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ABSTRACT 

 

 

SOLUTION OF SPARSE SYSTEMS ON GPU ARCHITECTURE 

 

 

Lüleç, Andaç 

M.Sc., Department of Civil Engineering 

Supervisor: Asst. Prof. Dr. Özgür Kurç 

 

June 2011, 93 pages 

 

 

The solution of the linear system of equations is one of the core aspects of Finite 

Element Analysis (FEA) software. Since large amount of arithmetic operations are 

required for the solution of the system obtained by FEA, the influence of the solution 

of linear equations on the performance of the software is very significant.  

 

In recent years, the increasing demand for performance in the game industry caused 

significant improvements on the performances of Graphical Processing Units (GPU). 

With their massive floating point operations capability, they became attractive 

sources of performance for the general purpose programmers. Because of this reason, 

GPUs are chosen as the target hardware to develop an efficient parallel direct solver 

for the solution of the linear equations obtained from FEA.  
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ÖZ 

 

 

SEYREK SİSTEMLERİN GPU KULLANILARAK ÇÖZÜMLENMESİ 

 

 

Lüleç, Andaç 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Özgür Kurç 

 

Haziran 2011, 93 sayfa 

 

 

Doğrusal denklemlerin çözümü, sonlu elemanlar metodunun kullanıldığı analizlerin 

önemli bir bölümünü oluşturmaktadır. Bu bölümde yapılan aritmetik işlemlerin 

çokluğu sebebiyle, doğrusal denklemlerin çözüm başarımı, sonlu elemanlar 

metodunu kullanan yazılımların toplam başarımını önemli ölçüde etkilemektedir. 

 

Son yıllarda bilgisayar oyun endüstrisinin gelişmesi, ekran kartlarının hesaplama 

güçlerinde önemli bir yükselişe sebep olmuştur. Ekran kartlarında bulunan 

işlemcilerin sahip oldukları bu güç, günümüzde genel amaçlı program tasarlayıcıların 

da dikkatini çekmektedir. Bu sebeple sonlu elemanlar metodunun kullanıldığı 

analizlerle elde edilen doğrusal denklemlerin çözülebilmesi amacıyla, bu çalışmada 

ekran kartlarındaki işlemciler ile çalışan aşamalı ve çoklu aşamalı çözüm 

algoritmalarının kullanıldığı seyrek çözücüler geliştirilmiştir.       

 

Anahtar Kelimeler: GPGPU, Seyrek Çözücü, Çoklu Aşamalı Çözüm, Aşamalı 

Çözüm  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Problem Definition 

 

In recent years, production of multi core processors caused a significant change in 

the software development paradigm. Nowadays, almost every personal computer has 

multi-core processors which offer users a significant increase in computational 

power. The benefits of this increase took effect not only in our daily lives but also in 

science and engineering. The computationally hard problems can be solved easily 

and the computation time decreased significantly. Since CPU technology is limited 

with temperature and it is hard to increase transistors in one core, processor 

manufacturers are planning to increase the number of cores to satisfy the demand for 

performance. This fact challenges programmers to move towards multi-core 

programming. 

 

As the computational power increases with the use of multi core processors in the 

central processing units (CPU), the recent improvements in game industry enforced 

graphical processing units (GPU) designed to complete massive floating operations 

simultaneously for a video frame in a game. Today, most of the modern graphic 

cards are manufactured with the hundreds of processing units on them. Since the 

GPUs have such a computational power with cheaper prices relative to multi-core 

CPUs, they have become attractive sources of high performance for not only 

graphical computations but also software used for solution of problems in mechanics, 

fluid dynamics, finance and etc. According to the recent developments, with the 
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concept of general purpose computing on graphics processing units (GPGPU), 

programmers started to use GPUs to handle problems requiring the large number of 

floating point operations such as solution of linear systems. 

 

Solution of large number of linear equations plays a major role in finite element 

analysis (FEA) software. Since large amount of floating point operations must be 

completed, solution of linear equations is a significant factor affecting the 

performance of the FEA software. Although there are high performance solvers 

available, most of these solvers were developed for parallel CPU architectures. Since 

GPUs offer developers higher performance with cheaper prices and ease to 

manufacture/assembly of the system, use of GPUs in the solution of sparse systems 

seems to be profitable by means of performance and budget.  Because of this reason, 

in this study, a parallel general purpose direct sparse solver running on GPU was 

implemented to provide the mentioned advantages of GPU architecture and increase 

the performance of the FEA software. 

 

1.2 Background 

 

1.2.1 Parallel Architectures 

 

The word “parallelism”, meaning use of more than one processors to deal with a 

single problem, was first used by two IBM researchers, John Cocke and Daniel 

Slotnick in 1958 [1-2]. For 30 years, after the first personal computer (PC) was 

developed, a lot of improvements were achieved in the technologies for PCs and 

workstations. Most of the desktop computers have CPUs with clock speeds changing 

between 1 GHz and 4 GHz, running approximately 1000 times faster their 30 year 

old ancestor [3]. These improvements in processor speeds, however, were able to 

continue until 2003. Since then, due to high energy consumption and heat-dissipation 

problems, processor manufacturers has changed their models to ones those include 
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more than one processing units, referred to as processor cores [4-5]. Although it was 

expected that this change would decrease the execution time of programs, the 

performance of applications was below expectations, since these programs were 

sequential. On the contrary, parallel programs benefit from the improvement about 

multi processors. This caused a trend about parallel program development and 

referred to as concurrency revolution [4-5]. Although parallel programming is not a 

new term and applications have been written as parallel codes for a long time, the use 

of such applications was not very common. These programs were run on expensive, 

large scale computers. With the recent improvements, every microprocessor became 

parallel computers now and every programmer can benefit from the performance of 

multi core processors running concurrently [4]. 

 

The demand for performance of CPU has been satisfied with the multi core CPUs 

recently [6-7]. Moreover the semiconductor industry decided on two main 

manufacturing options since 2003 [4, 8] i.e. multi core and many core processors. All 

processors in such systems use a single random access memory (RAM), this systems 

are classified as shared memory architecture. Intel Core i7 microprocessors are good 

examples of multi-core machines designed for increasing the performance of 

sequential codes. Rather, the many core devices such as recent GPUs were designed 

for increasing the performance of parallel codes. By 2009, while the peak 

performance of an Intel Quad-Core CPU for floating point operations was around 

100 gigaflops, computing speed of 1 teraflops was reached by an AMD GPU [4]. 

The difference between the peak performances was mainly due to the difference in 

the design architectures. Since CPUs are designed for parallel execution of sequential 

codes, their control units and cache memories cover larger spaces on the chip than 

the arithmetic logical units (ALU) where the floating point operations are computed. 

Because of this reason, GPUs were designed to satisfy the demand for massive 

floating point operations in a video game frame, while space of the control units and 

cache memories was decreased; the number of ALUs was increased [4]. 
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Besides the multi-core or many-core architecture, there is also another parallel 

architecture called distributed memory architecture. In this architecture two or more 

processors having their own memories are connected to each other by a network. The 

processors may be CPU, GPU or both. The fastest computers in the world are 

distributed memory architectures [9]; they are not easily manufactured and used by 

every programmer who wants performance for the applications used in their daily 

life. Today, this demand is satisfied by the dual core or quad core CPUs even by 

GPUs in the desktop computers and laptops. 

 

In order to benefit from the computational powers of the parallel architectures, 

applications must be developed with suitable parallel computing technique. For 

shared memory architectures there are mainly two programming approaches. In the 

first one, threads were created as execution units, and executed by cores or 

processors. In this approach since whole system uses single RAM and can be 

accessed by only one processor at a time, writing to and reading from the memory 

has to be sequential. Consequently concepts like race conditions, deadlocks, 

synchronization, etc. compromises from use of multiple sources at a time [10]. 

OpenMP (Open Multi Processing [11]) is an example for shared memory 

programming methods for controlling and executing threads for C++ and FORTRAN 

languages. In a different approach instead of creating multiple threads at computers, 

multiple processes created and data is transferred from one process to another by 

message passing libraries. MPI (Message Passing Interface [12]) is a library 

specification for message passing. MPICH2 (Message Passing Interface Chameleon 

2 Library [13]) is a widely portable implementation of MPI standard to support 

different computation and communication platforms such as commodity clusters, 

high-speed networks and proprietary high-end computing systems. Besides MPI, 

another standard is also available for message passing in distributed memory 

architectures, which is PVM (Parallel Virtual Machine [14]). The differences 

between two standards were discussed by Gropp et al. [15]. 
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Since graphical cards have their own memory and processors, programming methods 

for GPUs differ from the methods of other architectures. The most common methods 

for programming GPUs are CUDA (Compute Unified Device Architecture [17, 18]) 

and OpenCL (Open Computing Language [19]). Karimi et al. [20] compared these 

two methods; and concluded that CUDA had better performance than OpenCL. 

Besides CUDA and OpenCL, another method for GPU programming is 

DirectCompute (Microsoft Direct Compute [21]). CUDA can be used for only 

NVidia graphical cards, whereas DirectCompute and OpenCL can be used for other 

graphical cards too. Although DirectCompute and OpenCL are better choices from 

portability point of view, CUDA has better performance; it is easier to developing a 

program with it, used by the majority and is updated frequently. 

 

1.2.2 Solution of Linear Equations 

 

The system of linear equations obtained from FEA can be expressed as: 

    FdK                                 (1.1) 

In Equation 1.1, for a system with n degrees of freedom (DOF), K is the n by n 

stiffness matrix; d and F are the n by 1 sized displacement vector and n by 1 force 

vector respectively. If there are more than one loading conditions, the displacement 

vector d and force vector F become n by nrhs matrices where nrhs is the number of 

loading conditions.     

 

Iterative and the direct methods are the two main methods for the solution of linear 

system of equations. Iterative methods solve the system of equations with trial and 

error approach. They are based on converging correct solution by iterations after 

starting from an initial guess. Since they are scalable and needs less storage, they are 

appropriate for solution of large problems. On the other side, iterative methods may 

be inefficient for multiple loading cases, since they have to start the solution over for 
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each right hand side vector. In addition, problem dependent preconditioning 

techniques must be used to reduce the number of iteration and these techniques affect 

the convergence and solution time of iterative methods. Moreover, since the solution 

is obtained in an iterative manner, the solution time cannot be estimated [22, 23].  

 

In direct methods the coefficient matrix, which is K in FEA, is first factorized with 

LDL
T
, LU or Cholesky Factorization and then the solution is obtained by forward 

and backward substitutions. Although, such methods need larger memory than 

iterative methods, they are efficient for solution of multiple loading conditions. 

Second, execution time for exact solution is predictable. Moreover, direct solvers can 

manage numerical challenges such as nearly-singular matrices while iterative solvers 

inefficient. Because of these reasons, direct solvers are used by most of the FEA 

software [22, 23]. 

