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ABSTRACT

A DEVELOPMENTAL FRAMEWORK FOR LEARNING AFFORDANCES

Ugur, Emre
Ph.D., Department of Computer Engineering
Supervisor : Asst. Prof. Dr. Erol Sahin

Co-Supervisor : Assoc. Prof. Dr. Erh@rtop
December 2010, 192 pages

We propose a developmental framework that enables the robot to Eamfeances through in-
teraction with the environment in an unsupervised way and to use tliesgeaces at dierent
levels of robot control, ranging from reactive response to planningpited from Develop-
mental Psychology, the robot’s discovery of action possibilities is realizéddrsequential
phases. In the first phase, the robot that initially possesses a limited nofriisesic actions
and reflexes discovers new behavior primitives by exercising theseaetia by monitoring
the changes created in its initially crude perception system. In the secosel finarobot ex-
plores a more complicated environment by executing the discovered bepawmitives and
using more advanced perception to learn further action possibilities. Fouitgese, first, the
robot discovers commonalities in actioffext experiences by findingfect categories, and
then builds predictors for each behavior to map object features anglibeparameters into
effect categories. After learningfardances through self-interaction and self-observation, the
robot can make plans to achieve desired goals, emulate end states of taetedrections,
monitor the plan execution and take corrective actions using the percaptuctiures em-

ployed or discovered during learning.
Mobile and manipulator robots were used to realize the proposed framev®nkilar to
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infants, these robots were able to form behavior repertoires, Iéamdances, and gain pre-
diction capabilities. The learnedfardances were shown to be relative to the robots, provide
perceptual economy and encode general relations. Additionally fitvelance-based plan-

ning ability was verified in various tasks such as table cleaning and objasptreation.

Keywords: d@ordances, developmental robotics, sensory-motor learning, cogrotiegics,

robot perception
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SAGLARLIK OGRENMI ICIN GELISIMSEL BIR CERCEVE

Ugur, Emre
Doktora, Bilgisayar Mihendislgi Bolumu
Tez Yoneticisi : Yrd. Dog. Dr. Erol Sahin
Ortak Tez Yoneticisi : Dog. Dr. Erha®ztop

Aralik 2010, 192 sayfa

Robotun ortamiile etkilesimi yolu ile géarliklarin (ing. d&ordances) gzetimsizogrenilmesini

ve reaktif tepkiden planlamaya robot denetiminin farkizdylerinde sglarliklarin kullanimini
salayan gelisimsel bir cerveganerilmistir. Gelisimsel Psikoloji'den ilham alarak robotun
hareket kesifleri iki ana ardisik asamada gerceklestiriimiftinsamada, sinirli sayida temel
aksiyon ve reflekse sahip olan robot, bu aksiyonlari egzersiz ederblaslangic ilkel algi
sistemindeki degisiklikleri gzlemleyerek yeni davranis primitifleri kesfetmektedikinci
asamada, daha ileri hareket olanaklan@renmek icin, daha gelismis bir algi sistemi kul-
lanarak ve birdbnceki adimda kesfeffi davranislari uygulayarak daha karmasik ortamlari
arastirmaktadir. Bu amaclancelikle robot, etki kategorileri bularak, aksiyon-etki deneyim-
lerinde olusan benzerlikleri kesfetmektedir. Daha sonra cisiellikleri ve davranis parame-
trelerini etki kategorilerine eslemek amaci ile her davranis dugbriciler kurmaktadir.
Robot, sglarliklari etkisim ve @§zlem yoluyladgrendikten sonra@)renme sirasinda kesfedilen
algisal yapilari kullanarak, istenen hedefleri gergeklestirmek icirignlgapabilmekte, baskasi
tarafindan @sterilen aksiyonlar ile elde edilen son durumlari taklit edebilmekte ve planin

yurutilmesini takip edip dzeltici hareketler yapabilmektedir.
Onerilen cerceveyi gerceklestirmek icin gezer ve malaipr robotlar kullaniimistir. Bebek-
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lere benzer sekilde, bu robotlar, hareket repertuarlari gelistireb#ajrliklari dgrenebilmis
ve tahmin becerisi kazanabilmisti©grenilen sglarliklarin robotlara greli oldwu, algida
ekonomi sgladgi ve genel iliskileri kodladyi gdsterilmistir. Ayrica, sglarlik tabanli plan

yapabilme kabiliyeti masa temizleme ve cisim tasima gibi cegitleglerde dgrulanmistir.

Anahtar Kelimeler: S@larlik, gelisimsel robotik, sekis motor dgrenmesi, bilissel robotik,

robot algisi
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CHAPTER 1

INTRODUCTION

“Failure of existing rules is the prelude to a search for new ones. ”

— Thomas Kuhl, 1962

It has been almost a century, since thbot! word first appeared in KarefIapek’s science
fiction play [16], where human-like biological robot characters werggaey human actors
as intelligent workers that can serve in any job. This year (in 2010), iveegsed a real robot
(built by Prof. H. Ishiguro from Osaka University, Japan) took stageé acted as an android

giving company to a (real) womanfering from a fatal illness [62].

If an intelligent robot “is a mechanical creature which can function autangly” [104, p. 3]
or “is a machine that senses, thinks, and acts” [9, p. 2] as defineddticslextbooks, then
Prof. Ishiguro’s android (which is controlled by a human operator)hzadly be considered
an intelligent robot. On the other hand, Grey Walter's three-wheeledtsdd950) with
prototube eyes and vacuum tube amplifiers can be considered as intdiigathey could
exhibit emergent behaviors while searching for its battery charging loxsafyj. As another
example from old days, despite its slow behavior execution and its susceptibititgnamic
and uncertain world, Stanford Research Institute’s Shakey rob@0§1@ith bump detectors,
range finders and radio antennas, can be considered more intelligeatitsirad planning
abilities [104]. Coming to today, the state-of-the-art robots which are dedifpr specific
tasks exhibit impressive abilities. Mobile vehicles can drive 13,000 km. ftalyto China
in traffic [61] autonomously, humanoid robots can climb stairs (Asimo), run at/Aikspeed
(Toyota), and shake hands with presidents of the world states. Havsawgly put, no robot

today can exhibit perceptual, motor or intellectual capabilities of a 3 yddrshdd.

! Robot is derived fromobotawhich means self-labor or forced-labor in Czech language.
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(2) Rossum’s Universal Robots (1921) [16] (b) Real android (left) on stage (2010) [62]

Figure 1.1: From human actors who play robots to an android starringsatteng human
actress.

Over the past several decades, researchers have télaeili approaches to create intelligent
machines. The first approach was to create complicated knowledgefbaserld represen-
tation and use logic-based methods to make inferences. However, tieds lacked fast
response in dynamical and uncertain environments, since the sensirgtanglwere con-
nected through a slow planning module. As an alternative approach, siotpisrwere
programmed with tight sensor-actuation couplings so that they were ableetdagit reac-
tions and survive in the dynamic world, however the tasks that could bertakén by these
robots were simple. Next, low-level reactive control is combined with higbteasoning
systems to obtain the advantage of both. However bridging these two ldyavatol was
not-straightforward due to theftitrences in design constraints and the representational gap

between these levels.

Roboticists also utilized ideas from social sciences and nature to overcermittulty in in-
telligent robot development. In [109] robots evolved through genembased on Darwinian
principle of survival of the fittest, in [12] simple robots exhibit emergert eollective intel-
ligent behavior inspiring from social insects, in [112] they graspedatbjeased on models

derived from monkey and human neuroimaging studies.

1.1 Robotics and Developmental Psychology

As Weng et al. put “although notable, none of these (the methods used)de powerful
enough to lead to machines having the complex, diverse, and highly integegiadilities

of an adult brain, such as vision, speech, and language” [155]. nAsttampt to find and
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alternative and ‘better’ way to develop intelligent robots, in the beginning0@0’s a new
field was established at the intersection between developmental psychaiggitive science,
developmental neuroscience and robotics. The aim of this approadented a€ognitive
Developmental Robotidsy Asada et al. [4]Autonomous Mental Developmet Weng et
al. [155], Epigenetic Roboticby Zlatev and Balkenius [162], arldevelopmental Robotics
by Lungarella et al.[92], was to create “truly intelligent machines” [15Bkvelopmental
Roboticsin short, was born as an alternative to previous robot-learning agpeedbat were
task and designer dependent. The new approach argued that a davelispmental pathway
similar to humans or animals with high order cognitive skills is the right way forioioig
intelligent robots. Although there existdidirences in to which extent biological development
is to be followed, common to all, developmental robotic approach has the fotiomvain

characteristics:

e First of all, the learning agent must be embodied in a physical body andesitirathe
environment it physically interacts. Developmental psychology argueshédirain,
body and environment are tightly coupled and the development of cognitionlys
possible within (and is being directed by) this coupling. In other wordssipghyem-
bodiment enables cognitive development through interactions with the amaiat.

The interactions can take place with the object in robot’'s world in an ungisgerway,
or it can be scdiolded by other agents (or parents) in the environment, corresponding

to sensorimotor and social development.

e The development must be incremental, i.e. the perceptual, motor and cogleitizle
opment must follow a pathway going from simple to complex. More complex skills
must be discovered using and based on the simpler skills that were leseford.b
Furthermore, similar to infant development [119, 36] the incremental denedat can

occur in qualitatively dierent stages.

e The development must be task-independent and should be led by theneneirt (in-
cluding robot’s own body and changes in its morphology if possible). kamgle,
instead of specifically learning how to grasp objects, the robot that insevath the
environment can develop many manipulation skills including grasping. Pasmatia
folding is important and necessary in development of higher-level cogtiinctions,

however self-exploration of the environment through interaction is impbirtaaevel-
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opment of basic sensorimotor system.

e The sensory-motor system of the robot must be limited in initial phases of tieéoge
ment. The robot’s perception system is bombarded with large amount ofoamolex
data received from its sensors such as vision and tactile. Similar to bioleys@ms
who has limited sensory and motor capabilities initially (such as limited visual acuity
and range in newborn infants), the complexity of the sensor data and nootonands
should be limited initially and limitations should be relaxed incrementally while the

robot develops necessary perceptual and cognitive structurasathptocess that data.

e The robot is ‘born’ with low-level sensorimotor representation. Howebe increased
cognitive abilities of the robot would require higher-level perceptual mnotor rep-
resentations. Thus, the robot needs to learn high-level concepts irrcesppeal and

motor aparata, i.e. should develop perceptual and behavioral categorie

1.2 Robotics and Ecological Psychology

The core assumption of developmental robotapodimenandsituatedneshas been stud-
ied in Ecological Psychology for decades. Along this line of reseanch,a the most in-
fluential Ecological Psychologist J.J.Gibson, coined the tefor@ances, that (according to
him) “refers to both the environment and the animal in a way that no existingdees (and)

implies the complementarity of the animal and environment.” [55, p. 127].

According to J.J.Gibson, the action possibilitief¢edances) provided by the environment
can be directly perceived by humans without any intermediate high-levedtaigjieognition
step. That is, humans do not need to recognize the action-free meahitngsabjects and
make complex inferences over these meanings in order to act on them. droplexwe do
not identify the objects with their action-free labels such as chairs, ceumhgtones when
we need to throw them or sit on them. Instead, we look for a specific comhinatithe
object properties taken with reference to us and our action capabilitiedén @wr detect their

‘throwability’ or ‘sittability’ a ffordances.

Although it is not the classical engineering approach of ‘identify and #wh this strategy
appears to be the one employed by our brains. It is known that the akceltex processes

visual information in at least two channels, the so called dorsal and Vgatitavays. The
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ventral pathway appears to be responsible for object identificatiormeaté¢he dorsal path-
way is mainly involved in perception for action [34, 56, 57, 146]. Thega daggest that
an agent does not necessarily need to possess object recognitadnilibato learn about its

environment, and use this knowledge for making plans.

Robotics has long stered from the problem of processing vast amount of information avail-
able in perception, representation and decision making leveffardance-based view pro-
vides the agent a simplified means of perception and representation of/ttenerent. Fur-
thermore, this perception and representation is grounded in agent’ssaatidrbody, and the
environment it acts. Thus, utilizingfardances theory in robotics has great potential and in-
deed it has been recently explored in many robotic studies [3, 26, 293346, 133, 132, 30,
99, 139, 43, 48, 129, 60, 37, 65, 101, 117, 159, 100, 121].

Affordances can also be used to deal with the problem of creating reastiives with high-
level reasoning systems. As mentioned in the beginning of this chapterettist®a represen-
tational gap between the continuous sensory-motor experiences obtaarabthe symbolic
planning operators of Artificial Intelligence. The mapping of the symbolsl us¢hese op-
erators onto the sensory-motor readings of the robot’s continuous isdsidically referred
as part of the symbol grounding problem [64] and has been studiegltsieclays of STRIPS
[44]. These studies [83] typically assume that the relations that bind theopled symbols
(such as pre-conditions andfects of an operator) are given, and aim to learn the mapping
from these symbols to the continuous sensory-motor readings of the fieboéntly, it has
been argued that symbols “are not formed in isolation” and that “theyoamesfd in relation to
the experience of agents, through their percepuatir apparatuses, in their world and linked
to their goals and actions” [135, p. 149]. Learnirffpedances through robot-environment in-
teractions can enable the formation of high-level grounded conceptréased in high-level

reasoning systems and bridge the gap between two (or more) levels aflcontr

1.3 The Aim of the Thesis

This thesis aims to propose a developmental framework to enable the robatrodler-
dances through interaction with the environment in an unsupervised wiaysarthesefor-

dances at dierent levels of robot control from reactive response to planninghisrespect,
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our approach can be viewed at the intersection of Autonomous Robo#us|dpmental Sci-
ences and Ecological Psychology.fiégrdance learning is studied in two main domains of
robotics, namely mobile robotics and manipulation systems. Our studies in moliliEcsob

are more focused on studying Gibsoni&imedances since the experiments conducted to show
the utility of afordance perception are more related to mobility related behaviors such as
climbability, pass-through-ability, pass-under-ability, etc. On the othed hag shifted our
focus to (relations with) infant development during otfoedance learning and behavior dis-
covery studies, thanks to the similarities of biological and robot fzarmdsystems and the
corresponding skills. In the rest of this section, we will provide the ideaised from infant

development andfBordances theory that are used in the development of the proposed system.

1.3.1 Ideas Adopted from Infant Development

In this section, we will enumerate the phases of infant development that gsiith establish-

ing the progressive learning framework that this thesis follows:

¢ New-born babies have many innate reflexes such as pupil reflex to lighking reflex
or palmar-grasp reflex. Palmar reflex in particular is “integrated into latentioteal
grasping” [120, p. 7] after repeated activation of the reflex and i@t of grasp
action. This reflex is not always stable and by 6 months of age, it disepest, p.
199].

e By 4 months of age, infants learn to perceive the reachability bounddfds jp. 199]

and they can successfully reach to the objects [14, p. 41].

e By 5 months of age, infants slow down their hand speeds when graspjectoh.e.

they learned adjusting hand reach speed by this age [124, p. 100].

o It takes 9 months for infants to reach for objects with correct handiatien and
adjust their grip size based on objects’ size before contact. Thesmg@ra of reach
develops later then hand-speed parameter since “babies younger inamti®s lack a
fully-developed map between visually perceived orientations and @umeléng hand

orientations” [124, p. 200].

e Between 7-9 months, babies explore the environment and objects usiogsvbehav-

iors including grasp, drop, and hit [4]. We think that, by this time, the infastdready
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developed a set of behavior primitives from its most basic movement priniitivee

arm.

e Between 7-9 months, they learn the causality relations and object dynamésponise
to their actions [4]. It is plausible to think that while interacting with the envirorimen
babies monitor these consequences of their actions and relate the @ansEx)to the
visual properties of the objects they interact with. In other words, thay lebject

affordances in this phase.

e By 10-12 months, they can imitate actions and they can generate multi-step plans to
accomplish goals (such as reaching toys) [157]. Since the symbolicsesyiagion de-
velops only after 18 months [119], probably the sub-symbolic structuresmrepts
discovered within infant’s sensorimotor representation durifigréance learning are

represented as symbols and used for imitation and multi-step planning.

e Psychologists believe that a mechanism called ‘intrinsic motivation’ exists &r dod
drive open-ended cognitive development of humans, and infants ficydar [156].
Thanks to this mechanism, infants exhibit spontaneous exploration anditudoring

their joy of play and ‘maximize’ their learning extent and speed.

1.3.2 Ideas Adopted from Afordances Theory

In this section, we will enumerate the main attributesfédrmances concept that guide us in
establishing theféordance learning framework. The following attributes were first identified

in [33] and re-interpreted forfBordances in our study.

e Affordances can be viewed from three perspectives; namely, agentyetsseand en-
vironment The agent’s fiordances correspond to a representation ibgitles inside
the agentand the observer'sfiordances can be viewed as the representation when we

(observers) analyze the execution of the agent based offfd@iglance perception.

o Affordances are acquired relatiorhis acquisition can correspond to evolution, learn-
ing and trial-and-error based design. In our case, the structurés(ehased for learn-
ing affordances) are assumed to exist (for example acquired through evdhnidnve

will focus on learning of &ordances. The learning offardances was not particularly
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a focus of J.J.Gibson, but studied by E.Gibson. We will discuss this in thehapter,
Section 2.2.

Affordances encode general relatiopsrtaining to the agent, environment interaction,
such as balls: balls are rollable. Naturally, exceptions to these genkatibme, such

as “the-red-ball-on-my-table is not rollable (since it is glued to the table)éxist.
However, unlike &ordance relations, these specific relations possess little predictive

help over other cases, such as whether the-blue-ball-on-my-table Iseadianot.

Affordances provide perceptual econaniyhe concept of fiordances is often used as
support for minimality in perception to argue that one does not have toiperéthe
qualities of their environment in order to accomplish a simple task such as vimgde

around.

Affordances are relativeThis argument, generally accepted within most contexts, is
usually linked to the complementarity of the organism and the environment. dingor

to this view, the existence of arffardance is neither defined by the environment nor
by the organism alone but through their interaction. For instanceglitnbability of a
stair step is not only determined by the metric measure of the height, but als®lsy o
leg length. In case abbserver’'s gordance the existence oflimbability affordance
depends on the ratio between height of the stair and agent’s leg lengtlevelgdrom
agent’s perspectivesince it learnedlimbability affordance with a fixed leg length, the

affordance (that resides in agent’s mind) only depends on the height dite s

Affordances provide support for multi-step prediction and plannibigcovering #&or-
dances from low-level and continuous sensorimotor experience ajsiloécorresponds
to formation a higher-level world representation, i.e. abstract perdegtédes. In other
words, the robot learns to represent the state in terms of discovoedamces. Fur-
thermore, learning to perceivéfardances corresponds to acquiring prediction ability
over these perceptual states. An agent can make multi-step predictioascmdplish
goals that are encoded in discovered state representations by ganplatis with the

acquired prediction ability.



1.4 The Organization of the Thesis

The realization and implementation of thEadance-learning framework follows simple to
complex progression and this progression does not always congpmfant’s development
time-line. The former chapters include limited versions of tfierdances learning framework

by postulating simplifying assumptions, and in later chapters these limitationsaateadjly
relaxed. The robot perception, the behavior representation, ancethisdf the learning
algorithms also dfer among experiments. Thus, in the beginning of each chapter, a section
namedFramework Implementation gives details of the representational details and postu-
lated assumptions. At the end of each chafgcussionsection describes the assumptions

to be relaxed in the next chapter.

Chapter 2 gives an overview of the theory offardances and its use inftiirent fields. The
topics discussed in this chapter, namely the definition and formalization offtird@nce con-
cept, the previousfiordance based robot control systems, and ff@dance-related animal

experiments, will serve as a basis in offioedance-based robot learning framework.

Chapter 3 describes howféordances are encoded in ‘robot’s mind’ and provides tfera
dance learning framework in its most generic form. First, tHerdance representation is
described in a relational structure that encapsulates the robot behdkiomitial perception

of the world, and the change in perception due to the behavior executiem, The unsuper-
vised dfordance learning method that use robot’s interaction experience with\titeranent

is defined. At the end, how learneff@dances can be utilized in goal-oriented robot control
is discussed. Note that the realization of this framework was progrésdmesloped through
time and this development is reflected in chapter organizations. In otheswormhach chap-

ter different (but overlapping) parts of the framework is implemented.

Chapter 4 gives the details of the robot platforms used in this thesis. Thierdntial drive
mobile robot platform with laser range finder is used in Chapters 5-7. Thgulator robot
platform that is composed of an anthropomorphic hand-arm robot systdrinfrared range

camera is used in Chapters 8-10.

Chapter 5 studies the learning and perception of traversabilifgrdances on a mobile robot
equipped with range sensing ability. The environment is said to be tralelisah certain

direction, if the robot (moving in that direction) is not enforced to stop assalt of contact
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with an obstacle. Thus, if the robot can push an object (by rolling it avtbag) environment

is said to be traversable even if the object is on robot’s path, and a collisam Through
experiments inspired by Ecological Psychology, we show that the ropantdracting with

its environment, can learn to perceive the traversabittigrdances. We show that three of the
main attributes that are commonly associated witbrdances, that is flordances being rel-
ative to the environment, providing perceptual economy, and providingrgeinformation,

are simply consequences of learning from the interactions of the robothwtenvironment.
Using the learnedffordance detection ability, the real robot can successfully navigate in an

office environment cluttered with objects that it has never interacted before.

In Chapter 5, the robot learns traversabiliffoadances by random exploration and batch
learning. However, we discussed that infants use ‘intrinsic motivatiorXitogation to opti-
mize the speed and extent of their learning, and they learn in an oped-gramer. Thus, in
Chapter 6 we study a curiosity-based online learning algorithm that automatically choose
novel situations to interact based on previous experience and showithaturiosity-based

learning method, the robot can learn traversabiliffpralance using less exploration time.

In Chapters 5 and 6, thdétardances are learned through supervision of the behavior designer
who explicitly sets success criteria for each behavior execution. As wasgtied that infants
can explore the environment in a goal-free means without any supervidapter 7 studies
unsupervised learning offardances where the mobile robot interacts with the objects in its
environment using a pre-coded repertoire of behaviors. It redtsrdisteractions in a triple
that consist of the initial percept of the object, the behavior applied andfdstedefined

as the diference between the initial and the final percept. The method allows thetmbot
learn object ordance relations which can be used to predict the change in the peftept
object when a certain behavior is applied. These relations can then ¢héoudevelop plans
using forward chaining. Using this method, the real mobile robot with limited méatipa
capabilities can make and execute multi-step step plans such as ‘movedtdeftar move-

forward-right’, and ‘lift’, in order to lift a novel unreachable object.

In Chapters 8-10, we use manipulation robot platforms and studyffimelances provided to
them. Chapter 8 shows that through self-interaction and self-observation, an antimapo
phic robot equipped with a range camera can learn objemttinces and use this knowledge

for planning. Similar to Chapter 7, the robot discovers commonalities in its aefiieot
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experiences by discoverindfect categories using a novel hierarchical categorization algo-
rithm. After learning, the robot can make plans to achieve desired goalsatenend states
of demonstrated actions, monitor the plan execution and take correctivesagimg the per-
ceptual structures employed or discovered during learning. This chegutebe viewed as
extension of the same ideas in Chapter 7 to manipulation environment, but witteadfect
category discovery mechanism, incorporation of emulation and monitoring misotsgand
a implemented closed-loop control architecture. At the end, if the robearess an empty
table as goal, then it can clear the table by pushing or lifting or dropping tleetsb If the
robot observes one object lifted in the air, it can bring other objects toatme position by
pushing several times and lifting. If it observes two objects that are classctoother as goal
and those objects are separated, it can generate plans to bring them Albsieese plans
are made in robot’'s perceptual space and they are based on leffiorédrzces and learned

prediction ability.

Chapter 9 studies not only learning of the existence dfoadances provided by objects,
but also the behavioral parameters required to actualize them, and thetipredf effects
generated on the objects in an unsupervised way. This chapter extevitsup chapters
by using parametric behaviors and including the behavior parameterdlimtdamce learning
and goal-oriented plan generation. Furthermore, for handling complhewimes and complex
objects (such as execution of precision grasp on a mug), the percppioassing is improved
by using a combination of local and global features. In short, obj@otdances for object
manipulation are discovered together with behavior parameters based the thnitored

effects.

Upto Chapter 10, we assumed the existence of a behavior repertoire thétamaed in a
previous developmental phase. Thus, we manually designed supptesaigd behaviors
inspiring from infant development literature so that the learrEmdance prediction abilities
based on those behaviors can be used in a goal-oriented w&halpter 10, we relax this

last assumption and propose a method that enables the robot to discoseiob@rimitives
from one basic action using limited tactile and visual perception. Additionallyinvpeove

the dfect category discovery method that was developed in Chapter 8 andsprapvisual
representation inspired from th&@dance representation in the parietal cortex of macaque

monkeys [114].
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In this thesis, all robotic experiments are inspired from the ideas in Thddyfordances or
Developmental Psychology domains. Thus the results of these experimemiis@ussed in
corresponding domains @hapter 11. In the same chapter, the stance of this work among
other robotic studies is also identified. In particular, we reviewed the retatextic studies
using the terminology developed in this thesis and emphasize our contributitesfield of

Autonomous Robotics.
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CHAPTER 2

AFFORDANCES

This chapter gives an overview of the theory @foadances and its use inftiérent fields.
After summarizing J.J. Gibson'dtardance concept and explaining E.J. Gibson’s ideas on
affordance learning in humans, we describe diordance formalism that is used as a base
in robot control in this thesis. Next, we discuss the robotic studies that utdifedlances

for different purposes: detecting traversable paths for mobility, detecting alffiecdances

for manipulation, and minimizing robot perception for detecting only actionagleproper-

ties of the environment. At the end, we will review the human and animal expetsntieat
show the existence offf@rdance detection systems. The definition and formalization of the
affordance concept, the previouSadance based robot control systems, and ffedance-
related experiments in Ecological Psychology will serve as a basis inflamdance-based

robot learning framework.

2.1 Affordances: A computational View

The concept of iordances was introduced by J. J. Gibson to explain how inherent ‘s7alue
and “meanings” of things in the environment can be directly perceivechandthis infor-
mation can be linked to the action possibilitiefeped to the organism by the environment

[55].

“The affordances of the environment are what fifeos the animal, what it
provides or furnishes, either for good or ill. The verb féoed is found in the
dictionary, but the nounffordance is not. | have made it up. | mean by it some-

thing that refers to both the environment and the animal in a way that no existing
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Figure 2.1: Afordances in real life. In the first photo, the monkeylds outthe stick to
pushthe banana. In the second,citmbsto the stick to reachthe banana. In the third, it
stacksthe boxesandclimbsover them tareachthe target. Here, banan&ards pushability
andreachability, stick afordsholdability andclimbability, and box &ords stackabilityand
climbability. Monkeys can detect and act on theffler@ances. The photos were taken during
Wolfgang Kohler's experiments [84].

term does. It implies the complementarity of the animal and the environment.”

(3. J. Gibson, 1973986, p. 127)

In this sense, a stondfards throwing, a flat rigid surfaceffards walking, a mug féords
grasping etc. The definition of the term often depends on the field it is usegdfact Gibson
himself gave diering definitions over the course of his publications [76]. In general, the
guestion ‘what does this mudfard for me?’ can be equated with ‘what type of actions can
I apply on this mug?’. One clear fundamental notion of tiferdlance concept is that object
recognition is not a necessary step for interacting with objects. Instisadances are directly
perceived by humans without creating object models with further ‘mentalilegion’ of the
otherwise meaningless perceptual data. That is, a specific combinatidnjeot properties
with respect to the agent and its action capabilities are enough to detedlidigaaces of a

given object (and act on it).

The concept, described through inspirational but also vague discassidnl. Gibson such as
the one quoted above, turned out to be very influential and has attratdessirfrom a wide

range of fields, ranging from Neuroscience and Human Computer ¢titamdo Autonomous
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Robotics. In our earlier work [33], we summarized the context behind dmeeaption of
the term, speculated on its evolution within J.J. Gibson'’s studies, and reviegegage of
affordances in dferent fields. We concluded that the confusion surrounding the cbhadp
stemmed from that fact that J.J. Gibson’s own ideas on the concept wtdiaalized during

his lifetime and was left in an ambiguous state.

Placing the concept offordance on a general computational ground fdalilt due to its
elusive and multi-facet nature. Recently, we [33] proposed a computhitidegretation of
the dfordance concept that was shown to Heetive for mobile robot control [139, 141, 140,
39, 144, 18]. The proposed formalism agrees with the Gibsonian vievaftitatiances are
relations within the agent-environment system, but it also extends this viewghing that

these relationships can also be represented in the agent (a.k.a. robot).

2.2 Learning of Affordances

J.J. Gibson was not particularly interested in development and “his comaes with per-
ception” [136] only. As a result, he did not discuss the conceptfiofdances from a de-
velopmental point of view, and only mentioned thé&toedances are learned in childhood
[55]. Itis generally accepted that infants’ exploration, through plasiteraction with the
environment, is very important in development of locomotion related perdegatidamotor
skills [1]. E.J. Gibson argued that learning is neither the constructiompoésentations from
smaller pieces, nor the association of a response to a stimulus. Insteathiseted, learn-
ing is “discoveringdistinctivefeatures andnvariant properties of things and events” [51] or
“discovering the information that specifies aficedance” [52]. Learning is not “enriching
the input”, but discovering the critical perceptual information in that inpiite 8amed this
process of discovengifferentiation and defined it as a “narrowing down from a vast manifold
of (perceptual) information to the minimal, optimal information that specifies fiioedance

of an event, object, or layout” [52].

2.3 Affordance Formalization

In [33], after reviewing a number offmrdance formalization proposals, we proposed a new

formalization of d&ordances, based partially on Chemero’s formalization [20] and outlined
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how afordances can be used affdrent levels of robot control, ranging from perception and
learning to planning. One key feature of this framework is that therdances are defined

from the viewpoint of the acting agent.

Specifically, the formalism definedfardances as general relations that pertain to the robot-
environment interaction and claimed that they can be represented as trgieptisist of
the initial percept of the object, the behavior applied and ffeceproduced. Formally, an

affordance is an acquired relation that can be represented as a nested triple
(effect (entity, behavio))

indicating that when the agent applies tiehavioron theentitythe gffectis generated. Here,
the termentity denotes the environmental relata of thffoedance and represents the initial
state of the environment (including the state of the agent) as perceivea lagémt. Entity

is a high level term that can encapsulate the perceptual representatonagfent at dif-
ferent complexity levels, ranging from raw sensory data to the featutesceed from the
environment. Although for sometardances the term object would perfectly encapsulate the
environmental relata, for others, the relata may be too complex to be comdimedobject -
such as the layout among multiple objects. In the rest of the chapter, weeriyfuse object
instead ofentityfor the sake of clarity. ‘Behavior’ represents the physical embodimigiieo
agent’s interaction. It is an internal representation that defines a uadtioh that can often
take parameters for the initiation and online control. As in the entity definition, tet ¢
complexity is not part of the definition; therefore a simple joint rotation, as ag# grasping
action directed to an object can be considered as behaviors. Finallyrtieftectdenotes
the change in perceptual state and environment that is generated betitis agecution of
the behavioron theentity. More specifically, a certain behavior applied to a certain entity
should produce a certaigffect For instance, théft-ability affordance implicitly assumes
that, when thdift behavior is applied to ean it produces theféectlifted®, meaning that the

can’s position, as perceived by the agent, is elevated.

Based on these arguments, we argue that through its interactions with a oalmpt can

acquirerelation instance®f the form:

(lifted, (black-canlift-with-right-hand))

! Note that ‘lifted dfect’ is a label used to describe the sensory change here; in the ageritistiis just
corresponds to an internal representation which is not assigned aaty lab
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meaning that there exists a potential to generate fiieetdifted whenlift-with-right-handis
applied toblack-can Note that the terniblack-canis a label for us humans indicating the
perceptual representation of the black can by the interacting agent. Siplifeetyandlift-
with-right-handare labels for the related perceptual and proprioceptive represastaior
instance the representation of black can be a raw feature vectordi&ve all the sensors

of the robot looking at thblack-canbefore it attempts to apply its lift behavior.

Arguing that @fordances should be relations with predictive abilities, rather than a set of
unconnected relation instances, we proposed a process of geneiinglence classdbat

can be applied on this representation. For instance, a robot can atteegftect lifted, by
applying thelift-with-right-hand behavior on @lack-can or ablue-can It can thus learn a
relation:

(lifted, (<*-can>, lift-with-right-hand))

where<*-can> denotes the derived invariants of the entity equivalence class.

The nesting inside theffardance triplet provided support for planning over learnfidra
dances (as shown in the following Chapters), and can be removed withoomibext of this

study for simplicity as:

(lifted, <*-can>, lift-with-right-hand)

2.4 Affordances in Robotics

2.4.1 Afordances and Mobile Robots

In Autonomous Robotics, the learning and perception of traversahititynobile robots has
recently started to attract interest. Although traversability can be condideittndamental
capability for mobile robots, it has long been limited to the problem of simple obstecid-
ance where the robot tries to avoid making any physical contact with thHeoement, and
heads only to open spaces. In general, proximity sensors are emplogetetd whether
there is an object or not. When such approaches are used, the masptsse would be the

same whether it encounters an impenetrable wall or a balloon that can jpssbed aside

2 The verb traverse is defined as “to pass or move over, along, orghfodence traversability refers to the
affordance of being able to traverse. The learning and perception ofgedifity is a fundamental competence
for both organisms and autonomous mobile robots because most cddtieirs depend on their mobility.
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without any damage. A stair that is traversable for a hexapod robot ntdyenmaversable
for a wheeled one. Similarly a white vertical flat surface may be an impemetnatl in one
environment whereas in another environment a similar surface may ber dhdd@an just
be pushed to open. Therefore, a method that can automatically learn thesadaility dfor-

dances from the robot’s interactions with the environment would be val@@btebotics.

