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ABSTRACT

ALGEBRAIC CURVES, HERMITIAN LATTICES AND HYPERGEOMETRIC
FUNCTIONS

Zeytin, Ayberk

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Hurşit Önsiper

August 2011, 69 pages

The aim of this work is to study the interaction between two classical objects of mathematics:

the modular group, and the absolute Galois group. The latter acts on the category of finite

index subgroups of the modular group. However, it is a task out of reach do understand this

action in this generality. We propose a lattice which parametrizes a certain system of ”geo-

metric” elements in this category. This system is setwise invariant under the Galois action,

and there is a hope that one can explicitly understand the pointwise action on the elements of

this system. These elements admit moreover a combinatorial description as quadrangulations

of the sphere, satisfying a natural nonnegative curvature condition. Furthermore, their con-

nections with hypergeometric functions allow us to realize these quadrangulations as points

in the moduli space of rational curves with 8 punctures. These points are conjecturally de-

fined over a number field and our ultimate wish is to compare the Galois action on the lattice

elements in the category and the corresponding points in the moduli space.

Keywords: modular group, absolute Galois group, hypergeometric functions, children’s draw-

iv



ings

v



ÖZ

CEBİRSEL EĞRİLER, HERMİSYEN KAFESLER VE HİPERGEOMETRİK
FONKSİYONLAR

Zeytin, Ayberk

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Hurşit Önsiper

Ağustos 2011, 69 sayfa

Bu çalışmanın amacı matematiğin iki klasik objesi, modüler grup ve mutlak Galois grubu,

arasındaki ilişkiyi irdelemektir. Bu ilişki temel olarak şu şekilde özetlenebilir: mutlak Ga-

lois grubu modüler grubun sonlu indeks alt-grupları üzerine etki eder. Ancak, bu etkinin

en genel halinde anlaşılmasının günümüz teknikleri ile mümkün olmadığı bir çok çalısmada

ortaya komulmuştur. Bu çalışma, temel olarak, modüler grubun sonlu indeks alt-grupları

kategorisinin belirli özellikleri sağlayan elemanlarını bir kafes ile temsil edilebileceğini, ve

bahsedilen etkinin bu elemanlar üzerinde daha rahat anlaşılabileceğini göstermektedir. Bu

elemanlar Galois etkisi altında küme bazında değişmezdirler ve etkinin elemanlar bazında

açıkça yazılabileceği umudedilmektedir. Tüm bunlara ek olarak bu elemanlar küre

karelemeleri vasıtası ile kombinatoriksel olarak da tarif edilebilinir. Öte yandan hiperge-

ometrik fonksiyonlar bu kafesin elemanlarını 8 delikli rasyonel eğrilerin modüler uzayının

elemanları olarak görülmesine imkan verir ki bu noktalar, tahminsel olarak, bir sayı cismi

üzerinden tarif edilebilinir. Nihayi hedef kafes noktaları uzerindeki ve modüler uzay

üzerindeki Galois etkisini karşılaştırmaktır.

vi



Anahtar Kelimeler: modüler grup, mutlak Galois grubu, hipergeometrik fonksiyonlar, çocuk

resimleri
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MEÇHULLER
...

Mugaletât-ı riyaziyye eyliyor isbat
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Çıkarsa vâdi-i zanna reh-i bedihiyyât
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...

Cenab Şahabettin, Evrâk-ı Leyâl
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CHAPTER 1

INTRODUCTION

One method to understand a group is to define its action on a rather well understood object,

and investigate the properties of this action; for example, the stabilizers, the orbits, the struc-

ture of the orbits, etc. The group in question is one of the most important and mysterious

objects of mathematics: the absolute Galois group, Gal(Q). Gal(Q) acts on many different

objects, and is related to many different subjects: class field theory, Iwasawa theory, theory of

motives, K-theory, moonshine, Teichmüller theory, ... Below, we mention, very briefly, some

these relationships; in order to motivate our results.

Besides its importance on its own, the group PSL2(R) is one of many different objects related

to Gal(Q). Our aim in this paragraph is to explain the so called moonshine. Let M denote the

monster group, which is the largest sporadic finite simple group, H denote the upper half plane

and finally let Γ be a discrete subgroup of PSL2(R) of genus zero, i.e. the quotient Γ\H � P1
C.

A function jΓ : H −→ C is called a Hauptmodul for Γ if every Γ invariant function is a rational

function of jΓ. Then there is an infinite dimensional representation, say V =
⊕

n∈Z Vn of M

so that for each g ∈M the function:

Tg(z) =
∑
n∈Z

Hn(g)qn

is a Hauptmodul for some genus zero subgroup Γ ≤ PSL2(R), where Hn stands for the charac-

ter of Vn and q = exp 2π
√
−1z. In particular, for the simplest case, g = id, Γ turns out to be the

modular group, PSL2(Z). Moreover Hn(id)s are related to degrees of the smallest irreducible

representations of M. One has to mention the monstrous proposal which predicts that there

is a moduli space whose fundamental group is M, as this theory is very much similar to the

theory of configuration space of 12 or 8 points in P1.
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One other interesting aspect of the theory is related to mapping class groups, or equivalently,

Teichmüller spaces. To every ribbon graph(or sometimes referred to as fat graphs), i.e. graph

with prescribed orientation at each vertex, one associates a Riemann surface in which the

graph can naturally be embedded. The edges of this graph can be “moved” within its homo-

topy class so that it becomes a geodesic, and hence for each graph one obtains a map from the

Teichmüller space to R|{edges}|. Remark that negative numbers are possible because of orienta-

tion. This map is a homeomorphism onto the subset of R|{edges}| satisfying the relation saying

that sum of the lengths of left hand turn loops are equal to 0. The mapping class groupoid

of all ribbon graphs are generated by Whitehead moves, up to involution, commutativity and

pentagon relations. In addition, Whitehead moves may be used to represent elements of the

mapping class group of the surface associated to the graph.

We would like to explain a class of zeta functions, graph zeta functions. To every metrized

graph, i.e. a graph whose every edge has an associated length, G one may associate the

following: ∏
p prime in G

(1 − N(p))−1

where by a prime in G we mean paths which does not have any superfluous edges, and N de-

notes the length of the prime path p. Besides their importance in tropical algebraic geometry,

there is a nice Galois theory associated to each metrized graph.

The group Gal(Q) acts naturally on the set of projective algebraic curves defined over a num-

ber field. Indeed, for every projective algebraic curve, X, defined over a number field, K, one

can find finitely many homogeneous polynomials in K[x0, · · · , xn], whose zero set is isomor-

phic to X. Any σ ∈ Gal(Q) acts on the coefficients of the defining homogeneous polynomials.

Even though the description of the action is quite neat, it is almost impossible to work with.

At this point, the celebrated theorem of Belyı̆ tells us that a projective algebraic curve is de-

fined over a number field, which will be refereed to as an arithmetic curve, exactly when it

admits a Belyı̆ morphism, i.e. there is a β in the function field of X which is ramified at most

over 3 points. One deduces that Gal(Q) acts on the set of Belyı̆ pairs, (X, β).

There is a group theory companion to the above description. Let us recall that the holo-

morphic automorphisms of upper half plane is PSL2(R) and acts 3-transitively on upper half

plane. Thus we may assume, without loss of generality, that 3 ramification points of a Belyı̆

morphism are {0, 1,∞}(In fact, one must pay attention to the field of definition of these 3

2



ramification points!). It is well known that the congruence subgroup of level two, which we

denote by ∆∞,∞,∞, which consists of 2 × 2 matrices with integer entries which are congruent

to 2 × 2 identity matrix modulo 2, is the surface group of P1 \ {0, 1∞}. So to every X defined

over the field of algebraic numbers the map β induces a subgroup, say ΓX , of ∆∞,∞,∞.

Now, consider the real line segments [∞, 0], [0, 1], [1,∞] in P1 as three edges of a triangle

with vertices 0, 1 and ∞. Let us mark the points on X which are inverse images of 0, respec-

tively 1, with a white, respectively black, vertex. Then the inverse image of the real interval

[0, 1] is an embedded bipartite graph on X. On the other hand the morphism β induces a

triangulation of X. Observe that if we color the triangle corresponding to upper half plane

by white and lower half plane by black, then the triangulation of X obtained is bipartite, i.e.

the triangles is the triangulation can be colored black and white so that no two white triangles

have a common edge as well as the black triangles. So to every arithmetic curve one may

associate a bipartite triangulation. It is clear that not every triangulation is bipartite. However,

to every triangulation one may associate a bipartite graph via barycentric subdivision.

The combinatorial arguments explained above may be rephrased in the algebraic category.

For this, let X be a non-empty, path connected, locally simply connected topological space(so

that it admits a universal covering space, X̃). For xo ∈ X the group of homotopy classes of

paths based at xo is defined to be the fundamental group, π1(X, xo), of X. There is another

interpretation of the fundamental group in term of finite covering maps. However, there is no

algebraic analogue of a path. We need another interpretation of the fundamental group.

For this, let FCov(X) denote the category, in fact it is a so called Galois category, of finite

coverings of X whose objects are finite topological coverings of X which having only finitely

many connected components and morphisms between two coverings, say γ : Y −→ Y ′, Y and

Y ′ are the covering maps, π : Y −→ X and π′ : Y ′ −→ X such that π′ ◦ γ = π. If we let

Aut(X̃) denote the group of all covering maps π̃ : X̃ −→ X, then we obtain an isomorphism

from Aut(X̃) to π1(X, xo) described as follows: for any path based at xo, and any fixed point

x̃o ∈ π̃
−1(xo), an element, γ ∈ Aut(X̃), different from identity, sends x̃o to another element of

the set π̃−1(xo), hence a path between x̃o and γ(x̃o) by composing with π̃ gives an element of

π1(X, xo). In fact, this gives us a functor, F, from FCov(X) to the category of sets sending

each covering, π : Y −→ X to the set π−1(xo), functorial in Y . Moreover, this functor is

representable, i.e. F(Y) = HomX(X̃,Y); and we have a natural action of Aut(X̃) on F(Y)

3



whose orbits are finite. Thus the target category of the functor are sets with Aut(X̃) action

with finite orbits. F is, in fact an equivalence between the two categories.

The algebraic counterpart of a covering map is the concept of a finite étale map. We let

X be an algebraic variety over a field k and Et(X) denote the category of finite étale cov-

erings, π : Y −→ X, of X, whose objects are finite étale coverings of X and morphisms

are X-morphisms. In this case, one has to careful in choosing a base point. When X is

over an algebraically closed field, k, then a base point may be chosen as an element of

X(k). Otherwise, one has to choose a geometric point xo ↪→ X, i.e. a point whose co-

ordinates lie in a separably algebraically closed field. This amounts to choosing a point

x ∈ X and a separably algebraically closed field containing the residue field. Now, we can

define a functor F : Et(X) −→ Sets, sending an étale covering π : Y −→ X to xo-valued

points of Y which lie in π−1(x). In particular, when k is algebraically closed and xo ∈ X(k),

then F(Y) = π−1(xo). As in the case of topological coverings, we would like to define a

universal object, say X̃, so that F(Y) = HomX(X̃,Y). This is clearly not the case for a

very simple reason that the exponential function is not algebraic. Nevertheless there is a

projective system (Xi)i∈I of finite étale coverings of X, with I being a directed set so that

F(Y) = HomX(X̃,Y) := lim
−−→

HomX(Xi,Y) functorial in Y . In a similar fashion, one may define

then the fundamental group π1(X) = Aut(X̃) := lim
←−−

Aut(Xi). For instance, in the case of the

universal covering exp: C −→ C×, the algebraic fundamental group is the profinite comple-

tion of the the topological fundamental group of C×, i.e. πalg
1 (C×) = Ẑ, a fact which is true in

general. Now, let k = Q and X = P1
Q \ {0, 1,∞}. Then, we have the following exact sequence

1 −→ π
alg
1 (X ⊗Q Q) −→ π

alg
1 (X) −→ Gal(Q) −→ 1 (1.1)

where as a result of the Riemann Existence Theorem, πalg
1 (X⊗Q Q) is the profinite completion

of ∆∞,∞,∞. The sequence (1.1) may be used to define an action of Gal(Q) on πalg
1 (X), which

we have already mentioned above using embedded graphs. One has to admit that studying

this extension is much more difficult than studying the action.

An origami is a finite set of euclidean squares which are glued nicely, see Definition 3.2.8 for

the precise definition. The set of complex structures on an origami, which is

SL2(R)/SO2(R) � H, can be embedded into the corresponding Teichmüller space which

is known to be an isometry with respect to the Poincaré metric on H and Teichmüller met-

4



ric on the Teichmüller space. Hence one obtains a so called Teichmüller disc. It is, at least

intuitively, clear that this construction is closely related to flat surfaces.

It turns out that one should not aim at understanding the action in this full generality. One is

led to concentrate on sub-families, sub-categories, etc., which has been the case for several

authors, see works of, for example, Wojtkowiak, Deligne, Goncharov on the subject. Our aim

in this work is to suggest other sub-systems, which have its origins in geometry. We are going

to construct two lattices, Λ and Λ′, inside complex Lorentz spaces C1,9 and C1,5, respectively,

whose positive cones parametrize non-negatively curved triangulation and quadrangulation,

respectively, of S 2. To every triangulation and quadrangulation one may associate their dual

graph which is nothing but an embedded(or fat, or ribbon) graph on the sphere. Hence points

of Λ and Λ′ parametrize in particular Belyı̆ pairs (X, β), and our results both in Section 4.2.4

and in [53] provides us evidence that these families are easier to understand. As explained

above, the lattices Λ and Λ′ parametrize certain subgroups of ∆∞,∞,∞ ≤ PSL2(R), the fun-

damental group of P1
C \ {0, 1,∞} or certain covers of P1

C \ {0, 1,∞}; and, similarly, certain

subgroups of the profinite completion of free group on 2 generators, the algebraic fundamen-

tal group of P1
Q or certain connected étale covers of P1

Q \ {0, 1,∞}. Moreover, the euclidean

fundamental region, see Definition 2.4.2, associated to an arbitrary element of Λ′ can be con-

sidered as an origami. Thus, the lattice Λ′ parametrizes at the same time Teichmüller discs in

certain Teichmüller spaces. To uncover the relationship with moonshine, it is enough to note

that as a result of the construction, the surface groups of the Belyı̆ pairs appearing as points

of Λ and Λ′ are of genus 0. Hence they parametrize certain elements of the monster. As a

final point we want to emphasize that the embedded graphs dual to a triangulation in Λ or a

quadrangulation in Λ′ of S 2 is also, in a natural fashion, a metric graph, as a result of lying in

euclidean triangles or squares. In other words, these objects have nice graph zeta functions.
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CHAPTER 2

CONE MANIFOLDS OF DIMENSION TWO AND THEIR

MODULI

Any Riemann surface Xg,N of genus g with N punctures, satisfying χ(Xg,N) = 2−2g+N < 0, is

uniformized by upper half plane, as a consequence of the uniformization theorem. Hence Xg,N

admit a canonical hyperbolic metric compatible with the conformal structure. There are, on

the other hand many other natural metrics that may be defined on Xg,N , possibly with singular

set which are at the same time compatible with the conformal structure. Our main concern will

be metrics with special singular behavior, to which we will refer as cone metrics, on surfaces.

