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ABSTRACT

AUDITABLE AND VERIFIABLE ELECTRONIC
VOTING WITH HOMOMORPHIC RSA TALLYING

Yucel, Okan
Ph.D., Department of Information Systems

Supervisor: Prof. Dr. Nazife Baykal

July 2010, 126 pages

In this work, we investigate the general structared the concepts behind the
contemporary electronic voting schemes, with spemaphasis on voter verifiable

preferential voting, homomorphic tallying and vofaeivacy. We firstly propose a

modification in the Single Transferable Voting (STiethod to be applied to large
scale elections with electoral barriers. Our prapgsevents the loss of votes and
distributes them securely to the second or higheices of their voters. This method
is most suitably used in e-voting with the voterifi@ble “Prét a Voter: All-In-One”

scheme that utilizes mix-networks for anonymity.



We present a case study considering 2007 TurkistiaRentary Elections to
demonstrate the effect of preferential voting oe tection systems that have
electoral barriers. After the mathematical formiglatof the election procedure, we
calculate the wasted votes in 2007 elections aedgmt simulation results for 69
election regions (that have no independent parlnm@embers) by using a
combination of “modified STV and d’Hondt” methods;cording to four different,

politically unbiased scenarios on the distributidrsecondary vote choices.

Additionally, we modify the “Prét a Voter: All-In-@” scheme by proposing three
security enhancing modifications in its ballot coustion phase: 1) ballot serial
number, 2) digital signature of the first clerk tile mix-net, 3) different random

numbers for each row of the ballot.

Finally, we demonstrate the potential of multipliea homomorphic algorithms like
RSA for homomorphic tallying. The idea is based the association of each
candidate on the electronic ballot with a prime bem and unique prime
factorization of the general vote product. We psgpaovel randomization methods
for homomorphic RSA tallying, and discuss the peniance and complexity of the
scheme with such randomizations. Our suggestiomiioauditable and verifiable e-
voting scheme that employs homomorphic RSA tallyivith proper randomization
has advantages over EI Gamal and Palllier tallyisgch as having the least
encryption complexity and strong anonymity resistim unlimited computational

power.

Keywords: anonymity, e-voting, homomorphic tallying, mix-sgtpreferential

voting, RSA randomization, single transferable ngtivoter verifiability.
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0z

HOMOMORF iK RSA SAYIMLI, iZLENEBILIR VE
DENETLENEBILIR ELEKTRON iK OYLAMA

Yucel, Okan
Doktora, Bilisim Sistemleri BolimuU

Tez Yoneticisi: Prof. Dr. Nazife Baykal

Temmuz 2010, 126 sayfa

Bu calsmada, ¢adas elektronik oylama sistemlerinin genel yapisi Meagplanindaki
kavramlar, segcmen izlemeli ve tercihli oylamalaHamomorfik sayimlar ve se¢men
gizliligine 6zel vurguyla incelengtir. Oncelikle, Tek Gegli Oylama (TGO)
yonteminin, secim baraji iceren blyuk Ol¢utli sdenae kullanimina yarayan bir
degisiklik onerilmistir. Bu 6nerimiz, secim baraji altinda kalan periih oylarini,
secmenlerinin ikinci veya daha sonraki tercihlergigvenli bir sekilde daitarak,

oylarin ziyan olmasini engelleme amachdir. E-oydaigin en uygunu, bu yontemin,
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secmen izlemeli ve anonirgiisaglamak igin kantirici gglardan yararlanan “Prét a

Voter: All-In-One” ile birlikte kullanimidir.

2007 Turk Parlamenter secimleri icin, tercihli aylanin barajli secimlere etkisini
gOsteren bir O6rnek cama yapilmgtir. Secim prosedirinin matematiksel
formilasyonundan sonra, 2007 secimlerindginaiz aday cikarmamiolan 69
secim bolgesinde ka giden oylar hesaplangnive se¢menlerin ikincil tercihleri
Uzerinde dort tarafsiz senaryoya gore,gigirilmis TGO ve d’Hondt” yontemlerini

birlikte kullanan similasyon sonuglari sunuktuu.

Calismamizda ayrica, “Prét a Voter: All-In-One” yontemmiroy pusulasi hazirlama
fazi icin Gg¢ guvenlik arttirici dgsiklik onerilmistir: 1) pusula seri numarasi 2)
karistirici agdaki ilk gorevlinin sayisal imzasi, 3) oy pusulasiher satiri igin ayri
bir rasgele sayi uretilmesi.

Son olarak, RSA gibi carpmaya gére homomorfik d@tgmalarin homomorfik sayim
acisindan potansiyeli gosterigtii. Anafikir, elektronik oy pusulasinda her adayin
bir asal sayiyla ifade edilmesine ve genel oy ganpin yalniz tek bigekilde asal
carpanlarina ayrilabilmesine dayanmaktadir. Hom@iknd®SA sayimi igin farkli
rassallatirma (rasgelekgirme) yontemleri 6nerilmgi bu durumdaki bgarim ve
karmaliklik tartisiimistir. Onerdgimiz rassallatiriimis homomorfik RSA sayimli,
izlenebilir ve denetlenebilir e-oylama yonteminimpmomorfik EI Gamal ya da
Paillier sayimiyla kaulastirildiginda, en azifreleme karmakligli gerektirme ve
sinirsiz hesaplama gicine dayanikh gaikilde gizlilik (anonimlik) sglama gibi

avantajlari vardir.

Anahtar Soézcukler: anonimlik, e-oylama, homomorfik sayim, kamici-ag,

siralamall oylama, RSA rassaliamasi, tek gegli oylama, se¢cmen izlemesi.
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CHAPTER 1

INTRODUCTION

In recent years, there has been an increasing iepd#f carrying out large scale
elections by electronic means, which may includeottical scan deviceandDirect
Recording by Electronic§DRE) machines and/or computer network$ectronic
voting (e-voting) is the general name used to define |ysitems; extending from
voting at polls recorded by electronic ballot boxiest may either be counted at polls

or cast over closed networks,votingcast and recordedver the Internet

Election processes in general, whether conductesldntronic means or not, involve
diverse groups that have sufficient motive to dftbe election results according to
their wish. Therefore, the large scale electionesys should bewuditable and if

there are disagreements betweenpbst-election auditand the actual vote counts,
recounts are unavoidable. For the accuracy andpeaancy of the system, it should
also beuniversally verifiablei.e., any interested third party should be prediavith

a simple method of checking the final tallying aratifying that only the registered
voters cast ballots. The universal verifiabilityoperty was firstly defined in [Sako-
Kilian-1995] in more general terms as: “In the g®uof the protocol, the participants
broadcast information that allows any voter orriested third party at a later time to
verify that the election was performed properlyh @lectronic voting system, which

is auditable and universally verifiable also nettatss the testability of voting



machines; thus, the use @fpen Source SoftwarfOSS) seems essential [Paul-
Tanenbaum-2009].

A large-scale election procedure that is potentighdo replace today’s conservative
elections is also expected to contribute to denmoychy providing new benefits. In
addition to the universal verifiability requiremerthe state of the art e-voting
systems offer each voter the facility wbter verifiability without distorting the
anonymityof the votes, a facility that supports democracyebhancing the borders
of personal rights. The idea of voter verifiability to endow each voter with the
opportunity of verifying that his vote is cast amdorded correctly while preserving
the voter privacy, i.e., the anonymity of the voidis is achieved by usingublic
Bulletin Boards(PBB) and cryptographic tools in general; but ¢hisralso a unique
example like “Three Voting Protocols: Three BalldAV, and Twin” [Rivest-
Smith-2007] that does not use any cryptographyrtter to preserve the anonymity
of the votes, there are two main methods that heawe the cryptographic
algorithms: i) the mix-nets proposed by Chaum [@h&l®81], and attacked and/or
developed later also in [PfitzmannB&A-1990], [PfitannB-1994], [Park-Itoh-
Kurosawa-1994] and by many other researchers;hig homomorphic tallying
introduced by Benaloh, as first described in [CoR&ther-1985], [Benaloh-1986],
[Benaloh-Yung-1986], and later featured in [BaudFmuque-Pointcheval-Stern-
Poupard-2001].

So as to distinguish the concept of voter verifigb{or individual verifiability) from
universal verifiability, which already takes carketbe vote counting phase, voter
verifiability is defined as voter's check on thestag and recording phases of his
vote [Sako-Kilian-1995] only, and not on the taflgi phase. Some researchers
[Adida-Neff-2006] also name this property Ballot Casting AssurancéCA) to
make the distinction more clearly. In order tHa woting scheme provides ballot
casting assurance, voters need not to trust dati@h officials for the recording of

votes, since they can make their own checks.



The e-voting protocols of the 2kentury combine all of the above properties to
introduce the novel and important concepteoid-to-end system integritysuch
systems are designed to provide greater assuraacthe election outcome is correct
than traditional systems; they are, for instansgnemore reliable than voting by
optical scan machines with post-election auditiRiy¢st-2009]. They preserve voter
privacy and achieve election integrity, without imavto trust the hardware, software
or the election officials.

Clearly, the final goal of all e-voting systemghe simplicity to gain the confidence
of all voters and political parties. Smart use let&onic means and cryptography in
the design of the novel e-voting schemes, is qdted as well to stop the long
gueues at the polls and increase the number ofsviitat join the elections; hence, to
contribute to democracy over again. To sum up iafppotential electronic voting
systems of the future should undoubtedly,
1) simplify the voting procedure for every voter,
2) make the vote-counting more rapid, accurate, usalbr verifiable; hence
more accurate and reliable,
3) offer each interested voter the facility of venifgiin particular that his vote is
cast and recorded correctly; while preserving amotyy and not allowing

vote coercion or vote selling even if the voteemds to do so.
1.1 History of Electronic Voting

Among the pioneering electronic means used for texgp there are optical scan
machines exercised in the US elections since 18&2ally the ballots. These
machines are widely used in today’s US electionsvall, and the percentage of
counties employing them has increased continudusiy 0.8% in 1980, to 45.4%,
56.2% and 58.9% in the years 2004, 2006 and 208Beo#ively [Election Data
Services-2010].



Another electronic means, Direct Recording by HEteuts (DRE) machines

employed for e-voting are usually the personal aseptype of equipment. Touch-
screen DRE’s were first used in the US in 197(&ytrun special-purpose voting
software, frequently on an operating system likaddivs. Ideally, the machines are
physically hardened, preventing access to the &ygiersonal computer connectors.

DRE’s solve a number of complex operational prold¢Adida-2006], like:

» offering ballots in different languages,
» magnifying the screen for voters with vision inrpzent,
* using a headset that provides auditory feedback,

« simplifying the ballot management by using memaayds instead of paper.

DRE’s, on the other hand, are extensively critidibecause they lack a tamper-proof
audit-trail. Voting activists and computer scietstiare worried that these machines
could produce erroneous results, either becauskugé or malicious code, that

would go undetected [Landes-2002]. In particulle worry is that a voter’'s choice

would be incorrectly recorded at casting time. Saamistake would be completely

untraceable and unrecoveralsiace the only feedback that a voter obtains isfro

the voting machine itself. That would damage thditability, which is one of the

main requirements ialectronic electionge-elections).

As a remedy to this problem, the Voter-Verified @apudit Trail, (VVPAT) was
proposed by Mercuri in 1992 [Mercuri-1992]. Once thoter has finished filling out
the ballot, the VVPAT-based voting machine print$ an audit of the ballot visible
to the voter behind glass. The voter then get®idien or cancel his vote. The audit
trail effectively short-circuits the machine’s pitds mistakes. ldeally, in the case of
a recount, the paper trail would be used insteatietlectronic record. DRE’s with
VVPAT have first appeared in the U.S. voting equigmmmarket in 2003 but their
use has grown significantly since November 2006 dkV2006]. The percentage of

counties employing DRE’s with or without VVPAT hascreased from 0.2% in



1980, to 21.7% and 36.3% in the years 2004, 20§pectively but decreased again
to 34.3% in 2008 [Election Data Services-2010fawor of optical scan devices.

The pioneering e-voting schemes that preserve vaieacy and achieve higher
assurance of election integrity, without havingriest the hardware, software, or the
election officials were proposed at almost the séime: Chaum’s system based on
visual cryptography [Chaum-2004], Neff's “MarkPleddNeff-2004], Ryan’s “Prét
a Voter” [Ryan-2004], and Shubina and Smith’s “B\e” [Shubina-Smith-2004].
Many other schemes followed shortly, such as “P8gean” [Chaum-2006], “Prét a
Voter with re-encryption mixes” [Ryan-Schneider-BQJ0"Scratch&Vote” [Adida-
Rivest-2006], “Three Ballot, VAV, Twin” [Rivest-Srhi-2007], “Scantegrity”
[Chaum-Essex-Carback-Clark-Popoveniuc-Sherman-2068], “Scantegrity II”
[Chaum-Carback-Clark-Essex-Popoveniuc-Rivest-Ryla@rSSherman-08], “Mark
Pledge2” [Adida-Neff-2009], "Trustworthy Voting: &m Machine to System" [Paul-
Tanenbaum-2009], each scheme contributing to itsdgmessors partially or

sometimes significantly.

Internet voting is yet another option to be consgdewithin the context of electronic
voting; although it has its own risks of voter aen and software security.
Nevertheless, there are many Internet implememsitlike 2003 test elections at
Vienna University, Austria [Krimmer-2003], legallginding Internet elections of
Estonia in 2005, 2007 and 2009, smaller scale ielectheld by a few cantons in
Switzerland since 2003, “Civitas” proposed by twnputer scientists at Cornell
University [Clarkson-Chong-Myers-2008] and “Helid#tdida-2008], which is used
in the presidential elections at Université catpodi de Louvain (UCL) in Belgium
[Adida-deMarneffe-Pereira-Quisquater-2009]. A Jalife electronic voting scheme

over the Internet is also described in [Li-Hwang-R@09].

Some of the schemes described above are only kuftabthe elections, where the
voter marks a single choice. However; a few of tham also applicable to

preferential voting, where the voter provides &rardering among a given number



of candidates. “Prét a Voter: All-In-One” schemegosed in 2007, that we call
PAV 2007, supports preferential voting as well iagle choice . It is developed by
a group of researchers [Xia-Schneider-Heather-Ryamdin-Peel-Howard-2007],

who follow the original ideas in Chaum’s schemeedoh®n visual cryptography
[Chaum-2004], and Ryan’s “Prét a Voter” [Ryan-2Q0@ur interest in this work

will be more on multiple-winner elections, and @mehtial voting methods such as
the Single Transferable VotingsTV).

1.1.1 Electronic Elections in Different Countries

We give illustrative examples of some large scédeteonic elections; (i) the U.S.
presidential elections in 2000, 2004, 2008 and teeakections in 2006; which use
hybrid tools like optical scan machines or DRE’sclased networks, in addition to
paper ballots, lever machines, punchcards and ‘a&stng by mail’ in small

percentages; and (ii) those using purely remoténgptike the three e-elections
performed in Estonia in 2005, 2007 and 2009 ancetbetion held in Switzerland in
2003. Notable e-voting trials have also been comdum Austria, Canada, England,
Estonia, France, Ireland, Netherlands, New Zeal&padjn and Switzerland. Among

them Estonia seems to be pioneering on large su@imet based e-voting.

(i) Hybrid Elections in the United States

Electronic voting is used in the U.S. for quiteamd time, but the most striking
experience has been the 2000 Presidential EledtioRkrida, where a lot of debate
about the reliability of the votes occurred. In 2@00 Presidential Elections, Bush
won in Florida only by a margin of 500 votes [Ft&iD0S-2000]. There were
various complaints such as the misleading of “ifigtdallot” in Broward County,

the punchcard system failing to record a numbevaiés, and more than 50,000
missing ballots [Shapiro-2004]. That was sufficiemtshow that elections were far
from perfect. In 2002, the use of the punchcards than forbidden by law (HAVA -

Help America Vote Act) as a result of the strongate on the election results.



Election officials were aware of the equipmentuses long before 2000 elections
[Gumbel-2005]. Nonetheless the failures had notiptesly been associated in such
a near miss election. Many states started to reseteatheir voting equipment, and
searched for more computerized solutions so asttnbt like Florida” [Walton-

2004]. These changes raised gquestions, especiabn@ a number of computer
scientists who feared that fully computerized vgtimould complicate or completely

prevent the election verification process [Rubi®4£]) [Chasteen-2004].

As a part of U.S. Department of Defense’s Federaing Assistance Program, an
Internet-based voting system, SERVE, has beeredt@s$ an experimental project
[Jefferson-Rubin-Simons-Wagner-2004]. In the repartnounced by the U.S.
Department of Defense in May 2007, the e-votingiplaf the U.S. for 2008-2010
were discussed; that was later criticized by [#effe-Rubin-Simons-2007], which
concluded that it is impossible to create a seewweting system through Internet in

those day’s insecure information technology.

The U.S. elections held in 2004, 2006 and 2008 hemesl the experience gained
from the failures of 2000 presidential electionsmprove the pre-checks and post-
election audits of the system. Many jurisdictiongned from punchcards to
electronic voting machines. Unfortunately, mosttteése machines were not much
more than PC’s with touch screens. Some of thene wsrproblematic as punchcard
systems, they made recounts impossible; hence goradictions were driven back
to paper ballots. The research on e-voting systents statistical post-auditing of
elections became more challenging in order to c@omss the finest possible

solutions before the closest elections; so itastaid grow rapidly.

(i) Remote E-Elections in Estonia and Switzerland

While most of the countries are looking for waysattopt e-voting for their remote
citizens, Estonia is the first country to use efmat voting through Internet for its
legally binding local elections in October 2005.eThutcome was a success as

reported by the Estonian election officials, so #@mme voting system through



Internet has been used in 2007 and 2009 electiotis am increasing percent in
usage (105,000 voters, roughly 9.5% of the toténgoin 2009).

The system works through use of smart cards thaé Heeen distributed to all
citizens as an ID card whereas this ID card is ueealuthenticate the voter. There

are three principles in the voting procedure:

» Voters are given a chance to vote many times blyttoe last vote is counted
in the final tally.

» Classical voting overwrites the electronic vote.

« If considerable amount of attack is detected durivaing, electoral

committee might cancel the e-voting part.

Estonian e-voting system has been analyzed invsacademic papers and found to
be secure and reliable by Magi [Magi-2007]. On ditleer hand, a few cantons in
Switzerland used a simple e-voting system, wheeesuseceive their voter numbers
and secret ID’s by post and use their votes over litternet without any extra
precaution on security [US-DoD-2007], since 2008aptation of new technology is

comparatively small among the Swiss people [Gerlaakser-2009].
1.2 Aim, Contributions and Organization of the Thesis

The aim of this thesis is the investigation of emnporary electronic voting schemes,
with special emphasis on voter verifiable prefaentvoting and homomorphic
tallying. We propose a modification in the Singlafisferable Voting (STV) method
to be applied to large scale elections with eledtbarriers. Our proposal prevents
the loss of votes and distributes them securetligsecond or higher choices of their
voters. We present a case study for 2007 TurkigtiaReentary Elections, which
demonstrates the advantages of preferential védinthe election systems that have
electoral barriers. We also propose three moditioaton the “Prét & Voter: All-In-
One” scheme suggested in 2007, to enhance theitgectiits ballot construction

phase. Finally, concentrating on anonymous e-voting recommend the RSA



algorithm as a candidate for multiplicative homoptoc tallying; present four novel
randomization methods for this purpose; one of thieeing inspired by the
ThreeBallot method [Rivest-2006], [Rivest-Smith-ZD0that does not use any
cryptography. We discuss, criticize and compare fexformances of our
randomization schemes. We also show how the ovexatlomization load can be
cancelled (before or) after the final decryptionrtorease the voter capacity of the e-
voting system. Our suggestion that employs homohiorfRSA tallying has
advantages over El Gamal and Paillier tallying,hsas having the least encryption

complexity and the strongest anonymity resistantriamited computational power.

In Chapter 2, we focus on STV elections and progosethod to be applied to large
scale elections, in which political parties whoséeg remain below a certain barrier,
are eliminated. We then present a case study tonsnate the effect of preferential
voting on the election systems that have electoaaliers. We consider the Turkish
Parliamentary Elections held on July 22, 2007 asxample. Section 2.2 is the
summary and mathematical formulation of the presalhing strategy ordered by
Turkish Parliament Election Law (no. 2839, acceptedJune 10, 1983), which

utilizes the d’Hondt method.

In Chapter 3, after reviewing the three basic ergotoncepts of voter verifiability,
universal verifiability and anonymity; we brieflyompare the two applications
presented in 2009, with respect to these conc8ptssequently, we discuss the Prét
a Voter schemes with special emphasis on the ‘@¥&iter: All-In-One” scheme and
Paillier encryption. We then present our three rications in the ballot construction

phase, which enhance the security of this scheme.

Chapter 4 is devoted to multiplicative homomorptaltying to achieve anonymity
employing the concept of “vote product” insteadhod “vote sum” used by additive
homomorphic algorithms. We propose the RSA algorits a promising candidate
for multiplicative homomorphic tallying and presefaur new randomization

methods for RSA tallying. We also show how the allemndomization term can be



cancelled by performing “modular division” in, Z without bringing any extra load
on the vote product. After comparison and critit®ar randomization methods, we

suggest their joint uses in different cases depgndin the number of candidates.

In Chapter 5, we compare our auditable and vetdiabvoting scheme that employs
homomorphic RSA tallying with EI Gamal, Exponential Gamal and Paillier

tallying, and show that it has the least encryptammplexity and the strongest
anonymity resistant to unlimited computational pow&/e then present our
simulation results and finish the chapter with mplementation proposal for Turkish

Parliamentary Elections.

Chapter 6 is a summary of our contributions andysations for further studies.
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CHAPTER 2

MODIFIED SINGLE TRANSFERABLE VOTING AND A
CASE STUDY FOR ELECTIONS WITH
ELECTORAL BARRIERS

In the large-scale elections with electoral basii¢he wasted votes that are given to
the candidates that cannot exceed the threshalgignificant problem. Examples of
countries using electoral barriers are Belgium (5%regional basis), Iceland (5%),
Israel (2%), Poland (5%, or 8% for coalitions), Rona (5%), Serbia (5%), Slovenia
(4%), Spain (3%) and Turkey (10%). We propose depeatial voting method, for
instance the Single Transferable Voting (STV), asodéution to the problem of
wasted votes. We recommend a modification on Sifgénsferable Voting (STV)
and adapt it to the Turkish election system thasube d’Hondt method in tallying.
Then, to demonstrate the effect of preferentiainggtwe present a case study on the

Turkish Parliamentary Elections held on July 22) 20

In the case study, we search for the answer ofhfpothetical question that: “If

preferential electronic voting (over the Internetotosed networks accessible from
voting booths) were used, how much could the refle007 Turkish Parliamentary
Elections change?”. The inclusion of preferenti@ing could serve to democracy by
distributing the wasted votes securely to the seé@rother choices of their voters if
accurate and auditable management of the accommparedvoting system was
provided.

11



So, we have applied the d’Hondt's method coercethbyTurkish Election Law to
the statistical data gathered in the 2007 TurkiaHid@mentary Elections, to predict
how the parliament seat distributions of the thagening parties would change if
preferential voting were used. After the mathensdtformulation of the d’Hondt
method with modified STV, we have calculated thenbar of wasted votes by
taking the present details of the tallying strategthin each election region into
account. We have then made simulations accordirfguodifferent and politically
unbiased scenarios on the assumed distributioeadrglary choices of wasted vote

owners in 69 election regions.

We have found drastic changes created by the wasitgbs, and tabulated the
computed parliament seat distributions under tlseirasd four scenarios. One of the
scenarios results in the most democratic seattiston, which is in great harmony
with the overall percentage of votes. The wide igancy between the computed
seat distributions under different scenarios makesthink that preferential e-voting
may be an efficient means to increase the demoa@typonent in the elections with
electoral barriers. However, electronic handlingtieé voting, casting and tallying
phases is crucial for the required speed, secartyaccuracy of the system, which

becomes a little more complicated because of ttlasion of preferential voting.

In Section 2.1, we summarize the STV method anepmtesur modification on the
STV so that it can be adapted to the elections @lilstoral barriers. Section 2.2.1 is
the summary and mathematical formulation of thes@me tallying strategy ordered
by Turkish Parliament Election Law (no. 2839, at¢edpon June 10, 1983), which
utilizes the d’Hondt method. In Section 2.2.2, wesctibe the “modified STV+
d’Hondt” tallying. Section 2.3 presents and intetprthe simulated results under four

different, politically unbiased scenarios.
2.1 Single Transferable Voting (STV)

Large scale elections having electoral barrienniekte the political parties, which

12



obtain a vote-percentage below a threshold. Pegptevote for these parties feel a

kind of injustice because of the invalidity anddlihoss of their votes.

