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ABSTRACT

SPINODAL INSTABILITIES IN SYMMETRIC NUCLEAR MATTER WITHIN A
DENSITY-DEPENDENT RELATIVISTIC MEAN-FIELD APPROACH

Danigman, Betiil
M.Sc., Department of Physics
Supervisor : Prof. Dr. Osman Yilmaz

Co-Supervisor : Prof. Dr. Sakir Ayik
August 2011, 78 pages

The nuclear matter liquid-gas phase transition is expected to be a signal of nu-
clear spinodal instabilities as a result of density fluctuations. Nuclear spinodal
instabilities in symmetric nuclear matter are studied within a stochastic rela-
tivistic density-dependent model in semi-classical approximation. We use two
parameterization for the Lagrange density, DDME1 and TW sets. The early
growth of density fluctuations is investigated by employing relativistic Vlasov
equation based on QHD and discussed the cluster size of the condensations
from the early growth of density correlation functions. Expectations are that
hot nuclear matter behaves unstable around p, ~ po/4 (below the saturation
density) and at low temperatures. We therefore present our results at low tem-
perature T=1 MeV and at higher temperature T=5 MeV, and also at a lower
initial baryon density p, = 0.2 pg and a higher value p, = 0.4 py where unstable

behavior is within them.

Calculations in density-dependent model are compared with the other calcu-

lations obtained in a relativistic non-linear model and in a Skyrme type non-

iv



relativistic model. Our results are consistent with them. Qualitatively similar
results show that the physics of the quantities are model-independent. The size
of clusterization is estimated in two ways, by using half-wavelength of the most
unstable mode and from the width of correlation function at half maximum. Fur-
thermore, the average speed of condensing fragments during the initial phase of
spinodal decomposition are determined by using the current density correlation

functions.

Keywords: Spinodal instabilities, nuclear multi-fragmentation, density-dependent

relativistic mean-field approach, Vlasov equation.



(V4

YOGUNLUGA BAGLI RELATIVISTIK ORTALAMA ALAN YAKLASIMINDA
SIMETRIK NUKLEER MADDENIN SPINODAL KARARSIZLIKLARI

Danigsman, Betiil
Yiiksek Lisans, Fizik Boliimii
Tez Yoneticisi : Prof. Dr. Osman Yilmaz

Ortak Tez Yoneticisi : Prof. Dr. Sakir Ayik
Agustos 2011, 78 sayfa

Sonsuz simetrik niikleer maddedeki spinodal kararsizliklar, yogunluga bagh rela-
tivistik stokastik ortalama alan modeli kullanilarak yari-klasik yaklagimda ¢alisil-
di. Lagrange yogunlugu icin iki parametri seti olarak DDME1 ve TW set-
leri kullanmildi. Yogunluk dalgalanmalarinin ilk anlarindaki biiytime QHD’y1
esas alan relativistik Vlasov denklemi kullanilarak incelendi ve yogunluk kore-
lasyon fonksiyonlarinin ilk anlarinda olugan yogunlagmalarin boyutlar: tartigildi.
Sistemin en kararsiz davramiginin diigiik sicakliklarda ve doygunluk degerinin
altindada p, = pg/4 yogunlugu etrafinda olmasi beklenir. Bu nedenle, sonuglar
T=1 MeV ve T=5 MeV sicakliklarinda ve sistemin kararsiz oldugu iki farkl

baglangi¢ baryon yogunluklari olan p, = 0.2py ve p, = 0.4pg i¢in incelendi.

Yogunluga baglh olarak caligilan modelde elde edilen sonuclar, relativistik lin-
ear olmayan ve Skyrme-tipi relativisitik olmayan modeller kullanilarak yapilan
calismalarda elde edilen hesaplarla karsilastirildi. Elde edilen sonuclarin birbir-

leriyle uyumlu olduklar1 gézlendi. Bulunan benzer sonuclar, niceliklerin fiziginin
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modelden bagimsiz oldugunu gosterdi. En kararsiz modlarin yari-dalgaboylarinin
yarist ve korelasyon fonksiyonlarimin maximum genisliginin yarisina karsi ge-
len mesafelerin, yogunlagmalarin boyutlari olarak elde edildi. Ayrica, spin-
odal ayrigmanin ilk evresindeki yogunlagan damlaciklarin ortalama hizlari, akim

yogunlugu korelasyon fonksiyonlar1 kullanilarak elde edildi.

Anahtar Kelimeler: Spinodal kararsizliklar, niikleer parcalanma, yogunluga bagh

relativistik ortalama alan yaklagimi, Vlasov denklemi.
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CHAPTER 1

INTRODUCTION

The basic interest of the latest nuclear physics research is the investigation of
structure and physical properties of atomic nucleus, and to develop the theories
explaining these properties in the best way. In other words, the investigation of
nuclear matter behavior at different temperature and pressure, and investigation
of phase transition depending on temperature and pressure are the basic concern
of the nuclear physics. Then, the final goal is to obtain the nuclear matter

equation of state (EOS).

Infinite nuclear matter, in which surface effects are ignored, is an idealized system
for studying the nucleon-nucleon interaction. On the other hand, symmetric
nuclear matter at finite temperature provides a rough picture of hot nuclear
systems and the liquid-gas phase transition. Symmetric nuclear matter contains
equal number of protons and neutrons, and for simplicity Coulomb interaction
between protons is ignored. The investigation of hot nuclear matter is a very
important tool to study some astrophysical systems at abnormal densities such
as neutron stars or black holes, and to understand the history of the early

universe [1].

Heavy ion collisions in existing accelerators are studied to understand the prop-
erties of hot nuclear systems on Earth. The phase transition of hot nuclei is
studied in multifragmentation events. Hot nuclear matter produced in the early
stages collisions of heavy ions at intermediate energies expands, cools down and

becomes dynamically unstable at sub-saturation densities. This unstable region



of hot nuclear matter is called spinodal region in which the fragmentation occurs.
In this situation, it is important to include fluctuations. In spinodal region, the
small density fluctuations grow rapidly and it leads to the system break into

fragmentation. [2].

The properties of nuclear matter at equilibrium can be investigated in terms of
the equation of state, which is a relation between pressure, density and tem-
perature. The phase of nuclear matter depends on temperature and baryon
density. In heavy-ion collisions, nuclear matter is excited and multifragmenta-
tion may occur. The process of de-excitation depends on the initial conditions
and initial temperature of nuclear matter. If initial pressure and temperature
is high enough, the nuclear system completely disintegrate into protons and
neutrons; this can be called vaporization. However, when the initial pressure
and temperature is not high enough, pressure would be negative after one point
and expansion would decrease. So, nuclear matter oscillates around equilibrium
density. If initial temperature and pressure are below the critical values, before
ending the expansion, the system may enter into the unstable region and breaks
up into the big and small mixed fragments. This process is known as multi-
fragmentation. Multifragmentation is considered as a possible signature of the

liquid-gas phase transition [1].

Nuclear forces are repulsive at short range and attractive at long and interme-
diate ranges; so, there is a similarity between the nuclear system and a van der
Waals fluid which represents the interaction between neutral atoms or molecules
of gases [3]. At normal density and zero temperature, nuclei behave like Fermi
liquids and therefore at the lowest energies and at normal states, the nuclear
matter shows liquid-like characteristics. After heated at a temperature of a few
MeV, some of the nuclei start to evaporate and a liquid-gas phase transition
occurs at subnormal densities. In this scale of temperature, the van der Waals

type of behavior (a liquid-gas phase transition) is expected to be seen.

Spinodal instabilities arised in heavy ion collision are fast processes (occurred

in 10722 s) [4]. If system can stay together sufficiently long time, thermal and



chemical equilibrium may be reached. Therefore, it is not very easy to observe

signature of spinodal instabilities.

The experimental phase diagrams based on 8 GeV/c 7+ Au data of the ISIS
collaboration are given in [5]. By detecting charge distribution of heaviest frag-
ments in intermediate energy-ion collisions, a signal of phase transition in non
extensive system is observed [6]. Furthermore, the observation of charge correla-
tions for fragments in the collisions between *° Xe and "* Sn at 32 MeV /nucleon

is interpreted as a signal of spinodal instabilities in finite system [7, 8].

Mean-field transport theory (MFT) cannot explain the dynamics of density fluc-
tuation process. The single-particle density matrix satisfies the transport equa-
tion and the mean-field approximation method involves one-body dissipation
mechanism. While Time- Dependent Hartree-Fock (TDHF) gives good descrip-
tion for average evaluation of collective modes, it is insufficient to define the
fluctuations of the collective motion. Similarly, the Bolzmann-Uhling-Uhlenbeck
(BUU) model can be used for one-body and collisional dissipation, but it is not
proper to used for fluctuation mechanism [8]. The stochastic transport theory

describes dynamics of density fluctuation more suitably at intermediate energies

9].

Hot nuclear matter and the thermodynamical properties of nucleus are studied
with several approaches such as Hartree-Fock Method [10, 11], Thomas-Fermi
Approach [12, 13], Relativistic Mean Field Approach [13, 14], non relativistic
mean-field calculations with the Skyrme and Gogny type effective forces [15, 16]
and relativistic mean-field calculations based on the meson exchange interactions
[17, 18, 19]. We use a relativistic stochastic mean-field approach with density
dependent coupling parameters in order to investigate nuclear instabilities in

spinodal region.

There are theorical investigations about spinodal instabilities based on stochastic
transport models [20, 21, 22, 23, 24]. The early development of density fluctua-

tions in spinodal region is studied within a stochastic mean-field approach with



density-dependent Skyrme-type interactions [15, 25|, and a similar work is made
within the relativistic stochastic mean-field approach [26]. The spinodal insta-
bilities and the evolution of density fluctuations are studied in the stochastic

extension of the Walecka-type relativistic mean-field approach [26, 27].

In this thesis, we use the density-dependent stochastic mean-field model with
meson-nucleon density-dependent couplings. In Chapter 2, we explain the de-
tails of the stochastic extension of the relativistic mean-field theory in the semi-
classical approximation. In Chapter 3, the early growth of the correlation func-
tion of density fluctuations are discussed in symmetric nuclear matter. Rela-
tivistic Vlasov equation and meson field equations are linearized by considering
small fluctuations of the mean field around its equilibrium value and obtain three
coupled equations for scalar, baryon and current density fluctuations. We solve
the equation of motion by employing the method of one sided Fourier transfor-
mation and then derive the correlation functions. In Chapter 4, we calculate
numerically the growth rates of unstable modes of initial densities fluctuation in
spinodal region, in other words unstable solutions of dispersion relations. Also,
phase diagrams from dispersion relations are discussed . The size of the pri-
mary clusters in spinodal region from baryon density correlation function and
the average speed of condensing fragments at the initial phase of spinodal de-
composition are determined from current correlation functions. Conclusions are

given in Chapter 5.



CHAPTER 2

DENSITY DEPENDENT RELATIVISTIC
MEAN-FIELD THEORY

2.1 Density-Dependent Mean-Field Model for Hot Nuclear Matter

2.1.1 Introduction

Nuclei and nuclear matter are complex systems. The strong interaction between
nucleons is not known well and therefore different approaches are used for two-
body nucleon-nucleon interaction. The One-Boson-Exchange potential (OBE)
is an example which depends on the exchange of the non-strange mesons (neu-
tral scalar ¢ , neutral vector w, charged scalar § , charged vector p , charged

pseudoscalar 7 and neutral pseudoscalar 7 ).

In 1974, John Dirk Walecka introduced a simple relativistic model for nuclear
matter based on the exchange of only a neutral scalar o meson for the attractive
force, and a neutral vector w meson for the short range repulsion force [14]. The
charged mesons, such as rho meson, are not considered in this simplest model.
By using this model, the nuclear many-body problem can be described as a
relativistic system of nucleons and mesons. This model is called Walecka model
(or ¢ — w model) in quantum hadrodynamics (QHD). The coupling constants
between meson and nucleon fields are unknown parameters and determined by
fitting experimental data to the nuclear matter properties, such as saturation

density, binding energy and compressibility, to give the saturation properties of



nuclear matter. The in-medium interaction effects are added to the system with
density dependent vertices I',(p) ,in the density-dependent models. [28; 29, 30,
31].