We are going to recall two representations associated to a cone metric, and show that one

factors through the other. Surfaces together with a cone metric will be called cone surfaces.

We will see that the set of cone metrics have a nice structure, which will be obtained in the last

section via realizing them as the positive cone in certain vector spaces and interpreting this

vector space as the cohomology of punctured Riemann sphere with coefficients in a locally

constant sheaf of rank one.

2.1 Basics

Our aim is to define what a cone manifold of dimension 2 is and collect some of their prop-

erties. Our main reference for this section is [46]. We begin with defining our singular

neighbourhood:

Vθ := {(r, t) | r ∈ R≥0, t ∈ R/θZ}.
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We equip Vθ with the metric ds2
θ = dr2 + r2dt2. Note that (Vθ, ds2

θ) is nothing but a cone of

cone angle θ in R3 whenever the angle parameter, θ, is a real number between 0 and 2π.

Definition 2.1.1 A metric cone of cone angle θ is defined to be an open neighbourhood of the

origin, (0, 0), in (Vθ, ds2
θ). �

Now let X be an orientable topological surface, and S be a finite set of points of X.

Definition 2.1.2 We will say a metric, c, on X is a Euclidean cone metric, whenever every

element x ∈ X − S has an open neighbourhood, Ux, isometric to E2 := (C, ds2 = |dz|2), and

every element p ∈ S has a neighbourhood, Up such that there is an isometry, ϕp, between Up

and Vθp with ϕp(p) = (0, 0). �

We will write cone metric for short instead of Euclidean cone metric. Elements of the set

S = S c will be called singular points and the elements of X−S c will be called regular points.

We will call the pair (X, c) a Euclidean cone manifold (of dimension 2), or cone manifold, in

short. A few remarks are in order:

Remark 2.1.3 The pair (Vθ, ds2
θ) is isometric to (C, ds2 = |z|2β|dz|2); where β = θ

2π − 1,

referred to as the residue. In particular, when θ = 2π then our local model is nothing but C

with its flat metric. We will call κ = 2π − θ the concentrated curvature at (0, 0).

Remark 2.1.4 Let (X, c) be a cone manifold. If a point p on X is a regular point then iden-

tifying E2 with C gives a local analytic chart around p, and if p ∈ S c is a singular point

then previous remark provides the local analytic map around p. Thus, cone metric induces a

complex structure on the surface X. That is, the surface X together with c becomes, in fact,

a Riemann surface. However, the singular points, as one can immediately see from the local

coordinates, may not be distinguished merely by looking at the complex structure. In fact, any

given Riemannian metric on Xg,N induces a conformal structure, and the conformal structure

induced by the metric is the same as the conformal structure induced by its arbitrary analytic

function multiples.

Let S c = {p1, . . . , pN} be the singular set corresponding to a cone metric c on a surface X, and

let κi = 2π−θi the the concentrated curvature at the point pi, for i ∈ {1, 2, . . . ,N}, respectively.
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Assume that the surface X is compact. In this case, for the pair (X, c) we have the following

singular version of the well-known Gauß-Bonnet theorem:

Theorem 2.1.5 (Singular Gauß-Bonnet, [46, Proposition 3]) Let X be a cone surface

where the points p1, . . . , pN ∈ X are singular with concentrated curvatures κ1, . . . , κN , re-

spectively. Then:
N∑

i=1

κi = 2πχ(X);

where χ(X) is the topological Euler characteristic of X.

And, in fact, this is the only restriction, known as the Gauss - Bonnet restriction. In other

words, we have the following:

Theorem 2.1.6 ([46, §5, Théorème]) Let X be as above, p1, · · · , pN are points in X and

κ1, . . . , κN are rational numbers such that

N∑
i=1

κi = 2πχ(X)

Then, X admits a cone metric, c, with concentrated curvature κi = 2π − θi, at the point pi,

i = 1, . . . ,N. Moreover, this metric is unique up to normalization.

2.2 From Cone Manifolds to Triangulations

As we have seen in previous section, a cone manifold can be obtained simply by choosing

finitely many points, {p1, . . . , pN} on X and then choosing κi ∈ R so that
∑N

i=1 κi = 2πχ(X).

There is one other way which will help us to construct and understand the set of all cone

metrics on X with pre-determined concentrated curvatures. Even though most of the results

that we state are valid for closed surfaces of higher genera, we will restrict ourselves to the

sphere, S 2. We further assume that the number of singular points, i.e. |S c|, is at least 3.

Definition 2.2.1 A (finite) triangulation T of X is a (finite) set of pairs ( fi,Ui), where

fi(Ui) = ∆i is a non-degenerate triangle in R2, and fi : Ui −→ ∆i is homeomorphism such

that
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i.
⋃

i Ui = X, and

ii. whenever fi(Ui) ∩ f j(U j) , ∅, for i , j, then the intersection is a subset (of size ≤ 3) of

either the set of edges, e(T ), of T or the set of vertices, v(T ) of T ;

where we define the set of vertices, edges of T , to be the set of inverse images of all vertices,

edges, of the triangles ∆i. We define the set of faces, f (T ), to be the set {Ui}. �

If, furthermore, a triangulation satisfies the following two properties, then it will be called a

metric triangulation or a euclidean triangulation of X.

iii. ∆is are subspaces of E2 with fis being isometries and

iv. for every pair of distinct triangles fi(Ui) and f j(U j) which intersect in an edge, e ∈ e(T ),

there exists an element, γi, j in the group of isometries of the Euclidean plane, Isom(E2),

such that γi j
(
fi(e)

)
= f j(e).

p
Tn

T1
T2

αn

α1α2

Figure 2.1: Property iv. allows us to glue euclidean triangles.

Let T be a finite euclidean triangulation on X. Let p ∈ v(T ) be a vertex at which

T1 = Ui1 , . . . ,Tn = Uin meet. In this case we may define the concentrated curvature at p

to be:

2π −
n∑

i=1

αi;

where αi is the angle at the point p inside the triangle ∆in ;where i ∈ {1, . . . , n} see Figure 2.1.

Then, Theorem 2.1.6 provides us a cone metric, say cT , associated to T .

Remark 2.2.2 Whenever such a structure is prescribed on X, then X becomes a length space.

Indeed, let T be a euclidean triangulation on X and let p, q be two points on X. Let γ :
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[0, 1] −→ X be a rectifiable path between p and q, and 0 = t0 < t1 < . . . tn−1 < 1 = tn so that

γ([t j, t j+1]) ⊂ Ui j; where j ∈ {0, . . . , n − 1}. Then we define the length of γ to be:

l(γ) =

n−1∑
j=0

leuc

(
fi j

(
γ([t j, t j+1])

))
.

And we define the distance between two points p, q ∈ X to be the smallest of l(γ); where γ is

a rectifiable path from p to q.

Thus, if a geodesic triangle, T , is formed on (X, c), then T determines, unique up to similarity,

a triangle in E2; where we call a triangle geodesic if the edges of the triangle are geodesics

and do not contain any element of S c except possibly at endpoints.

Let c be a cone metric. Fix any singular point p1 ∈ S c, and order the elements of S c with

respect to their distance to p1. By re-indexing if necessary, we may assume that the distance

of p1 to pi is less than or equal to p j if and only if i ≤ j. Let T be the geodesic triangle with

vertices at p1, p2, p3; ei, j be the geodesic between pi and p j; α j denote the angle between ei, j

and e j,k; where i, j ∈ {1, 2, 3}.

q3

q1

q2

p2

p3 e2,3

p1

α3

α3

fT

Figure 2.2: A euclidean triangle in (S 2, c) determines a euclidean triangle in E2.

Observe that edges, ei, j, have to have empty intersection with the singular set S c \ {p1, p2, p3}

because otherwise we could have found a closer singular point. In that case, the triangle T

determines, in E2, a geodesic triangle with the property that the angle at qi = fT (pi) is exactly

αi, and the length of the edge fi, j = fT (ei, j) is equal to that of ei, j; where fT : T −→ E2 is the

induced isometry in between, see Figure 2.2.

More generally, fix an element p1 ∈ S c and enumerate the remaining singular points so that

there is a continuous path, γ : [0, 1] −→ S 2, joining p1 to pN with the following properties:
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• there is a sequence of numbers t1 = 0 < t2 < . . . < 1 = tN satisfying γ(ti) = pi,

i = 1, 2, . . . ,N,

• γ|[ti,ti+1] is a geodesic with respect to c, for i = 1, . . . ,N − 1,

• γ is one-to-one.

Proposition 2.2.3 Let c be a cone metric on X. Then c induces a geodesic triangulation,

denoted by Tc, on X with the property that the set of vertices of Tc is exactly the set of

singular points, S c, of c.

Proof. Cut X open along γ. where γ is as above. Since all the singular points of c are along

γ([0, 1]), one can write a multi-valued map, ψ, from X to a polygon, P in E2 with holes if

X , S 2, so that ψ is an isometry when restricted to X \ γ. Moreover, ψ maps any geodesic

γ|[ti,ti+1] to an edge of P, for all i = 1, . . . , n−1, and in fact twice. Remark also that the polygon

P is uniquely determined, up to Isom(E2). In order to obtain a euclidean triangulation on X,

it is enough to draw the necessary diagonals of P. As every diagonal is a geodesic in E2, we

obtain a euclidean triangulation. �

P

p4

p5

p2

p1

p3

ψ q1

q2

q3

q4

q5

q4

q3
q2

Figure 2.3: From a cone metric to a geodesic triangulation.

We end this section with a remark:

Remark 2.2.4 The geodesic triangulation associated to a cone metric is not unique. How-

ever, there are finitely many such choices. On the other hand, if one allows non-singular ver-

tices to appear inside the triangles of the triangulation then there are infinitely many choices.

Therefore, one might call triangulations arising from Proposition 2.2.3 minimal.
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2.3 Two Representations of π1(P1 \ S c)

In this section, we introduce two representations of π1(S 2 \ S c) associated to a given cone

metric c on X = S 2. Before proving that two representations, holonomy and monodromy

representations, of c are closely related, we will prove that the geometric realization of the

universal branched cover is a flat upper half plane, which is obtained by adding cusps of

certain subgroups of PSL2(R) to H equipped naturally with a locally euclidean metric. Let us

first introduce some notation: by C(κ) = C(κ1, κ2, . . . , κN) we will denote the set of all cone

metrics having N singular points with concentrated curvatures κi , 0, i = 1, 2, . . . ,N; N ≥ 3,

up to orientation preserving similarity; where by an orientation preserving similarity we mean

any composition of a rotation a translation and a stretching. And, finally by H, we denote the

upper half plane, i.e. the set of complex numbers whose imaginary parts are strictly positive.

For technical reasons we assume that θi = 2π−κi are elements of the intersection πQ∩ (0, 2π).

2.3.1 Holonomy Representation of a Cone Metric

Let c ∈ C(κ) be a cone metric, with an induced triangulation Tc on S 2, see Proposition 2.2.3.

Definition 2.3.1 Let γ : [0, 1] −→ S 2 be a piecewise smooth path in S 2, such that

γ
(
(0, 1)

)
⊂ S 2 \ S c. We will say that γ is admissible if γ([0, 1]) intersects the edges, e(Tc), of

Tc finitely many times. We will call a homotopy γt(s), t, s ∈ [0, 1], of piecewise smooth paths

γ, γ′ with γ0 = γ, and γ1 = γ′ admissible if γt is an admissible path for every t ∈ [0, 1]. �

As in the classical case of fundamental groups, we define two admissible curves to be homo-

topically equivalent if and only if there is an admissible homotopy from one to another. It

is then standard to show that this relation is an equivalence relation. In a similar way to the

construction of the fundamental group, if we fix a point in S 2 \S c, the set of homotopy classes

of admissible paths form a group, which is isomorphic to the fundamental group of S 2 \ S c,

as a result of the following lemma:

Lemma 2.3.2 Let γ : [0, 1] −→ S 2 be a continuous, piecewise differentiable path, with

γ ((0, 1)) ⊂ S 2 \ S c. Assume further that γ is not admissible, i.e. there is an edge e ∈ e(Tc)
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which intersects γ infinitely many times. Then the homotopy class, [γ] of γ contains an ad-

missible path.

Proof. Suppose that γ intersects eo ∈ e(Tc) infinitely many times. We exclude the case when

γ, or a part of γ follows a portion of e, as in that case we may perturb γ so that it intersects

e in only two points. There is, then, an increasing sequence, rn, of elements of (0, 1), not

necessarily non-constant, with the property that eo ∩ γ(0, 1) = {γ(rn) | n ∈ N}. One can find

a sufficiently large M ∈ N such that for every n > M the restriction of the path γ to the

closed interval [rn, rn+1] is homotopic to the path that follows e with initial point γ(rn) ∈ e

and terminal point γ(rn+1) ∈ e. So, γ is homotopic to the path that follows e from γrM to

γr∞ ; where γ∞ denotes the limit of the sequence (γ(rk))k∈N. As noted above, this last path is

homotopic to a path which intersects e in only two points. �

Corollary 2.3.3 The group of homotopy classes of admissible paths is independent of the

chosen triangulation.

Now, regard Tc as a simplicial complex on S 2 and fix a base point pI ∈ S 2 \
(
S c ∪ e(Tc)

)
.

