

DESIGN AND IMPLEMENTATION OF SCHEDULING AND SWITCHING
ARCHITECTURES FOR HIGH SPEED NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA SANLI

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

OCTOBER 2011

Approval of the thesis:

DESIGN AND IMPLEMENTATION OF SCHEDULING AND SWITCHING
ARCHITECTURES FOR HIGH SPEED NETWORKS

submitted by MUSTAFA SANLI in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Hasan Cengiz Güran
Supervisor, Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ece Güran Schmidt
Co-Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Hasan Cengiz Güran
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt Bazlamaçcı
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Nail Akar
Electrical and Electronics Engineering Dept., Bilkent Univ.

Assist. Prof. Dr. İlkay Ulusoy
Electrical and Electronics Engineering Dept., METU

 Date: October 6, 2011

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last name : Mustafa Sanlı

Signature :

iv

ABSTRACT

DESIGN AND IMPLEMENTATION OF SCHEDULING

AND SWITCHING ARCHITECTURES

FOR HIGH SPEED NETWORKS

Sanlı, Mustafa

Ph. D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Hasan Cengiz Güran

Co-Supervisor: Assoc. Prof. Dr. Ece Güran Schmidt

October 2011, 122 pages

Quality of Service (QoS) schedulers are one of the most important components for

the end-to-end QoS support in the Internet. The focus of this thesis is the hardware

design and implementation of the QoS schedulers, that is scalable for high line

speeds and large number of traffic flows. FPGA is the selected hardware platform.

Previous work on the hardware design and implementation of QoS schedulers are

mostly algorithm specific. In this thesis, a general architecture for the design of the

class of Packet Fair Queuing (PFQ) schedulers is proposed. Worst Case Fair

Weighted Fair Queuing Plus (WF2Q+) scheduler is implemented and tested in

hardware to demonstrate the proposed architecture and design enhancements.

The maximum line speed that PFQ algorithms can operate decreases as the number

of scheduled flows increases. For this reason, this thesis proposes to aggregate the

v

flows to scale the PFQ architecture to high line speeds. The Window Based Fair

Aggregator (WBFA) algorithm that this thesis suggests for flow aggregation

provides a tunable trade-off between the efficient use of the available bandwidth

and the fairness among the constituent flows. WBFA is also integrated to the

hardware PFQ architecture.

The QoS support provided by the proposed PFQ architecture and WBFA is

measured by conducting hardware experiments on a custom built high speed

network testbed which consists of three data processing cards and a backplane. In

these experiments, the input traffic is provided by the hardware traffic generator

which is designed in the scope of this thesis.

Keywords: Quality of Service Scheduler, High speed network, Flow aggregation

vi

ÖZ

YÜKSEK HIZLI AĞLAR İÇİN ZAMANLAMA VE

ANAHTARLAMA MİMARİLERİNİN TASARIMI VE

GERÇEKLENMESİ

Sanlı, Mustafa

Doktora, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Hasan Cengiz Güran

Ortak Tez Yöneticisi: Doç. Dr. Ece Güran Schmidt

Ekim 2011, 122 sayfa

Servis kalitesi (QoS) çizelgeleyiciler, internette uçtan uca QoS desteği için en

önemli bileşenlerdendir. Bu tezin odaklandığı konu, yüksek hat hızlarına ve çok

sayıda trafik akışına ölçeklenebilen QoS çizelgeleyicilerin donanımsal tasarımı ve

gerçeklenmesidir. Seçilen donanım platformu FPGA’dir.

QoS çizelgeleyicilerin donanımsal tasarımı ve gerçeklenmesi üzerine yapılan önceki

çalışmalar çoğunlukla algoritmaya özeldir. Bu tezde Paket Adil Kuyruklama (PFQ)

sınıfındaki çizelgeleyicilerin tasarımı için genel bir mimari önerilmiştir. Bu sınıftaki

çizelgeleyicilerden bir tanesi, önerilen mimariyi ve tasarım iyileştirmelerini örnek

üzerinde göstermek için donanım üzerinde gerçeklenmiş ve test edilmiştir.

vii

Çizelgelenen akış sayısı arttıkça PFQ algoritmalarının çalışabildiği en yüksek hat

hızı azalmaktadır. Bu yüzden, bu tez PFQ mimarisini yüksek hat hızlarına

ölçeklendirmek için akışları birleştirmeyi önermektedir. Bu tezde akış birleştirme

için önerilen Pencere Tabanlı Adil Birleştirici (WBFA) algoritması, mevcut bant

genişliğinin etkin kullanımı ile bileşen akışlar arasındaki adillik arasında

ayarlanabilir bir ödünleşim sunmaktadır. WBFA aynı zamanda donanımsal PFQ

mimarisine de entegre edilmiştir.

Önerilen PFQ mimarisi ve WBFA tarafından sağlanan QoS desteği üç veri işleme

kartı ve bir anakarttan oluşan özel üretilmiş bir yüksek hızlı ağ test ortamında

donanımsal deneyler yapılarak ölçülmüştür. Bu deneylerde, giriş trafiği bu tez

kapsamında tasarlanan bir donanımsal trafik üretici tarafından oluşturulmuştur.

Anahtar Kelimeler: Servis kalitesi çizelgeleyici, Yüksek hızlı ağ, Akış birleştirme

viii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor Prof. Dr. Hasan

Cengiz Güran and my co-advisor Assoc. Prof. Dr. Ece Güran Schmidt for their

invaluable support, guidance, encouragement and friendship throughout the

completion of the thesis. I would like to thank Prof. Dr. Semih Bilgen, Assoc. Prof.

Dr. Cüneyt Bazlamaçcı, Assoc. Prof. Dr. Nail Akar and Assist. Prof. Dr. İlkay

Ulusoy for their precious contributions to my thesis. I must acknowledge Aselsan

AŞ for providing me time and facilities for my research. Finally, I would like to

thank my family for their continuous support throughout my life.

ix

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xii

LIST OF FIGURES .. xiii

LIST OF ABBREVIATIONS ... xv

CHAPTERS

1 INTRODUCTION .. 1

2 SWITCHES FOR HIGH SPEED NETWORKS ... 8

2.1 SWITCHES AND ROUTERS ... 9

2.2 QUALITY OF SERVICE SCHEDULERS ... 12

2.2.1 Packet Fair Queuing Schedulers ... 14

3 HARDWARE TESTBED ... 16

3.1 IDENTIFICATION OF THE DESIGN REQUIREMENTS 16

3.1.1 Selection of the Processor ... 16

 3.1.1.1 General Purpose Processors .. 17

 3.1.1.2 Embedded RISC Processors .. 17

 3.1.1.3 Network Processors ... 17

 3.1.1.4 ASIC .. 18

x

 3.1.1.5 FPGA .. 18

3.2 HARDWARE DESIGN OF THE DATA-PROCESSING BOARDS 19

3.3 HARDWARE DESIGN OF THE BACKPLANE ... 21

3.4 LOGIC DESIGN WITH FPGA ... 23

4 FPGEN: A FAST, PROGRAMMABLE TRAFFIC GENERATOR 25

4.1 SYNTHETIC TRAFFIC GENERATION FOR THE PERFORMANCE

EVALUATION OF COMPUTER NETWORKS ... 29

4.1.1 Proprietary Hardware Traffic Generators and Software Traffic

Generators .. 29

4.1.2 FPGA-Based Hardware Traffic Generators .. 30

4.1.3 Traffic Types Generated by FPGEN ... 36

4.2 FPGEN POISSON TRAFFIC GENERATION ... 37

4.2.1 Conceptual Design .. 37

4.2.2 Hardware Design ... 39

4.2.3 Experiments and Performance Evaluation .. 45

4.3 FPGEN BURSTY TRAFFIC GENERATION .. 50

4.3.1 Conceptual and Hardware Design ... 50

4.3.2 Experiments and Performance Evaluation .. 53

4.4 TRAFFIC GENERATION CAPABILITIES OF FPGEN 54

4.5 CONCLUSIONS ... 57

5 HARDWARE DESIGN AND IMPLEMENTATION OF PACKET FAIR

QUEUING ALGORITHMS .. 59

5.1 DESIGN OF A DYNAMICALLY ADAPTABLE PFQ SCHEDULER 60

5.1.1 PFQ Schedulers ... 60

5.1.2 Block Level Design of a PFQ Architecture .. 61

5.1.3 Design Challenges and Proposed Solutions .. 63

 5.1.3.1 Hardware Division .. 63

 5.1.3.2 Dynamical Adaptation .. 65

 5.1.3.3 Counter Aging ... 65

xi

 5.1.3.4 Searching ... 66

5.2 REVIEW OF THE PREVIOUS WORK ON THE HARDWARE

IMPLEMENTATION OF PFQ SCHEDULERS ... 66

5.3 IMPLEMENTATION OF WF2Q+ ALGORITHM ON FPGA 69

5.4 PERFORMANCE MEASUREMENT .. 72

5.5 CONCLUSIONS ... 75

6 A WINDOW BASED METHOD FOR PROVIDING QOS GUARANTEES

UNDER FLOW AGGREGATION .. 76

6.1 REVIEW OF THE PREVIOUS WORK ON FLOW AGGREGATION 77

6.2 WINDOW BASED FAIR AGGREGATOR ... 81

6.2.1 Preliminaries ... 81

6.2.2 Window Based Fair Aggregator ... 86

6.2.3 Calculation of w(t) .. 87

6.2.4 Packet Transmission ... 88

6.3 ANALYSISOF THE WINDOW BASED FAIR AGGREGATOR 90

6.3.1 Calculation of the Delay Bound .. 93

6.4 IMPLEMENTATION AND TEST RESULTS ... 95

6.5 CONCLUSIONS ... 98

7 SUMMARY AND CONCLUSIONS ... 100

REFERENCES ... 105

CURRICULUM VITAE .. 120

xii

LIST OF TABLES

TABLES

Table 4-1 The evaluation of the previous work on the software traffic

generators ... 30

Table 4-2 The evaluation of the previous work on the hardware traffic

generators ... 32

Table 4-3 The utilization of the FPGA resources for the Poisson traffic generator

design ... 45

Table 4-4 Experiment loads and data rates .. 46

Table 4-5 Differences between the empirical and computed CDF 48

Table 4-6 The utilization of the FPGA resources for the bursty traffic generator

design ... 54

Table 4-7 Test results for bursty traffic generator together with the calculated p and

q values and the desired traffic conditions ... 54

Table 5-1 The basic structure of the look-up table which is used in the division

operation ... 64

Table 5-2 The utilization of the FPGA resources for the WF2Q+ scheduler 72

Table 5-3 The experiment results of the WF2Q+ scheduler implementation 73

Table 6-1 The experiment results of the WBFA implementation 96

xiii

LIST OF FIGURES

FIGURES

Figure 2-1 Typical interconnected network with several end systems and routers . 10

Figure 2-2 The structure of a generic router .. 12

Figure 3-1 The PCB layers as seen on the HyperLynx software user interface 20

Figure 3-2 The basic building blocks of the data-processing board 20

Figure 3-3 The upper view of the data-processing board .. 21

Figure 3-4 The building blocks of the backplane ... 22

Figure 3-5 The top level schematic view of the backplane design as seen on the

Mentor Graphics Design Architect .. 22

Figure 3-6 The hardware testbed.. 23

Figure 4-1 The design idea of the Poisson traffic generator 39

Figure 4-2 The basic building blocks of the traffic generator design 40

Figure 4-3 The boundary vectors and the segments... 42

Figure 4-4 The cumulative distribution of the packet sizes 43

Figure 4-5 Experiment results for the comparison of generated traffic distribution

and the theoretical expectation ... 47

Figure 4-6 CDFs for packet sizes and inter-packet times at = 1 50

Figure 4-7 The state transition diagram of the bursty traffic generator design and the

probabilities corresponding to the state transitions 51

Figure 5-1 The block level architecture of the PFQ schedulers 62

xiv

Figure 6-1 An aggregator n and a scheduler s next to n... 83

Figure 6-2 (a) The arrival and (b) the departure times of the packets to the

aggregator n .. 86

Figure 6-3 An example for the operation of WBFA. (a) shows w(t) and the service

received by flows f and h, (b) shows the arrival times and sizes of the

packets and (c) shows the departure times of the packets 90

Figure 6-4 The aggregators m, n and the scheduler s .. 91

Figure 6-5 The two level WBFA array structure ... 97

xv

LIST OF ABBREVIATIONS

ABBREVIATIONS

ASIC : Application Specific Integrated Circuit

ATM : Asynchronous Transfer Mode

BSFQ : Bin Sort Fair Queuing

BWRR : Budgeted Weighted Round Robin

CAI : Work-Conserving Aggregation with Isolation

CDF : Cummulative Distribution Function

CF : Continuous Framing

CLB : Configurable Logic Block

DDR : Double Data Rate

D-EDD : Delay Earliest Due Date

DRAM : Dynamic Random Access Memory

FAbS : Flow Aggregate based Services

FAN : Flow Aware Networking

FCFS : First Come First Served

FIFO : First In First Out

FPGA : Field Programmable Gate Array

FPGEN : Fast Packet GENerator

FQ : Flag Queue

xvi

FRR : Fair Round Robin

FSA : Flow State Aware Architecture

GFS : Gigabit Fair Scheduling

GPS : Global Processor Sharing

GR : Guaranteed Rate

HOL : Head Of Line

HRR : Hierarchical Round Robin

IP : Internet Protocol

KS : Kolmogorov-Simirnov

LFSR : Linear Feedback Shift Register

LR : Latency Rate

MMBP : Markov Modulated Bernoulli Process

NGN : Next Generation Network

PCAP : Packet CAPture

PCB : Printed Circuit Board

PCI : Peripherial Component Interconnect

PFQ : Packet Fair Queuing

PPS : Packets Per Second

PTG : Precise Traffic Generator

QoS : Quality of Service

RAM : Random Access Memory

RCSP : Rate Controlled Static Priority

RED : Random Early Detection

RSE : RAM-based Searching Engine

xvii

S&G : Stop and Go

SCFQ : Self Clocked Fair Queuing

SFQ : Start time Fair Queuing

SRAM : Static Random Access Memory

SRR : Stratified Round Robin

TCP : Transmission Control Protocol

TCRM : Traffic Controlled Rate Monotonic priority

TSFQ : Tiered Service Fair Queuing

VHDL : Very high speed integrated circuit Hardware Decription Language

VOIP : Voice Over IP

WBFA : Window Based Fair Aggregator

WF2Q : Worst Case Fair Weighted Fair Queuing

WF2Q+ : Worst Case Fair Weighted Fair Queuing Plus

WFI : Worst case Fairness Index

WFQ : Weighted Fair Queuing

XOR : Exclusive OR

1

CHAPTER 1

INTRODUCTION

The services in the Next Generation Network (NGN) include real time applications

such as IP telephony and video in addition to virtual environments and global or

local information centers. These services will be created on demand by the

customers and will be carried out with end-to-end Quality of Service (QoS) support

such as bandwidth, delay and jitter guarantees [1]. The end-to-end QoS requires the

classification of packets into flows on each network node on their path, storing them

in per flow queues and employing a scheduler to decide for the service received by

these queues. These are all data path operations which have to be executed for each

packet hence they are implemented in hardware and their complexity affects the

feasibility of the implementation.

