution of the interface

equations, it has a significant role in the substructure based methods. Static

partitioning is used for the problems where the computational workload can be

calculated before the solution and remains constant during the solution. In multiple

front algorithms, static partitioning algorithms are suitable since all substructures are

assembled and factorized once. In this study initial partitioning was performed by the

use of METIS [56], a software package using multilevel partitioning method. In

Figure 3.2, a 160×160 meshed structure is partitioned into 16, 64 and 128

substructures, by METIS [56], respectively and every substructure is presented with

a different color.

Figure 3.2: 160×160 meshed structure with 16, 64 and 128 substructures

30

In addition to partitioning of a structure into substructures, the assembly sequence of

substructures is also determined by partitioning. The aim of determining the

assembly sequence is to form the interface equations in a way that allocating the

resources most efficiently and avoid a processor to become idle while other

processors are working.

After partitioning, the assembly sequence for the structure is determined. This

sequence can be expressed as an assembly tree [34]. In Figure 3.3 an assembly trees

for a 4×4 meshed structure is illustrated. In this figure, while individual finite

elements are shown as rectangles with dashed line borders, substructures are shown

as rectangles with solid line borders. In Figure 3.3, the structure is partitioned into

four substructures. The substructures in the first level (substructures 1-4) are

assembled forming their parent structure in the second level of the assembly tree.

5

1 2 3 4

5

1 2

4 3

Figure 3.3: Assembly tree with four substructures

31

9

1 2 3 4 5 6 7 8

9

6 5

7 4

8 3

1 2

Figure 3.4: Assembly tree with eight substructures

Besides the information stored by assembly trees, the number of initial substructures

have a significant role in the performance of the multiple front algorithm. In multiple

front algorithm assembly trees have two levels only. In the first level, there are finite

element substructures whose number and the numbers of the finite elements in each

substructure are defined in the partitioning stage. By assembly of these substructures

the uppermost level in the assembly tree is obtained. In Figure 3.4 the structure

shown in Figure 3.3, is partitioned to 8 substructures. Although both assembly trees

belong to the same structure and they give the same results, the performance of the

solutions differs. This difference caused by the numbers of the initial number of

substructures of the assembly trees, which is four in the first assembly tree and eight

in the latter one. Since the number of the substructures is less in Figure 3.3, there are

more individual finite elements in a single substructure. Therefore, the time required

for condensation of a substructure in the first assembly tree more than the one in

Figure 3.4. Moreover since the second assembly tree have more substructures, it

allows to use more threads during condensation in parallel. But dividing the structure

into larger number of substructure causes an increase in the size of interface

matrices.

32

3.2.2 Condensation

As the partitioning part is completed by use of METIS [56] the substructures and the

assembly sequence are obtained and the solution is initiated with the condensation

step. For a better understanding of the remaining steps of the solution algorithm, an

illustrative example problem is utilized. For this purpose the 4×4 meshed structure in

the Figure 3.5 is used for the sake of simplicity. It is divided into four substructures

and the assembly tree presented in the Figure 3.3 is used. In Figure 3.6 the finite

elements in the first substructure and the node numbering are illustrated, note that

these properties are the same for the remaining of the structure. As it can be observed

from Figure 3.5, each substructure is composed of 2×2, 4-node bilinear quadrilateral

elements and each element has 8 DOFs. Node numbering starts from the internal

nodes first, then it continues with the nodes contributing to interface equations, these

nodes are shown in red color in Figure 3.6.

1 2

4 3

F1 F3F2

Figure 3.5: Example structure with 4×4 mesh

33

1
1

23

4

5

678

1

2

3

4

5

6

7

8

Figure 3.6: Substructure 1 and a bilinear 4-node membrane element

In condensation process the internal DOFs are reduced to the interface DOFs. This

process is illustrated in Figure 3.7 for the first substructure. The internal DOFs

(DOFs 1-6) were condensed to interface DOFs (DOFs 7-16) of the substructure

forming the interface equations of the substructure.

5
6

1
2

3
4

9
10

7
8

11
12

13
14

15
16

3
4

1
2

5
6

7
8

9
10

Condensation

Figure 3.7: Condensation of the first substructure

In direct solution approaches, condensation is completed by the partial factorization

of the stiffness matrix till the first interface equation. In this study LDL
T
 method is

34

used for decomposing symmetric stiffness matrices. For the decomposition the

following equations are utilized.

[K] = [L][D][L]
T
 (3.1)

jl

k
kkjkjjjj DLKD

1

2
 j=1 to NEQ (3.2)

jl

k
kkjkikijij DLLKL

1

 for i>j, j=1 to NEQ (3.3)

jj

ij

ij
D

L
L for i>j, j=1 to LEQ (3.4)

1

jl

k
kkiii FLFF i=1 to NEQ (3.5)

ii

i
i

D

F
F i=1 to LEQ (3.6)

where,

NEQ = number of equations

 LEQ = number of internal DOFs

 jl = minimum of j-1 or LEQ

The formulae used in condensation procedure given in the Equations 3.1-3.6 are for

the full matrices. In Equations 3.1-3.6, K denotes the symmetric stiffness matrix of

the substructure, L denotes the unit lower triangular matrix, D denotes the diagonal

matrix and F denotes the force vector of the substructure. The condensation of the

stiffness matrix is completed by using the Equations 3.2-3.4 and the condensation of

35

the force vector is completed by using the Equations 3.5-3.6. In these equations NEQ

refers to number of equations which equals to 16 for the first substructure. On the

other hand LEQ refers to number of equations to be reduced, in other words, it is

the number of internal DOFs which equals to 6 for the first substructure.

The condensation process is completed by using Equations 3.1-3.6 recursively. The

decomposition of a sparse matrix is, however, not as straight forward as it is in a full

matrix. Since, only the non-zero elements stored in sparse systems, a symbolic

factorization process has to be performed for the determination of the volume and the

calculation sequence of the non-zero elements in L. Because of this reason, the

formulae can be applied numerically only after the symbolic factorization process.

In Figure 3.8 non-zeros in the upper triangular part of the symmetric stiffness matrix

and their storage in CSC format is illustrated. While the numbers in black above the

matrices represent row and column IDs of the DOFs within the substructure stiffness

matrix, the numbers in red represent the row and column IDs of the DOFs within the

interface stiffness matrix. In the matrix, at the right side of Figure 3.8 the IDs of non-

zero elements in the storage algorithm are shown. The numbering starts from element

in the first row, first column, then continues with the uppermost non-zero element in

the next column. The two arrays used for the storage algorithm was shown in Figure

3.8, col_ptr and row_ind. The col_ptr stores the locations of the first non-zero

elements in the column, in other words the i
th

 value in col_ptr array gives the ID of

the first non-zero element in the ith column. The row_ind stores the row indices of

the non-zero terms. According to the size and the sparsity of the matrix, CSC format

may be very advantageous, since it requires significantly less storage size than

storing the same matrix in dense format. Since the non-zero terms are accessed by

using row_ind and col_ptr arrays, the performance of the programs, however

decreases due to the indirect addressing.

36

co
l_

p
tr

 =
 [

0
,

1
,

2
,

4
,

6
,

1
0
,

1
4
,

1
9
,

2
5
,

3
1
,

3
7
,

4
2
,

4
8
,

5
6
,

6
4
,

7
1
,

7
9
]:

 P
o

in
te

r
ar

ra
y
 o

f
th

e
lo

ca
ti

o
n

s
o

f
fi

rs
t

n
o

n
-

ze
ro

 e
le

m
en

ts
 i

n
 t

h
e

co
lu

m
n

ro
w

_
in

d
 =

 [
1
,
2
,
1
,
2
,
3
,
1
,
2
,
4
,.
.]

:
R

o
w

 i
n
d
ic

es
 o

f
th

e
n
o
n

-z
er

o
 e

le
m

en
ts

F
ig

u
re

 3
.8

:
N

o
n

-z
er

o
 e

le
m

en
ts

 i
n

 t
h

e
st

if
fn

es
s

m
a

tr
ix

 o
f

th
e

fi
rs

t
su

b
st

ru
ct

u
re

 i
n

 C
S

C
 f

o
r
m

a
t

Figure 3.8 Non-zero elements in the stiffness matrix of

the first substructure in CSC format

37

In sparse systems, besides the original non-zero elements, some of the zero terms

become non-zero during the elimination process. These terms called fill-in elements.

The transpose of L is shown in Figure 3.9. In this figure the fill-in elements were

shown with a cross in a circle. Moreover, since a fill-in element will affect the

subsequent calculations, a factorization sequence is also needed. This necessary

information is obtained with the symbolic factorization in two arrays. First array

stores the locations of the first non-zero elements in the unit lower triangular matrix.

This array is similar to col_ptr array but it stores the non-zero values in the lower

triangular matrix. The second array stores the information of the next column to be

Figure 3.9: Transpose of the unit lower triangular matrix

38

factorized, for each column. For example, since the element in the 3
rd

column and the

elements 5
th

-10
th

 columns, in the first row, are not zero, the first column is used in

the elimination of these columns. With this information a sequence for the

elimination of the matrix is obtained.