By T̂c denote the set of all pairs (σ, [γ]); where σ is a 0, 1 or 2-simplex of Tc, and [γ] is the

admissible homotopy class of an admissible curve γ : [0, 1] −→ P1 which connects pI to a

point, call pF , in σ. Note that T̂c is by definition a simplicial complex. Let X̂ denote the

geometric realization of T̂c, i.e. there is a bijection, B between the set of vertices of T̂c and

the set of vertices of X̂ such that x ∈ X̂ if and only if the convex hull of B(x) ∈ T̂c. Note that

X̂ comes together with a projection map:

π̂ : X̂ S 2

(σ, [γ]) pF = γ(1)

In order to understand X̂ better, we look at the complex structure on S 2 induced by c, and from

now on we will write P1, instead of S 2, and by Pc we will denote the set S 2 \ S c. As N ≥ 3,

by uniformization theorem H is the universal covering space of Pc. So there is a torsion-free

subgroup Γc ≤ PSL2(R). Note that, Γc will have cusps. By adding the set of cusps of Γc to H,

see [43, Chapter 1], we obtain a map π̃ : H[ = H ∪ {cusps of Γc} −→ P1. More precisely, let

z ∈ R∪ {∞} be a cusp. Let Γc,z denote the stabilizer of z in Γc. Then there is a neighbourhood,

Uz ⊂ H containing z, so that γ(Uz∩Uz) = ∅ for every γ ∈ Γc,z. Let θz denote the cone angle at
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π̃−1(z). Let ρ ∈ PSL2(R) be an element sending z to∞, so that ρΓc,zρ
−1 = 〈z 7→ z+t〉, for some

positive t. Then the complex structure around any element of π̃−1(z) can be obtained from the

natural map pr : Γc,z\Uz −→ C such that pr ◦ π̂(x) = exp 2π
√
−1ρ(x)/t; where t = θ/2π. Now

we pull back the triangulation Tc by π̃, to obtain a triangulation on H[, denoted by T̃c.

Proposition 2.3.4 The geometric realization X̂ of T̂c is nothing but H[.

Proof. Call the triangle, in Tc which contains pI , the base triangle and denote it by TI .

Choose a point, p̃I , in the set π−1(pI). Consider the map from T̂c to T̃c described as follows:

Take an element (σ, [γ]) ∈ X̂, let pF ∈ σ denote the endpoint of γ. We may lift the path γ to

a path in H ⊂ H[ in a unique way as we chose already an initial point, p̃I . Therefore the final

point p̃F is already determined, which we define to be the image of the pair (σ, [γ]).

(H[, T̃c) (X̂, T̂c)

(P1,Tc)
π̃ π̂

For the inverse map, take any point x̃ in H[, and any piecewise smooth path, γ p̃I ,x̃ from p̃I to x̃

so that it has empty intersection with v(T̃c) for every t ∈ (0, 1). Then the path γpI ,x = π(γ p̃I ,x̃)

is a path in Pc, which does not pass through the vertices of Tc except possibly at endpoints.

Then there is a 0, 1 or 2-simplex, σ, of Tc to which x = π(x̃) belongs. Map this element to

the pair (σ, γpI ,x).

In order to see that this map is well-defined, suppose that we have chosen another path, γ′p̃I ,x̃
.

Then the concatenation of two paths γ′p̃I ,x̃
· γ−1

p̃I ,x̃
is homotopic to the identity(there can only be

cusps) and hence stay identity when pushed down by π. So that

(σ, γpI ,x) = (σ, γ′pI ,x · γ
−1
pI ,x · γpI ,x) = (σ, γ′pI ,x)

From the construction, we deduce that the composition is identity.

�

Definition 2.3.5 The pair (H[, T̃c), together with the locally flat metric obtained by lifting c

is called the universal branched cover of (P1, c). �
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By a locally flat metric we mean that every point has an open neighbourhood which is iso-

metric to an open set in the Euclidean space and should not be confused with the term locally

flat connection on a principal fiber bundle.

We would like to admit at this point that the term branched cover is somewhat misleading as

the branching index at cusps are not finite, yet it has been accepted in the literature.

As in the proof of Proposition 2.2.3 we fix a base triangle TI ∈ f (Tc); where c ∈ C(κ) and

we fix a face T̃I ∈ f (T̃c) in the set π̃−1(TI). The triangulation T̃c is a euclidean triangulation

so we have an isometry ϕ̃T sending every face T̃ of T̃c to a euclidean triangle. Now, consider

another face T̃ ′ ∈ f (T̃c) with isometry ϕ̃T ′ , which has one edge, ẽ in common with T̃ . By

definition there is an element, g̃0,1 in Isom(E2) so that g̃0,1(ϕ̃T (e)) = ϕ̃T ′(e). Thus, we may

define an isometry from the union:

ϕ̃T,T ′ : T̃ ∪ T̃ ′ −→ E2.

Proceeding as above, we obtain a local isometry ϕ̃ : H[ −→ E2.

Definition 2.3.6 The map ϕ̃ = ϕ̃c is called the developing map associated to c. �

Furthermore, we have:

Proposition 2.3.7 ([48, Proposition 2.8]) Under the above settings, i.e. when a base triangle

and an isometry of the base triangle into E2 are fixed, the developing map ϕ̃ is unique.

Now, take a path, γ0, and consider the self-map, ϕγ0 , of the universal branched cover, H[,

sending every pair (σ, [γ]) to (σ, [γ·γ0]). It is clear that ϕγ0 is independent of the representative

considered in the homotopy class [γ0].

Lemma 2.3.8 Suppose in particular that γ0 ∈ π1(Pc, pI), for some fixed base point pI ∈ Pc.

Fix also a base triangle T̃ ∈ H[ containing an element, p̃I , in ϕ̃−1(pI). Then ϕγ0 induces an

element h[γ0] ∈ Isom(E2) making the following diagram commutative.

Furthermore, h[γ0] is independent of the choice of the representative.
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(H[, T̃c) (H[, T̃c)

E2 E2

ϕγ0

ϕ̃

h[γ0]

ϕ̃

Proof. As both pI and T̃ ∈ H[ is fixed the associated developing map is uniquely deter-

mined. Consider the element, t ∈ Isom(E2), sending every z = (x, y) ∈ E2 to z + v; where

v =
(
ϕ̃ ◦ ϕγ0

)
( p̃I) − ϕ̃( p̃I). Moreover there is a rotation r ∈ Isom(H) with the property that

r
(
t
(
ϕ̃(T̃ )

))
= ϕ̃

(
ϕγ0

)
(T̃ ).

It is enough to set hγ0 as the composition r ◦ t. Suppose γ′0 is another representative. Since

the final points agree, the corresponding translations, t and t′ must agree. To see r = r′ note

the vertices of the triangle T̃ is mapped to the exact same point under both ϕγ0 and ϕγ′0 . The

commutativity of the diagram can be proven as follows: take any point (σ, [γ]) ∈ H[. We

have ϕγ0((σ,[γ])) = (σ, [γ · γ0]). Then we obtain the image of (σ, [γ . . . γ0]) by “continuing” the

isometry conformally along the concatenation of γ and γ0. On the other hand the image of

the pair (σ, γ) is obtained by continuation of the fixed isometry of T̃ . Composing with r ◦ t

means that one passes exactly through the triangles that appear along the path ϕ̃
(̃
π−1

)
(γ). �

For any other homotopy class, [γ1], in π1(Pc, pI), if we repeat the above arguments we arrive

at the following diagram which is also commutative:

(H[, T̃c) (H[, T̃c) (H[, T̃c)

E2 E2 E2

ϕγ0

ϕ̃

ϕγ1

ϕ̃

h[γ0] h[γ1]

ϕ̃

Hence we have a homomorphism hol : π1(P1 \ S c, pI) −→ Isom(E2), called the holonomy

representation associated to the cone metric c ∈ C(κ).

2.3.2 Local Systems and the Monodromy Representation

In this section we will introduce the monodromy representation. We will define a local system

of rank one, or equivalently a flat line bundle on P1 \ S c, associated to any given cone metric

c ∈ C(κ) and hence obtain another representation of π1(P1 \ {S c}). Let us recall basic defini-

tions first.
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Definition 2.3.9 Let F be a sheaf on a ringed space (X,OX), which admits a universal cover.

F is called locally constant if every point x ∈ X has a neighbourhood Ux such that for every

element y ∈ Ux the natural map

F (Ux) −→ Fy (2.1)

is an isomorphism. �

When X is connected, the dimension of the stalks of F are same, which is called the rank of

F . F is called a local system whenever F is a locally constant sheaf of finite rank. As is

well-known, [18, Exercise 5.18], the terms locally free sheaf and vector bundles may be used

interchangeably as there is an equivalence in between.

To describe the monodromy representation associated to a local system F on X, fix a base

point x0 ∈ X, and take any path γ : [0, 1] −→ X in X based at x0 representing a homotopy class

in π1(X, x0). Cover γ with open sets for which the map in Equation 2.1 is an isomorphism.

From compactness of γ reduce to finitely many of them, say U1,U2, . . . ,Un. By renumbering,

if necessary, we may, without loss of generality, assume that x0 ∈ U1 ∩ Un, and for each

i ∈ {1, 2, . . . , n − 1}, the intersection Ui ∩ Ui+1 , ∅, so that we have an element xi in each

intersection; where we assume

0 = γ−1(x0) < γ−1(x1) < · · · < γ−1(xn−1) < 1 = γ−1(x0)

We have the following sequence of isomorphisms:

Fx0

'
−→ F (U1)

'
−→ Fx2

'
−→ · · ·

'
−→ Fxn−1

'
−→ F (Un)

'
−→ Fx0

giving an automorphism of the stalk Fx0 , ϕγ. One may check that the map γ 7→ ϕγ induces a

homomorphism π1(X) −→ Aut(Fx0), i.e. a representation of π1(X), see Figure 2.4.

Conversely, let X be a topological space admitting a universal cover, and let a representation

ϕ : π1(X) −→ Aut(Fx0) be given, where x0 is an element of X. Let X̃ denote the universal

cover of X so that π1(X) = π1(X, x0) acts on X̃ and π1(X) \ X̃ � X. Consider

X̃ ×π1(X) Cn := X̃ × Cn/ ∼ (2.2)

where we say that (x, v) ∼ (x′, v′) whenever there is an element γ ∈ π1(X) with the property

that x = γx′ and v = ϕ(γ)v′. Then fibers of the natural projection π : X̃ ×π1(X) Cn −→ X
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F (U1) . . .

X

x0 γ
U1

U2 x1

Un−1

xn

Fx0 Fx1 F (U1) Fx0

Figure 2.4: Monodromy Representation.

sending each equivalence class [x, v] to the point x ∈ X are isomorphic to Cn. Thus we obtain

a locally constant vector bundle.

Theorem 2.3.10 ([8, Corollaire 1.4]) When X has universal cover, the functor we described,

called the fiber functor at x0, is an equivalence between the category of local systems of rank

r over C on X and the category of r-dimensional complex representations of π1(X, x0).

Example 2.3.11 Set Pc = P1\S c, where c ∈ C(κ), as usual. Let γi denote a positively oriented

curve in Pc based at pI that rotates once, positively around pi for i ∈ {1, . . . ,N}. There

exists a rank one complex local system Fκ on Pc which gives multiplication by eθi
√
−1, defined

as in Equation 2.2. We will refer to this representation as the monodromy representation

associated to c.

Remark 2.3.12 When the image of the monodromy representation is an abelian group, for

instance when the local system is of rank one, as in Example 2.3.11, the representation we

have written factors through the homology, i.e.

π1(X, x0)ab = π1(X, x0)
/
[π1(X, x0), π1(X, x0)] = H1(X,Z).

2.3.3 The Relation between Two Representations

In this part, we will show that the monodromy representation and the holonomy representation

are somewhat related. For this, as before we fix a cone metric c ∈ C(κ). It is well-known that
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there are three types of elements in Isom(E2), namely translations, rotations and reflections.

Within these elements the translations form a normal subgroup, say Tr / Isom(E2), and the

quotient Isom(E2)
/
Tr is called the orthogonal group, O(2). We are now ready to define:

Definition 2.3.13 We will call the image of hol (π1(Pc, pI)) in O(2) under the natural projec-

tion the orthogonal part of the holonomy representation and denote by holo the composition.

�

Take a vertex p ∈ v(Tc), i.e. a singular point p ∈ S c. Let Up be an open neighbourhood of p

so that Up contains no other singular point of c. Suppose that there are l triangles having p as

a vertex with angles at p being α1, . . . , αl, see Figure 2.5. If by θp we denote the cone angle

at p, then we have

θp =

l∑
i=1

αi.

Recall that the generating set for the fundamental group π1(Pc, pI) may be chosen as pos-

itively oriented simple closed curves that rotates once around every element of S c. Let γp

denote the positively oriented simple closed curve which rotates once around p. Without loss

of generality we may assume that pI ∈ Up. It follows that, γp is a generator of the local fun-

damental group π1(Up, pI) � Z. Then, the pair (T1, id) is send to (T1, γp) ∈ H[. And hence,

the element induced by γp, h[γp] is then nothing but rotation by an angle of θp, rθp .

p
T1

T2

Tl

Up ⊆ P1
c

Tl−1

α1
α2

αl−1
αl

Figure 2.5: Neighbourhood of p.

So, we proved:

Proposition 2.3.14 The image of holo : π1(Pc, pI) −→ O(2) is generated by rotations of angle
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θp, for p ∈ S c.

The following proposition implies in particular that the holonomy representation factor through

the monodromy representation.

Proposition 2.3.15 The orthogonal part of the holonomy representation and the monodromy

representation associated to c are isomorphic.

Proof. Consider f : holo(π1(Pc, pI)) −→ GL1(C) � C× defined as f (rθp) = eθp
√
−1, for

every p ∈ S c. As generators are mapped to generators taking into account the orders, f is an

isomorphism. �

2.4 Combinatorics and Cohomology

In this section, we will begin with introducing a vector space, which is closely related to the

space of cone metrics. After recalling the options one has to understand the cohomology of a

locally constant sheaf, we shall interpret this vector space as the cohomology of a particular

local system. Throughout we fix the curvature parameters κ = (κ1, . . . , κN) ∈ π ·QN ∩ (0, 2π)

and assume that they satisfy the Gauss-Bonnet condition, see Theorem 2.1.5.

2.4.1 Cone Metrics as Cocycles

Take any cone metric c ∈ C(κ), N ≥ 3. If we identify E2 with C then one can use the

developing map ϕ̃, see Definition 2.3.6, to associate two complex numbers to each edge,

namely the difference between the endpoints, + or − according to orientation. Denote this

association by Zc : e(Tc) × Z/2Z −→ C, where the group Z/2Z is used for keeping track of

the orientation. Observe the following two properties of Zc:

i. Zc(e,+) + Zc(e,−) = 0, for every edge e of Tc

ii. if (e1,+), (e2,+), (e3,+) denote the oriented boundary of some triangle in Tc, then∑
i Zc(ei,+) = 0.
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These properties encourage us to call Zc a cocycle. Remark that such cocycles, that is, maps

Z : e(Tc) −→ C satisfying i. and ii. above, form a C vector space, say Hκ, depending on κ.