Since the scalar 0 meson and the vector w meson have different Lorentz structure
and they give the correct minimum value E/B = —15.75MeV/Nucleon at satu-
ration density py = 0.16 fm =2 due to a cancelation between the large attractive
contribution of the scalar field and a large repulsive contribution from the vector
field. In the standard Walecka model, the effective mass value M* = 0.55M is
too small and the nuclear incompressibility K = 540MeV is too high at satu-
ration density. In the density-dependent coupling model and nonlinear model
the reduced mass and compressibility are responsible compared with observed

value.

In this chapter, we start with a Lorentz-invariant Lagrangian density to derive
the eqautions of state at zero and finite temperature in the relativistic density-
dependent mean-field model, in which the interaction between nucleons (protons
and neutrons) are mediated by neutral scalar ¢ and neutral vector w mesons.
Since the equations of motion are non-linear coupled equations and the coupling
constants in equations are large, perturbation solutions are not practicable. The

relativistic mean-field approximation (RMF) is discussed to solve the equations.

2.1.2 Formalism

A Lagrangian density with density-dependent meson-nucleon couplings for a
system of nucleons interacting via a neutral scalar meson with mass m, and a

neutral vector meson with mass m,, is given by

Lppy = E[V”(mau - Fw(ﬂ)vu) - (M02 —Dy(p)o) v
+

1 1
(0u60"0 — H26%) = { Q™ + S2VV* (21)

N | —

where ¢ and V), denote the scalar and vector meson fields respectively while ¢

represents the nucleon field,(2,, = 9,V, — 0,V,, is the vector field tensor [31]
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and ps = mgc/h , p, = myc/h . Here, the scalar density of baryon field is
coupled to scalar meson and the conserved baryon current is coupled to vector
mesons [14]. The lagrangian density is given in terms of the point couplings as
Lswy = Lppu(Tw(p) = 9w, I's(p) — gs) in the original Walecka model (SWM)
and Lyrwy = Lppu(Tw(p) = 9w, Ts(p) — gs) — %qﬁ?) — %¢4 in the nonlinear

Walecka model (NLWM) with non linear self-interaction terms.

In the density-dependent coupling model, density-dependent meson-nucleon cou-

plings for scalar and neutral vector mesons are parameterized by

1+ bi(p/po + di)?
"1+ cilp/po + di)?

Li(p) = Ti(po)a (2.2)

where i = s,w (neutral scalar and vector mesons) and py is the baryon density
at saturation in symmetric nuclear matter. The parameters a;, b;, ¢; and d; are
real and positive but not independent [14, 29, 30, 31]. The parameter sets,
TW introduced by Typel and Wolter [29] and DDME1 [31] that we use in our
calculations are given Table 2.1. Fitting properties of nuclear matter are given

in Table 2.2.

In this thesis, we use the density dependent model for calculations. The cal-
culations with NL3 set are produced in another work [26]. We use the results

obtained in NL3 [31] to compare with our results.

Density dependence of the meson-nucleon coupling constants for the ¢ and w
mesons in the TW and DDMEL parameterizations are shown in Fig. (2.1). If
they are compared around the saturation density, the overall trend is seen to be
similar but there is about 25% difference between o and w mesons couplings. I',
and I, in both TW and DDME1 are separately consistent at normal and under

normal densities. However, they go away from each other at higher densities.

By using the Eurler- Lagrange equation, the field equations (scalar, vector and

baryon fields) can be derived as



Table 2.1: Parameters in nonlinear and density-dependent models

NL3 TW DDME1
ms(MeV) 508.194 550.0 549.5255
me(MeV) 782.501 783.0 783.0
Ls(po) 10.217 10.7285  10.4434
T'w(po) 12.868 13.2902  12.8993
k(fm™1) 10.431 0 0
A -28.885 0 0
as 1 1.36547  1.3854
bs 0 0.22606  0.9781
Cs 0 0.40970  1.5342
d, 0 0.90199  0.4661
G 1 1.40249  1.3879
be 0 0.17258  0.8525
Coo 0 0.34429  1.3566
dy, 0 0.98396  0.4957
Table 2.2: Nuclear Matter Properties
NL3 TW DDME1
po(fm=3) 0.148 0.153 0.152
E/A (MeV)  -16.3 -16.3 -16.20
K (MeV) 272 240 244.5
M* /M 0.60 0.56 0.578
(0,0 + p13)d = Ty, (2:3)
(0,0 + o) VH = Thr™y, (2.4)
[v(ih0, — T,V,) — (Mc* —Ts¢)] = 0. (2.5)

The Eq. (2.3) is a Klein-Gordon equation with the baryon scalar density 1) as
a source term and Eq. (2.4) is the Proca equations with source terms 1y .
The last one is the Dirac equation for nucleon field including the interactions

with scalar and vector fields.

The Egs. (2.3-5) are nonlinear coupled equations and there is not a suitable
method to solve them exactly. We use the mean-field approximation to solve

them. In this theory, all meson field operators are replaced by their ground
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Figure 2.1: Density dependence of the meson-nucleon vertices for ¢ and w mesons in
the TW and DDME1 parameterizations.

state expectation values of field operators which are treated as classical fields
[14] ¢ — (@) = ¢o, V* — (V) = VyI'"® that are independent of time and the
space for a uniform system at equilibrium. So the equations of motion can be
solved exactly in the mean-field limit. Here we use that the spatial components

of (V*) vanishes since the system is static and baryon flux becomes zero [14].

The baryon operators in the source terms are also replaced by their normal or-
der expectation values in the mean-field ground state as ¢ — (1)) = p, and
yh — (hyh) = g"%p,. We use the normal ordered expectation values; be-
cause, the contributions from the negative energy baryons are neglected. Hence

only the positive energy baryon states are considered.

Now, we can write the meson equations in the mean-field approximation as

(00" + 1) o = T'spy (2.6)
(00" + ) {V*) = Lo (")) (2.7)
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At the equilibrium as an initial state, the system is static, uniform and indepen-
dent of position and time. The final equations for meson fields are then found

as

1

bo = Efspg (2.8)
Ly,

Vo = Eﬂg (2.9)

Vo=0 (2.10)

We also construct the RMF energy-momentum tensor T of the system, which
gives some properties of the system such as energy and pressure. The energy-

momentum tensor in continuum mechanics is defined by [32]

OL 04 _ puwp, (2.11)

w
g 0(0q;/0xH) Ox,,

where ¢; denotes physical fields. By using Lagrangian density in Eq. (2.1) we

then have

TH — Grylihdp — D {—1 [mgc

ml,c] 2
2

}2¢3+%[ . 1/021 (2.12)
An important property of T*” is energy- momentum conservation. For example,
if a field exchange energy and momentum with a particle, particle energy and
momentum changing rate must be the same as the change in the rate of the
field energy and momentum. By using the baryon field equations given by
Dirac equation, we can show that the canonical energy-momentum tensor 7"
is conserved (0,7"" = 0) . If the Lagrangian does not depend on space-time

coordinates explicitly, energy momentum tensor is conserved. Energy density is

the zero component of this tensor ¢ = (T%) | and it can be calculated as

e = Pimow) + 5 [22] 63 - ¢ [ 2] v (2.13)
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The pressure can be calculated from P = $(T") as

= %@v"'m&w - % [mgcr o2 + % [mh”cr V2 (2.14)
The energy density per nucleon is a starting point to drive the properties of
the nuclear matter at different temperatures and densities. While the pressure
is defined in terms of the energy density as p(py) = pp(9e/0ps) — €(pp) , the
binding energy per nucleon is written according to the energy density as Fg =
(e/py) — Mc? . Incompressibility is also expressed as the slope of the pressure at
saturation density K = 9 [%—I;} . In this work, we evaluate and discuss the

Pb=p0
energy density and pressure of nuclear-matter at zero and finite temperature.

2.1.3 Nuclear Matter at Zero Temperature

The equation of state of nuclear matter (EOS) describes the behavior of a system
of nucleons at different temperatures and densities. Also it gives the relation
between energy per nucleon and Fermi momentum kp or baryon density py. In

this thesis, we study both zero and finite temperature cases.

For the final form of the equation of states given in Eqgs. (2.13) and Eq.(2.14),

we start to derive the equations in the case of zero temperature.

The Dirac field equation in the MFT is written from Eq. (2.5) as

[Vihd,, — TuvoVo — (Mc* — Degpo) b (z,t) = 0 (2.15)

where the effective mass is defined as M*c®> = Mc? — I'y¢y. If we assume the
stationary state solution of Dirac equation for a uniform system as ¥(Z,t) =

u(k, \)eil i(k&—e(k)t/h) , ( A is spin index ), we obtain the eigenvalue equation includ-
ing both positive and negative energies as (k) = ', (p)Vo £ (p?c® + M*2c*)1/2,
The nucleon field operator is written as a superposition of stationary state so-

lutions as

11



W(T, 1) \/_Z Agyu(l, \)e'FTE N By (k, N)eiFE=i==(®0)/m)] (9 16)

where u(k, \) and v(k, A) are the four-component Dirac spinors that satisfy the
normalization u'(k, \u(k,\) = 9, and ot (B, Mok, ) = d,y. The terms
AL/\, B,Tc/\, Agx and By, are creation and destruction operators for baryons and
antibaryons satisfying the equal time anticommutation relations. If the La-
grangian density given in Eq. (2.1) is used in the mean-field approximation
with Eq. (2.16), the mean-field Hamiltonian and baryon number operator are

obtained as [14]

1

1
Hypr = [—§(Mu)2‘/02 + §(M5)2¢3] + T, Vops
+ Z \/62 _2 M*C2 [AL)\A/?)\ — Bk}\Bli)\]’ (217)
B =) [Al,Aw + Bl Bu). (2.18)
kX

Using this general solution given in Eq.(2.16) into Eq. (2.13) and Eq. (2.14),

the energy density is obtained as

%[Fw(p)]ngJr%[ s r(MCQ_M*C2)2

Hw Ls(p)
s [ oV O

(2.19)

The pressure can be obtained from energy density by using its relation with

energy density given by p(py) = py(9e/0py) — €(pp)

12



vl (cp)®
+(27rh)3 3 /d p\/(cﬁ)z (M2

1] Iy (p) 3 2002 — M*c2)? 1 38Pw(ﬂ)
+{u(u>] Fule)=5,=#" — pui(Me = M) (Fs(p)) ap
(2.20)

The baryon density is obtained from p, = (1'(z, )1 (z,t)) which is defined by

Here v is the degeneracy factor and equals 4 for symmetric nuclear matter (N=7)

and equals 2 for pure neutron matter (Z=0).

Eq. (2.19) and Eq. (2.20) represent the equation of state of nuclear matter at
zero temperature in parametric form as €(py) and P(p,) . At the end of the
calculation, the constant scalar field ¢, or effective mass M* can be determined
thermodynamically by minimizing e(M*) with respect to M* . This gives rise
to the self-consistency condition. At a fixed volume and baryon number, the
system will minimize its energy so that (0c/0M*)y g = 0 . We then obtain the

effective mass as

*? = Mc* — L(p)\* 7 P s M
e = ( ks ) (27rh)3/o dp\/(cﬁ)2+(M*c2)2 (2:21)

and from the relation Mgc? = Mc* — (Ts/ps)?p? with ¢g = (Ts/us)?p? we find
the scalar density given by

0 v PR 5 M* 2
Ps = (2mh)3 /0 a p\/(cﬁ)Q + (M*c2)? (2.22)

Since the nucleon effective mass depends on meson fields and also meson fields
depend on the nucleon effective mass themselves, it is necessary to solve a highly

non-linear system of coupled equations by self-consistency procedures.
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The effective mass as a function of baryon density in TW, DDME1 and NL3
parameterization are shown in Fig. (2.2). At saturation density, they have
almost the same value where M*/M is less than unity because of the large

scalar field effect. The difference is seen above the saturation density.