The information obtained from symbolic factorization is used in the numerical

factorization. The numerical factorization calculates the values and places of non-

zero terms of L matrix and the values in the main diagonal of D matrix by using Eq.

3.2-3.4. It continues until the first interface DOF of the substructure, which is 7
th

DOF in the example case. The square matrix and the vector under that DOF in the

substructure stiffness matrix and the force vector, give the condensed equations of

the substructure those will contribute to the interface stiffness matrix and interface

force vector. The condensed part of the stiffness matrix was shown in the red box, in

Figure 3.9. This part is also called Schur complement.

3.2.3 Assembly and Solution of Interface System

After the condensation of the all substructures, the condensed parts should be

assembled according to the assembly tree of the structure to form the interface

equations. In Figure 3.10 the assembly of the condensed substructures was

illustrated. As it was shown in the figure, every substructure is condensed to its

interface DOFs, which are shown in red. Then these substructures are assembled

according to the assembly tree of the structure. The fifth structure is the parent node

of the substructures and it is the final structure in the assembly tree. While the

original structure has 23 nodes with 46 equations, the final assembled structure has 9

nodes with 18 equations. The remaining 28 equations are the internal equations to be

solved within each substructure after the interface equations are solved and sent back

to the substructures.

39

3

4

1
2

5

6

7

8

9

10

3

4

1
2

5

6

13

14

11

12

5
6

13
14

11
12

17

15
16

5

6

17

15
16

7

8

9

10

5

6

7

8

9

10

13

14

11

12

17

18

15
16

3

4

1
2

1 2

34

5

A
SSEM

B
LY

A
SSEM

B
LY

A
SSEM

B
LY A

SSEM
B
LY

18 18

Figure 3.10: Assembly of Substructures

40

Figure 3.11: Assembly of Interface Matrix

41

As the assembly of the structures operations was shown in Figure 3.10, the assembly

of the stiffness matrices of the substructures was shown in the Figure 3.11. In this

figure the condensed matrices were denoted by Kc1, Kc2, Kc3 and Kc4 for the

substructures 1, 2, 3 and 4 respectively. The final interface stiffness matrix belonging

to fifth substructure was denoted by Kc. For each row and column of the condensed

stiffness matrices of the substructures, the corresponding row and column IDs of the

final interface matrix were shown with the red numbers, on the above and the right

side of the substructure condensed stiffness matrices. For example the element on the

second row and third column in Kc4 matrix will contribute to the element on the

sixth row and seventh column in the final interface matrix Kc. Therefore substructure

condensed stiffness matrices and condensed force vectors are assembled according to

these numbers, which are given as input information with the assembly tree. After

the assembly of the condensed stiffness matrices of the substructures, the interface

equation system is obtained. Since the obtained system of equations is dense, its

solution is straight forward.

3.2.4 The Solution of Internal Equations

After the solution of the interface equations, the displacement vector belonging to the

interface DOFs are obtained. Interface DOFs are sent to each substructure. With the

known interface displacements, the only unknowns are the displacement values of

the internal DOFs within each substructure. To obtain the solution of the whole

structure the internal equations of every substructure have to be solved as a final step.

In Figure 3.12 the system of equations for the first substructure after the solution of

the interface equations, was illustrated. In the left hand side, the factorized stiffness

matrix and displacement vector of the substructure were shown. In the displacement

vector, the displacement values of the internal DOFs, those have to be computed

42

were shown as “?” and the known displacement values belong to interface DOFs of

the system were denoted as dci. By using the portion of the factorized stiffness

matrix in the blue box and the known displacement values of the interface DOFs, the

internal equations were computed recursively by starting from the last internal DOF

in the substructure. While dense solution algorithms are used for the solution of the

interface equations, recovery process is handled by sparse algorithms as it is in

condensation operation. With the solution of internal equations within the each

substructure, the solution is finalized

Figure 3.12: System of Equations for Substructure 1

43

3.3 GPU Implementation

The kernels used for the GPU implementation of the algorithm were shown in the

Figure 3.13. As it is mentioned before the algorithm is composed of five main steps

which are: partitioning, local assembly, sparse matrix condensation, assembly and

solution of the interface equations and the back substitution. Only the last three steps

of the solution algorithm, i.e. condensation, assembly, and solution of interface

equations are handled by GPU.

3.3.1 Sparse Condensation

In this step GPU_SparseSymbolic and GPU_SparseCondense kernels, which are

responsible for the completion of the symbolic sparse factorization and the numerical

factorization respectively, are used. Since the algorithms for the symbolic and the

numerical factorization of a sparse matrix are sequential, no parallelism can be

obtained from the operations within the condensation procedure of a single

substructure. Because of this reason the only parallelism can be obtained by creating

multiple threads, each of whom is responsible for the condensation of one

substructure. In other words the number of the threads created for symbolic

factorization and numerical factorization is equal to the number of substructures.

Thus, each thread is responsible from the factorization operations of a single

substructure and can only reach to the data related with that substructure. Since the

amount of the data is too large for shared memory, data is stored in global memory,

causing a decrease in the performance of the algorithm.

44

GPU_SparseSymbolic

GPU_SparseCondense

GPU_MapperInt

culaDeviceSgesv

GPU_SparseRecover

Sparse Condensation

Assembly and Solution of

Interface Equations

Solution of Internal Equations

Figure 3.13: Subroutines used for GPU implementation of multiple front

algorithm

45

3.3.2 Assembly and Solution of Interface Equations

Assembly of the interface equations is completed by GPU_MapperInt kernel. The

number of the operations completed in the GPU_MapperInt and its effect to the

performance of the algorithm is negligible according to other functions such as

GPU_SparseCondense kernel. Because of this reason, an algorithm, which can be

easily implemented, is chosen.

Since elements from different Schur complements of the substructures may be

addressed to the same location in the interface equations, the mapping operations of

the substructures are completed sequentially to avoid race condition. On the other

hand, because of the reason that each element within the same substructure has

different locations in the interface equations, the mapping operations can be

completed concurrently within a substructure. In other words, during the

GPU_MapperInt kernel a thread block is created, this thread block starts mapping

operations of the first substructure. Each thread assembles an element from the Schur

complement of the first substructure to the interface equations in parallel. After the

completion of the mapping operations of that substructure, thread block starts

mapping of another substructure.

After the assembly of the interface equations, a dense matrix solver for the solution

of the interface system is required. For this purpose a commercial GPU accelerated

linear algebra library, CULA [57] was used. CULA includes various linear algebra

functions for single and double precision. Besides the host function, CULA also

includes device functions where the data in the GPU memory can be used directly.

culaDeviceSgesv function is a CULA subroutine, which is a device function using

the data directly from the GPU memory, and solves the linear system of equation by

using Gauss elimination.

46

3.3.3 Back Substitution

The final step of the algorithm is the solution of the internal equations of the

substructures. After the solution of interface equations, the remaining internal DOFs

of each substructure are calculated by the GPU_SparseRecover kernel. Like the

sparse matrix factorization, the solution of the internal equations, in other words

recovery operations, should be completed in order within the stiffness matrix of a

substructure. On the other hand, the recovery operations of different substructures

can be managed concurrently. Thus, the algorithm for the recovery operations is

parallel in substructure level but sequential within the substructures. As for the

factorization operations, one thread is created for each substructure, and these threads

complete the recovery operations of those substructures.

3.4 Test Problems and Results

The performance of the multiple front algorithm was tested for different structures

divided into various numbers of substructures with different GPUs. Two test

structures with different sizes were used for the testing the performance of the

algorithm. The first structure is composed of 50×50 shell elements. Each shell

element has 4 nodes, with 6 DOFs for each node. The equation system has a size of

15000 equations. This system was partitioned into 8, 16, 32 and 64 substructures.

The time values obtained from the solution of the first structure with the graphic

cards GTX 275, GTX 580 Amp and Tesla C2050 were presented in the Figure 3.14.

47

Figure 3.14: Solution time values obtained from the solution of the structure

with 50×50 elements

A larger structure with 160×160 shell elements, having 153600 equations, was used

as the second testing structure. This structure was partitioned into 16, 32, 64 and 128

substructures. But, since the larger number of substructures yields interface equations

with larger sizes, the global memory sizes of GTX 275 and GTX 580 Amp were

insufficient for the solution of the structure with large number of substructures.

Because of this reason the solutions of the structure with 16 and 32 substructures

were obtained from GTX 275 graphical card and the solutions of the structure with

16, 32 and 64 were obtained from GTX 580 Amp graphical card. On the other hand,

the size of the global memory of Tesla C2050 was sufficient for the solution of the

structure with 16, 32, 64 and 128 substructures. The solution time values of the

second structure with different numbers of substructures were presented in Figure

3.15.