On the other hand, STV elections in which eachnvgitees a ranked list of preferred
political parties may be an excellent democratiatgan to the problem of exhausted
votes. In the following, we propose a preferent@ing application for the elections
having such barriers; by modifying the STV method.

2.1.1 Original Single Transferable Voting

Single Transferable Voting is a preferential votmegthod, in which, voters give a
preference ranking of the candidates or politieatips rather than indicating a single
choice on the ballot as in FPTP elections. TheimsigSTV method is a multiple-

winner voting method that uses a quota. The quotkeiermined by dividing the total
number of voters to the “number of seats plus oaat] then adding one. After the

count of the first preferences, the following staps performed:

1) Any candidate who reaches the quota is eledtksl.surplus i.e., the excess
number of votes over the quota, is distributecheogecond choices of the voters who
select him as the first in their preferential ordgr The share of each new candidate

from the surplus remains proportional to her sivatée original distribution.

2) If no one meets the quota, the candidate welfelwest votes is eliminated and his
votes are transferred to the second choices ofdtezs who select him as the first in

their preferential ordering.
3) Steps 1 and 2 are repeated until a winner isddar every seat.

Some large scale elections have barriers, whichimdite the political parties that
obtain a vote-percentage below a certain threshadd.preventing the problem of
wasted votes in such cases, we propose a modicatiSTV, which is described in

the following section. By this modification, norplus of a winner is distributed; but
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the wasted votes of the losers are valued. Sogeléwion rule of eliminating the

parties below the barrier is preserved, whereast®is exhausted.

2.1.2 Our Modification on the STV Method

Modified STV does not use the concept of surplws, it does not distribute any
surplus of the winning candidates, but transfeesuhtes of the losing parties to the
winners. Each voter gives a preference order (gfpsditical parties entering the
elections) on the ballot as in the original STV dhd tallying phase of the applied

voting scheme is modified as follows:

1) In the first evaluation of ballots, only tHast preferenceof each voter is
counted. If all parties get enough votes to exctwd barrier, the tallying phase
terminates.

2) If not all the parties pass the barrier, callihg parties above the threshold
winnersand those below the threshdtsers ballot tallying is repeated for all the
loser ballots having a loser party as the firstichoThe choice on the ballot that is
counted this time is the winner party, which istop of all other winners in the
voter’'s preference list. The new ballot-counts adeled on the votes gained by

winnersin part (1) and the tallying phase terminates.

The above method preserves the election rule ofimditing the parties below the
barrier, whereas no vote is exhausted and citiaeessatisfied. The method should
be accompanied by a secure control mechanism tlicyuassure the robustness of
the used scheme. To achieve this goal, observerstessigned by each political
party may play critical roles for increasing tldustness and accuracy of the voting

scheme.
2.2 Application to the Turkish Election System

Turkish Parliament Election Law contains an eledtdarrier of 10%; i.e., political
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parties that take less than 10% of the overall sy@@nnot have a member at the
parliament. We present the mathematical formulation Turkish election system
and our adaptation of the modified STV method thi® system in Section 2.2.1 and

Section 2.2.2, respectively.

2.2.1 Tallying Strategy by the d’Hondt Method

In order to discuss the adaptation of the modiffedV method to Turkish
Parliamentary Elections, the present details of thiéying strategy within the
election regions should be taken into considerafiomkish Parliament Election Law
(no. 2839, accepted on June 10, 1983) organizedatlying strategy as follows
(http://www.anayasa.gen.tr/2839sk.htm).

Before the election (item 4 of the law)

i. Let C be the number ofities (in the country) an8 be the number dieats (at the
parliament). Each city should have at least oneeggmtative in the parliament; €0,
many of theS seats are pre-assigned. The remairtgC seats are distributed by

computing the number of extra representatiggdor each city as in itemsi)- (v)

given below.

ii. Let P be thePopulation (of the country according to the lasteyahcensus), and

p, be the population of théh city. Total population is then equal to the safitity

populations, i.e.,

P=)p, (2.1)

If Sis the number ofeats andC is the number ofCities, find the number,
a=P/(S-C) 2P
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iii. Divide the populationp; of each city bya, to determine the number of extra
parliamentary members to be assigned to that blgtice that if p,/a were an

integer for all cities, the procedure would terniénand all of the remaining-C

seats would be distributed; because, dividing eguna2.1) by a, one obtains

c p : . : ,
P :Z& =S-C. However, practically, is never an integer multiple af hence
a S a

the greatest integer contained m/a is assigned as theitial value of the extra

parliament members, to be elected by the voters of ffta city.

iv. For all the citieg=1,...,C, the remainders op, /a are put into descending order.

The remaining parts of th&-C seats, which cannot be distributed in par),(are
distributed according to this order. For each cibhe number of extra parliament

memberse, is finalized by adding 0 or 1 to its initial valdeund in part ifi).

Together with the initial seat assigned to eacly oit part {), the number of

representatives to be elected by the voters of'thecity is s, =e, +1. The total

number of seats is then

s:Zsj : (2.3)

v. A city with assigned number of representatives<18 is counted as a single
election region; if18<s; <35, the city is divided into two, and i85<s,, it is

divided into three election regions by followingettprinciples described in the

Turkish Parliament Election Law.
After the election (item 33 and item 34 of the law)

i. If total votes of a political party cannot exceed% of the valid votes used
nationwide, that party cannot be represented atpréament (sayB (out of A)

parties exceed the 10% batrrier).
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ii. Let thek'th one amongB parties getv, many votes, wheré=1,..., B, in the
election regiorj with assigned number of representatiges Number of votey, of
each party is divided by 1, 2, 3, up4q and the numbers

v Vie Vi v Vi Vi v Vis
j10 ILERS} 1 Vij21 [ERRS ] e Vg g
2 2 S; S;

together with the votes given to the independenticiates are put into descending

order. Finally, the firsts; parties (or independent candidates) in the listsslected

as the winners of thi&h election region (according to the d’Hondt metho

Example: SayA many parties join the elections aBd<A) of them exceed the 10%
threshold. We want to find the winners in tjih election region, for which the

assigned number of representatives;is- 5. Calling the number of votes givenBo
parties in this election regiorﬁvjl,vjz,...,va}, and assuming that there is one
independent candidate who has takemany votes, let's suppose that the list in
descending order starts b&vjz, Vi, 12, Vg, V, V;, 13, Vv, 14, Vv, }
Taking the first 5 elements of this list, Partyhatthasv;, many votes wins the three

seats; Part and the independent candidate win the remainirgseats.

2.2.2 Adaptation of the Modified STV Method

Adaptation of the modified STV method to Turkish I@anentary elections is not

complicated, if the number of voteg obtained by each of tH# parties exceeding

the 10% barrier can be updated automatically afegermining the parties which
stay below the threshold. In Chapter 3, we wilcdss the homomorphic property of
the Paillier encryption scheme used by “Prét a ¥oMi-In-One” [Xia-Schneider-

Heather-Ryan-Lundin-Peel-Howard-2007] that allowe tcomputation of voter’s
preferences in a single attempt. So, we think that number of updated votes,

v, | E, conditioned on the evert={Some given parties are below the 10%
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threshold}, can be calculated efficiently if “P@t/oter: All-In-One” is used. In the
ensemble of ballots whose first preferences areldlsang parties, the software

ignores all losing parties simultaneously and atldshew counts om,, to obtain the
updated number of votes;, |E. More specifically, ifA many parties join the

elections and (<A) of them exceed the 10% threshold nationwideslegll the
parties above the threshold 1,2, B.,and those below the threshdbd1, ..., A,

without loss of generality. Hence, the evEns defined as

E={PartiesB+1, ..., A are below the 10% threshold}.

Number of votes in thgth election region,{vjl,vjz,...,vjs} is now to be updated by

transferring the number of vote{sj'Bﬂ,vLM,...,VJA} to parties 1,2, ...B; such that

B
the sum of the updated voteE (vi |[E), conditioned on the eveRt is equal to the
k=1

A
total number of votesZij, before knowing the everi. The corresponding
k=1

software performs the following algorithm:
1) Collect all ballot results whose first choice ising party, into a single filg;

2) Ignoring all preferences given to partigsl, ..., A; find the first choice of each
ballot inF that belongs to the set of parties {1, 2, B},

3) In F, compute the total count of balloi@jl,\A/jz,--.,\A/,—B} for each party in the set

{1, 2, ..., B}, such that

4) Find the updated number of votes lﬁyjk |E) = Vi +\7jk , fork=1,...B;
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5) Stop.

B A
The final check is ) (Vy |E) =YV, . The resulting updated numbevs, | E are
k=1 k=1

now to be substituted for the previous valwgsto adapt the STV method.

2.3 Turkish Parliamentary Elections Held in 2007

In the Turkish Parliamentary Elections held on J@y 2007, there were 14 political
parties joining the elections and three of themabez winners by exceeding the 10%
barrier. The amount of “wasted votes” used for #ielosing political parties and
independent candidates was around 15%. In thigosectsing the vote counts of the
Turkish Parliamentary Elections held on July 22,72008e compute how the number
of parliament seats would be affected accordingdifferent scenarios on the
distribution of preferential votes. We assume ittt votes used for the winning
parties that exceed the electoral barrier of 108 camly processed once. However;
the votes used for the losing parties are repreckss find out the winning party
with the highest rank in voter’s preference liste \Also assume that the new ballot-
counts are added on the votes gained by winndiseifirst count. Below, we firstly
summarize the actual election results and secongldy,present our simulations

according to four scenarios on the distributios@tondary or higher preferences.

2.3.1 Actual Results

As can be observed from Table 2.1, three partiesP, AGHP and MHP are the
winners, since they exceed the 10% barrier. In Téb® we demonstrate the
percentages of the parliament seats distributeth&yd’Hondt method as described
in the Election Law (no. 2839, accepted on June 983)Ltogether with the actual
vote percentages. We also include in Table 2.2diberepancies between seat and

vote percentages, which becomes as high as 15.53%.
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Table 2.1 Results of 2007 Turkish Parliamentary Electionss(fthree and the last
columns are taken from: Turkish Official Gazette;, 26598, July 30, 2007) arranged in
descending order of vote counts.

Political Party Nu\r:;?:! of Percentage | Percentags Pszrgflg;?é g:gt.:
ADALET VE KALKINMA PART iSi (AKP) 16,327,291 46.58% | 46.58% 62.11% 341
CUMHURIYET HALK PARTISI (CHP) 7,317,808 20.88% | 20.88% 20.40% 112
MILLIYETGI HAREKET PARTISI MHP) 5,001,869 14.27% | 14.27% 12.75% 70
DEMOKRAT PARTI (DP) 1,898,873 5.42%
INDEPENDENT CANDIDATES 1,835,486 5.24% 4.74% 26
GENC PART (GP) 1,064,871 3.04%
SAADET PARTISI (SP 820,289 2.34%
BAGIMSIZ TURKIYE PARTISI (BTP) 182,095 0.52%
HALKIN YUKSEL iSi PARTISI (HYP) 179,010 051% | 18.27%
ISCI PARTISI (iP) 128,148 0.37%
AYDINLIK TURK IYE PARTISI (ATP) 100,982 0.29%
TURKIYE KOMUNIST PARTISI (TKP) 79,258 0.23%
OZGURLUK VE DAYANISMA PARTISI (ODP) 52,055 0.15%
LIBERAL DEMOKRAT PARTI (LDP) 35,364 0.10%
EMEK PARTISI (EP) 26,292 0.08%

Table 2.2Vote and parliament seat percentages for the winparties of the 2007 Turkish
Parliamentary Elections in 85 election regions (ttele country).

Percentages of: AKP CHP MHP Sum of 3

columns

Votes in the 2007 TP elections 46.58%| 20.88% 14.27%| 81.73%

Seats in the 2007 TP elections 62.11%| 20.40% 12.75% 95.26%

Discrepancy (=Seat% - Vote%) | 15.53%| -0.48%| -1.52%| 13.53%

The last row of Table 2.2 shows how much the “prtppoal representation”
principle of democracy is twisted as a result difitag by the d’Hondt method. As
for a closer comparison between the winning parties show the relative vote and
seat percentages among the three winners in Tebkh& we obtain by dividing the
vote and seat percentages in the first two rowBatile 2.2, to the corresponding last
column element. The last column of Table 2.3, foupdatdding the previous three

columns, explains its difference from Table 2.2;&wese the percentages are now
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computed within the set of three winning partie$ypand the last column adds up
either to 100% or 0%. The last row of Table 2.3vehdiow much the d’Hondt

method favors the first winning party with resptcthe second and the third parties.

Table 2.3Relative percentage of votes and parliament seads@ the three winning parties
of the 2007 Turkish Parliamentary Elections in 8gions (all country).

Percentages of: AKP CHP MHP Sum of 3

columns

Votes in the 2007 TP elections | 56.99%| 25.55%| 17.46% 100%

Seats inthe 2007 TP elections| 65.2%| 21.4%]| 13.4% 100%

Discrepancy (=Seat% - Vote%) 8.2%| -4.1%| -4.1% 0%

2.3.2 Simulated “Modified STV+d’Hondt” Results

Using the vote counts of the Turkish Parliamenttdas held on July 22, 2007, in
which there were three winning parties, we havelipted how the parliament seat
distribution of the winner parties would changeyaters used preferential votes and
the ‘votes of the voters who voted for the losertipa’ were transferred by the

modified STV method as explained in Section 2.2.2.

We have computed the “modified STV+d’'Hondt” resulinder four different
scenarios on the secondary or higher choice digioib of wasted votes. We have
found upper bounds of the “modified STV+d'Hondt arient seat distribution” in
2007 elections, by considering 3 extreme scena&amh assuming: ‘only one of the
three winning parties takes all of the secondartes’'o The last one, Scenario 4

assumes equal secondary vote distribution fohalMtiinning parties.

Simulation program separately works for each s¢eraard each election region with

number of representativess as follows:

1. Computes the sum of wasted votes from actual conrike “election regiof’,
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2. Under a given scenario, adds the correspondingeptrge of wasted votes to the
initial votes of the winner parties, to find thefecected vote counts’,
3. In array A, ranks all corrected vote counts in @esling order,

4. Finds one half, one third, one fourth,...sth of all the votes in array A,

5. In array B, arranges all numbers found at stepsd34ain descending order,

6. Chooses the largest numbers of array B, as parliament members of liatien

regionj.

Whenever an independent candidate wins in an efectigion; the scenarios for the
STV part of the tallying phase become unrealistende meaningless to simulate.
Therefore, we have restricted our analysis to @@tan regions, where there is no
independent candidate among the winning parlianmambers, out of the total of 85
election regions. Discarded 16 regions with indeleen parliament members are:
Bitlis, Diyarbakir, Hakkarifstanbul (1)]stanbul (3), Mardin, Mg Rize, Siirt, Sivas,
Sanliurfa, Tunceli, Van, Batmar§irnak, kdir. We calculate the wasted vote
percentage in the remaining 69 election regions6ak9% by dividing the number of
votes used for the loser parties that remain beét@ielectoral barrier (4,556,611) to
the total number of votes (28,141,705) in theseegfons.

Total number of the elected parliament membersiwithese 69 election regions of
interest is 433 (instead of 550 seats correspontiinthe whole country with 85

election regions). Distribution of the 433 parliathseats among the three winning
parties is as shown in Figure 2.1 Dividing the nembf seats in Figure 2.1 by the
total number of 433 seats, one computes the seatmages 63%, 22% and 15%,
which are quite different from the actual vote petages of 56%, 25% and 19%,
respectively. This difference is partly a resultlué d’'Hondt method. However, with

the preferential voting assumption used in thiglgt(especially as in Scenario 4),

our computations show that seat and vote percentggaroach to each other
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Figure 2.1 Distribution of 433 parliament seats to the thv@ening parties, in the 69
election regions that don’t have any independenigmaent members.

We tabulate the vote and seat percentages in theleg@®ion regions of the 2007
Turkish Parliamentary (TP) elections in Table 2.4 antphasize the ‘vote and seat

percentage discrepancy’ in the last row.

Table 2.4Relative percentages of votes and parliament s@avsg the winning parties of
the 2007 Turkish Parliamentary Elections in 69 oagi

Percentages of: AKP | CHP | MHP Sum of 3

columns

Votes in the 2007 TP elections | 56% | 25% | 19% 100%

Seats in the 2007 TP elections| 63% | 22% | 15% 100%

Discrepancy (=Seat% - Vote%)| 7% | -3% | —4% 0%

In order to determine the maximum changes of “numdbie parliament seats”
between the actual results and simulated “mod#i€é¥+d’'Hondt” results; we firstly
consider the 3 extreme scenarios of “only one wgrparty takes all secondary
votes”; Scenario 1: All secondary votes to AKP, r&u@ 2: All secondary votes to
CHP, Scenario 3: All secondary votes to MHP. Thana imore realistic scenario,

Scenario 4, we assume that secondary votes aréyedis&ributed.
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Scenario 1:

If all secondary choices were used for AKP; we cotaphe seat distribution {AKP,

CHP, MHP}= {312, 73, 48} shown in the first row dfble 2.5, instead of the actual
distribution {271, 96, 66}. So under the assumptafrScenario 1, AKP would gain

+41 more parliament members, 23 seats coming fréi®,Gand 18 from MHP as

shown in the row of Table 2.6 corresponding to &cenl.

Scenario 2:
If all secondary choices were used for CHP; the seat distribution would be {223,
161, 49} as shown in Table 2.5, so CHP would g&b fore parliament members,
48 from AKP, 17 from MHP as shown in the row of T&ld.6 corresponding to
Scenario 2.

Scenario 3:

If all secondary choices were used for MHP; sestridution would be as shown in
Table 2.5 and MHP would gain +77 more parliamentiers, 51 from AKP and 26
from CHP as shown in Table 2.6.

Table 2.5Number of parliament seats according to four déiftrscenarios, of the three
winning parties in 69 regions, predicted by modif&TV+d’Hondt method.

Scenarios AKP | CHP | MHP

Scenario 1: If all secondary votes were used foPAK | 312 | 73 48

Scenario 2: If all secondary votes were used foPCH | 223 | 161 | 49

Scenario 3: If all secondary votes were used foPfMH | 220| 70 143

Scenario 4: If they were equally distributed 254|104 | 75
Actual number of Parliament seats 271 | 96 66
Scenario 4:

Finally, we consider a more realistic scenariotfa distribution of secondary votes

such as equal distribution to all winning partidssecondary choices were equally
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distributed; seat distribution would be as showiable 2.5 and CHP would gain 8
and MHP would gain 9 parliament seats whereas Al§Blavlose 17 of its seats, as

shown in Table 2.6.

Table 2.6Differences that would occur according to foufefiént scenarios, in the present
number of parliament seats of the three winningigmin 69 regions, predicted by modified
STV+d'Hondt method.

Scenarios AKP | CHP | MHP
Scenario 1: If all secondary votes were used foPAK +41|-23| -18
Scenario 2: If all secondary votes were used foPCH -48 | +65| -17
Scenario 3: If all secondary votes were used folAMH -51|-26| +77
Scenario 4: If they were equally distributed -17| +8 +9

Predicted percentages of parliament seats unddr eathese four scenarios are
computed and tabulated in Table 2.7. Last two roflwgable 2.7 show that the equal
distribution assumption of Scenario 4, for the selaoy votes of the wasted vote

owners, yields a seat percentage very close tadtual vote percentage.

Table 2.7Predicted relative percentage of parliament seatmg the three winning parties
according to four different scenarios in 69 regions

Relative Percentages of: AKP | CHP | MHP

Parliament seats for Scenariol 72% | 17% | 11%

Parliament seats for Scenari0252% 37% | 11%

Parliament seats for Scenario 3 51%| 16%| 33%

Parliament seats for Scenario 459% 24% | 17%

Votes in 2007 elections 56% | 25% | 19%

The analysis of simulations held on the actual ltesef the 69 election regions in
2007 Turkish Parliament elections under the first@narios reveal that, if the voters
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were given the chance of preferential voting, thecteon results could change
drastically. Equi-distributed secondary votes assionpf Scenario 4 yields a seat
distribution very close to the actual vote disttibo; which is a pleasant result in

terms of democracy, as shown in Table 2.8.

It is worth noting that we have tried to make pcéitly unbiased assumptions on the
distribution of secondary votes and been interestetthe 3 simplest scenarios that
give upper limits of the parliament member disttibns under mSTV+d’Hondt

tallying. Scenario 4 is also unbiased, since iegigqual chance to all winner parties.

Table 2.8Discrepancies between seat and vote percenta@@®adfTurkish Parliamentary
Elections in 69 regions.

Parliament member percentages AKP | CHP | MHP
Presently differ from vote percentage by: 7% | -3%| -4%
Predictions of Scenario 4 differ from vote perceetay: 3% | -1%| 2%

We have intentionally avoided more realistic scerzathat take the social and
political assets of each election region into ac¢oBecause our aim is to show the
possible limits of change in parliament member riigtions between “d’Hondt
only” and “modified STV+d’Hondt” cases, while keegithe neutrality of the study.
The wasted vote percentage in these 69 electianrmegs 16.19%. Unfortunately,
the drastic change predicted by the modified STYtedidt method in the first three
scenarios can be interpreted as a measure of therdrof “democracy lost in wasted
votes”, which could nevertheless be gained baclkagking the second and higher

preferences of the voters.

For the implementation of preferential electiong think that electronic voting is
indispensable, since it is a perfect medium foeuo&nsferring as multiple recounts
and exhaustive comparison of the possible outcarhéf®e votes may be required. A

voter verifiable method such as “Prét a Voter: IAHOne” scheme [Xia-Schneider-
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Heather-Ryan-Lundin-Peel-Howard-2007] may be a gdooice on such accounts
because of its suitability for STV. Heather givee #ecurity measures for such an
application [Heather-2007] and the improved versibRrét a Voter with application
to STV can be found in [Xia-Schneider-Heather-Tra2088].

2.4 Conclusion

We have formulated the “modified STV+d’Hondt” methaccording to the Turkish

Parliament Election Law (no. 2839, accepted on Jude 1983) by taking into

consideration the details of the present tallyihgge within each election region. We
have then made some simulations using the vote tgeooh 2007 Turkish

Parliamentary Elections, under four simple but prity unbiased scenarios on the
distribution of secondary or higher vote preferenc@ur computations made by the
“modified STV+d’Hondt” method disclose that, if gnthe voters were given the
chance of preferential voting, the election resadtsld change quite drastically. One
of our scenarios, in which we assume that the skryrchoices of the wasted votes
are distributed uniformly among the winning partiessults in the most democratic
seat distribution, i.e., proportional representatiwhich is in great harmony with the

overall percentage of votes.

In conclusion, we think that tallying methods dgasding the effect of wasted votes
should not be preferable in today’'s world where tbacept of democracy is very
significant. A transferable voting system like tieodified STV+d’Hondt” as in our

simulations seems to have the power of efficieatycelling the democratically

unpleasant effect of wasted votes; especiallyHeralections with high barriers.

Electronic voting is indispensable for preferentiéctions, since it is a perfect
medium for vote transferring methods as multiplecoteits and exhaustive
comparison of the possible outcomes of the voteshmeaequired. A voter verifiable
method such as PAV 2007 to be described in Chéptaay be a good choice on

such accounts because of its suitability for STV.
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We have presented the work explained in Sectiont@y2ther with the original
contents of Chapter 3 at ECEG’2009fh“European Conference on e-Government”,
in London, UK, on June 29-30, 2009 [Yucel-Baykal-@D0Our simulation results
using the vote counts of July 22, 2007 Turkish Baréntary Elections, and making
the assumption of preferential voting under the foalitically unbiased scenarios of
Chapter 2 is presented at the 4th Information Sigcand Cryptology Conference,
ISC’10 in May 2010 [Yiicel-Baykal-2010-a].
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CHAPTER 3

‘“PRET AVOTER” E-VOTING SCHEMES AND
VOTER VERIFIABILITY

After a brief review of basic e-voting conceptsisas universal verifiability, voter

verifiability and anonymity in Section 3.1; we Hfie compare the two recent e-
voting applications with regard to these propertig® first one implementing a
system with end-to-end integration [Adida-deMaradfereira-Quisquater-2009],
and the second one emphasizing the use of openeseaftware [Paul-Tanenbaum-
2009] for auditable elections. In Section 3.2, vesiew the voter and universal
verifiable Prét a Voter (PAV) schemes, which anestfiproposed in 2004. They
provide voting receipts without any threat of voteercion and ballot-selling and
achieve anonymity through mix networks. Our speeraphasis will be on the ‘Prét
a Voter: All-In-One’ scheme proposed by [Xia-SchiegiHeather-Ryan-Lundin-

Peel-Howard-2007]. This scheme utilizes the Pailiecryption [Paillier-1999] but

its new version [Xia-Schneider-Heather-Traore-20@8hploys the ElI Gamal

encryption [El Gamal-1985]. Both of the mentionedoting schemes are very
suitable for the STV applications discussed in @Gap and this is why they attract
our particular interest. In Section 3.2.2, we pnésebrief and comparative review of
PAV 2005, PAV 2006, and PAV 2007 schemes. In Sac8®.3 , we discuss the
cryptographic details of the ‘Prét a Voter: All-Dre’ (PAV 2007) scheme. Section
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3.3 presents and discusses our three modificaitotie ballot construction phase of

the PAV 2007 scheme. We summarize our conclusioi@ection 3.4.
3.1 Fundamental E-Voting Concepts and Two Applications

Electronic voting over the Internet or closed natgcaccessible from voting booths
has several advantages over paper based votingciakp in terms of voter

verifiability. Arising new protocols for electronieoting are competing with each
other and solving the earlier encountered problsuth as the confliction between

anonymity and voter verifiability.