The interest in the learning of traversability has recently been fueled dyAG®R (Learning

Applied to Ground Robots) program [73] whose aim was to support thelalement of algo-
rithms that enable robots to navigate iffrmad environmentsficiently and robustly. In this
program, the robots are required to learn the traversability characteastios environment
and plan paths based on short-range and long-range traversabilitgtjznes. The traversabil-
ity is not defined simply as obstacle avoidance, which prevents robot motipasslands and
vegetated areas. The robots are expected to avoid from bushesrabs while driving over

soft grasses of similar height.

Most teams competed in this program carried out training under the selfvgsipn of the
robot’s own signals, such as bumpers, inertial navigational system) etheeders and cam-
era images [6, 128]. The robots learned and predicted short-ravgestraility of the envi-
ronment mainly through range images obtained from laser range-findégreo vision; and
long-range traversability through color camera features. Typically, itedspof range image
and color images were first projected onto local grid squares and thraimigavas performed
in the constructed map environment. In this approach, regions in the Cargpsiae of the
robot were assigned as traversable and non-traversable, so tlrabtteavoided entering
these regions. In [110] the robot planned paths directly over imagemebtérom color
cameras, however their intermediate steps included high-level 3D piogessgh as ground
plane detection, identification of points above the ground plane, and tstogia computa-
tion. We think a projection onto a nominal ground plane should avoided sieckelieve
that it is against the direct perception view. Further, the actions shoultidy coupled
to perception of the feordances, i.e. move behaviors must be directly executed whenever
they are &orded. In some of the cited studies, perception of obstacles and faeespere
hand-coded and learning was done based on the obstacle-grouittliticetrof these objects
[128]. In some other studies such as [6], features related to the phgfiicalances were
carefully identified by hand and used directly, for example the grouncea heights of

the objects over this plane were explicitly computed. Contrary to those aji®awe ex-
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pect automatic discovery of the relevant and invariant features thri@aghing in a large,
low-level and generic feature space. [80] discussed the traversgidityem explicitly in re-
lation to Gibsonian fiordances, and claimed they “learn a direct mapping from observations
to afordances”, we believe that the use of maps in a global frame hardly dad$ifs study

in that context.

Affordances were incorporated into the robot’'s world model in order torgeneobust and
simpler plans in [90]. The world was divided into pre-determined overlappgions. Re-
gions provided dterent @ordances such as liftability and switch-triggerability, that corre-
sponds to existence of objects and switches that can be liftable and thiggesapectively.
The core idea of this work lies in the representation levelftifrdances. High-level region
affordances were included in world model and planning was performed osbdban this
information. The robot explored the environment to gather this high-levetrmdtion in ini-
tial stages, detected the particular objects or perceptual cues fosponding &ordances,
however did not inform the world model about the details. Aftdfisient exploration of the
environment, the plan was generated through use of redgiordances. During plan execu-
tion, when robot’s high level operators such asiliftregion1 was activated, robot tried to

detect thdiftable objects through its perceptual cue detectors and exetititadtion.

2.4.2 AMfordances and Manipulator Robots

In the context of manipulation baseff@dance learning, [46] studied the rollabilityfer-
dances of the objects using vision, and claimed that manipulation can be usaset@nd
ground visual perception [45]. In [133, 132], Stoytchev et. al. stlidie so-called ‘bind-

ing afordances’ and ‘tool fiordances’, where learning bindingferdances corresponds to
discovering the behavior sequences that result in the robot arm bitalidifferent kinds

of objects, whereas learning todf@rdances corresponds to discovering tool-behavior pairs
that give the desiredfiects. Although these studies are important in the context of learning
through exploration, in both studies, the objects weftedintiated using their colors only,
and no association between the visual features (tfiettathe &ordances) of the objects and
the correspondingffordances were established, giving no room for the generalization of the

affordance knowledge for novel objects.
In [101], a general probabilistic model was proposed based on Bewestworks to learn the
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relationship between actions, objects, affé@s through interaction with environment. The
object properties that have no influence on other components of thensgstédd be discov-
ered by the network and filtered out during task execution, howeveotheefl object classes
were not based on the generaté@ets. Tool &#ordances for a robot were learned in [129] but
the the object dealt with was kept fixed, stoadances of the objects were not learned. Fritz
et al. [49] demonstrated a system that learned to predict the lift-abfftydance for dterent
objects, where predictions were made based upon features of olgjerigextracted from
camera images. In [60], the obje¢ct@dances were learned through interaction for a task that

requires categorization of container and non-container objects.

The concept of ‘object-action complexes’ (OACs), which argues thigtots and actions are
tightly linked, is also relevant toffordances. Along the lines of the concept of OACs, [86]
used the assumption that combinations of certain visual features suggest grasp actions
for ‘things’ in a scene, and named an ‘object’ as the set of visual featilmat move in the
scene in accordance with the executing grasping action through a groaksd ‘birth of
objects’. This work was extended in [117] by learninfieets of actions (such as filling,
moving) from its preconditions and itdfects. In [159], the concept of OACs was linked to
the predictability of the environment and the body of the robot and how tteesée used to

improve the robots model of the world and itself.

2.4.3 AMfordances and Robot Perception

Affordances provide perceptual economy as mentioned in Section 1.3.1 srggetit (either
robot or animal) needs to perceive only the action-relevant propeftid® @nvironment to
detect the fiordances provided. Relevant regimsegfeatures in the environment have been
automatically discovered in many robotic tasks such as robot localization §B,1object
tracking [77], and robot navigation [116, 15]. In [161] the featunssd for simultaneous
localization and map building were filtered out to increase the speed of thegmoThe fea-
tures that increase uncertainty in robot localization were filtered out asirentropy-based
method. Similarly [88] selected the most discriminative features to recognizedion of
the robot by measuring the information entropy that was calculated froternmrsprobabili-
ties of location classes given the feature values. [77] selected a nufilrarge points among

many of the detected ones to track the moving objects from a mobile platforml1&, fthe
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robot was tele-operated first, discrete motor states wéierelntiated and the salient features
that consistently co-occur in same motor states were discovered and kdieautsnomous
navigation phase. In navigation of the robot, [15] selected and useddbarés that were
persistent over the course of previous runs. These studies usekfealection as a means to
discover features that will allow the recognition of ‘visual landmarks’ dickhot use them to
learn general relations about the environment. On the other hand, ithgldktion-relevant
features were discovered through evolutionary algorithms and laterimusebot navigation
Specifically, a mobile robot was controlled by motor outputs of the networlghwiliere acti-
vated by the weighted sum of perceptual inputs. The resolution, positiemtation as well

as feature computation strategies were evolved for visually guided actions.

2.5 Affordance Experiments in Ecological Psychology

In Ecological Psychology, the learning and perception of traversabilibyganisms is prob-
ably one of the well-studied topics offardances. Although it is not known precisely which
visual cues are actually used in space perception [126], many orgaaienkmown to use
visual perception to detect whether the environment’s spatial layout aflwmns to carry out

their locomotor activities, such as crawling, walking or jumping.

Simple amphibians are known to perceive whether varying size barrjguees, overhead
holes and pits f@ord locomotion or not. Toads, known to possess depth perception through
stereopsis [24] tend to walk into shallow pits, and jump over deeper onés [&bpard
frogs, when challenged with a stimulus at their rear, tend to jump only thropgtumes
that are larger than their own bodies [72]. The relation between the apeatd their body
width is complex, since the dynamics of the interaction also depend on the tdanté
the gap and frog’s jumping direction. Thus, frog’s choice of jumping thhothe gap has a
‘realistic’ relationship to its body width in absolute metrics only if the gap is placesttly

in front of the frog. Still, the frog can correctly predict the ‘pass-tlyio@bility’ affordance
in different situations independent of absolute metrics as observed fromeouttsienother
study [25], prey was presented to the toads behind fence barriersapthagmnd the movement
direction decisions of the toads were studied. It was observed that glthibe toads moved
towards impassable fences and attempted to directly snap at the worms in satienstu

they generally managed to choose the collision-free route by either pdlssdugh the gaps
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or detouring around the barrier, depending on the placement of the weanher, it was
shown the toads tend to select wider gaps [25] or larger over-heasl [1@8] and jump over

smaller-size ones even the smaller size holes dfsodgjumping.

Visual space perception and sensitivity tefeliences in spatial layout are detected in humans
at early ages. Newborns show visual sensitivity and attempt to interacslaitited objects
[5]. Young infants withdraw their heads or lean forward when encoadtebstacles and aper-
tures before gaining their locomotion ability [160]. Older infants with crawlingvalking
ability are able to detect more compleffadances such as traversability of rigidn-rigid
surfaces and act accordingly [54]. They can use both haptic andlwsgarmation provided

by the environment and perceive the traversabilifpralance implicitly taking into account
their mode of locomotion. There also exist situations where haptic and visaalare con-
tradictory. For example in the so-called “visualfEliexperiments [53], crawling infants are
placed on a glass surface part of which is placed on a table covered vagtuaed sheet,
whereas the remaining part is kept on air (supported from only its sidés)s although the
glass is a rigid surface, the part on the table gives appearance of s@idityhe other part
becomes a visual ¢li In such situations, crawling infants tend not to go over the apparently

unsupported surface even if their mothers call them from the other side.

In experiments conducted with human adults, subjects were queried origtener (or non-
existence) of fiordances. Warren’s stair-climbing experiments [152] have generadig be
accepted as a seminal work on the analysisfidfrdances, constituting a baseline for later
experiments which seek to understarftbadance-based perception in humans. According
to Warren, “to determine whether a given paffoeds locomotion, the behaviorally relevant
properties of the environment must be analyzed in relation to relevanémiegp of the ani-
mal and its action system”. Thus a specific set of values of the functiondigdevariables

is identified for the activity of stair-climbing. Since the environment shoulddyegived in
terms ofintrinsic or body-scalednetrics, not in absolute or global dimensions, this specific set
of values is expressed asa dimensionless ratio of animal property (leg-length) and environ-
ment property (stair-height). The particular value of these ratios thadlsigthe existence of
an dfordance were called trezitical points It was argued that critical points remain constant
across humans with fierent body sizes and provide a natural basis for perceptual ceggor
(e.g. categories of climb-able and not-climb-able). Moreover, these pafiest the un-

derlying dynamics of the system and these categories can be correciiyveerby humans.

22



In one experiment, a number of tall and short human subjects were asketb®owhether
different stair-ways looked climb-able or not, and the height of the stair vtienb-ability
disappears is recorded for each person. It was indeed found ¢hattportion of the recorded
stair height to leg-length (a.k.aritical n ratio) is constant regardless of the heights of the
subjects. Furthermore, this predicted ratio is equal to the ratio calculatsdieadly taking
into account the dynamics of a bi-pedal biomechanical system, whichgtoatpeople are

able to correctly perceive traversabilitff@adances provided by stairways.

Warren’s studies were followed by studies that further explore therlyilg mechanisms of
traversability in diferent environments and that identify the visual channels and cues in hu-
man dfordance perception. For example slanted surfaces were included intovitenenent
in [81] and human subjects were shown to correctly predict the walkbdityaaffordance of
slopes when they perceived them at a distance. The roles of opticglemggaphical slants
which imply relative and absolute measures were discussed in the detectioeseféor-
dances. [153] studied which properties of the environment and hunayraoe used in visual
guidance for walking through apertures. The constarattio was defined as a proportion of
the environment-related variabdgerture widthand action-related organism varialsleoul-
der width In the experiments, where subjects were asked to judge whether theyagan p
through apertures without rotating their shoulders, the predicted critictio was found to
be compatible with the real one, the one found by actually executing the acTibisscritical
ratio was also found to be constant among subjects with narrow and droaltiers. It was
further shown that static human subjects with monocular vision looking thraugluction
screen (which limits the view) were as successful as moving subjects witbutamaision in
the detection of pass-through-able apertures. Thus, stereo visia@paodow were not nec-
essarily involved in the process of traversability perception, howewscgived eyeheight’
as an intrinsic measure is shown to be used. Traversability was also studiedronments
with barriers [95], where human subjects were asked to judge the pdss-ability of barri-
ers at diterent heights. The predictions of the subjects were found to be valid asviops
experiments and compatible with the constant critical ratioefined as the proportion of
subject-to-barrier height. Instead of passing-under, when the ssibjece asked whether

they can walk-over obstacles [28] or gaps [21] dfelient sizes, the traversability detection

3 Eyeheight is known to be used to perceive the body-scaled geomelirimahsions such as size and distance
of the objects [55]. In [154], eyeheight is defined as the height atiwdnjoerson’s eyes would pass through a wall
while walking and looking straight in a natural and comfortable position.
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was found to be successful as well.

In summary the experiments discussed above were generally used to shongdnisms can
perceive whether the surface layoffoads traversability or n6t The properties of the organ-
ism and environment related to the action were identified and a dimensioniedsataveen
these properties was used to describe the dynamics offitrelances. Some studies further
explored the nature of the perceptual cues used in detection of tfiestaaces, however the

guestion of how these cues are used precisely, still needs furtheragiabo

2.6 Conclusion

In this chapter, we discusseff@dances in the contexts of Ecological Psychology and Au-
tonomous Robotics. We provided the formalism for usifigralances in autonomous robot
control. However, the details of this formalism in terms @foedance representation and
learning is missing. Thus, in the next chapter, we will ground this formalismrbyiding

a detailed description of howffardances will be represented by the robot. Additionally, we
will describe the methods that enable the robots to discoverfthedances provided by the
environment, learn making predictions based on thé&dances, and use this prediction

ability in goal-oriented fashion in the next chapter.

4 Humans can also perceive action possibilities not related to traversabitityasusittability provided by
surfaces[96] or graspability provided by objects[108]. For a morepete discussion of experiments not related
to locomotion, please see [33].
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CHAPTER 3

FORMAL DESCRIPTION OF AFFORDANCE LEARNING
FRAMEWORK

In this chapter, theféordance learning framework is provided in its most generic form. The
encoding of &ordances is given in a relational structure that encapsulates the edtmtibrs,

the initial perception of the world, and the change in perception due to tlaeioelexecution.
Additionally, the multi-step unsupervisedfardance learning method that use robot’s inter-
action experience with the environment is described. At the end, howele@atiordances can

be utilized in goal-oriented robot control is discussed.

3.1 Affordance Encoding

As mentioned in the previous chapteffcadances are represented Bfect entity, behavio)
nested triplets. The actual encoding of these components varies bassubta perceptual
and actuation capabilities. In this thesis, tft®@alances framework is implemented in mobile
and manipulation robot platforms, so especially bedaviorcomponent varies significantly
among chapters. Furthermore, in some cases the environment is pgr@e@eavhole and in
other cases as a collection of detected objects. T@nigyandeffectcan encode environment

or object features depending on the learning targets.

3.1.1 Behavior Encoding:b;j(a)

Behaviorcorresponds to an open-loop pre-defined action, representaftdywherei refers

to the index of the behavior ardrepresents the free parameter list of the behavior. There are
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two types of behaviors:

Non-parametric Behaviors: Some behaviors are encoded as discrete actions that include no
parameter. For exampldrive-forwardbehavior which is implemented as driving the mobile
robot forward for certain distance is such a behavior. In this case péigarameter list|¢|)

is zero and the behaviors are simply showinas

Parametric Behaviors: Some behaviors are modulated by a number of free parameters. For
example,power-graspg) is a parametric behavior, where the robot hand approaches to the
object froma direction and grasps it. In this case, the size of parameter list is one, and the

behavior is represented bga).

Note that, object-oriented behaviors, suchifasr graspuse the object’s position as an argu-
ment unlike behaviors such dsive-forward Although object’s position is also a parameter
for those actions, it is not included into the parameter &gtdince it is not a free parameter,

i.e. itis fixed given the object that is acted on.

3.1.2 Entity Encoding: f

Entity corresponds to the initial perception of the robot before behaviougrec An entity

can correspond to object features, environment features, rolsopsigception or any com-
bination of this perceptual data. In other wordstity is encoded as a list of features that
are computed by dierent perceptual processing channels. It is symbolizetOywhere f

is the feature vector and the superscfigtenotes that no behavior has been executed yet. In
this thesis,f¥ is computed either from the environment or a detected object, but not lmoth. |
other words, the robot can encode either object or environment i one entity. On

the other hand, multi-object environment are perceived as a list of endéitidsepresented by
[ff,)l, fQZ...me] whereo; is used as object identifier. Robot’s proprioception and tactile sensor

readings can also be included in entity representation in both cases.

3.1.3 Hfect Encoding: fzfect

Effect corresponds to the fllerence between final and initial perception of the robot and is
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defined as the vectorialfiiérence between final and initial features:
o] _ £(b
Feffect = fO) 10

wheref®) represents the feature vector of the entity perceived bftaehavior is executed.

3.2 Exploration

In all experiments, the robot goes into an exploration phase in the simulatathergexpe-
rience that is later used irffardance learning. The exploration phase, consists of episodes,
where the robot interacts with the objects, and monitors the changes. Irdiening of
episodek, the robot first computes the feature vectdt for the environment to be acted
upon. Then the robot executes behaviowith parametersg and computes thefect feature
vectorfziﬁect. The robot executes all of its behaviors witlffdrent parameters in random sit-
uations and records its experience. The data from an interaction iglegcor the form of

< fo

2 oer 10, bi(e) > tuples, i.e. éffect entity, behavio) instances (Algorithm 5).

3.3 Learning Affordances

In this section, we will discuss how gathered experience during explarpliase is utilized
to learn the ffordances of the objects. The data collected as tuples during the exploration

phase are stored in a repository

bj
{< f effect’

0, bi(@) >}

and is used by the robot to learn th&cadances of objects. The learning process consists of
three steps: the unsupervised discoveryffdat categories, the discovery of relevant features
for affordance prediction, and the training of classifiers to predict ffezecategories from

object features. The learning process is applied separately for ehakibr as detailed below.

3.3.1 Discovering Hect Categories

In the first step, similarféects are grouped together to get a more general description of the
effects that the behavior repertoire of the robot can create. In this thesisead the following

methods to find fect categories:
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¢ In Chapters 5 and 6, thdtect categories are pre-defined and pre-codesliasessnd

failure for each behavior.

¢ In Chapter 7, the robot self-discovers fixed numberftdat categories using a standard

clustering algorithm.

¢ In Chapters 8-10, the robot self-discovers variable numbeiffetecategories using
a novel hierarchical categorization method. In the lower level, champeslifsc dfect
categories are found by clustering in the space of each feature d¢hdismevering
separate categories for visibility, position, shape, etc. In the upper teeethannel-
specific dfect categories are combined to obtain all-chanfieke categories using the
Cartesian product operation. The proposed hierarchical clusteritigpthis superior to
simple one-level clustering method, since the results of one-level clusteisegsitive
to the relative weighting of thefkect features in dierent channels that are encoded in

different units.

Each feature vector in the set{cﬁbe%ect} is assigned to one of thdfect categorie %) during

clustering process. Then, for each category a protottfigeterector € ' ) is computed

bi

prototypeid
as the average of the category members. In order to represent thieeegpef the robot in a
more compact way, the continuouseet vectors are replaced bffect category id’s and their

prototypes; and the repository is transformed into the following form:

(En, 10, i), {< ED, £

id? id> * prototypeid >}

Here, the first list corresponds to the setfibedance relation instances wherkeets are gen-
eralized and the second one corresponds to the lisefféct-category-id, prototype vecter

pairs.

3.3.2 Learning Relevant Features

The robot’s perceptual system is bombarded with large amount of dai@eddrom its sen-
sors. As discussed in the Introduction Chapter, it ficient to perceive only action-relevant
properties of the environment to perceive tlfimalances. The robot benefits from this char-
acteristics of fiordance perception by finding the relevant features of each belzdarsing

only these features duringfardance prediction and execution.
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In Chapter 5, relevant features are selected based on a distance nittoigt wonsidering
how the selection wouldffect the performance in the later classification phase. In Chapters 8
and 9 on the other hand, feature relevance is measured based oe’$eptuformance of
the classifier used in the next phase, and this approach gives rneaglo@sults. The other

chapters don't utilize relevant feature selection mechanism.

3.3.3 Learning Hfect Category Prediction

In this step, classifiers are trained to predict tifiee category for a given feature vector
and a behavior parameter list by learning thi@elgvam a) — E% mapping. HEectively, this

establishes a forward modeﬂredicton"’i(f%e\,ant a) that returns"l:_ilfji for each behavior.

At the end of these two learning stepffpadance relations are encoded as:

{PrediC'[Ofbi Ok i< Eit:ji’ fBirototypeid >}

or
{{Predictor()}, {< Eid, fprototypeid >}

allowing the robot to ‘know’ the #ect of a behavior in terms of thdtect category and its

prototype.

3.4 Use of Afordances in Task Execution

The predictors allow the robot to predict thgect categonthat is expected to be generated

on anentity by abehaviorthat is controlled with a particulgrarameter

dicted - ;
EDS = Predicto (10,00 ) (3.1)
The predicted percept of the entity can be found as:
f/O) = EMP(£0 0) = £0 4 £ (3.2)

prototypeid predicted

Effectively, this corresponds to a forward modeM()) that returns the next perceptual state
of the entity. By successively applying this model, the robot can predigteheeptual state

of the entity for any number of sequentially executed behaviors.
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Different control systems are utilized to use the learrtimtdance prediction capability in a

goal-oriented way for various tasks in the following chapters.

e The goals can be set to obtain certaffeet categories such asmversedor lifted. In
Chapters 5 and 6, thefect categories are definedsisccesandfail for traversability
in different directions. During execution, the robot finds the set of belsa{noovement
directions) that are predicted to resulsimccessfutraversability by predicting thefiect
categories using Equation 3.1. Then it chooses one of these behatherdased on a

priority mechanism or in order to minimize the risk of collision.

e The goals can be set to achieve desired percept (entities). For exampleler to
achieve a goal where the object gets close to the mobile robot, entities’dldisitence
feature is set accordingly. As another example, if the goal is to bring tleetskto
a fixed position, entities’ desired position features are set accordinglsindgpexecu-
tion, if the current entity does not satisfy the desired constraints, i.eerduentities’
corresponding feature is not close to the desired feature value, thereéds to find
the sequence of behaviors that are predicted to transform the cuatees to the de-
sired ones. For this purpose, the robot makes multi-step predictions ugirgiéh 3.2,
starting from its initial entity feature vector and finds a sequence of betsavtiuch are
predicted to transform current entity to the desired one. In Chapter &#ieed entity
features (the goals) are manually set by the programmer. In Chapter [8sénvation
stage, the goal is shown to the robot and the robot encodes the goahindedesired

entity features itself.

3.5 Conclusion

In this chapter, the details offardance encoding is described in a relational structure that
encapsulatebehaviors entitiesandeffects Furthermore, the multi-stegdfardance learning
method, where thefiect categories are discovered in the first step, relevant featursiace

in the second step, and the mapping from entitiedfiece categories are learned in the final

step, is given.

The realization and implementation of this framework was progressivelyajma: through

time. The following chapters, wherdfardances framework is realized withflidirent robot
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experiments, implement flierent (sometimes overlapping) parts of this framework. While
the former chapters include limited versions of this framework, later chajgtedto be more
inclusive. These limitations are characterized by postulating simplifying agsmajn &for-
dance representation and learning mechanisms. On the other hand,dhpaaeption, the
behavior representation, and the details of the learning algorithms dilso ainong experi-
ments. Thus, in the beginning of each chapter, a section nera@tework Implementation

gives details of the postulated assumptions that will progressively relaxed
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CHAPTER 4

ROBOT PLATFORMS

In this thesis, two dferent robot platforms are used to learn and test the rich sé@boélances.
The first platform is composed of a mobile robot (KURT3D) with a simple manipuknd a

3D laser range finder. KURT3D is mainly used to study traversabifityrdances in Chapters
5-7. The second platform is a 23 degree of freedom (DOF) anthrogumaechand-arm robot
system with a 3D infrared range sensor. This platform is used to disaotien primitives and

to study manipulationféordances such as graspability, rollability or reachability in Chapters

8-10.

4.1 Mobile Robot Platform

Laptop PC

(a) The robot platform (b) The simulator

Figure 4.1: The KURT3D mobile robot platform and its simulator.

A medium-sized (48mx 33cmx 47cm) differential drive mobile robot (Kurt3D), equipped

with a 3D range finder, and its physics-based simulator, is used as thexjostimental
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Figure 4.2: A sample range image from mobile robot.

platform (Figure 4.1). The 3D range finder is based on SICK LMS 20da&er scanner,
rotated vertically with an RC-servo motor [70]. The 3D laser scanner hasizontal range
of 18, and is able to sweep a vertical ranges82.8° in 45 seconds to produce a 72020

range image. A sample range image is shown in Figure 4.2.

A crane arm is mounted on top of the robot with 3 degrees of freedomrael@etromagnetic
gripper at the end of the arm is used to manipulate magnetizable objects.rvamrotate
around itself, move the gripper back-and-forth in a range eh%%and lift its magnet up and

down.

The laser scanner, Kurt3D and robot’s environment is simulated in MACBAT| [ a physics-
based simulator that is built using ODE (Open Dynamics Engine) [130], an-spurce
physics engine. The sensor and actuator models are calibrated ageinsgahcounterparts.

Fig. 4.1(b) shows a scene from the simulator.

4.2 Manipulator Robot Platform

An anthropomorphic robotic system, equipped with a range camera, andygkgithased
simulator is used as the second experimental platform. This system uses ibb@fRrms,
either PA-10 robot that is placed on the ground or Motoraobot that is placed on a vertical

bar similar to human arm as shown in Figure 4.3. A five fingered 16 DOF toduod is

I Mitsubishi Heavy Industries.
2 Yaskawa Electric Corporation [29]
3 Gifu Hand IIl, Dainichi Co. Ltd., Japan [91]
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(a) PA10 arm (b) Motoman arm (d) Gifu hand

Figure 4.3: The actuator and sensors for manipulator platform. Only theNigtoman arm
is used in this thesis. The distributed tactile sensor on Gifu hand are visibigiasrital bars
inside palm and on fingers.

mounted on the arms to enable manipulation. The maximum length of PA-10, Motardan a
Gifu hand is 134 cm., 123 cm., and 23 cm., respectively. There are tactilersetistributed

on the surface of the fingers and palm with a total number 624 measureaietst [78]. For
environment perception, an infrared range camewath 176x144 pixel array, @3 angular
resolution and 1 cm distance accuracy is used. Along with the range imagegrtrera also

provides grayscale image of the scene and a confidence value fopigattFigure 4.4).

The simulator (Figure 4.5), developed using the Open Dynamics Engine (D&, is
used during the exploration phase. The parameters of the simulator, sticttian, mass

of the objects, forces on robot hand and arm are adjusted to make theectites realistic.
The tactile sensor is simulated by placing one binary touch sensor to the phimacmfinger

link, obtaining 3x 5+ 1 = 16 total touch values. The range camera is simulated by sending
a 176x 144 ray array from camera center witl28 angular intervals. For each ray, the first
contact with any surface is retrieved using ODE functions, distance batthie contact point
and ray origin point is used as range value, and a Gaussian nois@ with, o> = 0.2 is

added to account for camera noise. The range camera’s accurast Iseween 1-2 meters.

4 SwissRanger SR-4000 [71]
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Check confidence
'I, Check pixel position .# Y
Check amplitude
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Compute features

a) Photograph of setup b) Range image

Figure 4.4: 23 DOF hand-arm robotic platform and the range image. lih@hand-arm
system, infrared range camera (on the top-right) and the objects thaseddruthis study
are shown. In (b), the range image obtained from the range cameraeddtdctted objects
are shown where range is encoded in grayscale and in color for tiremment and objects,
respectively.

In order to avoid any collision with the robot arm, the range camera is planestdr away to

the left of the robot as shown in Figure 4.4. The noise inherent to infrarege camera that is
caused by surface characteristics and color of the objects is hot mode#eshd, the objects
with surfaces that give consistent and accurate readings are useda@atkworld experiments.

Additionally, as the object borders tend to give noisy readings, theyiscarded.

(a) PA10 simulator (a) Motoman simulator

Figure 4.5: Simulation environment of manipulator robots.
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CHAPTER 5

TRAVERSABILITY: A CASE STUDY FOR LEARNING
AFFORDANCES IN MOBILE ROBOTS

In this chapter, we describe the implementation of one part offieedance formalism [33]
for learning and perception of traversabilitff@dances on a mobile robot equipped with
range sensing ability. Through systematic experiments, that are inspirdtbdy used in
Ecological Psychology, we show that the robot, by going through aloeatipn phase, can
learn to perceive the traversabilitf@rdances in its environment, build a “sense of its of body

size” and achieve perceptual economy.

5.1 Introduction

The environment is said to be traversable in a certain direction, if the rabmtifg in that
direction) is not enforced to stop as a result of contact with an obstatles, Tf the robot
can push an object (by rolling it away), that environment is said to bersalike even if the

object is on robot’s path, and a collision occurs.

In this chapter, through experiments inspired by Ecological Psycholagwill show that the
robot, by interacting with its environment, can learn to perceive the trabiitgaffordances.
We will consider three of the main attributethat are commonly associated witfiadances

in robotics; namely,

e Affordances are relative This argument, generally accepted within most contexts, is

usually linked to the complementarity of the organism and the environment. dingor

1 Although these arguments are certainly inspired from J.J. Gibson’switings, we refrain from attributing
them to him, in order to avoid the discussion of what he actually meant (eradichean) in his writings.
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5.2

to this view, the existence of arftardance is neither defined by the environment nor
by the organism alone but through their interaction. For instance, the claility-af a
stair step is not only determined by the metric measure of the step height, bblyalso

one’s leg-length.

Affordances provide perceptual econanfyjhe concept of fiordances is often used as
support for minimality in perception to argue that one do not have to peredithe
qualities of their environment in order to accomplish a simple task such as vignde
around. In this sense, one would directly perceive the traversabilitypattawithout
recognizing the objects on its path and making additional “mental inferermes”

them.

Affordances provide general informatiorirhe discussion onfordances are mostly
based on the general relations that pertain to the interaction of the orgetisrits
environment such as sit-ability, climb-ability, and cross-ability. It is usualguased

that the use of fiordances enables one to deduce whether a designer’s chair that he
sees for the first time would support sittability, or whether a coconut shelbe used

to carry water in the place of a cup.

Framework Implementation

Behavior: Behaviorscorrespond to discrete pre-defined actions without any parameter.

Thus, they will be represented by,

Entity: The entityis computed from the whole perceived environment, without any
object detection process. Thus, no object identifier is included in its notafibe.
entities are perceived only prior to behavior execution and they areemceiped after

the execution. Thus) superscript which includes the list of executed behaviors is
dropped fromf ¥ notation since the environment is not represented after any behavior

execution. As a result, the entity feature vector is denotet. by

Effect category: Theegffect categoriesre pre-definedsiccestraversableandfail/not-
traversablg, and the means to compute these categories are provided by behavior de-
signer. So, there is ndfect category discovery step. On the other hand, the behavior

designer does not providdfect category prototypes, thus the system can only learn
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Figure 5.1: Perceptual processing of the range image.

whether a behavior will succeed or not. Since éffect categoriesre defined asuc-

cessand fail, we will not use the fect category notatioEit;. Instead,r' is used to
denote the success of behaupr

e Effect: Since the robot does not perceive and represenfitiad)(entity after behavior
execution, the change in entity feature vector, i.e. gffiect cannot be not computed.

Thus,effectis neither represented nor used in this chapter.

o Affordance relation instance: The dfordance relation instance, which represents a

sample interaction with the environment, will be represented as follows:

(<r' f,b >}

5.3 Experimental Setup
5.3.1 Perception

The robot perceives the world through its 3D range scanner by swatite environment to
produce a range image of resolution #2@20. As sketched in Figure 5.1, the image is first
down-scaled to 366360 pixels in order to reduce the noise, and split into uniform size squares
in a grid. The grid squares are shifted in order to have a representadiqurdvides overlaps.
Finally, low-level generic features are extracted for each grid sqwhere 3 features are
related to distance characteristics of the grid square and 36 featuresp®. shhe features

of the diferent grid squares are then collected and stored in a large one-dinarieare

vector f, that represents the perception of the robot bekyteraction.
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Figure 5.2: Sample angular histogrania) Vertical, (b) horizontal andc) spherical surface
patches and their corresponding angular histograms of normal veclatigude @) and lon-

gitude ). In (b), the orthogonal projection of the normal vectors onto the hotéglane

should create zero size vectors in ideal conditions and the angles in lomgittlis situa-
tion should be undefined. However, the noise in sensing creates sndhngrerturbations
in these normal vectors which in turn results in randomly distributed angulagnisns in

longitude.