0

5

10

15

20

25

30

35

40

8 16 24 32 40 48 56 64

S
o

lu
ti

o
n

 T
im

e
(s

ec
)

Number of Substructures

GTX 275

GTX 580 Amp

Tesla C2050

48

Figure 3.15: Solution time values obtained from the solution of the structure

with 160×160 elements

As it can be observed from the Figure 3.14 and Figure 3.15, larger numbers of

substructures yield shorter solution time for the solution of the both structures. In

Figure 3.15 since the solution of the structure with 128 substructures could be

obtained only with Tesla C2050, the shortest time period for the solution of the

second structure was obtained from this GPU. On the other hand, GTX 580 Amp has

the best performance for the same number of substructures among the performances

of the solver on GTX 275 and Tesla C2050. The main reason of this situation is

caused by the maximum number of floating point operations per second that the

device is capable of. This value is 1581.1 GFLOPs, 1030.4 GFLOPs and 1010.9

GFLOPs for GTX 580 Amp, Tesla C2050 and GTX 275 respectively. As a result it is

expected that GTX 580 Amp solves the same system of equations in a shorter period

of time than GTX 275 and Tesla C2050.

The ratios of elapsed time periods in each solution step to total solution time of the

50×50 element structure divided into 8 and 64 substructures were presented in Figure

3.16. The pie charts given in the upper side of the figure belong to the solution of the

structure with 8 substructures, whereas the pie charts given in the lower side belong

0

100

200

300

400

500

600

700

16 32 48 64 80 96 112 128

S
o

lu
ti

o
n

 T
im

e
(s

ec
)

Number of Substructures

GTX275

GTX 580 Amp

Tesla C2050

49

to the solution of the structure divided into 64 substructures. According to the figure

it can be observed that, while the time passed during the sparse condensation

shortens, the elapsed time during the solution of interface equations increases with

the increasing number of substructures. Moreover, this situation is valid for all of the

GPUs used in the tests. Although the GTX 580 Amp and Tesla C2050 have similar

architectures, the portions of solution time of the steps in these GPUs differ. The

reason of this situation is caused by the fact that since the sparse condensation part

cannot fully utilize the computational power of the GPUs, this step is completed

faster in GTX 580 Amp than Tesla C2050, because the clock rate of GTX 580 Amp

is greater. However, an optimized package used for the solution of interface

equations, the time passed in this step is very close to each other for both GPU. This

causes the difference between the amounts of portions of time passed in each step for

these two GPUs.

Figure 3.16: The effect of solution steps to the solution time of structure with

50×50 elements with 8 and 64 substructures

50

When the problem size becomes larger, elapsed time values of the solution steps

change drastically with the increasing number of substructures. As in the first

structure, the increasing number of substructures yields a decrease in the elapsed

time for the sparse condensation and an increase in the elapsed time of the solution of

the interface equations. The values of time passed during these steps in the solution

of the structure with 160×160 elements by using Tesla C2050 were shown in Figure

3.17. For increasing the performance of the solver, increasing the number of

substructures becomes helpful for shortening the time passed during the sparse

condensation. However, as it can be observed from the Figure 3.16 and Figure 3.17

increasing the number of substructures causes an increase in the solution time of the

interface equations. This increase caused by the increase in the size of the interface

equations. In Figure 3.18 the sizes of interface equations of both systems for the

various numbers of substructures were presented. Consequently, this situation causes

an increase in the solution time of the interface equations. Thus, increasing the

number of substructures yields an increase in the performance of the solver due to

the performance gain in the sparse condensation part, but after a point increasing the

number of substructure causes a performance loss in overall due to the increase in the

solution time of the interface equations.

Figure 3.17: The sparse condensation time and solution time of the interface

equations for 160×160 structure

0

50

100

150

200

250

300

350

16 32 48 64 80 96 112 128

T
im

e
(s

ec
)

Number of Substructures

Numeric

Condensation

Solution of

Interface

Equations

51

Figure 3.18: Sizes of interface equations of both structures for various numbers

of substructures

Sparse condensation is sequential within each substructure stiffness matrix. Because

of this reason only way to parallelize this part is increasing the number of the

substructures. On the other hand increasing number of substructures causes an

increase in the size of the interface equations. There are two disadvantages of this

situation which are:

 The increasing size of the interface equations causes an increase in the

solution time of the interface equations

 The global memory of the graphical cards becomes insufficient for storing the

large size of interface equations

0

5000

10000

15000

20000

25000

0 16 32 48 64 80 96 112128

S
iz

e
o

f
In

te
rf

a
ce

 E
q

u
a

ti
o

n
s

Number of Substructures

50x50 elements

160x160 elements

52

CHAPTER 4

GPU MULTIFRONTAL SOLVER

4.1 Introduction

This chapter includes the detailed information about the multifrontal solution method

and its implementation on GPU architecture. In the first section of this chapter main

steps of the multifrontal algorithm, which are partitioning, local assembly,

condensation, assembly and solution of the interface equations and the back

substitution are presented. In the following section, the implementation of the

multifrontal solution method on GPU architecture is given. Finally, the test problems

are introduced and the results obtained from these tests are discussed.

4.2 The Multifrontal Algorithm

The flowchart of the multifrontal solution algorithm is illustrated in Figure 4.1.

Similar to the multiple front algorithm the multifrontal solution algorithm involves

the partitioning, local assembly sparse condensation, assembly and solution of the

interface equations and sparse recovery steps. In addition to these steps dense

condensation and dense back substitution steps are also part of the multifrontal

algorithm. The algorithm initiates with partitioning of the structure into several

substructures. Besides the division of the structure, the formation of an assembly tree

is also completed in the partitioning step.

53

YES

T
o
p
 L

ev
el

 o
f

th
e

A
ss

em
b
ly

 T
re

e
?

L
o
ca

l
A

ss
em

b
ly

P
ar

ti
ti

o
n
in

g

A
ss

em
b
ly

 a
n
d
 S

o
lu

ti
o
n
 o

f

In
te

rf
ac

e
E

q
u
at

io
n
s

S
p
ar

se
 C

o
n
d
en

sa
ti

o
n

A
ss

em
b
ly

 o
f

In
te

rm
ed

ia
te

S
u
b
st

ru
ct

u
re

s

D
en

se
 C

o
n
d
en

sa
ti

o
n

B
o
tt

o
m

 L
ev

el
 o

f
th

e

A
ss

em
b
ly

 T
re

e
?

D
en

se
 B

ac
k
 S

u
b
st

it
u
ti

o
n

S
p
ar

se
 R

ec
o
v
er

y

Y
E

S

NO

N
O

M
u

lt
i

F
ro

n
ta

l
A

lg
o
ri

th
m

Figure 4.1: Multifrontal Algorithm

Fi
gu

re
 4

.1
: M

u
lt

if
ro

n
ta

l a
lg

o
ri

th
m

54

In multiple front algorithm after the sparse condensation step all the substructures are

assembled together forming the interface equations, however in multifrontal

algorithm substructures are assembled in multiple steps. After the assembly and

solution of the interface equations, the back substitution is also completed in multiple

steps and the algorithm is finalized.

4.2.1 Partitioning

Besides the division of the structure into substructures, in multifrontal algorithm it is

required to determine the assembly tree with multiple levels. In Figure 4.2 an

assembly tree for a 4×4 meshed structure is shown.

7

5

6

1 2

4 3 1 2 3 4

5 6

7

1st Level

2nd Level

3rd Level

 Figure 4.2: Assembly tree for a 4×4 square mesh with three levels

Finite elements are illustrated as the squares bordered with dash lines, on the other

hand the substructures are illustrated as the shapes with bordered with solid lines. As

55

it can be observed from the figure, there are three levels in the assembly tree. In the

first level there are four substructures each of which has four finite elements. These

substructures are determined by the initial partitioning procedure. In the second level

there are two intermediate substructures. These substructures are formed by the

assembly of the Schur complements of the substructures in the first level. And in the

third level, the Schur complements of the substructures in the previous level are

assembled. As it was mentioned before, the substructures in the first level are

determined by METIS [56] with multilevel partitioning algorithm in this study. On

the other hand for the formation of the substructures in the intermediate level (2
nd

Level), the information of which substructures should be matched to be assembled

with each other forming the intermediate substructures is required.

In order to determine of the intermediate substructures of the assembly tree, an

algorithm is implemented. The main goal of this algorithm is forming the smallest

sized intermediate substructures, to decrease the number of dense condensation

operations and the required amount of memory. Because of this reason the logic of

the algorithm is based on matching the substructures which have the largest number

of common DOFs. According to this algorithm the intermediate substructures are

determined according to the three rules, which are as follows:

1. Only two child substructures are assembled to form their parent node.

2. The two child substructures which have largest number of DOFs in common

are chosen to be assembled together from the unmatched substructures.

3. If a substructure has same number of common DOFs with multiple

substructures, it is assembled with the substructure that has the smallest ID.