The binding energy per particle as a function of baryon density in TW, DDME1
and NL3 parameterization are shown in Fig. (2.3). Around and below the satu-
ration density, the curves for the parameter sets have the same trend, however,
they represent important differences above the saturation densities as expected.
The slope of the curves above saturation density is related to the compressibility

and they are consistent with the compressibility values given in Table 2.2.

1.0

—TW
. - - - DDME1
0.8+ e NL3

0.6- S

M*/M

0.4 IR S

0.2+

Oi%n 041 02 03 04

p, (fM®)

Figure 2.2: The effective mass as a function of baryon density for TW, DDME1 and
NL3 parametrization.

2.1.4 Nuclear Matter at Finite Temperature

A fundamental result between the grand partition function Zg and the thermo-

dynamic potential Q(T', V| 1) in statistical mechanics given by

14



8 —TW o
- - - DD-ME1 A
- NL3 S

p, (fm”)

Figure 2.3: The binding energy as a function of baryon density in TW, DDME1 and
NL3 parametrization.

T, V, ) = —kpT'In Zg (2.23)

allows us to compute all the macroscopic equilibrium thermodynamics from the
grand partition function. For an interacting baryon system, the grand partition
function is written as Zg = > (n1..noolePHE=B) |y ) where f =
—=[1]. If we use the MFT Hamiltonian and baryon number operators in Eq.
kpT

(2.17) and Eq. (2.18), thermodynamic potential becomes

1/T,\? 1 ( s ) L o2
5 (52) 5 (%) e -arey

——Zln —I—eB(E* ”) Zln[que (B +p” ](224

AT, V,p) =V

where p* = u— T, V; is the reduced chemical potential with Vy = (T, /u2)pp and

the energy eigenvalue is given by Ef = /p2c2 + (M*c2)2 . Baryon density is

15



found from p, = —(9Q/0p)ry as

__ 7 3 _A
Py = 2nh) /d p(ni, — ), (2.25)

where n; and nj are thermal occupation numbers for baryon and antibaryon

defined by

1
T = 1+ eBE =)’
T 2.26
T T e E (2.26)

The energy density is obtained from ¢ = E/V = (1/V)0(Q)/08 + upy as

1T\ (s )
£ = 5(;) (ﬂ§)+§(r—s) (Mc* — M)

Y 3 " _
+<27Th)3 /d v/ (pe)? + (M*c2)2(ny, + 7). (2.27)
The expression for pressure p = —Q/V gives

1\° ly(p) 4 2 2 * 22 1 garw(p)
+(—> Lu(p) O Py — poits(Mc™ = M*c%) (Fs(p)) oo
(2.28)

The minimization of the thermodynamical potential at fixed (u, T, V) gives the

self-consistency condition for M*c? = Mc? — Ty as

I', pf M*c? 3 T
e (e +70) = =220 (2.99)



In the numerical calculations, we employ two parameter sets TW and DDME1

given in Table 2.1 and 2.2.

Fig. (2.4) and Fig. (2.5) show the binding energy per nucleon with respect
to the the nuclear density p, at different temperatures in TW and DDME1
parameterizations, respectively. In both cases, the nuclear matter represents
less bound as temperature is increasing. The energy curves obtained in TW

parametrization is softer than the one obtained in DDME1 parametrization.

20—
15 N Nuclear Matter .

154 \ - TW 7
— | \ \, —T=0 ;e
= ’ \ o
2 10- o --- T=5MeV R
g ' N T=10 MeV R
> \ : N / /
T 97, v ——-T=15MevV .~ 7.

0.0 ' 0.1 ' 02 ' 0.3 ' 0.4

p, (fm?)

Figure 2.4: The binding energy per nucleon as a function of the baryon density p; for
various temperatures, T=0, 5, 10, 15 MeV, in TW parametrization

Pressure as a function of the baryon density at different temperatures calculated
in TW and DDMEI1 parameterizations are presented in Fig. (2.6) and in Fig.
(2.7). The value of compressibility, that is defined as the slope of the pressure
curve at the saturation density, decreases with the increasing temperature. As
a result, we conclude that the compressibility of the nuclear matter decreases as

the temperature increases.
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~ ]\ ——T=0 7
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S N T=10MeV . /
= 54\ . ---T=15MeV . /
L _ .
w

0.0 ' 0.1 ' 02 ' 0.3 ' 0.4

p, (fm”)

Figure 2.5: The binding energy per nucleon as a function of the baryon density p; for
various temperatures , T=0, 5, 10, 15 MeV, in DDMEI1 parametrization.

There is a phase equilibrium for temperatures above a critical temperature Tc.
For below the critical temperatures (0 < 7' < T.) the pressure curve has a
maximum then has a minimum and it has three important densities. One of them
corresponds to the maximum of the pressure curve, the second one corresponds
to the minimum of the pressure curve and the third density value corresponds
to the coexisting phase point. The pressure curve has a negative compressibility
between the densities corresponding to maximum and minimum of the curve.
This region is called spinodal region where the system is mechanically unstable.
The region between spinodal and coexistance boundaries has a mixing of liquid-
gas and the compressibility is positive in there. At the critical temperature,
there is no surface tension and the distinction between gas and liquid phases

disappears [33, 34].

Nuclear matter equation of state depends on the temperature and the density

in the spinodal instability region. Spinodal instability of nuclear matter leads
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to multifragmentation that may be a possible signature of the liquid-gas phase

transformation.
0.8 i, .
| Nuclear Matter - ;
0.64 TW o Y
5 024 ,.—imimememm
% ] .
~ 0.0
-0.2 1 .
- - - - T=5MeV
-0.4_‘ T=10 MeV
-0.6 - —-=--T=15 MeV
N ---=-- T=20 MeV
-O.% : , l ' l '
.00 0.05 0.10 0.15 0.0

p, (fm”)

Figure 2.6: Pressure as a function of the baryon density for different fixed temperatures
in TW parametrization.

2.2 Stochastic TDHF Approach

As describing the many-body nuclear system, the mean-field approximation is
a very important theory. In this theory, the time-dependent wave function is
given by a Slater determinant which consists of a number of time-dependent
single particle wave functions. These single-particle wave functions are solutions
of TDHF with proper initial conditions [9]. While a TDHF equation gives the
good description for average behavior of collective motion, it cannot describe

the dynamics of density fluctuations.

At low energies dominant mechanism for fluctuations comes from the density

fluctuations (quantal or thermal) at the initial state. Recently proposed stochas-
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-0.61 —emes T=20 MeV
-0. : : : : : :
%.30 0.05 0.10 0.15 0.20

p, (fM®)

Figure 2.7: Pressure as a function of the baryon density for different fixed temperatures
in DDME1 parametrization.

tic Mean-Field approach takes into account for the fluctuations in the initial state
in a stochastic approximation [9, 25]. In this approach an ensemble of density
matrices are generated according to the initial state fluctuations. A member of

the ensemble of single-particle density matrices can be given by,

Pl ) = (7 1) pid (7). (2.30)

Here indices a indicates the proton and neutron species and p;; are the time-
independent elements of density matrix defined by the initial conditions. Each
matrix element is assumed to be a Gaussian random number defined by an

average value p;; = 0;; fo(j) and a variance of 0p;; is determined by

0pij(0)0pirjr(0) = %5ii’5jj’{f0(i)[1 = Jo(D] + fo(D = fol@)]}- (2.31)
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In these expressions fy(i) denotes the average occupation numbers which are one

or zero at zero temperature, and Fermi-Dirac distribution at finite temperature,

1
= G /kET 11

fo(9) (2.32)

where 1, is the chemical potential of nucleus and ¢; is the Fermi energy at the

equilibrium density.

In these theory, time-dependent single-particle wave functions of nucleons in

each event are defined by their own self-consistent mean-field,

0
Zhagbj(ﬁ t) = ha¢j (F7 t) (233)

where hlp] = % + U(p) represents the self-consistent mean-field Hamiltonian
and U(p) denotes the mean-field potential in the mean-field approach. It is
more convenient to express the equation of motion in terms of the single-particle

density matrices of nucleons as

0

i p(t) = o], () (2.34)

An ensemble of single-particle matrices are obtained. By using this approach,
probability distribution of observables can be calculated [25]. In spinodal region,
the early growth of density fluctuations are studied within the framework of this

approach. Details are discussed in reference [25] and [9].

2.3 Relativistic Vlasov Equation

The model based on relativistic Vlasov equation is very useful to describe the dy-
namics of nuclear systems in the semi-classical calculations. The Vlasov equation
is a differential equation describing time evolution of the phase space distribution

function.
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In the mean field approximation, Walecka model is used to explain the nuclear
matter properties as mentioned in introduction and the equations of motion for
fields are derived from Euler-Lagrange formalism. Also we introduced the baryon
density p,, the scalar density ps and the current density p, . By substituting
these equations into the equation of motion and expressing in terms of the large
and small components of the nucleon, the nucleons can be described by the Dirac

equation for large and small components

r, .
10y, =0 - cp s + |:#—pb + M 02} (T (235)
. — — FV * 2
i0ppg = 0 - cpp + M_Pb — M*c”| s, (2.36)

where cp* = ¢p— ([, /) and M*c? = Mc? — T'y.

In the local-density approximation, the nucleons are assumed to be moving in
constant fields and approximate relations between their small and large compo-

nents are given by

Vs &[G - cpt/(e* + M*c*)]y (2.37)

Y &[G ept /(e — M*S*) |y (2.38)

where e* = (p*2c® + M*2c*)'/? with the value of the local momentum p* . With
the help of these equations, the coupling between the small and large components

reduces equations in Eq (2.34):

o (T, 1) = {E" + (/) oo} (7, 1), (2.39)

where E* = (P*2c¢® + M*2c*)'/? with the effective one-body Hamiltonian h =
B+ (T /iVps
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From Eq. (2.39), we get the TDHF equation

i0p [ (71, )1 (P, £)] = h(F)Y (P, )T (P, t) — (7, )T (P, )R(7).  (2.40)

In the Eq. (2.40), ¥(7,t) and 9T(F,t) represent the single particle wave func-
tions not field operators and the single particle density matrix is defined as
I (P, ) (Fy, t) = p(7y, 7, t) . To derive a Vlasov equation, we consider a phase
space distribution function f(p,#,¢) which is defined as Wigner transform of

density matrix

51) (2.41)

by using a transformation 7= (7 + 73)/2 and § = (7} — ) . Wigner transform

of the Hartree-Fock Hamiltonian h[p] is given by

d? o 1 1
hp, 7 ) = / L GRS (2.42)
where h(r+ 18,7 — 15,t) = (7 + 35]h[p]|F — 35) . The Wigner transform of Eq.

(2.40) with Eq. (2.41) gives the following equation

57, 1) = (BlAlo(t)w — (o(Ohlo])w (2.43)

Wigner transform of the products of two single-particle operators A and B is
defined by (AB)y = A(p,7)e's" B(p, 7) with A = % ? % 6 If we apply

this definition into the terms in Eq. (2.43), we obtain an equation including A

ihd,f (7, ) = h(F,p)e'*" (7, j,t) — h(F, p)e 5" f(F, . 1)
= 2ih(F, ) sin Eﬂ F@ 7t (2.44)
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By using the Taylor expansion for sin [gﬂ], we then obtain an expression that

includes the expression of A

0

Lo B,
2 31 \2

At the semi classical limit A — 0, only the first term in the expression in

Eq.(2.45) contributes so that the final form of the relativistic Vlasov equation

itakes the form

o . _ . - - - -
5 (7, p,t) + V(7 pit) - V. f (7, P, t) — V,.h(7, p,t) - V, f(7,p) =0, (2.46)

where v = ﬁph(ﬁ P, t) denotes the velocity. This equation is used to investigate
the dynamics of the system and its evoluation in time. TDHF is a quantal
equation, however, Vlasov equation is obtained in classical limit and therefore

it is a semi-classical equation.
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CHAPTER 3

EARLY GROWTH OF DENSITY FLUCTUATIONS

The understanding of nuclear matter and its phase diagram are important in
heavy ion physics and nuclear astrophysics. The detailed structure of the phase
diagram and the exact locations where phase transitions takes place are still
debated. A description of small amplitude oscillations around an initial state in
nuclear matter is formulated in the context of the relativistic Vlasov equation. In
this section, we linearize the relativistic Vlasov equation given in Eq. (2.46) for
the study of the early growth effects in spinodal region from density fluctuations
in symmetric nuclear matter. In this chapter, we derive the equations of density
fluctuations and then density correlation functions for the hot nuclear matter in
a stochastic mean-filed approach. Correlation functions of density fluctuation
gives important information about the unstable dynamics of the nuclear matter

in the spinodal region.