Voter verifiability is a concept which does not exist in traditionapgr-based
elections but becomes an important issue of derngdrathe electronic world. The
idea is to endow each voter with the facility ofifyéng that his vote is counted. The
first level of such a verification could be to \fgrthat his vote is cast and recorded
correctly and the second level is whether his vwsteounted (or tallied) correctly.
More rigorous definition of voter verifiability imedes this second step within the
concept ofuniversal verifiability The check mechanism for the correct recording of
the vote can be provided by means of a voting ptc@n the other hand, whenever
one has a receipt that serves to check the careotding of the vote, it can also be
used as the proof for the content of the vote usedtie election. This may in turn
lead to voter coercion and ballot-selling. Henagyvjous versions of the electronic
voting protocols have avoided giving receipts te tWoters, and introduced the
concept of receipt-freeness as an integral pathefvoting system. On the other
hand, the psychology of voters, who are traditipnased to paper based voting is
much more on the side of having something touchdide a paper in hand, rather

than completely relying on the electronic media.

‘Prét a Voter schemes are electronic voting schemehich respond to this
psychological need of having the receipt. More ingoatly, the way that the receipt
is constructed provides voter verifiability upttee second level, i.e., each voter can
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verify that his vote is cast correctly, by meanstioé receipt that does not tell
anything about the content of the vote to anybodept for the voter himself. The
second level of verifiability, i.e., the check aroect tallying of each received vote is
managed by the universal verifiability of the ouesystem. In other words, the
robustness, correctness and dependability of tlegativsystem is provable. Prét a
Voter schemes have their origins in the schemeggsed by Chaum [Chaum-2004]
and Ryan [Ryan-2004].

Among different types of voting systems dependingtlte needs of the particular
election, FPTP (First Past The Post), STV (Single Sfeable Voting), Condorcet
and Borda Count elections are the main ones to éeatiomed. The ‘Prét a Voter
scheme proposed by Chaum, Ryan and Schneider [CRyamSchneider-2005],
[Ryan-Peacock-2005] in 2005, PAV 2005, and its eckd form PAV 2006 [Ryan-
Schneider-2006] are easily implemented for FPTPtieles; however, they may be
complicated for application to STV elections. On tiker hand, ‘Prét a Voter: All-
In-One’ scheme [Xia-Schneider-Heather-Ryan-Lunde@ifFHoward-2007] that we
will call PAV 2007 throughout this thesis, and itew version [Xia-Schneider-
Heather-Traore-2008] that employs the EI Gamal gimy solve the problem of
handling the STV elections efficiently.

3.1.1 Three Basic Concepts: UV, BCA and Anonymity

Election process in general involves diverse groilyag have sufficient motive to
affect the election results according to their wiSh, recounts in large scale elections
are unavoidable if there are disagreements on thte eounts. A universally
verifiable [Sako-Kilian-1995] e-voting system offeany interested individual the
right and facility of controlling the accuracy dfet overall tallying procedure as well
as the eligible voter lists. An auditable systersoahecessitates the testability of
voting machines; hence, the use of open sourcavat (OSS) seems essential
[Anderson-2008].
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In addition to the universal verifiability requiremt, contemporary e-voting systems
also offer the facility of voter verifiability (omdividual verifiability [Sako-Kilian-
1995]), which supports democracy by enhancing theeldrs of personal rights as
compared to the conventional voting systems. Trapgmty of voter verifiability
seems to provide the joint check of three notiansether an individual vote is i)
cast as intended by its voter, ii) recorded att#itiging office as cast, and iii) tallied
as recorded. However, the third notion can be ewhifor two reasons: i) to chase a
single vote up to the point of tallying is not mewyful after the check of correct
recording; ii) correct count of all recorded voiges concern of universal verifiability
(UV) as well, which offers all interested citizethe opportunity and right to control
the correctness of the overall tallying process.other words, UV provides full

public control on the vote-count and eligibility wfters.

Individual (or voter) verifiability, is also calletthe Ballot Casting AssurancéBCA)

by other researchers [Adida-Neff-2006], who comtime notions that a vote is “cast
as intended” and “recorded as cast” into the cpha# BCA. Ballot casting
assurance also requires a detailed assist to tiee, \iy keeping the voting machine
responsible of proving to the voter in zero knowjedhat his vote is recorded
correctly. In order that the voting scheme provi8€A, voters do not need to trust
the election officials for the recording of votssce they can confidently make their
own checks. Combination of these two propertiemeig UV and BCA, produces an

open-auditvoting system.

Almost all present-day e-voting schemes, such asPiiét a Voter [Ryan-Peacock-
2005], [Xia-Schneider-Heather-Ryan-Lundin-Peel-Hoiva007], the Punchscan
[Chaum-2006], [Fisher-Carback-Sherman-2006], thean&grity [Chaum-Essex-
Carback-Clark-Popoveniuc-Sherman-Vora-2008], theang&ugrity 1l [Chaum-
Carback-Clark-Essex-Popoveniuc-Rivest-Ryan-Shenrsue2008], Scratch&
Vote [Adida-Rivest-2006] or Helios [Adida-2008] aopen-audit, that conform to
the above mentioned concepts of universal veriftgb{UV) and ballot casting

assurance (BCA)These schemes use similar tools to achieve the W/ B@A
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efficiently; the main idea being to provide the etotvith a post-voting encrypted
receipt; which can only prove to himself the wagtthe used his vote, and to nobody
else. Encrypted votes of all eligible voters araamced on public bulletin boards
(PBB's), so BCA is satisfied since anybody can &hat his vote is recorded. UV
is also satisfied since i) anybody can control Wwheta voter is among the eligible
ones, together with this voter’s encrypted (henoegeted) vote, ii) the measures for

the confirmation of tallying by any interested paate entirely taken.

On the other hand; these schemes may differ inwhgs to accomplish the
anonymity that is, voter privacy concerns. There are twonnma¢thods in providing
the anonymity of the votes: i) Ballots can be eptey, shuffled, re-encrypted and
re-shuffled by mix-nets or ii) Anonymity is achialdy utilizing homomorphic
tallying, where a special public key algorithm mseded for decrypting an aggregate
of encrypted ballots, without decrypting any balleparately. We summarize one of
the two anonymity tools, mix-nets in Section 3.-a@¢d give an example that uses the
second tool of homomorphic tallying in Section 3.1However, in the rest of this
chapter, we consider schemes that use mix-netsafi@nymity and deal with

homomorphic tallying more extensively in Chapter 4.

To provide examples as regards the concepts of kiVBCA discussed above and
the concept of anonymity that will be dealt withtive remaining part of the study,
we compare in brief, the two randomly chosen engtapplications presented in
2009: the first scheme implementing Internet votimigh end-to-end integration

[Adida-deMarneffe-Pereira-Quisquater-2009] and sleeond one emphasizing the
use of OSS [Paul-Tanenbaum-2009] on the DRE’s fangait the polls in Sections

3.1.3and 3.1.4.

3.1.2 Mix Networks (Mix-Nets) for Anonymity

As mentioned before, there are two main methogsariding the anonymity of the
votes; the earlier idea being the mix-nets, comgpasfea set of mix servers (also

called layers) cascaded to each other. Ballotsbeaencrypted and shuffled by mix-
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nets as first suggested in 1981 by Chaum [Chaum]19810 used RSA onions with
random padding. To produce the encrypted onionniazi is repeatedly encrypted
using a different public key and random paddingath layer. The first Chaumian
network was attacked by [PfitzmannB&A-1990] usindiet multiplicative
homomorphism of raw RSA and independent randomoédbe padding. Later,
[Park-Itoh-Kurosawa-1994] proposed the first rergption mix-net, where each mix
server re-randomizes the ciphertexts with freslloamzation values, which is again
attacked by [PfitzmannB-1994]. The first univergalerifiable mix-net was
proposed by Sako and Kilian in 1995 [Sako-KiliarBgPbased on the techniques
given in [Park-1toh-Kurosawa-1994]. Sako and Kilework was the first mix-net to
provide a proof of correct mixing that any observen verify. PAV systems that we

have described in Chapter 2 also employ such rgggiian mix-nets.

E-voting applications require robust mix-nets tom@te shuffled lists of encrypted
messages. Correctness constraint is so stringait ¢lven if all mix servers are
corrupt, there is no tolerance to the loss or ialgeof any message. Most robust mix-
net protocols make use of a PBB, which is ideallpested to record all postings

such that any interested observer can check.

An alternative way of achieving anonymity is toliagé additive homomorphic
tallying as first proposed by Benaloh (previouslgh€n) ([Cohen-Fischer-1985],
[Benaloh-Yung-1986]) for decrypting an aggregateeoicrypted ballots, without
decrypting any ballot separately. For this purpose needs to use a special public
key algorithm in tallying, which possesses homorharpadditivity, like the

Exponential El Gamal and Paillier algorithms.

3.1.3 Internet Voting Held at the Université catholique de Louvain with
Additive Homomorphic Tallying for Anonymity

In 2008, Université catholique de Louvain (UCL) inl@dem decided to open up its
presidential elections in March 2009 to all univigranembers. Since there are

25,000 eligible voters at UCL, who are more edwtdb@n a random group chosen
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from the society, an election over the Internetvsee pretty feasible. The researchers
of UCL collaborated with Ben Adida from Harvard Ueirsity, the writerof Helios
1.0 [Adida-2008], which is one of the pioneeringbamased open-audit voting
systems that provides BCA and UV. The researchezsn firesented their work
[Adida—deMarneffe—Pereira—Quisquater-2009] duringe tEVT'2009 E-Voting
Technologies Workshop held in Montreal in Augusf02Q@and they took théBest

Paperaward).

Helios 2.0 software was developed in accordancé whie needs of the UCL
election; and released as OSS. Instead of the sisused by Helios 1.0, anonymity
of the scheme was achieved by homomorphic tallyingelios 2.0. Exponential El

Gamal encryption was used since it is found to dmee to implement than Paillier
encryption. Main advantage of Exponential EI GamadrdPaillier is its suitability

for distributed decryption with joint key generatidOne of the most difficult parts in
the application (because of the lack of uniformity the technical expertise of
trustees) was the joint generation of El-Gamal mukéys by multiple independent
trustees, which were then combined by multiplicatiDecryption for tallying was

done partially by each trustee. It was observedth® authors that it is more
important for trustees to develop their own key egation code than their own
verification code. According to the authors, thisusds quite logical since
verification can be performed many times after #lections, while safe key

generation and partial decryption must be donesctyr in a short time.

After the voting phase, the PBB that contains ladl voter identifications and vote
hashes was frozen: a signed receipt was publishe@édch vote, together with a
signed version of the PBB content. After publicatad the signed receipts, a full day
was devoted to the PBB audits. Voters were invitedonsult the PBB, to produce a
new ballot and introduce their objections to thecgébn commission in case of

disagreement with the signed data.
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Around 4000 voters joined the elections; almost 3ff%hem checked their receipts
on the PBB. There were very small number of comgdaand none of them was

about the essence of the system.

We consider the presented implementation as otigedbest trials of Internet voting
and cannot find anything to criticize about it. \Wlso conclude that UV, BCA and

anonymity are very efficiently solved by this scleem

3.1.4 Paul and Tanenbaums’s E-Voting System as an Exampleith

Weak Anonymity
“Trustworthy Voting: From Machine to System” is iottuced in May 2009 by some
researchers at the Vrije University in AmsterdamPTanenbaum-2009]. It is an e-
voting system for use on the voting machines atpiiés, and concentrates on the
audits of OSS by means of the Trusted Platform No@uUPM), which allows the
verification of the voting machine in real time, dgmonstrating that the machine
runs the open source software that it is supposedrt. The main system goals are
integrity, traceability and simplicity to gain tleenfidence of all voters and political

parties.

The scheme uses open source software, and offgestation’ which lets anyone
verify that the published software is running oa published software. Attestation is
achieved by means of computing the hash of theighdd software and comparing it

with the one running on the machine.

In order to compute the hash over machine’s soévimm reliable manner, Paul and
Tanenbaum suggest the use of TPM (Trusted Platfooduld), which is a device
that is already part of many modern PCs and hgseaiad instruction, calledkinit,
that can be used for software attestation. Theativeoting system consists of 9
steps and uses public key pairs defined for thieses, the first pair per polling
location (or per machine), the second pair pernvaeballot signing, and the third

optional pair is created per person who is intexksh software attestation. 9 phases
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of the voting system, first 4 of them to be perfethbefore the election, items 5 to 8

at the election day and the last one being afeeetéction, are:

1) Generation and distribution of key pairs per polls,

2) Creation of voter registration records,

3) Mail proof of registration to voters,

4) Preparation of voting machines,

5) Assembling two halves of the private key of thelgpplst before the polls open,
6) Checking-in voters at the polls; giving the votitgkens for acceptable
registration cards,

7) Voting by voter's card, token and password (afiptional attestation) and
casting,

8) Tabulation of votes at the polls; reporting the hsshy telephone followed by
escorted transportation of the results to the goredistrar,

9) Publicizing the results at the county registrar Yoter verification, after the

attestation of the software by any interested party

Our critics on this scheme is two-fold: 1) We thitiat although the audits for the
OSS is considered in detail and voter registrajwacedure is described with
ultimate care, the scheme falls beyond its thirdnngoal: Simplicity cannot be

provided with so many public key pairs and the @iuexpectation from each voter
of remembering his password. If every voter is igggat and skillful enough to use
his two pairs (one is optional) of public/secrety&eand correctly remember his
password, the scheme can work very securely; hezroaining two of the main

system goals: integrity and traceability can bdeagtd. 2) However, we observe that
the scheme is somewhat weak in providing voter gaity since the votes are
announced at the PBB in plain form, together witime random numbers for the
check of each voter. Even if only the random numbfenshout the votes) were

announced as suggested by the authors, in casstateedecides that vote selling is
a bigger problem than election tampering”, we thimit there is no obvious measure

of this scheme that guarantees the anonymity o¥iohaal votes against the state.
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So, we conclude that although UV and BCA is soledficiently by this scheme,

anonymity is an unsettled problem.
3.2 ‘Préta Voter Schemes

We firstly describe the common properties of thétRr Voter schemes, PAV 2005
[Chaum-Ryan-Schneider-2005], [Ryan-Peacock-2008)jowed by PAV 2006

[Ryan-Schneider-2006], PAV 2007 [Xia-Schneider-HieatRyan-Lundin-Peel-

Howard-2007] and its new version [Xia-SchneiderdtHeaTraore-2008] that
employs the ElI Gamal encryption in Section 3.2.lgenthgive a comparative
discussion in Section 3.2.2. Section 3.2.3 is davao the explanation of the
cryptographic core used in ‘Prét a Voter: All-im® (i.e., PAV 2007) scheme [Xia-
Schneider-Heather-Ryan-Lundin-Peel-Howard-2007{h wital details which cannot

be found in the original reference.

3.2.1 Common Properties of the ‘Prét a Voter’ Schemes

Prét & Voter schemes, PAV 2005, PAV 2006 and PAW72tave their origins in the
two-sheet visual cryptographic scheme proposed lu@ [Chaum-2004] and two-
column ballot suggested by Ryan [Ryan-2004]. ABtPx Voter schemes are voter-
verifiable methods, which provide voting receiptshout any threat of coercion and
ballot-selling. Ballots contain two columns as shom Figure 3.1, say the left
column including the candidate names in randomraofaiealphabetical order simply
rotated by a random cyclic shift, say 2 downwardtstas in Figure 3.1) and the
right column having an encrypted number calledion’ that is prepared as a
function of the random order of candidates on HaBot. In the voting booth, voter
marks his vote on the right column; and the lefuom of the ballot on which the

candidates are tabulated is destroyed after vatisig, part of the voting phase.

The provided receipt includes only the right cofuthat shows the marked vote and
the onion; hence it is meaningless to anybody extepvoter himself, who has seen

the order of the candidates before the removdi®tdft column of the ballot.
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Figure 3.1 Ballot form used by original Prét a Voter schenfaker voting but before
removal of the left column).

Anonymity, i.e., voter privacy, of Prét a Voter sohes is accomplished by means of
the mix-nets, which are proposed by Chaum [ChauBi]l®here arek tellers (or
clerks) of the mix-net, each one having two seta public/private key pair. Ballots
are prepared before the elections; the secret nymilech indicates the candidate
order on the left column of the ballot is encryptete-after-another withk2public
keys ofk tellers to form the onion. To decrypt this onian the tallying phase,
contribution of each teller is indispensable, bseagach layer of the encrypted onion
can only be decrypted by one of the private keythefcorresponding teller. In order
to preserve anonymity and break any linkage betwiervoter and decrypted vote,
each teller randomly permutes the output list dfote before submitting it to the

next teller.

Voter verifiability [Sako-Kilian-1995], [Adida-Nef2006] of Prét a Voter schemes is
achieved by means of encrypted receipts and pioliletin boards (PBB), which
have universally accessible memory, and providdipagbmmunication, such that an
election authority can write secured, unalterabild andeletable information on it
and any other party can read. The receipt contaithiegright column with voter’s
mark and the onion will be scanned after voting sehaand published onto the
bulletin board by election authorities. Any voteanccheck for the existence and
integrity of his receipt on the bulletin board améke an objection whenever any
problem occurs. Perhaps the most attractive patiePrét a Voter schemes is that,
although the receipts are publicized, nobody exd¢bpt voter himself is able to
understand the content of the vote, unless thenasidecrypted properly. However,
decryption of the onion is distributed cleverlykttellers, who also have to randomly

shuffle the ballot lists that they receive, befetdmitting to the next teller; so that
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the link between the initial voter and the findli¢al vote cannot be tracked unless all

tellers are corrupted.

3.2.2 Differences Among ‘Prét & Voter’ Schemes
Improvements broughiy PAV 2006 over PAV 2005 are,

i) preparation of ballot forms with two onions, thew-left onion on the left
column being encrypted by the public key of thangimachine and decrypted by its
private key whenever the voter casts his vote,

i) distributed generation of ballot forms, to enhanthe security of ballot
generation phase,

iii) on demand-printing of ballots to resist the chaoting attack reported in
[Ryan- Peacock-2005],

iv) size-independence of onion from the number dérs|

v) separation of shuffle and decryption phases tweimse robustness, by first

shuffling the received votes by a re-encryption-met as suggested in [Neff-2001].

The main improvement brougby PAV 2007 over PAV 2006 is its adjustment
according to the needs of preferential electionshsas STV or Condorcet elections.
Since each voter makes a ranking of the candidla@®ferential elections, the order
of the ballot candidate list needs to be totallyd@mized as in Figure 3.2, instead of

simply cyclically shifting the same alphabeticadisdered list on each ballot.

Aysegul 5 dBOpTf
Efe 3 66rdMv
Demet 1 Abc123
Binnur 2 7YJLEN

Cihan 4 Vs68Hb

Figure 3.2 Ballot form used by “Prét a Voter: All-In-One” AR 2007) scheme (after
voting but before removal of the left column).
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The implementation of previous PAV 2005 and PAV @0€chemes may be
complicated with this constraint, as compared ®ithplementation of the approval
elections. PAV 2007 takes care of this problemrewting the ballot as a whole in
the ballot tallying phase. It makes use of theligaiencryption [Paillier-1999] and

exploits its homomorphic property in absorbing @hked choices of the ballot
within a single encrypted onion. Ballots are thbaffied by a re-encryption mix-net
composed of many tellers (or clerks). In later v@rs of Prét a Voter schemes, El
Gamal [Xia-Schneider-Heather-Traore-2008] and iailRyan-2008]ciphers are

used respectively.

3.2.3 Encryption and Decryption by Paillier Cryptosystem

Brief description of Paillier cryptosystem [Pailli&999], [Paillier-Pointcheval-1999]
is needed at this point for clarifying our conttilom to “Prét a Voter: All-In-One”

(PAV 2007) scheme. The Paillier algorithm (see ®ec#.1.1) has the additive
homomorphic property; that is, an encryptionnaftrm, can be obtained from any

encryption ofy andm, as
(BB, r)E(my, r2) = E(my+my, 11r3). (3.1)
In (3.1), the ciphertexd= E(m, r) stands for the encrypted form of the plaintext m,
<E(m, n =g™" (modn?), (3.2)
r is chosen at random,andg are fixed public elements defined by
n=pq, the moduluswhegandq are large primes
g0Z,, andequal to 1 mad

So, the pairr, g) is the public key, and the pap, @) or equivalentlyp = LCM (p-1,
g-1) is the private key of the Paillier's algorithrAs a consequence of (3.1), it is

clear that
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(1, N*= E(km, r". 3.

Ballot Construction:

In Figure 3.2, the numbers on the rightmost araiobd as a result of successive
encryptions performed by the clerks of the mix ratw The order {1, 5, 4, 2, 3} on
the ballot shown in Figure 3.2 of the candidatesA¥segul, 2: Binnur, 3: Cihan,
4: Demet, 5: Efe} is chosen randomly by the firgtrk. First clerk also picks up the
random numberss, ro,..., rs and prepares the encrypted numbetsc,,..., Cs
showing the candidate placed at each row, usir) éhd the public keyn( g). More

specifically, the encrypted number that the fitstlc prepares for thgth row is
c,=E(M'r)= g“"irjn (modn?) (3.4)

where M is any integer greater than the numberpf candidates, ant-1,2,...y
shows the alphabetical order of the candidate spareding to that row. Hence, for
the example of Figure 3.2, the candidate orde5{}4, 2, 3} is reflected directly to

the exponents d¥l as follows

c, =E(M4r), c¢,=E(M°r,), c,=E(M*r),c,=E(M?r,), ¢ =EM?3r).

Each successive clerk of the mix network re-enentpe numbers;, c,,..., C by
multiplying them with then'th power of a random numbeérso that the new value of

the ciphertext becomes

¢ =c = g“"irj“tn =EM',r;t). (3.5)

] ]

Equation (3.5) shows that, the plainteMt’ remains untouched while the random
numbers picked by the first clerk are each timetiplied by a different random

numbert; so that the first clerk, the only person who ksotlie candidate order,

cannot trace the ballot. Sincff? value of thej'th row keeps the messagd’ in

encrypted form, the numbeshowing the alphabetical order of the candidatengi
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at thej’'th row is always preserved and not affected byréasing number of re-

encryptions. The numbers on the rightmost of théob& Figure 3.2 are thoséj

values obtained by the last clerk at the end ob#ibt construction chain.
Ballot Cagting:

The voter casts his vote by ranking, i.e., filling the numbers 1 te in the right
hand column; tears the ballot apart, destroys @ftepart and keeps the right part as
the receipt after being scanned by the electiohaity at the voting booth. The
scanned receipt is also announced at the PBB ftineuchecks demanded by the

voter or any other party.
Ballot Tallying:

After the ballot is ranked by the voter, a singleiom for each ballot having

candidates is calculated as follows:

\

E(m,r) = ” E(M',r)s = ” ch | (3.6)

wherek;’s indicate the voter’s ranking corresponding te tdandidate, who is th&h
one in alphabetical order. In the decryption oftbhion, homomorphism of the

Paillier algorithm leads to a very useful result:
I_JE(Mi’ri)ki :E(ZkiMi'I_lIriki)- (3.7)
= i=1 1=

The authority who has the private kgy, ) or equivalentlyt = LCM (p-1, g-1)
corresponding to the public key pair, ), extracts the useful messamgen E(m, r)

given by (3.6). Because of the homomorphic propier{3.7),
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m=>kM' and sinceM >v, (3.8)

i=1
retrieval of all choices of the ballot becomes flulesBecause from (3.8) it is clear
that fn/ M ") equalsk,, the {remainder of/ M ‘} divided by M " equalsk.+; and

the remainder after dividing bl V'l, again divided by vz givesk,.» and so on.