For a better understanding of the algorithm, formation of an assembly tree for a

10×10 meshed structure with eight substructures is illustrated in Figure 4.3 as an

example. On the right side of Figure 4.3, the assembly tree of the structure is

illustrated. The assembly tree has four levels. On the left side of each level of the

assembly tree, a table showing the number of common equations between the

56

substructures and the number of equations of each substructure at that level is

presented. In these tables, while the off diagonal values give the number of common

equations between two substructures, the diagonal values give the number of

equations of that structure. When the table for the first level is examined, it can be

observed that the first structure has the largest number of common equations, which

is 30, with the sixth substructure. Thus, they are matched together to be assembled

and the cell showing the number of common equations between the first and the sixth

substructure is colored to blue. Also in the assembly tree the lines, those are

connecting the first and the sixth substructure to the ninth substructure, are colored to

blue too. After matching the first pair, the unmatched substructure with the smallest

ID, which is second substructure, is chosen. Second substructure has the largest

number of common equations with the fifth substructure. Consequently, the second

and the fifth substructures are matched to be assembled together. The same

procedure is repeated and all the substructures in the first level are matched and

assembled. After the substructures in the second level are determined, the same table

is formed for the substructures in the second level. According to the number of the

common equations between the substructures, they are matched together to be

assembled. This procedure continues until the last structure is formed. As a result,

the formation of the assembly tree is completed.

The 160×160 meshed structure with 16 substructures is assembled according to this

algorithm in Figure 4.4. The substructures in the each level of the assembly tree are

presented with different colors.

57

Figure 4.3: Assembly tree for a 10×10 square meshed structure with 8

Fi
gu

re
 4

.3
: A

ss
em

b
ly

 t
re

e
fo

r
a

1
0×

10
 s

q
u

ar
e

 m
es

h
ed

 s
tr

u
ct

u
re

 w
it

h
 8

 s
u

b
st

ru
ct

u
re

s

58

Figure 4.4: Assembly of 160×160 structure with 16 substructures

59

4.2.2 Sparse Condensation

The multifrontal algorithm is very similar to the multiple front algorithm. The sparse

condensation, solution of interface equations and the sparse recovery parts are

common for both of the algorithms. In the multifrontal algorithm, however, after the

sparse condensation part, the intermediate substructures are still condensed to form

higher level intermediate substructures by dense matrix condensation techniques. At

this point, it is more convenient to give an example for better comprehension of the

algorithm. The illustration of the example structure was given in Figure 4.5.

1 2

4 3

F1 F3F2

Figure 4.5: Example structure with 4×4 mesh

60

1
1

23

4

5

678

1

2

3

4

5

6

7

8

Figure 4.6: Substructure 1 and a bilinear 4-node membrane element

The assembly tree in Figure 4.2 is used for the multifrontal algorithm. In Figure 4.5

and Figure 4.6 the example structure and the first substructure are illustrated. The

structure is divided into four substructures. Each substructure has 2×2 bilinear

quadrilateral finite elements. Also the DOFs of the substructure and the node

numbering can be seen in the Figure 4.4.

Multifrontal algorithm initiates with the sparse matrix condensation part as the

multiple front algorithm. In this procedure, condensation of the substructures in the

first level is completed. The internal equations of the substructures are condensed to

the interface equations of the substructure. Condensation of the first substructure was

illustrated in Figure 4.7. As it can be observed from the figure, the internal DOFs

(DOFs 1-6) were condensed to interface DOFs (DOFs 7-16) of the substructure

forming the Schur Complements of the substructures.

61

5
6

1
2

3
4

9
10

7
8

11
12

13
14

15
16

3
4

1
2

5
6

7
8

9
10

Condensation

Figure 4.7: Condensation of the first substructure

4.2.3 Assembly of Intermediate Substructures

In multifrontal algorithm assembly of the Schur Complements of the first level

substructures gives the intermediate substructures. Assembly of Schur Complements

of the first two substructures and the last two substructures are illustrated in Figure

4.8 and Figure 4.9 respectively. As it is shown in Figure 4.8, the first and second

substructures are assembled together forming the fifth substructure in the second

level of the assembly tree. And in Figure 4.9, the third and the fourth substructures

are assembled to form the sixth substructure. As it can be observed from the figures,

DOFs 5-14 of both substructures are common, these DOFs contribute to the interface

system and the DOFs 1-4 are internal DOFs, these DOFs are condensed to the

interface DOFs.

62

3

4

1
2

5

6

7

8

9

10

3

4

1
2

5

6

13

14

11

12

1 2

A
SSEM

B
LY A

SSEM
B
LY

579 1311

3
4

1
2

5

6810 1412

Figure 4.8: Assembly of the first two substructures

22

5
6

13
14

11
12

1

3
4

5

6

1

3
4

7

8

9

10

34

A
SSEM

B
LY

A
SSEM

B
LY

5

6

7

8

9

10

13

14

11

12

1
2

3
4 6

Figure 4.9: Assembly of the last two substructures

63

4.2.4 Dense Condensation

After assembly of the Schur Complements of the first level of substructures

(Substructures 1-4) forming the intermediate substructures (Substructures 5-6), the

internal equations of the intermediate substructures were condensed to the interface

equations of the higher level substructures (Substructure 7). But this time the

condensation procedure is handled by the dense matrix condensation algorithms,

since the system of equations of the intermediate substructures is dense. The

condensation procedures of the intermediate substructures are illustrated in Figure

4.10 and Figure 4.11. As it can be observed from the figures, instead of assembling

the all of the substructures forming a single structure at once, the size of the system

of equations is continued to be reduced at each intermediate levels of the assembly

tree by condensation procedure.

579 1311

3

4

1
2

5

6810 1412

531 97

5

642 108

CONDENSATION

Figure 4.10: Condensation of the fifth substructure

5

6

7

8

9

10

13

14

11

12

1

2

3
4 6 6

531 97

642 108

CONDENSATION

Figure 4.11: Condensation of the sixth substructure

64

As it is mentioned before, dense matrix algorithms are used for the condensation

procedure of the intermediate substructures. Although the main operations are same

with the sparse matrix condensation operations, the dense matrix condensation

operations can be completed in parallel within the matrix. The reason of this situation

is caused by storage and addressing of the data required for the operations. Since

only non-zero terms are stored for storage of a sparse matrix, condensation procedure

requires to be completed in sequential by use of indirect addressing in large amounts.

However, in dense matrix condensation algorithms, since the data required can be

accessed directly, the operations can be completed concurrently within a matrix. As a

result, dense condensation operations can be completed more efficiently than sparse

condensation operations. Since main theory is the same for both sparse and dense

condensation algorithms, the detailed information about the mathematical formulae

used in the condensation procedure was not repeated in this section. This information

can be found in the previous chapter. However, the implementation of dense

condensation algorithm is different from its implementation for the sparse systems,

the detailed information about the GPU implementation of the dense condensation

algorithm can be found in the following sections of this chapter.

4.2.4 Assembly and Solution of Interface Equations

After the condensation of the internal equations of all intermediate substructures, a

final assembly operation has to be completed before the solution of the interface

equations. With this assembly, the equation system of the uppermost structure (7
th

structure) in the assembly tree is formed. This assembly operation is illustrated in

Figure 4.12.

65

531 97

5

642 108

6

531 97

642 108

7

531 97

642 108

A
S

S
E

M
B

L
Y

A
S

S
E

M
B

L
Y

Figure 4.12: Assembly of the fifth and sixth substructures

66

As it can be observed from the figure, the Schur Complements of the fifth and sixth

substructures are assembled forming the final interface equations. This system of

equations is called “final”, because these are the equations which will be solved

before the back substitution procedure. Note that, while the size of the final interface

equation system is a 10×10 matrix in multifrontal algorithm, the size of the final

interface equations system is 14×14 matrix in multiple front algorithm. Since the size

of the example structure is not so large, the difference between the sizes of the

interface equations systems formed in the two algorithms is not so significant.

However this difference grows dramatically for the problems with large sizes. After

the assembly of the final interface equations, this system of equations is solved with

the same way in the multiple front algorithm.

4.2.5 Dense Back Substitution

The results obtained from the solution of the interface equations are sent back to the

lower level substructures in the assembly tree by back substitution procedure. As it is

mentioned before the assembly tree gives the condensation and assembly sequence of

the substructures from the down to up, and the back substitution sequence from up to

down. For each substructure with the back substitution operation the solution of the

internal equations of these substructures are obtained. According to the assembly

tree, the displacement values of the fifth substructure are transferred to the first and

second substructures. And the displacement values of the sixth substructure are

transferred to the third and fourth substructures. This step is repeated until the

substructures in the bottom level of the assembly tree are reached. Same operations

for sparse recovery presented in the previous chapter are used for dense back

substitution step also. The subroutines differ from each other with the type of data

access for the arithmetic operations. While indirect addressing has to be used for

sparse systems, the required data can be accessed directly in the dense systems.

67

4.2.6 Sparse Back Substitution (Recovery)

With a last back substitution operation the displacements of the internal DOFs of the

substructures in the first level (Substructures 1-4) are obtained, giving the solution of

the whole structure. This step is exactly same with the one used in the multiple front

algorithm. The detailed information about this step can be found in previous chapter.

