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Engineering Faculty, Atılım University

Date:



I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: FATMA ACAR

Signature :

iii



ABSTRACT

SPINODAL INSTABILITIES IN SYMMETRIC NUCLEAR MATTER WITHIN A
NONLINEAR RELATIVISTIC MEAN-FIELD APPROACH

Acar, Fatma

M.Sc., Department of Physics

Supervisor : Prof. Dr. Osman Yılmaz

Co-Supervisor : Prof. Dr. Şakir Ayık

August 2011, 89 pages

Spinodal instability mechanism and early development of density fluctuations

for symmetric nuclear matter at finite temperature are studied. A stochas-

tic extension of Walecka-type relativistic mean-field model including non-linear

self-interactions of scalar mesons with NL3 parameter set is employed in the

semi-classical approximation. The growth rates of unstable collective modes

are investigated below the normal density and at low temperatures. The sys-

tem exhibits most unstable behavior in longer wave lengths at baryon densities

ρB = 0.4 ρ0 , while most unstable behavior occurs in shorter wavelengths at

lower baryon densities ρB = 0.2 ρ0 . The unstable response of the system shifts

towards longer wavelengths with the increasing temperature at both densities.

The early growth of the density correlation functions are calculated, which pro-

vide valuable information about the initial size of the condensation and the

average speed of condensing fragments. Furthermore, the relativistic results are

compared with Skyrme type non-relativistic calculations. Qualitatively similar

results are found in both non-relativistic and relativistic descriptions.
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ÖZ

LİNEER OLMAYAN RELATİVİSTİK ORTALAMA ALAN YAKLAŞIMINDA
SİMETRİK NÜKLEER MADDENİN SPİNODAL KARARSIZLIKLARI

Acar, Fatma

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Osman Yılmaz

Ortak Tez Yöneticisi : Prof. Dr. Şakir Ayık

Ağustos 2011, 89 sayfa

Sonlu sıcaklıklardaki simetrik nükleer maddenin spinodal karasızlık mekaniz-

ması ve yoğunluk dalgalanmalarının ilk anları incelendi. Relativistic stokastik

ortalama alan yaklaşımı esas alınarak ve Walecka modelinin lineer olmayan

scalar meson etkileşmelerini de içeren NL3 parametre seti kullanılarak yarı-klasik

limitte çalışıldı. Baskın kararsız modların büyüme hızları normal yoğunluğun

altındaki yoğunluklarda ve düşük sıcaklık değerlerinde incelendi. Yoğunluk

değeri ρB = 0.4 ρ0 olduğunda baskın kararsız modlar uzun dalga boylarına

doğru kayarken, daha düşük yoğunluklarda ρB = 0.2 ρ0 ise daha kısa dalga boy-

larına doğru kaydığı görüldü. Her iki yoğunluk değerinde de artan sıcaklıkla bir-

likte sistemin kararsız davranışı uzun dalga boylarına doğru kayar. Yoğunlaşan

bölgelerin boyutu ve ortalama hızları hakkında bilgi içeren yoğunluk korelasyon

fonksiyonunun erken gelişimi hesaplandı. Ayrıca, bu çalışmadaki relativistik

hesaplar, Skyrme-tipi etkileşimler baz alınarak yapılan relativistik olmayan he-

saplarla karşılaştırıldı. Relativistik ve relatistik olmayan yaklaşımların ikisinde

de sistemin kararsızlık mekanizması için benzer sonuçlar bulundu.
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CHAPTER 1

INTRODUCTION

After the discovery of atomic nuclei in 1911 by Rutherford and the neutron

was found by Chadwick in 1932, the basic problems of the nuclear physics arise

to understand the structure and properties of the nuclei. In 1935, Yukawa

comes up with a fundamental idea of strong interaction between the particles in

nuclei. Since that time nuclear matter which is a theoretical uniform system of

nucleons has become the subject of study in nuclear physics. A major interest

is given to non-relativistic description of many-body system in the studies of

nuclear physics. The non-relativistic many body formalism can explain the

nuclear structure in terms of effective two nucleon interactions [1]. However,

this approach is certainly inefficient for a full understanding of nuclei since the

existing of atomic nuclei provide an inadequate explanation of the nuclear matter

equation of state. Actually, most of the applications of nuclear physics depend

on the behavior of nuclear matter under extreme conditions. For instance, the

properties of neutron stars are related to the nuclear matter equation of state at

densities of the order of magnitude higher than the densities in ordinary nuclei

[1].

The extreme conditions for the nuclear matter can be produced in the laboratory

through the heavy-ion collisions. With the developing technology, the new ac-

celerators such as RHIC (Relativistic Heavy Ion Collider) and ALICE at CERN

allow us to study nuclear matter at higher densities and temperatures. These ex-

periments involve physics that cannot be explained by non-relativistic approach
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such as relativistic motion of the nucleons, meson exchanges and formation of

the quark-gluon plasma. However, the relativistic field theories can describe the

various properties of the nuclear matter in the mean-field approximations [2].

The study of heavy-ion collisions presents the prospect of studying the properties

of nuclear matter under extreme conditions. At high densities or temperatures

(∼ 150MeV ), nucleons in the nucleus changes into quark-gluon plasma and

at lower temperatures, which are the results of the medium energy heavy-ion

collisions (at temperatures that are tens of MeV), there is the possibility of a

liquid-gas phase transition leading to the multifragmentation process [3]. This

could provide information about the changes at the nuclear matter phases. How-

ever, it is not an easy task to determine such properties from these reactions

since the collisions take place in order of 10−22 seconds and we cannot keep mat-

ter in that abnormal state to study its properties. Moreover, the detectors can

measure only the products of the reaction in normal states and not the hot and

dense one [4, 5].

Most of the previous investigations about nuclear matter have been carried out

in non-relativistic framework. Moreover, the relativistic mean-field approaches

based on covariant density functional theory have been used with great success to

describe the structure and dynamics of nuclear matter in recent years [2, 6, 7, 8].

A relativistic mean-field theory (RMF) which is introduced originally by Walecka

in 1974 [1] has gain a success in taking the relativistic effects [9]. However, the

standard Walecka model is unable to describe the nuclear matter equation of

state in a quantitative way [10]. Therefore, we use the nonlinear Walecka model

which is the extension of the standard Walecka model with including the scalar

meson non-linear self interaction terms [11] for a more realistic description of

nuclear structure and dynamics.

In this work, the spinodal instabilities of infinite symmetric nuclear matter are

studied. The symmetric infinite nuclear matter is a system that consists of

infinite number of nucleons in a huge volume so the surface effects and the
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Coulomb interactions between particles can be neglected. At lowest energies

and normal states, the nuclear matter represents liquid-like characteristics. In

the heavy-ion collisions, the temperature of the nuclear matter can be increased

and the first order phase transition occurs at subnormal densities and at a few

MeV temperatures. At normal density and zero temperature, nuclear matter

behaves like Fermi liquids, but after the temperature increases at a few MeV,

some of the nuclei start to evaporate and the liquid-gas phase transition occurs.

At these conditions, nuclear matter is expected to behave like van der Waals

gas, which is considered to be a classical example of liquid-gas phase transition,

thermodynamically [12], since van der Waals forces are repulsive at short range

and attractive at intermediate and long ranges similar to the nuclear forces. It

is discussed in chapter 2 that the nuclear matter and van der Waals gas display

similar properties due to phase transition.

Spinodal instability ensures a possible dynamical mechanism for fragmentation

of a hot piece of nuclear matter occurring just after the heavy ion collisions [12].

The possible origin of spinodal decomposition is the growth of small amplitude

density fluctuations around an equilibrium point [13]. At the reactions of inter-

mediate energies, an intermediate system occurs at temperatures 10− 15 MeV

and this hot and dense nuclear system expands with the effect of thermal pres-

sure and then cools down. Its temperature and density start to decrease and the

system enters into mechanically unstable region and it tends to breaks up into

fragments. The region in which incompressibility is negative, frequencies become

imaginary and the system is unstable mechanically is called spinodal instability

region. The density for a nuclear matter at normal conditions is approximately

ρ0 = 0.16fm−3 and the nuclear matter is stable. The system of nuclear matter

passes to the unstable condition at low densities. When the nuclear matter en-

ters the spinodal region, it becomes unstable and the density fluctuations grow

rapidly which leads to the break-up of the nuclear system into many fragments of

different sizes known as multifragmentation. Multifragmentation is considered

as a possible signature of the liquid-gas phase transformation [12].
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The mean-field transport models such as the time dependent Hartree-Fock model

(TDHF) [14] and the Boltzmann-Uhling-Uhlenbeck (BUU) [15] model have been

used to describe the reaction dynamics in nuclear collisions at low energies and

other many body systems [16]. Despite the success in explanation of mean-values

of one-body observables in low energy reactions, the TDHF fails to describe fluc-

tuation dynamics of the one-body observables [16]. Similar to the TDHF model,

the BUU model cannot explain this fluctuation mechanism since only the aver-

age effect of the collisions is included in this approach [17]. Much work carried

out to develop the transport approach for description of the dynamics of the den-

sity fluctuations [18]. Basically, there are two different mechanism for density

fluctuations; (i) two body fluctuation mechanism and (ii) one-body mechanism

or mean-field fluctuations. Since, no dissipation occurs without fluctuations [19],

we need to develop a transport theory to take into account the two-body dissi-

pation and fluctuation mechanism. Therefore, the Boltzmann-Langevin model

(BL) is developed from the extension of BUU approach to include the fluctuating

effect of the two-body collisions [17]. However, the BL model which is suitable

for two-body dissipation and fluctuation mechanisms plays an important role in

nuclear dynamics at intermediate energies but not at low energies [19]. Nuclear

dynamics at low energies is studied in this work. The mean-field fluctuations

at the initial state are dominant source of the density fluctuations for the low

energy nuclear systems.

Stochastic Mean-Field Approach (SMF), which is proposed by S.Ayik in ref. [20],

provides a suitable basis for describing dynamics of density fluctuations at low

energies. The SMF approach includes the one-body dissipation and the related

fluctuation mechanism in accordance with the quantal-dissipation fluctuation

relation [16, 19, 21]. The SMF approach provides a useful microscopic tool to

describe the dynamics of density fluctuations in nuclear processes at low energies

[19].

In addition to the theoretical descriptions, there are experimental studies about

spinodal decomposition in the heavy-ion collision physics. Spinodal decompo-

4



sition of finite nuclear matter appears as a mechanism of multifragmentation

[22, 23]. The charge correlation functions are investigated experimentally in [24],

and the multifragmentation event with nearly equal-sized fragments, which are

possible signals of spinodal instabilities in finite nuclear systems, are observed.

In this thesis, we study the early development of density fluctuations of sym-

metric nuclear matter in spinodal region within the framework of the stochastic

extension of the relativistic mean-field theory with the NL3 parameter set. In

previous works, the spinodal dynamics are studied in the non-relativistic limit,

and also in the relativistic limit with the semi-classical approximation by using

the standard Walecka model [25, 26, 27]. In the standard Walecka model, the

nuclear compressibility is much larger than the experimental value. Therefore,

NL3 parameter set, which is the extension of the Walecka model with includ-

ing nonlinear interaction terms of the scalar meson, provides a more realistic

description of the nuclear dynamics.

We carry out investigations of spinodal instabilities in symmetric nuclear matter

by utilizing the nonlinear Walecka model in the semi-classical approach. In chap-

ter 2, we briefly describe the nonlinear Walecka model and then we derive the

nuclear matter equation of state at zero and finite temperatures. Also, the phase

transition and spinodal instabilities are determined from the pressure-baryon

density variation. Furthermore, a brief description of the stochastic mean-field

approach and the derivation of the relativistic Vlasov equation are given in this

chapter. In chapter 3, we obtain a dispersion relation by linearization of the

Vlasov equation and we investigate the early growth of density correlation func-

tions of symmetric nuclear matter in spinodal region. In chapter 4, growth rates

of unstable modes and the boundary of the spinodal region are determined nu-

merically; and also spinodal instabilities and early growth of density fluctuations

are investigated in symmetric nuclear matter. Finally, the conclusion is given in

chapter 5.
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CHAPTER 2

RELATIVISTIC MEAN FIELD THEORY

In this chapter, we investigate the nuclear matter equation of state based on

nonlinear Walecka model. Our purpose is to develop our computer programs

which will be used later in chapter 3.

2.1 Nonlinear Walecka Model

2.1.1 Introduction

Quantum hadrodynamics (QHD) is a theoretical description of nuclear many-

body problem which is based on hadronic degrees of freedom and it was intro-

duced by John Dirk Walecka in 1974 [1]. The QHD-I which is called Walecka

model contains nucleons (protons and neutrons), neutral scalar σ meson and

neutral vector ω meson. The effect of pions is zero since there is no pion field

due to the well-defined parity and spherical symmetry in the ground state [1].

In the standard Walecka model, the scalar σ meson, which is responsible for

the attractive force, and the neutral ω meson, responsible for the short range

repulsion, provide the interaction between nucleons [28].

In the literature, there are many extensions of the original Walecka model and

different parameter sets determined by fitting the properties of many nuclei.

These models and sets are used to describe the nuclear matter properties around

saturation density well. In the standard Walecka model, the coupling constants
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are determined to give the saturation of nuclear matter at wavenumber kf =

1.30fm−1 and the binding energy of −15.75MeV [2, 6] . However, the standard

Walecka set gives the value of nuclear matter compressibility (K = 540 MeV )

much higher than the experimental value. Furthermore, the effective nucleon

mass is found much smaller than the value deduced from the experiments. In

Ref. [29] it is stated that the Lagrangian density should involve self-interaction

terms of the scalar meson field and the coupling constants are re-calculated to

reach a more accurate compressibility value. The NL3 is one of the nonlinear

parameter set (gives compressibilityK = 271.76MeV ) [11] that ensures a better

description of nuclear structure properties and giant monopole excitations in

medium weight and heavy nuclei. The parameters are determined by fitting the

predicted values of different nuclear matter properties such as binding energy,

charge radii, and neutron radii of spherical nuclei to observe the behavior of

nuclear matter under extreme conditions.

2.1.2 Formalism

The effective interaction Lagrangian density for a system of nucleons of mass

M in which the interaction between nucleons is provided by the exchange of a

scalar meson field ϕ with mass ms and a neutral vector meson field Vµ with mass

mv is given by [6]

L = ψ[γµi~c∂µ −Mc2]ψ +
1

2
∂µϕ∂

µϕ− U(ϕ) + gsψψϕ

−1

4
ΩµνΩ

µν +
1

2
µ2
vVµV

µ − gvψγµψVµ (2.1)

where the field strength tensor of the neutral vector meson is given by Ωµν =

∂µVν − ∂νVµ and µv = mvc/~. The mass parameters, scalar coupling constant

gs, and vector coupling constant gv are determined from experimental mea-

surements. While the scalar meson potential is U(ϕ) = 1
2
µ2
sϕ

2 in the standard

Walecka model, it is given by U(ϕ) = 1
2
µ2
sϕ

2+ κ
3!
ϕ3+ λ

4!
ϕ4 in the nonlinear Walecka

model, where κ and λ are the self-coupling constants and µs ≡ (msc/~).

7



By applying the Euler-Lagrange equations, the field equations from Eq. (2.1)

can be derived as

(∂µ∂
µ + µ2

s )ϕ+
κ

2
ϕ2 +

λ

6
ϕ3 = gsψ̄ψ , (2.2)

(∂µ∂
µ + µ2

v)V
µ = gvψ̄γ

µψ, (2.3)[
γµ(i~∂µ − gvVµ)− (Mc2 − gsϕ)

]
ψ = 0 . (2.4)

Eq.(2.2) is a Klein-Gordon equation with a scalar source gsψ̄ψ and Eq.(2.3)

shows the Proca equation for the vector field with source term as gvψ̄γ
µψ [30].

The Eq.(2.4) denotes the Dirac equation of the baryon field including the inter-

actions with scalar and vector fields.

The energy-momentum tensor T µν that summarizes the energy density, momen-

tum density and the currents associated with the fields is given by [1]

T µν =
∂L

∂( ∂qi
∂xµ )

∂qi
∂xν
− gµνL . (2.5)

Since the Lagrangian density does not explicitly depend on the space-time coor-

dinates xµ , the energy-momentum tensor T µν is conserved (∂µT
µν = ∂νT

µν = 0)

and its expectation value has the form

⟨Tµν⟩ = (ε+ p)uµuν − pgµν (2.6)

where p is the pressure, ε is the energy density, and uµ is the four velocity of

the fluid [1]. The energy density and pressure are defined as

ε = ⟨T00⟩ ,

p =
1

3
⟨Tii⟩ . (2.7)

The field equations, Eq. (2.2-4), are nonlinear coupled equations so they are very

difficult to solve. In addition, the coupling constants gs and gv are expected to

be large so that the higher order terms in perturbative solutions will diverge.

Thus, perturbative approaches are not useful [1]. Therefore, an approximation

method, which is valid when the nuclear density increases, should be used for
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solution. The relativistic mean field approximation is the method that will be

used in this study. In the RMF approximation, the meson field operators are

replaced by their ground state expectation values that are the classical fields in

the following way [1]

ϕ → ⟨ϕ⟩ ≡ ϕ0 ,

V µ → ⟨V µ⟩ ≡ V0g
µ0 . (2.8)

The mean field approximation could be used if a system of B baryons in a large

box of volume V at zero temperature is considered. As the baryon density, B/V,

increases, the source terms on the right-hand sides of the equations (2.2) and

(2.3) become large. If the source terms are large enough, the meson field opera-

tors can be replaced by their ground state expectation values [31]. Furthermore,

for a static and uniform system, the classical fields ϕ0 and V0 are constants being

independent of space and time (xµ) [31] . Since the system is at rest, the baryon

flux equals to zero. Thus, the space components of ⟨V µ⟩ vanish.

