

EFES : AN EFFORT ESTIMATION METHODOLOGY

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SEÇKĠN TUNALILAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

September 2011

Approval of the Graduate School of Informatics

 Prof. Dr. Nazife BAYKAL

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor of

Philosophy.

 Prof. Dr. Yasemin YARDIMCI ÇETĠN

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in

scope and quality, as a thesis for the degree of Doctor of Philosophy.

 Assoc. Prof. Dr. Onur DEMĠRÖRS

 Supervisor

Examining Committee Members

Prof. Dr. Semih BĠLGEN (METU, EEE) __________________________

Assoc. Prof. Dr. Onur DEMĠRÖRS (METU, II) __________________________

Prof. Dr. Ġbrahim AKMAN (ATILIM, COMPE) __________________________

Dr. Ali ARĠFOĞLU (METU, II) _________________________

Assoc. Prof. Dr. Altan KOÇYĠĞĠT (METU, II) _________________________

 iii

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results

that are not original to this wok.

 Name, Last name: SEÇKİN TUNALILAR

 Signature :

 iv

ABSTRACT

 EFES : AN EFFORT ESTIMATION METHODOLOGY

Tunalılar, Seçkin

Ph.D., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Onur Demirörs

September 2011, 167 pages

The estimation of effort is at the heart of project tasks, since it is used for many purposes

such as cost estimation, budgeting, monitoring, project planning, control and software

investments. Researchers analyze problems of the estimation, propose new models and use

new techniques to improve accuracy. However up to now, there is no comprehensive

estimation methodology to guide companies in their effort estimation tasks. Effort estimation

problem is not only a computational but also a managerial problem. It requires estimation

goals, execution steps, applied measurement methods and updating mechanisms to be

properly defined. Besides project teams should have motivation and responsibilities to build

a reliable database. If such methodology is not defined, common interpretation will not be

constituted among software teams of the company, and variances in measurements and

divergences in collected information prevents to collect sufficient historical information for

building accurate models. This thesis proposes a methodology for organizations to manage

and execute effort estimation processes. The approach is based on the reported best practices,

 v

empirical results of previous studies and solutions to problems & conflicts described in

literature. Five integrated processes: Data Collection, Size Measurement, Data Analysis,

Calibration, Effort Estimation processes are developed with their artifacts, procedures,

checklists and templates. The validation and applicability of the methodology is checked in a

middle-size software company. During the validation of methodology we also evaluated

some concepts such as Functional Similarity (FS) and usage of Base Functional Components

(BFC) in effort model on a reliable dataset. By this way we evaluated whether these subjects

should be a part of methodology or not. Besides in this study it is the first time that the

COSMIC has been used for Artificial Neural Network models.

Keywords: Effort Estimation Methodology, Base Functional Components, , Artificial Neural

Networks, Multivariate Regression, Functional Similarity,

 vi

ÖZ

EFES : EFOR KESTĠRĠM METODOLOJĠSĠ

Tunalılar, Seçkin

Doktora, BiliĢim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Onur Demirörs

Eylül 2011, 167 sayfa

Efor kestirimi projede gerçekleĢtirilen maliyet kestirimi, bütçe planlaması, proje takibi ve

planlaması, proje kontrolü ve yazılım harcamaları iĢlemlerinin tam kalbinde yeralmaktadır.

Pek çok araĢtırma efor kestirim problemlerini analiz etmekte, yeni teknikler ve efor

modelleri ile kestirimin doğruluğunu arttırmaya çalıĢmaktadır. Fakat, organizasyonların tüm

kestirim çalıĢmalarını yönlendirecek geniĢ kapsamlı bütüncül bir metodoloji henüz

tanımlanmamıĢtır. Efor kestirim problemi sadece hesaplama değil, aynı zamanda bir yönetim

problemidir ve kestirim amaçlarının, iĢlem adımlarının, ölçüm metotlarının ve güncelleme

mekanizmalarının uygun bir Ģekilde tanımlanmasını gerektirir. Ayrıca proje ekiplerinin

güvenilir bir veritabanı oluĢturma amacı ile sorumlulukları ve motivasyonu olmalıdır. Böyle

bir methodoloji olmazsa, Ģirketin yazılım ekipleri arasında ortak fikir birliği oluĢmaz ve

ölçümlerdeki farklılıklar ve toplanan bilgilerdeki farklı dağılımlar doğru model üretebilmesi

için doğru ve yeterli data toplanamamasına sebep olur.

Bu çalıĢma, efor kestirimi için bir metodoloji önermektedir. Metodoloji, Ģirketlerin en iyi

pratiklerini yayınladıkları raporlar ile önceki çalıĢmalardan elde edilen veriler, problem ve

çatıĢmalara önerilen çözümler üzerine kurulmuĢtur. BeĢ entegre süreç; ilgili çıktıları, kontrol

 vii

listeleri, prosedürleri ve Ģablonları ile tanımlanmıĢtır: Veri Toplama, Büyüklük Ölçümü, Veri

Analizi, Kalibrasyon ve Efor Kestirimi süreçleri. Metodolojinin geçerliliği ve

uygulanabilirliği orta büyüklükte bir organizasyonda geriye dönük olarak

gerçekleĢtirilmiĢtir. Geçerliliğinin değerlendirilmesi sırasında Fonksiyonel Benzerlik

yöntemi ve fonksiyonel alt-parçalarının efor modelinde kullanımı da güvenilir bir veri-seti

ile sınanmıĢtır. Böylece bu konuların metodolojinin bir parçası olup olmayacağı

netleĢtirilmiĢtir. Ayrıca ilk kez COSMIC ölçümü Yapay Sinir Ağları modeli ile birlikte

kullanılmıĢtır.

Anahtar Kelimeler: Efor Kestirim Metodolojisi, Fonksiyonel Büyüklük Parçaları, Yapay

Sinir Ağları, Çok DeğiĢkenli Regresyon, Fonksiyonel Benzerlik

 viii

DEDICATION

I have been truly blessed to have such wonderful parents.

Dear Mom, Dad..

Your love, support and encouragement led me through this

amazing journey. I could never have completed this degree without

you

I Love You and I dedicate this thesis to you …

 ix

Life is an opportunity, benefit from it..

Life is beauty, admire it..

Life is bliss, taste it..

Life is a dream, realize it..

Life is a challenge, meet it..

Life is a duty, complete it..

Life is a game, play it..

Life is a promise, fulfill it..

Life is sorrow, overcome it..

Life is a song, sing it..

Life is a struggle, accept it..

Life is a tragedy, confront it..

Life is an adventure, dare it..

Life is luck, make it..

Life is too precious, do not destroy it..

Life is life, fight for it..

 x

ACKNOWLEDGEMENTS

The completion of my PhD would not have been possible without the encouragement and support of

my supervisor, family, friends, and colleagues. It was a long journey and many people contributed to

the development of this thesis through their gift of time, advice and belief.

I would like to express deepest gratitude and sincere respect to my supervisor, Dr. Onur DEMĠRÖRS.

I‟m heartily thankful to him for his expert guidance, his patience, constructive criticism, careful

supervision and continuous encouragement throughout the years of my study. It has been a privilege

and honor to work with him.

I am grateful to my committee members Dr. Semih BĠLGEN and Dr. Ali DOĞRU, Dr. Ali

ARĠFOĞLU, Dr. Altan KOÇYĠĞĠT and Dr. Ġbrahim AKMAN for their time, helpfulness,

encouraging words and also for their critical suggestions and advice. Their criticism and suggestions

effectively helped to shape my work.

I am appreciative of the support from my colleagues in the Informatics Institute: Semra YILMAZ

TAġTEKĠN, Dr. Çiğdem GENCEL, Dr. Pınar Onay DURDU, Dr. Yasemin KARAGÜL. I am

grateful for their friendship and collaboration. Without them my adaptation to institute would have

been much more difficult.

I am thankful to the members of the Software Management and Research Group for many

brainstorming meetings. My special thanks goes to BarıĢ ÖZKAN, Özden Özcan Top, Erdir UNGAN

and Gökçen YILMAZ for their invaluable discussions and for the validation of this study.

I also appreciate insightful discussions with my friend, who is also my work colleague, Gamze

EROĞLU. She always reviewed my study and offered her honest thoughts and critisim. I would never

forget the help I got from her during difficult times in preparation of this study.

I am indebted to my old friends and work colleques Alptekin ISIKLAR, Dr. Devrim ANIL to support

me and for creating an enjoyable and motivating work environment. They always had time to discuss

 xi

issues I was struggling with and always provided me with valuable insights and solutions at each step

of this study.

I would like to give great thanks to my friends, particularly, Dr. Handan YÜKSELGÜNGÖR, Füsun

DEMĠR, Figen BOZKURT, Sadiye BAKTIR who have given lots of laughter and confidence in

completing this thesis. I have been fortunate to have their friendship.

I would like to thank all the staffs and faculty members of the Informatics Institute for assisting me

in various ways.

Finally, I wish to thank my family for their endless love, tolerance, encouragement and support. My

parents, Ayten and Ömürcan TUNALILAR, without whom, I would not be the fighter I have become;

nor learned to go after my dreams regardless of situation. I cannot adequately express my gratitude to

my dear brother Tuğrul and beloved sister Nurlan TUNALILAR for proof reading of the entire thesis

and my publications. Their patience, motivation and insightful comments undoubtedly resulted in

significant contributions to the development of this thesis. Warm thanks to my amazing niece Burcu

TUNALILAR, her smile always lightens up my days.

 xii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... vi

DEDICATION .. viii

ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS ... xii

LIST OF TABLES ... xv

LIST OF FIGURES .. xvii

LIST OF ABBREVIATIONS ... xviii

CHAPTER

1. 1. INTRODUCTION .. 1

1.1. The Context .. 5

1.2. The Problem ... 8

1.3. The Solution Approach .. 12

1.3.1. The Effort Estimation Methodology... 15

1.4. Validation of the EFES methodology ... 17

1.5. Organization of the Thesis ... 18

2. 2. RELATED RESEARCH .. 20

2.1. Effort Estimation .. 20

2.1.1. Expert Estimation ... 21

2.1.2. Formal Estimation Model ... 23

2.1.3. Composite... 31

2.2. Base Functional Components of Size Measurements ... 31

2.2.1. IFPUG -FPA ... 31

2.2.2. Mark II Function Point ... 32

2.2.3. 3D Function Points ... 34

2.2.4. NESMA .. 35

2.2.5. Full Function Point ... 35

2.2.6. FISMA .. 36

2.2.7. COSMIC .. 36

2.3. Effort Estimation Studies ... 38

 xiii

2.3.1. Reasons for Effort Estimation Errors ... 39

2.3.2. Improvements and Problems on Size and Effort Relationship 40

2.3.3. Need for Database Reliability and Effect of Datasets .. 46

2.3.4. Effect of Data Analysis Method ... 50

3. 3. EFES: EFFORT ESTIMATION METHODOLOGY .. 56

3.1. Requirements Of The Methodology ... 56

3.1.1. Detailed Requirements: .. 58

3.2. Processes of Framework ... 61

3.2.1. Effort Collection: .. 63

3.2.2. Size Measurement: ... 66

3.2.3. Data Analysis: .. 68

3.2.4. Effort Estimation .. 68

3.2.5. Calibration .. 68

3.3. Data-base Formation .. 69

3.4. Roll & Actors ... 69

3.5. Process Definitions ... 70

3.5.1. Effort Collection ... 70

3.5.2. Size Measurement .. 74

3.5.3. Data Analysis ... 80

3.5.4. Effort Estimation .. 85

3.5.5. Calibration .. 89

4. 4. EXPLORATION and APPLICATION OF THE METHOD ... 92

4.1. Research Methodology ... 92

4.2. Multiple Case Study Design ... 93

4.2.1. Define and Design of Case Study ... 93

4.3. Case Studies ... 98

4.3.1. Case Study-1. ... 98

4.3.2. Case Study-2 .. 121

4.4. Validity Threats .. 131

5. . 5. CONCLUSIONS .. 133

5.1. Contributions .. 135

5.2. Limitations ... 137

5.3. Future Research .. 138

REFERENCES ... 139

APPENDICES

1. DECOMPOSITION OF SOFTWARE PROJECT INTO SCIs .. 153

2. LIST EXAMPLES ... 154

3. SUPPORTING & EXTRA EFFORT LIST .. 157

4. EFFORT COLLECTION PROCESS TABLE EXAMPLES ... 159

 xiv

5. APPLICATION DOMAIN CATEGORIZATION .. 160

6. SIZE MEASUREMENT PROCESS TEMPLATES .. 161

7. FUNCTIONAL SIMILARITY APPLICATION NOTES: .. 164

8. DATA ANALYSIS PROCESS EXAMPLE TEMPLATES .. 165

VITA .. 167

 xv

LIST OF TABLES

Table 1 Solutions to problems .. 14

Table 2 COCOMO II software cost drivers (adapted from Boehm and Horowitz) 26

Table 3 Applicable Domains for Functional Size measurements (from study Ebert et al.) 30

Table 4 BFC components of Functional Size Measurement .. 34

Table 5 Results of Effort Estimation Error Studies ... 40

Table 6 Traceability of Requirements to Processes of Methodology and responsible people 62

Table 7 A Part of Recommended General List Structure based on IEEE EIA 12207 65

Table 8 A Part of Supporting & Extra effort List .. 67

Table 9 Responsibilities of the Methodology ... 70

Table 10 Deliveries for Effort Collection Process ... 71

Table 11 Deliveries for Size Estimation Process ... 75

Table 12 Deliveries for Data Analysis Process .. 81

Table 13 Deliveries for Effort Estimation Process ... 86

Table 14 Deliveries for Calibration Process ... 90

Table 15 Case Study Plan... 94

Table 16 Measurement Results of the Projects .. 100

Table 17 The results of first order and second order evaluations ... 101

Table 18 Productivity Rates of Simulator Projects (Productivity= Size Cfsu/ effort (man-day)) 102

Table 19 Productivity Rates of Projects (Productivity= Cfsu/ man-day) ... 104

Table 20 Average productivity rates and average deviation of productivity 105

Table 21 Findings and Requirements for Methodology ... 107

Table 22 Percentages of special effort/total project effort. .. 110

Table 23 Selected generic effort models ... 114

Table 24 Specific Regression models constructed on the basis of the company dataset 115

Table 25 Comparison of effort models based on Total Functional Size (n=17) 118

Table 26 Accuracy measures of the ANN models ... 120

Table 27 Effort Distribution in Phases ... 123

Table 28 Size Measurement Results for a Specific Application Domain... 124

Table 29 Accuracy Comparison of Models Development Effort & Total Effort 126

Table 30 Percentages of Supporting & Extra effort Values ... 127

 xvi

Table 31 General List: Phase and Activity Groupings in Company .. 154

Table 32 Additional Phase and Activity Definitions for SAFETY to ISO-IEC 15504 : 155

Table 33 General List Example Phase Definitions from Literature .. 155

Table 34 Activity Definitions Recommended by McConnell .. 156

Table 35Applied Supporting & Extra effort List (Unexpected/Unplanned/Unrelated activities) 157

Table 36 Example Lists for Supporting & Extra efforts (Unexpected Event/Out Of Development) . 158

Table 37 Example Effort Collection Table for Project1__ES_ControlInterface 159

Table 38Applied Categorization of Company .. 160

Table 39 Application Domain Categorization in Literature ... 160

Table 40 SRS Template Example .. 161

Table 41 SRS Review Checklist Template Example ... 162

Table 42 Measurement Results Template Example ... 162

Table 43 Detailed Measurement Results Template Example ... 163

Table 44 BFC Grouping Results of all Projects Template Example ... 163

Table 45 FS Measurements Calculation ... 164

Table 46 #of BFC Table for Analysis of Standard Measurement .. 165

Table 47 Accuracy Record Example Template for Neural Network... 165

Table 48 Effort Model Weights Table ... 165

Table 49 Supporting & Extra effort Analysis Results Example table .. 166

Table 50 Effort Estimation of new projects Example table .. 166

 xvii

LIST OF FIGURES

APTER

Figure 1 Effort estimation is at the core of Project Tasks .. 6

Figure 2 Effort Estimation Problematic Areas ... 8

Figure 3 Classification of Effort Estimation Models.. 21

Figure 4 History of Functional Size ... 29

Figure 5 IFPUG Measurement ... 32

Figure 6 Mark II Functional Size Measurement ... 33

Figure 7 Nesma Functional Size Measurement .. 35

Figure 8 Full Function Point Measurement Method .. 36

Figure 9 FISMA Functional Size Measurement ... 37

Figure 10 COSMIC Generic Model [104] ... 38

Figure 11 BFCs of COSMIC .. 38

Figure 12 Categories of Software according to Service provided by Morris 50

Figure 13 Mathematical Representation of Neuron “Adapted from Rios Daniel Study 53

Figure 14 Top-View of Effort Estimation Framework ... 56

Figure 15 Effort Estimation Process Framework ... 63

Figure 16 Decomposition of Project Items (From DOD-2167).. 64

Figure 17 Database Organization ... 69

Figure 18 Effort Collection Process ... 77

Figure 19 Size Estimation Process ... 82

Figure 20 Data Analysis Process .. 87

Figure 21 Effort Estimation Process .. 89

Figure 22 Calibration Process .. 91

Figure 23 Case Study Flow .. 93

Figure 24 Categories of software in company in layered approach ... 96

Figure 25 Effort/cfsu variation w.r.t. FS in different phases .. 106

Figure 26 Size and Effort Relationship for the Dataset ... 113

Figure 27 Average percentages of work distribution in years (for ES) .. 126

Figure 28 Example Decomposition of Software Project from study European Space Agency, [15] . 153

file:///C:/TEZ/SeckinTez_V16.docx%23_Toc305430454
file:///C:/TEZ/SeckinTez_V16.docx%23_Toc305430455
file:///C:/TEZ/SeckinTez_V16.docx%23_Toc305430456

 xviii

LIST OF ABBREVIATIONS

Abbreviations Definition

AI Artificial Intelligence

ANN Artificial Neural Network

AQAP Allied Quality Assurance Publications

AVE Average

BFC Base Functional Component

BSP Board Support Package

CBR Case Based Reasoning

CDR Critical Design Review

CFP Cosmic Function Point

CM Configuration Management

CMMI Capability Maturity Model Integrated

COSMIC North Atlantic Treaty Organization (NATO) Security Category

COTS Commercial Of the Shelf

CSU Configuration Software units

DET Data Element Type

DO-178 Software Considerations in Airborne Systems and Equipment Certification

DOD Department Of Defense

EFES Effor Estimation Methodology

EIA Electronic Industries Association

EIF External Interface File

 xix

Abbreviations Definition

ES Embedded Systems

ESA European Space Agency

FFP Full Function Point

FISMA Finnish Software Measurement Association

FP Function Points

FPA Function Point Analysis

FS Functional Similarity

FSM Functional Size Measurement

FUR Functional User Requirements

GUI Graphical User Interface

HW Hardware

I/O Input/Output

IEEE Institute Of Electrical And Electronics Engineers

IFPUG International Function Point Users Group

ILF internal logical file

ISBN International Standard Book Number

ISBSG International Software Benchmarking Standards Group

ISO International Standards Organization

KLOC Kilo Lines of Code

LED Light Emitting Diode

LOC Lines Of Code

LSR Least Squares Regression

M&A Measurement and Analysis Group

 xx

Abbreviations Definition

MIS Management Information System

Mil-STD Military Standard

MMRE Mean Magnitude Relative Error

MRE Magnitude Relative Error

MSE Mean Square Error

NESMA Netherlands Software Metrics Association

NN Neural Network

OLS Ordinary Least Squares

PDR Preliminary Design Review

PRED Prediction Level

QA Quality Assurance

R&D Research And Development

R
2
 Coefficient Of Determination

RET Record Element Types

RTOS Real Time Operating System

SCI Software Configuration Item

SDD Software Design Document

SEER Software Effort Estimation Research (Company Name)

SEERSEM Software Estimation Modeling Tool

SLOC Source lines of code

SPR Software Productivity Research

SRS Software Requirements Specification

UK United Kingdom

 xxi

Abbreviations Definition

UML Unified Modeling Language

VAR Variance

WBS Work Breakdown Structure

 1

 CHAPTER 1

1. 1. INTRODUCTION

Measurement is a fundamental part in every scientific and engineering discipline that enables the

information to be collected and be used for qualifying the product and process. It enables to

understand the current situation, allows making comparison with previous projects, and leads to

making a good estimate. Results of measurement remind you of where you have been and where you

plan to go.

Project managers‟ main concern is related to how long their projects will last, what the projects will

cost, and whether the product will function as intended when released. In order to answer these

questions, they need measurement methods.

Effort estimation is at the heart of these questions, since it connects measurements to cost and

schedule of the project. The determination of the required effort during project initiation phase allows

us to plan adequately any forthcoming activities. It is performed for a variety of reasons: project

selection, resource planning, scheduling, monitoring status, assessment of team performance,

controlling remaining activities etc. Compared to other engineering disciplines, accurate estimation is

difficult for software development since it involves a number of interrelated factors that affect

development effort and productivity, like environment, team skills, tools, properties of product.

Therefore effort estimation models have been investigated by many researchers and practitioners since

1960s [1][2][4].

During the years, the focus for the studies on effort estimation has been changing. Researchers

analyze the reasons for estimation errors [6][21][22][23][24], the ways of improving accuracy in

estimations by using new size measurement methods or model building approaches [16] [17] [18], and

the solution of dataset-related problems [12][13]. However there is no defined estimation

methodology to guide companies in their effort estimation tasks. “Methodology” is a comprehensive

 2

approach. It not only defines the methods or techniques applied for measurement, but also the

execution steps, updating mechanisms, procedures, artifacts, templates etc that prevents errors.

In the early days, for effort estimation expert judgment techniques were very popular. In 1966, Delphi

method was suggested by Helmer [5]. This method was recommending forming a group from experts

to predict an effort estimate. It was improved by Boehm in 1981 and named as Wideband-Delphi

method. It is an inexpensive and easy method, but may suffer from manipulation of people [7].

In 1970s methods to organize and to structure the project related information became popular like top

down and bottom up methods. Bottom up approach needed the system and its components to be

known sufficiently. Top down approach needed very similar projects to be accurate and to create cost

information database [30][31].

At the beginning of 80s, the estimation equations were generated that were based on historical data

and statistical analysis techniques like regression analysis [3] [7]. In most of these effort models it was

assumed that size could be measured accurately and be used to estimate the effort needed. Models

were typically using Kilo Lines of Code (KLOC) as size parameter. Even it was an easy measure to

obtain, it had some drawbacks: it was not available at the beginning of the project, definitions were

controversial, depended on the developer performance etc [33].

IBM realized that, complexity of software projects created a necessity to do the work in defined life-

cycle phases or tasks and in a controlled manner. When they discovered that documentation task had a

tremendous effect on cost overruns, Alain Albrecht and his colleagues were assigned to develop a new

measure, that also could count the non-coding work. This study was the first Function Point measures

study [32]. Then a number of size measurement methods have appeared: such as IFPUG, MkII,

Cosmic FFP, Unified Modeling Language (UML) based functional size etc [34][35][36][37]. These

size measurement techniques were either proposed according to the changing development

environments or modified in order to resolve difficulties that had been raised in preceding models.

Although some of these measurement methods have gained raising popularity in the industry,

deficiency in applicability to all software domain types have caused to emerge such new variations.

To mention a few: In 1988, Symons devised his concerns and difficulties with Albrecht's FPA, and

proposed a new variant called Mark II Function Point Analysis [38]. He found Albrecht‟s method

classification very simple, the origin validity and objectivity of the weights very doubtful and the

handling of internal complexity as very complicated. Now this method is an accepted and applicable

standard by United Kingdom. However, its usage for real-time systems is found limited [39].

Similarly, in 1986, Software Productivity Research (SPR) Practitioners recognized that some type of

applications did not show any beneficial results since function points were originally developed for

 3

the measurement of MIS type systems. They developed “feature points” method aimed to deal with

real-time process control, mathematical algorithms and various embedded systems [40]. Due to

difficulty in assigning and deciding weights of the complex algorithms method was not caught on

[41]. Another size measure, Object Points, was suggested for Integrated Development Environments

that use objects for development like screens, reports, modules etc [42]. By using Delphi estimation

technique the weights of different objects was decided. However, there still a shortage of historical

database for this measurement [43].

In 1999, The COSMIC group reviewed some of the existing methods. After studying the

commonalities of existing methods, the method was proposed as a new generation of software

functional size measurement (FSM) method. Due to its applicability to business type applications,

real-time software and hybrids of these, applicability for software in any layer and applicability at any

phase in project life-cycle made it very popular in industry [36]. A more detailed history and

definitions for FSMs are given in Chapter 2.

Other than LOC and Functional size measurements, some new size measurement methods like UML

points [44] and Used Case points [45] were suggested by some studies in 2000s. The reason for these

new techniques was the trend in development tools. These tools provided graphical notations and

frameworks for object oriented analysis & design used for describing the systems at the initial phase

of the projects.

In the mean time, that was at the end of 90s, limitations in dataset characteristics and the aim to

incorporate expert knowledge into models caused researchers to find better building approaches. Data

analysis methods have been applied to effort estimation area for creation of an effort model and

compared: such as case-based reasoning, classification ®ression trees, neural networks, bayesian

networks [14][16][17][18]. But the results of these studies diverge. Berlin and Raz [46], Stensrud [47]

and Briand [48] identified regression based models as more reliable compared to ANN networks,

however Tronto and Silva recommended the usage of neural network based models [49]. Gray and

MacDonell found neural network outperformed compared to fuzzy-logic [50]. Finnie and Wittig [14]

compared Case Based Reasoning (CBR) with different regression models using FP and ANNs on a

large database. They reported a better performance of CBR when compared with different regression

models based on function points. ANNs, on the other hand, outperformed the CBR approach. Finally,

in a new study Marza and Teshnehlab [51] proposed a neuro-fuzzy approach. They claimed that this

method had a superior performance than multivariate regression, neural network and pure fuzzy

approach.

Results of these studies are valuable and have considerably positive effect on effort estimation

 4

process. The differences on results can be attributed to the specific data-sets they have utilized. Each

recommended solution on these studies is constructed by the assumption that, their historical data is

very reliable. But without a reliable database, these solutions are neither repeatable, nor usable even

for the different teams of the same company.

In 2000s, Software community mostly focused on data collection problems [8] [9] [10] [12] [68].

Some questions raised on this subject were; whether cross-company data-sets were usable, how the

missing data problem could be solved, which attributes of projects would be more practical to collect

for cross company datasets etc. Most of the companies apply the results of cross-company datasets,

since data collection is a time-consuming process. However, the advantage of cross-company data sets

is still under debate [8] [9] [10] [11] [12] [13]. Variance in processes, tools, lifecycles, collected

information of different companies prevents to use these datasets for building effort models. Using

single company data will minimize some differences in processes and tools. However, if companies

don‟t have well-established standardized processes, and common interpretation is not constituted

among software teams the same problems in cross-company cases will be observed.

The classical method for estimations is to collect size measurements like LOC or FPs as projects are

deployed and use those measurements into a statistical relation for building method. The method is

certainly valuable and has received substantial attention in the Software Engineering community.

However, if processes are not managed well, then information for estimation could not be inferred

well across different project teams, different processes, variable development technologies and

environments. It would be very difficult to identify factors that drive the significant and relevant effort

in a meaningful way, if only limited reliable historical project data is available [52]

Heemstra [53] explained this problem from another point of view. He claims that estimation accuracy

problem is not only technical but also a managerial problem. Therefore handling this problem by

using computational models is not enough. Managerial problems like creating motivation and

commitment to success should also be addressed. He advised, putting managerial decisions related to

the estimation goals in real-life, the ways that estimation processes are carried out and the proper

definition of the updating mechanisms.

In this study we developed a process methodology that enables us to manage core processes of effort

estimation approach. This methodology will provide us to build meaningful and reliable information

for effort estimation while removing inconsistencies and problems in related processes and data. To

create “meaningful” data, attributes of the projects are previously defined in processes. To remove

 5

inconsistencies “review and validation meetings” are included. The well established processes are

aimed to create common interpretation among software teams.

This thesis investigates the problems in building a relation between size and effort, the solutions to the

problems that prevents the constitution of reliable information and proposes an Estimation

Methodology, EFES. EFES methodology includes the explanations of activities in processes, their

related procedures, artifacts, checklists, templates etc. for an organization such that, companies may

implement a similar or modified approach easily.

The thesis includes a multiple case study to analyze the problems by using empirical analysis method.

In the first case study: we investigated some concepts defined in our methodology and evaluated their

benefits by making empirical researches to decide their inclusion. Primarily two subjects “Functional

Similarity” and “Base Functional Component usage” in effort models were evaluated by using a

sample dataset. By inquiring their results in the second case study validation was performed by

applying methodology on a large project dataset.

In the following paragraphs of this chapter, first the context for the effort estimation process will be

given, then the problems we aimed to solve will be summarized, and finally our solution approaches

will be explained.

1.1. The Context

The estimation of work effort is at the heart of tasks, since it is used for purposes such as cost

estimation, budgeting, monitoring, project planning and control and software investments analysis

[54] as it is shown in Figure1.

Projects have cost and schedule overruns. Even the studies report different percentages; the trend is

the same, most of the projects encounter overruns in terms of cost and schedule. In some surveys

executed in 1970 and in1994, average schedule overrun values are announced as 41% to 258% , and

cost overrun values from 97% to 151% [55][56]. A similar tendency was found by the Standish

Group. They reported that 84% of projects completed after the planned schedule [57]. In another study

performed by Molokken and Jorgensen it was announced that 60-80% of the time 30% more effort is

needed [23].

Estimation is a complicated process with errors, however it turns out to be an advantage if it is

executed in an appropriate way. Results of Standish Group‟s CHAOS surveys for the years 1995,

1998, 2000, and 2002 show evidence of improvement in estimations. The percentages of cost overruns

 6

were noticed as decreasing in those years: 142%, 69%, 45%, and 43%. Based on these results

Molokken and Ostvold points out that even improvement is issued, accurately estimating projects is

as difficult and challenging today as it was thirty years ago [58].

 Figure 1 Effort estimation is at the core of Project Tasks

The contract between company & customer is based on mainly cost and schedule estimates. Cost

estimate is vital for both companies and customers. It is a continuing activity which starts at the

proposal stage and continues throughout the development of the project. It can be used for the

evaluation of projects, feasibility analysis for proposals, contract negotiations etc. Underestimating the

costs at the proposal stage may result in underdeveloped functions of the product that are not tested

well. This results in poor quality of products. Overestimating on the other hand results in losing the

contract at the proposal stage. A large percentage of cost comes from the personnel expenses.

Therefore even the aim is the “cost estimation”, the output values are not usually represented in terms

of currencies [59]. The cost estimation parameters are often predictions of the expected effort needed

for the development of the project and the required time to finish it. Based on the effort information,

cost for the development is estimated, and then other cost issues are appended for the final calculation.

The descriptions of the cost and effort estimation, project planning, project monitoring and control

concepts are not separate or discrete. All concepts are applied during the project life-cycle for the

evaluation of project status and for the decision of future actions. When we have an initial effort

estimate of the project that is to be developed, we have to define a project schedule that is in line with

that estimate. In other words, the output of the effort estimation process is one of the project planning

inputs.

Project planning is the process of selecting a strategy to produce the aimed products and defining the

related activities to be executed, to attain this goal and deciding the timing and overlapping of these

activities. Project manager selects the right personnel for task assignment, tracks and reviews the

 7

results, and makes appropriate and necessary modifications on the plan when it is required. Therefore

schedule and resource plans also are build upon the results of effort estimation.

Once the effort decided that is required for a project, it is possible to assign resources to determine

how long the project will take and estimate human resources and other resource costs. The schedule

for the project can be arrived at based on the activities, interdependence of these activities and effort

required to complete each of them. Resources would include human resources, computer resources,

and monetary resources, therefore apart from effort need, adjusting resources may affect the schedule.

The models for software resource estimation are tied to specific cost and effort models developed and

the improvements in sizing techniques [60][61].

When project planning is complete, we start to monitor the project. Therefore, the inputs of the

monitoring process will be project estimate and schedule, plus the real data collected as the project

evolves. If we fail to keep to the original schedule, the project can be re-planned during the

monitoring process. For example, a change in the project can result in a large deviation during

monitoring. In this case, we will have to re-estimate and re-plan the project accordingly. To succeed in

a software project, project manager compromises three parameters, “resource”, “features of the

product”, and “schedule” to comply with the plan. If any one of these has a change the others must be

modified and the plan has to be tailored.

Projects normally have a “budget” and continuous control and cost calculations are necessary to

ensure that expenses are in line with the planned budget. At any time during the project the amount of

the remaining effort is estimated for controlling the budget plans. By using these estimations, during

the development of the projects, companies classify and prioritize their projects, determine what

resources to commit to the project and how well these resources will be used [62]. In other words,

during cost estimation, cost of each task and product are estimated considering the development

model and historical data. For construction of the budget this information is embraced with the major

milestones of the project, scheduling assumptions and constraints, predecessor/successor relationships

of tasks.

One of the significant subjects of effort estimation research in software engineering is related to the

size measurement since it is considered as main driving parameter in effort models [63][64].

Frequently, effort estimation requires measuring the size of the software in source lines of code

(SLOC), Function Point (FP) etc. Functionality based size measurement methods excel due to their

early availability and independence of the language, tools, techniques and technology utilized. The FP

based measurement methods generally was based on counting the BFCs of software such as inputs,

outputs, inquiries, logical files and interfaces.

 8

1.2. The Problem

For most of the effort estimation studies, size is the primary driver . Therefore, in literature a number

of effort estimation model proposals exist, that relates the size and other parameters with effort

[3][25][65][66][67][68]. On the other hand many researchers also accept that: despite ongoing efforts

there is not a single model defining size-effort relationship that would provide accurate estimates and

that would be accepted by range of software projects and organizations [70] [71] [157].

If we group the researches that are searching for solutions to the relation problem, four groups of

subjects appear that are highly interrelated as shown in Figure 2 :

 “Supporting & Extra Effort” that creates problems in planning or controlling the projects.