3.1 Linearization of Meson Field Equations

We start to linearize the meson field equations given in Eqgs. (2.6) and (2.7).
In these equations, the meson fields are linearized around their initial values as
& = ¢o+ 0¢(7,t) and V#* = VI + dVH(F,t) and the source terms around their
initial values as py(7,t) = p% + 0ps(7, 1), po(7, 1) = p) + 0pp(7,t) and g, (7, t) =
P2 + 8p,(7,t). The meson field fluctuations are found in terms of the related

density fluctuations. Although the initial values of the meson fields ¢y and Vj'
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are constants, the fluctuations d¢(7,t) and 6V*#(7,t) depend on space and time.
The vector density is zero p," = 0 , so the vector field Vo = 0 is also zero .
However, the fluctuation of vector meson field 5\7(7_”, t) do not vanish since it
includes nonzero §p,(7,t) fluctuation. If there is a variation on dynamics of

nuclear system such as fragmentation, this variation becomes in the direction of

SV (F)t) .

After the linearization of the scalar field equation, we obtain two expressions.

One of them is

1260 = Ts(p)) 0" (3.1)

where pg and p) represent the baryon density at saturation and the baryon
density in the initial state, respectively. We use the initial value p) = npy where
n = 0.2 and n = 0.4 in our numerical calculations. The density p? denotes the

scalar density in the initial state. The linearized equation becomes as

or

(0u0" + 1i2) 66 = Tu(py) 5% + [8—;} 3pp- (3.2)
0

The term (%—ij) comes from the density dependency of the scalar coupling
0
corresponding to the values at the initial state defined by p, (not saturation

density)

(), -t
2p, (% +d,) {1 e, (44 ds>2] ~ 2, (4 +4,) {1 +, (4 + dsﬂ

e (da)]
1+ ¢ + d,
]

X

(3.3)

In a similar manner, the linearizations of the vector field equation give the

following expressions
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p2Vo = Lu(ph)po, (3.4)

or

(0,0 +12) 8% = Tu(sb)omn + m | 5= o, (35)
0

(00" + 1i2) 6V = Lo (48) 5, (3.6)

The term (%) comes from the density dependency of the vector coupling
0

corresponding to the values at the initial state:

or,,
_— e F
( dp >0 «(Po)a

2 Py Py 2 2 o) Ph 2
P_Obw (,0_0 + dw> 1+ Cp (P_O + dw> - P_ch (P_O + dw) 1+ bw (,0_0 -+ dw)
X 5 '

{1 + ¢, (Z—E + dw)Z}

(3.7)

As we see below, we solve the linearized equations by taking Fourier transforms
in space and one-sided Fourier transforms in time. As a result we can relate the
Fourier transforms of fluctuating fields to the Fourier transforms of fluctuating

scalar d,(k,w) , baryon 0,(k,w) and current 69,(k,w) densities as

50 = | oy e [T + 2 () ati)
(3.8)

Motk = | | [P )+ (52) dlE)
(3.9)
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5000 (T, w). (3.10)

For the reduced mass we have M*c? = Mc? — T'y(p))po and from Eq. (3.1) the
initial scalar field ¢o = T's(p))p2/u? .

3.2 Linearization of Vlasov Equation

In order to find the linearization of Vlasov equation, we use the small fluctuations
of the phase space distribution function around a homogeneous initial sate fo(p)
as f(7,p,t) = fo(p) +0f(7,p,t) . The fluctuation of the Hamiltonian obtained
from Eq. (2.5) is written as U(7,p,t) = Uy + dU (7, p,t) and for the velocity
V = vy + 0V is used. The second and higher order fluctuations are neglected in

the linearization. The linearized Vlasov equation is then obtained in the form

0 o R o - .. -
aéf(r,p, t)+ Vo - V.Of(T,p,t) — V,.0U(T,p,t) - V, fo(p) = 0. (3.11)

where the mean-field Hamiltonian that is obtained from Dirac equation based

on Eq. (2.5) in given by

7= (- TeP) + Q1 T % (312

Its value at the initial state is written as

U = (U)o = \ (@ + (M2 = Ty(p)g0) + (VS (3.13)

where py, is now the baryon density in the initial state. In Eq. (3.11), the initial

velocity is found as

5 = /7 (ep)? + (Me2 = Ty() ). (3.14)
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The fluctuation of the Hamiltonian around the initial state is written in terms

of field fluctuations as

v = (), (), o (56), 00 (o), o0
! <arajp>>o5fw<p> (3.15)

where 0T(p) = (%%) dpp and 6T, (p) = (%) dpy - The terms ()o in Eq.
0 0
(3.15) are derived by using Hamiltonian in Eq. (3.12) below

(5iz) = e (316)
OUN  _ _ —Lu)(Me —Ts(ph)do) (o Mo
) = = Ty (p)—2—  (3.17)
(a¢>o V() + (M2 —Ty(p) o) =0
ou _ —Lu(py)epi — T (Y Cpi
= =T (313
(aw>o V(e + (M = () )’ E
(%)0 =y (3.19)
(gl_(‘js)o _ _d)O(pb)(M* _Fs(pb)¢0) — _¢0]\4§kc (320)

V(e + (M — (o) o) 0

where £* = /(cp*)? + (M*c2)? = \/(cﬁ— To(p)V)2 + (Mc2 —Ty(p))? is the
energy of the system. We then find the fluctuation 0U in terms of field fluctua-

tions as

cp- oV > Mgc?
SU = —Tu(p) L2 £ Tu(p))oVo — Tol()) —— 00
0 0
Mg (0T or
_ Y oo v (22 4 21
Po - (6,0)0 Pb+Vo(ap>o Pb (3.21)

Using Egs. (3.8), (3.9) and (3.10), space-time Fourier transform of the fluctu-
ation on the mean field potential is written in terms of Fourier transforms of

density fluctuations as
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B = M* 2 Fw 0 Fw
U = ~G2 255, — G20 6p, {Gi + ) o (a )
€0 €0 - 0
o Fs(ﬂ%) MSC2PO (ars>
—(w/e)? +k24+p2 €5 "\ 0p ),

Mie? (ars) O(arw) } )
= +1V2(£2) b
P\ ), T e ) g0

where the fields at initial state are ¢g = Is(p))p?/p2 ,V = T (p))p) /12 and the

(3.22)

scalar density at initial state becomes p® = p2(Mc* — M;c®)/[Ts(p?)]? . We also
used the following definitions in Eq. (3.22)

> _ [T (pb))?

Co = —(w/c)? + k2 + p.? (3:23)
2 _ [Cs(pp))?

G = T (3.24)

If we define the term in front of the baryon density fluctuation 0 p,(7, w) as below

M*C 8Fs 8Fw
- ¢o—2 ( ) + VP (—) 3.25
" €0 p /, °\ 9p 0 ( )
we then have a simple form of Eq. (3.22)
M;c?

§U = —Gfg.aﬁv e el

0 0

6ps + {G2 + Gr}dpy. (3.26)

We want to solve scalar density fluctuation dp,(7,t) , baryon density fluctuation
dpp(7,t) and current density fluctuation 0p, (7, t) based on the Vlasov equation.
In order achieve this task, we first take space Fourier transform of the in lin-

earized Vlasov equation,
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o [ &Pk gr.. - - Pk gre =
= / (—e”“'réf(k:,ﬁ,t)+z7o-vr / —e“”éf(k,ﬁ,t) ~ V. folp) -V

ot )3
C Bk . -
{ G? gp /—[27]36”“7"5%(1{ +(G? + Gr) /2 361“5,0;) k 1)
0
M*e 2 ddk T .
~Go 80* /(27T)3ezk 5p8(k7t)} =0 (3.27)
0

where the Fourier expansions 6 f (7, p, t) = [~ (dSkS etk "5 F(k, 7, t) and 8pa (7, t) =

J fooo (gjr’)“S etk TS pa(/; ,t) are used. After the spatial derivatives of the last two terms

in Eq. (3.27), we find

0 - e P T S

aﬁ(lﬁ () + ity - KO f(k,pit) = [lvpfo( ) - ]
N * 2

X {—Gigéﬁv(lﬁ )+ (G2 + Gr)opy (k. t) — G2M€ ) S(k,t)}. (3.28)
0 0

Here fy(p) is the Fermi-Dirac distribution function given by fo(p) = 1/[e#6—10) +

1], the energy e} = \/(cﬁ)2 + (Mc? — I‘S(,og)qbo)2 and the reduced chemical po-

tential pi5 = p — T30/ p5 -

In order to solve the resultant equation, we employ the method of the one-sided
Fourier transforms, & f(k,p,w) = I dte™'s f(k,p,t) and 0p;(k,w) = Jy” dte™t
Spalk.t) .

One-side Fourier transformation of the first term in Eq. (3.28) gives

[e.9]

%af(z%’,ﬁ, tetdt = —5 f(k, 7,0) — iwd f(k, P,w) (3.29)

0

where 6 f (lg, P, 0) denotes the initial fluctuations of phase space distribution func-

tion. Finally we obtain an expression for 4 f (E, p,w) in the form
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SF(F, pw) = —Yrlok {—Gi% 55, (F,w)
w—Vg-k €0

. M*c2 N 5 3 E —
(G2 + Gr)opy(k,w) — G20 55, (F, w)} 1RO g g
o w—vVo-k

3.3 Density Fluctuation Equations

In order to solve Eq. (3.30) for density fluctuations, we recall definitions of

baryon, scalar and current densities,

. 2 .
plEw) = o Gl (R.7) (3.31)
. d3 M* 2 .
pEw) = 3 [ Gt ) (3.32)
R ’p cp* L=
plbw) = o [ G T iE s (333)

where v represents the spin-isospin factor that is 2 for neutron matter and 4 for

nuclear matter.

Firstly, from Eq. (3.31) the fluctuation of baryon density is written as

. 43 .
o) = o Gt (o) (3.34)

Eq. (3.30) is used into Eq. (3.34) and the following equation is obtained

- d®p 6]‘/5 d®p 6]‘%
5’)b(k’“){1”/<2m>3w s /;(G“GF)}:‘”/(M)% ST
- -

= Mi2 &*p o f(k,p,0)
x4 -2 L 55, (kw) — G2E0 "5 k,s}+ / L ddets
{ o 0Pk ) 0k s) T | o — R
(3.35)

32



This is first relation between density fluctuations including an initial fluctua-

tions. Secondly, the scalar density fluctuations can be written as

o) = [ s |[(A25) shpo] (3.36)

where 4 [(M) f(E,ﬁ,w)] _ <A4€**02>05f(E,ﬁ,w) e (M) After a few
steps we find

* 2 2 * 2
(5) - e[ FE et
5 ey ed
1 (Mge2)?] [ar,
- 0 )
v |-+ CEEE| (G2) om )

and a second relation between density fluctuations becomes

d3p
+ 5Pb(k7w>7/<2ﬂh)3
M;c2) Vofo -k 1 (Mgc®)?] [or,
«§ BED Ve L 624 Gy = oo |- + PR ()
€0 w—vo-k €o €0 9 )y
dp (Mgc?)is f (k. 75,0)
= = 3.38
7/(27Th)3 88 w—\70-k ( )

For a third relation between density fluctuations can be obtained by deducing

current fluctuations from Eq. (3.33),
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with

—

cp* _ cp—T,(p)V (3.40)
e ()2 +T2(p) 2o, V2 = 20u(p) Yo eV + (M2 — Ts(p)9)?
and
— * 2 e
5 (Cp* ) e [MOC ] cpops + G {—l + %cﬁ*} 57,
cp(Mgc*) (0T,
)
+o o ), Pb

(3.41)

We obtain a third relation as

0 €0 € w—vy-k

- o 3 2 2 v 0.7,
5ﬁv(k,w){1—fy/(2i%3gi £, (_€_1*+ (czj?}) )+ (cgzz Vo f kﬁ]}

B} d*p Mgc® o Vpf* -k, M
+0s (i, w / G+ =G
ps(k,w)y 2 h)s{f 0 bw—vo-k 7 &
N d3p Cﬁ—ﬁ fo ]g Cﬁ(M*CQ) or
G B (e e e [y 5 :
0 ’WW/(QWH)?’ {( 7 F)aéw—vo'k+f¢0 eg® <8p>0

.