Example: In Figure 3.2, the candidate order {1, 5, 4, 2, @&}ring the ballot
construction is reflected to the subscripf ki’s, as i, ks, ki, ko, ks} and the voter’s
choice on the ballot shows thHat5, ks=3, ks=1, ko=2, ks=4.

If M (>v=5) is chosen as 7, the following useful message obtained from (3.8):

m:Zv:kiMi =5x7 43X 77 +1x 74 +2%x 7% +4x T3,

i=1
So, m divided by 7 givesks=3, hence we understand that the alphabetically 5't
candidate Efe is the third in the list of the voter,
Rem{m/7°}/7* givesk,;=1, which shows that the alphabetically 4'th caatidDemet
is the first choice of the voter,
Rem{Rem{m/7°}/7*/73= ks= 4 , so Cihan is his 4’th choice,
Rem{Rem{Remfw7}/7%/7%/7%? = k, = 2, so Binnur is the 2'nd, and finally,

Aysegul is the last choice of the voter since
Rem{Rem{Rem{Rem{W7*}/7*/7°%7%/7 = k=5

3.3 Our Proposals to Enhance the Security of “Prét a Vier: All-
In-One” (PAV 2007) Scheme

The tallying phase of the PAV 2007 scheme [Xia-®iter-Heather-Ryan-Lundin-
Peel-Howard-2007], which is inherently very suigalidr preferential elections can
be easily modified according to the STV method sstagk above. We strongly
predict that such an e-voting scheme may becommdispensable alternative for
paper-based elections, if the security of the diveyatem is enhanced. The weakest
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point in ballot-construction phase of the PAV 2(heme seems to be the over-
dependence on the first clerk, who decides on #melom candidate order of the
ballots. He chooses this random order, and enchygig using random seeds for
each row of the ballot and the public keys of tHectwon authority, who is
responsible for tallying the votes. The re-enciymsi performed by the following

clerks in the network has the purpose of obscutegpath that the ballot follows.

So, our first proposal to enhance the securithefdystem is to hold the first clerk in
the chain more responsible of the encryption hdopmis, by including his digital
signature as a part of the encrypted informatiomctv may be checked whenever a
need occurs. Such a modification increases thestobsas of the scheme since any

corrupted behavior is known to be traceable eveherfuture.

The second modification that we propose to enhaheesecurity is in the re-
encryption equation (3.5) that is used by the otihenks of mix network,

S =ct"=g" " =E(M' rt) (3.9)

in which we change the random numbély a row dependent random numtieso
that each clerk in the network generate§iumber of candidates and ballot rows)
random numbers for each ballot, rather than a simgle. The use of random
numbers by each clerk (or teller), will make thehpanore invisible and difficult to
catch by the first clerk, who generates the crugabdom ordering of the candidates

on the ballot.

Finally, we propose the insertion of a Ballot SeNamber (BSN) to be produced
whenever a ballot is needed, instead of PAV 208&Bot Onion. BSN is used after
voting, for the purpose of systematical searchhef teceipt on the bulletin board.
BSN does not contain any information about the whaid order of the ballot,
because candidate names are clearly seen on theoleinn before voting and

destroyed after voting.
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3.4 Conclusion

After discussing the concepts of universal verifigb(UV), ballot casting assurance
(BCA) and anonymity; we briefly review the mix-netand Prét a Voter schemes.
The voter-verifiable e-voting scheme, ‘Prét a Votell-In-One’ proposed in 2007
(so called PAV 2007 in our work) [Xia-Schneider-Hea-Ryan-Lundin-Peel-
Howard-2007], which supports single transferabléngp(STV) seems to be a very
suitable option for the elections having electdratriers; so we suggest a modified
STV implementation that utilizes PAV 2007 for suclections. To increase the
security and the robustness of the overall systeam, modify PAV-2007 by
proposing three security enhancing modificationgsrballot construction phase: 1)
digital signature of the first clerk in the mix-n&) different random numbers for
each row of the ballot, 3) ballot serial number. Tdrealysis we present for the
cryptographic part of PAV 2007 is more detailed aodhprehensive than given in
the original paper written by Xia, Schneider, HeathRyan, Lundin, Peel and
Howard, in 2007.

We presented the work discussed in Chapter 3 at3¥Adnformation Security and
Cryptology Conference-ISC’08”, held in Ankara, oed@mber 25-27, 2008 [Ylcel-
Baykal-2008].

In Sections 2.1.2 and 2.2.2, we have formulated “thedified STV+d'Hondt”
method according to the Turkish Parliament Electiamv (no. 2839, accepted on
June 10, 1983) by taking into consideration thaitiedf the present tallying phase
within each election region. We presented a contiminaof Chapter 3 and Sections
2.1.2 & 2.2.2 at ECEG’2009, “9th European Conference e-Government”, in
London, on June 29-30, 2009 [Ylcel-Baykal-2009].
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CHAPTER 4

HOMOMORPHIC RSA TALLYING WITH PROPER
RANDOMIZATION

As mentioned in the previous chapter, one of thenmaethods in providing the
anonymity of the votes is homomorphic tallying, wea special public key
algorithm is needed for decrypting an aggregateewnérypted ballots, without
decrypting any ballot separately. In Section 4., bviefly review the additive or
multiplicative homomorphism of public key encryptischemes, such as the RSA,
El Gamal, Exponential EI Gamal and Paillier algorithriive describe how “voter
and universal verifiable e-voting with homomorpR8A tallying” becomes possible
by utilizing the multiplicative homomorphic propgrof RSA in Section 4.2. We
propose RSA tallying by assigning a prime numberefach candidate on electronic
ballots, and using the unique prime factorizatibthe vote product\YP) to find the
vote counts. For the implementation of homomorpaitying, RSA needs to be
randomized; but the usual RSA randomization methiogadding random bits does
not work for this case. So, in Section 4.3, we psgpfour novel randomization
methods for homomorphic RSA tallying; which havedient potential for practical
applications. Section 4.4 is devoted to the disoussf practical considerations
about these randomization schemes, such as thedlpee of the voter set size to

the RSA modulus size, transmission of the RSA raridation factors from voting
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booths to the final tallying office and their blimdncellation. We then compare our
four randomization methods in the same section.c@&tion of the overall
randomization factor without bringing any extra doan the RSA modulus is

discussed in Appendix A.
4.1 Homomorphic Tallying for Anonymity

Some public key encryption algorithms enjoy the edbenit property ofadditive
homomorphismwhich makes homomorphic tallying possible, andsaful tool for
providing anonymity. Homomorphic tallying does metuire separate decryption of
ballots; instead, all encrypted ballot values areltiplied and the vote sum is
decrypted jointly as first described in [Cohen-Risc1985], [Benaloh-Yung-1986],
and later featured in [Baudron-Fouque-PointchevatrBPoupard-2001].
Subsequently, all votes remain anonymous withoyt @eed for mix-nets. Multi
candidate homomorphic systems have been first figagsd in [Cramer-Franklin-
Schoenmakers-Yung-1996], further discussed andiestuéh [Cramer-Gennaro-
Schoenmakers-1997]. Specific details of the homgimoermulti-counter are given in
[Katz-Myers-Ostrovsky-2001]. There is extensive eritture on additive
homomorphic tallying, but multiplicative homomoiphallying is only considered
in [Peng-Aditya-Boyd-Dawson-Lee-2004] for the ElI Ganeacryption. To our
knowledge, there is no reference in literaturehedRSA algorithm as a candidate for
homomorphic tallying. Our proposal in Section 4latt employs unique prime

factorization is general and it is suitable for BR®A algorithm as well as EI Gamal.

4.1.1 Homomorphic Public Key Algorithms

In a public-key cryptographic system [Diffie-Hellmd 976], each user of the public
key algorithm has to own a key paipyblic key secret kely The mathematical

relation between these keys is such that it is sirmopossible to find the secret key
from the knowledge of the public key; whereas, dkiger way is trivial. Because of

this unique mathematical relation between the kagyyg; message encrypted with the
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public key (that everbody knows) can be decryptéith Wwhe secret key (which is
possessed only by the owner of that secret keyis &kplains how privacy of the
secret key owner is granted by encryption. ConWgrsethe message is encrypted
(by the secret key owner) with the secret key, tihean be decrypted by anybody
who knows the public key. This idea forms the baokgd of a digital signature;
which serves not only to the authentication ofsémder but also to the integrity of
the transmitted message. The enclosure of the pbrafemessage integrity makes

digital signatures more powerful than conventidmatd-written signatures.

To exhibit the homomorphic properties of some pukby algorithms like the RSA,
El Gamal, which possess the propertyhoinomorphic multiplicationand Paillier,
Exponential EI Gamal, having the property mimomorphic additionwe start by

their brief descriptions in chronological order.

For each algorithm summarized beld# refers to the specific encryption function
andD refers to the corresponding decryption functiarghsthate(D(x))=D(E(X))=x.

If encryption is used for privacy purposes (thatist for signing to prove identity);
then the sender uses the public k&yf the receiver and the intended receiver uses
the corresponding secret kesk So, for privacy applications, the encryption
operationE depends ompk, but the corresponding decryption is a functiontho
secret keysk The algorithm descriptions below are all given finis case,
considering privacy instead of authentication. Hegre conversion to the case of
authentication is trivial just by interchanging ttedes ofpk andsk In each case, the

plaintext messagm is encrypted to obtain the ciphertext

RSA Algorithm [Rivest-Shamir-Adleman-1978]

Two large prime$ andq are chosen by the user= pgand®(pg) = (p - 1)@ - 1),

where@ is called Euler’s totient function (that satisf'rag(")(mod n)=1 for anymin

Z., nis called the modulus, it is also a part of theljmukey);
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Public key,pk (n, €), wheree and®(n) are co-prime and 1 &< &(n),

Secret keysk d, where ed= 1 (modd(n))

Encryption: ¢ = E(m) =m° (modn) (4.1)
Decryption: m=D(c) = ? (modn)

n)+1

Proof ¢ modn = m® (modn) = m“™*! (modn) = M*™)m (modn) = m (modn).

El Gamal Algorithm [El Gamal-1985]

p is a known large primeg is a known large prime factor gb — 1,9 is the known

generator of aj-order subgroup oTZf,, r is chosen randomly by the user for each

encryption.

Public key,pk y=g"(modp)

Secret keysk X, selected by the user randomly such tk\&tzqD

Encryption: c=E(m) = (a,f) = (gr, m 3}) (modp) (4.2)
Decryption: m=D(c) = [/ a"] (modp)

Proof m=D(c) = [#/a*] (modp) =[my/g *] (modp) =[mg*"/d *] (modp)

Exponential EIl Gamal Algorithm

If the plaintextmin the El Gamal algorithm, is changedgf& the rest is the same as

the EI Gamal algorithm, except that one needs te tag in decryption. Sop is a
known large primeg is a known large prime factor ofp — 1, g is the known

generator of aj-order subgroup oTZf,, r is chosen randomly by the user for each

encryption.

Public key,pk y=g"(modp)

Secret keysk X, selected by the user randomly such tklEtZE

Encryption: c=E(m) = (a,f£) = (gr, d“yr) (modp) (4.3)

50



Decryption: m=D(c) = [ logg (/) ] (modp)

Paillier Algorithm_ [Paillier-1999]

Two large primeg andqg are chosem=pg, A=Ilcm @ -1,9-1),L(X) = X-1)/n.

Public key,pk (n, g), where the order og 1 Z , is a multiple ofn.

Secret keysk 4 (or equivalently §, g)).

Encryption: ¢ =E(m) =g"™r" (modn?) for a randomr 0Z, (4.4)

Decryption: m=D(c) = [ L(¢* (modn?)) / L(g" (modn?) ] (modn).
4.1.2 Additive versus Multiplicative Homomorphism

In this section, we briefly review the concepts additive and multiplicative
homomorphism of the algorithms given in Section #ih chronological order. Our
focus is on the application of these homomorphaperties to the tallying phase of
e-voting schemes. Researchers, who propose hombrmdgllying as a means for
anonymity, are mostly interested in public key aidgns such as Paillier and
Exponential EI Gamal that possess homomorphic acidiproperty. We study
homomorphic multiplication and propose RSA as adadate for homomorphic

tallying.

After briefly exhibiting the multiplicative homomphism of RSA and EI Gamal, we
re-demonstrate additive homomorphism of Paillied &xponential EI Gamal for
completeness, by using the encryption equatioriy (4.(4.4) given in the previous
section. We note that the convention in naming éheperties as “additive” or
“multiplicative”, refers to the operation performea the plaintexts and not on the
ciphertexts. The encryption algorithm is called iidd homomorphic, if the
encryption converts the message s{mm) to the ciphertext producty{c,). The
algorithm is called multiplicative homomorphic, ithe encryption converts the

message produ@mmy) to the ciphertext product{c,).
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RSA encryption (4.1) has the homomorphic multiplication propefigrause, if two
ciphertextsc; = E(my) = mld (modn) andc, = E(m,) = rr12d (modn) given by (4.1) are
multiplied, one obtainsc, ¢, = mld mzd (modn) = (m mz)d (mod n), which is the

RSA encryption of the produat({m,) of the plaintexts So,
100, = E(My) E(mg) = E(myy), (4.5)

The property defined by (4.5) is calldtbomomorphic multiplication since the
encryption converts the product of plainteftsn,) to the product of ciphertexts.

Using RSA’s decryption functioB on (4.5), one can recovenfm,) as

@, ¢;) = D(E(my)E(my)) = mym. .6

El Gamal encryption (4.2) exhibits homomorphic multiplication propeityst like

RSA; because, i€, = E(, 1) = (grl, mlyrl) andc, = E(my, rp) = (grz, mzyrz) given

by (4.2) are multiplied, one obtaingc,= (g * g'2 mmy'Ty'2) = (@ "2, mmpy *'2).

So, messages are multiplied (and random numbeiedaiexd) as
G, = E(my, r1)E(my, r2) = E(mumy, rotry). (4.7)

Using ElI Gamal’s decryption functidh on (4.7), one can then recoveni) as

e, ) = D(E(my, r)E(my, 1)) = (mumy, ri+ry). (4.8)

Exponential EI Gamal encryption (4.3) that uses the plaintext as the exponent of
some integer, differs from the El Gamal encryptidighsly. The fact that the
plaintext is used in the exponent makes the algwriadditive homomorphic; and

changes (4.7) and (4.8) as follows
¢ C,= E(my, r)E(my, r2) = E(my+ny, ri+ry). (4.9)

Oc; &) = D(E(my, r)E(my, 7)) = (My+my, ri+ry). (4.10)
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The property defined by (4.9) is calladmomorphic additionsince the encryption
converts the sum of plaintextsy+ny) to the product of ciphertexts,(c,). Using the

corresponding decryption functi@on (4.9), one can recovan{+m) as in (4.10).

Paillier encryption (4.4) is additive homomorphic as mentioned in ®eacB.2.3.
That is, if two ciphertexts, = E(m,) = ¢"r," andc, = E(m,) = g"2," given by (4.4)
are multiplied, one obtaingc, =g™r," g™%r," = g™* ™(r r)", which is the Paillier

encryption of the sunmg+m,) of the plaintexts with random numkrmr,, so
€6, = E(my, r)E(my, r2) = E(my+my, riro). (4.11)

Using the corresponding Paillier's decryption fuostD on (4.11), one can recover
(Mu+my) as
&, c;) = D(E(my, r)E(my, 12)) = (My+y, r1r2). (4.12)

The main accomplishment of the last two algoritheishe decryption of the sum
(m+nmy) from the product of encryptionE(my, ri1)E(my, r2), without decrypting any
individual plaintextmy, or mp. Homomorphic tallying employs this property in erd
to directly count the total number of votes whilegerving privacy and anonymity
of each ballot. On the other hand, RSA and El Gagarithms are considered to be
not suitable for homomorphic tallying since theyndohave the homomorphic

addition property.
4.2 Prime Factorization for Multiplicative Homomorphic Tallying

As discussed earlier in this chapter, anonymityates is granted by homomorphic
tallying as it doesn’t require separate decryptirballots. Instead, all encrypted
ballot values are multiplied and decrypted jointdy find out the total vote sum
corresponding to each candidate, as first descrimedCohen-Fischer-1985],
[Benaloh-Yung-1986], and later featured in [BaudFmuque-Pointcheval-Stern-
Poupard-2001]. Recent e-voting schemes that empboyomorphic tallying either
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prefer the Paillier or the Exponential El Gamal gptions because of thedditive
homomorphisnof these algorithms. Specific details of the homgoha additive

multi-counter are given in [Katz-Myers-Ostrovskyeaq.

RSA and El Gamal algorithms lack the property of bamrphic addition; however,
they have the homomorphic multiplication propefty.this part of our work, we
show how the homomorphic multiplication propertyncde employed for
homomorphic tallying; provided that ballots aregaeed properly, so as to assign a
specific prime number for each vote given to tratdidate. In [Peng-Aditya-Boyd-
Dawson-Lee-2004]multiplicative homomorphitallying by EI Gamal encryption is
considered. Our description of multiplicative honmmphic tallying in this section is
more general and works for any multiplicative honaophic encryption scheme.
However, our focus is on homomorphic RSA tallyimdhich is firstly proposed in

this work.

The absence of random parameters in the RSA digorits a disadvantage,
especially within the context of e-voting, whereleaoter uses the same public key
of the tallying authority and the number of messatgebe encrypted is equal to the
limited number of candidates. Because of the latkamdomization, a specific
plaintextm always yields the same ciphertext under a given &e the probability of
collisions among ciphertexts increases. In manyliegipons, by adding random
padding bits to the plaintext, one can avoid thiawdback. However; this is not
possible for homomorphic tallying with RSA. In Seat4.3, we discuss why random
padding bits do not work for homomorphic tallyingnd propose different

randomization solutions.

Let us now consider @-candidate election, where the number of voteid @énd the

number of votes used for candidates {1, 2, C} are equal to ¥;, V,, ..., Vc}
C

respectively, so their sum i = Zvi . The set ofC prime numbersg,, p,,..., Pc}
=1

are associated with the set of candidates {1, 2, C}, to be used in ballot
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construction. We will call the set of prime numbessociated with candidates, the

“Set of Candidate-Primes”, SCPx{ p,,..., pc}- Electronic ballots are prepared so

as to record a vote given to candidgteas E( p,), i.e., the encrypted form of the
corresponding prime numbep;, where the encryption algorithia is required to

possess multiplicative homomorphism. Homomorphidlyit)y procedure first

computes th&ncrypted Vote Produ¢EVP) of all encrypted votes

EVP= D E(p) u E(p,) u E(p.), overN voters. (4.13)

Vi
The first individual product irEVP is of the form H E(p,), and because of the

homomorphic multiplication property of the RSA (Bt Gamal) algorithms it is

equal to

lvj E(p) = E(ﬁ P ) (4.14)

Vi
using (4.5) (or (4.7)). Since the productwfmanyp;’s is simply H p, = pfl , the
right hand side of (4.14) is equal ®( pfl). Similarly, the second term ®&VP is

Vo Ve
found asE(H p,)= E(p;'2 ) and the last term becomés( H p.)=E(pL . )

Substituting all these terms into (4.1B)/Pis computed as

EVP= ”E(pl)uE(pz DE(pn)‘E(pll)E(p ) .. E(pE)

=DEwﬁ

(4.15)
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Using the homomorphic multiplication property giviey (4.5) (or (4.7)) once more,

we obtain

EVP= DE(Q)HE(IOZ HE(IOC)—DE(IO )—E(u p). (4.16)

Finally, decryption ofEVP by (4.6) of the RSA algorithm (or by (4.8) of thé E

C
Gamal algorithm), produces thote ProductVP = D in‘ ,

VP= D{[lE(pl)uE(pz [lE(IOn)} D{E([l P} = [l P (4.17)

which is composed of only prime numbers; thereftaa uniquely be factorized to

evaluate the vote counts{ v,, ..., ¢} corresponding to each candidate.

Ballot Casting Assurance (Voter Verifiability): Any vote for candidatej is
recorded, and given to the voter as the recEipp; to e announced together with

voter’s identity that can be checked on the PBBnddethe voter verifiability of the
system is achieved. (In Section 4.3, we discuss Wig/ receipt needs to be
randomized. Then we propose different randomizatifmm the RSA algorithm, all

using multiplication by random numbersto obtain receipts of the forfa(rp; .))

Universal Verifiability: Not only the talliers, but also all interested induals are

able to compute the encrypted vote prodei¢®, by multiplying the receipts on the
PBB. Everybody can then encrypt the announé¢Bdy using the public key of the
tallying office and compare it with the productalf receipts on the PBB. Hence the

universal verifiability of the system is also acquished.

Example: In an election region withl=3,000 voters, number of candidates that join
the elections i€C=5. The ballot forms are prepared such that a twtee used for

Candidate 1 is recorded &%p;), wherep; is the prime number associated with
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Candidate 1, and any vote given to Candidate 2asrded a&(p,) and so on. The
prime numbers are chosen as SQR=p,, Ps, Pa Ps}={2, 3, 5, 7, 11}. After the

election terminates, all votes are recorded onpielic bulletin board (PBB) in
encrypted form, so that any interested voter cagcklthat his encrypted vote is
recorded correctly. If RSA algorithm is used, ramization of the plaintext is

necessary to securely preserve the voter privacy.

Talliers compute the product of all encrypted vaiasounced on the PBB, and find
the encrypted vote produEtVP. In order to decrypt thEVP, the secret key of the
tallying authority is necessary; therefore (4.1a) only be computed by the tallying

C
authority. After obtaining the vote produ¢P = D in‘ , all that needs to be done is

to find the numbersV, v,, 3, Vi, s} by consecutively dividing th&P to each prime
number. For instance, starting with=2, assume tha¥P is divisible by 2 exactly
1,128 times, but the 1,129'th division is not pbgesiwhich shows that,=1,128.

Then VP'=VP/2''% is successively divided bp,=3 until no more division is
possible. The number of times that division by B t& performed gives the vote
count of Candidate 2, say as-324. The maximum number of possible divisions of
VP"=VP/2'1%83%2% by p,=5 is equal tov; and the tallying algorithm continues by
dividing the sequential valuegP’”, VP"” to p,=7 andps=11 to obtain the vote

countsv, andvs. After the announcement of the vote countg ¥,, Vs, V,, Vs}, any

C
interested individual can compute the vote prodtRt l_l pi = 212833245163 7031
1=

11** and check the result by encryptivP with the public key of the tallying
authority. If E(VP)=EVP, the tallying is confirmed. Hence, universal viatiility is
achieved.

In an actual election, there may be invalid votesvell; thenN should be taken as
the number of valid votes. Also considering theevetwho prefer to use a blank vote

on purpose, an extra prime number can be assoaidtte@d blank vote in the SCP.
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4.3 Randomization of RSA for Homomorphic Tallying

The absence of random parameters in the RSA digoris a disadvantage,
especially when the size of the message space al sm that the probability of
collisions among ciphertexts increases. This isribgs drawback within the context
of e-voting, where the number of messages to beypted is equal to the number of
candidates and each ballot is encrypted with theespublic key, i.e., the key of the
tallying authority. Because of the lack of randoati@n, a votem given to a specific
candidate always yields the same ciphertext unkergdiven public key; hence,
encryption cannot provide secrecy.

In different applications, RSA algorithm is usuatindomized by adding random
padding bits to the plaintext. However, this doesvork for homomorphic tallying;
because, a randomization that would change theuanpgime factorization in the
vote productVP is not allowable since it would destroy the maled. Below, we
detail this problem and present four randomizasiolutions for homomorphic RSA
tallying in sections 4.3.1 to 4.3.4. We use therabilationsVP andEVPrespectively,
for the vote product and the encrypted vote prodiefined in Section 4.2; and call
their randomized form3/P.n=RxVP and EVRa,=Ers{ RxVP}, where R is the
overall randomization factor. For each method dbedrbelow, a vote receipt is in

the formErsA rpi}, wherep; [1 SCP and is a random number. Receipts also contain

a unique identification number for the systemagiarsh on the PBB.

* Why padding bits do not work for multiplicative homomorphic tallying?

As mentioned above, a common approach to randomhiegeRSA algorithm is
message padding, i.e., adding some random bitseetonessagm so that it becomes

another textm’ with unknown random bits at known locations. Aftéecrypting
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c=E(m), it is easy to erase the random bits at knowsatmns ofn’ to obtain the
actual messagen back. In homomorphic tallying, this creates a @esiproblem
because the encrypted vote prodEdMP=c ¢, ... G corresponding to a total i

voters is to be decrypted jointly.