 

1.2.3 Sparsity and Parallel Sparse Solutions 

 

The systems of linear equations obtained from FEA are generally sparse which have 

large number of zero terms and this fact can be used for decreasing the required 

memory and number of operations. Because of this reason different storage formats 

and solution algorithms are used for sparse systems. The common storage formats 

are Coordinate List (COO), Compressed Sparse Row (CSR) and Compressed Sparse 

Column (CSC). In COO format, non-zero values, their row and column indices 

stored and this format is efficient for modifications. CSC and CSR formats are 

efficient for matrix vector operations and they are the most commonly used sparse 

formats. In these formats non-zero values, cumulative ID of the first non-zero value 

in column or row and the row or column addresses are stored. An example for CSC 

format is presented in Figure 1.1.  
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10} 7, 4, 2, 1, {0,  =  col_ptr   

4} 3, 1, 0, 3, 2, 1, 2, 0, 1, {0,  =   row_ind

3.88} 1.90, 0.36, 2.48, 0.05, 0.94, 0.87, 2.46, {1.25,  =  val_A     

88.3

90.148.2.

005.064.1

36.094.0046.2

0087.0025.1

























Sym

A

 

 

Figure 1.1: CSC Format for a 5×5 matrix 

 

In Figure 1.1, an example for CSC format is given for a 5×5 matrix; three arrays are 

stored which are val_A, row_ind and col_ptr. val_A stores the value of the non-zero 

terms, row_ind stores the row addresses of the non-zero term and col_ptr stores ID of 

first non-zero term in that column. 

 

There are two types of parallel solution algorithms, these are iterative and direct 

methods. As it was mentioned before, although iterative methods require less 

memory, they are not as robust as direct methods and they need preconditioning 

techniques. Global-Subdomain Implementation (GSI), Primal Subdomain 

Implementation (PSI) and the FETI method [24] can be given as examples of 

iterative methods. Bitzarakis et al. [25] discussed about these three methods and 

concluded that the FETI method was better for the solution of large systems because 

of its numerical stability and less sensitivity to the quality of preconditioning.    

 

Direct methods for sparse matrix factorization were classified into three groups, left 

looking (fan-in), right looking (fan-out) and multifrontal methods by Duff and van 

der Vorst [26,27]. In left looking algorithm (fan-in), first, update of column is 
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completed by using previous columns then factorization of that column is completed 

and the data on the left is accessed. SPOOLES (SParse Object Oriented Linear 

Equations Solver [28, 29]) and SuperLU [30, 31] are two examples for sparse solvers 

using left-looking algorithm. On the other hand, in right looking algorithm (fan-out), 

first, factorization of the column is completed and then update of the following 

columns is completed and the data on the right is accessed. Oblio [32] is an example 

for sparse solvers using right-looking algorithm. 

 

The third method for direct sparse factorization is multifrontal method. The frontal 

method [33], is based on assemble and solution of a dense matrix called frontal 

matrix. In the parallel version of the frontal method, namely multifrontal method [34] 

several frontal matrices are assembled and solved simultaneously. The main 

advantage of multifrontal methods is utilizing highly optimized dense linear algebra 

routines during solution. This way the requirement of indirect addressing for sparse 

matrices is eliminated. WSMP (Watson Sparse Matrix Package [35, 36]) and 

MUMPS (a Multifrontal Massively Parallel sparse direct Solver [37, 38]), are two 

examples for commonly used parallel multifrontal sparse solvers.  

 

As sparse solvers use different factorization algorithms, they are also developed as 

different platforms. While CHOLMOD [39, 40], Oblio, UMFPACK [41, 42] and 

SuperLU were developed as serial platforms, MUMPS, SPOOLES and WSMP were 

designed as parallel platforms. There are several studies where the performances of 

the solvers are compared in the literature. The serial performances of the solvers 

were compared by Gould et al. [43]. According to this study CHOLMOD had best 

performance among the other solvers. But when the parallel performances of the 

solvers were tested by Gupta and Muliadi [44], it was concluded that MUMPS and 

WSMP had better performances due to use of optimized dense solver routines. 
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1.2.4 Sparse Solvers running on GPU 

 

As a massively parallel architecture GPU, offers high performance for applications 

requiring large number of floating point operations such as solution of linear sparse 

systems. While there are numerous CPU implementations of parallel sparse solvers, 

the situation is not pretty same for GPU implementations. Moreover, most of the 

implementations are not direct solvers. 

 

Bolz et al. [45] implemented two iterative sparse solvers running on GPU, a sparse 

matrix conjugate gradient solver and a regular-grid multigrid solver. They reached 

better performances with GPU than CPU implementation in conjugate gradient 

solver.  Krüger and Westermann [46] implemented linear algebra operators for 

solution of equations. They focused on developing matrix and vector layouts for 

efficient matrix-vector and vector-vector operations in the implementation of 

iterative methods such as conjugate gradient and Gauss-Seidel. Buatois et al. [47] 

implemented an optimized linear sparse solver running on GPU. An iterative method, 

preconditioned conjugate gradient algorithm with an optimizer was preferred in this 

study due to ease of parallelization of iterative methods than direct methods. The 

results obtained GPU implementation had a better performance than the high 

performance CPU functions. Couturier and Domas implemented generalized minimal 

residual algorithm which is also an iterative method, obtaining speedups ranging 

from 8 up to 23 for solution of sparse systems [48]. Lucas et al. [49] implemented a 

multifrontal solver on GPUs. In this study the workload is distributed to multi core 

CPU and GPU. While the factorization of smaller matrices was completed on CPU, 

the larger dense matrices were factorized by GPUs. In GPU, the factorization process 

was completed 5.91 times faster than the CPU using single core and it was 1.34 times 

faster than the CPU using the 8 cores.  
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1.3 Objective & Scope 

 

The main goal of this study is to develop a high performance direct sparse solver 

running on GPU for FEA. Moreover, it is aimed in supreme level to propose an 

alternative way of efficient parallel solution of linear equations with GPU which is a 

cheaper and more portable hardware. 

    

Hence, the objective of this study can be summarized as: 

 Developing a multiple front sparse solver and a multifrontal sparse solver 

both running on GPU for FEA. Moreover, investigating limits of the solver 

caused by the GPU hardware and the variables influencing the performance 

of the solver such as number and size of the substructures.  

 

 Implementing parallel algorithms for sparse system condensation and frontal 

matrix assembly algorithms on GPU for multiple front and multifrontal 

methods. Furthermore, developing the subroutines of these algorithms in a 

way that allowing to be used separately as parts of different algorithms and 

heterogeneous architectures. 

 

 Developing a parallel dense system condensation algorithm on GPU allowing 

condensation of multiple frontal matrices at the same time for multifrontal 

method. 

 

In this study, GPU implementations of multiple front and multifrontal sparse solvers 

were developed. A sparse solver requires additional algorithms such as work 

balancing and ordering algorithms, besides the matrix factorization and solution 

algorithms, however, these additional algorithms were not considered. Thus, this 
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study mainly focused on the matrix factorization and solution algorithms which are 

condensation of sparse matrices, assembling of frontal matrices, condensation of 

frontal matrices, solution of frontal matrices and finally solution of the system. 

Consequently, the algorithm takes preordered substructure stiffness matrices, load 

vectors and assembly tree of the system as input data and gives the displacement 

vector as output. 

 

Since the GPU memory is limited and very small compared to main storage units 

(hard disk), it was preferred using memory for testing larger system of equations, 

rather storing multiple loading conditions. Because of this reason, the algorithms 

were designed for single loading case. However, they can be adopted for multiple 

loading conditions with slight modifications. All functions used in the solver were 

decided to be developed for GPUs rather than using CPU implementations. There are 

two reasons for this decision; first, it is preferred that functions to be used separately 

as parts of heterogeneous solution procedures like completion of one task in GPU, 

another task in CPU, second, to minimize overhead caused by data transfer between 

GPU and host machine.      

 

For GPU hardware, NVidia graphical cards were used and GPU kernels were 

developed in CUDA. Although both NVidia and AMD support OpenCL, CUDA is 

more common and more frequently updated improving the performance. The test 

problems were selected from the structures composed of 2D elements. Structures 

with different sizes were tested for different number of substructures. The 

performances of kernels were investigated. 
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1.4 Thesis Organization 

 

The rest of the thesis is organized as follows: In Chapter 2, general information about 

the GPU hardware was given and the graphical cards used in this study as GPU 

hardware were introduced. General concepts about multiple frontal method and its 

GPU implementation, also test problems and the performance of the method can be 

found in Chapter 3, In the following chapter, multifrontal method and its GPU 

implementation were explained. The performance of the method was included in this 

chapter too. In the final chapter the conclusion of this study and the future work was 

presented.   
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CHAPTER 2 

 

 

GPU HARDWARE & GPGPU 

 

 

 

2.1 Introduction 

 

GPU hardware was selected as target architecture for their portability and lower price 

than other parallel architectures. While they have much more processing cores than 

multi core CPUs, the architecture of processing cores of GPU is different from the 

CPUs. As CPUs are much more efficient for parallel execution of sequential 

programs, with many processing units GPU becomes an attractive source of high 

performance for massive floating number operations. The information about the 

processors, their components and the properties of the storage devices on the 

graphical cards were presented in the first part of this chapter. Besides, the 

information about the general GPU architecture, the hardware properties and 

limitations of the graphic cards, used in this study, are also introduced at this section 

of the chapter. 

 

As developing parallel programs, different aspects of the problem should be 

considered. While, since only one processor was used in sequential coding, 

completion of operations and access to memory are both sequential, but in parallel 

programming sequence of memory access and operations of each thread should be 

considered carefully. In addition to the circumstances caused by parallel 

programming, the difference in the architecture requires use of CUDA specific 

functions for developing codes running on GPU. Because of these reasons it is 

convenient to give information about general concepts of GPGPU. As a result, in the 
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second section of the chapter general information about some important built-in 

CUDA functions, concurrent execution of threads, communication between them, 

data transfer between GPU and CPU, and type of kernels such as host, device and 

global kernels was presented.   

 

2.2 Architecture of a GPU 

  

It is more appropriate to explain parallel GPU architectures in several levels for the 

sake of clarity. The first level is formed by streaming processors (SP) [50]; these 

processors are the smallest processing particles on the GPU. In Figure 2.1 

architecture of a SP is illustrated.  

 

Figure 2.1: Architecture of a streaming processor (SP) [50] 

 

SPs include two arithmetic logic units (ALU) and a floating-point unit (FPU). The 

ALUs are responsible for integer operations and logical comparisons and they are 

denoted as “Int” and “move cmp” in the figure respectively.  On the other hand, a 

FPU is responsible for floating point operations and denoted as “FP” in the figure. As 

shown in the Figure 2.1, streaming processors do not have any cache memory, 

because of this reason a single streaming processor can only be used for arithmetic 
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operations. That is why several streaming processors were gathered and form 

streaming multiprocessors for performing numerical computations in parallel. 

 

Figure 2.2: Architecture of a streaming multiprocessor (SM) [50] 

 

In Figure 2.2, a streaming multiprocessor (SM) was illustrated. A SM can be defined 

as array of SPs [50], Most of the GPUs have eight SPs in a SM. A SM also includes 

two special processors called Special Function Units (SFUs). SFUs are responsible 

for special functions such as sin and cosine. The MT issue unit distributes the 

instructions to all SPs and SFUs in the block.  Moreover, there are a small instruction 

cache (I cache), a read only data cache (C cache) and a 16 KB low latency read/write 

shared memory in a SM. The cache memories are kept very small to increase the 

number of SMs on the chip. Since the datasets dealt by the GPU are very small 

compared to CPU, by decreasing the cache memory and increasing the number of 

SMs, additional performance was obtained for a small sacrifice. 
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Figure 2.3: Architecture of a texture/processor cluster (TPC) [50] 

 

At a higher level, multiple SMs form texture/processor clusters (TPC) [50]. In Figure 

2.3 a TPC was shown. Different architectures may have different number of SMs on 

TPCs, for example, while GT200 family includes three SMs on a single TPC; G80 

family includes two SMs on a single TPC. In addition to SMs, there are one control 

logic unit and one texture unit, which include a L1 texture cache for graphical 

operations, on a single TPC. While number of the SMs on a single TPC may vary, 

the components of the TPCs are same for all of the production families. 