Define the following hermitian form on Hκ:

A(c) :=
1
4

∑
triangles ∈Tc

Zc(e1)Zc(e2) − Zc(e1)Zc(e2); (2.3)

where eis denote the positively oriented edges of each triangle. Note that the form A defined

above is nothing but a measure of the area of a given cone metric on the sphere. We also have:

Proposition 2.4.1 ([45, Propositions 3.2, 3.3]) The hermitian form A on the vector space Hκ

has signature (1,N − 3), where N is the number of singular points of c. In particular, the

complex dimension of the vector space of cocycles is N − 2.

Before the proof, we would like to make:

Definition 2.4.2 For a cone metric c ∈ C(κ), a subset F ⊆ E2 will be called a euclidean

fundamental region, whenever the followings hold:

• F is connected,

• the developing map ϕ̃c has a well defined inverse when restricted to F,

• ϕ̃c(P1
c) = F.

�

Remark 2.4.3 Using proper identifications of the boundary of F we can easily recover P1

and c. If singular vertices appear on the boundary of F then the identified boundary compo-

nents have to have equal length with respect to the metric c.

Proof.[Proposition 2.4.1]. For any given c we may choose the euclidean fundamental region

so that its euclidean boundary consists of edges of the triangulation Tc. Hence F is a polygon,

in fact 2(N −1)-gon, in E2, not necessarily convex. And Remark 2.4.3 tells us that the lengths

of partner edges must agree. So, it is enough to consider the dimension of all such polygons.

21



The degree of freedom we have is then N−2, as whenever we are given N−2 edges, we know

the lengths of their partner edges as well as the angles in between. The remaining 2 edges are

used to satisfy the curvature condition, or Gauß-Bonnet restriction. Hence H has dimension

N − 2. To prove that the signature of the Hermitian form is (1,N − 3), first set N = 4. Then

the value of A, see Equation 2.3, is either positive or negative. Thus, the form is of signature

(1, 1). Suppose now that c has k > 4 singular vertices. In this case there is always pair of

singular vertices, say p and q in S c so that the sum of cone angles, θp and θq, at p and q is

not equal to 2π. We connect these two edges by a geodesic, e. Let us denote the length of e

by l(e). We cut (P1, c) along e and replace the vertices p and q by a single vertex, denoted

by p + q, so that the cone angle θp+q at the point p + q is θp + θq. Call the resulting new

pair (P1, c′). Figure 2.6 shows the effect of the above operation on the euclidean fundamental

region. One can then see that the area of (P1, c′) is equal to the area of (P1, c) plus a constant

times l(e)2. �

q

p

q

C e

e

p + q

Figure 2.6: Obtaining (P1, c′) from (P1, c).

Remark 2.4.4 Inside the cocycle space, Hκ, there are elements whose norm is negative,

which cannot come from a cone metric, as elements of C(κ) automatically have positive area.

It is known that, see Section 3.2.1, the projectivization of the set of elements in Hκ which are

of positive norm with respect to a hermitian form of signature (1,N − 3) form a complex ball

inside Hκ of dimension N − 3, which can be regarded as a model for the complex hyperbolic

space, CHN−3, together with a negatively curved hermitian metric induced by the form A, for

details see Section 3.2.1.

Remark 2.4.5 One can also compute, with a little bit more work, the signature of the pair

(Hκ, A) as follows: Combining Theorem 2.4.12 and Equation 2.6, we obtain the following

isomorphism:

Hκ � H1(Xc,C)χ (2.4)
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where χ denotes the tautological character the Galois group of an abelian cover of Pc ramified

only over the singular points with compatible orders. In that case [7] tells us that it is of

signature (1,N − 3). In Section 2.4.3 we will explain how one constructs such covers and

computes the signature of the associated Hermitian form from another perspective.

2.4.2 An Hypercohomology Approach to H1(Pc,Fκ)

We may define the vector space H1(Pc,Fκ) using the usual theory of derived functors, see [18,

§§1-4]. One may also take the path to use hypercohomology of the log-complex which we will

describe shortly. We will follow [49] to introduce the log-complex, and hypercohomology.

Further treatments of cohomology of rank one local systems can be found in [10, §2].

Let us start with a ringed space (X,OX), together with a sheaf, F , of OX-modules on X. By

Mod(X) (resp. Ab(X)), denote the category of sheaf of OX modules(resp. the category of

sheaves of abelian groups) on X. As a consequence of [18, Chapter 3, Proposition 2.2], we

obtain Mod(X) = Ab(X), in particular both categories have enough injectives, i.e. every

object ofAb(X) can be embedded, isomorphically as a sub-object, into an injective object of

Ab(X); where an object I is called injective if the functor Hom(·, I) is exact. An injective

resolution of any object A in a category,A, is a complex, I·; i ≥ 0, with a morphism ε : A −→

I0 so that the sequence

0 A I0 I1 . . .ε d0 d1

is exact. When a category has enough injectives then every object in that category has an

injective resolution. The ith cohomology object, hi, is in this case defined as ker /im ⊆ Ii. It

can be shown that, the cohomology objects are independent of the chosen injective resolution.

Now, for every object of A fix an injective resolution and define the ith right derived functor,

Ri, of a functor F : A −→ B to associate each object the ith cohomology object of the image

of its injective resolution, RiF(A) = hi(F(I·)). In particular, the cohomology functors, Hi(X, ·)

, are defined to be the right derived functors of the global section functor Γ(X.·) fromMod(X)

to the category of abelian groups,Ab.

Recall that a category, C, is called abelian if the following properties are satisfied by C:

• for any two objects, A, B, of C the morphisms, Hom(A, B), can be given the structure
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of an abelian group so that composition is bilinear,

• there is an object which is both initial and terminal,

• finite direct sums exists,

• every morphism has a kernel and a cokernel,

• every monomorphism is the kernel of its cokernel and every epimorphism is the coker-

nel of its kernel

• every morphism can be factored into an epimorphism composed with a monomorphism.

For instance the category,Ab, of abelian groups is an abelian category. Let, now,A and B be

two abelian categories and suppose that A has enough injectives. From now on, we assume

that for every complex, A·, in a category we have Ai = 0 for i < 0. Say (A·, d·A) is a complex

of objects of A. By assumption, Ai = 0 for every i < 0. Then [49, Proposition 8.4] assures

the existence of a complex (I·, d·I) of injective objects of A and a morphism of complexes

φ· : A· −→ I· so that

i. for every i, φi is injective,

ii. φ is a quasi-isomorphism.

Recall that a morphism of complexes is called a quasi-isomorphism if

ker(di
A)/im(di−1

A ) = hi(A·) � hi(I·) = ker(di
I)/im(di−1

I ).

Now, let F : A −→ B be a left-exact functor. For a complex A· ofA we consider its injective

resolution I·, together with φ as above. Then we define the ith derived object

Ri(F)(A·) = Hi(F(I·)), which is independent of the resolution, see [49, Proposition 8.6]. Once

again, if one chooses A = Ab(X), and F(·) = Γ(X, ·), then the group Ri(Γ)(F ·), denoted by

H(X,F ·); where F · is a complex of sheaves of abelian groups, is called the hypercohomol-

ogy of the complex F ·. In fact, one has a little more freedom as the following proposition

suggests:
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Proposition 2.4.6 ([16, Lemma, pp.447]) Let φ· : A· −→ B· be a quasi-isomorphism of com-

plexes. Then:

H(X, A·) � H(X, B·).

In what follows we would like to demonstrate the above machinery through some examples.

Example 2.4.7 (The (Holomorphic) deRham Complex) By R let us denote the constant

sheaf, whose fiber is R, on X(by abuse of notation) where X is a smooth manifold and let

Pi
X denote the sheaf of smooth i-forms on X. Then the following sequence is a resolution of

0 R P0
X P1

X . . .d d

the constant sheaf R. As a result of [49, Corollary 8.14], we get

Hi(X,R) � Hi(X,P·X).

The same argument applies in the case when X is a complex manifold and when we consider

the sheaf of holomorphic i-forms, Ωi
X , as a resolution of the constant sheaf C. Once again we

obtain,

Hi(X,C) � Hi(X,Ω·X).

Example 2.4.8 (The log-complex) Let X be an n dimensional complex manifold and D be

a normal crossings divisor, i.e. every point p ∈ D has a neighbourhood, Up ⊆ X and local

coordinate system {z1 . . . zn}, so that in Up the divisor D is given locally by Πk
i=1zi = 0, k < n.

Set U = X \ D. Let Ωi
X(∗D) denote the sheaf of i-forms on X which have poles of finite

order along D. Define a sub-sheaf, Ωi
X(log D), of Ωi

X(∗D) to be those forms, α, satisfying the

following properties:

i. α has at most first order pole along D,

ii. dα has at most first order pole along D.

In other words, sections of Ωi
X(log D)(U); where U ⊆ X is an open subset, are given locally

by ∑
|I|+|J|=i

fI,J
dzI

zI
∧dzJ;
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where we utilize the multi-index notation and I ⊆ {1, . . . , k}, J ⊆ {k + 1, . . . , n} and

fI,J ∈ OX(U). We thus conclude that the sheaves Ωi
X(log D) are, in fact, free OX-modules.

We, moreover, have the following:

Ω·X(log D) ↪→ j∗Ω·U ↪→ j∗P·U .

where j : U ↪→ X denotes the inclusion. From [9, §3.1], one concludes that the morphism

Ω·X(log D) −→ j∗P·U is a quasi-isomorphism. And Proposition 2.4.6, gives us

H·(X,ΩX(log D)) � H·(X, j∗P·U).

We further have H·(X,ΩX(log D)) � H·(U,C), see [49, Corollary 8.19].

We end our examples with local systems:

Example 2.4.9 (Local Systems) Let F be a local system on X. It is well-known that F is a

flat vector bundle together with a connection ∇. We form the following sequence of sheaves:

0 OX ⊗OX F Ω1
X ⊗OX F Ω2

X ⊗OX F . . .∇ ∇ ∇

where we define our differential operator as ∇(α ⊗ e) = dα ⊗ e + (−1)deg eα ⊗ ∇(e). We have:

∇ (∇ (α ⊗ e)) = ∇
(
dα ⊗ e + (−1)deg eα ⊗ ∇(e)

)
= ∇ (dα ⊗ e) + (−1)deg e∇ (α ⊗ ∇(e))

= d2α ⊗ e︸  ︷︷  ︸ + (−1)deg edα ⊗ ∇(e) + (−1)deg∇(e)dα ⊗ ∇(e)︸                                                 ︷︷                                                 ︸ + (−1)deg e+deg∇(e)α ⊗ ∇2(e)︸                           ︷︷                           ︸
= 0 + 0 + 0

= 0.

So we, indeed, have a complex of sheaves. In fact, the complex (Ω·X ⊗OX F ,∇) is a resolution

of F , and hence we get:

Hi(X,Ω·X ⊗OX F ) � Hi(X,F ).

Note here that the same process is still valid if we replace the sheaf of holomorphic differen-

tials, Ω·X with the sheaf of smooth differentials, P·X .

Remark 2.4.10 As far as we are concerned, the pair (X,D) = (P1, S c) for c ∈ C(κ) satisfies

the above condition automatically.
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2.4.3 H1(Pc,Fκ) via Abelian Covers

Let c ∈ C(κ) be arbitrary with singular set S c = {p1, . . . , pN}. Suppose further that the

concentrated curvature at pi is κi, i = 1, 2, . . . ,N with
∑N

i=1 κi = 4π. As each κi ∈ 2π · Q,

we may write κi
2π =

δi
η , where δ1, . . . , δN , η ∈ N with the property that the greatest common

divisor of δ1, . . . , δN and η is 1. Without loss of generality assume that pN = ∞ and to c we

associate the normalization of the plane algebraic curve, Xc, given by the equation:

yη =

N−1∏
i=1

(x − pi)δi . (2.5)

The projection map (x, y) 7→ x from Xc to P1 is then ramified precisely over the singular set

S c. And, we get the following commutative diagram:

Xc × C (prx)∗C

Xc P1prx

Observe that, the sheaf Fκ is nothing but the sheaf of sections of the line bundle (prx)∗C on Pc.

Let Gal(prx) denote the Galois group of the covering Xc −→ P1, where we define a cover to

be Galois whenever the corresponding function field extension is Galois. In this case we have

a Kummer extension, it is cyclic of order η. Let χ : Gal(prx) −→ C× denote the tautological

character. In this setup χ acts on the space, ΩXc , of holomorphic one forms on Xc and we have

H1(Xc,C)χ � H1(Pc,Fκ); (2.6)

where H1(Xc,C)χ denotes the set of cohomology classes of 1-forms on Xc which are invariant

under χ. Moreover, we have the usual cup product on H1(Xc,C), given by:

α ∪ β =

√
−1
2

∫
Xc

α ∧ β,

which is known to have signature (g, g); where g is the genus of Xc. The multivalued form

ωc :=
N−1∏
i=1

(x − pi)δi/ηdx (2.7)
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on P1 pulls back to pr∗x(ωc) = dx
y , a single-valued holomorphic form on Xc. For

a ∈ Gal(prx) let us denote the map induced by χ(a) on ΩXc by χa. Then

χ∗a(
dx
y

) = χ(a)
dx
y
.

We conclude that pr∗x(ωc) is an eigenform for χa−1 , i.e. pr∗x(ωc) ∈ Ω
χ
Xc

. On the other hand,

χ acts on the space of anti-holomorphic one forms, ΩXc , on Xc, and we have a canonical

identification

ΩXc

χ
� Ω

χ
Xc

= Ω
χη−1

Xc

via complex conjugation. To compute the dimension of Ω
χη−1

Xc
it is enough to note that only

1-forms of type f (x) dx
y can be an eigenform; where f (x) ∈ C[x] of degree less than N − 2.

Lemma 2.4.11 dimC Ω
χη−1

Xc
= N − 3.

Proof. We will prove our claim only for the case where δi = 1 for each i = 1, . . .N − 1. The

general case follows the same line of arguments, only somewhat more complicated. To prove,

let us show that the set B := { dx
y , x

dx
y , . . . , x

N−2 dx
y } is a basis. C-linear independence of B is

clear. Let (x)0 = D, (x)∞ = D′ =
∑η

j=1 q j denote the zero and pole divisor of x, respectively.