Without randomization, decryption dEVP=c; c;, ... ¢ would yield the vote product
VP = (p)"* (72)? ... (pc)’®, whereC is the total number of candidates. Unique

factorization ofVP would result in the separate vote coumisvs, ... ,Vvc. If padded
random messages, &, ..., gc, were used instead of the prime numhary, ...,

Ppc, it would be impossible to find the correct vote comts,, ... , Ve from the new
vote productV/P'=(a.)"*(ap)"?...(qe)'S, since each of the random messagesould
be equal to the product of an unknown number ofnomin prime numbers. So,
when the new vote produdtP’=(qy)"(q,)*?...(qc) " is factorized into some prime
numbers asVP =(p)"* (p)™? ... (pe)"®, the number of prime numbers in the

factorization,B#C, and the powers of these prime numbergy;, would be different

from those in the originafP, and the correct vote coumts v», ... ,vc would be lost.

4.3.1 Random Shift of the Prime Numbers

Ouir first solution for RSA randomization consisfstle random shift of each prime
number represented in bits on the ballot, so thatgrime factorization o¥VP is

multiplied by a random power of 2. The main poieténis not to assign the prime
number 2 to any candidate, and keep it for theaamzation of the RSA encryption.

The randomization is as follows:

i) The prime number 2 is not assigned to any catelida SCP and used for

randomization.

i) A vote for thei" candidate is associated withs”@), wherep; is a prime number

greater than 2; ang is randomly chosen in the interval {1, .M}, whereM is the

number of extra locations that can be allocatedrémdomization on the ballot.
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Receipts are in the forrERsx{ZS“pi }. So, once the randomized encrypted vote

productEVR,, is decrypted, the new vote product
VPran = Zs(pl)V1 (p2)V2 (pC)VCa (4-18)

is obtained. Sinc&P.., = R x VP, the randomization factor R = 2°. In the vote

productVP.a= 25(p)" (p2)" ... (pc)', each vote is counted as(p) wherej=1, ...,
Vi, so the share of candiddtenters intoVPa, as &1* - *) ()" and hence the

power of 2 iNVPgy is
S (sutSet ... +Sy) t (St ... +Sy) +... + (St ... FSoy)-

Number of terms i1 is equal to the number of all votels, It should be noticed that

in order to find iipi , provided that it is less than the RSA moduilusne shifts the
binary representation @, simplys; times (say to the left) and adgdmany 0’s (say
to the right). Randomization load is cancelled bydihg VP, to R Finally, unique

factorization ofVP results in the separate vote coumtsvs, ... ,Vc.

4.3.2 Randomization Using the “Full Set of Candidate-Prines, SCP” as

in Rivest’'s ThreeBallot Method
The ThreeBallot method proposed in [Rivest-200R]ygst-Smith-2007] is intended
as a voting scheme that doesn’t use any cryptograpvery voter in ThreeBallot-
voting fills three ballots as follows: For the catate he chooses, he votes twice in
two different ballots; then for all the remainingndlidates that he doesn’t choose, he
votes once in a single ballot. Therefore, in thealfivote count of each candidate,
there occurs a superfluous quantityNofotes, that is equal to the number of voters.
This extra amount is then subtracted from the fewlint to obtain the actual vote
counts. Among the three ballots, voter choosesandetakes home as his receipt; but
the receipt doesn’t prove anything to other pedpteause it merely contains a

collection of candidates, each having a single .vAtethe receipt is formed by only

60



one of the three ballots, vote coercion is not jpbssbecause two similar votes on

two ballots are needed in order to prove how aniwds voted.

For the use of a similar concept with homomorph#ARallying in aC-candidate
election, the software of the voting device prepdateee ballots for each voter by
distributing the partial products chosen frahe “Set of Candidate-Primes”, SCP =
{p1, P2,.-., Pc}, to three ballots randomly, so that each primpesws once in one of
the three partial products. Voter’'s decision isy sandidatej. Since the prime
numberp; associated with this choice appears in one offtre ballots, there remain
two ballots that do not contapy After voter’s decision, the partial product oreasf
these ballots is multiplied by an extpato indicate the vote. Hence; the software
guarantees that although the product of prime ntum@ng...(pj)z... pc on three
ballots contains twg's, yet none of the partial products on a singldobaepeats
any prime number twice. After the RSA encryptioneath ballot, software chooses
one of them arbitrarily as the receipt and prirdgether with voter's ID. The
randomness of this step is crucial in providingraymity; because vote coercion is
completely prevented as a result of this randomrsasse the receipt may or may not
contain the actual votg. Notice that such an effect could not be obtaingdising

two ballots instead of three.

The software then encrypts the contents of theethedlots and multiplies them with
other votes to find th&VR,, that is transmitted to the tallying office at thied of

the election. Every interested party has accessl teeceipts on the PBB, and can
verify the election results; hence, universal vability of the scheme is preserved.
The two ballots that are not given to the voterublished on the PBB with no ID
number and at random places. Otherwise, anonynhitgeovote would be lost and

voter verifiability could not be satisfied.

For example, if the encrypted ballots are partérasErsd{pip2), ErsAps...p;),

ErsApj...Pc), their productErsAPip2)ErsAPs. .- P))ErsAP;...pc) during homomorphic
tallying is decrypted a|s1p2p3...(pj)2...pc. So for each vote given to the candidiate
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there is an extra burden of whole prodpgLps...pc of SCP elements, multiplied by
the actual votgy. Since there ardN voters, the overall load of this method is a
randomization factolR = (pipzps...pc)" that multiplies VP. Tallying office then
cancels this overall randomization load by dividiByP., to Ers{ R} before
decryption, or by dividingVP,, to R after decryption. FinallyVP and the

corresponding vote coums, Vs,..., Vc are computed.

Although the use of more than three ballots peenvatould also serve the purpose of
obscuring the actual vote; in order to keep the R&RI at minimum, three ballots
per voter seems sufficient. The above discussicowages some new ideas for the
randomization of homomorphic RSA tallying that reguthe announcement of

single receipt per voter as explained below.

4.3.3 Randomization with “Uniformly Chosen Subsets of theSet of
Candidate-Primes, SCP”

In an election withC candidates, the use of the randomization concéph®

previous section generates a vote product with xnaeburden ofpip.ps...pc

multiplied by the actual vot@,, for each vote given to the candidgteUniform

insertion ofC prime numbers into three ballots does not alterfihal vote count,

since they can be cancelled deterministically dfterelection. Whenever there &te

voters, this randomness load is reflected to thezaliwote product ap{paps...po)™.

We now propose to distribute randomization unifgrnimto successive voters of a

voting booth, rather than into three ballots of &wme voter. If the associated

candidate primes corresponding @2 successive voters of the voting booth are
multiplied by single prime; or p,, or pc that are chosen randomly but uniformly

from the “Set of Candidate-Primes”, SCP p1.{p2, ps, ..., Pc}, the randomization

N/C

load is reflected to the overall vote product pgfs...pc) -, which is a known

deterministic number. Then, the randomized encdypteote product
EVP.an=ErsA(P1P2Ps. ..P)V(p) (p2) 2...(pc)'}  is  decrypted to find the

randomized vote produdtPa,=(piPzps...pc)"(pr) X(p2)"2...(pc)"c. All parameters
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N/C

of the randomization factorp{pzps...pn) are known, so by dividing/Pan to

NS one obtains the actual vote prodM&=(p.)"* (p2)*? ... (pc)'c. Vote

(P1p2ps...pc)
counts {1, Va,..., Vc} are then found by successively dividingP to each of the

associated primes{, pz,..., pc} until no more division is possible.

Receipts given to the voters are in the fdeasdpi ), wherei#, p; is the actual
vote, p; is the randomizing prime or vice versa. So, treei@s of voters who vote
for different candidates can be the same (for ntst&gsAp1ps), can be the receipt of
the voter who votes for candidate 1 or candidateR&ceipts also contain a unique

identification number for the systematic searchhenPBB.

Randomization level can be further increased bidaig the set ofC prime numbers
into less thanC randomization subsets; say intosets, where X L <.C. These
subsets are chosen randomly, with the restrictibat tprime factors of the
randomization factor does not coincide with the actual vote. Henceydioeipt is in

the formEgrsAr pj), wherer andp; have no common factors.

For example, ilC=6 andL=2, and two subsets are chosen@asgip2pspaPs, 2= Pe},
thenr; can be used to randomize the vpgeonly, whereas, can be used for any
vote different fromps. ChoosingL=2 again, two other randomization factors, say
{r1=p1p2pspa4, r>=psps} can randomize, the votgs andp, of two voters respectively.
For L=3, the 3 factors i=pip,, r>=pspsPs, rs=pe} can randomize 3 votes, or any
other permutation like rEpe, r=p,, r=ps, r=pi1, r=psps} can be utilized for the
randomization of 5 votes; each time using all eletmef the set of candidate-primes
uniformly over 2, 3 oC voters. The important point is never to use a ocamdation
set that coincides with the actual vote; therefessh prime number can occur in the
receipt only once. (Note that if=1 case were included in the description of the
present method, then the set of candidate-primesdctotally be taken as a
randomization factor as in the method of Sectidh24.However, the corresponding
single receipt would not be allowable; becauseth#& vote was used, say for

candidate 1, the receifksA(p1)?p2pspaps ps} Would repeatp;; and this is the reason
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for excludingL=1 in the description of the present method.)

All possible subsets of the “Set of Candidate-PSmM8CP = {4, p2, Ps, ..., Pc} can
be considered as a randomization set that will $®duto multiply the actual vote,
with the constraint that all primes are used withifarm frequency and a
randomization set always excludes the unique pnomaberp; associated with the
vote. The overall encrypted randomized vote prodMP., is given byEgrsg Rx
(P! (2)"2...(pc)"}, whereR = (p1p2ps...pe)” andA is the cumulative exponent that
shows how many times the sgt{p., ps, ..., pc} is used by all voting booths. At the
end of the election period, each of M&oting booths (say for thek'th one) sends
its randomization exponent to the tallying offiesehich computes the cumulative
randomization expone§ by summing up all the exponerfg, A,, ..., Ay coming
from voting booths. Tallying office then decry@¥P.a, to find VP, and multiplies
it by R™%. In Section 4.4.3, we show that blind cancellatd® is also possible, only

knowingN. Finally VP and the corresponding vote coumtsvs,..., Vc are computed.

4.3.4 Randomization with an Arbitrary Number Followed by Its Inverse

Our fourth randomization suggestion is differemdnfr the above three methods;
because it randomizes the vote of {hk voter by multiplying it with a random
numberr;, and then cancels this randomization factor bytiplying one of the
successive votes by ™ (modulo the RSA modulus). Overall contribution to the
final vote product is them,-_r,-‘lzl (modulon). So, in an election withN voters,
instead of the cancellation & randomization factors together at the end of the
election period, mutually exclusive small groupsvetes continuously cancel the
random factors of each other, during the election.

As an example, say individual votes of the suceesdivoters ar@,, pc, p1 andps,
i.e., they are used for candidates@,1 and 3 respectively. To randomize these
votes, one can use the random factmrs,; andrs, to obtain the encrypted votes

ErsArip2), ErsAropc), ErsArspi) and finally, the fourth vote that cancels thevioas
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three randomization factors &34r1_1r2_1r3_1p3). Decrypted vote product of these 4

votes ispopcpiPs, sincersrorzcancels; 'r, rs* (modulon).

To increase the resistance of the method agaimstionm, the size (that is chosen as
4 in the previous example) of the group of votes ttancel the randomization factor
of each other is also randomized by the softwarthefvoting machines. Mutually
exclusive voter groups of size 2,3,4K ghosen arbitrarily cancel the randomization
factors within the group, whek€ can be chosen as say, 20, 30, ...100, depending on
the application size. The software should certabdyopen to the investigation and

check of any interested party before and afteetbetions.

Overall system becomes more easily post-auditabte vegard to randomness
cancellation (i.e., the correctness of cancellatiam be more directly verified), if the
random numbers; andr; " used in the above method are chosen such thatafone

their prime factors coincide with the original s#tcandidate-primes SCP =p{

P2,..., pc}

In Table 4.1, we summarize all randomization meshqguoposed above for

homomorphic RSA tallying.

Table 4.1Summary of randomization methods for homomorphi@ RSlying, assumingN
voters andC candidates with associated prime numipeend vote counts.

Randomization Type Randomized Vote Product

2) Full SCP with three | VPran = (ipaps...po)™ (P0)'2 (p2)'2... (po)'©
ballots per vote

3) Uniformly chosen VPran= (P1p2Ps. .. pe) (P1) "(p2) 2. .. (pc) 'S, where /C) < A <

subsets of SCP
(N 2).

4) Arbitrary numbers and VP,an= (f1f2rs...0n2) (1l ol 3. In) " (1) 2(P2)"2... (pc) ©
their inverses
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4.4 Some Practical Considerations about Proposed Randaration
Methods

We discuss the size of the overall vote productnimer of operations per vote,
maximum possible size of the voter set for a gi®R®A modulusn and blind
cancellation of the overall randomization facRrWe then compare, criticize and

comment on the feasibility of proposed randomizasohemes in practice.
4.4.1 Randomization Load and Voter Set Size for RSA Talling

We compute the size of the randomized vote protfi&d, and the average number
of operations per vote for each case, and summiarizable 4.2.

1) Random Shift of Prime Numbers

As mentioned in Section 4.3.1, after the randonvmabf each vote by random

shifting, the new vote product is given by (4.18)\&@..= 2° (p)"* (p2)"2...(pc)"C.

Each randomized vote in (4.18) is of the forfp, 2 where the random numbstis

chosen in the interval {1,..M} and the prime numbaqp is represented by at makt
bits. Since I < 2Y2'=2"" each vote is upper bounded bY*2and can be
represented byM+J) bits. Assuming that there ai¢ voters in a given election

region, the product oN such votes is less than“{2)N=2M*IN

. Hence, the final
randomized vote produc¥Prar= 2°(p1)" (p2)"2 ... (pc)'C, can be represented at most

by (M+J)N bits, MN bits for the randomization shift fact& and JN bits for the

overall product of the candidate-prime numbers.
2) Full Set of Candidate-Primes, SCP

For the use of homomorphic RSA tallying togethethwthe full set of candidate-

primes, SCP, and three ballots per vote, exponantse randomized vote product

VPan= (plpzps...pc)N(pl)V1 (pg)vz... (pc)vC sum up to CN + vy +...+ vc = (C+1)N.
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Hence, assuming that at mao$tbits are needed to represent each prime, the

randomized vote product occupies a maximum siZ€ af1)JN bits.
3) Uniformly Chosen Subsets of the Set of Candidate-fnes, SCP

This case is similar to the previous case, exdggitthe exponents in the randomized
vote productVPan= (P1pzps...pc)” (P)'* (P2)'%... (Pc)’® sum up toCA+vy +...+ Ve =
CA+N, whereA isbetweerN/C andN/2. So, the number of prime numbersvR ,, is
between R and (C/2)+1)N. Assuming that at mosl bits are needed to represent
each prime, VP, occupies a maximum storage location betweeiN 2nd
((C/2)+1)IN bits.

4) Arbitrary Numbers and Their Inverses

This method makes cancellation of randomizationinguthe election, sO/Pan
occupies at mosiN bits and it doesn’t require any extra location famdomization.

We summarize the results of this section in Tak?e 4

Table 4.2Maximum size of the randomized vote product and lmemof operations required
for homomorphic RSA tallying with different randaration methods, assumin@
candidatesN voters, at mosi bits for each prime number aMibits for random shift.

Max. Size of the

Randomization Randomized Number of Operations per Vote

Type Vote Product

1) Random Shift MN+JN bits 1 RSA encryption of the votémR

2) Full SCP with (C+1)JN bits 1 RSA encryption of the votpif,ps...pc) pj
three ballots per vote|

3) Uniformly chosen | 2JNto 1 RSA encryption of the vote, sgy)p; or
subsets of SCP ((C12)+1)INbits | (PP3)p; OF (P2P3 Ps)Py

4) Arbitrary numbers| JN bits 1 RSA encryption of the votep; or r‘lpj

and their inverses

For all of the above cases, average number of tpesaper vote is equal to a single
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RSA encryption. It can be kept small by choosing tumber of 1's in the public
RSA exponene of the tallying authority small. There is no summstraint on the
secret keyd, since the decryption of the encrypted vote prodkia single operation
that is not repeated. After performing the singdergiption operation that yields the
vote product, vote counts of candidates are foynd buccessive division operations

on the vote product.

Notice that, the parametdN appears in each term of the second column of Table
4.2; because it corresponds to the size of the patéductVP before randomization.
The additional storage required for randomizati@n equal to MN bits for
randomization by shiftCJIN bits for randomization with full SCP, and betweh

and (C/2)JN for randomization with uniformly chosen subsetsS@P. There is no
storage need for randomization parameters in th&t kethod; since the
randomization terms are continuously cancelled,rémelomized vote produdtPa,

occupies at moskN bits, likeVP.

In Appendix A, we show that the overall randomiaatcan be cancelled at the final
tallying, and there is no need to adjust the RSAluhas size according to the extra
randomness load reflected on the randomized vatdugt. Provided thaVP<n,
decryption ofE(VP) equalsVP after the cancellation of randomization. Hence, th
only restriction is to keep the bit length \@P less tharthe bit length of the RSA
modulus; soJN < (logn). Therefore, the voter set size is upper bounded bx
(logon)/J  for all randomization methods discussed aboveceSthe primes in the

SCP arel bits or less, there is also a margin of secunitthe boundN < (logn)/J.

As an example, let us choo§=14 as in the 2007 Turkish elections. The first 14
prime numbers excluding 2 are {3,5,7,11,13,17,12231,37,41,43,47} (see
Appendix B for the first 250 prime numbers). Numlbéibits required to represent
these primes are at most 6 bits. So, With bits and logn = 2= 16,384 bit-RSA,
homomorphic tallying of 2730 votes is possible (tten be considered as the size of
7-8 ballot boxes). If 2= 16,777,216 bit-RSA were used instead, then the i the
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voter set could be as large as 2,796,202; theredarable for homomorphic tallying
of a large election region likistanbul-1 (where 2,130,644 votes were used in 2007,
July 22 elections). In Table 4.3, we show the maxmvoter set siz&l that we find

using the boundtl < (logn)/J for different number of candidates.

Table 4.3Suggested maximum sideof the voter set with cancelled randomization léad
different modulus values, assuming at mds#t,5and 6 bits for each prime number.

o Maximum Maximum Voter Set SizeN
Randomization | Bit Size for RSA with a Modulus Size(log,n)

Type for Each 11 . 12 . 14 .- 18 a: 24 .:
Prime, J 27-bit | 27°-bit | 27"-bit | 2"°-bit 2°%-bit

Random Shift,

Full SCP with 4 512 1024 4096 65,536 4,194,304

Three Ballots,

Uniform Subsets 5 409 819 | 3276| 52,428  3,355444

of SCP or

Arbitrary

Primes and 6 341 682 2730 43,690 2,796,202

Their Inverses

For logn =2°* one needs two prime numbepsandg, of size 3°bits. Generation of
prime numbers up to using “Sieve of Eratosthenes” algorithm has a demitfy of
O(n.ogn.loglogn) [Pritchard-1987]. The time complexity of this aighm in RAM
machine model is given as 1@oglogn)) [Atkin-Bernstein-2004]. So, generation of

all primes up to Z-bit numbers seems to have a huge time complexity o

O(2223(23)). However, the problem of finding some of taege primes is more
accessible than finding all primes, as the resoftshe “Great Internet Mersenne
Prime Search (GIMPS)” with Cooperative Computing ak&v of $100,000
demonstrate. The largest known prime number anrealriby July 23, 2010) at
contest's web page [GIMPS-2010], contains 43,112 6@., more than?) bits.
The product of two such primes would yield an RSAdous of more than 86
million bits; which would be suitable for a 2-camate election with SCP={2,3}
and 86/2=43 million voters, or a 14-candidate &ectwith SCP={2,3,5,7,11,13, 17,
19,23,29,31,37,41,43} and 86#614 million voters.
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4.4 .2 Detection of the Overall Randomization Load for Cawellation

For all the randomization methods described in iSect.3, the randomized vote
productVP,, can be expressed as the product of two te¥Rs,=RxVP, whereR
refers to the overall randomization parameter ghaiuld be identified at the end of
the election period. Tallying office then cancBlsind findsVP=R xVP.,, (mod n)
correctly if VP<n (related preliminaries from number theory and arption of why
there is no need to keép<n are given in Appendix A). We re-tabuldé®,, andR
values for the randomization by “shift”, “full SCP"uniformly chosen subsets of
SCP” in Table 4.4. The fourth method, i.e., thebfmary numbers and their
inverses”, is also included to demonstrate thatrémelom numbers used for half of
the votes cancel the other half, and the overaibypct Rn:(rlrz...rN,z)(rlrz...rN,z)_l

becomes equal to 1 at the end of the election.

Table 4.4Randomized vote produdtP.,, and its random paR, assuming\ voters andC
candidates with associated prime numipeesid vote countg.

Randomization | o 40 nized Vote Product VP Randomization Parameter R
Method ' e in VPran

é)h?tandom VPrar=2%(p) (o) 2...(p) = RXVP | R= 25 whereS= 3" 5

2) Full SCP | VPran=(pipaps...pc)" VP= RxVP R= (pipzp...po)"
with three
ballots per vote
3) Uniformly | VPran=(Papzps...pc)" VP = RxVP, R= (pupaps...pc)" , where

h bset
Crocp o0 where IC) A< (N 2). (NC) <A< (N 2).

_ g -1_

4) Arbltrary VPran:(r1r2r3...rN/z)(rlrgrg...rN/z)_l VP R= (rlrz---rN/Z)(rer---rNIZ) =1

numbers and
their inverses

whererj's are arbitrary.

In Table 4.4, the first randomization parameteRi®. For its cancellation at the
tallying office, the open-auditable software of leasf theV voting booths should

keep the sum of individual shift parametsysand send their sur& to the tallying
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office at the end of the election, together withrateipts.Then the talliers compute
the overall exponers by summing up all the exponeris S, ..., S, coming from
all voting booths. A vital advantage, brought b #ancellation of randomization
load, is the wide range of bits that can be alleddbr randomization by shift. For
instance, with 16,384-bit RSA, one can even allb&t16,378 bits for the random
shifts, if primes associated with candidates apeagented by at modt.,=6 bits.

In the second method, using “full SCP with threédts per vote”,R=(p1pzps...pc)"

is already known at the end of the election peradter N voters use their votes. In
the third case, uniformly distributed subsets ofPS€eate a randomization load,
R=(p1p2p3...pc)A, whereA is the cumulative exponent that shows how manggim
the SCP is used for randomization. At the end efdtection period, each of the
voting booths (sayA« for the k'th one) sends its randomization exponent to the
tallying office, which computes the cumulative randzation exponentA by

summing up all the exponems, A, ..., Ay coming from voting booths.

Since uniform choice of primes requires the us&GP for an integer number of
times, each exponemf is an integer and the software of a voting boothsim
complete its last sepf, p2, ..., pc} at the end of the election period, if all primafs

the last set are not used. For this purpose, tfiva® finally transmits an empty

vote randomized with the remaining primes of trst BCP.

4.4.3 Blind Cancellation of Randomization Load

In the previous sections, we have proposed foacatfe randomization methods for
homomorphic RSA tallying. For easier reference a#tbese methods:

M1 (Method 1): Random shifts,

M2 (Method 2): Full SCP with three ballots,

M3 (Method 3): Uniform subsets of SCP,

M4 (Method 4): Arbirary number and its inverse.

For the first three methods, and for M4 with calateln group size chosen Ag(i.e.,
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cancellation at the tallying office), overall ramdi@ation factorR in the randomized

vote producVP..,= Rx(py)"...(pc)"¢ should be cancelled to find the vote counts

« For M2,R = (p1p2ps...po)" is already known; hence it can be easily cancelled
« For M3,R = (pap2ps...pc)”, where N/C) < A < N/2. So, callingB = p;pps...Pc,

blind cancellation oR can be done by the following algorithm:

0) VPest= VPran

1) Multiply VPss by B, call it VPes= B™x VPes= (p1)™ ... (po)"C.

2) Findw,...,w . If the sumw;+...+ wc is not equal tdN, go to step 1.

3) Stop. Vote counts akg= w; for i=1,...,C.

» For M1, an algorithm similar to the above one isduwith B=2.