 “Data Reliability” and ”Formation of Dataset

 “Size Measurement” problems and improvement

 “Effect of Selected Data Analysis Method” on building Relationship

Figure 2 Effort Estimation Problematic Areas

In this figure effort is shown as a function of the measurable artifact of software: size. A kind of data

analysis technique produces a functional equation for representing their relationship. For this purpose,

classical approach is used: data from past projects are collected in a database to be utilized by specific

analysis tools.

Most of the studies in literature concentrate on only one of the groups on this figure and try to bring

out an applicable solution for a specific dataset. For example, in order to improve the accuracy of the

effort model, many researchers have been addressing the new size estimation techniques that results

better effort correlations. We have shown them in region 3 in Figure 2. Similarly, several ways of data

 9

analysis like ANN, Fuzzy, Bayesian networks are evaluated and compared to find best handling

method [48][49][50] as depicted in region 4. Each recommended solution is constructed by the

assumption that, the historical data is very reliable. But without a reliable database, these solutions are

neither repeatable, nor usable even for the different teams of the same company. Studies on reliability

of database are pointed in region 2. Region 1 indicates, “Other effects” that effect project‟s execution

and data, especially “supporting and extra” effort that is not a function of the size of the projects: such

as unplanned tasks, unexpected problems or overlooked activities that effects project‟s execution.

In following paragraphs, we presented a summary of related studies on these subjects:

“Supporting & Extra Tasks” creates problems in planning or controlling the projects.

In literature many studies warn us about the unplanned activities, tasks, unexpected problems that are

included in effort value but not as a part of the development process. Phan [72], made a research by

interviewing with the company participants for the reasons of this overruns. Phan‟s results were as

follows: cost overruns were most often caused by over-optimistic estimates (51%), changes in design

(50%). For the schedule overruns according to the respondents optimistic planning (44%), and major

(36%) and minor (33%) changes of specifications were the reasons. McConnell [26] proposes that 20-

30% of the effort estimation errors come from not estimating certain activities. Genuchten also

investigated problems that alter project plans [19]. His findings are: overruns in previous activities,

interruptions of maintenance activities of other projects, late delivery of hardware components,

insufficient hardware, project staffing etc. Jorgenson et al. [23] made a statistical analysis of relations

between characteristics of the projects and effort estimation errors. They also reported: unexpected

events and overlooked tasks, change requests, resource allocations are found as the problems of effort

estimation.

“Data Reliability” and formation of Dataset effects estimation accuracy

An organization can use several ways for effort modeling. One of them is to use “generic models‟

that are proposed in the literature or are in-use by software community. Another way for effort

estimation is to use historical data of the organization and generating “specific models” that have been

retrospectively established for the company. Most of the time the technologies used for the

development of the software product undergo significant changes from one generation to the next.

This means that in engineering software, we frequently design and maintain systems of unprecedented

size and complexity in a rapidly changing environment or with rapidly changing tools. To deal with

this situation, if company does not have enough historical data, utilizing cross-company or

benchmarking datasets may be possible since data collection is a time-consuming process. However,

data collection methods are not uniform across different companies. The differences in the processes

and practices are not reflected well in these datasets.

 10

A number of comparison studies exist for cross-company and single company datasets. Mendes and

Lokan [68] performed an analysis on cross-company database. They found that even only 21

parameters collected in International Software Benchmarking Standards Group (ISBSG) had an effect

on effort, 88 different variables were collected that were not applicable nor practical. They also

reported that % 40 missing information prevented to perform good analysis. Dery and Abran [9]

executed another analysis on the ISBSG dataset, and reported the missing data problem again that led

to smaller usable samples for further analysis. Besides they described some contradictory recorded

information for phase efforts. Abran, Symons and Oligny mentioned that, project phases of some

companies and the ones defined for ISBSG dataset didn‟t correspond to each other [73].

The term „Reliable data‟ is used to mean that collected information for effort data, size and other

sound measurements are consistent and repeatable across the organization, in terms of personnel,

projects and processes [74]. For the collected data some studies have recommendations. For example,

to make a better resource management, Briand and Wieczorek proposed the characterization of effort

expenditures by recording the work spent for each phase and activity [61]. Yang and Bohem found

different effort distribution patterns for Chinese software than COCOMO, and claimed that poor effort

estimation reason is these process variations. They suggested companies to recognize and understand

these process variations [75]. Wiegers, similarly, suggested tracking trends in effort expenditure in

work activities for future planning and estimation of tasks [76].

Size measurement problems and improvement

The question about how size should be measured and represented in effort equation is seen as the

main problem for solving relationship problem. To solve this issue, many studies proposed using

different size measurement techniques, but each solved the problems of different application domains

or development environments. For example for MIS type systems MKII size measurement is a

valuable way whereas for real-time systems COSMIC is suggested [39][77]. In fact, their strengths

and weaknesses are often complimentary to each other. One improvement in size measurement

methods is using a scale type for the development complexity among functional components. Some

measurement methods assign some values for these components that represent their respective

contribution to total effort. For example, components in the FPA method are assigned as the low,

average and high in terms of complexity. However, the addition of these components, to reach final

functional size and consequently effort has no meaning, since they are only a ranking. MKII on the

other hand applies relative weights to differentiate the productivity differences required for each

sizing component. However these values are fixed and not arranged according to the environment,

conditions or selections of the project. These weights for MKII were diverted only once a couple of

years ago according to an industrial project database [78], and it is not applicable to several types of

 11

projects or different companies. For the Cosmic FFP, that allows measuring each component and level

separately, there is no such assignment for components. So the development difficulty of each

component due to project characteristics or environment etc. is not reflected in size measurement.

It is well known that, even certified measurers may encounter conflicting situations. If measurements

are experimented independently by different people, or by the same measurers at different times,

results may not be very repeatable. The Company, Renault, [27][28] used COSMIC method and made

it mandatory to use for size measurement for its embedded teams and its subcontractors. In those

reports, Stern et al, announced that, they wrote COSMIC measurement textual guides, defined very

clearly and without any ambiguity, the way of measuring functional sizes. They reached a 1% error

reproducable measurements by using these guidelines even measurements performed independently

by different people. To improve measurement repeatibility, Khelifi and Abran [29] presented a way

for developing a standard etalon for the software size measurement and illustrated it by using

COSMIC. They proposed a template that included the whole information for Cosmic measurement

process. They claimed that the usage of software measures should be integrated in a complete process

of verification to improve the quality of measurements. The focus of their study is developing a

methodology for size measurement part of effort estimation.

Although the functional size of software product can be measured precisely, there are still difficulties

in measuring the functional size, which directly affect the magnitude of effort required to develop

software products. One of these difficulties is related with the reusability of software entities. During

last decade, several studies examined the concept of functional similarity [79][81] for distinguishing

similarities, quantifying reuse potential and investigating similarity„s effect on development effort

[183][184]. But this structural aspect of the software and its influence on development effort has not

been well reflected in existing estimation models.

Effect of selected Data Analysis method on building Relationship

Finally, as the last group of studies, in order to increase the accuracy of the estimation, several

methods are evaluated and compared. Most of the studies found ANN network as better method

compared to the others [14][49][50]. The major differences are their different datasets, the selected

inputs for analysis methods and processes. Kitchenham and Kansala [82] suggested that Function

Points were not well-formed measures because there was a correlation between their constituent

elements. By using multivariate regression they found that the best fitting equation included only two

elements: input and output function points. Gencel and Buglioni [83][84], compared the effort

estimation based on BFC types of COSMIC by applying multivariate regression analysis, and found

that estimation accuracy was improved. Even ANN has been announced as a valuable tool, up to now,

ANN method usage with BFC types is not applied in effort data analysis.

 12

Although size and effort estimation usage has gone a long way, and a lot has been learned by

industry, significant improvement studies are still needed for the successful implementation by

organizations. However concentrating on one group in figure does not solve our problem. Since these

are not separate processes, we need a complete applicable solution for software organizations.

1.3. The Solution Approach

Many studies concentrate on only one of the regions in Figure 2. However the problem is not solved

by the solution of these regions. All regions need improvement and consequently improvement needs

quantitative data. The quantitative data in literature or in cross-company datasets has some problems

due to the different execution or understandings of companies [8][9][10]. Data analyzers and users of

these databases encounter the following problems: “data is not sufficient”, “data is not correct”, “data

is missing”, “data is not tailorable for current technology”. On the other hand companies that provide

data claim “definition of parameters is complicated” “overweight number of parameters is expected to

be provided”, “project phases does not match to our case”, “we didn‟t collect that parameter” etc.

So, we need a solution to prevent these problems, to obtain reliable and better data in terms of quality

and to improve estimation performance: To do this

 - We need to create common aims and understanding in data collection,

- We should develop control and communication mechanisms among collectors, users and data

providers.

- We need a set of guidelines and standards not only for size measurement techniques, but also

for all other steps of effort estimation.

Software measurement and estimation processes are mentioned under the Capability Maturity Model

Integrated (CMMI) [185] concept in general. For example an apparent “need” for effort&cost

estimation method exist at the beginning levels under “Software Project planning” process area. At

more advanced levels, that is at level 4, Quantitative Process Management is defined, that

recommends the use of “past estimation data”. These concepts and requirements are commonly

known. Actually, the standards like CMMI, ISO 15539-02 [179] only defines the necessity of

measurement and analysis concepts. “How should these process and activities be executed is not

defined in those standards. Therefore operational part and implementation belongs to the company

itself. “. For effort estimation that is at the heart of all the tasks, the planning and management

activities, the existence of a specified execution way and assured data is a necessity. Otherwise the

consistency and reliability of the data is not possible. However in literature, a fully defined

methodology that defines “how to do this” still does not exist, that is in parallel with the accepted

and applied process and life cycle standards.

 13

Therefore, we developed an “EFfort EStimation” (EFES) methodology to integrate the necessary

measures, tools, techniques, and heuristics in form of processes for software organizations. Under the

subject of measures, we mean information used to establish a common understanding of processes

and project like attributes of effort collection, parameters of projects, defined measurements for size

etc. To prevent misunderstandings and for the benchmarking of following studies, we selected IEEE-

12207 [155] “Software life cycle processes” as a standard. Our methodology provides a

comprehensive solutions to size and effort relationship problems with worldly accepted lifecycle

processes and best practices in literature. By using the “phase definitions” of IEEE 12207 and by

studying the reasons of errors in effort estimation, we created special data collection mechanisms. By

investigating the improvements in functional size measurement and data analysis we developed

analysis, tailoring and calibration requirements.

In order to deal with the problematic areas shown in Figure 1, EFES methodology covers all regions

with integrated processes. We searched literature to find out how we can resolve problematic

situations mentioned in Part 1.2. In the Table 1 we summarized the problems, related requirements in

methodology, and EFES‟s integrated solution to this problem.

Our methodology eliminates the problems and major differences in executions of different teams,

enables repeatability in effort estimation by defined guidelines. For this aim it provides Asset Library

by defining component types and templates to prevent overweight data, to perform reviews and to

guarantee the quality of the data.

EFES methodology definition provides a group of processes with their inputs, outputs, steps, roles

and responsibilities, tools and techniques. So before execution “what will be done” “what will be

measured” or “what will be analyzed” are agreed by development team and analysis & measurement

group. Any company will follow those basic steps with minimum effort.

Creation of different processes will provide flexibility for further improvement. By this way,

methodology enables to merge new improvements in size measurement and data analysis without re-

defining the whole methodology and related assets. Methodology includes review, control points to

improve accuracy and to check problems during execution. By this way, calibration of assets

according to the requirements of new projects is included in methodology.

The methodology includes detailed definition of related processes with their procedures, assets, tools

and measures to be used in these processes. The processes are generic enough so that different

organizations can tailor and integrate into their development practices and are specific enough to

enable consistent implementation.

 14

Table 1 Solutions to problems

Problem Methodology Requirement Solution

Unexpected problems and

activities, unplanned tasks,

requirement changes, staffing

problems effect project timeline,

schedule, effort etc.

Some of the expended efforts for

tasks(e.g.: documentation,

training) or overlooked tasks

(meetings, demos)have no

relation with functionalities,

The rate of such subjects

should be recorded for future

plans.

Effect of these items should be

reflected in effort estimations.

Development Effort and

Supporting & Extra effort

should be differentiated.

Prepare a predefined Effort

Collection template.

Use Data Analysis tools for

analysis of their effect and

include them at the final

calculations.

Team responsibility and

motivation is necessary

Development team should be a

part of data collection

processes.

Data collection should be

periodically performed by

project personnel and

controlled by measurement

group.

Data collection is not uniform

among software teams, missing

data problems or contradictory

information appear in dataset.

Activity and phase information

applicable to all projects

should be defined and

controlled by responsible

people periodically for

removing ambiguities.

Predefined WBS template is

needed for Activity or task list.

A group should be responsible

for managing the methodology.

Different size measurement

components have different effect

on total effort.

Functional Component Effects

should be represented in model

that represents company

statistics.

A specific tool may be used,

that uses a number of BFC

components as input.

Effort model is constructed

based on this analysis.

Different size measurements

may appear by different size

measurers

Repeatable measurements

should be satisfied

An additional textual guide will

be defined.

Validation is performed by

discussions among

measurement group.

Measurements should be

written in templates for future

uses.

 15

Table 1 (cont.)

FS Consideration is not included

in effort models

Similarity can be analyzed and

included in models by using

size measurements.

An updated size measurement

table will be produced for FS

inclusion and used as input to

Data Analysis tool.

Data Analysis tools have

contradictory results for

different datasets.

Analysis tools may be

compared for this dataset.

Company selects the best

applicable solution

Preparing a common

measurement template enables

to make comparison of analysis

tools.

There is no requirement for companies to be mature enough to apply this methodology. All assets are

specifically defined and can be directly used by any type of company. Without changing the

guidelines, procedures, analysis tools, company may update or tailor its specific needs on assets and

may form its own datasets. With this methodology the aim is not only collecting “data” or measuring

the software for analysis, the aim is to identify and extract the “core” meaningful information for the

company that is sufficient to make an effort estimation accurately and to apply required techniques

and developing mechanisms for doing this.

We performed an exploratory case study to define the requirements of this methodology. While

deciding some concepts of size measurement and data analysis we performed empirical investigations

on small datasets. After the development of methodology we validated our results with another data

set.

1.3.1. The Effort Estimation Methodology

In order to cover all the regions in Figure 1, specific processes that are integrated with each other are

needed. In the following paragraphs, our comprehensive approach that we embrace the processes,

tools and artifacts are summarized.

Data Collection Process: We need the correct and consistent information to be collected. To do this,

a detailed predefined WBS structure that defines project activities and tasks will be necessary as an

asset for the process. Then, by using this structure all efforts for different phases and tasks, unplanned,

unexpected or unwanted activities should be recorded and tracked for future analysis. In addition,

effort expended for demo, documentation, training tasks etc. should be recorded by development

team. This WBS structure not only includes project related effort data, but also allows other types of

efforts, that the project team spends. Such effort collection process and analyzing the available effort

data combine the advantages of expert estimation techniques and computational effort estimation

methods in effort modeling. If tailoring of the WBS structure according to the project‟s needs and

 16

initial forecasting are done by employees in the project, who are responsible for the development; they

will probably get to know the project better than anyone else, collects and controls their efforts with a

higher motivation. In order to build that predefined-WBS structure and other information, a

worldwide standard for software development will be used: IEEE 12207 [155]. By this way a

common understanding, not only among teams at the organization but also at the subcontractors is

also created. Project team record their efforts on appropriate items periodically during the project.

A responsible group for overall EFES methodology will periodically check the appropriateness of the

recorded data. EFES methodology only defines the activities, tasks and other information for data

collection. Selection of the tool for the process depends on the company. A basic excel sheet will be

enough for data collection which is used in our validation case. However, companies may prefer to

execute this process on a MIS based tools.

Size Measurement Process: To satisfy measurement quality, standardization and repeatability: we

need a measurement guidance to be defined as an asset of the process. This guidance text provides the

measurement concepts to be understood well. It is important that the assumptions and formulas are

documented when the size measurement of the project is completed. This will enable more thorough

review and will make it easier to revise later. The guidance should include tailoring concepts for

specific application domains.

Size measurement can be applied at any time, either at the feasibility or during the project. However,

the quality of the measurements depends on the quality of the specification documents. Therefore,

for the pre-review of the specification documents, a review checklist would be a valuable asset for

starting the process.

An expert group for size measurement improves the quality of the measurements and the

requirements by applying the review and the validation process. This expert group can manage all

activities in EFES methodology.

Data Analysis Process: To deal with the analysis of functional size components and to investigate the

variable effects of these components on effort model, ANN or multi-variate regression analysis can be

used. There exist several commercial and free tools for statistical analysis, fitting and calibration of

software effort models. Responsible personnel will be the same as the size measurement group. They

should be trained on the usage of these tools to create better models

.

 17

Data analysis process is applied at company level to produce effort models. Other than the effort

models created, one other artifact generated by this process is the analyzed percentages of all the types

of efforts, especially supporting or extra tasks. Based on the WBS based collected information of all

projects, distribution percentages for overlooked tasks, unexpected events etc. are calculated For

example: effort percentages for hardware (HW) related effort, for documentation task, for requirement

changes, or for specifically applied standards are analyzed. Their effects will be reported either at the

company or at the application type level.

Calibration: Since EFES methodology requires continuing processes, information in WBS template

and effort models should be updated based on the new or finished projects data. For example if new

projects requires a specific procedure or standard to be applied in projects, WBS structure should be

reviewed and updated.

Effort Estimation of a new project: This process uses the artifacts of other processes.The Project

Manager and the EFES methodology expert group execute the process together.The expert group

brings the artifacts of Data Analysis process: i.e final effort models created and final percentages of

unexpected, overlooked, unplanned tasks etc. Besides, they perform a size measurement by using its

process. At the end ,by using the effort models they create a base effort value. The base effort value is

the development effort that can be derived from functional size of software. Other percentages of

supporting &extra tasks are added upon this base value to estimate the required final effort.

.

1.4. Validation of the EFES methodology

We conducted a multiple-case study involving two case studies in order to evaluate the EFES

methodology. The organization, where we carried out our multiple case study, is certified by ISO

standards. The main business of the company includes design and manufacture of software intensive

systems. It has a well-trained and experienced development staff and the usage of current software

development methodologies and tools are encouraged. The number of the software developers of the

overall company is over 300 and there exist several sub-departments for software. We performed our

case study on one of these departments where more than 90 developers work. The software

development is on several types of application domains. The projects use defined software processes

of the organization. As a result of this, projects have defined outputs like software requirement

specifications, design documents and software test specifications.

 18

In the first case study, we performed studies for method development. For this reason, we investigated

some concepts defined in the methodology such as: FS and BFC usage in effort model creation. We

used a sample data set consisting of 18 projects. Most of these projects belong to Graphical User

Interface projects (GUI) and very few belong to Embedded Systems (ES) and Board Support Package

(BSP) Type. These projects‟ functional sizes are changing between 50 – 2040 Cosmic Functional

Size. The expended effort range is between 29 day to 696 day. In parallel to this investigation, we

searched the answers of quality and reliability issues of dataset in the Company and we developed

data collection, size measurement, calibration requirements of the methodology and created assets,

flowcharts, procedures.

In the second case study we validated our EFES methodology by using 22 new projects. The new

projects are evenly distributed to all application domains. New projects‟ functional sizes are changing

between 38 – 666 Cosmic Functional Size. The expended effort range is between 67 day to 402 day.

During validation we investigated answers for the following questions:

a. “Is methodology applicable?”

b. “Is it effective in building relation between size and effort”

1.5. Organization of the Thesis

The remainder of the thesis is structured into five chapters.

In Chapter 2, related researches on effort estimation modeling, functional size measurement methods

and problems of effort estimation are surveyed. The summaries of the literature results for the

identification or solutions of the effort estimation problems are given.

Chapter 3 forms the hearth of the thesis and describes the proposed methodology in detail. The model

applied, the processes, their steps and the artifacts to be produced are described. Pre-required artifacts,

roles and responsibilities are discussed. Also as an attachment to this chapter, templates applied for

our methodology is given in APPENDIX 1 to 8.

Chapter 4presents the implementation of the approach in multiple case study. The chapter gives the

details of our empirical executions, their results and discussions.

 19

Chapter 5presents the conclusions and summarizes the contribution of this research. In this chapter,

new questions that are raised by our research and the topics that inquire more investigations are also

reported.

 20

 CHAPTER 2

2. 2. RELATED RESEARCH

This chapter summarizes the literature related to Effort estimation modeling. The first section of the

chapter describes the effort estimation modeling ways in detail. Section 2.2 describes the BFCs of

existing size measurement methods. In section 2.3, literature researches are grouped under four

subjects. Section 2.3.1 summarizes studies on estimation errors, 2.3.2 discusses the improvement

opportunities of the relationship of size & effort estimation. Specifically, we focused on the studies

about FS, Variable effects of BFCs, Application Domain effects on size and effort relationship. At

Section 2.3.3 the need for database reliability, lessons learned by other companies are described.

Finally, Section 2.3.4 summarizes the Data Analysis tools and commonly used accuracy parameters

for estimation models.

2.1. Effort Estimation

To decide the feasibility of a project, accurate estimate is necessary. Because the customer, the project

management and the top-management of the company must agree to the boundaries of the project in

terms of cost, time, quality, and capability. For the companies “cost” is the main issue in general. A

low cost estimate may cause compromise on the quality of the software delivered. In this case, the

software is either in partially functional or insufficiently tested state. Therefore, to reach the final

software that satisfies the requirements, high maintenance costs will be paid. Considering the

importance, software cost is an activity that starts at the proposal stage and continues throughout the

lifetime of a project.

The main components of project costs are hardware costs, travel and training costs, effort costs for the

development. Among them the effort cost is the most difficult one to estimate and control. Although a

number of effort estimation models are proposed, none of these models are accepted by the whole

community since none of them performs well-enough in different environments [70]. A generalized

model that we can use in different environments of various organizations does not exist. There are

some reasons for this:

A. - The development environment evolves continuously, not stable.

 21

B. - The complexity of the system is not easy to be reflected by measures

C. - There exist many interrelated factors affecting the project development process. The impact of

these factors must be discovered and analyzed.

We have undertaken literature reviews to study effort estimation models. There are number of ways to

determine the required effort in software development projects. In some studies there exists a precise

classification of existing models, methods and techniques [54][86][87][88].We merged their

approaches and summarized the models as in Figure 3.

Figure 3 Classification of Effort Estimation Models

The first differentiation level is whether the method is a “Formal Estimation” method or “Expert

Estimation”. Although a combination of these method is possible the essential difference between

them is the final step that transforms the input into the effort estimate. Formal effort estimation

models are based on a mechanical quantification step such as using a formula. On the other hand,

expert estimation methods, such as work-breakdown structure methods, are based on a judgment-

based quantification step. Expert estimation is not only a feeling but is based on some structured,

historical data and checklists. In other words, the application of this method is not selecting the best

expert.

2.1.1. Expert Estimation

These techniques involve consulting with software estimation experts or a group of the experts to use

their previous experience to arrive an estimate for effort & cost. These experts usually use their

understanding of a new project and available past information like design requirements, source code,

software tools, development resources, complexities of the functions. According to the Barry Boehm

using calibrated algorithmic models, i.e. formal methods, enables better negotiation rather than by a

 22

contest of wills between self-described experts [89]. However, as Jorgensen claimed in the same

discussion and in the review study [90], several independent surveys rate it to be the preferred method

[93].

The general way of applying this technique is the group estimates. The main concern in group method

is the involvement of the estimators. Estimation groups may be designated to perform this task as

DeMarco suggested [91]. In this case, the group members do not participate in the development

process. So they are much less prone to personal or political biases. Besides they can improve their

estimation skill in over time [91]. The other alternative is that employees in the project are responsible

for the estimates. In this case they will probably get to know the project better than anyone else does,

that results in a higher motivation for a thorough project estimation analysis [92]. A group estimate is

one of this kind that involves the risk that people with stronger personalities may dominate.

Other variation of this estimation method is Work Breakdown Structure (WBS) [31] and freeform

expert estimating [94]. Although, this approach has advantages like making a fast estimate, it has also

drawbacks that may prevent being used by large projects; first, it is not repeatable, since means of

driving are not implicit. For every new project, it may not be easy to find experienced people for that

specific subject.

2.1.1.1. Delphi Technique

This is a group consensus method [4] [96]. It provides a sufficiently broad communication bandwidth

for the experts to exchange the information necessary to calibrate their estimates with each other. The

estimating steps are as follows:

1. An estimation form including specifications is prepared by the coordinator and presented.

2. A group meeting is held to discuss estimation issues with the coordinator and each other.

3. Experts fill out forms without knowing others‟ determinations.

4. A summary of the estimations will be distributed on an iteration form.

5. With another group meeting that focuses on the estimates varied widely is held.

6. Experts fill out forms, again, this process continues until they reach a consensus.

The experts can easily analyze the differences between past projects and the new project. Therefore,

they can reflect impacts of new technologies, architectures, tools and languages involved in the future

project. Besides, factors in exceptional personnel characteristics and interactions may also be included

in decisions. However, it is not easy to quantify or document their approaches. Even a group

consensus is aimed, final conclusions may be some biased, optimistic, and pessimistic, that results in

 23

wrong judgments [92][95]. If a new or unknown technology is used, some researchers like Kaczmarek

et al. especially suggest Delphi method [97].

2.1.1.2. Work Breakdown Structure

Another approach in expert effort estimation is the usage of WBS and decomposing the project tasks.

These methods organize and structure the phases, actions, tasks and other information. There are

many ways to decompose a project into tasks. The project tasks can be organized by feature, by

project phase (requirement tasks, design tasks, coding tasks, testing tasks), or by some combinations

of them.

2.1.1.3. Activity Based Models

In this kind of model, estimators break down the task at hand into unit activities for which one can

easily estimate the cost or effort required. Therefore, for experts this approach requires detailed

knowledge of the product and process. It should include effort for all products whether internally

developed or externally subcontracted. Besides documentation should also be included whether it is

used in the company or delivered to the customer.

The low level estimates of each task can be either derived from expert judgment, or historical data. If

cost is directly estimated then it is called as activity-based costing. If effort is estimated as in WBS

method, it can be named as bottom-up estimating because they are derived from engineering estimates

of size, effort for all products and activities in a project. Estimates are then aggregated to produce a

project-level estimate.

Compared to other group expert estimation methods activity based models are applied by companies

that has defined processes. Companies may create some specific templates for estimation. These

models require that historical information from prior projects be accurately tracked.

2.1.2. Formal Estimation Model

We have grouped the formal estimation methods in three main categories: “Analogy”, “Size based”,

“Parametric”.

2.1.2.1. Analogy Estimation Model

This method may be assumed as a systematic implementation of expert judgment. Because, experts

often search for similar or analogous situations to check and validate their opinion. In this technique

project is characterized to form similar or analogous projects that have been completed for which

 24

effort is known. So for some describers to find analogies are necessary to define the project. Then

effort values that belongs to previous projects are used to generate a predicted value, by using some

adjustments. For this second part the way of assessing the degree of similarity should also be defined.

Selection of one or two past projects will be enough to apply this method, on the basis of their close

similarity to the proposed project. Describers might be the type of application domain, the number of

inputs, the number of distinct entities referenced, the number of screens etc. The choice of variables

must be restricted to the estimation phase. Therefore, at the beginning of the project LOC is generally

unsatisfactory for the application of this method.

Prerequisites of Analogy estimation process were listed by Chemuturi [98]. A summary of this

process is as follows:

 The organization ought to have executed a number of projects: In order to find a similar

project, a large database is necessary. One or two similar projects will be enough to apply

this method.

 The organization should be keeping characterizing records of the projects.

 The organization should be keeping causes for variances and the actual values validated

depending on the causes.

 The organization should maintain a repository so that it is feasible to locate similar past

projects and extract the related information.

 The estimators should be trained in drawing analogies accurately to extrapolate the

information for the new project.

The most crucial aspect of this estimation method is the selection of the right set of past projects. For

the choices organization may use either judgment of estimators or an analysis method. As an analysis

method “k-nearest neighbor” method is generally used [99][100]. The aim is to classify similar

projects depending on the similarity of the new projects‟ characterizing properties to the properties of

“k sample projects” in the dataset. Effort of the similar projects are used as an initial estimate, then

comparing the known measurement values for the new and executed projects, effort estimate is

adjusted to compensate the differences.

An automated environment named as ANGEL was proposed by Sheppard and Kitchenham to support

the collection, to store and to identify the most analogous projects. They also recommended choosing

at least one variable as a size driver, for instance number of inputs or screens or classes [101]. With

this tool they provided templates for recording data. But prescription of the describers is performed by

the organization to suit the individual data collection environment. Tool allows searching for one, two,

 25

or three analogous projects and calculates an un-weighted mean of their effort values to estimate effort

for the new project. Estimation by analogy is a popular technique which is heavily researched

[47][101][102]. However, in this method it is not possible to create a definitive model about the

relationship between the project data and the effort.

2.1.2.2. Model Based

Model-based estimation makes use of a mathematical model to produce effort estimates. It is also

known as parametric estimation since there are a number of variable parameters within the model that

must be determined. These models estimate effort or cost based on mainly software size, and other

productivity factors known as effort driver attributes. An algorithm or analysis method is used to form

a final model based on the results obtained from previous projects. Most of the well-known existing

models belong to this section. These models mainly are based on a measurement metric like Lines of

Code, Function Points etc. Some of the most widely known estimation techniques are explained in

following paragraphs.

2.1.2.2.1. Constructive Cost Model (COCOMO)

It is an algorithmic cost model that uses a basic regression formula, with parameters that are derived

from historical database and current project characteristics [25]. Basic COCOMO computes the effort

as a function of program size. Program size is expressed in estimated thousands of lines of code. It

applies to three classes of software projects by using the Formula : Effort= aSize
b

where a, b changes

according to the types of projects: Organic projects, Semi-detached projects, Embedded projects -

developed within a set of "tight" constraints (hardware, software, operational etc.)

For quick estimate of software costs and effort this easy method will be applicable. However it does

not take into account the differences in hardware constraints, personnel quality and experience, used

tools and techniques etc. Therefore an extended version named as “Intermediate COCOMO” is

proposed, that considers a set of four "cost drivers", each with a number of subsidiary attributes [167].

Intermediate Cocomo formula now changed into the form where EAF is the adjustment factor for the

effort estimation.

E=aSize
b
.EAF

For EAF calculation, 15 attributes of the project are included as driving factor. These factors are given

in Table 2. The table is from study Boehm and Horowitz [167] Each of these attributes receives a

rating on a six-point scale that ranges from "very low" to "extra high". Finally all of these ratings are

 26

multiplied with each other to obtain EAF. The COCOMO model has still been under improvement.

Even more, some other new models are combined into COCOMO suit like COSYSMO (Constructive

Systems Engineering Cost Model), COSECMO (COnstructive SEcurity Cost MOdel), COCOTS

(COnstructive Commercial Of The Shelf Cost Model) [103][54][105][107].

2.1.2.2.2. SEERSEM

It is a commercial parametric estimation model developed by Galorath Inc. [106]. Since it is a

commercial tool, the mathematical equations used in SEER are not available to the public, but Jensen

made the basic equations available in his paper [108]. It takes into account more than 50 parameters to

be arranged according to the project and company specifics. A large number of controls increase the

complexity of SEERSEM and also the uncertainty of these outputs.

Therefore the increased number of controls results in difficulty in building relationship between input

and output parameters. It allows project elements to be included as WBSs for convenient planning and

control. Risk analysis can also be applied for each of the project element.

2.1.2.3. Size Based Models

There is a large body of literature on effort estimation models in which discussions on the relationship

between software size and effort as a primary driver has been included [3][25][83][109]. This

relationship is affected by many factors [110]. To create a model that represents this relationship these

factors must be investigated and their effect must be analyzed. For the representation of this relation

definition and granularity of software size is important.

Table 2 COCOMO II software cost drivers (adapted from Boehm and Horowitz)

Product

‐ Required Software Reliability ‐ Data Base Size

‐ Product Complexity ‐ Developed for Reusability ‐

Documentation Match to Lifecycle Needs

Personnel

‐ Analyst Capability

‐ Programmer Capability ‐ Personnel Continuity ‐

Application Experience ‐ Platform Experience ‐ Language

and Toolset Experience

Platform

‐ Time Constraint

‐ Storage Constraint ‐ Platform Volatility

Project

‐ Use of Software Tools

‐Multisite Development

-Required Development Schedule

 27

2.1.2.3.1. Lines of Code (LOC)

It was the first commonly used and accepted measure, being used as the basis for measuring

programming productivity and effort [112]. However the definition is sometimes controversial; while

some definitions include comment lines, some others don't, some include logical lines, while others

consist only of physical lines. In the 60s a couple of thousands of LOC were enough to develop

complex software, however after 2000s a couple of millions of LOC is necessary with the increasing

and entangled requirements. Compared to other engineering disciplines software projects‟ complexity

and intricacy increased sharply during last decades. At the end of 70s, LOC was assumed as a sign of

productivity and many models based on Lines of Code have been calibrated for different sets of

historical data. Waltson Felix [113], Moher-Schneider [114], COCOMO [25] are some of them.

In those years using LOC as a base for effort calculation was meaningful, since the programs were

small and coding work comprised about 90% of the total effort. As higher level programming

languages appear, the usage of this measure slightly disappeared. Programs written in different

languages couldn‟t be directly compared. Although each language has assigned a level, or comparison

tables for different languages have been formed, LOC approach lost its dominance due to its

drawbacks. The main disadvantage of LOC is; it cannot be known until the project is finished. Size

measurement is needed at very early stages, however reckoning the size of a project in terms of LOC

at the beginning of a project is almost impossible. Historically based effort estimation methods

appeared at this point, but evolving rate of software tools created new problems like effects of

development tools, environments, language types and automated generation of codes. Among the

historical models that use LOC, three model based estimations gained popularity: COCOMO, PRICE-

S, SLIM [115][116]. After years, PRICE_S and SLIM reached the commercial market as

measurement tools.

2.1.2.3.2. Function Points

The aim of this new sizing method is to measure the functionality of the software that is independent

of its implementation. Albrecht claimed that Function Points has some advantages compared to LOC

[32]: First with this new method, earlier measurement is possible at the phase of software

requirements analysis and preliminary design. The second advantage is measurement can be

performed by non-technical project members. Besides it is independent from implementation language

and developer experience.