At any ramification point pi of the projection prx, the function x − pi is locally of order η,

hence dx is of order η − 1. On the other hand at each pole, q j, of x, the function x − q j is

locally of the form 1
z j

eh; where h is a holomorphic function. Thus (dx)∞ = 2D′. The zero

divisor of the function y is nothing but the ramification divisor of prx, i.e. (y)0 = R =
∑N−1

i=1 pi.

As deg y = N − 1 we must have (y)∞ = N−1
η D′. So:(

xk dx
yη−1

)
= kD − kD′ + (η − 1)R − 2D′ − (η − 1)(R −

N − 1
η

D′)

= kD −
(
(η − 1)

N − 1
η
− k − 2

)
D′.

So, we must have k ≥ 0 and k < N − 3. Hence the claim follows. �

2.4.4 H and H1(Pc,Fκ)

After introducing the vector space of cocycles and reviewing cohomology of rank one local

systems and various approaches to it, let us state the following:
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Theorem 2.4.12 The vector space H of cocycles and H1(Pc,Fκ) are isomorphic.

Remark 2.4.13 Theorem 2.4.12 can be considered not only as an explanation of the comment

“This turns out to be closely related to work of Picard and Mostow and Deligne.” made in

[45], but also as a combinatorial description of some cohomology groups.

Before proving Theorem 2.4.12, we have:

Lemma 2.4.14 ([10, Proposition 2.3.1]) dimC(H1(Pc,Fκ) = N − 2.

Proof. We first replace Pc by a compact object, Yc, obtained via removing disks, Dpi ,

around singular points, S c = {p1, . . . , pN} so that for every distinct i, j ∈ {1, . . . ,N} we have

Dpi ∩ Dp j = ∅. Remark that this process does not change the cohomology groups. As Yc

is compact, we may choose a finite triangulation, T ′c of Yc and consider the restriction of

the sheaf Fκ to Yc which will be denoted same by abuse of notation. And we have the iso-

morphism H·(Pc,Fκ) � H·(Yc,Fκ). We will see during the proof of Theorem 2.4.12 that the

cohomology of Yc can be described as the cohomology of the complex of Fκ-valued cochains

of T ′c . This tells us that the rank of the ith cohomology group is independent of the chosen

locally constant sheaf. As Pc is locally contractible, H1
sing(Pc,C) � H1(Pc,C); where Hi

sing

denotes the singular cohomology and C is used also to denote the constant sheaf with fiber

C on Pc. As the fundamental group of Pc is isomorphic to the free group on N − 2 letters

dimC(H1
sing(Pc,C)) = N − 2. �

Proof.[Theorem 2.4.12] Combining Lemma 2.4.14, Proposition 2.4.1, and Remark 2.4.5

we conclude the result. Nevertheless, in what follows we describe the map explicitly. Let

c ∈ C(κ), and consider the associated triangulation Tc as a CW-complex on P1. In § 2.4.2

we have seen that we may define H1(Pc,Fκ) as the hypercohomology of the the complex of

Fκ-valued smooth differentials, P·Pc
⊗OX Fκ. For an Fκ-valued 1-form, and σ an edge of Tc

we define the map:

ω 7→ Zω(σ) :=
∫
σ
ω (2.8)

from the complexP·Pc
⊗OXFκ, to the Fκ-valued cochains of Tc. It is easy to see that this map is

a quasi-isomorphism, i.e. it induces an isomorphism on the cohomology. On the other hand,

any cocycle Z ∈ H is a function from the free abelian group of 1-cells to C. Now, let p ∈ S c
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be any singular point with concentrated curvature κp, γp be a positively oriented loop around

p with winding number 1 and let ep be an edge of Tc incident to p. Without loss of generality

assume that Z(p) = 0. We have:

Z(γ(e),±) = e−2π
√
−1κpZ(e,±) (2.9)

so that induces an element wZ ∈ H1(Pc,Fκ), see § 2.4.1. Say Z and Z′ in H induces wZ

and wZ′ in H1(Pc,Fκ). Then for any edge e ∈ e(Tc) we have wZ − wZ′(e) = 0, hence it is a

coboundary. The result can be deduced from Lemma 2.4.14. �
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CHAPTER 3

QUADRANGULATIONS OF THE SPHERE AS A LATTICE

In this section, our aim is to obtain a classification of a family of quadrangulations of the

sphere satisfying certain curvature conditions. That is: we will obtain a lattice in a specific

space of cone metrics whose points parametrize quadrangulations of non-negative curvature.

The result we obtain is an analogue of [45, Theorem 0.1]. As before, we assume that our

curvature parameters κ1, . . . , κN are rational multiples of π lying in the open interval (0, 2π).

The result of Thurston and ours may be regarded as classification of certain subgroups of the

modular group and of the group Z/2Z ∗ Z/4Z, with ∗ denoting the free product, hence the

points of the lattices correspond to algebraic curves defined over a number field. One further

aspect of the lattice we found in that it also parametrizes certain flat surfaces, called origamis,

which corresponds to Teichmüller discs.

3.1 Quadrangulations...

3.1.1 Basic Definitions

Definition 3.1.1 A (finite) metric (or euclidean) quadrangulation, Q, of the sphere is a family

of pairs ( fi,�i), for i = 1, 2, · · · , n, where each �i is a non-degenerate quadrangle in E2, and

each fi : �i −→ S 2 is an isometry such that:

i.
⋃n

i=1 fi(�i) = S 2,

ii. for i , j, whenever we have a non-trivial intersection fi(�i) ∩ f j(� j) , ∅, then this

intersection is a subset of the set of edges, e(Q), of Q or a subset of the set of vertices,

v(Q), of Q; where we define the edges and vertices of Q in the usual manner,
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iii. if an edge e ∈ fi(�i) ∩ f j(� j) ⊂ e(Q), then there exists some element γi, j ∈ Isom(E2)

such that fi(e) = γi, j · f j(e). If there is more than one edge in the intersection, then the

isometry is expected to bring all edges together.

�

If we have a set of pairs ( fi,�i) which satisfies only the first two properties, i. and ii., then we

will refer to this collection as a quadrangulation.

Just as in the case of euclidean triangulation, there exists a flat metric on a given euclidean

quadrangulation, which in turn induces a complex structure on the sphere, S 2. Hence, we are

allowed to consider the sphere with a euclidean quadrangulation as the projective line P1.

Example 3.1.2 The first example is, of course, the cube. Suppose each side of the cube is of

unit length, so that it gives a euclidean quadrangulation on the sphere. We have 8 vertices, and

at each vertex the cone angle is 3π/2, hence at these points the curvature is 2π− 3π/2 = π/2.

Observe here that the sum of curvatures, 8 ·π/2, is nothing but 2π ·χ(S 2), see Figure 3.1. One

Figure 3.1: The cube as a quadrangulation of S 2.

can extend the examples of this type by an easy iteration progress. Namely, put an extra mid-

vertex to the midpoint of each edge of the cube, and connect the new mid-points of opposite

edges with a straight line, and introduce a new vertex at the intersection point of the two newly

introduced lines. In each of the 6 faces we get now four squares instead of one, each square

is of half-unit length. In the next step, we divide each edge into three equal pieces instead

of two, and connect the edges which are opposite to each other. The reader is encouraged
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to carry on this process. We would like to draw attention of one point here. This family of

quadrangulations does not bring anything new in the sense that, all newly introduced vertices

are not singular as there are 4 new squares meet at each new vertex appearing in the middle

of the faces. Hence the curvature is 0 at the these vertices. So, the metric, and hence the

complex structure, is only multiplied by an integer constant.

Motivated by the previous example, we make

Definition 3.1.3 We will say that a quadrangulation, Q, is non-negatively curved whenever

Q has no vertex at which more than four quadrangles meet. In other words for all vertices v

of Q, there may meet at most four faces of Q. �

In particular, each of the quadrangulations appeared in Example 3.1.2 is of non-negative com-

binatorial curvature, whereas the quadrangulation in Figure 3.2 contains both positive, zero

and negative curvature.

O2

P1
N

O1

P2

Figure 3.2: An example of a stepped surface, as a quadrangulation.

For future reference we state the following:

Lemma 3.1.4 Let c be a cone metric on the sphere. Then, there is an associated metric

quadrangulation of the sphere.

Proof. Suppose we are given an element c ∈ C(κ). Let Fc denote the euclidean fundamental

region corresponding to c, see Definition 2.4.2. Without loss of generality, we assume that

the singular vertices, S c = {p1, . . . , pN}, appear on ∂F and the boundary segments connecting

singular vertices are geodesics with respect to the cone metric c, hence they are, possibly

broken, straight lines. We will use induction on the cardinality of S c. If N = 3 then the

euclidean fundamental region is itself a quadrangle. For the general case, take 4 consecutive
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singular points, call p1, p2, p3 and p4 so that there are no other elements of the singular set

on the path from p1 to p4 along the boundary of F, which is a 2(N − 1)-gon, see Figure 3.3.

Note that possible identifications of the chosen vertices do not pose any problems, for we are

only interested in the existence of a quadrangulation. We now connect p1 to p4 with a straight

line to obtain the first quadrangle. The remaining is now a 2(N − 2)-gon, which, by induction

assumption, can be divided into quadrangles finishing the proof. �

p1

p2 p3

p4

p5

p6

p5p2 p3
p4

F

Figure 3.3: Induction step for the case N = 6.

3.1.2 Shapes of Quadrangulations in E2

Let Z[
√
−1] be the ring of Gaußian integers considered as as subset of E2, or equivalently C.

In this section, we will analyze Gaußian lattice quadrangles whose sides are parallel to the

sides of a standard qaudrangle and whose vertices are at Gaußian integers, to which we will

refer simply as a lattice quadrangle, see Figure 3.4 for an example.

Figure 3.4: A Lattice Quadrangle.

Such an object is given by two parameters, the number of quadrangles in the vertical direction

to which we will refer as n1, and number of quadrangles in the horizontal direction to which

we will refer as n2. Moreover, a quadrangle having n1 many vertical and n2 many horizontal

has A(n1, n2) = n1n2 many quadrangles. In this coordinates, however, our area form is not

diagonal with respect to this basis. There is a geometric way of achieving this, see Figure 3.5.

Given any n1 and n2 we consider the following area form:

A(n1, n2) :=
1
4

(
(n1 + n2)2 − (n1 − n2)2

)
.
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which measures the area of a lattice quadrangulation in terms of number of quadrangles.

Note that the area form is of signature (1, 1). One may extend our definition to the case

where n1 are n2 are real numbers. In that case, of course, the real parameters do not lead to a

lattice quadrangulation. So one obtains an R-vector space with a form of signature (1, 1). As

n1, n2 ≥ 0, forms a cone, say C, the possible shapes of lattice quadrangulations are elements

of the projective image of C.

Figure 3.5: Diagonalizing the area form, for n1 = 1, n2 = 4.

Remark 3.1.5 Possible shapes of lattice hexagons, i.e. hexagons whose vertices are at the

Eisenstein integers, Z[e2π
√
−1/3], sides are parallel to the sides of a standard hexagon are

analyzed in [45, §1]. In the case when R is replaced by C, the space that one obtains is a

hermitian form on C1,1.

3.2 ...as a Lattice

In this section we will generalize the results of Section 3.1.2 to shapes of quadrangulations of

the sphere. We are going to prove that quadrangulations of the sphere are given by a lattice

inside a complex Lorentzian vector space. In order to do so, we will recall basics of complex

hyperbolic geometry.

3.2.1 Complex Hyperbolic Geometry

We are going to describe the ball model of the n dimensional complex hyperbolic space. For

this let C1,n be the vector space of dimension n + 1 over C, which consists of n + 1-tuples

Z = (Z1, . . . ,Zn,Zn+1) together with the following Hermitian form

〈Z,W〉 := Zn+1Wn+1 −

n∑
i=1

ZiWi. (3.1)
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We will call a vector, Z negative, null, positive whenever 〈Z,Z〉 < 0, 〈Z,Z〉 = 0, 〈Z,Z〉 > 0,

respectively. Observe that if a vector, Z, is negative, null, positive then for any λ ∈ C \ {0}, λZ

is also negative, null, positive, respectively. So the following is well defined:

Definition 3.2.1 The complex hyperbolic space Hn
C is defined to be the set of all positive lines

in the projectivization, P(C1,n), of the vector space C1,n. �

One can give a complex manifold structure to P(C1,n) if one considers the usual quotient map

C1,n \ {
−→
0 } −→ P(C1,n). Thus we may regard Hn

C as a complex manifold. Consider Cn with its

usual Hermitian form:

〈〈z,w〉〉 :=
n∑

i=1

ziwi.

By Bn denote the set of all elements, z ∈ Cn, with 〈〈z, z〉〉 < 1. Define the map Ξ : Cn −→ Hn
C

as:

z = (z1, . . . , zn) 7→ [z1 : . . . : zn : 1].

The map Ξ embeds Cn onto the subset of P(C1,n) defined by Zn+1 , 0. Moreover, for any

element z ∈ Bn we have

〈Ξ(z),Ξ(z)〉 = 〈[z1 : . . . : zn : 1], [z1 : . . . : zn : 1]〉

= 1 −
n∑

i=1

zizi

> 0.

So Ξ(Bn) = Hn
C, and as Ξ is a holomorphic embedding Bn and Hn

C are complex analytically

isomorphic.

Example 3.2.2 This situation has already appeared in Section 3.1.2 where it is proved that

possible shapes of quadrangulations of lattice quadrangles in E2 are parametrized by a cone

C inside the projectivization of R1,1. It is, in fact, an example of the above machinery except

the base field was R instead of C.

Remark 3.2.3 We have proven in Proposition 2.4.1 that we have a complex vector space,

H, of cocycles with a Hermitian form, A of signature (1,N − 3), where N is the number of

singular points. Recalling that the form A is a measure of the area associated to a cocycle,
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to get an honest cone metric we have to consider only those cocycles, Z ∈ H, for which we

have A(Z) > 0. In addition, the multiplicative group C× acts on the space of cocycles, whose

orbits include elements which differ by a rotation followed by a dilation. The quotient is then

nothing but the image of the complex ball inside the projectivization of complex Lorentzian

vector space C1,N−3. This, in particular, implies that the space of cone metrics for given

curvature parameters, C(κ), is a complex hyperbolic manifold.