The distance-related features of each grid square are defined as theumjnmaximum,
and mean range values of that grid square. In order to derive the-sbkgped features, the
position of each pixel in the range image (see Figure 5.3(b)) relative to ske $ganner is
computed using:
dr csin(arc)codpBr c)
Prc=| drcSin(arc)Sin(Br.c)

dr ccoqarc)

whered is the distance measuradandc are the row and column indexes of the correspond-
ing point, respectively.  After finding the positions, the normal vector olabkal surface

around each point is computed by using the positions of the two neighboesriartge image:

Nrc = (Pr-nc — Pr.c) X (Pr.c-n — Pr.c)

wheren corresponds to the neighbor pixel distance and is set to 5. In sphevimalinates,
the unit length 3D normal vector is represented by two angles, p@lan@d azimuthal )
angles that encode information along latitude and longitude, respectivedypdlar angleq)
corresponds to the angle between y-axis and the normal vector, wiyasdle angle between
z-axis and the normal vector’'s orthogonal projection on x-z plane.r Afiear and azimuthal
angles are computed for each pixel, angular histograms are computed ihitbetiisions for

each grid square and are sliced into 18 intervals 6fedth. At the end, frequency values of

39



(@)

Figure 5.3: Robot behaviors and 3D perceptioeft: The simulated robot and the trajectories
recorded during the execution of its #A@rent move behaviors. Note that in some cases, the
robot's movement is obstructed by the bdxight: The coordinate system of 3D scanning.
The two planes correspond to théfdirent 2-D slices sensed in 2D scanning.The laser beam
reflected from R is transmitted atdegrees in the scanning plane of the scanner which has a
pitch angle ofs.

angular histograms are used as 36 shape related features. Thiengiiea encodes the
distribution of the local surface normal vectors of the correspondiitsguare. Figure 5.2
demonstrates distribution of normal vectors, and angular histogramssponging to the

particular grid squares in threeffdirent situations.

5.3.2 Behaviors

The robot is provided with seven pre-coded non-parametric behawaarve in diterent
directions. The execution of a behavibywhere 0< j < 6, consists of first rotating the robot
in place for a certain angle (one ¢f,@20°, +40°, +60°), and then driving it forward for 7€m
as shown in Figure. 5.3(a). The robot can measure its actual displacanteohange in its
orientation through its wheel encoders and use this information to detettievitee behavior
succeeded or not. If the change in orientation is withis’[ +5°] and the displacement of the

robot is within [65%m 75cm|, the behavior is judged to be successful.

5.3.3 Interactions

The interaction of the robot with its environment consists of episodes.isodgk, the robot

first computes the feature vectdg for the environment to be acted upon. Then the robot
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executes behavids; and records the resultlio as success or fail. During thexploration
phase which takes place in MACSim for obvious safety reasons, the robaiuése all of
its behaviors within a given environment and records its experience itiredf afordance

relation instances as rli, fy. bj > triplets (Algorithm 1).

Algorithm 1 Exploration phase

1: for each triak (from 1 tom) do

2:  Putthe robot in a randomly constructed environment.
3.  Make a 3D scan

4:  Compute feature vectof,

5.  for each behaviob; do

6: Performb;

7: Find result of behaviomi.

8: Put< rli, fi, bj > into repository.
9: Reset robot and object positions.
10:  end for

11: end for

5.4 Learning Affordances

For a given behavior, the robot discovers the relevant features eftfironment for traversabil-

ity (or non-traversability) and learns to map these relevant features tbdtsi@ances.

Within the context of this study, learning is conducted as a batch procddakba place after
the exploration. The learning phase consists of two steps as explained intig@ and is
carried out separately for each behavior. In the first step of legrtliedreliefF method [82,
85] is used to automatically pick out the relevant features for the percegitivaversability.
This method estimates the relevancy of each feature, based on its impastiboféehavior
execution (traversahleon-traversable). Specifically, the relevancy of a feature is inclease
if the feature takes similar values for the situations that have same execugidtsyand it
has diterent values for situations that havefeient results. Once the relevancy values for
the features are calculated (see Algorithm 3), a threshold can be usedkta subset of the

features as relevant.
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Algorithm 2 Learning phase

1: for each behaviob; do

2:  Fetch samples rli, f\ > from repository for behaviad;.

3:  Find a set of relevant featurgs using Algorithm 3

4:  Train the SVM modelPredictori(), with relevant features.

5. StoreF! andPredictori() for perception of ordances irexecution mode
6: end for

Algorithm 3 Computation of feature weights for behavigr

n¢: number of features

wq: weight ofd™” feature

m: number of iterations, experimentally set to 1000

f,: the feature vector computed fi situation (interaction)

fi[d]:

the normalized value ofd" feature computed inj" situation (interaction)

1: Wy < 0, where 1< d < ng¢, ns is number of features (initialize weights)

2: fori =0tomdo

3:  Select a random feature vectfyrfrom {< rli, fi, bj >}

4:  Compute distance df, to all other samples ifif .}

5. Find 10 feature vectors closesttpwith execution resultqj, i.e. find the most similar
situations to thé™ situation with the same result. Put them into set of nearestHits,
(H ={fy,..f10})

6: Find 10 nearest feature vectors with execution resuffsrdint fromrlj, and put them
into set of nearest missesf. (M = {f.,..T19/})

7: ford=0tons do

8 Wy Wo— kg 210 | Fild] — fp[d] | +556 21 | fi[d] - fp[d] |

9: end for

10: end for
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Figure 5.4: The fiordance prediction module. This module receives the behavior id (or direc
tion) as input and predicts the behaviorffoadance based on the percept of the environment.
Sensors are configured in order to compute only the relevant feaiuresreviously trained
SVM classifier for that particular behavior predicts the result of interactio

During the second step of learning, SVMs (Support Vector Machind€)8] are used to
classify the relevant features into traversable or non-traversabkt @atggories. The SVMs
are chosen for their robustness against noisy inputs and their scalabdidalimg with large

datasets and input spaces (between 1000-5000 interaction sample@CabdOLfeatures in
our case). In SVMs, the optimal hyper-plane that separates tralemad non-traversable
situations in feature space is learned based on the most informative pddotsalied the

support vectors, in the training set. Although the literature has prop@&sedas kernels to
categorize linearly non-separable samples, we used a linear kernela(sitigle tolerance

parametec) since more complex kernels did not increase the performance in our case

5.5 Predicting Affordances

The set of relevant features and the SVM classifiers trained for esdwdwvior can be used to
predict the existence (or nonexistence) of the traversability@ance in a given environment

using an &ordance prediction system illustrated in Figure 5.4.

2 The LibSVM software that is used in this study, is available at [19]
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5.6 Experiments

We are interested in how a mobile robot, equipped with 3D range sensing aailitperceive,
learn and use the traversabilitff@dance required to wander in an environment filled with
different types of objects that change the traversability of the environmpenhdiag upon
their shape, size, and relative position and orientation with respect tolibe Mowards this

end, we used the following geometric objects and structures during theatipiophase:

e rectangular boxes{D) that are non-traversable,

e spherical objects © ) that are traversable since they could roll in all directions,
e cylindrical objects in upright position {1 ) that are non-traversable,

¢ cylindrical objects lying on the ground{D), that may or may not be traversable,
e ramps, that may or may not be traversable,

e gaps, that may or may not be traversable.

At this point, please keep in mind that the description provided above is rathée for a
number of reasons. First, the traversability of the robot is determinecegsikh of its physical
interaction with the objects (which is implicitly implemented using the ODE physics-engin
library). Second, the robot does not have the concept of an objetpwr discussion at the
level of objects is only to ease our discussion. Third, in our experimentiipiawbjects can

be present and the traversability is a complex function of not only the oljetsiso their
layouts. Fourth, the size, relative placement and orientation of the objagtsduring the

experiments and hence their traversability.

5.6.1 Parameter optimization

Both the perceptual representation of the robot and the learning pbatens a number of
parameters that needs to be optimized to obtain the Ifiiestdance prediction performance.
Regarding the perceptual representation, tiiece of grid size as well as thefect of over-
lapped (versus non-overlapped) grid representation needs toidedeRegarding the learn-

ing phase, the relevancy threshold and the tolerance parameter to bduuisgothe training
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of the SVMs needs to be optimized. Towards this end, we carried out 5@¥@ations during
which the robot faced up to 12 objects that were placed at random losatiahwith diferent
orientations. The objects are chosen to be boxes, cylinders (uprighyiag), and spheres

of random sizes.

As a result of the optimization process, described in the Appendix, weeabktaclse a repre-
sentation with &5 grid with 4 overlapping layers for perception. Using these parameters, th
feature vectorlf, consists of 4« (5 x 5) x 39 = 3900 features. The parameters of the learning
phase were optimized for each behavior separately. Specifically- 00 of the features
were chosen to be relevant and the tolerance parameter was cho&-&0p. This setting
provides a prediction accuracy of approximately 87% in environments nalydyenerated as

described above.

A number of issues needs to be discussed to understand why the predimtimacy is not
higher: the traversability of an environment is a complex function of both tbidual
objects as well as the layout of the objects in the environment. First, the itberaetween

the robot and the objects can be complex. For instance, even sffialedices in the point of
contact between the robot’s body and a lying cylinder déatathe outcome of the interaction.
Second, due to line-of-sight some objects may be invisible. For instandagecktinder can
become non-traversable due to a box behind it. Third, the grid squaresesyation may
lump patches from dierent objects, such as a patch from sphere and a patch from a box,

producing confusing instances for the classifier.

In order to analyze the performance of the proposed method, we deddexperiments using
both the simulated and the physical robot iffglient settings. These settings are inspired by
the experimental settings used in Ecological Psychology with the aim of pngvadmore
direct link to the studies carried out there. Specifically, we carried quéraxents to evaluate:

o whether the learnegffordances are relativéo the robot,

e whether the learning dffordances provided perceptual econotayhe robot, and

¢ whether the learnedffordances generalized well in novel environmettiat were not

interacted during training.

In all the experiments reported below, unless otherwise stated, we cautié&f00 interac-
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tions using the parameters obtained through the optimization process. Dwgiagaluation
of prediction accuracies, the training set was split into 5, and 5-foldserakdation was

performed.

5.6.2 Are Learned Affordances Relative?

The first set of experiments aimed to analyze whether the learned traliéysafordances
were related to the physical characteristics of the robot, such as its mmdnslons and the

capabilities of the robot.

5.6.2.1 Body Size

During the exploration phase, the robot is faced with a random numberxaiskthat hang
(fixed) in space within the cubic Thvolume in front of the robot. The dimension [5cm
20cm], position and orientation of the boxes as well as their numbet ) are kept random.
The optimization process yielded approximately 160 relevant featureadbrieehavior and
the best #ordance predictor was found to have a success rate of approximately 90 this
experiment, the ratio of non-traversable environments in the exploraticae phsied between

[39.64% 43.70%] for different behaviors.

In order to analyze what the robot has actually learned, we conductegikperiments. In the

first experiment, a box was placed on the ground and moved along the khingitand lateral

axes within a 81crharea with 3cm gaps. For each position, the robot predicted the existence
of traversability for the go-forward behavior. Figure 5.5(a) marks thgitipns where the
robot predicted non-traversability. In the second experiment, the bexplaaed directly in
front of the robot with no lateral deviation and moved along the longitudindl\ertical

axes with 3cm gaps as illustrated in Figure 5.5(b). The results clearly stadvihii robot

had acquired a “sense of its body” and was taking its body size into acaomnedicting

traversability.

46



a) b)

Figure 5.5: Collision boundary prediction byferdance perception. The robot’s movement
is shown with arrows. In (a) an object (illustrated by a small gray squargifted along
longitudinal and lateral axes, and in (b) the object is shifted along long#ldimd vertical
axes. Each gray square corresponds tdfemint setup that does ndf@rd traversability. The
objects that locate other than gray arefierd traversability. The lines that lie at the end of
the movement arrow and extend from the robot’s body correspondlteaiéision boundaries
for the go-forward behavior. The height, width and depth of these lioggspond to critical
points for drive-under-ability, pass-through-ability, and go-forvability, respectively.

Figure 5.6:Climb-ableandnot-climb-ableramps;cross-ableandnot-cross-ableyaps.

5.6.2.2 Ramps

During the exploration phase, the robot faced ramps placed in the vicinigndbm po-
sition, orientation, width, height and slopes. As illustrated in Figure 5.6, tmpsadford
traversability based on their slopes and relative orientations with respdw tobot. The
robot interacted with four dierent move behaviors in each situation.  During exploration,
the ratio of non-traversable environments in the test set varied betw@&0yg 25.40%] for
different behaviors. The most relevant 160 features were selected o apfaoximately

95% prediction success.

In order to understand what the robot has actually learned, we cothffeeritical slope
values of the ramp beyond which it becomes non-climb-able (correspptaimctual) or is
perceived as non-climb-able (corresponding to predicted). Spelifitee ramp is placed in

front of the robot in seven fierent orientations and is incrementally elevated. The predicted
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Table 5.1: The predicted and actaaitical anglesof the ramps for climb-ability.

Ramp PredictedActual Critical Angles
Orient. for Behaviors
t 7 7

-45° 122 /115 33.5 /28 -/-
-3¢° 100/8.5° | 15.5/13.5 | 30.5/26.5
-15° 8 /7.5 9.5/9.5 32°/33.5

o° 9°/8° 7.5 /8 14°/171°
15° 8 /1.5 85 /8 85/85
3 9°/8.% 85 /8 8 /1.5
45° 12 /115 9°/8.%5 9°/8.%

and actual critical angles are shown in Table 5.1. A couple of obsergatian be made
based on these results. First, as expected, the actual critical angheg ckith the relative
orientation of the ramp with respect to the robot as well as to the type of tlaioehSecond,
the predicted critical angles are very close to the actual values, indicasitipenearning was
successful. Note that these critical values are a function of many things,as the friction
between the robot’s wheels and the floor, the weight of the robot andtherf its motors,

and is dificult, if not impossible, to model.

5.6.2.3 Gaps

During the exploration phase, the robot faces gaps on the groundréhedradomly placed
within a distance of [10 cm - 100 cm] in front of the robot. As illustrated in Feg&r6,

the gaps fiord traversability based on their width and relative orientation with respect to
the robot.  The ratio of non-traversable environments in exploration plaassd between
[51.40% 26.25%] for different behaviors. As in the previous experiment, after a 5-fold cross
validation training was completed, the most relevant 160 features weretaisathieve an

average of 95% of prediction success.

We systematically analyzed the changeritical width for cross-ability &#ordance, and com-
pared the actual and predicted values in Table 5.2. The results showthahb actual and
predictedcritical widths change with the relative orientation of the gap. This result is com-
patible with the dynamics of afilerential drive robot since it becomedfitiult to cross a gap

when the gap orientation is perpendicular to robot motion.
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Table 5.2: The predicted and actwaitical widthsof gaps for cross-ability.

Gap PredictedActual Critical Widths
Orient. for Behaviors
t / 7

-45° 30cm/ 30cm | 33cm/ 33cm | 36¢cm/ 36¢cm
-30° 27cm/ 30cm | 27cm/ 27cm | 24cm/ 24cm
-15° 21cm/21lcm | 15cm/ 18cm | 15cm/ 15cm
0° 12cm/12cm| 9cm/18cm | 15cm/21cm
15 24cm/ 24cm | 24cm/ 24cm | 21cm/ 24cm
30 30cm/30cm | 24cm/ 27cm | 21cm/ 24cm
45° 30cm/30cm | 21cm/27cm | 27cm/ 33cm
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Figure 5.7: Grids relevant for fierent move behaviors.

The experimental results reported in this section have shown that thedesanersability

affordances are relative with respect to the physical embodiment andili#gsabf the robot.

We argue that these experiments can be considered similar to Warren aardy¥/btudies

[153] on the go-through-ability of apertures (relating one’s shouldéthio aperture widths),

Marcilly and Luyat’s study [95] on pass-under-ability of barriers, kiifs-Shaw et al.’s study

[81] on the walkability of slanted surfaces, and Jiang and Mark’s stid8@y ¢n the cross-

ability of gaps.

5.6.3 Do Learned Afordances Provide Perceptual Economy?

We analyzed the number of relevant features chosen during the expedaseribed in Sec-

tion 5.6.1. With the optimized threshold, 1863100 features among 3900 were selected to be

relevant to perceive the traversabilitf@dance for each fierent behavior. In other words, at

most, 10% of the whole feature set was found to be relevant to determirtkexlacbehavior

is aforded or not.
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5.6.3.1 Spatial Distribution of Relevant Features

Figure 5.7 shows the grid squares that include relevant featuresdioroéshe behaviors. In
the plots, the darkness of a grid square is proportional to its relevaocpl€of observations
can be made at this point. First, the bottom of the range image correspondivgrabot’s
body, and the top of the image which lies above the robot's height wereveisabto be
irrelevant for all the behaviors. Second, the relevant grid squanesttebe aligned with
the direction of the movement. Only the grid squares at the center of the imaage are
discovered to be relevant for the go-forward behavior, whereaseteeant grid squares for
behaviors that turn left are grouped on the left part of the range image. locations of
the relevant grid squares and direction of movement are not consistenrni@ cases due to
the existence of very close large non-traversable objects which caveaniye image in the
training phase. The non-symmetrical distribution of the relevant grid sgdar symmetrical
behaviors is probably due to the use of a relatively small training set wiglecéso the size

of the feature vector.

A closer inspection of the relevancy grid squares also reveals thatalesttiape of the objects
are more important than the horizontal shape for the traversabifitydance. Althoughmm
and g have horizontally dferent shapes, they have the same traversabifitydance. On

the other hand, the vertical shape distinguishes the traversabilities pfo , and o .

5.6.3.2 Distribution of Feature Categories

We grouped the features initpdistance related oneis) shape related ones in lateral axis, and
iii) shape related ones in longitudinal axis in order to analyze their relevérfiagn the most
relevant 20 features are considered, 65%, 30%, and 5% of theasporrd to distance, lateral
shape, and longitudinal shape related groups, respectively. Hieceertical shape of the
objects is more important than their horizontal shape for perceiving sabgity. Although

@ and g have horizontally dferent shapes, they have the same traversabifioydance.
On the other hand, the vertical shape distinguishes the traversabilities ofo ,and a .
Note however that if one considers all the most relevant 320 featueesuthber of features
of shape relate groups becomes much larger than the distance relatpdsijroeithe shape

related groups include more features (18 features each) comparethtwcdiselated group (3
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features).

5.6.4 Do Learned Afordances Generalize?

The experiments reported above have used similar testing environments tetesed dur-
ing training. Although the randomness in the size, placement and orientattbe objects
as well as the randomness between the layout of the objects in the envitdndieate that
the dfordances learned by the robot can successfully generalize, oneastdlens how well
the learned fiordances will generalize to objects with which the robot has never interacte

during the exploration phase.

5.6.4.1 Novel Objects

In this section, the generalization capability of the system when encountéhedovel struc-

tured objects is analyzed. In previous experiments, training was perdownitie all types of

objects included. In order to assess the generalization performancegbtbieshould en-
counter with objects it had never seen during training phase. Since dtaihiag should be
done in the lack of some object types, the training setup is constrained toeraniyda subset
of object types. Testing, on the other hand, is performed with all typebjetts, so that the
affordance prediction for novel situations can be evaluated. In both traamdgesting, only

one object is placed in front of the robot, and the go-forward behé&viexecuted.

Table 5.3 shows the results obtained from Iffedlent experiments. The left-most two columns
of the table show case number and the set of objects in the environmerg thieecorre-
sponding classifier is trained. The second row shows the object typdgardesting and the

prediction accuracy obtained. The following observations can be made:

¢ When the training set includes only traversable objects (case 4), thédielgasedicts
traversability in all cases. When only non-traversable objects are intlgdses 2, 3),
the traversability of the environment is mainly determined by the relative posifion o
the object. For instance in cases 2 and 3, spheres are predicted todreahbde with

30% accuracy.
e In case 1, the robot is trained with ontyp , yet it is able to predict thefordances
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Table 5.3: Generalization of learnefiadances. The left-most two columns show case num-
ber and the set of objects in the environment where the correspondirsifielais trained.
The second row shows which object types are included into the test sagtplehgre each
set contains only one object type. For each of the given training setteahabject, the
accuracy of the learned classifier’s predictions are given in the fést dable.

Case Training obj. types| Prediction Accuracy (%
o | @ 0| o
1 o 96 | 95 | 86 | 100
2 s 66 | 97 | 94 | 31
3 0 75198 |99 | 30
4 © | 55]30| 34| 100
5 O 96|98 | 91| 88
6 () a 97 198 | 96 | 80
7 o © | 95]83| 78| 100
8 o O 70| 97|97 | 30
9 sl © | 93|93 |86 | 100
10 g © |95]93|91 | 100
11 |lo @ o 95198 | 93| 81
12 o o o | 97]92]| 87| 100
13 o 0 o© | 95]98|94 | 100
14 @ 8 o |95|96 90| 100
15| m 8 o |9 9792|100

of all other object types that it did not interact with before. This is due tddbethat
a (@ can be traversable or non-traversable, depending on its relativeatioenwith
respect to the robot. In this case, the classifier correctly predictsThand & are

non-traversable (95% and 86% success), and €awvere traversable (100% success).

e We believe that the main reason behind the successful prediction ofdaiéy for
novel objects in cases 5, 6, 7, 11, 12, 13, and 15 is due to the inclusimnioftraining.
The accuracy forfd is increased in some cases because other objects included into the
training have similarities with& . For examplerD has similar shape distribution on

vertical axes, and thus a similaff@erdance to g .

e In case 9, since the training set contains samples for both successilatttefafor-

dances of novel objectsh and £ ) are also correctly predicted.
e Case 15 includes all types of objects and the corresponding classiisriggst results
when compared to the others.
As aresult, we can say that our method successfully predictsttrdances of the completely
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Figure 5.8: Left: The wooden table. Middle: The iron table. Right: The chair

novel object classes that were never met before.

5.6.4.2 Complex Real-World Objects

After the robot was trained with only simple objects, as reported in Section %6 dvaluated
the dfordance prediction ability of the robot on the following complex real-worlgects,

over 1000 interactions:

e A wooden tablewith a leg width of 55cmis placed in front of the robot in random
orientations. When the table is placed almost orthogonal to robot’s moveinestiah,
the robot can drive through both wide and narrow legs of the the wotad#e. The
height and orientation of the table is varied so that in some situations the robditica
below the table and in some situations it cannot. The prediction success taiteedb

is 855% in a test set in which 64% of the tables are non-traversable .

¢ Aniron table with a leg width of 35cmis placed in front of the robot. The robot cannot
drive under the table since the bars that connect the legs prevenbtitis focomotion.
In this case, the table is not only just rotated in place but is also shifted lateuigly
respect to the robot, and the height of the connecting bars were alsgethto enable
locomotion. Because of the connecting bars, the ratio of non-traversidmd¢ions in
the test set is higher then previous one.2%4) . The robot is observed to correctly pre-
dict traversability with 817% success. The prediction accuracy is low when compared
to wooden table case since the legs and bars that connect the legs are isnsédie.

Note that objects included during the training phase have dimensions o$tbféam
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e A chair with a seat, a backrest part with supporting rails, and legscof ih width
is placed in front of the robot. The structure of the chair is kept fixed inetke
periments, but its position and orientation with respect to the robot was varfiegl
robot predicts the traversability with 9% accuracy in the test set with @86 ra-
tio of non-traversable cases . This accuracy rate is very close to tlemasented
in Section 5.6.2.1 Figure 5.5 (a), where boxes are shifted laterally in friotheo
robot. Although the width of the legs were small, the robot correctly predietadim-
traversability of the chair successfully, due to the seat. Note that sea¢ ahdir is

never elevated so it is always predicted as non-traversable.

5.6.5 Full Demonstration

The results reported so far have been obtained in only relatively simple@saldic experi-
ments. In order to use the learnetioadance predictors in navigating a robot in a relatively
unstructured environment, we have proposed two execution architeftugggressive nav-

igation andcautious navigationas sketched in Figure 5.9.

The aggressive navigation architecture tries to minimize the turns the rabtut hmake during
navigation by prioritizing the move behaviors, as shown in Figure 5.9(g)refers to go-
forward as much as possible and make minimal turns. The architecture esgtbance
prediction modules shown in Figure 5.4 to detect tiierdances. Specifically, the architecture
queries the existence oftardances for each behavior in the order of priority and executes the

first one that is supported by the environment.

We used the classifiers trained through interactions with simple objects, @sekin Sec-
tion 5.6.1, in a virtual room cluttered withfiice objects of dferent sizes and types. The
trajectory of the robot, controlled using the aggressive navigation actinigg is shown in
Figure 5.10. We would like to comment on the decisions made by the robot absiteps
marked with numbers on the figure. Situation (1) is predicted to be traverkalilee go-
forward behavior since the table is high enough to drive-under, anditith between the
legs is wide enough to pass through. Situations (4) and (5) are notdsderfor the go-
forward since the doee table is not sticiently high and the aperture between the legs of the
shelf is narrow. The robot is able to pass-through the legsftérdint tables in situation (2)

and correctly predicts the traversability of the garbage bins in situatiof (@) robot makes
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Figure 5.9: The mobile robot control systems in execution modeggressive navigation
the high-priority behavior is immediately executed if it oaded. Incautious navigation
all afforded behaviors are considered and the average direction of neaffdrded behaviors
is used.

an incorrect prediction in the last step (6), i.e. it predicts that the apexidth between the
leg of the table and extension of the hang@omls traversability. Note that the robot does not
have a preference for driving towards open spaces and carr prefiag towards spherical

and cylindrical objects equally, wherever thdjoad traversability.

The cautious navigation architecture, sketched in Figure 5.9(b), takeseaanoservative
approach in order to minimize the risk of collisions. In this architecture, thetrisbalso
driven using the learnedffardance detection system. Howeveffelient from aggressive
navigation, the robot moves only if more than one neighbor behavidfdedad. The largest
set of d&forded behaviors that are neighbors to each other is identified based &Vif
classifier, the average direction of the corresponding behaviors isutethpand the robot
moves in that average direction. As a result, new behaviors would autoliyatieadded to
the repertoire where the robot turns at angles of a factor o&h@ move forwards, not only

a factor of 20 as originally designed.

We used the classifiers trained with interactions obtained from simple objecepated in
Section 5.6.1, on the physical KURT3D robot platform using the cautiouigaigon archi-
tecture. As shown in Figure 5.11, Kurt3D is placed in #lice environment with objects that

have diferent physical characteristics anfloadances. In this experiment, the robot decides
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Figure 5.10: The course of the simulated robcadgigressivenavigation mode.
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Figure 5.11: The approximate course of the robot resulting from theuérecof the con-
troller described in Figure 5.9(b) in a real room. The controller tries toeditie robot as
cautious as possible by averaging the direction of the neightandad behaviors. The plas-
tic balls and the cylindrical light shade are predicted go-over-able, thestale predicted
go-under-able, the apertures between table legs and tables’ bapesdicted pass-through-
able. The robot perceives the extension of the table on the left asdaderand collides
with it. The basket ball on the right is also incorrectly predicted as not4tsabée for some
behaviors, and the robot avoided from it.

the traversability of the environment 31 times through its course. Some situatitiaal to

our discussions are identified on the figure and the corresponding iraages used in feature
computation are shown in Figure 5.12 together with tfierded behaviors. Figure 5.12(a)
shows that the robot correctly learned its own body dimensions, i.egadhader-abilityof

the table anghass-through-abilitghrough its legs are correctly perceived. Only three of the
seven behaviors ardéfarded because a collision would occur for other behaviors. The larges
set of dforded neighbor behaviors in this casdfis?}, so the robot first rotates 1@round

itself and then goes forward.

Figures 5.12(b) and 5.12(e) show the range images of the situations thabttencounters

with roll-able objects. In these cases, the robot correctly predictstthedances of the behav-
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(d) (e) ®
Figure 5.12: Real range images used for traversability prediction.

iors, which drive the robot towards these objects. In (b), the robes gwer the cylindrical
object whose orientation with respect to the robot makes it convenientsto md rolls it
aside. Moreover, the robot correctly predicts that the complex chairedeftrand the upright
cylindrical trash bin on the right do noffard traversability. The robot also deals with the
confusing situation where the traversable cylinder and the non-trélerdaair locate in the
same direction; it decides that the behaviersand X\ are not &orded. In (e) the robot does
not go towards the ball since the othdfoaded behavior moves the robot further to the left

than expected.

In Figure 5.12(c) only go-forward ¢ ) behavior is &orded, however the robot does not drive
forward since at least two neighbouring behaviors shouldffoeded. Indeed the aperture
width between the table base on the left and the chair on the right is not laoggtefor the
robot to pass-through as predicted. This example situation shows howfttbikis protected
from a collision by beingautious However in Figures 5.12(d) and 5.12(f), the robot cannot
avoid collision even in this mode. In (d), the extension of the leg of the tableyssweall, in
fact smaller than any object encountered during training interactions.eSoltbt incorrectly
predicts that behaviors, which drive the robot towards that directamety 7and 7, are
afforded. In (f), the robot also makes an incorrect predictionféorédance of # behavior.
Although, the average direction of the $et 4 is taken as the movement direction, the robot

cannot avoid a major collision with the chair on the right.
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5.7 Feature Relevance

In this chapter, we used twdfethe-shelf methods from Machine Learning research; namely
the ReliefF method to extract relevant features for traversability, and\Ms3is classifiers

for predicting traversability. These specific methods were chosen tiver alternatives due

to their scalability, robustness and computational complexity. Specificallyphetiods scale
well with the dimension of the inputs, with the size of the training dataset, andrperb-
bustly when faced with noisy data. Moreover, after training, the SVMsstaly a small
number of parameters and have low computational complexity during exectithovever, it
should be noted that one can consider the use of other methods insteaplfti@s such as

scalability and low computational complexity are not required.

5.7.1 Feature Selection

The methods that select relevant features can be roughly categorized gmoups; namely
wrappersandfilters[11]. The filter methods select features based on metrics such as distance
and correlation without considering how the selection wotildc the performance in classi-

fier phase. The wrapper methods on the other hand measure the relevdeatures based

on the performance of classifier used in the second phase and carc@noear-optimal re-

sults [35]. For instance, among wrapper methods the Schemata Seanithaldd02] starts

from an empty relevant feature subset and incrementally adds a newefeathe subset that
increases the classification performance most. The method iterates astobagadormance
increase remains positive. On the other hand, among filter methods the Red##fBd com-
putes the relevancy of each feature using the correlation of the featittrethe categories

independent of the classifier to be used in the second phase.

Although wrapper methods give better results compared to filter methodsenageihe clas-
sification phase tends to have high computational complexity in most applicatidrdoas
not scale well with the dimension of the inputs and the size of the training dafsetmeth-
ods have lower computational complexity since they do not utilize the classifigattiase in
computing the relevancy of the features. However, they fail to deteahd=thcies in the fea-
ture sets and produce less than optimum sets. For instance, if relevan¢ fisaduplicated in

the representation, both copies of the feature will be included in the seifeld®e fact that
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the inclusion of the second copy does not improve the performance sifdason.

Table 5.4 lists the 20 most relevant features discovered by the ReliefF nfethmekdicting
the traversability of the go-forward behavior. The feature list can hityube categorized
into three sets: (1) features measure the minimum or the mean of the distare®a@iing
from the central grid squares, and (2) the latitude and (3) longituderésattwming from
almost similar grid squares measuring the normal vector histograms betwégn degrees
([0°, 20°Tfor latitude, and [60, 80°]for longitude). In order to analyze the redundancy of
these features, we used tbequentialfs(sequential feature selection) method provided in the
MATLAB package [97], within the wrapper category. Thequentialfs method generates
near-optimal relevant feature sets in a way similar to the one used in Schesaath[202].
Starting from an empty relevance feature set, it selects one feature dsit &mlthe feature
set of previous iteration. At each iteration, a candidate feature seatdr mot-yet-selected
feature is formed by adding the corresponding feature to the previaugéeset. Then, the
candidate feature sets are evaluated through 10-fold cross-validatid&¥éM classifiers that
use these candidate feature sets. The best performing candidate set isatisfered to the

next iteration.

Table 5.5 ranks the most important 20 features found after the 20 iteratbssquentialfs
method. The table also includes the rank of each feature as evaluatedigligf& method

for comparison purposes. As expected, the most relevant featumveisd by thesequen-
tialfs method ranks also high on the ReliefF ranKindt can be seen that due to the incre-
mental nature of theequentialfsnethod, there is little correspondence between the rankings
of the two methods. However, given thequentialfsnethod produces a more optimal set of
features, we can now go back to the set of relevant features listed lie F&hto support our
claim that there exist a lot of redundancy among the information carriethyotite features
that are ranked high by the ReliefF method. For instance, only 5 distalatedéeatures ap-
pear in Table 5.5, as opposed to 13 in the Table 5.4 indicating the redunidaheyrelevant

feature set.

Towards this end, we analyzed the performance of the classifiers ¢haaered with the most

3 The processing took approximately two days of computation on a PC with@are 1.86 GHz CPU and 1
GB RAM and did not allow us to proceed further.

4 In order to understand why the most relevant feature otgientialfsnethod did not rank at the top of
ReliefF ranking, one needs to realize the fact that the ReliefF methodsctinenumber of correct classifications,
whereas the SVM’s used by teequentialfsnethod optimizes the least square error over the training data set, and
that these two may not necessarily match.
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Table 5.4: The 20 most relevant features discovered by the ReliefF mfeththeé go-forward

behavior.