By the same way, the baryon operators in the meson field equations of motion

are replaced by their ground state expectation values;

ψψ → ⟨ψψ⟩ = ρs ,

ψγµψ → ⟨ψγµψ⟩ = gµ0ρB . (2.9)

In the mean field approximation, the equations of motion for an infinite nuclear

matter in the static case becomes

(∂µ∂
µ + µ2

s )ϕ0 +
κ

2
ϕ2
0 +

λ

6
ϕ3
0 = gsρ

0
s (2.10)

(∂µ∂
µ + µ2

v)⟨V µ⟩ = gv⟨ψ̄γµψ⟩ (2.11)

where ⟨ψ̄γµψ⟩ ≡ ρµ = (ρB, ρ⃗v) and here the zero sub indices denote the equilib-

rium system which is uniform, static and independent of space and time. Since

ϕ0 and V0 are constants, the final form of the equations of motions of the meson

9



fields at the equilibrium point is found as the following

ϕ0 =
1

µ2
s

(gsρ
0
s −

κ

2
ϕ2
0 −

λ

6
ϕ3
0) (2.12)

V 0
0 =

gv
µ2
v

ρ0B (2.13)

V⃗0 = 0 (2.14)

The RMF energy-momentum tensor of QHD-I is evaluated starting from the

RMF Lagrangian by using the definition of the energy momentum tensor given

in Eq. (2.5) and Dirac equation which gives a simpler form as

T µν = ψγµi~∂νψ − gµν
[
−1

2

(msc

~

)2

ϕ2
0 +

1

2

(mvc

~

)2

V 2
0 −

κ

3!
ϕ3
0 −

λ

4!
ϕ4
0

]
.

(2.15)

From the definition in Eq.(2.7), the energy and pressure density are found as

ε = ⟨ψγ0i~∂0ψ⟩+
1

2

(msc

~

)2

ϕ2
0 −

1

2

(mvc

~

)2

V 2
0 +

κ

3!
ϕ3
0 +

λ

4!
ϕ4
0 , (2.16)

p =
1

3
⟨ψγii~∂iψ⟩ −

1

2

(msc

~

)2

ϕ2
0 +

1

2

(mvc

~

)2

V 2
0 −

κ

3!
ϕ3
0 −

λ

4!
ϕ4
0 . (2.17)

2.1.3 Nuclear Matter Equation of State at Zero Temperature

The nuclear matter equation of state (EOS) is the relation between the state

variables such as temperature, pressure and density and it describes the behavior

of the nuclear systems. For instance, the temperature and density values of

the nuclear matter at which the liquid-gas phase transition is expected can be

determined from the equation of state [32]. The energy and pressure densities

are required to find the nuclear matter EOS. Therefore, the expectation values

of the baryon field operators are essential to express the energy and pressure

densities.
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The expectation values of ⟨ψγ0i~∂0ψ⟩ and ⟨ψγii~∂iψ⟩ are evaluated by finding

an explicit form of Dirac field ψ . In the RMF approximation, the assumption of

uniform static system allows us to find out the field ψ in terms of the momentum

eigenstates that are denoted by k⃗ with p⃗ = ~k⃗ . Solutions for the field are in

the form like the free-particle Dirac solution, ψ(x) = u(p⃗, s)e
−ip·x

~ where u(p⃗, s)

is the four component Dirac spinor (s denotes the spin index) [1]. We thus have

[
ε(p⃗)− α⃗ · cp⃗− gvV0 − βM∗c2

]
u(p⃗, s) = 0 (2.18)

where Dirac Hamiltonian is given by HD = α⃗ · cp⃗+ gvV0+βM∗c2 and M∗ is the

reduced baryon mass, defined as M∗c2 =Mc2 − gsϕ0 .

The expectation value of an operator Γ in the ground state ⟨ψΓψ⟩ can be given

in terms of the expectation value of the single-particle state
(
ψΓψ

)
p⃗,s

that is

defined by momentum p⃗ and spin s

⟨ψΓψ⟩ =
∑
s

∫
d3p

(2π~)3
(
ψΓψ

)
p⃗,s

Θ(µ− e(p⃗)) (2.19)

where e(p⃗) = gvV0 +
√

(p⃗c)2 + (M∗c2)2 is positive single-particle energies since

only the ground state is considered, µ is the chemical potential/Fermi energy

and Θ (µ− e(p⃗)) is the step function. We first calculate the expectation values

in energy density and pressure as

⟨ψHDψ⟩ ≡ ⟨ψγ0i~∂0ψ⟩

= gvV0
γ

(2π~)3

∫ pf

0

d3p+
γ

(2π~)3

∫ pf

0

d3p
√
(cp⃗)2 + (M∗c2)2

(2.20)

and

⟨ψγ⃗ · ∇⃗ψ⟩ ≡ ⟨ψ†
(
−iα⃗ · ∇⃗

)
ψ⟩

=
γ

(2π~)3

∫ pf

0

d3p
(cp⃗)2√

(cp⃗)2 + (M∗c2)2
. (2.21)
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For the scalar and baryon densities we can evaluated the expectation values are

⟨ψψ⟩ = γ

(2π~)3

∫ pf

0

d3p
M∗c2√

p2c2 + (M∗c2)2
(2.22)

and

⟨ψγ0ψ⟩ = γ

(2π~)3

∫ pf

0

d3p . (2.23)

By using the results of the expectation values, the scalar and the baryon densities

become

ρ0s =
γ

(2π~)3

∫ pf

0

d3p
M∗c2√

p2c2 + (M∗c2)2
(2.24)

ρ0B =
γ

(2π~)3

∫ pf

0

d3p =
γ

6π2
k3F (2.25)

where the degeneracy factor γ is 4 for symmetric (N=Z) nuclear matter and 2

for pure neutron matter (Z=0). The details of the calculations are given in Ap-

pendix A. The energy and pressure density relations are obtained by substituting

the above relations in the Eqs. (2.16) and (2.17) as

ε =
1

2

(
gv
µv

)2 (
ρ0B

)
+

1

2

(
µs

gs

)2 (
Mc2 −M∗c2

)2
+

κ

6g3s

(
Mc2 −M∗c2

)3
+

λ

24g4s

(
Mc2 −M∗c2

)4
+

γ

(2π~)3

∫ pf

0

d3p
√
p2c2 + (M∗c2)2 ,

(2.26)

p =
1

2

(
gv
µv

)2 (
ρ0B

)
− 1

2

(
µs

gs

)2 (
Mc2 −M∗c2

)2 − κ

6g3s

(
Mc2 −M∗c2

)3
− λ

24g4s

(
Mc2 −M∗c2

)4
+

1

3

γ

(2π~)3

∫ pf

0

d3p
(cp⃗)2√

(cp⃗)2 + (M∗c2)2
.

(2.27)

The first four terms of these equations come from the meson fields and the final

terms are related to the relativistic gas of baryons of mass M∗ [1].
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Nuclear matter equation of state is given by these expressions in the paramet-

ric form ε(ρB) and P (ρB) at zero temperature. Besides, the pressure density

expression can be found by using the relation [31]

P (ρB) = ρB
∂ε(ρB)

∂ρB
− ε(ρB) . (2.28)

The constant V0 can be expressed in terms of the conserved baryon density and

ϕ0 is expressed by scalar density which is the function of M∗ , so to express

the scalar density explicitly, M∗ should be calculated self-consistently. From

thermodynamics, it is calculated from the derivative of ε(M∗) with respect to

M∗ . This produces the self-consistency condition ∂
∂M∗ ε(M

∗) = 0 which gives

the relation

M∗c2 =Mc2−
(
gs
µs

)2

ρ0s+

(
gs
µs

)2 [
κ

2g3s

(
Mc2 −M∗c2

)2
+

λ

6g4s

(
Mc2 −M∗c2

)3]
,

(2.29)

where the scalar density ρs is given in Eq. (2.24).

2.1.4 Nuclear Matter Equation of State at Finite Temperature

In this section, the behavior of the (σ, ω) system at finite temperature is inves-

tigated by calculating the thermodynamic potential of the system within the

framework of the mean-field theory. Here we use only the baryon contributions

to the thermodynamic potential and we neglect the anti-baryon contributions

since we use semi-classical approximation in calculations.

The thermodynamic potential Ω is calculated by using the standard expressions

of the statistical mechanics:

Ω(T, V, µ) = −kBT lnZG

ZG ≡
∑
N

∑
j

e−β(Ej−µN)

=
∑
N

∑
j

⟨Nj|e−β(Ej−µN)|Nj⟩ = Tr
(
e−β(Ĥ−µN̂)

)
(2.30)
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where µ is the chemical potential and β ≡ 1/kBT , ZG is the grand partition

function where Ĥ and N̂ are the mean-field Hamiltonian and baryon number

operators, respectively [1, 31]. All the thermodynamic properties of a system

can be expressed in terms of lnZG and its partial derivatives.

The relations between the thermodynamic potential Ω, the chemical potential

µ, the entropy S and other thermodynamic quantities are given as Ω = −pV =

E − TS − µB and dΩ = −SdT − pdV −Bdµ [1].

The mean-field Hamiltonian and baryon number operators are given by [31]

HMFT = V

[
−1

2
(µv)

2V 2
0 +

1

2
(µs)

2ϕ2
0

]
+ gvV0B̂ +

∑
kλ

√
p⃗2c2 + (M∗c2)2A+

kλAkλ

B̂ =
∑
kλ

A+
kλAkλ. (2.31)

Then the partition function and thermodynamic potential become

ZG =
∑

n1...n∞

⟨n1...n∞|e−β(Ĥ−µB̂)|n1...n∞⟩

= exp

{
−βV

[
−1

2
(µv)

2V 2
0 +

1

2
(µs)

2ϕ2
0

]} ∞∏
i=1

1∑
n=0

[
e−β(E∗

i +gvV0−µ)
]
,

(2.32)

Ω(T, V, µ) = −kBT lnZG

= V

[
−1

2

(
gv
µv

)2

ρ2B +
1

2

(
µs

gs

)2 (
Mc2 −M∗c2

)2]
− 1

β

∑
i

ln
[
1 + e−β(E∗

i −µ∗)
]
. (2.33)

Baryon and scalar densities can be found as

ρB = −
(
∂Ω

∂µ

)
T,V

=
γ

(2π~)3

∫
d3p

1

1 + eβ(E
∗
i −µ∗)

, (2.34)

ρs =
γ

(2π~)3

∫ pf

0

d3p
M∗c2√

p⃗2c2 + (M∗c2)2
1

1 + eβ(E
∗
i −µ∗)

. (2.35)
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The reduced mass as a function of temperature with Eq. (2.35) becomes

M∗c2 = Mc2 −
(
gs
µs

)2
γ

(2π~)3

∫ pf

0

d3p
M∗c2√

p⃗2c2 + (M∗c2)2
1

1 + eβ(E
∗
i −µ∗)

+

(
gs
µs

)2 [
κ

2g3s

(
Mc2 −M∗c2

)2
+

λ

6g4s

(
Mc2 −M∗c2

)3]
.

(2.36)

Then the energy density can be obtained from ε = E/V = ∂ (βΩ) /V ∂β + µρB

as

ε =
1

2

(
gv
µv

)2

(ρB)
2 +

1

2

(
µs

gs

)2 (
Mc2 −M∗c2

)2
+

κ

6g3s

(
Mc2 −M∗c2

)3
+

λ

24g4s

(
Mc2 −M∗c2

)4
+

γ

(2π~)3

∫ pf

0

d3p
√
p2c2 + (M∗c2)2

1

1 + eβ(E
∗
i −µ∗)

.

(2.37)

Pressure is found by using the energy density p(ρB) = ρB∂ε(ρB)/∂ρB − ε(ρB)

p =
1

2

(
gv
µv

)2

(ρB)
2 − 1

2

(
µs

gs

)2 (
Mc2 −M∗c2

)2 − κ

6g3s

(
Mc2 −M∗c2

)3
− λ

24g4s

(
Mc2 −M∗c2

)4
+

1

3

γ

(2π~)3

∫ pf

0

d3p
(cp⃗)2√

(cp⃗)2 + (M∗c2)2
1

1 + eβ(E
∗
i −µ∗)

.

(2.38)

For a given baryon density ρB and temperature T, Eq. (2.36), Eq. (2.37) and

Eq. (2.38) have to be solved numerically where the reduced mass M∗ and the

reduced chemical potential µ∗ = µ− gvV0 are determined self-consistently.

In the calculation, we employ two parameter sets; we use the values C2
s =

g2s (M
2/m2

s ) = 357.4 and C2
v = g2v (M

2/m2
v) = 273.8 in the standard Walecka

model [1] and the NL3 parameter set [11] is used in the nonlinear Walecka

model. These parameter sets that are given in Table 2.1 are determined by

15



Table 2.1: The parameter sets for the standard Walecka model and the NL3 model

SW NL3

ms(MeV ) 520.0 508.194
mv(MeV ) 783.0 782.501
gs 10.45 10.217
gv 13.76 12.868
κ(fm−1) 0 10.431
λ 0 -28.885

Nuclear Matter Properties

ρ0(fm
−3) 0.150 0.148

E/A (MeV) -15.75 -16.299
K (MeV) 540 271.76
M∗/M 0.54 0.60

fitting some nuclear properties. While the large compressibility in the standard

Walecka model isK = 540MeV , it isK = 271.76MeV in the nonlinear Walecka

model and it is comparable with observed value. The coupling constants in the

expressions are found from the standard coupling constants given in Table 2.1

as gs → gs
√
~c, gv → gv

√
~c, κ→ κ/

√
~c and λ→ λ/~c .

The solution of the Eq. (2.29) for M∗ at zero temperature gives an effective

mass as a function of baryon density as shown in Fig. 2.1. The form of the

curve does not change with temperature and therefore it is not presented here.

We find similar trend for standard Walecka model and NL3 model. The ratio

M∗/M becomes small at high densities and it is considerably less than unity at

saturation density, ρ0, due to the large scalar field effect [1].

The resulting energy per nucleon curve is shown in Fig. 2.2. The energy per

nucleon is represented as a function of the density ρB. The energy curves for

different temperatures show that the minimum in this curve shift outwards to-

wards to systems with higher densities as the temperature increases. Therefore,

the nuclear matter becomes less bound when temperature increases.
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Figure 2.1: Effective mass of nuclear matter as a function of density

2.1.5 Phase Transition and Spinodal Instabilities

Compressed and hot nuclear matter occurring just after the heavy-ion collisions

expands and then cools. When system enters the spinodal instability region,

density fluctuations grow and nuclear matter breaks into several massive frag-

ments. Spinodal instability is considered as a possible dynamical mechanism

for multifragmentation and fragment formation, which is a signal of liquid-gas

phase transformation of the nuclear matter [12].

There are two important phase transitions in heavy ion collisions related to the

medium and high energies. At low temperatures (1 − 10MeV ), a liquid to gas

phase transition occurs as van der Waals type nature. However, phase transition

from hadronic matter to quark-gluon plasma is expected to occur at much higher

temperatures (∼ 150MeV ) [4].

The most familiar way to see the qualitative behavior of a system at finite

temperature is given by the equation of state, for example, the pressure as a
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Figure 2.2: The energy per nucleon as a function of the baryon density ρB, for a range
of imposed temperatures, T=0,5,10,15,20 MeV.

function of baryon density and temperature [32]. Fig. 2.3 is obtained by solving

Eq. (2.36) and Eq. (2.38) as a function of baryon density for fixed temperatures

up to 20 MeV. It exhibits a typical van der Waals behavior for a fluid gas system

that includes the liquid-gas phase transition [33].

Phase equilibrium is only possible above a critical temperature Tc where pressure

and its derivative with respect to baryon density are always positive at any

density [33]. Nuclear matter is in gas phase above the critical temperature.

As Coulomb force and the surface effects decrease Tc, it is difficult to decide

critical temperature exactly because our calculation does not include Coulomb

and surface effects. In our calculations, it reads about 14 MeV from Fig. 2.3.

Below the critical temperature, the pressure curves represent a region of thermo-

dynamic instability where ∂p/∂ρB < 0 . The dashed line represents a boundary

passing from the minimum and maximum points of the curves that mean the
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derivative of pressure with respect to baryon density equals to zero at this points

and under the region of this line the derivative is negative so the system is in

the unstable region which is called the spinodal instability region [33].

Nuclear matter becomes unstable when its density decreases under a critical

point and the system intends to liquid-gas phase transformation at this crit-

ical region. This region in which the nuclear matter is unstable depends on

temperature and density.
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 spinodal 

         region

Figure 2.3: Pressure as a function of the baryon density for various fixed temperatures
(isotherms).

The pressure function P has a maximum and a minimum under critical temper-

ature (0 < T < Tc) . The region between the maximum and the minimum is

the spinodal instability region in which the compressibility is negative and the

system is mechanically unstable.

For a temperature above the critical value Tc , outside of the spinodal instability
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region, there is a semi-stable region (liquid-gas mixture region) where liquid

and gas phases can coexist in thermodynamic equilibrium. This coexistence

region can be determined by a Maxwell construction. The matter is in the gas

phase outside of the coexistence boundary below the densities corresponding

to the maximum of the pressure curve, and in the liquid phase outside of the

coexistence boundary above the densities corresponding to the minimum of the

pressure curve [34]. These gas and liquid states have positive compressibility.

At the critical point, the surface tension disappears and there is no distinction

between gas and liquid phases T ≥ Tc .

As the temperature increases, the densities corresponding to the maximum and

minimum of pressure curves approach each other and they overlap at T = Tc .

We also find that the spinodal region extends up to about 2
3
ρ0, while the critical

density corresponding to the critical temperature being Tc ≈ 14MeV is about

1
3
ρ0.

2.2 Stochastic Mean-Field Approach

The standard mean field approach includes single-particle dissipation mechanism

and provides a good description for the average evolution of collective motion at

low energies (∼ 10MeV /nucleon). However, this approach strongly limits the

fluctuations of collective motion [14]. Nevertheless, the stochastic mean-field

approach provides a useful description for density fluctuations at low energies.