3.2.2 Non-negatively Curved Quadrangulations of the Sphere

A lattice, Λ, in a vector space V is a free Z-module together with a symmetric bilinear

form, 〈·, ·〉. More generally, an Eisenstein(respectively Gaußian) lattice is a free Z[e2π
√
−1/3]-

module(respectively Z[
√
−1]-module) with a Hermitian form. Λ is called integral whenever

the Hermitian form takes values in Z[e2π
√
−1/3](respectively in Z[

√
−1]). Every lattice comes

with a group, namely the group of its symmetries. The automorphism group, Aut(Λ), of Λ is

defined to be the set of isometries of the vector space V fixing
−→
0 ∈ V , and send Λ to Λ. We

would like to note here two equivalences. Given an Eisenstein lattice multiplication by the

element e2π
√
−1/3 is an order 3 automorphism of the lattice Λ fixing only 0 ∈ Λ. Hence the

associated Z-lattice, ΛZ has an automorphism of order 3 with a single fixed point. Conversely,

if we start with a Z-lattice, ΛZ with an automorphism, ϑ, of order 3 fixing only 0 ∈ ΛZ, then

we may define a Hermitian, h(Z,W), form on Λ as:

h(ZZ,WZ) :=
3
2

〈ZZ,WZ〉 +

√
−1
√

3
〈ZZ, ϑ(WZ) − ϑ2(WZ)〉


where 1√

3

(
ϑ (WZ) − ϑ2 (WZ)

)
is nothing but the complex structure on ΛZ ⊗Z R. Similarly, a

Gaußian lattice possesses an automorphism of order 4 fixing only 0: multiplication by
√
−1.

Repeating the above arguments we conclude that a Z-lattice with an automorphism of oder 4

fixing the origin is equivalent to a Gaußian lattice.

We state now the following:

Theorem 3.2.4 ([45, Theorem 0.1]) There is an integral Eisenstein lattice Λ in C1,9 and a

subgroup, Γ, of Aut(Λ) such that Λ+/Γ parametrizes non-negatively curved triangulations of

the sphere which have 5 triangles meeting at 12 marked vertices; where Λ+ is the set of lattice

points with positive square-norm, denoting the number of triangles in the triangulation. The

quotient of H9
C by the action of Γ has finite volume.
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Analogously, we have:

Theorem 3.2.5 There is an integral Gaußian lattice, Λ′ in C1,5 a subgroup, Γ′, of Aut(Λ)

such that Λ′+/Γ
′ parametrizes non-negatively curved quadrangulations of the sphere having 3

quadrangles that meet at 8 marked vertices; where Λ′+ is the set of lattice points with positive

square-norm, which is the number of quadrangles in the quadrangulation. The quotient of

H5
C by the action of Γ′ has finite volume.

Figure 3.6: A sample element of Λ′.

Given a cone metric c, Lemma 3.1.4 provides us with a metric quadrangulation. And given a

metric quadrangulation, Q, of the sphere, for every quadrangle in Q we draw one of the two

diagonals so as to obtain a triangulation, TQ. There are 2| f (Q)| distinct choices for TQ; where

f (Q) denotes the set of faces of a quadrangulation. We, however, have:

Lemma 3.2.6 A(TQ) is independent of the choice of TQ; where A is the hermitian form de-

fined on the vector space of cocycles, see Equation 2.3 for the definition of A, and by abuse of

notation we write A(TQ) to denote the area of the cocycle associated to the metric triangula-

tion TQ.

Proof. It is enough to concentrate on one quadrangle. Letω1, ω2, ω3, ω4 denote the edges and

d1, d2 denote the two possible diagonals of a single quadrangle q ∈ f (Q), see Figure 3.7. Let

us denote by Ai the value of the hermitian form obtained by subdividing q using di, i = 1, 2
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and write:

A1 − A2 =
[
ω1(−ω2) − ω1(−ω2) + ω4(−ω3) − ω4(−ω3)

]
−[

ω3(−ω1) − ω3(−ω1) + ω2(−ω4) − ω2(−ω4)
]

= −ω1ω2 + ω1ω2 − ω4ω3 + ω4ω3+

ω3ω1 − ω3ω1 + ω2ω4 − ω2ω4

= −ω1(ω2 + ω3) + ω4(ω2 + ω3) + ω1(ω2 + ω3) − ω4(ω2 + ω3)

= (ω2 + ω3)(ω1 + ω4) − (ω2 + ω3)(ω1 + ω4)

= −(ω1 + ω4)(ω1 + ω4) + (ω1 + ω4)(ω1 + ω4), as
4∑

i=1

ωi = 0.

= 0.

�

ω1
ω3

ω4

ω2 d2

d1

Figure 3.7: A quadrangle, q, may be divided into two triangles using both d1 and d2.

Proof.[Theorem 3.2.5] Let us choose κi = π/2 for i ∈ {1, 2, . . . , 8} as curvatures, see Theo-

rem 2.1.6. The vector space of cocycles, H, associated to chosen curvature parameters has

signature (1, 8 − 3) by Proposition 2.4.1. We would like to note at this point that as a con-

sequence of Lemma 3.2.6, we may and will write A(Q) for the value of the hermitian form

on a euclidean quadrangulation, instead of a euclidean triangulation. Now, let Q be a non-

negatively curved quadrangulation of the sphere having 8 marked vertices at which exactly 3

quadrangles meet. To Q we associate the cone metric, cQ, on S 2 obtained by declaring that

every quadrangle of Q is a unit square. The cocycle, ZcQ , associated to cQ is by its very defini-

tion an element of H. Moreover, as every q ∈ f (Q) is a unit square, the difference between the

endpoints of the edges under the developing map, see Definition 2.3.6, are naturally elements

of Z[
√
−1]. Let Λ′ denote the set of all cocycles. Multiplying and c ∈ Λ′ by an element of

Z[
√
−1] produces an element of Λ′. Finally, any two elements of Λ′, say c1 and c2 gives us
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the following sum:

A(c1, c2) =
∑

i

Zc1(ei)Zc2(ei) − Zc1(ei)Zc2(ei)

each of whose elements are in Z[
√
−1], hence the sum is an element of Z[

√
−1]. �

Proof.[Theorem 3.2.4, Sketch] Following the same lines of the proof of Theorem 3.2.5, we

choose κi = π/3, i = 1, . . . , 12 as curvature parameters and consider the vector space of

cocycles, H, associated to these parameters. For any given triangulation, T , we declare that

each triangle is equilateral of unit side length in order to obtain a euclidean triangulation. We

then consider the associated cone metric, cT , which is by construction an element of H. The

Eisenstein lattice, Λ, is comprised of all such triangulations inside H which is of signature

(1, 12 − 3). �

Let us now concentrate on the lattice Λ. One has the following inclusion relations:

Λ+ ⊆ C1,9

Proj(Λ+) ⊆ Proj(C1,9)

Let now Z be a cocycle in Proj(Λ+). Then the elements above Z may be obtained by subdivi-

sion, see Figure 3.8 for an example.

Figure 3.8: Sub-dividing edges of a triangle.

Remark 3.2.7 As in the case of quadrangulations of lattice quadrangles, the possible shapes

of quadrangulations of the sphere is obtained via considering the action of C× on H, after

considering the cocycles with positive norm.

We end this section with two aspects of Theorem 3.2.4, and Theorem 3.2.5, both of which

are related to the absolute Galois group, Gal(Q). The first one is that, by dualizing the tri-

angulation, of quadrangulation, one obtains a bipartite graph on S 2. This way, each point of
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Proj(Λ+) and Proj(Λ′+) may be considered as an arithmetic curve, or a genus zero subgroup

of PSL2(R).

To demonstrate another aspect we make a little pause, and introduce origamis and Veech

groups, see [39] or [24] for further details:

Definition 3.2.8 An origami is defined to be a finite set of Euclidean squares of side length

one that are glued according to following set of rules:

i. every left edge is identified with a right edge(by a translation),

ii. every upper edge is identified with a lower one(by a translation),

iii. the closed surface obtained after the identifications is oriented and connected.

�

The simplest origami, which we call E∗, is obtained by considering only one unit square. The

above rules leaves us no choice but to glue the upper edge with the lower one, and left edge

with the right one. Hence, if we mark a vertex of the square, then every other vertex of the

square has the same marking, and we get a punctured, or marked, torus, see Figure 3.9.

Figure 3.9: The simplest origami, E∗.

For an arbitrary origami, if one marks the vertices considering the identifications then, one

gets a ramified covering of E∗, which is unramified away from the vertices. A surface together

with a complex atlas whose every transition function is a translation is called a translation

surface. If one identifies E2 with C then to every origami, one associated a translation surface,

which becomes a Riemann surface under E2 � C. For a translation surface, call X, we define

the associated affine group as:

A f f (X) := {σ : X −→ X |σ is an affine diffeomorphism preserving orientation}. (3.2)
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In other words, σ can be locally written as Az + t, for some A ∈ GL2(R) and t ∈ C.

When X is of finite volume, the matrix A ∈ SL2(R). Also, for any matrix B ∈ SL2(R)

one gets another Riemann surface structure, which is essentially the same structure when-

ever B ∈ SO2(R). Hence the embedding SL2(R) ↪→ Tg,N factors through the quotient

H � SL2(R)/SO2(R) ↪→ Tg,N ; where X is a surface of genus g with N punctures and Tg,N

stands for the Teichmüller space of genus g surfaces with N punctures. The embedding is an

isometry with respect to the Poincaré metric on H and Teichmüller metric on Tg,N , and the

image is called a Teichmüller disc, which is geodesic, see [14]. In view of the above construc-

tions, every origami is represented by a point Λ′+; hence we conclude that Λ′+ parametrizes

Teichmüller discs in Tg,N for any g and N corresponding to curves having exactly 8 points at

which meets 3 squares instead of 4.

42



CHAPTER 4

TWO APPLICATIONS

This section is devoted to demonstrate two arithmetical applications of the theory we have

developed so far. After a brief overview of machinery to be used, we demonstrate an idea

to find Q-rational points on moduli of pointed rational curves after considering a particular

case. We will, then consider another application concerning the action of the absolute Galois

group, Gal(Q), on dessins d’enfants. Namely, we will employ a technique used already in

[53], and we further introduce a family of rational functions, what we call Gausß- Chebyshev

functions, which are at the same time Belyı̆ morphisms.

4.1 Rational Points on Moduli of Pointed Rational Curves

4.1.1 Configuration Spaces and Braid Groups

Let us recall basic definitions for sake of fixing notation. Let M denote a (real or complex)

manifold of dimension dimension at least 2. The n-dimensional fat diagonal of M is defined

to be

∆n
M := {(x1, . . . , xn) ∈ Mn : xi = x j for some i , j}.

The configuration space, CnM, of n points of M may then be defined as:

CnM :=
(
Mn \ ∆n

M

)
/ ∼

= {(x1, . . . , xn) ∈ Mn : xi , x j for every i , j}/ ∼;
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where we call two points in Mn \ ∆n
M equivalent whenever one may be obtained as a permu-

tation of coordinates of the other. Namely, the natural projection from Mn \ ∆n
M to Cn(M) is a

Galois covering whose Galois group is Σn, symmetric group on n letters. Fundamental groups

of configuration spaces play a central role as we will see:

Example 4.1.1 Let us choose M = C. The fundamental group of the configuration space of

n points on C(or E2), CnC, is called the Artin (or full) braid group. The natural covering

Mn \ ∆n
M −→ CnM is, as noted above, regular covering, in other words π1(CnM) is an Σn

extension of π1(Mn \ ∆n
M). Precisely, π1(Cn(M))\π1(Mn \ ∆n

M) � Σn. The group π1(Mn \ ∆n
M)

is called the pure braid group.

A presentation of the full braid group is very well-known:

Theorem 4.1.2 ([3]) The full braid group on n strings is generated by σi, see Figure 4.1 for

a geometric description, subject to the following relations

i. σiσ j = σ jσi for |i − j| ≥ 2, i, j ∈ {1, . . . , n − 1},

ii. σiσi+1σi = σi+1σiσi+1, for i ∈ {1, . . . , n − 2}.

. . . . . .

1 2 i i + 1 n

Figure 4.1: Geometric description of σi.

Example 4.1.3 Let now M be the sphere. For any given pair of points in S 2, say z and w, and

any path, γ(t) = (z(t),w(t)), based at (z(0),w(0)) = (z,w), the following argument tells us that

π1((S 2)2 \ ∆n
S 2), the pure braid group of the sphere on two strings, is trivial. Indeed, z , w

allows us to write continuous functions zs(t), ws(t) : [0, 1] × [0, 1] −→ (S 2)2 \ ∆n
S 2 so that

i. for fixed so ∈ [0, 1], γso = (zso,wso) is a path in (S 2)2 \ ∆n
S 2 ,
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ii. z1(t) = z(0), and w1(t) = w(0) for every t ∈ [0, 1], i.e. γ1(t) is the trivial path.

More explicitly, for every z(t), respectively w(t), define the functions zs(t) = sz(t)+ (1− s)z(0)),

respectively ws(t) = sw(t) + (1 − s)w(0)). Then the homotopy γs(t) = (zs(t),ws(t)) is a path

in (S 2)2 \ ∆2
S 2 . Regularity of the covering C2S 2 −→

((
S 2

)2
\ ∆2

C

)
, see Example 4.1.1, tells us

that the full braid group of the sphere, π1(C2S 2), is isomorphic to Σ2 = Z/2Z.

More generally, we have

Theorem 4.1.4 ([11]) π1(CnS 2) may be generated by n − 1 elements, δ1, . . . δn−1, subject to:

i. δiδ j = δ jδi for |i − j| ≥ 2, i, j ∈ {1, . . . , n − 1},

ii. δiδi+1δi = δi+1δiδi+1, for i ∈ {1, . . . , n − 2},

iii. δ1 . . . δn−1δn−1 . . . δ1 = 1.

4.1.2 Mapping Class Groups and Teichmüller Spaces

Let S g,N denote a surface of genus g ∈ Z≥0 with N ∈ Z≥0 marked points(or punctures),

{p1, . . . , pN}. We list now some groups of self diffeomorphisms of S g,N :

1. Di f f +(S g,N) :=orientation preserving self diffeomorphisms of S g,N which maps the N

marked points to itself set-wise,

2. Di f f +
0 (S g,N) :=elements of Di f f +(S g,N) which are isotopic to id : S g,N −→ S g,N on

S g,N \ {p1, . . . , pN}.

There are infinitely many inequivalent complex structures on S g.N provided χ(S g,N) ≥ 1

except for the case when S g,N = P1 \ {0, 1,∞}.