The scheduling algorithms which are used in the QoS schedulers of the routers and

the switches are one of the most important components determining the Quality of

Service (QoS) performance of the Internet. In order to provide QoS support, the

scheduling algorithms specify the order of transmission for the the packets that are

queued at the output ports. The scheduling algorithms enable different services for

different flows and affect the overall QoS closely. A good scheduling algorithm

should efficiently utilize the network resources and provide protection between the

flows. This protection should prevent some greedy flows from taking the service

share of the other flows. The scheduling algorithm should also provide fairness by

serving the flows in proportion to the agreed service shares. Another property that

2

should be found in a good scheduling algorithm is flexibility. This property allows

the algorithm to support different applications. While possessing these properties,

the scheduling algorithm should be simple at the same time. This simplicity

provides low algorithmic complexity and also low implementation complexity.

Generalized Processor Sharing (GPS) is an ideal hypothetical scheduling algorithm

which can provide perfect protection among the flows [2, 3]. GPS is based on a

fluid flow model where traffic flows are infinitely divisible and multiple flows can

receive service simultaneously and the service share of each flow is proportional to

its weight. GPS can provide network delay bound for leaky bucket constrained

traffic [4-6]. However, in packet networks, the packet is the minimum service unit.

As a result of this, GPS cannot be realized in packet networks.

With the intent of getting as close as possible to this ideal scheduling, a class of

Packet Fair Queuing (PFQ) algorithms is proposed to emulate the behavior of GPS

[7-17]. In all PFQ algorithms, there is a global function called virtual time which is

used to track the progress of the GPS scheduler. For each head of line (HOL) packet

of each flow in the system, a finish time is calculated. This finish time corresponds

to the time that this packet would leave the GPS scheduler. Packets are then served

in the order of their respective finish times.

All the PFQ algorithms, even the simpler ones have implementation difficulties

which put a limit on the maximum number of flows supported for a fixed amount of

implementation area. Calculations of the timestamp functions require hardware

division. Also the scheduler needs to search the minimum time stamp value among

many flows. The logic resources that is necessary to accomplish these tasks increase

with the increasing number of flows.

In this thesis, different than the previous works that present designs for specific PFQ

algorithms we propose a general framework that can be used to implement any given

PFQ algorithm. To this end, we provide a block level architecture which separates

3

the general components that are common to all PFQ schedulers and the algorithm-

specific components. In this architecture, we identify the design challenges and use

techniques such as look-up-table based operations and dynamical adaptation of these

tables to overcome these difficulties. We use our proposed architecture to implement

a popular PFQ algorithm, i.e., Worst Case Fair Weighted Fair Queing Plus (WF2Q+)

[16] on hardware. The algorithm is implemented on an FPGA (Field Programmable

Gate Array) based board and the performance evaluation is performed on a hardware

testbed. The main reason for selecting the FPGA as the hardware implementation

medium is that the very high number of logic gates and embedded blocks in today’s

FPGAs enables the design of complex hardware platforms with reduced engineering

cost and rapid turnaround time.

The complexity of the scheduling algorithms increases with the quality of the

provided service. Furthermore the complexity increases with the number of flows

that are scheduled. The schedulers are required to operate at wire speed and the

execution of the scheduling algorithm has to be completed in a single packet time.

As a consequence, when the number of flows exceeds a certain limit, the scheduling

algorithm will be unable to continue its proper operation.

The commonly proposed solution for increasing the number of flows supported by

the scheduler is simply employing the latest hardware technology to achieve the

fastest implementation. However, the number of flows is always increasing with the

new types of applications and the increasing number of devices connected to the

Internet. Hence there will always be a limit on the number of flows supported by a

given architecture. In addition, the cost of implementing such high-speed, high-

capacity router with cutting edge technology is very high. Considering the dynamic

network traffic profile with changing loads and flow patterns, it is expected that

most of the time the router will be operating with smaller number of flows than it

can actually support. This will lead to inefficient use of the investment.

4

Another approach for building packet schedulers that support large number of flows

is employing pipeline techniques which require less hardware resources in the

expense of increased time to process each packet. In these approaches, the packets

arriving at the instances of timestamp calculation and packet selection are

discarded. In high data rates, the number of discarded packets can reach to an order

of ten thousands [18]. Decreasing the per packet processing time in the pipelined

approach requires expensive hardware resources as discussed in [19] which again

leads to high cost implementations.

A third approach to support high number of flows is aggregating them to decrease

the implementation complexity. The basic problem in flow aggregation is

preserving QoS guarantees of the constituent flows in the aggregate. As a result of

the greedy behavior of one of these flows, the others may receive decreased delay

and fairness performance. This problem is tackled in [20] which proposes a network

model that consists of flow aggregators and packet schedulers. In this work, it is

proved that if the flow aggregation is performed fairly and the packet schedulers

have certain properties, the end-to-end delay guarantees are preserved with respect

to the case that no flow aggregation is performed. [20] presents two different

approaches for the design of fair aggregators. The first one is “the basic fair

aggregator” which limits the service rate for the aggregated flow to the sum of the

reserved rates of the input flows. The second approach is “the greedy fair

aggregator” which relaxes this limit only if all input flows have an arrival rate

greater than their reserved rates. It is possible that the arrival rate of the flows to be

aggregated exceed the total reserved rate temporarily. In such case even if there is

available capacity to serve these flows, it will not be utilized.

In this thesis, we present Window Based Fair Aggregator (WBFA) and analytically

show that it is a fair aggregator as defined in [20]. Hence, the individual delay

bounds of the constituent flows aggregated by WBFA are preserved. Our approach

allows the constituent flows to use the full capacity of the output channel until the

difference in the service received by the flows reaches a limit. As a result of the

5

increase in the utilization, the average end-to-end delays provided by WBFA are

expected to be lower than the basic and greedy fair aggregators proposed by [20].

While increasing the utilization, WBFA also preserves the fairness of service to the

aggregated flows. WBFA provides a tunable trade-off between the efficient use of

the available bandwidth and the fairness among the constituent flows. In addition to

these, WBFA has low implementation complexity and can be efficiently

implemented on hardware. WBFA is implemented on an FPGA based board and its

performance is measured in our hardware testbed.

The hardware testbed is designed in the context of this thesis. The testbed consists of

several FPGA based boards and a backplane to connect these boards. The schematic

design of the boards, PCB layout design, and manufacturing of the boards are done

as a part of this thesis.

A traffic generator “FPGEN (Fast Packet GENerator)” [21] is designed to measure

the performance of the schedulers that are implemented on the hardware testbed.

FPGEN is a programmable random traffic generator which is entirely implemented

on FPGA. FPGEN can generate variable packet size Internet traffic with Poisson

and Markovian arrivals at OC-48 rate per interface. We present a model which

overcomes the inherent difficulties of generating Poisson traffic on a serial interface

due to the required independency between the packet sizes and the inter-packet

times. In addition, FPGEN can generate Markov-modulated traffic entirely on

hardware.

FPGEN is scalable to high-speeds as it is implemented purely on hardware without

using any high level programming or processors. The packet generation times are

randomly computed in real-time entirely using the logic resources of the FPGA.

The FPGEN board has two OC-48 fiber-optical interfaces and operates at 125MHz.

Hence, it is able to support a total traffic generation rate close to 5 Gbps and 250

million packets per second. FPGEN is configurable to generate traffic with different

parameters due to the programmability of the FPGA. Our research on FPGEN

6

includes the theoretical design of FPGEN, the hardware design of the FPGA-based

traffic generator board and the implementation of FPGEN on FPGA.

The novel contributions of this thesis can be listed as follows.

A traffic generator “FPGEN” which can generate Poisson traffic and Markov-

modulated on-off traffic is designed. The traffic generator is scalable to high speeds

as a result of the operations being purely carried on hardware [21].

Generating traffic according to given statistics on a serial interface has inherent

difficulties due to the required independence between the packet sizes and the inter-

packet times. We present a model which can overcome these difficulties for Poisson

traffic and be implemented on hardware. To the best of our knowledge there is no

other published work on a hardware-based packet generator that produces Poisson

traffic with exponentially distributed packet sizes.

The previous approaches for generating Markov-modulated traffic include RAM

based and processor based techniques. We apply our design approach to generate

on-off traffic entirely on hardware.

For FPGEN, we provide hardware design details and performance measurement

results that demonstrate the achieved rate and the statistical properties of the

generated traffic.

We propose a general hardware architecture for the design of the family of PFQ

schedulers. We use this architecture to identify the design challenges. We propose

new design improvements and use previously presented approaches to overcome

these difficulties.

7

Using our proposed architecture, we implement the WF2Q+ algorithm on hardware.

We provide hardware design details. We make performance measurements and

provide test results. We show that the results are within the theoretical limits.

We propose a novel flow aggregation algorithm “WBFA” and show analytically

that WBFA is a fair aggregator. We calculate theoretical delay bounds for WBFA.

We implement WBFA on hardware and make performance measurements. We

present the test results and show that the results agree with the theoretical delay

bound.

The thesis is organized in seven chapters. In Chapter 2, QoS schedulers are

described by introducing the basic concepts used throughout the thesis. Chapter 3

gives the details of the design of the hardware testbed. In Chapter 4, FPGEN traffic

generator is explained in detail. Chapter 5 explains the design of the proposed PFQ

architecture. Both theoretical design details and implementation results are given in

this chapter. In Chapter 6, Window Based Fair Aggregator design is introduced. In

this chapter, first it is shown analytically that WBFA is a fair aggregator. Then the

hardware implementation of the WBFA is explained. Finally Chapter 7 summarizes

the thesis and presents the conclusions.

8

CHAPTER 2

SWITCHES FOR HIGH SPEED NETWORKS

Everyday, Internet offers new benefits for the welfare of mankind. We have already

adopted ourselves to file sharing, voice conversation, video meeting and streaming

audio and video applications over the internet. The widespread usage of Voice Over

IP (VOIP) and high definition video broadcasting is also on the way. When all of

these applications are summed up, we need quite huge network bandwidth and strict

quality of service support for the sake of being more tightly connected.

To support the demand for network bandwidth, optical fiber technology has grown

very fast and found large application areas especially in backbone networks. Optical

fiber technology enables the transmission of multi-gigabit data in one second over a

single fiber line. By using many fiber lines in parallel and also adopting optical

technologies such as wavelength converters, very high data rates are offered to

support the growing bandwidth requirement. Due to the recent developments in

optical fiber technology, huge carrying capacities are provided to the computer

networks.

The widespread usage of the Internet and computer services has resulted in a rapid

increase in the network traffic. In this traffic, an important part of the services

require real-time data transmission. Audio and video streaming, video conferencing,

internet telephony are a few examples of these kind of multimedia services. These

9

services require large amount of network bandwidth and QoS support such as delay

and jitter bounds and throughput guarantees.

In order to provide QoS support for the real-time services and also to utilize the

resources such as bandwidth and buffers efficiently, packets should be assigned

different priorities when accessing network resources. End to end QoS can be

provided by allocating the network resources among flows according to the type of

the packet data or the type of service that is purchased by the customer. In order to

achieve this, the packets arriving from different flows are kept in separate queues.

The QoS scheduler makes a choice among the head of line packets in these queues

and selects the packet that is to be transmitted next.

QoS scheduling is a data plane function and is performed on every single packet in

a computer network [22-24]. The data plane functions are required to be executed

without slowing down the data transmission in a network device. This wire speed

operation of a network device demands for extremely short packet processing times.

In order to reach high data rates, packet processing applications such as

classification, table look-up and header modification should take place in embedded

hardware platforms. Packet buffering and buffer management requirements had

further increased the importance of efficient implementation of schedulers in

hardware.

2.1 SWITCHES AND ROUTERS

Internet is in fact, network of networks which are composed of millions of

computing devices connected with communication links such as copper, radio,

fiber, satellite, etc... In these networks, the data is routed among the end systems by

the help of routers. The main job of a router is forwarding the packets from source

to the recipients. Figure 2-1 shows a typical interconnected network with several

end systems and routers.

10

Figure 2-1 Typical interconnected network with several end systems and routers.

When a packet is received, the router first looks up the packet destination address in

the forwarding table to identify the outgoing ports. Then, it manipulates the header

according to the needs and sends the packet to the output ports. In the output ports,

the packet is queued and finally transmitted onto the outgoing link.

While a router is a layer-3 device, a switch is a layer-2 device that operates on

Ethernet frames. The hardware of both devices is similar but the router has

additional layer-3 software. Hence, in this thesis, our focus will be on the network

switches.

11

Generic switch architecture is composed of input and output ports which are called

line cards, switch fabric and CPU. Figure 2-2 shows the structure of a generic

router. Line cards are entry and exit points of data in the router. They connect

external network to switch fabric. Many physical layer actions such as signal

conversions between different domains, synchronization and frame processing take

place in the line cards. Switch fabric connects the input and output ports of the

router and performs the task of switching. After switching, the packets are queued

at the buffers of the output line cards. The packet that will be delivered to the output

line is selected by the QoS scheduler at the output line card. The goal of the QoS

scheduler is to provide different service and different priorities for different traffic

sources. CPU deals with general management and maintenance of the router such as

updating address tables, collecting packet statistics, etc...

One of the most important characteristics of the router architecture is the switch

fabric’s speedup. Speedup is defined as the ratio of the data rate that can be

switched to an output port to line rate. If the speedup is 1, that is the switch fabric

speed is the same as that of the network line, all the packets are queued at the input

line cards waiting for the switching fabric. Assuming that the router has N input and

N output ports, if the speedup is greater than 1 but smaller than N, some of the

packets will wait for the switch fabric in the buffers at the input line cards and some

of them will wait for the QoS scheduler in the buffers at output line cards. Ideal

performance is achieved when speedup is N. In this case, packets do not need to

wait for the switch fabric because the switch fabric is fast enough to serve the

packets coming from all the ports as if there were only one input port. The packets

are queued only in the buffers at the output line cards of the router. When speedup

is N, the QoS scheduler has access to all the packets waiting in the router, hence

“speedup=N” is the best case for the QoS support.

12

Figure 2-2 The structure of a generic router.

2.2 QUALITY OF SERVICE SCHEDULERS

Quality of service is the ability to have resource guarantees and service

differentiation so that the applications which are delay, jitter or loss sensitive can

perform satisfactorily. QoS can be provided by giving relative priorities and

defining different levels of service to different flows and packets in the network. In

order to provide QoS support, the QoS scheduler specifies the order in which the

packets queued at the output ports are actually transmitted. The QoS scheduler

gives different service to different connections.

In today’s switches, increasing QoS requirements have put a significant emphasis

on the design of schedulers. Schedulers are generally evaluated using performance

metrics such as complexity, delay bound, worst case fairness index (WFI) and

13

required buffer space. The complexity is related with the computational resources

required for the execution of the scheduling algorithm. Delay bound is the highest

possible delay that a packet can encounter under defined traffic conditions. WFI is a

parameter that is used to measure the discrepancy between the scheduling algorithm

and GPS. Required buffer space tells the amount of packet data that needs to be

buffered in the scheduler.

QoS schedulers have two main classes. These are sorted priority based and frame

based schedulers. The sorted priority based scheduler computes a timestamp for

each arriving packet with respect to current system state and the system is updated

accordingly. The scheduler sorts the packets based on their timestamps. This type of

schedulers provides tight end-to-end delay bounds. However, computation of the

timestamp for each packet, maintaining priority queues and performing

computations at line rate results in high complexity. Weighted Fair Queuing (WFQ)

[2, 3], Self Clocked Fair Queuing (SCFQ) [7], Delay Earliest Due Date (D-EDD)

[25], Rate Controlled Static Priority (RCSP) [26] and Traffic Controlled Rate

Monotonic Priority Scheduling (TCRM) [27] are examples of sorted priority based

schedulers. All PFQ schedulers are sorted priority based schedulers.

