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ABSTRACT 
 
 
 

 
 

PORTFOLIO SELECTION AND RETURN PERFORMANCE: 

An Application of the Black-Litterman Method in the Istanbul Stock Exchange 

 

 
 

 
Bozdemir, Mehmet Burak 

M.Sc, Department of Financial Mathematics 

Supervisor : Assist. Prof. Dr. Seza DanıĢoğlu 

 

 

September 2011, 58 pages 

 

 

In this study, Black-Litterman method is examined, and an emprical study is conducted for 

Turkish Stock Market, using Black-Litterman method with quantitative views. As the 

quantitative model, AR(1) model is selected to generate the investor views. Expected returns 

implied by the Capital Asset Pricing Model (CAPM) is blended with the expected returns 

forecasted by AR(1) model. The performance of the resulting Black-Litterman portfolio is 

compared with the performance of the market portfolio. It is found that the Black-Litterman 

portfolio, with views coming from AR(1) model, does not perform better than the market 

portfolio. However, the difference between the two strategies is not found to be statistically 

significant. 
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ÖZ 
 
 

 

 

 

PORTFÖY SEÇĠMĠ VE GETĠRĠ PERFORMANSI: 

Black-Litterman Metodu’nun Istanbul Menkul Kıymetler Borsası Üzerinde Uygulanması 

 

 
 

 
Bozdemir, Mehmet Burak 

Yüksek Lisans , Finansal Matematik Bölümü 

Tez Yöneticisi : Yrd. Doç. Dr. Seza DanıĢoğlu 

 

 

 

 

Eylül 2011, 58 Sayfa 

 

 

Bu çalıĢmada Black-Litterman metodu incelenmiĢ, ve nicel görüĢler ile Black-Litterman modeli 

kullanılarak Türkiye Hisse Senedi Piyasası üzerinde ampirik bir uygulama yapılmıĢtır. Yatırımcı 

görüĢlerini oluĢturmak için nicel bir model olan AR(1) modeli seçilmiĢtir. CAPM’den elde edilen 

beklenen getiriler AR(1) modeli tarafından tahmin edilen beklenen getiriler ile harmanlanmıĢtır. 

Elde edilen Black-Litterman portföyünün performansı pazar portföyünün performansı ile 

karĢılaĢtırılmıĢtır. AR(1) modelinden gelen görüĢler ile oluĢturulmuĢ Black-Litterman 

portföyünün Pazar portföyünden daha iyi sonuçlar vermediği görülmüĢtür. Buna rağmen, iki 

strategy arasındaki farkın istatistiksel olarak anlamlı olmadığı anlaĢılmıĢtır. 
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CHAPTER 1 
 

 

 

INTRODUCTION 
 

 

 

One of the major concerns in financial literature is to find the best investment portfolio. 

Assuming that the average investor is risk averse, the best allocation should be the one that 

provides the highest return while having the minimum risk. To reach this optimal portfolio, 

different approaches may be applied. The most popular approach is the utulity maximization.  

 

Unfortunately, the utulity maximization process is highly sensitive to the input data set. Small 

changes in the estimated returns or volatilities can result in drastic changes in the final allocation. 

The optimal portfolios generally result in large short positions or zero weights in many of the 

assets. 

 

Moreover, the investors may have two different estimations in hand and want to impose both of 

them in the optimization process. For example, the investor may have expected return estimations 

coming from a quantitative model, but she has different subjective views for some of the 

included assets. To feed the optimizer, either the quantitative estimations or the subjective views 

should be chosen. 

 

The motivation behind the study of Fisher Black and Robert Litterman (1990) [1] is to remedy 

these problems. Their method simply uses the CAPM equilibrium as the initial reference point 

and blends this prior information with the subjective analyst views in accordance with the 

confidence level of the investor about these views. 

 

In our study, rather than using subjective analyst views, AR(1) model is used to generate the 

second information set. These AR(1) estimations are blended with the expected returns implied 

by CAPM, to reach the posterior risk-return estimation set. After that the posterior estimations 

are used to find the optimal portfolio weights. Finally, the performance of this portfolio strategy 

is compared with that of the CAPM strategy. 
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In the next chapter, firstly, the literature about the portfolio theory before Black-Litterman is 

briefly reviewed. After that, literature about the Black-Litterman method is investigated. Data 

and methodology is explained in the third chapter. In the fourth chapter, results are discussed. 

Conclusion is given in the fifth chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

 

 
 

CHAPTER 2 
 

 

 

LITERATURE REVIEW 
 

 

 

Literature review chapter is examined in two main parts. First part is the short review of portfolio 

theory before Black-Litterman method. In the second part, the literature about Black-Litterman 

method will be examined. 

 

2.1 Background on Portfolio Theory Before Black-Litterman 

The portfolio theory mainly stands on four main concepts: expected return, risk, risk-aversion 

and diversification. Using these four elements the portfolio construction decision is analysed 

from simplest basic to more complicated concepts. Firstly, diversification concept is ellaborated. 

Secondly, the construction of the efficient frontier and the capital market line is explained, to get 

a basic insight into portfolio decision. Thirdly, Markowitz’s full covariance model is discussed. 

Fourth, the Treynor-Black Model, which is similar to full covariance model except its inputs 

come from simple linear regression, is examined. Fifth, CAPM, which deals with finding the 

optimal risky portfolio from an equilibrium perspective, is discussed. Lastly, multifactor models 

like Fama-French are investigated. 

 

2.1.1 Diversification 

In portfolio selection, a risk averse investor prefers higher risk and lower return. Moreover, the 

general observation on single assets is that the increase in the expected return comes with the 

expense of the increasing risk, in equilibrium condition. However, for portfolios with more than 

one asset, we observe that the increase in the expected return does not necessarily increases the 

risk. The explanation lies in the diversification effect, and any portfolio decision would be flawed 

without understanding this concept. Therefore, before constructing the efficient frontier, 

diversification effect is discussed. 
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To see the benefit of diversification clearly, a portfolio consisting of two assets can be examined. 

Suppose the risky assets A and B has expected returns and  deviations of ( )Ar , ( )Br  and A , 

B  respectively. Further suppose the correlation between A and B is AB . 

 

If A and B are combined with the corresponding weights Aw  and Bw , the expected return of the 

portfolio is 

( ) ( ) ( )P A A B Br w r w r     . 

 

On the other hand, the variance of the portfolio is 

2 2 2 2 2 2 2 2 22P A A B B A B A B ABw w w w        . 

 

If the assets perfectly correlated, the correlation coefficient coefficient will be equal to 1, and the  

deviation of the portfolio will be the weighted average of the  deviations of the components: 

P A A B Bw w    . 

 

However, if the correlation coefficient is smaller than 1, then the  deviation of the portfolio will 

be smaller than the weighted average. This observation leads us to the statement that if the assets 

are not perfectly correlated, the portfolio’s  deviation is less than the weighted average of the  

deviations of the assets, while the expected return of the portfolio is equal to the weighted 

average of the expected returns.  

 

Practically, perfect correlation means that the assets are effectively the same. Therefore, it can be 

stated that if different assets are combined in a portfolio, there will be a gain coming from the 

decrease in the overall risk, and this is the benefit of diversification. 

 

Armed with the insight of diversification, next section deals with the construction of the efficient 

frontier and the capital market line. 

 

2.1.2 Efficient Frontier and Capital Market Line 

Although, the capital market line can also be found in a simpler way by Markowitz’s model 

numerically, reaching the same result by firstly constructing the efficient frontier provides a 

deeper insight into portfolio management. In this section, construction of the efficient frontier 

and determination of the optimum risky portfolio among the efficient portfolios is discussed first. 

After that, capital market line is constructed, utulizing the existence of the riskless asset. 
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Efficient frontier is the set of dominating portfolios among all of the possible portfolios in the 

asset universe. First step is the determination of the minimum variance frontier. If all the possible 

portfolios is represented in the mean-standart deviation plane, the minimum variance frontier will 

be the left border of the entire area. Since it is the left border, for every expected return level, the 

minimum variance frontier includes the portfolio with the minimum variance with the 

corresponding expected return level. The minimum variance frontier  is shown in the figure 

below. 

 

 

Figure 1 

 

Although, the minimum variance frontier consists of the portfolios with the minimum variance, 

not all of them are efficient. To reach the efficient frontier, the minimum variance portfolio, 

which is the leftmost point of the curve, must be determined first. The lower part of the frontier is 

not efficient because there are portfolios with higher expected return for any standart deviation 

level. After excluding this unefficient part, the remainin upper  side is the efficient frontier. 

 

The portfolios in the efficient frontier dominates all of the possible portfolio space. For any 

standart deviation level, the point with the highest expected return always lies on this frontier. 

Likewise, for every expected return level, the less risky portfolio lies on this upperleft border. 

 

After constructing the efficient frontier, it remains the question of which one of the portfolios 

should be chosen on the efficient frontier, because different risk aversion levels result in different 

indifference curves. That is to say, different investors may select different portfolios from the 

efficient frontier. This selection is made by comparing the capital allocation lines, which can be 

constructed by utulizing the riskless asset.  
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If an efficient portfolio is selected and combined with the riskless asset in different weights, the 

resulting portfolios can be represented as a line in the mean-standart deviation plane. This line is 

called as capital allocation line of the corresponding risky portfolio.  

 

After drawing the capital allocation lines for all efficient portfolios, the line with the steepest 

slope will be the one tangent to the efficient frontier. This line is called the capital market line. It 

has the steepest slope, so that it dominates all of the other capital allocation lines. Therefore, the 

risky portfolio that is on the tangency point is the optimum risky portfolio in the market. 

 

It is important to see that capital market line dominates all of the other capital alocation lines 

independent from the risk aversion level. Since this line has the steepest slope, the sharpe ratio of 

the points on this line is higher than any possible portfolio for every risk level. In other words, for 

every standart deviation value, the portfolio with the highest expected return belongs to the 

capital market line. 

 

Another issue is that the tangency point changes depending on the risk-free rate. Therefore, for 

different risk-free rates, different optimal risky portfolios are obtained. 

 

The next step is selecting the proper point on the capital market line for different risk aversion 

levels. In other words, the proper weighting between the risky portfolio and the riskless asset 

should be determined. The optimal allocation for an investor can be found where the indifference 

curves touch the tangency capital allocation line.  

 

As previously mentioned, the optimal risky portfolio and the capital allocation line can simply be 

found by maximazing the sharpe ratio. Likewise, the optimal allocation between the risky 

portfolio and the riskless asset can be determined by utulity maximization. These optimization 

methods are used to reach the same results by Markowitz’s full covariance model, which is the 

topic of the next section.  