 28

In this method, each system is considered in terms of the number of inputs, outputs, inquiries, files

and external system interfaces that it contains. Based on the number of data elements or file types

referenced a complexity weighting factor is assigned and multiplied by each of these components of

the method. This method has become a de facto standard in the MIS community. Currently, the

International Function Point User Group is maintaining the official guidelines for counting function

points [69]. Starting with the Albrecht‟s FPA[32], many FSM methods have been proposed as it was

summarized in Figure 4.

Albrecht function model is refined in 1983 by Albrecht and Gaffney [3]. Their model is accepted as

the first function point based effort estimation model. They found a linear correlation between

function point size and effort in hours. This new version of function point included three levels of

function complexity. Some rules were outlined for evaluating complexity by function type and

accompanying weights were tabulated. Two subtypes; “the internal logical file” and “the external

interface file” was specified as “file type”. The function types in this version were identified as

External Input, External Output, External Inquiry, Internal Logical File and External Interface File.

There is a popular software effort estimation package, “Checkpoint”, based on their results.

In 1984, the International Function Point Users Group (IFPUG) was established to maintain Albrecht's

FPA. Since then manuals that clarify and modify standard rules for the application of Function Point

Analysis have been published. In 1984 Symons devised his concerns and difficulties with Albrecht's

FPA, and proposed a new variant called Mark II Function Point Analysis [38]. He found Albrecht‟s

method classification very simple, the origin validity and objectivity of the weights very doubtful and

the treatment of internal complexity as very complicated. Today, the United Kingdom Metrics

Association maintains Mark II FPA. It was announced as the UK Government‟s preferred technique

for measuring the functional size of software applications and projects.

 29

Figure 4 History of Functional Size

In 1986, Feature points were developed by SPR Practitioners of function point recognized that some

type of applications did not show any beneficial results [40]. These applications are real-time process

control, mathematical algorithms and various embedded systems. To compensate the difference in

effort, some of the weights of function point components were modified. Typically these applications

have higher sizes when measured with feature points than with function points. On the other hand,

when function points have been applied to typical business applications, the same size value is

achieved whether calculated with function points or feature points. Capers Jones has documented this

method in detail in his book [118]. The difference compensates for the fact that productivity for these

applications usually appears to be lower.

In 1987, Kemerer [65] used projects from business applications domain, for the comparison of SLIM,

COCOMO, ESTIMACS, and Function Points (FP). He accounted that methods that are not based on

KLOC as a size measure (FP and ESTIMACS) performed better than KLOC-based methods (SLIM,

COCOMO). Besides he claimed that Albrecht and Gaffney‟s model [3] is not a linear model and is

not appropriate for effort estimation and proposed a nonlinear new model.

In 1990, NESMA FPA was proposed as a variant of IFPUG FPA with the aim of simplifying some of

the IFPUG FPA sizing rules [117]. FPA usage was particularly for measuring productivity.

Practitioners aimed NESMA approach to be used for budgeting purposes. Therefore they adapted

some of FPA‟s counting guidelines so they could be applied to logical models. This inevitably led to a

number of differences in how the NESMA FPA and the IFPUG FPA counted FP.

 30

In 1992, Whitmire in Boeing Company proposed 3D function points to address the problems

associated with measuring complex scientific and real-time systems [120]. However it was found less

valuable for effort prediction. So the method had not gained much popularity or widespread

utilization.

In 1994, Matson, Barret and Mellichamp [66] advised another method that was an alteration of

Albrecht‟s FPA. This research was a follow up study, that compared two models above, and his new

model. According to their results new proposed model showed a superior performance compared with

Albrecht &Gaffney‟s model. Their model had again a non-linear relationship between the

development efforts and the FPs. They found that both of the previous models had some limitations.

In this method, raw function counts were calculated by considering a linear combination of five basic

software components.

In 1997, Abran [121] suggested the Full Function Points (FFP) technique as an extension to the

IFPUG standard in order to capture the functional size of real-time applications. It provided additional

dimensions to the five original FP dimensions. With the addition of six new dimensions the

complexity of communicating processes and their synchronization were also taken into account.

 Table 3 Applicable Domains for Functional Size measurements (from study Ebert et al.)

Method Algorithm MIS Real Time Control

Systems

Feature Points X

3D Points X X

IFPUG X

Mark II FPA X

FFP X X

COSMIC X X X

In 1999, Version 2.0 of the FFP approach was published by the Common Software Measurement

International Consortium (COSMIC) [36]. The COSMIC group reviewed existing methods (IFPUG,

MarkII [34], NESMA [117] and version 1.0 of the FFP methods. After studying the commonalities,

this method was proposed as a new generation of software FSM method.

 31

In 2004, FiSMA method was developed by a working group of Finnish Software Measurement

Association (FiSMA) [122]. It was designed to be applied to all types of software. The difference

from other methods was that, FiSMA FSM was service-oriented instead of process-oriented. In

process oriented methods, all functional processes supported by the software need to be identified. In

this method, similarly, all different services provided by the software need to be identified.

For non-MIS environments, such as real-time, Web, Object Oriented, and data warehouse systems,

other types of measures were suggested to measure the functionality.

Although a number of measurement methods have been suggested, mainly four of them have been

recognized as standards: IFPUG FPA, MK II FPA, NESMA FPA, and COSMIC FFP.

In Table 3 we summarized the applicable domains for these methods. This table is presented in study

[119] of Ebert, Dumke, Bundschuh, and Schmietendorf.

2.1.3. Composite

Models are built based on combining above methods. Some examples are as follows: modeling

based on expert knowledge elicitation [123], and modeling based on expert opinion and

project data [18].

2.2. Base Functional Components of Size Measurements

Although a variety of methods are proposed, all function point measurements depend upon the same

principles. For functional size measurements, it is necessary to define the boundary of the system.

Boundary is a kind of logical line that separates users from a system. By looking at the requirements

for the software, actions and data that are meaningful to the user are identified and relegated according

to some kind of complexity criteria. Most methods consist of component classes such as inputs,

outputs and file references, referred to as BFC types. These components are then assigned values and

they put up their respective value to the total functional size. In following paragraphs BFC approach

of some popular size measurement methods are explained.

2.2.1. IFPUG -FPA

The method brought in a specific way of measuring the size of a software system. It distinguished data

functions and transactional functions. Data functions (DF) are separated as internal and external

logical files (ILF and EIF). Different weights are assigned to these each data function type. For the

 32

transactional functions (TF); functionality of the system is represented with three abstract

components, external inputs (EI), external outputs (EO) and external inquiries (EQ) as it is shown in

Figure 5. Each of these measurement components contribute to the final estimated size by their

respective complexity value. The complexity value is determined by the number of simple data

elements named Data Element Type (DET) or structured elements named Record Element Types

(RET). Definitions of these components are given in Table 4.

The measurement process can be summarized in the following steps: First, the functional

components existing in each prescribed function is identified. Then, for each function a ranking

level of simple, medium or complex level is assigned by considering the number of

components found and using the complexity ranking table. In the next step, the results are summed

up to generate an unadjusted initial function point count. Then, the total degree of influence on the

general system characteristics is determined. Finally, the final function point is calculated by using

the unadjusted function point count and the influence adjustment factor.

Figure 5 IFPUG Measurement

2.2.2. Mark II Function Point

For the MKII size measurement [34], the application size is counted as a collection of logical

transactions. Each transaction consists of an input, a process and an output component as shown in

Figure 6. With the aid of the boundary definition, logical transactions such as inputs and exits that

cross boundary are determined during the interaction between the user and the system. Examples of

input transactions create new records, update or delete them. Exit type of transactions are processes

that take information from the system and show them to user such as reports, notifications or searches.

 33

The size of the application is the sum of the sizes of logical transactions - each transaction is counted

once even though it may be executed from more than one point in the application.

Two critical definitions for this method exist; “DET” and “Data Entity type”. Data Entity type is a

fundamental thing of relevance to the user, about which information is kept [159]. Data Element Type

is a unique user recognisable, non-recursive item of information.

The number of data element types is used to determine the input and output size of each Logical

Transaction. Similarly, the size of the processing component is the count of data entity types.

For the final size count a weighted computing method is used. Size can be expressed as following:

 Size = Wi*∑Ni+ We*∑Ne + Wo*∑No

In the equation above ∑Ni, ∑Ne and ∑No are total numbers of inputs, exits and process within the

system. Weighting coefficients assumed for these size components are as Wi = 0.58, We = 1.66, and

Wo = 0.26. They are accepted as average value obtained by the analysis of business information

systems.

MK II is primarily used for domain of business information systems. For the other type of domains,

components with complex algorithms should be evaluated differently, since sizing rules do not take

into account their contribution. It has only one logical component, however it has constituents as

given in Table 4.

Figure 6 Mark II Functional Size Measurement

 34

2.2.3. 3D Function Points

The method recommends “three dimensions” in sizing: data, function and control. The data dimension

is similar to Albrecht's function points. The function dimension measures the complexity of

algorithms. The control dimension adds transitions, which enumerate changes in application state.

Characteristics of all 3 dimensions are counted, quantified and transformed into a measure that

provides an indication of the functionality.

Table 4 BFC components of Functional Size Measurement

Method
BFC Components

IFPUG
External Inputs: unique user data or control input that adds or changes data

External Outputs: unique user data or control output that goes out the boundaries of the

system,

External Inquiries: unique input that creates immediate output

Internal Logical Files: internally maintained logical group of data,

External Interface Files: file passed or shared between applications

FFP
Data Function Types:

Update Control Group: group of control data updated by the application

Read-only control Group: group of control data used, but not updated, by the application

being counted

Transactional Function Types

 Ext. Ctr.Entry : control data that are coming from outside of the boundary.

 External Control Exit: control data goes outside the application’s boundary

 Internal Control Read: reads control data

 Internal Control Write: writes control data

Mark II Points
Input : event, user query, timed trigger

Processing : references to retained data

Output: report, display or response

3-D Points
- Data Components

Internal Data: Internal files,or references

 External Data: External references

 Inputs: Same with IFPUG

Outputs Same with IFPUG

Inquiries Same with IFPUG

Functional transformations: the number of internal operations required to transform input to

output data

Control transitions: counting the number of transitions between states

Nesma
External Inputs: data into the application without performing data manipulation

External Outputs: moves data towards the user, and performs some data manipulation

External Inquiries: moves data towards the user, and does not perform data manipulation

Internal Logical Files: persistent data maintained by the application through the use of EIs

External Interface Files: persistent data used by the ap-plication, but not maintained by it

Cosmic
Entry: from user to system

Exit:from system to user

Write: from system to persistent data

Read: from persistent data to system

Fisma
Interactive end-user navigation and query services

Interactive end-user input services

Non-interactive end-user output services

Interface services to other application

Interface services from other applications

Data storage services

Algorithmic and manipulation services

 35

2.2.4. NESMA

In NESMA-FPA [117], the BFCs are transactions. Each transaction has a certain type and

functionality. Both NESMA and IFPUG differentiate the same five types of user functions. But there

are a few exceptions for determining the type and complexity of a function. For example: for IFPUG,

an External Inquiry is specified as a function that delivers data to a user from a logical file without

experiencing additional processing, such as calculations, updates to an Internal Logical File, etc,

otherwise it is regarded as an External Output. However, for NESMA, additionally, a unique selection

key must have been entered and the output must be fixed in scope. Therefore, while IFPUG will

consider a transaction as an External Inquiry, NESMA assume the same function as an External

Output.

Figure 7 Nesma Functional Size Measurement

2.2.5. Full Function Point

FFP uses the IFPUG FPA rules for business application software. However, it adds six additional data

and function types for sizing real-time software applications. There are four new “Control

Transactional Function Types” that address the sub-process of real-time software. Besides, two new

Control Data Function Types are included. Definition bases on the information whether single or

multiple occurrences of data are concerned. Functional components are shown in Figure 8.

 36

Figure 8 Full Function Point Measurement Method

2.2.6. FISMA

FiSMA FSM is service-oriented instead of process-oriented. So, as BFCs of measurement, services

are defined. It defines seven BFC classes. Each BFC class of FiSMA 1.1 further decomposes into

several BFC types. After identifying each service, the size of each service is found by applying rules

of method. Finally, a total functional size is estimated by adding up the sizes of all services. Totally,

there exist 28 BFC types as shown in Figure 9.

2.2.7. COSMIC

The COSMIC Measurement Process consists of three main phases[]:

 Setting the Measurement Strategy

 Mapping the „Functional User Requirements‟ (or „FUR‟) of the software to be

measured to the COSMIC concepts

 Measuring the resulting COSMIC model of the FUR

In the first step, the purpose and the scope of the measurement is determined. The software artifacts;

statements of requirements, physical screens etc. are defined. The functional users and the boundary

of each piece of software is determined. Examples of functional users are human beings, devices or

other software. Besides, the required level of granularity for the measurements are specified. For

example, if the strategy is to estimate a distributed software system and if the various functionalities

are aimed to be implemented on different technical platforms, then the FUR must be separated into a

number of separate measurements.

 37

Figure 9 FISMA Functional Size Measurement

During the second phase software layers are established. Software layers operate on a specific level

of abstraction based on the functional exchanges among the modules of software. At that point, events

of the functional users that the software must respond and functional processes are identified. And as a

next step, objects of interest and their attributes are determined. Objects of interest are the key players

interacting within a functional process. Each of those processes covers a unique set of data

movements or data manipulations as shown in Figure 10. A „data movement‟ is the movement of a

single „data group‟. Data groups includes one or more „data attributes‟ about a single „object of

interest‟. The Cosmic model identifies four types of data movements:

 Entry; data movement occurs from the functional user across the process boundary to

inside the functional process.

 Exit; data movement occurs from inside the functional process across the process

boundary to the functional user.

 Read; this movement provides data inside the process from a persistent data store (for

example, a database).

 Write; this movement provides data from inside the process to a persistent data store.

 38

Any functional process comprises „sub-processes‟ that either move or manipulate data as it is shown

in Figure 11. In the last step, the number of data movements within each process are counted. Each

data movement equals a 1 Cosmic Functional Size Unit (Cfsu).

Figure 10 COSMIC Generic Model [104]

Figure 11 BFCs of COSMIC

2.3. Effort Estimation Studies

We grouped “Effort Estimation improvement” related studies in four groups:

a. Studies, investigating “Reasons for Effort Estimation Errors”

b. Studies, searching for “Improvements and problems on Size & Effort Relationship”

c. Researches, examining the “Need for Database Reliability and Effect of Datasets on

Accuracy”

d. Comparison studies on “Data Analysis methods”

 39

2.3.1. Reasons for Effort Estimation Errors

In literature many studies warn us about the unplanned activities, tasks, unexpected problems that are

included in effort value but not a part of the development process. We represent them in “Supporting

& Extra Tasks” in Figure 1. They are different from commonly known adjustment factors of

Cocomo[25].

Jorgensen and Molokken [23] performed a study to understand why errors occur in software effort

estimation. The related information is collected through interviews with estimation responsible

employees in different roles and estimation experience reports from 68 completed projects. They

made a statistical analysis of relations between characteristics of these projects and estimation errors.

They also investigated literature on this subject. A summary of their results and other related

researches is depicted in Table 5. They acquired from the experience reports that inclusion of a large

buffer to deal with such unexpected events and/or changes in specification will improve the accurate

estimates.

A similar study was performed by Genuchten [19]. He investigated the reasons for differences

between plans and reality and recommended that every department should find its own reasons for this

effort estimation error. He classified his findings under five subjects that each of them has specific

situations in it. “Capacity related issues” include; overruns in previous activities, unplanned

maintenance activities, unplanned demonstrations, and other unplanned activities. “Input related

issues” include; late delivery of HW, insufficient hardware, late requirement delivery from customer.

“Product related issues” include; changing requirements, changing interfaces, complexity of

application, performance requirements. “Organization related issues” include; Project staffing,

interruptions, etc. “Personnel related issues” include; “inexperienced team”, “too little experience in

development environment”. Morgenshtern, Raz and Dvir [6] claimed that planning at a more detailed

level, i.e. defining shorter activities and smaller tasks, increases the accuracy of the estimates and

reduces the size of the estimation errors. Besides, using the estimates for project monitoring and

control increases the commitment of the estimators (project team) and reduces the occurrence of

estimation errors. Another claim in their study is related to estimator experience. Their results show

that experience contributes to reducing estimation errors. Moreover, the number of projects that the

estimator has managed is found highly correlated with estimation accuracy compared to the number of

years of experience in managing projects.

McConnell [26] proposes that 20-30% of the errors come from not estimating certain activities. He

categorizes omitted activities into three categories that is given in Table 34 in Appendix. Besides, in

his book, he recommends to use such checklist as a part of effort plan.

 40

We underlined some subjects on Table 5. These subjects are the ones that was mostly mentioned as

the reasons in estimation errors in mentioned studies: “requirement or design changes”, “missing

activities”, “unexpected activities”, “unavailability of developer”, “unavailability of hw”, “more

detailed task planning”, “reuse” etc.

2.3.2. Improvements and Problems on Size and Effort Relationship

2.3.2.1. Functional Similarity

Table 5 Results of Effort Estimation Error Studies

Jorgensen

Molokken

“Experience

Report-based

Reasonsfor

Inaccurate

Estimates”[23]

 Unexpected events and overlooked tasks (›)

 Change requests from clients or “functionality creep”

 Simpler task or more skilled developer than expected

 Resource allocation problem

 Poor requirement specification or problems with communication with the client

 More reuse than expected from other projects

 Too little effort on estimation work

 High priority on quality, cost accuracy not of high importance

Jorgensen

Molokken

Project Related

Characteristics[23]

 Skilled project managers

 Stronger involvement in the project work leads to more accurate estimates

 Time is necessary for the development of proper requirement specifications

Phan et Al.[72] Unrealistic over-optimism

 Frequent changes

Van Genuchten[19] Frequent changes

 More time spent on other work than planned

 Complexity of application underestimated

 Capacity related:overruns of other work

 Late delivery of Hw Components

 Maintenance activities interruption

Lederer and

Prasad[20]

 Frequent requests for changes by users

 Users lack of understanding of their own requirements

 Overlooked tasks.

Standish Group[57] Lack of user input

 Incomplete/changing requirements and specifications,

Subramanian and

Brewslawski[21]

1. Requirement change/addition/deletion,

2. Design changes, scope, complexity

3. Programmer or team member experience,

4. Turnover

McConnel[26] 5. Missing requirements

6. Missing software development activities and

7. Missing non-software-development activities.

Raz Dvir[6] 8. Need for commitment of Estimators

9. Need for More detailed task planning

10. Need more experience on Estimation

 41

In FP calculations every software module can be represented by several functional processes.

Regardless of the aimed logical functionality, if functional processes of modules are similar to any

other process, effort needed to develop new ones will decrease, and total effort will not be

proportional to the functional size.

Reusability may occur in several ways and several terminologies exist for the specific usages.

“External reuse”, “internal reuse”, “commercial of the shelf (COTS) reuse”, and “replication” are

some of them. Reuse is named “internal”, when a module or process created for a system is used

multiple times within the same system and “external” when a module from a different system is used

one or more times within a new system [123][125]. In organizations, the external reuse is commonly

considered to be the inclusion of the functional similarities and the reusability percentage of the

product is determined by the ratio of reused modules to the overall project.

As external reuse, internal reuse also has a significant impact on the total required development effort

and time. Although the most of the software products have functionally similar modules or similar

functional processes, it is not always easy to determine functionally similar software entities at the

beginning of the projects. Moreover it is not clear whether the functionally similar entities require

exactly the same components for the development or not, and what the impact of the similarity on the

development effort should be.

In the literature, there are a few approaches to determine functional similarities. These approaches can

be grouped into two categories: One of them is comparing the components of functional processes.

The other approach consists of the entity generalization/specialization practices which are widely used

in object oriented methodologies and can be used in the grouping of the similar functional processes

into one and as a result can be used to eliminate the replication of the same/similar functions [126].

The second approach can be applied at the beginning of the projects only by using expert judgment

and inheritance relationships in the design artifacts can be utilized as a base for the determination of

the functional similarities in the subsequent phases.

In terms of functionality, similarities on software applications have been subject to research projects

and defined by using different terminologies. Fenton [125] defined a concept called “private reuse” as

the extent to which modules within a product are reused within the same product. Cruickshank and

Gaffney[124]also made first distinction for “internal” and “external” reuse in the literature from

economical perspective.

 42

Functional similarity (FS) concept was first defined by Meli as the re-utilization existent logical data

structures and functionalities to build up new logical features [81]. But how the similarity should be

considered for effort and size calculations was not defined. Santillo and Noce [80] defined the same

concept, and suggested a model for calculating the size considering the similarities as “Worked

function point model”. This Model was used to achieve a more significant “work size” to be

correlated with effort. Model included “reuse”, “replication” and “similarity” adjustments and used

predefined reuse adjustment coefficients for every reused-function. However the method was not

validated by means of industrial experiments. A similar set of coefficients was also proposed by

NESMA for enhancement projects [117]. A similar study was performed by Top [128], that assigned

specific adjustments for reusable components.

Whatever the terminology is, the FS concept has a significant effect on all phases of the life-cycle of

the projects. For example, the effect of functional reuse in maintenance was evaluated by Abran and

Desharnais in 1995 [129]. They developed an approach for the identification and measurement of

reuse in the enhancement projects by considering Function Point Analysis Method. Their approach

depended on two key concepts: reuse indicator and predictor ratio. The study depicted how an

alternative size measure could be obtained by combining predictive ratio and reuse indicator.

FS has been subject to one of the common FSM methods, COSMIC. It defines the FS concept in its

Guideline for Sizing Business Applications document [130]. It is stated that developers might avoid

duplications by realizing the functional reuse opportunities among functional processes, however, the

user point of view ignores the functional similarities since the FURs are measured independently

instead of grouping similar functional processes.

Abran and Maya [131] are one of the researchers evaluating similarities within a software product

from a FS perspective. They refined and extended the functional similarity measures to create a more

precise basis for the cost estimation and productivity models.

In addition to above, there are considerable numbers of research studies evaluating the software reuse

performing at the source code level. However, few of these studies focus on developing methods to

identify the functional similarity in the early phases of the software life cycle [3] [132] Ho, Abran and

Olingy [133]emphasize the importance of measuring the functional reuse in the early phases of the

software life cycle rather than coding phase to improve the performance of the software engineering

processes. Their work bases on extending the method of Abran et al [129] by using the COSMIC FFP

 43

method. The approach proposed in their paper considers only the reuses without modification and is

called black box approach. The approach utilizes the functional relationships among functional layers.

The development effort and the functional size correlation have been subject to research studies as

well. In 2000, Meli [81]discussed the effort and size correlation problem. He stated that in some

situations, it is possible to aggregate and assemble much different logical functionality which leads to

rapid and economic implementations with a small amount of working effort. As a result of this, the

effort needed to realize the overall system will decrease, and will not be proportional at all to the

logical functionalities required.

In their study Santillo and Abran [79] proposed the approach called “functional similarity” to identify

the software reuse from a functional perspective. The technique is based on uncovering the functional

similarities among functional processes from a data set that comprises functional processes, data

movements and data manipulations which are evaluated by using the COSMIC FSM method.

Although their study comprises a method sorting out functional similarities, it does not provide an

approach for the relation of size and effort.

Lastly, entity abstraction methods are also valid approaches for eliminating the measurement

variances, grouping similar functional processes, providing abstract data and as a result eliminating

the replication of the same functions. A research study considering this approach was conducted by

Turetken et.al [126]. They depicted the utilization of entity generalization concept in COSMIC and

IFPUG FPA Methods and evaluated the effect of different interpretations on the measurement results.

2.3.2.2. Variable Effects of Components

Component effects were considered in some size measurement models like MKII and IFPUG and

were included by different multipliers to functional size components. In others such as Cosmic,

components were not treated separately. In Mark II and IFPUG the purpose of the multipliers as well

as their origin were undefined. Multiplier values for MKII and IFPUG were fixed and not arranged

according to the environment, conditions or selections of the project.

We realized that, using subcomponents of size to improve the accuracy of the effort estimation was a

concern in 2000s. Kitchenham and Kansala [82] suggested that Function Points were not well-formed

measures because there was a correlation between their constituent elements. They claimed that since

function point elements were not independent, there might be better measures for effort prediction

 44

than the sum of the elements. Using stepwise multivariate regression to derive the best fitting equation

between effort and the five function point elements, they concluded that, for their dataset, the best

fitting equation included only two elements: input and output function points. So according to this

study, all the function point elements were not related to effort.

Abran et al. [134] investigated whether there was a relationship between the individual function types

or profiles with project effort. In this study the concept of a software functional profile is defined as

the distribution of function types within the software. They have used FPA‟s 5 function types. In their

results of comparison language was the main consideration. Depending on the language, functional

profile was found different. They found that External Input and Output function types made important

contribution to total effort while others had a weak relationship with effort.

Abran and Panteliuc [135] investigated the sub-components‟ effect on application types, based on

regression models. They used the ISBSG data set projects measured using Cosmic FFP and built

linear regression models with and without considering the functional subcomponents. The types of the

projects were divided into three groups; enhancement project; development type with single layer and

development type with multilayer. In that study, a term, “functional profile” was used to define

subcomponent‟s effect on effort value. They concluded that identification of the functional profile of

a project and its comparison with the profiles of their own group of development type can help in

selecting the best estimation models.

Gencel and Buglioni [83][84], compared the effort estimation based on BFC types, with the ones

based on a single total functional size value. They performed multiple regression analysis for

investigating the strength of the relationship between the functional sizes of BFC Types and

development effort. In both studies they found significant improvement in size-effort relationship.

Tunalilar and Demiors applied both multi-variate regression analysis and ANN method for creation of

effort model using BFC types of COSMIC [160]

2.3.2.3. Application Domain Specific Effects

FSM methods are developed mainly for MIS type of software. Therefore for other application

domains, examples about the use of rules in standards and problems encountered during that

experiment is important. Some companies provide their results to software community for information

sharing purposes [27][28][76]. For example, even Cosmic method is accepted as applicable to real-

 45

time & embedded type of software, empirical research results of companies using this method will be

beneficial for other measurers in the world.

Companies need some guidelines in order to validate size measurement values and to achieve

common consensus. It is well known fact that even certified measurers may encounter conflicting

situations. In these cases, a commonly accepted procedure among measurers is very useful that

identifies the rules for size measurement [29]. Although standards explicate the concepts, assumptions

for measurement should have been written for future use. This is recommended by other companies to

satisfy reliability. For example The Company, Renault [27][28], who managed its automotive

embedded software development cost by using Cosmic method wrote rules for measurement. As its

software development costs were increasing, Renault decided that some measures and an estimation

process was needed in order to be able to predict the software costs early. They experimented Cocomo

and IFPUG previously, however for larger sized software applications, these methods were not found

useful for cost estimation. They found COSMIC as more repeatable and faster than the IFPUG

method and claimed that COSMIC could be automated in a further step. They produced several

productivity models for the same software: one for interfaces modules and one for algorithmic

modules. Besides Embedded Software group in Renault [27][28] wrote rules to map all the COSMIC

concepts to share it with their suppliers. As the software functional size measurements were

performed by several measurers, they claimed that it was mandatory to write textual guidelines. The

reason for this was to define very clearly and without any ambiguity, the way of measuring functional

sizes. Then they also experimented to check the reproducibility of functional size measurements that

were performed independently by different people. They announced that manual measurements were

very reproducible with at the most 1% of difference with this way.

If we are developing a military avionics software that is a kind of embedded software with safety and

reliability concerns, it is highly probable that extra tasks are necessary for standard software

development. Because some specific standards like DO-178[136], DOD-STD-2167A [137] (Military

standard defense system software development) are needed to be complied. These specific standards

defines a process that requires specific documentation with the structural information of the related

military avionics software components. These systems are generally integrated systems therefore test

phase may require a number of extra sub-phases that is different than many other application domains.

Song et al. [140] mentioned a similar approach in their research. Their main consideration in their

research is to investigate maintenance phase. They claimed that other than the size of software, the

number of CSU and Configuration Software Components should be input parameters for the effort

analysis. A representing decomposition in parallel to their study is given in Figure 28. Therefore a

CSU level software is needed to be tested at unit, component, item, system and platform levels. Due to

the requirements of high reliability in safety critical domain, the testing effort has a considerable

 46

impact upon the effort. Besides in terms of safety considerations, the critical level of software guides

the amount of required software test effort. For this domain they categorized the test effort as Ground

test, Flight test and found that Flight test needed more effort. Finally the experience of people was

found as an effecting factor for the safety critical software domain. They proposed a new forecasting

method for effort estimation that was based on software size but using domain specific information.

2.3.3. Need for Database Reliability and Effect of Datasets

The term „Reliable data‟ is used to mean that both collected effort data and size measurements are

consistent and repeatable across the organization, in terms of personnel, projects and processes. In a

reliable dataset, data is extracted from a controlled repository which has been established using the

results of projects that are managed via similar processes and tools. Furthermore, the procedures for

the construction of dataset such as data collection, measurement and analysis are well defined and

they are performed and monitored by the same personnel [143][28][74].

2.3.3.1. Need for large and Consistent Data-set

With the aid of repositories like ISBSG [142] and the ESA [141] datasets, companies can compare

themselves with respect to their productivity with others or may use the results of these world-wide

data-sets for their estimation. However, the advantage of the multi-company projects database is still

under debate. Even assuming that there is enormous number of data for similar projects, there is

insufficient data to construct and to test an effort estimation model. Besides, data collection methods

are not uniform across different companies and differences in processes and practices are not reflected

well in these datasets. Using single company data will minimize the differences. Furthermore, to

ensure the reliability of the data an organization should have well-defined requirements specification

documents.

Mendes and Lokan [68] focused on all previous similar studies and analyzed their results and specific

data-set problems. They claimed that a minimum parameter set was more applicable if collected

completely and appropriately. For example; ISBSG database included 88 different variables to be

collected. They proposed that only 21 could potentially have an impact on effort. Other problem

related to data-sets was that most of the variables in these sets had more than 40% of their values

missing, therefore excluded from the analysis. In order to use these incomplete data sets, imputation

methods were proposed [144].

Dery and Abran [9] made a research about the consistency of the information contained in databases

by using ISBSG database.They claimed that, for estimation models two prerequisites had to be

conformed:

 47

- There must be enough historical data to assure statistical validity,

- The data must be homogeneous enough to provide meaningful interpretations.

In their analysis they controlled effort parameter and found that, one system included effort from

initial planning to full deployment, while another only reported effort for the programming and testing

phases. So, total project effort reported covers a variety of combinations of phases. Besides, on the

dataset, there were missing effort values on some phases. The missing data in many of those

complementary explanatory fields led to much smaller usable samples with less statistical scope for

analysis. Even worse, for some projects, the sum of each individual effort phase might not be equal to

the total project work effort. With more than one field to designate specific information, fields may

contradict one another, leading to inconsistencies. In these cases, data analysts must either make an

assumption on which field is the correct one or dismiss the projects that has conflicting information.

In another study performed by Abran, Symons and Oligny [73], a similar situation was noted among

the list of problems that created difficulty in building the size & effort relationship. They claimed

that, in cross-company datasets, there was a non-homogeneity in the standards across organizations

for data collection of the effort variable, therefore this situation directly effected creation of database.

Since each organization had their own practices and abilities in defining project phases, even though

the reporting was based in their best effort to match the ISBSG definition of project phase, it might

not be possible to note all recorded information accurately in cross-company database.

2.3.3.2. Need for Measurement Quality

There can be significant subjectivity in measurement. Although the availability of standards for size

measurement would help to improve the quality of measurements, since different measurers may

obtain different results, the validation of size measurement and removal of the inconsistencies

between measurers are necessary. To ensure the reliability of the size data, all project measurements

should be performed by an expert measurer who had also been trained or certified in size

measurement and the results should be verified by other measurers and measurement reference guides

are necessary [28][29][74].

2.3.3.3. Tools and Structure of Data

Database: In some researches, groups or firms explicate their best practices for data collection. For

example Springsteen et al, prepared a report for the Department of Defence in USA [138] and

described the use of data collection and analysis tools and data repositories among the industry

organizations contracted. According to their report, tools are needed to collect basic data, to calculate

measures, and to generate charts, graphs, and other forms of metrics reports. Although they have

 48

specific recommendations as a tool, they do not insist on any of them, since the pricing issue depends

on the company. They pointed some problematic areas for metrics program to be researched further;

 Identification of standard reports for the corporate level,

 Creation and reporting of abstract information in a valid manner across different application

domains,

 Investigation of the impact of reuse and COTS software on metrics data and analysis,

 Decision of the beneficial metrics,

 Creation of tools and procedures to make measurement non-intrusive.

Besides, they also classified collected size and effort metrics at different levels of company and

claimed that while at the project level, metrics describe work status, expenditures like effort, and other

factors that are necessary in daily decision making and planning, at a division or domain level,

metrics are needed to synthesize trends and improvement issues.

Similarly, Braungarten et al. from Canadian Software Productivity Center Inc. [139] disposed a list of

general criteria to satisfy the best when defining a software measurement repository facility. So this

facility should:

 be easy to use so that team members can update and report their data with a

minimum effort,

 be flexible so that one can change its structure if new data is collected,

 interface to other tools such as configuration management and project management

systems, ideally to simplify data collection and reduce repetition of data within the

company,

 be large enough to contain substantial historical corporate data.

Data Collection: Galorath which is the supplier of commercial data collection tool gives some

recommendations about data collection method. The first consideration is motivating potential data

providers to participate in data collection process. For doing this it is necessary to provide data

collection forms and instructions beforehand. If providers give definitions themselves, this will

increase their participation in the process. Another consideration will be making a face-to-face

interview to confirm that data is realistic and valid.

Phases and Activities : Briand and Wieczorek [61] in their resource management study , mentioned

that to monitor and control the project, we need process model for the development and data about

effort actually spent on major activities. With this way it would be easy to understand relationships

 49

among project attributes and to capture them through resource models. They recommend the data

collection based on a process model that describes the relevant activities, artifacts, and resources on an

appropriate level of granularity. Besides they recommend the characterization of effort expenditures

aims at finding out where, when, and how resources are spent on a project. The reason for this is if

enough data from various projects is available, staff and effort planning of new projects is easy to

estimate. It is then possible to estimate which proportion of the overall estimated effort will be spent

in each phase, for which activity, and how much effort has to be spent for completing a product.