4.3 GPU Implementation

In addition to multiple front algorithm, the multifrontal algorithm includes some

additional subroutines for the dense condensation and dense back substitution

operations for the intermediate substructures. Beside these additional subroutines the

GPU implementation of the algorithm is same with the GPU implementation of the

multiple front algorithm.

In Figure 4.13 the subroutines used in the GPU implementation of the algorithm

were presented. As it can be observed the figure the most of the parts of the

multifrontal algorithm are common with the multiple front algorithm. These parts

were illustrated in the figure as black boxes. In addition to the multiple front

algorithm, only the dense condensation and the dense back substitution parts are

included in the multifrontal algorithm and these parts were illustrated in the figure as

red boxes. In this section only GPU implementation of these additional subroutines

will be presented, detailed information about the GPU implementation of the

remaining parts can be found in the previous chapter.

68

GPU_SparseSymbolic

GPU_SparseCondense

GPU_MapperInt

culaDeviceSgesv

GPU_SparseRecover

Sparse Condensation

Assembly and Solution of

Interface Equations

Solution of Internal Equations

GPU_MFDenseCondense

Dense Condensation

GPU_MFBackSubstitute

Dense Back Substitution

Figure 4.13: Subroutines used for GPU implementation of multifrontal

algorithm

69

4.3.1 Dense Condensation

The dense condensation algorithm has two levels of parallelism. The first one is

substructure level parallelism, meaning that each dense matrix belonging to a

substructure is condensed in parallel by thread blocks assigned to them. In the second

level of parallelism, each thread in a thread block is responsible for the calculation of

the elements of a column in the dense matrix. Since the system is already partitioned

to the substructures, the first level of the parallelism can be obtained easily by just

assigning a thread block for each substructure in the same level of the assembly tree.

However, to parallelize the condensation operations within a single matrix, the

condensation operations should be divided into portions those can be executed by

threads concurrently. In Figure 4.14 the sequential algorithm of condensation

procedure is given. In the algorithm, A is the dense matrix and nrows, ncols and

SSchur denote the number of rows, number of the columns and the size of the Schur

Complement of the matrix A respectively. In the algorithm “loop i” defines the row

that will be used for the elimination operation; the “loop j” defines the row that will

be changed and the “loop k” changes the elements in each column in the j
th

 row of

the matrix A. In the GPU implementation of the algorithm, the “loop k” is removed

and the each thread assigned to a column. So the elements in different columns are

calculated by different threads concurrently.

for i:=0 to (nrows-1)-SSchur /* First Loop*/

 for j:=i+1 to nrows-1 /* Second Loop*/

 coeff:=-A[j,i]/A[i,i];

 for k:=i to ncols-1 /* Third Loop*/

 A[j,k]:= A[j,k]+coeff*A[i,k];

 endfor

endfor

endfor

Figure 4.14: Sequential dense condensation algorithm

70

An illustration of the GPU implementation of dense condensation of a single dense

matrix is shown in Figure 4.15, Figure 4.16 and Figure 4.17 for each step of the first

loop. In these figures the condensation operations of a 5×5 matrix with a 2×2 Schur

Complement are presented. The rows and columns of the matrix were bordered with

black solid lines whereas the Schur complement of the system is bordered with

dashed lines. The threads used in the algorithm are shown above the matrix and

denoted with “T” letter. In this example 4 threads are used in the condensation

operations. According to the size of the matrix and the Schur complement nrows=5,

ncols=5 and SSchur=5, so the first loop continues from zero to two for this example.

In Figure 4.15 the variable i in the first loop equals to 0, so the elements in row 0 and

column 0 are used for the calculation of the coeff variable. This row and the column

are colored in blue. The elements on the right side of the column 0 and below the

row 0 was calculated by the threads. Since the stiffness matrices are symmetric only

upper triangular parts of the matrices are stored in this algorithm. Because of this

reason in Figure 4.15, first thread (T0) updates the element in row 1 and column 1,

the second thread (T1) updates the element in rows 1-2 in column 1, the third thread

(T2) updates the elements in rows 1-3 in column 3 and finally the fourth thread (T3)

updates the elements in rows 1-4 in column 4.

T0 T1 T2 T3

i=0

(0,1)

(1,1)

(2,1)

(3,1)

(4,1)

(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3)

(1,3)

(2,3)

(3,3)

(4,3)

(0,2)

(1,2)

(2,2)

(3,2)

(4,2)

(0,4)

(1,4)

(2,4)

(3,4)

(4,4)

Figure 4.15: The condensation operations when i=0

71

Before initiating the condensation operations in the second step of the first loop, it is

required that all of the threads completed their calculations because of this reason a

barrier function is needed. Since all threads belong to the same thread block,

__synchtreads() function can be used for synchronization of the threads. In Figure

4.16 the condensation operations completed when i=1 are illustrated. As it can be

observed from the figure the first thread becomes idle, since calculation of all

elements in the column 1 is completed in the previous step.

T0 T1 T2 T3

i=1

(0,1)

(1,1)

(2,1)

(3,1)

(4,1)

(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3)

(1,3)

(2,3)

(3,3)

(4,3)

(0,2)

(1,2)

(2,2)

(3,2)

(4,2)

(0,4)

(1,4)

(2,4)

(3,4)

(4,4)

Figure 4.16: The condensation operations when i=1

The condensation operations completed when i=2, are illustrated in Figure 4.17. At

this step the first and second threads become idle and the third and fourth threads

calculate the elements in the Schur complement of the matrix. Note that the first loop

stops at the row and column where the Schur Complement begins. As a result, the

condensation of the matrix is completed with the end of this step.

72

T0 T1 T2 T3

i=2

(0,1)

(1,1)

(2,1)

(3,1)

(4,1)

(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3)

(1,3)

(2,3)

(3,3)

(4,3)

(0,2)

(1,2)

(2,2)

(3,2)

(4,2)

(0,4)

(1,4)

(2,4)

(3,4)

(4,4)

Figure 4.17: The condensation operations when i=2

There are some disadvantages of the algorithm. First, since each thread block is

responsible for the calculation of a single matrix, larger number of matrices allows

execution of larger number of threads. Because of this reason algorithm performance

is expected to be higher in the lower levels of assembly tree where the number of

matrices to be condensed is larger than the higher levels. Another disadvantage of the

algorithm is caused by the column-wise algorithm implemented for condensation

procedure of a single matrix. As it is mentioned before, during the condensation

procedure a significant portion of the sources becomes idle. Besides, these

disadvantages, the algorithm’s ease of implementation and requirement for less

memory due to the storage of only upper triangular part of the matrix, are important

advantages and they are reasons for the implementation of this algorithm.

Since the size and the number of the matrices for large structures become too large,

the shared memory, which has a high data transfer rate, cannot be used for the

storage of the data. Because of this reason global memory is used for the storage of

the data required for the dense condensation operations.

73

4.3.2 Dense Back Substitution

The back substitution of a system is sequential by nature for single right hand side

vector. Furthermore, it is observed from the test results obtained in the previous

chapter that the effect of back substitution part is not so significant on the overall

performance of the solver. Because of these reasons back substitution operations

calculated in parallel in substructure level but sequential within a system of equations

of a substructure.

4.4 Test Problems and Results

The performance of the multifrontal algorithm is tested by 160×160 elements. The

solution time values for various numbers of substructures obtained from GTX 275,

GTX 580 Amp and Tesla C2050 are presented in Figure 4.18, Figure 4.19 and Figure

4.20 respectively. Note that, the acronym MPF denotes multiple front algorithm and

MF denotes the multifrontal algorithm in these figures.

Figure 4.18: Solution time of the structure with 160×160 elements with GTX 275

0

100

200

300

400

500

600

700

800

16 32 48 64 80 96 112 128

S
o

lu
ti

o
n

 T
im

e
(s

ec
)

Number of Substructures

GTX 275 MPF

GTX 275 MF

74

As it can be observed from the Figure 4.18, the structure can be solved by multiple

front algorithm only when the number of substructures is small enough for the

storage of the interface equations in the GPU memory. On the other hand since the

size of the interface equations becomes smaller in the multifrontal algorithm, the

structure can be solved with 16, 32, 64 and 128 substructures. Since the sparse

condensation time decreases with the increasing number of the substructures, the

smallest solution time value is obtained from the solution of the structure with 128

substructures by using the multifrontal algorithm.

Figure 4.19: Solution time of the structure with 160×160 elements with GTX 580

Figure 4.20: Solution time of the structure with 160×160 elements with Tesla

C2050

0

50

100

150

200

250

300

16 32 48 64 80 96 112 128

S
o

lu
ti

o
n

 T
im

e
(s

ec
)

Number of Substructures

GTX 580 Amp

MPF

GTX 580 Amp

MF

0

50

100

150

200

250

300

350

400

16 32 48 64 80 96 112 128

S
o

lu
ti

o
n

 T
im

e
(s

ec
)

Number of Substructures

Tesla C2050

MPF

Tesla C2050

MF

75

The test results of solution of the same structure by using GTX 580 Amp and Tesla

C2050 were presented in Figure 4.19 and Figure 4.20 respectively. When the two

algorithms were tested for the same number of substructures, the multiple front

algorithm solves the system in a shorter time period than the multifrontal algorithm

for both GPUs. To find the reason of this situation the effect of each solution step to

the total solution time was investigated. The ratios of time values passed in the

solution steps to the total solution time of the 160×160 with 128 substructures were

presented in Error! Reference source not found.