0) VPest= VPran

1) Multiply VPes; by B, call it VPss= B™x VPes= 2"%(py)™ ... (po) .

2) Findws,...,w . If the sumw;+...+ we is not equal td\, go to step 1.

3) Stop. Vote counts ave= w; for i=1,...,Candwy=0.

» For M4, blind cancellation is not possible if albting booths do not send their

randomization factor products to the tallying odfic
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4.4.4 Comparison and Critics of the Proposed RSA Randométion

Methods and Our Suggestions for Implementation

In this section, we try to compare and criticize& candomization methods in two
groups, M2-M3 that use SCP elements and M1-M4dbatot; so that we can make
a choice among them to shape our final randomizatsoggestion for an
implementation that employs homomorphic RSA tallyiThe above mentioned
randomizations differ in two major aspects:

1) Last method, M4, cancels the randomization terafissuccessive votes
continuously during the election, within some natersecting groups of votes;
whereas the first three methods M1, M2, M3 maks daincellation at the end of
the election period, for once. Randomization patam® brings no extra
constraint on the size of the modulysas shown in Appendix A.

2) Randomization parameters are chosen from outbelé&SCP in the first method
M1; inside the SCP in the second and third methibi@®&sand M3; and they can be
inside or outside the SCP in the fourth method M4.

M2 and M3: Using SCP for randomization, together with the camt of three
ballots as in M2, brings an important advantagac&nobody can know whether the
receipt, chosen by the software out of three Imlldbes or does not contain the
actual vote; anonymity of the vote is achieved msgfaunlimited computational
power. Disadvantages of M2, with respect to M3, thie additional computations
needed for the preparation of the two extra ballatsl the amplified storage need
on the PBB resulting from the storage of threedtalper voter. Alternatively, M3
has the disadvantage (against an adversary thgiutesmencryptions of all possible
2 combinations of SCP elements) of revealing theofetandidatesA, and its
complemen®’, such that SCPAUA'’, and the used vote is within the get

The number of different receipt types (of the fdgfm; p;}, wherer; andp; are both
greater than one) for M2 and M3 are limited(®" -C—  fdy an election wittC

candidates. Since voters may prefer to see margiptetypes on the PBB that are
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different from theirs to feel more confident abthu privacy of their votes, limited
number of receipt types in M2 and M3 may be a diaathge for the elections with

small number of candidates.

M1 and M4: In the fourth randomization method M4, which usEmtinuous
cancellation of randomization during the electidhe tallying office’'s job of
“randomness cancellation” is distributed in timedaspace to individual voting
booths. Hence, the software running on voting nreehinow becomes responsible
for the cancellation of randomization factors iasteof transmitting them to the
tallying office. A particularly interesting applitan that makes M4 directly post-
auditable (with regard to randomization cancell@tjois to choose the random
numbersr; and r;”* such that all their prime factors are outside tt@PSThen,
cancellation of randomization becomes easily cdlatte after decryption of the
overall vote product, since any non-cancelled ramddactor would be

distinguishable from the candidate-primes useddting.

The same advantage of being directly post-auditalse exists in the first method
M1 that multiples the vote with random powers o fhrime number 2, which are
also outside the SCP. However, for M1, it is pdsstb argue that, no matter how
large the number of extra locatioNtfor random shifts is chosen, an adversary who
has high computational power can compute all ptessihcryptions of () for all
s=1,...M and for all prime; assigned te=1,...,C candidates to create a database of
all possible encrypted votes. Then the adversary atgempt vote coercion by

comparing the receipts announced on the PBB adaimstatabase.

On the other hand; M4 can be criticized as havindisadvantage in preserving
anonymity against an adversary with infinite powasrfollows: Adversary picks up
all possible combinations ok receipts from the PBB. If the randomization

cancellation of M4 is being done within voter greugf size up td, then X k< K,

N N N
and withN receipts on the PBB, there %S J+(3 J+...+(KJ combinations to be
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tried, which can be really hard for large value®@ndK. However, adversary starts
N
with k=2, and multiplies all possibIEZJ receipt pairs on the PBB, to arrive at

possible cancellations of some random parametemeRbering that each receipt is
in the form Efip}; whenever a cancellation occurs between receiptisiersary
arrives at E{; p}xE{ ri 'p} =E{rir "p.p} =E{p;p}. Since he has the computational
power to prepare the encrypted forms of all possfat mostC? vote product pairs
E{p.p} (where C is the number of candidates), adversary is abkntba collision
that will suffice him to understand the votes oé ttwo receipts that match with

E{p.p}. He then proceeds witk=3,..., K and tries to find collisions in receipt sets

N
of size 3,...,K, respectively; each time by comparirﬁgj receipt products ok

voters chosen from the PBB, with previously prega@ most)C* encrypted vote

products.

This is why we think that the cancellation of theerall randomization at the end of
the election period is a stronger way of presenangnymity than using M4. On the
other hand; if some of the random numbegrsf M4 are chosefrom the SCP, the

system can be protected against the attack dedcabeve because randomization

numbers can then be easily mixed up with the priases! for the actual votes.

Our Suggestion for Randomization of RSA Tallying:The joint use of M2, i.e.,

“Full SCP with three ballots”, and M3, i.e., “Unifa subsets of SCP”, offers a
practical system with drastically increased anottyrfar the randomization of RSA
tallying. In this joint implementation that we cdii2/M3, any one of the two

randomizations can be used for each voter, randduniyng the election. The open-
audit software is responsible for the random chdieeveen M2 or M3, and this
choice is invisible on the voter side, who takegeeipt from the machine without

knowing which one of the two methods is used inchise.
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In order to increase the number of recei(®S - C —1) of M2/M3, each M2 or M3
receipt of the formE{p;...p} can be further randomized by M1, i.e., by “Random
shifts”, to obtairE{ZSkpi...g}. The resulting method that we call M1+(M2/M3)asr

primary randomization suggestion for homomorphicAR&plementation. Because,

this joint implementation combines all advantagethe three mentioned methods:

1) Because of using M2, whose receipts may or n@ycontain the actual vote,
anonymity against unlimited computational poweadhieved. A corrupt party does
not have any chance of extracting information framindividual receipt, even if it
has the large power to decrypt the receipt; eityszomputing all possible encrypted
votes for all possible sets of prime number comtmna and for all possible
randomizations, or by stealing the secret key eft#lying authority.

2) Because of using M3, the number of receiptshenRBB is less than\B If M2 is
utilized D% of the time and M3 is used in the remaining (1D, the PBB loadN

is multiplied bya = [3D + (100-D)] x 0.01 = 1 + 0.0R that is less than 3, whenever
D<100.

3) Because of using M1, the number of receipt typesultiplied by (logn-J). With

an RSA modulus, possible receipt types can be as large asrgdy(2° -C -1),

for aC-candidate election that usébits to represent the maximum element of SCP.
4) Blind cancellation of the overall randomizatiparameteR is possible knowing

N, even if none of the voting booths send their camidation factors.

Whenever the number of receip8® —C -1) is much larger than the number of
voters N, it is possible to use only M2/M3 by dropping Mh. Section 5.3, we
describe the details of such an implementation gsapfor C=18, (2° -C - 1)=

262,125 and N=3000.

A secondary randomization option can be the midagion of each voteg; by
arbitrary numbers as in M4; but leaving the cancellation to the ehdhe election

period as in the other methods. Each voting boditres the product of
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randomization factors used by all voters, and tratssthe product to the tallying
office; so that the overall produBtcan be found at the tallying office and cancelled
by R™ by using a single inversion operation. The adwgeaf a single inversion as
opposed to continuous inversions during the eleagawo-fold:i) System becomes
resistant to the attack (on M4) described aboveiidritie inversion operation is not
repeated many times during the day. Disadvantagieifnethod with respect to our

primary preference M1+(M2/M3) is the lack of thénbl cancellation property.
4.5 Conclusion

Utilizing the concept o¥/ote Product(VP) instead of th&/ote SumVS of additive
homomorphic tallying, we have described prime faz&dion of VP and employed it

for multiplicative RSA tallying.

Since the usual RSA randomization by padding dasswork for homomorphic

tallying, we have proposed four new methods of R&8Adomization: 1) Random
shifts, 2) Full set of candidate-primes (SCP) witree ballots, 3) Uniform subsets of
SCP, 4) Arbitrary number and its inverse. We haeengared these methods,
discussed their advantage and disadvantages amagea a joint randomization
using the second and third ones when the numbeamdidates (that is the size of
SCP) is large enough. Otherwise we have suggestdigphication by randomization

parameters chosen from outside the SCP as wetirdar to add different receipt
types on the PBB so that the receipt set is endaMye have also shown in Appendix
A, why the size of the overall randomization partan€eoes not bring any restriction

to the modulus bit size lgg of the RSA algorithm.

The work presented in Chapter 4 has been the dotheotwo submitted papers
[YlUcel-Baykal-2010-b] to ICEG 2010, “6th Internatel Conference on E-
Government,”, and [Ylcel-Baykal-2010-c] to IEEE fsactions on Information

Forensics and Security.
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CHAPTER 5

COMPARISON WITH OTHER HOMOMORPHIC
SCHEMES AND AN IMPLEMENTATION PROPOSAL

We first compare homomorphic RSA tallying with atteelditive and multiplicative
homomorphic tallying algorithms in Section 5.1. éftthe presentation of our
simulation results in Section 5.2, we give the ifletaf an implementation proposal
for Turkish Parliamentary Elections that uses homgrhic RSA tallying with
proper randomization, in Section 5.3.

5.1 Multiplicative Homomorphic RSA Tallying versus Other
Homomorphic Tallying Methods

Multiplicative homomorphic tallying was first proped in [Peng-Aditya-Boyd-
Dawson-Lee-2004], where ElI Gamal algorithm is empgtb as the encryption
method. Peng et al claim that when the number ndlicates is small, their scheme is
“more efficient than the additive homomorphic etugtschemes and more efficient
than other voting schemes”. Main public key aldoris used for additive
homomorphic tallying are Exponential EI Gamal, tfirsroposed in [Cramer-
Gennaro-Schoenmakers-1997] and Paillier, first psep in [Damgard-Jurik-2001].
Below, we compare these algorithms with the muégilve homomorphic ones, El
Gamal and RSA.

RSA algorithm for homomorphic tallying is first grosed in our work; most

probably, the main obstacle for other researchemsgbthe randomization problem
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associated with homomorphic RSA tallying, which @kegantly solved by our

randomization proposals explained in Section 4Bdatailed in Section 4.4.

In the comparison of algorithms versus required Inemnof operations, we use the
previously given encryption and decryption equagi¢fh.1) to (4.4). We summarize
these equations below for easy reference to Talllewhere we compare the four

algorithms with respect to their efficiency in hamarphic tallying.

RSA Encryption: ¢ = E(m) =m’ (modn) (5.1)
Decryption: m=D(c) = ¢ (modn)

pk is (n, €), wheree and®(n) are co-prime, 1l&<®(n); sk isd, ed= 1 (mod®(n)).

El Gamal Encryption: c=E(m) = (a,f) = (gr, m )5) (modp) (5.2)
Decryption: m=D(c) =[#/a"] (modp)
pk is y=g"(modp); skis x, selected by the user randomly such tklﬁtZE, gisa

large prime factor ofp — 1,g is the known generator ofcgporder subgroup oZ,D).

Exp. El Gamal Encryption: c=E(m) = (a,f) = (gr, d“yr) (modp) (5.3)
Decryption: m=D(c) = [ logg (/) ] (modp)

pk is y=g"(modp); skis x, selected by the user.

Paillier Encryption:c =E(m) =g¢"r" (modn?) for a randomr 0 Z7, (5.4)

Decryption: m=D(c) = [L(¢* (modn?)) / L(g* (modn?) ] (modn), L(u)=( u - 1)/n.

pk is (n, @), n=pg, orderofgZ , is a multiple ofn; sk is 2 =lcmp-1,q-1).

Since all public key encryption schemes work intéirmultiplicative groups; they
use arithmetic modulo some very large integer.tRerprime numberp andg, RSA
modulus isn=pg, Paillier modulus isn’=p?¢?, but EI Gamal (or Exponential El

Gamal) modulus is simplg. RSA and ElI Gamal algorithms are considered t@&hav
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approximately the same security if they use theesaize moduli. Therefore, in the

following comparison, we assume that they use marfuhe same length. With this

assumption, a single multiplication in RSA or Elrea have equal complexity. On

the other hand, Paillier encryption of equivalestigity employs the sanmeas RSA,

but it uses (mod’) operations instead of (may; hence, Paillier multiplication is
considered to be harder than EI Gamal or RSA niidéfpons. In Table 5.1, we

compare various properties of the mentioned homphiottallying algorithms.

Table 5.1Comparison of four public key algorithms suitafdehomomorphic tallying

Exp. El
Algorithm RSA (with El Gamal Paillier
Gamal
M1, M2, M3)
Homomorphism Multiplicative | Multiplicative | Additive | Additive
Exponentiation 1 2 3 2
Number of
Encryption | \yiplication | 1 (for random 1 1 1
Operations factorr)
Discrete - - 1 -
Logarithm
Number of | gyponentiation 1 1 1 2
Decryption
yp. Inversion 1 (for random 1 1 1
Operations factorr)
Multiplication | 1 (for random 1 1 1
factorr)

. . . . . Highly
Distributed Key Generation Efficient Efficient Efficient | inefficient
Randomization Power Infinite High High | VeryHigh
Required Modulus Size
versus the Number of O(N) ON) O(logN) | O(logN)
Voters N
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Among the encryption and decryption operations eank Table 5.1 in the order of
decreasing difficulty; the most time consuming oisethe discrete logarithm
operation that appears in the Exponential El Gaatgdrithm only. The plaintexn

of the EI Gamal algorithm (5.2), is changedgtoin Exponential EI Gamal (5.3).
Although the rest is the same as the El Gamal igor one needs to compute an
extra exponent in the encryption and then takediberete logarithm off™ in the
final decryption of the Exponential EI Gamal alglon, which is a very difficult

problem that complicates the implementation.

Exponentiation is the second important operatiomalble 5.1, but its difficulty is

much less than that of the discrete logarithm dpera Since an exponentiation
consists of many successive multiplications, a iplidation operation is not worth
counting as compared to an exponentiation. Invarsiperation takes longer time
than multiplication but it can also be performed cmumore rapidly than

exponentiation. We now continue by the explanatiod interpretation of each row
of Table 5.1.

1) Encryption: RSA encryption (5.1) is computationally more e#iai as
compared to other encryptions, because El Gam) (quires two, Exponential
El Gamal (5.3) needs three and Paillier uses tpo®entiations per encryption,
whereas RSA requires only one. El Gamal and Padligorithms employ their
extra exponentiation for providing randomness. titee RSA methods, M1, M2
and M3 achieve randomization with a single muldation; and M4 needk22

multiplications and 1 inversion for a cancellatgnoup ofk votes.

2) Decryption: The least efficient one among the four algorithexExponential El
Gamal because of its need for taking discrete Ithgar(log, of g" to findm). It

is followed by Paillier that requires two exponatitns (moch?).

El Gamal decryption performs an exponentiatidnan inversiond)™, and then

a multiplication byg. Alternatively, RSA decryption seems to need alsin
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3)

exponentiationcOI to get the message. However, for a fair comparison, we
should consider the cancellation of the randoniraparameteR, where our
first three randomization schemes extrdBtfrom the message=RxVP; so an
inversion RY) and a multiplication (P=mxR™) is added to the computations
required for randomized RSA. Hence RSA decrypti@gtdmes completely
equivalent to El Gamal decryption.

Our fourth randomization method M4 does not needntlentioned inversion and
multiplication operations in the final decryptiobecause of its continuous
cancellation of randomization. However, these twzerations do not have
noteworthy contribution to complexity as much aseaponentiation operation.
Even if they did, since decryption would be perfednonly once in
homomorphic tallying, such slight differences wouldt be important while
choosing a cryptosystem. On the other hand; M4hmslisadvantage of needing
the inversions ™ during the election period, for some votes thdt eéncel the

randomization parameters of other votes.

Ease of dstributed key generation: An important concern of homomorphic e-
voting is to provide all security measures for kagpthe secret key of the
tallying office strongly protected. Since the emtsd vote product is to be
decrypted once, and using the secret key of thgirtgl authority; the system
should provide extreme care on generating, prasgiamnd storing the secret key.
No officer alone is given to hold this responstiilinstead, a group of trusted
officers share different and non-overlapping segmesf the secret key and
decryption can only be performed when all officersne together to combine the
separate parts of information. This also necessitéie ability of the related
public key algorithms to generate the secret keg distributed manner, so that
no single person can access the entire secretriccysable to perform the final
decryption alone. Efficient distributed key genematalgorithms exist for RSA
[Frankel-MacKenzie-Yung-1998], [Fouque-Stern-20Cdd,well as for El Gamal

[Gennaro-Jarecki-Krawczyk-Rabin-1999]. Paillier aithm has a modulus
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4)

5)

n“=p’c’, more complicated than the other algorithms, whictakes the

distributed key generation harder.

Power of randomization to provide anonymity:Considering (5.2), (5.3), where
the public keyof the tallying office isy = g* (modp), andy, g andp are publicly
known, there is a chance of an adversary with it@&inomputational power to
compute very large number of receipts E(m) = (gr, m 3}) (modp), for many

possible values of the randomization factep, with a small probability of

collision. Same argument is also valid for Pailli@andomization given by (5.4),

but with a smaller probability sinceDZﬁz. Our hybrid RSA randomization

proposals that employ the concept of the “full S&€Bne of three ballots” reduce

this chance to zero and provide anonymity agairistiie computational power.

Required Modulus Size: One of the main differences between additive and
multiplicative homomorphic tallying algorithms lies their essence: Additive
homomorphic tallying employs the overall vote sWi® whereas multiplicative
homomorphic tallying employs the vote prod\® for the same purpose. In
order that the/S or VP can be recovered correctly in modulo operationsy t
should not exceed the modulus of the algorithm. Fhen of N votes VS
occupies a bit length proportional to 0y whereas the product of votes,VP,
has a bit length proportional & Therefore, additive homomorphic tallying has
the advantage of requiring much smaller modulug sif£ order O(lody) as
compared to the modulus size of orderND(needed for multiplicative
homomorphic tallying. On the other hand, the sagurf the implementation

increases as the modulus size increases.

In summary, the main problems with additive homagohar algorithms are as

follows: Exponential EI Gamal necessitates findihg vote sun¥VS by taking the

discrete logarithm (lag of g”® which is a very difficult problem. Paillier lack

efficient distributed key generation algorithm, wées the existence of such
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algorithms for distributed key generation is an amant criterion. On the other hand,
they both have the advantage of requiring much Iemaloduli for a given number
of voters. Nevertheless; there is a continuousfantiul interest on the development
of efficient algorithms for the generation of largemes and it is more practical to
perform homomorphic tallying, by dividing the elect regions into sub-regions of
smaller voter set sizsee Section 5.3), where each sub-region usegke $MBB for

announcing the receipts but leaves the decryptfothe randomized vote product

EVPRanto the main tallying office of the election region.

As for the comparison among the multiplicative homeophic algorithms, RSA
tallying is more efficiently implementable than Gamal tallying, mainly because of
i) its smaller encryption complexity, that is eqt@half of the EI Gamal encryption
andii) its randomization power to provide infinite anamgy. The choice of the set
of candidate primes, SCP, considering the quadrasiclue or non-residue elements
of the group, is more complicated [Peng-Aditya-B@awson-Lee-2004], as
compared to our simple choice of the smallest psifioe RSA. However, we don’t
think that this is a significant difference sinc€EFRSis generated once, before the

elections.

One of the important differences between ElI Gamadl RSA algorithms is that, El
Gamal security depends on the hardness of theetkstogarithm problem, whereas
RSA security is a consequence of the difficultyasftorization of numbers into their
large prime factors. The asymptotic running timehef best discrete log algorithm is
approximately the same as that of the best fagoalgorithm [Schneier-1996].
Therefore, it requires about as much effort to sahe discrete log problem modulo
a 256-bit prime, as to factor a 256-bit RSA moduHistorically, an algorithmic
advance in one of these problems was then applietthe other. For the future,
nobody knows which one of these problems will ptlevimore security; therefore, it
is much rational to develop e-voting schemes faious public key algorithms,
whose security depend on both problems. So, RSyinglwith our randomization

proposals should be considered as an additionagHinient option in multiplicative
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homomorphic tallying, whose security depends on Mizedness of the prime
factorization rather than the discrete logarithmbpem.

5.2 Simulation Results
5.2.1 RSA Modulus Generation and RSA Tallying

We have simulated homomorphic RSA tallying for asgible set of election
parameters, by using the Magma library developetha@tUniversity of Sydney,
which can deal with unlimited-precision integersheT main parameter that
determines the system constraints is the bit sipnlof the RSA modulum;
because, the number of votels, that can be handled by our proposal, is strictly
upper bounded biN<(log:n)/Jay, Whereday is the average number of bits assigned
per prime p;, associated with each candidate. However, to b&e ound as
N<(log:n)/J, whereJ is the maximum number of bits used per primg=1,...,Cis
safer, as we have done in our simulations. Receptications that use RSA
encryption employ modulus bit sizes like Jng=1024 or 2048 bits; nevertheless,
there are also cases that employ 4096 bits, 81182obieven to 1638422 bits. In
Table 5.2, we show the average CPU time that we bpent for generating the RSA
primesp andq to obtain a modulus=pq of bit size logn.

Table 5.2 Average time required for generating RSA primeg and the modulus, using
MAGMA library and a 1,83 GHz CPU.

Bit size logh 128 256 512 1024 2048
of the RSA modulusn

Average generation time 0.05 | 0.150.17| 0.81.3 16-33 15-16 minutes
seconds| seconds| seconds| seconds
Relative duration wrt 128 bit case 1 ~3 ~16-26| ~320-66 ~18000-19200
Relative duration wrt 1024 bits ~0.002 ~0.006 ~0.04 1 ~40

For generating a 4096-bit RSA modulus, we havezatil a faster CPU having a
clock rate of 3.16 GHz. Generation of the 2048amidulus took ~10 minutes on this
system and 4096-bit modulus was generated in 188¢2ndss 4 hours and 50
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minutes; which is approximately 30 times of theadion required for a 2048-bit
modulus on the same 3.16 GHz CPU.

We have considered three cases in the simulatiph&® randomization of votes, II)

Randomization by shift, 1lI) Randomization by agle prime. In order to simulate

multiplicative RSA tallying with a modulus bit sizé logon andC candidates, each

one being represented by a prime nunmipej=1,..., C, of maximum bit sizel, we

have followed our simulation algorithm below:

1) Calculate the primep, g, n=pq and the corresponding public and secret keys of
the tallying office.

2) Compute the number of votend, that is upper bounded by (g /J, such that
the vote productP does not exceed Initialize the vote number as0.

3) Choose a “vote”, as a prime numiperandomly from the set & primes that can
be represented by at mddbits.

4) Multiply the prime number chosen at step 3 by ohthe randomization factors

given below, depending on the chosen casg=1) 1) ri=25i, s<M; lll) ri=p;, j#Ai.

5) Encrypt the randomized votgp; to find theE(rip;).

6) Let the vote number hbiei+1. Go to step 3 ifi<N.

7) Find the producEVR,, of all encrypted votek(rip;) fori=1,...,N.

8) Find the producR of all randomization terms for i=1,..., N, to keep the record
of the cumulative randomization.

9) DecryptEVPR, to find VP ap.

10)Cancel the randomization by performing modularsion VP = VP, xR ™
= VP.an / R(modn) before the final decryption and findP.

11)Divide VP to all primegp, for j=1, ...,C as many times as possible (with no
remainder) to evaluate the vote cowmtor j=1, ...,C.

12) Print the vote countg for j=1, ...,C, and stop.

In Table 5.3, we summarize our simulation resultd)ere the last column

demonstrates the time spent fbencryptions plus final decryption for tallying.
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Table 5.3 Average time required for performing all computatioof the election with
homomorphic RSA tallying with randomization, usiMAGMA library and a 1,83 GHz
CPU.