. / dp cpif(k,p,0)
(27Th)3 56 w — ‘70 -k

(3.42)

Now we have three independent equations that are given by Eq. (3.35), (3.38)
and (3.42) for density fluctuations 85,(k,w) , 6py(k,w) and 65, (k,w). They
are solved by using these coupled relations. These relations contain the initial

fluctuation of phase-space distribution function.

We are interested in description of longitudinal unstable modes within this work
that requires 09, = 5pvl%, in which the current density oscillates along the prop-
agation axis. Therefore, some terms in Eq. (3.35), (3.38) and (3.42) becomes
6pf0 k= (Vypfo)k cos@ and v - k = vokcosf . Some of angular integrals for

cos 6 vanish that are
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d3p 2 Cﬁ 0 ]\4502 1
| Ganp e ~ = 4
op% / (2mh)3 G & {f (—53 /_ d(cosf) cosf =0 (3.43)

1

and

. Pp oCﬁMJCQ e
ops(k,w) { 7(27rh)3G”f i } k /1 d(cos @) cos =0 (3.44)

Finally the set of coupled equations given in Eq. (3.35), (3.38) and (3.42) can

be written in a matrix form

A Ay As 8pv (K, w) S, (k, w)
B, By B ops(kw) | =1 | Sy(k,w) (3.45)
C, Cy Cy 8k, w) S (K, w)
where
Ay Ay Az
B, B, Bj =
C; Cy (4
—G2xv —G2xs [1+ (G2 + Grv)xs + Grsxs)
_GL%;)%V(;”‘: w) 1 + Gc2r>~<s [(Gi + GFV)XS + GFSXQS + Xls]
I+ G?u)%b _GEXV [(GZ + GFV)XV + GFSXVS]
(3.46)
where Lindhard functions are functions of k and w. We use Gr = Grv +
(M /e§)Grs with
1 1 0 0
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2

GFs = —(bO(E)FS/ap)O (1 + _(w)2 _:_nks;Q T mSQ) (348)

The functions S, (k,w) in Eq. (3.45) denote the fluctuating source terms arising

from initial § f (/;, p,0) given by

() & Pkl 5f(k,7,0)

=~ o7 p 7p7

s(k, = /— Mxc?/er | ————=. 3.49
~(ﬁ w) v (27h)3 0C /e w— Tk ( )
b(k>w) 1

—

The functions x.(k,w) are the long wavelength limit of relativistic Lindhard

functions associated with baryon, scalar and current densities

XV(E7W 2d af %Kg(l;,w)

7 pap (p 0 « o
Xs(k,w) | = 7/ (27)? <5_6k> 3_88 %Kl(k,w) . (3.50)
Xb(E,CU) Kl(lg,w)

Xis (K, w) o (%) $ofo(p) (%;f)o
Xos (K, ) =7/ (ng (%) (2k) Lrilkw) | (351
lfi) () (54) )
and
%(F.w) 2 (E) e - () (26) K
W | = | (45)1 (31) o)
%ok, w) 2hop) = 2 (&) folp) =k (2) FaKs(F.w)
3.52)
where
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K / ' ! (3.53)
= ‘— 3.53
! -1 w— k(p/eg)x

The baryon 6p,(k,w) , the scalar 67,(k,w) and the current 67, (k,w) density
fluctuations can then be obtained from Eq. (3.45) as

3p(k,w) _ DbSy(k,w) 4 DS, (K, w) + D4S,(k,w)

5.k w) | = —(EZ ; D38y (K, w) + DsSu(k,w) + DiSu(k,w) |- (3.54)
~ — € 7w ~ — ~ ~ —

57, w) D8, w) + DySu(Fow) + Dy, (R, w)

Here, we use the following short hand deﬁnitions:Dll’ = B,Cy — B,C, , D} =
C1Ay—CoAy, D} = AiBy—AyBy , D} = C1B3—B,Cs , D§ = BiA3— A, B3, D5 =
A1C5—C1As , DY = BoC3—CyBs , Dy = Cy Az — AsCs, DY = AyBs — By Az and
the quantity e(k,w) = A3D? + B3 Db + C3 D% defines the susceptibility which is
determinant of the matrix given in Eq. (3.46). In the spinodal region, frequency

is imaginary. Therefore we interested in the unstable behavior at w — —il" .

If we use w — —il' , we have A; — —A,B; - —B,Cy — —C5,C3 — —Cs.
. However, the determinant of the matrix becomes the same with the case of
w — +iI'. For both cases, w = =il , the susceptibility can be calculated
numerically. The growth and decay rates of the unstable modes are calculated

from the roots of the dispersion relation &(k,w) = 0 with w = +il".

The dispersion relation gives the important information about the behavior of
the system when it is affected dynamically; such as phase transition. In nuclear
matter, unstable modes are plane waves. Wave lengths and growth rates of dom-
inant modes are determined by solving the dispersion relation. In the nuclear
matter, collective modes are characterized by the wave number, and the solution
of the dispersion relation gives the characteristic frequencies for every wave num-
bers. If we use w = iI" to find the unstable region, we obtain the wave numbers
at which the system is the most unstable. In our calculations, we analyze the

spinodal instabilities for different initial baryon densities p, = 0.4pofm =3 and
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o = 0.2pofm~3 where the saturation baryon density p, = 0.16 fm 2 for both
DDME1 and TW sets.

3.4 Density Correlation functions

The baryon 6p,(k,w) , the scalar 67,(k,w) and the current 67,(k,w) density
fluctuations given in Eq. (3.54) are used to find the evolution of density fluctua-
tions in time. The inverse Fourier transformation of 6p~a(E, w) in time is written
as 0pa(k,t) = [ 265, (k,w)e ™ . Cauchy-Residue theorem is applied to the

counter integral for [35]

c 21 e(k,w)

We are interested only in the collective poles of the susceptibility 5(]5, w). Cauchy-
28 dz, if g(z0) #0 , h(z) = 0 and ,

Residue theorem for a counter integral fc

h' = (0h/0z).—., # 0 gives [35]

/ zi; dz = 2miRes[f(z), 2z = 2] = 2mi Z A1 (k) (3.56)

where the residue of the function is determined by A_; (k) = lim,_,, ,f,(é)) . There
are two collective poles of susceptibility 5(15, w) at w = +il' . After residue
integral of Eq. (3.55), 5pa(E, t) is written in terms of growing and decaying

collective modes corresponding to the poles w = +iI" as

5palk,t) = 0pf (K)eTst 4 6p (k)e 1wt (3.57)

where o = b, s, v shows baryon, scalar and current indices. The density fluc-
tuations related to growing and decaying modes at the initial are determined

by
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Sp% (k) = — {DaSb(k )+ D? L)/ ©) + DSulk, w)} (3.58)

The terms are classified as real or pure imaginary. The terms As, Az, By, B3, C1,
D1, Dy are real and the others Ay, By, Cs, Cs, D3 are pure imaginary that comes
from w = +£i[' . As a result, we may understand the behavior of the terms
corresponding to w = +4I". For both roots the susceptibility can be calculated

numerically

S(k, CU) = A3D1 + BgDQ + Cng
= A13(i2Bllcl2 - CllBIQ) + Bl3(CllAl2 - ?:21411012)
+iC13(iAllBlg — iBllA12) (359)

where A,p, Bog and C,g, are defined as real numbers. After a straightforward

calculation we can find the derivative of e(k,w) at w — —il as

<%)U_ir - (%Xw (3.60)

Spectral intensity of the density correlation function, &aa(E, t), is determined as

the second moment of Fourier transformation of the density fluctuation

5pa(k, 1) (6pa (K 1)) = (27)20° (K — K')Gua K, t) (3.61)

where time-dependent baryon density functions are defined in Eq. (3.57). We
derive &aa(l;, t) by using the definitions in Eq. (3.57) and Eq. (3.58). Firstly,

we write the second moment of the density fluctuation in terms 5p§(l_5) as

0pak, ) (Epa(k!, 1)) = 0pt(R)(6p% (R))"e™ ™ + 6p; () (6pg (k))re ™
+0p (K) (695 (k) + dp5 (k) (6p (R))* (3.62)
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Secondly, we write the explicit forms of 6 (k) including source terms into Eq.
(3.62). The source terms contain initial fluctuations 6 f(k, 7,0). Using the vari-

ance relation of initial fluctuations as

Sf(k,7,0)(0f(k', 7, 0))* = (2m)%6*(k—K') (27 h)*6* (5~ ') fo(p) (1= fo(p)) (3.63)

we then obtain the average correlations of source terms. As a result, we find

density correlation function as

2m)36%(k — K )o(k — k) =

V2(2r)26% (k — K ){[Ki, + |D1? + K3y + | Do|? + Ky + | Ds?
+2K5 D1 Do)/ (N?)}[e*F 4 e720%]

—?(2m)°0%(k — k) [y + | Da|* + Ky + | Daf* — Koy + | D3|
+2K,D1D5]/(—N?) (3.64)

where N2 represents the value of |[0z(k,w)/8/w]o—ir, |*

The spectral functions are found in the final form

- -,

- E+ -
Foalk,t) = o (k) (€2t 4 =20ty 4 2k (k)
Hag(k?w)/a/w]w:il—‘kP ‘[a‘C:(k?w)/a/w]w:szP
(3.65)
where
ET(F) = |D{PKG, + |DsPKS, + | D§PKS + 2D5 Dy K, (3.66)
and
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K7 1
K3 :%/ dp | OG/G)° | TR (- R

@rh? | (5 kfe) | 07+ (@0 92
K7 M /e

S fo()[1 = fo(P))]

(3.67)

In Eq. (3.65), n = +1 is used for baryon and scalar, n = —1 is used current
spectral intensities, respectively. Detailed calculations of equations are given in

Appendix B and C.

Local density fluctuations dp, (7, t) are determined by the Fourier transformation
of 5pa(E, t). Equal time density correlation function for baryon, scalar and
current densities as a function of distance between two space locations can be

evaluated from the spectral intensity as

GonllF— 71, 1) = 5ol 0l D) = /
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CHAPTER 4

NUMERICAL RESULTS AND DISCUSSIONS

In chapter 3, we calculate the linearization of Vlasov equation to find the early
growth effects from density fluctuations and density correlation functions for hot
nuclear matter. In this section, we calculate numerically the early development
of spinodal dynamics of nuclear matter within a semi-classical approximation,
by using the expressions evaluated in Chapter 3. We calculate essentially the
growth rates and phase diagrams of dominant modes in spinodal region for sym-
metric nuclear matter, and early growth of the correlation function of density
fluctuations. In section 4.1 we show the growth rates of unstable modes depend-
ing on the wave number and growth rates of most unstable modes as a function
of density. In section 4.2, by using temperature versus density graphs, the spin-
odal boundary is determined for different wavelengths and section in 4.3 and in

section 4.4, we calculate early evaluation of the density correlation function.