Rank Type Feature | Grid position
1 distance min B
2 latitude ) [0°,20°] i
3 distance min iiGE
4 latitude ) [0°,20°] i
5 latitude@) | [60°,80°] i
6 distance min HE
7 distance mean it
8 distance min i
9 latitudeg) | [0°,20°] HHE

10 distance mean B
11 distance min i
12 distance min i
13 distance min i
14 latitude() | [60°,80°] i
15 distance mean B
16 distance mean B
17 | longitudef) | [0°,20°] it
18 distance min B
19 distance min i
20 latitude@) | [60°,80°] HHE
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Table 5.5: The 20 most relevant features discovered bgédlgeentialfsnethod for the go-

forward behavior.

sequentialfsank Type Feature Grid position | ReliefF rank
1 distance min B 3
2 latitude ) [40°,60°] i 113
3 latitude ) [20°,40°] i 70
4 latitude@) | [-40°, -20°] i 428
5 latitude() [20°,40°] HE 243
6 longitudef) | [40°,60°] HE 423
7 longitudef) | [40°,60°] i 290
8 distance min EE 438
9 longitudep) [0°,20°] B 302
10 latitudeg) [60°,807] i 14
11 longitudef) | [-80°, —60°] i 256
12 latitudeg) [60°,80°] i 291
13 latitudeq) [-20°,0°] e 280
14 longitudeg) | [40°,60°] B 585
15 distance min i 167
16 longituded) [0°,20°] H 293
17 distance mean BE 232
18 latitudeg) [20°,407] i 196
19 longituded) [0°,20°] i 131
20 distance min i 46
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Figure 5.13: Relevancy results in training like environments. The predictionracies ob-
tained with the most relevantfeatures in environments used during training.

importantn features obtained by tlsequentialfand the ReliefF method in environments with
the same characteristics of the training environment where varying nurhbgfesent types

of objects are randomly placed in the frontal area of the robot.

Figure 5.13 plots the performance of the classifiers that are trained with titemquortann
features obtained by tleequentialf¢n < 20) and the ReliefF method & 320) for predicting
the traversability of the go-forward behavior. The evaluation was madaviromments with
the same characteristics of the training environment where varying nurhbegfesent types
of objects are randomly placed in the frontal area of the robot. The have Best, median,
and worst prediction accuracies that are obtained overfi€reit test sets. Two observations
can be made based on these results. First, the prediction performanegsexmwith the
number of relevant features. Second, for a given number of rdlévatures, the classifiers
perform better with the feature set obtained freaquentialfghan the one obtained from

ReliefF.
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5.7.2 Traversability Problem

The dificulty inherent in learning traversability of the robot, as studied in this chaptgs
further analysis in order to ensure that the problem is not reduced t6a tne through the
choice of the particular feature representation. Figure 5.13 showsl#isatfiers can achieve
prediction performance of approximately 64% (72%) using the most relé@attre (mini-
mum distance from one of the central grid squares) discovered by tlefResequentialfs
) method. The inclusion of the next three features raises the performa@&84¢80% for

sequentialfg, and the performance gradually reaches 87% with the use of 320deatur

In order to analyze in detail how the inclusion of additional features cangibto the predic-
tion performance, we used seven exemplary setups as shown in Tablecab be seen that
through the use of the most relevant feature only, classifiers merely lingxieeencéon-
existence of an object in the frontal area to traversability and do not takeatount their
rollability. The inclusion of the second most relevant feature detected bgdbeentialfs
method allows the detection of traversability in lying cylinders that are propdidped but
fails the detection of traversability in spheres. In a similar manner, the inclo$ite second
most relevant feature detected by ReliefF method allows the classifier ta theté@versabil-
ity of spheres but fails on lying cylinders. As can be seen, the clasdifeened by the most
three (four) relevant features detected bydbgquentialf§ReliefF) method are able to detect
the traversability fiordances in the first six setup that included single objects. Howeven whe
the scene is cluttered with multiple objects, such as the seventh setup, whesbdhtaces
both a close-by sphere and a further-away box in its frontal view, theeprédiction becomes

difficult, and requires the use of 320 features.

A closer inspection of Figure 5.13 shows that as the number of featuedsyghe classifier
increases from 20 to 320, the performance merely increases from 889840 Hence, one
may question whether the amount of performance gainficgnt to justify the extra cost. At
this point, we would like to point out that the prediction performances repamttte above
experiments are determined by the distribution of the test environments, anaotriae very
representative of the real-world performance to be expected fromotha.r Towards this
end, we conducted an experiment to evaluate the performance of théielads/ hanging
boxes (which are non-traversable) arounddtitcal pointsfor traversability. Specifically, in

a similar setup shown in Figure 5.5, we systematically placed boxes (noms@ale) inside
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Table 5.6: The traversability prediction results in eight exemplary se@gts(nandReli-

efF(n)denote classifiers trained with the firstelevant features discovered by Sexjuentialfs
and ReliefF methods. Setupk: no object,2: a box,3: a rotated box4: sphereb: upward

cylinder, 6: lying cylinder that is traversabl&; lying cylinder that is not traversabl8; a

mixed environment where the robot sees a close-by sphere and a b shghtly further
away.

E E* (R®" R® k" k" k* F

1 2 3 4 5 6 7 8
Seqfs (1) v v v X v X v X
Seqfs (2) v v v X v v v X
Seqfs (3) v v v v v v v X
Seqfs (4) v v v v v v v X
Seqfs (20) v v v v v v v X
ReliefF (1) v v V X V X V X
ReliefF (2) v v v v v X v X
ReliefF (3) v v v X v X v X
ReliefF (4) \ v v v v v v X
ReliefF (320)] v v v v v v v v

or outside of the collision boundaries within ach®@band as shown in Figure 5.14(a) and
plotted the prediction performance in Figure 5.14(b). The results shovashtite number
of relevant features increase from 20 to 320, the performance Besdeom 65% to 85%, a

significant gain in borderline situations.

Finally, we would like to point out that the ficiency of using a linear kernel in SVM clas-
sifiers does not necessarily imply the simplicity of the problem, since many |gapnab-
lems that require complex high-dimensional kernels at low-dimensionalréeapaces are
transformed into simpler problems that can be linearly separable througtsé¢hef inigh-

dimensional features.

5.8 Conclusion

In this chapter, we studied the learning and perception of traversalfilitgdance in organ-
isms and robots with the hope of appealing to readers from both Ecologigah®&ogy and
Autonomous Robotics. Hence the contributions of this chapter are two-fiofd; from a

robotics point of view, it presents a method for the learning and percepitioaversability on

mobile robots using range images. Specifically, we proposed a set adfefburepresenting
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Figure 5.14: Boundary experiment setup and the prediction accuréajéhe robot is asked
to predict the traversability of environments which include a hanging box tiptdced either
on one of the given gray squares or a position in between these sqNatesthat the boxes
have same dimensions as the squares. (b) The prediction accuraceshiagned with the
most relevant features in the boundary experiment. Note thatedent classifiers that are
trained with same features can make same predictions if the number of fdatsmeell.
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the shape and distance information on range images that are shown tcepamood degree
of generalization, and a scalable method towards learrfiiogdance relations (specifically,
learning entity equivalence classes in our formalism). The learning metlesditishe-shelf
machine learning methods that are highly scalable with the input dimension. répesed
method shows that one can start with a large feature vector that contaiygeallof feature
detectors that one can propose, and have it reduced down to onlgtadrafter training.
In this sense, the robot can minimize the load on its perceptual procestndeatning to
achieve perceptual economy. A systematic analysis of the method and daenpante under
different parameter settings, and in both simulated and physical environmesdsthat
despite the simplicity of perceptual representation, the method can provitedadggree of
generalization, as demonstrated in Section 5.6.5 where upon training withiioplle ©bject
types in a simulated environment, the robot can navigate successfully ammpies objects

in the real-world.

Second, from an Ecological Psychology point of view, this chaptewshbat the formal-
ization proposed in our earlier work [33], can indeed be used to makeobutsrlearn the
affordances in its environment. The proposed formalism, which we admitted todetkten
Gibsonian view on fiordances, had received criticism from Chemero [22] who claimed that
affordances are relations that exist within the agent-environment systethartley cannot
be represented in a robot. Through systematic experiments, that aredhispithe ones used
in Ecological Psychology, we show that the robot, by going through ploetion phase, can
learn to perceive the traversabilitffardances in its environment, and build a “sense of its of
body size” and achieve perceptual economy. By conducting experirtieitshow that our
robot can learn generalizable relations about its interaction with the wotidteéaelated to

its physical size and capabilities while achieving perceptual economy, \ve tdasupport

our view.

The study presented in this chapter has a number of limitations that can mairisitnged to
the use of our 3D range sensing equipment, which takes almost 40 sécq@ndduce a range
image. First, the speed of sensing limits the reactivity of the robot, and ddeamé much
room for the robot to immediately perceive and react to changes in theament. Second,
the slowness also makes it prohibitive to obtain large quantities of data to théondearning,
which was tackled through the use of a physical simulator. However, tysqath simulators

bring in their own constraints, such as théfidulty of access to 3D models of real-world
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objects which then limits the type of interactions that can be explored in simulatic@seTh
limitations can be addressed through using stereo vision systems that ayséngtetandard

cameras or through the use of 3D cameras that can provide range inéayge &rame rates.

Finally, we would like to point out that although the use of range images madasiér to link

and generalize the perceptual features with the physibaldances of the environment, the
proposed methodology does not pose any limitation on the type sensing.desigenatter of
fact, the use of regular camera images may indeed be used to djsewetop image features
that are relevant toffordances may produce interesting insights to computer vision similar to

the ones shown in [45].

5.9 Discussion

In this chapter, the robot is required to make large number of interacti@@9)5n order
to learn traversability fiordance of each behavior. During robot’s exploration, the environ-
ment it interacts is randomly constructed, in other words the robot ‘csbtsexplore any
random environment independent of the experience it gained. Funbhey the learning is
performed in a batch manner: The robot interacts with the world many timespatience

is accumulated, and only after then the learning is performed.

In the Introduction Chapter, we argued that ‘intrinsic motivation’ mechaisartilized during
infant exploration to optimize speed and extent of learning. Furthermeneiteg should be
considered as an open-ended online process. The random explatatitegy followed in
this chapter together with batch learning process hardly satisfies thesmciitieerefore, in
the next chapter, we will study a curiosity-based online learning algoritltratitomatically

chooses novel situations to interact based on previous experience.
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CHAPTER 6

CURIOSITY-DRIVEN LEARNING OF TRAVERSABILITY
AFFORDANCE

6.1 Introduction

In the previous chapter, the robot made 5000 interactions to learn thestbiliy afor-
dances. However, learning is a costly process in robotics. Ideallypbw should physically
interact with its environment exploring its environment and testing its behwébiigies in
different situations. However, even for simple tasks, such as avoidingskgdarge number
of interactions, some of which may result in physical damage to the robat,tode carried
out to drive the learning process. Hence, the learning process isilydirne-consuming and
costly in terms of the physical wearing out of the robot, but is also riskgestome of the
interactions may result in physical damage to the robot. Therefore, itdstsithat the inter-
actions of the robot during the learning phase be minimized with minimal or nadatjon

of learning.

The problem of selection of the best training data to increase the perfoenaand speed of
learning has been studied in the field of Machine Learning (Active Legym@ind particularly
in Developmental Robotics. In these studies, as stated in [111], generalljnodules are
used: thdearnerand themeta-learner In these systems, thearneris responsible from the
learning process, wherettg®e meta-learneis responsible from selection of the next sample,

which would increase the speed of the learning process.

In this chapter, we study the learning of traversabilitpedance on a mobile robot and inves-
tigate how the number of interactions required can be minimized with minimal degnada

on the learning process. Instead of usingeta-learnemve utilized a curiosity-based scheme
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on thelearneritself to increase the speed of thgardance learning and minimize the number
of interactions with minimal degradation in learning process. Specifically,rojegse a two
step learning process which consists of bootstrapping and curiosiggbearning phases. In
the bootstrapping phase, a small set of initial interaction data are used thdirelevant per-
ceptual features for thefardance, and a Support Vector Machine (SVM) classifier is trained.
In the curiosity-driven learning phase, a curiosity band around thisidachyper-plane of
the SVM is used to decide whether a given interaction opportunity is wortlomxg or not.
Specifically, if the output of the SVM for a given percept lies within curiobiyd, indicating
that the classifier is not so certain about the hypothesiffedteof the interaction, the robot
goes ahead with the interaction, and skips if not. Our studies within a physsestyobot
simulator show that the robot can achieve better learning with the propasegity-driven
learning method for a fixed number of interactions. The results also shoywfdghaptimum
performance, there exists a minimum number of initial interactions to be useddtstrap-
ping. Finally, the trained classifier with the proposed learning method is atsmssfully

tested on the real robot.

6.2 Framework Implementation

e Behavior: Behaviorscorrespond to discrete pre-defined actions without any parameter.

e Entity: The entityis computed from the whole perceived environment, without any
object detection process. Thus, no object identifier is included in its notafibe.
entities are perceived only prior to behavior execution and they areemo¢iped after

the execution.

o Effect category: Theeffect categorieare pre-defined and fixed, and the means to com-
pute these categories are provided by behavior designer. So, therefisat category
discovery step. On the other hand, the behavior designer does nideoHfect cate-
gory prototypes, thus the system can only learn whether a behavior edkked or not.

Theeffect categoriesre defined agaversablgsuccesandnon-traversabléail.

e Effect: Since the robot does not perceive and represenfitiad)(entity after behavior
execution, the change in entity feature vector, i.e. gffiect cannot be not computed.

Thus,effectis neither represented nor used as in previous chapter.
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Figure 6.1: The simulated robot in MACSim is shown on top. At the bottom, Thgea
image obtained in this situation and the operations applied to this image are shtwn. T
360x 360 pixel range image is divided into 3030 = 900 grids of 12x 12 pixels, and the
angular histogram is divided into 18 intervals, so that total number of festtomputed over

a downscaled range image is 99@3 + 2 x 18) = 35100 where 3 corresponds to the three
distance values (minimum, maximum, and mean) and the multiplication by 2 corredponds
the two angle channels.

6.3 Experimental Setup

6.3.1 Perception

The perceptual processing of the robot is similar as in previous Chdjterrange image is
downscaled, split into grids, and distance and shape related feataresraputed for each
grid. Different from previous chapter, the grids are not shifted and the resobftperceptual
representation is not optimized. In other words, in this chapter one gridiaysed and the

number of grids is kept fixed as shown in Figure 6.1.

6.3.2 Behaviors

Same as previous chapter, the robot is provided with seven simple hdad-actions, which

result in movement in sevenftirent directions. One of the actions makes the robot go
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forward, while the others first rotate the robot around its own vertidalfax a certain period
and then drive it forward. Along with each action, the expected displactafi¢he robot is

provided as its success criteria.

6.3.3 Interactions

In the learning phase the robot learns a mapping between environmerdatibsisland the re-
sults of its actions by physically interacting with the environment. In each irttereepisode,
the robot is placed at a random position and orientation in a training roonhwigtudes a

number of randomly placed objects.

6.4 Learning Affordances

After the robot perceives its environment using the 3D range scandezanputes a feature
vector, thelearnerthat is trained up-to that point determines whether the current situation is
an interesting one or not, based on the computed feature vector. If theléscertain about

the dfect to be produced, the robot will choose not to interact with the envirohtodest its
hypothesis and will be “beamed” to afidirent position in the room. However,tle learner

is not certain about the result of executing a particular action in that sityatiemobot will
execute the action and observe the result of that action using a predisficcess metric
(displacement vector). Thethe learneris updated using the feature vector and the result of

the action.

The learning process consists of two phases:

6.4.0.1 Bootstrap Phase

In this phase, a small set of training samplesdtstrap are obtained by interacting with the
environment without any novelty check. Since time and space requirenfdagsmng from
samples with 35100 features would be huge, the learning is done using suibget of these
features. This subset includes the features which are relevant fartiaytar action, and

affordance learning for that action is performed using only that subset.
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ReliefF algorithm[82], which estimates the relevance of each feature loasis impact on

the target category (traversaplen-traversable) of the samples, is used for feature selection.
After computing the relevances using ReliefF, the most relendatitures are chosen. Al-
though ReliefF does not work optimally with such a small sample set and higheruohb
features, by setting to a relatively large number, most of the relevant features would be

included in the obtained subset. We sébd 250 in our experiments.

The bootstrap period is also required to initiate the training. Thus, the seimifig samples,
obtained in this phase are used to train a classifier in a batch manner. The oiethe
classifier, which learns a relation that maps the (initially perceived) reiésatures to predict

the succegfail result of applying that action, will be given below.

6.4.0.2 Curiosity-driven Learning Phase

Different from the approaches mentioned in Section 6.1, we willheskearnerboth to select

the next sample and to learn from experience. A training sample in our domalinaimed
through perceiving the environment, physically interacting with it, and stahegerceptual
data together with the result of the robot’s interactiofiqi@ednot-atorded). Thus, ithe
learner decides that a candidate sample is not interesting enough, it will not be éatclad
training. In this case, there is also no need to execute the action since opbrteptual data

are used byhe learnerto determine whether that sample is interesting or not. As a result, we
use an online-learner, which determines the novelty of the perceptualatiat@xecutes the

action only if the perceptual data are interesting enough for that action.

Support Vector Machines (SVMs) are used to learn the mapping betwererptual data
and dfordance classes (traversghlen-traversable). In SVMs, the optimal hyper-plane that
separates two classes is found, based on the most informative samplssploet vectors)

in the training set. The new test sample’s class is predicted based on itserdtat@ation
with respect to this hyper-plane in the feature space. We made an assuthpti®VMs
are more certain in their class prediction of a new sample, if that sample is rfatiay
from the hyper-plane, and less certain if sample is closer to the hypes-plémus, when the
robot is in an environment, where it is almost certain about ffedances provided, it will
bypass this environment without executing any action, and look for morel situations.

On the contrary, when the robot encounters a new situation, if the feagarer computed in
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region of curiosity
—A—

Figure 6.2: Use of the trained SVM's hyper-plane to find interesting situstidhe mech-
anism which selects interesting samples for training is demonstrated. Theumurgitine
demonstrates the separating plane that is constructed so far, the e samples demon-
strates support vectors, and the circular shaped ones show the sasgalés previous train-
ing steps, but not serve as support vectors. The triangular shapgales are the candidates
whose classes (traversalen-traversable) are not known. Current SVM is more certain
about the class of the sample on the left, so this candidate will not be includeel training
set. However, the candidate on the right is very close to the hyper-pfah&¥M is not
certain about its class, thus it will be included in training. A probable modificatiahe
hyper-plane is shown with dashed line after SVM is updated with this candidatple.

that situation is close to the hyper-plane, SVM will conclude that this situatioriéseisting
enough to be included in training. In this case, the robot executes the ,agtidnSVM
is updated using the feature vector and the result of that action. Thugptedty of the
candidate is determined based on its distance to the hyper-plane that isictausso far. If
the distance is smaller than a fixed threshotlen the sample is considered as an interesting
one, if it is bigger tharr, it is skipped. Fig. 6.2 provides a simple and clear demonstration of

the idea.

Although, SVMs are used as batch learning systems in general, some onlieaiempations,
where the samples are fed to the learning system in an incremental maena)eto pro-
duce similar results. We used the LASVM software [13] for online updatfrige@SVM and
making predictions on the candidate and test samples. A linear kernel (withrtoéeparam-
eter set as 1) was used since more complex kernels did not increaseftrenpace in our

case.
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Figure 6.3: Use of the trainedfardance classifiers in behavior selection.

6.4.1 Control

The robot is driven using a simple control system (Fig. 6.3), which utilizes & relevant
feature perception andtardance classification schemes explained in the previous sections.
Whenever a new action is requested, the motivation based control systeearewpreferred
action with highest priority, among a set of actions with fixed priorities. Thtéufes which

are relevant to thpreferred actiorare then requested from perception, and these features are
supplied to the trained classifier (SVM) to predict whether this actiorffisded or not. If

the immediate environment does ndfoad this action, a lower priority action is requested
from the motivation module. Otherwise, it is executed (robot moves in a celitaiction for

a certain duration), and a new action is requested upon the completion atithe a

6.5 Experiments

The learning is conducted in an online-fashion, where figss;sirapsamples are collected for
feature selection and initiating the classifier. Then the learning continuesinogity-driven
way by selecting most interesting situations based on the distance threshdlgl a result,

two parameterd)yootstrapandr determine the speed and performance of learning.

The learning is performed in MACSim, where the robot is placed ix& 8¢ square room,

which includes 100 randomly scattered objects with dimensions in the ranga 280am|.
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(@ (b) (c) (d)
Figure 6.4: Example situations from curiosity-based learning phase. <tyrlmased learner

found the two left-most situations interesting, executed go forward actibnpaated the the
classifier based on the result of its actions. However the two right-mostisitaare found
to be uninteresting and were not included in training. (a) Correspondsitaaion where
boundaries of the cylinder’s surface is similar to the sphere’s from thet'sopoint of view,

and the learner is required to be fine-tuned. (b) Corresponds to a gitudtigre the object
locates in the boundaries of the go-forward action. (c) The spacenihdfdhe robot is clear.
(d) This situation seems to be similar to (b), however the (smaller) object in ¢thser than

the object in (b).

For each action, an online-SVM is trained using 300edént samples, which are obtained
by making 3000 dterent interactions in this room. During this phase, only the interesting

samples are used in training the SVM (Fig. 6.4).

After training, the robot is transferred into another virtual room with simitearacteristics
and 2000 test samples are collected in the second room. These 2000 saraplsed to
evaluate and compare the performances of the controllers trained fighirdj values of
Nbootstrap@Nd 7. In the next section we examine théext of these two parameters on the
speed and performance of the learning system, based on the systedidigmeaccuracy

over the 2000 testing samples.

6.5.1 Hfect of Bootstrap Period

The number of bootstrap sampl@seotstrapaffects the quality of the feature selection process
and the classifier’s performance nlfootstrapliS large, the relevant features are more accurately
selected, and more samples will be included in initial training without any curiolsggk. In
these experiments, in order to examine tffea of bootstrap period, the prediction accura-
cies of the classifier are computed fotstrap Values of 10, 25, 50, and 100 on the testing

set. In the box and whisker plot (Fig. 6.5), the prediction accuracy otldmsifier on the
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Figure 6.5. The ffect of the bootstrap period on prediction accuracy. The bootstrap pe-
riod required to select the relevant features and train an initial learnejustad, and the
speegperformance plotis demonstrated. Successive three boxes corddaspalues at 100,

250", and 408" interactions. Curiosity parameteis fixed to 05.

test set is plotted against the bootstrap parameter, where each boerdgpthie accuracy dis-
tribution of 10 diferent classifiers obtained fromfi#irent orderings of the training samples.
In this plot, for each value of theyootstrap three successive boxes are drawn, corresponding
to the prediction accuracy values at the #0p50", and 408" interactions. Whemyootstrap

is selected as 10, the performance of the classifier remains below %90L8iseenples are
insuficient for selecting the relevant features and bootstrapping an initiaif@asgith the
ability to select interesting samples. The values greater than 25 does tiarfincrease
the performance, thus, 25 initial samples are found to ifiscint to bootstrap the learning

process.

6.5.2 Hfect of the Curiosity Parameter

The curiosity parametar determines the width of the band around the decision hyper-plane
of the SVM. As ther gets larger, more samples will be selected as interesting. fféet efr

is examined by training flierent classifiers with lierentr values (eg. 0.05, 0.10, 0.50, 1.00,
and no curiosity). In the box and whisker plot (Fig. 6.6), the predicti@mueecy of the classi-

fier on the test set is plotted agairsiwhere each box represents the accuracy distribution of
10 different classifiers corresponding tdéfdrent orderings of the training samples. Similar to

the previous figure, for each value of thethree successive boxes are drawn, corresponding
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Figure 6.6: The ffect of curiosity threshold on the prediction accuracy. The change in¢he p
diction accuracy of theffordance perception during the learning phase. The thresholds which
determine the curiosity level of the robot are compared. Successiwelibres correspond to
values at 100, 250", and 408 interactions Npootstrapis fixed to 50.

to the prediction accuracy values at the #0@50", and 408" interactions. As shown, cu-
riosity parameters that are too small keeps the system away from interadtimigteresting
situations. On the contrary, curiosity parameters that are too large slaws ldarning by
including uninteresting samples in training. As a result, we selecte@.50 as the curiosity

parameter to be used in the next section.

6.5.3 Using Traversability Affordance

In order to demonstrate the overall behavior of the robot, and its ability icepéing the
traversability &ordance in the environment, it is placed in a room cluttered with objects of
various shapes and size (Fig. 6.7). The controller used in this experimasntrained with

7 = 0.5 andnyootstrap= 50. Here, the robot is additionally controlled by the motivation system
which favors driving forward. Whenever the move-forward actionas afforded, a lower
priority action is executed if it isfforded. As shown in the Fig. 6.7, the robot successfully
wanders in the room. Note that the robot does not only drive towardgsre-gpaces, but if

a higher priority action requires it, it chooses to drive over sphericghksgtindrical objects in
appropriate orientations, since thejoad traversability. It also successfully avoids boxes and

upright cylindrical objects by not driving towards them.
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Figure 6.7: The course of the simulated robot trained with curiosity-dsecieme.
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Figure 6.8: The course of the real robot trained with curiosity-driveéltleme. The initial
position of the robot is shown in the left-most figure. The robot first gomsard, then turns
left since trash-bin does noffard traversability. Third snapshot shows the robot driving over

the spherical object. The path of the robot is shown in the last figure.

The controller used in the simulator is also transferred to the real Kurt3bxt.rotarious
objects, including simple geometrical ones, affitte environment object like trash bins and
boxes are then placed on the way of Kurt3D to test the controller. As showigure 6.8,
the robot is able to correctly perceive thi@oadances of the box, cylindrical, and spherical
objects, and act without colliding with non-traversable objects and drioumy traversable

ones.

6.6 Conclusion

In this chapter, we studied the learning of traversabilifyp@ance on a mobile robot and
investigated how the number of interactions required can be minimized with minimal-de
dation on the learning process. Specifically, we proposed a two stejnigg@mocess which
consists of bootstrapping and curiosity-based learning phases. lottstiapping phase, a
small set of initial interaction data were used to find the relevant percdpatates for the af-
fordance, and a Support Vector Machine (SVM) classifier was traimeitie curiosity-driven
learning phase, a curiosity band around the decision hyper-plane &uhkwas used to

decide whether a given interaction opportunity is worth exploring or not.

The dtects of two parameters of our learning systerandnpootstrap Which serve as the cu-
riosity threshold and number of bootstrap samples respectively, are ediniisystematic
experiments. Selectingsmall keeps the system away from interacting with interesting sit-
uations, and selecting it large slows down learning since uninteresting saargleised in
training. As fornyeotstrap While small values degrade the performance of the system, large

values does not improve the performance after a certain threshold.
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The dfordance perception system, trained using optimized parameters, was testembm
cluttered with objects of varying shapes. In this environment the roboailaso predict the
traversability &#ordances of the objects, and wander around the room. The trainedltamtr
was also transferred to the real robot, which was also successfeldicpng the traversability

affordance of real world objects.

6.7 Discussion

In this chapter (and previous one), the robot was able to learn how totdedeersability
affordance. In both chapters, the behavior designer provided the meassessing whether
robot’s movement was successful or not. Thus, the robot leaffi@diances in a supervised

way for a specific task: being able to traverse a certain distance.

In the Introduction Chapter, we discussed that 7-9 months-old infantexqaare the envi-
ronment in a goal-free means without any supervision. During this exordahey monitor
the consequences of their actions, and relate the consequences toutilepruiperties of
the objects and environment. Furthermore, we argued that the developruenbe task-
independent and must be led by the surrounding environment. Insteatkafally providing
the succes®r fail result labels for actions, robots or infants should be able to discover wha
type of dfects can be generated in the environment. In that way, the robot may fildlgo
two categories but more during exploration, such as ‘no-contact aver$ed’, ‘contact and

traversed’, and ‘contact and not-traversed’.

Following this argument, the limitation of supervised learning will be removed in &x¢ n
chapters enabling the robot to leaffoadances in an unsupervised way. Furthermore, during
this learning it will discover abstract concepts and sub-symbolic striscthiae can be used in

multi-step plan generation.
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CHAPTER 7

MULTI-STEP PREDICTION AND PLANNING IN A MOBILE
ROBOT

7.1 Introduction

In this chapter, we propose a method that allows a robot to learn the symdlalions that
pertain to its interactions with the world and show that they can be used in ptar#pecif-
ically, the mobile robot interacts with the objects in its environment using a pieeceper-
toire of behaviors and records its interactions in a triple that consists ofitis percept of
the object, the behavior applied and iffeet that is defined as thefflirence between the
initial and the final percept. The method allows the robot to learn obfémtdance relations
which can be used to predict the change in the percept of the objectavteEmain behavior
is applied. These relations can then be used to develop plans usingdariasining. The
method is implemented and evaluated on a mobile robot system with limited object manipu-
lation capabilities. We have shown that the robot is able to learn the phyficedances of
objects from range images and use them to build symbols and relations tha¢ cesed in

making multi-step predictions about thadances of objects and achieve complex goals.

7.2 Framework Implementation

e Behavior: Behaviorscorrespond to discrete pre-defined actions without any parameter.

Thus, they will be represented byas in previous chapters.

e Entity: Theentitycorresponds to the feature vector computed for one object and is used

interchangeably with the terobjectin this chapter. The robot learns objeffitedances
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by interacting with one object at a time. On the other hand, this learning erthbles
robot to make predictions over multiple objects. Thus an object identifier isdedlu
in representingntityobject(when required) as foIIowszj. Here, f corresponds to
the feature vectom; is the object identifier and () includes the list of the behaviors

executed so far.

o Effect category: Different from the previous chapters, thiéeet categories are not
decided by the behavior designer. Instead, the robot discoverdanfisxaber ofeffect
categories(Ei%i) for each diferent behaviob; during interactions. Further, eacffexct

category has a representativéeet prototype vectorf(g 4)» Which is also found

irototypei
by the robot.

o Effect: Different from previous chapters, the robot perceives and repsaberchange
in perception of the entities during its behavior executions. gfextfeature vector

(fgfect) represents this change and is used to leffordances and make predictions.

o Affordance relation instance: The dfordance relation instance, which represents a

sample interaction with the environment, will be represented as follows:

(<2 0 b >)

effect’

7.3 Experimental Setup

7.3.1 Perception

The robot perceives the world through its 3D range scanner. Hoyaitferent from previous
chapters, the robot is assumed to have object detection capability to manipelatejects.
So, instead of computing a feature vector for whole environment, it detactsabject and

computes a feature vector for each object. The feature computationésmed as follows:

First, the range image is down-scaled to 36860 for noise reduction and is subtracted from
the background imagéhat was obtained from an empty environment. The resulting image
is segmented and the popped-up regions are assumed to be objectschFobjeat,oj, a
feature vectorf Qj is computed (see Fig. 7.1). The perception of the robot before anyioeha

execution is denoted asﬁﬁl, fQZ...me], wheremis the number of objects segment(-:féfI isa
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Figure 7.1: Mobile robot and object perception. On the left, the roboasmherical object
shown. On the right, the range image obtained from the 3D scan is givensulitracted
background and other objects are blurred. Distance, relative positibsleape related fea-
tures are shown.

vector of size 44 and is represented as follows:

fgl = [Dmin, davg, Omax &, I't, b, €1, Cr, 1. . . 18,01 . . . O1g]

wheredmin, davg, dmaxdenotes the minimum ,average and maximum range vadue#he area
measured in pixelsy, rp, ¢, ¢; are the indexes of the top and bottom rows, and the left and
right columns of the bounding box, aggandd; represent the frequency histogram of normal

vector angles in latitude and longitude as detailed in Section 5.3.1.

For each object, thefiect created by a behavior is computed as thedince between the

final and initial features:

£

— (b
effect — ) — £0

wherefgiffect, () andf0 represents thefiect, final and initial feature vectors, abdrepre-

sents the behavior executed.

7.3.2 Behaviors

The robot is equipped with fivenove behaviorsand onélift behavior. The move behav-
iors (move-forwargd move.se, andmovesge) rotate the robot as specified by the type of the

behavior and drives it forward for 4ths The robot is also endowed with a open-loop lift
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behavior, which can be triggered by a detected object region in the rarage to lift the

object whose relative position can be computed from the range image.

7.3.3 Interactions

The robot interacts with three types of objects; namely boxes, cylinddrsgreres, at dif-
ferent size and orientations. During the execution of its move behaviaspbot may ex-
perience collisions with objects and face withfdient consequences. For instance, when
the robot collides with boxes or upright cylinders, it would come to a stoprasidt of the
physical interaction. However, when the robot collides with a spheresghere would roll
away not blocking the robot’s movement. The robot may or may not get étbekhen it
collides with lying cylinders depending on the relative orientation of the cytindée lift
behavior would succeed in lifting an object, if the object is within the arm lenfytheocrane
and has a flat top (assuming that all objects are magnetizable). In this aéirizexes and
cylinders are liftable, whereas spheres and lying cylinders are na ailome-point-contact

of the electromagnetic gripper is notfBaient to produce the necessary force for lifting.