Definition 4.1.5 The mapping class group or (Teichmüller) modular group of the surface

S g.N , denoted Γg,N , is defined to be the quotient Di f f +(S g,N)/Di f f +
0 (S g,N). �

We may now state:
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Theorem 4.1.6 ([6, Theorem 4.5]) For N ≥ 3 the mapping class group of the sphere minus

N points may be generated by ρ1, . . . ρn−1 satisfying the following set of relations:

i. ρiρ j = ρ jρi for |i − j| ≥ 2, i, j ∈ {1, . . . , n − 1},

ii. ρiρi+1ρi = ρi+1ρiρi+1, for i ∈ {1, . . . , n − 2},

iii. ρ1 . . . ρn−1ρn−1 . . . ρ1 = 1,

iv. (ρ1 . . . ρn−1)n = 1.

Two remarks are in order:

Remark 4.1.7 In fact, the generators, as in the case of Artin braid group, admit a geometric

description. Let Di denote a disc containing no marked points other than pi and pi+1. There

exists a self diffeomorphism, call fi, of S 2 which interchanges pi with pi+1 leaving S 2 \ Di

fixed. The maps fi may be identified with ρi. Moreover, the functions fi may be regarded as

Dehn twists along a curve containing pi and pi+1.

Remark 4.1.8 It is known that, [6, Lemma 4.2.3], the center of the full braid group of S 2 on

N strings, π1(CNS 2), is generated by the element

(δ1 . . . δN−1)N

which is of order 2.

4.1.3 Appell - Lauricella Functions

Let p1, . . . , pN be distinct points on the projective line, P1
C, together with positive rational

numbers µ1 . . . , µN , to which we will refer as weights, with the property that
∑N

i=1 µi = 1. For

technical reasons we assume that µis are not integers. Consider the following differential

ω =

N−1∏
i=1

(x − pi)−µi dx. (4.1)
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Remark 4.1.9 One can choose a linear fractional transformation to reduce the above differ-

ential form in the following form:

ωnorm = x−µ1(x − 1)−µ2

N−1∏
i=3

(x − pi)−µi dx, (4.2)

as PGL2(C) acts 3-transitively on P1.

Definition 4.1.10 The Appell - Lauricella function in variables p3, . . . , pN−1, see Remark 4.1.9,

is defined to be the integral: ∫
ω.

�

Remark 4.1.11 The above integral is multi-valued. One has to choose a branch, which can

be taken to be the set of all x so that argument of x lies in (−π/
∑N−1

i=1 µi, π/
∑N−1

i=1 µi).

Choose the least possible positive integer η with the property that ηµi ∈ N for each

i ∈ {1, . . . ,N}. Then the pull-back of ω on the normalization of the curve with affine equation

yη =
∏N−1

i=1 (x − pi)ηµi is a differential of the first kind.

Remark 4.1.12 The above theory is closely related to hypergeometric differential equations.

More precisely, suitably chosen Pochhammer cycles, [37], in x-coordinate around singular

points {0, 1, p3, . . . , pN−1,∞}, say γ1, . . . , γN−2, produces the solutions of the hypergeometric

differential equation corresponding to the above system. Namely, the functions
∫
γi
ω forms a

basis for the solution space for such a system. This implies, in particular that the map Sch

defined as:

p = (p3, . . . , pN−1) 7→
[∫

γ1

ωnorm : . . . :
∫
γN−2

ωnorm

]
∈ PN−3

is well defined and is called the Schwarz map. Remark also that the above integrals are peri-

ods of the curve yη =
∏N−1

i=1 (x − pi)ηµi . Further, the image, as we have noted in Remark 3.2.3,

N − 3 dimensional complex ball inside PN−3 on which acts the monodromy group, denoted by

∆(κ1, . . . , κN).

Schwarz map is multivalued. Depending on the corresponding monodromy group the arith-

meticity of the values of Sch may be determined in view of the following theorem which is a

corollary to [42, Main Theorem].
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Theorem 4.1.13 If the complex numbers p3, . . . , pN−1 ∈ Q and the monodromy group is

arithmetic then the Prym variety associated to yη =
∏N−1

i=1 (x − pi)ηµi , which we explain below,

has complex multiplication if and only if all periods∫
γ1

ωnorm, . . . ,

∫
γN−2

ωnorm

are Q multiples of each other.

Jacobian and Prym Varieties. Let X be a smooth projective algebraic curve of genus g.

Every element γ ∈ H1(X,Z) can be realized as an element of the dual of H0(X,ΩX), sending

every ω to
∫
γ
ω. The Jacobian of X, denoted by Jac(X) is the quotient H0(X,ΩX)∗/H1(X,Z).

Let Pic0(X) denote divisors on X which are linearly equivalent to 0 modulo linear equivalence.

Any divisor,
∑

i pi−
∑

i qi, in Pic0(X) can be mapped into Jac(X) via (
∑

i

∫ pi

qi
ω1, . . . ,

∑
i

∫ pi

qi
ωg).

which is an isomorphism(Abel - Jacobi Theorem). We may thus identify Jac(X) with Pic0(X).

Suppose now we are given a surjective morphism of smooth projective curves f : X −→ Y .

The norm map, N f , from Jac(X) to Jac(Y) is defined as:

OX

∑
i

ni pi

 7→ OY

∑
i

ni f (pi)

 .
The Prym variety associated to the map f is the connected component of 0 in ker N f . Let us

now restrict ourselves to the case where X is the curve given by the equation

yη =
∏N−1

i=1 (x − pi)ηµi and Yd is given by yd =
∏N−1

i=1 (x − pi)ηµi ; where d runs over all proper

divisors of η. Then, we define the Prym variety associated to X as the connected component

of 0 in
⋂

d

ker N fd where:

fd : X −→ Yd

(x, y) 7→ (x, yη/d)

with d being a proper divisor of η.

4.1.4 From Lattices to Q-Rational Points

Recall that we denoted the space of all Euclidean cone manifolds having N singular points

with concentrated curvatures κ = (κ1, . . . , κN) up to orientation preserving similarity by C(κ).

If one labels the singular vertices, then one obtains a finite covering of C(κ),
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call P(κ) = P(κ1, . . . , κN), whose fundamental group is the pure braid group of the sphere

on N strings. The fundamental group of C(κ) depends solely on the curvature parameters, κi.

If, for instance, κi , κ j for every i , j then π1 (C (κ)) is nothing but the pure braid group of

the sphere. In the other extreme case, i.e. when κi = κ j for each i, j, the fundamental group

of C(κ) becomes the full braid group of the sphere on N strings, which is possible only for

finitely many cases as opposed to the first extreme case, in which there are infinitely many

possibilities.

Given a cone metric c ∈ C(κ), we saw that c defines a complex structure on S 2. Hence if we

forget about the metric c and consider only the complex structure, then we obtain a mapping

from C(κ) to the moduli space of smooth N-pointed rational curves. However, the target space

cannot beM0,N , for the induced homomorphism from the fundamental group of C(κ) to the

mapping class group is not always an isomorphism. Nevertheless the target is a finite cover

ofM0,N . The following relates C(κ) to moduli of pointed rational curves:

Theorem 4.1.14 ([45, Theorem 8.1]) The map from C(κ) toM0,N , denoted by S, described

above is a homeomorphism. In particular, when κi = κ j for each i, j ∈ {1, . . . ,N} we have an

isomorphism.

There is an inverse to the map S, denoted by S−1, explained in the proof of [45, Theorem

8.1]]. We, on the other hand, already know an inverse to S. Any element ofM0,N comes with

a distinguished set of points which forms the singular set. The metric, which is unique up to

normalization, is the provided by Theorem 2.1.6. For further details see [47].

Similarly, we have a map T : C(κ) −→ X(κ) = X(κ1, . . . , κN); where X(κ) denotes a finite

covering of CNP1. The map sends every euclidean cone metric c to its singular set S c. And

as in the case of S, the degree of the covering depends on the curvature parameters, see

Commutative Diagram 4.2 for an overview of the described maps.

Example 4.1.15 A classical case of the above phenomenon occurs when one considers the

configuration space of 4 points on P1, in other words when one chooses the parameters as
2π
2 ,

2π
2 ,

2π
2 ,

2π
2 . One obtains the following diagram:
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P1 \ {0, 1,∞} ∆∞,∞,∞\H

C4P1 PSL2(Z)\H =M1

Commutative Diagram 4.1: The particular case: 4 points on P1.

On the other hand, one has a natural quadrangulation of each such configuration consisting

of two quadrangles. As we did in the proof of Theorem 3.2.5, let us set each quadrangle to be a

unit square. Then the curve inM1 one gets has the affine equation y2 = x3−x, which is defined

over Q. As the map betweenM1 andM0,4 is algebraic the corresponding pointed rational

curve is also defined over Q. Another way to see this, which is somewhat more appropriate for

generalization is the following: for the curve corresponding to the quadrangulation consisting

of two unit squares glued from their boundary, one may take the fourth ramification point to

be defined over Z[
√
−1], hence the Jacobian has complex multiplication, [30, Theorem 12.8]

or Theorem 4.1.13, thus we get an algebraic point.

S (C (κ)) C(κ) S (C (κ))

CNP1/PGL2(C) M0,N

BN−3/∆(κ1, . . . , κN)

S

S−1

�

S

Sch

Commutative Diagram 4.2: Configuration spaces, moduli of cone metrics and pointed rational

curves.

Remark 4.1.16 We are interested in the cases where we obtained the lattices Λ and Λ′,

namely the following cases

κ =

(
1
6
, . . . ,

1
6

)
︸      ︷︷      ︸

12 times

and κ′ =

(
1
4
, . . . ,

1
4

)
︸      ︷︷      ︸

8 times

,

respectively. The vertical arrows in Commutative Diagram 4.2 reduces to identity and we get

the following simpler diagram:
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C (κ) M0,N

CNP1/PGL2(C) BN−3/∆(κ1, . . . , κN)

S

S−1

S �

Sch

Commutative Diagram 4.3: The cases κ and κ′.

Thus, one expects that the points of Proj(Λ+), respectively Proj(Λ′+), corresponds to Q ratio-

nal points ofM0,12, respectivelyM0,8.

4.2 Graphs on Surfaces

In this section we will begin with defining the algebraic fundamental group, then concentrate

on the concept of embedded graphs, which are called dessins d’enfants by Grothendieck in

[17]. Our main motivation for this introductory section is [35].

4.2.1 Analogy Between Galois and Fundamental Groups

We will try to point out the analogy between Galois groups and fundamental groups and then

try to introduce the concept of arithmetic fundamental groups which unifies both approaches.

Galois Groups. To every given extension, K/k, of fields one may associate a group known

as the Galois group, Gal(K/k) defined as:

Gal(K/k) = {σ : K −→ K ∈ Aut(K) |σ|k = idk} .

Now fix an extension K/k. To every subfield L of K which is also an extension of k, one may

associate the corresponding Galois group, Gal(L/k) which is clearly a subgroup of Gal(K/k).

And conversely, to every subgroup of H ≤ Gal(K/k) we may associate the fixed field of H:

KH := {a ∈ K | h(a) = a, ∀ h ∈ H}.

In this setup the fundamental theorem of Galois theory may be stated as:
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Theorem 4.2.1 (Fundamental Theorem of Galois Theory) If the extension K/k is finite and

Galois, then one has a one to one correspondence between the subfields L/k of K/k and sub-

groups of Gal(K/k).

Pictorially we have:

Gal(K/K) = {id} ≤ Gal(K/L) ≤ Gal(K/k)

KGal(K/K) = K ≥ KGal(K/L) ≥ KGal(K/k) = k

Fundamental Groups. Let X be a path connected space. One may then speak about the

homotopy class of paths between any two given points in X. If, further, one fixes a base point

x ∈ X, then the set of paths whose both initial and terminal point is x is a group called the

fundamental group of X, denoted by π1(X, x). Now, suppose furthermore that X is locally path

connected and locally simply connected, so that X admits a universal cover, X̃. Then π1(X, x)

acts on X̃ and to every connected covering Y of X, one has a corresponding subgroup, ΓY , of

π1(X, x). We conclude:

π1(X) ≥ ΓY ≥ π1(X̃) = {id}

X Y X̃

4.2.2 Arithmetic Fundamental Groups

One may unify the above two parallel theories in a quite general setting. Our notation is that

of [33]. For this, we start with a definition:

Definition 4.2.2 Let C be a category which satisfies the following properties:

• there is an initial and a terminal object, I and T respectively, in C,

• for A, B, S ∈ Ob(C) with A −→ S , B −→ S , A ×S B ∈ Ob(C),

• A, B ∈ Ob(C) implies that the disjoint union A
∐

B ∈ Ob(C),
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• any morphism in C can be written as a composition of an effective epimorphism and a

monomorphism,

• if A ∈ Ob(C) and G is a finite group of automorphisms of A then the quotient A/G ∈

Ob(C) and the morphism A −→ A/G is an effective epimorphism in C.

Assume further that C is equipped with a functor F : C −→ F-Set; where F-Set denotes the

category of finite sets, so that:

• F (A) = ∅ if and only if A = ∅,

• the set F (T ) has cardinality one, i.e. it is the terminal object, and

F (A ×S B) = F (A) ×F (S ) F (B) for any A, B, S ∈ Ob(C),

• F (A
∐

B) = F (A)
∐
F (B),

• any effective epimorphism is mapped to an onto map,

• for A ∈ Ob(C) with a finite group of automorphisms G, the induced map from F (A)/G

to F (A/G) is a bijection,

• whenever f : A −→ B is a morphism in C whose image F ( f ) : F (A) −→ F (B) is a

bijection then f itself is a bijection;

where by F-Set we mean the category of finite sets. Then we refer to C as a Galois category

and the functor F is called fundamental functor. �

Example 4.2.3 (Finite Sets with identity functor) The category F-Set with the functor ID

sending every set as well as every morphism to itself is a Galois category. Indeed, set with one

element is the terminal object, recall here that terminal object is unique up to isomorphism.

Empty set is the initial object. Whenever we are given α : A −→ S and β : B −→ S , then the

set

A ×S B = {(a, b) ∈ A × B |α(a) = β(b) }

is in Ob(C). Disjoint union of two finite sets is again finite, hence in F-Set. And the quotient

of a set by a finite group of automorphisms is again a finite set together with the natural

projection. Further, it is quite clear that the identity functor is a fundamental functor.
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Example 4.2.4 (Category of étale coverings) Let S be a locally noetherian, connected scheme

and by Et(S ) denote the category of étale coverings of S . The empty set is, as in Exam-

ple 4.2.3, the initial object, and S itself is the terminal object. [33, 3.3.3, (4)] implies that

given two arrows α : A −→ X and β : B −→ X in Et(S ), the fiber product α ×X β : A ×X B

is in Et(S ). The property concerning disjoint unions is straightforward. One may obtain the

decomposition of an arrow, α : A −→ X in Et(S ) simply by choosing B = α(X) and let

X = B
∐

B1 to write:

A X

B

α

Now, we fix a point s ∈ S and an algebraically closed field K containing k(s). Then we have:

Now, we define the functor F : Et(S ) −→ F-Set to send an element X ∈ Ob(Et(S )) to the

Spec(K) X

Spec(k(s)) S

set of all S -morphisms for which the above diagram commutes. In other words every X is

sent to the set of K-points of X over s. It is clear that F (A) = ∅ ⇔ A = ∅. F (S ) has

one element and F (A ×X B) = F (A) ×F (X) F (B) and F (A
∐

B) = F (A)
∐
F (B) for any

A, B, X ∈ Ob(Et(S )). Say we are given an effective epimorphism α : A −→ X. Take any

element x ∈ X lying above s, or equivalently, take a k(s) monomorphism of k(y) into K. Then

we may extend this monomorphism to a k(s) monomorphism of k(a) into K; where α(a) = x.