As it can be observed from Figure 4.21, dense condensation and sparse condensation

parts are the most time consuming parts for all GPUs. For a better understanding of

the bottlenecks, factors affecting the performance of these parts were examined. For

this purpose, NVidia Compute Visual Profiler [58] was used as profiling tool to

analyze the performance of the algorithm for the solution of 160×160 meshed

structure with 128 substructures. The results for the analysis of the performance of

the algorithm in GTX 580 AMP can be summarized as follows:

 The execution of GPU_SparseCondense kernel takes 13.32% and

GPU_MFDenseCondense kernel takes 85.33% of execution time of whole

algorithm, which is 98.65% in total. The time required for data transfer

between host and device is 0.02%.

Figure 4.21: The effect of solution steps to the solution time of structure with

160×160 elements with 128 substructures

76

 In sparse condensation step, since the parallelism is limited with the

substructure level, number of substructures is too small for the use of full

performance of the GPU. In addition, due to the size of the matrices and the

storage algorithm of the sparse systems, instead of shared memory, global

memory with lower throughput and higher latency (400-800 cycles) [59] had

to be used. This latency could not be overlapped due to the small number of

threads. Moreover, threads are executed in groups called warps. If the threads

in the same warp do not execute the same thread instructions, it causes

significant performance loss. This situation is called divergent branching

[58]. The divergent branching can be caused by if-else statements or loops

with different start and end conditions. The ratio of different thread

instructions those are executed by the threads of the same warp to the all

thread instructions in that kernel is defined as control flow divergence [58].

This ratio is an indicator for performance loss due to divergent branching and

it should be as low as possible. Since each thread completes the different

number of operations of different substructures in the sparse condensation

step, this ratio is 96.88 % showing that this step was suffered from this kind

of performance loss. Additionally a performance loss occurred due to the

indirect addressing in this step. As a result of these performances losses, the

achieved global memory throughput was 10.47 GB/s where it equals to

5.32% of the peak performance global memory throughput of the graphic

card showing that the performance of sparse condensation step is low.

 The performance of the dense condensation step varies with the level of the

assembly tree. The ratio of dense condensation time of each level to the total

dense condensation time for the 160×160 meshed structure with 128

substructures is presented in Figure 4.20. For the structure partitioned to the

128 substructures, the assembly tree has log2(128)+1=8 levels, where the first

level has 128 substructures and the last level has one substructure. As it was

mentioned before, the dense condensation procedure is used at intermediate

levels of the assembly tree (Levels 2-7). Because of this reason, there are six

77

levels starting from Level 2 and ending with Level 7 in the y axis of Figure

4.22.

Figure 4.22: The ratio of dense condensation time values to total dense

condensation time

According to the Figure 4.22 the dense condensation time values increase

with the increasing level in the assembly tree. Since in upper levels of the

assembly tree, the number of substructures decreases; so smaller number of

thread blocks can be allocated. As a result at the upper levels, smaller number

of threads can be executed concurrently than the lower levels. Another reason

for the lower performance at the upper levels of the assembly tree is caused

by the divergent branching. Due to the increase in the size of the matrices, the

percentage of control flow divergence reaches to 92-97% for the dense

condensation step in upper levels of the assembly tree. When the ratio of

achieved global memory throughput to the peak global memory throughput is

taken as a performance indicator, it was observed that this ratio becomes 1-

5% for the top two levels in the assembly tree, whereas it is 50% at the lowest

level.

Although the sparse condensation algorithm is not so flexible for changes to improve

the GPU utilization, the dense condensation step may be improved by redeveloping

0% 20% 40% 60% 80%

Level 2 (64 Subst.)

Level 3 (32 Subst.)

Level 4 (16 Subst.)

Level 5 (8 Subst.)

Level 6 (4 Subst.)

Level 7 (2 Subst.)

GTX 275

GTX 580 Amp

Tesla C2050

78

the algorithm by taking the memory access and thread instructions of the threads in

the same warp into account. With a new algorithm using shared memory and

allowing execution of larger number of threads also in the upper levels of the

assembly tree may yield a significant performance gain. However, besides these

changes, to improve the performance of the solver, an important performance gain

can be obtained with the modification of the algorithm used for forming the assembly

trees.

Two different assembly trees for the same structure, which have eight substructures

initially, are presented in Figure 4.23. The assembly tree on the left side of the figure

is formed according to the algorithm mentioned in the section 4.2.1. When the

algorithm forming this assembly tree is used in the tests, it is observed that the dense

condensation of the upper levels takes too much time. Thus, instead of assembling

the substructures two by two, all substructures at a level, where interface system is

small enough to be stored in GPU memory, can be assembled to final substructure as

it is shown on the right side of the figure. In this assembly tree, the eight

substructures in the first level are assembled forming the four substructures in the

second level, but the substructures in the second level are assembled forming the

final substructure. Thus the new assembly tree does not include upper levels of the

previous assembly tree where the performance of the dense condensation is the least.

79

1 2 3 4

9

5 6 7 8

12

14

10 11

13

15

1 2 3 4

9

5 6 7 8

1210 11

13

Figure 4.23: Two different assembly trees for the structure with eight initial

substructures

The shortest solution time values of the structures with 160×160 elements for all

algorithms are presented in Figure 4.24. In the figure acronym “MLMF” denotes

Multi-Level Multifrontal method referring to new algorithm for formation of the

assembly trees. As it can be observed from Figure 4.24, the smallest solution time

values were obtained from the MLMF method. While the performance difference

between this algorithm and the multiple front algorithm is significant for GTX 275

and GTX 580 Amp, this difference is very small for Tesla C2050. Because, the

system with 128 substructures cannot be solved with multiple front algorithm with

GTX 275 and GTX 580 Amp due to insufficient GPU memory. But with the multi

frontal algorithm and MLMF algorithm the system partitioned into 128 substructures

can be solved, consequently the sparse condensation time is much smaller than the

multiple front algorithm. However, the performance of the multifrontal algorithm is

negatively influenced by the low performance dense condensation of substructures at

upper levels in the assembly tree. But in MLMF algorithm sparse condensation time

is much shorter than the multiple front algorithm, in addition to this, dense

condensation time is significantly less than the multifrontal algorithm. On the other

hand, since the structure partitioned into 128 substructures can be solved with

multiple front algorithm, the sparse condensation time values for all of the algorithms

are same with each other. So small difference between the solution time of the

multiple front algorithm and the MLMF algorithm is caused by the decrease in the

80

solution time of the interface equations according to the decrease in the interface

equations size due to the dense condensation in the MLMF algorithm.

Figure 4.24: The shortest solution times obtained from the solution of 160×160

meshed structure with the three methods

As a final test a larger system with 200×200 elements is solved with GTX 580 Amp

and Tesla C2050. Since the size of the global memory of GTX 275 is insufficient for

the problem. It is not tested with GTX 275. Moreover the results are compared with

the solutions obtained from Intel Core2 Quad 2.5 GHz clock time computer by using

MUMPS [38], a software package for solution of sparse systems by using

multifrontal algorithm. The results are presented in Figure 4.25.

0

50

100

150

200

250

300

GTX 275 GTX 580

Amp

Tesla C2050

S
o

lu
ti

o
n

 T
im

e
 (

se
c
)

MPF MF MLMF

81

Figure 4.25: The solution time of the 200×200 structure with different

architectures.

In Figure 4.25 the results are obtained from the structure with 128, 256 and 4

substructures in GTX 580 Amp, Tesla C2050 and Intel Core2 Quad respectively.

Although the performance of the solver is increased significantly with the

improvement in the assembly tree, the performance of the solver is lower than the

performance of solver runs on CPU.

0

10

20

30

40

50

60

70

GTX 580 Amp Tesla C2050 Intel Core2
Quad

So
lu

ti
o

n
 T

im
e

 (
se

c)

82

CHAPTER 5

CONCLUSION

5.1 Summary

The solution of the linear system of equations has an important role for most of the

engineering problems. And it is one of the core aspects of FEA software. Since the

large amount of arithmetic operations are required for the solution of these systems,

the influence of the solution of linear equations on the performance of the software is

very significant. As a result, an increase in the performance of the solution of the

linear equations is an important source of performance gain for the FEA software.

In recent years, the increasing demand for performance in the game industry caused

significant improvements on the performances of GPUs. With their massive floating

point operations capability, they became attractive sources of performance for the

general purpose programmers. Because of this reason, in this study GPUs are chosen

as the target hardware to develop an efficient parallel direct solver for the solution of

the linear equations obtained from FEA. To achieve this goal two substructure based

algorithms, multiple front and multifrontal algorithms were implemented.