 

2.1.3 Markowitz’s Full Covariance Model 

Full Covariance model is developed by H. M. Markowitz (1952) [4]. It determines the optimal 

risky portfolio and the optimal allocation between the risky portfolio and the riskless asset 

simpler than the previously discussed graphical method. The inputs of the model are vector of 

expected returns and the covariance matrix of the assets and the risk aversion coefficient of the 

investor. Using these inputs, sharpe ratio is maximazed to find the optimal risky portfolio. After 
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that, the optimal allocation is determined by utulity maximization. Sharpe ratio is a measure that 

captures the risk-return trade off of risky asset. It is formulated as 

( ) fr r
SR



 
 . 

 

The numerator is the excess return, and the denominator is the standart deviation of the portfolio. 

This expression can be read as the excess return per unit of risk. In other words, the return gained 

for bearing one unit of risk. 

 

Since maximizing the sharpe ratio is same with maximizing the slope of the capital allocation 

line for the corresponding risky asset, the resulting weight vector belongs to the portfolio whose 

capital allocation line is tangent to the efficient frontier. Naturally, this portfolio is the optimal 

risky portfolio. 

 

The maximization problem can be formulated as 

 

( )
 SR=

f

w

w r r
Max

w r

 


, 

 

where ( )r  is the vector of expected returns, and w  is the vector of weights, whose lengths are 

equal to the number of assets in the market. 

 

Having found the optimal risky portfolio, determining the capital market line is straightforward. 

The next step is to choose the proper point on this line for a selected risk aversion level. This 

selection can be done by utulity maximization. 

 

A frequently used utulity function by financial theorist and by the CFA institute is 

21
( )

2
U r    , 

 

where the letter   stands for the risk aversion coefficient. Utulity score of a portfolio takes not 

only the risk-return characteristic, but also the risk aversion of the investor into account. Every 

unit of excess return is rewarded while every unit of volatility is penalized by the negative sign 

depending of the degree of risk aversion of the investor.  

 

The utulity maximization problem can be represented as 
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 

2

2 2

1
 U= (r )

2

1
           ( )

2

P P
w

f Risky f Risky

Max

r w E r r w



 

 

   
 

 

where w  is the weight of the risky portfolio and A  is the risk-aversion coefficient of the 

investor. If the derivative of this expression is set to zero, the optimal weight of the risky 

portfolio can be found as 

2

( )risky f

Risky

r r
w



 
 . 

 

To determine the optimal risky portfolio and the optimal allocation by Markowitz Model, the 

expected returns and the covariance matrix of the assets are needed. Same procedure is applied 

by obtaining the input list from simple linear regression in Treynor-Black Model, which is 

discussed in the next section. 

 

2.1.4 Treynor-Black Single Index Model 

Single index model was first suggested by William Sharpe (1963) [5], and developed by Jack 

Treynor and Fisher Black (1973) [6]. The main difference between the full covariance model and 

the single index model is the way to obtain the input variables of the models. Full covariance 

model uses the expected returns vector and the full covariance matrix of the assets involved. On 

the other hand, single index model obtains the expected returns and covariances from the below 

simple linear regression: 

i i i M iR R e    , 

 

where iR  is the excess return of the 
thi  asset; and MR  is the excess return of the index portfolio. 

Although, there is no spesific limitation on the selection of the index portfolio, a diversified 

market index like S&P 500 is conventionally used as the index portfolio.  

 

The first regression coefficient, i , can be interpretted as the abnormal return of the 
thi  asset. 

The second coefficient, i , is the sensitivity of the 
thi  asset to the movements in the market 

index. The last coefficient, ie , is used to estimate the firm spesific risk,  2

ie , of the 
thi  asset.  
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After determining the regression coefficients of the assets in the market, the coefficients of a 

portfolio constructed by these assets can be found from the following formulas: 

1

n

P i i

i

w 


 , 

1

n

P i i

i

w 


 , 

   2 2 2

1

n

P i i

i

e w e 


 . 

 

Here, the calculation of the 
2 ( )Pe  relies on the assumption that firm spesific risks are 

independent from each other. 

 

Using the calculated portfolio coefficients, portfolio expected return and portfolio variance can 

be computed as 

   p P P MR R     , 

     2 2 2 2

P P M PR R e     . 

 

Being able to calculate the risk and the return of any portfolio, the same optimization procedures, 

sharpe ratio optimization and utulity optimization, can be applied to find the optimal risky 

portfolio and the optimal allocation between the risky portfolio and the riskless asset. 

 

In fact, Treynor-Black model provides a simplicity: the weight vector of the optimal risky 

portfolio can be found explicitly, instead of solving the two maximization problems. To do this, 

the optimal risky portfolio can be divided into two parts: the pasive and active portfolios.  

 

The passive portfolio is the index portfolio, which would be selected as the optimal risky 

portfolio in the absence of any security analysis. Its beta is equal to 1, and its alpha and firm 

spesific risk are equal to zero by definition.  

 

The active portfolio is composed to provide the maximum information ratio, which can be 

represented as the abnormal return per unit of firm spesific risk. Then, the sharpe ratio of the this 

portfolio can be analysed as 

 
A

P M

A

SR SR
e





 
   

 
, 
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where PSR  is the sharpe ratio of the overall portfolio; MSR  is the sharpe ratio of the index 

portfolio; A  is the abnormal return of the active portfolio; and  Ae  is the firm spesific risk 

of the active portfolio.  

 

Therefore, the maximization of the sharpe ratio of the overall portfolio may be reduced to the 

maximization of the information ratio of the active portfolio. According to Treynor and Black, 

the optimal weight of an asset in the active portfolio is proportional to its information ratio. That 

means, if the abnormal return of an asset is zero, its active weight will be equal to zero. Further, 

if no abnormal returns is detected in the market, then the overall portfolio will be the index 

portfolio. 

 

This result is consistent with CAPM, which is elaborated in the next section. In an efficient 

market which is in equilibrium, no abnormal returns is expected and the market portfolio, which 

is the market capitalization weighted portfolio in CAPM, is the optimal risky portfolio. 

 

The explicit solution for the optimal weights in Treynor-Black model is 

 

 

2

* *

2
1

i

i

i A n
i

i i

e
w w

e












, 

 

where 
*

Aw  is the relative weight of the active portfolio in the overall risky portfolio. The weights 

of the active and passive portfolios can be calculated as 

 
 

 

 
 

 
 

2

2

*

2

2

1 1

A

A

M

M

A

A

A

A

M

M

e

R

R
w

e

R

R
















 
  

   
 

  

, 

* *1M Aw w  . 
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Moreover, this method is applicable to not only the whole asset universe, but also a small subset 

of it. For example, if the investment company has limited resources to conduct security analysis, 

the number of assets in the active portfolio can be reduced to a subset of the asset universe. In 

other words, secutiry analysis can be conducted to a small subset, and active portfolio can be 

composed following the same method described above. This flexibility of Treynor-Black makes 

it more suitable to active portfolio management, compared to full covariance model. 

 

Another simplicity of Treynor-Black model is that the number of inputs is less than that of the 

Markowitz model. To conduct Treynor-Black model n  estimates of expected returns and n  

estimates of error terms are enough. On the other hand, Markowitz model needs additional 

2( ) / 2n n  estimates of covariances. This additional number of inputs become an issue as the 

number of assets increases. 

 

To summarize, Treynor-Black model requires less inputs and is more flexible compared to full 

covariance model. Further, the alpha estimates obtained by Treynor-Black makes it favorable in 

active portfolio management. 

 

2.1.5 Capital Asset Pricing Model (CAPM) 

Capital Asset Pricing Model was developed by the studies of William Sharpe (1964) [7], John 

Linter (1965) [8], and Jan Mossin (1966) [9]. It investigates the optimal risky portfolio and the 

risk-return characteristics of assets in an equilibrium perspective. Although CAPM has 

similarities to single index model, its results provided important extensions to portfolio theory. 

 

Before explaining the results, the basic assumptions of the model should be explained. One of the 

assumptions is that all investors are rational mean-variance optimizers with homogeneous 

expectations and holding periods. Another assumption is that all of the investors are price takers, 

which means no investor has the power to manipulate the market. A third assumption is the 

unexistence of taxes and transaction costs, and the existance of unique riskfree rate. Lastly, the 

investment universe does not contain non-traded assets like human capital. 

 

The main result of the model is that the optimal risky portfolio is the market capitalization 

weighted portfolio; and all investors hold this market portfolio in equilibrium condition.  

 

Three steps can be followed to arrive this result [10]. First step is that since all investors are 

rational mean-variance optimizers with homogeneous expectations, all of them have to hold the 

same risky portfolio. Now, the question of whether this unique portfolio should include all of the 
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investment universe remains. As the second step, suppose that any one of the assets is not 

included in the portfolio. In this case, since the demand on this asset is zero, the price of the asset 

would decrease rapidly, making the asset attractive to include in the portfolio. Eventually, this 

stock would be included in the portfolio and its price would increase to a degree consistent with 

its risk level. Therefore, relying on the assumptions of the model, all investors have to hold the 

same portfolio and this portfolio includes all the assets in the asset universe. As the third step, it 

can be stated that the only way for these two statements to be true is that the optimal risky 

portfolio is the market capitalization weighted portfolio. 

Second important result of CAPM is about the average risk aversion in the market. Model states 

the below equation: 

 
 2

MktCap

MktCap

R

R





 , 

 

where   is the average risk aversion in the market and MR  is the excess return of the market 

capitalization weighted portfolio. 

 

This result can be achieved by modifying the last equation of section 2.1.3. Firstly, it should be 

mentioned that since for every short position in the risk-free asset has its corresponding long 

position, the net capitalization of riskless asset is zero. Therefore, according to CAPM, the 

weight of the riskless asset in the overall portfolio should be zero. Now, replace the risk aversion 

coefficient A  by the average risk aversion  , and substitute the return of the optimal risky 

porfolio with that of the market capitalization weighted portfolio. After these substitutions, the 

weight of market portfolio, w , in the overall portfolio should be equal to one. Eventually, this 

equation turns out to be 

 2

( )
1

MktCap

MktCap

R
w

R 


 


, 

 

which leads to the average risk aversion equality above. 