In the stochastic mean-field approach, the superposition of determinantal wave

functions is considered instead of a single determinantal description in order to

describe fluctuations. In this description, an ensemble of single-particle density

matrices related to the group of Slater determinants is generated in a stochastic

framework by containing only initial correlations [20]. In this manner, the initial

fluctuations are included into the calculations in a stochastic approach by gen-

erating an ensemble of events according to the initial distribution of collective

modes in Walecka model [26].
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Stochastic mean-field approach is developed for low energy heavy-ion collisions

and fusion mechanisms. In this approach, the initial density fluctuations are

simulated by considering the evolution of a set of density matrices instead of a

single-particle density matrix.

Correlation gives information about the measure of a linear relationship between

two variables [25]. In the stochastic mean-field approximation, the stochasticity

stems from the initial correlations. In order to improve a stochastic description,

it is needed to determine enough number of unoccupied single-particle states

as well as occupied ones [20]. An ensemble of the phase-space distributions{
fλ(r⃗, p⃗, t)

}
is simulated according to the initial fluctuations, where λ shows

the event label. The event label is not used in calculations since the equations

of motions do not change in the stochastic approach [26]. The main assumption

of this approach in the semi-classical representation is stated as; in each phase-

space cell, the initial-phase space distribution f(r⃗, p⃗, 0) is a Gaussian random

number which is specified by a mean value f(r⃗, p⃗, 0) = f0(r⃗, p⃗) and its second

moment is identified by

δf(r⃗, p⃗, 0)δf(r⃗′, p⃗′, 0) = (2π~3)δ(r⃗ − r⃗′)δ(p⃗− p⃗′)f0(r⃗, p⃗)[1− f0(r⃗, p⃗)] (2.39)

where the overline denotes the ensemble averaging and f0(r⃗, p⃗) shows the average

phase-space distribution function which describes the initial state [20, 26, 27].

In the homogeneous initial state, the average phase-space distribution is given

by the Fermi-Dirac distribution function f0(p⃗) = 1/[eβ(ε
∗
0−µ∗

0) + 1] . In this ex-

pression, the reduced chemical potential is given by µ∗
0 = µ0− (gv/µv)

2ρ0B where

µ0 and ρ
0
B are the chemical potential and the baryon density in the homogeneous

initial state, respectively [26].

In this thesis, the early growth of density fluctuations in the spinodal region is

analyzed within the framework of linear response of this approach.
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2.3 Relativistic Vlasov Equation

In the semi-classical approximation, a relativistic Vlasov equation is derived from

the Walecka model [9]. Following the Walecka model, the equations of motion

for the fields are obtained by using the Lagrangian density as in section 2.2.

In the mean-field approximation, we considered the mesons as classical fields

with the nucleons acting as their sources. If the nuclear density does not change

noticeably in a time and space interval of the inverse of the meson masses, then

the time and space dependence of the meson fields becomes similar to that of

the nucleons [9]. In this case, the time and space derivatives in the mesonic

equations of motions can be neglected. Then, we obtain the Dirac equation as

i~∂tψ = α⃗ · cp⃗∗ψ +

(
gv
µv

)2

ρBψ + βM∗c2ψ (2.40)

where the reduced momentum is given as p⃗∗ = p⃗ −
(

gv
µv

)2

ρ⃗v (ρ⃗v is the cur-

rent density) and the reduced mass is written as M∗c2 = Mc2 − gsϕ . In this

expression, β ≡ γ0 and α⃗ ≡ γ0γ⃗ .

By using this equation for the nucleon and expressing explicitly in terms of the

large (ψL) and small (ψS) components of the nucleon field which is represent as

ψ(p⃗, λ) =

 ψL

ψS

 , we can obtain the Dirac equation as two coupled equations

[9, 25]

i~∂tψL = σ⃗ · cp⃗∗ψS +
[
M∗c2 + (gv/µv)

2 ρB
]
ψL

i~∂tψS = σ⃗ · cp⃗∗ψL +
[
−M∗c2 + (gv/µv)

2 ρB
]
ψS. (2.41)

Similar to the free particle, the stationary state solution for a uniform system

is of the form of plane waves, ψ = ψ(p⃗, λ)ei(p⃗·x⃗−ε(k)t), where ψ(p⃗, λ) is a four

component Dirac spinor and λ denotes the spin index. By using the free particle

solution, we can write the Dirac equation as

εψ(p⃗, λ) +
[
−βγ⃗ ·

(
cp⃗− gvV⃗

)
− βM∗c2

]
ψ(p⃗, λ) = 0. (2.42)
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By solving this equation for the Dirac spinor of the form ψ(p⃗, λ) =

 ψL

ψS

 ,

one can obtain the following relations between its small and large components,

ψL =
σ⃗ · cp⃗∗

ε∗ −M∗c2
ψS and ψS =

σ⃗ · cp⃗∗

ε∗ +M∗c2
ψL, (2.43)

where ε∗ =
√

(cp⃗∗)2 +M∗2c4. By using the above relations, the coupled equa-

tions in Eq.(2.41) reduce to a single equation,

i~∂tψ(x⃗, t) =
√
(cp⃗∗)2 +M∗2c4 ψ(x⃗, t) +

(
gv
µv

)2

ρBψ(x⃗, t) (2.44)

and operator form of it is

i~∂tψ(x⃗, t) =

[
E∗ +

(
gv
µv

)2

ρB

]
ψ(x⃗, t) (2.45)

with the effective one-body Hamiltonian is h = E∗ +
(

gv
µv

)2

ρB. E∗ in this

expression is the operator form of the ε∗ . From Eq. (2.45), we get

i~∂t
[
ψ†(r⃗1, t)ψ(r⃗2, t)

]
= h(r⃗1)ψ

†(r⃗1, t)ψ(r⃗2, t)− ψ†(r⃗1, t)ψ(r⃗2, t)h(r⃗2) (2.46)

where ψ(r⃗, t) and ψ†(r⃗, t) are the single particle wave functions and the single

particle density matrix is ψ†(r⃗1, t)ψ(r⃗2, t) = ρ(r⃗1, r⃗2, t). By using the single-

particle density matrix, Eq. (2.46) can be expressed as

i~∂tρ(r⃗1, r⃗2, t) = h(r⃗1)ρ(r⃗1, r⃗2, t)− h(r⃗2)ρ(r⃗1, r⃗2, t). (2.47)

By using the Wigner transform, it is possible to provide a connection between

the phase space distribution function and the density matrix which is given by

f(p⃗, r⃗, t) =

∫
d3s

(2π~)3
e−ip⃗·s⃗/~ρ(r⃗ +

s⃗

2
, r⃗ − s⃗

2
, t) (2.48)
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where the transformation r⃗ = (r⃗1 + r⃗2)/2 and s⃗ = r⃗1 − r⃗2 is used. In the

momentum space, it becomes

f(r⃗, p⃗, t) =

∫
d3k

(2π)3
e−ik⃗·r⃗⟨p⃗+ ~k⃗

2
|ρ(t)|p⃗− ~k⃗

2
⟩ (2.49)

and Wigner transform for h[ρ] in Eq. (2.47) is given by

h(r⃗, p⃗, t) =

∫
d3s

(2π~)3
e−ip⃗·s⃗/~h(r⃗ +

s⃗

2
, r⃗ − s⃗

2
, t) (2.50)

where h(r⃗ + s⃗
2
, r⃗ − s⃗

2
, t) = ⟨r⃗ + s⃗

2
|h[ρ]|r⃗ − s⃗

2
⟩ .

As the Hamiltonian and the single particle density operator are Hermitian, the

Wigner transform of both sides in Eq. (2.47) gives

i~
∂

∂t
f(r⃗, p⃗, t) = (h[ρ]ρ(t))W − (ρ(t)h[ρ])W

= h(r⃗, p⃗)e(i~/2)∧⃗f(r⃗, p⃗, t)− f(r⃗, p⃗, t)e(i~/2)∧⃗h(r⃗, p⃗) (2.51)

with the operator ∧⃗ =
←−
∇r

−→
∇p −

←−
∇p

−→
∇r . The direction of arrows represents the

acting direction of the gradient operators. We can write the above equation as

the following,

i~
∂

∂t
f(r⃗, p⃗, t) = h(r⃗, p⃗)e(i~/2)∧⃗f(r⃗, p⃗, t)− h(r⃗, p⃗)e−(i~/2)∧⃗f(r⃗, p⃗, t)

= 2ih(r⃗, p⃗) sin

(
~
2
∧⃗
)
f(r⃗, p⃗, t). (2.52)

By using Taylor expansion for sin
(~
2
∧⃗
)
, we find

∂

∂t
f(r⃗, p⃗, t) = 2h(r⃗, p⃗, t)

[
1

2
∧⃗+

~2

3!

(
1

2
∧⃗
)3

+ ...

]
f(r⃗, p⃗, t). (2.53)

In the semi-classical limit, ~→ 0 . If we use this condition into above equation,

we obtain

∂

∂t
f(r⃗, p⃗, t) = 2h(r⃗, p⃗, t)

[
1

2
∧⃗
]
f(r⃗, p⃗, t)

= h(r⃗, p⃗, t)
[←−
∇r
−→
∇p −

←−
∇p
−→
∇r

]
f(r⃗, p⃗, t), (2.54)
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∂

∂t
f(r⃗, p⃗, t) + ∇⃗ph(r⃗, p⃗, t) · ∇⃗rf(r⃗, p⃗, t)− ∇⃗rh(r⃗, p⃗, t) · ∇⃗pf(r⃗, p⃗, t) = 0.

(2.55)

This equation is called the Vlasov equation that describes the time evolution of

the phase distribution function.
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CHAPTER 3

EARLY GROWTH OF DENSITY FLUCTUATIONS

In this part of the thesis, we linearize the relativistic Vlasov equation around the

equilibrium in order to find the early growth of density fluctuations for symmet-

ric nuclear matter by assuming small fluctuations of the mean-field around its

equilibrium value. The small fluctuations of the meson fields are necessary for

linearization of the Vlasov equation. Therefore, the linearization of the fields is

firstly determined in terms of density fluctuations by using their Klein-Gordon

equations, and then the Vlasov equation is linearized to reach the dispersion

relation.

3.1 Linearization of Field Equations

The small fluctuations of the meson fields are determined by the linearization

of the field equations given in Eqs. (2.2) and (2.3). Meson fields are linearized

around their initial values as ϕ = ϕ0 + δϕ(r⃗, t) and V µ = V µ
0 + δV µ(r⃗, t) .

The meson field fluctuations δϕ(r⃗, t) and δV µ(r⃗, t) depend on (r⃗, t) , however,

their initial values ϕ0 and V µ
0 are constants. The vector component is V⃗0 = 0

since ρ⃗v
0 = 0 , however, its fluctuation depends on δρ⃗v(r⃗, t) and therefore the

fluctuation δV⃗ (r⃗, t) is not zero. For the scalar meson field, we get

(
∂µ∂

µ + µ2
s + κϕ0 +

λ

2
ϕ2
0

)
δϕ = gsδρs (3.1)
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and for the vector meson field, the equations for time and space components

become

(
∂µ∂

µ + µ2
v

)
δV0 = gvδρB , (3.2)(

∂µ∂
µ + µ2

v

)
δV⃗ = gvδρ⃗v . (3.3)

These field equations are the covariant equations and we solve these equations

by taking the Fourier transforms in space and one-sided Fourier transforms in

time. Consequently, we can rewrite Fourier transforms of the fluctuations on

the fields in terms of Fourier transforms of the density fluctuations δρ̃s(k⃗, ω),

δρ̃B(k⃗, ω) and δ ˜⃗ρv(k⃗, ω) as

δϕ̃(k⃗, ω) =

[
gs

−(w/c)2 + k2 + µs
2 + κϕ0 +

λ
2
ϕ2
0

]
δρ̃s(k⃗, ω) , (3.4)

δṼ0(k⃗, ω) =
gv

−(w/c)2 + k2 + µv
2
δρ̃B(k⃗, ω) , (3.5)

δ
˜⃗
V (k⃗, ω) =

gv
−(w/c)2 + k2 + µv

2
δ ˜⃗ρv(k⃗, ω) . (3.6)

We have also µ2
sϕ0 +

κ
2
ϕ2
0 +

λ
6
ϕ3
0 = gsρs

0 and M∗c2 =Mc2 − gsϕ0.

In the mean-field approximation, we find the Dirac equation for the baryon field

in Eq.(2.4) and in order to derive the one-body potential of the system in a

general form, the Dirac equation is rewritten in the following way

i~
∂

∂t
ψ =

{
α⃗ ·

[
cp⃗− gvV⃗

]
+ gvV0 + β

(
Mc2 − gsϕ0

)}
ψ . (3.7)

From this equation, the mean-field Hamiltonian in Vlasov equation becomes

h =

√(
cp⃗− gvV⃗

)2

+ (Mc2 − gsϕ0)
2 + gvV0 . (3.8)

In the following of the thesis, we use the mean-field Hamiltonian U instead of h

to avoid the confusion with the operator form of the Hamiltonian.
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3.2 Linearization of Vlasov Equation

For investigating the early growth of density fluctuations in the spinodal re-

gion, we need to consider the linear response treatment of dynamical evolution.

For the linearizaton of Vlasov equation given in Eq. (2.55), we linearize the

phase-space distribution function around a homogeneous initial state f0(p⃗) as

f(r⃗, p⃗, t) = f0(p⃗)+ δf(r⃗, p⃗, t) and the one-body potential around the equilibrium

value U0 =
√

(cp⃗)2 + (Mc2 − gsϕ0)
2 + g2v

µ2
v
ρB

0 as U = U0 + δU where ρB
0 is the

baryon density in the homogeneous initial state. We also use the linearization

of the velocity around an initial value v⃗0 = cp⃗/ε0
∗ as v⃗ ≡ ∇⃗ph(r⃗, p⃗, t) = v⃗0 + δv⃗

where ε0
∗ =

√
(cp⃗)2 + (Mc2 − gsϕ0)

2. By neglecting the second order fluctua-

tion terms we then obtain the linearized Vlasov equation as

∂

∂t
δf(r⃗, p⃗, t) + v⃗0 · ∇⃗rδf(r⃗, p⃗, t)− ∇⃗rδU(r⃗, p⃗, t) · ∇⃗pf0(p⃗) = 0 , (3.9)

where f0(p⃗) represents the average phase-space distribution describing the ini-

tial state and it is given by the Fermi-Dirac distribution function f0(p⃗) =

1/
[
eβ(ϵ

∗
0−µ∗

0) + 1
]
. In this expression the chemical potential is given by µ∗

0 =

µ0 − (gv/µv)
2ρ0B .

The small fluctuation on the mean-field Hamiltonian is written in terms of the

meson field fluctuations as

δU =

(
∂U

∂Vi

)
0

δVi +

(
∂U

∂V0

)
0

δV0 +

(
∂U

∂ϕ

)
0

δϕ , (3.10)

where ( )0 denotes the corresponding values at the initial state. Using U =√(
cp⃗− gvV⃗

)2

+ (Mc2 − gsϕ0)
2 + gvV0 , these values are obtained as(

∂U

∂V0

)
0

= gv , (3.11)(
∂U

∂ϕ

)
0

= −gs
M∗

0 c
2

ε∗0
, (3.12)(

∂U

∂Vi

)
0

= −gv
cpi
ε∗0

. (3.13)

We finally find the small change in the mean-field Hamiltonian around its equi-
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librium in terms of density fluctuations as

δU = −G2
ω

cp⃗

ε∗0
· δρ⃗v +G2

ωδρB −G2
s

M∗
0 c

2

ε∗0
δρs . (3.14)

The termsG2
ω andG2

s are related to the meson contributions with point couplings

which are given by

G2
ω =

g2v
−(w/c)2 + k2 + µv

2
, (3.15)

G2
s =

g2s
−(w/c)2 + k2 + µs

2 + κ 1
gs
(Mc2 −M∗

0 c
2) + λ

2
1
g2s
(Mc2 −M∗

0 c
2)2

.

(3.16)

In Eqs. (3.1), (3.2) and (3.3) the baryon density ρB(r⃗, t), the scalar density

ρs(r⃗, t) and the current density ρ⃗v(r⃗, t) can be expressed in terms of the phase-

space distribution function as

ρB(r⃗, t) = γ

∫
d3p

(2π~)3
f(r⃗, p⃗, t) (3.17)

ρs(r⃗, t) = γ

∫
d3p

(2π~)3
M∗c2

ε∗
f(r⃗, p⃗, t) (3.18)

ρ⃗v(r⃗, t) = γ

∫
d3p

(2π~)3
cp⃗∗

ε∗
f(r⃗, p⃗, t) (3.19)

where the spin-isospin element γ is 2 for neutron matter and 4 for nuclear matter.

We may find the small fluctuations on these densities in terms of the small

fluctuation on the phase-space distribution function that satisfies the linearized

Vlasov equation.

3.3 Dispersion Relation

The dispersion relation gives information about the behavior of the system such

as phase transition when it is affected dynamically. In nuclear matter, wave-

lengths and the growth rates of the dominant modes are determined by solving

the dispersion relation.
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We can solve the linear response equation by using the standard method of one-

sided Fourier transformation in time [35]. And also, the Fourier transformation

of the phase-space distribution in space is given as,

δf̃(k⃗, p⃗, ω) =

∫ ∞

0

dteiωt
∫ ∞

−∞
d3re−ik⃗·r⃗δf(r⃗, p⃗, t) (3.20)

δρ̃i(k⃗, ω) =

∫ ∞

0

dteiωt
∫ ∞

−∞
d3re−ik⃗·r⃗δρi(r⃗, t) (3.21)

where i represents the current, scalar and baryon densities. The one-sided

Fourier transform of the phase-space distribution function gives

∫ ∞

0

∂

∂t
δf̃(k⃗, p⃗, t)eiωtdt = −δf̃(k⃗, p⃗, 0)− iωδf̃(k⃗, p⃗, ω) (3.22)

here δf̃(k⃗, p⃗, 0) denotes the Fourier transform of the initial fluctuations. Af-

ter one-sided Fourier transformation, we obtain the following expression for

δf̃(k⃗, p⃗, ω) from the Vlasov equation

δf̃(k⃗, p⃗, ω) =
∇⃗pf̃0 · k⃗
ω − v⃗0 · k⃗

{
−G2

ω

cp⃗

ε∗0
· δ⃗̃ρv(k⃗, ω)

+G2
vδρ̃B(k⃗, ω)−G2

s

M∗
0 c

2

ε∗0
δρ̃s(k⃗, ω)

}
+ i

δf̃(k⃗, p⃗, 0)

ω − v⃗0 · k⃗
. (3.23)

In this expression, the fluctuations of the meson fields are expressed in terms of

Fourier transforms of the scalar density δρs(r⃗, t) , the baryon density δρB(r⃗, t)

and the current density δρ⃗v(r⃗, t) fluctuations [36]. In this equation, the initial

fluctuations with respect to the meson fields are ignored, thus only the initial

fluctuations of the phase-space distribution function δf̃(k⃗, p⃗, 0) is kept.