Suppose that G is a finite group of S automorphisms of A. Then we have a natural surjective

morphism pr : A −→ A/G, together with the following commutative diagram:

Spec(K) A A

A/G

g ∈ G

So we obtain a surjective morphism F (A)/G −→ F (A/G) which is, as a consequence of [33,

Lemma 4.2.1], in fact a bijection. Finally, for a given f : A −→ B with

F ( f ) : F (A)
�
−→ F (B), we have that the degree(rank) of f is one, hence it is an isomor-

phism. In particular, let S = Spec(k) for some field k. Then we know that objects of Et(k) are
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finite separable field extensions of k, and we have F (X) = Homk(L, ksep); where X = Spec(L),

ksep is the separable closure of k in K which is a fixed algebraically closed field containing k,

as above.

Example 4.2.5 (Category of topological coverings) Let X be a connected, locally path con-

nected, locally simply connected topological space, and T op(X) be the category of connected

topological coverings of X with morphisms being covering maps. Fix a point x ∈ X and for

any topological cover π : Y −→ X define F (Y) = π−1(x).

Theorem 4.2.6 ([33, 4.4.1]) Given a Galois category C with fundamental functor F , there

exists a pro-finite group Π with the property that C and the category of Π-sets, i.e. sets on

which Π acts continuously are equivalent.

Definition 4.2.7 The group Π is called the fundamental group of the category C. �

In Example 4.2.4 we have seen that the category of étale coverings of a scheme X is a Galois

category with the functor F . The corresponding pro-finite group is called the étale funda-

mental group of X. When we fix our base field as Q then we refer to this group also as the

arithmetic fundamental group. On the other hand, the fundamental group Π we obtain from

Example 4.2.5 is the usual topological fundamental group, π1(X, x). In fact, every topolog-

ical cover of X, i.e. every element in Ob(T op(X)) determines a subgroup in π1(X, x), and

conversely.

4.2.3 Embedded Graphs

We will begin this section by recalling the celebrated result due to Belyı̆:

Theorem 4.2.8 ([4]) An algebraic curve X may be defined over the field of algebraic num-

bers, Q, if and only if X admits a meromorphic function (or a Belyı̆ morphism), f : X −→ C,

ramified at most over 3 points which may be chosen to be 0, 1 and∞.

Combining Theorem 4.2.6 and the well-known Riemann existence theorem we obtain the

following:
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Theorem 4.2.9 The arithmetic fundamental group of P1
Q
\ {0, 1,∞} is isomorphic to the pro-

finite completion of the fundamental group of P1
C \ {0, 1,∞}. Furthermore, the following

categories are equivalent:

• finite topological covers of P1
C \ {0, 1,∞},

• finite étale covers of P1
Q
\ {0, 1,∞}(or P1

C \ {0, 1,∞}),

• finite sets with the action of the algebraic fundamental group πalg
1 (P1

Q
\ {0, 1,∞}),

• finite sets with the action of the fundamental group π1(P1
C \ {0, 1,∞}),

• subgroups of π1(P1
C \ {0, 1,∞}, x) up to conjugation.

There is one more category which is equivalent to the ones listed above. Namely, the category

of embedded graphs:

Definition 4.2.10 An embedded graph or a map is a graph, Γ, embedded into a topological

surface, X, i.e. a closed, oriented, two dimensional topological manifold so that

• edges intersect only at vertices,

• each connected component of X \ {image of Γ} is homeomorphic to a disc.

The embedding of the graph into X is denoted by ι. �

It is common to regard graphs as cell complex comprised only of 0 and 1 cells, and hence

embedded graphs as an injection ι : Γ −→ X satisfying X \ ι(Γ) is a union of open sets each of

which is homeomorphic to a disc.

Definition 4.2.11 Each connected component of X \ ι(Γ) is called a face of Γ. �

Observe that since X is oriented, around each vertex of Γ there is a canonical orientation of

the edges of Γ coming out of this vertex. Keeping in mind these observations we define two

embedded graphs to be equivalent if there is a map between vertices and edges respecting

orientation.

56



Then, to every curve admitting a meromorphic function ramified over at most three point, we

associate an embedded graph, which is by construction bipartite. In fact, the graph is nothing

but the inverse image of the closed interval [0, 1]. Conversely, every bipartite embedded graph

defines a complex structure, hence a Riemann surface(or equivalently an algebraic curve),

[50]. In the light of Theorem 4.2.8, we conclude the equivalence we mentioned.

Figure 4.2: A Graph Embedded in the Riemann Sphere.

4.2.4 A Computation

Hypergeometric Differential Equation. The equation:

d2ω

dx2 + p(x)
dω
dx

+ q(x)ω = 0 (4.3)

where p(x) and q(x) are functions of the complex variable x, is referred to as a hypergeometric

differential equation. A point x = xs is called a singular point of (Equation 4.3) if p or q, or

both, have a pole at xs. xs is, further, called a regular singular point of (Equation 4.3), when

p has at most a pole of order 1, and q has at most a pole of order 2 at xs; and the equation is

called Fuchsian, exactly when all the singular point are regular. The first non-trivial Fuchsian

differential equation occurs when it possesses 3 regular singular points, i.e. when we have

a hypergeometric differential equation. In suitable coordinates hypergeometric differential

equation can be put into the form:

d2ω

dx2 +

[1 − λ
x

+
1 − µ
x − 1

]dω
dx

+

[ (1 − λ − µ)2 − ν2

4x(x − 1)

]
ω = 0 (4.4)

where, the numbers λ, µ, ν are referred to as the exponent differences. The solutions of Equa-

tion 4.4 exist, and are linearly independent, by the fundamental theorem of Cauchy([51, Sec-

tion 2.2]), and are given by hypergeometric series. Throughout we will name these solutions

η1 and η2.
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It was observed by Schwarz that the behavior of the quotient y(x) =
η1(x)
η2(x) is very special. More

precisely, one can show

Proposition 4.2.12 ([13]) Any branch of the function y(x) maps C to two neighboring trian-

gles in

i. H (considered as equipped with its usual hyperbolic structure, when λ + µ + ν < 1)

ii. C (considered with its euclidean structure, when λ + µ + ν = 1)

iii. P1 (considered with its spherical metric, when λ + µ + ν > 1)

with angles λπ, µπ and νπ.

Triangle Groups and Dessins d’Enfants. Recall first that a triangle group of signature

(k, l,m), k, l,m ∈ Z>0 has the following presentation

∆k,l,m := 〈σ, τ |σk = τl = (σ · τ)m = 1〉.

Suppose we are given an embedded graph, Γ, on an oriented surface, X. The embedding ι,

see Definition 4.2.10, gives us an orientation around every vertex. Hence if we number the

edges of Γ, or in short a marking of Γ, then we obtain a subgroup, called the cartographic

group, denoted by C(Γ), of the symmetric group on |e(Γ)| letters whose generators are rota-

tions around black vertices, call σ, and rotations around white vertices, call τ. Let k, l, m be

the least common multiple of valencies of black vertices, white vertices, faces of Γ. Thus we

obtain an epimorphism:

ϕ : ∆k,l,m := −→ C(Γ)

σ̃ 7→ σ

τ̃ 7→ τ,

whose kernel is isomorphic to the surface group of the curve X; where by a surface group we

mean a torsion free subgroup of PSL2(R), say, with the property that kerϕ\H � X.
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Computing Belyı̆ Morphisms. There is a natural family of curves, say Yn, each of which

is defined over a number field by Theorem 4.2.8, whose nth element can be constructed as

follows:

1. Take a unit Euclidean square,

2. Divide the edges of the square into n equal parts,

3. Connect the possible edges by new lines parallel to edges of the square, call the resulting

square Qn,

4. Mark the midpoints of the squares with a black vertex, and connect the black vertices

lying in neighboring squares,

5. Put a white vertex at every point where lines connecting black vertices and new lines

intersects,

6. Identify the top edges with bottom and left edge with right to get a torus, see Figure 4.3.

7. Use the inclusion relation between Z[
√
−1] and ∆2,4,4 to project down to P1, see Fig-

ure 4.4 for a geometric description, and obtain Yn.

Figure 4.3: First two tori with embedded graphs.

Remark 4.2.13 The steps 4., 5., 6., are referred to taking barycentric subdivision in litera-

ture.

The embedded graph defining the curve Yn will be referred to as Γn. Figure 4.5 displays the

curve Y3 together with Γ3.

Remark 4.2.14 To every Γn, one may associate a quadrangulation of the sphere by connect-

ing the midpoint of each face by the white vertices lying on the boundary of the face. Observe
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Fundamental region
for ∆2,4,4

Fundamental region

for Z[
√
−1]

Figure 4.4: Geometric description of the natural projection between ∆2,4,4 and Z[
√
−1].

that such a quadrangulation is an element of the compactification of the space in which the

lattice Λ′ found in Theorem 3.2.5 lies.

The computation uses the following commutative diagram:

Z[
√
−1]\C Z[

√
−1]\C

Hn\C ∆(2, 4, 4)\C P1

mn

η1
η2

where the functions η1 and η2 refers to the solutions of the hypergeometric differential equa-

tion for ∆2,4,4, Hi corresponds to the subgroup of PSL2(R) making the square commutative,

mi refers to the multiplication by i self-morphism of the elliptic curve Z
√
−1\C, which has

Weierstraß form y2 = 4x3 − x.

The corresponding Belyı̆ morphisms in this case are composition of the arrows on the bottom.

However, we know the ramification points are the i-division values of a particular elliptic

function, where by an i-division value we mean the value of an elliptic function at points

x ∈ Z
√
−1\C so that i · x ∈ Z[

√
−1]. Our aim is thus to find the ramification points of the

Belyı̆ morphism. For our purposes it is enough to consider the elliptic function, w = ε(z),

z 7→ w =
1

(℘(ω3) − ℘(ω1)) (℘(ω3) − ℘(ω1))
(℘(z) − ℘(ω1)) (℘(z) − ℘(ω2))

= −4℘2(z) + 1,

whereω1 is the real andω2 is the purely imaginary period of y2 = 4x3−x, andω3 = 1
2 (ω1+ω2).

The last equality is a result of the fact that ℘(ω1) = 1
2 = −℘(ω2), which implies ℘(ω3) = 0.
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Then the Belyı̆ morphism corresponding to Yn, call gn, up to a constant, has the following

general form:

gn(w) := cn

∏
z∈ white vertices (w − ε(z))ord(z)∏

z∈ poles (w − ε(z))ord(z)

where by poles we mean midpoints of faces, and by order the valency of corresponding vertex

or face, and cn is a constant which will be described in Example 4.2.16.

Definition 4.2.15 The corresponding functions gn are referred to as the Gauss-Chebyshev

functions. �

Example 4.2.16 We would like to demonstrate the case n = 3, whose dessin can be found in

Figure 4.5. The list of ramification points may be found in Table 4.2. Thus, g3 is equal to:

c3

[∏
p∈P3(w − ε(p))

∏
q∈Q3(w − ε(q))2

]
(w − ε(0))(w − ε( 2ω1

3 ))2(w − ε( 2ω3
3 ))2(w − ε( 4ω1

3 ))2

where c3 is the normalization constant and Q3 := {
2ω1

3 ) +
ω2
3 , ω1 +

2ω2
3 , 4ω1

3 ) +
ω2
3 },

P3 = {
ω1
3 , ω1,

5ω1
3 }. As 1 is a ramification value, we choose c3 = 1

g3(ω3)/3 , and in general,

cn = 1
gn(ω3/n) .

Remark 4.2.17 The well-known formula

℘(z + z′) =
1
4

[
℘′(z) − ℘′(z′)
℘(z) − ℘(z′)

]
− ℘(z) − ℘(z′)

together with the fact that ℘(ω1), ℘(ω2) ∈ Q implies that for every n the values of ε are

algebraic. However as n assumes larger values the degree of the algebraic number gets

larger, too. Nevertheless, as a result of dessin being symmetric with respect to R ∪ {∞} ⊆ P1

the field of definition of the Belyı̆ morphism is a subfield of a totally real field.

Numerical data for the ramification points of g3 may be found in Table 4.2.

Remark 4.2.18 A similar family for the lattice Λ appeared in Theorem 3.2.4 may be defined.

The description of the family and corresponding calculations of Belyı̆ morphisms as well as

an application to curves of higher genera may be found in [53].
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white vertices black vertices poles
(inverse image of 0) (inverse image of 1) (inverse image of∞)

1
3ω1

1
3ω3 0

2
3ω1 + 1

3ω2 ω1 + 1
3ω2

2
3ω1

ω1 ω3
2
3ω3

ω1 + 2
3ω2

5
3ω1 + 1

3ω2
4
3ω1

4
3ω1 + 1

3ω2
4
3ω1 + 2

3ω2
5
3ω1 2ω1 = 0 mod Z[

√
−1]

Table 4.1: Points on E whose values give ramification data of g3.

Figure 4.5: The curve Y3.

zeros of g3

ε( 1
3ω1) = −26.8204616940335

ε( 2
3ω1 + 1

3ω2) = 0.9282032302755 + 0.9974192818755
√
−1

ε(ω1) = 0
ε(ω1 + 2

3ω2) = 0.9640552334825
ε( 4

3ω1 + 1
3ω2) = 0.9282032302755 − 0.9974192818755

√
−1

ε( 5
3ω1) = −26.8204616940335

poles of g3

ε(0) = ∞

ε( 2
3ω1) = −1.15470053837925
ε( 2

3ω3) = 1.15470053837925
ε( 4

3ω1) = −1.15470053837925
ε( 4

3ω1 + 2
3ω2) = +1.15470053837925

Table 4.2: Zeros and poles of g3.
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