 

Third result of CAPM is that the excess return of an asset is proportional to its contribution to the 

total risk of the market portfolio. Mathematically, the excess return of an asset can be represented 

as 

   i i MktCapR R   , 

 

Where   is the sensitivity of the asset to the movements in the return of the market portfolio. 
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To arrive this result, we have to utulize the fact that the reward-to-risk ratio of all the investments 

should be the same. If any portfolio offers a higher ratio, its price increases, decreasing the ratio 

to the market level, and vice versa. This pricing mechanism balances and equates the reward-to-

risk ratio in the whole market. Thus the following equation holds: 

 

 
 
 2,

MktCapi

i MktCap MktCap

RR

Cov R R R


 , 

 

where iR  is the return of any asset in the market. Modifying this equality leads to the third 

equality of CAPM: 

 
 
 

 

 

2

,

          = .

i MktCap

i MktCap

MktCap

i MktCap

Cov R R
R R

R

R





  


 

 

Furthermore, utulizing the first equation of CAPM, ( )MktCapR  can be  replaced with 

2( )MktCapR  : 

 
 
 

 

 

2

2

,

          = , .

i MktCap

i MktCap

MktCap

i MktCap

Cov R R
R R

R

Cov R R

 




   


 

 

This equation is used frequently used to calculate excess return of any asset implied by CAPM. 

 

The weak point of CAPM is the strong assumptions that it stands on. For example, to reach the 

real market portfolio non-tradable assets should be included. Moreover, all the investors does not 

have homogeneous expectations since different investors may use different methods to estimate 

the expected returns. Nevertheless, CAPM is an elegant equilibrium model, and a reasonable 

candidate to be a starting point. If it can be conbined with active methods like Treynor-Black  or 

Black-Littreman,  it may become more functional in an investment decision process. It may 

provide a solid reference path while the oscilations from this path can be captured by the active 

methods. In fact, that is probably why CAPM is chosen as the prior model in the original paper of  

Black and Litterman. 
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2.1.6 Multifactor Models 

Multifactor models are extended versions of single factor models. The motivation of the 

multifactor models is that one single factor may not capture the systematic risk completely. To 

remedy that problem, the number of factors may be increased, composing a multifactor model. A 

multifactor model of n factors can be represented as 

  1 1 2 2 ...i i i i in n ir r F F F e            , 

 

where ir  is the return of the 
thi  security; kF  is the unexpected departure of the 

thk  factor; ik  is 

the sensitivity of the 
thi  security to the 

thk  factor; and ie  is the idiosyncratic risk of the 
thi  

security. In this setup, since the independent variables are the unexpected departures of the 

macrofactors, the expected value of these variables are zero. That is to say, these are the error 

terms of the macrofactors. Likewise, the expectation of the unsystematic error term, ie , is zero. 

 

Although this model states the relation between a single security and the macrofactors, it is not 

practical in use for several reasons. First of all this equation is not suitable for estimation 

purposes, since the expectation of the unexpected deviations of the macro factors are zero. 

Therefore, if we take expectation of both sides, all of the terms including the macrofactors and 

the idiosyncratic risk cancel out. The remaining equation is that expectation of the security return 

is equal to itself.  

 

A more convenient model uses the risk premiums of the macrofactors as the independent 

variable. This model is represented as 

1 1 2 2 ...i f i i in n ir r RP RP RP e           , 

 

where iRP  is the risk premium of the 
thi  macrofactor. The beta coefficients are the equal to the 

ones in the first model. This can simply be shown in one factor case by calculating the covariance 

of a single security with the market. Using the first model the covariance is calculated as 

   

     

 
2

, ( ) ;

                  = ( ); ; ;

                  = 0+ ; 0

                  = ( ).

i M i first i

i first i

first

first M

Cov r r Cov r F e F

Cov r F Cov F F Cov e F

Cov F F

r







 

   

  



 

 

Same covariance can also be calculated by using the second model as 
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   

 

   

 

sec

sec

sec

2

sec

, ,

                 ;

                  = ; ;

                  = ; 0

                  = ( ).

i M i M

ond M i M

ond M M i M

ond M M

ond M

Cov r r Cov R R

Cov R e R

Cov R R Cov e R

Cov R R

R







 



 





 

 

Since variance of total returns is equal to variance of excess returns, beta of the first model, 

first , must be equal to the beta of the second model, second .  

 

One important issue about the factor models is the diversification issue, because the Arbitrage 

Pricing Theory of Stephen Ross (1976) [10] stands on the assumptions that security returns can 

be modeled by factor models, and the unsystematic risk can be eliminated by constructing well 

diversified portfolios. 

 

To see how the unsystematic risk can be diversified away, consider the variance of the 

idiosyncratic error term of a well diversified portfolio modeled by single factor model: 

   2 2 2 2

1 1

n n

P i i i i

i i

e w e w e  
 

 
    

 
  . 

 

As the number of assets in the portfolio increases, the weights of the assets decreases. Since 

weight of an asset is a rational number between 0 and 1, the square of it will approach to zero 

when n  gets large, resulting the variance of the unsystematic risk to be zero. Moreover, the 

expectation of the unsystematic risk is zero by definition. A random variable with zero 

expectation and zero variance is practically zero. In other words, as n  gets large, the 

unsystematic risk disappears. Therefore, the factor model representation of a well diversified 

portfolio does not include the error term. In light of this fact, two useful equations for a well 

diversified portfolio are 

 
P P Pr r F     

and 

 P f P Mr r RP    . 

 

These equations can be extended to more than one factors. As no unsystematic error exists in 

these equations, risk arbitrage arguments can be applied to well diversified portfolios using these 

factor models. For example, two different portfolios with same beta coefficients should provide 
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the same expected returns, otherwise the demand on the underpriced portfolio forces the prices to 

get balanced. However, this decision depends on the validity of the model and the accuracy of the 

estimations. Therefore, it is crucial to remember that risk arbitrage is not totally riskless.  

 

Riskless arbitrage can be applied to the cases where the security under concern can perfectly be 

mimiced. For example, derivative securities can be priced depending on strict arbitrage rules. 

However, primitive securities can not be perfectly mimiced, so strict arbitrage rules does not 

apply to them. The reason is that the arbitrage profit depends on the realisation of the securities 

under concern. Only risk arbitrage may be applied on the well diversified portfolios composed by 

them. 

 

Another important issue about multifactor models is the determination of the explanatory factors 

in the model. There is not a single set of macrofactors that everyone agree upon. One of the most 

famous ones is the model proposed by Eugene F. Fama and Kenneth R. French (1996) [11]. It is 

a tree- factor model which can be represented as 

 

, , , ,i i i M M t i SmB SmB i HmL HmL ir RP RP RP e            

SmBRP  is the factor called Small Minus Big. It is the premium of the portfolio of small stocks 

over the portfolio of big stocks. HmLRP is the factor called High Minus Low which represents the 

premium of the portolio of stocks with high book-to-market ratios over the portfolio of stocks 

with low book-to-market value. Lastly, MRP  is the risk premium of the broad market index. 

 

The idea behind SmBRP  is that small companies are more sensitive to the changes in the 

macroeconomy. Therefore the premium on them reflects the macroeconomic conditions and 

expectations effectively. Likewise, the premium of firms with high book-to-market ratios reflects 

the direction of the macroeconomy, since they are under financial distress and relatively more 

sensitive to macroeconomic conditions. Together with the market risk premium, these three 

factors are expected to capture the effects of the unknown fundamental macrofactors in the 

economy. 

 

Fama and French tested the validity of their model in different markets for different time periods, 

and showed that the model has significant predictive power on security returns. 

Up to this point the portfolio theory since Markowitz model is mentioned. Next section is about 

the Black-Litterman method, which is a tool to combine different models explained untill here. 
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2.2 Literature about Black-Litterman 

Black-Litterman method is a tool to combine different output sets, rather than a model trying to 

explain the evolution of prices or the state of equilibrium in the market. Since there is not a 

model that perfectly explains and predicts the security prices, the model choice is a decision that 

every investor has to face. CAPM, Fama-French, time series analysis, fundamental analysis, or 

subjective qualitative analysis can be used to make the investment decision. The strengh of 

Black-Litterman method is that it enables us to choose and blend the outputs of different 

methods. Moreover, the confidence of the investor about the outputs of the selected models can 

be imposed on the results by this method. In the original paper, Black and Litterman chose 

CAPM as the prior model and blended the outputs of CAPM with subjective analyst views to 

reach the posterior outputs.  

 

In this part, firstly the original paper will be investigated. After that other important papers about 

Black-Litterman method will be reviewed. 

 

2.2.1 The Original Paper 

The study of Fisher Black and Robert Litterman was first appeared in the publication of 

Goldman, Sachs & Company in 1990. The authors extended and published their studies in 

1991[2] and 1992 [3]. 

 

Their motivation was the inflexibility of the quantitative portfolio management tools in use. First 

of all, since mean-variance optimization in very sensitive to expected returns, and expected 

returns are very difficult to estimate, the resulting portfolios are unbalanced in most of the cases. 

Secondly, quantitative methods use the past information to predict the future. On the other hand, 

it may be the case that an investor wants to impose her view depending on a present news. 

Unfortunately, quantitative methods generally do not allow investors to impose subjective views 

on the results.  

 

Black and Litterman based their study to remedy these problems. This model sets CAPM 

equilibrium as the reference point and blends the subjective views of the investor to reach the 

final optimal portfolio composition. The departures detected by the user are captured meanwhile 

the weight composition of the final portfolio gravitates to the initially assigned balanced 

portfolio. 
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The tool that is utulized to make the blending is Theil’s mixed estimation method (1971) [12, 

13]. Although there are brief discussions about the estimation method and the variables, the full 

setup is not given in a clear and detailed manner. Intermediate steps and the derivations are also 

absent in the paper. Therefore, to keep simple, the mixed estimation procedure will be 

summarized in a different notation than the original paper. 

 

To begin with, suppose there are two information sets about the future returns in the market: the 

equilibrium expected returns,  , with the risk element of  ; and the investor views, Q , with 

the risk element of  . 

 

Further suppose the investor believes that both of these expected returns are driven by a common 

factor, ( )R . The mathematical representation of the models can be represented as 

( )

( )

I R u

Q P R v

   

  
 

 

where I  is the identity matrix; P  is the matrix that assigns the location of the corresponding 

views; u is the error term which has a mean of zero and variance of  ; v  is the error term 

which has a mean of zero and variance of  . 

 

Alternatively, the distributions implied by the above equations are 

 

 

( );

( ); .

N I R

Q N P R

  

 
 

 

The desired forecast is the estimation of the common factor, ( )R , around which   and Q  are 

centered. To do this, two equations are consolidated and Theil’s mixed estimation method is 

used: 

( )
I u

R
Q P v


  

 

 

By least squares method, the common factor, ( )R , can be found to be normally distributed 

with mean 

   
1

1 11 1' 'BL P P P Q  


           
   

, 

 

and variance 
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 
1

1 1'BL P P


      
 

. 