The frame based scheduler splits time into frames and limits the amount of traffic

that can be transmitted during a frame period [10]. There might be an additional

delay component to smooth the bursts over the frames. This type of schedulers can

provide bandwidth guarantees and have low complexity. Stop and Go (S&G) [28],

Hierarchical Round Robin (HRR) [29], Continuous Framing (CF) [30] and

Budgeted Weighted Round Robin (BWRR) [31] are examples of frame based

schedulers.

To ensure the QoS requirements, the traffic has to be shaped and defined according

to special traffic models before entering the network. (r, T), (σ, ρ), and (Xmin, Xave, I,

Smax) are widely used traffic models. In (r, T) model, r is a measure of the average

data rate. In an interval of length T, no more than rT bits are transmitted. In (σ, ρ)

14

model, σ indicates the maximum burst size and ρ indicates the long term bounding

rate. In an interval of length T, no more than (σ + ρT) packets are transmitted. In

(Xmin, Xave, I, Smax) model, Xmin denotes the minimum inter-arrival time between the

packets and Xave denotes the average inter-arrival time between the packets

measured over an interval of length I. Smax denotes the minimum packet size. In

some cases, there may be a need for shaping the traffic at each scheduler. To

achieve this, each scheduler has a traffic regulator.

2.2.1 Packet Fair Queuing Schedulers

The ideal scheduling is provided by the hypothetical GPS scheduler. GPS uses a

fluid flow model and assumes that the flows are infinitely divisible and multiple

flows can receive service at the same time. Despite its ideal scheduling

performance, GPS cannot be used in packet switching networks where packet is the

smallest service unit. There are different schedulers introduced for use in packet

networks. PFQ schedulers try to emulate the behavior of GPS in packet networks.

PFQ schedulers work with (σ, ρ) traffic model. The scheduler first computes the

time the packet would complete service when all the connections receive fair

service. This value is called “finish number”. All the packets are served with this

order. The scheduling algorithm is priority based. The finish numbers need to be

ordered. The provided end to end delay bound increases with the number of

switches on the route.

Weighted Fair Queuing (WFQ) [2, 3] algorithm is known to be the first PFQ

algorithm. As long as a flow is leaky bucket constrained, WFQ can provide end-to-

end delay bound similar to the GPS. It is proven that WFQ does not fall behind the

GPS by more than one maximum size packet but it can be ahead of the GPS [15].

The complexity of WFQ is O(V) where V denotes the number of available

connections. The complexity comes from computing the timestamp and maintaining

15

the priority queues. The buffer requirement increases in each switch on the route.

Due to the high complexity of the algorithm, implementation is very difficult.

Worst Case Fair Weighted Fair Queuing (WF2Q) algorithm [15] tries to improve

WFQ by using an eligibility test in the selection of the packets. When the scheduler

is selecting a packet for transmission, the scheduler considers only the eligible

packets which are the set of packets that have started service in the emulated GPS

system. WF2Q can provide almost the same service as the GPS. The maximum

service difference is one maximum packet size [15].

Both WFQ and WF2Q have a major drawback of computational complexity. The

time complexity of both of the algorithms is O(N) where N is the number of flows

[23]. WF2Q+ [16] is an enhanced version of WF2Q and it has less time complexity.

WF2Q+ computes the virtual time function without emulating the GPS. As a result

of this, it can provide worst case fairness properties with utilizing simpler

calculations. This leads to increased implementation efficiency on hardware

platforms.

Several other scheduling algorithms are also proposed to emulate GPS behavior in

different ways. SCFQ [7] and Start Time Fair Queuing (SFQ) [32] try to simplify

the emulation of GPS by using efficient virtual time functions. Bin Sort Fair

Queuing (BSFQ) [33], Stratified Round Robin (SRR) [34], Fair Round Robin

(FRR) [35] and Tiered Service Fair Queuing (TSFQ) [36] uses quantization to

simplify the emulation.

16

CHAPTER 3

HARDWARE TESTBED

In this thesis, QoS schedulers are designed and implemented in hardware. Also,

new architectures are designed and their performance is evaluated on FPGA. In

order to use in our hardware implementations and performance measurements, a

digital hardware testbed is designed and produced.

3.1 IDENTIFICATION OF THE DESIGN REQUIREMENTS

The network testbed will contain several data-processing boards and a backplane to

organize the communication between the boards. Each one of the data-processing

boards should contain a processor for the generation, processing and scheduling of

packets, a flash memory to keep non-volatile data, rs-232 interface to connect the

board to a PC, DC power converters to produce the different voltage levels required

on the board, VME-64 connectors for backplane connection and a PCB designed

with special care to prevent signal coupling between the lines at high data rates.

Also, fiberoptical transceivers should be used to reach high data rates.

3.1.1 Selection of the Processor

In the implementation of network applications, the choice of the hardware platform

affects speed, cost, design time, area requirement, power dissipation and

maintenance capabilities. Network applications are implemented on several device

17

families such as general purpose processors, embedded reduced instruction set

computer (RISC) processors, network processors, application specific integrated

circuits (ASIC), and field programmable gate arrays (FPGA). Each of these families

of devices offers specific benefits and drawbacks. A comparison of these families is

provided below.

3.1.1.1 General Purpose Processors

General purpose processors are preferred because they are very well-known, they

are rather cheap and they offer very elastic usage. However, these processors are

not optimized for the network operations. The implementations on these processors

cannot take the advantage of bit-level parallelism and concurrency. Their memory

access time is rather long. As a result of this, they cannot succeed at high line

speeds.

3.1.1.2 Embedded RISC Processors

They are preferred because of their low power dissipation and small area

requirement. Nevertheless, they have the same drawbacks as that of general purpose

processors. Also, their operating frequency is lower than general purpose processors

[37].

3.1.1.3 Network Processors

Network processors can analyze the packet headers, implement look-up operations,

and determine the output port of the packet very rapidly. The high throughput

offered by the network processors is a result of their multi-thread operation and

their multi-chip architecture. However, the processing of packets which belong to

the same connection by different processors destroys the order of the packets.

Hence, network processors cannot be used for the implementation of most

scheduling algorithms. Also, in order to have proper scheduler architecture, the

18

execution time of each operation in the processor should be well known by the

designer. This makes it necessary to adopt the scheduling algorithm to the

processor’s command set. Unfortunately, the implementation result varies according

to the processor architecture [37, 38].

3.1.1.4 ASIC

ASIC designs achieve the fastest and most successful results for the network

applications. However, ASIC design is quite expensive and takes long time. After

the design is completed, it is not possible to make modifications on the design [39].

Because of the fact that electronic technology grows very rapidly, ASIC cannot

respond to the modification and maintenance needs in the network systems. As a

result of these, ASIC designs are rather expensive and do not provide elasticity

required for the network applications.

3.1.1.5 FPGA

FPGA designs do not need long design time as ASIC. FPGA technology provides a

suitable design environment for the schedulers with many logic cells and high clock

speed. The design modifications and improvements can be achieved easily on the

FPGA. Also, FPGA design can be the first step to the ASIC design.

In the light of the given relative strengths and weaknesses of possible processor

choices, FPGA is preferred for the scheduler implementations in this thesis. Our

trial implementations showed that the FPGA should have more than 10000 cells and

should support clock frequencies higher than 100 MHz. Also, the FPGA should

have more than 400 user configurable I/O for memory interfaces and backplane

connections. Xilinx Virtex2Pro20FF1152 is selected because of its widely tested

architecture and rich library support. It has 20000 cells and 652 user I/O. An

onboard crystal oscillator provides 125MHz clock signal to the FPGA. Intel 28F640

is selected as the flash memory because of its short access time and our available

19

experience on the product. The platform flash memory is selected as Xilinx

XCF16P. Visual Studio .NET platform is selected to communicate with the board

through a graphical user interface.

3.2 HARDWARE DESIGN OF THE DATA-PROCESSING

BOARDS

The hardware design started with the schematic design of the boards. The

connections of the FPGA, other integrated circuits, power conversion and

distribution circuitry, and clock circuitry are specified on the Mentor Graphics

Design Architect software as huge sheets of logic design.

After schematic design, layout of the printed circuit board (PCB) is designed on the

same software. The PCB is designed with special care on the spacing between the

lines. There are more than 1000 signal lines connected to the FPGA and to be able

to pass the ball grids, signal line width is selected as 5 mils. The PCB has 14 layers

and a total thickness of 1.8 mm. Gerber files are simulated with HyperLynx

software for signal coupling. The simulations showed that the coupling between any

of the lines is no more than 300 mV. Figure 3-1 shows the PCB layers as seen on

the HyperLynx software user interface.

The PCB is produced in ILFA, Germany. The basic building blocks of the data-

processing board is given in Figure 3-2. Figure 3-3 shows the upper view of the

data-processing board.

20

Figure 3-1 The PCB layers as seen on the HyperLynx software user interface.

Figure 3-2 The basic building blocks of the data-processing board.

21

Figure 3-3 The upper view of the data-processing board.

3.3 HARDWARE DESIGN OF THE BACKPLANE

The backplane connects the data-processing boards with four 24-bit busses. Figure

3-4 shows the building blocks of the backplane. The bus lines are connected to D-

25 connectors for further extension requirements and testing purposes. Also, the

backplane distributes the 5V power to the data-processing boards. Same design

steps are followed for the design of the backplane. The top level schematic view of

the backplane design as seen on the Mentor Graphics Design Architect software is

given in Figure 3-5.

After the production of the data-processing boards and the backplane, each board is

tested for design and manufacturing errors. Following the tests, the data processing

boards are integrated to the backplane to form the final testbed. Figure 3-6 shows

the hardware testbed.

22

Figure 3-4 The building blocks of the backplane.

Figure 3-5 The top level schematic view of the backplane design as seen on the

Mentor Graphics Design Architect.

23

Figure 3-6 The hardware testbed.

3.4 LOGIC DESIGN WITH FPGA

FPGA is composed of thousands of configurable logic blocks (CLB). These logic

blocks are configured during the implementation of the design according to the

required hardware structure. The hardware behavior is first defined with one of the

hardware description languages: VHDL or Verilog. Then, the system behavior is

tested with one of the simulation tools: Xilinx ISE Simulator or Modelsim. These

simulation tools have specific libraries for each family of FPGA devices and could

perform realistic results. After the simulation, the design is implemented in

hardware. In the implementation phase, the signals are assigned to the selected

FPGA pins, time constraints are used to force the place and route process to

optimize the length of the routes and placement of the design. After that, a BIT file

is generated. This file contains all the information for the implementation of the

24

design and defines the configuration of the logic blocks and the routing between the

logic blocks. The BIT file is loaded onto the hardware using IMPACT software and

Xilinx Parallel JTAG Programming Cable. The behavior of the system can be tested

by observing the signals on hardware by using the software ChipscopePro. This

software uses JTAG pins of the FPGA to monitor the signals and displays the

results on PC with a graphical interface.

In this thesis work, VHDL is used for hardware description. Xilinx ISE 9.2 is used

as code development environment. ChipscopePro 9 is used for hardware testing.

25

CHAPTER 4

FPGEN: A FAST, PROGRAMMABLE TRAFFIC

GENERATOR

The increasing bandwidth and the variety of new applications of computer networks

continuously motivate both academic and industrial research for the development of

new network equipment such as switches and routers as well as new applications

and protocols. In this respect, traffic generators are required to test and evaluate the

performance of network applications, protocols, equipments or an entire network

under predetermined load conditions. The packets can be generated with a traffic

pattern according to a stochastic specification or based on a previously collected

trace. Network equipment manufacturers use traffic generators to test their

equipment in the laboratory environment and to demonstrate their capabilities to

their customers. Benchmark tests are performed in evaluation labs to test and certify

the equipments from different manufacturers by the help of very capable (and

expensive) traffic generators [40-42].

There is a large number of academic studies on the design and evaluation of

different switch architectures, fabric and QoS scheduling algorithms and buffer

management strategies. Important performance metrics such as packet delay and

loss depend on the management and scheduling of the buffers. These metrics are

evaluated analytically by modeling the buffers as queuing systems with traffic

arrivals such as Poisson, Bernoulli or Markov-modulated processes [43–52]. Hence,

26

traffic generators which can produce packets according to these certain processes

can demonstrate the accuracy of the analytical performance results when the

proposed architecture is implemented in hardware.

The traffic generators are required to be scalable to high speeds (in bit and packet

rates) and configurable to generate traffic according to the desired shape. While

software-based traffic generators [53–60] can produce a wide variety of traffic

patterns, they cannot reach high packet and bit rates [61]. Hence, design and

implementation of high-speed packet generators that can generate the intended

traffic properties on hardware is an important research issue.

The commonly used hardware platform for packet generator design in the previous

academic literature is FPGA. Today’s FPGAs comprise a very high number of logic

gates and embedded blocks in small packages. When compared to full custom

designs, FPGA technology enables the design of complex hardware platforms with

reduced engineering cost and rapid turnaround time. Furthermore, FPGA-based

prototype production is an important step for the verification of the expensive and

time-critical ASIC projects [62]. It is possible to convert a hardware design on

FPGA to ASIC provided that power source design, packaging and boundary scan

testing constraints are taken into consideration [63].

Previous work on hardware packet generators features techniques that limit the

scalability and flexibility of the design such as computing the packet generation

times and packet sizes using on-board processors [64] and external computers [65],

or relying on previously collected packet generation statistics at the expense of a

memory access for each packet generation [66, 67]. Some of these previous studies

are implemented and tested on hardware [64–67] while some of them are only

simulated in software [68, 69]. Furthermore there is no evaluation of the generated

traffic according to the desired statistics.

27

In this chapter, we present the design, implementation and performance evaluation

of a hardware-based packet generator FPGEN (Fast Packet GENerator). FPGEN

can generate Poisson traffic with exponentially distributed packet sizes and Markov

modulated on–off traffic which are widely adopted traffic models. To this end,

FPGEN can be used to evaluate the performance of switch fabric architectures,

buffer managers and QoS support mechanisms such as schedulers and packet

classifiers. The contributions of our research are as follows.

Firstly, our implementation is scalable to high-speeds as it is carried out purely on

hardware without using any high level programming or processors. The packet

generation times are computed in real-time entirely using the logic resources of the

FPGA. FPGEN does not depend on any collected traffic trace and can be configured

to generate traffic with different parameters exploiting the programmability of the

FPGA. The hardware design of FPGEN can generate one packet per clock period

per interface. This rate scales linearly with the number of interfaces and can be

achieved for both Poisson and on–off traffic types. The FPGEN board has two

interfaces and operates at 125 MHz which enables a maximum packet generation

rate of 125 Million packets/second (pps) per interface and 250 Mpps total. FPGEN

can fully utilize the two OC-48 fiberoptic interfaces and generate a maximum of 2.5

Gbps traffic per interface and a total of 5 Gbps. We provide the hardware

implementation details and experiment results to demonstrate the capabilities of

FPGEN. We did not find any previous work on hardware packet generators with

such a detailed description of the design to justify the claimed packet and bit rates.