Besides the solution of the equations, also assembly of the stiffness matrices and

force vectors of the structures may be very time consuming for large systems. At this

condition, instead of assembling the whole system, dividing the system into

substructures, and making the necessary calculations for each substructure

83

concurrently becomes much more efficient. Because of this reason the frontal

methods are appropriate for FEA. The multiple front and the multifrontal algorithms

are two common examples of the frontal methods.

In this study first multiple front algorithm was implemented. The multiple front

algorithm can be summarized in tree steps. The first step is the sparse condensation

of the substructure equations to obtain the Schur Complement of each substructure.

The second step is the assembly of the Schur Complements of all substructures

forming a larger system of equations called interface equations and the solution of

this system. The final step of the algorithm is the back substitution procedure. With

this procedure the internal equations of the substructures are obtained. As a result the

solution of the system is completed.

The multiple front algorithm was tested for different size of structures with different

number of substructures. According to the results obtained from the tests, sparse

condensation part is the most time consuming part of the solution for the smaller

number of substructures. As the number of substructures increases, the time passed

during the sparse condensation part decreases, whereas the time elapsed during the

solution of the interface equations increases. As a result, when the structure is

divided into larger number of substructures to increase the performance of the solver

by speeding the sparse condensation up, the performance of the solver is limited by

the performance of the interface solution. Furthermore, increasing size of the

interface equations requires much more memory space than the GPUs have. So the

solution of the system becomes physically impossible due to the insufficient memory

of the GPU.

The multifrontal algorithm avoids the disadvantages of the multiple front algorithm

by completing the condensation procedure in multiple steps. After the sparse

condensation procedure in multifrontal algorithm instead of assembling all of the

84

Schur Complements of the substructures forming a single large interface system,

multiple smaller interface systems are formed. The numbers of the equations of these

systems are reduced by efficient dense condensation algorithms. At the end, a

smaller size interface equation system is obtained. So the time required for the

solution of the interface system becomes shorter than the multiple front algorithm.

The multifrontal algorithm was tested for different size of structures with different

number of substructures. According to the results obtained from the tests, sparse

condensation part is the most time consuming part of the solution for the smaller

number of substructures. As the number of substructures increases, the time passed

during the sparse condensation part decreases, whereas the time elapsed during the

dense condensation part increases. When the cause of this increase was investigated,

it was observed that the dense condensation procedure became inefficient at the

higher levels of the assembly tree. For this reason an improvement in the algorithm

for the formation of the assembly tree was implemented and the higher levels of the

assembly tree were reduced. With this improvement the performance of the

multifrontal algorithm increased significantly and the fastest solutions obtained from

the multifrontal algorithm. However when the results were compared with one of the

optimized parallel sparse solvers running on CPU, it was observed that the solution

obtained from the CPU is much faster than the sparse solvers implemented in this

study.

5.2 Conclusion

In the literature, the studies about the solution of linear sparse system of equations on

GPU architecture are mainly based on iterative methods or hybrid algorithms using

both GPU and CPU algorithms. On the other hand, in this study algorithms were

developed for only GPU architecture by use of direct methods for solution of sparse

systems. For this purpose multiple front and multifrontal algorithms were

85

implemented on GPU architecture. Based on the results of the performance of

implementation of these algorithms on GPU architecture, the following observations

are obtained:

 The multiple front algorithm is limited with the sparse condensation step. For

better performance, number of substructures or performance of the sparse

condensation step should be increased.

 Increasing number of substructures yields a significant performance gain in

the multiple front algorithm. However, GPU memory size becomes

insufficient for storing the interface equations system of large number of

substructures such as 256, 512 and 1024.

 Performance of the sparse condensation part is low. Because:

o Only one thread can be used for the arithmetic operations of

condensation procedure of a substructure. So the number of threads

executed concurrently is equal to the number of substructures. This

number is not sufficient enough to fully utilize computational source

of GPU and hide the latency caused by data transfer.

o Since shared memory cannot be used due to the size of the matrices

and the sequential nature of the algorithm, global memory with lower

throughput and higher latency should be used. Moreover, indirect

addressing causes additional performance loss.

o In GPU architecture, threads are executed in groups called warps. The

execution of different branches in the code sample by the threads in

the same warp causes a significant performance loss. Since each

thread completes the condensation of different substructure, the

number of operations, the start and end conditions of the loops vary

from one thread to another causing a significant performance loss.

 Since sparse condensation algorithm is not so flexible, it is very hard to

change it to optimize the GPU utilization. As a result, because of the reason

86

that, performance of the multiple front algorithm is limited with the number

of substructures due to the size of the GPU memory, multifrontal algorithm is

much more promising for efficient solution of sparse systems.

 The performance of the multifrontal algorithm, is limited with the sparse

condensation and dense condensation steps. Multifrontal algorithm allows

partitioning the system to large number of substructures, since size of

interface equations reduced by dense condensation procedure. So the

performance of sparse condensation step can be increased in multifrontal

algorithm by increasing the number of substructures.

 The influence of algorithm for formation of the assembly tree is significant

for the multifrontal algorithm. Small changes in this algorithm may yield

important performance gain.

 The performance of the dense condensation is the core aspect of the

multifrontal algorithm. The overall performance of the dense condensation

algorithm is low. Because:

o The performance of the dense condensation algorithm decreases

significantly with decreasing number of matrices to be condensed

concurrently. Since for each matrix, a single thread block is used, the

total number of the threads executed concurrently equals to (number

of threads in a thread block)×(number of substructures). Thus, for

small number of substructures, the computational source of GPU

cannot be fully utilized.

o Divergent branching increases with the large size of matrices, causing

a significant performance loss.

o Use of global memory instead of shared memory decreases the

performance of the dense condensation step.

87

5.3 Future Work

 Improvement on Sparse Condensation: The sparse condensation step limits

the performances of the both algorithms. To increase the performance of this

step, in the current implementation only way is to increase the number of the

substructures, which causes new problems such as an increase in the amount

of data to be stored in the GPU memory. For this reason it is expected that an

efficient sparse condensation implementation, which can use threads

concurrently also within a substructure, may yield a significant performance

gain. However the nature of the algorithm is not so flexible for GPU

optimization. For this reason, completion of the sparse condensation part on

CPU may be an important alternative.

 Improvement on the algorithm for formation of the assembly tree: Since

the assembly tree directly affects the size and the number of the operations

completed in the interface equations, an improvement in this algorithm yields

important changes in the performance of the solver. The effect of the shape of

assembly trees should be investigated for better performance. However,

overall performance gain due to the improvement on this algorithm will be

limited, unless either one of the performance of the sparse condensation or

dense condensation steps is improved.

 Improvement on Dense Condensation: A significant performance gain is

expected if the following modifications can be completed.

o Modify the algorithm allowing the use of flexible number of thread

blocks for condensation process of any number of matrices. Thus,

performance loss due to inefficient utilization will be avoided.

o Modify the algorithm allowing use of shared memory by partitioning

the matrices into smaller parts those fit into shared memory.

o Modify the input matrices so the data accessed by the threads in the

same warp is stored adjacently.

88

REFERENCES

1 Wilson, G. V. The History of the Development of Parallel Computing.

url:http://ei.cs.vt.edu/~history/Parallel.html. (visited on 03/20/2011).

2 Anthes, G. The Power of Parallelism. url: http://www.computerworld.com/s/

article/65878/The_Power_of_Parallelism. (visited on 03/20/2011).

3 Sanders, J. and Kandrot, E. CUDA by example.

4 Kirk, D. and Hwu, W. Programming Massively Parallel Processors: A Hands-

on Approach. Morgan Kaufmann Publishers. (2010).

5 Sutter, H. and Larus, J. Software and the concurrency revolution. ACM

Queue. 3(7), 54-62 (2005).

6 AMD. Multicore processing: Next evolution in computing. AMD White

Papers.(2005).

7 Held, J., Batista, J. and Koehl, S. From a Few Cores to Many: A Tera-scale

Computing Research Overview (Intel White Paper). Intel Corporation.

(2006).

8 Hwu, W. W., Keutzer, K. and Mattson T. The concurrency challenge. IEEE

Design and Test of computers. July/August, 312-320 (2008).

9 TOP500. TOP500 Super Computer Sites. url: http://www.top500.org/ .

(visited on 03/20/2010).

10 Sottile, M. J., Mattson, T. G. and Rasmussen, C. E. Introduction to

Concurrency in Programming Languages. Chapman and Hall. (2010).

11 OpenMP. Open Multi Processing. url: http://openmp.org . (visited on

03/20/2011).

89

12 Message Passing Forum. The Message Passing Interface Standard. url:

http://www.mcs.anl.gov/research/projects/mpi. (visited on 03/20/2011).

13 Message Passing Interface Chameleon 2 Library. url:

http://www.mcs.anl.gov/research/projects/mpich2. (visited on 03/20/2011).