 

After some matrix operations, the same formulae can also be represented as 

      
1

' 'BL P P P Q P  


       

 
12 ' 'BL P P P P  


       . 

 

The derivations can be found in the study of Meucci (2009), which will be investigated later in 

this section. 

 

After finding the mean and variance of ( )R , the mean-variance optimization is used to reach 

the optimal portfolio. 

 

In the paper, a three asset example is illustrated to show the effect of a relative view on the final 

weight composition. They show that even the view is not related to the third asset, the 

corresponding weight is effected by the view, depending on the covariance structure among the 

assets. That is to say, as the number of assets or the number of views are increased, the 

interaction between the views and the final weight composition may become intraceable.  

 

The intraceablity does not mean that the increase in the number of views or in the number of 

assets results in unbalanced portfolios. The final weight vector still gravitates to the prior 

equilibrium portfolio if the confidence level is propoerly set. To see the overall deportment of the 

model, an example of seven countries is given, and the behaviour of the posterior portfolio under 

different confidence levels are discussed. The results are reasonable as they expected. 

 

The issue of balancing the posterior portfolio by decreasing the confidence of the views is also 

included in the paper. They discussed that if the resulting portfolio is unbalanced, i.e. there are 

extreme departures from the equilibrium weights, the confidence level should be decreased 

instead of forcing extra virtual constraints on weights.  

 

2.2.2  Following Literature 

In this part the following literature after the original paper will be surveyed. Most of the literature 

is about the derivation, explanation, and illustration of the model. Although there are 

contributions about selection of the confidence levels and the views, the studies on the 

performance of method is few. The main reason is that, because of the mixed nature of the 



 20 

model, the performance test of Black-Litterman gives a joint result, i.e. the performance of the 

method cannot be extracted from the precision of the estimation and the quality of views. In the 

case that quantitative methods are utulized to attain the views, the a joint result is meaningfull. 

On the other hand, if subjective analyst views are used, the success of the method will highly 

depend on the performance of the human factor. 

 

Firstly, the main studies that demystify and extend the model will be elaborated. After that the 

variations that attain views and confidences using different methods will be reviewed. In these 

variations, the ones that use quantitative methods to attain views have similarities with our study. 

 

One of the papers that shed light on the method is the study of Satchell and Scowcroft (2000) 

[14]. The study used bayesian procedure and reached the same formula. Before mentioning the 

procedure in Satchell and Scowcroft, the Bayes’ formula is stated below. 

 
   

 

pdf B A pdf A
pdf A B

pdf B




 

 

In application, it is convenient to represent the formula in the following form for application 

purposes.  

 
   

 

pdf data pdf
pdf data

pdf data

 





 

 

where   is the variable to be estimated, and data  is the observed sample derived by  . 

Roughly, the logic is that a prior belief is assigned by  pdf  first, and then this belief is 

updated by the probability of observing the sampled data set given that the distribution of   is 

represented by  pdf  . 

 

To use Bayes’ formula, Satchell and Scowcroft has made two initial assumptions: 

 ( ) ,P R N Q   

 ( ) ( ), .P R N P R    
 

 

First assumption represents the beliefs and states that the expected returns are distributed 

normally around the assigned beliefs. The statement of the second assumption is that, given the 

expected returns, the CAPM equilibrium returns are distributed normally around the given 
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returns. In terms of the generic Bayes’ formula, ( )P R  and ( )P R   can be thought of as 

the prior belief and the updating expression respectively. 

 

The Bayes’ formula using these assumptions is represented as 

  
     

 

pdf R pdf R
pdf R

pdf

   
  


. 

 

Following the bayesion procedure  ( )pdf   behaves like a constant in terms of the variable 

( )R , and cancelled out. The remaining expression is the kernell of normal distribution. In the 

end, it is found that 

 ( ) ,BL BLR N    , 

where 

   
1

1 11 1

BL P P P Q  


             
   

, 

 
1

1 1 'BL P P


       
 

. 

 

Satchell and Scowcroft also made an extension to the model and reciprocal of   is defined as a 

gamma distributed random variable. This second model setup has four initial assumptions: 

 ( ) ,P R N Q    

 ( ), ( ),P R N P R      

,
2 2

m
Gamma




 
 
 

 

    , 

 

where   is defined as the reciprocal of  . 

 

Following the same bayesian arguments, the conditional distribution of the expected returns are 

found to be multivariate student-t : 

 1

1
( ) ,

'

m H
R Multi T H C

A C H C





   
      

   
, 

where  

 
11' 'A Q Q 
        
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 
1 1'C P Q
       

 
1 1'H P P
      . 

 

Another study that provides deeper insight into the Black-Litterman model, is the study of He 

and Litterman (2002) [15]. Using the results in Black-Litterman, they stated the distribution of 

the returns instead of expected returns. After that, they represented the solution of the optimal 

posterior weights in a way that is easier to interpret. 

 

To model the returns, He and Litterman added one more assumption that 

 ( ),R N R  , 

 

where R is the security returns. This assumption can be formulated as 

( )
d

R R z 
 

where  0,z N  . This relation impies that 

 ( )
d

R Q R Q z   . 

 

Using the previous result, since 

   ,BL BLR Q N   , 

 

the conditional distribution of the returns can be written as 

 ,BL BLR Q N    . 

 

We know that covariance of posterior expected returns can also be represented as 

 
12 ' 'BL P P P P  


       . 

 

In terms of this alternative representation, covariance matrix for the returns simply becomes 

   
1( ) 21 ' 'R

BL P P P P  


        . 

 

Another contribution of He and Litterman is the intuitive representation of the posterior weights. 

To reach this formula, they started with the utulity maximization problem of 
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( ) ' '
2

R

BL BL
w

Max w w w


   . 

 

The first order conditions provide us the solution that 

 
1

( )1 R

BL BL BLw 




  . 

 

After the implementation of the mean and variance,  the equation becomes 

     
11 1 1( ) ( ) 1 11

' 'R R

BL BLw P P P Q 


             
   

. 

 

With some algebra the above equation can be simplified to 

 ( ) 1
'

1

R

BL MktCapw w P


  


, 

where  

1 1 1 11 1
'

1 1
MktCapQ A P w A P P Q

 

   

        
            

      
 

'

1

P P
A

 

 
 


. 

 

This representation provides a different perspective into posterior weights. The expression 

implies that, the portfolio optimization process starts with market capitalization weights. After 

that   is calculated, taking  ,Q , , and   into account. The view portfolio is weighted with 

that value of lamda afterwards. Finally, the resulting posterior portfolio is the summation of the 

initial market capitalization weighted portfolio plus the the view portfolio which is weighted by 

lamda value. It can be directly seen that, increase in the lamda value results an increase in the 

relative effect of the view portfolio. 

 

The interpretation of   is also intuitive. In the first term, if the views are bullish, i.e. Q  is large, 

then the value of   increases. Likewise, if the investor has a high confidence on views, i.e.   is 

low, the value of   increases again. In the second term, the covariance between the market 

capitalization weighted portfolio and the view portfolio,  MktCapP w  , is penalized because 

of the negative sign. The idea behind this penalization is that, if view portfolio carries similar 

information with the initial market portfolio, there exists redundant information in the view 

portfolio. Therefore the effect of the view portfolio decreases. In the third expression, the 
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covariance between the individual views,  'P P  , is penalized with the negative sign, 

because of the same reason. 

 

Another study that derived the Black-Litterman formula in bayesian techniques is the study of 

Attilio Meucci (2009) [16]. Meucci has started with different assumptions and used bayesian 

arguments to reach the original formula. As a second contribution, Meucci changed the initial 

assumptions and modified the method to the extend to which the final formula directly gives the 

estimation of realized returns instead of expected returns. 

There are two initial assumptions of the first model setup: 

 ( ) ,R N     

 ( ) ( ),Q P R N P R   . 

 

After setting the assumptions, the Bayes’ formula is used to find the conditional distribution of 

expected returns given the view returns: 

  
     

 

pdf Q R pdf R
pdf R Q

pdf Q

  
  . 

 

In this setup, CAPM equilibrium returns constitutes the prior belief, while conditional 

distribution coming from the view returns are used as the updating information. Solving the 

above equation using bayesian arguments, it is found that 

   ,BL BLR Q N   , 

 

where BL  and BL  are the mean and the variance in the original paper. 

 

Meucci also provided a second version for Black-Litterman formula. In this model setup, the 

initial assumptions are build on the future realized returns rather than expected returns. These two 

assumptions can be formulated as 

 ,R N    

 ,Q P R N P R   . 

 

Following the same bayesian procedures, the conditional distribution of future realized returns 

are found to be 

 ,m m

BL BLR Q N   , 
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where 

1
1 1 1 1m

BL P P P Q


                  , 

1
1 1 'm

BL P P


         . 

 

Realize that, although the extension of He and Litterman also models the returns instead of 

expected returns, the resulting distribution is different than the one proposed by Meucci. 

 

Another important paper about the Black-Litterman method is the one written by Thomas M. 

Idzorek (2004) [17]. In his study, Idzorek gives detailed explanations and clear examples about 

the model. In additon he proposes a method to assign confidence on subjective views. He 

explains his methodology in six steps. 

 

In the first step, the posterior returns under 100%  confidence on views are calculated: 

      
1100% ' ' .BL P P P Q P  


    
 

 

In the second step the posterior optimal weights under full confidence is found using the expected 

returns found in the previous step: 

 
1100% 100%

BL BLw  


  . 

In the third step, the difference between the market capitalization weights and the posterior 

weights under full confidence is calculated: 

100%

100% BL MktCapD w w  . 

 

This differential can be thought of as size of the maximum effect that can be impose on the 

posterior weights by the views. 

 

In the fourth step, user decides how much of this effect she wants to impose on the posterior 

portfolio. If the desired size is represented by C , the size of the imposition can be calculated as 

100%Tilt D C . 

 

In the fifth step, these excess weights are added to the initial market capitalization weights, and 

the posterior weights representing the degree of investor’s confidence is found: 

Tilt

BL MktCapw w Tilt  . 
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 In the final step, the confidence matrix implied by the posterior weights which reflects the 

degree of confidence of the investor is calculated by solving the below minimization problem: 

  Tilt

BL BLMin w w


  

where 

     
1

1 1 11 11
' 'BL BLw P P P Q 




             
   

. 