4.1 Unstable Solutions of Dispersion Relations

In these section, we calculete the growth rates of collective modes which are
obtained from the roots of dispersion relation 5(E,w) = 0, determinant of the
matrix given in Eq. (3.46), with w = +I'. Fig. 4.1 shows the changing of
the growth rates of unstable modes depending on the wave number k in the
spinodal region for the two different density dependent sets (DDME1, TW)
and two different initial baryon densities (p, = 0.4po, pr = 0.2pp) at different
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temperatures. For each temperature, the growth rates raises linearly from origin
to a maximum value at a definite wave number, then drops to zero because of
the non-local effects and effect of k? term in the dispersion relation. In the
relativistic calculations, the most growing modes are concentrated around the
wave numbers k = 0.6 fm=!, X ~ 10 fm for p, = 0.4py and k = 0.8 fm™!,
A~ 8 fm for p, = 0.2py. It can be averaged out k ~ 0.7 fm~! and with the
help of the graph, the wavelength of most growing modes is found A ~ 9 fm.
Also, the time constant can be calculated by using inverse of the growth rate
7 = 1/I'k, and it specifies the initial growth of the density fluctuations. For
example, the shortest growth time is changing 30-50 fm/c for p, = 0.4py and 20-
50 fm/c for p, = 0.2p in both two sets. Also, by using both of these graphs, it
can be understood that increasing temperature causes the growing rates occurred
at lower wave numbers and the increasing in the initial baryon density affects

in the same way. Fig. 4.2 determines the growth rates of the most unstable

0.07 : : . . :
——T=0 MeV ——T=0 MeV
DDME1
0.064 - - - T=2Mev o02p o T2Mev DE(’)":'H
T=4 MeV o T=4 MeV p=U4p,
- T=6 MeV
& 4
o
[
T T T
— T=0 MeV ——T=0 MeV
0.064 ___ 7o) Mev ™ 4 --- T=2MeV W
T=4 MeV p=0.2p; T=4 MeV p=0.4p,
0.05 q--- T=6 MeV
£ 0.041 4
o
L. 0.031
0.02
0.01
0.00 , . . i - :
00 02 04 06 08 10 12 1400 02 04 06 08 10 12 14
k(fm™) K (fm™)

Figure 4.1: The growth rates of unstable modes as a function of wave number in
the spinodal region at baryon densities p = 0.2pg and p = 0.4pg at temperatures
T =0-6 MeV for DDME1 and TW sets.
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Figure 4.2: Dependence of the growth rates of the most unstable modes on initial
baryon densities for DDME1 and TW with T=0, 2, 4, 6 MeV.

modes as a function of density for DDME1 and TW at T=2, 4, 6 MeV. As it can
be seen from figure, the most unstable response shifts towards at higher densities
when temperature increases in both sets. The maximum growth rate of most
unstable modes is around p, ~ 0.03 for DDME1 and p, ~ 0.04 for TW. We may

say that the system shows the most unstable behavior around py, & po/4.

Figure 4.3 helps us to compare two sets with non-relativistic calculation [15,
25] and relativistic calculation [36] at temperature T=5 MeV. The form of the
curves are comparable in both non-relativistic and the relativistic models. The
relativistic with non-linear self interaction of scalar meson and relativistic with
density-dependent couplings models exhibit the most unstable behavior around

pp ~ 0.25p while it occurs around p, = 0.2p, in the non-relativistic calculation.
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Figure 4.3: Comparison of growth rates of the most unstable modes calculated in
different models at T= 5 MeV.

4.2 Phase Diagrams

In this section, we illustrate the spinodal region boundaries by using temperature
versus density graph. Fig. 4.4 shows the boundary of the spinodal region of the
unstable modes for A = 9 fm and A = 12 fm wavelengths calculated in the
relativistic models with NL3, DDME1 and TW parameters. The parabola-like
curves are consistent with each other obtained from different models. When
the wavelength increases, the critical temperature increases and density region
spreads. The region under the curve has fragmentations; in other words, mixture
of liquid-gas phases. The maximum of the spinodal line is called the critical
temperature for the liquid-gas phase transition [37]. Above this point, system
is in only gas-phase. In the density dependent models, the critical temperature

is around 14 MeV for A = 12 fm and the corresponding baryon density is
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approximately 0.04, however, for A = 9 fm, the critical temperature is around
12 MeV and the baryon density is again 0.04 that corresponds to p, ~ poy/4.
In the case of NL3, the critical temperature is found less than the value in

density-dependent approach, but their most unstable densities are comparable.

2=9 fm —NL3

T (MeV)

A=12 fm —NL3

T (MeV)

0.00 0.02 0.04 0.06 0.08 0.10
p, (fin”)

Figure 4.4: Phase diagrams in the spinodal region corresponding to the unstable modes
A=9 fmand A =12 fm calculated in relativistic models.
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4.3 Early Condensation in Spinodal Region

In this section, the initial cluster sizes are estimated. Fig. 4.5 shows the change
in the half-wavelengths of the most unstable collective modes with respect to
baryon density at different temperatures and in two different sets. We can ob-
tain the information about emerging cluster size by using half-wavelengths. The
curves reduce to minimum values around baryon densities p, = 0.2pg. Then we
find the half-wavelength about A\o/2 ~ 4.5 fm for DDME1 and TW which be-
comes the estimated value of the diameter of the primary fragments . Increasing

in temperature also makes the size of cluster increase.

10

ol DDMEI
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E Tt
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Figure 4.5: Size of the primary clusters in the spinodal region at T= 2, 4, 6 MeV for
DDME1L and TW.

In Fig. 4.6, we compare the estimated cluster sizes in relativistic approaches at
T=5 MeV. We observed that the results are comparable with the value about

4.5 fm and are model independent.
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Figure 4.6: Comparison of the size of the primary clusters in the spinodal region in
relativistic and non-relativistic approaches.

4.4 Density Correlation Functions

4.4.1 Correlation Functions depending on Wave number

For the investigation of initial development of baryon density fluctuations, the
correlation functions are defined in Eq. (3.65). In Fig. 4.7 and Fig. 4.8, the
spectral intensity of the baryon density correlation function depending on wave
number is given at five different times (t=0, t=20 fm/c, t= 30 fm/c, t= 40
fm/c and t=50 fm/c) and at initial baryon densities p, = 0.2py and p, = 0.4p
below normal density at temperature T= 1 MeV and temperature T=5 MeV,

respectively.

By using Cauchy-Residue theorem, the evolution of baryon density fluctuation
8y (k,w) given in Eq. (3.54) are calculated. However; by that way, there are
contributions from non-collective poles of E(E,w) and source term. These con-

tributions are important and effective for large wave number at the initial state;
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Figure 4.7: Spectral intensity of baryon density correlation function as a function of
wave number at temperature T=1 MeV and time t= 0, 20, 30, 40, 50 fm/c calculated
with DDME1 and TW sets.

however, they disappear in a short time interval. We don’t use non-collective ef-
fects in our calculations; so, wave number is cut off 0.8 fm=3—1.15 fm=3 in our
graphs. In conclusion, calculated baryon density correlation function 6bb(E, t)is

a good approximation for long wavelengths below critical wave number k..

In these graphs, the largest growth takes place at the wave numbers, which
overlap the range of dominant unstable modes in Fig. 4.1. We may discuss
the situations due to the initial baryon densities and temperatures. In Fig.
4.7 and Fig. 4.8, we observe the same trend of the growth of baryon density
correlation function for both parameter sets. When the initial baryon density
increases, the spectral intensity grows smaller, however, the growth is larger

at high temperature case. While the early growth of baryon density correlation
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Figure 4.8: Spectral intensity of baryon density correlation function as a function of
wave number at temperature T=5 MeV and time t= 0, 20, 30, 40, 50 fm/c calculated
with DDME1 and TW sets.

function Ebb(lg, t) is 1.5 times larger at p, = 0.2po than at p, = 0.4p in the case of
higher temperature T=>5 MeV, it is 3 times larger at low temperature T=1 MeV.
As a result, we deduce that the early growth of the baryon density correlation

function &y, (k, t) becomes faster at lower densities and lower temperatures.

On the other side, at T=1 MeV, the growth of baryon density correlation func-
tion reaches a maximum around k& = 0.9 fm~! at p, = 0.2py and k = 0.7 fm~!
at p, = 0.4p9. At higher temperature T=5 MeV, the growth of baryon density
correlation function Gy, (k,t) reaches maximum around shorter wave length as

k=08 fmtatp,=02p and k = 0.6 fm~! at p, = 0.4py.
Fig. 4.9 and Fig. 4.10 show the spectral intensity of the scalar density correlation
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Figure 4.9: Spectral intensity of scalar density correlation function as a function of
wave number at temperature T=1 MeV and time t= 0, 20, 30, 40, 50 fm/c with
DDME1L and TW set.

function as a function of the wave number for different times at initial densities
pp = 0.2pg, pp = 0.4py and at temperature T= 1 MeV, T= 5 MeV by using
DDME1 and TW parameter sets. The values of wave numbers at which scalar
density correlation function 535(/;, t) reaches maximum are the same as baryon

density functions. The early growth rates are almost the same with baryon case.

By using the same chosen values, the spectral intensity of the current density
correlation function as a function of the wave number are shown in Fig. 4.11
and Fig. 4.12 at temperatures T= 1 MeV and T= 5 MeV, respectively. At
low temperature T=1 MeV, the k values corresponding to the maximum growth
of current density correlation function 5UU(E, t) are observed k = 0.8 fm~! at

o = 0.2py and k = 0.6 fm™! at p, = 0.4pg. At higher temperature T=5 MeV,
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Figure 4.10: Spectral intensity of scalar density correlation function as a function of
wave number at temperature T=5 MeV and time t= 0, 20, 30, 40, 50 fm/c with
DDME1L and TW sets.

they become k = 0.6 fm~! at p, = 0.2pg and k = 0.5 fm~! at p, = 0.4py. The
decaying of the curves at larger wave numbers is observed well in the current

density case. The growth rate of current density correlation function 5UU(E, t) is

the same for baryon and scalar cases.

4.4.2 Correlation Functions depending on Distance

In chapter 3, space dependent baryon density fluctuations dp,(7, t) are found out
by Fourier transform of momentum dependent 6pb(E, t). Equal time correlation
function of baryon density fluctuations is represented as a function of distance
between two space locations in Eq. (3.68). In this expression, the distance de-

pendency of the correlation function is important so that correlation function
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Figure 4.11: Spectral intensity of current density correlation function as a function
of wave number at temperature T=1 MeV and time t= 0, 20, 30, 40, 50 fm/c with
DDME1L and TW sets.

becomes zero when the magnitude of distance goes to the infinity. At these
points, the fluctuations are statistically independent [25]. Baryon density cor-
relation function gives valuable information about the dynamics of the system
in the spinodal region. Figure 4.13 shows the relation between baryon density
correlation function as a function of distance between two space points | Z — 2 |
at T=1 MeV calculated for DDME1 and TW sets at different times, and at
two initial baryon densities p, = 0.2p9 and p, = 0.4py. We can obtain initial
information about the average size of clusters by using this graph. The width
of correlation function at half maximum gives approximately the size of cluster.
Correlation length of density fluctuations is obtained about 3.0 fm in both case

of densities p, = 0.2p9, pp = 0.4po. In Fig. 4.5, we also find \/2 ~ 4.5 fm
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Figure 4.12: Spectral intensity of current density correlation function as a function

of wave number at temperature T=5 MeV and time t= 0, 20, 30, 40, 50 fm/c with
DDME1L and TW1 set.

for p, = 0.2py. If it is accepted that Fig. 4.5 gives the diameter and Fig.
4.12 gives the size of the initial condensation region, these values are consistent
with each other. At the same temperature, baryon density fluctuations grow
faster with larger densities. On the other hand, the evaluation of baryon density
correlation function in time is faster at lower densities. In the DDME]1 case,
ow(z = 0,t = 50 fm/c) ~ 0.055 fm ™% at initial baryon density p, = 0.2p,
and ow(z = 0, = 50 fm/c) ~ 0.009 fm=5 at p, = 0.4p, that show six times
faster at p, = 0.2pp. In the TW case, op(z = 0,t = 50 fm/c) ~ 0.045 fm=% at
initial baryon density p, = 0.2pg and oy (z = 0, = 50 fm/c) ~ 0.012 fm=% at
pp = 0.4py that show four times faster at p, = 0.2p,.