7.4 Learning Affordances

The robot first discovers what type dfects it can generate in the environment, i.e. computes
the dfect categories by grouping similaffects together. Then, it learns the forward model
to predict the ffect categories given object features and behaviors. The data coltkoiag

interaction phase is in the following form:

(<2 0 b >

effect’
Effect categoriesare found for each éierent behavior separately and by using the set of
effect vectors{fgiﬁect}. Effect feature space is clustered using k-means clustering method for
each behavior. Each cluster is assigned toféececategory id E%) and cluster centers are

used as corresponding category’s representative protof)zp)(gog/peid).

Effect category predictionis performed by learning the mapping betweféh— E% map-

ping, for each behavior separately. For this purpose, one class$tfiedictor” () is trained
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Figure 7.2: Thebredict- operator. Is is trained to predict the next state of an object based
on the predictedféect of applying behaviorib

for each behaviob; where the initial object features are used as inputs and corresporiding e
fect categories are used as target categories. Support Vectoindd&vVM) classifiers with
Radial Basis Function (RBF) kernels are used because they ard molibhe face of noisy

input and able to deal non-linear mapping in large datasets and input spaces

The trained SVM classifiers allow the robot to predict the typeffeicta behavior is expected

to generate when applied on a given objfs%tusing:
ED = Predicto(f9)

The predicted percept of the object after the application of the behanahen be computed
as (see Fig. 7.2):

(b) _ £0 bi
ij - ij + fprototypeid

7.5 Planning Using Learned Afordance Relations
The learned fiordance relations can be used as operators for planning.

e States:A state is represented as the set of objects perceived or expecteddicbired

after execution a number of behaviors:

gbb) _ [fg:ilubl) . f(()t:nlmbl)]

whereoy, corresponds to the fhperceived object, anﬂg:nl'"b') is the percept of object

m after execution of the behavior sequefioe. . . by}.
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Figure 7.3: The breadth-first construction of the plan tree. States incheler more objects
whose next states are predicted based on the operators in Fig. 7.2.

e Actions: The pre-coded behaviors; namely the five move behaviors and the lift be-
havior, constitute the actions. fbérent from standard techniques, the actions do not
have any pre-conditions and their description does not include preededftate transi-
tion rules. All actions are applicable in all states, where the next state deperthe

learned €fect prediction operators summarized in Fig. 7.2.

gbr-b) P gbr.bibo)

e Goals: A goal is specified as a partial state, in terms of values of some objectdsatur
within states. The user can define a goal based on feature values obgeay, of a
particular object or the combination of both. For example, the state that ischrde
object feature vector within < 0.1mwill satisfy the goal ofapproach any objectAs
another example, the goal pick-up a particular objecis satisfied in a state, where the
bottom-most row feature value of the corresponding object is lagge (180) in the

range image.

e Plan generation: Forward chaining is used to generate totally ordered plans starting
from the initial state (See Fig. 7.3). This process can be viewed as théthnfeat
construction of a plan tree where the branching factor is the number af/loeb. The

next states are computed using the prediction operator in Fig. 7.2. If tharstatg
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time step satisfies the goal, the sequence of the behaviors which lead the taiéabs

the goal is accepted as a potential plan.

7.6 Experiments

The learning experiments are conducted in a physics based simulatortwbeodot is ver-
ified against the real robot in [139]. where Gaussian noise is usechsosand actuator
modeling. One random objeot(among@ , © , 8 ,@ ) is placed in £90°, +90°] of
robot’s frontal area, in a random orientation and sizecf@8 40cm]. The robot makes 3D
scans before and after executing one of its behavigr®(compute the objeciy) and dfect
((fg) feature vectors. For the lifting behavior 1000 interactions are simulateetreas for the
move behaviors 3000 interactions are simulated. The resulting set of ralatanced are

then used in training.

7.6.1 The Learning of Lift Behavior

The set of fects (< fgf;ct}) are split into two clusters using k-means. After clustering phase
completed, each object in the training set is assigned tefant-id based on the class to
which the createdfect categoryEi'Llft belongs to (Equation3.1). Fig. 7.4 shows theet
classes of these entities together with the shape and position informatiorchiast8r case.
The objects assigned to classare the ones with flat top and close proximity to the robot.
On the other hand, close objects with curved tops (spheres and lyingendjrahd all distant
objects are assigned to a separate clask (Hence, we can conclude that the robot learned

to distinguish successful and unsuccessful lift actions.

After assigning each object to affect-class, in order to learn the mapping between initial
percept of the objects and the correspondifigats an SVM classifier is trained. The parame-
ters of SVM training with RBF kernel are optimized in a grid seaxck.0.03 andy = 32000
are set as optimum cost of SVM and width of Gaussian respectively. ##iging is com-
pleted, prediction accuracy of SVM model is tested on a distinct set of nelaigiances,
where the result of lift behavior is also included as ground truth. Figleft®lots the predic-
tion accuracy of liftability with respect to the size of the training sets. As resdisate, the

SVM classifiers trained with more than 700 samples have performance cerAfilitional
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Figure 7.4: The fiect categories obtained ftift and move-forwardbehaviors. Each envi-
ronment in interaction phase includes only one object, and each markesponds to the
placement of the object in aftkrent environment. Dark markers represent boxes and upright
cylinders; light markers represent spheres and lying cylindersiof) @nd+ (plus) illustrates
how these objects are clustered at the end.

training do not increase the performance.

7.6.2 The Learning of Move Behaviors

The same type of learning is also applied to the data obtained from the five rebseitrs.

¢ =512 andy = 0.125 are set as optimum cost of SVM and width of Gaussian respectively.
However, for simplicity, we will only discuss the results obtained from the rfowsard
behavior. Fig. 7.4 shows théfect categories for éfierent objects together with the shape and
position of those objects for 2 clusters. Independent of their shapgsxte located within
0.3mare within class-, and all distant objects are within classAdditionally, some. objects

in front of the robot are closer than objects. These observations show that the clustering
process makes a distinction ofiexts based on whether the object disappears from the view

of the robot or not.

Using the same training data, we varied the number of clusters being usedttr the &ect
data, and measured the prediction accuracy . As the number of clustei@siacthe clustering
process also incorporates théfeiences in shapes of the objects. The accuracy of prediction
of effect classes based on the objects are also examined and found to b@%er aumber

of clusters up-to 10.
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Figure 7.5: The fect of the training sample count and th&eet class count on prediction
accuracy. Left: Performances of SVM classifiers trained witffedient number of samples in
predicting lift fect classes (liftability)Right: The accuracy of liftability prediction in two-
step planning. The boxes shows the distribution of prediction accuraeynel in testing.
The box is bounded by lower and upper quartile values, the line in the Bessr® the
median, and the whiskers show the extent of the data.

7.6.3 Two-step Planning

In this set of experiments, we evaluated the prediction accuracy of tlo¢ tmiperceive the
liftability of an object that are randomly placed within tha fange of the robot. The robot ap-
plied thePredict-move-forwardandPredict-lift operators (Fig. 7.2) to the initial percept
of the object and using the final predicted percept of the object deternfiather it's liftable
or not. The predictedfect is then compared with the actudlext obtained by executing

move-forwardandlift behaviors.

Fig. 7.5-right plots the accuracy of liftability prediction for such two-stemplaith respect
to the number of #ect clusters being used in the training of theve-forwardoehavior. The
training set contained 3000 relation instances. Two points can be madg. théraverage
prediction accuracy of two-step plans for liftability (around 85%) is lowantthe average
prediction accuracy obtained from ‘1-step’ plans. This is an expedsdltrsince as the
objects get further away, the resolution of their perception degradesirg the accuracy.
Second, the number offect clusters to be used in the training of theve-forwardbehavior
should be greater than 2 to achieve an good prediction accuracy. Thighighty due to
the fact that the use of only 2 prototypes does not provide the negessadution to the

move-forwardbehavior that can be propagated for planning.
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Table 7.1: The prediction performance for one to four step plans.

Q g o (o
lstepplan] 0/0 | 103103 | 115115 0/4
100.0% | 100.0%
2stepplan] 0/0 | 538605 | 598717 | 0/134
88.92% | 83.40%
3stepplan| 0/61 | 727/889 | 10721198 | 0/251
81.77% | 89.48%
4 step plan| 0/153 | 339559 | 475697 | 0/111
60.64% | 68.14%

7.6.4 Multi-step Planning

In this set of experiments, a randomly selected object is placed at a rgpakition within
Imrange from the robot. Based on the initial percept of the object, 1-stsig®? 3-step, and
4-step plans are generated for liftability and it's correctness is checkahifation through
the execution of the behavior sequence. Table 7.1 reports the resulteddtam 3000 such
interactions. Note that, the 1-step plans mean immediate liftability and correspohjbtds
that are close to the robot. Similarly, it can be assumed that objects that doéeliftéh
longer plans are generally further away. Two observations can be regaling the results.
First, the number of potential plans first increase with the number of steg$han decrease.
This is probably due to the fact that forward chaining expands the gmitehtial states that
can be reached and hence the possibilities. The decrease in the nunpteamsot 4-step
plans is probably due to the fact that the objects are further away, anthéhdegradation
in their resolution reduces the chances of planning to satisfy the goal difilitfta Second,
as expected, the prediction accuracy of the plans goes down with the et plans as
expected. Two reasons can be speculated for this, the loss of preitisbagh the use of

prototypes and the object being placed further away.

7.6.5 Case Study: Bringing an Object on Top of Another

In all the experiments reported so far, a single object is presented tolibedworing evalu-
ation, as has been done during the training phase. In this experimenttweepobot into
an environment containing multiple objects and specify the goal as the ctinjuiné two

predicates.
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In this experiment, the robot is asked to lift an object and go towards a b{dterdefined
object). The robot is free to select the object to lift. The goal is defined desired future
entities based on the predicted outcomes following the execution of plantied sequence.
The goal for lift is to obtain an outcome for any object, where the bottomgbéne predicted
outcome range image should be high, ip.> 180 wherer| is the ‘bottom-row’ feature of
final feature vector. The goal for approach is defined as obtainirsg gooximity to a pre-
defined object. The mean distance of the predicted final feature vectoatobbject, after
the plan is executed should be small, idgean < 0.1m. Thus, the overall goal is to obtain
an outcome of any object which satisfies lift goal and an outcome of thdedireed object

which satisfies approach goal.

A plan for an environment that includes 5 objects is presented in Fig. 7 &gwhe robot is
required to lift any object and approach to a defined object (showatan). As shown, the
generated plan is composed of three stepsiovey; lift (03); movegy >. We can make three
observations. First, the robot is able to predict the liftability of object 3pteefipproaching.
Moreover, the two cylindrical objects, one of which is laying on its side,thedbther with a
non-flat top, are correctly predicted to be non-liftable. Third, note thlabagh object 1 is a
cylinder with a round top, which is a novel object that was not used in trgiriire robot is

able to predict its (not-)liftability.

7.6.6 Case Study: Novel Objects in Real World

The plan generation is also tested in real world for liftability. The learkxt@dance relations
and dfect prediction methods are directly transferred to real robot and its gaeargtion
ability is tested. The environment contained six objects: A desktop world glithea base,
a box shaped power supply, an irregular hexagonal shaped metal piétangular prism-
shaped desk calendar, a can lying on top of another upright canigilaey, and an upside-
down small pot as seen in Fig. 7.6. The segmented range image and thstghlarte to lift
each of them (if there exists) is shown on the right hand side of the figtime.following
plans are made. The pan is within the reach of the crane arm, and henoebi chrectly
lifted. The robot is required to move in order to pick-up the power suppipetallic piece.
No plan is generated to lift the globe with base and the triangular prism singalitheot

have flat tops. However, it should be noted that the robot made an éotqian to lift the
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PLAN:
move,, lift,, move
2.lift
-5 1
‘ €y 3.move g
1.move

Figure 7.6: The generated plans for the ‘bring an object on top of therbu#tsk. On the
left, 5 objects (including the button) are placed in the environment. On the tightletected
objects and the detected parts of the gripper arm in the range image ane tsly@ther with
the generated plan. The object numbers in the range image are assitpradtaally in the
perception process, where button is numbered as 4. The robot difirenot object except the
cylindrical shaped standing object on the right. However in order to lift &,rtbot should
approach to it by executingoveg action. After thdift 3 step,movege behavior is predicted
to drive the robot towards the goal object.

lying cylinder on its left. This is probably due to the fact that the robot ptedithe &ect of

move g wrongly to achieve liftability.

7.7 Conclusion

In this chapter, we studied a method that allows a robot to learn symbolic relttainsertain
to its interactions with the world and showed that they can be used in plannieghave
shown that a mobile robot can learn the physidébralances of objects from range images
and use them to build symbols and relations that can be used in making multi-etiégipns

about the ordances of objects and achieve complex goals.

! Due to a mechanical breakdown in our crane, we were not able to testitans on the real robot. Although
this is unfortunate, we do not believe that it undermines the validity of thdtsggresented due to two reasons.
First, the learning of initial percept as well as théeets being produced, takes place on the range images, and
that we used range images produced in real-world to test the learngdirelé&Second, by their very definition (as
described in the last paragraph of the first page), the behaviorssuenad to be implemented in a closed-loop
manner. Any failure (or success) in their execution would be due to thdiicplar implementation and does not
provide any implications for the learning method proposed in this chapter.
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Figure 7.7: The generated plans for the ‘lift any object’ task with reabtrol©n the left,
photograph of the environment where six real world objects are placiedrihof the robot.
On the right, the object regions detected in the range image are shown togithdifferent
plans generated for lifting. The bottom parts of the nearest two objectwaperceived and
not seen in the range image since the laser beams are blocked by theasdot b

7.8 Discussion

In spite of the non-trivial learning and planning ability that our system étdhilt has room

for improvement.

The method that is used to discovdfeet categories is not robust. First, it uses a clustering
algorithm where the number of clusters is fixed. Thus, the numbedfedtecategories should
be decided in advance. Second, the clusteringfecefeature space is sensitive to the relative
weighting of the #ect features such as distances, pixel counts, histogram frequénaies
are encoded in ffierent units. In the next chapter, a channel-based hierarchical rahgste

algorithm will be proposed to obtain robugiext categories.

One other issue is that, blind execution of the generated plans is not realidijaamical
environments. The predictions on object features created during ptenagien can be used
to monitor the plan execution and to check whether the change in the state isoae tthet
was predicted in the plan, to decide whether execution was successiol. oFhis problem

will also be studied in the next chapter.

Last, we started studying manipulatiofiadances in this chapter in a very simple sense: If
the object has a flat top surface and if it is in reach distance of the rodo¢ @rm, then it’s

liftable. However, the manipulation in real life is much more complicated. Firshi,ofvhen
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a more complex manipulator, such as human’s hand is considered, thalglaswf the
object is determined by the combination of manffetient properties of the object and hand.
Furthermore, there are various actions that can be executed on objelttasspushing from
different directions, grasping, lifting, dropping, shaking, etc. Theseo#imel issues related

to affordance learning in manipulation domain will be studied in the next three clapter
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CHAPTER 8

GOAL EMULATION AND PLANNING IN A MANIPULATOR
ROBOT

8.1 Introduction

For a growing infant, a major problem is to make sense of the continually incoseimgp-
rimotor data by learning what changes she can generate in the envirorDrdntafter this
problem is overcome, the infant starts making plans and executes therhfeviag goals,
for example pulling the table cloth to reach a toy that is otherwise unreachaideplausi-
ble to think that earlier planning takes place in the perceptual domain of the,imfaich is
later augmented by symbolic planning capability as the infant forms symboliesepiations

through her interaction with the environment.

In this chapter, we consider the former phase of this developmentalgsgign in a robotics
context, where the anthropomorphic hand-arm robot learns its visuonagabittities by in-
teracting with its environment. We are content that by adopting such a devetdal ap-
proach, adaptive and human-like robotic systems can be synthesizéd.l&st decade, with
similar views in mind, various developmental stages have been studied, madeld¢chns-
fered to robots. These stages correspond to acquisition of skilléfatatit levels and ages,
ranging from emergence of motor patterns before birth [87] and devedopof pattern gen-

erators for crawling [123] to language learning [68] (see [4] for mprehensive review).

In the postnatal age of 7-10 months, the infant explores the environmgwelg By ob-

serving the ffects of her hitting, grasping and dropping actions on objects, she can lear

the dynamics of the objects [4]. The infant in this stage has already adcuinember of

manipulation behaviors and is able to detedfedent properties of objects such as shape,
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position, color, etc. Using her motor skills, the infant interacts with the enmneot and ob-
serves the changes she creates via her perceptual system, accunkniatiegpge about the
relationships between objects, actions and ffieces. This procesdiectively corresponds

to the learning of the ffordances [55] provided by the environment. The learning in this
stage is largely performed in a goal-free fashion through self-exploratid self-observation
[122, 17, 41, 151]. After approximately 9 months of age, the infant steityg the learned
object-action-fect relations in a goal-directed way, anticipating a desirable change in the
environment and behaving accordingly [119, 138, 158]. This skilgeanfrom recalling
action-dfect mappings to making simple plans that may involve multiple steps [157]. Goal-
emulation, a form of imitation characterized by the replication of the obsemdds®ect
[151], starts after this period, and infants become skilled at imitating unseeememnts after

12 months of age [40]. According to [42], infants learn to use anticipatorgybal-directed
actions in two phases. In the first phase, they execute random actioeseinMinonment, self-
monitor the changes, and learn the actidie@ associations in a bi-directional way. Later, in

the second phase, they start to control their actions by predictingféwsthey can create.

In a similar vein, in the first phase, our manipulator robot experiencealdige self-explora-

tion and self-monitoring phase where it discovers tfierdances provided by the environment
and learns how to use thedtardances to predict the next perceptual state after the execution
of a given behavior. In the second phase, the robot emulates goatnped in its sensory
space by generating multi step plans based on the leaffeedance and prediction capabili-

ties.

8.2 Framework Implementation

e Behavior: Behaviorscorrespond to discrete pre-defined actions without any parameter.

Thus, they will be represented byas in previous chapters.

e Entity: Theentitycorresponds to the feature vector computed for one object and is used
interchangeably with the tergbjectin this chapter. The robot learns objefftmdances
by interacting with one object at a time. On the other hand, this learning erthbles
robot to make predictions over multiple objects. Thus an object identifier isdedlin
representingntityobject(when required) as foIIowsﬁQj. Here subscript corresponds

to the feature vecton; is the object identifier j{" detected object) and () includes the
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list of the behaviors executed so far.

e Effect category: The robot discovers a variable numberefect categoriee{E%) for
each behaviob; during it's interactions. A novel hierarchical unsupervised categoriza
tion method is proposed for this purpose. Further, edi@dtecategory has a represen-

tative dfect prototype vectorf(g ), which is also found by the robot.

i
rototypeid

e Effect: The robot perceives and represents the change in perception oftitiese
during its behavior executions. Tlgectfeature vector(Z‘ffect) represents this change

and is used to learrfl@ardances and make predictions.

o Affordance relation instance: The dfordance relation instance, which represents a

sample interaction with the environment, will be represented as follows:

(<2 0 b >

effect’

8.3 Experimental Setup

The anthropomorphic manipulator which is composed of PA-10 robot adnGifu robot

hand is used with infrared range camera.

J Check confidence 4}
| Check pixel position &
Check amplitude 1

Detect objects
Delete borders
Compute features

a) Photograph of setup b) Range image

Figure 8.1: 23 DOF hand-arm robotic platform and the range image. lih@hand-arm
system, infrared range camera (on the top-right) and the objects thaseddruthis study
are shown. In (b), the range image obtained from the range cameraeaddtécted objects
are shown where range is encoded in grayscale and in color for tiremment and objects,
respectively.
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Figure 8.2: (a) The robot arm grasps and lifts a cylindrical object in llysips based simula-
tor. The coordinate system is also illustrated. (b) The 43-dimension featater computed
for the object in the robot’s hand in Figure 8.1 is given. It is composed wakibility, 6

position and 36 shape related features whose values correspond tighedf the bars in

normalized form.

8.3.1 Perception

Object Detection: The first step of pre-processing is to filter out the pixels whose cordfeden
values are below an empirically selected threshold value. The robot'sspack consists of
a black table, so region of interest is defined as the volume over the tadlblak pixels
are filtered out as the range readings from black surfaces are Agisyresult, the remaining
pixels of the range image are takes as belonging to one or more objecte dijests are
segmented by the Connected Component Labeling algorithm [63] whi@hefitiates object
regions that are spatially separated by a preset threshold value (2 cen ¢arttent imple-
mentation). In order to reduce th&ect of camera noise, the pixels at the boundary of the
object are removed, and median and Gaussian filters with 5x5 window sezapalied. The
detected objects on the range image of a sample setup is shown in Figure. &inédlly, a
feature vector for each object is computed using the 3D positions obtaradiepth values

of the corresponding object pixels as detailed in the next paragraph.

Object feature vector computation: The perception of the robot at tinteis denoted as
[fﬁ,’(()), fE;?..] L where f is a feature vector of size 43, and the supersdtipenotes that no
behavior has been executed on the object yet. Three channels ofatfon are gathered and

encoded in a feature vector for each objec{Figure 8.2 (b)). The first channel consists of

! Note thatt ando; are sometimes omitted in the rest of this chapter in order to ensure edspilig of the
notation.
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Algorithm 4 Object Detection
isConfidentp): true if confidence[p} confidence-threshold

isOnTablep): true if position[p] is on table
isBright(p): true if amplitude[p]> amplitude-threshold
setObjectParfy): pixel p is assigned as object part

1: for each pixelp (from 0 to 174x 144)do

2. if (isConfidentf)) and (isOnTablefp)) and (isBright(p)) then

3 setObjectPartf)
4:  endif
5: end for

6: Find distinct objects with Connected Component Labeling

7: Remove pixels on object boundaries

[e¢]

: Apply Median and Gaussian filters to object pixels

object visibilityfeature which encodes the knowledge regarding the existence of the.obje
The second channel corresponds to the distance perception of stijeoders. Here, the
points with minimum and maximum values along longitudinal, lateral and vertical anees
used as 6 position related features. The third channel encodes the rethated features,
where the distribution of the local surface normal vectors are usedif8pdly histograms of

normal vector angles along the latitude and longitude are computed andsusdid\as.

The normal vector of the local surface around each point is calculaiad the positions of

the two neighbors in the range image:

Nrc = (Pr-nc — Pr.c) X (Pr.c-n — Pr.c)

wherep represents 3D positiom, corresponds to the neighbor pixel distance and is here set
to 5. In spherical coordinates, the unit length 3D normal vector is repted by two angles,
polar @) and azimuthal£) angles that encode information along latitude and longitude, re-
spectively. The polar angl@) corresponds to the angle between x-z plane and the normal
vector, whereag is the angle between z-axis and the normal vector’s orthogonal projection
on x-z plane. After polar and azimuthal angles are computed for each pixehistograms

are computed i@ andy using a 20 bin size. Finally, the angular histograms represent the 36

shape related features.
Effect feature vector computation: For each object, thefiect created by a behavior is
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defined as the flierence between its final and initial features:

(bi) _ (o) 0
feffecto,- = fo " — 15

Wherefg?) represents the final feature vector computed for olgectfter the execution of

behavior;.

8.3.2 Behaviors

The robot interacts with the objects using thpeshbehaviors and onéft behavior. The
object position computed from the range camera is used as argument foehheiors to
enable the robot interact with objects placed ifiedent positions. The hand is initially wide-
open for all behaviors, is clenched into a fist durimgsh-forwardexecution, and remains
open for othempushbehaviors. Fopush-forward push-left and push-rightbehaviors the
robot hand is brought to the rear, right and left side of the objectemsely. Then, the
hand moves towards the object center, pushing the object in the appeagirection. After
behavior execution, the hand is placed to a ‘home’ position. Inith&ehavior, the robot
hand is placed at the back-right diagonal of the object first, then moveatds the object
while the fingers are closed to grasp the object. After the fingers come tt ¢hieachand is

lifted vertically.

8.3.3 Interactions

The robot interacts with three types of objects: boxes, cylinders aretespbf diferent size

and orientation. During the executionmiishbehaviors, the robot observes the consequences
of its actions. For instance, when the robot pushes a Ii0x)(or an upright cylinder(8 ),

the object is dragged during the execution of the behavior and stand shk &nd of the
action. However, when the robot pushes a sphége), the object rolls away and falls down
the table. Thdift behavior would succeed in lifting an object, if the object is within the arm
length of the robot and small enough to fit into the robot hand. Howeverdhgequences of
thelift behavior execution is not limited to having lifted the objects and can be compex. F
example, some spheres may roll out of the view after an attempt to grasptandhiié large

boxes will be pushed away but still remain in the view afterlitidoehavior execution.
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Algorithm 5 Exploration phase

1: for each trialk (from 1 tom) do
2:  Resetrobot joint angles
3.  Putarandom object in random position, size, and orientation

4:  while isObjectVisible()and isObjectPositionChangeddp

5: Perceive the environment and compute initial feature vedor
6: Execute a random behavibrwhere 0<i < 3

7 Perceive the environment and compufieet feature vectof gfect
8: Put< f2_ . f0,b; > into repository.

9: end while

10: end for

8.4 Learning Affordances

The data collected as tuples during the exploration phase are stored ws&agp

(<% 0 >}

effect’

and is used by the robot to learn thi#oadances of objects. The learning process consists of
two steps: the unsupervised discovery fitet categories, and the training of classifiers to
predict the &ect categories from object features. The learning process is appliadately

for each behavior as detailed below. Note that the relevant featuresewdisbovered during

experiments.

8.4.1 Hfect Category Discovery

In the first step, theféect categories and their prototypes are discovered through a hierarch
cal clustering algorithm (Figure 8.3). In the lower level, channel-speeffert categories
are found by clustering in the space of each channel, discoveringasep=ategories for
visibility, position and shape. In the upper level, the channel-spedifctecategories are
combined to obtain all-channeffect categories using the Cartesian product operation. In
Figure 3, where a hypothetical example is depicted, ffececategorE; = V1P1S; stands

for E; = V1 A P1 A S1 and contains theffect feature vector instances which are classified

asVi, P1, andS; when only the corresponding feature-channel is considered,atdsge
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Finally, the dfect categories that occur rarely (indicated in the figure as shaded segien
automatically discarded together with their members. The proposed hiegdrchistering
method is superior to simple one-level clustering method, since the resulte-déwai clus-
tering are sensitive to the relative weighting of ttkeet features that are encoded iffelient
units (e.g. continuous position features vs. binary visibility feature). Aduitlyg, the per-
formance of the clustering process is optimized by running the clusteringthlmamultiple

times and selecting the best clusters based on their utility in the second stepofdea

-~

Visibility + Position+ Shape
features

N e e e e e e e e — — —

N
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Figure 8.3: The proposed hierarchical clustering method to discofectecategories.
Channel-specific and all-channetext categories are shown on lower and upper levels, re-
spectively.

After discovering the fiect categories and assigning each feature vector in the s@@‘ﬁg&}

to one of the ffect categorie %) the prototype ffect vectors {

Blrototypeid) are computed as

the average of the category members. In order to represent the exjgedkthe robot in a
more compact way, the continuouseet vectors are replaced bffect category id’s and their

prototypes; and the repository is thus transformed into the following form:

(ED, 10,13}, (< ED,, D

id> * prototypeid >}

Here, the first list corresponds to the setfibedance relation instances whefkeets are gen-
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eralized and the second one corresponds to the lisefféct-category-id, prototype vecter

pairs.

8.4.2 Learning Hfect Category Prediction

In the second step, classifiers are trained to predict ffeetecategory for a given object
feature vector and a behavior by learning the mapgitig— E% mapping. HEectively, this

establishes a forward modéredictor (f0) that returnfi?ji for each behavior.

At the end of these two learning stepfoadance relations are encoded as:

{F’I’ediCI'Ofbi 01 {< Eit(‘;’ fBirototypeid >}

or

{{PrediCtor()}’ {< Eid, fprototypeid >}}bi

allowing the robot to ‘know’ the fect of a behavior in terms of thdfect category and its

prototype.

8.5 Learning Results

In the experiments, a table with 1200 cn? surface area was placed in front of the robot with
40 cm distance, as shown in Figure 8.1. At the beginning of each explotati one random
object (T, © ,or 8 ) of random size [26m— 40cm] was placed on the table at random
orientation (see Algorithm 5). For all behaviors, 5000 interactions wienalated and the
resulting set of relation instances were used in learning. The X-meandtatg$ll5] was
used to find channel-specifidfect categories and Support Vector Machine (SVM) [148]

classifiers were employed to learfiext category prediction.

In the rest of the section, thefect categories that were discovered using the proposed hier-
archical clustering algorithm are interpreted, and the contributions offgpebject features

for affordance prediction, i.e. the features relevantffordance perception, are assessed.
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Figure 8.4: The fect categories discovered infidirent feature channels. Each dashed-box
corresponds to a channel-specifiteet category discovered for tipeish-rightbehavior. The
category prototype vectors are represented by the bars in normalizedFor example, the
position of the objects, which created the lafeet category in position channel, reduced
along lateral axis and did not change along other axes. The light coloctotypes are
discarded since the number of members was below the threshold.

8.5.1 Discovered Hect Categories for Push Behaviors

The detailed results are given for only one representative behpauih;right, as all thepush
behaviors produced similaffect categories. The channel specifiteet categories discov-
ered for thepush-rightbehavior and their prototypes are shown in Figure 8.4. Two categories
are discovered within the visibility channel. The first category corredpomthe disappear-
ance of the object (indicated by a change of -1 on visibility feature) anddbend category

represents thefiect where the object remains in the view (indicated by no change).

The changes in object position channel are represented by four tiffiext categories. The
first category represents the case for no change in object positidrtharthird and fourth
categories representffirent magnitudes of object movement. The occurrence of the second
effect category is very rare, i.e. the ratio of the members in this category to whaoiple

set is below a preset threshold (of 3%), hence is discarded. In tpe shannel, fourféect
categories are discovered but one of them (third category) is distasdiés ratio was below

the threshold.

The all-channel #ect categories are computed by taking the Cartesian product of theathann

specific gfect categories. The 2 categories in the visibility and 3 categories in bothshimpo

2 X-means implementation in Weka data mining software is used [94].
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Figure 8.5: Impossible or rardtect categories that are formed through Cartesian product of
channel-specific categories for push-right behavior. Some of thgarés can be created due
to inaccuracies in simulator and some of them do occur very rarely.

and shape channels generatg 2 x 3 = 18 all-channel categories. A pruning process is
applied as in the lower level, to remove the impossible and r@eets based on the number

of category members.

Figure 8.5 shows some of such categories that are obtained due to careeace in robot’s
experience. The first illustrated category is physically impossible be¢hasabject disap-
pears according to the visibility feature, and at the same time moves to a visilili®mpos
based on the position feature. In the second category, object’s positiohdeanged but it is
rotated around. This is also impossible unless the object is attached to theuaiblejs not
the case in our setup. The third category, where the object is pushedrtghthand rotated,

is possible but rare, as the objects are pushed from the center.

Next, we analyze the prototypes of remainirfget categories (Figure 8.6).

e Theunreachable gect(Effect-2) corresponds to the prototype where no feature change
is observed. The average distance of the objects that produaeteachable gectis

1244 cm indicating theiunreachabilitygiven the kinematics of our robot.

¢ In thedisappear gect (Effect-1), the visibility of objects drop from 1 to 0, indicating
the objects falling & the table. This can happen when the objects are pushed and rolled
out of the table. We found that most of the objects that fall under this catege
spheres, since they are likely to roll away and fall from the table. Homvéoxes and
upright cylinders placed on the edge of the table also fall under this egtagdhey
fall of the table when pushed. Thisappear gect (Effect-1) was also created by the
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Figure 8.6: The ffect category prototype vectors for push-right behavior. It careke that
push-righthas an &ect on visibility and lateral position features but not in others.

objects which were elevated over the table. This happens when the szbexécuted a
successfulift behavior in the previous step. In such situations, a subsequshtright
behavior would open the hand causing the lifted object to drop and henoe madge
it disappear. Note that the disappearance of an object through degoipglift followed

by push-right) was an unexpected emergent behavior.

¢ In theless-dragged fect (Effect-3) and thenmore-dragged gect (Effect-4), the lateral
position of the objects are reduced (the objects are pushed right witactetgpthe
robot) as a result gbush-rightbehavior. These categories were created by only boxes
and upright cylinders, and do not include any spheres since theysahat-away when

pushed.

8.5.2 Discovered Hect Categories for Lift Behavior

Figure 8.7 shows the all-channdfext prototypes, discovered by the hierarchical clustering

process for thdift behavior:

e The unreachable gect (Effect-2) corresponds to no significant change in the feature
vector since it was created by (failed) interaction with unreachable obgoigar to

Effect-2 for thepush-rightbehavior.
¢ Inthedisappear gect(Effect-5), objects became invisible after executiolifobehav-
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Figure 8.7: The fiect category prototype vectors for lift behavior. It can be seenlifhat
behavior has anfiect on vertical, frontal and lateral position features as well as visibility.

ior. This dfect was created by (1) ungraspable large spherical objects thatma)l a
after interaction, (2) ungraspable large objects that are pudffidcbm the left edge
of the table, and (3) the objects that were already in robot’s hand dueraviayslift

behavior execution.