 

Streaming processor arrays (SPAs) are formed of TPCs. SPAs do not include any 

other components than TPCs. The number of TPCs can vary from one production 

family to another. This situation provides the modularity of the NVidia graphical 

cards, changing just the number of the components yields performance differences 

between the products. 
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At the end, with the composition of SPAs and some other components, the end 

product, a GPU from GT200 series was obtained and illustrated in Figure 2.4. 

Instructions from the CPU and the data in the system memory are transferred to GPU 

via PCIe bus. Below the PCIe Interface, there are schedulers and control logic to 

distribute workloads to the TPCs. Processing cores are in the middle. At the lower 

part there are L2 texture caches and raster operation processors (ROPs) for final 

filtering and output of the data. Last, there is dynamically random access memory 

(DRAM), referred as global memory of the GPU with a higher latency than shared 

memory or cache memories. 

 

In this study three different GPUs were used. These are: 

 GeForce GTX 275: It has 30 SMs with totally 240 SPs. Maximum amount of 

shared memory for a single SM is 16 KB and 1024 threads can be created for 

a single SM [18]. Its memory bandwidth is 127 GB/sec and capable of 

1010.88 GFLOPS [51].  

 

 GeForce GTX 580 Amp: It has 16 SMs with totally 512 SPs. Maximum 

amount of shared memory for a single SM is 48 KB and 1536 threads can be 

created for a single SM [18]. Its memory bandwidth is 192 GB/sec and 

capable of 1581.06 GFLOPS [52]. 

 

 

 Tesla C2050: It has 14 SMs with totally 448 SPs. Maximum amount of 

shared memory for a single SM is 48 KB and 1536 threads can be created for 

a single SM [18]. Its memory bandwidth is 144 GB/sec and capable of 1030 

GFLOPS [53].   
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Figure 2.4: Architecture of a GPU from GT200 series [47] 
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2.3 GPGPU 

 

As GPUs are becoming very attractive sources of high performance in general 

purpose programming with many cores on it, developing a code running on GPU 

requires additional information according to the sequential coding in CPU. 

Parallelism in GPGPU is based on concurrent execution of a kernel, which is parallel 

code portion executed on GPU, by threads [54]. Generally a GPU program  have 

some portions to be run on “host”, referred as CPU, and some kernels to be run on 

“device”, referred as GPU. Although, a thread can execute only one kernel at a time, 

the execution of the same kernel by many threads provides high performance. Since 

every thread has an ID, each thread can compute different memory addresses and can 

make different control decisions. This situation transforms the kernel, executed by all 

threads, unique for each thread.  

 

2 1 8 6 3 7

4 1 64 36 9 49

threads

input

y

output

ID=threadID;

x=input[ID];

y=x*x;

output[ID]=y;

f(2) f(1) f(8) f(6) f(3) f(7)

0 1 2 3 4 5

kernel

 

Figure 2.5: Execution of an example kernel by multiple threads 

 

In Figure 2.5 execution of a simple kernel by multiple threads was illustrated. In this 

figure, with the execution of the kernel, a thread takes the corresponding value on the 
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input array according to its ID and assigns it to variable x, consequently, x value for 

each thread is different. Then, y value is calculated by multiplication of x by itself for 

every thread. Finally, y value is written to corresponding place on the output array. In 

this simple example six arithmetic operations are completed during the calculation of 

y at a time. For the sequential implementation of this code, one operation cycle 

would be needed for each arithmetic operation. 

 

 

Figure 2.6: Organization of Grid and Thread Blocks [18] 

 

As increasing number of threads, the efficient use of GPU becomes challenging. The 

use of thread blocks and grids are very useful to organize the threads. In Figure 2.6, 
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an example of thread blocks and grid of thread blocks was illustrated. As threads, 

blocks have also ID. In addition to ID values, dimension information is also kept for 

blocks. For example in Figure 2.6, “Block (1, 1)” has a dimension of (4, 3) and 

“Grid” has a dimension of (3, 2) for x and y. CUDA allows create three dimensional 

blocks, however there is a limiting value for the maximum number of the threads in a 

dimension of the blocks. These limiting values vary from one GPU model to another.     

 

In addition to ease of organization, the use of thread blocks has other important 

benefits. One of them is accessibility of the threads in the same block to shared 

memory. Unfortunately, all problems cannot be divided into independent parts so 

easily. Sometimes the operation of a thread may depend on another thread’s 

operation; in other words, output of a thread may be input of another thread. In those 

cases, to avoid unnecessary calculations, thread cooperation is needed [54]. Roughly, 

after a thread writes its output to memory, this output can be accessed by other 

threads, this concept is thread cooperation. For efficiency the latency of the memory 

access should be low, this low latency memory demand is satisfied with shared 

memory within the thread blocks. While every thread in the same thread block can 

write and read from the shared memory of that block, they cannot access to shared 

memory of other blocks. In Figure 2.7 memory hierarchy of the threads, thread 

blocks and grids are presented. Each thread have its own local memory, each thread 

block has its own shared memory accessible by threads within the block. Moreover, 

each thread can access to global memory, constant memory and texture memory of 

the device. Since the data transferred between the host and device via global 

memory, global memory is the one of the most commonly used memory types. 

Furthermore a thread can access to constant memory and texture memory directly. 

All of these memory types have advantages and disadvantages. Shared memory 

allows very low latency memory access, however its capacity is very small. The 

global memory has very large storage capacity, but it is much slower than shared 

memory. Constant and texture memories are faster than the global memory but they 

are read only.     
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Figure 2.7: Memory Hierarchy of GPU [55] 

 

 

Figure 2.8: Transparent Scalability [54] 
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In Figure 2.8 Transparent Scalability [54] was illustrated. According to this concept 

thread blocks are allocated automatically according to the number of streaming 

multiprocessors of the hardware. While two thread blocks are executed concurrently 

for the device with two multiprocessors (on the left), four thread blocks are executed 

concurrently for the device with four SMs (on the right). 

 

As it was mentioned before generally a GPU program has some serial portions to be 

executed on the host and some portions to be executed on device. In Figure 2.9 the 

execution scheme of a GPU program was illustrated. While the serial portions are 

executed on the host, parallel portions are executed on GPU. 

 

Since the GPU hardware is different, there are some CUDA specific functions to 

develop codes running on GPU. The most common ones of these functions are as 

follows: 

 cudaMalloc (void** pointer, size_t nbytes): Allocates device memory with 

the size of “nbytes”. 

 cudaMemset (void** pointer, int val, size_t nbytes): Initializes the nbytes of 

memory with the integer val.  

 cudaFree (void* pointer): Frees the allocated memory. 

 cudaMemcpy (void *dst, void *src, size_t nbytes, enum cudaMemcpyKind 

direction): Copies “nbytes” of memory from “src” to “dst”. 

cudaMemcpyKind can be one of cudaMemcpyHostToDevice, 

cudaMemcpyDeviceToHost and cudaMemcpyDeviceToDevice.  

 

Kernels are C functions which cannot access host memory, they are not recursive, 

they must return void, and they cannot take static variables as inputs [54].   
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Figure 2.9: Use of both CPU and GPU [18] 
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There are three types of kernel. These are: 

__global__ : They must return void. They are called from host and executed on 

device. 

__device__ : They are called by device and executed on device. 

__host__ : They are called by host and executed on host. 

 

The syntax of a kernel as follows: 

kernel0<<<dim3 dimGrid, dim3 dimBlock>>> (args) 

In this syntax dimGrid is the dimension of grid, in other words the number of the 

blocks in x and y directions. dimBlock is the dimension of the block, unlike grids, 

blocks can be three dimensional. 

 

In Figure 2.10 a sample code was given for the example problem in the Figure 2.5. In 

the first part a kernel, called KernelSample, was defined. Memory allocations, 

memory copying and invoke of the kernel are completed in the main function. The 

kernel is executed for one block with 6 threads.      
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#include <stdio.h> 

#include <cuda.h> 

#include <cuda_runtime.h> 

 

__global__ void KernelSample(int *input,int *output) 

{ 

 int x=input[threadIdx.x]; 

 int y=x*x; 

 output[threadIdx.x]=y; 

} 

 

int main() 

{ 

 //input array on the host machine 

 int h_input[6]={2,1,8,6,3,7}; 

 

 //output array on the host machine 

 int h_output[6];  

  

 //input array on the device machine 

 int *d_input=0;  

  

 //output array on the device machine 

 int *d_output=0;  

  

 //allocation of input array on the device memory  

 cudaMalloc((void**)&d_input,6*sizeof(int));  

 

 //allocation of output array on the device memory 

 cudaMalloc((void**)&d_output,6*sizeof(int));  

  

 //copy input array from host to device 

 cudaMemcpy(d_input,h_input,6*sizeof(int),cudaMemcpyHostToDevice); 

  

 // invoke kernel for 1 block of 6 threads 

 KernelSample<<<1,6>>>(d_input,d_output); 

 

 //copy output array from device to host 

 cudaMemcpy(h_output,d_output,6*sizeof(int),cudaMemcpyDeviceToHost); 

  

 // free input memory 

 cudaFree(d_input);  

  

 // free output memory 

 cudaFree(d_output);  

   

 return 0; 

} 

 

 

Figure 2.10: Sample code for the example in Figure 2.5 



 

27 

 

 

CHAPTER 3 

 

 

 

IMPLEMENTATION OF MULTIPLE FRONT SOLVER  

ON GPU ARCHITECTURE 

 

 

 

3.1 Introduction 

 

This chapter includes the detailed information about the multiple front solution 

method and its implementation on GPU architecture. In the first section of this 

chapter main steps of the multiple front algorithm, which are partitioning, local 

assembly, condensation, assembly and solution of the interface equations and the 

back substitution, are presented. In the following section, the implementation of the 

multiple front solution method on GPU architecture is given. Finally, the test 

problems are introduced and the results obtained from these tests are discussed in the 

last section of this chapter.   

  

3.2 The Multiple Front Algorithm 

 

Multiple front solution method is actually the classical substructure based solution 

method.  The main steps of the multiple front algorithm was illustrated in Figure 3.1.  

These parts are partitioning, condensation, assembly and solution of interface 

equations. The first step of the multiple front algorithm is partitioning. In this step, a 

structure is divided into multiple substructures. Partitioning is usually handled by 

automatic graph partitioning algorithms [22] that basically attempt to equate the 
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number of elements in a substructure while keeping the interface sizes as small as 

possible.  