Generating traffic according to given statistics on a serial interface has inherent

difficulties due to the required independence between the packet sizes and the inter-

packet times. The second contribution of this work is presenting a model which can

overcome these difficulties for Poisson traffic and be implemented on hardware. To

the best of our knowledge there is no other published work on a hardware-based

packet generator that produces Poisson traffic with exponentially distributed packet

sizes.

28

Generation of Markov-modulated on–off traffic is studied before in [68, 69, 64].

However, the used techniques in the previous work are RAM-based and processor

based. The third contribution of our work is applying our design approach to

generate on–off traffic entirely on hardware.

Finally the fourth contribution of our work is the hardware design details, the

experimental study carried out on hardware and its results that demonstrate not only

the rate achieved by FPGEN but also the statistical properties of the generated

traffic. [64–67] provide measurements of packet rate on hardware. However there is

no presentation of the hardware design such as its state machine structure which can

demonstrate the maximum number of clock periods to generate a packet. We

provide the implementation details to justify that our design is capable of generating

one packet per clock period per interface and this rate scales linearly with the

number of interfaces. In addition, our experimental study shows that the interpacket

times and packet sizes for the Poisson traffic and the average burst sizes and the

load achieved for Markov-modulated on–off bursty traffic achieve the targeted

statistical properties.

The remainder of the chapter is organized as follows. In Section 4.1, we summarize

and discuss the previous work in the literature on traffic generators. We introduce

the conceptual design followed by the hardware design and implementation of the

Poisson traffic generation of FPGEN in Section 4.2. Furthermore, we demonstrate

the generated traffic rates and their statistics. We present the design and evaluation

of the Markov-modulated on–off traffic generation of FPGEN in Section 4.3. We

summarize the features of FPGEN in Section 4.4, after demonstrating them by our

experimental studies. Our conclusions are given in Section 4.5.

29

4.1 SYNTHETIC TRAFFIC GENERATION FOR THE

PERFORMANCE EVALUATION OF COMPUTER NETWORKS

Performance evaluation studies in computer networking research require synthetic

traffic generation. To this end, traffic generators are used to replicate the traffic

conditions of the specific network environment that the device or the protocol under

test will be deployed on. According to the device, component or protocol to be

tested different parameters of the generated traffic are significant. While the packet

rate is important to test a packet classifier or a packet scheduler, the load conditions,

the inter-packet time and packet size distribution have to be considered to test a new

buffer management algorithm. The validity of statistical approaches can only be

justified with precise replication of the assumed traffic conditions.

4.1.1. Proprietary Hardware Traffic Generators and Software Traffic

Generators

Traffic generators can be software or hardware-based. The hardware-based packet

generators such as [41, 42] are usually professionally developed and purchased at

expensive prices by network device manufacturers. These hardware packet

generators can achieve high packet and data rates with different traffic profiles,

however due to their cost and proprietary design they do not fit well into the

academic networking research.

There are a number of software-based traffic generators which provide flexible

configurable environments at low costs. However, the bit and packet rates and the

statistical accuracy of the generated traffic depend on the hardware that the software

runs on. Botta et al. [61] present a detailed recent study on the performance of

software traffic generators. In this study four packet level traffic generators [57–60]

([60] is also described in [54, 55]) are selected according to their popularity.

30

The results of [61] are summarized in Table 4-1. It is observed that the software

traffic generators fail to achieve the imposed packet rate starting from fairly low

rates. It is also observed that beyond 500 Mbps with the minimum-sized packets,

the throughput capabilities of the investigated generators saturate. Furthermore

starting from even lower rates the inter-packet times of the generated traffic are

found to deviate from the expected distribution. The reason for this behavior is

stated as the lack of dedicated buffers as opposed to hardware implementations and

the involvement of the CPU which is an expensive operation.

Table 4-1 The evaluation of the previous work on the software traffic generators

[61].

Name, ref. Traffic type(s) Kpps Mbps

TG, [57] Constant, uniform, exponential, on/off 70 600

MGEN, [58] Constant, exponential, on/off 70 600

RUDE/CRUDE, [59] Constant 80 500

D-ITG, [60] Constant, uniform, exponential, Pareto,

Cuchy, normal, Poisson, gamma, on/off

130 500

4.1.2. FPGA-Based Hardware Traffic Generators

FPGA-based hardware traffic generators both exploit the programmability of the

FPGA to provide flexible implementation and avoid the problems of the software

traffic generators as discussed above. Furthermore generation of traffic at high rates

demands for concurrency, bit-level parallelism, high operating frequency and short

memory access time which can be provided by the FPGA platform.

Traffic generation with certain statistical behavior requires a random number

generator which does not repeat itself for a sufficiently long time, state machine

structures for bursty traffic generation and different queues to aggregate traffic or

31

store packets before they are transmitted. It is possible to design hardware random

number generators on FPGA with very long periods until they repeat. Furthermore

FPGA provides appropriate infrastructure for state machine implementation and

ready to use blocks such as FIFO queues.

Generating a packet includes a number of steps such as deciding the packet

transmission time, its size, its header and payload content that are independent from

each other. Different packet streams can be generated independently both for

multiplexing to achieve certain aggregate behavior or for transmitting on different

interfaces. While, implementing these steps on a processor results in the sequential

and hence slow execution, the structure of the FPGA is very convenient for

designing logic circuits which are working in parallel. This enables the designer to

use high degrees of concurrency and thus shorten the total execution time. Another

favorable feature of the FPGA is that the execution time of each operation on the

hardware is well known by the designer. This is very important especially while

generating traffic according to a specific distribution in real-time to test a

networking device.

Other features that make FPGAs preferred platforms for the design of traffic

generators are their affordability, short development time and flexibility thanks to

their programmability. After the FPGA design, the generated design files can easily

be converted to ASIC designs with small effort [62, 63].

We present a comparative evaluation of FPGA-based hardware traffic generators in

the literature with FPGEN in Table 4-2. Related work dates back to 1996 motivated

by the then high-speed ATM technology [69]. In this study, the maximum traffic

generation rate is computed as 4.5 Gbps by simply multiplying the trigger rate of 12

MHz and 53 bytes per ATM cell. However, no experimental results are reported to

demonstrate that the packets are indeed generated at the stated maximum achievable

rate with the correct stochastic distribution. In addition, no discussion is provided

32

on the capability of the state machine structure in the designs to generate a new

packet in each clock period.

Table 4-2 The evaluation of the previous work on the hardware traffic generators.

Sim: Simulation, HW: Hardware, Mpps: Million packets per second.

Ref., year Traffic type(s), packet

size(s)

Platform, approach,

implementation

Freq, max bps

[69], 1996 Markov Modulated
Bernoulli Process
(MMBP), fixed size
(ATM Cell, 53 bytes)

Altera MAX Plus II2
[37], state machine, sim

12 MHz, 4.5 Gbps

[67], 2002 Long-range dependent,
4 different packet sizes:
40, 256, 512, 1500 bytes

Altera FLEXlOK250E-
1, time-series data
stored in RAM is used
to represent the
transmitted traffic, HW

12 MHz, 4.5 Gbps

[68], 2005 Bernoulli, 2-state
Markov modulated,
packet sizes are not
specified

Xilinx Virtex-4 FPGA
[38], state machine, sim

20 MHz, BW is not
specified

[64], 2006 Self-similar, Bernouilli,
Markov-modulated, 5
different packet sizes:
40, 512, 600, 700, 1500
bytes

Altera
EP1SGX40GF1020
Stratix GX, on board
NiOS processor is
programmed to generate
packets, HW

155.52 MHz, OC-48

[66], 2009 Any traffic type, any
size

Xilinx Virtex II Pro 50
FPGA, PCAP file that is
loaded into SRAM is
replayed, HW

Not specified, 1 Gbps
per interface, total: 4
Gbps

[65], 2009 Any traffic type, only
packet headers

Xilinx Virtex II Pro 50
FPGA, controls the
timing of packets
received from asoftware
traffic generator, HW

33 MHz (PCI freq.),
total: 1 Gbps (Limited
by PCI bus)

[21]
FPGEN,
2010

Poisson traffic, 2-state
Markov modulated, 50
different packet sizes
(min: 64 bytes, max:
1536 bytes) payloads
can be created as
needed.

Xilinx Virtex II Pro 20
FPGA, linear feedback
shift register for
generating random
variables, HW

125 MHz, 125 Mpps
and 2.5 Gbps per
interface, total: 250
Mpps, 5 Gbps

33

In [67], the interarrival times for the packets are first stored in a 64 megabyte off-

chip memory in time-series format and then loaded into an FPGA via a PCI

interface. The size of the memory determines the time period that the packet

generation process repeats. The time-series data has predetermined intervals of 1,

10, 100 and 1000 ms, and an OC-48 rate of 2.36 Gbps is reached for packet sizes

that are larger than 512 bytes. The statistical correctness of the generated traffic is

demonstrated by comparing the Hurst parameters of the original time-series data

and the measured time-series data. The implementation platform does not work

standalone and requires a PC to work with. Furthermore the authors do not explain

if it is possible to generate the payload of the packets.

The arrivals are generated using probability values that are stored in RAMs in [68].

The correct operation of the packet generator is verified using stimulus written in

System C, and cosimulated with the Verilog HDL implementation, using the

Synopsys VCS-MX simulator. In the implementation of this design, triggers are

generated instead of real packets. Hence, no packet size or maximum achievable

data rate information is provided.

[64] is the most advanced and the fastest stage of a series of traffic generators with

the same design approach that are developed by the same authors. In this approach,

the traffic generator is coded in C and downloaded to an NiOS processor. The

processor runs the Micro C OS II operating system. Whereby it has to be noted that

the use of a processor instead of a pure hardware design limits the system

performance. Five different packet sizes are supported.

[65, 66] present packet generators implemented on NetFPGA. NetFPGA is a

general purpose networking platform accelerator designed as a PCI card to be

plugged into a computer. It contains a Xilinx FPGA, 4 Gigabit Ethernet ports, Static

RAM (SRAM) and Double-Date Rate (DDR2) Dynamic RAM (DRAM) providing

the interfaces and certain hardware blocks specific to networking applications such

as queue managers or packet capture components [72]. NetFPGA is neither

34

designed nor optimized for traffic generation. Traffic generation is an application

for NetFPGA in addition to others such as buffer managing, packet classification

and traffic monitoring. Generating packets according to a given profile is realized

by replaying packets from a (Packet CAPture-PCAP) dump file [66] or transmitting

the packets generated by computer on the Gbps interface [65].

In [66] packets are produced on the board according to the packet size, timing and

payload information in a given PCAP file. The design consumes 83% of the logic

slices on Virtex II Pro 50 which shows that it is very expensive to implement such a

hardware on ASIC. Any type of traffic can be generated provided that the

corresponding PCAP file exists. However, a simple test such as investigating the

packet delays under different average packet sizes requires the existence of

appropriate PCAP files rather than adjusting certain parameters and running tests.

There are additional issues related to packet generation by replaying previously

collected traffic. First of all, traffic captured on a link with certain properties such as

capacity and respective buffer size of the router does not always lead to realistic

results for some other link with different properties. Furthermore the closed loop

behavior of TCP or any feedback-based protocol cannot be accurately captured by

the PCAP files that are collected from past measurements. Finally, the PCAP file

contains the packet payload information. As a result of this, the size of the file

grows with the increasing number of packets and limits the number of packets that

can be generated before loading the PCAP file again.

Precise Traffic Generator (PTG) [65] is another NetFPGA based packet generator

which can be integrated to software based packet generation tools. In this approach,

the packets are generated on some host computer, sent to the NetFPGA board over

the PCI bus and then transmitted onto a Gigabit Ethernet interface. PTG’s main

objective is to control the transmission times of packets on the interface. The

statistical correctness of the generated traffic is demonstrated by comparing the

interarrival times of the generated traffic by PTG and a software based network

emulator rather than comparing to a mathematical model. PTG’s traffic generation

35

rate is limited by the 32 bit, 33 MHz PCI bus, which has a bandwidth of

approximately 1 Gb/s. As a result, only the packet headers are sent over the PCI bus

and the payloads of the packets are generated on the NetFPGA as all zeros. This

traffic cannot be used to perform network experiments which are sensitive to packet

payload. Although the authors offer adding a number of predefined packet payloads

in the future, the predefined nature of the packets may put some limitations on the

scope of experiments that can be performed with PTG.

The new version of the NetFPGA board comes with 4 10 Gbps interfaces. However,

there is no indication that the design in [66] will scale to generate traffic at these

rates. PTG presented in [65] is limited by the PCI bandwidth and will not be able to

utilize the high speed interfaces.

[73] is a special purpose traffic generator to provide a data flow identical to the data

coming from the detector and readout boards in a particle experimentat CERN [74].

The hardware traffic generator is designed as a result of the scalability problems

seen in the software simulator [75, 76] which was operating on a PC server. Traffic

generator reads experiment data from some network storage and formats the data

before sending it to a computing farm. A development board with a Stratix IV GX

FPGA is selected for implementation. It is argued that the 10 GbE interface of the

development board enables a traffic generation rate of 10 Gbps. However, no design

details or implementation results are presented to verify the scalability of the design

up to this data rate. Because of the specific purpose in the design of this traffic

generator, it does not function as an Ethernet traffic generator. It is integrated into a

special control system [77]. In its current state, it is not possible to use it as a

standalone hardware traffic generator in the tests of the high speed network

equipment.

36

4.1.3. Traffic Types Generated by FPGEN

FPGEN can produce Poisson traffic with exponentially distributed packet sizes and

Markov-modulated on–off traffic. These are two widely studied traffic profiles

which are also included in the generated traffic types of the software traffic

generators that we discuss in Section 4.1.1.

Poisson traffic was the first analytical model and is widely studied due to its elegant

analytical properties. [43, 44] can be mentioned among many other studies that

analyze the performance of their proposed switch and buffer architectures under

Poisson traffic. Furthermore FPGEN achieves Poisson traffic by multiplexing a

large number of Bernoulli arrivals. [43, 45–48] consider Bernoulli arrivals as traffic

models in their analyses for various switch, buffer and scheduler designs. Poisson

traffic streams are also suggested for traffic probing for active measurements of

delays on network paths [78]. This method is widely accepted and recent papers

study the cases where using Poisson probes is appropriate [79].

Although studies after 1990s suggest that the Internet traffic is long range

dependent and of self-similar nature, recently there are indicators that Poisson

arrivals can be used once again to model the Internet traffic [80]. [81] states that,

based on traces from backbone networks, at sub-second time scales, backbone

traffic appears to be well described by Poisson packet arrivals. In [82], it is shown

that on high-speed links, toward the core of the Internet, the traffic is composed of

large numbers of connections which smooths out the the burstiness and traffic

becomes similar to Poisson arrivals.

Markov-modulated on–off traffic models introduce the notion of state to determine

the probability law of the traffic and can be used to model the queuing behavior of

switches and routers under bursty multimedia traffic [83, 84]. One of the early

studies that discuss on–off traffic models is the highly cited work of [85]. These

models are verified for contemporary traffic profiles by [49, 50] which argue that

37

the on–off packet-level model is an accurate model for IP traffic at the aggregate

level, and for persistent TCP connections respectively. [51, 52] study the call and

burst level behavior of different serviceclasses of traffic flows with on–off-bursty

traffic. A very recent study [86] shows that the traffic in data centers exhibit on–off

behavior.

Lastly, self-similar traffic is another popular and widely studied traffic model [87].