¢ In thedragged @ects(Effect-1 & Efect-4), the vertical position of the object remains
same, but its position on the table is changed indicating a drag over the taldeffétt
was created by large ungraspable objects that are not rollable. Trasothjat create
dragged @ectswere pushed on the table forfidirent amounts and in fierent direc-
tions since interactions with flierent object types and sizes result iffelient collision

dynamics between the hand and object.

¢ In the lifted egfect (Effect-3), the elevation of the objects (represented by first two
columns) increase, corresponding to the cases where objects weessfudly grasped
and lifted.

Thelift behavior was designed to grasp and lift the objects. Thus, from thenge'sigpoint
of view, there can be two fierent outcomes resulting from the execution of the lift behavior:

Either the object can be grasped and lifted successfully, or it can ngtdsped, so can
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not be lifted. However, when thefects that were obtained during the robot's exploration
were clustered using the hierarchical clustering algorithm, fifferdint éfect categories were
generated. These results show that tfieat categories should not be limited to the definition
of the behavior or the intention of the behavior designer, but should lewdised through

interaction.

8.5.3 Hfect Category Prediction Results

After the discovery of fect categories, the mapping from the initial object features to these
categories is learned for each behawp(Predicto ()) by multi-class Support Vector Ma-
chines (SVMs). The Libsvm [19] software package was used with optthpaeameters of

the RBF kernel through cross-validated grid-search in parametes.s#@@0 simulated inter-
actions were used in training and a separate set of simulated 1000 intesagticmused for
testing. At the end, 95%, 8%, 822%, and 797% accuracy was obtained in predicting the
correct dfect categories fopush-forwarg push-leff push-right andlift behaviors, respec-
tively. The accuracy opush-forwardis higher than other push behaviors since it has three

effect categories (compared to foudfext categories in other twaushbehaviors).

We analyzed the relevance of the featuresfifordance prediction for thpush-rightandlift
behaviors using the Schemata Search [102] by computing the relevaadeaitire based on

its impact on the prediction accuracy. The Schemata Search is a greetlyétarathod that
starts with the whole feature set{fRand reduces it by removing the least relevant feature
in each iteration. At each iteratiot) (candidate subsets are formed by removingfiedint
feature from R (remaining feature set of previous iteration), and they are evaluatedihy tr
ing SVM classifiers in 5-fold cross-validation. The subset with the highmestn prediction
accuracy is chosen as &d transfered to the next iteration. The computation time is reduced
by grouping the vertical (longitude) and horizontal (latitude) shape featand treating them

as single units.

Figure 8.8 shows the prediction accuracies of the feature sets prooljtied method. In both
plots, the first bar corresponds to the prediction accuracy with the hillife set () and the

last bar corresponds to the accuracy without use of any featuges (Rbase condition).
The dfects of these features were further investigated by performing t-testiastong the
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Figure 8.8: The prediction accuracies of the classifiers that are compsitegiditerent fea-
ture sets. The feature set is reduced by one feature in each iteraticzidiing the most
irrelevant one. The left-most and right-most bars in each plot show #uésebtained using
all and no features, respectively. Error bars on prediction aciesaxicate the best, median,
and worst classifiers found by 5-fold cross-validation. Significaanges between adjacent

feature subsets from t-test are shown*x 0.002).

prediction accuracies of adjacent feature subsets. We found thareb&tn accuracy
changed significantly after removal of features from the subsegtand R; for push-right

andlift behaviors, respectively.

¢ For the thepush-rightbehavior (Figure 8.8 (a)), the three most relevant features were
Min. Lateral, Shape VerticahndMax. Frontal The Shape Verticafeature has direct
relation to the rollability of objects, whereas thkax. FrontalandMin. Lateralfeatures
determine the object’s position on the table and hence give information albetihev
the object is reachable or fallable from the edge. Note that, remdving Frontal
feature from the training set did not have a significafe@ on accuracy since existence

of Max. Frontalin that set makeMin. Frontal redundant.

e For thelift behavior (Figure 8.8 (b))Min. Frontal is among the most relevant four
features together withlax. Frontal This is unlike the case ipush-right where either
of them would sifice for successful prediction. In thiét behavior, these together,
define the size of the object, and so determine whether the object is geaspaiot.
The removal ofShape Verticadid not have significantfiect on accuracy since the

number of cases where the object rolled out of view was not high. Hemi&vape
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Horizontal feature was significant as it tells about the surface opposed by thedinge

during grasping.

8.6 Stage 2: Use of fordances in Task Execution

In this section, we present the methods that enable the use of ledfasthaces to accom-
plish tasks which require sequential planning. State space search afgodte used for
this purpose, where the the world state is represented in the percepaoal agipthe robot.
Here, the world state corresponds to the list of feature vectors obtamadtie objects in the

environment. The initial world state can be represented as follows:
[f9, 9, 9]

where, () denotes the zero length behavior sequence executed objelbts pandn is the
maximum number of objects. If the actual number of objects is lessnhahe visibility

features of non-existing objects are set to 0:
f9[0] = 0,i <m
where 0 is the index of visibility feature.

State transition occurs when the robot executes one of its behaviorsaisjesmt. Only one
object is assumed to béfacted at a time during the execution of a single behavior, i.e. only
the state of the corresponding object is changed during a state transuioexdmple, if the
robot executes its'§ 29, 39, and £ behaviors on ¥, 15t, 29 and F! objects, respectively,

wherem = 3, the resulting state will be shown as:

[ff,?3_’b2_’b1), fth)S), fgs]

In the previous section, the robot acquires the ability to predict the neet &) based
on the current state of the objet? using SVM classifiersRredictor”) for each behavior
(Figure 8.9). Based on this prediction scheme, the robot can estimate thefiietalthat
a sequence of behaviors will create and use this to predict the finalt sigee. Thus, any
goal can be encoded in the perceptual state of the robot, and a saarble done through

predicting d€fects of diterent behavior sequences to reach that goal state.
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e Goals: The goals are represented by a set of constraints on the object fetitatrare
encoded in states. For example, the state that includes an object feattoewith
fé‘z")[S] = [0.75m — 0.85m] will roughly satisfy the goal ofmove the ™ object t00.8m
distance along the frontal axiwhere 5 corresponds to the index of the feature that
encodes ‘minimum distance along frontal axis’. As another example, tHefpak-
up a particular objects satisfied in a state, wherfé;;)[Z] = [0.35- 0.45]. Here, the
2"d feature corresponds to ‘minimum position along vertical axis’ anddrresponds
to any object in robot’s view, i.e. any object included in the world state gagaon. If
the task is to lift the 2nd object with&mn frontal distance to the robot, both features are

required to be satisfied.

Formally, the constraint set (goal) is composed of (object-index, featdex, value
and range) tuple€S = {(0j, i+, V,r)}. A state satisfies the goal if for all the constraints,

the following inequality holds:

V—r < fE;J?')[if] SVA+T

e Goal Specification: The straightforward means to set a goal is to manually decide what
the constraints (features, objects, values, and ranges) are. In thismeacan encode
any goal by manually setting the desired feature value ranges for arst objebjects.
However, this approach requires full knowledge of the representatibithe states
and the meaning of all the features. In case of any change in featwe, ¢ha goal
setting procedure needs to be repeated. Furthermore, hand-tunesitiog requires
programmer intervention each time, making it time-consuming and inconvenient in a
world with changing tasks and goals. A more convenient way is to demonsinate
action from which the robot can automatically extract the goal and encddeitg
perceptual space. This second approach is used in next sectiome thbaobot self-
discovers the goals by observing the desired goal state of the objegjeots) and then

generates plans based on these.

¢ Plan generation: This refers to finding the behavior sequence required to transform the
given state into the goal state. In this study, forward chaining is useditchsie state
space and find a sequence. Forward chaining uses a tree structuredéththat hold
the perceptual states and that correspond to (behavior-object) paesexecution of

each behavior on eachffiirent object can transfer the state to fiedlent state making
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the branching factor of the search tree tonbenber of behaviors number of objects
Starting from the initial state encoded in the root node, the next statesfferedit
behavior-object pairs are predicted for each state(Figure 8.9). Natteltfect features
do not change if the behavior is not executed on them, thus only one {weadis

performed and one feature vector is predicted in each transition.

In order to reduce the search time, the states with minimal distance to the goalrstate
expanded first. The distance between states is computed using the fezdtisgsear

in the constraint set. When a state reached satisfies satisfies the gdediots)sthe
sequence of behavior-object paifs: (bj, 0j >}) that transfers the initial state to that

state is returned as the plan.

SVM predictor Lift of effect
for behavior b | Effect "| prototypes
4 category-id #Eﬁect feature
vector
Object feature vector Predicted obi
; > ; » ject feature vector
(Object state - f-) ) Vector summation (Predicted next object state -

fri—n )

o

Figure 8.9: Next state prediction using the generfibrdance relations encoded in:
{{Predictor()}, {< Eid. fprototypeia >}°-

8.6.1 Control Architecture

In order to test the proposed method on the real robot platform, a cantroitecture that
supports goal emulation through automatic goal specification was implemertted-obot,
infrared range camera, and table were placed similar to the simulated intemtioonment.
A closed-loop robot control architecture, which can be viewed as g&-laybrid architec-
ture ([104, p. 257]), was used for this purpose (Figure 8.10).Pereeption Moduleeceives
data from the range camera and computes the features of the objects, istatthef the
world, as described in Section 8.3.1. TUHser Interface Modulés the means of commu-
nication with the robot: It shows the range image, the detected objects, afehthees of
the objects; gives a status report to the user about the plan being ekesnddllustrates the
search plan tree. Through thiser Interface Moduland theSet-goacommand, the user can

provide the goal environment to the robot, and he can initiate the procggmbé&mulation
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Figure 8.10: Robot control architecture.

in another environment by givinGenerate-plarand Start-plan-executiomommands. The
predictions on object features that were calculated during the planngug$s and stored

in the nodes of the search tree can be used to assesdfdrentie between the predictions
and actual perception of the environment. Fian Generation Modulstores the necessary
knowledge {{Predictor()}, {< Eid, f prototypeid >}}P) for making predictions in the perceptual
space of the robot. It stores the goal state and starts the plan generagnnthgSet-goabnd
Generate-plarcommands are received. Note that both goal state and initial state of planning

are provided by th@erception Module

The Execution Manager Modulss responsible for the ordered execution of behaviors and
monitoring of the plan execution. It receives the plan (behavior-objgics pfrom thePlan
Generation Moduleand when théStart-plan-executiosommand is sent througbser Inter-
face Module the behaviors to be executed are sent one-by-one t&8¢havior Controller
Module At each step, th&xecution Manager Modulehecks whether the change in the state
is as the one that was predicted in the plan, to decide whether the execusisneeassful or
not. A mismatch detected during the execution of a behavior is reported téstrdnterface
Modulecausing the execution of the plan to stop. Bwhavior Controller Moduleeceives

the behavior-id to be executed, generates a trajectory of the joint aragled bn the specified
behavior, object position and current joint angles, and sends it to théel@k controller of

the robot arm and hand. This system is tested with several objects a&tg/g@gsitions in
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different tasks as shown in the following sections, and used to assesketiizzeness of our

approach for real world applications.

8.6.2 Goal Setting through Observation

We introducedobservationandimitation phases to facilitate automatic goal setting. In the
observationphase, the robot perceives the environment and encodes the gedl &va the
feature vectors obtained from the environment. Inithigation phase, the robot searches a
sequence of behaviors that will transform the current state to thevalisgoal state. “What
to imitate” is still an open question in developmental psychology and cognitinegios [106,
107]. Here we followed a feature-channel-specific goal-emulation nnésthahat prioritize

some channels over others.

As mentioned earlier, the states are encoded in thfégrelt feature channels. We postulated
a hierarchy of importance on these features for the agent. Accordingstahk visibility
channel is the most important one since it determines whether an object@xigis The
position-channel represents the object’s location (and relation to thé aodahe other ob-
jects) in the world. Lastly, the shape channel gives information aboubtitewr of the object.
The robot first checks whether the object-visibility feature condition isfedisr not. If not,

it only focuses on satisfying the object-visibility condition. If it is already $itif then the
robot makes a plan to obtain the observed position-related featuresthlbbject-visibility
and position-related features satisfy the goal constraints, the the sflated features are

chosen as the goal channel.

8.7 Stage 2: Results

8.7.1 One-Object Imitation

8.7.1.1 Clear the Table Task

The goal of this task was to keep the table clear, hence an empty table was &hthe
robot in theobservationphase. Since no object was perceived, dbgect-visibility feature

was automatically set to 0. Later, during tha@tation phase, dierent objects were placed on
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Figure 8.11: Clear the table task. In thbservationphase, an empty table is shown to the
robot and the robot sets the gaddject-visibilityfeature to 0. Environment snapshots, range

images and generated plans are given in top, middle and bottom rows;tiesiye

the table and the robot generated and executed plans to redusigebevisibilityto 0.

The snapshots taken from this experiment are shown in Figure 8.11),Ithélobject was
pushed and dropped from the left edge of the table usingpweh-leftbehaviors. In (2), a
graspable object was placed at almost the same position and the robattgdreeplan with
lift andpush-leftbehaviors. When these behaviors were executed, the robot lifted jiet ob
usinglift behavior and then the object dropped from the hand in the beginnipgsbi-left
behavior. The object, that landed on the table was pushed from the &tgetable by the
push-leftbehavior. In (3), theoush-leftbehavior execution was predicted to drop the object
from the table, however at the end of thesh-leftthe object remained on the table. The plan
monitoring module detected the failure and generated a new (correct) pkarr¢ away the
object in this slightly changed configuration. In (5), when a ball was placethe table, the
push-forwardaction was executed to roll itfiothe table. When a large non-rollable cylinder
was placed in (6), a wrong plan was generated since the diameter of thecldinder was
on the decision boundary for liftability (grasp-ability). However, whendbgct’'s position
was slightly changed, the system was able to make a new plan (7) with fosecudnt
push-rightbehaviors. This experiment verifies that through interaction the rolubldaaned
the dfordances related to physical characteristics and positions of the objetttgionally,
unsuccessful plan executions due to incorrect predictions couldrbected through the self-
monitoring mechanism. Note that in order to save space, we did not includegegreents
with the unreachable objects where no plan was generated, and b@ddtgpcts that have

similar movement characteristics with upright cylinders.
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Figure 8.12: Move the object to a target position task. The first paoiamn corresponds to
theobservatiomphase and the next panels correspond tarttitation phase steps. The details
of the computed features (third panel) are described in the text.

Range Image

Push-right Push-forward Push-forward Push-forward Push-right Grasp & Lift Finished

Features

Behavior
Execution

Figure 8.13: The execution steps of a 7-step plan that was generatéagdhar object to the

observed position in Figure 8.12 (a) top.
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8.7.1.2 Move the Object to a Target Position Task

In the observatiorphase, an object lifted in the air was shown to the robot. dibservation
phase and the initial step of thmitation phase are shown in the upper and lower panels,
respectively in Figure 8.12 (a-c). Visibility, distance and shape featuees normalized and
their magnitudes are shown by bars in compact form. Due to the prioritydtmgematic
goal setting, the robot sets the goal based on position-related featdtegenerates a plan
which could transform the given object features to the observed &igse 8.12 (d) shows

the expanded nodes of the search tree, and the found plan.

The snapshots from the execution of the generated plan are shown ne Big3. The top
panel shows the initial range images before the execution of the condisgobehaviors.
The figures in the middle panel show the feature values computed fromrige manage.
The predictions made for each feature during planning for the visibility asdipo feature
channels are indicated by small blue boxes. The lower panel illustratexe¢catien of
each behavior. In the end, the 7-step plan was successfully exeairtgthd the object

approximately to the goal configuration.

8.7.2 Two-Object Imitation

We can use the learnedfardances to make predictions over multiple objects under the as-
sumption that only one object idtacted by each behavior execution. For this, not plan
generation but the goal setting scheme needs to be modified for tasks igvoluitiple ob-
jects. In the case of two objects, the goal constraint set can be spesiified absolutely or
relatively. Inspired from goal-emulation in biology, our system sets thésgnaccordance

with the latter, where relation between objects is important. The robot competésatinres

of the objects in th@bservationphase, gets the vectorialffirence between these features
and encodes this filerence as the desired goal to be achieved. Setting the goal in this way
is also consistent with previous one-object imitation experiments if a secoel dixject is

assumed to exist (like the table or the robot’s body).

The left-most panel of Figure 8.14 shows a goal configuration with twocthjeThe top
and middle feature vectors in the second panel correspond to the rpbatisption in this

configuration and the bottom vector refers to the goal, computed asfibeedice between
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Figure 8.14: Two-object imitation. The left-most panel shows the placenfartijects in

the observatiorphase. The second panel shows the feature vectors of objeaisénvation
phase, and the fierence between these vectors encoded as the goal. Right-most 4 panels
show the generated plans irfférent setups to achieve the goal.

position features of the two objects. The right-most four panels shéereint situations
where the robot was expected to generate plans in order to achieveathdrgsituation (1),
a lying cylindrical object was placed close to the robot and a box shdpedtdar away. In
order to bring these objects closer, the robot needed to either pull thewards the cylinder
or push the cylinder towards the box. The system correctly predictedhidatylinder rolls
away when pushed forward and the box can not be pulled back with tbiingxbehaviors.
Hence, no plan was generated. When the orientation of the cylinder wagethin (2), the
robot predicted that the cylinder was no longer rollable, and it could beechtawards the
box if pushed forward. As a result a 4-step plan was generated witksB-forwardand 2
push-rightbehaviors on the cylinder. In (3), the box was placed closer to the rebatstead
of anypush-forwardoehavior, the plan consisted of tywash-rightbehaviors for the cylinder
and onepush-leftoehavior for the box. In (4), when the upright cylinder was replaged b

sphere, i.e. arollable object, the generated plan only included behaemrtens on the box.

8.8 Conclusion

In this chapter, we have shown that through self-interaction and ss#fralation an anthropo-
morphic robot and a range camera system can learn the offi@ctances in an unsupervised
way. The proposed learning system share crucial elements suchldsegoexploration and
self-observation with infant development. After learning the robot carerpéns to achieve
desired goals and also emulate end state of demonstrated actions. Therplhased on

affordance prediction capability and may involve multiple objects. Furthermoreygtem
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can monitor the plan execution and take corrective actions using the peaktspuctures

employed in learning.

In the first step of learning, the robot discovers commonalities in acti@eteexperiences by
finding dfect categories caused by its actions. For this purpose, the robot nsesldier-
archical clustering algorithm that was developed for dealing with non-lgemeous feature
spaces. This algorithm, first clusterfexts into channel specific categories and then takes
their Cartesian product to obtain all-channékeet categories. Predictors for each behavior
are then trained to map object features infi@& categories using non linear classifiers. Us-
ing the category prototypes, the robot can make predictions about thpererptual state of
the object acted upon enabling it to make multi-step plans for achieving gpaésesnted as

constraints defined over the object features.

The key aspect of our approach is that, the agent learns about iteremeént by discovering
the dfects it can generate through its actions, and forms forward models tHaleahto
predict the changes in the environment in terms of discrextecategories as well as low
level sensory changes. Predicting the ‘change in state’ rather thendkestate’ provides
better generalization, and, at the same time, allows ‘next state’ predictiorasmttitiple
steps into the future can be predicted facilitating multi-step planning. Finallgfrgsenting
the environment in relation to thefects, our agent ‘understands’ the world in regards to its

own action capabilities, fully adhering to the action based perception view.

8.9 Discussion

In this chapter, the robot learned objeffioadances using a set of non-parametric behaviors.
For example, instead of parameterizingpashbehavior with approach direction, for sim-
plicity we defined multiple behaviors (i.@ush-left push-right push-forward for different
instantiations of the same action. As another example, the robot cam@dgthe objects

from back since the approach direction is always same.

In the Introduction Chapter, we discussed that some action primitives@esented in sepa-
rate areas in human brain. Althoughyshandgraspbehaviors can be regarded as such action
primitives with diferent control modules, itis highly improbable that push actionsffemint

directions such agush-leftandpush-forward would be encoded infiierent areas and repre-
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sented as dlierent primitives. On the contrary, they must be represented by the sdime ac
primitive with a ‘direction’ parameter. In the Introduction Chapter, we furtiscussed that
infants not only learn the visual properties of the objects but also adjgistréach direction

while graspingobjects. Thus, behaviors must be parameterized and these parameters mus
be learned during agent’s exploration. The next chapter will study tloislgm, where all
behaviors includingush grasp andmove-handvill be parameterized, and these parameters

will be included into the problem of learning objedt@dances.
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CHAPTER 9

GOING BEYOND THE PERCEPTION OF AFFORDANCES:
LEARNING HOW TO ACTUALIZE THEM THROUGH
BEHAVIORAL PARAMETERS

9.1 Introduction

As mentioned in the Introduction Chapter, infants between 7-10 months noteamtywhat
type of dfordances areftered by the object, but also discovewthey can actualize them.
For instance, they learn not only that a milk bottle is graspable, but alsoieh a&hgle their
hand should approach the bottle to successfully make the grasp. At tlud,gbey demon-
strate dfferent modes of grasping such as power-grasp which relies on sstieeogntrol of
the hand as a whole, and precision-grasp that requires delicate digtl diontrol. It is not
clear whether the two types of grasps develop from a single rudimentaspigg behavior
or develop independently. However it is known that infants in that ageotibave the com-
plete adult level visuo-motor grasp execution ability [113], thus the coofrgtasp behavior

develops with the perception of th&@dance graspability.

This chapter extends previous chapters by (1) using parametric consitnetmaviors instead
of discrete ones, and by (2) addressing a more complex behavior, ngraslying. In the
previous chapter, the robot learned how to predict tiece of its own actions with the as-
sumption that the behaviors are discrete (i.e. had no free parametersy;dhabter we show
how this assumption can be removed. The chapter also addresses leargmagp in two
modes: precision and power grasping. Grasp learning a is complex te3k fikre we adopt
a minimalist representation for the grasp actions requiring two parametensjynthe target

position and the approach direction. We choose to have the former to venoetd by the
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grasp (object) location uniquely. Therefore, it is not a free paraméthegqrasping behav-
ior once the object location is given. The approach angle, on the other hepresents the
freedom in grasping and used by our learning system to discover thp gctions that are

suitable for the given object.

9.2 Framework Implementation

e Behavior: Behaviorscorrespond to parametric pre-defined actions. A behavior is rep-
resented ab; (@) wherea corresponds to the parameter list. In this chapter, each be-

havior has one parameter, I3¢e) notation is used.

e Entity: Theentitycorresponds to the feature vector which includes object features and
robot’s tactile sensor readings. The robot learfierdances by interacting with one
object at a time. Thus, entity will be representedffs where f corresponds to the

feature vector and () includes the list of the behaviors executed so far.

o Effect category: The robot discovers a variable numberggect categories(E%) for
each behavio; during it’s interactions. Further, eackfect category has a representa-

tive effect prototype vectorf(girototypeid), which is also found by the robot.

e Effect: The robot perceives and represents the change in perception oftitiese

) represents this change

during its behavior executions. Tlegectfeature vector(';‘ffec

and is used to learnfardances and make predictions.

¢ Affordance relation instance: The dfordance relation instance, which represents a

sample interaction with the environment, will be represented as follows:

bi
{< f effect’

£0, bi(a) >}

9.3 Experimental Setup

The anthropomorphic manipulator which is composed of PA-10 robot adnGifu robot

hand is used with infrared range camera (Figure 9.1).
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Check confidence
Check pixel position
Check amplitude

Detect objects

Delete borders
Compute features

a) Photograph of setup b) Range image c) Feature computation

Figure 9.1: In (a), the 23 DOF hand-arm robotic platform, infrared eacgmera (on the
bottom-left) and one object that is used in this study are shown. In (b) tigeramage
obtained from the range camera and the detected object are shownnahgeeis encoded
in grayscale and in color for the environment and the object, respectiye)yThe pixels
and surface patches that are used in feature computation. The range isTsganned in
four different directions starting from Closest Pixel (CP, shown by crossyur Reighbor
rectangular surface patches and four border pixels are detectagh) X (down), L (left),
and R (right) stand for four directions. Thus LS and LB melafissurface patcheandleft
border, respectively. Surface patches ifitdrent directions contain fixed number of (5:Zb)

pixels at CP’s neighborhood.

9.3.1 Perception

9.3.1.1 Object Detection

The first step of pre-processing is to filter out the pixels whose cordelealues are below
an empirically selected threshold value. The robot’s workspace conéiatblack table, so
region of interest is defined as the volume over the table, and black pixeRtared out
as the range readings from black surfaces are noisy. As a resultertiening pixels of
the range image are belonging to one or more objects. These objects mensed) by the
Connected Component Labeling algorithm [63] whicKatentiates object regions that are
spatially separated by a preset threshold value (2 cm in the current impbgioah In order
to reduce theffect of camera noise, the pixels at the boundary of the object are rerramatd
median and Gaussian filters wittkxS window sizes are applied. The detected objects on the
range image of a sample setup is shown in Figure 9.1 (b). Finally, a featcie ver each
object is computed using the positions obtained from depth values of tresporrding object

pixels as detailed in the next paragraph.
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9.3.1.2 Object Feature Vector Computation

The perceptual state of the robot is denotedfé)§, [fgl..] where f is a feature vector of size
25, and the superscriftdenotes that no behavior has been executed on the object yet. Six

channels of information are gathered and encoded in a feature vectbefobject.

Behavior execution on the objects are performed through interaction wiktebCP. Thus,
the interaction results ardfacted by the properties of the CP and its local neighborhood.
Thus, a number of pixels and surface patches, related to CP, are debdgcseanning the
range image in four dierent directions as shown in Figure 9.1 (c). Then, the following

features are computed and included into the feature set:

The position of CP (3 features).

The distance of CP to each border pixel (4 features).

The distance of CP to the center of each surface patch (4 features).

The mean normal vector for each surface34 12 features).

The visibility of the object (1 binary feature).

The touch sensor on the hand (1 binary feature).

In this feature vector, the first two channels represent the CP’s globpaégies, in the envi-
ronment and relative to the object. Third and fourth channels encodenatn about the
CP’s local properties. Last two channels correspond to informatioretetted to the CP, i.e.
refer to the knowledge regarding the existence of the object in the envénainand in the

hand, respectively.

9.3.1.3 Hfect Feature Vector Computation

For each object, thefiect created by a behavior is defined as thitedence between its final
and initial features:
(b)  _ £(b
feffect_ &) - £0

wheref®) represents the final feature vector after the execution of behavior
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9.3.2 Behaviors

How the objects arefeected from the execution of the same behavior, depends on the free
parameters of these behaviors. For simplicity, each behavior is modulateocheiffarameter,

a. The behaviors and their modulation strategy is as follows:

¢ Open-hand(): The robot rotates its wrist ia angle and opens its hand.
e Move-hand(@): The robot moves its hand 10 cmadndirection

e Push-object@): The robot pushes the object in for 10 cm approaching faodirec-

tion.

e Power-grasp@): The hand approaches wide-open frantlirectionto the CP of the
object. When palm-touch sensor is activated or the hand reaches theddessition

(CP), all the fingers are closed and the hand is lifted.

e Precision-graspfr): The hand approaches fromdirectionto the CP of the object.
Different from power-grasp, only thumb and index fingers are used to aaitexision
grasp when the tip of these fingers reach CP. The hand is lifted after texdiare

closed.

During object manipulation the robot hand is moved only in horizontal planeeathe table,

thusdirectionparameter can also be represented by an angle.

9.3.3 Interactions

What type of interactions the robot can perform on the objects depend onvilaesitly of its
behavior repertoire. In this chapter, fivdidrent behaviors, that are assumed to be learned in
a previous developmental state, are used to manipulate the objects in th@emrntoThese
behaviors are triggered withfeerent mechanisms based on the internal and external sensors.
We postulate that manipulation behaviors are executed over object's CP rmbtiite Thus,

if an object is detected on the table, the position of the CP, computed fromntpe camera,

is used to reach to and interact with the object by the behaviors triggereddmal sensors.

In case there is an object in robot’s hand, the robot executefeaatit set of behaviors to

manipulate the object.

126



Approach direction § Final snapshot Object range image

Figure 9.2: The execution of power-grasp behavior and the final btaege image. The
arrow shows the corresponding approach directign (

CeA

Approach direction Final snapshot Object range image

Figure 9.3: The execution of precision-grasp behavior and the fifetolange image. The
arrow shows the corresponding approach directign (
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Figure 9.4: Sample objects that are used in learning. Note that the size ianthtoon of
objects are randomly set.

9.3.4 Objects

The robot interacts with four types of objects; namely boxes, cylindpte®res, and objects
with handles, all in dferent size and orientations. As shown in Figure 9.4, only the handle
dimension is kept fixed. During the execution of its behaviors witfedent parameters, the
robot may experience interactions with objects and face wifferdint consequences. For
instance when the hand pushes boxes or upright cylinders in the middle ¢dlite, the
objects will remain on the table, but if it pushes spheres the objects will relhdbe table.
As another example, the same box can be grasped from one appraaatiodiwhile cannot
be grasped from other directions. Note that in order to avoid robot aramera collision,
the camera is placed on the other side of the table. On the other hand, thintetaxts with
closest point of the object and closest point is generally out of vieweftdmera. Thus,
only symmetric objects, which provide mirrored but same information fromtrabd camera

views, are used in experiments.

9.4 Learning of Affordance Relations

The exploration phase, conducted only in simulation, consists of episatiese the robot
interacts with the objects, and monitors the changes. The data from anisteiacecorded

in the form of< 2 0 bi(e) > tuples, i.e. (fect, (objecttactile), behavior) instances.

effect’
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Here,a is the parameter of the behavigrused for interactionf 0 and f:(ifectdenote the initial

feature vector and theflierence between final and initial feature vectors, respectively.

The learning process consists of two steps: the unsupervised digaiveffect categories,
and the training of classifiers to predict théeet categories from object features. The learning

process is applied separately for each behavior as detailed below.

Effect Category Discovery Effect categories are discovered by clustering tfiecés us-

ing the channel-based hierarchical clustering algorithm described ipt€ta In the lower
level, channel-specificfiect categories are found by clustering in the space of each chan-
nel, discovering separate categories for visibility, position and shapbelapper level, the
channel-specificféect categories are combined to obtain all-chanfielce categories using

the Cartesian product operation. In both levels, if the number of sampdey affect category

is lower than a threshold, the corresponditiiget category is discarded. After discovering

the dfect categories and assigning each feature vector in the (séjﬁgjt} to one of the &ect

bi

Iorototypeid) are computed as the average of

categories Ey, jg), the prototype fect vectors {

the category members.

Learning effect category prediction In the second step, classifiers are trained to predict
the dfect category for a given object feature vector, a behavior id andvimfs parameter
by learning the {9, 2) — Ep.ia mapping. Specifically, we used a Support Vector Machine
(SVM) classifier with Radial Basis Function (RBF) kernel to learn this mappan each
behaviorb;, where 9, ) is given as the input, and the correspondigiq as the target

category.

9.5 Behavior Parameter Selection for Goal-Oriented Afordance Use

The trained SVM classifiers allow the robot to predict dffect categorythat is expected to

be generated on abjectby abehaviorcontrolled with a particulaparameter

Egirf;iaed: Predicto (0, a).
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Figure 9.5: Behavior parameter selection to predict possible next olgess Given ob-
ject features {) and behavior-idlf), the efect category ;) and the next statef() can be
predicted by using the correspondiRgedictor() and prototype features. (a) and (b) shows
next state prediction using discrete and parametric behaviors, reghec#vgrouping and
averaging mechanisms is used to choose the most reliable behavior pasatretaansform
the current object perceptual state to one of the possible states thepooméng behavior can
transform.

The predicted percept of the object can be found as:

r(bi(@) _ bif0 o) = 0 4 0
f - FM (f ,CZ) - f + fprototypeidpredicted

Effectively, this corresponds to a forward modgElM) that returns the next perceptual state
of the object. By successively applying this model, the robot can predigig¢iceptual state

of the object for any number of sequentially executed behaviors.

Predicting the next state of the object for any discrete behavior is straiglatfd since given
initial object features, the SVM classifier will predict only onéeet category anéM will

give only one next perceptual state as shown in Figure 9.5.

On the other hand, one non-discrete behavior can create mfiagedt €fects on the same
object when controlled with éierent parameters. Next state predictions also depend on the
behavior parameter since it is an inpuRredicton(), thus diferent next state predictions can

be obtained when whole parameter space of the behavior is considetealasin Figure 9.5

(b). Still, the number of #ect categories is fixed for each behavior and the possible next
states are limited with this number. As a result, the problem can be transformigubing

the most reliable behavior parameter to reach a possible next state’. Fputhse, (1) a

grid search is done in continuous parameter space; (2) behaviors trdmatfiorm the current
state to the same state are grouped together; (3) the largest grouplforesdditerent state

is found; and (4) the mean parameter value in each group is selected assthmatameter
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that transforms the current state to the corresponding next state. Bigui® illustrates this

method in a simple example.

9.6 Experiments

In the experiments, a table with 1F0 cn? surface area was placed with a distance of 40 cm
in front of the robot, as shown in Figure 9.1. At the beginning of eacloeation trial, one
random object of random sized8+40cm] was placed on the table at random orientation. For
all behaviors, 2000 interactions were simulated with random parametetbaargsulting set
of relation instances were used in learning. The X-means algorithm wdsai8ed channel-
specific €fect categoriés and Support Vector Machine (SVM) classifiers were employed to

learn dfect category prediction.