Under the best industry practices subject, they commended that regardless of the specific estimation

methods to be used, software organizations need to define and integrate an explicit, repeatable

estimation process into their development practices by defining procedures for data collection and

analysis, and selecting appropriate estimation methods, and applying appropriate system-sizing

mechanisms.

Yang, Bohem et al., [75] performed a study on phase effort distribution data of 75 industry projects,

by using the China Software Benchmarking Standard Group‟s database [75]. They claimed that poor

effort estimation and allocation cames from lack of recognition to process variations and lack of

understanding to process effort distribution patterns. They found different distribution pattern for

Chinese software than that was found in another study based on Cocomo. They included the activities

taken into account that is listed in Table 33. They observed FP-based software size and application

development type were two major factors to be considered when adjusting effort allocation.

In study about “lessons learned in work effort metrics” Wiegers [76] suggestedtracking trends in the

distribution of work activities to improve the understanding of how to develop software. He used

these information to set quantitative improvement goals, to identify opportunities that could increase

productivity, and to build heuristics to serve for estimating new projects. He made a classification of

work effort by using six development and four maintenance phases in his research. Development

phases were: preliminaries and project planning, specification, design, implementation, testing, and

writing documentation. The maintenance categories he applied were: adaptive,fixing bugs, adding

enhancements, and user support. Other then the development categories, one more category was

included for capturing time spent for routine execution of activities. On this category he collected

effort information for certain activities like generating monthly management reports from an

information system. His conclusion on his study was that; collection and analysis of software work

effort metrics provides multiple benefits to software group. Many of the team members deduct

information for project planning, for the estimation of tasks from this database. His categorization is

given in Table 33 at Appendix. Another conclusion of his study was these type of datasets provide a

quantitative understanding of the group‟s development process. Besides it was possible to supervise

evolution of the process during life-cycle. Even more, this method allowed team members to compare

 50

where they think they spend their time with where they actually spend their time. He also explicated

their data collection philosophy and process.

Application Type : If structure of database established based on the information of application types,

companies should define their classification of application types. There exist different classifications

for application types. For example : Morris categorised based on the type of end-user and the services

provided by the software [161]. His classification is given in Figure 12.

Figure 12 Categories of Software according to Service provided by Morris

2.3.4. Effect of Data Analysis Method

The majority of the effort estimation models proposed in the literature are based on statistical

methods, in particular, the regression analysis method, and use total size as the driving parameter.

Regression analysis is one of these parametric approaches that use historical data for curve-fitting.

Reliability of fit of the proposed curve can be measured using different parameters like mean square

error. An alternative approach that uses historical data for the generation of a specific estimation

model is the ANN. The models based on ANN capture the underlying relations among input variables

by machine learning.

In literature many studies compared the results of these analysis methods. Tronto and Silva [49]

investigated and compared the Artificial Neural Network and regression based Models. The neural

network was implemented with 1 input, 9 units in the first hidden layer, 4 units in the second layer,

and 1 output neuron. They compared the accuracy of models base on Mean Magnitude Relative Error

(MMRE) and coefficient of determination (R
2
) values. On R

2
 dimension they found ANN models

useful. However in terms of average error, MMRE, there was no much difference. They first selected

four independent variables to compose their models by using a statistical analysis package. Among

them only “thousands of delivered source instructions” is found to be the most important variable and

used to build the ANN and regression models. In another similar work, Tronto and Silva tried several

[49] neural network models with a number of 23 neurons and developed several regression models by

minimum 3 multiple inputs. These inputs were effort driver variables. They concluded that neural

 51

network based models were able to capture the parameters that had an influence in the development

effort. Therefore ANN results in better accuracy than those
obtained

 with multiple regressions, and

simple linear regression.

Berlin and Raz [46] examined the linear regression and ANN techniques in IT networks. They tried

size, complexity and productivity values or a combination of these as an input to neural networks with

one or two hidden layers and compared the resulted accuracy. For ANN models best result was

obtained using combination of these three as an input with two-hidden layer. For regression technique

exponential transmission was selected best for that data set. Besides, they found regression models

better compared to ANNs. Therefore they claimed their results were opposite of Tronto and Silva

[49], i.e ANN was not outperforming to regression techniques. They asserted that, using the number

of files as product complexity improved the linear regression model such that it performed strongly

better than ANN model.

Finnie and Wittig [14] compared CBR with different regression models using FP and artificial neural

networks on a large database. They reported a better performance of CBR when compared with

different regression models based on function points. Artificial neural networks, on the other hand,

outperformed the CBR approach. The neural network inputs they recommended were the system size,

several system characteristics and the programming environment.

2.3.4.1. Regression Analysis

For the construction of the single input models, regression techniques were implemented using total

functional size as the input. Regression models are represented in a defined form. For example, for a

linear regression model the effort has the general form:

 E = b0 + b1X1 + b2X2 + ... + bkXk (1)

Where, for a set of observations, the variable E is a linear combination of an offset b0, a set of

predictor variables X with matching bk coefficients. If more than one X parameter is used, then multi-

variate linear regression analysis is assumed, otherwise it is assumed to be a single input. These bk

values are derived using statistical techniques and tools. Linear regression undertakes to find linear

relationship between one or more of these X predictor variables and a dependent variable, minimizing

the mean square of the error across the range of observations in the data set. Many existing effort

estimation models based on this approach. However, the main disadvantage of this technique is that it

is vulnerable to extreme outlier values.

 52

Linear regression models were the first ones that was recommended for effort estimation models. In

literature a variety of different models have been proposed that were generally formed by using

Ordinary least-square regression (OLS) technique. This technique presumes a functional form

interrelating one dependent variable, with one or more independent variables.One has first to specify a

functional representation of relationship between dependent and independent variables. The least

squares regression method then fits the data to the specified representation by trying to minimise the

overall sum of squared errors. To carry out an OLS Regression, a confidence level must be set

according to the precision requirements of the research. In the majority of previous surveys in this

domain, the confidence level of the OLS Regression analysis is set to 95%.

Although regression is a standard method for building a relationship among dependent and

independent variables, it faces major challenges. The model is frequently overfitted. This occurs when

unnecessary predictive variables remain in the model. If some of the independent variables are highly

correlated, this situation may cause high variances and covariances in coefficients and result in poor

predictive performance when user tries new data. In order to get rid of such situations, some

techniques that reduce the number of predictor variables are proposed [85].

2.3.4.2. Artificial Neural Network

For ANN based models, observations in the database are not considered to be independent. This

analysis method is different from model based regression analysis techniques in that there is no need

for the model to be specified beforehand. In the learning phase, with a number of iterations,

dependencies between input variables are arranged according to both output variables and all other

observations.

ANN is a system that uses the ideas about the operation of biological neural networks. ANN is an

application of artificial intelligence principles and is formed by using the information about how

biological brains operate. A brain is composed of many neurons that receive a stimulus and trigger a

response to another neuron. The response from the other neuron can trigger other neurons and so

forth. At the end, this chain of neural activation results in body response like the remembrance of a

memory, movement of a muscle.

Similar to the brain, where an input (stimuli) can be related to an output (action), an ANN can model

the relations between inputs and outputs by using neurons inside. These neurons are called as nodes.

ANN is composed of a number of layers at which a number of nodes exist: input layer, hidden layer

 53

and output layer. The final equation at the output can be represented by considering the activity of

each neuron. A typical mathematical representation of each neuron is summarized in Figure 13. This

representation is from study of Rios [145]. A final network model can be formulated by taking into

account the mathematical representations of all the neurons in the network.

Input layer gets the signal and delivers it to the inside of the neural network, Hidden layer deals with

the signal and calculates the weight by using neurons. Generally, only one hidden layer is used. The

reason is that multiple hidden layers make the neural network quite complex. The number of hidden

layers of ANNs implies a classification: The single-layer networks and the multi-layer networks. The

“hidden” concept comes from the fact that the performance of the network is not open to user. Output

layer is responsible for receiving the signal from the hidden layer and generates the appropriate result.

Each node works independent from each other. The architecture of each ANN is based on very similar

process elements, that are neurons, which work in parallel and perform the processing.

Figure 13 Mathematical Representation of Neuron “Adapted from Rios Daniel Study

The neuron calculates a weighted sum of its inputs and generates an output. This process is performed

in all the neurons. The resulting architectures solve problems by learning the characteristics of the

available data. For the output computation in neurons an “activation function” is used. There are a

number of different types of activation function. The most common ones are step, ramp, sigmoid and

Gaussian function. However proper selection of this function is still under investigation [146].

 54

The performance of an ANN depends on its architecture and certain parameters such as the number of

layers, the number of nodes in each layer, the transfer function in each node, learning algorithm

parameters and the weights which settle the connectivity between neurons. So inappropriate selection

of these parameters may cause serious difficulties in network performance and training.

2.3.4.2.1. The Number of Hidden Layers and Nodes

In order to build a neural network, one of the biggest issues is the determination of the appropriate

number of layers and nodes. For the best network performance, optimal number of hidden-units must

be selected for the generalization of results [147] To decide the appropriate ANN model, two

approaches can be applied: one is the trial/error approach and the other one is the application of the

Genetic Algorithm [148][149]. The second approach is feasible for larger data sets.

If very few neurons are used, then network can‟t approximate the desired output function well.

However, if too many neurons are used, then over fitting can occur. In other words, the system only

works on the few test samples that have been provided. Small error is observed but network cannot

converge and become useless for any other input.

In many studies, selection is recommended by considering the number of training samples [150].

Therefore, more training samples require the usage of more neurons to represent the complexity of

the output function. Complex output patterns cannot be defined by a small number of hidden layer

neurons. For the decision concerning the number of neurons, a rule-off thumb was applied. According

to Heaton “The number of hidden neurons should be less than twice the size of the input layer” [147].

2.3.4.2.2. Backpropagation

The fundamental concept using neural networks is to achieve the best learning algorithm to adjust the

weights in multilayer. Back-propagation learning algorithm is re-invented in 1982, by Rumelhart

[151]. This technique originally was discovered by Werbos in 1974 [153]. Back-propagation is an

algorithm to adjust the weights from layer to layer backwards to reduce the errors at the output during

the training process. After a number of iterations, proximate representation of the effort was formed

based on the each network training input.

The tool user selects “Learning rate” parameter, that directly defines the convergence speed of the

back-propagation algorithm[152]. If learning rate is selected as higher, this will cause an over-

correction and network may not converge to a state. However, a small learning rate will increase the

 55

running time and create problems in converging. Training phase aims to finalize the values of the

weights and biases that minimize the output error. Training time may be arranged with some

parameters such as iteration number, or specific error value.

A major limitation in the usage of a neural network as an analysis tool is that it requires a large dataset

for training. For small data sets, it is necessary to make the training more efficient. One way of doing

this is to repeat the training process several times with a randomly selected training set, then the model

is tested with the validation data [154].

2.3.4.3. Effort Estimation Accuracy

In order to determine that one effort estimation model leads to better estimation than another. A large

number of different prediction accuracy statistics have been used in the literature.

The Mean Magnitude Relative Error (MMRE) is an average error used to indicate the relative amount

by which the predictions over or underestimate the real value for the model. The magnitude of relative

error (MRE) is the value calculated by dividing the difference between the actual and the estimated

values to the actual value. The mean MRE (MMRE) is therefore the mean value for this indicator over

all observations in the dataset. A lower value for MMRE generally indicates a more accurate model.

The coefficient of multiple determinations, R
2
, on the other hand, gives the percentage of the variation

that can be explained by the independent parameters. If R
2
 approaches 1, it can be said that a strong

relationship exists between the independent and the dependent variables.

The prediction level parameter PRED(k) represents the quality of the predictions. It defines the

percentage of estimated values within k% of the actual measured values. So unlike MMRE values, we

need higher PRED values in our estimation models. Contemporary expectation of a good model is the

achievement of PRED (30) = 60% [50].

 56

 CHAPTER 3

3. 3. EFES: EFFORT ESTIMATION METHODOLOGY

For an approach to achieve its benefits and be useful, it is essential to provide a systematic way to

implement it in an organization. The defined methodology provides a disciplined guidance for

organizations to perform all tasks in relation to effort estimation.

This chapter presents the EFES method we proposed for organizations. First section of the chapter

discusses the requirements of the methodology. Sections 3.2 presents the operating principles of

processes, Section 3.3 provides Database structure, 3.4 defines Roles and Actors in methodology.

Finally 3.5 presents the procedures for processes and artifacts.

3.1. Requirements Of The Methodology

Figure 14 Top-View of Effort Estimation Framework

 57

The aim of the methodology is to define all necessary steps, related artifacts, templates, roles and

responsibilities for the processes for a company. It is executed in two levels:The project level and the

company level. At project level, project managers and project teams are responsible for performing

the actions. At company level, Measurement and Analysis Group is the coordinator,controller and

performer of whole procedures.

The methodology aims to build a reliable database. To do this first, information needs should be

defined. Then, how and who will collect, analyze and publish will be decided. The selection of

technology level available for collection, analyzing, storing and publishing depends on the company.

The information obtained from projects, analysis results and all the other related documentation can

be kept on either at a standart server with basicly arranged folders or at an information system with

the selection of user-friendly interfaces. Both methods will enable to protect the information obtained

from previous projects and to use them in the future.

Similarly, the specific subjects that need to be analyzed depends on the company.The company may

select to investigate the amount of requirement change effort, effort needed per specific task, wasted

effort, unplanned effort, unexpected events, demos, etc.

Building historical data requires time. To have a sufficiently comprehensive set of data, it takes many

projects to be finished. Then performance and productivity measures from completed projects are used

to make reasonable assessments for new projects. Different needs require different amounts of data to

be collected. Simple project tracking can actually be performed without much data. It is just enough to

accurately track and monitor the progress versus deadlines. For the estimation of future work, an

agreement on standard measures and setting up a repository for the ongoing projects is necessary.

After significant number of finished projects, we will obtain the first set of historical data to use for

the second step. Naturally, the confidence and accuracy of the estimates depends on the number of

projects and data details. If only project size and effort are collected, we can not expect to estimate

well. The problems concerning the operationalization of effort estimation methodology in practice are

to capture the status and background information of company, to represent and to store it in a reusable

form, and reuse efficiently and effectively in future software projects. Gathered information have to be

continuously acquired and integrated into the available knowledge.

In this study, we defined the formation of this historical database for a specific company, moreoever

an approach for data measurement, collection and analysis is introduced. This approach mainly is

constructed by considering feedbacks of developers in the company and investigation of available

data. Since processes are defined as generic, it can be used for other companies by tailoring. To favor

this opinion and to guide other companies, a number of templates for the execution of processes are

 58

given in the Appendix. So companies may create a comprehensive processes to produce their specific

executions. For example for Effort Collection process uses a predefined “General List” that defines

phases and activities. For our specific company by using that information a WBS structure is formed

for data collection. However, another company that mainly deals with maintenance activities may

form another WBS structure to collect effort, like in Table 33 .

The main operation and activities can be summarized as follows:

 The Project Team uses previously published company WBS templates for their new project

analysis and plans. These templates draw the essential groupings for phases and

recommended activities under that grouping.

 The Project Team collects effort data periodically during the development. The recording

structure also allows to track the current status of the project. To support these goals, the

collected data is never used to evaluate the members of the project team.

 Measurement and Analysis group organizes and controls the data formation during the

execution of the project. By using the available data from all the projects in repository, they

create an effort model. To do this they use both project related and unrelated information.

 Calibration of the model and tools are performed periodically, to announce the current

situation.

3.1.1. Detailed Requirements:

After a literature review, and the results of the exploratory case study, the requirements of this

framework are defined as follows:

3.1.1.1. Data Requirements:

 Up-to-date information should exist in database[74][119]:

All the information about the project should be located in a common repository and be accessible by

the responsible personnel. Measures and historical data should be available when needed therefore

they should be periodically put into repository.

 For a company based analysis, all projects should provide the required information with valid and

complete data[9][13][60][168].

Validity requirement should be satisfied to ensure that everyone understands the terms in data

collection, the definition of each variable actions, phases, tasks, the necessity of data collection, the

real aim behind the collection so that a common consensus is created. Information comprises all the

projects and the sources.

 59

 Collected data should be checked to prevent missing data problem or other errors

[13][9][169][170][171][29][172].

Group of experts should be responsible in the company to control the problems in database. They

should give feedback to data providers to make the information up-to-date, consistent etc. and should

check to prevent missing data problem or any other errors. Recorded values conform to actual values.

To improve data quality and ensure that measures usage is evolving, it is recommended that the

contents of the history database should be frequently reviewed. This should be done before each major

reporting cycle.

3.1.1.2. Effort Collection Requirements

 Effort data should be collected, based on the defined phases, and the activities [61][76].

If there is a non-homogeneity across the projects for data collection of the effort variable, total project

effort reported covers a variety of combinations of phases, that cause analysis to be incorrect.

Planning at a more detailed level that is defining shorter activities and smaller tasks, increases the

accuracy of the estimates and reduces the size of the estimation errors. Besides unrelated activities

performed during the execution of project should be moved-out of analysis to prevent noisy

information in effort value. Planning at a more detailed level that is defining shorter activities and

smaller tasks, increases the accuracy of the estimates and reduces the size of the estimation errors.

 To compare the expended real effort, project related and not related efforts should be noted in

detail [24][26][60][156].

Team may attend to some presentations, other trainings, supportive activities etc. that is not a part of

the project. The time expended for other projects, and unrelated tasks should not be inserted into effort

collection tool. Some part of effort may be correlated directly tothe size of the functionality delivered.

But for some other type of efforts, like documentation, meetings, demos it is not possible to create a

relation with functionality. Overtime work is recorded. The time expended for other projects, and

unrelated tasks should be differentiated.

 Overlooked tasks or unexpected events, should be recorded [23][24][26][60][156].

Though, it is named as “unexpected events”, these situations may be commonly experienced in the

company. For example ,waiting for the hardware to operate, lack of SW developer, unavailability of a

tool, requirement changes etc. that prevents to proceed or that requires rework.

 Efforts collection review should be performed with the periodicity of a week [76].

 60

If it is collected more than a week, results may not be reliable. Team participation improves data

quality. Using the estimates for project monitoring and control increases the commitment of the

estimators (i.e project team) and reduces the occurrence of estimation errors‟ Size Measurement

Requirements.

3.1.1.3. Size Measurement Requirements

 Repeatability of Measurements is necessary [28][60][77][173][174].

To make sure on repeatability on measurements, other than standards and manuals, a written

procedure will be useful.

 Validity of Measurements [74][119].

A group of people may be assigned for this purpose for checking the correctness of the measurements.

Besides, certified measurers‟ existence is beneficial.

 Requirement Specification document should be well defined[29][76].

Incorrect or missed information results in inaccurate size estimation. Following a checklist to make a

review can be a good suggestion. Besides a standard and tailoring method is published according to

the size measurement rules: layer definition, boundary definition etc.

 Measurement Results should be documented [29][174][175].

Documented measurements allow this process to be controlled and more repeatable.

3.1.1.4. Analysis Requirements

 Tool should allow multi-variate data analysis [82][83].

Since we aimed to improve the correlation by using size components, tool should allow the analysis of

multiple input case to correlate the effort output.

 Easy user interface will be beneficial.

Since this is a recurring process, after years a large dataset is used for analysis purposes. Therefore,

tool shall perform its operation on a large database with minimum number of effort.

 61

 Allow to calculate effects of unexpected events on effort in terms of percentage [23][119][156]

This will be performed by any tool selected by Measurement & Analysis Group.

 Outliers should be investigated [176][177]

This analysis results in either pointing a problem or finding a possibility for improvement of the

project.

 Effort model should be formed for each application domain type [75][178]

Each type of application domain type should be arranged according to the development tools, some

development processes ,the language and the platform.

3.2. Processes of Framework

Framework consists of five processes. These processes can be performed at company level or project

level.

For the requirements of the methodology we decided the related processes and responsible people for

the execution. In Table 6, we indicated this traceability. Measurement and Analysis group (M&A

Group) is the owner of the overall methodology that controls the execution of processes, performs the

measurements, create effort models. Managers also take part in execution of the processes at decision.

points: for company level decisions Software Managers and for project level decisions: Project

Managers are responsible.

Figure 15 provides a top-view of all processes. Details of processes are given in part 3.5 with specific

flowcharts. All the steps of Data Analysis and Calibration are executed at company level. Data

Analysis process uses the effort collection results and BFC size measurements of all the projects for

analysis. Then it produces “Effort Models” for each application type. Besides, other important

datacollected during project are analyzed for the final effort estimation of the new project. Calibration

process is executed at company level periodically. Two different calibrations are performed by using

this process. One of them is the calibration of effort models by including last finished software

projects‟ data in a definite time. The other calibration is carried out to update the templates for the lists

of data collection. These lists are predefined WBS structures for defining phases, activities,

 62

unexpected events, unplanned events etc. The period for the calibrations mainly is decided by the

Measurement and Analysis Group, considering the arrival rate of the available information.

Table 6 Traceability of Requirements to Processes of Methodology and responsible people

Req.

No

Related Process Responsible People

001 Effort Collection Process, Calibration Process Project Team,

M&A Group

002 Effort Collection Process Project Team, M&A Group

003 Effort Collection Process M&A Group

004 Effort Collection Process, Calibration Process Project Team, M&A Group, Software

Manager

005 Effort Collection Process, Calibration Process Project Team, M&A Group, Software

Manager

006 Effort Collection Process, Calibration Process Project Team, M&A Group, Software

Manager

007 Effort Collection Process, Project Team, Project Manager,

M&A Group

008 Size Measurement Process, Effort Estimation

Process

M&A Group

009 Size Measurement Process, Effort Estimaton

Process

M&A Group

010 Size Measurement Process, Effort Estimation

Process

M&A Group, , Project manager

011 Size Measurement Process M&A Group

012 Data Analysis Process M&A Group, Project managers

013 Data Analysis Process M&A Group

014 Data Analysis Process, Calibration Process, Effort

Estimation Process

M&A Group, Software Manager,

Project Manager

015 Data Analysis Process M&A Group, Project Manager

016 Data Analysis Process, Effort Estimation Process M&A Group, Project Manager

 63

Effort Collection, Size Measurement and Effort Estimation processes are implemented for each

project. Effort Collection process is used for two purposes. During the project the collected data is

used for project tracking, monitoring and control. But the main aim is using the final values obtained

at the end of the project. Size Measurement process is used to measure the BFCs of the project before

estimation. However ,it can be repeated during the development at specific milestones for tracking. FS

effect is included in size measurement before applying the effort model. BFC components of sizing

method are grouped for the analysis phase. Effort estimation process applied only once and combines

the results of other processes to generate an estimation for a new project.

Figure 15 Effort Estimation Process Framework

The methodology is a combination of formal and expert estimation methods. Data collection structure

is based on expert knowledge obtained from previous projects, but effort model is formed by using

modeling functions.

3.2.1. Effort Collection:

Effort collection is performed for each software configuration item (SCI) in project. It is continually

performed during the project life-cycle. It is performed for eachSCI. System breakdown for the

decomposition of system to define SCIs is given in Figure 16. This figure is presented in DOD-2167

[137]. System is decomposed into Segments first, where a Segment consists of one or more Hardware

Configuration Items and one or more Computer SCIs. An example decomposition in parallel to this

classification is given in Figure 28 at Appendix 1. Some military standards [137] also append

 64

Interface Requirements Specification as a part of this disintegration. Typically, a Hardware

Configuration Item is a printed circuit board or microcontroller. A Computer SCI is further

decomposed into Computer Software Components (source code files) and finally Configuration

Software Units (CSUs) (functions or modules).

For effort data collection differentiation of phases is determined at company level and published as

“General Lists”. A general list suggested in parallel with the processes of IEEE EIA 12207 [155] is

given in Table 7. Some example lists are given in Table 31-34 at Appendix.

Sub-tasks/activities needed are defined for each SCI at project level by the project team, and

controlled by Measurement &Analysis group. For this step a General List is formed into a predefined

WBS structure for data collection by considering the project information and by detailing the

activities. Then this structure is used to track the status of the project by each member. Every member

in the project record his/her process for the last week.

Figure 16 Decomposition of Project Items (From DOD-2167)

In order to reach effort value related to functional size, it would be beneficial to differentiate the

activities. For this reason, the effort spent that effects the project‟s total effort, but not productive for

the project should be separately recorded. These factors may belong to different categories: It will be

directly related with the operation of the organization, may depend on other stakeholders, may depend

on environmental conditions or people. For example if company makes a decision like compiler and

utility changes, hardware upgrades, media conversions where no new or changed functionality is

required, this change may require extra amount of work, that is not a concern for customer. Final

effort reached after such changes will never be correlated with size.

 65

Similarly, change requests from customer may cause an alteration in the design that also increase the

planned effort. Another example will be related to hardware problems. If the developer waits a

hardware to start an activity, then this information should not be noted under expended real-effort

value. Recording the amount of such time-lag that prevents to proceed will be beneficial for the new

projects‟ estimation. When estimating the effort required for a new project, these unplanned activities

are included in calculations as an extra contingency. Therefore, during the development, all similar

situations in each project should be recorded for future use.

Table 7 A Part of Recommended General List Structure based on IEEE EIA 12207

Phases &Tasks Activities

Software requirements analysis -Preparation of prototypes to specify the

requirements of the system

-Working with System Engineers to understand

functionalities

 Software coding and unit testing -Coding/Updating the Program

-Writing and executing unit tests

- Interface testing

 Software integration -Integration at SW level

-Integration at HW Level

 Software qualification testing -Coverage Testing

-Qualification of Software Component

- Software Safety Assessment Testing

 System qualification testing -System Level testing

-Test According to a standard

-Platform level testing

-Defect Removal During Qualification

-Safety Validation at System Level

This process starts at the beginning of the project and continues until the product is delivered to the

customer. To prevent errors, reviews are included in the process.

 66

3.2.2. Size Measurement:

This process is used to define and count the BFCs of the measurement method. Measurement manuals

define the stages of the methods in detail and in a very explanatory way. Final measurements are

reviewed by other members of the measurement and analysis group, to satisfy validity. To satisfy

repeatability, besides standard manuals, company measurement procedures should be published.

These templates define rarely observed cases or assumptions to be applied in size measurements to

support measurers. If during the measurements there occurs a discussion about a case, then the final

decision should directly be included in these procedures.

The measurement process applies the rules of selected measurement method and tailoring. Process is

implemented for each SCI. For size measurement, all methods require to define application boundary.

COSMIC method also requires to define the layers. Our recommendation is to arrange SCIs such that

each SCI should include only one layer. Otherwise, the number of SCIs should be increased.

Tailoring is applied according to the notes for Application Domain for each SCI. To exemplify this

concept we can give an example situation for the size measurement of Embedded Device Drivers

software: if an embedded application requires a register to be updated in order to light a panel LED,

then a decision needs to be made as to whether writing that register should be considered as outputting

a value, named „exit (X)‟, or should be considered as recording a value, named „write (W)‟. Some

measurers may accept this situation as “Write”. However, since writing that register is only a part of

hardware-board design, and the aim is to display the information via the LED, then we named this

measurement as „exit (X)‟.

Since the size measurement depends on the available information, SRS should be complete enough.

Even with all the information available, the accuracy of estimates will rely on the effectiveness of the

estimation processes and models employed. However, the more detailed the information, the more

accurate the estimation can be. For this reason a template should be fixed. IEEE-830 is found suitable

for FSM methods[127][29]. SRS document should be reviewed for the correction of requirements

defects, to remove ambiguities and inconsistencies.

However, SRS template may include specific parts inside to improve the measurement method. For

example boundaries, layers, external devices or users may be defined in some parts. If modification is

not desired, then this information will be combined with quantitative measurement results that allow

measurement &analysis group to have his measurement results documented in a consistent manner.

Documented measurements allow this process to be controlled and more repeatable.

 67

The initial measurement was performed by an experienced measurer, than another group of experts

review the initial measurement results; most preferably, these measurement experts should be certified

for the specific measurement method.

The FS consideration on effort is included by re-evaluating all the measurements such that; for each

functional process measurement, the similarity level of each functional component is compared with

their respective components on other functional processes. At the end of this process, we have two

size measurement results. The one with the FS related is the suggested one for data analysis process.

After a number of steps of validation, preparation for data analysis part is performed. Since we use

BFCs of measurement methods, grouping of size components and inclusion of this information to

measurement results are necessary. Validation of these basic addition is also beneficial to prevent the

errors.

Table 8 A Part of Supporting & Extra effort List

Supporting & Extra effort Explanation Effect Level

Requirement Changes Include extra expended effort not planned for each

SCI

Application

DomainType

Support to Other Projects Record support time not wasted for current project Application Domain

Type

Demo Include this unplanned Effort Project

12207/SupportingProcess

-Documentation

Writing and inspecting the software requirements

specification.

Writing and inspecting the software design

specification.

Writing and inspecting the software test

specification.

Writing technical note or giving presentations

Application Domain

Type

Hardware problem, Include the wasted time in hours for each SCI, if

HW not available or HW has problem

 Application Domain

Type

12207/SupportingProcess-

Configuration Management

-CM Activities of CM Personnel

-CM Activities of SW Development Personnel

Project

 68

3.2.3. Data Analysis:

This step is performed to find a suitable and representing “Base Effort Estimation Equation” between

BFCs and Development Effort. Different tools can be used for the creation of effort model. Tools and

analysis methods require specific parameters to be decided. Measurement & Analysis Group must be

trained on these subjects to apply them successfully. Process steps have variations depending on the

selected tool. The estimation equations should be formed for each application domain. So, the number

of equations, i.e. models, should be equal to the number of application types developed by the

organization.

Other than analyzing the required data for creation of base effort model, the historical database is

useful for reaching some valuable data. So, the percentages of Supporting & Extra efforts; like HW

problems, requirement changes are included as a multiplier to reach final effort value. A part of such

list is suggested in Table 8.

3.2.4. Effort Estimation

In this process estimation for a new project is defined in steps. It uses the results of other processes.

For a new project, Effort Collection‟s first sub-process is applied to find SCI identification. Then for

each SCI, Size Measurement process is executed. At that point previously brought out model of effort

at company level for the application domain that SCI belongs to is used to calculate the base effort

value. Effort model and other valuable information are imported from Data Analysis Process to attain

Final Effort value.

3.2.5. Calibration

Calibration of effort models should be performed at an acceptable periodicity. Period will be

determined by the Measurement and Analysis Group, according to the delivery rate of SCI‟s. If

during the development of a project, a need for an update in the templates is encountered, this will be

discussed and included in the process at company level then will be ready for publishing. For

example, if company starts to develop safety related systems that requires specialized processes,

techniques, skills and experience, then new activities are included in this list and are published for the

company.

 69

3.3. Data-base Formation

Data-base is formed by considering two virtual repository: Company and Project repositories

Physically these databases can be settled on the same server. Project Database contains project related

documentation as shown in Figure 17.

Figure 17 Database Organization

Project related documentation includes: Development Documentation, Measurement Results of SCIs.

Company Database contains final versions of measurement results of the projects, tools, standards,

last effort models created for each SCI, Final versions of templates etc.

3.4. Roll & Actors

Process definitions require to define a responsible person or group for each execution step. In

flowcharts of the processes the responsible people are indicated. In Table 9, the actors of the

methodology are given. For each step of the processes “Actors” are indicated in related flowchart.

Measurement and Analysis group leads the overall methodology. On the other hand the owner of the

processes is Software Manager. Project Managers not only provides the required reliable information

for their project, but also use the final results for the control of project and use effort models outputs

for future decisions. Most of the decisions are made by review meetings. These meetings and related

actors that will attend are also indicated in flowcharts of processes. Delivery lists for meeting notes

are pointed.

 70

Table 9 Responsibilities of the Methodology

Definition of Roles Responsibility

Measurement&

Analysis Group

Responsible for Size measurement, its validity, creation of repository,

selection of data analysis tools, performing data analysis, effort collection,

improving correctness and validity of data, calibration of General List,

Supporting & Extra effort list,

Team Lead Responsible for the management of Software activities for a specific project,

Project Team Responsible for the development of software, giving exact values for effort

they expended,

Project Manager Uses the collected effort and other information to make estimation, to track

the project,

SW Manager Responsible for the measurement and development activities to be executed,

owner of the processes,

Experts People who has knowledge and experience about the subjects of the project.

3.5. Process Definitions

In following parts “process definition” of each process is given by referencing the related templates,

flowcharts and metrics. The metrics defined in these process definitions are not used in EFES

Methodology. However they are included as recommendation for company and are aimed to be

utilized to improve the methodology in future.

3.5.1. Effort Collection

3.5.1.1. Purpose and Scope

To establish a consistent process for data collection of effort within the company, this procedure

guides the effort collection method for a software project. It defines the performing steps with the

related responsibilities.

 71

It consists of four sub-processes for effort collection. The first three of them are applied at the

beginning of the project. The last sub-process is periodically executed until the final delivery of

the project. The procedure is applicable to all of the software projects from all the application

domains, for all the development environments. Discrepancies should be noted and discussed

with Measurement and Analysis Team.

3.5.1.2. Process Flow Chart

 Given in Figure 18.

3.5.1.3. Inputs &Outputs

Inputs:

Software Project Plan,

Technical Specification Document of Product,

Software Requirements Specifications,

Other materials exist or prepared during the feasibility phase of the project or prepared by

customers.

Names of the Team members

General List (Table 7)(Includes all project development related& unrelated activities)

Supporting & Extra effort List (Table 8) (Unplanned activities or uexpected events)

Application Domain Categorization List

3.5.1.4. Outputs

Effort Collection Records and Updated Lists are outputs of the processes and recorded in project

repository as given in Table 10.