[88] show that a self-similar traffic source can be modeled as an aggregation of a

number of on–off traffic sources. Hence the on–off traffic generation of FPGEN can

serve as a basis for self-similar traffic generation.

4.2. FPGEN POISSON TRAFFIC GENERATION

4.2.1. Conceptual Design

A Poisson process with rate is a sequence of events where the number of events in

any interval of length is Poisson distributed with mean . . A Poisson process is a

continuous-time stochastic process which is frequently used to model the packet

traffic in communication networks due to its nice and tractable analytical properties

and its fitness to model the aggregate effect of a large number of individuals

operating independently.

There are two important constraints for a hardware traffic generator which

generates traffic with specific distributions for the inter-packet times and the packet

sizes. The first constraint is the discrete time operation of the hardware; the second

constraint is the requirement to serially transmit the packets over the physical

interface.

In this work we generate Poisson arrivals with exponentially distributed packet

sizes while satisfying these constraints. To this end, we implement an

38

approximation of the Poisson process with a discrete time Bernoulli process. In this

approach there are independent traffic sources. Over each clock period each

source generates a packet with a uniform probability constituting a Bernoulli

process with trials where the probability of success of each trial is . For

sufficiently large and sufficiently small the Bernoulli process approaches a

Poisson process with rate . . [89] states that this approximation of the

Poisson process is a good one if is at least 20. We selected 50 for our

implementation after a search for a suitable number for the traffic source count

with a simulation study. It is possible to further increase , however the occupied

logic area also grows with and the accuracy of the approximation does not

improve significantly. The increased logic size uses more FPGA resources and puts

extra production costs for custom designs. The packet sizes are selected from a set

of 50 discrete packet sizes. Similar to the number of traffic sources, the number of

different packet sizes is determined with a simulation study to achieve the best

accuracy with a number of packet sizes as small as possible.

The inter-packet times and the packet sizes are independent from each other in the

mathematical model of our packet generation process. Hence, it is possible that the

time between two consecutively generated packets is smaller than the time to

transmit the first packet on the serial interface. When the packets are generated and

serially transmitted on a physical interface, choosing the inter-packet times and the

packet sizes from their corresponding distributions requires continuous adjustment

of these parameters to either fit the packet transmissions in the gaps between

consecutive packet generation times or to modify these gaps to accommodate the

packet transmission times. Not only is this a complicated task but also such

adjustments can lead to large deviations from intended distributions.

In our hardware design, we make use of Burke’s Theorem [90] to tackle this

problem for Poisson inter-packet times and exponentially distributed packet sizes.

Burke’s Theorem states that for a First Come First Served (FCFS) queuing system

39

with a single server, if the arrivals are Poisson arrivals with rate and the packet

sizes are exponentially distributed (forming an M/M/1 queue), then the departure

process is also a Poisson process with rate . Accordingly, in our design, we first

generate packets with exponentially distributed sizes according to the Poisson

process that is approximated using a Bernoulli process. These packets are input to

an FCFS queue and transmitted one by one on a hardware interface to constitute a

Poisson process according to Burke’s Theorem as seen in Figure 4-1. Although the

selecetion of the inter-packet times and the packet sizes are independent from each

other, as a result of this queuing there is a depencency between them in the output

channel. As the traffic rate increases, queue occupancy also increases and the

interpacket times become more dependent on the packet sizes.

Figure 4-1 The design idea of the Poisson traffic generator.

4.2.2. Hardware Design

FPGEN is designed in the scope of our research for constructing a custom built

high-speed network testbed. The FPGEN board is part of this testbed. However, it is

possible to implement FPGEN on any board which contains enough FPGA

resources and optical interfaces.

40

Figure 4-2 shows the basic building blocks of the FPGEN Poisson traffic generator.

The traffic generator contains 50 traffic sources which generate packet-generated

flags that are 1 bit pulses with the selected probability of /50 to achieve a certain

Poisson arrival rate of . These flags are stored in the First Come First Served

(FCFS) Flag Queue (FQ) with a maximum size of 1024 and processed by the

controller unit one by one. The control unit determines the packet size and builds

the payload of the actual packets corresponding to each flag. Once the packet is

ready for transmission it is stored in the output buffer to be transmitted on the fiber

interface immediately.

Figure 4-2 The basic building blocks of the traffic generator design.

The generation of packets with uniform probability by each traffic source is

achieved by using 64 bit Fibonacci Linear Feedback Shift Registers (LFSR). A

linear feedback shift register is a shift register whose input bit is a linear function of

its previous state. The input bit is driven by the exclusive-or (XOR) of the selected

bits (tap numbers) from the overall shift register content. The sequence of bits

produced by the register is completely determined by its current state. The register

has a finite number of possible states, consequently; it must eventually enter a

repeating cycle. However, an LFSR with a well chosen feedback function can

produce a sequence of bits which has a very long cycle and appears random.

41

When the outputs that influence the input (tap numbers) in a Fibonacci LFSR are

selected from the coefficients of the non-zero terms of the appropriate primitive

polynomials, the register cycles through a maximal number of states excluding the

all-zero state [92]. In this work, 64 bit LFSRs are used. The LFSRs have 264 states

and according to our calculations, this corresponds to a self-repeating sequence with

a sufficiently long repeating period of 4680 years as shown below.

 (4-1)

Each traffic source contains a 64 bit Fibonacci LFSR and two vectors of size 16 that

we call reference vector and success vector. The LFSR in each traffic source is

initialized by a different and randomly selected seed value. The seed is selected

before the FPGA code is synthesized and is not modified afterwards. Hence, the

LFSR in each traffic source generates a different pseudo-random bit sequence. The

reference vector keeps a 16 bit subset of the 64 bits in the LFSR and is updated

according to the content of the LFSR in each clock period. The success vector is

used to determine whether a traffic source generates a packet. The success vector is

preloaded with a 16 bit sequence according to the desired traffic load. In each

clock period, the content of the reference vector is compared to that of the success

vector. If the reference vector is smaller than the success vector, the packet

generation attempt is successful and a packet-generated flag is asserted in that

traffic source. Hence, each packet source generates packet-generated flags with a

uniform probability of /2 .

Whenever a flag is generated by any of the 50 sources, the flag is pushed into FQ

that is shared by all of the traffic sources. The controller unit performs the traffic

control procedure which includes monitoring the output buffer and FQ size

constantly. If the output buffer is empty and FQ has a non-zero flag count, the top

flag is popped. The controller unit generates the payload of the packet according to

years
yearMstates

states 4680
sec/)60.60.24.365.(sec/125

264

=

42

the randomly selected packet size information and puts the packet in the output

buffer where it is transmitted immediately using the RocketIO Multi-Gigabit

Transceiver [93]. No other flag is popped until the end of the packet transmission. If

FQ is not empty at the instance of flag generation, this control procedure takes place

while another packet is being transmitted and no packet delay is observed in the

channel. However, in our simulations, we observed that when the queue is empty,

the generated packet cannot be transferred to the output channel immediately

because of clock periods spent when FQ is checked. We solve this problem by

checking the channel if FQ is empty at the instance of flag generation, If the

channel is empty, the packet is transferred to the output channel without visiting

FQ. If the channel is busy, the flag is pushed to the queue. In this manner, the delay

that takes place when FQ is empty is removed and the packet is directly transferred

to the output channel.

The exponential distribution of the packet sizes is achieved by using a random-

value vector and 49 boundary vectors of size 25 bits. The 49 boundary vectors

partition the binary numbers from 0 to 225 into 50 segments. Figure 4-3 shows the

boundary vectors and the segments.

Figure 4-3 The boundary vectors and the segments.

43

The boundary vectors are calculated before the FPGA code is generated and are not

modified later. The boundary vectors are selected such that the size of each segment

is proportional to the probability of the generation of the corresponding packet size.

The random-value vector contains a 25 bit pseudo-randomly generated sequence

produced by the 64 bit LFSR’s in the system. When a packet-generated flag is

popped from FQ, the packet size corresponding to the segment which contains the

random-value vector is selected as the size of the packet. The cumulative

distribution of the packet sizes is shown in Figure 4-4.

Figure 4-4 The cumulative distribution of the packet sizes.

The logic circuit updates the random value vector and compares its value with the

boundary vectors continuously. Hence a new and random packet size value is

calculated at each clock period. If a packet flag is present in a clock period, the

current value of the packet size is selected as the size of the packet. If no packet flag

is present in a clock period, the packet size value is not used for packet generation.

As a result of this when a packet flag is generated, no additional time is required for

the calculation of the size of the packet. When a packet flag is present in a clock

period, the content of the packet is formed by simply copying related header and

44

payload vectors which are present on the FPGA into the packet body. Each bit is

copied in parallel, hence the content of the packet is also generated in a single clock

period.

The selection of the packet size and formation of the packet content processes use

very simple comparison and copying operations. As a result of this simplicity, one

packet can be generated per interface, in each clock which enables generating at a

maximum rate of 125 Mpps at 125 MHz. The sizes and contents of the packets on

each interface will be independent from the ones on the other interfaces.

Consequently the packet generation rate scales linearly with the number of

interfaces and the supported clock frequency of the FPGA.

We collect the statistics of the packets generated by FPGEN to demonstrate the

accuracy of the generated traffic with respect to the intended Poisson traffic shape.

For this purpose, our design contains a 16 bit master counter which is incremented

in each clock period and a 16 bit last packet transmission time vector which is

updated at each new packet transmission. At the start of each new packet

transmission, first the inter-packet time is calculated by subtracting the last packet

transmission time vector from the value of the master counter at that instance. The

calculated inter-packet time is stored in the flash memory. After that, the last packet

transmission time vector is updated with the new master counter value. We transfer

the inter-packet time data which is collected in the flash memory to a PC using an

RS-232 serial interface.

The Poisson Packet Generator of FPGEN uses 38% of the available slices on the

FPGA. The information about the utilization of the FPGA resources is presented in

Table 4-3.

45

Table 4-3 The utilization of the FPGA resources for the Poisson traffic generator

design.

Resource Used Available Utilization (%)

Slices 3574 9280 38

4-Input LUTs 6653 18560 35

Flip flops 3537 18560 19

Block RAMs 0 88 0

External IOBs 36 564 6

4.2.3. Experiments and Performance Evaluation

The inter-packet times between consecutive packets for Poisson packet traffic with

rate are exponentially distributed with a mean of 1/ . We aim to demonstrate

how accurately the Poisson packet generator of FPGEN can follow the desired

exponential distribution of the inter-packet times. To this end, we perform 6

experiments with different mean inter-packet times achieved by adjusting the

success vector as described in Section 4.2.2. In all our experiments, there are 50

different packet sizes which are exponentially distributed between 64 and 1536

bytes as shown in Figure 4-4. The mean packet size is 265 bytes which corresponds

to a mean sample packet time of 132.5 clock periods with 16 bits/clock

transmission speed. We collect 10000 inter-packet times and compute the average

sample inter-packet time of 1/ to determine the respective load / for

each experiment , = 1–6. The load values and their corresponding observed rates

per interface in Mpps and Gbps are presented in Table 4-4. Note that the traffic rate

in Gbps includes the overhead for the fiber optic interface. It is observed that the

traffic generation rate in Gbps can reach the full utilization of the OC-48 fiber optic

interface. The packet generation rate exceeds 1 Mpps at this maximum rate.

46

Table 4-4 Experiment loads and data rates. The pps and bps rates are per interface.

Exp. Mpps Gbps

1 0.07 0.0825 0.175

2 0.15 0.165 0.35

3 0.30 0.33 0.7

4 0.60 0.66 1.4

5 0.80 0.89 1.86

6 1.0 1.1 2.5

Different from all of the other works in the literature, we not only state the

generated traffic rate averages but also demonstrate that FPGEN generates traffic

with the intended distribution. We present the cumulative distribution function

(CDF) of the collected inter-packet time data in comparison to the computed CDF

values for exponentially distributed data for visually demonstrating their statistical

properties. In addition we employ the Kolmogorov–Smirnov Test (KS Test) which

compares the distribution of a given data set to the hypothesized continuous

distribution defined by the respective CDFs [94].

Let , represent sample inter-packet time (= 1–10000) collected in experiment

(= 1–6). We first compute the empirical CDF for , where , is the ratio

of inter-packet time measurements that is less than or equal to , to all

measurements in experiment .

We also define the computed CDF , values of , as follows

, 1 exp . , (4-2)

for the exponential distributed inter-packet times. The respective and for each

experiment are plotted in Figure 4-5.

47

Figure 4-5 Experiment results for the comparison of generated traffic distribution

and the theoretical expectation.

Our aim is to evaluate how closely the generated packet distribution follows the

intended distribution . To this end, let

48

,
, ,

,
. 100 (4-3)

define the difference between the empirical and the computed CDF values for , .

Then, we define and as the mean and maximum values of , .

Our second evaluation is running the KS Test which compares and with a

certain significance level for hypothesis testing. We use the kstest routine in the

MATLAB [95] Statistics Toolbox. The default significance level is 0.05 (5%). We

perform the test at significance levels of 1%, 2%, 5% and 10% where a significance

level of 10% is the most strict test. We used randomly selected subsets of the

original 10000 sample inter-packet times for the KS Test since even small

deviations from the theoretical distribution are picked up by the test for large

sample set sizes. The and values with KS Test results for each

experiment are presented in Table 4-5.

Table 4-5 Differences between the empirical and computed CDF. Results of the KS

Test. P: Pass, F: Fail.

Exp. CDF difference KS Test results

(%)

(%)

%1 sig.

level

%2 sig.

level

%5 sig.

level

%10 sig.

level

1 0.07 0.39 2.20 P P P P

2 0.15 0.77 4.51 P P P P

3 0.30 1.23 6.77 P P P P

4 0.60 1.91 8.84 P P P F

5 0.80 1.84 8.73 P F F F

6 1.0 1.08 6.32 F P F F

49

Our experiment results show that for low values (= 0.07, = 0.15, = 0.30)

 follows very closely. We have a large enough number of Bernoulli traffic

sources that are multiplexed to generate the Poisson traffic. Hence the times for the

packet generation events are Poisson distributed with the imposed average. In these

low load ranges, the interpacket times are mostly larger than the duration of the

packets. Thus, they are determined by the generation probabilities at the packet

sources without a significant effect of the packet sizes. The KS Test yields Pass

results for all of the significance levels.

The inter-packet times get shorter for a medium range load of = 0.60. This leads

to an increase in the number of instances where the consequent packet generation

happens before finishing the transmission of the current packet. In such cases the

generation time of the consequent packet is delayed until the current packet

transmission is finished which leads to the deviation of the statistics from the

desired distribution. The KS Test yields a Fail result for the highest significance

level of 10% for = 0.60.

The instances where the packet generation time is delayed due to the unfinished

packet transmission start to dominate when the load becomes high (= 0.80, =

1). The inter-packet times start to be mostly determined by the packet sizes that is

shown in Figure 4-4. The values that the inter-packet times can take are confined to

the 50 packet sizes which explain the discrete look of the figure compared to the

smooth curves for low load cases. = 1 indicates that there is always a ready

packet to be transmitted. In this case closely follows the exponential distribution

of the packet sizes which is plotted in Figure 4-6. As the empirical CDF has a

discrete form the traffic generation with = 0.80 passes only at the lowest

significance level while = 1 fails completely due to the very discrete nature of

the sample data.

50

Figure 4-6 CDFs for packet sizes and inter-packet times at = 1.