Baryon, scalar and current densities in terms of the phase-space distribution

function are given in Eqs. (3.17-19) are used to derive the equations for the

density fluctuations. From Eq. (3.17) we write the baryon density fluctuation

as δρ̃B(k⃗, ω) = γ
∫

d3p
(2π~)3 δf̃(k⃗, p⃗, ω). If Eq. (3.23) is put into this expression we

then obtain the following expression
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δ⃗̃ρv(k⃗, ω)

{
−γ

∫
d3p

(2π~)3
G2

ω

cp⃗

ε∗0

∇⃗pf0 · k⃗
ω − v⃗0 · k⃗

}

+δρ̃s(k⃗, ω)

{
−γ

∫
d3p

(2π~)3
G2

s

M∗
0 c

2

ε∗0

∇⃗pf0 · k⃗
ω − v⃗0 · k⃗

}

+δρ̃B(k⃗, ω)

{
1 + γ

∫
d3p

(2π~)3
G2

ω

∇⃗pf0 · k⃗
ω − v⃗0 · k⃗

}
= iγ

∫
d3p

(2π~)3
δf̃(k⃗, p⃗, 0)

ω − v⃗0 · k⃗
.

(3.24)

From Eq. (3.18) the fluctuation on scalar density is written as

δρ̃s(k⃗, ω) = γ

∫
d3p

(2π~)3

{(
M∗c2

ε∗

)
0

δf̃(k⃗, p⃗, ω) + f0δ

(
M∗c2

ε∗

)}
= γ

∫
d3p

(2π~)3

{(
M∗c2

ε∗

)
0

δf̃(k⃗, p⃗, ω)

+f0

[
G2

s

(
−(cp)2

ε∗30

)
δρ̃s +G2

ω

M∗
0 c

2

ε∗30
cp⃗ · δ⃗̃ρv

]}
. (3.25)

By using Eq. (3.23) in Eq. (3.25) we obtain

δ⃗̃ρv(k⃗, ω)

{
−γ

∫
d3p

(2π~)3
G2

ω

cp⃗

ε∗0

[
f0

(
M∗

0 c
2

ε∗20

)
+

(
M∗

0 c
2

ϵ∗0

)
∇⃗pf0 · k⃗
ω − v⃗0 · k⃗

]}

+δρ̃s(k⃗, ω)

{
1− γ

∫
d3p

(2π~)3
G2

s

[
−f0

(cp)2

ε∗30
+

(
M∗

0 c
2

ε∗0

)2 ∇⃗pf0 · k⃗
ω − v⃗0 · k⃗

)}

+δρ̃B(k⃗, ω)

{
γ

∫
d3p

(2π~)3
G2

ω

M∗
0 c

2

ε∗0

∇⃗pf0 · k⃗
ω − v⃗0 · k⃗

}

= iγ

∫
d3p

(2π~)3
M∗

0 c
2

ε∗0

δf̃(k⃗, p⃗, 0)

ω − v⃗0 · k⃗
.

(3.26)

The fluctuation on the current density from Eq. (3.19) becomes

δ⃗̃ρv(k⃗, ω) = γ

∫
d3p

(2π~)3

[
f0δ

(
cp⃗∗

ε∗

)
+
cp⃗

ε∗0
δf̃(k⃗, p⃗, ω)

]
= γ

∫
d3p

(2π~)3

[
G2

s

M∗
0 c

2

ε∗30
cp⃗δρ̃s +G2

ω

(
− 1

ε0
+
cp⃗

ε∗30
cp⃗

)
δ⃗̃ρv

]
+γ

∫
d3p

(2π~)3
cp⃗∗

ϵ∗0
δf̃(k⃗, p⃗, ω). (3.27)

Eq. (3.23) and Eq. (3.27) give another equation between density fluctuations as
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δ⃗̃ρv(k⃗, ω)

{
1− γ

∫
d3p

(2π~)3
G2

ω

[
f0

(
− 1

ε∗0
+

(cp⃗)2

ε∗30

)
+

(cp⃗)2

ε∗20

∇⃗pf0 · k⃗
ω − v⃗0 · k⃗

]}

+δρ̃s(k⃗, ω)

{
−γ

∫
d3p

(2π~)3
G2

s

[
f0
cp⃗

ε∗0

M∗
0 c

2

ε∗20
+
cp⃗

ε∗0

∇⃗pf0 · k⃗
ω − v⃗0 · k⃗

M∗
0 c

2

ε∗0

]}

+δρ̃B(k⃗, ω)

{
γ

∫
d3p

(2π~)3
G2

ω

cp⃗

ε∗0

∇⃗pf0 · k⃗
ω − v⃗0 · k⃗

}
= iγ

∫
d3p

(2π~)3
cp⃗

ε∗0

δf̃(k⃗, p⃗, 0)

ω − v⃗0 · k⃗
.

(3.28)

From the explicit form of the above equations (3.24), (3.26) and (3.28) we found

three coupled algebraic equations for the Fourier transform of small amplitude

fluctuations of the baryon density, the scalar density and the current density.

In the relativistic mean-field approximation, non-collective single particle modes

with high frequencies are not included, and we are interested only in unsta-

ble collective longitudinal modes. For longitudinal modes, the current density

oscillates along the propagation axis, i.e. δ⃗̃ρv(k⃗, ω) = δρ̃vk̂ . This requires

∇⃗pf0 · k⃗ = (∇pf0)k cos θ and v⃗0 · k⃗ = v0k cos θ . For the longitudinal modes, we

can write the set of coupled equations (3.24), (3.26) and (3.28) in a matrix form


A1 A2 A3

B1 B2 B3

C1 C2 C3




δρ̃v(k⃗, ω)

δρ̃s(k⃗, ω)

δρ̃B(k⃗, ω)

 = i


S̃B(k⃗, ω)

S̃s(k⃗, ω)

S̃v(k⃗, ω)

 , (3.29)

where the components of the coefficient matrix are defined by the following

matrix
A1 A2 A3

B1 B2 B3

C1 C2 C3

 =


−G2

ωχv(k⃗, ω) −G2
sχs(k⃗, ω) 1 +G2

ωχB(k⃗, ω)

−G2
ωχ̃v(k⃗, ω) 1 +G2

s χ̃s(k⃗, ω) +G2
ωχs(k⃗, ω)

1 +G2
ωχ̃B(k⃗, ω) −G2

sχv(k⃗, ω) +G2
ωχv(k⃗, ω)

 .

(3.30)

In the Eq.(3.30), the following definitions are used:
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The stochastic source terms are given by
S̃v(k⃗, ω)

S̃s(k⃗, ω)

S̃B(k⃗, ω)

 = γ

∫
d3p

(2π~)3


cp⃗ · k⃗/ε∗0
M∗

0 c
2/ε∗0

1

 δf̃(k⃗, p⃗, 0)

ω − v⃗0 · k⃗
. (3.31)

In the expression of the coefficient matrix given in Eq. (3.30), χv(k⃗, ω), χB(k⃗, ω)

and χs(k⃗, ω) represent the long wavelength limit of the Linhard functions with

respect to the vector, baryon and scalar density distribution functions in the

following form
χv(k⃗, ω)

χs(k⃗, ω)

χB(k⃗, ω)

 = γ

∫
d3p

(2π~)3


cp⃗ · k̂/ε∗0
M∗

0 c
2/ε∗0

1

 k⃗ · ∇⃗pf0(p⃗)

ω − v⃗0 · k⃗
, (3.32)

and the functions χ̃v(k⃗, ω), χ̃B(k⃗, ω) and χ̃s(k⃗, ω) in the coefficient matrix are

given by

χ̃s(k⃗, ω) = γ

∫
d3p

(2π~)3

[
(cp)2

ε∗30
f0(p⃗)−

(
M∗

0 c
2

ε∗0

)2
k⃗ · ∇⃗pf0(p⃗)

ω − v⃗0 · k⃗

]
, (3.33)

χ̃v(k⃗, ω) = γ

∫
d3p

(2π~)3
cp⃗ · k̂

[
M∗

0 c
2

ε∗20

k⃗ · ∇⃗pf0(p⃗)

ω − v⃗0 · k⃗

]
, (3.34)

χ̃B(k⃗, ω) = γ

∫
d3p

(2π~)3

[
ε∗20 − (cp⃗ · k̂)2

ε∗30
f0(p⃗)−

(cp⃗ · k̂)2

ε∗20

k⃗ · ∇⃗pf0(p⃗)

ω − v⃗0 · k⃗

]
. (3.35)

The matrix equation given in Eq. (3.29) can be solved for the scalar, vector and

the baryon density fluctuations and we then get the following solutions

δρ̃B(k⃗, ω) = i
S̃B(B1C2 −B2C1) + S̃s(A2C1 − A1C2) + S̃v(A1B2 − A2B1)

ε(k⃗, ω)
,

(3.36)
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δρ̃v(k⃗, ω) = i
S̃B(B2C3 −B3C2) + S̃s(A3C2 − A2C3) + S̃v(A2B3 − A3B2)

ε(k⃗, ω)
,

(3.37)

δρ̃s(k⃗, ω) = i
S̃B(B3C1 −B1C3) + S̃s(A1C3 − A3C1) + S̃v(A3B1 − A1B3)

ε(k⃗, ω)
,

(3.38)

where ε(k⃗, ω) represents the susceptibility which is the determinant of the coef-

ficient matrix and gives a dispersion relation of the system when ε(k⃗, ω) = 0 .

The susceptibility is written as

ε(k⃗, ω) = A1(B2C3−B3C2)−A2(B1C3−B3C1)+A3(B1C2−B2C1) . (3.39)

In the infinite nuclear matter, collective modes are characterized by the wave

number. There is a critical density region in which ω(ρ, T ) = 0 at ρ = ρcritical.

The solution of the dispersion relation gives the characteristic frequencies for

every wave numbers. In the stable region (ρ > ρcritical) frequencies are real and

for unstable modes (ρ < ρcritical) frequencies are imaginary.

3.4 Density Correlation Functions

In this part, the early growth of density correlation functions is described in

symmetric nuclear matter. For this purpose, the time-dependency of density

fluctuations is determined. Density fluctuations in terms of stochastic source

terms S̃α(k⃗, ω) are given in Eqs. (3.36-38).

The evolution of density fluctuations δρ̃α(k⃗, t) in time is determined by taking

the inverse Fourier transformation in time, δρ̃α(k⃗, t) =
∫
C

dω
2π
δρ̃α(k⃗, ω)e

−iωt ,

which can be calculated with the help of the residue theorem [35, 37]. After

using the inverse Fourier transformation, we get

δρ̃α(k⃗, t) =

∫
C

dω

2π
i

[
Dα

1 S̃B(k⃗, ω) +Dα
2 S̃s(k⃗, ω) +Dα

3 S̃v(k⃗, ω)

ε(k⃗, ω)

]
e−iωt (3.40)
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where α = B, v, s . In the above expression, DB
1 = B1C2−B2C1, D

B
2 = C1A2−

C2A1, D
B
3 = A1B2 −A2B1 for baryon; Ds

1 = C1B3 −B1C3, D
s
2 = A1C3 −C1A3,

Ds
3 = B1A3 − A1B3 for scalar; Dv

1 = B2C3 − C2B3, D
v
2 = C2A3 − A2C3, D

v
3 =

A2B3 − B2A3 for current densities and the susceptibility is given as ε(k⃗, ω) =

A3D
B
1 +B3D

B
2 + C3D

B
3 .

We will interested only in the collective poles of ε(k⃗, ω) . When using the Residue

theorem for the evolution of the density fluctuations in time, some contributions

come from the non-collective pole of susceptibility and from the poles of the

stochastic source terms S̃α(k⃗, ω) . However, these contributions are effective for

the high wave numbers (above kc ∼ 0.8fm−1 ) and ignored for this analysis

[35]. Therefore, we take only the growing and decaying poles of susceptibility,

ω = ±iΓ .

Cauchy-Residue theorem requires that if we consider a counter integral of the

form ∫
C

f(z)dz ≡
∫
C

g(z)

h(z)
dz (3.41)

where g(z0) ̸= 0, h(z0) = 0 and h′ = ∂h
∂z
|z=z0 ̸= 0 . It has only the poles from

denominator term. Due to Cauchy-Residue theorem∫
C

f(z)dz ≡
∫
C

g(z)

h(z)
dz = 2πiRes[f(z), z = z0] = 2πi

∑
k

A−1(k) , (3.42)

where the residue of the function is defined by A−1(k) = limz→z0
g(z)
h′(z)

.

With two poles at ω = ±iΓ , Eq. (3.40) becomes

δρα(k⃗) = −

{
Dα

1 S̃B +Dα
2 S̃s +Dα

3 S̃v

∂ε(k⃗, ω)/∂ω
|ω=iΓk

eΓt

+
Dα

1 S̃B +Dα
2 S̃s +Dα

3 S̃v

∂ε(k⃗, ω)/∂ω
|ω=−iΓk

e−Γt .

}
(3.43)

Consequently, time-dependent density fluctuations including growing and de-

caying collective poles are given by
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δρ̃α(k⃗, t) = δρ+α (k⃗)e
+Γkt + δρ−α (k⃗)e

−Γkt . (3.44)

The initial amplitudes of density fluctuations related to the growing and decaying

modes are given by,

δρ̃∓B(k⃗) = −

[
Db

1S̃B(k⃗, ω) +Db
2S̃s(k⃗, ω) +Db

3S̃v(k⃗, ω)

∂ε(k⃗, ω)/∂ω

]
ω=∓iΓk

(3.45)

δρ̃∓s (k⃗) = −

[
Ds

1S̃B(k⃗, ω) +Ds
2S̃s(k⃗, ω) +Ds

3S̃v(k⃗, ω)

∂ε(k⃗, ω)/∂ω

]
ω=∓iΓk

(3.46)

δρ̃∓v (k⃗) = −

[
Dv

1S̃B(k⃗, ω) +Dv
2S̃s(k⃗, ω) +Dv

3S̃v(k⃗, ω)

∂ε(k⃗, ω)/∂ω

]
ω=∓iΓk

(3.47)

In the Eqns. (3.45), (3.46) and (3.47), the derivative of the susceptibility be-

comes

∂ε(k, ω)

∂ω
=

(
∂A3

∂ω
D1 + A3

∂D1

∂ω

)
+

(
∂B3

∂ω
D2 +B3

∂D2

∂ω

)
+

(
∂C3

∂ω
D3 + C3

∂D3

∂ω

)
(3.48)

where

∂D1

∂ω
=

(
∂B1

∂ω
C2 +B1

∂C2

∂ω
− ∂C1

∂ω
B2 − C1

∂B2

∂ω

)
,

∂D2

∂ω
=

(
∂C1

∂ω
A2 + C1

∂A2

∂ω
− ∂A1

∂ω
C2 − A1

∂C2

∂ω

)
,

∂D3

∂ω
=

(
∂A1

∂ω
B2 + A1

∂B2

∂ω
− ∂B1

∂ω
A2 −B1

∂A2

∂ω

)
. (3.49)

In order to calculate the above derivative terms, we define the following integral

Ki(k⃗, ω) ≡
∫ 1

−1

dx
xi

ω − αx
(3.50)

and its derivative with respect to ω as

∂Ki

∂ω
= −

∫ 1

−1

dx
xi

(ω − αx)2
, (3.51)
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where we use the short hand definition α ≡ ck (cp/ϵ∗0).

The derivatives of the terms in Eq. (3.48) and (3.49) are given as
∂A1

∂ω

∣∣
ω=∓iΓ

∂A2

∂ω

∣∣
ω=∓iΓ

∂A3

∂ω

∣∣
ω=∓iΓ

 =


−G2

ω

−G2
s

+G2
ω

 2πγ

(2π~c)3
kc

∫
dp
∂f0
∂ε∗0


p4 1

ε∗20

∂K2

∂ω

∣∣
ω=∓iΓ

p3
M∗

0 c
2

ε∗20

∂K1

∂ω

∣∣
ω=∓iΓ

p3 1
ε∗0

∂K1

∂ω

∣∣
ω=∓iΓ

 ,

(3.52)


∂B1

∂ω

∣∣
ω=∓iΓ

∂B2

∂ω

∣∣
ω=∓iΓ

∂B3

∂ω

∣∣
ω=∓iΓ

 =


−G2

ω

−G2
s

+G2
ω

 2πγ

(2π~c)3
kc

∫
dp
∂f0
∂ε∗0


p4

M∗
0 c

2

ε∗30

∂K2

∂ω

∣∣
ω=∓iΓ

p3
(M∗

0 c
2)2

ε∗30

∂K1

∂ω

∣∣
ω=∓iΓ

p3
M∗

0 c
2

ε∗20

∂K1

∂ω

∣∣
ω=∓iΓ

 ,

(3.53)

and
∂C1

∂ω

∣∣
ω=∓iΓ

∂C2

∂ω

∣∣
ω=∓iΓ

∂C3

∂ω

∣∣
ω=∓iΓ

 =


−G2

ω

−G2
s

+G2
ω

 2πγ

(2π~c)3
kc

∫
dp
∂f0
∂ε∗0


p5 1

ε∗30

∂K3

∂ω

∣∣
ω=∓iΓ

p4
M∗

0 c
2

ε∗30

∂K2

∂ω

∣∣
ω=∓iΓ

p4 1
ϵ∗20

∂K2

∂ω

∣∣
ω=∓iΓ

 .