Partitioning

Condensation

Assembly and Solution of Interface 

Equations

Back Substititution

Multiple Front Algorithm

Local Assembly

 

Figure 3.1: Multiple Front Algorithm 

 

When a structure is partitioned into smaller substructures, some of the nodes become 

common for multiple substructures and some of the nodes belong to only one 

substructure. Such common nodes are called interface nodes and the others are called 

internal nodes. After partitioning, local assembly step initiates. Stiffness matrices of 

finite elements in each substructure are computed and assembled forming the 

equation system of the substructure in such a way that the equations belonging to the 

interface nodes were stored at the end of the stiffness matrix. The stiffness matrix of 

each substructure is highly sparse. Since the internal DOFs of a substructure do not 

affect other substructures, the internal equations of each substructure are reduced to 
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the interface equations by a procedure very similar to Gauss elimination. This 

procedure is called condensation. After the condensation only interface equations of 

the substructures remain. These equations are assembled together forming the system 

of interface equations which is a dense matrix.  With the solution of this system, the 

displacement values of the interface DOFs are obtained. Then, the solution of the 

internal equations is obtained by back substitution, also called recovery, procedure. 

             

3.2.1 Partitioning  

 

Beside the solution of the linear system of equations, formation of the stiffness 

matrices and force vectors may also be very time consuming procedures in FEA. 

Because of this reason substructuring methods become an attractive way of solution 

for FEA.  In multiple front method internal DOFs of each substructure are condensed 

to the common DOFs forming the interface equations. Since the partitioning affects 

the time required for condensation of internal equations and solution of the interface 

equations, it has a significant role in the substructure based methods. Static 

partitioning is used for the problems where the computational workload can be 

calculated before the solution and remains constant during the solution. In multiple 

front algorithms, static partitioning algorithms are suitable since all substructures are 

assembled and factorized once. In this study initial partitioning was performed by the 

use of METIS [56], a software package using multilevel partitioning method. In 

Figure 3.2, a 160×160 meshed structure is partitioned into 16, 64 and 128 

substructures, by METIS [56], respectively and every substructure is presented with 

a different color.  

                     

          

Figure 3.2: 160×160 meshed structure with 16, 64 and 128 substructures  
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In addition to partitioning of a structure into substructures, the assembly sequence of 

substructures is also determined by partitioning. The aim of determining the 

assembly sequence is to form the interface equations in a way that allocating the 

resources most efficiently and avoid a processor to become idle while other 

processors are working.  

 

After partitioning, the assembly sequence for the structure is determined. This 

sequence can be expressed as an assembly tree [34]. In Figure 3.3 an assembly trees 

for a 4×4 meshed structure is illustrated. In this figure, while individual finite 

elements are shown as rectangles with dashed line borders, substructures are shown 

as rectangles with solid line borders. In Figure 3.3, the structure is partitioned into 

four substructures. The substructures in the first level (substructures 1-4) are 

assembled forming their parent structure in the second level of the assembly tree.  

 

5
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1 2

4 3

 

Figure 3.3: Assembly tree with four substructures 
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Figure 3.4: Assembly tree with eight substructures  

 

Besides the information stored by assembly trees, the number of initial substructures 

have a significant role in the performance of the multiple front algorithm. In multiple 

front algorithm assembly trees have two levels only. In the first level, there are finite 

element substructures whose number and the numbers of the finite elements in each 

substructure are defined in the partitioning stage. By assembly of these substructures 

the uppermost level in the assembly tree is obtained. In Figure 3.4 the structure 

shown in Figure 3.3, is partitioned to 8 substructures. Although both assembly trees 

belong to the same structure and they give the same results, the performance of the 

solutions differs. This difference caused by the numbers of the initial number of 

substructures of the assembly trees, which is four in the first assembly tree and eight 

in the latter one. Since the number of the substructures is less in Figure 3.3, there are 

more individual finite elements in a single substructure.  Therefore, the time required 

for condensation of a substructure in the first assembly tree more than the one in 

Figure 3.4. Moreover since the second assembly tree have more substructures, it 

allows to use more threads during condensation in parallel. But dividing the structure 

into larger number of substructure causes an increase in the size of interface 

matrices.  
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3.2.2 Condensation 

 

As the partitioning part is completed by use of METIS [56] the substructures and the 

assembly sequence are obtained and the solution is initiated with the condensation 

step. For a better understanding of the remaining steps of the solution algorithm, an 

illustrative example problem is utilized. For this purpose the 4×4 meshed structure in 

the Figure 3.5 is used for the sake of simplicity. It is divided into four substructures 

and the assembly tree presented in the Figure 3.3 is used. In Figure 3.6 the finite 

elements in the first substructure and the node numbering are illustrated, note that 

these properties are the same for the remaining of the structure. As it can be observed 

from Figure 3.5, each substructure is composed of 2×2, 4-node bilinear quadrilateral 

elements and each element has 8 DOFs. Node numbering starts from the internal 

nodes first, then it continues with the nodes contributing to interface equations, these 

nodes are shown in red color in Figure 3.6.     
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4 3

F1 F3F2

 

Figure 3.5: Example structure with 4×4 mesh 
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Figure 3.6: Substructure 1 and a bilinear 4-node membrane element 

 

In condensation process the internal DOFs are reduced to the interface DOFs. This 

process is illustrated in Figure 3.7 for the first substructure. The internal DOFs 

(DOFs 1-6) were condensed to interface DOFs (DOFs 7-16) of the substructure 

forming the interface equations of the substructure.     
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Figure 3.7: Condensation of the first substructure 

   

In direct solution approaches, condensation is completed by the partial factorization 

of the stiffness matrix till the first interface equation. In this study LDL
T
 method is 
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used for decomposing symmetric stiffness matrices. For the decomposition the 

following equations are utilized. 

 

[K] = [L][D][L]
T
                                                                                                      (3.1) 
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where,  

NEQ = number of equations 

            LEQ = number of internal DOFs 

            jl = minimum of j-1 or LEQ 

 

The formulae used in condensation procedure given in the Equations 3.1-3.6 are for 

the full matrices. In Equations 3.1-3.6, K denotes the symmetric stiffness matrix of 

the substructure, L denotes the unit lower triangular matrix, D denotes the diagonal 

matrix and F denotes the force vector of the substructure. The condensation of the 

stiffness matrix is completed by using the Equations 3.2-3.4 and the condensation of 
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the force vector is completed by using the Equations 3.5-3.6. In these equations NEQ 

refers to number of equations which equals to 16 for the first substructure. On the 

other hand   LEQ refers to number of equations to be reduced, in other words, it is 

the number of internal DOFs which equals to 6 for the first substructure.       

 

The condensation process is completed by using Equations 3.1-3.6 recursively. The 

decomposition of a sparse matrix is, however, not as straight forward as it is in a full 

matrix. Since, only the non-zero elements stored in sparse systems, a symbolic 

factorization process has to be performed for the determination of the volume and the 

calculation sequence of the non-zero elements in L. Because of this reason, the 

formulae can be applied numerically only after the symbolic factorization process.  

 

In Figure 3.8 non-zeros in the upper triangular part of the symmetric stiffness matrix 

and their storage in CSC format is illustrated. While the numbers in black above the 

matrices represent row and column IDs of the DOFs within the substructure stiffness 

matrix, the numbers in red represent the row and column IDs of the DOFs within the 

interface stiffness matrix. In the matrix, at the right side of Figure 3.8 the IDs of non-

zero elements in the storage algorithm are shown. The numbering starts from element 

in the first row, first column, then continues with the uppermost non-zero element in 

the next column. The two arrays used for the storage algorithm was shown in Figure 

3.8, col_ptr and row_ind. The col_ptr stores the locations of the first non-zero 

elements in the column, in other words the i
th

 value in col_ptr array gives the ID of 

the first non-zero element in the ith column. The row_ind stores the row indices of 

the non-zero terms. According to the size and the sparsity of the matrix, CSC format 

may be very advantageous, since it requires significantly less storage size than 

storing the same matrix in dense format. Since the non-zero terms are accessed by 

using row_ind and col_ptr arrays, the performance of the programs, however 

decreases due to the indirect addressing.   
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Figure 3.8 Non-zero elements in the stiffness matrix of 

the first substructure in CSC format  
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In sparse systems, besides the original non-zero elements, some of the zero terms 

become non-zero during the elimination process. These terms called fill-in elements. 

The transpose of L is shown in Figure 3.9. In this figure the fill-in elements were 

shown with a cross in a circle. Moreover, since a fill-in element will affect the 

subsequent calculations, a factorization sequence is also needed. This necessary 

information is obtained with the symbolic factorization in two arrays. First array 

stores the locations of the first non-zero elements in the unit lower triangular matrix. 

This array is similar to col_ptr array but it stores the non-zero values in the lower 

triangular matrix.  The second array stores the information of the next column to be 

Figure 3.9: Transpose of the unit lower triangular matrix 
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factorized, for each column. For example, since the element in the 3
rd 

column and the 

elements 5
th

-10
th

 columns, in the first row, are not zero, the first column is used in 

the elimination of these columns. With this information a sequence for the 

elimination of the matrix is obtained.  

 

The information obtained from symbolic factorization is used in the numerical 

factorization. The numerical factorization calculates the values and places of non-

zero terms of L matrix and the values in the main diagonal of D matrix by using Eq. 

3.2-3.4. It continues until the first interface DOF of the substructure, which is 7
th

 

DOF in the example case. The square matrix and the vector under that DOF in the 

substructure stiffness matrix and the force vector, give the condensed equations of 

the substructure those will contribute to the interface stiffness matrix and interface 

force vector. The condensed part of the stiffness matrix was shown in the red box, in 

Figure 3.9. This part is also called Schur complement.  

 

3.2.3 Assembly and Solution of Interface System 

 

After the condensation of the all substructures, the condensed parts should be 

assembled according to the assembly tree of the structure to form the interface 

equations. In Figure 3.10 the assembly of the condensed substructures was 

illustrated. As it was shown in the figure, every substructure is condensed to its 

interface DOFs, which are shown in red. Then these substructures are assembled 

according to the assembly tree of the structure. The fifth structure is the parent node 

of the substructures and it is the final structure in the assembly tree. While the 

original structure has 23 nodes with 46 equations, the final assembled structure has 9 

nodes with 18 equations. The remaining 28 equations are the internal equations to be 

solved within each substructure after the interface equations are solved and sent back 

to the substructures. 
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Figure 3.10: Assembly of Substructures 
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Figure 3.11: Assembly of Interface Matrix 
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As the assembly of the structures operations was shown in Figure 3.10, the assembly 

of the stiffness matrices of the substructures was shown in the Figure 3.11. In this 

figure the condensed matrices were denoted by Kc1, Kc2, Kc3 and Kc4 for the 

substructures 1, 2, 3 and 4 respectively. The final interface stiffness matrix belonging 

to fifth substructure was denoted by Kc. For each row and column of the condensed 

stiffness matrices of the substructures, the corresponding row and column IDs of the 

final interface matrix were shown with the red numbers, on the above and the right 

side of the substructure condensed stiffness matrices. For example the element on the 

second row and third column in Kc4 matrix will contribute to the element on the 

sixth row and seventh column in the final interface matrix Kc. Therefore substructure 

condensed stiffness matrices and condensed force vectors are assembled according to 

these numbers, which are given as input information with the assembly tree. After 

the assembly of the condensed stiffness matrices of the substructures, the interface 

equation system is obtained. Since the obtained system of equations is dense, its 

solution is straight forward.  