Fig. 4.14 shows baryon density correlation function as a function of distance at
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Figure 4.13: Baryon density correlation function as a function of distance at times t=
0, t= 20 fm/c, 30 fm/c, 40 fm/c and 50 fm/c at temperature T=1 MeV at density
pp = 0.2pg and pp = 0.4pg calculated with DDME1 and TW

the different initial baryon densities but higher temperature T=5 MeV for the
same initial times as given in Fig. 4.13. At this temperature, the growth rate in
time is slower than T=1 MeV case. The ratio is about two. Correlation length
of density fluctuations is also obtained about 3.0 fm from Fig. 4.14 for both

densities and both sets.

Fig. 4.15 and Fig. 4.16 present the scalar density correlation function as a
function of distance between two space points at different initial times and the
initial baryon densities at p, = 0.2py and p, = 0.4py temperature T=1 MeV and
T=5 MeV, respectively. The scalar correlation function give again information
about the size of condensation that is found about 2.5 fm which is considerable

value with the estimated one from baryon density correlation function.
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Figure 4.14: Baryon density correlation function as a function of distance at times t=
0, t= 20 fm/c, 30 fm/c, 40 fm/c and 50 fm/c at temperature T=5 MeV at density
pp = 0.2pg and pp = 0.4pg calculated with DDME1 and TW

Fig. 4.17 and Fig. 4.18 show the current density correlation function as a func-
tion of distance under similar conditions with other calculations. Current density
has an additional factor e*/M* in the definition; so, it is reduced by a factor
of 1000. By using current density correlation, the variance of the local velocity
fluctuations of initial cluster can be estimated. The local velocity fluctuations
are proportional to the current density fluctuations dp, (7, t) ~ 0u(7, t)p, . And

the equation which satisfies the relation between equal time correlation function

and the local velocity fluctuations given by d4(7, t)du(7,t) = o, (| T—2 |,t)/p}.

The variance of local velocity fluctuations are obtained by taking | ¥ — & |= 0
and average speed of initial fragments of spinodal decomposition is then cal-

culated from the formula of root-mean-square value w,.,s = (¢/pp)\/Tww(0,1).
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Figure 4.15: Scalar density correlation function as a function of distance at times t=
0, t= 20 fm/c, 30 fm/c, 40 fm/c and 50 fm/c at temperature T=1 MeV at density

pp = 0.2pg and pp = 0.4pg calculated with DDME1 and TW

For example, for DDMEI1, at time t=0 fm/c to t= 50 fm/c and at T=5 MeV,
the rms value changes from u,,,s = 0.04c to u.ns = 0.09¢ for baryon den-
sity pp = 0.4py = 0.06 fm™3 and for p, = 0.2py = 0.03 fm™3, it changes
Upms = 0.08¢ t0 Uppms = 0.31c during 50 fm/c. In the case of parameter TW, we

found approximately values.

We estimate the evolution of the root-mean-square value in time considering

Fig. 4. 17 and Fig. 4.18 and give the results in Table 4.1 and Table 4.2 for

DDME1 and TW sets, respectively.
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Figure 4.16: Scalar density correlation function as a function of distance at times t=
0, t= 20 fm/c, 30 fm/c, 40 fm/c and 50 fm/c at temperature T=5 MeV at density
pp = 0.2pg and pp = 0.4pg calculated with DDME1 and TW

Table 4.1: The average speed of initial fragments of spinodal decomposition at T=1
MeV and T=5 MeV for DDME1

DDME1 T=1 MeV T=5 MeV
t (fm/c) | ow(0,8)(fm=C) | wpms | t (fm/c) | 0uu(0,8)(fm=0) | tpms
0 0.002 x 1073 0.05¢ 0 0.005 x 1073 0.075¢
20 0.009 x 10~3 0.1c 20 0.011 x 1073 0.11c
o = 0.2po 30 0.024 x 1073 0.16¢ 30 0.021 x 1073 0.15¢
40 0.064 x 1073 0.27¢ 40 0.042 x 1073 0.22¢
50 0.167 x 1073 0.43¢ 50 0.085 x 1073 0.31c

t (fm/c) | 0u(0,8)(fm=C) | wpms | t (fm/c) | 00 (0,8)(fm =) | tpms

0 0.0016 x 1073 0.020¢ 0 0.005 x 1073 0.04c

20 0.0029 x 1073 0.028¢ 20 0.008 x 1073 0.047¢

b = 0.4p0 30 0.0051 x 1073 0.038¢c 30 0.012 x 1073 0.058¢

40 0.0091 x 1073 0.050c 40 0.02 x 1073 0.07c

50 0.0165 x 1073 0.068¢ 50 0.032 x 1073 0.094c¢
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Figure 4.17: Current density correlation function as a function of distance at times
t=0, t= 20 fm/c, 30 fm/c, 40 fm/c and 50 fm/c at temperature T=1 MeV at density

o = 0.2p9 and pp = 0.4pp calculated with DDME1 and TW

Table 4.2: The average speed of initial fragments of spinodal decomposition at T=1
MeV and T=5 MeV for TW

DDME1 T=1 MeV T=5 MeV
t (fm/c) | ou(0,8)(fm=°) | Upms | t (fm/c) | dup(0,)(fm=0) | Upms
0 0.002 x 1073 0.05¢ 0 0.004 x 1073 0.07c
20 0.008 x 1073 0.09¢ 20 0.010 x 1073 0.11¢
o = 0.2po 30 0.020 x 1073 0.15¢ 30 0.018 x 1073 0.14¢
40 0.049 x 1073 0.23¢ 40 0.035 x 1073 0.20c¢
50 0.123 x 1073 0.37c 50 0.067 x 1073 0.27¢
t (fm/c) | ou(0,8)(fm=C) | wpms | t (fm/c) | o0 (0,8)(fm=0) | tpms
0 0.0017 x 103 | 0.022¢ 0 0.005 x 1073 0.04¢
20 0.0035 x 10=2 | 0.031c 20 0.009 x 1073 0.05¢
py = 0.4pg 30 0.0066 x 10=3 | 0.043c 30 0.015 x 1073 0.065¢
40 0.0126 x 10=2 | 0.059¢ 40 0.027 x 1073 0.086¢
50 0.0244 x 103 | 0.082¢ 50 0.045 x 1073 0.11c
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Figure 4.18: Current density correlation function as a function of distance at times
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CHAPTER 5

CONCLUSION

We study the nuclear spinodal instabilities in the framework of a stochastic
relativistic density-dependent mean-field theory with density-dependent cou-
pling constants. The stochastic relativistic mean-field approach with density-
dependent version is a valid model for investigating density fluctuation dynam-
ics in the spinodal region. We use DDME1 and TW parameter sets in our
numerical calculations. We start with Lorentz invariance Lagrangian, and the
relativistic field equations are derived from Euler-Lagrange formalism. In the
mean-field approach, the meson fields are defined in terms of densities. We use
the relativistic Vlasov equation for a phase space distribution function and use
the definitions of the baryon, scalar and current densities related by the phase
space distribution function. Since we would like to investigate the early stage of
density fluctuations, we linearize the quantities around their initial values. Fi-
nally, three coupled equations of density fluctuations are obtained by including

initial information of the system.

In the first part of this thesis, we analyze the growth rates of unstable collec-
tive modes with respect to the wave number or wave length from a dispersion
relation at two different initial densities below the normal density and at low
temperatures. We study with the collective modes and due to the effects of non-
collective modes after a certain wave numbers; growth rates of unstable modes
are suppressed. We choose low temperature because we realize from pressure fig-

ure that the instability occurs below a critical temperature about 7, ~ 14 MeV .
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Spinodal decomposition of nuclear matter and nuclear fragmentation is the low
energy processes. We also choose the initial baryon densities as p, = 0.2pg,
p» = 0.4pg in order to compare with previous calculations obtained in other
models. Corresponding to the most unstable mode, we find a phase picture that
exhibits a boundary of spinodal region. We also calculate a measure for the
size of primary fragments in the spinodal region from half-wavelength at differ-
ent temperature around p, ~ 0.3py. We observe that the size of the clusters

increases as temperature increases.

In the second part, we investigate the behavior of the spectral density correlation
functions as a function of wave numbers at early times of fragmentation. Spectral
density represents an increasing behavior at low wave number and a decreasing
behavior at long wave number as expected. At different times, we calculate
the baryon, scalar and current density correlation functions as a function of a
distance between two space locations at temperatures T=1 MeV and T=5 MeV
and at two initial baryon densities p, = 0.2p9, pp = 0.4py . Stochastic mean
field approach enables us to calculate early development of density correlation
functions in spinodal region; they provide important information about the size
of the early condensation regions and the current correlation function give the

information about the average speed of condensing fragments.

Our results are in agreement with the results obtained in a nonrelativistic cal-
culation with an effective Skyrme force [15, 25] and in the nonlinear relativistic
Walecka model with NL3 parametrization [26, 36]. Our stochastic relativistic
density-dependent approach is suitable for investigating the spinodal instability

of hot nuclear matter occurred in heavy ion reactions.

We use a semi-classical model of a relativistic mean-field approach with density
dependent couplings for a hot symmetric nuclear matter. We do not consider
the quantum statistical effects on the density correlation functions which give
considerable contributions, in particular, at low temperatures and at low densi-
ties. The charge asymmetric nuclear matter, which is studied by including the

charged vector meson , is worked within this approach. It would become impor-
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tant to understand the isospin dependence of the spinodal dynamics in multi-
fragmentation reactions of neutron rich nuclear systems and for astrophysical

processes.
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APPENDIX A

AT ZERO TEMPERATURE

When we investigate relativistic problem for symmetric nuclear matter at zero
temperature (T=0), there is no correlation; so, we can calculate only phase
diagrams, the growth rates and the size of the primary cluster in spinodal region.

Chemical potentials at T=0 are given by

rz .,
[ = ft — M—gpb (A1)

v

At finite temperature, we use Fermi Dirac distribution function for the equi-
librium phase space distribution function fy(p). However, at zero temperature,
phase-space distribution function of equilibrium state fo(p) is given by step

function. For the 7" — 0 case, and 5 = E7

1 . . 1, g > €
T o= — Olue — Eo) = (A2)
+ ePtroTHo 0, puh<e

fo(P) =

At zero temperature

Volo = Vol (13— V(e + (Mg

— _pb (cp Vit — (Mg e2)? )

= —cpd(cp — cp1) = pé(cp — cp1) (A.3)

here 0 is the Kronecker delta and cp; = \/ e — (Mgc?)? is the momentum

vector. By using the baryon density and reduced mass and the self-consistency
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conditions at equilibrium,

F2
Mgc* = Mc* — Ty(py)do = Mc? M—Zni (A4)
where
0 vy PF 5 M* 2
p— d A.5
P Q2nhy /0 N EER e (A.5)
0 y PE y (pp>3 Y 3
-1 Bp=—(E£) = L A6
Po (2wh)3 /0 P= 62 \h 6m2 ¥ (4.6)

the chemical potential at zero temperature can be calculated. The final forms

of the relativistic Lindhard functions for T=0 and w — +:I" are

Yo (K, w) LiT /e
. E’ 3 M
Xb(ka W) (27Th) Ho 1
Xos (K, w) (Mg /ug) (i(T/e)g)
5 = (C 1)3 2 M*02 2
Xas(k, w) z(*) k < ,fg >2L2(p1)
— *02 ¢
Xs(k; w) __2my 214(p1) — (epr)? (Mﬁo ) (,%) k?Lo(p1)
- - 3 *02 .
o, w) (2mhe) (H55°) (p )k (T /) La(p1)
e 2
Wk, w) 20y (p1) — 2L4(p1) — (<;+>> <uik:) kLy(p1)
(A.8)
where
I r— (A.9)
IL(p) = / dp A9
0 2 + (Mgc2)2]?
o= ["ay (A.10)
Li(p) = / dp A.10
0 2 + (Mgc2)?)*?
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Lo(p') . 1 X
2 ' = dx 332 3
batv) /—1 (/e + (k) o

0

Eq. 3.45 at T=0 becomes,

A Ay A 5pv(E,w) 0
By B, B sps(kw) | =10 (A.11)
C, Cy Cs 8y, w) 0

If we use w — —il’, then we have A; —» —A, By — —B1,(Cy — C5,C3 — —(C4.