9.6.1 Discovered Hect Categories for Grasp Behaviors

For power-grasp behavior, two channel specific clusters are formeach of the visibility,
position and touch channel. In the upper level of the clustering, aftesqemduct operation,

4 clusters are found to represent whdiieet space as shown in Table 9.1. Large objects could
not be lifted and remained on the table resultingnai-lifted gfect Small objects could be
lifted and as a result of this lifting, the height is increased and touch sénsativated as
shown in prototype ofifted gfect In some cases, the grasp is not stable, so the object slides
from robot’s hand during lifting but remains in contact with the hand, crgatirstable-lifted
effect In this dfect, the vertical position of the object is not increased (significantly) ghrew

the touch sensor remains activated. These cases are shown in FigUrecl#st &ect, which

is labeled aslisappeareds created by spheres, that roll away during interaction with the hand.

For precision-grasgbehavior, two channel specific clusters are formed in visibility and touch
channels and 3ffect categories are obtained in the end of hierarchical clustering asishow
Table 9.2. Because the robot inserts one of its fingers through the i@gpeftine handle, the
grasps are more stable once the object is hold. Thumatable-liftcategory was not formed

as inpower-grasp

1 X-means implementation in Weka data mining software is used [94].
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Not-lifted

Lifted

(€) a=25°

Figure 9.6: The interaction results for Jf@irent samples grasping cases are shown. Object
angle is always kept as45° but the approach angteis changed.

Table 9.1: Hect category prototypes discovered fawer-grasp Only significant changes
are given in the table. The comments are provided for ffexeprototypes and are not used
during experiments.

Effectid | Visibility Position (x,y,z) Touch | Comment
Effect 1 0 +3cm+2cm#+2cm 0 Not-lifted
Effect 2 0 +3cm#+13cm+3cm | +1 Lifted

Effect 3 0 +3cm+2cmq+2cm +1 Unstable lifted
Effect 4 -1 +3cm2cma+2cm 0 Disappeared

Table 9.2: Hfect category prototypes discovered farecision-grasp Only significant
changes are given in the table. The comments are provided fofféut prototypes.

Effectid | Visibility Pasition (X,y,2) Touch | Comment
Effect 1 0 +6cm,-1cmy4cm 0 Not-lifted
Effect 2 0 +5cma#+10cm+2cm | +1 Lifted

Effect 3 -1 +6¢cm,-1cny4em 0 Disappeared
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(c) Precision-grasp behavior (3 categories)
Figure 9.7: The prediction accuracies of the classifiers that are compsitegiditferent fea-

ture sets. The feature set is increased by one feature in each iteratamding the most
successful one. The left-most and right-most bars in each plot shawsbks obtained using
no and all features, respectively. Error bars on prediction aciasraicate the best, median,
and worst classifiers found by 10-fold cross-validation. The predicazuracy did not drop
significantly when the least irrelevant features were discarded frotretiméng set. Thus their

prediction accuracies are not shown, and they are represented with *.....
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9.6.2 Hfect Prediction in Power Grasp Behavior

After the discovery of ffect categories, the mapping from the initial object features to these
categories is learned for each behawp(Predicto ()) by multi-class Support Vector Ma-
chines (SVMs). The LibSVM [19] software package was used with optidhgeeameters of

the RBF kernel through cross-validated grid-search in parametes.spd@0 simulated inter-
actions were used in training and a separate set of simulated 1000 intesagticmused for
testing. At the end, 72% accuracy was obtained in predicting the coffect eategories for
power-graspbehavior. The low accuracy is due to théidulty in predictingunstable-lifted
effect category since it corresponds to the critical point between suanddsilure in lifta-
bility. When this category is discarded from the sample set and a similar trainicggure

is applied, 85% accuracy is obtained in predicting the three categories.

We analyzed the relevance of the featuresftordance prediction for thpower-graspand
precision-grasp For this purpose, we used Schemata Search [102] which computes-the re
evance of a feature based on its impact on the prediction accuracy.chieen&ta Search is

a greedy iterative method that starts with the full feature sg} @d shrinks it by removing

the most least feature in each iteration. At each iteratiprcéndidate subsets are formed by
deleting a diferent feature from R (remaining feature set of previous iteration), and they are
evaluated by training SVM classifiers in 10-fold cross-validation. Thestvith the highest

mean prediction accuracy is chosen aaiRl transfered to the next iteration.

Figure 9.7 (a) and (b) gives the prediction accuracy results witéreént feature sets, with and
without unstable-liftedeffect. When the feature relevance is examined, behavior parameter
(o) is among the most relevant features as presented. The other relesuret represent
CP’s object-relative properties and CP’s local surface angles. ¥aon@e,distance to right
border and distance to left bordeencodes the location of CP with respect to object and

left/right surface normals represent the shape of the CP’s local neigbhr

We systematically analyzed the successfiea prediction by comparing real and predicted
effect categories using a fixed size box which is graspable from one sidectmgraspable
from the other side. Itis rotated in 1Mtervals and in each object orientatigguwer-grasp
behaviors are executed with varying approach direction angles-fthto 40°. Other ap-

proach direction angles are not considered since the object is nbatdaavith those angles.
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-90 -45 0 +45 +90
Object Orientation (in degrees)

Figure 9.8: The comparison of real and predictéfdat categories for eierent object orienta-
tions and power-grasp approach directions. The color of the regmnssponds to observed
real dfect categories; blackNot-lifted gfect white: Lifted gfect and gray:Unstable lifted
gffect The ‘'S’ and ‘F’ labels corresponds to prediction success and failfitee prediction

or real d@fect category isinstable-liftedthen the corresponding box is not labeled. The cases
marked with bold red boxes are shown in Figure 9.6.
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The real &ect categories obtained during these interactions are illustrated \fithestit col-
ors in Figure 9.8. As shown in the figure, the relation between object-angldehavior-
approach-angle, which determines the liftability of the objects, is non-tragahe robotic
hand is not a simple gripper, but has high degree of freedom. Therediy hay symmetry or
linear relation between these two components (e.g. while objects arigbitation are lifted
by power-graspf20°), objects at-60° cannot be lifted bypower-grasp20°). Furthermore,
there are many ‘gray’ regions which corresponditstable-lifted gectthat are distributed
betweenlifted and draggedregions. This is a consequence of the robot hand kinematics,
which is diferent from a gripper. Our method was able to predict mdigce categories

correctly, however failed to predict some that reside in critical border.

9.6.3 Hfect Categories and Learning Results for Other Behaviors

Pushbehavior created four fierent éfect categories. A rollable object can be pushed out
view; a non-rollable object’s position and orientation can be changedfiereinit amounts
depending on the orientation and dimensions of the object, and the pustiodiréekhe pre-
diction accuracy is 92% and the 3 most relevant features consist oftlagibeparametera)

and 2 components of normal vectors from left and right surfaces.oAsdve-handehav-

ior, 4 different categories were formed based on CP position change. The noeaacgds
88% by only using the parameter. Finally, 5 ffierent categories were discoveredétease

behavior, since the shape features also change and contribute ftetteategory formation.

9.6.4 Real Robot Results

The results obtained in the simulator were partially verified on the real rddibdpm. For this
purpose, the féect category prediction system is transferred to the real robot. A bapesh
object and an object with a handle are used to assess the ability in predidiibegectwith

power-graspandprecision-grasgehaviors, respectively.

The box shaped object is placed in twdfdient orientations as shown in Figure 9.9 and
9.10. The behaviors that are predicted to lift the objects from their nasides are also

parameterized with éierent angles.
The watering can is placed in twoft#rent orientations: in the first orientation, the CP is on
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(a) Power-grasp [-30,40] (b) Range Image (c) Result of grasp

Figure 9.9: The object was grasped with an approach angle of 5

(a) Power-grasp [-70,20] (b) Range Image (c) Result of grasp

Figure 9.10: The object was grasped with an approach angl@st
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(a) No precision grasp (b) Precision grasp [-90,+90] (c) Result of precision grasp

Figure 9.11: The object is correctly predicted not to be liftable in (a). Tdmesobject
when rotated is predicted to become liftable with gmgcision-graspbehavior. Thus, it is
approached withOand lifted up.

its main body and in the other one, the CP is on the handle (Figure 9.11). Btiscamputes
the features based on CP, so the results dferdnt. In (a), no precision grasp is predicted to
lift the object, where in (b) precision grasps from all directions areipted to lift the object
since the handle is reachable from all directions. When the averagesef tirections are

used as the final parameter, the object is approached from behindteddufif

9.7 Conclusion

In this chapter, we proposed a method that allows a robot not only to disatwat type of
affordances areftered by the objects but also to ledrawto actualize them. After robot's
exploration, the fect of behavior parameters over discoverfdrdances are learned in re-
lation with the object features and the generatfdots. This learning enables the robot to
predict the objects’ next perceptual state based on the current &dgaates and the behavior
parameters. This prediction ability is used to satisfy particular goals, i.e. ¢tb aesired
final states. However, given an object and a behavior, méiagte can be created by the same
behavior depending on the parameters used. Thus, we proposedtaudtenethod to select

the behavior parameters to reach desired goals.

The execution opowerandprecision-grasgehaviors on objects infierent size and orienta-
tions (and withwithout handles) had non-trivial dynamics when the dexterous rolvat Wwas
used in interactions. Still, our system could learn tiferdances provided by these objects
and could act upon the providedf@rdances by correctly parameterizing the grasp behav-

iors. For this purpose, we used an improved perceptual processiogdure that encodes the
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affordance related properties around behavior contact point of thetobjec

The work presented in this chapteftdirs from the studies (e.g. [38]) that learns the grasp
points on the objects in a number of ways. First, unlike these approachigsethod does not
require the supervised labeling of its interactions (in these studies, typicaedlg thbels were
automatically generated by hand-coded monitors that categorized theafethdtexecution

as successful or not), and is completely unsupervised. Second appespd method is able
to not only predict the type offéect that will be generated by a behavior for a certain type
of parameter value, but also the change to be generated on the objeesatt af execution.
This property allows us to use these relations for making multi-step plans., Tinrdnethod
proposes a set of novel feature descriptors that work on the range#ni@ther than visual

images or sparse depth information extracted from them.

9.8 Discussion

In this chapter, similar to previous chapters, the robot used an existiagioehepertoire that
was assumed to be learned in previous developmental phases to diftordareces. In the
next chapter, we will relax this last assumption, and propose a method #idésthe robot to
discover behavior primitives from one basic action and one basic reéxg a crude tactile

and visual perception.
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CHAPTER 10

EMERGENCE OF BEHAVIOR PRIMITIVES FROM ONE
BEHAVIOR

10.1 Introduction

Throughout this thesis, we assumed the existence of a behavior repénatirwas learned

in a previous developmental phase. Thus, we designed supposedigddahaviors using
our intuition and understanding of natural systems in a pragmatic means sbehaarned
affordance prediction abilities based on those behaviors can be used ik@igoted way.

For example whilgpushbehavior was simply ‘reaching to the object center’, grasp behavior
was defined as ‘reach to the object, close fingers, and lift the hand’ cambination three
simple actions. Each behavior was encoded ifiedknt complexity and representation to

satisfy designer’s requirements.

Infants between 7-10 months have also acquired a set of behavioasdttptalitatively dier-

ent and that can be used fofférent motivations such as grasping, dropping, reaching, shak-
ing, etc. These actions can be considered as behavior primitives thatilered to develop
more advanced skills through exercise. There is evidence that somédrgbramitives are
represented as fiierent modules in human’s mind. For example, the ‘transport’ and ‘grasp’
primitives during reaching and holding the objects appear to be controlldiffbyent regions

of the human brain [124, p. 217]. Furthermore, there is a developmedil im maturation
order of these areas. Thus, it's plausible that the infant starts from lhramaber of reflex

like behaviors, and then progressively discovers and distinguishebetaviors through use

of old ones. Additionally, infants should be using nothing but their owngyion and moni-

toring skills to diferentiate and distinguish the behavior primitives. Lastly, a crude perception
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Figure 10.1: The grasp reflex. A snapshot from an experiment by BoWatson in 1919.

system should be employed to distinguish the basic behaviors, and a maread\percep-
tion should be utilized to diierentiate more complex behaviors and to discover more abstract

concepts such adfardance relations.

This chapter focuses on design of such a robotic system which starts mijthooe basic
reflex-like behavior gwing-hand behavigrand one basic reflexp@lmar-grasp reflex By
exercising this behavior with fierent hand speeds (which corresponds to maturation of 5-
month-old infants), and by using its crude tactile and vision sensors, tlo i®lable to
distinguish a number of meaningful behavior primitives. In the next devedopal step (7-
10 months), one of these behaviors, namely grasp behavior, is exensme on diferent
objects and is monitored using a more complex visual and tactile percepttamnsy3he
visual perceptual system is inspired from CIP neurons on the doatlalvpy of monkeys.
CIP extracts visual data and forwards it to AIP area which is resporfsdste perception of
graspability &ordance [103, 114]. Similar teurface orientation selectiveeurons of CIP
area [127, 150], the robot’s visual perceptual representation ieslditection and low-level

curvature information of object surfaces.

In this chapter, progressively more complex action possibilities finctkances are discovered

by the robot in three phases:
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¢ In Phase | referred agouch-based behavior discovery phasenumber of behavior

primitives are discovered through infants most basic sense, touch.

¢ In Phase I, referred awision-based behavior discovery phabi&her order behaviors

are discovered by including a limited visual perception.

¢ In Phase lll, referred asffordance learning phasemore complex touch and visual

perception is employed to learff@rdances using the discovered behavior primitives.

10.2 Framework Implementation

e Behavior: Initially, the robot is equipped with one behavior. tehavior discovery
phasesthrough exercise of this behavior, it discovers a number of behasimitjyes.
Each behavior primitive is representedg@) wherei corresponds to the index of the
primitive anda corresponds to parameter list. Since the behaviors are discovered from
the swing-handaction by using the same method, they have a common encoding. In
other words, each behavior primitive is encoded with a common set of ptaentleat

are automatically instantiated during behavior discovery. The paramegers ar

initial and final touch states,

initial and final hand velocities,

whethergrasp-reflexs disabled, and

hand movement direction (towards object or towards robot).

e Entity: Theentitycorresponds to the feature vector which includes object features and
robot’s tactile sensor readings. The robot learfisrdances by interacting with one
object at a time. Thus, entity will be representedffs wheref corresponds to the

feature vector and () includes the list of the behaviors executed so far.

o Effect category: The robot discovers a variable numbergfect categories{E%) for
each behaviob; during it’s interactions. An improved version of the hierarchical un-
supervised categorization method is proposed for this purpose. Fustidr &ect
category has a representatiieet prototype vectorf(g‘rototypeid), which is also found

by the robot.
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Figure 10.2: The trajectory of the basiwing-handoehavior.

e Effect: The robot perceives and represents the change in perception oftitiese

during its behavior executions. Tlegectfeature vector (2&

recp TEPresents this change

and is used to learrfiardances and make predictions.

o Affordance relation instance: The dfordance relation instance, which represents a

sample interaction with the environment, will be represented as follows:

(<9 £0 bi(e) >}

effect’

10.3 Experimental Setup

The anthropomorphic manipulator which is composed of Motoman robot adln®én robot

hand is used with infrared range camera.

10.3.1 Behaviors

“Even in the newborn infant, a basic neuro-muscular infrastructuresarhing and grasping
is present. When an object is placed in the palm of a newborn infant, the statilelation
triggers a grasp reaction in which all digits are flexed around the object. 8imilanew-
borns, reaching movements aimed towards objects within the center of thé fikddiare

present. "[149, p. 235]
Swing-hand behavior: The robot is assumed to have the ability to reach and bring the objects
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(a) Grasp (b) Hit (c) Drop (d) Tap

Figure 10.3: Robot-hand and object trajectories dusmwing-handbehavior with diferent
velocities and hand states. The labels that explain situations are only gigesddhe under-
standing of the figures and are not used in any phase of developmenés@anding sensor
trajectories and behavior primitive segments are provided in Figure 10.4.

to it. Swing-handehavior is used for this purpose where the robot reaches to the abjbct
pulls back its hand. This behavior is implemented to generate a trajectory asune Eig.2.
The hand that is either clenched or wide open prior to the behavior exe@atioreach to the
object in diferent velocities. Due to a built-igrasp-reflexif the robot feels anything in its
palm using touch sensors, the hand is closed. Furthermore, at any mtimeerdgflex can be

disabled randomly and in this case the robot hand is loosened even if therebgect inside.

The execution of the samswing-handobehavior over the same object withférent param-
eters (velocity, disable-reflex, and initial hand state) producierdit éfects. Figure 10.3
shows hand and object trajectories during execution of the same behatvidour different
parameter sets. In (a), the hand hit the object with a velocity ef 0.24 cny's, and due to
thegrasp-reflexhe object was grasped and brought back. In (b), the high-veldgity Q.42

cnys) collision between the hand and the object didn’t allow the object to bpepiam time.

In (c), the hittingreaching velocity of the hand was same with (a), so the object was grasped

However, while pulling back the hand, theasp-reflexwas disabled (randomly) so the object

was released. Finally, the hand was initially clenched in (d), so the objectapped only.

How the objects areftected from the execution of the same behavior, depends on the free

parameters of these behaviors. Wtil&ing-handehavior has one parameter (hand speed),

the discovered behavior primitives may have more than one parameter.
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10.3.2 Interactions

In Phases landll (behavior discovery phasgthe robot executes tleving-handehavior on
the same small object placed in a reachable positioffef2int hand speeds and grasp-reflex
disabling timings generateftierent éfects on the object and on the touch sensor. Based on

these diferences, the robot discovers a number of new behavior primitives.

In Phase lll (affordance learning phagehe robot executes the discovered behavior prim-
itives on a relatively diverse object set: boxes, cylinders and splrdifferent size and
orientation. The mechanism that is used to discover and distinguish bepawiitives and
encode them in the same representation automatically imposes constraints ieciimoexof
those primitives. If the sensors prior to behavior execution satisfies #udsmatically found
constraints (encoded parameters), the corresponding behavior pindtivbe executed. For
example, the robot will distinguisbarry-objectand move-empty-handased on the initial
(and final) touch senses. In other wordarry-objectbehavior hagnitial-touch-sensceON

in its encoding andhove-empty-hanidasinitial-touch-sensoeOFF. Based on this encoding,
the robot can executearry-objectbehavior only if the touch sensor is alrea@. During

the execution of each behavior, the robot observes the consegudritsactions.

10.3.3 Perception

10.3.3.1 Touch Perception

The sensory readings obtained from the distributed tactile sensors trattbe palm and

fingers are processed as follows.

First, touch for each finger link and for the palm is detected and encalbek & + 1 = 16
binary touch signals. Then, their sum is normalized between IPto represent a general
touch sensation for the hand, and calledaag touch signal. Since the readings are noisy, the

raw touch trajectory is convolved with the first half of Gaussian wind8{ = 50, o- = 0.5):

(i-M)2
yi =X X e 2N

whereM = (N — 1)/2. Convolvedeadings are used in perception duragfprdance-learning

phase Phase lll.
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On the other hand, in thehase landll , the robot has a crude sense of touch as mentioned
before. This limited sense is represented by three touch states, whicbrapaited from
binary touch signal, to ease the representation of this change. In orcemfoute the binary
signal, theconvolvedtrajectory is discretized ton/Qff sensor using a threshotd= 0.02.
Figure 10.4 shows a number of sample trajectories whereatievalues areconvolvedand

binarized

Touch Statesare defined based on the binary touch signal trajectory as follows:

e on: The touch sensor that is active during behavior execution.
e off: The touch sensor that is not active during behavior execution.

e onf: In some cases, the touch sensor is active for a short duration. Sseb ape
denoted byon/off or onf in short. There is such a case in Figure 10.4(b), change (E),
where the robot hand hits the object with high velocity. A similar case in Figlu&(d)
occurs, however since the reach velocity is lower, the object is draggeke table
rather then been hit. So the duration of touch is long in this case and handsstate

represented by the consecutimeandoff states instead of thenf state.

10.3.3.2 Visual Perception

Object detection: Asin previous chapter, the confident pixels that are inside robot’sspaide
are first found. Then, Connected Component Labeling algorithm [@Bjasl to diferentiate
the objects. In order to reduce thffext of camera noise, boundary object pixels are dis-
carded and median and Gaussian filters with Window sizes are applied. Finally, a feature
vector for each object is computed using the positions obtained from thie d@pes of the

corresponding object pixels as detailed in the next paragraph.

Object features: The object feature vector includes a binary featuredioject-visibility,
and a number of features related to location and shape of the object. Thesii@n of the
object center is used to represent location of the object. As for the $bapees, inspired
from CIP neurons in monkey brain, first, object surfaces are identifieth size, orientation,

and curvature of each surface is computed. Object surfaces ard byugrouping object
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Figure 10.4: Velocity, touch sensor trajectories and segmentatieuioig-handbehavior
with different parameters.

pixels with similar local orientations. For this purpose, for each detectedtqgtijee| a local
normal vector is computed (as in Chapter 8) and a clustering algorithm isasied ‘nor-
mal vector clusters’ that correspond to object surfaces. See Algo#tfon the details of
this algorithm and Figure 10.5 for sample surfaces. After finding susfdoe each cluster
(surface), standard deviation of the normal vectors is computed in @axHicate axis to
represent curvature. Additionally, for each surface, height anthvéice computed. At the

end, the following feature vector represents the object shape perception
S = (Wl’ h].’ ﬂl’ 0-1’ "'WS’ th ﬂsa O-S)

wherew; andh; correspond to width and height of the first detected surfa@ndo refer
to mean and standard deviation vectors (of size 3), respectigédythe maximum number
of surfaces, which is set to 3. Therefore, the object feature veattrdasobject-visibility,

position and shape features, and has sizeso8% (1+ 1+ 3+ 3) x 3 = 28.
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Algorithm 6 Surface identification through normal vector clustering
sd = Index of the surface (cluster).

Shormal = Normal vector of the corresponding surface (the mean of the cluster).

{N}: The set of normal vectors computed for each pixel.

cluster(A k): Cluster sample set into k clusters. Return the list of cluster index and means.
dist(s, sj): Distance between normal vectors of surfageands;.

threshold;si: A threshold to decide the similarity of surfaces.

nS ameS ur faceNeighbgps sd): Number of pixels with samsgq in 8-neighborhood op

[EEY

. ({Sid}, {Shormal}) = cluster(N, 3)

2: for each surface pak s, sj > in surface list{sq} do

3. if dist(s, sj) < threshold;s; then
4: Combines ands; in {sq}

5 endif

6: end for

7: for each surfacs in surface list{sg} do

8: for each pixelp in surfaces do

9: Deletep from s if nSameS urfaceNeighbdpss) < 3
10:  end for

11: end for
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Figure 10.5: Identified surfaces through normal vector clustering.etmw includes box
objects and lower row is composed of spheres and cylinders. Eachrepl@sents a sur-
face. Note that the pixels unconnected to other surface pixels aredbsicasing Connected
Component Labeling [63] algorithm and are shown with gray color.

10.3.3.3 Entity Feature Vector Computation

Entity feature vector includes robot’s visual and tactile percept in pssgrely increasing

complexities in subsequent developmental phases:
In Phase | entity feature vector is represented only with one featiotgch state(T):
f=(T)
In Phase II, the most basic object visual featuhject-visibility (V) is added to the entity

feature vector:

f=(T,V)

In Phase lll, theconvolvedouch signal is used as tactile feature insteaio€th-state Since
the robot learns the objecffardances in this phase, the object perception is more complex

and includes position and shape related information:
f=(CV,P,9

whereC, V, P, andS representonvolvedouch signalobject visibility 3D object position,

and object shape feature vector, respectively.

10.3.3.4 Hfect Feature Vector Computation

The dfect created by a behavior is defined as thffedénce between entities’ final and initial

feature vectors.
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10.4 Discovering Behavior Primitives and Learning Afordances

10.4.1 Phase I: Emergence of Behavior Primitives Using Touch

In this phase, the robot observes its sensor trajectory durffigreint executions adwing-
handbehavior and extracts behavior primitives from common segments in thesedregs.
The trajectories are segmented based on the changes in robot’s togonsse®. a new

segment starts when a change occurs in touch state.

For eachswing-handehavior execution, the trajectory is segmented when there is a change in
touch state. Figure 10.4 shows obtained segment instances from bedadations demon-
strated in Figure 10.3. Fromftierent executions andftiérent segmentations, there are seg-
ments with common characteristics. For example, the first segment obtaingaiv(g) are
similar since they correspond to the touch stage changff eé on. As another example, the

last segments obtained in (b), (c), and (d) correspond to the commogecf@mo change) of

off — off. Thus, based on touch state change, the experienced segment instangmuped

into generic segments, i.e. behavior primitives.

10.4.2 Phase II: Emergence of Higher Order Behavior Primitives Using \ion

In Phase I, the robot explores the environment using the behavior primitives dissdve
in Phase | and it observe®sbject-visibility besidestouch-state Thus, if the execution of
the same behavior with flerent hand speeds generateffedént results in terms of object
visibility, then two new behaviors emerge and the old one is deleted fromto@ger The

number of new behaviors is two in each discovery sigsedsibleis a binary signal.

10.4.3 Phase lll: Learning of Affordance Relations

In this phase, the robot learnf§@dance relations using the behavior primitives discovered in
the previous phases. As in previous chapters, the robot interacts étttshdiscoversféect

categories and then learns the mapping between entity featureffacttcategories.
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Effect category discovery Effect categories are discovered by clustering fffiecés using

the channel-based hierarchical clustering algorithm described in Gl&aptethe lower level,
channel-specificféect categories are found by clustering in the space of each channel, dis
covering separate categories for visibility, position and shape. In ther lgel, the channel-
specific éfect categories are combined to obtain all-chanffetécategories using the Carte-
sian product operation. In both levels, if the number of samples of fiagtecategory was

lower than a threshold, the corresponditigget category was discarded.

This algorithm (in its original form as used in previous chapters) disdaeddfect categories
based on how frequent they appear during interactions. Althougltect eategory is not
common, it can still be significant for the robot. Thus, we replaced the gyratediscard
effect categories with one method that is more robust since it checks thetpbditic of the
effect category in deciding whether to discard or not. For this purposefiatieng a potential

set of dfect categories through clustering, the predictability performance of edelgary

is checked separately by training classifiers. If the classifier is sdfat@sslistinguishing
that efect category from others, that category is predictable. If one of ttegyceaes is not
predictable in the potential set offect categories, the clustering process is repeated with
less number of maximum clusters. Algorithm 7 and Figure 10.6 provide the detals

channel-basedfect category discovery method.

On the upper level, the same predictability mechanism is used to check eagbrgatéow-
ever, diferent from lower level, if a category is not predictable, it is discardegure 10.6(b)

presents this method.

Learning effect category prediction As in previous chapter, classifiers are trained to pre-
dict the dfect category for a given entity feature vector, a behavior id and li@tsparameter
by learning the {9, 2) — Ep, ia mapping. Specifically, we used a Support Vector Machine
(SVM) classifier with Radial Basis Function (RBF) kernel to learn this mappan each
behaviorbi, where (0, ) is given as the input, and the correspondigiq as the target

category.
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Algorithm 7 Channel basedfect category discovery

kmax. Maximum number of categories.

Resetknax): Reseknax for new channel.

fefecdCh): Portion of feature vector limited to chanradi.
Clusterg{f}, kmax): Find between X ax Clusters with feature s¢f}.

{Eid}ich: The set of fect categories found in chanra.

1: for each channathin [visibility, tactile, position shapé do

2. Resetkmax)

4: {STEP 1: Find optimal categorization by clustering:times

5: fori=1:ngptdo

6: Find efect category sef Eid}ich) by Clustel({ fegect(Ch)}, Kmax)-
7 Train classifier Predictor()') to learn mapping — Eidich.

8: end for

9: Select &ect category sef Eid}2ﬁ51) with most accurat®redictor()

10: {STEP 2: Verify predictability of the optimal categories] Ed}gﬁ“}

11: for each ect categorgin {Eiq}P®Stdo

12: Assign same categorg)to all effects excepe

13: Train classifier to learn mapping— e,e

14: if accuracy thresholdthen

15: kmax = Kmax— 1

16: jump (3) {Categorization does not allow predictijon
17: else

18: continue {Check predictability of next categdry

19: end if

20: end for

21: end while

22: end for
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Figure 10.6: Channel'sfiect category discovery based on categories’ predictability.

10.5 Experiments

10.5.1 Discovered Behavior Primitives in Phase |

When only open-handwing-handbehavior execution is considered, sitfdrent behavior
primitives are discovered by the robot. Figure 10.7 gives these primitiithstieir touch
state change characteristic. For each primitive, the initial and final velositytaitions are
given on the left and right plots of the figure. At the bottom, the meaninghgltafor these

primitives are provided.

e Hit primitive corresponds to high velocity reach and hit to the object as shgvtineb
first plot of (b). The touch sensor was activated for short time and bfecbwas not

grasped at the end.

¢ MoveHand; primitive corresponds to hand movement towards robot body without ob-

ject after short duration touch to the object.

e Grasp primitive corresponds to slow velocity reach to the object and results in long

period touch sensor activation, i.e. stable grasp.
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e Carry primitive starts with slow velocity and stable grasp. When the primitive execu-

tion finished, the object is still at robot’s hand indicateddmtouch state.

e MoveHand, primitive corresponds to hand movement towards robot body without any

object in the beginning and at the end.

e Drop/releaseprimitive corresponds to hand movement to self with the object in the
beginning of the behavior and no object at the end. The object falls azshé of
unstable grasp idrop behavior in some situations, and as the result of disajplasip-
reflexin releasebehavior in other cases. We assumed that the robot can notice and and

learn from the disabled grasp-reflexes.

Closed-hanagwing-handbehavior is segmented to fivefidirent primitives, namely one tap,
two drags, and 2 move-hands. figirent from open-hand segments where the object drops
due to unstable grasps, in closed-hand segments, the object may beddogggbot’s fist for
certain time. However since the behavior segments are similar to previously émes, they

will not be carried to the next phase.
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Figure 10.7: The distribution of hand velocities in the beginning and at thethdhavior
primitive executions.

Figure 10.7 gives the velocity distributions for all experienced segmenssi@er the final
velocity (reach velocity) distribution dfit andgrasp behavior primitives. Ideally, the veloc-
ity of the hand for grasping should be always smaller than the velocity for dnitthowever,
as shown, the velocity ranges of these primitives are not clearly sépanath contain over-
lapping parts because of the complex interaction dynamics and noise in temsyghile the

robot hand couldjrasp the object with an approach velocity of3&cny/s, it could not grasp
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Table 10.1: The behavior primitives and their encoding.

| Name | Init Touch | Final Touch [ InitVel. | Final Vel. [ GR [ Dir. |
Grasp off on [0-0] [0.19,0.22] | on | obj.
Carry on on [0.19-0.21] | [0,0] on | self.
Drop on off [0.22-0.27] | [0.28,0.35] | on | self
Release on off [0.19-0.21] | [0.10,0.70] | off | self
Hit off onf [0-0] [0.24-0.76] | on | obj.
MoveHand; onf off [0.25-0.46] | [0,0] on | self
MoveHand, off off [0.25-0.65] | [0,0] on | self

with 0.19cm/s in some situations. Thus, in order to increase the confidence we include the

portion between first and third velocity quartiles into behavior primitive desons.

Table 10.1 gives the set of parameters that are automatically set for tiespanding dis-
covered behavior primitive. As shown, if the robot hand which apgresdo the object
with [0.19 — 0.21]cm/ s velocity wouldgrasp the object, however if the approach velocity is
[0.22 - 0.27]cnV s, the object cannot be grasped and the robot hand watlitl As another
example, even if the touch stateas initially, if the hand velocity is high (|22 0.27]cry/s),

it corresponds to high-speed grasp attempt, i.e. unstable grasp, thigatilmps from the
hand.

10.5.2 Discovered Behavior Primitives in Phase Il

The seven behaviors obtained in previous phase are further exkrmiskethe robot robot
distinguished new behaviors based ofiatences in visibility change. Frorelease release
andthrow-away behaviors emerged. Frohit, push andkick-out behaviors emerged. The

new primitives are shown in Figure 10.8.

0.8 e
I |
06r };‘ : 1 [ Name | Final Vel | Final Object |
‘ Push [0.30,0.48] visible
0.4} 1 Kick-out [0.61,0.72] invisible
Release [0.04,0.72] visible
Y - Throw-away | [0.23,0.48]| invisible
0
push kick-out release throw-away

Figure 10.8: Distribution of hand velocities at the end dfetient primitive executions.
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10.5.3 Learned Afordances in Phase Il

In this chapter, thefordances ograsp behavior is learned only. In the experiments, a table
with 100x 70 cn? surface area was placed with a distance of 40 cm in front of the robot. At
the beginning of each exploration trial, one object of random siem[840cm was placed

on a fixed reachable location at random orientation. Since the gftmpances of boxes of
different sizes and orientations is morgidult to learn and predict, large number of boxes are
included into interactions. The robot simulated 2000, 400, andg#@6p interactions with
boxes, cylinders, and spheres, respectively. Through experintaetapproach-direction
parameterd) of grasp is kept random. The set of relation instances were used mirigar
The X-means algorithm was used to find channel-specifiece categoriés and Support

Vector Machine (SVM) classifiers were employed to ledfiea category prediction.