Table 10 Deliveries for Effort Collection Process

Document No Document Title Created By DeliveredTo

PrjNo_EF_CollV1 PrjNamePre.EffortCollection

Record

Team Leader Prj\SWMR

PrjNo_EF_CollV2 PrjNameUpd.EffortCollection

Record

Team Leader Prj\SWMR

PrjNo_EF_CollV3 PrjNameFinalEffortCollection

Record

M&A Group Prj\SWMR

PrjNo_Upd.Gen.List

PrjNo_OtherList

ReviewLog-21.01.11

GeneralList

Supporting & Extra effort List

ReviewLog

M&A Group

M&A Group

Team Leader

Prj\SWMR

Prj\SWMR

Prj\SWMR

 72

3.5.1.5. Process Execution

3.5.1.5.1. Preparation of Preliminary Effort Record

The Team Leader of the project prepares an action item list for the whole project and for

each individual member. The aim is to measure the time that will be spent both in the project

development (real effort) and in different work activities and phases. At the beginning of the

project, this sub-process can also be implemented by supporting the team leader with experts

on the project subject.

a. Identify the team members (if not identified in the project plan);

b. Identify the Software Configuration Items.(SCI)

- Example Configuration of Software is given at Figure 28(Appendix 1)

c. Identify action items for each SCI in accordance with the General list given in Appendix.

This list should contain both project development related activities, and unrelated

activities.

- Applied Configuration is given in Table 31(Appendix2)

- Examples for other General lists suggested in literature are given in

Table 33-34 Appendix 2

d. Identify Supporting & Extra effort items.

- Applied Configuration is given in Table 35(Appendix 3)

- Examples for Supporting & Extra effort List suggested in literature are

given in Table 36 Appendix 3.

e. Assign roles and responsibilities for each action item so that each action item is

separately recorded for the individual member.

- An example template for the effort data collection is given in Table 37

Appendix 4

f. According to the level of each team member propose an initial effort in terms of days (8

hours) required to finish that item.

- Values inserted in Table 37 Appendix 4

g. Distribute and ensure the Preliminary Effort Record to Team and arrange the review

meeting. The attendants of this meeting should be arranged such that, all participants

 73

of the project that has knowledge about the action items should be present. (Project

managers, project team including hardware or system engineers etc.)

3.5.1.5.2. Review of Effort Plans

Each team member examines the work items and planned effort on the Effort Record,

especially assigned items for himself before meeting.

a. The team leader presents the lists in the record.

b. The Team leader gathers the information from team. Team leader may reschedule

the meeting, if s/he concludes that team members are not adequately prepared, or

required members are absent.

c. During the meeting, proposals for additions or removals to action items and

Supporting & Extra efforts are discussed and noted on the list. If there is

disagreement, discussed item is always included and remained to further discussions

of Measurement& Analysis Group and Software Manager.

d. Undefined action-items that are not explicitly given in Appendix General List, will

be included in the Effort record and noted in ReviewLog.

e. Team leader sends this list and ReviewLog to Measurement &Analysis Group.

3.5.1.5.3. Review of Effort Records

Measurement and Analysis Team :

a. Checks the suitability of the recorded action items and unexpected event items.

b. Checks whether whole information is prepared and recorded.

c. Decides the group for undefined action-items in the General List. If necessary,

holds a meeting with SW Manager for final decision. Decides whether an

unexpected event will be included in the record. If necessary, holds a meeting

with SW Manager for final decision.

- Ex: When a need for Safety Requirements appears, they are included as

shown in Table 32, Table 31(in italics) .

d. Sends the Final version of Effort Record to Project Manager, SW Manager,

Team Leader, Team Members, delivers it to the project folder .

 74

e. If projects started then continue with effort collection, otherwise send this table

to “Effort Estimation Process” to provide data about SCI List, and Supporting

& Extra effort list. Besides, send this table to “Size Measurement Process” for

the Prj SCI List reviews.

3.5.1.5.4. Data Collection

 The objective here is to collect the real time spent on project development, and to record time

for other types of efforts. Therefore, extra working hours spent for the projects during that

week and time spent for unexpected items that prevents to proceed are captured as well.

 For every finished week; Team Leader and Each team member together:

a. Keep daily records of the time he/she expended on each project activity, to half-hour

resolution.

b. Record events that prevents from proceeding in day basis.

- Values updated in Table 37 Appendix 4(Real Effort)

c. Check whether there is a deviation from initial guesses. If guess is lower than the required

one note it whether it is a planning error, or an unexpected event occurred. Note the

unexpected event effort. (Like an HW error solution, a change in requirement, etc.)

- Values updated in Table 37 Appendix 4 (Ex: HW Problem)

d. Team Leader sends this information to Project Manager, SW Manager, Measurement &

Analysis Group.

3.5.1.6. Metrics

 The following metrics are applicable to this procedure:

1. Updated Effort (on daily-basis) during review meeting: Shows the effectiveness of the

review meeting.

2. Number of undefined action-items that are newly included in the General List.

3. Amount of effort spent for other type of efforts.

3.5.2. Size Measurement

3.5.2.1. Purpose and Scope

To establish a consistent process for functional size measurement of software projects within the

company, this procedure is used to design a size measurement procedure that allows the

application of the COSMIC measurement method. It uses tailoring approaches according to the

application types and application notes for FS reflection. It will be used both at the beginning of

 75

the project for size measurement of each SCI‟s of the project, and during the project development

for tracking and monitoring the state.

3.5.2.2. Flowchart

 Given in Figure 19 .

3.5.2.3. Inputs

Technical Specification Document

Software Requirements Specification for each SCI

Checklist for SRS Review

Measurement Results Document Template (include Detailed Measurement Results Table)

Size Measurement Manual (Standard for the measurement method)

Tailoring Notes

Functional Similarity Application Notes

Final Effort Collection Record(for each SCI)

3.5.2.4. Outputs

Measurement Results Documents for each SCI and BFC Groupings of the measurements are

recorded in Project repository as given in Table 11.

Table 11 Deliveries for Size Estimation Process

Document No Document Title Created By Delivered To

PrjNo_ReviewLog

PrjNo_SMRD

SRS_Review

MeasurementResultsDocument

Team Leader

M&A Team

Prj\SWMR

Prj\SWMR

PrjNo_SCIDMNoFS SCIName_DetailedMeasurementResultsNoFS M&A Team Prj\SWMR

PrjNo_SCIDM_FS

PrjNo_BFCGrpNoFS

PrjNo_BFCGrpFS

PrjNo_NewSMR

SCIName_DetailedMeasurementResults_FS

BFCGroupingNoFS

BFCGroupingFS

SCIs_New MeasurementResults

M&A Team

M&A Team

M&A Team

M&A Team

Prj\SWMR

Prj\SWMR

Prj\SWMR

Prj\SWMR

3.5.2.5. Process Execution

For the functional size measurement COSMIC_FFP method will be applied. The measurement

process is conducted according to the guidelines defined below.

3.5.2.5.1. Improvement of Measurement Quality

This step requires Application types to be used as input information.The Company should

differentiate and group the software development projects according to their development

environment, development procedures, development language or based on an expertise.

Team leader and Measurement &Analysis Group performs the following steps:

 76

a. Check the Software Requirements Documents for eachSCI. A suitable way would be

using a Requirements Review Checklist.

- Table of Contents for SRS Example is given in Table 40 Appendix 6

- Example Review checklist format is given in Table 41 Appendix 6

1. Is Standard Textual format applied?

2. Verify the comprehension of all software functions,

3. Are triggering events, output locations reviewed? If necessary sequence

diagrams are prepared or discussion sessions will be held.

4. Missing data, ambiguities are found with reviews and document is updated

etc.

b. Record the Application Domain Type of each SCI

- Applied categorization is given in Table 38 Appendix 5

- Example categorizations are given in Table 39 Appendix5.

c. Prepare the Measurement document. This document may include all measurement

steps.

- Example Measurement template is given in Table 42 Appendix 6

 77

F
ig

u
re

 1
8

 E
ff

o
rt

 C
o

ll
ec

ti
o

n
 P

ro
ce

ss

 78

3.5.2.5.2. Identification of the Measurement Definitions

This step will be performed according to the manual of Cosmic Functional Size measurement

ver3.0 [186]. So, the measurement steps are arranged according to the measurement manual.

If the measurement method changes each step should be reviewed and updated.

Expert Measurer and Team Leader:

a. Identify the Layers for each SCI: Check SCI differentiation is performed accurately for the

SW that will be measured.

b. Identify the System Boundary for each SCI : A conceptual interface between the functional

 user and the piece of software that will be measured.

c. Identify the functional users for each SCI: The types of users that send (or receive) data to

 (from) the functional processes of a piece of software.

d. For each SCI Identify the triggering events: An event that causes a functional user of the

piece of software to initiate one or more functional processes.

- Example Measurement template is given in Table 42 Appendix 6

3.5.2.5.3. Mapping of the Concepts

This step will be performed according to the manual of Cosmic Functional Size measurement

ver3.0. If the measurement method changes, each step should be updated.

 Measurement and Analysis Group and Team Leader :

a. Identify the functional processes for each SCI: Every functional process is triggered by a

data movement from the functional user, and the functional process is completed when it has

executed all the data movements required for the triggering event.

b. Identify data groups and attributes for each SCI: A set of data attributes that are distinct,

nonempty, nonordered, nonredundant, and that participates in a functional process.

- Example Size Measurement is given for Cosmic inTable 43 Appendix 6

3.5.2.5.4. Measuring the Base Functionality

 This step will be performed according to the manual of Cosmic Functional Size measurement

ver3.0. According to application domain tailoring is applied.

 79

 Team Leader and Expert measurer:

.1. Identify the data movements: BFCs (Entry, Exit, Read and Write) for every

functional process must be identified.

.2. Tailoring is done according to the Application Domain.

.3. Record the Cosmic measurements by using the template “Design Template for

Cosmic Measurement”, name the file as “SCI_Measurement Record1”, where SCI is

the actual name of the software.

- An example size measurement is given in Table 43 Appendix 6.

3.5.2.5.5. Application of Functional Similarity

 In this step functional similarity approach is applied for each functional process.

M&A Group and Team leader :

a. Check the similarity of BFCs of each functional process with other processes.

b. Apply an appropriate FS reflection method.

- Zero Effort method is given as example is given in Appendix 7.

c. Update the measurements and create Measurement Results that includes Functional

similarity.

- An example size measurement is given in Table 43 Appendix 6.

- Measurement Results Template is in Table 42 Appendix 6.

3.5.2.5.6. Validation of Measurements

 In this step, another group of experts is selected to review the initial measurement results. The

measurement experts may be internationally recognized or certified.

 Some other people from Measurement & Analysis Group:

a. Review all the initial measurement results,

b. Check the correctness by controlling all the numerical values and computations,

c. Update and aggregate the BFCs measurements, FS Measurements for all SCIs into

Measurement Results Document.

- Example size measurement template is given in Table 45.

 80

3.5.2.5.7. Recording of Measurements

 In this step, M&A Group:

a. Group the measurements of BFCs for all SCIs.

- Grouping is given in Table 44 Appendix 6.

b. If the project is new, that is, measurement process is used for estimation purposes of a new

project, then send the BFC Grouping Results to “Effort Estimation Process” with no Effort

value included,

c. If the project is not new, that is, the size measurement is performed to track the project status,

then include effort collected value until that point and Publish, Record and Send

Measurement Results to Project manager, SW Manager, Team Leader. These BFC

grouping Measurements are used for “Data Analysis Process” .

3.5.2.6. Metrics

The following metrics are applicable to this procedure:

 Number of Updated Measurements (on daily basis) during “Validation of Measurements”

 Number of ambiquities and missing information in SRS documents found during the review.

3.5.3. Data Analysis

3.5.3.1. Purpose and Scope

To establish a process for data analysis in order to define the effort estimation model,in this

procedure application of Neural network tool is defined. Therefore, the procedure explains the

necessary steps for this analysis method in details with the related responsibilities. The process

will be applied either to overall projects of the company, or to a specific Application Type. The

recommended way is grouping the projects according to the application-domain types. This

procedure also defines the application and steps of the Neural network model.

3.5.3.2. Flow Chart

 Given in Figure 20.

3.5.3.3. Inputs

BFC Grouping Measurements with Effort Value for all projects,

Application Domain Types,

Data Analysis Tool (Ex: Neural Network Tool, Multi-Variate Regression Analysis)

 81

3.5.3.4. Outputs

New Effort Models and Analysis results for each SCI is recorded in Company repository as given in

Table 12.

Table 12 Deliveries for Data Analysis Process

Document No Document Title Created By Delivered To

Effort_Model_List_vYear_X Effort Model List M&A Team CompanyFolder\Model

Analysis_Results_vYear_X Analysis Results M&A Team CompanyFolder\Analysis

 82

F
ig

u
re

 1
9

 S
iz

e
E

st
im

a
ti

o
n

 P
ro

ce
ss

 83

3.5.3.5. Process Execution

Data analysis is applied to overall data obtained from all software projects in the company. The

process is conducted according to the guidelines defined below.

3.5.3.5.1. Preliminary Data Analysis

The M&A Team of the Company:

a. Group BFC Groupings data for all SCIs according to the Application Domains.

- Example table is given in Table 46 Appendix 8.

b. Calculate the Total Size for Each SCI and prepare a list with three variables; Total Size,

Effort in hours, Application Type for all projects. Made a simple regression analysis to

investigate outliers.

c. Arrange a meeting for the discussion of anomalies. Decide about the problematic projects:

include the data into data-set, discard it for specific reason, or create a new application type.

d. Review and Update the Measurement Results File.

3.5.3.5.2. Defining Neural Network (NN) I/O

Neural Network uses a list of Input/ Output Relationship that was recorded as Measurements

File. This list contains information of all projects developed in the company.

a. Identify the number of inputs for the NN model: Each type of BFCs is used as one input for

the network analysis. Additional inputs may be used such as Application types, Team Size

etc.

b. Identify the Output: Effort for each SCI.

3.5.3.5.3. Create The Neural Network Structure:

 M&A Group should select a number of hidden neurons and layers by applying “Forward

Selection Method” whose details are summarized below. The “Measurement Results” file

should be presented to each neural network since it contains the input data and the desired

output.

1. Start with 2 hidden neurons,

2. Train the network,

 84

3. Evaluate the performance by calculating Mean Magnitude Relative Error (MMRE),

4. Repeat items 2-3 for a number of hidden neurons and 1 and 2 layers,

5. Compare MMRE values of the network and select the one that shows better

performance.

Rule of thumbs:

1. - The number of hidden neurons should be in a range between the size of the input

layer and the size of the output layer.

2. - The number of hidden neurons should be less than twice the input layer size.

3.5.3.5.4. Learning

M& A Group use Measurement Results file as an input to learning phase. Learning algorithm (such

as back -propagation) is used to „train‟ the neural network by adjusting its weights to minimize the

difference between the current neural network output and the desired output.

M&A Group use Neural Network Tool and;

a. Adjust Learning Algorithm Parameters,

b. Start training the network,

c. Halt the process to check the level of learning at a defined number of iterations,

d. Test the network performance and if necessary increase the number of iterations and return

step 2. Evaluate the network performance until an acceptable accuracy is achieved,

e. When an acceptable level of accuracy is obtained, the neural network is then deemed to have

been trained and is ready to be utilized. (Number of Ġterations between 500- 1000 will

generally be enough.)

 Accuracy parameters will be as follows:

• - Mean Magnitude Relative Error (MMRE)

• - Predictive Quality (PRED)

• - The coefficient of Multiple Determination (R
2
)

f. Record the accuracy parameters of each iteration in “Accuracy Record” file.

- Example accuracy record is given in Table 47Appendix 8.

g. Record the weighs of each neurons in “Effort Model List” file to be used for the effort model

application.

 85

- Example weight distribution is given in Table 48 Appendix8.

3.5.3.5.5. Analyze Effort Multipliers and Supporting & Extra Tasks

M&A Group uses a statistical tool and ;

a. Uses “Final Effort Collection Records” of all projects‟ data to analyze the unexpected items

effecting factors, and calculates the multiplier values in terms of percentage.

b. Uses “Final Effort Collection Records” data to analyze the effect of Action-items that are not

related to development and calculates the multiplier values.

c. Prepares Analysis Results Document that includes the list of these multiplier factors and the

calculated effects.

- Example Analysis Results Template is given in Table 49Appendix8.

3.5.3.6. Metrics

The following metrics are applicable to this procedure:

 Number of hidden neurons

 Number of outliers

3.5.4. Effort Estimation

3.5.4.1. Purpose and Scope

To establish the process for the effort estimation of a new project, it uses the results of other

processes to estimate the effort.

This procedure is applied to all size of projects.

3.5.4.2. Flow Chart

 Given in Figure 21.

3.5.4.3. Inputs

Final Effort Collection Record (This Record includes: Prj.SCI List, Other List,

BFC Grouping Results (Only Size Measurements, no effort data),

Analysis Results (Effort Models for each application domain)

 86

3.5.4.4. Outputs

Estimations for new projects are recorded in company folder as given in Table 13.

Table 13 Deliveries for Effort Estimation Process

Document No Document Title Created By Delivered To

Effort_Estimations_v1

Effort Estimations Project Manager Company Folder

 87

F
ig

u
re

 2
0

 D
a

ta
 A

n
a

ly
si

s
P

ro
ce

ss

 88

3.5.4.5. Process Execution

3.5.4.5.1. Prepare the Base measurement

Project Manager and M&A Team for each SCI;

a. Use “Effort Collection Procedure” to decide Prj SCI list, Supporting & Extra effort list, for

the new project.

b. Use “Size Measurement Procedure” to measure size of each SCI of the current project.

c. Get the result of “Data Analysis Procedure” i.e effort models and analysis results of

Supporting & Extra efforts.

d. Use the related Effort Model generated for different Application domain types, to calculate

Base effort Value for each SCI.

3.5.4.5.2. Calculate Total Effort

Project Manager and M&A Team for each SCI;

a. Use the related Analysis Results (unexpected events effect etc.) for each SCI, for the adjusted

calculation of effort value for each SCI.

b. Perform the Effort Estimation for all SCIs to reach Final Project Effort Estimation Value.

- Example Table for Total effort calculation is given in Table 50 Appendix 8.

3.5.4.6. Metrics

The following metrics are applicable to this procedure:

 Number of Multiplier Factors

 Effected Percentage of Effort

 89

Figure 21 Effort Estimation Process

3.5.5. Calibration

3.5.5.1. Purpose and Scope

To update the Effort models periodically by including new projects‟ information and to update

the commonly used templates (General List, Supporting & Extra effort list etc.) by considering

the information obtained from continuing projects, updated versions of effort models, templates

and documents are put in a repository by using version control.

3.5.5.2. Flow Chart

 Given in Figure 22 .

 90

3.5.5.3. Inputs

General List, Supporting & Extra effort list,

BFC Grouping Measurements with Effort Value for all projects including new ones.

3.5.5.4. Outputs

Results of Periodic Calibration is recorded in Company folder as indicated in Table 14.

Table 14 Deliveries for Calibration Process

Document No Document Title Created By Delivered To

Effort_Model_List_vYear_X Effort Model List M&A Team CompanyFolder\Model

General_List_vX General List M&A Team CompanyFolder\Lists

Unexpected_Event_List_vX

UnexpectedEvent list M&A Team CompanyFolder\Lists

3.5.5.5. Process Execution

3.5.5.5.1. Review The Lists

M&A Group :

a. Reviews each project recordings every 2 months with SW Manager and publishes

updates for general list and unexpected event list to all Team Leaders in the company.

3.5.5.5.2. Calibration of Effort Models

M&A Group :

a. Apply the Data Analysis procedure with the frequency of 3 months. Calibration of the

model is necessary to include the last projects' data.

3.5.5.6. Metrics

The following metrics are applicable to this procedure:

 Number of Supporting & Extra effort types encountered.

 91

Figure 22 Calibration Process

 92

CHAPTER 4

4. 4. EXPLORATION and APPLICATION OF THE METHOD

This chapter describes utilization of a multiple-case study to develop and validate the Effort

Estimation Methodology. Two multiple case studies were conducted. In the first multiple case study

we aimed to identify the requirements to develop a methodology for effort estimation and investigated

improvement opportunities in Functional Size Measurement and Data Analysis methods. In the

second case study our aim was to validate the methodology. Section 4.1 explains the research strategy

followed and Section 4.2 describes the plans for case studies. In sub sections of 4.3 case studies are

explained. Lessons learned and results will be given in 4.5.

4.1. Research Methodology

In this thesis study, we investigated how we can build an improved size and effort relationship model

and how we can apply it in organizations.

For the investigation of this phenomenon, we used a variety of evidences from different sources, such

as documents, artifacts and observations. However, during this examination, we had no control over

the behavioral events. Thus, we used the case study as our research method.

We performed two case-studies. The first case study was an Embedded type unit, because we aimed to

analyze multiple improvement opportunities in building a relationship and in data collection method.

It was also a multiple case study, after a first pilot investigation in improvements that was applied on a

very small dataset, we checked these opportunities at a different time and for another larger set of

projects.

 93

The second case study was a single case study to confirm the methodology. It represented a unique

case. As Yin suggested [162], it is holistic, because it doesn‟t contain multiple analysis units. Next

section expands the design of our multiple-case study. It draws the questions of the study, the

propositions, and data collection and analysis strategies.

4.2. Multiple Case Study Design

Figure 23 Case Study Flow

4.2.1. Define and Design of Case Study

4.2.1.1. Hypothetical propositions for methodology

We investigated the following research questions :

1 RQ1 How can we build an effective size based effort estimation methodology using the available

data?

2 RQ2 What are the factors that might improve the effectiveness of methodology?

3 RQ3 Can we utilize the methodology to build a size and effort relationship?

4.2.1.2. Case Study Plan

In order to answer our hypothetical propositions above we, as researchers, conducted two case studies

in a middle sized company. Detailed plan of the research is given in Table 15.

 94

Table 15 Case Study Plan

 Action Approach Resource&Tools Role

Preliminary

Work

Selection

of Projects

Investigate documentation

maturity of projects.

Evaluate the contents of the

available collected effort data.

Select projects with detailed

collected information for each

task.

 SRS , SDD Documents, Other

technical documents

Researchers,

Team

Leaders

Data &

Tool

Selection

Select Analysis Tools Tools for Single Regression

Analysis Multivarite

Regression Analysis, ANN

Analysis,Excell

Researchers

C

A

S

E

1

Conduction

of case1-

Part1

Search literature on FS

Consideration

Measure Cosmic Sizes of projects

Check structure and recordings

on Effort values

Check FS effect on relationship of

size and effort.

Write Report for this sub-part

Cosmic Standard v3.0

Effort recordings

Researchers,

Reviewers

Conduction

of case-1-

Part2

Evaluate FS Consideration on

different Application domains

Evaluate FS effect on Project

Phases and Tasks

Write Report for this sub part

Researchers,

Reviewers

Conduction

of case-1-

Part 3

Generation of General Models

Generation of Specific Models

(Single, Multivariate, ANN)

Comparison of All models by

using Accuracy parameters.

Evaluate collection processes, its

problems, designate solutions

Develop methodology including

processes and related assets

Write Report for this sub-part

Tools for Single Regression

Analysis

Multivarite Regression

Analysis, ANN Analysis,Excell

Researchers,

Case Study

-2

Conduction

of Case

study 2

Apply Effort Collection Process

Apply Size Measurement Process

Apply Data Analysis Process

Evaluate the benefits of

methodology

Tools for Single Regression

Analysis

MultivariteRegressionAnalysis,

ANN Analysis,Excell

Researchers,

 95

In this company after justifying the rationale for some improvements by conducting the Case-1, in

Case-2, we validated the “EFES methodology”.

The steps of our study are summarized and reports on our findings are presented in Table 15. These

studies are applied for the decisions of improvements in our methodology empirically. In following

paragraphs all case studies are performed by researchers. The required information is provided by

team leaders and managers when necessary. If company applies EFES methodology, it can directly

use FS and BFC concepts. So there is no need for company to repeat these steps. In real execution of

methodology only the Actors given in Table 9, Part 3.4 will take part.

Roles and Responsibilities :

Researchers : Researchers and Data Analyst of the methodology who are experts on the COSMIC

method measurement.

Team Leaders - Software Design Leaders of the Projects from the company.

Data Collectors - Responsible People for the Data Collection in the company.

SW Manager - Owner of the Collected Data and processes.

Measurement Group: Certified on the COSMIC method measurement and expert on Functional Size

Measurements.

Data Collectors and Measurement Group will form a “Measurement and Analysis group” for

controlling all processes.

4.2.1.3. Case Selection:

Selection of Projects: For the selection of the projects in this company we identified three criteria to

be fulfilled.

1. In order to measure functional sizes of the cases, we required a well defined software

requirements specification documents, and software design documents for the project.

 96

2. Each project should have its effort data in detail. By “detailed” we mean, both project related

development activities and other types of effort such as efforts for demonstrations, meetings,

hardware problems, etc exist in effort record.

3. Projects from several application domains should be included in Case-Study provided

repository.

For the 3
rd

 criteria the application categorization of the company is investigated which is given in

Table 37. Their interrelation as layers are shown in Figure 24 . Each block in that figure is a SCI.

GUI applications for the Data Driven Control Systems, (GUI): These SCIs are simulators of some

existing products. They are used to generate and send an artificial data in order to test another system

or are used to show the results of an externally connected system to check the accuracy of the data.

They have one or more data-interfaces to be connected to other systems and GUIs for user to change

or create a new data, or presents the externally generated results.

Real-time Embedded Application Software(ES) : These SCIs are developed using RTOS development

environments and also include the communication and control software, algorithm processing

software etc. In our case study algorithm processing software SCIs are not included

Figure 24 Categories of software in company in layered approach

 97

Board Support Package applications for Hardware Support, (BSP): These SCIs are embedded device

drivers developed for specifically designed hardware. All existing subcomponents of hardware are

controlled with the aid of this type of software.

Algorithm Development: These applications are not put in the product. They are developed externally

by using MATLAB tools and coded by using “ES” type Applications. Neither the algorithm related

development nor the related ES are considered in our study. Because, there are still discussions for the

functional size evaluation of these type of applications.

The evaluation of these projects is performed by applying the above items. By considering the item 3

and investigating the projects, it was decided that, company has finished projects grouped under three

application domains: GUI, ES, BSP.

The evaluation of cases was performed in two cycles. In the first run, observations showed that there

were many GUI projects completed, but most of the ES projects that had recorded effort values were

still under development. Therefore for the first case study, to evaluate the methodology requirements,

only finished projects were applied. In the second run, for the case study-2, newly finished projects

were included in the overall verification of the methodology.

At the beginning of the research there were: 14 ES, 16 GUI projects and 8 BSP projects.

For case study-1:

According to item 1 above, projects are required to be completed. Researchers ended up with 6

ES projects, 13 GUI projects and 6 BSP projects. The remaining were still under development.

Among the finished projects 1 GUI and 1 ES project didn‟t have much detail in the effort

recordings so it was eliminated . Researchers learned that 2 ES project has changed the

development environment during design phase and started the development from the scratch. For

these projects, effort recordings were including the previous effort, so Researchers ignored these

projects. 1 GUI and 2 BSP projects did not involve other types of effort spent such as HW

 98

problems, maintenance activities of other projects etc. The responsible team leaders commented

that, “such information was considered as a part of development and not differentiated”.

Therefore these projects were also eliminated.

For the case-study 2,

Recently finished projects for each application domain were: 8 new GUI, 12 new ES and 8 new

BSP project. One of the BSP projects has been integrated to two different HW environments

which requires some parts of the functionalities of the software to be updated or renewed. Efforts

for such modifications were recorded in a combined way. So Researchers excluded this project

from our database. 1 ES and 1 GUI applications SRS and SDD documents were not mature

enough so they were removed from our analysis. 1 GUI application was restarted by using

another environment with the request of customer that prevented to obtain real effort values in

recordings.

So final project numbers are as follows:

Case Study 1: 11 GUI , 3 ES and 4 BSP projects

Case Study 2: (6 GUI, 9 ES and 7 BSP)

As a total: 17 GUI, 12 ES and 11 BSP

4.3. Case Studies

4.3.1. Case Study-1.

Researchers have conducted the first case study to find answers for the following questions connected

with our hypothesis:

For RQ 3: We, as researchers investigated the following questions in Part 1 and Part 2:

- “Is functional similarity inclusion improves the correlation between size and effort? Whether its

effect varies based on the application domain, or for some specific phases.

 99

- “Does considering efforts for specific tasks or events (i.e effort wasted for HW problems,

unexpected effort, effort necessary for safety processes etc.) enable better size effort relation ?

For RQ 1 and RQ 3: We investigated the following question in Part 3:

- “Does considering functional components (BFCs) in effort model enable better effort estimation

accuracy?”

For RQ 2: We investigated the following question in Part 2:

- What kind of problems may occur in collecting and using the effort data? Can we improve effort

collection process and related data such that it would be useful for future project estimations?

4.3.1.1. Case Study 1-Part-1 Prepare and Collect Data

Aim: To observe if functional similarity would improve the correlation between size and effort.

The three GUI projects include the development of different simulators which have been nominated to

the embedded platforms were selected from organizational database. They all have a Mil-std 1553

communication interface which enables user to connect to a terminal side where data are taken from

and send to. Simulators have a user friendly GUI which shows and controls all sent and received

messages. With respect to CHAR Method defined in [21], the functional domain of this three

simulation products is accepted as “Complex Data Driven Control System”. This application domain

has an apparent visually similar component that enables us to investigate the similarity reflection in

effort model.

Two separate teams each consisting of one Researcher who was an expert on the COSMIC method,

measured the case products independently using software requirements specification (SRS)

documents. SRS documents of each case were conformant with the IEEE Standard 830-1998 [127] .

The measurement results were verified by a different team members, that was Reviewer in

measurement group, who was not involved in the measurement process of the verified project.

 100

4.3.1.2. Case Study 1-Part-1: Conduction

4.3.1.2.1. Implementation of the method defined by Santillo and Abran:

For the evaluation of the FS the method proposed by Santillo and Abran [79] is used. This method has

two stages. The first one which is called as “the first order evaluation” compares the functional

processes only from data movements‟ point of view. Similarity among functional processes are

determined by comparing the data group and data movement relationships; in addition to this, in some

cases where the comparison technique does not suffice , it is suggested that the analyst makes her best

judgments in order to identify the functional similarities. The second one “second order evaluation”

determines the functional similarities by considering both data movement and data manipulation

action types.

Researchers applied the second order evaluation to our three projects. For all these projects, the first

step was to determine the Cosmic function point size (CFP) of the products by using the COSMIC

method. The results of the measurements in terms of BFC components are given in Table 16.

After this step, detailed size measurement data sets were arranged to uncover the amount of functional

similarities. This step was aimed to compare the data group and data movement couples within

different functional processes, which required comparing all the couples with each other. As Santillo

and Abran [79] emphasized, the average of the functional similarities can be calculated in order to be

able to make a judgment about the reuse capacity of the product.

Table 16 Measurement Results of the Projects

Case Project
No of Functional

Processes

No of

Entries

No of

Exits

No of

Reads

No of

Writes

Cosmic Function

Point Size (CFP)

GUI-Project1 53 107 98 39 33 277

GUI-Project2 44 73 33 24 63 193

GUI-Project3 11 82 16 4 17 129

 101

So, both the first order and the second order evaluation approaches have been applied to GUI Projects.

Evaluation results are given on Table 17. It seems that GUI projects contains multiple similar

processes, especially if we only consider first order evaluation. During the second order evaluation we

came to the conclusion that there may be other kinds of data manipulations apart from the ones given

in Santillo and Abran‟s research. These other type of manipulations may depend on the application

types to provide appropriate granularity. For instance, it was realized that even if two of the

calculation data manipulations within the IS-Project were different, they were considered similar

because of the current data manipulation types. However, for this situation the complexities behind

the calculation processes should be taken into account.

Actually a closer study of the FURs provided a clear insight to the analyst about the similarities

among functional processes.

4.3.1.2.2. Productivity comparisons:

Researchers investigated if the FS results could be used for the correlation of the functional size and

the development effort. Since the GUI projects were developed under the same conditions by the

same team, it was assumed that the productivity values were the same and could therefore be

compared. For the evaluation of productivities Researchers compared the effort values for the whole

development lifecycle. In Table 17 , initial productivity values represent the productivities in which

the functional similarities were not taken into account.

Table 17 The results of first order and second order evaluations

Case Study
of Functional

Processes

Size of the

Product (CFP)

Avg. Functional

 Reuse Percentage

(First Order)

Avg. Functional

Reuse Percentage

(Second Order)

GUI-Project1 53 277 79,0% 52,41 %

GUI-Project2 44 193 57,75 % 34,37 %

GUI-Project3 11 129 25,8% 22.36 %

 102

Table 18 Productivity Rates of Simulator Projects (Productivity= Size Cfsu/ effort (man-day))

Project
Functional Size

(CFP)

Initial

Productivity

Productivity Results After Similarity

Considered

GUI-Project1 277 9,8913 4,24

GUI-Project2 193 6,89 3,39

GUI-Project3 129 4,44 3,19

4.3.1.2.3. Functional Similarity Evaluation

When we, as researchers, evaluated the initial productivity results of the projects, we observed that

the effort required to complete these projects did not depend on the sizes of the projects since

productivity values were so different. Moreover, although the size of the GUI-Project1 was greater

than the other simulator projects, it had been finished in less time, with a higher productivity rate.

When we measured the size only from the user‟s point of view and try to predict the effort by looking

at the historical measure we attained three different effort values. In a sense even a new product would

have been required to be developed by the same team, it would be very difficult to estimate the effort

required based on the historical data.

To attain more reliable productivity values, we counted GUI Projects‟ size again by considering

functional similarities. For two functional processes, if they were found similar, we counted one

instance, and assumed the other one as an enhancement of the first one. So we assumed that the effort

needed to develop for the second instance was negligible. Therefore during the size measurement we

ignored the effort required for the modified part and reached new productivity results given in 3
rd

column on Table 18. Results for the evaluation of Functional similarity is given in following part.

 103

4.3.1.3. Case Study 1 Part 1: Results

When the functional similarities were not considered , distinct productivity values had been obtained

for the same team. On the other hand when the functional similarities were taken into account

productivity values were closer to each other. This revealed that for representative productivity values,

FS should be reflected in size measurements. These new productivity results reflected the real

productivity of the team better since the values were closer to each other than the values in the 3
rd

column.

4.3.1.4. Case Study-1 Part-2: Prepare and Collect Data:

Aim: We, as researchers, have two aims in this part: The first aim is to check whether effort and size

relationship is affected by functional similarity, by expanding the application domains.

Our second aim is : To investigate effort collection strategies, problems and improvements for

developing effort estimation methodology.

We also looked into the effect of FS on different phases or tasks of life-cycle, and investigated the

improvement opportunities in Data Collection Method.