Bit size Bit size | Random N, VP, CPU time CPU
of RSA J per ization Num vote product (sec) for time
modulus vote bits & ber of generating (sec) for
case votes p.q ed the
election
16 2 M=4, II 8 73 0.027 0.036
16 2 M=4, Il 8 23° 0.033 0.052
20 2 M=4, II 10 23° 0.071 0.078
20 2 M=18, 1l | 10 23° 0.062 0.047
24 2 M=18, 1l | 12 23° 0.039 0.203
24 2 M=18, II 12 237 0.051 0.484
24 3 M=20, II 8 23%5'72 0.047 0.312
24 3 M=10, II 8 232527 0.058 0.983
24 3 M=10, II 8 235772 0.072 1.529
32 3 | 10 23547 0.073 0.114
40 2 | 20 23t 0.064 0.032
128 2 ' 64 213 0.094 0.047
128 2 ' 64 2532 0.045 0.109
256 2 ' 128 26352 0.141 0.046
256 2 ' 128 293% 0.172 0.171
512 2 ' 256 2363120 1.045 0.047
512 2 ' 256 J2igiee 1.321 0.110
512 4 ' 128 263105247251 129134 1.045 0.031
512 4 ' 128 20375317221 1221 36 0.950 0.063
1024 2 ' 512 F543258 18.562 0.281
1024 2 ' 512 2723240 33.103 0.265
2048 2 ' 1024 2163508 587.854 0.485
2048 2 ' 1024 2223502 587.85 0.578
2048 4 ' 512 2631959471131 1921 3108 587.854 0.391
1024 3 Jits, Il | 170 2033257870 16.8 0.078
2048 3 Jits, 11l | 340 203725101787 587.854 1.235
4096 3 Jits, Il | 682 1439352157260 17372.350 3.354
8192 3 Jits, 11l | 1364 $92334353387291 486416.23 7.265
o0 | 4| MO0 rgpp | ey | STTES | 254
excluded) | decrypt)

We give the program that cancels the randomizaggsameter in Appendix C.
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The last row of Table 5.3 uses 15,000-bit prirpesdq, generated at a government
office in 3 hours. Finally, we have simulated thstlpart of an election (step 11)
with C=6 candidates and N=1,000,000 voters; to measerdirtie required for the

final step to extract the vote countg, ..., vc from the vote productvP=
(p)"...(pc)"c, where 6 prime numbers associated with candidaesess thad=4

bits. Division of VP 1,000,000 times$o these primes took 6691 secordshour and
50 minutes on a 1,83 MHz CPU.

5.2.2 Measurement of CPU Times for Exponentiation, Inver®n and

Multiplication

In order to observe how the theoretical comparisbrnthe modular operations
mentioned in Section 5.1 is supported experimentalle have performed the
modular multiplication, inversion and exponentiatioperations employed by RSA,
El Gamal and Paillier encryptions using the Magrbealy. We have measured the
CPU times corresponding to 100,000 operations aided that in a multiplicative
group with given modulus, multiplication and invers times are negligible with
respect to the time required for an exponentiaffgrpendix E). For instance, with a
1024-bit modulus, product of two 640-bit numbersegonly 1/2483'th of the time
required for their exponentiation, and inversion @f640-bit number can be
performed in 1/423'th (see the last row of Tabl& Ex Appendix E) of an
exponentiation time. Therefore, we concentrate h@nexponentiation, and observe

that the required operation time depends lineanythe exponent size of . For a

specific modulus size, exponentiation time is appnately doubled, whenever the

bit size of the exponents doubled.

To find the dependence of the operation speed erbihsize of the modulus, we
have measured the CPU times versus different vadidee modulus and shown
some results (summarized from Appendix E) in Tdbie It is observed that for the
same size exponents, the operation time is appsdgig tripled whenever the

modulus size is doubled (also see Table E.3). As dherage size of random
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elements picked up in a multiplicative group is loled with doubling the modulus
size as well; for the exponentiation of arbitrapigked elements, spent CPU time is

almost six times more, if the modulus size of thdtiplicative group is doubled.

Table 5.4 Average CPU times corresponding to 100,000 modugearations with 512-bit
and 1024-bit moduli versus the size of the grogmelints, using MAGMA library and a 1,83
GHz CPU.

Modulus | Multiplicative | Multiplication | Inversion | Exponentiation
Size Group xr -1 r
Elementsg and 9 9 9
r of Size
512 0.063 0.406 25.39
20 bits each /,| Q
1024 0.078 0.592 Q 79.857 ﬁ
512 _ 0.093 0.64 \\6,\ 59.53
40 bits each
1024 0.078 0.874 \l/ 197.154
512 0.094 1.061 129.263
80 bits each /| D
1024 0.125 156 |/p 431.295 }
512 _ 0.156 1.919 N 277. 838<?
160 bits each
1024 0.156 2.402 \) 926.163
512 _ 0.608 3.806 ﬂ 664.471
320 bits each
1024 0.312 4.899 [/6 2079.50
512 2.356 6.302 \ 1427.315
640 bits each
1024 1.857 10.733 4611.40

As for the comparison of different public key algioms, one needs a fair basis; such
as equal security level. So, in order to have “prifactorization” and “discrete
logarithm” problems of equal hardness level, weuass q of RSA) = ¢ of El
Gamal) = @ of Paillier) for the comparison in Table 5.5. Widyoconsider the most
time consuming operations: exponentiation and disctogarithm, the latter one

being much more difficult than the former. Multigdition by 6 in the last column of
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Table 5.5 is the result of doubling the modulusdiie, since Paillier uses lag

operations.

Table 5.5Rough ratio of average CPU times found for endoypand decryption, by using
operations of MAGMA library for public key algoritis at similar security level.

Algorithm RSA El Gamal | Exponential El | Paillier
Gamal

Encryption 1 2 3 2%6

Decryption 1 1 1+DLtime>>1 2x6

Ratios in Table 5.5 are rough and deduced fronvahees given in Table 5.1, for the

number of exponentiations. They can be more detéyetaking into account that the

exponentiationm® of RSA encryption uses a fixed exponentout EI Gamal and

Paillier employ exponentiatiorike gr, yr andr”, where the random numbersan
be very large, ana is always very large. In Table E.2, one obserheg with a

1024-bit modulus and 640-bg, 640-bit exponentiatiortyr takes 4611.4 seconds,

whereas 17-bit exponentiaticgﬁ9 (with e= 65537) can be performed in only 88.7

seconds. Since 88.7/4611.4=0.02, time ratio of R8&ryption in Table 5.5 is more
correctly represented by 0.02 instead of 1. Thenmioltiplying each element of
Table 5.5 with 50, corresponding encryption timgosabecome 1: 100 : 150 : 600
for RSA : El Gamal : Exponential EI Gamal : Paillias shown in Table 5.6.

Table 5.6 Ratio of average CPU times found for encryptiord atecryption by using
MAGMA library for public key algorithms of similasecurity level, considering an 17-bit
public RSA key and randomly picked numbers of i@ bits, for a 1024-bit modulus.

Algorithm RSA El Gamal | Exponential El | Paillier
Gamal

Encryption 1 100 150 600

Decryption 50 50 50+DLime>>50 300
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Each term in Table 5.6 (except the first entrythat is used for reference) would be
approximately halved for randomly picked exponait820 bits. In order to observe
how close our above prediction is to the actuabcase have simulated both RSA
and ElI Gamal Algorithms for 256-bit, 512-bit and2#€bit moduli, assuming five
candidates with SCP={3,5,7,11,13} and shown the suesd CPU times in Table
5.7. Since the maximum number of bits to represecdindidate prime is 4, number

of voters is chosen as modulus size divided byeharh case.

For a modulus size of 1024 bits; Table 5.7 shows 256 encryptions are performed
in 0.219 sec. for RSA, and in 19.204 sec. (or 364c. in the ™ trial) for El Gamal
(see Appendix C); corresponding ratio is 88 (anfl f the 29 trial), which is of
similar order as our expectation (100) in Table. 5TBe main reason for this
advantage of RSA is its fixed and small-size expome Since the secret kay is
determined after choosing such thated=1 (mod &(n)), d is not of small size
necessarily; hence decryption times of RSA and&h@l are closer to each other.

Table 5.7 CPU times found for 5-candidate election simulagiavith homomorphic RSA
and El Gamal tallying that have the same modulms; 4y using MAGMA library and a
1,83 GHz CPU.

CPU Times Spent for
. Modulus
Algorithm -
Nsulﬁwebir Vote Product Initializa- N Decrypt | Final N
of Voters tion Encryptions ion Divisions
RSA F5'o7H11'013" 0.153 0.078 0 0
256 &
El Gamal 64 357110130 1.255 0.281 0 0
RSA 39671110132 | 1.123 0.048 0.015 0.015
512 &
ElGamal | qog | ¥%°7°11%13° | 28.64 1.152 0.047|  0.016
RSA 395079111 | 42791 | 0.219(x1) | 0.109 0.016
1024 &
ElGamal | ¢ FHBU7°117°13F° | 858.489 | 19.204(x88) | 0.094 0
36.517(x166 | 0.15€ 0.01¢
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5.3 An Implementation Proposal for Turkish Parliamentary

Elections

Finally, we describe the implementation detail®wf proposed e-voting system with

homomorphic RSA tallying, as reflected on a ref@-éixample.

Choice of the Election ParametersConsidering Turkish Parliamentary Elections
held in 2007 with 14 candidates, we choose an S€B#,7,11,13,17,19,23,29,31,
37,41, 43,47,53,59,61} of siZe=18, where the last prime numbers can be associated
with independent candidates or a blank vote (sgeeAgix B for the first 250 prime
numbers). Each prime number in SCP can be repexbdmnt at most}=6 bits.
Employing an RSA modulus size of logl6,384 bits; a voter set size of
16,384/6=2730 has a very large margin. Assignimgstimallest primes {2,3,5,7} up

to 3 bits to the largest 4 parties (of total voexgentage much greater than 70%),
average number of bits per vote is still less tdapn= 0.7x3+0.3x6 = 4.9 bits.
Corresponding voter set size is thénl6,384/4.9=3343.

Regionl
PBB;

N voters

EVPRan, R / Tallying Office \
\ computes

VPranL Rl_1 ><Vpranlv 1VPranP1 RP_1 ><VPranP
and announces
VP, Ry, ... ,VPp, Re.

K PN voters j

EVPran Ps RP

Region2
PBB,

N voters

RegionP
PBB»

N voters

Figure 5.1. E-voting organization of an election region WitNl voters and® bulletin boards

for homomorphic RSA tallying.
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Each election region is divided in®bulletin boards irP sub-regions, as shown in
Figure 5.1. In order to find the number of PBB’s éach election region, the number
of voters in the region is divided by. If we consider Amasya for example, where
196,021 votes were used in the 2007 electionselihetion region could be divided
into P=66 sub-regions witiN=3000, sincePN=198,000 >196,021. For a larger
election region like Ankara-1, where 1,281,877 sotere counted in 200P=428
with N=3000 would yield®>N=1,284,000 >1,281,877.

Voting, Receipts and PBB Announcement:During the election, the voting
software at the polls of each sub-region prepdnesréceiptsErsa{rip;} for each
vote p;, where the randomization factgris chosen according to the randomization
method M2 in 20% and M3 in 80% of the time. Thetwafe is open-auditable and
these percentages can be checked by any intengstgdbefore, during or after the
elections. Hence, 600 out of 3000 votes are ranzesnby M2 and 2400 votes are
randomized by M3. The randomization method is chdsethe software randomly
and the voter does not know whether it is M2 or MBe receipErsa{ Ii.pj} is given

to the voter after voting and it is announced atRBB together with voter’s identity

at the end of the election.

The number of different receipt types will¥18 is equal to(2¢ - C —1) = 262,125.

Since the allowed number of voters in the sub-megeN=3000, there will be
0.02x3N + 0.08XN = 1.4XN = 4200 receipts announced on the PBB; 3000 of them
with the identities of their voters and an addiibnumber of 1200 receipts with
unknown identity, resulting from the use of them®trandomization method M2 for
600 voters.

Tallying: All P sub-regions send their encrypted vote procﬁ\tl?rank:E{RkXVPk},

and the producR=(p:paps...pc)™* of N randomization factors to the tallying office,

at the end of the election period. To prevent dealvith very large numbers,
modular productR¢(mod n) or only the exponentA, of the SCP product

(P1p2ps...pc) ¥ is sent. Previously assigned central office tadlieome together to
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form the secret key of the tallying office from dsstributed parts. They join their

pieces of information to obtain the secret key dadrypt eachEVPrankto find VPran,
for k=1,..., P. Randomization is then cancelled by multiplyN?iBrank by R Prime

factorization of the&k’th vote productVPy yields the vote counts of Regidn Vote

counts are announced at each PBB separately; amdoalthe whole election region.

Blind Cancellation of Randomization: Employment of the randomization methods
M2 and M3 allows the cancellation of randomizatidimdly, even when none of the
sub-regions send their SCP exponeht®r the producR (mod n). Knowing that
the randomization set is a multiple Bfpipps...pc, overall randomization factor is
R=B"% so all one needs is to multipWPrank blindly by B™L, sufficient number of
times such that the sum of the vote cowps,,...,vc in the resulting estimated vote
productVPss= (p1) X(p2)"2...(pc)C is equal toN. Knowing that M2 is used 20% of
the time, the exponem has to be greater than BN=2600. Since M3 picks up the
randomization factors by dividing SCP intosets, where 2L<.C, probable values

of the exponenf are between 600+(2400/18)=733 and 600+(2400/2)3:186 one
can directly start by/Pest=VPran,_x B~*{modn). For this application, the product of

SCP elements B=(11728838135940697098324ma=3744D1E73FE250QQ\ =
11011101000100110100011110011100111111111000100002000000@inaryy

soB occupies 62 bits.

Voter Verifiability: Each voter is able to see and check his receith@PBB of his
sub-region. If his receipt is not announced on PiBB, he takes it to the tallying
office to make an objection. If the receipt he Isalibesn’t exist among the recorded
receipts, provided that the receipt is not forgiis may be sufficient evidence to

repeat some part of the elections or even to cdhee.

Universal Verifiability: Each interested individual can first multiply aR00

receipts on th&’th PBB to find the producEVPrank. Secondly, employing the

announced election resul¥P, and the randomization factBy, he findsRxVP, and
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encrypts it using the public key of the tallyingicé to form the randomized vote

product EVRan, once more. If the results of two computations dd match,

provided that his computations are provably correethas full right for objection.
Verifying the correctness of his computations, la dorce computations of the

tallying office be repeated, corrected or even eled.

Anonymity: Receipts given to the voters contain an encryptedlyct of prime

numbers chosen from the SCP, that may or may maagothe unique prime number
that is associated with the candidate whom theye Vior. Therefore, even an
adversary with infinite computational power candetive any hint about the used

vote. So, the system does not let vote-coerciorvatelselling.

Auditing: Software and all electronic devices used for thectedn should be
auditable before and after the elections, so thatsecurity and reliability of the
scheme can be verified. There is no need to useamyknowledge proofs (ZKP),
neither on the voter side, nor on the voting maelside. Voter doesn’t need to prove
that his vote is valid as in [Benaloh-Yung-1986t&ese the software does not allow
voting incorrectly. Voter also doesn’t need to dhachether the voting machine
encrypts correctly, either by immediate decryptmmrandomly choosing among
hundredths of encrypted versions of the same vetéeacribed in [Benaloh-2006].
Instead, any interested voter can check the opartesoftware (OSS) and audit the
electronic machines by using tools as in [Paul-Hiaaem-2009], where the
emphasis is on the audits of OSS by means of thstdd Platform Module (TPM)
that allows the verification of the voting machinereal time, by demonstrating that
the machine runs the open source software thatsupposed to run. Neff explains
that a small percentage of voters who are intedegtemaking such tests are

sufficient to assure a high degree of election emu[Neff-2003].
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CHAPTER 6

CONCLUSIONS

In this work, we investigate different aspects ofoéing, with special emphasis on
auditable, voter/universally verifiable and anonymcchemes. We try to predict

possible e-voting technologies of the future andditribute them.

We start by proposing a modification in the Singlensferable Voting (STV)
method so that it can be applied to large scaletieles with electoral barriers. We
present a case study to demonstrate the effeatebérpntial voting on the election
systems with electoral barriers; by employing tretevcounts of 2007 Turkish
Parliamentary Elections under four simple and fwality unbiased scenarios on the
distribution of secondary vote preferences. After tnathematical formulation of the
election procedure, we make simulations for thee@Ztion regions (that have no
independent parliament members) by using a combmaf the modified STV and
d’Hondt methods. Our computations show that, if vbéers were given the chance
of preferential voting, election results could dicaly changeOne of our scenarios,
in which we assume that the secondary choices @fvthsted vote owners are
distributed uniformly among the winning parties,faaind to yield outcomes very
close to theproportional representatigni.e., the seat percentages computed by the
“modified STV+d’Hondt” method closely match withehactual vote percentages

under this scenario.
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Modified STV can be properly used with the voted amiversally verifiable “Prét a
Voter: All-In-One (PAV-2007)" e-voting scheme [XBehneider-Heather-Ryan-
Lundin-Peel-Howard-2007] for the elections withatteal barriers. We revise PAV-
2007 by proposing three security enhancing moditica in its ballot construction
phase: 1) ballot serial number, 2) digital signataf the first clerk in the mix-net,

3) different random numbers for each row of thedbal

Since the seminal thesis work [Benaloh-1987] of @eh for conducting secret-
ballot elections in which the outcome is verifiableall observers; voter verifiability
and universal verifiability by strictly preservintpe privacy of votes (i.e., the
anonymity) are the main concerns of e-voting sctemer achieving anonymity, we
have focused on homomorphic tallying, which istlirgroposed in [Benaloh-1987],
for yes/no votes and distributed government agéetkers). Benaloh employs the
concept ofr™ residuosity, which depends on the difficulty ofiding x in large

groups, such thatis anr™ residue, i.e.z=X (modn). Use of the discrete logarithm
problem (difficulty of findingr for givenz, x andn, in z=x" (modn)) as the source of
homomorphism is first discussed in [Cramer-FranEahoenmakers-Yung-1996]
for multi-authority elections. Tallying applicatidor a specific public key algorithm
first appears in [Cramer-Gennaro-Schoenmakers-199#tere the ElI Gamal
algorithm is modified as Exponential El Gamal, doeatt its multiplicative

homomorphism is converted into additive homomonphisLater, additive

homomorphic Paillier tallying is considered in [Dg&nd-Jurik-2001]. Multiplicative

homomorphic tallying is first proposed in [Peng-#ai-Boyd-Dawson-Lee-2004],
where EI Gamal algorithm is employed as the en@myphethod to be used with the
concept of prime factorization. Our contributiontims work is the proposal of the
RSA algorithm for homomorphic tallying and its ramgization specifically for this

purpose.

Utilizing the notion of unique prime factorizatiof the vote productP) instead of
the vote sum\(§ employed by additive homomorphic tallying; we derstrate that

the RSA algorithm is a promising candidate for mplittative homomorphic tallying,
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provided that it can be randomized properly. Tadate a vote, we associate a prime
number with each candidate and call the correspgndet “the set of candidate-

primes, SCP”.

The main obstacle for homomorphic RSA tallying e tlack of randomization
associated with RSA that does not spoil the unfqatorization of the vote product.
We solve this problem by proposing four differeypds of randomization for RSA
tallying. The essence of all these methods consistsultiplication of the prime
number indicating the vote, by some random numbleosen from inside or outside
the SCP. One of our randomization methods tharzesilthe concept of ThreeBallot
proposed in [Rivest-Smith-2007] provides strong rgimoity against unlimited

computational power.

We also show that the growth of the randomizataetdr does not bring any extra
load to the actual vote product, and it can effetyi be cancelled using modular
division after the transmission of the overall ramization factor to the tallying
office. Hence, the maximum possible sit®f the voter set is loosely upper bounded
by (logn)/J for a given RSA modulus (of length (logn)-bits) and prime numbers
assigned to each candidate, of at nddsit long. A tighter upper bound f&t can be
taken as (logn)/Jay, WhereJday is the average number of bits used for the prime
numbers in SCP. In the simulations of homomorphi8ARtallying, we have
implemented elections up d=7500 voters using a 30,000-bit modulus generated i
3 hours; encryption of 7500 votes was completed®3nl2 minutes, decryption,
randomness cancellation and extraction of finakvobunts for 5 candidates was

performed in 17.45 minutes.

As for the comparison among the multiplicative homoophic algorithms, RSA
tallying is more efficiently implementable than Gamal tallying, mainly because of
i) its smaller encryption complexity, that is at mesgual to half of the El Gamal
encryption andi) its randomization power to provide infinite anamy. Among the

main public key algorithms used for additive homaoptnic tallying, Exponential El
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Gamal decryption has the disadvantage of necdsgited discrete logarithm

operation, which is a very difficult problem. P&t on the other hand, lacks an
efficient distributed key generation algorithm, libé existence of such algorithms
for distributed key generation is very important fbe security of the secret key.
Although additive homomorphic algorithms have thilvantage of requiring much

smaller moduli than multiplicative ones for givemnmber of voters; yet, equal
security levels are obtained with similar modulizes. Besides, it is much more
practical to perform homomorphic tallying, by diiid the election regions into sub-
regions of smaller size, where each sub-regionizé N uses a single PBB for
announcing the receipts but leaves the decryptfothe randomized vote product

EVPR.anto the main tallying office of the election region.

Finally, we have suggested an implementation cenisig Turkish Parliamentary
Elections with 18 candidates, using 16384-bit REBAlb-regions oN=3000 voters
and combining® sub-regions into one of the 85 election regiowsthe number of
sub-regions varies between 15 (for the smallest election reddayburt) and 710
(for the largest onelstanbul-1). We have also explained how blind cdatieh of
randomization is possible for our randomization et that use the SCP (Set of

Candidate-Primes) elements, without knowing thealyeandomization factor.

Further studies should focus on the adaptation @mdmorphic tallying to
preferential voting and generation of new toolsdionplifying the software-auditing

process so that it becomes easily accessible samd@able by ordinary voters.
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APPENDIX A

Cancellation of Very Large Randomization Terms by

Modular Division of Z,, Elements

In this Appendix, we explain how cancellation o€ tmultiplicative randomization
term R becomes possible wherP,,.= RxVP exceeds the modulus of the RSA
algorithm. We show that ¥/P is kept less than, it doesn’t matter how large the
overall randomization paramet& becomes. Using eitheE(R)™ or R in the
multiplicative group of integers modulg overall randomization can be effectively
cancelled and the encrypted randomized vote prddué&t,=E(RxVP)=E(R)xEVP
can be uniquely decrypted to giv®. So, the prime factorization of the actual votes
is preserved. There is absolutely no problem cdedty the large size of the
randomization factoR, because in the multiplicative group of integersdoion, R

is always replaced by its remaindehat is less than, whatever the value & is.

We first give an example to show how one can ekWdtfrom the producVP. =
RxVP or from its encrypted fornEVPR.,=E(R)XEVP knowingR; and how the actual

value ofVP can be accurately found provided th@n, even wherR>>n.

Example: Remembering that RSA encryption and decryptiongaren respectively
by Ers{m)=m".(modn)=c, Drs{m)=c’.(modn), where n=pg, @(n)= (p-1)(g-1), e
and®(n) are co-prime, 1 € < ®(n), anded=1 (mod®(n)); let the prime factors of
be p=11, g=23; son=pg=253. Euler’s function iw>(n)=(p—1)(q—1)=10x22=220 and
choosing a public exponert3, which is co-prime with 220, the public key bkt
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tallying office becomesn( €)=(253, 3). The secret key is computedia$47, so that
ed=1 (modao(n)).

AssumeN=3 voters give their votes to three different caates represented by the
prime numbers 3, 5 and 7. So the vote produdfRs3x5x7=105, with the vote
countsvi=v,=vs=1. Let the randomization be done by multiplyinghwR=2"°, so
VPn=2'%%3x5x7=107520. In the ring of integers modulo 26f&se numbers are
equivalent to

R=2%=1024 = 12 (mod 253),

VRan=2'%3x5x7=107520 = 248 (mod 253),

EVRa=E(2'%*3x5x7)=E(107520)= 107520(mod 253) = 128,

VP=3x5x7=105 = 105 (mod 253), i.&P remains the same since it is less than

At the tallying office, the product of all randoreit votes gives the randomized
encrypted vote produ&VPR.,,. The problem is to obtaMP with proper cancellation
of randomness parameter, using eitRet (mod n) after decryption 0EVP,an; OF
E(R)™* (modn) before decryption dEVPan.

So, the procedure is as follows. Given tB&tR,,=128,

I. For “randomness cancellation after decryptia@inpute:
1) VPan= D(EVP.an) = D(128) = 128*(mod 253)=248,
2) R*=12"(mod 253) = 232,
3) VP = R'x VPa(mod 253) = 232 x 248 (mod 253) = 57336 (mod 253)
= 105 = 3x5x7,;

II. For “randomness cancellation before decryptja@mpute:
1) E(R) = E(2'%= 1024 (mod 253) = 210,
2) E(R)*=210" (mod 253) =100,
3) EVP= E(R) *XEVP., (mod 253) =100 x239 (mod 253) = 150,
4) VP = D(EVP) = D(150) =150*" (mod 253) = 105 = 3x5x7.
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In both cases, the true value WP = 105 = 3x5x7 and corresponding vote counts

V1=Vo,=V3=1, given to three different candidates can be doegsily.