 

3.2.4 The Solution of Internal Equations 

 

After the solution of the interface equations, the displacement vector belonging to the 

interface DOFs are obtained. Interface DOFs are sent to each substructure. With the 

known interface displacements, the only unknowns are the displacement values of 

the internal DOFs within each substructure. To obtain the solution of the whole 

structure the internal equations of every substructure have to be solved as a final step. 

In Figure 3.12 the system of equations for the first substructure after the solution of 

the interface equations, was illustrated. In the left hand side, the factorized stiffness 

matrix and displacement vector of the substructure were shown. In the displacement 

vector, the displacement values of the internal DOFs, those have to be computed 
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were shown as “?” and the known displacement values belong to interface DOFs of 

the system were denoted as dci. By using the portion of the factorized stiffness 

matrix in the blue box and the known displacement values of the interface DOFs, the 

internal equations were computed recursively by starting from the last internal DOF 

in the substructure. While dense solution algorithms are used for the solution of the 

interface equations, recovery process is handled by sparse algorithms as it is in 

condensation operation. With the solution of internal equations within the each 

substructure, the solution is finalized 

  

 

  

 

 

Figure 3.12: System of Equations for Substructure 1 



 

43 

 

 

3.3 GPU Implementation 

 

The kernels used for the GPU implementation of the algorithm were shown in the 

Figure 3.13. As it is mentioned before the algorithm is composed of five main steps 

which are: partitioning, local assembly, sparse matrix condensation, assembly and 

solution of the interface equations and the back substitution. Only the last three steps 

of the solution algorithm, i.e. condensation, assembly, and solution of interface 

equations are handled by GPU. 

 

3.3.1 Sparse Condensation 

 

In this step GPU_SparseSymbolic and GPU_SparseCondense kernels, which are 

responsible for the completion of the symbolic sparse factorization and the numerical 

factorization respectively, are used. Since the algorithms for the symbolic and the 

numerical factorization of a sparse matrix are sequential, no parallelism can be 

obtained from the operations within the condensation procedure of a single 

substructure. Because of this reason the only parallelism can be obtained by creating 

multiple threads, each of whom is responsible for the condensation of one 

substructure. In other words the number of the threads created for symbolic 

factorization and numerical factorization is equal to the number of substructures. 

Thus, each thread is responsible from the factorization operations of a single 

substructure and can only reach to the data related with that substructure. Since the 

amount of the data is too large for shared memory, data is stored in global memory, 

causing a decrease in the performance of the algorithm.   
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GPU_SparseSymbolic

GPU_SparseCondense

GPU_MapperInt

culaDeviceSgesv

GPU_SparseRecover

Sparse Condensation

Assembly and Solution of 

Interface Equations

Solution of Internal Equations

 

 

Figure 3.13: Subroutines used for GPU implementation of multiple front 

algorithm 
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3.3.2 Assembly and Solution of Interface Equations 

 

Assembly of the interface equations is completed by GPU_MapperInt kernel. The 

number of the operations completed in the GPU_MapperInt and its effect to the 

performance of the algorithm is negligible according to other functions such as 

GPU_SparseCondense kernel. Because of this reason, an algorithm, which can be 

easily implemented, is chosen. 

 

Since elements from different Schur complements of the substructures may be 

addressed to the same location in the interface equations, the mapping operations of 

the substructures are completed sequentially to avoid race condition. On the other 

hand, because of the reason that each element within the same substructure has 

different locations in the interface equations, the mapping operations can be 

completed concurrently within a substructure. In other words, during the 

GPU_MapperInt kernel a thread block is created, this thread block starts mapping 

operations of the first substructure. Each thread assembles an element from the Schur 

complement of the first substructure to the interface equations in parallel. After the 

completion of the mapping operations of that substructure, thread block starts 

mapping of another substructure. 

 

After the assembly of the interface equations, a dense matrix solver for the solution 

of the interface system is required. For this purpose a commercial GPU accelerated 

linear algebra library, CULA [57] was used. CULA includes various linear algebra 

functions for single and double precision. Besides the host function, CULA also 

includes device functions where the data in the GPU memory can be used directly. 

culaDeviceSgesv function is a CULA subroutine, which is a device function using 

the data directly from the GPU memory, and solves the linear system of equation by 

using Gauss elimination. 
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3.3.3 Back Substitution 

 

The final step of the algorithm is the solution of the internal equations of the 

substructures. After the solution of interface equations, the remaining internal DOFs 

of each substructure are calculated by the GPU_SparseRecover kernel. Like the 

sparse matrix factorization, the solution of the internal equations, in other words 

recovery operations, should be completed in order within the stiffness matrix of a 

substructure. On the other hand, the recovery operations of different substructures 

can be managed concurrently.  Thus, the algorithm for the recovery operations is 

parallel in substructure level but sequential within the substructures. As for the 

factorization operations, one thread is created for each substructure, and these threads 

complete the recovery operations of those substructures. 

 

3.4 Test Problems and Results 

 

The performance of the multiple front algorithm was tested for different structures 

divided into various numbers of substructures with different GPUs. Two test 

structures with different sizes were used for the testing the performance of the 

algorithm. The first structure is composed of 50×50 shell elements. Each shell 

element has 4 nodes, with 6 DOFs for each node. The equation system has a size of 

15000 equations. This system was partitioned into 8, 16, 32 and 64 substructures. 

The time values obtained from the solution of the first structure with the graphic 

cards GTX 275, GTX 580 Amp and Tesla C2050 were presented in the Figure 3.14. 
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Figure 3.14: Solution time values obtained from the solution of the structure 

with 50×50 elements   

A larger structure with 160×160 shell elements, having 153600 equations, was used 

as the second testing structure. This structure was partitioned into 16, 32, 64 and 128 

substructures. But, since the larger number of substructures yields interface equations 

with larger sizes, the global memory sizes of GTX 275 and GTX 580 Amp were 

insufficient for the solution of the structure with large number of substructures. 

Because of this reason the solutions of the structure with 16 and 32 substructures 

were obtained from GTX 275 graphical card and the solutions of the structure with 

16, 32 and 64 were obtained from GTX 580 Amp graphical card. On the other hand, 

the size of the global memory of Tesla C2050 was sufficient for the solution of the 

structure with 16, 32, 64 and 128 substructures. The solution time values of the 

second structure with different numbers of substructures were presented in Figure 

3.15. 
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Figure 3.15: Solution time values obtained from the solution of the structure 

with 160×160 elements   

 

As it can be observed from the Figure 3.14 and Figure 3.15, larger numbers of 

substructures yield shorter solution time for the solution of the both structures. In 

Figure 3.15 since the solution of the structure with 128 substructures could be 

obtained only with Tesla C2050, the shortest time period for the solution of the 

second structure was obtained from this GPU. On the other hand, GTX 580 Amp has 

the best performance for the same number of substructures among the performances 

of the solver on GTX 275 and Tesla C2050. The main reason of this situation is 

caused by the maximum number of floating point operations per second that the 

device is capable of.  This value is 1581.1 GFLOPs, 1030.4 GFLOPs and 1010.9 

GFLOPs for GTX 580 Amp, Tesla C2050 and GTX 275 respectively. As a result it is 

expected that GTX 580 Amp solves the same system of equations in a shorter period 

of time than GTX 275 and Tesla C2050. 

 

The ratios of elapsed time periods in each solution step to total solution time of the 

50×50 element structure divided into 8 and 64 substructures were presented in Figure 

3.16. The pie charts given in the upper side of the figure belong to the solution of the 

structure with 8 substructures, whereas the pie charts given in the lower side belong 
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to the solution of the structure divided into 64 substructures. According to the figure 

it can be observed that, while the time passed during the sparse condensation 

shortens, the elapsed time during the solution of interface equations increases with 

the increasing number of substructures. Moreover, this situation is valid for all of the 

GPUs used in the tests. Although the GTX 580 Amp and Tesla C2050 have similar 

architectures, the portions of solution time of the steps in these GPUs differ. The 

reason of this situation is caused by the fact that since the sparse condensation part 

cannot fully utilize the computational power of the GPUs, this step is completed 

faster in GTX 580 Amp than Tesla C2050, because the clock rate of GTX 580 Amp 

is greater. However, an optimized package used for the solution of interface 

equations, the time passed in this step is very close to each other for both GPU. This 

causes the difference between the amounts of portions of time passed in each step for 

these two GPUs.       

 

           

  

 
Figure 3.16: The effect of solution steps to the solution time of structure with 

50×50 elements with 8 and 64 substructures 
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When the problem size becomes larger, elapsed time values of the solution steps 

change drastically with the increasing number of substructures. As in the first 

structure, the increasing number of substructures yields a decrease in the elapsed 

time for the sparse condensation and an increase in the elapsed time of the solution of 

the interface equations. The values of time passed during these steps in the solution 

of the structure with 160×160 elements by using Tesla C2050 were shown in Figure 

3.17. For increasing the performance of the solver, increasing the number of 

substructures becomes helpful for shortening the time passed during the sparse 

condensation. However, as it can be observed from the Figure 3.16 and Figure 3.17 

increasing the number of substructures causes an increase in the solution time of the 

interface equations.  This increase caused by the increase in the size of the interface 

equations. In Figure 3.18 the sizes of interface equations of both systems for the 

various numbers of substructures were presented. Consequently, this situation causes 

an increase in the solution time of the interface equations. Thus, increasing the 

number of substructures yields an increase in the performance of the solver due to 

the performance gain in the sparse condensation part, but after a point increasing the 

number of substructure causes a performance loss in overall due to the increase in the 

solution time of the interface equations. 

 

Figure 3.17: The sparse condensation time and solution time of the interface 

equations for 160×160 structure     
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Figure 3.18: Sizes of interface equations of both structures for various numbers 

of substructures 

 

Sparse condensation is sequential within each substructure stiffness matrix. Because 

of this reason only way to parallelize this part is increasing the number of the 

substructures. On the other hand increasing number of substructures causes an 

increase in the size of the interface equations. There are two disadvantages of this 

situation which are: 

 The increasing size of the interface equations causes an increase in the 

solution time of the interface equations 

 The global memory of the graphical cards becomes insufficient for storing the 

large size of interface equations  
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CHAPTER 4 

 

 

GPU MULTIFRONTAL SOLVER 

 

 

 

4.1 Introduction 

 

This chapter includes the detailed information about the multifrontal solution method 

and its implementation on GPU architecture. In the first section of this chapter main 

steps of the multifrontal algorithm, which are partitioning, local assembly, 

condensation, assembly and solution of the interface equations and the back 

substitution are presented. In the following section, the implementation of the 

multifrontal solution method on GPU architecture is given. Finally, the test problems 

are introduced and the results obtained from these tests are discussed.  

 

4.2 The Multifrontal Algorithm 

 

The flowchart of the multifrontal solution algorithm is illustrated in Figure 4.1. 

Similar to the multiple front algorithm the multifrontal solution algorithm involves 

the partitioning, local assembly sparse condensation, assembly and solution of the 

interface equations and sparse recovery steps. In addition to these steps dense 

condensation and dense back substitution steps are also part of the multifrontal 

algorithm. The algorithm initiates with partitioning of the structure into several 

substructures. Besides the division of the structure, the formation of an assembly tree 

is also completed in the partitioning step.  
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Figure 4.1: Multifrontal Algorithm 
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In multiple front algorithm after the sparse condensation step all the substructures are 

assembled together forming the interface equations, however in multifrontal 

algorithm substructures are assembled in multiple steps. After the assembly and 

solution of the interface equations, the back substitution is also completed in multiple 

steps and the algorithm is finalized.  