Finally, the determinant of the matrix becomes the same with the case of w —

+I

A Ay A
By By Bj
Cy Cy Cj

= A3<B102 — OlBg> -+ B3(01A2 — A102) + Cg(AlBQ — B1A2>
(A.12)

As aresult the terms are classified as real or pure imaginary Ay, As, By, Bs, C1, Do

and Dy are real, Ay = 1Ay, By = 1By1,Cy = iC1o and D3 = iD;3 are imaginary.
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APPENDIX B

SPECTRAL INTENSITY OF BARYON DENSITY
FLUCTUATIONS

The spectral intensity of baryon density function is determined by

(K, 1)(2m)°(k —K) = 6py(k, t)67;(R, 1)

= o (F)opy (K)e*™ + +3p, (K)opy (K')re >+t

30 (RS0, (F)° + oy (R)opy () (B.1)

where time-dependent baryon density fluctuation function for growing and de-

caying poles is in the form

0pn(k, t) = (Sp(R))TetTH + (py(F)) e (B.2)
with the initial amplitudes for growing and decaying poles are given by

= S Dy + S Dy + SFD
opy (k) = == 3 (B.3)

and

S, Dy + S, Dy + S, D3

S0y (K) = o (B4)
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here short notations are used as the following

Dy = BiCy = By(y
D2 - AQCl - AlcQ
D3 - AlBQ - AgBl (B5)

and F1N = (%) . The correlation of baryon density initial amplitudes
w=FI

can be written in the following way for growing pole

Spy (R)opy (K IN12 = S (k)Sy (k)| Di|* + St (k) S (k')*| Dy
S (k) Sy (K')*| Df |2+S+<> F(K)*Dy D,

—. —

)Sy (K')* Dy Dy
(/2) D, Dy +2S+(E)S+(k’) DDy

+(k')* Dy Dy (B.6)
here D, Dy are real terms but Ds is imaginary so we use Dg notation to show
real part of this term.

The decaying poles of for the correlation of baryon density initial amplitudes is

expressed in the following way

Spy ()py (K)*IN|* = Sy (B)Sy ()| D1 + S5 (k) Sy (K)*| Dsf?
+ S, (K)S; (k)" Dyf* + Sy (k) Sy (K')* D1 Dy
+ iS; (F)S; (K)*Dy Dy + S5 (K)S; (K)*DyDy
+ iS7(k)S; (K)*DyDy — iS5 (k)S; (K')* DyDy

fixed terms are in the following form
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!

)y, (K7 (=INI)* = S (B)S, (K,)*|Daf* + S5 (k. )S; (k)| Dal”

— S#(k)Sy (K)*| Dy[* + Sf (k) S5 (K')*Dy Dy

v

opy (

— -,

iSy (K)Sy (K')*Dy Dy + S¢(k)S; (K)* D2 Dy
- (k") Do Dy + iS (k) Sy (K)* Dy Dy

v

+ iSH(k)

iS+(k,w)Ss (K, w)* Dy Dy (B.8)

Eayl

Spy (R)opy (R)*(=INI)* = Sy (k) Sy (k)| Dif* + S5

- SJ() v 5(/)*D1D2
— Sy (k)S5 (K')*DyDy + S5 (k)S; (k')* Dy Dy
— iS7(k)SH(K')*DyDy — iSi(k)S; (K')* Dy Dy

(R NERE.
o d°p %2 of(k,p,0)
+ =2 Mge —_ B.10
S5 (]iaw) / (27h)3 Egl il — 4y ( )
Sy (k,w) =3

the second moment of the initial phase-space distribution function ¢ f (E, P,0) is

used to write the correlation functions and it can be defined as

Sf(k,5,0) (0 f (K, 7, 1))* = (2m)%6° (k — k') (2xh)*83 (5 — ) f(p) (1 — f(p)) (B.11)

we can get the following expression

—

Sy, )+ (Sy(K,w)H)s = A2(2m)38(k — ') / (d3p fo@)[ = fo@)]

27Th)3 2 -+ (’Uo . E)2
(B.12)
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n .
= f; gives zero for odd n.

due to the integral of [
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with the integrals

and
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+—
Kll

K;y | _ 2/ Bp T2 4 (T - k)2
ki |7 ORI @ B

‘e
K (25)
€0

Finally, The correlation function of baryon density fluctuation becomes for grow-

f)(1=F(p) << Oc>> (B.17)

ing poles,decaying poles and mixed terms

Spf (K)opf (k) = ~*2m)3s(k — k')
" |DiPKT" + |DoPKS, + |Ds|P K35 + 2Dy Dy KT
|V|?

(B.18)

in the similar process, we can obtain the decaying pole and the mixed term

Spy (K)o, (KFINP = 22@m)°6(k = k) [|DiPEY + Do Ky + | Dol K"

+ 2D D, K" (B.19)

Eyl

opy (K)opy (KINIP = 22@m)°6(k — k) [|DiPKY + Do Ky — | Dal Ky

+ 2D DK1Y (B.20)

dpy (R)opf (K)*IN[> = ¥2(2m)33(k — k) [|DiP K7 + | Do K5y
— |DsPPKf + 2D Dy K] (B.21)

Consequently, the spectral intensity of baryon density correlation function can

be found
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oy (k1) (2m)26(k — k') = 6y (K, )07 (K, t)

_ 2 K{Di P 4 K5 Dl + K| Ds|? + 2K7, D1 D]
O-bb(k7t) - 88(Ew) :
| < Ow >w=7T|

(K[| D1|? + Koy | Do|* — Kyg3| Ds|* + 2K, D1 D]

ot |, —ort
(e +e =)

+ 2 | <a€<;z,w>> : (B.22)

Ow w=iI"
with the integrals

K 1 )
- Mrc?

K3, Bp T2+ (T, k) =

2= o - ) S
K3 (2mR)? T2 + (@ - k)2)2 (Cpk>
K (¥4=)
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APPENDIX C

SPECTRAL INTENSITY OF SCALAR AND VECTOR
DENSITY FLUCTUATIONS

By using three coupled equations with the source terms, baryon, scalar and
vector density fluctuations, we obtain the spectral intensity of scalar and vector

density fluctuations.

(5pv(lg,w)A1 + 5pS(E, w)Ag + (5pb(E, w)Asz+ =15 (C.1)
Spu(k,w) By + 6ps(k,w) By + 6py(k, w) B+ = iS5 (C.2)
8pu(k,w)Cy + 8ps(k,w)Co + 8py(k, w)Cy+ = iS5 (C.3)

by using these equations scalar and vector density fluctuations can be found in

the following form

,Sl(B3C1 — 3103) + SQ(CgAl — ClAg) + Sg(BlAg — BgA3)

Sps(k,w) =i =0k w0)] (C.4)
and
5101](];’ (,d) _ 251 (Cng — CQBg) + 52(0[2;?2 ;;'3142) + Sg(BgAQ — BzAg) (05)

where e(k, w) is the susceptibility and given by e(k, w) = A3D;+ B3Dy+C3D5 .
For the scalar and baryon case, Dj = C1 B3 —i*B,C3, D§ = i*A B3 — C1 Az, D§ =
i(BlAg — AlBg).
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The definition of the spectral intensity for scalar density fluctuations is given

Gas(F, 1) (215 (K — K') = 0pa(k, 0)0p5(K, 1)
= Opf (k)opt (K €™ + +0p; (k)ops (K)re ™!
+6pt (K)ops (K)* + dp5 (K)ops (K)* (C.6)

By following the same procedure in appendix B, the results can be obtained by

Guf) = EnlDIP+ K 2|D;|;+)K 3]D;|2 H2KEDIDY) ory  om
‘( 80;0) >w:i1_‘
K |Di? + Ko | D3|* — K| D3| + 2K, D Dj]
. ; (C.7)
e (k,w)
‘< 0w >w:iF

however, vector case has different form. DY = i(ByC3 — CyB3), Dy = i(Cy A3 —

+2[

AyCy), DY = Ay B3 — By As. and the vector density fluctuations is found as

Gk, 1) (2m)%5(k — k') = 6py(k, t)op3 (K, t)
= Spf(R)3pf ()€™ + +3p; (K)3py (k')re 2+

+op5 (K)o, (K')* + dpy (K)ops (k) (C.8)

the vector correlation of growing pole is given by,

Spt,(K)Sps (K)*INP2 = Sy (k)S; (k)*| Dy [? + St (k)Ss (K')*| Dy

F (k)| Ds? + S (k) S#(k')*Dy' Dy’

F(K"*Dy'Ds + S (k)Sy (k')* Dy’ Dy’
(

k)Sy (K")*Dy(—iDy')

+ 4+ o+ o+
X
g I

S+ (K)S+(K')* Ds(—iDy') (C.9)



and the decaying and mix poles for correlation functions are given

Y

Spy (R)opy () |N |

By

op3(

Spy (k)opy (K')*(~|N)?

)py (k)= (=|N|)?

= )"
')

+ o+ A

Sy (k)Sy (K")*|Dy|* + S5 (k)S5 (k')*| Dy|?
S=(k)S |D4? + S, (k)Ss (k') Dy D,

v

Sy (k
iSy (k) Sy (k)* D\ D + S5 ()S, (K')*D, Dy
iS7(k)S5 (K'y*DyDy — iS5 (K)S, (K')*DsD,

iS; (k)S; (K)*Ds D,

(C.10)

Sy (k) Sy (K| D)|” = S5 (k)S; (¥ )ID |2
S (k) Sy (K| Ds|” = S, (k)S; (k)* D
iS;H(k)S5 (K')*DyDs — S+(k)S; (1;’/) D,D)

1

)
iS+(K)S; (K)*DyDs +iS3(k)S; (k)* D3 D,

iS+(K)S=(K')*Ds D), (C.11)

— Sy (k) S (R)*| Dy > — iS5 (k) SH(E)*| Dy
iSE(k)Sy (F)*| Ds|” — Sy (k)S# (k') D, D,

iS, (K)Sy (K)* D\ Dy — S5 (K) S, (¥)* Dy D,
iS7(K)S+(K)*DyDs — iS+(k)S; (K')* Dy Dy
iS+(k)S=(K)*Ds D, (C.12)

Finally, the correlation function of baryon density fluctuation are obtained for

growing poles,decaying poles and mixed terms
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Sy
Sy

) = opy(k)op, (K)*
= (2n)%0*(k — k')
" |DiPKG" + |DoP K, + | Ds|P K35 + 2Dy Dy Ky
|V|?

opi (k)opi(

(C.13)

in the similar process, we can obtain the decaying pole and the mixed term

Spf (R)opy (R = dpy (K)ot (K)*

= @2r)P8k—k)
(=D PR — [DoPKoy + |Ds|*K45 — 2D1 DKy ]

. (—N])2

(C.14)

Finally, vector density fluctuation is found as

iy = USIDIP A+ K| Dy + K| Dy + 2K, Dy Dy
Uu( 7t) - | <85(E,w)> |2
Ow w=il},

K| D} |? + K5,|D3)? — K| Dy|? 4+ 2K, D} D3]

| (M) 2
Ow w=il"g

(62I‘t + 672Ft)

ol (C.15)
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