So when the overall randomization fact®rs known, it can be cancelled in two

ways, and the vote produeP is found correctly if it does not exceed

I. First decryptEVRan to getVPa,,. Then cancel the randomization by multiplying
VP.an with R and obtairVP.

Il. First multiply EVR., by E(R)%, and cancel the randomization. Because of the
multiplicative homomorphism of RSAVR.= ErsdRXVP) = E(R)xE(VP); hence,
when EVP., is multiplied by E(R™, E(VP)=EVP is found. Then the RSA
decryption,D(E(VP), yieldsVP.

No information in the vote produdtP is lost unlesd/P doesn’t exceed, regardless
of how largeVP.,, is and how much it exceeds It should be remembered that the
procedure defined in this example is applied atttkying office only once for a
collection of N voters and works properly iffl is chosen so thalN < logn, i.e.,
number of bits in the RSA modulus WhenJN < logn, VP < n is satisfied

automatically.
Some of the Related Number Theoretical Concepts

In the multiplicative group £ of integers modulm=pg, there areb(n)= (p—1)(q-1)
(=pap—a+1=(pa-1)-(p-1)—@-1)) integers, each one having an inverse modulo
@(n) is called the Euler's totient function. Notickat not all 6—1) elements of
Z.={1,2,..., n=1} are included in Z because integers like 2p,..., (q-1)p andq,

2q, ..., (p—1)g do not have multiplicative inverses.

Fact A.1: Let A, R B be three integers in Z (they are also elementhffield of

real numbers® ) anda, r, b be their respective remainders, if dividedrpyin A

i.e.,a=A(modn), r=R(modn) andb=B(modn). ThenAR=B impliesar(mod n)=Db.
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Proof: Sincea, r, b are the remainders & R andB (modn); one can simply take
the modulan of both sides ofAR=B to obtainar(mod n)=h.

Definition A.1: Let A, R, B, n U Z (andJ ®)) and leta, r, b be their respective

remainders when divided by Also letAR=B. The inverseR* does not exist in Z

but it existsin ®,; henceA=R'B, in R.. For all integers in the multiplicative group

Z. , the modular division operation is definedaas r™'b = b/r (modn) = (b+kn)/r,
wherek is an integer that makeb+kn) some integer multiple of Because [l Z, ,
the result of the modular divisidsr (modn) cannot take a non-integer value; so it is

interpreted as=(b+kn)/r, for some integek that yieldsa [ Z,".

Now, we can conside¥P, R and VP, of the equatioVPxR= VP, respectively as
A, RandB mentioned in the equatidkR=B. SinceVP is less tham, its remainder is
equal to itself, sdd=a. If R andB are much larger tham, this creates no problem;
because in the multiplicative group, Zof integers moduln=pg, R and B are
replaced by their remaindersaandb that are always less thanThis is why there is

no need to put any constraint on the size of thdamization factoR.

The only constraint ofR is that it should be invertible, i.er;* should exist. Our
choice of the randomization factors as powers afrs products of prime numbers
from the SCP (see Table 4.3) guaranteesRhsinot a power op or g; therefore it is

invertible, i.e.r =R (modn) is in the multiplicative group Z

Inversion operation can be considered to be eqmdb an exponentiation; because

in a multiplicative groupZ, of size®(n), whered is the Euler’s totient function; for

anyr in Z! raised to the exponest(n), r¢(”)(mod n)=1; hence, the inverse ntan

™M1 (modn). However, there are also other methods sucheas th

be found ast ™= r
extended Euclidean algorithm that finds the greatesimon divisor of two integers,

which is used to perform inversion much more rapibdan exponentiation.
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31
73
127
179
233
283
353
419
467
547
607
661
739
811
877
947
1019
1087
1153
1229
1297
1381
1453
1523

3

37
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953
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1301
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1531

5 7

41 43 47 53 59
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563
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883
967
1031
1093
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1237
1303
1409
1471
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APPENDIX B

First 250 Prime Numbers

11

139
193
251
311
373
433
491
569
619
683
757
827
887
971
1033
1097
1181
1249
1307
1423
1481
1549

13

149
197
257
313
379
439
499
571
631
691
761
829
907
977

1039
1103
1187
1259
1319
1427
1483
1553

101

17

151
199
263
317
383
443
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577
641
701
769
839
911
983

103

1049
1109
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1277
1321
1429
1487
1559

19 23 29
67 71

61
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211
269
331
389
449
509
587
643
709
773
853
919
991

107
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223
271
337
397
457
521
593
647
719
787
857
929
997

1051
1117
1201
1279
1327
1433
1489
1567

114
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167
227
277
347
401
461
523
599
653
727
797
859
937
1009
1061
1123
1213
1283
1361
1439
1493
1571

13
173
229
281
349
409
463
541
601
659
733
809
863
941
1013

1063

1129

1217

1289

1367

1447

1499

1579

1069
1151
1223
1291
1373
1451
1511
1583
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10
20
30
40
50
60
70
80
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100
110
120
130
140
150
160
170
180
190
200
210
220
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APPENDIX C

Sample MAGMA Programs for the Simulations of
Homomorphic RSA and El Gamal Tallying

1. RSA Tallying for N=7500 Voters with Randomness Cancellation

Magma V2.10-22

n_bit:=30000;

p_bit:= n_bit div 2;

g_bit:= n_bit div 2;

J:=4; /[Bit size of candidate’s prime number

Sbit:= n_bit-J; // Shift allocation for randomizarti

N:= n_bit div J; // Number of voters

e:=65537; // 65537

//************************************************* kkkkkkkkkkkkkkkkkk

total:= Cputime();

initialization:= Cputime();

/Ip := RandomPrime(p_bit);

/lq := RandomPrime(q_bit);
p:=142478445577147867468019574978418303900099523068397466377467
3973860525208663328840302516031583720192295176Y1860376133017060
18755259302834337037695122633064020276973221166802%68435781691505
263297498052056425053056627399891612941336429138888076306336808
820989436548517489815101852717768651812564258682683706816703387
389404741319981401582536154868829000699986940180462464955306037
106771764111397905641485653989666629057111295141333923051372928
301624097803811637430629565210947702713080357290%38042154323678
6537414787668938026332368097602931196047198633P8248140345865069
346738278044831980456792574144235890560191466158329937458278129
313061309601511322694699279601547486192470023023689454829018414
31679827465843568387601461049683147181697245432P843485555429201
6079192112606901951922599332401072732802965522972646387602425176
323325984274775338196867105765197025486206787204283812945312026
153356631386942745003191690722112907716732186535@28234511293930
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994180714090154765547743113985662380060517290968029759498334661
93777694567909049824611948922681232729896768954@305217887979043
3631305561494212121894052623795767390805967594864262758698234336
429899546939068770404858816020441912394495290009485162074270059
45167647477093583764847837394122498708661063893962384 7837688499
3100849407431385936626532337778249760396962078P0698295994284922
666671810527084637056731831042486175521646701148886909457471611
673856199017489033688624186836371992957404102138868885927705125
14294839994752087068602161247122664660784685078838@191860607630
444708206330899950805908570415104697971208520350359933849291315
9286463704541089175378351960625563437823729856926949125789560596
4013479884619091568031480385562411785032897679268B8724699701763
224157998101767226930417613383905377241813958331389255793750364
41824018260624075453327530044823306808211465539Q430889453123561
594767097925855762240964057902064964646805020902888074935201763
875375934296537213196542236031001201331849571848635102203922525
8469581159840641572252098113432557869182699226599@3982032954264
794531148479399711189310359801661544347426946886093785513888456
00881784279514122645966559330978593213945656203P881944633434672
742044026772984856555214727858528544102045708128229844143440891
2731528433652783886858712500376937118961282086348B30985642503159
825481305022833420582685405314554237757927857080819768258506977
058585971124205693475657107242728281733982932098P28383674501085
618112082577454172146915341822668566225201216626389391316492319
68880451017546567300584163415023760324233275919803P395476153495
160473855006986783154646111398335183607992757924828766405203034
14634113447811279475975086906423105636822163420296@189382801664
7662738180924956162510194550782650666467748040Y@982760677098543
901404966828429087920473693285147738473917856886428064480428336
537937728533352651324635218204365072172416420388388331262200291
0303718317518232178113726092691138086293646552682Q0976298309987
456535823126091876194999578108802972818439711066563598570042490
385147301499942831862927804323273823631419177822688793796037889
788884994691963824735205831835309349729730044656988725767203860
66406232076224460154326946213326864757089992325352B310393132706
4463134795999586770155582260788868434225109264893@8397267301732
375671248003985095180754819619778396031391110943422316321265567
871615618447678537708331514076942968418212432383668687841382360
001793896306032853988628617337373651154371078185938835636914293
053954648846075823855811937124583519107824663931883088149800847
123601527914072694045077912460471472441864606160280334284726956
6364249065222052803645354119821478491838200423B85846932846098777
1186032127113165333274336930532552018514994940Q9538138447620551
1614460672340060153208828288019329775362841926882@20259627177856
723434905837931306041731699487245005952023289268092815744507385
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209492956080333907590677280926459382084416805636983211624244253
771843769559295475443525658463956456812643947836808339184364115
361272212816081261331974090735145462810827193228388052280941899
621086048125781616426554821307993881181432030286828814668037941
363452535754888700309654082827745708590793548398@32947421906017
493484227918941205152554418405627008869606121030218511197743246
17300371063026441012397115870609;

0:=38160841149709096107277008529237655101284696898%9439534054919
396502446460254289920405368295440290320818665923388996484161381
6025076689689277632766549612992322299543668642B9909677490717721
442156884221999084213766766268408368008814890220816685455923329
1679200763491754201502940325721515596072771492293Q8590725623127
605668859791115002185172043311290380480003286832266315690566733
923713948240023779976887323373361839083267182760163961566680874
655173581042781296105918895361331425650883784632888565791660964
9944608978536206734914050826877132461883382380¥6662295556450705
127185577243090739281601951121250060254403003663844/13915140033
82729143001725042777499277825242938889474925893388Q044837658078
820058539872401558286857306439917406094265698969301758348670197
605343924442791833178363554733581619431363309436488821824395562
212646979973123519646992238784105861875094927769948435698275528
950478502534021618779227069944903941240657032000985871994931365
414836830753130172495378662322738721781635161198888624588177443
945192708605767614940920065312042260335841274446888895166175437
436668329261187900655405156900650251517330133694204814898693604
885230085908193821829953601291690410977010467946848586828447617
411585537639567123064709522080249248570203679588295545858375036
754029196314222346929519973568479114023250718067Q@83941910604211
036619659684353524866756025323701668815852794536282022036767172
199063114827585020818705517341239108631232415502698236887768653
261714497292569358629512365063850421233459190162838302456728797
583828073533938501721775144486123060010976452388889569339120409
970507808814544426909796366745450558257813072996972777867860936
290498714105353419372883343485305903130145653646322774940077668
293580864846717595597415172972152371202201176993886609898629451
684591854652591264255800928793144882163519851325686614437118421
660055576572098630903746025458503018489103147462868459705162601
548221238643408948552048585398565609670637134569602771282780582
79668245989164514304631730806242991532839575773494886831600293913
483401098730654084421756415488506576763637323289638308457328779
730493404708075437446904721852701279827245757918388842670474652
76478571359000808679027397521380564320441826138%9026863081 75306
405031438783253338354635152626164345825423175626980589588045722
967448250265637273642933186864273826689187278882988217485141259

117



575417811070085473940308538857174803972219739494786263132003970
985246684186476004277133900234354929676579729389386626862467321
5173888445088900891034000041507040687871373532419525694134758481
396614113250842991681386606205335024023174547486P9B815750769731
679883496516946885520692142075287869829998451068748394016101144
9865790360315608261718876430408892194986527363560868910210341091
192115211171516211921363610607206588692767753966368992117572711
141428214630092334566935282312774777190985703128068146216569684
07522821737869397857222145728423250398024008848P328446244564454
228389839738053070791981479771053758184730458505828343005493174
24071800872886582091575152129599238892437113540880Q309288680662
891359807863146467438587087138987377182513417125588623771339924
5614161588559712455923868100669119042433950675286392558005699610
842627785219437167429983874012586028446291653663832102573601793
0191055531120242699204625708100404056390662816188@8185534027902
696993922723023427758701940228419852586243693222838644814557922
1491410115360000624452581171606659962587725859823%@227916000582
789305639705382637273046856479961741271496242638300513812398010
637962920440782246035301375626937703131613402988962679024191844
899803610621578361741855456364272781077822048784826091415017113
530738548236277178177764688268353806615431888786328899127582998
2613283612642797315956116644542601582378279764389888821938457894
867243094724176661557515012848101542579830259984523016960024168
275473368262531014702762579325479344739430340968Q%8209517637873
372059973111702494301577102163990145081814333899897194412951957
1288377060410634641095968904352658596400759091%402P765293166460
9818657771871645600045216167134662022121486934363243715582874992
948061270853515483176734662611394863278795822048612963165940086
561516061771106726857141667633310109936028920584352373516992751
0266362073494798452009521340299;

n :=p*q; //RSA modulus is computed

pn:=(p-1)*(g-1); //Euler’s totient function®(n) for key generation
out:=GCD(e,pn); // To satisfy gcd(@(n))=1

while out ne 1 do

e:=Random(pn);

out:=GCD(e,pn);

end while;

d:=Modinv(e,pn); //Secret key computation
Cputime(initialization); /Measurement of initialization time

/l Election
encryption:=Cputime();
total_S:=0;
product_C:=1;
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/l product_M:=1;

/[ product_ M_NoMod:=1,

for kin [1..N] do

repeat

msg:=RandomPrime(J);

until msg ne 2;

s:= Random (1,Sbhit);

total_S:=total_S+s;

r_msg:= msg*2”"s; //Randomized message
c:=Modexp(r_msg,e, n); //Encryption of randomizeelssage
// product_M:= (product_M*msg) mod n;

/I product_M_NoMod:= (product_M_NoMod*msg);
product_C:=(product_C*c) mod n; //Encrypted & randped vote producEVRan
end for;

Cputime(encryption);

/I Decryption of EVP

decryption:= Cputime();

/[Encrypted_R:=Modexp(2”total_S,e, n);

/[EVP:= (Modinv(Encrypted_R,n) * product_C) mod/MRandomness cancellation
before decryption

/IVP:=Modexp(EVP,d,n); //Decryption of EVP givestiote Product VP
VPran:=Modexp(product_C,d,n); //DecryptionE¥ P, givesVPan

VP:= (Modinv(2*total_S,n) * VPran) mod n; //Randoess cancellation after
decryption

VP;

product_M; // For a check with VP

finalNdivisions:= Cputime();

v2:=0;

v3:=0;

v5:=0;

v7:=0;

v11:=0;

v13:=0;

repeat

if (VP mod 2) eq 0 then

VP:= VP div 2;

Vv2:=v2+1;

end if;

until VP mod 2 ne 0;

repeat

if (VP mod 3) eq 0 then

VP:= VP div 3;

v3:= v3+1;

end if;
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until VP mod 3 ne O;
repeat

if (VP mod 5) eq 0 then
VP:= VP div 5;

v5:= v5+1;

end if;

until VP mod 5 ne O;
repeat

if (VP mod 7) eq O then
VP:= VP div 7;
V7:=Vv7+1;

end if;

until VP mod 7 ne O;
repeat

if (VP mod 11) eq O then
VP:= VP div 11;
vl1l:=v11+1;

end if;

until VP mod 11 ne O;
repeat

if (VP mod 13) eq 0 then
VP:= VP div 13;
v13:=v13+1;

end if;

until VP mod 13 ne 0; // Vote counts are all found
V2;

v3;

vb;

V7;

v1l;

v13;

e;
Cputime(finalNdivisions);
Cputime(decryption);
Cputime(total);

2. El Gamal Tallying with 1024-bit Modulus andN=256 Voters

/[ Initialization

initialization:= Cputime();

p_bit:=1024;

J:=4; //Bit size of candidate’s prime number
N:=p_bit div J; // Number of voters

p := RandomPrime(p_bit);
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/I f := Factorization(p-1);

If;

x:= Random(p); // Secret key
y:= Modexp(2,x, p); // Public key
Cputime(initialization);

/I Election

encryption:=Cputime();

product_C1:=1;

product_C2:=1;

/l product_M:=1;

for kin [1..N] do

repeat

msg:=RandomPrime(J);

until msg ne 2;

r:= Random(p); / Random number

cl:=Modexp(2, r, p); //Encryption, first entry alph

c2:=msg*Modexp(y, r, p); //[Encryption, second ertigta

/I AlphaPowerx:= Modexp(c1,x, p);

/I InvAlphaPowerx:=Modinv(AlphaPowerx,p);

/I m:=(c2* InvAlphaPowerx) mod p;

/I product_M:= (product_M*msg) mod p;

product_C1:=(product_C1*cl) mod pFifst entry ofencrypted vote product, EVPran
product_C2:=(product_C2*c2) mod p;¥2ntry ofencrypted vote product, EVPran
end for;

Cputime(encryption);

// Decryption of EVPran

decryption:= Cputime();

AlphaPowerx:= Modexp(product_C1, x, p); // EVP
AlphaPowerx;

InvAlphaPowerx:=Modinv(AlphaPowerx, p);

InvAlphaPowerx;

VP:=( product_C2* InvAlphaPowerx) mod p; //Decrygptiof EVP
VP;

/I product_M; /I For a check with VP

finaINdivisions:= Cputime();
v2:=0;

v3:=0;

v5:=0;

v7:=0;

v11:=0;

v13:=0;

repeat
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if (VP mod 2) eq 0 then
VP:= VP div 2;
v2:=v2+1;

end if;

until VP mod 2 ne O;
repeat

if (VP mod 3) eq O then
VP:= VP div 3;

v3:= v3+1;

end if;

until VP mod 3 ne O;
repeat

if (VP mod 5) eq 0 then
VP:= VP div 5;

v5:= v5+1;

end if;

until VP mod 5 ne O;
repeat

if (VP mod 7) eq 0 then
VP:= VP div 7;
V7:=v7+1;

end if;

until VP mod 7 ne O;
repeat

if (VP mod 11) eq O then
VP:= VP div 11;
vll:=v11+1;

end if;

until VP mod 11 ne O;
repeat

if (VP mod 13) eq O then
VP:= VP div 13;

v13:= v13+1;

end if;

until VP mod 13 ne 0; // Vote counts are all found
Vv2;

v3;

Vv5;

V7

vll;

v13;
Cputime(finalNdivisions);
Cputime(decryption);
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APPENDIX D

Proof of Non-Unigueness of Vote Products Exceedirtge

Modulus

If we don't use the restrictioN < logn /Jthat assure¥P < n, and letVP > n, is it

possible to find the vote product uniquely usib(@(VP)) [ Z, and solving
D(E(VP)) + kn=VP (D.1)
for some value ok and some set of vote counts
Vit Vot ... Ae=N? (D.2)

In other words, is there a unique solution of (Catyl (D.2) in terms ofy, Vo, ... Vc

andk ? The answer is “No”, which can be proved by thenter example below.

Counter example to uniquenesstet n=5x13=65N = 6 andVP = 486 = 2x3, with
SCP= {2,3} assigned to 2 candidates. Since 486#81d(65),D(E(VP))=31. Can we

arrive at the valid factorization 2%8sing equations (D.1) and (D.2)?

Notice that 31+65=96 =23 =V/P; satisfies (D.1) wittk=1, andN=6 satisfies (D.2);
similarly 31+7x65 = 486 = 2®3VP; satisfies (D.1) wittk=7, and alsdN=6.

So, nobody knows wheth&P equalsVP; or VP,. This is why one should choose
large enough bit size for the modulus such YWt n and the vote product must not

exceed the modulus of the multiplicative homomargublic key algorithm.
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APPENDIX E

Speed of Modular Operations

We have first measured the CPU times of the 100rB00ular operations by using
the Magma library on a 1,83 GHz CPU, and showrrébkalts in Tables E.1 and E.2.

Table E.1 CPU times (in seconds) of the modular multiplicati inversion and
exponentiation corresponding to 100,000 operatidtis 128 and 256-bit moduli.

Bit Size of
Multiplicative
Modulus | Group Elements | Mult . Mult. Inv. Exp. Exp.
Bit Size 1 r e
g r e gxr rxe r g g
20 20 17 | 0.078| 0.078 0.25 3.51 2.153

40 40 17 | 0.078 | 0.078 0.421 6.942 2.324

5 80 80 17| 0.172 | 0.093 0.64 14.43 2.4043
8 160 | 160| 17| 0.312 | 0.172 1.014 31.652 2.558
320 | 320| 17| 0.702 | 0.265 1.232 67.518 2.668

Approximate ratio;] 2 1 6 150 25

20 20 17| 0.078 | 0.078 0.343 8.689 6.00¢

40 40 17| 0.078 | 0.078 0.453 18.611 6.474

80 80 17 | 0.093 | 0.078 0.842 40.717 6.973

160 | 160| 17| 0.265 | 0.078 1.435 90.871 7.691

320 | 320| 17| 0.733 | 0.234 2.48 215.141 8.019

Approximate ratio: 1 1 18 1165 100
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We observe from Table E.1 and Table E.2 that expiaién is the most time
consuming operation. Inversion operation is th@sdand multiplication is the third
but both are observed to be negligible with respeexponentiation. In a group of
given modulus, time for the exponentiation depestidgngly on the bit size of the
exponent (see thg column and compare with the last agi¢ and if the exponent

size is doubled, exponentiation time is observeoktapproximately doubled.

Table E.2 CPU times (in seconds) of the modular multiplicati inversion and
exponentiation corresponding to 100,000 operatiatts 512 and 1024-bit moduli.

Bit Size of
Multiplicative
Modulus Group Elements Mult . Mult. Inv. Exp. Exp.
Bit Size Y r e
o] r e gxr rxe r g g
20 20 17 | 0.063 0.078 0.406 25.397 18.626
40 40 17 | 0.093 0.078 0.64 59.53 20.283
5 80 80 17 | 0.094 0.109 1.061 129.263 22.074
1 160 | 160 17| 0.156 0.078 1.919 277.838 23.822
2 320 | 320 17| 0.608 0.078 3.806 664.471 26.613
640 | 640 17| 2.356 0.39 6.302 1427.315 28.034

1280 | 1280 | 17 | 6.724 1.56 7.784| 299.38b | 28.767

Approximate ratio: 8 1 50 8500 340

20 20 17 | 0.078 | 0.094 0.592 79.857 57.674

40 40 17 | 0.078 | 0.078 0.874 197.154 63.43

[EY

80 80 17| 0.125 | 0.093 1.56 431.295 69.31

(o]

160 | 160| 17| 0.156 | 0.078 2.402 926.163 75.78

320 | 320| 17| 0.312 | 0.093 4.899 207.9 | 81.183

A N O B

640 | 640| 17| 1.857 | 0.109 10.733 46144 | 88.717

1280 | 1280 17 | 7.972 1.03 20.748] 100645 | 94.896

17 1 100 42300 800

Approximate ratio: 17488 1473 1
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To find the dependence of the exponentiation speethe bit size of the modulus,
we compare the time for 80-bit exponentiations wemmodulus bit size in Table E.3

and observe that as the modulus bit size is doubbgabnentiation time igipled.

Table E.3 CPU times (in seconds) of the 100,000 modular e&ptations with 80-bit
numbers for 128, 256, 512 and 1024-bit moduli.

Bit Size of
Modulus Multiplicative Exp. Approximate ratio with
Bit Size Group Elements r respect to the half-bit-size
g modulus
g r
128 80 80 14.43 1
256 80 80 40.717 2.8 1
512 80 80 129.263 3.2 1
1024 80 80 431.295 3.3

To make this comparison more fairly, one shouldetakto account that as the
modulus size is doubled, the size of a randomlkgacnumber is also doubled;
hence we expect the corresponding exponentiatioe to be multiplied by 6. Table

E.4 confirms this expectation.

Table E.4 CPU times (in seconds) of the 100,000 modular Bgptations with comparable

numbers for 128, 256, 512 and 1024-bit moduli.

Bit Size of Exp. Approximate ratio with
Multiplicative r respect to the half-bit-size
Modulus | Group Elements g modulus
Bit Size
g r
128 80 80 14.43 1
256 160 160 90.871 6.3
512 320 320 664.471 7.3 1
1024 640 640 4611.400 6.9
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