 

Idzorek’s methods enables the investor to assign her confidence on views as a proportion of the 

maximum attainable tilt in the weights. 

 

Some other papers focus on attaining the views via quantitative models. The study of Jones, Lim 

and Zangari (2007) [18] employed the factor model of Carhart (1997) [19], which is an extension 

of the three-factor model developed by Fama and French. The authors also give a numerical 

illustration for the method they proposed. The study of Beach and Orlov (2006) [20] is another 

example that attains the views by quantitative methods. They obtain the views via E-GARCH 

model. Their portfolio surpasses the market equilibrium weighted portfolio and the portfolio 

composed according to Markowitz mean-variance technique.  

 

In the study of Palomba (2006) [21], Multivariate GARCH model is used to forecast security 

returns. These forecasted returns are used as the equilibrium returns, and this returns are 

combined with personal views. This paper differs from the most of the literature as it uses a time 

varying model to obtain equilibrium returns. 

 

Da Silva, Lee, and Pornrojnangkool (2009) [22] discussed the utulity optimization problem used 

for obtaining the optimal weights in active portfolio management. They stated that the utulity 

maximization problem used in Black-Litterman method uses the unconstrained Sharpe ratio 

optimization: 

      
a

a p a p a p
w

Max w w w w w w 
     , 

 

where aw  and pw  are the weights of the active and passive portfolios respectively. They 

propose that, for active portfolio management, information ratio must be optimized instead of 

Sharpe ratio, to obtain both the equilibrium and posterior weights. The optimization problem that 

maximizes the information ratio is 
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  '

.      w 1 0.

a

a p a a
w

a

Max w w w w

s to


    



 

 

Martellini and Zeimann (2007) [23] applied Black-Litterman method to hedge funds, and 

proposed to use four-factor CAPM to obtain the equilibrium returns. Moreover, 95% VaR is 

chosen as the risk factor in the optimization processes. They generated the views from 

conditional factor analysis. 

 

Bewan and Winkelmann (1998) [24] used two types of views: macro views and micro views. 

Macro views are generated by a calibration process with constraints on information ratio. Micro 

views are assigned subjectively with three levels: High, medium, and low. They estimated the 

covariance matrix by the method mentioned in the study of Litterman and Winkelmann (1998) 

[25].  To attain the posterior weights optimization arguments are utulized by assigning 

constraints on tracking-error and on market exposure. 

 

 Giacometti, Bertocchi, Rachev, and Fabozzi (2007) [26] applied Black-Litterman method under 

different distributions: Normal distribution, Student-t distribution, and α-stable distribution. 

Applying three different distributions they obtained the equilibrium returns as 

w   , 

( )
2 '

w
CVaR R

w w


  
   

  
, 

( )
2 '

w
VaR R

w w


  
   

  
, 

 

where the risk parameters of the second and third expressions are %  conditional value at risk , 

CVaR , and %  value at risk, VaR , respectively. 

 

The paper of Jay Walters (2009) [27] includes detailed explanations, illustrations, and full 

derivations of Black-Litterman method. For most of the derivations of the expressions appeared 

in other papers, and  for a detailed literature survey about Black-Litterman, Walter’s paper can be 

refered.  
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CHAPTER 3 

 
 

 

DATA AND METHODOLOGY 
 

 

 

3.1 Data 

Our data consists of three main data sets: daily values of  turkish industrial price indexes, 

compounded returns of 3-month government securities, and market capitalizations of turkish 

industrial indexes. The first two are collected for 124 months and the third is collected for 64 

months. The asset universe is composed to include 23 mutually exclusive industrial indexes, and 

3 month goverment securities. Since the included industrial indexes cover nearly all the sectors 

from real estate to technology, it is a good proxy that is able to mimic the asset universe available 

in Turkish market. 

 

The daily values of turkish industrial indexes are obtained from the official web site of Istanbul 

Stock Exchange Market: www.imkb.gov.tr. The data covers the period between 31/07/2000 and 

30/11/2010. 23 industrial indexes are selected: banking, information technologies, electric, 

leasing, food, real estate investment trusts, services, holdings, telecominication, paper, chemistry, 

finance, metal(main), metal(stuff),  defense, insurance, stone & soil, technology, textile, 

commerce, tourism, transportation, and mutual funds. Sports industry index is excluded because 

it does not exist before 2004.  The chosen  indexes are mutually exclusive and are covering a 

very high majority of the stocks in Ġstanbul Stock Exchange Market.  

 

Instead of dealing with single stocks, we have chosen to deal with industrial indexes and treated 

them as assets in order to decrease the computation procedure and so the estimation errors. 

Moreover, even if the views were not quantitative, it would not be so realistic to come up with 

sound subjective views for hundreds of single stocks every updating period, which is one month 

in our study. Therefore, if the views are quantitative, as it is in our study, dealing with industrial 

indexes decreases the estimation errors; if  views are qualitative then it is more effective to make 

subjective monthly forecasts for 23 indexes than it is for hundreds of single stocks.  
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The compounded returns of 3-month government securities are aso obtained from the web site of 

Istanbul Stock Exchange Market and covers the same period between 31/07/2000 and 

30/11/2010. Due to the non-availability of 90-day government bills every month, the ones which 

have the nearest maturity to 90 days are chosen. Therefore, the maturities of the sellected 

securities varies from 68 days to 187 days.  

Because we are dealing with returns of stocks which theoretically have infinite maturity, it may 

be more intuitive to choose longer maturities like 10 years. On the other hand, using 1 month 

risk-free rates would be more consistent with our monthly updating periods.  However, the 

conjoncture of the turkish economy leaded us to choose a maturity in between. After the 1994 

and 2001 economic crises, and in the high inflationary enviroment, turkish governments had 

diffucilties while issuing bonds. There were times when governments couldn’t find demand for 

desired maturities. Short term interest rates were highly volatile and long term bonds such as 5 to 

10 years were inexistent because of the high risk perception in the market. In the light of these 

facts, we have chosen the maturity as 3 months instead of 10 years or 1 month.  

 

For the market capitalizations, we collected the data from the web site of Istanbul Stock 

Exchange Market for the time period between 31/08/2005 and 30/11/2010. These market 

capitalizations is used to calculate the market capitalization weights. 

 

3.2 Methodology 

In majority of portfolio optimization processes, a utulity function is set and subjected to 

maximization procedure. The optimization may end up maximizing the sharpe ratio, information 

ratio, or some other quantity depending on the objective utulity function and on the constraints. 

Our objective function is the below utulity function, 

1
' ( ) '

2
U w R w w     

where 

w  : 1nx  weight vector; 

( )E R  : 1nx  vector of expected excess returns; 

  : risk-aversion coefficient; 

  : nxn  covariance matrix. 

 

In Black-Litterman method, the aim is to find and blend two risk-return information sets with a 

desired confidence level, and feed  the above utulity function with the resulting risk-return 

information to find the optimum weights. Our first information set, namely the prior, contains the 

excess returns implied by CAPM and the historical covariance matrix of these excess returns. 
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The second information set, namely the views, consists of AR(1) forecast for the asset returns, 

and the historical covariance matrix, which is same as the one in prior. 

 

While blending the two information sets, the relative confidence between prior information and 

views may be assigned  in two ways: by view covariance matrix; and by tilda value. In our study, 

historical covariance matrix is used to proxy the risk element both for prior and for views. 

Therefore, the relative confidence is reflected via the tilda value. Since we are using a naive 

quantitative model, AR(1), to compose our view returns, we assign our confidence on view 

returns very low by seting tilda very close to zero, increasing the effect of prior, and then 

gradually increased it to relatively higher levels, imposing more weight on views . As we 

increase the value of tilda, we expect the blended (posterior) returns to diverge from the prior 

returns. As it converges to zero, we expect the posterior returns to converge to the prior returns. 

 

After assigning the confidence and blending the information sets, the optimal weights are found 

by utulity maximization. However, the main motivation is to see whether the Black-Litteman 

strategy with AR(1) views beats the prior strategy, namely the CAPM.  

 

To make  meaningfull comparisons, a significiant sample size is needed.  By using a rolling 

window, a sample size of 64 is reached. The size of the rolling window is set to be 60, and it is 

rolled forward 64 times to reach 64 couples of weights: the prior strategy weights and the 

posterior strategy weights. Using these weights, out-of-sample montly returns of these strategies 

are found and four comparisons are made between the returns of these two strategies.  

 

The first comparison is made on 64 months compound returns. Secondly, two strategies are 

compared in mean-variance basis. After that the utulities of these strategies are calculated under 

the assumption that the mean of the risk-aversion coefficients for the last 64 months represent the 

risk-aversion of the turkish market. Lastly, student-t test test is conducted to test whether there is 

statistically significant difference between the mean returns of the strategies. 

 

To sum up, the first step is to obtain the CAPM excess returns and historical covariance matrix as 

the prior information set. Secondly, the AR(1) model is used to obtain the quantitative views; 

together with these views the historical covariance matrix will be the view information set. 

Thirdly, these informations are blended via the Black-Litterman method with the desired 

confidence level. Fourth step is to use these posterior information in the optimization process in 

order to find the optimum weights. This procedure is executed 64 times by the rolling window 

method, and we end up with 64 posterior weight vectors. As the fifth step, these vectors are used 

to calculate the monthly returns for 64 months, and finally these returns are compared with the 
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ones obtained by following the prior (CAPM) strategy. The fifth and the sixth steps are repeated 

5 times for different tilda values.  

 

3.2.1 The Prior 

To obtain the excess returns implied by CAPM,  the following maximization problem needs to be 

solved, 

1
max  ' ( ) '

2
w U w R w w   

 

 

We know that this maximization problem has an analytical solution : 

1( ) ( )w R    . 

 

If we know the optimum weights and want to find the excess returns implied by these weights we 

transform it the following reverse optimization formula, 

( )R w   . 

 

The optimum weights implied by CAPM are nothing but the market capitalization weights. We 

have the market capitalizations for the 23 indexes, so the market capitalization weights can be 

calculated by the simple formula: 

ap 23

1

( )
( )

( )
MktC

i

MktCap i
w i

MktCap i





. 

 

To obtain the covariance matrix, risk-free rates and then excess returns of the industry indexes 

should be calculated. By the following formula, the annualized 3-month compounded risk-free 

rates are transformed to 1-month risk-free rates, 

1

12
,(1 ) 1f f annualr r   . 