We selected large numbers of projects from organizational database for this part. Since we also aimed

at the inquirement of this information for different application domains, we expanded our domain

selection compared to first part, and included both BSP projects and ES projects to case study. Total

number of projects under analysis became 18.

The first step for this part was to determine the functional size of the projects by using the COSMIC

method without considering similarity issues. Two software engineers performed the size

measurement for all the projects. One engineer was an author of this paper and the other was

responsible for the measurement processes in the organization and leads the development of projects.

For the validity of results another team, certified to apply the COSMIC method, sampled seven of the

projects to check the measurement results.

4.3.1.5. Case Study -1 Part-2 : Conduct

By using a basic formula (Productivity= Size / Effort) and without using any regression techniques we

found that productivity values of the projects for similar teams have large variances. Productivity

 104

value changed between 30,6 and 0,35. The results can be seen in Table 19.Then in order to determine

the reuse percentage level of the projects Santillo and Abran‟s Method first order evaluation was used

as it was evaluated in part 1. The reuse percentages of the projects are also given in Table 19.

Table 19 Productivity Rates of Projects (Productivity= Cfsu/ man-day)

 Size(CFP) Effort(day) Initial Prod. % Reuse Size-After FS

Reflected

After FS

Prod.

GUI-1 588 127,5 4,61 33 364 2,85

GUI-2 1384 49,5 27,9 88 208 4,2

GUI-3 412 59,5 6,92 11 374 6,28

GUI-4 1438 47 30,6 81 213 4,53

GUI-5 129 29 4,44 25 93 3,2

GUI-6 76 31 2,45 14 59 1,93

GUI-7 986 64,5 15,29 56 423 6,55

GUI-8 1347 104 12,95 83 396 3,8

GUI-9 136 12 11,3 86 13 1,08

GUI-10 277 28 9,89 79 119 4,24

GUI-11 193 28 6,89 57 95 3,39

BSP-1 419 98 4,27 10 402 4,1

BSP-2 1740 471 3,69 6 1620 3,43

BSP-3 660 253 2,6 0 660 2,6

BSP-4 421 133 3,16 0 421 3,16

ES-1 2040 336 6,07 16 1634 4,86

ES-2 246 696 0,35 6 194 0,27

ES-3 362 139 2,6 4 311 2,23

AVE. 8,66 3,48

AVE. Deviation 6,22 1,19

VAR 87,01 2,69

 105

For the FS calculations, we thought that if a newly developed functionality was similar to the previous

one, the effort required for this modification would not be so high and could be assumed negligible.

Therefore for the sake of simplicity in our calculations, we assumed “zero” effort for these new

functional units. We calculated new Cosmic Functional Size Units based on this condition and

recalculated productivity values. These new FS reflected size is given in Table 19. Basic Productivity

calculations using the FS reflected size is included in the same Table for comparison.

Since our second aim was to observe the effect of FS on different application domains, we analyzed

the results of 3 applications domains. In Table 19 average productivity rates and average deviation of

productivity for different application domains are given.

As a third question we investigated the effect of FS on different project tasks. When we compared the

reuse percentages of the application domains in Table 19, we found that BSP and ES projects had

lower values of similarity. Therefore, to observe how increased percentage of similarity value impact

effort in any specific phases, we selected only GUI applications for further analysis.

In Figure 25 , we presented how effort per unit functional size changes with functional similarity

percentage of the project. Functional similarities are decided using requirement phases‟ results,

therefore efforts on man/-day basis of other phases are considered for this observation. For calculation

of the unit effort initial functionality size is used, since similarity issue is considered in other axes of

the graph.

Table 20 Average productivity rates and average deviation of productivity

 No Func.similarity Func. Sim. Included

App.Type Avg. Prod.

Avg.Dev.

Prod. Variance Avg. Prod.

Avg.Dev.

Prod. Variance

GUI 12,11 6,96 87,01 3,82 1,21 2,69

BSP 3,43 0,55 0,51 3,32 0,44 0,39

ES 3,00 2,04 8,30 2,45 1,60 5,30

 106

4.3.1.5.1. Evaluation of Effort Data Collection Process of Company:

For the methodology development we investigated the problems and the improvement opportunities in

Data Collection Mechanism. Therefore we looked into the database of different projects and effort

collection method of the company.

In this company, at the beginning of each project, the Team Leader lists the required activities on a

standard excel sheet with his/her specific estimates of these items. Then, this table is reviewed by the

software team in the same project to include the required unseen items and for better predictions. The

software action items are listed such that, the minimum amount of time for performing an item will be

1 day (eight hours) with the maximum allowable time being two to three weeks. Every day, each

developer inserts his/her effort and related work package into this table. Every week, these values are

checked by the software team then are sent to the data collectors. However, in order to collect the real

effort, unexpected situations are also noted with this tool, such as „unavailability of developer‟,

„hardware problems‟, „specific procedure appliance‟ and „unexpected meetings‟. Any event that

prevents the developer from proceeding can be added to the list. Although the main aim is to collect

the real effort, this tool allows the developer to plan and monitor his/her work packages.

Figure 25 Effort/cfsu variation w.r.t. FS in different phases

It was noted that despite the resolution of the effort was defined as eight hours, the developers counted

their effort on the basis of four hours. We realized that some type of efforts requires considerable

 107

Table 21 Findings and Requirements for Methodology

Status Finding Requirement

Positive Each Development Team define their activities and phases themselves,

and collects data rigorously,

Teams should define their own activities by

taking responsibility.

Positive Most of the teams prepare very detailed activity lists, Activity definitions should be reviewed by

Project Team together to check whether all

items are included.

Positive Each member take responsibility and control their own activities, Inlusion of remaining effort will enable the

methodology to be used for monitoring.

Positive Each development team performed SCI decomposition well enough. SCI decomposition Review meeting should

be included.

Negative Activity definitions and related phases are not very interpretable. Some

discussions were needed to understand the activities performed.

A predefined activity and Task list is

necessary.

Negative It is not easy for some activities to be put under certain phase of the

project. Even some definitions include a new SCI development.

SCIs should be reviewed.

Phases should be defined in parallel to a

known standard.(i.e 12207)

Negative While some projects add information for items (Like demonstrations)

as an activity to be performed during development, some other projects

assume that the mentioned effort was wasted and prevented to proceed.

Collect Supporting and extra work

separately,

Create a template for data collection for

those items.

Negative While some projects counts time spent for requirement changes

separately, some don‟t care this situation and includes this extra effort

as a part of design effort.

Template should include defined works.

If new item appears “expert review” to

include, then distribute.

Negative A recording for “infrastructure work” item exist. However some team

leaders create a new very detailed activity list instead of using it. In

this list they also include algorithm development works, hw problems

(even there exist an item for this), a kind of simulator developments

(which is another SCI) etc.

Template should include defined works.

Review points should exist for the decision

of contradictory opinions

Negative A few projects collect data montly, while most of them weekly. Weekly collection is recommended in

literature .Data collectors should review

data availability.

From

Empirical

Study

Requirements, Design and Coding and Testing phases are effected by

Functional Similarity.

Documentation task is not a function of functional Similarity

For Development Effort: Include the

effected phases

Percentage of effort for Documentation

should be evaluated. It is not included in

base effort modeling.

 108

amount of extra effort. For example, by looking at the Table 19 below we can say that for HW and ES

Applications for this company, a large amount of effort is required for safety related issues. GUI

applications on the other hand, utilize major effort for requirements changes.

Development of Artifacts for Data Collection during the investigation of database, unavailability of

some records dropped our number of SCIs. Besides, we encountered some positive and negative

issues. These issues also form the requirements of our methodology. The findings, and our approaches

are given in the next column:

Controversial assumptions create problems in data analysis. Therefore, for methodology we need a

pre-specified effort data structure, that will be arranged according to a world known standard. For this

reason, based on the literature findings and above results we developed data collection templates,

effort collection lists for this company. The following structures have been formed:

Data Collection:

 Standard Effort Collection Record List (Table 31, Table 32): To prevent ambiguity on

concepts, tasks, activities.

 Standard Categorization list of Software (Table 38) : After discussing with team leaders

formed for the company.

 Effort Collection Table Template (Phase, Activity, Developer name, Real Effort,

Completeness of task) (Table 37) : Both to record the past efforts, and also to track the

remaining effort.

Size Measurement:

 SRS Document review template (Table 41): To evaluate the maturity of the SRS documents.

 Size Measurement Results Template (Table 43, Table 44): To record the information on

measurement problems, assumptions etc. to record the BFC measurements.

 Size Measurement Groupings based on BFC for all projects: To combine the available data

of all projects for further analysis. (Table 46)

 109

Data Analysis:

 Effort Estimation Model Weights template (Table 48): To record the developed effort

model.

 Supporting &Extra Effort analysis template (Table 49): To record the percentage of effort

affecting factors, tasks, activities like demonstrations, trainings etc.

 Analysis Table Templates (Table 46,Table 47)

 Analysis Results (Table 49)

Effort Estimation:

 Estimation Table Template for new project: (Table 50)

4.3.1.6. Case Study-1 Part 2 : Results

In our case study we focused on the structure related problems of software sizing namely functional

similarity. As it can be seen from Table 19 and Table 20, for GUI projects, by considering FS we can

achieve a better size and effort correlation. In other words we were able to obtain acceptable average

productivity values with this approach. Variance of the productivity value of GUI projects became

reasonable. However for the BSP and ES type of applications there is not much change. Their

similarity percentages are lower. Although for ES applications variance has decreased, we still cannot

reach an agreeable productivity value. For these types of applications it seems that the problem cannot

be solved with the Functional reusability approach we have utilized. We hypothesized that for the

effort estimation of these types of applications, size should not be the only driving factor. We saw

that; although the number of projects was limited to decide on, HW related projects had comparable

number of average productivity values with each other and whenever a new project started, a rate

might be agreed on for a better estimation.

 110

Table 22 Percentages of special effort/total project effort.

Application Type %Req Change Effort % HW Problems %Safety Related Effort

GUI 19,6 1,2 0

BSP 0,7 16,07 21

ES 0,35 1,4 19,1

Table 22 presents that, safety related effort is found high for ES and BSP applications and

requirement changes require extra effort for GUI applications before the delivery of the products.

Therefore specialized part of the effort seems to be expended for unplanned situations. For more

accurate effort estimation these parts should be investigated.

We found that for GUI applications, design and coding phases were affected from the similar

functionalities of the project. Even for a small number of similarities there exists an effort reduction.

However it seemed that, for the test phase, effort per unit of software size did not decrease much, but

it is still affected. Moreover, we did not find any relationship between similarity percentage and

documentation phase‟s effort. Although all application types were affected by similarity, FS was a

major concern for GUI type of applications. However in terms of effort data recordings, we saw that

there was no standardized way to perform further analysis.

Even the data collection process was executed appropriately and every effort wasted was recorded, the

definitions of phases and activities were contradictory in some cases.

Methodology should include a predefined phase and activities terminology to prevent

misunderstandings, contradictions. Besides to control the available data, a mechanism should be

included such that, if no activities inserted.

4.3.1.7. Case Study-1- Part 3

Aim: To Investigate the effect of using BFC components in effort modeling.

 111

To guide software designers and organizations in their endeavor to identify the best fitting estimation

models,

As researchers, we performed an exploratory study that investigates some of the concepts of the

functional size based effort estimation models. First, we examined the estimation accuracies of

previously proposed functional size based estimation models for a specific company. Then, we

investigated the usage of ANN and multi-input regression analysis to build an effort model that uses

the COSMIC method, and finally we explored the contribution of functional similarity concept to

effort estimation models.

4.3.1.8. Case Study-1 Part 3: Prepare and Collect Data

The same functional size of 18 projects in Case-1-Part2 was used.

4.3.1.9. Case Study-1 Part 3: Conduction

Conduction of this part consisted of two steps:

[1] Selection of functional size based effort models,

[2] Application of generic and specific models of effort estimation.

4.3.1.9.1. Selection of functional size based effort models

In our study we categorized the effort estimation models that are based on functional size as being

generic and specific. We used the term „generic models‟ terminology for models that are proposed in

the literature or are used in software community. Specific models have been retrospectively

established for the company where we conducted our case study.

We searched the literature to find suitable functional size based models. The selected models, the

reason for selection, number of samples used for creation, and applied FP method are given in Table

23. The first three models are the most well-known effort estimation models that are used in

comparison studies [3][65][66].

Generic models commonly in use are defined in linear or power forms. In another comparison study,

Abran [129] developed various non-linear estimation models for the selection of an appropriate single

input regression model. While constructing our models Abran‟s equations were taken into account.

 112

The selected single input regression models for specific effort models are given in rows 1-4 in Table

23. For regression analysis the Least Squares Regression was applied in order to provide the best fit

for all the models.

The measured size of projects consists of several „component types‟ which have a different effect on

development effort. In many functional sizing methods that have been defined, the types of the

components of functionality are essentially similar, but are given a different name. For example, the

COSMIC Functional size has four types of BFCs; (“Entry”, “Exit”, “Read”, “Write”). In our study the

method of aggregating the COSMIC components was investigated and compared in order to find the

best fit model equation. To generate multi-variate models, components were used as independent

parameters of the models and the ANN and multi-variate Regression methods were applied. The multi

variate models that were selected from literature are given in rows 6 and 7 in Table 24.

In order to construct the ANN models, a number of BFCs were used as inputs for the model and a

number of neurons were selected. Therefore, the independent variables of the ANN model were: # of

E, # of X, # of R and # of W. The dependent variable of the model was the calculated effort. Two

different ANN models were built to predict the required output. The first model used one hidden layer,

and the second one had two hidden layers. In order to find functionally similar parts the

„Requirements Definition Documents‟ of the company and the FS definition from Santillo and Abran

[79] were used.

4.3.1.9.2. Application of Generic and Specific Models of Effort Estimation

4.3.1.9.3. Size and effort relationship

The first investigation for the relationship between total functional size and effort is given in

Figure 26 . One outlier was found out of the confidence interval. After analysis it was discovered that

this was the first sub-project that had been developed using the safety critical approach. Therefore, the

simulation, verification and test effort were compared very high to the other projects under the „Real-

time Embedded System Application Software‟ classification. Furthermore, it was found that extra

tailoring procedures had been prepared for this type of application. As a result, we excluded this data

from the data set on the basis that safety critical applications should be grouped under another

classification, even if they were developed by the same team using the same tools.

 113

4.3.1.9.4. Utilization of generic models

The original generic effort models utilized the IFPUG/FPA methods as shown in Table 23. However,

in this current research it was planned to produce the effort models using the COSMIC measurement

method. Therefore, in order to create a good comparison base, the COSMIC Size was converted to

utilize size before applying the estimation model using the models of Fetcke [22], and Vogezelang

[23].

 Figure 26 Size and Effort Relationship for the Dataset

In this study, all the generic models have fixed multipliers except the Cobb-Douglass model [67]

which allows the calculation of each parameter in the model according to the dataset and measurement

method. From this point of view, it can also be assumed to be a specific model. In our research, the FS

concept was not applicable to generic models since the functional processes of the projects were not

provided for analysis in the previous studies.

4.3.1.9.5. Building specific regression models

For the construction of regression models, Ordinary Least Squares Regression (OLS) analysis was

selected. This is the most commonly used method for developing software estimation models

[24][25][26] since it is simple and available in most statistical software packages. This analysis allows

 114

data to be fitted into a pre-specified model. In order to provide the best fitting equation the overall

sum of squared estimation errors is minimized using the least square regression equation (LSR).

Table 23 Selected generic effort models

Model Explanation Reason for

Selection

Definition # of

Smp.

FP

Method

Albrecht-

Gaffney [3]

Suggested by the

founders of FP

method.

Accepted as first

model based on

software

functionality

E(man-mnt)

=0.0545*FP–13.39

24 FPA

Kemerer

[65]

Argued that Albrecht

model is not

appropriate.

Compares their

results with

Albrecht -Gaffney

Model, suggested a

curved one.

E(man-months)

=60.62*7.728*10-

8*FPA3

15 FPA

Matson [66] Argued that the two

models above have

limitations.

Follow up study,

compares two

models above, and

his new model

E(work-hours)

=585.7+15.12*FPA

104 FPA

Cobb-

Douglass

[67]

A production

function that takes

into account Team

Size, suggested by

Pendharkar et al.

Ability to explore an

effort effecting

parameters other

than Total Size.

Note: Previous

studies show that a

scale of economies

exists between team

size and software

effort []

E(work-hours)

=AxbZc

over

500

No Info

MendesLoka

n–

SingleComp

any [68]

A regression model

of a single

company based on

large dataset.

Projects in this large

dataset use standard

procedures of the

same -single-

company

E(work-hours)

= 64.2 x ufp 0.635

184 IFPUG

MendesLoka

n–

CrossCompa

ny[68]

A regression model

based on Large

ISBSG data set.

To evaluate whether

a cross-company

model could be

feasibly

implemented

E(work-hours)

= 17.27 x ufp 0.897

672 IFPUG

Tronto-

Silva-Anna

ANN [49]

A formulated neural

network model

An ANN based

model, built using

large Cocomo

dataset.

E(work-hours)

=-1,68+1,676*x
63 FPA

 115

One of the drawbacks of LSR is that the fitting function is directly affected by outliers. Since we

eliminated our single outlier, it was possible to use this method for both the single input and

multivariate regression analysis. With the aid of a regression analysis tool the regression models were

formed. For multivariate models, the effect of each BFC was included with different multipliers.

Table 24 Specific Regression models constructed on the basis of the company dataset

 Model Name Standard COSMIC FP FS Reflected

1 Linear 190,8+1,018FP 82,1+1,98FP

2 Power 4,12FP 0,82 4,12FP 0,82

3 Exponential 343,97exp 1,037FP 466,18exp 1,2FP

4 Logarithmic -2700,4 +587,34 lnFP -2679,54 +654,7 lnFP

6 Multi-variate Linear 2,35E-0,7X+5,88R-5,58W+842,3 64,7+3,16E+3,44X-0,91R+3,3W

7
Multi-variate Exp.

EXP(-0,005E+0,002X+0,003R-

0,005W +6,74)

EXP(0,005X-

0,005R+0,003W+6,195)

To perform an OLS analysis, a confidence interval should be set. The majority of earlier studies in this

domain selected this value as 95% [24][25][27][28]. By using this value, a balance between the

complexity of model and prediction performances is created.

The results of the specific regression models formed by the datasets in the current study are shown in

Table 24 with two different representations for each type of model. These were the standard

calculation of the COSMIC and the calculation when the FS list was applied. The quality of these

specific models in terms of commonly used comparison parameters is given in Table 25 in the rows

indicated as „specific‟.

For the generation of all models, all projects from 3 different application domains are used. For

specific evaluation of different application domains a larger dataset is needed.

 116

4.3.1.9.6. Building specific ANN Models

In literature, the technique used in a neural network for predicting software estimations is a

combination of two ANN architectures: „back propagation‟ trained „multilayered feed forward‟

networks. As an activation function the „Gaussian activation function‟ is generally used. We also

selected the same structure of network since it is the simplest and comprehensive neural model. These

types of ANNs have two different phases, namely, training and execution. In the training phase the

ANN is trained to return a specific output when given a specific input, this is carried out by the back-

propagation algorithm. In the execution phase ANN returns outputs on the basis of inputs. Our input

numbers for this network were four, the number of BFC types in the COSMIC method, and the output

was one for the effort.

The performance of an ANN depends on its architecture and certain parameters such as the number of

layers, the number of nodes in each layer, the transfer function in each node, learning algorithm

parameters and the weights which settle the connectivity between neurons. Thus, inappropriate

selection of these parameters may result in serious difficulties in network performance and training.

To decide on the most appropriate ANN model, two approaches can be applied: one is the trial/error

approach and the other is the application of the Genetic Algorithm. The second approach is feasible to

be used in larger data sets.

In our research the steps in the trial/error approach were as follows: Divide the network randomly into

two, for example; 75% for training set and 25% for validation. Select an optimal network model, and

then train it using the training set. Check its validation using a validation set and calculate the

prediction errors. Apply the same process to the other networks then chose the networks which have a

lower prediction error for the validation set compared to other networks. Optimal network selection

depends on the number of neurons, levels and datasets. A major limitation in the use of a neural

network as an analysis tool is that it requires a large dataset for training. For small data sets, it is

necessary to make the training more efficient. One way of doing this is to repeat the training process

several times with a randomly selected training set, and then the model is tested with the validation

data. For the selection of the number of levels, the size of the dataset will give a clue and since our

data set was not very large, one hidden layer was enough to build an ANN model. However, to

observe the differences, we also created a two level network. For the decision concerning the number

of neurons a rule of thumb was applied. According to Heaton the „The number of hidden neurons

should be less than twice the size of the input layer‟ [147]. Training was implemented for the one and

 117

two hidden level networks where the hidden neurons were less than eight. To build an optimal neural

network, several training parameters must be arranged. Training was performed by a back propagation

algorithm that passes errors back through the network to update the weights at the neurons. There is a

need to set some parameters for this algorithm such as learning rate and momentum. These selections

either improve the speed at which the network reaches the minimum error or causes the network to

diverge completely. Therefore, for inexperienced users the selections should be the defaults of the

analyzing tool. In the current research the default value for learning rate is applied as 0,5.

Similar to the OLS regression analysis, to complete the training a stopping criterion exists for ANN

models; in the current study we selected this as the Mean Square Error (MSE). After the application of

the trial and error approach we decided to use two network topologies: „4:5:1‟ and „4:3:4:1‟ since they

produced the minimum prediction error. Then these networks were created and applied to our data set

for the execution of a number of iterations and calculated the network predictions. It was found that

after a number of iterations the network converges to a model that represents dataset well. So the

network evaluation can be stopped at around 500 iterations. At this point the final weights at the

neurons can be used to formulate the ANN effort model. To investigate the effect of functional

similarity the same process was applied to the FS reflected sizes.

4.3.1.10. Comparing the accuracy measures of the models

For the comparison of the goodness of fit of effort estimation models some parameters are utilized.

The Mean Magnitude Relative Error (MMRE) is an average error used to indicate the relative amount

by which the predictions over or underestimate the real value for the model. The coefficient of

multiple determinations, R
2
, on the other hand, gives the percentage of the variation that can be

explained by the independent parameters. If R
2
 approaches 1, it can be said that a strong relationship

exists between the independent and dependent variables. The prediction level parameter PRED (k)

represents the quality of the predictions. It defines the percentage of estimated values within k% of the

actual measured values. We calculated these values for each effort model. Table 25 gives the accuracy

measures of all the effort models. In order to compare the accuracy of the multi-variate regression and

ANN models, we used the same inputs as in the multi-variate regression models. We presented

accuracy results of all models in same table to decide several issues at the same time: usage of single

size-or BFC component, usage of generic or specific model for effort, and reflection of Functional

similarity in size measurement.

 118

Table 25 Comparison of effort models based on Total Functional Size (n=17)

Type Model Name No FS FS Reflected

 R2 PRED

(0.30)

MMRE R2 PRED

(0.30)

MMRE

Generic Albrecht-Gaffney 0.39 0.06 511 Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Generic Kemerer 0.46 0.00 73249

Generic Matson 0.39 0.00 1769

Generic Cobb-Douglass 0.41 0.30 83

Generic Mendes&Lokan Single Company 0.38 0.00 563

Generic Mendes Lokan Cross Company 0.39 0.00 819

Generic Tronto-Silva-Anna ANN Model 0.39 0.35 114

Specific Power 0.39 0.30 88 0.90 0.59 31

Specific Exponential 0.46 0.12 97 0.83 0.35 77

Specific Logarithmic 0.34 0.18 97 0.60 0.35 127

Specific Hyperbolic 0.21 0.18 123 0.12 0.24 145

Specific Linear 0.40 0.30 95 0.90 0.65 28

Specific Multi-variate Linear 0.85 0.41 61 0.91 0.59 30

Specific Multi-variate Exponential 0.82 0.41 97 0.86 0.35 76

Specific ANN Model (1 hidden layer 500 iteration) 0.98 0.76 33 0.97 0.64 32

Specific ANN Model (2 hidden layer 500 iteration) 0.97 0.64 38 0.94 0.76 33

Table 26 summarizes the results in terms of evaluation criteria for two ANN models. Two PRED

ranges are given in this table thus, the prediction quality and overall fit of our models was

investigated. Even convergence is satisfied at around 1000 iteration, we increased the number of

iterations to observe the changes in goodness of fit of all the models. Table provides results for a

number of iterations.

 119

4.3.1.11. Results and Conclusions Case-1-Part3

According to the results given in Table 25 for generic models where total functional size was used as

the only driving parameter, an accurate effort prediction model with an acceptable level of MMRE

and PRED values could not be created. Therefore, none of the generic models were suitable for our

data set. For the specific models that have single driving parameter, the situation was the same. As

shown in Table 25, even the Linear and Power models built by our dataset did not produce acceptable

results.

Utilizing the FS reflected size in single input regression models, the R
2
, PRED and MMRE values

were significantly improved, which means the FS improved reflected size increased the effort

estimation accuracy. However, the MMRE and PRED values were still outside the acceptable limits

for an accurate effort model. We concluded that building regression models utilizing total functional

size as a single input might result in inaccurate effort prediction.

The Multivariate Regression models gave a better accuracy compared to the single input models in

terms of all the evaluation criteria that were used. However, the PRED values indicated that they were

not sufficiently accurate. For the multiple regression models the FS provided better results in terms of

the R
2
 and MMRE values. According to the PRED values, there was no improvement in the quality of

the predictions.

When the results of the ANN and multi-variate regression models were compared, it was seen that the

ANN models even for a low number of iterations provided much better results. Even when both the

effort models used BFC components as inputs, the ANN approach led to a representation that

explained the complexity of the overall data set and provided a better relationship among the BFCs for

the overall data set.

Utilizing FS reflected size with the ANN models, caused the network to converge to a final effort

model with a lower number of iterations. For both of the ANN topologies, which had a different

number of layers, the maximum achievable PRED values were better if similarity was considered,

 120

thus demonstrating the importance of using FS concept when creating effort models. Whichever

model was used the similarity consideration should be directly added to the effort calculations.

Table 26 Accuracy measures of the ANN models

 No FS FS Reflected

ANN Model R2 MMRE PRED

(0.30)

PRED

 (0.20)

R2 MMRE PRED

(0.30)

PRED

(0.20)

One-Hidden (4:5:1)

- (100 iteration)N=17

-(5000 iteration)N=17

-(20000 iteration)N=17

0.90

64

0.47

0.41

0.94

37

0.53

0.41

0.99 17 0.70 0.64 0.98 15 0.82 0.70

0.98 8 0.88 0.88 0.99 10 0.94 0.94

Two-Hidden (4:3:4:1)

- (100 iteration)N=17

-(5000 iteration)N=17

-(20000 iteration)N=17

0.86

66

0.53

0.41

0.91

64

0.47

0.29

0.98 11 0.83 0.76 0.99 10 0.83 0.64

0.99 10 0.88 0.88 0.99 9 1 0.94

Generic models produce significantly poor estimates for individual companies. Since this is the case,

organizations should build their own prediction models that reflect the company‟s specific

characteristics. According to the results we have obtained, this is only possible when the BFCs are

treated separately in the models. However, the generation of specific multipliers for the effort

prediction model that could be applied to all the projects in the company mainly depended on a

reliable dataset. Therefore, to improve this process companies should work together with expert

measurers or incorporate them into their organization.

We concluded that ANN and FS reflected component sizes produce excellent effort estimation

models. Although we applied our empirical research to the COSMIC measurement method to discover

the best approximation to represent the data set, the method is suitable for other component based

 121

functional sizing methods. By using the ANN method, companies will not rely on the fixed multipliers

of the methods, they will be able to create specific multipliers that appropriately represent the

characteristics of their company.

4.3.2. Case Study-2

Aim: To investigate the validity of effort estimation methodology. For this purpose, two research

questions are inquired:

c. “Is methodology applicable?”

d. “Is it effective in building relation between size and effort?”

To evaluate the applicability of methodology, we assessed:

 Whether effort groupings are suitable for the company.

 Whether it is appropriate for different application types of the company.

To evaluate the effectiveness of this methodology on size and effort relationship, we performed

analysis to see how the estimated effort compares with the actual effort if this methodology is used.

For this reason, accuracy comparison parameters were used: MMRE, PRED and R
2
 and following

issues were investigated.

 Whether it provides more control over execution of projects by providing feedbacks and

project elimination to produce better estimations.

 Using Development Effort instead of Total effort in building relationship.

 Deriving a new relationship equation for each application type.

4.3.2.1. Prepare and Collection of Data

We assessed the EFES methodology by using the projects of the same company that we conducted our

previous cases.

The methodology we proposed requires all processes, templates antecedently established. Then

applying it precisely and deriving benefit takes at least one or two years depending on the company.

 122

Therefore instead of building that database from the scratch, we took the way of using existing data in

company. So it is a retrospective study. SCIs for this case study was selected from projects whose

project team collected their effort at least for 2 years and SCIs are officially released. We removed the

following SCIs from our analysis.

- If detailed phase activities are not recorded,

- If SRS document does not exist or is not updated,

- If time spent in other works is not recorded,

- If requirement change decision is done by the company during the implementation to build

another infrastructure or to create a new environment,

- If extra integration of SCI module is done for R&D or maintenance purposes.

We expanded our database in Case-Study1 by including results of finished projects in the last two

years. After the elimination phase as given in 4.2.3.1, selected projects are as follows: we have 12

GUI, 5 BSP and 9 ES project SCIs. So, the total number of projects under analysis became 26.

SCIs are belong to 3 application domains as given in Figure 24. We ignored the Algorithm

Development part in that figure for this assessment because very low number of projects collected

algorithm development effort in detail.

4.3.2.2. Case Study-2: Conduction

This case study has been performed by applying the five processes of methodology. Effort collection,

Size Measurement and Data Analysis processes are applied fully. Effort Estimation Process aimed for

the estimation of a new project requires a drift in time. We applied this process for one of the GUI

projects since we had no previous effort model of other type of applications. Similarly for calibration

process: we developed a new effort model for GUI projects. Details of the findings for the company

are as follows:

 123

4.3.2.2.1. Effort Collection Process

For the application of this process we evaluated the Effort Collection Records. We selected this

approach, because applying the newly defined item list for projects and collecting new effort data will

take two-three years. Therefore, instead of directly applying the process with the new Pre-Defined

Development Effort items and Supporting and Extra effort item lists, we used them as guidelines to

review, and evaluated the project records of finished projects. The steps were as follows:

[1] Standardization of Records: We looked for which effort items in Table 31 and Table 35 exist in

effort records in common.

 It was found that even all items exist in records, only a part of these list included nearly

all projects that are as follows:

For Table 31: “Software Requirements, Design, Coding, Code Test, Integration and

Qualification”

For Table 35: “Documentation, Requirement Changes, HW Problems”

[2] Elimination of effort records: Even System requirements and System Architectural part were

performed for all the projects, only a few projects recorded these items separately. We learned

that most of the team leaders only recorded software related development. So, even their project

team spent effort for this part, they ignored effort recordings on these items. So, we removed

system related effort recordings from effort datasheets to satisfy commonality.

[3] Groupings of effort items for specific domain: If an item is only applicable for specific

application types, then we included them in Effort calculations.

 For example: A standard procedure application for safety requirements is included for

most of the ES projects.

Table 27 Effort Distribution in Phases

Project Req. Des. Code

& Test

Test

(Integ.&Q

ual)

Doc Req

Chg.

HW

Prob.

SafetyT

est

Project1-

GUI_Keyb
13,5 10 30 15 18 9 32 0

Project1-

ES_Target
5 3 17 41 16 10 6 4

As we mentioned in part 4.2.3.1 Case Selection part, for this case study we had newly finished

projects for each application domain: 3 new GUI, 8 new ES and 2 new BSP project.

 124

A Part of Table data showing the effort distribution of a project is given in Table 27.

4.3.2.2.2. Size Measurement Process:

This process was applied for 6 large size projects that totally consist of 26 SCIs. Measurements and

BFC groupings were performed by using COSMIC method. During size measurement ofES, we

encountered that, measurement experts had different cerebrations on some specific situations and

discussions were needed to finalize measurement. We reviewed and updated first measurements

according to final decisions. The measurements were validated by expert and cosmic certified

measurers by sampling method. Part of size measurement results are given in TABLE 28. These

measurements were recorded in CUBIT database [180] and they were controlled by using the

inspection checklists.

Table 28 Size Measurement Results for a Specific Application Domain

GUI Projects # of Entry # of Exit #of Read #of Write Effort In

Hours

Project1-

GUI_Keyb
57 73 236 222 1020

Project2-

GUI_DLoad
226 745 174 247 396

Project6-

GUI_Screen
58 41 149 164 476

4.3.2.2.3. Data Analysis Process

Since data set was not large, and ANN and multivariate regression models produced approximate

results, we applied this process by using Multivariate Regression analysis method and investigated the

following cases on size and effort relationship. The results are provided for Case 2, Case 1 and all

projects (Case-1 + Case 2 Projects)

- Effect of Application Domain on relationship,

- Development Effort-Total Effort Difference on relationship,

- Supporting and Extra Effort percentage on total effort,

 125

Effect of Application Domain

To see whether effort models based on Application Domains improved estimation accuracy we

grouped the projects based on their application type and created effort models for each of them. We

also merged different Application Types and tried every combination of application types. Accuracy

results of these models are given in Table 29. In this table all combinations are shown. We found that

separation of application domains is necessary in effort estimation modeling. Merging of application

domains generally resulted inaccurate estimations in terms of accuracy parameters.

Development Effort &Total Effort:

In order to check whether using Development Effort instead of Total Effort improved effort estimation

accuracy, we created effort models for both of them, for each application type and groups of

application types. The results are given in Table 29. For development effort we included

“Requirements, Design, Code & Unit Test, Integration & Qualification” activities. For total effort

documentation task, supporting and extra effort values were included. Based on the accuracy results,

it is found that differentiation of variable types of effort is necessary. Size components, i.e Base

functional components have better relationship with the development effort compared to total effort.