 

4.2.1 Partitioning 

 

Besides the division of the structure into substructures, in multifrontal algorithm it is 

required to determine the assembly tree with multiple levels. In Figure 4.2 an 

assembly tree for a 4×4 meshed structure is shown.  

 

7

5

6

1 2

4 3 1 2 3 4

5 6

7

1st Level

2nd Level

3rd Level

 

 Figure 4.2: Assembly tree for a 4×4 square mesh with three levels 

 

Finite elements are illustrated as the squares bordered with dash lines, on the other 

hand the substructures are illustrated as the shapes with bordered with solid lines. As 



 

55 

 

it can be observed from the figure, there are three levels in the assembly tree. In the 

first level there are four substructures each of which has four finite elements. These 

substructures are determined by the initial partitioning procedure. In the second level 

there are two intermediate substructures. These substructures are formed by the 

assembly of the Schur complements of the substructures in the first level. And in the 

third level, the Schur complements of the substructures in the previous level are 

assembled. As it was mentioned before, the substructures in the first level are 

determined by METIS [56] with multilevel partitioning algorithm in this study. On 

the other hand for the formation of the substructures in the intermediate level (2
nd

 

Level), the information of which substructures should be matched to be assembled 

with each other forming the intermediate substructures is required. 

 

In order to determine of the intermediate substructures of the assembly tree, an 

algorithm is implemented. The main goal of this algorithm is forming the smallest 

sized intermediate substructures, to decrease the number of dense condensation 

operations and the required amount of memory. Because of this reason the logic of 

the algorithm is based on matching the substructures which have the largest number 

of common DOFs. According to this algorithm the intermediate substructures are 

determined according to the three rules, which are as follows: 

1. Only two child substructures are assembled to form their parent node. 

2. The two child substructures which have largest number of DOFs in common 

are chosen to be assembled together from the unmatched substructures. 

3. If a substructure has same number of common DOFs with multiple 

substructures, it is assembled with the substructure that has the smallest ID.  

 

For a better understanding of the algorithm, formation of an assembly tree for a 

10×10 meshed structure with eight substructures is illustrated in Figure 4.3 as an 

example. On the right side of Figure 4.3, the assembly tree of the structure is 

illustrated. The assembly tree has four levels. On the left side of each level of the 

assembly tree, a table showing the number of common equations between the 
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substructures and the number of equations of each substructure at that level is 

presented.  In these tables, while the off diagonal values give the number of common 

equations between two substructures, the diagonal values give the number of 

equations of that structure. When the table for the first level is examined, it can be 

observed that the first structure has the largest number of common equations, which 

is 30, with the sixth substructure. Thus, they are matched together to be assembled 

and the cell showing the number of common equations between the first and the sixth 

substructure is colored to blue. Also in the assembly tree the lines, those are 

connecting the first and the sixth substructure to the ninth substructure, are colored to 

blue too. After matching the first pair, the unmatched substructure with the smallest 

ID, which is second substructure, is chosen. Second substructure has the largest 

number of common equations with the fifth substructure. Consequently, the second 

and the fifth substructures are matched to be assembled together.  The same 

procedure is repeated and all the substructures in the first level are matched and 

assembled. After the substructures in the second level are determined, the same table 

is formed for the substructures in the second level. According to the number of the 

common equations between the substructures, they are matched together to be 

assembled. This procedure continues until the last structure is formed. As a result, 

the formation of the assembly tree is completed.  

 

The 160×160 meshed structure with 16 substructures is assembled according to this 

algorithm in Figure 4.4. The substructures in the each level of the assembly tree are 

presented with different colors. 
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Figure 4.3: Assembly tree for a 10×10 square meshed structure with 8 
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Figure 4.4: Assembly of 160×160 structure with 16 substructures 
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4.2.2 Sparse Condensation 

 

The multifrontal algorithm is very similar to the multiple front algorithm. The sparse 

condensation, solution of interface equations and the sparse recovery parts are 

common for both of the algorithms. In the multifrontal algorithm, however, after the 

sparse condensation part, the intermediate substructures are still condensed to form 

higher level intermediate substructures by dense matrix condensation techniques. At 

this point, it is more convenient to give an example for better comprehension of the 

algorithm. The illustration of the example structure was given in Figure 4.5. 

1 2

4 3

F1 F3F2

 

Figure 4.5: Example structure with 4×4 mesh 
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Figure 4.6: Substructure 1 and a bilinear 4-node membrane element 

 

The assembly tree in Figure 4.2 is used for the multifrontal algorithm. In Figure 4.5 

and Figure 4.6 the example structure and the first substructure are illustrated. The 

structure is divided into four substructures. Each substructure has 2×2 bilinear 

quadrilateral finite elements. Also the DOFs of the substructure and the node 

numbering can be seen in the Figure 4.4. 

 

Multifrontal algorithm initiates with the sparse matrix condensation part as the 

multiple front algorithm. In this procedure, condensation of the substructures in the 

first level is completed. The internal equations of the substructures are condensed to 

the interface equations of the substructure. Condensation of the first substructure was 

illustrated in Figure 4.7. As it can be observed from the figure, the internal DOFs 

(DOFs 1-6) were condensed to interface DOFs (DOFs 7-16) of the substructure 

forming the Schur Complements of the substructures.  
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Figure 4.7: Condensation of the first substructure 

 

4.2.3 Assembly of Intermediate Substructures 

 

In multifrontal algorithm assembly of the Schur Complements of the first level 

substructures gives the intermediate substructures. Assembly of Schur Complements 

of the first two substructures and the last two substructures are illustrated in Figure 

4.8 and Figure 4.9 respectively. As it is shown in Figure 4.8, the first and second 

substructures are assembled together forming the fifth substructure in the second 

level of the assembly tree. And in Figure 4.9, the third and the fourth substructures 

are assembled to form the sixth substructure. As it can be observed from the figures, 

DOFs 5-14 of both substructures are common, these DOFs contribute to the interface 

system and the DOFs 1-4 are internal DOFs, these DOFs are condensed to the 

interface DOFs.  

  



 

62 

 

3

4

1
2

5

6

7

8

9

10

3

4

1
2

5

6

13

14

11

12

1 2

A
SSEM

B
LY A

SSEM
B
LY

579 1311

3
4

1
2

5

6810 1412

 

Figure 4.8: Assembly of the first two substructures 
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Figure 4.9: Assembly of the last two substructures 
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4.2.4 Dense Condensation 

 

After assembly of the Schur Complements of the first level of substructures 

(Substructures 1-4) forming the intermediate substructures (Substructures 5-6), the 

internal equations of the intermediate substructures were condensed to the interface 

equations of the higher level substructures (Substructure 7).  But this time the 

condensation procedure is handled by the dense matrix condensation algorithms, 

since the system of equations of the intermediate substructures is dense. The 

condensation procedures of the intermediate substructures are illustrated in Figure 

4.10 and Figure 4.11. As it can be observed from the figures, instead of assembling 

the all of the substructures forming a single structure at once, the size of the system 

of equations is continued to be reduced at each intermediate levels of the assembly 

tree by condensation procedure.  
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Figure 4.10: Condensation of the fifth substructure 
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Figure 4.11: Condensation of the sixth substructure 
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As it is mentioned before, dense matrix algorithms are used for the condensation 

procedure of the intermediate substructures. Although the main operations are same 

with the sparse matrix condensation operations, the dense matrix condensation 

operations can be completed in parallel within the matrix. The reason of this situation 

is caused by storage and addressing of the data required for the operations. Since 

only non-zero terms are stored for storage of a sparse matrix, condensation procedure 

requires to be completed in sequential by use of indirect addressing in large amounts. 

However, in dense matrix condensation algorithms, since the data required can be 

accessed directly, the operations can be completed concurrently within a matrix. As a 

result, dense condensation operations can be completed more efficiently than sparse 

condensation operations. Since main theory is the same for both sparse and dense 

condensation algorithms, the detailed information about the mathematical formulae 

used in the condensation procedure was not repeated in this section. This information 

can be found in the previous chapter. However, the implementation of dense 

condensation algorithm is different from its implementation for the sparse systems, 

the detailed information about the GPU implementation of the dense condensation 

algorithm can be found in the following sections of this chapter. 

 

4.2.4 Assembly and Solution of Interface Equations 

 

After the condensation of the internal equations of all intermediate substructures, a 

final assembly operation has to be completed before the solution of the interface 

equations. With this assembly, the equation system of the uppermost structure (7
th

 

structure) in the assembly tree is formed. This assembly operation is illustrated in 

Figure 4.12.  
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Figure 4.12: Assembly of the fifth and sixth substructures 
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As it can be observed from the figure, the Schur Complements of the fifth and sixth 

substructures are assembled forming the final interface equations. This system of 

equations is called “final”, because these are the equations which will be solved 

before the back substitution procedure. Note that, while the size of the final interface 

equation system is a 10×10 matrix in multifrontal algorithm, the size of the final 

interface equations system is 14×14 matrix in multiple front algorithm. Since the size 

of the example structure is not so large, the difference between the sizes of the 

interface equations systems formed in the two algorithms is not so significant. 

However this difference grows dramatically for the problems with large sizes.   After 

the assembly of the final interface equations, this system of equations is solved with 

the same way in the multiple front algorithm.  

 

4.2.5 Dense Back Substitution 

 

The results obtained from the solution of the interface equations are sent back to the 

lower level substructures in the assembly tree by back substitution procedure. As it is 

mentioned before the assembly tree gives the condensation and assembly sequence of 

the substructures from the down to up, and the back substitution sequence from up to 

down. For each substructure with the back substitution operation the solution of the 

internal equations of these substructures are obtained. According to the assembly 

tree, the displacement values of the fifth substructure are transferred to the first and 

second substructures. And the displacement values of the sixth substructure are 

transferred to the third and fourth substructures. This step is repeated until the 

substructures in the bottom level of the assembly tree are reached. Same operations 

for sparse recovery presented in the previous chapter are used for dense back 

substitution step also. The subroutines differ from each other with the type of data 

access for the arithmetic operations. While indirect addressing has to be used for 

sparse systems, the required data can be accessed directly in the dense systems. 
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4.2.6 Sparse Back Substitution (Recovery) 

 

With a last back substitution operation the displacements of the internal DOFs of the 

substructures in the first level (Substructures 1-4) are obtained, giving the solution of 

the whole structure. This step is exactly same with the one used in the multiple front 

algorithm. The detailed information about this step can be found in previous chapter. 

 

4.3 GPU Implementation 

 

In addition to multiple front algorithm, the multifrontal algorithm includes some 

additional subroutines for the dense condensation and dense back substitution 

operations for the intermediate substructures. Beside these additional subroutines the 

GPU implementation of the algorithm is same with the GPU implementation of the 

multiple front algorithm.  