 

By using the 1-month risk-free rates, we simply obtain the covariance matrix. For the risk 

aversion coefficient the following formula is used, 

2

( )

( )

m f

m

r r

r




 
 . 
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The return of the market portfolio, mr , is obtained by multiplying the index returns with the 

corresponding market capitalization weights. After taking the mean and the variance inside the 

rolling window containing 60 samples, the risk aversion coefficient for the corresponding period 

is calculated. 

 

After obtaining the risk-aversion coefficients, the excess returns implied by CAPM can be found 

by utulizing the reverse optimization formula mentioned above.  

 

Of course the above procedure is done 64 times iteratively, in a rolling window manner. After 

calculating implied CAPM returns and historical covariance matrixes for 64 time points, the 

second information set, the views, should be generated. 

 

3.2.2 The Views 

Although the basic motivation of Black-Litterman method is to combine CAPM model with 

subjective analyst views, it enables us to combine any couple of information sets about the risks 

and returns in the asset universe. In the original paper, a quantitative model was combined with 

qualitative views. Alternatively, if a quantitative model is used to generate views and blended 

with CAPM, then the posterior information will be a product of two quantitative models. If both 

the prior information and the views are obtained from subjective analyses, then the blending is 

between two qualitative information sets. 

 

Even more, although there is not an example in the literature, theoretically it is possible to blend 

more than two information sets by Black-Litterman method. For example, if an institution had 3 

analysts, the views of the first two would be blended and the posterior would be combined with 

the view of the third analyst. Of course, assigning confidences should be done in a different way, 

and this issue may be the subject of another study. 

 

At the beginning of our study, we intented to use CAPM as the prior and subjective analyst 

reports as the views. However, finding analyst reports are not only expensive to attain, but also 

hard to find for a non-institutional researcher. Black and Litterman (1991) were researchers of 

Goldman Sachs and used the analyst views of the same company. For Turkish stock market, it is 

even harder to find that kind of subjective analyts report covering the whole market. 

 

Another limitation of using subjective views in an emprical study is that the results would be 

highly affected by the quality of analyst reports used. Even if Black-Litterman strategy provides 

signaficantly different returns than the benchmark, it is not possible to say that the difference is 
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due to the Black-Litterman method or to the quality of analyst reports. Therefore, in this study a 

quantitative model is used to generate views instead of subjective analyst reports. 

 

As a quantitative model, GARCH may be the most suitable time series model, as it enables both 

return forecasting and risk forecasting. However, in turkish stock market we couldn’t find a 

GARCH model which is consistantly statistically significant for all periods and for all industry 

indexes. In some cases ARMA(1,1)-GARCH(1,1) model is not significant, but ARMA(1,1)-

EGARCH(1,1) model is significant. For some cases even ARMA(1,1) is not statistically 

significant. Therefore, we minimized the model until it becomes statistically significant for all 

industries and all periods. The resulting model is AR(1). 

 

An autoregressive model of order p, denoted as AR(p), has the following structure, 

0

1

p

t i t i t

i

y y e  



    

where 

2(0, )
iid

te  . 

 

In our case the model has order 1 and the model becomes 

0 1 1t t ty y e     . 

 

After estimating the coefficients for 23 indexes for 60 periods, these coefficient estimates are 

used to make forecasting by the following equation 

1 0 1t ty y    . 

 

The estimation and forecasting procedure is done in E-views. After obtaining the forecasts, these 

forecasted prices are transformed to returns. The transformation is done with the following 

equation 

1
1

t t
t

t

y y
r

y





 . 

 

Consequently, the return element of the view information set is obtained. The other element is the 

risk. Since AR(1) model is not designed to forecast volatility, historical covariance matrix is used 

as the risk element of the view information set.   
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For AR(1) model, although error variances could be used to construct a covariance matrix, the 

non-diagonal elements would be zero, as the model doesn’t take into account any covariance 

structure between diffrent assets, and the error terms are assumed to be independent. Moreover, 

homoskedasticity is assumed in the model. The estimation is done inside a rolling window with 

the assumption that homoskedasticity exist. If we tried to estimate heteroskedastic variance as the 

window is rolled, then the methodology would not be consistent. 

 

Beside the unforecastibility of the covariance matrix, AR(1) model has one more drawback that it 

doesn’t carry any economic interpretation compared to a regression model whose independent 

variables are macro factors, or to a GARCH type model whose mean equation includes economic 

variables. 

 

Since AR(1) model is an inferior model, we set the relative confidence of the views very low. 

The first tool to adjust the relative confidence is the covariance matrix of the view information 

set. The second way is to utulize tilda which is a constant variable in the Black-Litterman 

formula. Since we used the same covariance matrix for both prior and the views, we used a very 

small tilda value to impose a low relative confidence to view information set, and then gradually 

increased it to higher levels to see the overall picture. 

 

Having obtained the prior information and views, the next step is to blend these information by 

Black-Litterman method to reach the posterior information set which is subjected to the utulity 

maximization problem to reach the optimal weights. 

 

3.2.3 Blending by Black-Litterman 

In Black-Litterman method the the blending is done in a bayesian manner and it states that 

      
1 1

1 1 11 1 1( )  ;  BL R Q  
 

                       
     

, 

where 

R : vector of excess returns ( 1)nx , 

 : vector of prior excess returns ( 1)nx , 

Q : vector of view excess returns ( 1)nx , 

 : covariance matrix implied by the prior ( )nxn , 

 : covariance matrix implied by the views ( )nxn , 

 : views assigner matrix ( )nxn , 

 : real valued constant variable tilda, which justifies the relative confidence. 
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Namely, Black-Litterman states that, given the prior returns, the posterior (blended) expected 

excess returns are distributed as multivariate normal with the given mean and variance. 

 

In our study, specificly, these variables are defined as follows, and the process is illustrated in the 

following chart. 

 

R : vector of blended excess returns (23 1)x , 

 : excess returns implied by CAPM (23 1)x , 

Q : excess returns obtained by AR(1) model (23 1)x , 

 : historical covariance matrix (23 23)x , 

 : historical covariance matrix (23 23)x , 

 : identity matrix (23 23)x , 

 : real valued variable which is very close to zero. 

 

Roughly, Black-Litterman posterior returns are nothing but a weighted average of the prior 

returns and the views, where the corresponding weights are the inverses of the variances.  

 

To see that, let us simplify the situation. Assume there are only two returns,   and Q ; and the 

corresponding weights are w  and 
Qw . The weighted average can be formulated as 

( )
Q

BL

Q

w w Q
R

w w






 


. 

 

Since the weights are the inverses of the variances of   and Q , the equation becomes 

1 1
( ) ( )
var var

( )
1 1

var var

Q

BL

Q

Q

R






 



 

1

1 1 1 1

var var var varQ Q

Q



 

   
         
     

 

We also know that var     and varQ  . After inserting these values, we end up with 
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   
1

1 11 1( )BL R Q 


          
   

. 

 

The view assigner matrix, P , is the identity matrix and it is equal to 1 in our simplified one-

dimentional example. Therefore, the above equation can also be written as 

   
1

1 11 1( )BL R Q 


             
   

, 

which is the exact same formula for the mean of the posterior Black-Litterman excess returns. 

Thus, we may roughly say that the posterior returns are the weighted average of the prior returns 

and the view returns where the weights are the inverses of the corresponding variances. 

 

This result is intuitive. When the variance of prior increases, the corresponding uncertainity 

increases. Therefore the weight of the prior should decrase, penalizing this increasing 

uncertainity. On the other hand, if the variance of the prior decreases, then the weight of it 

increases to exploit the increased level of certainity. The same logic applies to the views. 

 

In our study we used the same covariance matrix both for the CAPM and the AR(1) views. 

However, we imposed our subjective degree of relative uncertainity by utulizing the tilda value. 

As our views are coming from an inferior time series model, AR(1), significantly low tilda values 

are assigned to decrease our relative confidence on the views. With a low tilda value the variance 

of CAPM,   , decreases while the variance of AR(1) side,  , stays the same. Therefore 

decreasing the tilda value increases the weight of the CAPM returns. 

 

Consequently, the weighted average of the CAPM returns and AR(1) returns is taken by Black-

Litterman formula, where  
1




  is the weight of the CAPM and 
1 is the weight of AR(1) 

views. Together with the historical covarince matrix, the resulting posterior returns is subjected 

to utulity maximization problem to obtain the optimal weights implied by the posterior 

information set. 
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It is important to note that although Black-Litterman method enables us to reach both posterior 

returns and posterior covariance, we only employed the model to obtain the posterior returns. In 

other words, the Black-Litterman method is utulized only to blend the CAPM and AR(1) returns 

proportioned to our relative confidence level imposed by our subjective selection of tilda value. 

Therefore, instead of posterior covariance matrix, the historical covariance matrix is used in the 

utulity maximization problem. In fact, since the view assigner matrix,  , is identity matrix, the 

posterior covariance would be nothing but a mixture of the historical covariance matrix,  , with 

the scaled version of itshelf,   . 
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3.2.4 Optimal Posterior Weights 

To find the optimal posterior weights, the utulity maximization problem is fed by the posterior 

excess returns that we found. The problem is the same as the one that was solved to obtain the 

excess returns implied by CAPM, except that the returns are now posterior returns: 

1
max  ' ( ) '

2
w BLU w R w w   

 

 

The analytical solution of this problem is know to be 

1( ) ( )BL

BLw R    . 

 

The resulting posterior weights should be summed up and subtracted from 1 to reach the weight 

for the risk-free asset. For example, if the summation is smaller than 1 then it means that the 

remainder should be invested in the risk-free asset. If the summation is larger than one, we have 

to borrow from the risk-free asset to finance the excess amount. 

 

In fact, the utulity maximization problem implicitly has a constraint on weights, although it 

seems to be an unconstrained maximization. However, the weight constraint does not affect the 

solution of the optimal risky weights. The constraint comes into play after the optimal risky 

weights are found. 

 

It can simply be shown that solving the unconstrained maximization problem for risky assets and 

equating the total weights to one by adding or subtracting the weight of the risk-free asset is the 

same as solving the constrained maximization problem including the risk-free asset. 

 

The constrained maximization can be formulated as 

1

1

1
max  ( ) ( ) ( ') ( )

2

.   ( ) 1.

w new new new new new

n

new i

i

U w R w w

s to w







   


 

 

Here, the sizes of ( )newR , new  and neww  are increased to  ( 1) 1n x  ,  ( 1) ( 1)n x n   and 

( 1)n respectively, because of the inclusion of the risk-free asset. The above expression for 2 

risky and 1 riskless assets, can be expressed as 
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1 2

1 2 1 1 2 1 11 12 1
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w f f f f

f f

f

r r w

U w w w r r w w w w
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s to w w

  


  

  


 

   
 



  

 

If we implement the weight constraint in the utulity equation, we can drop it from the expression. 