14 PVM. Parallel Virtual Machine. url: http://www.csm.ornl.gov/pvm/ . (visited

on 03/20/2011).

15 Gropp, W. and Lusk, E. PVM and MPI are completely different. (1998).

16 Nvidia. CUDA Zone. url: http://www.nvidia.com/object/cuda_home_new.

html. (visited on 03/20/2011).

17 Nvidia. CUDA Zone. url: http://www.nvidia.com/object/cuda_home_new.

html. (visited on 03/20/2011).

18 Nvidia CUDA. Nvidia CUDA C Programming Guide Version 3.2 (2010).

19 Khronos. OpenCL, The Open Standard for Parallel Programming of

Heterogeneous Systems. url: http://www.khronos.org/opencl/ . (visited on

03/20/2011).

20 Karimi, K. , Dickson, N. G. and Hamze., F. A Performance Comparison of

CUDA and OpenCL. In: arXiv.org (2010).

21 Microsoft. Microsoft DirectX Developer Center. url: http://msdn.microsoft.

com/en-us/directx. (visited on 11/14/2010).

22 Kurc, O. A Substructure Based Parallel Solution Framework for Solving

Linear Systems with Multiple Loading Conditions. PhD thesis. Georgia

Institute of Technology 2005.

23 Guney, M. E. High-Performance Direct Solution of Finite Element Problems

on Multi-Core Processors. PhD thesis. Georgia Institute of Technology 2010.

90

24 Farhat, C., Crivelli, L. and Rous, F.X. Extending substructure based iterative

solvers to multiple load and repeated analyses. Comput. Methods Appl. Mech.

Engrg. 117, 195-209 (1994).

25 Bitzarakis, S., Papadrakis, M., and Kotsopulos, A. Parallel solution technique

in computational structural mechanics. Comput. Methods Appl. Mech. Engrg.

148, 75-104 (1997).

26 Duff, I. S. and van der Vorst, H. A. Developments and trends in the parallel

solution of linear systems. Parallel Computing. 25, 1931-1970 (1999).

27 Dongarra, J. J., Duff, I. S., Sorensen, D. C., and van der Vorst, H.A.

Numerical linear algebra for high performance computers. Society for

Industrial and Applied Mathematics. (1998).

28 Ashcraft, C. and Grimes, R. SPOOLES: An object-oriented sparse matrix

library. Proceedings of the 9th SIAM Conference on Parallel Processing for

Scientific Computing. pp. 10 (1999).

29 Ashcraft, C. SPOOLES 2.2 : SParse Object Oriented Linear Equations

Solver. http://www.netlib.org/linalg/spooles/spooles.2.2.html. (visited on

03/26/2011)

30 Li, X. S. An overview of SuperLU: Algorithms, implementation, and user

interface. ACM Trans. Math. Softw. vol. 31, no. 3, pp. 302-325 (2005).

31 SuperLU. http://crd.lbl.gov/~xiaoye/SuperLU/. (visited on 03/26/2011).

32 Dobrian, F., Kumfert, G. and Pothen, A. The design of sparse direct solvers

using object-oriented techniques. Institute for Computer Applications in

Science and Engineering (ICASE). (1999).

33 Irons, B. M. A frontal solution scheme for finite element analysis. Int. J.

Numer. Methods Eng. Vol. 2, pp. 5-32 (1970).

http://crd.lbl.gov/~xiaoye/SuperLU/

91

34 Duff, I. S. and Reid, J. K. The multifrontal solution of indefinite sparse

symmetric linear. ACM Trans. Math. Softw. vol. 9, no. 3, pp. 302-325 (1983).

35 Gupta, A. and Joshi, M. WSMP: A high-performance shared- and distributed

memory parallel sparse linear equation solver. RC 22038, IBM Research

Division (2001).

36 Gupta, A. WSMP: Watson Sparse Matrix Package (Version 11.1.19).

http://www-users.cs.umn.edu/~agupta/wsmp.html. (visited on 03/26/2011).

37 Amestoy, P. R., Duff, I. S., L'Excellent J.-Y. and Koster, J. A fully

asynchronous multifrontal solver using distributed dynamic scheduling. SIAM

J. Matrix Anal. Appl. Vol. 23, no. 1, pp. 15-41 (2001).

38 MUMPS : A parallel sparse direct solver. http://graal.ens-lyon.fr/MUMPS/ .

(visited on 03/26/2011).

39 Chen, Y., Davis, T. A., Hager W. W. and Rajamanickam, S. Algorithm 8xx:

CHOLMOD, Supernodal sparse Cholesky factorization and update/downdate.

TR-2006-005, University of Florida (2006).

40 Davis, T. A. CHOLMOD, supernodal sparse Cholesky factorization and

update/downdate. http://www.cise.ufl.edu/research/sparse/cholmod/. (visited

on 03/26/2011).

41 Davis, T. A. Algorithm 832: UMFPACK V4.3---an unsymmetric pattern

multifrontal method. ACM Trans. Math. Softw. Vol. 30, no. 2, pp. 196-199

(2004).

42 Davis, T. A. UMFPACK: Unsymmetric multifrontal sparse LU factorization

Package. http://www.cise.ufl.edu/research/sparse/umfpack/ (visited on

03/26/2011).

43 Gould, N. I. M., Scott, J. A. and Hu, Y. A numerical evaluation of sparse

direct solvers for the solution of large sparse symmetric linear systems of

equations. ACM Trans. Math. Softw. Vol. 33, no. 2, pp. 10 (2007).

http://www-users.cs.umn.edu/~agupta/wsmp.html
http://graal.ens-lyon.fr/MUMPS/
http://www.cise.ufl.edu/research/sparse/cholmod/
http://www.cise.ufl.edu/research/sparse/umfpack/

92

44 Gupta, A. and Muliadi, Y. An experimental comparison of some direct sparse

solver packages. Proceedings of the 15th International Parallel &

Distributed Processing Symposium. (2001).

45 Bolz, J., Farmer, I., Grinspun, E. and Schröder, P. Sparse matrix solvers on

the GPU: conjugate gradients and multigrid. ACM Trans. Graph. 22(3) 917–

924 (2003).

46 Krüger, J. and Westermann, R. Linear algebra operators for gpu

implementation of numerical algorithms. ACM Transactions on Graphics.

(TOG) 22(3) 908–916 (2003).

47 Buatis, L., Caumon, G. and Levy, B. Concurrent number cruncher an

efficient sparse linear solver on the GPU. In: High Performance computation

conference (HPCC). Springer lecture notes in computer sciences, vol 4782.

48 Couturier, R., Domas, S. Sparse systems solving on GPUs with GMRES.

Springer Science + Business Media, LLC 2011.

49 Lucas, R. F., Wagenbreth, G., Davis, D. M. and Grimes, R. Multifrontal

computations on GPUs and their multi-core hosts. (in press).

50 ANANDTECH, NVIDIA’s 1.4 Billion Transistor GPU: GT200 Arrives as the

GeForce GTX 280 & 260. url: http://www.anandtech.com/show/2549/2 . (last

visited on 03/30/2011)

51 GPUReview, NVIDIA GeForce GTX 275, url:

http://www.gpureview.com/GeForce-GTX-275-card-609.html . (last visited

on 03/30/2011).

52 GPUReview, NVIDIA GeForce GTX 580, url:

http://www.gpureview.com/GeForce-GTX-580-card-637.html. (last visited

on 03/30/2011).

53 Nvidia. TESLA C2050/C2070 GPU Computing Processor Supercomputing at

1/10
th

 the Cost, url:

http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_l

ores.pdf. (last visited on 07/04/2011).

http://www.anandtech.com/show/2549/2
http://www.gpureview.com/GeForce-GTX-275-card-609.html
http://www.gpureview.com/GeForce-GTX-580-card-637.html
http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf
http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf

93

54 Ruetsch G. and Oster B. Getting Started with CUDA, url:

http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUD

A_Training_NVISION08.pdf . (last visited on 03/30/2011).

55 The University of Arizona, Nvidia Graphics Processing Unit (GPU), url:

http://www2.engr.arizona.edu/~yangsong/gpu.html , (last visited on

03/31/2011)

56 Karypis, G. and Kumar, V. METIS – A Software Package for Partitioning

Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing

Orderings of Sparse Matrices – Version 4.0, University of Minnesota. (1998).

57 CULA: GPU accelerated linear algebra library. url:

http://www.culatools.com/ . (last visited on 05/15/2011).

58 Nvidia. Compute Visual Profiler User Guide. DU-05 162-001_v04 (2011).

59 Nvidia. Cuda Optimization. url:

http://www.prace-project.eu/hpc-training/training_pdfs/2653.pdf . (last

visited on 07/04/2011).

http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.pdf
http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.pdf
http://www2.engr.arizona.edu/~yangsong/gpu.htm
http://www.culatools.com/
http://www.prace-project.eu/hpc-training/training_pdfs/2653.pdf