(3.54)

For both cases, ω = ±iΓ , the susceptibility can be calculated numerically. The

derivative ∂ε(k⃗, ω)/∂ω at ω → iΓ and ω → −iΓ is obtained as[
∂ε(k, ω)

∂ω

]
ω=+iΓ

=

(
∂A3

∂ω
D1 + A3

∂D1

∂ω

)
+

(
∂B3

∂ω
D2 +B3

∂D2

∂ω

)
+

(
∂C3

∂ω
D3 + C3

∂D3

∂ω

)
(3.55)

[
∂ε(k, ω)

∂ω

]
ω=−iΓ

=

(
−∂A3

∂ω
D1 − A3

∂D1

∂ω

)
+

(
−∂B3

∂ω
D2 −B3

∂D2

∂ω

)
+

(
−∂C3

∂ω
D3 − C3

∂D3

∂ω

)
. (3.56)

From Eq. (3.55) and Eq. (3.56) we find

(
∂ε(k, ω)

∂ω

)
ω=−iΓ

= −
(
∂ε(k, ω)

∂ω

)
ω=+iΓ

. (3.57)
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Let us return to the spectral intensity of the density correlation functions σ̃αα(k⃗, t)

defined as δρ̃α(k⃗, t)(δρ̃α(k⃗′, t))∗ = (2π)3δ3(k⃗− k⃗′)σ̃αα(k⃗, t) where time-dependent

density functions are given by Eq. (3.44) with the amplitudes of baryon density

fluctuations of the growing and decaying modes at the initial state. Spectral

intensity of the baryon density function is written as [26, 27].

σ̃BB(k⃗, t)(2π)
3δ3(k⃗ − k⃗′) = δρ+B(k⃗)(δρ

+
B(k⃗))

∗e2Γkt + δρ−B(k⃗)(δρ
−
B(k⃗))

∗e−2Γkt

+δρ+B(k⃗)(δρ
−
B(k⃗))

∗ + δρ−B(k⃗)(δρ
+
B(k⃗))

∗ (3.58)

In order to calculate the spectral function, we use the main assumption of the

stochastic mean-field approach which states that in each phase-space cell, the

initial phase-space distribution f(k⃗, p⃗, 0) is a Gaussian random number and its

mean value is obtained by f(k⃗, p⃗, 0) = f0(k⃗, p⃗) and its second moment is deter-

mined by [20]

δf̃(k⃗, p⃗, 0)δf̃ ∗(k⃗′, p⃗′, 0) = (2π)3δ3(k⃗ − k⃗′)(2π~)3δ3(p⃗− p⃗′)f0(k⃗, p⃗)[1− f0(k⃗, p⃗))]

(3.59)

where the overline indicates the ensemble averaging and f0(k⃗, p⃗) represents the

average phase-space distribution at the initial state. Using this approach, we

can calculate the followings:[(
δρB(k⃗)

)±
] [(

δρB(k⃗)
)±

]∗

= (2π)3δ3(k⃗ − k⃗′)

 |DB
1 |2K++

11 + |DB
2 |2K++

22 + |DB
3 |2K++

33 + 2DB
1 D

B
2 K

++
12∣∣∣∣(∂ε(k,ω)

∂ω

)
ω=±iΓ

∣∣∣∣2


(3.60)

and [(
δρB(k⃗)

)+
] [(

δρB(k⃗)
)−

]∗
=

[(
δρB(k⃗)

)−
] [(

δρB(k⃗)
)+

]∗

= (2π)3δ3(k⃗ − k⃗′)

 |DB
1 |2K+−

11 + |DB
2 |2K+−

22 − |DB
3 |2K+−

33 + 2DB
1 D

B
2 K

+−
12[(

∂ε(k,ω)
∂ω

)
ω=+iΓ

] [(
∂ε(k,ω)

∂ω

)
ω=−iΓ

]∗


(3.61)
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with the following integrals
K+−

11

K+−
22

K+−
33

K+−
12

 = γ2
∫

d3p

(2π~)3


1(

M∗
0 c

2

ε∗0

)2(
c p⃗·k̂
ε∗0

)2

M∗
0 c

2

ε∗0


−Γ2 + (v⃗0 · k⃗)2[
Γ2 + (v⃗0 · k⃗)2

]2f0(p⃗)[1− f0(p⃗))] .
(3.62)

Finally, the spectral intensity is obtained as

σ̃BB(k⃗, t) =
E+

B (k⃗)∣∣∣∣(∂ε(k⃗,ω)
∂ω

)
ω=iΓk

∣∣∣∣2 (e
2Γkt + e−2Γkt) +

2E−
B (k⃗)∣∣∣∣(∂ε(k⃗,ω)

∂ω

)
ω=iΓk

∣∣∣∣2 (3.63)

where

E+
B (k⃗) = |DB

1 |2K+
11 + |DB

2 |2K+
22 + |DB

3 |2K+
33 + 2DB

1 D
B
2 K

+
12

E−
B (k⃗) = |DB

1 |2K−
11 + |DB

2 |2K−
22 − |DB

3 |2K−
33 + 2DB

1 D
B
2 K

−
12 (3.64)

with the integrals
K∓

11

K∓
22

K∓
33

K∓
12

 = γ2
∫

d3p

(2π~)3


1(

M∗
0 c

2

ε∗0

)2(
c p⃗·k̂
ε∗0

)2

M∗
0 c

2

ε∗0


Γ2 ∓ (v⃗0 · k⃗)2[
Γ2 + (v⃗0 · k⃗)2

]2f0(p⃗)[1− f0(p⃗))] .
(3.65)

The detailed calculations are given in Appendix B.

When the same derivation is applied for the scalar and vector densities, it can

be seen that the spectral intensities of scalar and baryon density correlation

functions have the same form, which is

σ̃ss(k⃗, t) =

[
|Ds

1|2K+
11 + |Ds

2|2K+
22 + |Ds

3|2K+
33 + 2Ds

1D
s
2K

+
12

]∣∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓk

∣∣∣∣2 (e2Γkt + e−2Γkt)

+
2
[
|Ds

1|2K−
11 + |Ds

2|2K−
22 − |Ds

3|2K−
33 + 2Ds

1D
s
2K

−
12

]∣∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓk

∣∣∣∣2 . (3.66)
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In this expression, Ds
1 ≡ C1B3 − i2B1C3, D

s
2 ≡ i2A1C3 − C1A3, D

s
3 ≡ i(B1A3 −

A1B3) are used. However, the spectral intensity of vector density case has dif-

ferent form since the second term of the final result has overall minus sign. The

spectral intensity function for the vector density correlation function is

σ̃vv(k⃗, t) =

[
|Dv

1 |2K+
11 + |Dv

2 |2K+
22 + |Dv

3 |2K+
33 + 2Dv

1D
v
2K

+
12

]∣∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓk

∣∣∣∣2
(
e2Γkt + e−2Γkt

)

−
2
[
|Dv

1 |2K−
11 + |Dv

2 |2K−
22 − |Dv

3 |2K−
33 + 2Dv

1D
v
2K

−
12

]∣∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓk

∣∣∣∣2 , (3.67)

where Dv
1 ≡ i(B2C3 − C2B3), D

v
2 ≡ i(C2A3 − A2C3), D

v
3 ≡ A2B3 − B2A3. The

derivations for the scalar and vector case can be found in Appendix C.

Local density fluctuations depending on space δρα(r⃗, t) are obtained from the

Fourier transformation of δρα(k⃗, t). Equal time correlation functions of density

fluctuations as a function of distance between two space points can be repre-

sented in terms of the corresponding spectral intensity as [26, 36],

σαα(|r⃗ − r⃗′|, t) = δρα(r⃗, t)δρα(r⃗′, t) =

∫
d3k

(2π)3
eik⃗·(r⃗−r⃗′)σ̃αα(k⃗, t). (3.68)

The density correlation functions include valuable information about the un-

stable behavior of the nuclear matter in the spinodal region [27, 36]. The early

growth of baryon and scalar density correlation functions give information about

the size of the condensation in spinodal region and the current density correlation

function presents an estimation about the initial speed of condensing fragments.
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CHAPTER 4

NUCLEAR SPINODAL INSTABILITIES

4.1 Growth Rates of Unstable Modes

The growth and decay rates of collective modes are determined in the spinodal

region from the dispersion relation in Chapter 3 for finite temperature and for

zero temperature they are determined from the dispersion relation given in Ap-

pendix D. In the standard Walecka model, the four free parameters are used;

namely two coupling constants and two meson masses. In the NL3 model which

includes nonlinear interactions of the scalar meson, there are two additional pa-

rameters κ and λ . In the numerical calculations, the parameter set for the

NL3 model given in Table 2.1 is used. The calculations are made for different

temperature values (T=0, 2, 4, 6, 8, 10 MeV) and two different initial baryon

densities (ρB = 0.2 ρ0 and ρB = 0.4 ρ0).

By using the dispersion relation given in eqn. (3.39), we can find the unstable

collective modes characterized by the wave number. For instance, Fig. 4.1

represents the growth rates of unstable modes as a function of wave number

for the initial baryon density ρB = 0.4 ρ0 at various temperatures. For each

temperature values, the growth rate increases from the origin linearly, and after

a maximum point at a certain value of the wave number, it reduces to zero at a

maximum value of the wave number since the non-local effects become important

due to importance of the k2 term in the dispersion relation [36]. The growth

rate is the inverse of the time constant which describes the initial growth of the
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Figure 4.1: Growth rates of unstable modes as a function of wave numbers in the
spinodal region at baryon density ρB = 0.4 ρ0 and at different temperature values.

density fluctuations. The wave number around the maximum growth rate Γmax

shifts from 0.4fm−1 to 0.7fm−1 when temperature decreases.

Fig. 4.2 shows the growth rates of the unstable modes for the initial baryon

density ρB = 0.2 ρ0 . The wave number around the maximum growth rate takes

the values from approximately 0.5fm−1 to 0.9fm−1 according to the different

temperatures. By comparing the Fig. 4.1 and Fig. 4.2, it can be said that

in the nonlinear relativistic approach most unstable behavior occurs at lower

densities and depends strongly on density at each temperature. For both cases,

we may choose the most amplified modes occurring around the wave numbers

k ≈ (0.5 − 0.7)fm−1 or the corresponding wave lengths λ ≈ (9 − 12)fm to

determine the boundary of spinodal region.

In Fig. 4.3, the growth rates of the unstable modes obtained from the dispersion

relation in the non-relativistic approach with an effective Skyrme force [27] and in

the nonlinear Walecka model are shown. The figure is drawn at the initial baryon
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Figure 4.2: Growth rates of unstable modes as a function of wave numbers in the
spinodal region at baryon density ρB = 0.2 ρ0 and at different temperature values.

densities ρB = 0.2 ρ0 and ρB = 0.4 ρ0 in the spinodal region at temperature

T = 5 MeV . For each model, the curves show similar behavior. The wave

number for the maximum growth rate Γmax for each model is around 0.5fm−1

for ρB = 0.4 ρ0 and 0.8fm−1 for ρB = 0.2 ρ0 . The shortest growth time

(τ ≡ 1/Γk) that characterizes the initial growth of the density fluctuations is

found approximately 50fm/c for NL3 and 60fm/c for non-relativistic model

in ρB = 0.4 ρ0 case. It becomes about 35fm/c for NL3 and 30fm/c for non-

relativistic model in ρB = 0.2 ρ0 case.

These results display that the dispersion relations for unstable modes obtained

from the relativistic NL3 model are comparable to the dispersion relations get-

ting from the non-relativistic calculations under similar conditions.

In Fig. 4.4, we calculate the growth rates of the most unstable modes as a func-

tion of baryon density for different temperatures. When temperature increases,

the density value at which the most unstable behavior occurs shifts towards the
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Figure 4.3: Growth rates of unstable modes as a function of wave numbers in the
spinodal region at baryon densities ρB = 0.2 ρ0 and ρB = 0.4 ρ0 at T = 5 MeV for
relativistic NL3 (dashed lines) and non-relativistic calculations (solid lines).

higher densities quietly. The most unstable behavior is observed in the interval

0.2 ρ0 < ρB < 0.4 ρ0 depending on temperature.

Fig. 4.5 illustrates the growth rates of the most unstable modes according to the

ratio of density ρB/ρ0 in both relativistic-NL3 and non-relativistic approaches

at T=5 MeV. In both approaches, the system exhibits most unstable behavior

at lower densities around ρB = 0.2 ρ0. The unstable behavior of the system

becomes comparable in both relativistic and non-relativistic approaches under

similar conditions.

4.2 Boundary of Spinodal Region

The boundary of the spinodal instability region can be determined from the

dispersion relation. As an example of the phase diagrams, Fig. 4.6 shows the

boundary of the spinodal region for the unstable modes of wavelength λ = 9fm
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Figure 4.4: Growth rates of the most unstable modes as a function of baryon density
in spinodal region.

and λ = 12fm . In the figure, as the area under the phase coexistence curve is

a region for the mixture of gas and liquid, the region above the curve shows the

uniform nuclear matter [38]. The curve is a parabola-like curve starting from

the origin and reaching at a critical point around ρc ≈ 0.3 ρ0 and a critical

temperature Tc ≈ 12 MeV , then decreasing to zero about ρB ≈ 0.5 ρ0 that

corresponds to the minimum of the pressure-density curve.

At lower temperatures, there are two points (say A and B with ρA and ρB )

on the boundary defined spinodal region in which the pressure is a decreasing

function, ∂P
∂ρ

< 0. There are two different physical phases: a gas phase at low

densities less than ρA and a liquid phase at densities higher than ρB and close

to saturation density ρ0. As temperature increases, the spinodal region narrows

and these two points coincide with each other at a critical temperature Tc . At

and above this temperature, the system is in a single phase. As a result, liquid

and gas phases coexist at temperature lower than Tc and only gas phase can

exist at or above Tc.
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Figure 4.5: Growth rates of the most unstable modes as a function of baryon density
in spinodal region at temperature T = 5 MeV for non-relativistic calculations (solid
line) and for relativistic-NL3 calculations (dashed line).

In both the λ = 9fm and λ = 12fm case, the shortest time is about 35fm/c

and it occurs for a density about 0.3 ρ0 . The shortest time value is obtained

from the Fig. 4.5. If we analyze the same values at non-relativistic case which is

obtained from the Fig.3 in the reference-23, the shortest time is about 30fm/c

and it occurs for the density around 0.2ρ0 for the λ = 9fm case. We observe

the small differences in the unstable response of the system, the system exhibits

most unstable behavior around 0.2ρ0 in the non-relativistic case while the most

unstable behavior occurs around 0.3ρ0 in the nonlinear relativistic case.

4.3 The Size of Primary Clusters in Spinodal Region

The wavelengths are long when compared with the inter-particle spacing and the

interaction range. Therefore, the size of the initial clusters or initial condensation

regions is defined as the half wavelength of the fastest amplified modes. Fig. 4.7
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Figure 4.6: Boundary of spinodal region in baryon density-temperature plane of the
unstable mode for the wavelengths λ = 9fm and λ = 12fm in relativistic-NL3 model.

gives the size of the primary clusters of the most unstable collective modes in

spinodal region as a function of the baryon density at four different temperature

values (T = 0, 2, 4 and 6MeV ).

The most unstable mode named as the fastest amplified mode brings to the

system of the homogeneous matter changes into the non-homogeneous phase.

During this formation, the primary clusters formed and half-wavelength provides

a measure for typical size of these clusters [36]. We read approximately 3.5fm

for T = 0−2MeV , 4fm for T = 4MeV and 5fm for T = 6MeV corresponding

to the most unstable modes around ρB ≈ 0.3 ρ0 and they are diameters of the

initial clusters. The size of the initial clusters increases quietly with the increase

of the temperature.
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Figure 4.7: The size of the primary clusters in the spinodal region at temperatures
T = 0, 2, 4 and 6 MeV .

4.4 Spectral Intensity of the Density Correlation Functions

In section 3.3, we define the correlation functions σ̃αα(k⃗, t) for baryon, scalar and

vector densities to calculate the early growth of the baryon density fluctuations

in nuclear matter. Figs. 4.8 and 4.9 represent the spectral intensity of the

baryon density correlation function (the variance for the unstable modes) as a

function of wave number at temperature T = 1 MeV for two density values

ρB = 0.2 ρ0 and ρB = 0.4 ρ0 , respectively, using five different initial time

values (t = 0, t = 20fm/c, t = 30fm/c, t = 40fm/c and t = 50fm/c). We

observe from the figure that the largest growth occurs at the wave numbers of

the dominant unstable modes which can be seen from Fig. 4.2 and 4.3. The

curve shows a more and more peaked-like function around the dominant unstable

modes with increasing time. For instance, at time t = 50fm/c , the spectral

intensity of the most unstable modes of k = 0.9fm−1 grows about twenty times

for density ρB = 0.2 ρ0 at temperature T = 1 MeV .
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Figure 4.8: : Spectral intensity of baryon density correlation function as a function of
wave number at T = 1 MeV and density ρB = 0.2 ρ0 .

In Fig. 4.9, the largest growth of the spectral intensity of the correlation func-

tion occurs at the wave number k = 0.7fm−1 . The curves are terminated at

the wave numbers k ≈ 0.9fm−1− 1.1fm−1 since we only consider the collective

modes in our calculations, and non-collective modes which are effective for short

wavelengths (higher wave numbers) are not taken into account. As a conse-

quence, the expression of the spectral intensity of the correlation functions is

a good approximation for the long wavelengths below the critical value of the

wave numbers. The non-collective modes do not change in time and we therefore

observe the growth of the collective modes in time in our calculations.