Our experimental results show that packet generation process is fairly close to a

Poisson process and the packet sizes are exponentially distributed as intended. To

the best of our knowledge there is no other packet generator which achieves Poisson

traffic at high bit and packet rates by only using the logic resources of the FPGA

without any high level programming, processors or preloaded traffic data. CDF is a

means of completely specifying the statistical properties of a set of data. Here we

would like to note that, there is no other work that demonstrates the statistical

properties of the generated traffic in comparison to the desired mathematical model

using CDF including the software traffic generators such as D-ITG [60, 55] which

are capable of generating Poisson traffic.

4.3 FPGEN BURSTY TRAFFIC GENERATION

4.3.1. Conceptual and Hardware Design

Next, we design and implement the FPGEN bursty traffic generator which generates

Markov-modulated on–off bursty traffic to further demonstrate the capabilities of

our FPGA-based traffic generator. FPGEN hardware is capable of generating

51

packets of any size. We configure FPGEN to generate fixed packet sizes to be able

to demonstrate how it can achieve the desired properties for given parameters.

Our bursty traffic source alternates between active and idle periods. It generates

packets back to back during the active periods and stays silent during idle periods

where the durations of active and idle periods are geometrically distributed. We

employ a state machine structure with two states named active (A) and idle (I) as

shown in Figure 4-7. In each state, there is a constant probability of switching to the

other state. Let be the probability of leaving the active state and be the

probability of leaving the idle state.

Figure 4-7 The state transition diagram of the bursty traffic generator design and the

probabilities corresponding to the state transitions.

The probability that the length of the active period is packet times is calculated as

follows;

Pr{Active period=i packet times}= (4-4)

which leads to a mean burst length of

 (4-5)

1)1(−− ipp

p
ipp

i

i 1)1(
1

1 =−= ∑
∞

=

−β

52

Similarly, the mean idle period is calculated as 1/ . Let ρ denote the offered load

defined as the ratio of the average time the system generates packets to the total

time as:

 (4-6)

Then for a given offered load ρ and mean burst length of β packets, the state

transition probabilities can be calculated

 and

(4-7)

In order to test the performance of the traffic generator on hardware, we

implemented the design on our FPGA based board. In our implementation, constant

state transition probabilities are generated using an LFSR in exactly the same way

that was used in the Poisson traffic generator design. A single source is sufficient to

generate the Markovian traffic as explained above.

We call the time that is required to transmit one fixed size packet a slot. The bursty

traffic generator design contains a 64 bit Fibonacci LFSR and three vectors of size

16 that we call reference vector, active_to_idle vector and idle_to_active vector.

The reference vector keeps a 16 bit subset of the 64 bits in the LFSR and is updated

according to the content of the LFSR in each clock period. Each of the

active_to_idle vectors and idle_to_active vectors is preloaded with a 16 bit

sequence according to the desired state transition probabilities p and q as described

above.

qp

p
11

1

+
=ρ

β
1

=p
)1(ρβ

ρ
−

=q

53

If the packet generator is in the idle state, at the end of each slot, the content of the

reference vector is compared to that of the idle_to_active vector. If the reference

vector is smaller than the idle_to_active vector, a state transition occurs. The traffic

generator moves from the idle state to the active state. If the reference vector is

greater than the idle_to_active vector, the traffic generator remains in the idle state.

Similarly, if the packet generator is in the active state, at the end of each slot, the

content of the reference vector is compared to that of the active_to_idle vector. If

the reference vector is smaller than the active_to_idle vector, a state transition

occurs. The traffic generator moves from the active state to the idle state. If the

reference vector is greater than the active_to_idle vector, the traffic generator

remains in the active state.

Hence, state transition occurs with a uniform probability. As long as the packet

generator is in an active state, a fixed sized packet is generated in each slot. The

packet content is generated in the same way as in the Poisson traffic generator.

Hence, one packet can be generated in each clock period for each interface at 125

MHz. It is possible to generate bursty traffic on many interfaces by simply selecting

different bits of the LFSR as the success vector for each interface.

The bursty packet generator of FPGEN uses 3% of the available slices on the

FPGA. The largest use of the slices is for the implemented state machine

architecture. The information about the utilization of the FPGA resources is

presented in Table 4-6.

4.3.2. Experiments and Performance Evaluation

The packet size is selected as 8 bytes and the mean burst length is selected as 32

packets. This implies that = 1/32. We tested the traffic generator in 3 load

conditions of 1/3, 1/2 and 2/3. For these loads, the corresponding values are

calculated as 1/64, 1/32 and 1/16. Table 4-7 shows the test results for bursty traffic

54

generator together with the calculated and values and the desired traffic

conditions. The number of collected inter-packet times for each experiment is

10000.

Table 4-6 The utilization of the FPGA resources for the bursty traffic generator

design.

Resource Used Available Utilization (%)

Slices 339 9280 3

4-Input LUTs 447 18560 2

Flip flops 341 18560 2

Block RAMs 1 88 1

External IOBs 36 564 6

Table 4-7 Test results for bursty traffic generator together with the calculated p and

q values and the desired traffic conditions. The pps and bps rates are per interface.

Burst length is in number of packets.

Exp. Desired Calculated Test results

 Mpps Gbps

1 32 0.33 1/32 1/64 32.83 0.37 11.56 0.925

2 32 0.5 1/32 1/32 32.18 0.54 16.88 1.35

3 32 0.66 1/32 1/16 32.40 0.68 21.25 1.7

4.4. TRAFFIC GENERATION CAPABILITIES OF FPGEN

FPGEN can generate Poisson traffic with exponentially distributed packet sizes and

Markov-modulated on–off bursty traffic. These traffic types are popular for

modeling network traffic in a number of studies. Furthermore they are still valid

models as we discussed in Section 4.1.3.

55

Our FPGEN board can generate a maximum of 125 Mpps per interface with its 125

MHz clock frequency. The maximum achievable data rate in bps further depends on

the number of bits the interface can send per clock period. The interface on the

FPGEN board can send 16 bits/clock period which enables the full utilization of the

OC-48 fiber-optic interface and generates 2.5 Gbps per interface including the

physical layer overhead. The total traffic generated by FPGEN can reach to 250

Mpps and 5 Gbps with its two interfaces. The pps rate achieved at a certain bps rate

depends on the packet size. Our experimental results in Tables 4-5 and 4-7 show

that FPGEN can achieve 2.5 Gbps per interface. The traffic statistics presented in

Figure 4-5 and Table 4-7 demonstrate that FPGEN can achieve the intended

statistical properties.

Testing certain router functionalities such as packet classification requires high pps

rates rather than bps data rates. FPGEN can be used to generate the minimum size

IP packets of 20 bytes length. In that case FPGEN can generate 25 Million IP

packets/second with the interface speed of 16 bits/clock period. This rate can be

increased if partial IP headers with smaller byte counts are adequate for the

experiment or if our design is ported to another hardware platform with higher

interface speeds.

Both the Poisson and on–off bursty traffic is generated using random processes that

are implemented only by using the logic resources of the FPGA. The random

elements in FPGEN operation such as inter-packet times, on–off state changes or

packet sizes do not repeat for very long time intervals as described in Section 4.2.2.

Note that FPGEN is the only hardware traffic generator that can generate Poisson

traffic.

Here we would like to note that the rate of traffic that is generated by software

traffic generators are far below FPGEN’s rates as discussed in Section 4.1.1.

56

In comparison to previous work on hardware traffic generators, FPGEN stands out

with its design that can generate one packet per clock period per interface as

described in Section 4.2.2. This rate can separately be achieved for both Poisson

traffic and on–off Markov-modulated traffic. Not only is there no current FPGA-

based traffic generator with a higher rate than FPGEN but also its design can be

ported to FPGA environments with a larger number of interfaces, faster interface

and clock speeds to achieve rates that linearly increase with these parameters. To

the best of our knowledge there is no previous work on hardware traffic generators

that provides enough design detail and explicitly states how many clock periods it

takes to generate a packet or how the design scales with the clock rate, the number

of interfaces or interface speed.

Furthermore unlike [66] or [67], FPGEN does not depend on files that contain

packet information. Although such design enables the packet generator to generate

different traffic profiles according to the available file, adjusting traffic parameters

requires appropriate files limiting the scalability of the approach. Unlike [64-66],

FPGEN does not need any external hardware resources such as an embedded

processor or a computer accessed via a PCI interface which limit the generated data

rate and the scalability of the design.

FPGEN is able to generate any selected packet size distribution simply by

modifying the content of the success vector. In addition to the 50 packet sizes which

are currently available in the design, new packet sizes can be added by simply

modifying the constant vectors in the design. The content of the packets can be

specified by a C# based GUI running on a PC connected to the FPGEN board

through the available RS-232 interface. It is possible to define fixed header fields

and random fields in the packet payload that will be generated on the FPGEN

board. Also the traffic load, success and boundary vectors can be modified using the

same GUI.

57

4.5 CONCLUSIONS

Testing and performance evaluation of high-speed network equipment requires

high-speed packet generators which can generate network traffic at predetermined

load conditions and traffic patterns. Although they are very versatile, the software-

based traffic generators do not scale to high speeds in the order of Gbps.

Furthermore the lack of dedicated hardware resources and CPU-based operation

lead to deviation from intended traffic profile at lower speeds than the saturation

point of the throughput. Hence, the development of hardware-based traffic

generators which can generate the imposed traffic characteristics is required for

investigating the performance of backbone network devices according to metrics

such as fabric throughput, buffer occupancy or QoS support.

In this chapter we present the design, implementation and experimental evaluation

of a novel hardware-based packet generator, FPGEN, developed on FPGA. FPGEN

is scalable to high-speeds as it is implemented purely on hardware without using

any high level programming or processors. The packet generation times are

computed in real-time entirely using the logic resources of the FPGA. FPGEN can

generate one packet per clock period, hence it supports up to 125 Mpps per

interface at 125 MHz clock rate of our board. Furthermore this rate scales linearly

with increased clock rate, number of interfaces or interface speed. Our experiments

show that the FPGEN board can support a total traffic generation rate of 5 Gbps and

250 million packets per second with its two OC-48 interfaces. FPGEN is

configurable to generate traffic with different parameters due to the

programmability of the FPGA. In this work, we present the design and

implementation details of FPGEN followed by an experimental demonstration of

achieving packet generation at OC-48 rate per interface.

58

FPGEN generates Poisson traffic with exponentially distributed packet sizes. We

present a model which overcomes the inherent difficulties of generating this traffic

on a serial interface due to the required independence between the packet sizes and

the inter-packet times. In addition, FPGEN can generate Markov-modulated on–off

traffic entirely on hardware. The above mentioned traffic rates can be achieved

separately for both Poisson and on–off traffic.

Different from previous studies, we provide the implementation details to justify

that our design is capable of reaching our claimed rates. Furthermore we

demonstrate that FPGEN can generate traffic at these rates with the intended

statistical properties by hardware experiments.

It is possible to incorporate other traffic generation patterns such as self-similar

traffic in FPGEN. A self-similar traffic source can be modeled as aggregation of a

number of on–off traffic sources where the the burst size is distributed according to

Pareto distribution. Such burst sizes can be achieved by a similar procedure to our

determining the packet size. We can reuse our uniform number generator and

simply adjust the segment sizes of the boundary vectors to determine the burst

lengths. Next, the packets generated from these sources can be aggregated using the

same FCFS queue structure that we use for the Poisson traffic.

FPGEN serves as the packet generator for the performance evaluation of the

developed schedulers.

59

CHAPTER 5

HARDWARE DESIGN AND IMPLEMENTATION OF

PACKET FAIR QUEUING ALGORIHMS

The scheduling algorithms which are used in the QoS schedulers of the routers and

the switches play an important role in determining the QoS performance of the

Internet. In order to provide QoS support, the scheduling algorithms specify the

order in which the packets queued at the output ports is actually transmitted. The

scheduling algorithms give different service to different flows.

A class of PFQ algorithms emulates the behavior of the ideal GPS scheduling [7-

17] which cannot be used in packet switching networks. In all PFQ algorithms, a

global function called virtual time is used to track the progress of the GPS

scheduler. For each head of line (HOL) packet of each flow in the system, a finish

time is calculated. This finish time corresponds to the time that this packet would

leave the GPS scheduler. Packets are served in the order of their respective finish

times. The finish time of a packet is the sum of its start time and the time needed to

transmit the packet. The start time corresponds to the time that this packet would

start receiving service in the GPS scheduler.

In this chapter, we propose a hardware architecture for the design of the general

family of PFQ schedulers. We define the blocks that are common in all PFQ

schedulers and the blocks that are unique to each scheduling algorithm. In this

60

architecture, we identify the design challenges and use techniques to overcome these

difficulties. We use our proposed architecture to implement the WF2Q+ algorithm.

The algorithm is implemented on a FPGA based board and the performance

evaluation is performed on a hardware testbed.

The remainder of the chapter is organized as follows. In Section 5.1, we summarize

and discuss the design of a dynamically adaptable PFQ scheduler. We review the

previous work on the hardware implementation of PFQ schedulers in Section 5.2.

We introduce the hardware design followed by the implementation of the WF2Q+

scheduler in Section 5.3. In Section 5.4, we present the performance measurement of

the dynamically adaptable WF2Q+ scheduler. Our conclusions are given in Section

5.5.

5.1 DESIGN OF A DYNAMICALLY ADAPTABLE PFQ

SCHEDULER

5.1.1 PFQ Schedulers

In a PFQ scheduler, there are N queues corresponding to N flows. Each queue i has

a minimum bandwidth allocation ri (i= 1,..., N). The service share of each queue is

proportional to its ri. In the scheduler, there is a global virtual time function V(t).

This function is used to represent the progression of the simulated GPS scheduler.

For each queue, there is a virtual finish time function Fi(t) and a virtual start time

function Si(t). The service order of the packets is determined according to the order

of the packets’ finish times. The packets get service starting from the one having the

smallest finish time.

In all the schedulers belonging to the family of PFQ schedulers, Fi(t) and Si(t) are

calculated similarly. The main difference among these schedulers is in the

calculation of the V(t). For each queue i, Fi(t) and Si(t) are updated in only 2 cases:

61

1. A previously empty queue has an incoming packet that immediately

becomes head-of-line.

Si(t) = max(Fi(t-), V(t)) (5-1)

Fi(t) = Si(t) + Li / ri (5-2)

2. In a non-empty queue, a packet is departed and the next packet

becomes head-of-line.

Si(t) = Fi(t-) (5-3)

Fi(t) = Si(t) + Li / ri (5-4)

where Fi(t-) is the finish time of the queue i before the update and Li is

the length of the head-of-line packet for queue i.

5.1.2 Block Level Design of a PFQ Architecture

Considering the common tasks accomplished in the PFQ schedulers, we formed a

block level architecture which is shown in Figure 5-1. The general blocks consist of

a packet reception module, start and finish time calculators, a packet selection

module, a counter aging module and a packet transmit module. The algorithm-

specific blocks contain the V(t) calculator and an eligibility checker for certain PFQ

algorithms.

Each received packet enters the scheduler through a packet reception module.