Also we know that the excess risk-free return and the covariances involving the risk-free return 

are zero. Then the maximization problem becomes 

1 2 1 2 1

2

1 2

1 2 1 2 11 12 1

12 22 2

0

max  (1 )  

0 0 0 (1 )

                                    (1 )  0  .
2

0

w U w w w w R

R

w w

w w w w w

w


 

 

   

 
 

  
 

 

 

If we make the matrix multiplications we reach 

 2 2

1 1 2 2 11 1 12 1 2 22 2max  2
2

w U w R w R w w w w


       . 

 

In matrix notation, the above equation is  

1
max  ' ( ) '

2
w U w R w w     

where  

1fw w  . 

 

That means, the constrained maximization problem including the risk-free asset can be 

simpliflied to the unconstrained maximization problem. In other words, the same result can be 

achieved via solving the constrained maximization problem which includes the risk-free asset or 

first solving the unconstrained maximization problem, which doesn’t include risk-free asset, and 

then equating the summation of the resulting weights by using the weight of risk-free asset. 

 

The second way, solving the unconstrained problem, is easier to solve. Moreover, if the utulity 

function is chosen as the one we used, there exists an analitycal solution. Therefore, in our study 

we preferred to use the second way. 
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There is one more issue to be discussed: if everything else is fixed, whether changing the 

expected return of a single asset changes the weight of the corresponding asset in the same 

direction or not. Our expectation was to find a direct relationship between the expected returns 

and corresponding weights. However, the relationship is more complex than we expected; it 

changes depending on the covariance structure between assets. 

 

To understand this issue, a simple example with 2 assets can be elaborated. The weights are 

found by the below analytical solution of the unconstrained utulity maximization problem: 

* 1( ) ( )w R   
, 

or in matrix representation 

1*
11 12 1* 1

*
12 22 22

( )1
 .

( )

Rw
w

Rw

 

 




 


 

 

The above equation can also be expressed more simply as 2 seperate equations. 

( 1) ( 1)

1 11 1 12 2

( 1) ( 1)

2 22 2 12 1

1
( ) ( )

1
( ) ( )

w R R

w R R

 


 


 

 

     

     

 

where the expression, 
( 1)

ij 

 
, stands for the 

thij  term of the inverse of the covariance matrix. 

This means that if the diagonal entries of the inverse of the covariance matrix are negative and 

the other terms are positive, then increasing the expected return of the first asset decreases the 

weight of the first asset and increases the second, and vice versa. 

 

By trial and error we found that if the variances of the assets are not equal and the covariance of 

these assets is between these variances, then the diagonal entries of the inverse of the covariance 

matrix are negative while the remaining terms are positive.  

To illustrate this fact, let 

11 12

1 2

12 22

4 3
cov( , )

3 2
R R

 

 
   

1

2

( ) 3.5
( )

( ) 2.5

R
R

R


  


 

1  . 

 

Then the reverse of the covariance matrix comes in the desired form: 
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1 1

11 12

12 22

4 3 2 3

3 2 3 4

 

 

 


 


. 

 

By the reverse optimization formula, we can obtain the optimal weights as 

1*

* 1

*

2

4 3 3.5 0.5
 

3 2 2.5 0.5

w
w

w



   . 

 

Now, let us increase the expected return of the first asset and keep everything else constant. The 

new expected return vector is 

1,

2,

( ) 3.55
( )

( ) 2.5

new

new

new

R
R

R


  


. 

 

The resulting weight vector is calculated as 

1*

1,*

*

2,

4 3 3.55 0.40
 

3 2 2.5 0.65

new

new

new

w
w

w



   . 

 

As can be seen from the illustration, an increase in the expected return of a single asset decreased 

the weight of the corresponding asset. Moreover, as the summation is greater than one, we have 

to borrow from the risk-free rate to finance the additonal 5% .  

 

Therefore, the relation is not direct.; it depends on the covariance structure. This illustration is 

based on an asset universe consisting of only 2 asset. If the size of the asset universe increases 

then the intercorrelations will be more and more sophisticated, making the relation hardly 

traceable.  

 

After finding the optimum weights for the 2 strategies, we obtained and compared the returns of 

the strategies for a time interval of 64 months, between 31/08/2005 and 30/11/2010. This process 

is discussed in the next section. 

 

3.2.5 Obtaining and Compairing the Strategy Returns 

The strategy returns on a time point are obtained by multiplying the weight vectors by the 

realized return vectors. This procedure is repeated for 64 months to get a time series matrix of 

strategy returns. 
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To compare the performances of the strategies,  four methods are preffered: compound return 

analysis, mean-variance analysis, utulity analysis and unpaired student-t test. 

 

The first method to compare the two strategy returns is the 64-months compounded returns. The 

idea is that if both strategy returns were followed with monthly updating and without any 

endowment or any comsumption, which one of the strategies would provide a higher return.  

 

To make this comparison, compounded returns are calculated by the following formula: 

124

61

(1 )compounded i

i

r r


  . 

 

The second method is mean-variance analysis. The means and standart deviations of two 

strategies are represented in two dimensional space, and it is visually checked whether there 

exists a clear dominance between two strategies for different tilda values. 

 

Thirdly, the utulities of two strategies are calculated and compared. In this calculation the risk-

aversion coefficient is  calculated by averaging the monthly risk-aversion coefficients in the out-

of-sample period. 

 

Lastly, an unpaired student-t test is conducted. Unpaired student-t test is used instead of paired 

student-t test, because our main concern is the compound returns of self-financing portfolios 

managed and updated by different strategies in any period, which is 64 months in our study. The 

compound return doesn’t change by altering the order of the returns. To see that, suppose C is 

the initial capital, and aR , bR and cR  are the returns of the first, second and third months 

respectively. The compounded return of this three month period would be the same, if the order 

of the returns was changed; because  

(1 )(1 )(1 ) (1 )(1 )(1 ).a b c c b aC R R R C R R R      
 

 

Therefore, our test should be insensitive to the ordering of the sample. However, the paired test is 

sensitive to the ordering. For example, if the order of a sample is changed and a paired test is 

conducted between the original and the generated sample, it is highly possible to reject the 

hypothesis that the means of the two samples are the same. On the other hand, unpaired test is not 

sensitive to the ordering. If unpaired test was used for the above case, the hypothesis would not 

be rejected. So, unpaired student-t test is preferred instead of the paired test.  
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To conduct two sample unpaired student-t test, firstly the t-statistic is calculated by the following 

formula: 

2 2

CAPM BL

CAPM BL

CAPM BL

x x
t

n n

 






 

 

where the degrees of freedom is calculated as 

2
2 2

2 2
2 2

1 1

CAPM BL

CAPM BL

CAPM BL

CAPM BL

CAPM BL

n n
DoF

n n

n n

 

 

 
 

 

   
   
   

 

. 

 

After finding the t-statistic and the degrees-of-freedom, p-value can be calculated by using the 

cumulative density function (cdf) of the student-t distribution. If the t-statistic is smaller than 

0.5  then the value obtained from the cdf is the desired p-value, otherwise the value obtained 

from the cdf is subtracted from 1 to find the p-value.  

 

The hypothesis is that the strategy returns are equal to each other. If the p-value is smaller than 

the subjective confidence level than the hypothesis is rejected, otherwise it is not rejected. 
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CHAPTER 4 
 

 

 

RESULTS 
 

 

 

4.1 Results 

Following the steps described in the methodology chapter, firstly CAPM implied returns are 

calculated as the prior returns. Secondly, the AR(1) forecasts are obtained as the quantitative 

views. Thirdly, prior returns and quantitative views are blended by Black-Litterman method, to 

obtain the posterior returns. After that, these posterior returns are used to solve the utulity 

maximization problem in order to reach the optimal weights of the industry indexes. Lastly, 

Black-Litterman strategy was compared with the CAPM strategy by four different methods. 

 

A substep of obtaining the CAPM implied returns is calculating the risk aversion coefficients in 

the rolling window period. The risk aversion coefficients are smaller than we expected. The mean 

of the coefficients for 64 periods is 0.8474. The reason is that untill recent years turkish 

governments were covering their budget deficits by domestic debt. Together with the inflationary 

enviroment and increased risk perception after the two economic crises, the huge amount of 

government bond supply carried the interest rates of government bonds to virtually high levels. 

Because of this fact, the difference between returns in the stock exchange market and the risk-

free rates had decreased, decreasing the risk aversion coefficient. 

 

Although we used these risk-aversion coefficients without any modification, we do not think that 

these values represent the real risk aversion in the market. It may be that the market did not 

perceive the turkish government bond as risk-free, although it should be by definition. Using 

other non-government bonds of high rated companies as a proxy for risk-free rates might be a 

remedy. However, it is highly possible to reach the same result.  

 

Another alternative explanation may be that in an emerging market which had gone through two 

economic crises, the sample of size 64 is too small to successfully represent the population, 
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because the data includes shocks and jumps. However, the price data for the industrial indexes 

are avaliable only after 1997, limiting the sample size.  

 

Despite of these limitations, we used these risk aversion coefficients, since it seems that a better 

alternative is not available. 

 

Another issue is the behaviour of the posterior weights. At first we expected that the posterior 

weights would move to the same direction with the view return. For example, if the AR(1) 

forecasted return for an industry index was greater than the corresponding CAPM implied return, 

we would expect the posterior weight of this industry index to be greater than the market 

capitalization weight. However, we could not detect such a direct or indirect relationship between 

the view returns and the posterior weights. In table.1, the differences in the returns  [(CAPM 

implied Returns) – (Black-Litterman Posterior Returns)] and the corresponding differences in the 

weights [(Market Capitalization Weights)-(Black-Litterman Posterior Weights)] are given. These 

values are obtained by setting tilda equal to 0.00001 . It can easily be seen that there is not a 

relationship as we expected.  

 

The scatter plot shown in figure.3 represents these points in 2 dimensional space.  The 

unexistence of any patterns means that there is no direct or reverse relationship between the 

change in returns and the change in weights. 