Figs. 4.10 and 4.11 are drawn at T = 5 MeV for spectral intensity of baryon

density correlation function and include the similar information in Figs. 4.8

and 4.9. Again, the largest growth is seen at the range of wave numbers of the

unstable dominant modes. The largest growth occurs at k ≈ 0.8fm−1 for the

density ρB = 0.2 ρ0 and at k ≈ 0.7fm−1 for the density ρB = 0.4 ρ0 .
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Figure 4.9: : Spectral intensity of baryon density correlation function as a function of
wave number at T = 1 MeV and density ρB = 0.4 ρ0 .

Figs. 4.12 and 4.13 at temperature T = 1 MeV and Figs. 4.14 and 4.15

at temperature T = 5 MeV demonstrate the spectral intensity of the scalar

density correlation function as a function of wave number for two density values,

ρB = 0.2 ρ0 and ρB = 0.4 ρ0 . The largest growth occurs at k ≈ 0.8fm−1 for

the baryon density ρB = 0.2 ρ0 and at k ≈ 0.7fm−1 for the baryon density

ρB = 0.4 ρ0 at T = 5 MeV , and k ≈ 0.9fm−1 for the density ρB = 0.2 ρ0

and at k ≈ 0.7fm−1 for the density ρB = 0.4 ρ0 at T = 1 MeV . The scalar

density case exhibits the similar trend with the baryon density case. The curves

are terminated at suitable k values not to include non-collective effects.

For the spectral intensity of the current density correlation function, the curves

are given in Figs. 4.16, 4.17, 4.18 and 4.19 at temperatures T = 1 MeV and

T = 5 MeV for baryon densities ρB = 0.2 ρ0 and ρB = 0.4 ρ0 . The peak-like

form of the curves around the range of the most unstable modes is observed

with the increasing time. In the case of T = 1 MeV , spectral intensity grows

about 50 times larger for ρB = 0.2 ρ0 and 10 times larger for ρB = 0.4 ρ0 during
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Figure 4.10: : Spectral intensity of baryon density correlation function as a function
of wave number at T = 5 MeV and density ρB = 0.2 ρ0 .

the time interval t = 50fm/c . At temperature T = 5 MeV , similar values are

observed.

Since the non-collective modes are not included into calculations, the spectral

curves of current density are terminated at cut-off wave numbers k = 1.15fm−1

for T = 1 MeV and ρB = 0.2 ρ0 , k = 0.9fm−1 for T = 1 MeV and ρB = 0.4 ρ0

also T = 5 MeV and ρB = 0.2 ρ0 , and k = 0.8fm/c for T = 5 MeV and

ρB = 0.4 ρ0 .

4.5 Early Growth of Density Correlation Functions

Equal time density correlation functions for baryon, scalar and current density

fluctuations as a function of distance between two points in the space are given in

Eq.(3.68). These provides valuable information about the unstable behavior of

the nuclear dynamics in the spinodal region. Figs. 4.20 and 4.21 show the baryon
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Figure 4.11: : Spectral intensity of baryon density correlation function as a function
of wave number at T = 5 MeV and density ρB = 0.4 ρ0 .

density correlation function σBB(x, t) as a function of distance between two space

locations at temperature T = 1MeV for two initial baryon densities ρB = 0.2 ρ0

and ρB = 0.4 ρ0 and at different times. The width of the correlation function

at half maximum named as the correlation length of baryon density fluctuations

characterizes the size of the initial condensation region [36]. Correlation length

in the linear approximation provides an estimation about the size of condensing

fragments formed during the initial phase of spinodal decomposition. From

Figs. 4.20 and 4.21, the correlation length reads about 2.5 fm at both densities

ρB = 0.2 ρ0 and ρB = 0.4 ρ0 that corresponds to a condensation region including

approximately A=12 nucleons. At temperature T = 1 MeV , the evolution of

baryon density correlation function in time is faster at lower densities than at

higher densities. For example, σBB(x = 0, t = 50fm/c) ≈ 0.032fm−6 at baryon

density ρB = 0.2 ρ0 and σBB(x = 0, t = 50fm/c) ≈ 0.007fm−6 at ρB = 0.4 ρ0

that is five times larger at ρB = 0.2 ρ0 than the value at ρB = 0.4 ρ0 .

In the Figs. 4.22 and 4.23 the same discussion is given for another temperature
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Figure 4.12: : Spectral intensity of scalar density correlation function as a function of
wave number at T = 1 MeV and density ρB = 0.2 ρ0 .
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Figure 4.13: : Spectral intensity of scalar density correlation function as a function of
wave number at T = 1 MeV and density ρB = 0.4 ρ0 .
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Figure 4.14: : Spectral intensity of scalar density correlation function as a function of
wave number at T = 5 MeV and density ρB = 0.2 ρ0 .
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Figure 4.15: : Spectral intensity of scalar density correlation function as a function of
wave number at T = 5 MeV and density ρB = 0.4 ρ0 .
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Figure 4.16: : Spectral intensity of current density correlation function as a function
of wave number at T = 1 MeV and density ρB = 0.2 ρ0 .

0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,5

1,0

1,5

2,0

vv
 (f

m
-3

)x
 1

0-3

k (fm-1)

 t=0
 t=20 fm/c
 t=30 fm/c
 t=40 fm/c
 t=50 fm/c

NL3

 
, T=1 MeV

Figure 4.17: : Spectral intensity of current density correlation function as a function
of wave number at T = 1 MeV and density ρB = 0.4 ρ0 .
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Figure 4.18: : Spectral intensity of current density correlation function as a function
of wave number at T = 5 MeV and density ρB = 0.2 ρ0 .
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Figure 4.19: : Spectral intensity of current density correlation function as a function
of wave number at T = 5 MeV and density ρB = 0.4 ρ0 .
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Figure 4.20: : Baryon density correlation function σBB(x, t) as a function of distance
x = |r⃗ − r⃗′| between two space points at temperature T = 1 MeV and density
ρB = 0.2 ρ0.
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Figure 4.21: : Baryon density correlation function σBB(x, t) as a function of distance
x = |r⃗ − r⃗′| between two space points at temperature T = 1 MeV and density
ρB = 0.4 ρ0.
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Figure 4.22: : Baryon density correlation function σBB(x, t) as a function of distance
x = |r⃗ − r⃗′| between two space points at temperature T = 5 MeV and density
ρB = 0.2 ρ0.

T = 5 MeV . The correlation length is now extracted about 3.0fm for both

baryon densities ρB = 0.2 ρ0 and ρB = 0.4 ρ0 that corresponds to a condensation

region including about A=16 nucleons. In this case, we reads σBB(x = 0, t =

50fm/c) ≈ 0.024fm−6 at baryon density ρB = 0.2 ρ0 and σBB(x = 0, t =

50fm/c) ≈ 0.017fm−6 at ρB = 0.4 ρ0 . The growth rate is about 1.4 that is

smaller compared with the value in the low temperature case.

In both temperature cases, we read the baryon density correlation at t = 0

since we are interested only in collective modes. If we include the effects of the

non-collective modes, we expect to have no baryon density correlation at t = 0.

Figs. 4.24 and 4.25 show the scalar density correlation function σss(x, t) as a

function of distance between two space points at temperature T = 1 MeV and

at different times for initial baryon densities ρB = 0.2 ρ0 and ρB = 0.4 ρ0 .

For T = 5 MeV the scalar density correlation function as a function of distance

between two space points is shown in Figs. 4.26 and 4.27. The scalar correlation
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Figure 4.23: : Baryon density correlation function σBB(x, t) as a function of distance
x = |r⃗ − r⃗′| between two space points at temperature T = 5 MeV and density
ρB = 0.4 ρ0.

function σss(x, t) carries the same information as the baryon density correlation

function σBB(x, t). We also find the correlation length between 2.5fm and 3fm.

Such a condensation region contains approximately A=12-16 nucleons.

Alternatively we can determine the minimal cluster sizes as radius of the object

from Fig. 4.7 about 2.0− 2.5fm for temperature T = 0− 6 MeV corresponding

to the most unstable modes around ρB ≈ 0.3 ρ0. The values obtained in both

ways are comparable with each other. In the correlation calculations, we read

directly radius of the initial clusters, therefore results are more physical.

Figs. 4.28, 4.29 and Figs. 4.30, 4.31 demonstrate the current density correla-

tion function σvv(x, t) as a function of distance between two space points under

similar conditions as baryon and scalar densities. When scaling the graph, the

current density correlation function is multiplied by a factor of 1000 due to the

factor ε∗/M∗ in the definition of the current density.

The variances of the local velocity fluctuations of the initial condensing frag-
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Figure 4.24: : Scalar density correlation function σss(x, t) as a function of distance
x = |r⃗ − r⃗′| between two space points at temperature T = 1 MeV and density
ρB = 0.2 ρ0.
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Figure 4.25: : Scalar density correlation function σss(x, t) as a function of distance
x = |r⃗ − r⃗′| between two space points at temperature T = 1 MeV and density
ρB = 0.4 ρ0.
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Figure 4.26: : Scalar density correlation function σss(x, t) as a function of distance
x = |r⃗ − r⃗′| between two space points at temperature T = 5 MeV and density
ρB = 0.2 ρ0.
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Figure 4.27: : Scalar density correlation function σss(x, t) as a function of distance
x = |r⃗ − r⃗′| between two space points at temperature T = 5 MeV and density
ρB = 0.4 ρ0.
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Figure 4.28: : Current density correlation function σvv(x, t) as a function of distance
x = |r⃗ − r⃗′| between two space points at temperature T = 1 MeV and density
ρB = 0.2 ρ0.
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Figure 4.29: : Current density correlation function σvv(x, t) as a function of distance
x = |r⃗ − r⃗′| between two space points at temperature T = 1 MeV and density
ρB = 0.4 ρ0.
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Figure 4.30: : Current density correlation function σvv(x, t) as a function of distance
x = |r⃗ − r⃗′| between two space points at temperature T = 5 MeV and density
ρB = 0.2 ρ0.
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Figure 4.31: : Current density correlation function σvv(x, t) as a function of distance
x = |r⃗ − r⃗′| between two space points at temperature T = 5 MeV and density
ρB = 0.4 ρ0.
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ments can be estimated from the current density correlation function [36]. The

local velocity fluctuations δu⃗(r⃗, t) are related to the current density fluctuations

according to

δρ⃗v(r⃗, t) ≈ δu⃗(r⃗, t)ρB . (4.1)

By using the relation in Eq. (4.1), the equal time correlation function of the

local velocity fluctuations are found as,

δu⃗(r⃗, t) · δu⃗(r⃗′, t) = 1

ρ2b
σvv(|r⃗ − r⃗′|, t). (4.2)

The variance of the local velocity fluctuations can be determined by taking

x = |r⃗ − r⃗′| = 0 . During the initial phase of spinodal decomposition, the root-

mean-square value urms = (c/ρb)
√
σvv(0, t) provides an approximation for the

average speed of condensing fragments [36]. We calculate the evolution of urms

in time based on Figs. 4.28, 4.29 and Figs. 4.30, 4.31 that are given in Table

4.1.

In the case of temperature T = 1 MeV , for the homogenous initial state with

baryon density ρB = 0.4 ρ0 , the rms value starts from an initial value of urms =

0.02c and increases up to urms = 0.05c during 50fm/c, where c is the speed

of light. Moreover, for a lower value of initial baryon density ρB = 0.2 ρ0,

the rms value starts from an initial value of urms = 0.05c and increases up to

urms = 0.3c during the time t = 50fm/c . Hovewer, at temperature T = 5MeV

with baryon density ρB = 0.4 ρ0 the rms value is changing from an initial value

of urms = 0.03c up to urms = 0.06c and at baryon density of ρB = 0.2 ρ0 , from

an initial value of urms = 0.07c and increases up to urms = 0.2c in 50fm/c.

As a result, we find that the average speed of condensing fragments during the

initial phase of spinodal decomposition grows faster at lower densities and low

temperature.
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Table 4.1: The average speed of initial fragments of spinodal decomposition at T=1
MeV and T=5 MeV .

NL3 T=1 MeV T=5 MeV

t (fm/c) σvv(0, t)(fm
−6) urms t (fm/c) σvv(0, t)(fm

−6) urms

0 0.002× 10−3 0.05c 0 0.004× 10−3 0.07c
20 0.006× 10−3 0.08c 20 0.007× 10−3 0.088c

ρb = 0.2ρ0 30 0.014× 10−3 0.13c 30 0.012× 10−3 0.10c
40 0.03× 10−3 0.18c 40 0.02× 10−3 0.15c
50 0.07× 10−3 0.28c 50 0.034× 10−3 0.20c

t (fm/c) σvv(0, t)(fm
−6) urms t (fm/c) σvv(0, t)(fm

−6) urms

0 0.0014× 10−3 0.02c 0 0.004× 10−3 0.03c
20 0.0022× 10−3 0.025c 20 0.0055× 10−3 0.04c

ρb = 0.4ρ0 30 0.0032× 10−3 0.03c 30 0.008× 10−3 0.045c
40 0.0054× 10−3 0.04c 40 0.011× 10−3 0.055c
50 0.009× 10−3 0.05c 50 0.016× 10−3 0.06c
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CHAPTER 5

CONCLUSION

In this thesis, we employ a stochastic mean-field approach by including the non-

linear coupling terms of the scalar meson with NL3 parameter set to investigate

the spinodal instabilities in nuclear matter. The stochastic mean-field theory

includes the one-body dissipation and the related fluctuation mechanism in ac-

cordance with the fluctuation-dissipation relation, and it provides a powerful tool

to describe the dynamics of density fluctuations in low energy nuclear reactions.

In the first part of the thesis, the nuclear matter equation of states at zero and

finite temperatures are studied with the nonlinear Walecka model in the semi-

classical approach. We carry out the relativistic calculations with NL3 parameter

set. The effective mass of nuclear matter is found as a function of density for

standard Walecka model and the NL3 set and the results are compared. And

also, the energy per nucleon values are investigated for different temperatures.

Moreover, the spinodal density region and phase transition are determined from

pressure-baryon density variances. As a result, the spinodal instability region is

observed under the critical temperature Tc ≈ 14 MeV and the critical density

1/3 ρ0 . We also give the description of stochastic mean-field approach in this

part and lastly the derivation of the relativistic Vlasov equation is performed.

In the second part of the thesis, we investigate the early growth of density

fluctuations for symmetric nuclear matter by assuming small fluctuations of the

mean-field around its equilibrium value.
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We determine the growth rates of unstable collective modes at two different

initial densities ρB = 0.2 ρ0 and ρB = 0.4 ρ0 and at different temperatures. We

also calculate early behaviors of the density correlation functions in spinodal

region that provide valuable information about the size of the fragmentation

patterns and the average speed of condensing fragments.

The behavior of the most unstable modes represents a parabola-like curves by

depending on initial baryon density and temperature. The system exhibits most

unstable behavior in longer wave lengths at higher baryon densities ρB = 0.4 ρ0,

while most unstable behavior occurs in shorter wavelengths at lower baryon

densities ρB = 0.2 ρ0. The growth rates of the unstable modes calculated in

non-relativistic approach with an effective Skyrme force [34] and in the non-

linear Walecka model at T = 5 MeV are obtained to be comparable and the

initial growth of the density fluctuations is found approximately the same in

both models. The maximum of the growth rates of the most unstable modes as

a function of the ratio ρB/ρ0 in both relativistic NL3 and non-relativistic ap-

proaches at T = 5 MeV is obtained to occur around the initial baryon densities

ρB ≈ 0.3 ρ0.

Boundary of spinodal region in baryon density-temperature plane of the unstable

mode gives a critical points around ρc ≈ 0.3 ρ0 at a critical temperature Tc ≈

12 MeV . Below this critical point, the system has a liquid-gas phase, however,

at and above this point it has only gas phase.

By applying one-sided Fourier transform to the relativistic Vlasov equation, we

obtain the initial fluctuations and derive density correlation functions from these

initial fluctuations. We thus obtain their early evolution and reach valuable

information about condensation.

The size of initial condensation regions is obtained firstly from the half wave-

length of the fastest amplified modes. Secondly, we obtain it from the width

of the baryon and scalar density correlation functions. These two results are in

agreement and they approximately correspond to an initial condensation region
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including 12-16 nucleons.

We use the semi-classical framework in our calculations, we neglect the quantum

statistical effects on the density correlation functions, which are expected to

become important at lower temperatures and also at lower densities. On the

other hand, the investigation of spinodal dynamics in charge asymmetric nuclear

matter by including the charged vector meson ρ becomes important for the

analysis of the quantities as a function of isospin dependence of nuclear matter

equation of state at low densities which is important for astrophysical systems

(neutron star, etc. ) and multi-fragmentation reactions in neutron rich nuclear

systems.