According to the flow identifier in the packet header, the packet is delivered to the

corresponding queue. For each queue, there is a start time calculator and a finish

time calculator. The start time calculator module calculates the start time of the

HOL packet in the queue according to (5-1) and (5-3). The finish time calculator

module calculates the finish time of the HOL packet in the queue according to (5-2)

and (5-4). If the system is not idle (not all the queues are empty) and a packet is not

62

being transmitted, the packet selection module selects one of the HOL packets for

transmission. Specific to the algorithm, the packet selection module works with an

eligibility checker such that only packets whose start time is not greater than the

current value of the virtual time are selected. For the selection of the packet, the

queue with the minimum finish number is searched. A searching module is used to

find the minimum of a group of numbers. Virtual time calculator uses a function

which is unique to the scheduling algorithm to calculate the virtual time of the

system. Depending on the PFQ algorithm, this function may include maximum or

minimum operations. Hence, a searching module may also be requireded in this

module. Packet transmission module transmits the packets which arrive from the

packet selection module. Due to the continuous increase in V(t) , Fi(t) and Si(t)

vectors, it is expected that after some time, these vectors overflow and restart

counting from 0. A counter aging module is used to prevent them from overflowing.

Figure 5-1 The block level architecture of the PFQ schedulers.

63

5.1.3 Design Challenges and Proposed Solutions

The QoS schedulers are generally implemented in hardware to support wire speed

operation. Ideally the operation of the scheduler has to be completed in one clock

cycle as it is possible that new packets can arrive at head-of-line position in each

clock cycle. Hence, pipelined designs that aim to increase throughput with a trade

off in delay might lead to a large number of packets that cannot get the agreed

sevice.

The implementation complexity of the PFQ algorithms comes from two

components. The algorithm specific component includes the calculation of the V(t)

and, if relevant, the eligibility check operation for a given PFQ algorithm. The

general component consists of carrying out the updates for Si(t) and Fi(t) as

presented above and searching for the non-empty per-flow queue whose head-of-

line packet has the minimum finish time.

The relevant design and implementation problems for the general component can be

listed as follows:

5.1.3.1 Hardware Division

Fi(t) is calculated for each queue in the scheduler. The calculation of Fi(t) function

requires the division of the Li with ri. Hence, the system design requires a lot of

hardware dividers working in parallel which results in the waste of a huge amount

of logic resources. We choose to prevent the waste of resources by using a look-up-

table instead of dividers. The basic structure of the table is given in Table 5-1.

The first column of this table contains the possible L values in the network in

ascending order. Let the scheduler support Rcount distinct rates where rbase bps

denotes the greatest common divisor of these rates. We divide all rate values by rbase

to achieve the normalized set of rates where the minimum rate is rmin and the

64

maximum rate is rmax (both without units). The first row of the table contains all of

the featured normalized rate allocations from rmin to rmax in ascending order. Then,

the cell of the table located at row i and column j contain the result of the

corresponding Li / rj operation.

Table 5-1 The basic structure of the look-up table which is used in the division

operation.

 rmin … rj …

Lmin L1 / r1 … L1 / rj …

… … … …

Li Li / r1 … Li / rj …

… … … …

In order to reduce the number of bits used in the calculation of Fi(t) and Si(t) and to

prevent the aging of the counters early, we need to have as small Li / rj values as

possible. We achieve this by scaling the contents of the table with minimum Li / rj

value found on the table. The minimum value is obtained from the division of the

minimum Li value with the maximum rj value and found on the upper right corner

of the table.

In order to divide Li by rj, it is enough to read the content of the cell which is found

on the intersection of the row i and column j.

65

5.1.3.2 Dynamical Adaptation

We keep two separate look-up tables for division. In the first table, r values from

rmin to r1
max are used. In the second table, all of the r values are used. When there are

no flows present in the system with r values higher than r1
max, the first table is used.

Whenever a packet is received from a flow which has a r value greater than r1
max,

the scheduler dynamically starts using the second table.

In the first table, the maximum r is r1
max and in the second table, it is rmax.

Consequently, the maximum Li / rj value in the first table is several times larger

than the maximum value in the second table. As a result of the fact that the table is

scaled with the maximum Li / rj value, the first table contains Li / rj values which are

quite smaller than the corresponding entries in the second table.

Whenever the flows with high r values are present in the scheduler, they will get

very high share on the service and as a result of this, they will leave the scheduler in

a very short time. This will enable the scheduler to use the first table most of the

time. Hence, using a table with smaller entries will slow down the aging of the Fi(t),

Si(t) and V(t) counters in the scheduler.

5.1.3.3 Counter Aging

As a result of the continuously increasing behavior of Fi(t), Si(t) and V(t) vectors,

after some time, these vectors reach their maximum (all bits are ones) and then, they

overflow and restart counting up from zero. This problem is known as counter aging

problem. As a solution to this problem, we apply a counter renewal procedure.

For v bit vectors, the maximum value that can be represented is Vmax = 2v. When the

value stored in any of these vectors reaches a renewal threshold, such as Vmax · 0.75

then the values that are stored in all of the vectors are decreased by the minimum of

Si(t). Note that the definition of Fi(t) in (5-2) and (5-4) guarantees that the minimum

66

value to be subtracted will not be stored in an Fi(t) vector. The relative ordering of

packet departures are not affected as all the vectors are decreased by the same

amount. Such renewal process is completed in one clock cycle.

5.1.3.4 Searching

In the scheduler design, it is necessary to find the minimum of the time stamps in

several different places. When selecting a packet for transmission, it is necessary to

search the minimum Fi(t) among all the queues. Also, in our solution to the counter

aging, again it is necessary to find the minimum Si(t). As a result of the fact that the

searching is needed in several places in the design, searching efficiency in terms of

speed and logic area affects the performance of the scheduler closely.

In our architecture, a fast searching method such as RAM-based searching engine

[96] should be used for large number of flows. This search engine uses a calendar

queue data structure [97]. In this data structure, a priority queue is used to keep the

timestamps of all the HOL packets presorted. A hierarchical searching mechanism

[98] is performed on the priority queue to find the smallest timestamp quickly and

efficiently. A simple comparator tree can be used as well when the number of flows

in the design is small. A pipelined implementation such as [19] would slow down

the operation of the scheduler.

5.2 REVIEW OF THE PREVIOUS WORK ON THE

HARDWARE IMPLEMENTATION OF PFQ SCHEDULERS

There is a large amount of literature on PFQ algorithms due to their desired

properties for QoS support. In this section, we first present the works which provide

design approaches to alleviate the implementation challenges presented in Section

5.1.3, we then discuss the previous work on PFQ implementation on hardware

platforms.

67

Searching for the packet with the minimum finish time is a significant component

of the overall complexity of any PFQ algorithm. To this end, [19, 96, 99] propose

low complexity search hardware designs where [36] proposes the quantization of

packet sizes and flow rates to simplify the implementation.

The RAM-based Searching Engine (RSE) [96] is a multi-level implementation of

the calendar queue search data structure [100]. Calendar queue trades off the

memory use with speed to achieve O(1) time complexity. This data structure is also

employed in the scheduling modules of commercial routers [101]. RSE stores the

finish times for head-of-line packets in a different RAM for each level of the

hierarchy. The number of levels and the number of memory accesses increase

logarithmically with the number of possible items that is searched. Hence, the

amount of delay to locate the packet with the minimum finish time increases with

the depth of the RAM hierarchy. The overflow problem is solved with a two-zone

structure which effectively doubles the required memory size for the

implementation. It is stated that the RSE design can be realized on FPGA however,

there is no such implementation. [99] features a multi-bit tree to accomplish the

search in O(1) time which is 4 cycles under best case. The evaluation of the design

via hardware simulation with certain assumptions about the traffic shows that 40

Gbps line rate can be reached when this search architecture is used with a PFQ

scheduler. [19] proposes a pipelined heap data structure for fast search operations.

However, the insert and delete operations of the heap require expensive bus support

to complete in a single clock cycle. In addition, increasing the heap size slows down

the clock frequency.

[36] assumes that Internet packet sizes and supported rates only take a small

number of different values. Accordingly, the authors propose a new two-level

architecture called tiered-service fair queuing (TSFQ) which behaves identical to

WF2Q+ under certain constraints. The virtual time computation of TSFQ is carried

out in one clock cycle provided that the flow rates and packet sizes are selected

from a small set. Despite certain packet sizes are more common in the IP packet

68

distribution, around %30 of packets are smoothly distributed between 40 Bytes and

1500 Bytes. In addition, a certain rate allocation granularity is required to achieve

the efficient bandwidth utilization [102]. Searching for the minimum finish time

also takes a small number of clock cycles because of the small number of different

rates and corresponding queues. However, the searching time is not necessarily a

single clock cycle. The implementation and performance evaluation of TSFQ is

carried out in Linux kernel without any measurements in hardware.

[103, 104, 105, 106, 107] propose hardware designs for scheduling algorithms with

different target FPGA platforms. However, in all these works the implementation is

limited to the VHDL model synthesis without any tests or experiments carried out

on hardware.

[103] integrates different components of a WFQ scheduler that are described in a

series of publications by the same authors including [99]. WFQ has a more complex

implementation and a worse WFI compared to WF2Q and WF2Q+ algorithms [23].

The design consists of WFQ virtual time computation circuit, a sorting circuit and a

high speed shared buffer memory. The implementation platform is an evaluation

board with Altera Stratix 2 FPGA. There are 3 pairs of 8 Kbit dual port memory

blocks in the system. Flow identifiers are selected to be 13 bits and acordingly the

authors compute the number of flows that can be supported by their system as 213 =

8000 flows. Similarly the bps rate that can be supported by the proposed design is

stated to be 12.8 Gbps limited by the memory access speed. The virtual time

function of WFQ has a high complexity that grows linearly with the number of

connections hence it is the most significant part of the design. However, the authors

only state that the virtual time function is implemented with a table look up without

any further details. Furthermore no discussion is provided related to the possible

limits on the supported number of flows or on the bit rate due to the implementation

of the WFQ virtual time function or the pipelined operation of the searching circuit.

The experimental results are provided only for 3 flows and it is not indicated if the

experiments are performed on real hardware or via simulation.

69

[104] aims to implement WF2Q+ algorithm on FPGA. To this end, the virtual time

function is modified however the modification leads to a different virtual time

function which is not equivalent to that of WF2Q+ as defined in [16, 23]. Hence,

although the title of the paper suggests WF2Q+ implementation, the implementation

outcome operates differently. The overflow problem is solved by subtracting a

common value from all vectors. The implementation platform is designated as

Xilinx Virtex II 6000 FPGA. However, the scheduling algorithm’s performance is

measured with an event driven software simulator without any results collected on

hardware.

[105], [106] and [107] propose different QoS scheduling algorithms that are

designed for low complexity implementation without any investigation towards the

fairness and delay bounds of these algorithms. [105] proposes a specific new PFQ

algorithm (Gigabit Fair Scheduling-GFS). In this work flows are aggregated into 64

different bandwidth allocations. It is stated that GFS can support 32K flows. [106]

carries out the implementation on Xilinx Virtex-I and Virtex-II. The

implementation is pipelined which increases the throughput with the cost of delay.

[107] proposes a two level design that is composed of round robin schedulers at the

first level and highest-level-first selection at the second level. The authors propose

using pipelining in their future work to increase throughput. The target hardware

platform is Xilinx Virtex-II Pro.

5.3 IMPLEMENTATION OF WF2Q+ ALGORITHM ON FPGA

We apply our general PFQ design framework to a particular PFQ algorithm to

demonstrate its features. To this end, we chose the WF2Q+ scheduler which has the

best WFI value and a low time complexity for V(t) [23]. It should be noted that

WF2Q+ has the same WFI and the end-to-end delay bounds as the predecessor

algorithm WF2Q [15]. However, the complexity of WF2Q is higher. For WF2Q+,

V(t) is calculated as

70

V(t + τ) = max(V(t) + W(t, t + τ), min(Si(t))) (5-5)

where W(t, t + τ) is the number of bits transmitted in the time interval (t, t + τ).

Note that the complexity of V(t) comes from searching for the minimum Si(t). We

add a third searching module to the V(t) calculator in the general architecture as

presented in Figure 5-1 to search for the minimum valued start time vector among

all per-flow queues. As this module works in parallel with the other searching

modules it does not add an extra delay to the operation. In WF2Q+, a queue i is

eligible if its Si(t) value is not greater than V(t). When the system is not busy with

transmitting a packet and if not all the queues are empty, the algorithm selects the

eligible queue with the smallest Fi(t) and sends the head-of-line packet to the output

channel.

Our implementation of WF2Q+ supports 16 flows for the demonstration of the

architecture. Hence, we use a simple comparator tree to implement the searching

module. The comparator tree has a depth of 4 and a search operation takes 4 cycles.

This searching module is implemented in packet selection module, overflow control

module and V(t) calculator module in Figure 5-1. All these modules add a total

delay of 4 clock cycles to the operation as they operate in parallel.

Our WF2Q+ design supports 20 different normalized rates (1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 30, 60, 90, 120, and 240) and 50 IP Packet sizes where Lmin =

40 Bytes and Lmax = 1536 Bytes. We maintain two separate look-up tables for

division. In the first table, normalized rates from 1 to 15 are used. In the second

table, all of the 20 rate values are used. The scheduler dynamically switches

between these two tables.

Using the architecture that is presented in Figure 5-1, the WF2Q+ scheduler is

designed on Xilinx ISE design environment for FPGA implementation using VHDL

language. The design is implemented on one of the data processing boards in our

71

hardware testbed. In our design, the system has 16 FIFOs for queuing packets from

16 flows. Only the packet headers are stored in the FIFOs. Packet payloads are

stored in an external RAM. This enables more efficient use of the FPGA logic

resources. Each FIFO is able to store 1024 packet headers of 32 bits. When a packet

is selected for transmission, the packet transmission module transmits 16 bits in

each clock using Xilinx RocketIO transceiver [93]. The scheduler design operates at

a clock frequency of 125 MHz. Hence, it is possible to schedule traffic at 2 Gbps

interface speed.

Here we would like to note that it is possible to support a larger number of flows by

implementing the FIFO per flow queues on external memory instead of on FPGA.

In such implementation there will not be a significant decrease of speed provided

that the external memory and the FPGA are implemented on the same card.

We have one more remark about the 4 clock cycles delay of the searching circuit.

At 125 MHz clock rate, 4 clock cycles translate into a delay of 32 ns. At 2 Gbps line

rate and an average packet size of 265 Bytes, this leads to a small probability of

missing the service for a packet. A number of conditions must hold together for a

packet to miss the service: First, there must be empty queues in the scheduler when

the packet is received. Second, the packet must be delivered to one of these queues

within a period of 32 ns before the end of the transmission of another packet. Third,

this packet must have the smallest finish number among all the HOL packets. The

probability of the occurance of these three conditions all together depends on the

system state. However, we can say that it is a really low probability which does not

affect the fairness of the scheduler drastically.

The information about the utilization of the FPGA resources for the WF2Q+

scheduler design is presented in Table 5-2.

72

Table 5-2. The utilization of the FPGA resources for the WF2Q+ scheduler.

Resource Used Available Utilization (%)

Slices 5152 9280 55

4-Input LUTs 9595 18560 51

Flip flops 2793 18560 15

Block RAMs 48 88 54

External IOBs 334 564 59

5.4 PERFORMANCE MEASUREMENT

In this section we present our experimental evaluation of the WF2Q+scheduler that

we implement according to the design presented in the previous section. We test our

implementation under Poisson traffic with exponentially distributed packet sizes

and Markovian on-off bursty traffic with fixed packet sizes generated by the

FPGEN hardware traffic generator that we developed and implemented on our

network testbed platform [21]. The parameters of the generated traffic can be

configured as desired. We measure the average and maximum packet delays in the

WF2Q+ scheduler and compare the maximum measured delay for each experiment

with the analytical delay bound that is defined below.