 

In Figure 4.13 the subroutines used in the GPU implementation of the algorithm 

were presented. As it can be observed the figure the most of the parts of the 

multifrontal algorithm are common with the multiple front algorithm. These parts 

were illustrated in the figure as black boxes. In addition to the multiple front 

algorithm, only the dense condensation and the dense back substitution parts are 

included in the multifrontal algorithm and these parts were illustrated in the figure as 

red boxes. In this section only GPU implementation of these additional subroutines 

will be presented, detailed information about the GPU implementation of the 

remaining parts can be found in the previous chapter. 
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Figure 4.13: Subroutines used for GPU implementation of multifrontal 

algorithm   
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4.3.1 Dense Condensation 

 

The dense condensation algorithm has two levels of parallelism. The first one is 

substructure level parallelism, meaning that each dense matrix belonging to a 

substructure is condensed in parallel by thread blocks assigned to them. In the second 

level of parallelism, each thread in a thread block is responsible for the calculation of 

the elements of a column in the dense matrix. Since the system is already partitioned 

to the substructures, the first level of the parallelism can be obtained easily by just 

assigning a thread block for each substructure in the same level of the assembly tree. 

However, to parallelize the condensation operations within a single matrix, the 

condensation operations should be divided into portions those can be executed by 

threads concurrently. In Figure 4.14 the sequential algorithm of condensation 

procedure is given. In the algorithm, A is the dense matrix and nrows, ncols and 

SSchur denote the number of rows, number of the columns and the size of the Schur 

Complement of the matrix A respectively. In the algorithm “loop i” defines the row 

that will be used for the elimination operation; the “loop j” defines the row that will 

be changed and the “loop k” changes the elements in each column in the j
th

 row of 

the matrix A. In the GPU implementation of the algorithm, the “loop k” is removed 

and the each thread assigned to a column. So the elements in different columns are 

calculated by different threads concurrently.    

     

 

for i:=0 to (nrows-1)-SSchur /* First Loop*/ 

 for j:=i+1 to nrows-1  /* Second Loop*/ 

  coeff:=-A[j,i]/A[i,i]; 

  for k:=i to ncols-1 /* Third Loop*/ 

   A[j,k]:= A[j,k]+coeff*A[i,k]; 

  endfor 

endfor 

endfor 

Figure 4.14: Sequential dense condensation algorithm 
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An illustration of the GPU implementation of dense condensation of a single dense 

matrix is shown in Figure 4.15, Figure 4.16 and Figure 4.17 for each step of the first 

loop. In these figures the condensation operations of a 5×5 matrix with a 2×2 Schur 

Complement are presented. The rows and columns of the matrix were bordered with 

black solid lines whereas the Schur complement of the system is bordered with 

dashed lines. The threads used in the algorithm are shown above the matrix and 

denoted with “T” letter. In this example 4 threads are used in the condensation 

operations. According to the size of the matrix and the Schur complement nrows=5, 

ncols=5 and SSchur=5, so the first loop continues from zero to two for this example. 

In Figure 4.15 the variable i in the first loop equals to 0, so the elements in row 0 and 

column 0 are used for the calculation of the coeff variable. This row and the column 

are colored in blue. The elements on the right side of the column 0 and below the 

row 0 was calculated by the threads.  Since the stiffness matrices are symmetric only 

upper triangular parts of the matrices are stored in this algorithm. Because of this 

reason in Figure 4.15, first thread (T0) updates the element in row 1 and column 1, 

the second thread (T1) updates the element in rows 1-2 in column 1, the third thread 

(T2) updates the elements in rows 1-3 in column 3 and finally the fourth thread (T3) 

updates the elements in rows 1-4 in column 4.  

T0 T1 T2 T3
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Figure 4.15: The condensation operations when i=0    
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Before initiating the condensation operations in the second step of the first loop, it is 

required that all of the threads completed their calculations because of this reason a 

barrier function is needed. Since all threads belong to the same thread block, 

__synchtreads() function can be used for synchronization of the threads. In Figure 

4.16 the condensation operations completed when i=1 are illustrated. As it can be 

observed from the figure the first thread becomes idle, since calculation of all 

elements in the column 1 is completed in the previous step.   
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(1,2)

(2,2)
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(0,4)
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(2,4)

(3,4)
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Figure 4.16: The condensation operations when i=1   

 

The condensation operations completed when i=2, are illustrated in Figure 4.17. At 

this step the first and second threads become idle and the third and fourth threads 

calculate the elements in the Schur complement of the matrix. Note that the first loop 

stops at the row and column where the Schur Complement begins. As a result, the 

condensation of the matrix is completed with the end of this step.      
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Figure 4.17: The condensation operations when i=2    

 

There are some disadvantages of the algorithm. First, since each thread block is 

responsible for the calculation of a single matrix, larger number of matrices allows 

execution of larger number of threads. Because of this reason algorithm performance 

is expected to be higher in the lower levels of assembly tree where the number of 

matrices to be condensed is larger than the higher levels. Another disadvantage of the 

algorithm is caused by the column-wise algorithm implemented for condensation 

procedure of a single matrix. As it is mentioned before, during the condensation 

procedure a significant portion of the sources becomes idle. Besides, these 

disadvantages, the algorithm’s ease of implementation and requirement for less 

memory due to the storage of only upper triangular part of the matrix, are important 

advantages and they are reasons for the implementation of this algorithm. 

 

Since the size and the number of the matrices for large structures become too large, 

the shared memory, which has a high data transfer rate, cannot be used for the 

storage of the data. Because of this reason global memory is used for the storage of 

the data required for the dense condensation operations.  
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4.3.2 Dense Back Substitution 

 

The back substitution of a system is sequential by nature for single right hand side 

vector. Furthermore, it is observed from the test results obtained in the previous 

chapter that the effect of back substitution part is not so significant on the overall 

performance of the solver. Because of these reasons back substitution operations 

calculated in parallel in substructure level but sequential within a system of equations 

of a substructure. 

 

4.4 Test Problems and Results 

 

The performance of the multifrontal algorithm is tested by 160×160 elements. The 

solution time values for various numbers of substructures obtained from GTX 275, 

GTX 580 Amp and Tesla C2050 are presented in Figure 4.18, Figure 4.19 and Figure 

4.20 respectively. Note that, the acronym MPF denotes multiple front algorithm and 

MF denotes the multifrontal algorithm in these figures. 

 

 

Figure 4.18: Solution time of the structure with 160×160 elements with GTX 275 
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As it can be observed from the Figure 4.18, the structure can be solved by multiple 

front algorithm only when the number of substructures is small enough for the 

storage of the interface equations in the GPU memory. On the other hand since the 

size of the interface equations becomes smaller in the multifrontal algorithm, the 

structure can be solved with 16, 32, 64 and 128 substructures. Since the sparse 

condensation time decreases with the increasing number of the substructures, the 

smallest solution time value is obtained from the solution of the structure with 128 

substructures by using the multifrontal algorithm. 

 

Figure 4.19: Solution time of the structure with 160×160 elements with GTX 580  

 

Figure 4.20: Solution time of the structure with 160×160 elements with Tesla 

C2050 
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The test results of solution of the same structure by using GTX 580 Amp and Tesla 

C2050 were presented in Figure 4.19 and Figure 4.20 respectively. When the two 

algorithms were tested for the same number of substructures, the multiple front 

algorithm solves the system in a shorter time period than the multifrontal algorithm 

for both GPUs. To find the reason of this situation the effect of each solution step to 

the total solution time was investigated. The ratios of time values passed in the 

solution steps to the total solution time of the 160×160 with 128 substructures were 

presented in Error! Reference source not found. 

 

As it can be observed from Figure 4.21, dense condensation and sparse condensation 

parts are the most time consuming parts for all GPUs. For a better understanding of 

the bottlenecks, factors affecting the performance of these parts were examined. For 

this purpose, NVidia Compute Visual Profiler [58] was used as profiling tool to 

analyze the performance of the algorithm for the solution of 160×160 meshed 

structure with 128 substructures. The results for the analysis of the performance of 

the algorithm in GTX 580 AMP can be summarized as follows: 

 The execution of GPU_SparseCondense kernel takes 13.32% and 

GPU_MFDenseCondense kernel takes 85.33% of execution time of whole 

algorithm, which is 98.65% in total. The time required for data transfer 

between host and device is 0.02%. 

   

Figure 4.21: The effect of solution steps to the solution time of structure with 

160×160 elements with 128 substructures 
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 In sparse condensation step, since the parallelism is limited with the 

substructure level, number of substructures is too small for the use of full 

performance of the GPU. In addition, due to the size of the matrices and the 

storage algorithm of the sparse systems, instead of shared memory, global 

memory with lower throughput and higher latency (400-800 cycles) [59] had 

to be used. This latency could not be overlapped due to the small number of 

threads. Moreover, threads are executed in groups called warps. If the threads 

in the same warp do not execute the same thread instructions, it causes 

significant performance loss. This situation is called divergent branching 

[58]. The divergent branching can be caused by if-else statements or loops 

with different start and end conditions. The ratio of different thread 

instructions those are executed by the threads of the same warp to the all 

thread instructions in that kernel is defined as control flow divergence [58]. 

This ratio is an indicator for performance loss due to divergent branching and 

it should be as low as possible. Since each thread completes the different 

number of operations of different substructures in the sparse condensation 

step, this ratio is 96.88 % showing that this step was suffered from this kind 

of performance loss. Additionally a performance loss occurred due to the 

indirect addressing in this step. As a result of these performances losses, the 

achieved global memory throughput was 10.47 GB/s where it equals to 

5.32% of the peak performance global memory throughput of the graphic 

card showing that the performance of sparse condensation step is low.                 

 

 The performance of the dense condensation step varies with the level of the 

assembly tree. The ratio of dense condensation time of each level to the total 

dense condensation time for the 160×160 meshed structure with 128 

substructures is presented in Figure 4.20.  For the structure partitioned to the 

128 substructures, the assembly tree has log2(128)+1=8 levels, where the first 

level has 128 substructures and the last level has one substructure. As it was 

mentioned before, the dense condensation procedure is used at intermediate 

levels of the assembly tree (Levels 2-7). Because of this reason, there are six 
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levels starting from Level 2 and ending with Level 7 in the y axis of Figure 

4.22. 

 

 

Figure 4.22: The ratio of dense condensation time values to total dense 

condensation time 

   

 

According to the Figure 4.22 the dense condensation time values increase 

with the increasing level in the assembly tree. Since in upper levels of the 

assembly tree, the number of substructures decreases; so smaller number of 

thread blocks can be allocated. As a result at the upper levels, smaller number 

of threads can be executed concurrently than the lower levels. Another reason 

for the lower performance at the upper levels of the assembly tree is caused 

by the divergent branching. Due to the increase in the size of the matrices, the 

percentage of control flow divergence reaches to 92-97% for the dense 

condensation step in upper levels of the assembly tree. When the ratio of 

achieved global memory throughput to the peak global memory throughput is 

taken as a performance indicator, it was observed that this ratio becomes 1-

5% for the top two levels in the assembly tree, whereas it is 50% at the lowest 

level.    

 

Although the sparse condensation algorithm is not so flexible for changes to improve 

the GPU utilization, the dense condensation step may be improved by redeveloping 
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the algorithm by taking the memory access and thread instructions of the threads in 

the same warp into account. With a new algorithm using shared memory and 

allowing execution of larger number of threads also in the upper levels of the 

assembly tree may yield a significant performance gain. However, besides these 

changes, to improve the performance of the solver, an important performance gain 

can be obtained with the modification of the algorithm used for forming the assembly 

trees.  