Analysis of Supporting & Extra effort values:

To see the effect of “other effort” factors we calculated the percentages of spend time for those

activities in total effort spend. HW problems, requirements changes, documentation tasks and safety

tests are the ones that we found in common. Results of our analysis are given in Table 30. Based on

the findings, it can be said that %20 of effort is wasted for requirement changes in GUI projects. In

terms of documentation tasks, very large percentage of effort is expended for the documentation of

BSP projects. On the same table, for the first set of ES projects it seems that HW problems are not

encountered much. However for the second set of same application domains, around %11 percentage

of effort is wasted for such problems.

SCI Based Activity Analysis

Other than the aims of our study we investigated how effort distributions changed in years. According

to the completion time of 9 ES projects the changes in “percentage of activities in total effort” are

 126

given in Figure 27 . We used average percentages of projects. This figure gave a top view of the

efforts in terms of phases and tasks in company.

 Figure 27 Average percentages of work distribution in years (for ES)

Table 29 Accuracy Comparison of Models Development Effort & Total Effort

 Case 2 Case 1 Total Projects

Proj.(s

)

Dev.Effort Total Effort Dev.Effort Total Effort Dev. Effort Total Effort

 R2 PRED

(30)

R2 PRED

(30)

R2 PRED

(30)

R2 PRED

(30)

R2 PRED

(30)

R2 PRE

D

(30)

GUI 0,86 0,83 0,34 0,83 0,81 0,83 0,90 0,64 0,76 0,59 0,32 0,41

BSP 0,62 0,85 0,55 0,57 Only 4 projects –Not enough to

analyze

0,69 0,82 0,49 0,64

ES 0,71 0,91 0,60 0,73 Only 3 projects –Not enough to

analyze

0,62 0,57 0,24 0,36

GUI,

BSP

0,29 0,69 0,44 0,77 0,93 0,62 0,94 0,62 0,44 0,36 0,34 0,39

GUI,

ES

0,65 0,71 0,57 0,65 0,56 0,21 0,17 0,36 0,27 0,35 0,08 0,35

ES,

BSP

0,27 0,61 0,51 0,61 0,54 0,43 0,14 0,43 0,23 0,50 0,19 0,50

GUI,B

SP,ES

0,24 0,63 0,41 0,48 0,60 0,39 0,32 0,33 0,15 0,27 0,19 0,35

0
5

10
15
20
25
30

2008

2009

2010

 127

Table 30 Percentages of Supporting & Extra effort Values

 Dataset version 1 Dataset version 2

 Doc. %Req.

chg

%HW

Problem

%Safety Doc. %Req.

Chg

%HW

Problem

%Safety

GUI 20,75 19,6 1,2 0 20,34 18,92 2,81 0

BSP 28,12 0,7 16,07 21 24,98 1,39 13,6 14,87

ES 11,17 0,35 1,4 19,1 10,63 3,16 10,81 15,43

.

4.3.2.2.4. Effort Estimation Process

To apply this process we needed historical data to be analyzed and an effort estimation model for

specific SCI is formed previously. The only SCI type applicable for this process is GUI projects since

in case study 2 we had 11 GUI projects completed two years ago. Other type of application domains

did not have enough data to form a specific effort model. If we directly use total effort values of

finished GUI projects for creation of the model:

Total Effort Equation (GUI) (man-hour) =6,67E -0,31 X+5R-1.85W +171,1

By applying this total effort equation for a new project whose values are E=23, X=22, R= 300, W= 14

we calculate total effort as: “ 1639”.

In our methodology our recommendation is to use development efforts for modeling. The effort model

is:

Development Effort(GUI) (man-hour) = 0,76E -0,5X +2,11R – 0,46W +69,85

By using this model development effort is found as “703”. At this point, we add “Supporting & Extra

effort values for GUI projects: Based on available data of 11 GUI projects, this value was %20,75

extra effort for documentation, % 1,2 extra effort for HW problems and 19,6 for requirement changes.

Totally %41,55 of total effort is expended for activities other than development. Therefore the

development effort “703 man-hour” is %58,45 of the total effort.

 128

So according to our methodology the total effort we need is:

703/58,45*100= 1202 man-hour.i.e 150 day

 Actually expended effort for this project is “904”. i.e 113 day.

4.3.2.2.5. Calibration Process:

With the addition of new projects, GUI projects have a new model:

Development Effort (GUI)(man-hour)=138,5+0,16E- 0,46X+1,56R+ 0,1W

4.3.2.3. Results and Conclusions of Case Study-2:

In this case study- 2 , we investigated the validation of effort estimation methodology empirically.

Table 29 gives accuracy results of produced effort models in several situations. In case study-1, since

the number of ES and BSP projects are low, producible effort models were either pure GUI

applications or a combination of application domains.

As seen in TABLE 29, producing effort models for only one application type gives better results. Models

for each type of application model produced higher values for both PRED(30) and R
2
 compared to

other groupings. Especially PRED values that represent estimation quality is found very high.

Results of (GUI-BSP) and (GUI-ES) groupings show that if we had cluttered the projects on a 5

dimensional environment (i.e. Entry, Exit, Read, Write, Effort) GUI and ES projects may be placed

close to each other, while BSP projects will be located on a completely different area. For GUI-ES

grouping in case study-2 both R
2
 and, PRED (30) value is high for development effort compared to

other grouped projects. However when all projects in these domains considered accuracy parameters

drop directly. So, even they are found close to each other in methodology evaluation, the overall

model produced for these two domains are not very representative. According to the obtained results,

 129

when different types of applications are grouped, any of the effort models will produce a good

representation.

When we compared the Development Effort and Total Effort results, in general, Development Effort

models produces better estimations. In other words the relationship between the development effort

and BFC components of size is better than the total effort. Observations show that application type

differentiation increases the accuracy in development effort models.

We performed a Data Analysis on ES projects to investigate how effort distribution has changed in

three years time. It seems that requirement phase effort is decreasing while design effort is increasing.

Even number of projects is not much, some impulsive cases are seen apparently. For example HW

related issues had a peak in 2009. We enquired the reason for this. We learned that instead of using

COTS products that has been tested before development, company had started to use their proprietary

boards. Following such trends on activities obtained by using the methodology enable company to

improve the quality of development and also estimations. There may be a relation between hardware

correction activities mentioned above and requirement changes for ES systems.

The analysis results on “Supporting & Extra efforts” show that for some type of projects, when effort

is estimated we certainly need to add extra effort values for specific activities or unexpected

situations. Even the average has dropped in second analysis; safety related activities require %15 of

total effort for ES and BSP type applications.

Effort estimation process was only applied for informative purposes in this case study. We estimated

only one GUI project. Estimating development effort and adding up other types of efforts produced

better results than estimating total effort.

One of our research questions was whether the methodology was applicable or not: We found this

methodology applicable. According the results we obtained, the utilized lists of effort in our

methodology seems suitable for the company. It resulted better analysis of projects and accurate

 130

estimations. In our case study we had the possibility of applying a part of these effort lists. This part is

nearly 80-90% of whole list. Application of full list will provide more valuable results.

Since all three application types gave encouraging results in terms of accuracy of effort estimations,

methodology is applicable to any type of applications. Actually using the methodology separately for

each application domain is more appropriate to reach reliable results. To do this as methodology

suggested concerning deviances in size measurement and analyzing other type of efforts are

necessary.

In terms of efficiency, one of our questions was related to whether methodology provides control over

execution of projects. During the effort collection and size measurement process, it provided feedback

to the developers by evaluating the SRS documents. It was also used for the elimination of the

projects to produce better results. In execution of the methodology, the problems found in eliminated

projects are fixed by developers, and then these projects will be used as input to methodology again to

reach more accurate effort models for the company. Methodology is also effective in analyzing the

company situation by using data analysis process. These results also control some other processes in

company. For example at least 10% of effort is wasted for HW problems which mean either HW

development or COTS selection process has some problems.

In terms of efficiency, the accuracy improvement provided by methodology is another question. Based

on our findings we can say that application domain type affects many activities and related efforts. It

allows us to create a better relationship between size and development effort. The methodology is

effective in obtaining real development effort that has better relationship compared to the total effort.

The quantitative findings in our study validate the application of our methodology. We aimed this

methodology to be used by middle or large sized companies. But a similar methodology can be

defined for information collection of cross-company datasets in future again by using the distribution

of activities based on the standard IEEE 12207 [155]. Even, there are some guides for data providers

of cross-company datasets, it seems that current guidance is not enough to normalize and match

available information of companies at final phase.

 131

4.4. Validity Threats

The main threat to validity of the study is that we performed this study in only one organization. In

order to minimize this threat and to generalize our results we utilized the same methodology cycle for

three different application domains.

The selection of subjects in our study was special. We chose the projects having necessary records

that mostly match our proposed lists since we didn‟t have time to collect data using our methodology.

To improve trustworthiness of data quality, we went through strict data cleaning and exclusion of

projects based on the discussions with developers of the project. We had a number of projects to make

this elimination for the evaluation of the data collection process of methodology. We performed a

retrospective study.

In another company there will not be so many projects for such elimination to be applied. Therefore

the required and proposed way is of course to use data collection process as defined in this study and

utilizing pre-defined given lists.

We selected projects having team leaders who displayed willingness to participate. So, projects do not

reflect all the projects of the company. The projects that were controlled by other team leaders may

include important items that require larger effort to be expended and that effect the final estimations.

A kind of bias selection existed in this study: in case study 1, in order to see the FS effect, GUI

projects were selected that had apparent similar modules. In the same study projects from different

domains were also included in this data-set for comparison. But data-set was still small, that might

threaten internal validity. Besides, many data in our dataset belongs to lower functional size values.

Therefore, this study if carried out with a larger population from different application domains, with

larger functional sizes, might yield different results.

In this company application domain developers were teams having expertise on a specific subject. All

teams are using common procedures that were already settled previously. So, developers had been

using them for years. In another company that is not mature enough in software development

processes the results may be different.

 132

All projects in this study were developed in the same environment. In other words, projects from third

parties were not included in the case selection. In such a case, another categorization under specific

application domain type will be necessary.

The instruments used for the analysis of data and produced models and their parameters were verified

by using other commercially similar tools, like “SPSS Statistics Tool” [182], DataFit [181]

To prevent subjectivity of size measurements and to prevent errors on this issue, the measurements

were reviewed by other certified experts and periodic discussions were performed.

 133

CHAPTER 5

5. . 5. CONCLUSIONS

Majority of the effort estimation studies focus on one part of the estimation process. Many researchers

have been addressing the new size estimation techniques that result in better effort correlations.

Similarly, several ways of data analysis like ANN, Fuzzy, Bayesian networks are evaluated and

compared to find best handling method [7][41][9][10] [11]. Results of these studies are valuable and

have considerably positive effect on effort estimation process. However, each recommended solution

is constructed by the assumption that, the historical data is very reliable. But without a reliable data

set, these solutions are neither repeatable, nor usable even for different teams of the same company.

Unfortunately, obtaining reliable data is very difficult due to some other effects in the environment.

These effects mainly the conflicting information in repository stems from the differences in processes,

definitions or grasp of practices by people.

The term „Reliable data‟ is used to represent a number of issues: First, it means that collected effort

data is accurate, consistent, and informative for analysis purposes. Secondly, size measurements are

valid and repeatable. All the information should be homogenously created and developed across the

organization, in terms of personnel, projects and processes. In a reliable dataset, analyzed data is

extracted from a controlled repository, which has been established using the results of projects that are

constructed and managed via homogeneous processes and tools. Besides no conflicting or missing

information exists. Using single company data will minimize some differences in processes and tools.

However, if companies don‟t have well-established standardized processes, and common

interpretation is not constituted among software teams the same problems in cross-company cases will

be observed.

In the last years, one of the research questions was whether different components of functional size

measurements be included in effort models or not. Some measurement methods assign some values

 134

for these components during size measurement period that represent their respective contribution to

total effort like IFPUG and MKII. However, the multipliers of these methods are fixed. The better

estimation accuracy will be achieved by considering the environment, conditions of the project on the

effect of these multipliers.

In building the specific effort models one of the improvement opportunities in measuring functional

size was Functional Similarity. This is related to the fact that the structural aspect of the software and

its influence on the development effort has not been well reflected in existing estimation models. The

re-utilization of existent data structures and functionalities to build new structures directly affect the

required development effort. Most of the time the development and test effort will be lower than that

required to create a new functionality.

Therefore, we developed a methodology that includes core processes of effort estimation approach,

that can be modifiable based on new improvements and that can be automated in the future.

Even previous studies analyze the reasons for estimation errors, the ways of improving accuracy in

estimations, and the dataset-related problems, there is no defined estimation methodology that guides

the companies in their estimation journey by combining all these findings.

Many standards related to software development as if CMMI recommends doing effort estimation.

But up to now, a fully defined methodology that defines “how to do this” still does not exist.

Software companies need a guide that promotes consistency among their development phases,

terminology, collected information etc.

For this reason we developed a methodical way that would guide the organizations. Our extensive

survey in the literature revealed the requirements for the processes. In parallel, we investigated the

reasons for effort estimation errors. By performing two case studies, we focused on following issues:

In case study-1 we assessed the existence of some concepts in our methodology by using three steps.

In the first step the basic concept of Functional Similarity was investigated, in the second step the

same concept and its effect on project phases were investigated. Besides the percentages of some tasks

 135

for specific application types were evaluated. In the third step, application of different data analysis

methods” and “Effects of BFC components on building effort models”, were examined. Besides the

applicability of EFES methodology were applied by analyzing “Application type importance in effort

estimation accuracy” and “Work effort distribution on effort estimation models”. We also searched for

how unexpected or unplanned efforts affect estimation accuracy.

Then we integrated the results of these findings with the real-time operations of the company we

selected and formed generic process models.

In our methodology by using the ANN method and Multivariate regression method, effort estimation

models were created using the four components of COSMIC method and for which specific

multipliers were generated that were calibrated according to the parameters from the company.

Although, previously, neural network approaches were suggested as a way of creating effort

estimation models, our methodology is the first one that uses the components of functional sizing

methods as inputs to the ANN models.

In our methodology we also included the FS concept in creation of effort models and validated its

usage in effort estimation quality.

This thesis has addressed a range of issues arising from the relationship problem between size and

effort. This chapter examines the contributions in more detail, summarizes the benefits and suggests

future research directions based on the findings discovered during the thesis study.

5.1. Contributions

In case study 1; our motivation is to observe how functional similarity has an impact on different

application domains and phases of project. Regardless of the aimed logical functionality, if functional

processes of modules are similar to any other process, effort needed to develop new ones will

decrease, and total effort will not be proportional to the functional size. Few studies examined

distinguishing similarities and quantified reuse potential of projects. However validation of these

results for different application domains and how to reflect these results into effort models has not

 136

been studied. We found that especially for specific phases and tasks similarity has a considerable

effect.

In case study-1 we also compared several functional size based effort models in terms of accuracy

using a reliable company dataset. These models comprised not only the generic models proposed in

the literature or currently in use, but also specific models that we generated using our dataset with a

single and multivariate regression analysis and the ANN method. The important element in this

research was the comparison of several functional size based effort models using a reliable dataset. In

general, data collection methods are not uniform across different companies. Differences in processes

and practices are not reflected well in the cross-company datasets. By using a single company data we

minimized these differences. Furthermore, to ensure the reliability of the effort data an organization

was selected where well-defined requirements specification documents exist and effort data is

gathered on a daily basis with the aid of standardized time-sheets. Since the data creation and

collection is performed in a controlled manner, by qualified staff, there were no missing values in the

set. Besides, in our research to ensure the reliability of the size data, all project measurements were

performed by expert measurers and a software design leader in the company who had also been

trained in size measurement and the results were verified by a further two different expert

measurers.(Measurement group) One contribution of our study is that it is the first time that the

COSMIC has been used for ANN models. Companies may use either multivariate regression models

or ANN for component based model creation. Even though we applied COSMIC method for our data

set, other methods, which have different functional size components, may apply these methods in their

effort model creation. For ANN structure creation we applied trial and error methods by using the

recommendations of the studies [147] [154]. Optimal ANN structure must also be investigated.

The main contribution of this thesis is that, it is the first time that an effort estimation methodology is

defined with processes, their artifacts, assets, templates. It is valuable because it embraces the

literature results on effort estimation, the best efforts suggested and applies the method practically.

Even some studies mentioned or suggested some ways to collect data, to investigate effort trends but

we didn‟t encounter any quantitative validation for the overall estimation processes. Our study is an

empirical validation of the related processes on a reliable dataset. Contributions are also made by

developing the procedures in detail, and set of flow diagrams.

 137

The results discovered in case studies and investigations during the research study revealed that the

proposed method can be successfully utilized for effort estimation. The EFES methodology enables

companies to reach meaningful and reliable information for effort estimation while removing

inconsistencies and problems in related processes. Moreover, the artifacts of this methodology are

aimed to be used for project and company monitoring.

With the aid of data collection process, team members can take the responsibility on their work, make

plans on their individual assignments. Team leaders and project managers can observe quantitatively

the development state of the product and can create plans evolving from a latent state. They can also

identify problematic areas. From the company‟s point of view several data analysis can be done. With

the data obtained from processes it is possible to supervise the status of company on some subjects, to

observe improvement opportunities or problematic areas.

In other areas of software development, processes are nearly standardized by using international

standards and assessed by specific experts (ex: CMMI). Processes became mature by measuring

parameters and controlling them for years. Similarly in effort estimation processes we need to control

the work by using well defined processes. It can be assumed as a sub-discipline of project

management. In this thesis work effort distribution is established by matching the processes of IEEE

12207 and activities of the projects. So, if other companies use the same structure in collecting their

effort data, this predefined WBS structure may provide useful results for cross-company data sets.

5.2. Limitations

The case studies showed that the expected benefits from the methodology are not fully realized if the

defined effort estimation processes and SW development processes are not performed or not

effectively established in the organization. Especially, for the effort data collection process, all teams

must follow the predefined WBS structure. Otherwise, the aim disappears, and for analysis

sufficient amount of data may not be available again. Besides, inconsistencies and

incompleteness in data sets may occur. A common understanding is necessary to be formed.

The Measurement and Analysis group (M&A Group) and Software Manager is responsible for this

issue, they should give necessary training for the execution of process.

 138

Another limitation is related with the analysis tools used. If an analysis method is chosen, not only the

usage of that tool but the algorithm behind it should be known by the responsible M&A personnel.

Besides some tools, like ANN, requires larger data set to build a reliable model.

We have created our effort models from a limited number of projects that has started from scratch and

released. Besides, process implementations and development processes are very well known by teams.

Therefore the generality of the conclusions will benefit if this study to be performed on other

companies with varying number of projects. Even the methodology is applied in a mature

organization, that has knowledge about processes & procedures, small companies can also use it. We

found company mature enough in terms of process definitions, documentation and execution.

However the applicability based on process maturity of company must also be investigated.

We have currently no data for larger or smaller organizations. Similarly we have no implementation

for the maintenance projects.

The methodology we proposed does not consider the life-cycle models. However all the projects in

our dataset had been developed using Waterfall Life-cycle model. If project is generated using several

builds as in agile development and iterative life-cycles, the estimation will be calculated by

considering specified tasks for each successive build. In this case evaluation of SRS is performed for

only the items that had finalized for that specific build.

5.3. Future Research

 In future, we will expand our data set by including the new projects not only from this company, but

also from other ones. Such study will provide new kinds of problems and related efforts to be included

for specific application domains. As a result of this a new list will be formed for common use of

companies. As a next step by using a larger data set, we aimed to build a relationship between BFC

components and each task and phase of effort. Besides, since all the steps of processes are defined

with required templates and responsible people, an automated information system that can be

developed.

 139

REFERENCES

1. Farr, L., Nanus, B., (1964) “Factors that affect the cost of computer programming v.1.”

United states air force Electronic Systems Division., from http://www.dtic.mil/cgi-

bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0603707

2. Jørgensen, M., Shepperd, M., (2007) “A systematic review of software cost estimation

studies. IEEE Transactions on software engineering

3. Albrecht, A.J., Gaffney, J.E, (1983) “Software function, source lines of codes and

development effort prediction”: A software science validation. IEEE Trans. Software Eng.,

SE-9: 639-648

4. Nelson, E. A. (1966) “Management Handbook for the Estimation of Computer Programming

Costs”. AD-A648750, Systems Development Corp.

5. Helmer, O., (1966) “Social Technology”, Basic Books.

6. Morgenshtern, O.,, Raz T., Dvir, D., (2007) “Factors Affecting Duration and Effort

Estimation Errors in Software Development Projects”. Information & Software Technology

7. Boehm, B.,(1981) “Software Engineering Economics”. Prentice Hall,

8. Mendes, E., Kitchenham, B.A., (2004) “Further Comparison of Cross-Company and Within

Company Effort Estimation Models for Web Applications. Proceedings Metrics”, IEEE

Computer Society, pp 348-357 .

9. Déry, D., Abran, A.,(2005) “Investigation of the Effort Data Consistency in the ISBSG

Repository”, in 15th International Workshop on Software Measurement -IWSM'2005,

Montreal, Canada,

10. Jeffery, R., Ruhe M., Wieczorek, I., .(2001) “Using public domain metrics to estimate

software development effort. Proceedings Metrics‟01, pp 16-27.

11. Jeffery, R., . Ruhe M., Wieczorek, I., (2000) “A Comparative Study of Two Software

Development Cost Modeling Techniques using Multi-organizational and Company specific

Data. Information and Software Technology”, pp 1009-1016.

12. Wieczorek, I., Ruhe M.,. (2002) “How valuable is company specific data compared to multi-

company data for software cost estimation?” Proceedings Metrics‟02, ,pp 237-246.

 140

13. Deng, K., (2008) “The value and validity of software effort estimation models built from a

multiple organization data set”, Master Thesis, Auckland University of Technology,

14. Finnie G.R., Wittig G.E., Desharnais J.M., (1997) “A Comparison of Software Effort

Estimation Techniques: Using Function Points with Neural Networks, Case-Based Reasoning

and Regression Models”. Journal of Systems and Software, vol. 39, no. 3, pp 281-289,

15. European Space Agency, “SME training on Configuration Management”, Retrieved May

2011from http://esamultimedia.esa.int/docs/industry/SME/Configuration/Section_4-CM.pdf

16. Dolado, J., Fernandez, L., (1998) “Genetic Programming, Neural Networks and Linear

Regression in Software Project Estimation. Proc. the INSPIRE III, Process Improvement

Through Training and Education

17. Kumar, S., Krishna B.A,Satsangi P.S., (1994) Fuzzy systems and neural networks in software

engineering project management, Journal of Applied Intelligence 4, 31-52, 1994

18. Chulani, S., Boehm, B., Steece B.,(1999) “Bayesian analysis of empirical software

engineering cost models”. IEEE Transaction on Software Engineerining, vol. 25

19. Genuchten, .V, (1991) “Why is software late? An empirical study of reasons for delay in

software development”. IEEE Transactions on Software Engineering

20. Lederer, A.L, Prasad J.,, (1995) “Causes of inaccurate software development cost estimates”.

Journal of Systems and Software.

21. Subramanian, G.H., Breslawski S.,(1995) “An empirical analysis of software effort estimate

alterations”. Journal of Systems and Software

22. Gray, A., MacDonnell S.,, Shepperd M.,. (1999) “Factors systematically associated with

errors in subjective estimates of software development effort: the stability of expert

judgment”. in Sixth International Software Metrics Symposium. IEEE Comput. Soc.

23. Jørgensen M., K. Moløkken,Ø.,, (2004) “Understanding Reasons for Errors in Software

Effort Estimates”, IEEE Transactions on Software Engineering, vol. 30, no 12

24. Jorgensen M.,Gruschke T., (2009) “The impact of lessons-learned sessions on effort

estimation and uncertainty assessments”. IEEE Trans. Softw. Eng., 35(3):pp 368–383,

25. Cocomo II Model Definition Manual (2000), “Univ. of Southern California Center for

Software Eng”.;retrieved May 2011 from

sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf

26. McConnell, S.,(2006) “Software Estimation – Demystifying the Black Art”; Microsoft Press,

RWa; ISBN 10: 0-7356-0535-1.

27. Stern, S.,(2009)“Practical experimentations with the COSMIC method in Automotive

embedded software field", IWSM‟09,

 141

28. Stern, S., Guetta, O., (2010) “Manage the automotive embedded software development cost

by using a Functional Size Measurement Method (COSMIC)”, European Congress of ERTS

(EMBEDDED REAL TIME SOFTWARE)

29. Khelifi, A.,, Abran, A.,, (2007) “Design Steps for developing Software Measurement

Standard Etalons for ISO 19761 (COSMIC-FFP”), WSEAS International Conference on

COMPUTERS

30. Mills, H. D.,(1983) “Software Productivity”, Little Brown and Co.

31. Tausworthe, R.C., (1980) “The Work Breakdown Structure in Software Project

Management”, Journal of Systems and Software 1, pp 181-186

32. Albrecht, A.J., (1979), Measuring Application Development Productivity, IBM Applications

Development Symposium,

33. Capers, J.,(2008) “A Short History of Lines of Code (LOC) metrics”, Capers Jones &

Associates LLC, , Retrieved May 2011 from

http://www.measuresw.com/library/Papers/Others/LinesofCode2008_CJ.pdf

34. ISO/IEC IS 20968: (2002), “Software Engineering -- MK II Function Point Analysis -

Counting Practices Manual”, International Organization for Standardization

35. ISO/IEC IS 20926: (2003), “Software Engineering-IFPUG 4.1 Unadjusted Functional Size

Measurement Method-Counting Practices Manual, International Organization for

Standardization”,ISO

36. ISO/IEC19761 (2003), “Software Engineering – COSMIC-FFP – A Functional Size

Measurement Method”, ISO,.

37. Kim, S., Lively, W., Simmons, D., (2006) “An Effort Estimation by UML points in the early

stage of software development”, proceedings of the international conference on software

engineering research & practice, p 415-421,

38. Symons, C. (1988). “Function Point analysis: Difficulties and improvements”. IEEE Trans.

Softw. Eng. 14, 1, pp. 2–11.

39. Suryaningsih,(2000) “The applicability of function points to the domain of embedded

telephone switching systems, CAESAR”, Thesis from University of New South Wales,

Retrieved April 2011 from http://www.caesar.unsw.edu.au/publications/pdf/Tech00-10.pdf

40. Jones C., (1986) „The SPR Feature Point Method”, Software Productivity Research Inc.,

1986

http://www.itmpi.org/assets/base/images/itmpi/privaterooms/capersjones/LinesofCode2008.pdf
http://www.measuresw.com/library/Papers/Others/LinesofCode2008_CJ.pdf
http://citeseerx.ist.psu.edu/showciting;jsessionid=3AC428406DA8C7C0A9221E96A72C1D70?cid=8856362
http://citeseerx.ist.psu.edu/showciting;jsessionid=3AC428406DA8C7C0A9221E96A72C1D70?cid=8856362
http://www.caesar.unsw.edu.au/publications/pdf/Tech00-10.pdf

 142

41. Symons, C., (2001) “Come Back Function Point Analysis. (Modernized) – All is Forgiven!”,

4th European Conf. on. Software Measurement and ICT Control, FESMA, DASMA,

42. Banker, K., Kauffman, R., Wright C.,, Zweig D. De, (1994) ., , “Automating Output Size and

Reuse Metrics in a Repository–Based Computer–Aided Software Engineering (CASE)

Environment,” IEEE Trans. Software Engineering, Vol. 20 pp. 169–184,

43. Issa, A., Odeh, M., and Coward, D., (2007) “Can Function Points Be Mapped To Object

Points?” International Arab Journal of Information Technology, 4 (1), p. 1,

44. Kim S., Lively W., Simmons D., (2006) “An Effort Estimation by UML points in the early

stage of software development”, proceedings of the 2006 international conference on

software engineering research & practice, p 415-421,

45. Kusumoto S., Matukawa F., Inoue K., Hanabusa S., and Maegawa Y., (2004) “Estimating

Effort by Use Case Points: Method, Tool and Case Study,” Proceedings of the

10.International Symposium on Software Metrics METRICS04,

46. S. Berlin, S., Raz, T., Glezer, C., Zviran, M., (2009) “Comparison of estimation methods of

cost and duration in IT projects”. Information and software technology. Vol. 51, Issue 4,

pp.738-748

47. Stensrud, E., Myrtveit I., (1998)“Human Performance Estimation with Analogy and

Regression Models”. Proc. the 5th METRICS 98 Symposium, pp205-213

48. Briand, L. C., El Emam, K., Surmann, D., Wieczorek, I., Maxwell, K. D., (1999) "An

assessment and comparison of common software cost estimation modeling techniques,"

presented at The 21st international Conference on Software Engineering,

49. Tronto, I.F. D.B.,. Silva, J.D.S, Sant‟Anna, N., (2007) “Comparison of artificial neural

network and regression models in software effort estimation”, in:Proceedings of International

Joint Conference on Neural Networks,.

50. Gray, A.R., MacDonell, S.G., (1997) A comparison of model building techniques to develop

predictive equations for software metrics, Information and Software Technology,

51. Marza, V., Teshnehlab, M., (2009) “Estimating Development Time and Effort of Software

Projects by using a Neuro_Fuzzy Approach”, Retrieved August 2011 from

http://www.intechopen.com/source/pdfs/8711/InTech-

Estimating_development_time_and_effort_of_software_projects_by_using_a_neuro_fuzzy_a

pproach.pdf

52. Pedro, I., E.Colla, (2008) “Subjective Consistency”, Retrieved May 2011 from

http://www.frcu.utn.edu.ar/deptos/depto_3/32jaiio/asse/asse_11.pdf

53. Heemstra, F.J., (1992) “Software cost estimation, Information and Software Technology”,

34:pp 627-639

http://www.intechopen.com/source/pdfs/8711/InTech-Estimating_development_time_and_effort_of_software_projects_by_using_a_neuro_fuzzy_approach.pdf
http://www.intechopen.com/source/pdfs/8711/InTech-Estimating_development_time_and_effort_of_software_projects_by_using_a_neuro_fuzzy_approach.pdf
http://www.intechopen.com/source/pdfs/8711/InTech-Estimating_development_time_and_effort_of_software_projects_by_using_a_neuro_fuzzy_approach.pdf
http://www.frcu.utn.edu.ar/deptos/depto_3/32jaiio/asse/asse_11.pdf

 143

54. Boehm, B., Abts, C., Chulani S., (2000) “Software development cost estimation approaches–

–a survey”. Annals of Software Engineering 10: pp 177-205.

55. Murmann, P.A., (1994), “Expected development time reductions in the German mechanical

engineering industry”, Journal of Product Innovation Management 11, pp 236-252.

56. Norris, K.P., (1971), The accuracy of project cost and duration estimates in industrial R&D,

R&D Management Vol.2, pp 25-36., Wiley

57. The CHAOS Report, (1995) The Standish Group International

58. Moløkken-Østvold., K. J., (2004) “Effort and schedule estimation of software development

projects”. PhD thesis, University of Oslo, Norway

59. .Balsera, J. V, Fernandez, F. O.,.Montequin, V. R, Suarez, R. C., (2009) “Effort Estimation in

Information Systems Projects using Data Mining Techniques”, Proceedings of the 13th

WSEAS International Conference on COMPUTERS

60. Briand, L.C. and Wieczorek I.,(2001) “Resource modeling in software engineering, in

Encyclopedia of Software Engineering”, J. Marciniak, Editor, Wiley.

61. Briand, L. C., and Wieczorek, I., (2002) “Resource estimation in software engineering,” in

Encyclopedia of software engineering, J. J. Marcinak, Ed., 2nd ed. New York: John Wiley &

Sons, 2002, pp. 1160-1196.

62. Leung, H., Fan, Z.: (2002) “Software Cost Estimation. Handbook of Software Engineering”,

Hong Kong Polytechnic University

63. Briand, L. C., Wüst J., (2001) “Modeling Development Effort in Object-Oriented Systems

Using Design Properties”. IEEE Trans. Software Eng., pp 963-986

64. Jiang, Z., Naudé, Z., P., (2007)”An examination of the factors influencing software

development effort”.International Journal of Computer, Information, and Systems Sciences,

and Engineering1(3), pp 182-191

65. Kemerer, C. F. (1987). “An empirical validation of software cost estimation models”.

Communications of the ACM 30(5): 416–429.

66. Matson, J.,. Barrett, E. B. E., Mellichamp, J. M.,(1994), “Software Development Cost

Estimation Using Function Points”, Transactions on Software Engineering vol. 20, no. 4, pp.

275-287, IEEE Computer Society

67. Pendharkar, P.C.,.Rodger, J.A., Subramanian G.H., (2008) “An empirical study of the Cobb-

Douglas production function properties of software development effort”, Information and

Software Technology, v.50 n.12, pp.1181-1188,

 144

68. Mendes, E., Lokan, C., Harrison, R., Triggs, C., (2005) “A replicated comparison of cross-

company and within-company effort estimation models using the isbsg database”. 11th IEEE

International Software Metrics Symposium, p. 36,.

69. International Function Users Group, (2004) “Function Point Counting Practices Manual-

Release 4.2”

70. Fenton, N. E., Pfleeger, S. L.,(1996) “Software Metrics: A Rigorous and Practical

Approach”, 2nd Ed., International Thomson Computer Press

71. Nguyen, V. , Steece, B. , Boehm B. ,, (2008) “A Constrained Regression Technique for

COCOMO Calibration”, New York: Assoc Computing Machinery

72. Phan, D., Vogel, D. , Nunamaker J.,(1998) “The search for perfect project management.

Computerworld”, vol 22: pp 95–100

73. Oligny, S., Abran, A., Symons, C, (2000) “COSMIC-FFP Some results from the field trials”,

in 15th International Forum on COCOMO and Software Cost Estimation

74. Zubrow, D., Can you trust your data? Measurement and Analysis Infrastructure Diagnosis,

Presentation, Retrived May 2011 from http://www.sei.cmu.edu/library/assets/meas-

infrastructure.pdf

75. Yang, Y., He, M., Li, M., Wang, Q., and Boehm, B., (2008) “Phase distribution of software

development effort”, In Proceedings of the Second ACM-IEEE international Symposium on

Empirical Software Engineering

76. Wiegers, K.E., (2010) Lessons from Software Work Effort Metrics, retrieved August 2011

from www.processimpact.com/articles/metrics.pdf , 2010

77. Diab H., Koukane F., Frappier M., St-Denis R., (2005), “μcROSE: Automated Measurement

of COSMIC-FFP for Rational Rose Real Time”, Information and Software Technology,

Volume 47, Issue 3, 1 pp 151-166

78. Dolado, J. J. (2000). "A validation of the component-based method for software size

estimation." IEEE Transactions on Software Engineering 26(10): pp 1006-1021

79. Santillo, L., Abran, A., (2006) Software Reuse Evaluation Based on Functional Similarity in

COSMIC-FFP Size Components , in Proceedings of the Software Measurement European

Forum - SMEF2006

80. Santillo, L., Noce D., (2005) “A Worked Function Point Model for Effective Software

Project Size Evaluation”, SMEF 05 Procs.,

http://www.processimpact.com/%20articles/metrics.pdf

 145

81. Meli, R., (2000) –“ Functional and technical software measurement: conflict or integration?”

– FESMA

82. Kitchenham, B. , Känsälä, K., (1993) “Inter-Item Correlations among Function Points.” Proc.

International Software Metrics Symposium. IEEE Computer Society Press.pp 11-14,

83. Gencel, C. and Buglione, L. (2007). “Do Base Functional Component Types Affect the

Relationship between Software Functional Size and Effort?” Proceedings of

IWSM/MENSURA, pp 72-85.