 

Although this observation seems unintuitive at first sight, the unexistence of a direct relationship 

does not really imply a mistake. After a deeper study, it can be seen that the relationship actually 

depends on the covariance structure of returns. In methodology chapter it is discussed and stated 

that for some covariance structures, there may even be a reverse relationship. The illustration in 

the previous chapter was done for a quiete small asset universe: 2 assets. Obviously, the more the 

size of the asset universe increases, the more complex relationships will be observed; and it will 

be harder to trace them. Therefore, this observation is not inconsistent with the methodology 

indeed. 
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Figure 3 

 

 
Table 1 

Industry Index Return Diff at 

31/08/05 

Weight Diff at 31/08/05 
Banking 0,00000035 -0,00992976 
Information Tech. 0,00000063 -0,00113781 
Electric -0,00000002 0,00025704 
Leasing 0,00000032 -0,00010302 
Food 0,00000009 -0,00005414 
Real Estate Inv. Tr. 0,00000032 -0,00054587 
Services 0,00000034 -0,00388227 
Holdings 0,00000036 -0,00429856 
Telecominication 0,00000032 0,00156479 
Paper 0,00000012 -0,00000297 
Chemistry 0,00000050 0,00013580 
Finance 0,00000039 0,01580641 
Metal(main) 0,00000014 -0,00003641 
Metal(stuff) -0,00000006 -0,00069475 
Defense 0,00000032 -0,00055510 
Insurance 0,00000036 -0,00073402 
Stone & soil 0,00000046 0,00040207 
Technology 0,00000063 0,00177611 
Textile 0,00000017 0,00000076 
Commerce 0,00000069 0,00144051 
Tourism 0,00000073 0,00013964 
Transportation 0,00000068 0,00026946 
Mutual Funds 0,00000016 0,00009254 

 

Before making the comparison between the strategies, time series graphs and histograms of the 

prior returns and the view returns are checked.  
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As can be see from the graphs, CAPM strategy returns are nearly smooth compared to highly 

volatile AR(1) strategy returns. AR(1) returns have more than 10 extreme values like -3000 % 

and 2000 %. Moreover, there are two large negative jumps which can be treated as outliers. In 

time series graph of AR(1), the maximum and minimum values are set to be 50 and -50 

respectively, so two negative jump points are not seen in the graph. The reason for excluding 

these jumps in the graph is that when they are included, the scale gets too small, making the 

graph not understandable. 

 

This highly volatile behaviour and the existence of extreme negative returns are the main reasons 

why we exclude pure AR(1) strategy in the comparisons. In AR(1) strategy, we have observed 

that for some months there are some negative returns smaller than -100%. The reason is that, 

since we used an unconstrained optimization, there are no limitations on short selling, and the 

summation of the weights of risky assets can be different than 1. Therefore, for some periods the 

total weight of risky assets are observed to be at extreme levels, like -2500 %. This means, we 

have to short sell risky assets with an amount which is 25 times our budget, and invest this cash 

in risk-free rate for one month. It is obvious that in case of a strong bullish movement in the stock 

market, returns smaller than -100% will be generated, resulting a negative wealth. In other words, 

not only the principal will be lost, but also the strategy will end up with debt. If this happens, the 

strategy will not be admissible anymore because a new portfolio can not be composed without 

additional endowment. In fact, in the first month, AR(1) strategy results in negative wealth with a 

return of -635 %, so the strategy should be terminated very early. 

 

On the other hand, CAPM returns are ossilating around the close neighborhood of 0 %. The 

maximum return is about 27 % and the minimum return is nearly -23 %. Since there is not a 

return smaller than -100 %, the strategy is admissible. 

 

 

Figure 4 
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Figure 5 

 

 
The below histograms show the frequency distributions of prior and view returns. Although, both 

of them are centered around zero, AR(1) returns are spreaded in a more distant range and have 

extremes values, while capm returns are distributed in a relatively smaller range: 25% .  

 

To make the graph readable, four outliers are excluded from AR(1) returns . After excluding the 

outliers in view returns, AR(1) has a mean of 42.67 and standart  deviation of 10.11, while the 

mean and standart deviation of CAPM are 0.018 and 0.10 respectively.  
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Figure 7 

 

 
The first comparison will be made on 64 months compound returns. CAPM strategy generates a 

64 month compound return of 132 %. The return of Black-Litterman strategy depends on tilda. 

As tilda increases, the weight of CAPM decreases and the compound return of Black-Litterman 

diverges from that of CAPM in a negative direction. For small tilda values it is nearly equal to 

CAPM return. As tilda increases the Black-Litterman strategy return decreases. When tilda is 

equal to its lowest level, 
66.25 10

, tilda imposes the highest weight to AR(1), and Black-

Litterman compounded return is equal to 24% . Although it is a negative return, it does not 

cause a negative wealth, because it is not smaller than 100% . The below graph shows the 

relation visually. 

 

 

Figure 8 
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Second comparison is the mean-variance analysis. To see whether there is an obvious dominance, 

CAPM strategy returns and Black-Litterman strategy returns are represented on mean-standart 

deviation plane. There are five Black-Litterman points where BL1 represents the posterior return 

for the smallest tilda and BL5 represents the posterior return for the largest tilda. 

 

In the first graph, all the six points are included. However, the graph is not readable, because of 

the distant location of BL5. In order to make the graph more readable, the scale is increased by 

excluding BL5.  

 

 

Figure 9 

 

 

Figure 10 
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In the second graph, it can be seen that until BL3, the points move to the southwest direction as 

tilda increases. After that, the direction moves to southeast, making the last two Black-Litterman 

portfolios unefficient. 

 

From this graph we may say that BL4 and BL5 are dominated by the other strategies. However, 

we cannot make a clear distinction between CAPM, BL1, BL2 and BL3. Although, the increase 

in tilda decreases the mean returns, it decreases the standart deviation in the meantime. 

Therefore, investors with different risk-aversion coefficients  may choose different strategies 

among these. 

 

Third method is utulity analysis. In this analysis, expected utulities are calculated for 6 different 

strategies. In mean-variance analysis, the distinction could not be made between the first four 

strategies. However, if we assign a risk-aversion coefficient for the market, the expected utulities 

can be calculated, and the selection becomes more clear. 

 

To estimate the risk-aversion of the market, we used the mean of the monthly risk-aversion 

coefficients for the out-of-sample period. Using this estimated coefficient, the expected utulities 

are calculated. The below graph shows the results. The expected utulity decreases, while tilda 

value increases. 

 

 

Figure 11 

 

 
The strength of utulity analysis is that a precise decision is possible by comparing the expected 

utulities. However, it relies on the assumption that the mean risk-aversion coefficient is a good 

estimate for the market. The unexpectedly small risk-aversion coefficients in mind, we may 
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doubt that our estimate may not be a good enough estimate to represent the market. The problem 

about the risk-aversion coefficients was discussed in methodology chapter. 

 

The last comparison will be made on the mean strategy returns. The compound return analysis 

shows us the relationship between strategies for one sample of size 64. On the other hand, to test 

whether this result is due to chance, a statistical hypothesis test must be executed. The idea is that 

if two strategies were coming from the same population, and the mean returns of different 

samples of the same size coming from different time periods were calculated, what would be the 

probability to observe the sample that we work on.  

 

Our null hypothesis is that both of the strategy returns of size 64 are coming from the same 

population, and the differences are due to chance. If the null hypothesis is rejected then it can be 

stated that the difference between strategy returns are statistically significant.  

 

Unpaired student t-test is conducted to test the difference between CAPM and Black-Litterman. 

Same test is executed for different tilda values and the corresponding p-values are obtained. The 

below graph shows the relationship between tilda and p-value. It is easly seen that as tilda 

increases, the p-value decreases, which means the probability of observing such a difference 

decreases. In other words, the difference between CAPM strategy returns and Black-Litterman 

Strategy returns is getting more significant.  

 

 

Figure 12 

 

 
This test result is consistant with our expectations. Since tilda imposes the relative weight 

between the prior and the views, the increase in tilda gives less weight to the prior returns. 

Therefore, as tilda increases, the difference between the posterior and the prior increases. 

Nevertheless, the difference is not statistically significant even for the highest tilda value. The 
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smallest p-value obtained to be 0.3, which is not small enough in any manner to reject the null 

hypothesis. Consenquently, Black-Litterman strategy  returns diverges from CAPM strategy 

returns in negative direction, however the difference is not found to be statistically significant. 
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CHAPTER 5 
 

 

 

CONCLUSION 
 

 

 
In this thesis, Black-Litterman method is elaborated and an emprical study is conducted on the 

Turkish stock market. Unlike the original study of Black and Litterman, quantitative views are 

used instead of qualitative analyst views. Returns of the posterior portfolios are compared with 

that of the market portfolio for four different criteria. The results showed that, with AR(1) views, 

the Black-Litterman portfolio does not beat the market portfolio.  

 

The first chapter of this study gives a brief introduction and explaines the motivation of using 

Black-Litterman methodology in portfolio management. The main idea of blending two different 

information sets is mentioned. 

 

In the second chapter, the portfolio theory is reviewed, beginning from the studies of Markowitz . 

In the first section, the portfolio theory before Black-Litterman metdod is reviewed. In the second 

section, the literature about Black-Litterman method is investigated. 

 

Third chapter explaines the steps proceeded while conducting our emprical study. Some obstacles 

are faced because of the underperformance of AR(1) forecasts,  and the untraceable interactions 

arising from the size of the asset universe. Nevertheless, dealing with these obstacles provided a 

deeper insight in to the mechanisim and dynamics of the model. These inferences are shared by 

detailed discussions throughout the chapter. 

 

In the fourth chapter, the results of the comparisons between the performances of the market 

portfolio and the posterior portfolio is presented. Black-Litterman portfolio performed worse than 

the market portfolio, in terms of the first three criteria: compound return, mean-variance ratio, 

and utulity score. As tilda gets large, the difference between the two strategies become more 

visible. On the other hand, the observed difference is not statistically evidenced according to the 

unpaired student-t test, the fourth criterion. Nevertheless, it is clear that the difference would 

enter the critical zone, should the increase in the tilda value proceed. 
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Consequently, Black-Litterman method does not provide a superior performance compared to the 

passive market portfolio, if AR(1) forecasts are selected to be the quantitative views. The AR(1) 

model can be blamed for the infrior performance of the Black-Litterman model, since AR(1) 

model only gives naive and unsophisticated forecasts about the future returns of the assets. This 

fact was speculated beforehand, however some obstacles constrained us to use this simple model. 

Firstly, qualitative views are not used because of the relative ellusiveness of sound qualitative 

analyst views, and the dependency of the final performance results to the human factor involved. 

Secondly, among so many quantitative models, only AR(1) model is found to be consistently 

statistically significant for all time periods and for all asset clases.  

 

Further direciton may be to find and test another quantitative model which may better suit the 

turkish market. Also more sophisticated covariance estimation methods may improve the 

performance of the Black-Litterman method. 
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