The stochastic relativistic mean-field approach is a useful tool for the description

of dynamics of density fluctuations in the spinodal region. This approach is also

suitable to evaluate the early development of spinodal dynamics of hot nuclear

matter produced in heavy-ion collisions.
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APPENDIX A

DERIVATION OF SCALAR AND BARYON

DENSITIES

To evaluate the expectation values of ⟨ψγ0i~∂0ψ⟩ and ⟨ψγii~∂iψ⟩ , it is needed

to find an explicit form of Dirac field ψ. If we use ψ(x) in Dirac equation

[γµi~∂µ − gvγ0V0 − (Mc2 − gsϕ0)]ψ = 0 , we then find

[
γ0i~∂0 + γ⃗ · i~∇⃗ − gvγ0V0 − (Mc2 − gsϕ0)

]
u(p⃗, s)e−iε(p⃗)t/~+ip⃗·x⃗/~ = 0[

γ0i (−iε(p⃗)) + γ⃗ · i(ip⃗)− gvγ0V0 − (Mc2 − gsϕ0)
]
u(p⃗, s) = 0 . (A.1)

If we multiply both sides by γ0 ≡ β and using the followings

u(p⃗, s) =

 ϕ

χ

 , β = γ0 =

 1 0

0 − 1

 and α⃗ = γ0γ⃗ =

 0 σ⃗

σ⃗ 0

 we then

find

[
ε(p⃗)− α⃗ · cp⃗− gvV0 − βM∗c2

]
u(p⃗, s) = 0 , (A.2)

where M∗c2 = Mc2 − gsϕ0 is the reduced baryon mass. Dirac Hamiltonian can

be found from the Eq. (A.2) as

ε(p⃗)u(p⃗, s) =
(
α⃗ · cp⃗+ gvV0 + βM∗c2

)
u(p⃗, s)

HD = α⃗ · cp⃗+ gvV0 + βM∗c2 . (A.3)

By using the Eq. (2.18) and the step function which is given by
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Θ(µ− e(p⃗)) =

 1 if |⃗k| ≤ kf

0 if |⃗k| > kf
, (A.4)

we can calculate the expectation value of the Dirac Hamiltonian as follows

⟨ψHDψ⟩ ≡
∑
s

∫
d3p

(2π~)3
(
ψ†HDψ

)
p⃗,s

Θ(µ− e(p⃗))

=
∑
s

∫
d3p

(2π~)3
e(p⃗)Θ (µ− e(p⃗))

=
∑
s

∫
d3p

(2π~)3
[
gvV0 +

√
(cp⃗)2 + (M∗c2)2

]
Θ(µ− e(p⃗))

= gvV0
∑
s

∫ pF

0

d3p

(2π~)3
+
∑
s

∫ pF

0

d3p

(2π~)3
√
(cp⃗)2 + (M∗c2)2

= gvV0
γ

(2π~)3

∫ pf

0

d3p+
γ

(2π~)3

∫ pf

0

d3p
√
(cp⃗)2 + (M∗c2)2 .

(A.5)

In order to derive the expectation value of ⟨ψγii~∂iψ⟩ , we calculate firstly its

single particle eigenvalue. ⟨ψγii~∂iψ⟩ = ⟨ψ†
(
−iα⃗ · ∇⃗

)
ψ⟩ in natural units.

(
ψγ⃗ · cp⃗ψ

)
p⃗,s

=
(
ψγ⃗ψ

)
p⃗,s
· cp⃗ =

(
ψ†α⃗ψ

)
p⃗,s
· cp⃗

=
(
ψ∇⃗pHDψ

)
p⃗,s
· cp⃗

=
[
∇⃗pε(p⃗)

]
· cp⃗ =

[
∇⃗p

(
gvV0 +

√
(p⃗c)2 + (M∗c2)2

)]
· cp⃗

=
cp⃗ · cp⃗√

(cp⃗)2 + (M∗c2)2
.

(A.6)

Now, the expectation value becomes

⟨ψ†
(
−iα⃗ · ∇⃗

)
ψ⟩ =

∑
s

∫
d3p

(2π~)3
(
ψγ⃗ · cp⃗ψ

)
p⃗,s

Θ(µ− e(p⃗))

=
∑
s

∫
d3p

(2π~)3
cp⃗ · cp⃗√

(cp⃗)2 + (M∗c2)2
Θ(µ− e(p⃗))

=
γ

(2π~)3

∫ pf

0

d3p
(cp⃗)2√

(cp⃗)2 + (M∗c2)2
. (A.7)

Finally, to find the expectation value of the scalar density, we should consider
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the derivative of the Dirac Hamiltonian with respect to baryon mass, which is

∂HD

∂M
= γ0 . From this expression the single particle expectation value becomes

(
ψψ

)
p⃗,s

=
(
ψ†γ0ψ

)
p⃗,s
≡

(
ψ†∂HD

∂M
ψ

)
p⃗,s(

ψψ
)
p⃗,s

=
∂

∂M
ε(p⃗) =

M∗c2√
(cp⃗)2 + (M∗c2)2

. (A.8)

By using the general expression, the expectation value can be found as

⟨ψψ⟩ =
∑
s

∫
d3p

(2π~)3
(
ψψ

)
p⃗,s

Θ(µ− e(p⃗))

=
∑
s

∫
d3p

(2π~)3
M∗c2√

(cp⃗)2 + (M∗c2)2
Θ(µ− e(p⃗))

=
γ

(2π~)3

∫ pf

0

d3p
M∗c2√

p2c2 + (M∗c2)2
, (A.9)

and similarly for baryon density we find

⟨ψγ0ψ⟩ = ⟨ψ†ψ⟩ =
∑
s

∫
d3p

(2π~)3
Θ(µ− e(p⃗)) = γ

(2π~)3

∫ pf

0

d3p. (A.10)

By using the results of expectation values the scalar and the baryon densities

become

ρ0s =
γ

(2π~)3

∫ pf

0

d3p
M∗c2√

p2c2 + (M∗c2)2
(A.11)

ρ0B =
γ

(2π~)3

∫ pf

0

d3p =
γ

6π2
k3F (A.12)
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APPENDIX B

DERIVATION OF BARYON CORRELATION

The spectral intensity of baryon density function is defined by

σ̃BB(k⃗, t)(2π)
3δ(k⃗ − k⃗′) = δρ̃B(k⃗, t)

(
δρ̃B(k⃗′, t)

)∗

= δρ+B(k⃗)
(
δρ+B(k⃗

′)
)∗
e2Γkt + δρ−B(k⃗)

(
δρ−B(k⃗

′)
)∗
e−2Γkt

+δρ+B(k⃗)
(
δρ−B(k⃗

′)
)∗

+ δρ−B(k⃗)
(
δρ+B(k⃗

′)
)∗

, (B.1)

with the initial amplitude of baryon density fluctuation

δρ̃∓B(k⃗) = −

[
Db

1S̃B(k⃗, ω) +Db
2S̃s(k⃗, ω) +Db

3S̃v(k⃗, ω)

∂ε(k⃗, ω)/∂ω

]
ω=∓iΓk

. (B.2)

The correlation of the growing pole is written as follows,

[(
δρB(k⃗)

)+
] [(

δρB(k⃗)
)+

]∗
=

[
S+
BD1 + S+

s D2 + S+
v iD

′
3

iN

] [
S+
BD1 + S+

s D2 + S+
v iD

′
3

iN

]∗
(B.3)

where
(

∂ε(k,ω)
∂ω

)
ω=+iΓ

= iN and
(

∂ε(k,ω)
∂ω

)
ω=−iΓ

= −iN .
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δρ+B(k⃗)
(
δρ+B(k⃗

′)
)∗
|N |2 =

S+
B (k)S

+
B (k

′)∗|D1|2 + S+
s (k)S

+
s (k

′)∗|D2|2 + S+
v (k)S

+
v (k

′)∗|D′
3|2

+S+
B (k)S

+
s (k

′)∗D1D2 − iS+
B (k)S

+
v (k

′)∗D1D3 + S+
s (k)S

+
B (k

′)∗D2D1

−iS+
s (k)S

+
v (k

′)∗D2D
′
3 + iS+

v (k)S
+
B (k

′)∗D′
3D1 + iS+

v (k)S
+
s (k

′)∗D′
3D2.

(B.4)

In this expressionD1, D2 are real butD3 is imaginary and we useD′
3 to represent

the real part of it. In addition, we use SB, Ss, Sv instead of S̃B, S̃s, S̃v in the

following calculations. The correlation of decaying pole is

δρ−B(k⃗)
(
δρ−B(k⃗

′)
)∗
|N |2 =

S−
B (k)S

−
B (k

′)∗|D1|2 + S−
s (k)S

−
s (k

′)∗|D2|2 + S−
v (k)S

−
v (k

′)∗|D′
3|2

+S−
B (k)S

−
s (k

′)∗D1D2 + iS−
B (k)S

−
v (k

′)∗D1D
′
3 + S−

s (k)S
−
B (k

′)∗D2D1

+iS−
s (k)S

−
v (k

′)∗D2D
′
3 − iS−

v (k)S
−
B (k

′)∗D′
3D1 − iS−

v (k)S
−
s (k

′)∗D′
3D2 ,

(B.5)

and for the mixed terms

δρ+B(k⃗)
(
δρ−B(k⃗

′)
)∗ (
−|N |2

)
=

S+
B (k)S

−
B (k

′)∗|D1|2 + S+
B (k)S

−
s (k

′)∗D1D2 + iS+
B (k)S

−
v (k

′)∗D1D
′
3

+S+
s (k)S

−
B (k

′)∗D2D1 + S+
s (k)S

−
s (k

′)∗|D2|2 + iS+
s (k)S

−
v (k

′)∗D2D
′
3

+iS+
v (k)S

−
B (k

′)∗D′
3D1 + iS+

v (k)S
−
s (k

′)∗D′
3D2 − S+

v (k)S
−
v (k

′)∗|D′
3|2 ,

(B.6)

δρ−B(k⃗)
(
δρ+B(k⃗

′)
)∗ (
−|N |2

)
=

S−
B (k)S

+
B (k

′)∗|D1|2 + S−
B (k)S

+
s (k

′)∗D1D2 − iS−
B (k)S

+
v (k

′)∗D1D
′
3

+S−
s (k)S

+
B (k

′)∗D2D1 + S−
s (k)S

+
s (k

′)∗|D2|2 − iS−
s (k)S

+
v (k

′)∗D2D
′
3

−iS−
v (k)S

+
B (k

′)∗D′
3D1 − iS−

v (k)S
+
s (k

′)∗D′
3D2 − S−

v (k)S
+
v (k

′)∗|D′
3|2 ,

(B.7)
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The source terms are
S̃±
v (k⃗, ω)

S̃±
s (k⃗, ω)

S̃±
B (k⃗, ω)

 = γ

∫
d3p

(2π~)3


cp⃗ · k⃗/ε∗0
M∗

0 c
2/ε∗0

1

 δf̃(k⃗, p⃗, 0)

±iΓ− v⃗0 · k⃗
. (B.8)

By using the stochastic mean-field approach, the correlation of the first source

term is

S+
B (k)S

+
B (k

′)∗ = γ2
∫

d3p′

(2π~)3
d3p

(2π~)3
δf(k⃗, p⃗, 0)δf ∗(k⃗′, p⃗′, 0)

(iΓ− v⃗0 · k⃗)(iΓ− v⃗0 · k⃗′)∗

= γ2(2π)3δ(k⃗ − k⃗′)
∫

d3p

(2π~)3
f(p⃗)[1− f(p⃗)]
Γ2 + (v⃗0 · k⃗)2

. (B.9)

By the similar way, the other terms are

S+
s (k)S

+
s (k

′)∗ = γ2(2π)3δ(k⃗ − k⃗′)
∫

d3p

(2π~)3

(
M∗

0 c
2

ε∗0

)2
f(p⃗)[1− f(p⃗)]
Γ2 + (v⃗0 · k⃗)2

,

(B.10)

S+
v (k)S

+
v (k

′)∗ = γ2(2π)3δ(k⃗ − k⃗′)
∫

d3p

(2π~)3

(
cp cos θ

ε∗0

)2
f(p⃗)[1− f(p⃗)]
Γ2 + (v⃗0 · k⃗)2

,

(B.11)

and from the other terms

S+
B (k)S

+
s (k

′)∗ = γ2(2π)3δ(k⃗−k⃗′)
∫

d3p

(2π~)3

(
M∗

0 c
2

ε∗0

)
f(p⃗)[1− f(p⃗)]
Γ2 + (v⃗0 · k⃗)2

, (B.12)

S+
B (k)S

+
v (k

′)∗ = S+
v (k)S

+
B (k

′)∗ = 0

S+
s (k)S

+
v (k

′)∗ = S+
v (k)S

+
s (k

′)∗ = 0 . (B.13)

If we define the following integrals,

K++
11 = γ2

∫
d3p

(2π~)3
f(p⃗)[1− f(p⃗)]
Γ2 + (v⃗0 · k⃗)2

, (B.14)
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K++
22 = γ2

∫
d3p

(2π~)3

(
M∗

0 c
2

ε∗0

)2
f(p⃗)[1− f(p⃗)]
Γ2 + (v⃗0 · k⃗)2

, (B.15)

K++
33 = γ2

∫
d3p

(2π~)3

(
cp x

ε∗0

)2
f(p⃗)[1− f(p⃗)]
Γ2 + (v⃗0 · k⃗)2

, (B.16)

K++
12 = γ2

∫
d3p

(2π~)3
M∗

0 c
2

ε∗0

f(p⃗)[1− f(p⃗)]
Γ2 + (v⃗0 · k⃗)2

. (B.17)

The correlation of the source terms can be expressed as

S+
B (k)S

+
B (k

′)∗ = (2π)3δ(k⃗ − k⃗′)K+
11,

S+
s (k)S

+
s (k

′)∗ = (2π)3δ(k⃗ − k⃗′)K+
22,

S+
v (k)S

+
v (k

′)∗ = (2π)3δ(k⃗ − k⃗′)K+
33,

S+
B (k)S

+
s (k

′)∗ = (2π)3δ(k⃗ − k⃗′)K+
12. (B.18)

Consequently, we obtain the correlation for the growing mode as[(
δρB(k⃗)

)+
] [(

δρB(k⃗)
)+

]∗
=

(2π)3δ3(k⃗ − k⃗′)

 |DB
1 |2K++

11 + |DB
2 |2K++

22 + |DB
3 |2K++

33 + 2DB
1 D

B
2 K

++
12∣∣∣(∂ε(k,ω)

∂ω

)
ω=iΓ

∣∣∣2
 .

(B.19)

By following the same steps, we obtain the correlation for decaying poles

S−
B (k)S

−
B (k

′)∗ = γ2(2π)3δ(k⃗ − k⃗′)
∫

d3p

(2π~)3
f(p⃗)[1− f(p⃗)]
Γ2 + (v⃗0 · k⃗)2

, (B.20)

S−
s (k)S

−
s (k

′)∗ = γ2(2π)3δ(k⃗ − k⃗′)
∫

d3p

(2π~)3

(
M∗

0 c
2

ε∗0

)2
f(p⃗)[1− f(p⃗)]
Γ2 + (v⃗0 · k⃗)2

, (B.21)
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S−
v (k)S

−
v (k

′)∗ = γ2(2π)3δ(k⃗ − k⃗′)
∫

d3p

(2π~)3

(
cp cos θ

ε∗0

)2
f(p⃗)[1− f(p⃗)]
Γ2 + (v⃗0 · k⃗)2

, (B.22)

S−
B (k)S

−
s (k

′)∗ = S−
s (k)S

−
B (k

′)∗

= γ2(2π)3δ(k⃗ − k⃗′)
∫

d3p

(2π~)3

(
M∗

0 c
2

ε∗0

)
f(p⃗)[1− f(p⃗)]
Γ2 + (v⃗0 · k⃗)2

,

(B.23)

and

S−
B (k)S

−
v (k

′)∗ = S−
v (k)S

−
B (k

′)∗ = 0

S−
s (k)S

−
v (k

′)∗ = S−
v (k)S

−
s (k

′)∗ = 0. (B.24)

The expression for the decaying pole is same as that of the growing pole:

[(
δρB(k⃗)

)−
] [(

δρB(k⃗)
)−

]∗
=

[(
δρB(k⃗)

)+
] [(

δρB(k⃗)
)+

]∗

= (2π)3δ3(k⃗ − k⃗′)

 |DB
1 |2K++

11 + |DB
2 |2K++

22 + |DB
3 |2K++

33 + 2DB
1 D

B
2 K

++
12∣∣∣(∂ε(k,ω)

∂ω

)
ω=iΓ

∣∣∣2
 .

(B.25)

For the mixed terms

S+
B (k)S

−
B (k

′)∗ =

γ2(2π)3δ(k⃗ − k⃗′)
∫

d3p

(2π~)3
−Γ2 + (v⃗0 · k⃗)2[
Γ2 + (v⃗0 · k⃗)2

]2f(p⃗)[1− f(p⃗)],
(B.26)

S+
s (k)S

−
s (k

′)∗ =

γ2(2π)3δ(k⃗ − k⃗′)
∫

d3p

(2π~)3

(
M∗

0 c
2

ε∗0

)2 −Γ2 + (v⃗0 · k⃗)2[
Γ2 + (v⃗0 · k⃗)2

]2f(p⃗)[1− f(p⃗)],
(B.27)
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S+
v (k)S

−
v (k

′)∗ =

γ2(2π)3δ(k⃗ − k⃗′)
∫

d3p

(2π~)3

(
cp x

ε∗0

)2 −Γ2 + (v⃗0 · k⃗)2

[Γ2 + (v⃗0 · k⃗)2]2
f(p⃗)[1− f(p⃗)],

(B.28)

S+
B (k)S

−
s (k

′)∗ =

γ2(2π)3δ(k⃗ − k⃗′)
∫

d3p

(2π~)3
M∗

0 c
2

ε∗0

−Γ2 + (v⃗0 · k⃗)2

[Γ2 + (v⃗0 · k⃗)2]2
f(p⃗)[1− f(p⃗)].