84. Buglione, L., Gencel, C.: (2008) “Impact of Base Functional Component Types on Software

Functional Size based Effort Estimation”. PROFES 2008. LNCS, vol. 5089, pp. 75–89.

Springer,

85. Chen, Z., Menzies, T. , Port, D., and Boehm, B., (2005) “Finding the right data for software

cost modeling,” IEEE Software, Nov, 2005, pp. 38-46.

86. Wikipedia-“Software Development Effort Estimation” Retrieved May 2011 from

http://en.wikipedia.org/wiki/Software_development_effort_estimation

87. Fenton, N. E., Pfleeger S. L., (1996) “Software Metrics – A Rigorous and Practical

Approach”. 2nd. Edition, Thomson Computer Press

88. Kitchenham B., (1990) “Software Development Cost Models”. In: Software Reliability

Handbook, P. Rook (editor.), Elsevier Applied Science, pp. 487-517

89. Jorgensen M.,, Boehm, B., Rifkin, S., (2009) “Software Development Effort Estimation:

Formal Models or Expert Judgment? IEEE Software, pp: 14-19

90. M. Jorgensen. (2004) “A review of studies on expert estimation of software development

effort”. Journal of Systems and Software, 70(1-2):37–60

91. T. De Marco. (1982) Controlling Software Projects. Yourdan Press

92. Hughes, R. T, (1996) “Expert judgement as an estimating method”. Information and

Software Technology, vol. 38, no. 2, pp 67-75

93. Hihn, J., H. Habib-agahi (1991), “Cost estimation of software intensive projects: A survey of

current practices”, International Conference on Software Engineering, pp. 276-287.

94. Aranda, J. and Easterbrook, S.M. (2005) “Anchoring and adjustment in software estimation”,

In Proceedings of ESEC/SIGSOFT FSE. pp 346-355

95. Boehm, B. W. (1984). "Software engineering economics." IEEE Transactions on Software

Engineering 10(1): pp 4-21.

http://en.wikipedia.org/wiki/Software_development_effort_estimation

 146

96. Linstone, H.A. and M. Turoff, (1975) “The Delphi Method: Techniques and Applications”.

Addison-Wesley

97. Kaczmarek, J. and Kucharski, M., (2004) “Size and effort estimation for applications written

in Java”. Information and Software Technology. v46. 589-601.

98. Chemuturi, M., “Analogy based software estimation”, Retrieved August 2011 from

http://www.chemuturi.com/Analogy%20based%20Software%20Estimation.pdf

99. Shepperd, M., Schofield, C., (1997). Estimating Software Project Effort Using Analogies,

IEEE Transactions on Software Engineering, Vol. 23, No. 12 ,pp: 736-743

100. Dasarathy B.V., (1991) Nearest Neighbor (Nn) Norms, IEEE Computer Society

Press,Washington

101. Shepperd, M., Schofield, C. , Kitchenham, B., (1996)“Effort estimation using analogy.

Proceedings of the 18th international conference on software engineering,

102. Angelis L.,.Mitas, N., (2008) “Combining regression and estimation by analogy in a

semiparametric model for software cost estimation”, in ESEM‟ 08, pp. 70-79

103. Valerdi R. (2005) "The Constructive Systems Engineering Cost Model (COSYSMO)", PhD

Thesis, The University of Southern California

104. Symons, C.R., Rule, P. G., (1999) “One size fits all – COSMIC aims, design principles and

progress”, Proceedings of ESCOM ‟99, pp. 197-207

105. Abts C., Boehm B., Clark B., (2000) “COCOTS: A COTS software integration cost

model”,proceedings of ESCOM-SCOPE 2000 conference,

106. SEER-SEM, Cost Estimating Software, http://www.galorath.com/

107. Colbert, E.,, Yue Chen, D.W, Boehm, B., (2006) “Cost Estimation for Secure Software &

Systems”, (Abstract), ISPA,

108. Jensen R. (1983), “An Improved Macrolevel Software Development Resource Estimation

Model,” In Proceedings of 5th ISPA Conference, pp. 88–92.

109. Angelis, L., Stamelos, I., and Morisio, M. (2001) “Building A Software Cost Estimation

Model Based On Categorical Data”. In Proceedings of the 7th international Symposium on

Software Metrics . METRICS. IEEE Computer Society,

http://www.chemuturi.com/Analogy%20based%20Software%20Estimation.pdf
http://www.galorath.com/

 147

110. Bajwa, S.S,(2008) : Investigating the Nature of Relationship between Software Size and

Development Effort. Master Thesis, MCS-2008-45, School of Engineering, Blekinge

Institute

111. Boehm, B., Clark, B., Horowitz, E., Madachy, R., Shelby, R., and Westland C.(1995) “Cost

Models for Future Software Life Cycle Processes: COCOMO 2.0”, Annals of Software

Engineering

112. Fenton, N.E. and Neil, M., (2000) “Software metrics: roadmap”. In Proceedings of the

Conference on the Future of Software Engineering, pp. 357-370.

113. Walston, C.E., Felix. P.C., (1977) “A Method of Programming Measurement and

Estimation”. IBM Systems Journal, pp 55-73

114. Moher, T., Schneider, G. M. (1981) Methods for improving controlled experimentation in

software engineering. 5th Conference on Software Engineering,

115. Park, R. , (1988) “The central equations of the price software cost model,” 4th COCOMO

Users Group Meeting.

116. Putnam, L.H., (1978) “A general empirical solution to macro software sizing and estimation

problem, IEEE Transactions on Software Engineering”,pp 345–361

117. NESMA, (1998) “Function Point Analysis for Software Enhancement, Guidelines, v. 1.0”,

Online: http://www.nesma.org

118. Capers, J., (1991) Applied Software Measurement, McGraw-Hill

119. Ebert, C., Dumke, R., Bundschuh, M., Schmietendorf, A.(2004)“Best Practices in Software

Measurement – How to use metrics to improve project and process performance”. Springer-

Verlag

120. Whitmire S.A, (1992) “3-D Function Points: Scientific and Real-Time Extensions to

Function Points”, Proceedings of the Pacific Northwest Software Quality Conference,

121. Abran, A., Maya, M., Desharnais, J.M., St-Pierre, D.,(1997) “Adapting Function Points to

Real-Time Software”. American Programmer, pp 32-42

122. Forselius, P., (2004) “Finnish Software Measurement Association Functional Size. Finnish

Software Metrics Association”

123. Briand, L.C., El Emam, K., Wieczorek. I., (1998) “A Case Study in Productivity

Benchmarking: Methods and Lessons Learned”, Proc. ESCOM-ENCRESS 98 Project

Control For 2000 and Beyond

http://www.nesma.org/

 148

124. Cruickshank, R. D., Gaffney, J. E., (1992) "A Software Cost Model of Reuse within a Single

System," presented at MITRE-Washington Econ. Analysis Ctr. Conf. on Analytical Methods

in Software Eng. Econ. II,.

125. Fenton, N., (1991) Software Metrics: A Rigorous Approach. London: Chapman & Hall,

126. Turetken, O., Demirors, O., Gencel, C., Ozcan Top, O., Ozkan, B., (2008) “The Affect of

Entity Generalization on Software Functional Sizing: A Case Study”, scheduled to be

presented in PROFES‟08 and published in LNCS, Springer.

127. IEEE Standard 830-1998, Institute of Electrical and Electronics Engineers, Inc., USA. IEEE

Recommended Practice for Software Requirements Specifications, .

128. Top, O.O, (2008), “Functional Similarity Impact On The Relation Between Functional Size

And Software Development Effort”, Msc.Thesis, METU

129. Abran A., Desharnais J.M., (1995) “Measurement of Functional Reuse in Maintenance” in

Journal of Software Maintenance: Research and Practice, Vol 7, pp 263-277

130. The Common Software Measurement International Consortium (COSMIC): Guideline for

Sizing Business Applications Software Using COSMIC-FFP, Version 1.0 (2005)

131. Abran, A., Maya, M., (1997) “Measurement of Functional Reuse”, WISR8, Ohio State

University,

132. Leach, R. J., (1996) “Methods of Measuring Software Reuse for the Prediction of

Maintenance Effort,” Journal of Software Maintenance

133. Ho, V., Abran, A., and Oligny, S., (2000) “Using COSMIC-FFP Quantify Functional Reuse

in Software Development” ESCOM-SCOPE 2000

134. Abran A., Gil B., Lefebvre E., (2004) Estimation Models Based on Functional Profiles.

International Workshop on Software Measurement -- IWSM/MetriKon, , Shaker Verlag, , pp

195-211.

135. Abran, A., Panteliuc, A., (2007) “Estimation Models Based on Functional Profiles”. III

Taller Internacional de Calidad en Technologias de Information et de Communications,

136. DO-178 , http://www.highrely.com/do178b_questions.php

137. DOD-2167 “Defence System Software Development”, http://www.product-lifecycle-

management.com/download/DOD-STD-2167A.pdf

138. Springsteen B., for DOD (1994) “, Survey of Software Metrics in the Department of Defense

and. Industry, IDA Paper P-2996,1994, Retrieved May 2011 from http://www.dtic.mil/cgi-

bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA290804

http://www.highrely.com/do178b_questions.php

 149

139. Braungarten, R.; Kunz, M.; Dumke, R., (2005) “An Approach to Classify Software

Measurement Storage Facilities”. Preprint No 2, Dept. of Computer Science, University of

Magdeburg

140. Song, T. H., Yoon, K. A., Bae, D. H., (2007) “An approach to probabilistic effort estimation

for military avionics software maintenance by considering structural characteristics. Asia-

Pacific Software Engineering Conference, pp 406–413

141. Greves, D., Schreiber, B., “The ESA Initiative for Software Productivity and Benchmarking”

, Retrieved June 2011 from http://www.esa.int/esapub/bulletin/bullet87/greves87.htm

142. ISBSG Software Benchmarking Database, http://www.isbsg.org/

143. Laird, L. M., Brennan, M. C.,(2006) - Software Measurement and Estimation: A Practical

Approach (Quantitative Software Engineering Series),Wiley

144. Myrtveit, I., E. Stensrud, et al. (2001). "Analyzing data sets with missing data: An empirical

evaluation of imputation methods and likelihood-based methods." IEEE Transactions on

Software Engineering 27(11) pp 999-1013.

145. Rios D., Neuro AI - Intelligent systems and Neural Networks, Retrieved May 2011 from

http://www.learnartificialneuralnetworks.com/

146. Zhang, G., Patuwo, B.E. and Hu, M.Y. (1998). Forecasting with Artificial Neural Networks:

The State of the Art. International Journal of Forecasting, pp 35-62

147. Heaton, J., “Introduction to Neural networks for Java, Second Edition”, Heaton Research

Inc., Retrieved February 2011 from http://www.heatonresearch.com/node/707

148. Shukla, K.K.,(2000) “Neuro-genetic prediction of software development effort”. Information

and. Software Technology 42(10), 701–713

149. Blanco, A., Delgado, M., Pegalajar M. C.,(2000) “A genetic algorithm to obtain the optimal

recurrent neural network” Int. Journal of approximate reasoning vol.23

150. Wang, J., (1994) “A Neural Network Approach to Multiple Criteria Decision Making Based

on Fuzzy”. Preference Information. Information Sciences,

151. Rumelhart, D.E., Hinton, G.E., Williams, R.J., (1986) “Learning internal representations by

Error Propagation” Parallel Distributed Processing: Explorations in the Microstructure of

Cognition, Cambridge, MA., MIT Press. Volume 1, pp. 318- 362.

152. Hassoun, M.H., (1995), “Fundamentals of Artificial Neural Networks”, The MIT Press

http://www.esa.int/esapub/bulletin/bullet87/greves87.htm
http://www.isbsg.org/
http://www.learnartificialneuralnetworks.com/
http://www.heatonresearch.com/node/707

 150

153. Werbos, P. J. (1974). “Beyond regression: New tools for prediction and analysis in the

behavioral sciences”. Ph.D.Thesis, Harvard University

154. Silvert, W. ,Baptist, M., (1998), ”Can Neural Networks be used in Data-Poor Situations?' in

Artificial Neuronal Networks: Application to Ecology and Evolution”, Eds S. Lek & J.

Guegan, Springer-Verlag, Berlin, pp. 241-248.

155. IEEE EIA 12207, Software Life Cycle Processes, http://www.12207.com/

156. Söderholm, A., (2007) “Project management of unexpected events; in: International Journal

of Project Management”, Vol. 26

157. Tunalilar, S., Demirors O.,(2011) “An Exploration of Functional Size Based Effort

Estimation Models”, International Journal of Software Enginering and Knowledge

Engineering, 2011

158. April, A., Abran, A., Dumke, R., (2004) “Software maintenance productivity measurement:

How to assess the readiness of your organization”. Proceedings International Workshop on

Software Metrics and DASMA Software Metrik Kongress

159. International Function Point User Group (IFPUG): (1994) “Function Point Counting

Practices Manual-Release 4.0, Westerville: IFPUG Inc. <http://www.ifpug.org/>

160. Tunalilar, S., Demirors, O.,(2009) “A Comparison of Neural Network Model and Regression

Model Approaches Based on Sub-functional Components, IWSM '09 /Mensura '09

Proceedings of the International Conferences on Software Process and Product Measurement

161. Morris, P., (2006), “COSMIC-FFP – A Method for Sizing All the Software Not Just What

the User Sees”, in „DOD Software Tech News‟, Editor: Data & Analysis Center for

Software, Vol. 9 No.3, http://www.compaid.com/caiinternet/ezine/morris-cffp.pdf

162. Yin, R.K. (1994). Case Study Research: Design and Methods, Applied Social Research

Methods Series, Vol.5, 2nd ed., Sage Publications Inc.

163. Stake, R. (1995). The art of case study research. Thousand Oaks, CA: Sage Publications

164. Brereton, P., Kitchenham, B. , Budgen, D., Li, Z., (2008) “Using a protocol template for case

study planning”, 12th International Conference on Evaluation and Assessment in Software

Engineering (EASE'08),

165. Rowley, J. (2002), “Using case studies in research”, Management Research. News, vol. 25,

no. 1, pp. 16-27.

166. Lother, M., Dumke, R.R, (2001). Points Metrics - Comparison and Analysis, In Proceedings

of the International Workshop on Software Measurement (IWSM'01), Montréal, Québec, pp.

155-172.

http://www.12207.com/
http://www.compaid.com/caiinternet/ezine/morris-cffp.pdf

 151

167. Boehm, B., Horowitz, E., Madachy E.,, Reifer, D., Clark, B., Steece, B., Brown, W.,

Chulani, S., Abts, C., (2000) “Software Cost Estimation with COCOMO II. Prentice Hall”

168. Knowledge Structures Inc., Estimating Guideline, Retrieved June 2011 from

http://www.ksinc.com/itpmcptools/ EstimatingGuidelines.pdf

169. Strike, K., El Emam, K., Madhavji, N.H., (2001) “Software cost estimation with incomplete

data”. IEEE Transactions on Software Engineering

170. Baker, D., (2007) “A hybrid approach to expert and model-based effort estimation,” Master‟s

thesis, Lane Department of Computer Science and Electrical Engineering, West Virginia

University, 2007, Retrieved May 2011 from

https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5443

171. Bisio, R., Malabocchia, F., (1995)“Cost Estimation of Software Projects through Case Based

Reasoning. Case Based Reasoning Research and Development”, Proc. International

Conference on Case-Based Reasoning, pp 11-22

172. Molokken-Ostvold, K., Jorgensen, M., (2004)“Group processes in software effort estimation.

Empirical Softw. Eng., 9(4):pp 315–334,

173. Marín, B., Fernández, N.C, Pastor, O., (2008) Towards a Method for Evaluating the

Precision of Software Measures (Short Paper). QSIC

174. Niessink, F.,Vliet, H.van,, (2001) “Measurement Program Success. Factors Revisited.

Information and Software Technology”,. 43(10):pp 617–628

175. Song T.H., Yoon, K.A, Bae, D.H, (2007) An Approach to Probabilistic Effort Estimation for

Military Avionics Software Maintenance by Considering Structural Characteristics. APSEC

176. Yoon K A, Bae D H, Seo Y S, (2008) “An Empirical analysis of software effort estimation

with outlier elimination” in Proceedings International Conference on Software Engineering

177. Chan V., and Wong, W., (2007) “Outlier elimination in construction of software metric

models. Proceedings of the 22nd ACM Symposium on Applied Computing, pp 1484–1488

178. Garmus, D., (2006) “The Principles of Sizing and Estimating Projects Using IFPUG

Function Points," Software Tech News

179. ISO/ IEC 15939-2002 software measurement process model. Retrieved June 2011 from

http://segoldmine.ppi-int.com/content/standard-isoiec-15939-software-measurement-process

180. CUBIT, (2011) Cosmic Database of Middle East Technical University, Software Engineering

Research Group, available at http://smrg.ii.metu.edu.tr/cubit

http://www.ksinc.com/itpmcptools/
https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5443
http://www.informatik.uni-trier.de/~ley/db/conf/apsec/apsec2007.html#SongYB07

 152

181. DataFit, “Curve Fitting and Data plotting Tool” , http://www.oakdaleengr.com/datafit.htm

182. SPSS Statistics Ver 19. www-01.ibm.com/software/analytics/spss/statistics

183. Tunalilar, S., Demirors, O., (2008) “Effect of Functional Similarity for Establishing Relation

Between Effort and Functional Size, Asia Pasific Software Engineering Conference, SPACE

special session

184. Top O.O, Tunalilar S., Demirors O., (2008) “Evaluation of the Functional Similarities on

Development Effort, Euromicro Conference on Engineering and Advanced Applications,

185. CMMI, “Capability Maturity Model Integrated, (2011), Software Engineering Institute

www.sei.com.tr/cmmi

186. Cosmic Functional Size Measurement Version 3.0 Retrieved June 2011 from

http://www.cosmicon.com/portal/public/COSMIC%20Method%20v3.0%20Advanced%20&

%20Related%20Topics.pdf

http://www.oakdaleengr.com/datafit.htm

 153

APPENDICES

1. DECOMPOSITION OF SOFTWARE PROJECT

INTO SCIs

Figure 28 Example Decomposition of Software Project from study European Space Agency, [15]

 154

APPENDIX

2. LIST EXAMPLES

Table 31 General List: Phase and Activity Groupings in Company

Phases and Tasks Activities

System requirements

analysis

(Included in meetings with Customers and Working with System Engineers to

understand functionalities)

System architectural design (Included as meetings for SW developers but can be added for System Design Team)

Software requirements

analysis

-Preparation of prototypes to specify the requirements of the system

-Working with System Engineers to understand functionalities

 Software architectural

design

-Preliminary Design Activities

 Software detailed design -Detailed Design Activities

 Software coding and unit

testing

-Coding/Updating the Program

-Writing and executing unit tests

 Software Test - Interface testing

-Integration at SW level

-Integration at HW Level

 Software qualification

testing

-Coverage Testing

-Qualification of Software Component

- Software Safety Assessment Testing

 System integration -Integration at System Level

-Integration at Platform Level

 System qualification testing -System Level testing

-Test According to a standard

-Platform level testing

-Defect Removal During Qualification

-Safety Validation at System Level

Software installation -Installation Time on Different Platforms

Software acceptance

support

-Tests with Customers

-Defect Removal during acceptance

 155

Table 32 Additional Phase and Activity Definitions for SAFETY to ISO-IEC 15504 :

Phase Activity

Test Software Safety Assesment Testing

Safety Validation at System Level

Support Overall management of Safety Requirements

Qualification of software tools

Qualification of Software Components

Qualification of hardware components

Table 33 General List Example Phase Definitions from Literature

Chinese [75] Phases in 12207 [155] Wiegers[76]

Plan,

Preliminary Requirement Analysis

Requirement Analysis

Design Product Design,

Detailed Design

Code Code, Unit Test, Integration

Test System Test

Transition Installation,

Transition, Acceptance Test,

User Training,

Support

System requirements analysis

 System architectural design

 Software requirements analysis

 Software architectural design

 Software detailed design

 Software coding and testing

 Software integration

 Software qualification testing

 System integration

 System qualification testing

 Software installation

Software acceptance support

Preliminaries

Project Planning,

Specification,

Design,

Implementation,

Testing,

Writing documentation.

Adaptive maintenance,

Fixing bugs,

Adding Enhancements,

User support

 156

Table 34 Activity Definitions Recommended by McConnell

(From study [26])

Functional Requirements

Area

Setup/installation program

Data conversion utility

Glue code needed to use third party software or open source software

Help System

Deployment models

Interfaces with external systems

Non Functional

Requirements Area

Accuracy

Interoperability

Modifiability

Performance

Portability

Reliability

Responsiveness

Reusability

Security

Survivability

Usability

Software Development Activities

Management coordination/manager meetings

Maintaining the revision control system

Supporting the build

Maintaining the scripts required to run the daily build

Maintaining the automated smoke test used in conjunction with the daily

build

Installation of test build at user locations

Participation in technical reviews

Integration work

Processing Change requests

….

Input to user documentation and review of user documentation

Demonstrating software to customers or users

Demonstrating software at trade shows

Demonstrating the software or the prototype to upper management, client

and end users

Interacting with client or end users; supporting beta installations at client

locations

Reviewing plans, estimates, architecture, detailed designs. stage plans,

code, test cases and so on

 157

APPENDIX 1

3. SUPPORTING & EXTRA EFFORT LIST

Table 35Applied Supporting & Extra effort List (Unexpected/Unplanned/Unrelated activities)

Supporting & Extra effort Explanation Effect Level

Unavailability of developer Include the wasted time in hours for project, if resource

allocation is not done

App.Domain Type

Hardware problem, Include the wasted time in hours for each SCI, if HW not

available or HW has problem

App.Domain Type

Specific Standard Appliance Include extra expended effort not planned for each SCI App.Domain Type

Requirement Changes Include extra expended effort not planned for each SCI App.Domain Type

Support to Other Projects Record support time not wasted for current project App.Domain Type

Demo Include this unplanned Effort App.Domain Type

12207/OrganizationalProcess

Planning/Execution

-Time spent on planning and tracking activities

throughout the project‟s life.

-Evaluating and selecting tools, computers, operating

systems, and so on for a specific project.

Project

12207/Organizational Process

Training

-Trainings required for the usage of tools

-Trainings required for the understanding of the product

App.Domain Type

12207/Organizational

Process-Infrastructure

-Evaluating and selecting tools, computers, operating

systems, and so on for a specific project.

App.Domain Type

12207/SupportingProcess-

Documentation

Writing and inspecting the software requirements

specification.

Writing and inspecting the software design specification.

Writing and inspecting the software test specification.

Writing technical note or giving presentations

App.Domain Type,

collect in seperate

phases

12207/SupportingProcess-

JReviews,ProblemResolution,

Audits, Other Meetings

-Peer reviews

-Meetings with Other Team Members

-Meetings with Customers

-Specially arranged Design Reviews (ex:PDR, CDR)

-Duties

Project

12207/SupportingProcess-

Configuration Management

Configuration Management (CM) Activities CM

Personnel

CM Activities of SW Development Personnel

Project

12207/SupportingProcess-

Quality Assurance

QA Activities of QA Personnel Project

 158

Table 36 Example Lists for Supporting & Extra efforts (Unexpected Event/Out Of

Development)

From Company Reviews, 2009 From Study So¨derholm,2008[156]

Unavailability of developer

Hardware problem,

Specific procedure appliance

Requirement Changes

Support to Other Projects

Delivery Delay of Subcontractors

Organizational Change

From McConnel[26],2006 From Study Alain April et al[158],2004

Vacations

Holidays

Sick Days

Training

Weekends

Company Meetings

Department Meetings

Setting up new work stations

Installing new ver.of tools on workstations

Troubleshooting hw and sw problems

Optimizing code and resources;

Restructuring code logic;

Clarifying and improving system docs.;

Minor functionality enhancements.

Compiler and utility changes;

· Hardware upgrades;

· Media conversions;

· Making adjustments to accommodate

changes in load;

Evolving the System Recovery Manual

 159

APPENDIX 2

4. EFFORT COLLECTION PROCESS TABLE

EXAMPLES

Table 37 Example Effort Collection Table for Project1__ES_ControlInterface

Phase Activity Assigned

Developer

Planned

Effort(day)

Real

Effort

(day)

Completeness

Coding&UnitTest WriteVideo Blocks and

UnitTest

T.K 10 9 %100

Integration&Qual Video Interface Test T.K. 6 7 %100

Integration&Qual Serial Communication

Test-RS232

S.Y 8 3 %40

Hw Problem - - - 23 -

Requirement Chg. - - - 17 -

Support Overall management of

Safety Requirements

A.Y (New-40) 11 % 35

 160

APPENDIX 3

5. APPLICATION DOMAIN CATEGORIZATION

Table 38Applied Categorization of Company

Embedded Real-time SW

GUI and Simulation

Board Support Package

Algorithm Development

Table 39 Application Domain Categorization in Literature

Desharnais[73] DeMarco[91] Brungarten & Kunz &Dumke[139]

Business Software

Embedded & Control Software

Utility Software

User‟s Tool Software

Developer‟s Tool Software

Systems Software

Data Strong Systems

Control Strong Systems

Function Strong Systems

Hybrid Systems

Microcode/Firmware

Real time,

Avionic,

System Software,

Command & Control,

Telecom/Message

Switching,

Scientific,

Process control,

Business/Commercial

 161

APPENDIX 4

6. SIZE MEASUREMENT PROCESS

TEMPLATES

Table 40 SRS Template Example

SRS Template (Adapted from IEEE-830)

1. Introduction
1.1 Purpose
1.2 Document conventions
1.3 Intended audience
1.4 Additional information
1.5 Contact information/SRS team members
1.6 References

2. Overall Description
2.1 Product perspective
2.2 Product functions
2.3 User classes and characteristics
2.4 Operating environment
2.5 User environment
2.6 Design/implementation constraints
2.7 Assumptions and dependencies

3. External Interface Requirements
3.1 User interfaces
3.2 Hardware interfaces
3.3 Software interfaces
3.4 Communication protocols and interfaces

4. System Features
4.1 System feature A
4.1.1 Description and priority
4.1.2 Action/result
4.1.3 Functional requirements
4.2 System feature B

5. Other Non functional Requirements
5.1 Performance requirements
5.2 Safety requirements
5.3 Security requirements
5.4 Software quality attributes
5.5 Project documentation
5.6 User documentation

6. Other Requirements
Appendix A: Terminology/Glossary/Definitions list
Appendix B: To be determined

 162

Table 41 SRS Review Checklist Template Example

A sample checklist for SRS Review Status
1.1. Are all the requirements verifiable?
1.2. Are the requirements complete?
1.3. Are all the requirements clear to measurers ?
1.4. Are all the requirements stated only once?
1.5. Are all the requirements broken down into

their most elementary form?
1.6. Are all the requirements can be represented

with functional processes with triggering
events, data groups, data movements?

1.7. Is there any information to be necessary to
be included?

Yes
Yes
Check Req12, 18, 67

Yes
Chech Req 5

Yes

Table 42 Measurement Results Template Example

Measurement Results Template from [29]

1. Overview

1.1 Introduction

1.2 Measurement viewpoint, purpose and scope

2. Requirements as documented in ISO 14143-3-4 : 2000

2.1 Context

2.2 Input

2.3 Output

3. COSMIC-FFP measurement procedure

3.1 Identification of layers

3.2 Identification of users

3.3 System boundary

3.4 Identification of triggering events

3.5 Identification of data groups

3.6 Identification of functional processes

4. Identify data movements

4.1 Message sequence diagram

4.2 List of data movements

4.3 Observations on the clarity of the requirements

5. Analysis of measurement results

 163

Table 43 Detailed Measurement Results Template Example

Project-1 Measurements

Process

Description

Subprocess-

Decsription

Data Group Cosmic-Data

Movement

No FS FS

Reflected

Press-A

Read Letter

Write Letter

Send.Channel

LetterA E

X

X

3 3

Press-B Read Letter

Write Letter

Send.Channel

LetterB E

X

X

3 0

Table 44 BFC Grouping Results of all Projects Template Example

Project

name

Standard Measurement FS Reflected Measurement Effort

(in

hour)

 # of

Entry

of

Exit

#of

Read

#of

Write

of

Entry

of

Exit

#of

Read

#of

Write

-

Project-1
57 73 236 222 27 21 157 159 1020

Project-2
226 745 174 247 55 84 40 29

396

Project-3
58 41 149 164 49 32 145 148

476

 164

APPENDIX 5

7. FUNCTIONAL SIMILARITY APPLICATION

NOTES:

 Basic- Zero Effort FS method

As it is given in in “Detailed Measurement Results”, If two functional process has subprocesses that

are completely same, then only one of them will be included in size measurement, others‟ effect on

effort are ignored.

Table 45 FS Measurements Calculation

Functional Process Sub-Process Data Movement No FS FS

(Zero Effort)

Select NOT StartSelectNot E 1 1

 ShutRemote W 1 1

 WriteRemote W 1 1

NearMode StartNear E 1 1

 WriteNear W 1 1

 SendNearData X 1 1

WideMode StartWide E 1 0 Zero Effort

 WriteWide W 1 0

 SendWideData X 1 0

NarrowMode StartNarrow E 1 0 Zero Effort

 WriteNarrow W 1 0

SendNarrowData

X
 1

 0

 165

APPENDIX 6

8. DATA ANALYSIS PROCESS EXAMPLE

TEMPLATES

Table 46 #of BFC Table for Analysis of Standard Measurement

 # of Entry # of Exit #of Read #of Write Effort In Hours

Project1-

SCIName2
57 73 236 222 1020

Project2-

SCIName3
226 745 174 247 396

Project6-

SCIName5
58 41 149 164 476

Table 47 Accuracy Record Example Template for Neural Network

Table 48 Effort Model Weights Table

Model Name Weight for

Entry

Weight For

Exit

Weight For

Read

Weight For

Write

Addition

SCI_A 121,05 -12,33 32,97 277,52 113

SCI_B 87,11 35,62 -431,20 5,63 12

 Application Type= BSP Other info….

of Projects = 15

 No FS FS Reflected

 Iteration No
R2 MMRE PRED

(0.30)

PRED

(0.20)

R2 MMRE PRED

(0.30)

PRED

(0.20)

 100

 500

 1000

 ..

 166

Table 49 Supporting & Extra effort Analysis Results Example table

 Requirements

Change

Meetings Hardware

Problems

Uplanned

Activities

Documentation

GUI

Applications

%8,92 %10 %2,81 %23 %20,34

BSP

Applications

%1,39 %21 %13,6 %3 %24,98

ES

Applications

% 3,16 %7 %10,81 %5 %10,63

Table 50 Effort Estimation of new projects Example table

 Size

Measurement

(E,X,R,W)

Base

Effort

Value

(man-

hour)

HW

Problems.

Documentation Req.

Change

Total Effort

Prj_New_GUI-1 23,12, 9, 35 828 2,81 20,34 20,34 1125

Prj_New_GUI-2 234,31,112,39 216 2,81 24,98 20,34 146

Prj_New_ES_1 % 3,16 1081 10,81 10,63 10,63 217

 167

VITA

Seçkin TUNALILAR was born in Bandırma, Turkey. She received her bachelor degree in Electrical

and Electronics Engineering in Middle East Technical University (METU) in 1995. In 1998, she had

her M.S. degree in the same department. During 1995 and 2011, she worked in Aselsan and

participated in number of projects. She worked as a part time lecturer at Defense Sciences Institute of

Turkish Military Academy. Now she‟s working as a program manager for R&D projects of Airborne

platforms. Previously she lead business development activities for Naval programs, design activities

of Electro-optical Imaging systems and Tank Fire control systems. Her research interests include;

project management, system design, software process improvement and software measurement

Journal & International Conferences:

 Tunalılar, S., Demirors O.,(2011) “An Exploration of Functional Size Based Effort
Estimation Models”, International Journal of Software Enginering and Knowledge
Engineering, 2011

 Tunalilar, S., Demirors, O.,(2009) “A Comparison of Neural Network Model and Regression
Model Approaches Based on Sub-functional Components, IWSM '09 /Mensura '09
Proceedings of the International Conferences on Software Process and Product Measurement

 Tunalılar, S., Demirors, O., (2008) “Effect of Functional Similarity for Establishing Relation
Between Effort and Functional Size, Asia Pasific Software Engineering Conference, SPACE
special session

 Top, O.O, (2008), “Functional Similarity Impact On The Relation Between Functional Size
And Software Development Effort”, Msc.Thesis, METU

National Conferences:

 Aktürk, D., Yağcıoğlu, M., Tunalilar S.,(2010) “Kafa Takip teknolojileri”, “Aviyonik ve Sistem

Entegrasyonu Sempozyumu”

 Top, O.O. , Tunalilar, S., Demirors, O., (2008) “Fonksiyonel Benzerlik ve ĠĢ gücü: Bir durum

çalıĢması” , Yazılım Kalitesi ve Yazılım GeliĢtirme araçları Sempozyumu

 Tunalilar, S., Demirors O.,(2005) “Yazılım Süreç ĠyileĢtirmede BaĢarı Faktörleri” II. Ulusal

Yazılım Mühendisliği Sempozyumu