10.5.3.1 Discovered Hect Categories

The iterative version of the hierarchical clustering algorithm, detailed inklyn 7 is used
to find the dfect categories. The maximum number of categokigsy, is set to 5 for each

channel. The results are given in Table 10.2.

o For visibility channel, X-means algorithm finds 2 categories. The first andrgl cate-
gories correspond tdisappearandstay-in-view respectively. When an SVM predictor
is trained to diferentiate the first category from the other categories (from the sec-

ond one), the prediction accuracy is found to be high. The same is valgttmmd

1 X-means implementation in Weka data mining software is used [94].
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Table 10.2: ThefBect categories discovered by iterative hierarchical clustering. Ttempal
categories, category prototype feature vectors, and the corréaggmddictabilities are given
for each channel.

Channel | Categories Prototype 2-category Predictable? | Accepted?
vector accuracy
- . -1 90.6 % v
Visibility | 2 categorieg 0 90.6 % N v
0.40 79.73% v
3 categories 0.11 64.42 % X X
Tactile 0.00 68.82 % X
. 10.38 80.15 % v
2 categorieg 0.04 80.15 % N v
[9,2,1]cm 67.00 % X
3 categories [0, 0, 0] cm 81.14 % 2, X
Position [12,-4,12] cm 79.20 % v
. 1[2,1,0] cm 78.2 % v
2 categories 115 3 121cm|  78.2 % N \
Large 73.47 % X
3 categories Large 69.77 % X X
Shape Small 71.27 % X
2 categories Large 70.5% X X
Small 70.5 % X
1 category | NA. NA. v v

category as well. Thus, these categories are valid and transformed ty-féghl for

cross-product operation.

e For tactile channel, X-means algorithm first finds 3 categories. The valersin
prototype vector is the ratio of activated touch sensors on hand. Tleufirdihcategory
corresponds to high-activation (grasp) and second and third casgmrrespond to
low-activation (finger touch or no touch). The performance of the S\édsifier that is
trained to diferentiate the first category from the others (graspable from othershis hig
(79.73%). However, the SVM classifiers cannot distinguish second anddhtiegjories
well since the accuracies are around 65%. As a result, maximum numbeegbcies
are decreased to 2, and X-means algorithm is executed again. The tenorizs
correspond to high-touch-activation and low-touch-activation, andaheyredictable

(with 80% accuracy), so they are transformed to higher-level.

e For position channel, X-means algorithm finds 3 potential categories,ewtver of
them cannot be predicted. Thus, in the next iteration 2 categories are &md trans-

formed to higher-level.
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Table 10.3: Hect categories discovered for grasp behavior.

Effectid | Visibility | Tactile | Position Shape | Comment
Effectl | -1 0.04 no change N.A. Disappeared
Effect2 | -1 0.38 no change N.A. Grasped & disappeared

Effect 3 | no changel 0.38 no change N.A. Grasped
Effect4 | no change| 0.04 [12, -4, 12] cm| N.A. Pushed

e For shape channel, neither 3 category nor 2 category set is found pcetietable.
Thus, there is no categorization in shape channel. The failure in diseg\sTty mean-

ingful shape change category is mainly due to robot’s inability to track objsgtfaces.

After effect categories are found for each channel, they are combined in tlee leppl by
cross-product operation. Some of the new categories are discambedtisey don'’t satisfy

predictabilitycriteria (see Figure 10.6(b)). At the end,ffleet categories are shown to remain.

10.5.3.2 Hfect Prediction Performance

After the discovery of ffect categories, the mapping from the initial object features to these
categories is learned for grasp behavior by multi-class Support Vecaohides (SVMs).
The LibSVM [19] software package was used with optimized parametered®BF kernel
through cross-validated grid-search in parameter space. 2200 simintgesttions were
used in training and a separate set of simulated 600 interactions wereougesting. During
training and testing, same number of samples from each category are @s@ittany &ect

of dominant category. Figure 10.10 gives the change in accuracy basseumber of features

used in training.

10.6 Conclusion

This chapter provides the most comprehensive work in term#ofdance learning and de-
velopmental progression of the robot. In this system, the manipulator raballyrpossesses
one basic actionsfving-hangl and one basic reflexp@lmar-grasp. In three developmental
phases, it learnsfiardances for a set of self-discovered behaviors in a completely ansup

vised way. In the first phase of development, it execsteimg-handaction on a fixed small
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Figure 10.10: The change in prediction accuracy of classifiers traiitbd®al object infor-
mation and computed features.

object with diferent hand approach speeds. During action executions, it monitorisahges
occurred in its limited tactile sense and automatically distinguishes behavior pririitwve
segmentingwing-handaction. In the second developmental phase, it starts using a limited
visual perception, and exercises the discovered behaviors agaie sarte object. It mon-
itors the changes occurred in visibility of the objects and distinguishes mbeyioes from

the existing behavior primitives.

Third developmental step corresponds ftoadance learning, i.e. learning the relation be-
tween behavior parameters, object and robot’s perceptual featutdba défects generated.
Thus, the representation and complexity of discovered behavior priméieesnriched by
including more parameters (such as approach direction or direction ofynidwen, the robot
learned &ordances ograspbehavior in terms of visual properties of objects, it’s tactile sen-
sors, approach direction antect categories. In this chapter, we also formulated the most

robust form of the hierarchical clustering algorithm that was used todiseffect categories.
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CHAPTER 11

DISCUSSION

In this chapter, first, we will review the related robotic studies and emphasizntributions
to the field of Autonomous Robotics. Next, we will discuss the realized robatodwork

and the experimental results within the field of Developmental Psychology.

11.1 Robotics

During the recent years, studies inspired by ideas in developmentdiglegy have increased
considerably ([155, 92, 4, 134]). These studies typically use exploragarning and em-
bodiment to enable robots learn about their environment via exploration witimadiexpert

knowledge. In the rest of this section, we review related studies (sde Tal for a sum-

mary) and discuss the contribution of this thesis to the field of Autonomous Rebotic

The pioneering studies that used motor babbling as a means of explorati@arfioing of
affordances include [99, 46] and [132]. For example, [46] studied thaileg of rollability
affordance by executingfilerent actions on flierent objects and observing thefifets. [132]
investigated tool fiordances by discovering tool-behavior pairs that give the desifedte.
In these studies, learning of the association between the visual feattheobjectgools and
their dfects (i.e. #ordances) were not addressed; therefore the leaffmdance knowledge

could not be generalized to novel objgtdsls.

Later this issue was addressed by [139, 43, 48], where the relatibnedrethe visual fea-
tures of entities and theiffardances were learned. However, in these studies fibelance
categories (e.g. liftability and traversability) were pre-defined, andilegimmas performed in

a supervised way based on the success criteria defined ovetebeda each action. Thus,
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the dfordances were not discovered by pure exploration and the roboteamtyed to predict

the dfects designed by the programmer.

[129, 60, 32] proposed the self-discovery of tikoedances, where thefect categories were
found through unsupervised clustering in theeet space. Furthermore, using these cate-
gories, the mappings abject— effect categoriesvere learned. Thus, the robot was able to

make predictions to choose actions that would fulfil a desired environrhange.

All the aforementioned studies were deterministic and relied on one-directitaypings.
[37, 65, 101] used probabilistic networks that capture the stochastimreldetween objects,
actions and ffects. These networks allowed bi-directional relation learning and predlictio
For example in [101], after training Bayesian networks, the robot corédigt the object
categories whenfiects and actions were given, or it could predict tffect categories when
objects and actions were given. One drawback of this approach wabkehzbject categories
were created by unsupervised clustering in feature space withoutefargmce to the inter-
action experience of the robot. Cognitive development in humans sutgésictions and
the dfects created by them are used to parse the perceptual space intoieatedpch may
be called ‘objects’ (entities). Therefore, it is not that the object categ@xist in the envi-
ronment and their relations with thé&ects and actions are learned; but rather thecés and
actions define the object categories. In our work, we follow this full actiased percep-
tion view by categorizing the object feature space based onfbet® This is central to the

affordance concept.

In all of the studies mentioned above, the agent acquires the ability to maketfmes about
the dfects it can create through active exploration of the environment. Howdwerto the
‘effect’ representation adopted in these studies, the systems describet! pauict more

than one step ahead, which prohibits complex planning.
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29T

Table 11.1: Summary of related robotics literature.

TheFixed objectgyroup does not use to object properties. BupervisedndUnsupervisegroups learn one-directional mapping from objesvironment properties to given and discoverfidat categories,
respectively. Th@robabilisticgroup learns the probabilistic bi-directional relationsléheHigh-level rulesgroup assumes the existence of Al inference rules.Plaening in perceptual spaggoup’s learning
is similar to theUnsupervisedjroup, but can make multi-step predictions.

Initial percept

Effect/final percept

Learning

Learning Method

representation representation

Fixed objects Fllg]z] Predefined-ids (B:i?]r:guous initial — effect ?;(t))?;?cl)l(l)sktllcpmference
Supervised [139] SVM

[43] Continuous Binary initial — effect GMM

[48] Decision tree
Unsupervised [129] . . Decision tree

[60] Continuous Discrete (X-means) initial — effect Nearest-neighbor

[32] Discrete (GWR) Discrete (GWR) Feed-forward NN
Probabilistic [37] Continuous Bayesian Belief Nets.

[101] Discrete (X-means)| Discrete (X-means)| (initial) « (action)« effect | Bayesian Nets.

[65] Continuous Binary Relational Dep. Nets.
High-level rules | [117] Binary Binary Kernel Perceptron

[159] Continuous Binary Logical predicates Knowledge Base

[100] Continuous Continuous Optimize cost func.
Planning in per- | [121] Discrete (SOM) Discrete (SOM) initial — final List of links
ceptual space Current work | Continuous Discrete (X-means) effect SVM



In [117, 159, 100] on the other hand, after learning, the robots could nmailti-step pre-
dictions using transition rules and hence were able to demonstrate compleinpglaihe
transition rules were defined as actions linked by logical precondition astdgndition pred-
icates. Their approach isftirent from the previous ones since sensorimotor experience of
the robot was used to associate the predicates of the transition rules ddreitions were
pre-defined binary functions of sensor readings in [159], wherediet learned to combine
these conditions in the form of pre-conditions arfféets through human assistance. [117]
used pre-defined or pre-learned high-level object and environpnepérties as the predicates
of the transition rules. On the other hand, [100] discovered these ptedifrom low-level
sensory readings during a goal-free exploration and learning pidtbeugh objects could
be categorized based on their shapes in the sensory level, this informatsonolvused in
effect prediction. Moreover, only position features were used to learn fsigfifprdances of
the object” [100, p.886]. In short, in these approaches, the leatfi@diances were either
simple or acquired through supervision. In addition, the mapping of thebéestures to de-
velopmental psychology is not straightforward as logical inference arésims are assumed

to be available to the learning agent.

In this thesis, we followed a similar approach to the studies [129, 60, 32)virat discussed
above Unsupervisegroup in Table 11.1). The main novelty of our approach is the encoding
of the dfects and objects in the same feature space. In contrast, in the other stadigsdh
representation were context and task dependent, and therefore damspond to the object
feature space. Having thé&ects and objects encoded in the same space provides the ability to
predict the next perceptual state by adding the current features todtthieted &ect features.

This enables the robot to make plans (without using high-level Al rule tqube) based on

the structures that were learned in a completely bottom-up manner during iectidarwith

the environment.

From the planning viewpoint, [121] can be considered as the closest fppuoach, where
the robot learns the environment dynamics in its perceptual space arglmidii-step ac-
tions to achieve goals in a locomotion task. However, there are importfietetices that
sets our work apart: First, the initial percept space is categorized insupearvised manner,
i.e. irrespective of the interaction experience of the robot (as was #eefoa[101]). Sec-
ond, (in [121]) the robot learned theitial »final mapping, whereas our system learns the

initial - effectmapping which provides better generalization. For example, in our casie, pu
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ing a box located on the table would always generate the sistt eegardless of its position
(unless, of course the object is at the edge). Yet, atthe same time, itislpas®btain the fi-
nal percept (i.e. the predicted position of the box). Generalization ofrtbelledge obtained
via exploration is a critical issue when the world of the agent becomes marplex, i.e.
when the number of actions and the type of environments that can be exetibecomes
large. An adaptive agent needs to utilize its resources parsimonioudlgeaals to be able to

predict in situations that it never encountered before.

In summary, the points that set our work apart from the existing oned preuti-step plan-
ning, (2) categorization of the perceptual space based on actionseandfiicts, (3) gener-

alization of the knowledge obtained through exploration.

11.2 Cognitive Development

The development of artificial agents that learn through embodied interagtiothe environ-
ment is rather recent in robotics. Yet, the concepts leading to these idesald®n studied in
developmental psychology for years. The necessity of predictiorbdapdor goal-directed
action execution and planning goes back to 19th century. The ideomotoipteipostulates
that an agent must use fisr anticipation of an action’s outcome to execute intentional ac-
tions [74]. Furthermore, according to this principle, these anticipationsemresented as
action-dtect relations which are learned during the motor babbling phase throptgraton

of the environment [118]. Our work, among others, captures this basieraation, namely
learning the ffects of actions in the environment and representation of these expearience

be used in prediction and planning.

An unsettled discussion is whether the goals and predictions are encotler perceptual
space of the agent [59] or not. This is an important issue both for a dasagner and a neu-
roscientist searching for neural correlates of intelligent behavioro#tgh, most would agree
that a hierarchy of predictive mechanisms, ranging from sensory toaahds a prerequisite
for intelligent behavior, we further argue that this by itself is ndfisient. The critical issue
is that the goals and the predictions can be expressed in the low leveppeicgpace when
needed. According to [40], this is supported by recent behaviokhin@aropsychological

findings. In the experiments presented with our system, the goals weléespdaectly in
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the perceptual state of the robot. However, this is not the only possibilityeagrédiction
mechanisms we employed represent tfieats of actions in two levels: One is thadance
level where discrete and abstract items are predicted {fecteategories). The second is the
sensory level where the prediction takes place in the perceptual sgaaifrent perceptual
state+ effect category prototype). If we were to consider our robot as a ‘t@gélagent’ and
ask it to bring about the ‘liftedféect’ it would be able to tell whether there is, any object that
affords this high level (non-perceptually specified) goal, and if, indeextetls, it would be

able to execute a behavior to bring about the desifiste

In spite the ongoing debate on whether these anticipations are represethiedsensory-
motor space or in a more abstract level, it is widely accepted that these nwuohame used

in planning [67]. According to Piaget (1952), human infants start to digisigmeans-ends
relation at 4-8 months, and start to use these relations until around 12 nfonthse step
goal satisfaction. It is not implausible that a limited amount of anticipation skilldoevired
through evolution in humans and other animals; however, the majority of this skéll beu
acquired by the organisms through interaction with the environment. [42]&Gjdcargue
that this ability cannot be innate and the human infant learns to use anticipatigodl-
directed action execution in Hieer early months of infancy. Infants use the learned action-
effect relations to anticipate the results of their actions in a goal-directed wayngtaom

9 months [119, 138, 158]. Piaget argued that planning is only possieledsvelopment of
symbolic representation at 18-24 months, although there is evidence tinaggrochildren
are able to make multi-step plans. For example, 9-month olds are shown tatgesmenulti-
step plan to reach a toy, by first removing the obstacle, then pulling the todigirabbing the
object placed on it [157, 23]. In our system, the prediction ability was dsirated for multi-
step planning without going through a gradual development. This, howewald be easily
emulated by restricting the planner to plans of depth one and graduallysimgethe allowed
depth in the search for plans to achieve the desired progression. @mspeeulate that the
inability of early infants to make complex plans is due to an immature working memory
needed for planning. As the infant grows, the increasing memory thatitable to the
planning may allow complex plans. This argument regards the planning mechas fixed

but requiring more memory as the sought plans become more complex; hdhisvaay not

be the case asfiierent planning mechanisms may coexists and develop along with the infant’s

cognitive development [36]. It is largely unknown whether symbolic mdatmn ability is
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necessary for complex planning, as Piaget argued. Our stance iingt@ztionally, there is
no such necessity; even though a symbol manipulation machinery wouldteérable tool
for planning and other cognitive skills. Especially this would be more adganizs as the
plans shift from physical to social domain. In the presented system, the ata performed
in the perceptual domain which allow the robot to naturally interact with objectisl ihot
experience before. For example it would be able to make a bottle disappeattfe table,

even though it has no idea what a bottle is and has never seen it before.

One feature we introduced for specifying the goals automatically in oumayss interesting
relations to the so called ‘goal emulation’ in cognitive psychology. The temmbe defined
as an observer’s learning that a particular goal can be achievecetimtysabout achieving

it by its own [151]. Goal emulation is fierent from other social learning mechanisms such
as mimicry and imitation and somewhat puzzling. Most animal mimicry is restricted to goa
emulation, which is generally regarded as a simpler task than imitation. Howewean
infants who can imitate are unable to use goal emulation to learn new skills: Ghdtosv
mimicry before 12 months of age but only start to pay attention to goals of therstrator
only after that period [122, 17, 151]. 17-month-olds can use obdewtons or their own ac-
tion repertoire to achieve the observed goal depending on the condgxafs 18-month-olds
can understand ‘intended’ goals of a demonstrator trying but failing teaelnis goal [98],
18-month-olds can learn tool use by observation. However, goal-enmlago executing a
sequence of behaviors after observing only the goal state, develihyes tate [10, 122] and
only after 18-months-old infants are able to emulate action sequences/&rguals [69, 8].
For example, in [7, 8], 27-month-old infants were able to execute a 3-&eggconstruct a
rattle from two cups and a ball but 21-months-olds were not. The puzztidogpfis for human
infant goal emulation could be due to the lack of motivation or theffitsant @&fordance ex-
perience with the toys used in the experiments. Many animals are known to métksteu
plans involving diferent types of objects. For example in [84], chimpanzees stack foesbox
on top of each other to reach a banana that was hung out of their fHa&hwere also able to
climb on a long stick instead of stacking the boxes when that stick was availatble énvi-
ronment. However, the same chimpanzees were not able to generate phatiege objects
when the objects resided in another (accessible) room even if chimparamtegplored that
room recently. This observation leads [131] to conclude that non-lingaisiicals use object

affordances to make plans; and they start reasoning from the immediate emstro(initial
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state) to reach the goals, i.e. they use forward-chaining. Furthermernglatihngeneration can

be successful if they have learned tH#oedances of the objects before [58].

Within the light of above discussion, we can argue that our robot systesn win in automatic

goal setting mode is more similar to a chimpanzees rather than a human infant,gaslthe

is more important than the means for a chimpanzee. Although, chimpanzees sdidiat
learning mechanisms to develop various tool use skills, unlike humans, gnégsarsensitive

to demonstrator's body movements and tend to emulate the goal more than to imitate the
demonstrator [137]. In fact movements that do not have apparentdageh as another

object or a body part has little imitation potential for chimpanzees [105].

One final similarity of our system’s working with a chimpanzee’s cognitive alsliigethat
chimpanzees have ftlculties when manipulating objects infidirent multiplicities. It may
be speculated that this could be due the lack of symbolic planning ability of chizepa.
This is analogous to the case in our system: our system benefits from Haeipdanning
done in perceptual space in terms of generalization and robustnessfdugs dificulty in
encoding goals in the same representation feiedknt number of objects. In the current
implementation, we overcame this by introducing a special goal setting mechiasisined
from the observation (unpublished video related to [105]) that when drizges are asked
to imitate an action involving two objects (put an object in a bowl), they appeaptoduce
the spatial relation of the objects rather than the absolute spatial configushtiarn to them
(by holding the object and the bowl in both hands and bring them togethee mitinstead

of on table).

We close this section by noting that although Piaget’s requirement for synmafigoulation
ability for complex planning might be too strict, higher cognitive abilities, includmgti-

object and memory based planning requires the development of symbolitngamech-
anisms irrespective of whether the symbols manifest themselves as linguissicums or

not.
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CHAPTER 12

CONCLUSION

12.1 Summary of the Results

In the Introduction Chapter, our approach was defined within a multi-disciglicentext at
the junction of Autonomous Robotics, Developmental Sciences and Ecdl&gigehology
(or the theory of #ordances). Accordingly, in this section we will discuss the obtained results

in the face of these three disciplines.

In Chapter 3 [145], we gave a formal description offardances learning framework. In
this framework, the fiordances were represented leffdct entity, behavio) nested triplets.
The dfordance learning was performed in phases where similar acfieat® were grouped
as discrete féect categories first, relevant features necessary to preffiectie were identi-
fied for each behavior next, and the mapping from relevant featurestities and behavior
parameters tofBect categories were learned at the end. In this chapter, we also @elscrib
different control methods that use learné@ances in a goal-oriented way during actual

robot execution.

In Chapter 4, the mobile and manipulator robot platforms, the range sensors and the simula-

tion environments were described.
Chapter 5 [141, 139] studied the learning and perception of traversabitfiyrdances on a

mobile robot equipped with range sensing ability.

e From robotics point of view, first, a new perspective to the navigatioblprno was
developed where traversability was not limited to classical obstacle aveiddrare the

robot tries to avoid making any physical contact with the environment. Spaltifiwe
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proposed a set of features for representing the shape and disttorogaition on range
images that are shown to provide a good degree of generalization, ealdkle method
towards learning ffordance relations. It was also shown that the robot does not need
to detect the objects in the environment to detect their traversability. Instezmlld
‘directly’ perceive traversabilityffiordances of the objects using low-level position and
shape properties that were extracted from whole environment. Thegadpoethod
also showed that one can start with a large feature vector that contaityped! of
feature detectors that one can propose, and have it reduced donly tofcaction after
training. In this sense, the robot could minimize the load on its perceptuad$sing
after learning to achieve perceptual economy. At the end, using theetbdfordance
detection ability, the real robot could successfully navigate in ficeoenvironment

cluttered with objects that it has never interacted before.

e From dfordances point of view, we tested the robotEoedance perception in simi-
lar experiments conducted in Ecological Psychology such as detectaimdbiability,
go-under-ability andgo-through-ability We showed that three main attributes that are
commonly associated withffardances, that is,fiBordances beingelative to the envi-
ronment, providingerceptual economynd providinggeneral informationare simply

consequences of learning from the interactions of the robot with theoemaent.

Chapter 6[140] studied a curiosity-based online learning algorithm that automaticallyses

novel situations to interact based on previous experience.

e From robotics point of view, we proposed a two step learning procegshwonsists
of bootstrapping and curiosity-based learning phases. In the curluesiyd learning
phase, we proposed a method that choose novel situations to interedtdrethe con-
fidence of the fiordance detector that was trained up-to that point. We showed that
by adjusting the parameters of the system such as bootstrapping durationransity
threshold, the speed of the learning could be optimized and the robot camdthee

traversability &fordance using less exploration time.

e This method was inspired from ‘intrinsic motivation’ mechanism used by infdunts
ing exploration. Thus, from development point of view, it can be arghadinfant’s

confidence and experience oficrdances of an objecttacts its interest on ‘playing’
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with that particular object. In other words, the confidence on obj#otdances can be

part of of the so called ‘intrinsic motivation’ mechanism.

Chapter 7 [143] and8 [144, 142] studied unsupervised learning @oedances where the
mobile and manipulator robots interact with the objects in their environment usprg-a

coded repertoire of behaviors.

e From robotics point of view, we proposed a method that allows the robotta tgh-
ject dfordance relations which can be used to predict the change in the pefdbpt
object when a certain behavior is applied. The key aspect of this agpie#hat, the
robot learns about its environment by discovering tiieas it can generate through its
actions using a novel feature-channel based hierarchical clusedgngthm. It then
forms forward models [79] that enable it to predict the changes in theamaint in
terms of discretefect categories as well as low level sensory changes. Furthermore,
this prediction ability could then be used to develop plans using forward iolgai
robot that learnedffordances through self-interaction and self-observation could make
plans to achieve desired goals, emulate end states of demonstrated actiit, the
plan execution and take corrective actions using the perceptual sesiennployed or
discovered during learning. Using this method, the mobile robot with limited manip-
ulation capabilities could generate and execute multi-step step plans suctivas ‘d
forward-left’, ‘drive-forward-right’, and ‘lift’, in order to lift a n@el unreachable ob-
ject. On the other hand, the anthropomorphic robotic manipulator could emulate the
observed goals by making multi-step plans. For example, if it observed ay &abje
as goal, then it could clear the table by pushing or lifting or dropping the tshjécs
another example, if the robot observed one object lifted in the air, it cauid bther
objects to the same position by pushing several times and lifting. It also haditite a
to make plans with multi-objects. For example, if it observed two objects thatase c
to each other as the goal, then given two objects far from each otheuld generate
plans to bring them closer. All these plans were made in robot’'s perceytaeé and

they were based on learnefiadances and learned prediction ability.

e From developmental point of view, first (as discussed in detail in Chagpfeithe pro-
posed learning system share crucial elements with infant developmérdasgoal-free

exploration and self-observation. Second, as supported by reekavibral and neu-
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ropsychological findings, the goals and multi-step prediction mechanismindead

be encoded in perceptual space of 12-month-old infants who has velbded sym-

bolic representation yet. Our work also showed that multi-step plans caenesaded

and executed using unsupervised learned and bottom-up construcigte@tge with

no symbolic structures or complex reasoning mechanisms. Third, similar to the no
linguistic animals, our system also uses objdfdraances to make plans and the robot
starts reasoning from the immediate environment to reach the goals thraugirde
chaining. Fourth, we discussed that in terms of ‘goal emulation’, ourtrejstem
when run in automatic goal setting mode is more similar to a chimpanzees rather than
a human infant, as the goal is more important than the means (action imitation) for a
chimpanzee. One final similarity of our system’s working with a chimpanzegjaie

tive abilities was that chimpanzees havéidulties when manipulating objects in dif-
ferent multiplicities. We speculated that this could be due the lack of symbolinipign

ability of chimpanzees (and our robot system).

Chapter 9 proposed a method that allowed the manipulation robot not only to diseder
type of dfordances wereftered by the objects but also to ledrawto parameterize its be-
haviors to act on the providedfardances. After robot’s exploration, th&ect of behavior
parameters were learned in relation with the object features and the gehefacts. This
learning enabled the robot to predict the objects’ next perceptual siatallon the current
object features and the behavior parameters. For execution, a cowtiobd that searches
the behavior parameter space and selects a particular parameter to didrdanaes was
proposed. In the real robot experiments, the graspabliiibréances of dierent objects was
detected. The robot correctly parameterized its precision or powep detsaviors to ap-

proach and grasp filerent objects by approaching them fronffelient directions.

e From robotics point of view, this chapter presented a method to learn thionele-
tween the objectféordances, behavior parameters, and obtaiffedtecategories. This
chapter also proposed a visual perceptual processing to repodgectis using a com-
bination of local and global position and shape (related) features. Adrttiethe real
robot hand was able to detect liftabilityfardances, i.e. choose correct approach di-
rection parameters for precision and power grasp behavior for mugfeénemt orien-

tations. The execution gfowerand precision-graspbehaviors on objects in fiierent
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size and orientations (and wijtlithout handles) was shown to have non-trivial dynam-
ics when the dexterous robot hand was used in interactions. Still, ounsgstdd learn
the dfordances provided by these objects and could act upon the pro\idedeances

by correctly parameterizing the grasp behaviors.

e From development point of view, we discussed that it takes 9 months fantsto
reach for objects with correct hand-orientation and adjust their gripbsiged on ob-
ject size before contact. As discussed before, the learning of Bgisidancestakes
place mainly between 7-9 months. This suggests that visual propertiegectobnd
behavior parameters are learned together indicating that findings dferperiments

is consistent with the developmental time-line of infants.

Chapter 10 provides the most comprehensive work in terms fédraance learning and de-
velopmental progression of the robot. In this system, the manipulator rabaliyrpossessed
one basic actionsfving-handl and one basic reflexpélmar-grasyp. In three developmental
phases, it learnedfardances for a set of self-discovered behaviors in a completely ansup
vised way. In the first phase of development, it execstgohg-handaction on a fixed small
object with diferent hand approach speeds. During action executions, the robdbradn

the changes occurred in its limited tactile sensor and automatically formed bepaxio

tives such agrasp hit, carry-object drop, by segmentingwing-handaction. In the second
developmental phase, it started using a limited visual perception, andsexktbe discov-
ered behaviors again on the same object. It monitored the changessakicwvisibility of the
object and formed more behaviors from the existing behavior primitivasex@ample, by ex-
ecuting samdit action with diferent hand speeds, it discovered two new behaviors, namely
pushandkick-out The third developmental step correspondedfitordance learning, i.e.
learning the relation between behavior parameters, objects and peteeprgsentation of

the environment, and thdfects generated within this representation. The robot learned grasp
related #ordances in terms of visual properties of objects, tactile sensor readipg®ach
direction and &ect categories. In this chapter, we also formulated the most robust form o

the hierarchical clustering algorithm that is used to discoffeccecategories automatically.

Since this chapter is the most comprehensive work, we will relate our watietoommon

characteristics of Developmental Robotics as enumerated in the IntrodGdtapter:

e The learning agent was embodied in a robot, and situated the an environitiemiany
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object that it physically interacts. Cognitive development of the robotthasesult of

this embodiment and physical interactions.

The development was incremental. In behavioral level, starting from oregdrre-
flex like action, more complex behaviors were emerged based on previcalyred
ones.Cognitive skills were also developed through time through discowffed cat-

egories and acquiring prediction ability.

The development was not task-dependent and it was completely dgvebt's per-
ceptual system, innate action and reflexes and the objects in the environfikate
was no graspable objects in the environment,daey behavior wouldn't have been
emerged. Or as another example, if all the objects were rollpbhandthrow-away
behaviors wouldn’'t have emerged frdmt since all objects would have rolled ouffo

the table after any interaction.

The complexity of sensory and motor system was initially limited and crude. Bosgn
level, progressively more complex perceptual processes and eepatens were used
through development. In motor level, while initially the robot v&gingingits hand
with random speeds, after development, it was able to select approactiatis and

contact speeds in order tpaspthe objects.

The robot developed abstract concepts from its low-level continusnsosimotor ex-
perience. Emerged behavior primitives, discoverfidot categories are examples of

such categories that were formed in behavioral and perceptual level.

From development point of view, the progression of robotic skills dematestris consistent

with infant’s development time-line. It is very likely that the infant starts frosnaall num-

ber of simple behaviors, and then progressively discovers and distimgunew behaviors

through use of former ones. Based on the robotic experimental resudtismiedh, we think

that exercising the innate hand movements ifiedént speeds, monitoring the tactile sensa-

tion, and using the innate reflexes may have significant role in infant’s\disgof behavior

primitives.
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12.2 Future Work

e Our learning algorithm enables predicting the next perceptual state tieecurrent
perceptual state and behavior parameters. However, the predictiotyisranway
because of the working principle of SVM Predictors. For example, it cgfind the
behavior parameters given current and desired next states. Intordied the best
behavior parameter, it needs to make a search in behavior parameter Spaiarly,
it cannot find the current state given a desired state and behaviong@s. A method
that representsfimrdances such that any component of the relation (entity, behavior or

effect) can be predicted based on the other components can be useful.

e Throughout this thesis, fierent perceptual representations are use@amdances per-
ception. We showed that in some cases such as for traversability, thiedad® not
need to detect objects in order to detect th&wralances. In other cases, (e.g. related to
manipulation), the robot requires object-dependent features. Fingiegcaptual rep-
resentation that can be used both for navigation and manipulation can edsasca
next step. This representation should also be consistent with human akdywisual
perception system which sends dataffor@lance detection areas. One way to combine
all different representations is to include all the features to the perception system
expect the learning to discover the most relevant ones for the perceftaifferent

affordances.

e Our robotic developmental progression follows the principle of simple to consid
acquisition. However, the transition between stages (such as fromibetcovery
to afordance learning stage) are determined by the human designer. In addition
though based on infant development, the perceptual representatmusach stage
is also decided by the human designer. Although the robot develops skillsun-a
supervised fashion, human interventions make the system not strictly genehtal.
Additionally, while in our system the skill development is clearly separatad #ach
other, in infant development there is no sharp distinction. Thus, this systenbe
improved (developmentally) by minimizing human intervention, i.e. by enabling the
system to automatically find ways to decide these points, and by having a masthsmo

and probably overlapping transition between developmental phases.
e The manipulation fiordances were learned by interacting with one object at a time. In
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early stages of manipulation development, infants also has similar strateggy laté
playing with one object, they do not appear to be interested in other objeateeudr

in later phases, they start playing with multiple objects, and learnftbedance rela-
tions between them. Our robot could generate and execute plans with mulfgdtsob
under the assumption that only one objectffeeted by the behavior execution. This
assumption is too strict in real life and should be relaxed. Probably onpasinlate
that learning the object-objecffardance relations is the subsequent stage after single

object dfordance learning.

Our system uses classifiers that always make deterministic predictions.e@ithir
hand, it is dificult to capture uncertainty and to make predictions in partially known
environments by deterministic methods. Thus, probably the most valuable ieaprov
ment to our work would be to integrate the stochastic nature of robot-objecaation
as bi-directional relations while being faithful to the developmental stagésimin

infants and not sacrificing the planning ability demonstrated by our system.
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