 

Two different assembly trees for the same structure, which have eight substructures 

initially, are presented in Figure 4.23. The assembly tree on the left side of the figure 

is formed according to the algorithm mentioned in the section 4.2.1. When the 

algorithm forming this assembly tree is used in the tests, it is observed that the dense 

condensation of the upper levels takes too much time. Thus, instead of assembling 

the substructures two by two, all substructures at a level, where interface system is 

small enough to be stored in GPU memory, can be assembled to final substructure as 

it is shown on the right side of the figure. In this assembly tree, the eight 

substructures in the first level are assembled forming the four substructures in the 

second level, but the substructures in the second level are assembled forming the 

final substructure. Thus the new assembly tree does not include upper levels of the 

previous assembly tree where the performance of the dense condensation is the least.  
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Figure 4.23: Two different assembly trees for the structure with eight initial 

substructures 

The shortest solution time values of the structures with 160×160 elements for all 

algorithms are presented in Figure 4.24. In the figure acronym “MLMF” denotes 

Multi-Level Multifrontal method referring to new algorithm for formation of the 

assembly trees. As it can be observed from Figure 4.24, the smallest solution time 

values were obtained from the MLMF method. While the performance difference 

between this algorithm and the multiple front algorithm is significant for GTX 275 

and GTX 580 Amp, this difference is very small for Tesla C2050. Because, the 

system with 128 substructures cannot be solved with multiple front algorithm with 

GTX 275 and GTX 580 Amp due to insufficient GPU memory. But with the multi 

frontal algorithm and MLMF algorithm the system partitioned into 128 substructures 

can be solved, consequently the sparse condensation time is much smaller than the 

multiple front algorithm. However, the performance of the multifrontal algorithm is 

negatively influenced by the low performance dense condensation of substructures at 

upper levels in the assembly tree. But in MLMF algorithm sparse condensation time 

is much shorter than the multiple front algorithm, in addition to this, dense 

condensation time is significantly less than the multifrontal algorithm. On the other 

hand, since the structure partitioned into 128 substructures can be solved with 

multiple front algorithm, the sparse condensation time values for all of the algorithms 

are same with each other. So small difference between the solution time of the 

multiple front algorithm and the MLMF algorithm is caused by the decrease in the 
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solution time of the interface equations according to the decrease in the interface 

equations size due to the dense condensation in the MLMF algorithm. 

 

 

Figure 4.24: The shortest solution times obtained from the solution of 160×160 

meshed structure with the three methods 

        

As a final test a larger system with 200×200 elements is solved with GTX 580 Amp 

and Tesla C2050. Since the size of the global memory of GTX 275 is insufficient for 

the problem. It is not tested with GTX 275. Moreover the results are compared with 

the solutions obtained from Intel Core2 Quad 2.5 GHz clock time computer by using 

MUMPS [38], a software package for solution of sparse systems by using 

multifrontal algorithm. The results are presented in Figure 4.25. 
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Figure 4.25: The solution time of the 200×200 structure with different 

architectures. 

 

In Figure 4.25 the results are obtained from the structure with 128, 256 and 4 

substructures in GTX 580 Amp, Tesla C2050 and Intel Core2 Quad respectively.  

Although the performance of the solver is increased significantly with the 

improvement in the assembly tree, the performance of the solver is lower than the 

performance of solver runs on CPU.   
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

5.1 Summary  

 

The solution of the linear system of equations has an important role for most of the 

engineering problems. And it is one of the core aspects of FEA software. Since the 

large amount of arithmetic operations are required for the solution of these systems, 

the influence of the solution of linear equations on the performance of the software is 

very significant. As a result, an increase in the performance of the solution of the 

linear equations is an important source of performance gain for the FEA software. 

 

In recent years, the increasing demand for performance in the game industry caused 

significant improvements on the performances of GPUs. With their massive floating 

point operations capability, they became attractive sources of performance for the 

general purpose programmers. Because of this reason, in this study GPUs are chosen 

as the target hardware to develop an efficient parallel direct solver for the solution of 

the linear equations obtained from FEA. To achieve this goal two substructure based 

algorithms, multiple front and multifrontal algorithms were implemented. 

 

Besides the solution of the equations, also assembly of the stiffness matrices and 

force vectors of the structures may be very time consuming for large systems. At this 

condition, instead of assembling the whole system, dividing the system into 

substructures, and making the necessary calculations for each substructure 
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concurrently becomes much more efficient. Because of this reason the frontal 

methods are appropriate for FEA. The multiple front and the multifrontal algorithms 

are two common examples of the frontal methods.  

 

In this study first multiple front algorithm was implemented. The multiple front 

algorithm can be summarized in tree steps. The first step is the sparse condensation 

of the substructure equations to obtain the Schur Complement of each substructure. 

The second step is the assembly of the Schur Complements of all substructures 

forming a larger system of equations called interface equations and the solution of 

this system. The final step of the algorithm is the back substitution procedure. With 

this procedure the internal equations of the substructures are obtained. As a result the 

solution of the system is completed. 

 

The multiple front algorithm was tested for different size of structures with different 

number of substructures. According to the results obtained from the tests, sparse 

condensation part is the most time consuming part of the solution for the smaller 

number of substructures. As the number of substructures increases, the time passed 

during the sparse condensation part decreases, whereas the time elapsed during the 

solution of the interface equations increases. As a result, when the structure is 

divided into larger number of substructures to increase the performance of the solver 

by speeding the sparse condensation up, the performance of the solver is limited by 

the performance of the interface solution. Furthermore, increasing size of the 

interface equations requires much more memory space than the GPUs have. So the 

solution of the system becomes physically impossible due to the insufficient memory 

of the GPU. 

 

The multifrontal algorithm avoids the disadvantages of the multiple front algorithm 

by completing the condensation procedure in multiple steps. After the sparse 

condensation procedure in multifrontal algorithm instead of assembling all of the 
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Schur Complements of the substructures forming a single large interface system, 

multiple smaller interface systems are formed. The numbers of the equations of these 

systems are reduced by efficient dense condensation algorithms. At the end, a 

smaller size interface equation system is obtained. So the time required for the 

solution of the interface system becomes shorter than the multiple front algorithm. 

 

The multifrontal algorithm was tested for different size of structures with different 

number of substructures. According to the results obtained from the tests, sparse 

condensation part is the most time consuming part of the solution for the smaller 

number of substructures. As the number of substructures increases, the time passed 

during the sparse condensation part decreases, whereas the time elapsed during the 

dense condensation part increases. When the cause of this increase was investigated, 

it was observed that the dense condensation procedure became inefficient at the 

higher levels of the assembly tree. For this reason an improvement in the algorithm 

for the formation of the assembly tree was implemented and the higher levels of the 

assembly tree were reduced. With this improvement the performance of the 

multifrontal algorithm increased significantly and the fastest solutions obtained from 

the multifrontal algorithm. However when the results were compared with one of the 

optimized parallel sparse solvers running on CPU, it was observed that the solution 

obtained from the CPU is much faster than the sparse solvers implemented in this 

study. 

 

5.2 Conclusion 

 

In the literature, the studies about the solution of linear sparse system of equations on 

GPU architecture are mainly based on iterative methods or hybrid algorithms using 

both GPU and CPU algorithms. On the other hand, in this study algorithms were 

developed for only GPU architecture by use of direct methods for solution of sparse 

systems. For this purpose multiple front and multifrontal algorithms were 
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implemented on GPU architecture. Based on the results of the performance of 

implementation of these algorithms on GPU architecture, the following observations 

are obtained: 

 The multiple front algorithm is limited with the sparse condensation step. For 

better performance, number of substructures or performance of the sparse 

condensation step should be increased. 

 

 Increasing number of substructures yields a significant performance gain in 

the multiple front algorithm. However, GPU memory size becomes 

insufficient for storing the interface equations system of large number of 

substructures such as 256, 512 and 1024. 

 

 Performance of the sparse condensation part is low. Because: 

o Only one thread can be used for the arithmetic operations of 

condensation procedure of a substructure. So the number of threads 

executed concurrently is equal to the number of substructures. This 

number is not sufficient enough to fully utilize computational source 

of GPU and hide the latency caused by data transfer. 

o Since shared memory cannot be used due to the size of the matrices 

and the sequential nature of the algorithm, global memory with lower 

throughput and higher latency should be used. Moreover, indirect 

addressing causes additional performance loss. 

o In GPU architecture, threads are executed in groups called warps. The 

execution of different branches in the code sample by the threads in 

the same warp causes a significant performance loss. Since each 

thread completes the condensation of different substructure, the 

number of operations, the start and end conditions of the loops vary 

from one thread to another causing a significant performance loss. 

       

 Since sparse condensation algorithm is not so flexible, it is very hard to 

change it to optimize the GPU utilization. As a result, because of the reason 
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that, performance of the multiple front algorithm is limited with the number 

of substructures due to the size of the GPU memory, multifrontal algorithm is 

much more promising for efficient solution of sparse systems. 

 

 The performance of the multifrontal algorithm, is limited with the sparse 

condensation and dense condensation steps. Multifrontal algorithm allows 

partitioning the system to large number of substructures, since size of 

interface equations reduced by dense condensation procedure. So the 

performance of sparse condensation step can be increased in multifrontal 

algorithm by increasing the number of substructures. 

 

 The influence of algorithm for formation of the assembly tree is significant 

for the multifrontal algorithm. Small changes in this algorithm may yield 

important performance gain. 

 

 The performance of the dense condensation is the core aspect of the 

multifrontal algorithm. The overall performance of the dense condensation 

algorithm is low. Because: 

o The performance of the dense condensation algorithm decreases 

significantly with decreasing number of matrices to be condensed 

concurrently. Since for each matrix, a single thread block is used, the 

total number of the threads executed concurrently equals to (number 

of threads in a thread block)×(number of substructures ). Thus, for 

small number of substructures, the computational source of GPU 

cannot be fully utilized. 

o Divergent branching increases with the large size of matrices, causing 

a significant performance loss. 

o Use of global memory instead of shared memory decreases the 

performance of the dense condensation step.   
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5.3 Future Work  

 

 Improvement on Sparse Condensation: The sparse condensation step limits 

the performances of the both algorithms. To increase the performance of this 

step, in the current implementation only way is to increase the number of the 

substructures, which causes new problems such as an increase in the amount 

of data to be stored in the GPU memory. For this reason it is expected that an 

efficient sparse condensation implementation, which can use threads 

concurrently also within a substructure, may yield a significant performance 

gain. However the nature of the algorithm is not so flexible for GPU 

optimization. For this reason, completion of the sparse condensation part on 

CPU may be an important alternative. 

 

 Improvement on the algorithm for formation of the assembly tree: Since 

the assembly tree directly affects the size and the number of the operations 

completed in the interface equations, an improvement in this algorithm yields 

important changes in the performance of the solver. The effect of the shape of 

assembly trees should be investigated for better performance. However, 

overall performance gain due to the improvement on this algorithm will be 

limited, unless either one of the performance of the sparse condensation or 

dense condensation steps is improved.    

 

 Improvement on Dense Condensation: A significant performance gain is 

expected if the following modifications can be completed.  

 

o Modify the algorithm allowing the use of flexible number of thread 

blocks for condensation process of any number of matrices. Thus, 

performance loss due to inefficient utilization will be avoided. 

o Modify the algorithm allowing use of shared memory by partitioning 

the matrices into smaller parts those fit into shared memory. 

o Modify the input matrices so the data accessed by the threads in the 

same warp is stored adjacently. 
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