(B.29)

Finally, we obtain the expression

[(
δρB(k⃗)

)+
] [(

δρB(k⃗)
)−

]∗
=

[(
δρB(k⃗)

)−
] [(

δρB(k⃗)
)+

]∗

= (2π)3δ3(k⃗ − k⃗′)

 |DB
1 |2K+−

11 + |DB
2 |2K+−

22 − |DB
3 |2K+−

33 + 2DB
1 D

B
2 K

+−
12[(

∂ε(k,ω)
∂ω

)
ω=iΓ

] [(
∂ε(k,ω)

∂ω

)
ω=−iΓ

]


(B.30)

where the integrals are defined as follows
K+−

11

K+−
22

K+−
33

K+−
12

 = γ2
∫

d3p

(2π~)3


1(

M∗
0 c

2

ε∗0

)2(
c p⃗·k̂
ε∗0

)2

M∗
0 c

2

ε∗0


−Γ2 + (v0 · k⃗)2[
Γ2 + (v0 · k⃗)2

]2f(p⃗)[1− f(p⃗))].
(B.31)

Finally, we can write the spectral intensity of the baryon density correlation

function by using the above expressions as

σ̃BB(k⃗, t) =

[
|Db

1|2K+
11 + |Db

2|2K+
22 + |Db

3|2K+
33 + 2Db

1D
b
2K

+
12

]∣∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓk

∣∣∣∣2 (e2Γkt + e−2Γkt)

+
2
[
|Db

1|2K−
11 + |Db

2|2K−
22 − |Db

3|2K−
33 + 2Db

1D
b
2K

−
12

]∣∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓk

∣∣∣∣2 (B.32)
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with the integrals
K∓

11

K∓
22

K∓
33

K∓
12

 = γ2
∫

d3p

(2π~)3


1(

M∗
0 c

2

ε∗0

)2(
c p⃗·k̂
ε∗0

)2

M∗
0 c

2

ε∗0


Γ2 ∓ (v0 · k⃗)2[
Γ2 + (v0 · k⃗)2

]2f0(p⃗)[1− f0(p⃗))].
(B.33)
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APPENDIX C

DERIVATIONS OF SCALAR AND VECTOR

CORRELATIONS

In Eq. (3.46), we find the initial amplitude of scalar density fluctuations as

δρ∓s (k⃗) = −

[
Ds

1S̃B(k⃗, ω) +Ds
2S̃s(k⃗, ω) +Ds

3S̃v(k⃗, ω)

∂ε(k⃗, ω)/∂ω

]
ω=∓iΓk

(C.1)

where Ds
1 = C1B3 − B1C3, D

s
2 = A1C3 − C1A3, D

s
3 = B1A3 − A1B3 . From the

definition of σ̃αα(k⃗, t) , the spectral intensity of the scalar density correlation

function is written as

σ̃SS(k⃗, t)(2π)
3δ3(k⃗ − k⃗′) = δρ̃s(k⃗, t)

(
δρ̃s(k⃗′, t)

)∗

= δρ+s (k⃗)
(
δρ+s (k⃗

′)
)∗
e2Γkt + δρ−s (k⃗)

(
δρ−s (k⃗

′)
)∗
e−2Γkt

+δρ+s (k⃗)
(
δρ−s (k⃗

′)
)∗

+ δρ−s (k⃗)
(
δρ+s (k⃗

′)
)∗

(C.2)

Scalar and baryon density cases have the same from which is given in Appendix-

B. Therefore, the spectral intensity of scalar density correlation function is ob-

tained as

σ̃ss(k⃗, t) =

[
|Ds

1|2K+
11 + |Ds

2|2K+
22 + |Ds

3|2K+
33 + 2Ds

1D
s
2K

+
12

]∣∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓk

∣∣∣∣2 (e2Γkt + e−2Γkt)

+
2
[
|Ds

1|2K−
11 + |Ds

2|2K−
22 − |Ds

3|2K−
33 + 2Ds

1D
s
2K

−
12

]∣∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓk

∣∣∣∣2 . (C.3)
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In vector density case, we use the same steps. By using time-dependent vector

density fluctuation including growing and decaying poles given by

δρ̃v(k⃗, t) = δρ+v (k⃗)e
+Γkt + δρ−v (k⃗)e

−Γkt. (C.4)

The spectral intensity of vector density fluctuation is defined as

σ̃vv(k⃗, t)(2π)
3δ3(k⃗ − k⃗′) = δρ̃v(k⃗, t)

(
δρ̃v(k⃗′, t)

)∗

= δρ+v (k⃗)
(
δρ+v (k⃗

′)
)∗
e2Γkt + δρ−v (k⃗)

(
δρ−v (k⃗

′)
)∗
e−2Γkt

+δρ+v (k⃗)
(
δρ−v (k⃗

′)
)∗

+ δρ−v (k⃗)
(
δρ+v (k⃗

′)
)∗

(C.5)

with the initial amplitudes of vector density fluctuation

δρ∓v (k⃗) = −

[
Dv

1S̃B(k⃗, ω) +Dv
2S̃s(k⃗, ω) +Dv

3S̃v(k⃗, ω)

∂ε(k⃗, ω)/∂ω

]
ω=∓iΓk

(C.6)

where Dv
1 ≡ i(B2C3 − C2B3), D

v
2 ≡ i(C2A3 − A2C3), D

v
3 ≡ A2B3 −B2A3.

The correlation of the growing pole is written as follows,[(
δρv(k⃗)

)+
] [(

δρv(k⃗)
)+

]∗
=[

S+
BD

v
1 + S+

s D
v
2 + S+

v iD
v
3

iN

] [
S+
BD

v
1 + S+

s D
v
2 + S+

v iD
v
3

iN

]∗
(C.7)

where
(

∂ε(k,ω)
∂ω

)
ω=+iΓ

= iN and
(

∂ε(k,ω)
∂ω

)
ω=−iΓ

= −iN .

δρ+v (k⃗)
(
δρ+v (k⃗

′)
)∗
|N |2 =

S+
B (k)S

+
B (k

′)∗|D′
1|2 + S+

s (k)S
+
s (k

′)∗|D′
2|2 + S+

v (k)S
+
v (k

′)∗|D3|2

+S+
B (k)S

+
s (k

′)∗D′
1D

′
2 + iS+

B (k)S
+
v (k

′)∗D′
1D3 + S+

s (k)S
+
B (k

′)∗D′
2D

′
1

+iS+
s (k)S

+
v (k

′)∗D′
2D3 + iS+

v (k)S
+
B (k

′)∗D3(−iD′
1) + iS+

v (k)S
+
s (k

′)∗D3(−iD′
2).

(C.8)
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The correlation functions for the decaying poles are as follows[(
δρv(k⃗)

)−
] [(

δρv(k⃗)
)−

]∗
=[

S−
B (−iD′

1) + S−
s (−iD2′) + S−

v D3

−iN

] [
S−
B (−iD′

1) + S−
s (−iD2′) + S−

v iD3

−iN

]∗
,

(C.9)

δρ−v (k⃗)
(
δρ−v (k⃗

′)
)∗
|N |2 =

S−
B (k)S

−
B (k

′)∗|D′
1|2 + S−

s (k)S
−
s (k

′)∗|D′
2|2 + S−

v (k)S
−
v (k

′)∗|D3|2

+S−
B (k)S

−
s (k

′)∗D′
1D

′
2 − iS−

B (k)S
−
v (k

′)∗D′
1D3 + S−

s (k)S
−
B (k

′)∗D′
2D

′
1

−iS−
s (k)S

−
v (k

′)∗D′
2D3 − iS−

v (k)S
−
B (k

′)∗D3D
′
1 − iS−

v (k)S
−
s (k

′)∗D3D
′
2.

(C.10)

And also, the correlation of the mixed poles are given as[(
δρv(k⃗)

)+
] [(

δρv(k⃗)
)−

]∗
=[

S+
B (iD

′
1) + S+

s (iD
′
2) + S+

v D3

iN

] [
S−
B (−iD′

1) + S−
s (−iD′

2) + S−
v D3

−iN

]∗
,

(C.11)

δρ+v (k⃗)
(
δρ−v (k⃗

′)
)∗ (
−|N |2

)
=

−S+
B (k)S

−
B (k

′)∗|D′
1|2 − S+

B (k)S
−
s (k

′)∗D′
1D

′
2 + iS+

B (k)S
−
v (k

′)∗D′
1D3

−S+
s (k)S

−
B (k

′)∗D′
2D

′
1 − S+

s (k)S
−
s (k

′)∗|D′
2|2 + iS+

s (k)S
−
v (k

′)∗D′
2D

′
3

+iS+
v (k)S

−
B (k

′)∗D3D
′
1 + iS+

v (k)S
−
s (k

′)∗D3D
′
2 + S+

v (k)S
−
v (k

′)∗|D3|2.

(C.12)

[(
δρv(k⃗)

)−
] [(

δρv(k⃗)
)+

]∗
=[

S−
B (−iD′

1) + S−
s (−iD′

2) + S−
v D3

−iN

] [
S+
B (iD

′
1) + S+

s (iD
′
2) + S+

v D3

iN

]∗
,

(C.13)
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δρ−v (k⃗)
(
δρ+v (k⃗

′)
)∗ (
−|N |2

)
=

−S−
B (k)S

+
B (k

′)∗|D′
1|2 − S−

B (k)S
+
s (k

′)∗D′
1D

′
2 + iS−

B (k)S
+
v (k

′)∗D′
1D3

−S−
s (k)S

+
B (k

′)∗D′
2D

′
1 − S−

s (k)S
+
s (k

′)∗|D′
2|2 − iS−

s (k)S
+
v (k

′)∗D′
2D3

−iS−
v (k)S

+
B (k

′)∗D3D
′
1 − iS−

v (k)S
+
s (k

′)∗D3D
′
2 + S−

v (k)S
+
v (k

′)∗|D3|2.

(C.14)

Finally, we obtain the following relations

[(
δρv(k⃗)

)+
] [(

δρv(k⃗)
)+

]∗
=

[(
δρv(k⃗)

)−
] [(

δρv(k⃗)
)−

]∗

= (2π)3δ3(k⃗ − k⃗′)

 |Dv
1 |2K++

11 + |Dv
2|2K++

22 + |Dv
3|2K++

33 + 2Dv
1D

v
2K

++
12∣∣∣(∂ε(k,ω)

∂ω

)
ω=iΓ

∣∣∣2
 ,

(C.15)

and [(
δρv(k⃗)

)+
] [(

δρv(k⃗)
)−

]∗
=

[(
δρv(k⃗)

)−
] [(

δρv(k⃗)
)+

]∗

= (2π)3δ3(k⃗ − k⃗′)

−|Dv
1|2K+−

11 − |Dv
2|2K+−

22 + |Dv
3|2K+−

33 − 2DB
1 D

v
2K

+−
12[(

∂ε(k,ω)
∂ω

)
ω=iΓ

] [(
∂ε(k,ω)

∂ω

)
ω=−iΓ

]∗
 .

(C.16)

Note that [(
∂ε(k, ω)

∂ω

)
ω=iΓ

] [(
∂ε(k, ω)

∂ω

)
ω=−iΓ

]∗
=[

i
∂ε(k, ω)

∂ω

] [
−i∂ε(k, ω)

∂ω

]∗
= i2

∣∣∣∣∂ε(k, ω)∂ω

∣∣∣∣2 . (C.17)

From the definitions of K± given in Eq. (3.64) and by using the following

relations K+−
1 1 ≡ −K+

11, K+−
1 1 ≡ −K+

11, K+−
1 1 ≡ −K+

11, K+−
1 1 ≡ −K+

11,

we find the spectral intensity of vector density correlation function as
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σ̃vv(k⃗, t) =

[
|Dv

1 |2K+
11 + |Dv

2 |2K+
22 + |Dv

3 |2K+
33 + 2Dv

1D
v
2K

+
12

]∣∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓk

∣∣∣∣2
(
e2Γkt + e−2Γkt

)

−
2
[
|Dv

1 |2K−
11 + |Dv

2 |2K−
22 − |Dv

3 |2K−
33 + 2Dv

1D
v
2K

−
12

]∣∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓk

∣∣∣∣2 . (C.18)
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APPENDIX D

DISPERSION RELATION FOR ZERO

TEMPERATURE

At finite temperature, we used Fermi Dirac distribution f0(p⃗) = 1

eβ(ε
∗
0−µ∗0)+1

for

the equilibrium phase-space distribution function. At zero temperature, phase-

space distribution function is demonstrated by the step function, which is

f0(p⃗) = Θ(µ∗
0 − ε∗0) =

 1 if µ∗
0 > ε∗0

0 if µ∗
0 < ε∗0

, (D.1)

where the reduced chemical potential is µ∗
0 = µ−

(
gv
µ2
v

)
ρ0B.

In chapter 3, we obtain three coupled equations, which are Eq. (3.23), Eq.

(3.25) and Eq. (3.27), for the baryon, scalar and current density fluctuations

by linearization of relativistic Vlasov Equation. In these equations, for the zero

temperature case the following expressions are used,

∇⃗pf0(p⃗) = ∇⃗pΘ
(
µ∗
0 −

√
(cp⃗)2 + (M∗

0 c
2)2

)
= − c(cp⃗)√

(cp⃗)2 + (M∗
0 c

2)2
µ∗
0√

µ∗2
0 − (M∗

0 c
2)2

δ

(
cp−

√
µ∗2
0 − (M∗

0 c
2)2

)
.

(D.2)

∇⃗pf0 can be rewritten in the following form ∇⃗pf0 = −cp̂ δ(cp − cp1) then we

obtain ∇⃗pf · k⃗ = −ck cos θ δ(cp− cp1) , where cp1 =
√
µ∗2
0 − (M∗

0 c
2)2 .

For the longitudinal modes, these three coupled equations can be written in
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matrix form same with the finite temperature case:
A1 A2 A3

B1 B2 B3

C1 C2 C3




δρ̃v(k⃗, ω)

δρ̃s(k⃗, ω)

δρ̃B(k⃗, ω)

 = i


S̃B(k⃗, ω)

S̃s(k⃗, ω)

S̃v(k⃗, ω)

 , (D.3)

where the components of the coefficient matrix are defined by the following

matrix
A1 A2 A3

B1 B2 B3

C1 C2 C3

 =


−G2

ωχv(k⃗, ω) −G2
sχs(k⃗, ω) 1 +G2

ωχB(k⃗, ω)

−G2
ωχ̃v(k⃗, ω) 1 +G2

s χ̃s(k⃗, ω) G2
ωχs(k⃗, ω)

1 +G2
ωχ̃B(k⃗, ω) −G2

sχv(k⃗, ω) G2
ωχv(k⃗, ω)

 .

(D.4)

In the above expressions, the terms χv(k⃗, ω), χB(k⃗, ω) , χs(k⃗, ω) and the func-

tions χ̃v(k⃗, ω), χ̃B(k⃗, ω) , χ̃s(k⃗, ω) are different from those in finite temperature

case. For zero temperature case, the relativistic Linhard functions are repre-

sented by 
χv(k⃗, ω)

χs(k⃗, ω)

χB(k⃗, ω)

 =
2πγ

(2π~c)3
(cp1)

3

µ∗
0

k2


1
k
iΓ/c

M∗
0 c

2

µ∗
0

1

L2(p1) (D.5)

and

χ̃s(k⃗, ω) =
2πγ

(2π~c)3

[
2I4(p1)− (cp1)

2

(
M∗

0 c
2

µ∗
0

)2 (
cp1
µ∗
0

)
k2L2(p1)

]
(D.6)

χ̃v(k⃗, ω) =
2πγ

(2π~c)3

(
M∗

0 c
2

µ∗
0

)
(cp1)

3k(iΓ/c)L2(p1) (D.7)

χ̃B(k⃗, ω) =
2πγ

(2π~c)3

[
2I2(p1)−

2

3
I4(p1)−

(
(cp1)

2

µ∗
0

)2 (
cp1
µ∗
0

k

)
kL4(p1)

]
(D.8)

where the following integrals are defined as

I2 ≡
∫ p

′
1

0

dp
′ p′2

[p′2 + (M∗
0 c

2)2]1/2
(D.9)
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I4 ≡
∫ p

′
1

0

dp
′ p′4

[p′2 + (M∗
0 c

2)2]3/2
(D.10)

and

L0(p
′) ≡

∫ 1

−1

dx
1

(Γ/c)2 +
(
k cp
ε∗0

)2

x2
=

2

α′Γ′ arctan

(
α′

Γ′

)
(D.11)

L2(p
′) ≡

∫ 1

−1

dx
x2

(Γ/c)2 +
(
k cp
ε∗0

)2

x2
=

2

α′2

[
1− Γ′

α′ arctan

(
α′

Γ′

)]
(D.12)

L4(p
′) ≡

∫ 1

−1

dx
x4

(Γ/c)2 +
(
k cp
ε∗0

)2

x2
= −2Γ′2

α′4 +
2

3α′2 +
2Γ′4

α′5 arctan

(
α′

Γ′

)
(D.13)

here Γ′ ≡ Γ/c , α′ = kcp/ε∗0 and x = cos θ .

By using the above definitions, the coefficients Ai, Bi and Ci for zero temperature

are expressed as follows,

A1 = −G2
ω

2πγ

(2π~c)3
(cp1)

3

µ∗
0

k(iΓ/c)L2(p1), (D.14)

A2 = −G2
s

2πγ

(2π~c)3
(cp1)

3

µ∗
0

k2
M∗

0 c
2

µ∗
0

L2(p1), (D.15)

A3 = 1 +G2
ω

2πγ

(2π~c)3
(cp1)

3

µ∗
0

k2L2(p1), (D.16)

B1 = −G2
ω

2πγ

(2π~c)3

(
M∗

0 c
2

µ∗2
0

)
(cp1)

3k(iΓ/c)L2(p1), (D.17)

B2 = 1 +G2
s

2πγ

(2π~c)3

[
2I4(p1)− (cp1)

2

(
M∗

0 c
2

µ∗
0

)2(
cp1
µ∗
0

)
k2L2(p1)

]
, (D.18)
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B3 = G2
ω

2πγ

(2π~c)3
(cp1)

3

µ∗
0

k2
M∗

0 c
2

µ∗
0

L2(p1), (D.19)

C1 = 1 +G2
ω

2πγ

(2π~c)3

[
2I2(p1)−

2

3
I4(p1)−

(
(cp1)

2

µ∗
0

)2(
cp1
µ∗
0

k

)
kL4(p1)

]
,

(D.20)

C2 = −G2
s

2πγ

(2π~c)3

(
M∗

0 c
2

µ∗2
0

)
(cp1)

3k(iΓ/c)L2(p1), (D.21)

C3 = G2
ω

2πγ

(2π~c)3
(cp1)

3

µ∗
0

k(iΓ/c)L2(p1). (D.22)

The dispersion relation of the system is obtained when the susceptibility ε(k⃗, ω) =

0 . The susceptibility is written same as in the finite temperature case

ε(k⃗, ω) = A1(B2C3−B3C2)−A2(B1C3−B3C1)+A3(B1C2−B2C1). (D.23)
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