Let fj be a traffic flow with a maximum burst size of σj bits and average rate of ρj

bps that is transmitted through a WF2Q+ scheduler. The allocated rate for fj is rj

where rj > ρj. Let C and Lmax denote the outgoing line rate in bps and the maximum

packet size in the network in bits respectively. Then, the delay bound for a given

packet P of flow fj with Lmax bits in a WF2Q+ scheduler is [23]:

(5-6)
C

L
r

L
r jj

j maxmax ++
σ

73

In this expression σj / rj and Lmax / rj represent the time to serve the maximum size

burst of σj bits and serving P with a length of Lmax bits in a GPS-like fluid system at

the guaranteed rate of rj. The traffic is served packet by packet in reality. Hence, the

last term Lmax / C represents the delay due to a packet P′ that is from some other

flow with a larger finish time than P. P′ also has Lmax bits and starts to get service

just before P becomes head-of-line. P has to wait for P′ to get transmitted as there is

no preemption.

In our experimental set-up we measure the packet queuing delay as the time

between the time the first bit of the packet enters the scheduler and leaves the

scheduler excluding the packet transmission time on the interface. We perform three

experiments with Poisson traffic and exponentially distributed packet times. We

choose 50 different packet sizes with a minimum packet size of 40 Bytes and

maximum packet size of 1536 Bytes. The mean packet size is 265 Bytes. We ran

the experiments with 16 flows which are allocated normalized rates of 1, 2, or 4

which correspond to 71.5 Mbps, 143 Mbps and 286 Mbps respectively. The total

mean traffic generation rates of all 16 flows are 700 Mbps, 1 Gbps and 1.6 Gbps

corresponding to link loads of 35%, 50% and 80%. The mean per flow traffic

generation rate is equal among all flows. For each experiment 10000 packets are

collected. The experiment results are presented in the first three rows of Table 5-3.

Table 5-3. Experiment results of the WF2Q+ scheduler implementation.

Exp i Traffic type % Mean total

load

Mean queuing

delay (ns)

Maximum

queuing delay

(ns)

1 Poisson 35 21 232

2 Poisson 50 23.6 4960

3 Poisson 80 30.8 5112

4 Bursty 50 144.1 9312

74

The maximum packet transmission delay for our experiments is 6.144 μs for 1536

Byte packets. If we add this maximum transmission time to the maximum queuing

delay of 5.112 μs that we measure in our experiment we find a total maximum delay

of 11.256 μs. Poisson traffic is very smooth. Hence, for these experiments we did

not employ a traffic shaper to limit the maximum burst size. We consider the flows

with the maximum allocated rate of 286 Mbps and assume that the maximum burst

size is 0 for a conservative computation of the delay bound in (5-6). Accordingly

we compute a maximum delay bound of (1536 · 8 bits) / (286 · 106 bps) = 43 μs

which is much higher than our measured maximum delay.

We investigate the delay of our WF2Q+ scheduler implementation under bursty

traffic in our fourth experiment. We configure FPGEN to generate 64 Byte packets

with an average burst size of 96 Bytes and a total mean traffic generation rate of 1

Gbps that is equally distributed among 16 flows. The allocated rates for the flows

are the same as in Poisson traffic experiments. The bursty traffic generated by

FPGEN first goes into a leaky bucket shaper which constraints the maximum burst

size to 2560 Bytes and the average rate per flow to 75% of the respective allocated

rate. We selected a large maximum burst size for the shaper compared to the

average burst size of the generated traffic such that the bursts are not smoothed out.

The queuing delay data are collected over 12000 packets. The experiment results

are presented in the last row of Table 5-3.

The maximum queuing delay in the WF2Q+ scheduler under bursty traffic is

measured to be 9.312 μs. If we add up the maximum packet transmission delay of

6.144 μs we find the total maximum delay is 15.456 μs. If we plug in the maximum

burst size into (5-6), we compute a maximum delay bound of (2560 · 8 + 1536 · 8

bits) / (286 · 106 bps) = 114.98 μs which is again much higher than our measured

maximum delay. We also observe that the average queuing delays are quite smaller

than the maximum delays.

75

5.5 CONCLUSIONS

The implementation of the PFQ schedulers plays an important role in the QoS

performance of the packet switched networks. In this chapter we present a general

block level architecture that shows the common and algorithm specific blocks used

in the design of all PFQ schedulers. Next, we identify the design challenges and

present solutions to these problems. We use several methods to improve the

scheduler implementation efficiency in terms of both operation performance and

resource consumption. We select one of the PFQ schedulers which is WF2Q+ and

implement it in the hardware testbed. The packet statistics show that, the scheduler

is able to process packets with an average delay of 30 ns even in a traffic load of

80%. We use packet delay statistics to show that the delay performance of the

scheduler is within theoretical limits.

Our proposed architecture and implementation methods which are presented in this

chapter are applicable to the broad family of PFQ schedulers. These methods help

to reduce the implementation complexity and make better use of the advantages of

the PFQ schedulers.

76

CHAPTER 6

A WINDOW BASED METHOD FOR PROVIDING QOS

GUARANTEES UNDER FLOW AGGREGATION

The complexity of the scheduling algorithms increases with the quality of the

provided service and the number of flows that are scheduled. A solution to support

high number of flows is aggregating them to decrease the implementation

complexity. The basic problem in flow aggregation is preserving QoS guarantees

of the constituent flows in the aggregate. As a result of the greedy behavior of one

of these flows, the others may receive decreased delay and fairness performance.

 [20] proved that if the flow aggregation is performed fairly and the packet

schedulers have certain properties, the end-to-end delay guarantees are preserved

with respect to the case that no flow aggregation is performed. [20] presents two

different approaches for the design of fair aggregators. The first one is “the basic

fair aggregator” which limits the service rate for the aggregated flow to the sum of

the reserved rates of the input flows. The second approach is “the greedy fair

aggregator” which relaxes this limit only if all input flows have an arrival rate

greater than their reserved rates. It is possible that the arrival rate of the flows to be

aggregated exceed the total reserved rate temporarily. In such case even if there is

available capacity to serve these flows, it will not be utilized.

77

In this chapter, we present Window Based Fair Aggregator (WBFA) and

analytically show that it is a fair aggregator as defined in [20]. Hence, the individual

delay bounds of the constituent flows aggregated by WBFA are preserved. Our

approach allows the constituent flows to use the full capacity of the output channel

until the difference in the service received by the flows reaches a limit. As a result

of the increase in the utilization, the average end-to-end delays provided by WBFA

are expected to be lower than the basic and greedy fair aggregators proposed by

[20]. While increasing the utilization, WBFA also preserves the fairness of service

to the aggregated flows. In addition to these, WBFA has low implementation

complexity and can be efficiently implemented on hardware.

The remainder of the chapter is organized as follows. In Section 6.1, we summarize

and discuss the previous work in the literature on flow aggregation. We present the

Window Based Flow Aggregation method in Section 6.2. In Section 6.3, we present

an analysis of WBFA and its properties. The hardware implementation and test

results are given in Section 6.4. Finally, Section 6.5 gives our conclusions.

6.1 REVIEW OF THE PREVIOUS WORK ON FLOW

AGGREGATION

The impact of flow aggregation on end-to-end QoS support is investigated in a

number of works in the literature. We develop WBFA based on [20] which shows

analytically that if all the schedulers in a network are start time schedulers and all

the aggregators are fair, the delay bound is preserved.

[108] shows why network calculus cannot be used in analyzing flow aggregation.

This work presents the reasons why network calculus is not successful in the case of

flow aggregation. In order to reach a successful performance bound, an

optimization problem is constructed. This optimization problem is solved for sink-

tree networks and a mathematical expression is derived for the delay bound. It is

78

shown by numerical experiments that this expression is more successful than that is

derived from the network calculus. These experiments are carried on the DISCO

Network Calculator.

[109] evaluates the end to end delay performance of the guaranteed rate schedulers

both analytically and also using computer simulations. In this work, it is pointed

that in a network where guaranteed rate schedulers is used, end to end delay bounds

can still be found in the case of flow aggregation. Moreover, it is noted that these

delay bounds are generally more successful than the bounds obtained without flow

aggregation. The analytical results are justified with the simulations. It is observed

that the delay performance improves as the number of hops where flow aggregation

is performed increases. Additionally, it is observed that most of the time the delay

performance of non-work conserving schedulers is worse than that of work-

conserving schedulers.

In [110], IntServ, DiffServ and existing QoS structures are explained. Flow based

studies in DiffServ are summarized. The concepts of Flow Aware Networking

(FAN) and Flow State Aware Architecture (FSA) are explained. When exploring

the effects of flow aggregation on QoS, it is stated that flow aggregation does not

increase the average delay. Flow Aggregate Based Services (FAbS) which is a new

QoS architecture is introduced. FAbS depends on FSA. FAbS uses flow aggregation

and tries to prevent congestion. This architecture is compared with the other QoS

architectures from many aspects.

[111, 112] examine the fairness issues among individual TCP flows in a

differentiated services network. The experiments show that there is significant

variation in the performance seen by individual end users when flow aggregation is

used. The aggregate containing more flows outperforms the aggregates with fewer

flows in terms of achieved throughput. However, the unfairness is more dominant in

the aggregate with bigger no of flows.

79

[113] introduces a single queue Start Time Fair Queuing (SFQ) scheduler. The

received packets are ordered in this aggregate queue according to their timestamps

instead of the order of arrivals. Simulation results are used to show the benefits of

this approach over other single queue schemes such as Random Early Detection

(RED) and FIFO. However, no information is provided about the packet delay

characteristics.

There are two models which are used in the modeling of the scheduler algorithms:

Guaranteed Rate (GR) server model and Latency Rate (LR) server model. [114]

proves that when one scheduling algorithm belongs to one of these models, it also

belongs to the other model. GR model depends on providing deadline guarantees by

using a virtual time function. LR model depends on the service received by a flow

in its burst period. In [114], GR and LR models are investigated analytically and the

relation between these models is studied. Also, the constant values in these models

are calculated for different scheduling algorithms.

In [115], a scheduling algorithm which uses flow aggregation to improve the

number of supported flows without violating the delay requirements is explained.

Also, a stateless signaling protocol to be used in this scheduling protocol is

presented. A computer simulation is used to compare the connection loss ratio that

is observed when this scheduling protocol is used and when it is not used.

After the introduction of the concept of fair flow aggregators in [20], more research

is carried to enhance the performance of the fair aggregators. The independency of

the per-hop delay on the flow rates and the efficient utilization of the output channel

are two important properties that lead to several approaches in the flow aggregation.

In some schedulers the per-hop delay is inversely related to the reserved data rate of

the flow. This is called rate-dependent delay. In order to achieve a lower delay, the

flow is required to reserve a higher data rate. There are also schedulers in which the

per-hop delay does not depend on the reserved rate of the flow. This approach is

called rate-independent delay. Rate-independent delay is a favorable property in

80

scheduling protocols. Another property that is preferred in a scheduling algorithm is

work-conservation. If a scheduler does not leave the output channel idle while it has

packets to transmit, the scheduling algorithm is called work-conserving. In such a

scheduler, when there are some flows that do not use their share of the bandwidth,

some other flows may temporarily exceed their reserved rates and take a greater

share on the bandwidth. A good fair aggregator is expected to provide both rate-

independent delay and work-conservation. Although the fair aggregation presented

in [20] provides rate-independent delay, it fails to provide work-conservation.

With the motivation of building a work-conserving fair aggregator, [116], [117] and

[118] propose different aggregation algorithms. While these aggregators succeed in

providing work-conservation, they fail to provide rate-independent delay. [117]

explains how work conserving flow aggregation can be performed such that the end

to end delay bound of each flow is independent of the burstiness of the other flows.

Coordinated Aggregation with Isolation (CAI) method is introduced. The

performance of this method is analyzed analytically and a mathematical expression

is obtained for end to end delay bound. The CAI method suffers from unfairness.

[118] enhances this method by introducing the reuse of the deadlines and tries to

solve the unfairness problem. However, deadline reuse depends on some conditions.

These conditions not only limit the provided fairness but also increase the

implementation complexity of the aggregator design significantly.

[119] proposes a scheduling algorithm that is both work-conserving and able to

provide rate-independent delay. However, in order to achieve these conditions, the

choice of the packet size and the data rates is restricted. In this approach, another

problem is that, when some inactive flows become active again, a constituent flow

which exceeded its reserved rate temporarily may be denied service for some time.

[120] also presents a work-conserving flow aggregation method that provides rate-

independent per-hop delay. In this method, each aggregator assigns a tag to each

input packet. The tag is equal to the virtual finish time of the packet at the

81

aggregator. After aggregation, in each scheduler the packets of the aggregate flow

are sorted according to this tag value. The main drawback of this method is that, it

requires clock synchronization in the core routers throughout the network. Also, all

packets of an aggregate flow and its constituent flows are assumed to have fixed

size. When the constituent flows send smaller packets, tag values are still computed

according to the fixed packet size hence, the constituent flows cannot use their full

rate.

6.2 WINDOW BASED FAIR AGGREGATOR

6.2.1 Preliminaries

In [20], a computer network is viewed as a collection of schedulers and aggregators.

An aggregator is defined as a scheduler that receives as inputs a set of flows and

produces as output a single aggregate flow by merging the packets of the input

flows. The rate of an aggregated flow is taken as the sum of the rates of its

constituent flows. In [20], the concept of fair aggregators is introduced. First the

perquisites for being a fair aggregator are given. Afterwards, it is shown analytically

that when fair aggregators are used, delay bounds can be preserved in spite of flow

aggregation. In the context of this work, for each flow f and each scheduler s along

the path of f, the following notation is adopted:

R.f forwarding rate reserved for f.

p.f.i ith packet of flow f.

S.s.f.i start time of packet p.f.i from scheduler s.

E.s.f.i exit time of packet p.f.i from scheduler s.

C.s capacity of the output channel of scheduler s.

82

The start time of a packet is defined as follows: Assume s were to forward the

packets of f at exactly the rate R.f, as if f were its only input flow and C.s were equal

to R.f. Then, S.s.f.i is the time at which p.f.i is forwarded to the output channel of s.

A scheduler s is said to be a start time scheduler iff for every input flow f of s and

every i, i ≥ 1,

 (6-1)

for some constant ifs ...δ .

Let s and t be two consecutive start time schedulers along the path of flow f. In

[121], it is shown that for every i, i ≥ 1,

 (6-2)

where }{ ixxfsifs ≤≤=Δ 1|...max... δ .

Using (6-1) and (6-2), for a sequence of start time schedulers t1, ..., tk traversed by

flow f, the end to end delay bound in a network consisting of start time schedulers

can be written for every i, i ≥ 1, as

 (6-3)

An aggregator can be considered as a scheduler which accepts packets from input

flows and transmits these packets on the output channel. The only difference is that

in the output channel of the aggregator, as a result of the aggregation, all the packets

belong to a single flow. Figure 6-1 shows an aggregator n and a scheduler s next to

n.

ifsifsSifsE δ+≤

ifsifsSiftS Δ+≤

iftiftSiftE

iftiftSiftS

kkk

k

x
xk

.........

.........
1

1
1

δ+≤

Δ+≤ ∑
−

=

83

Figure 6-1 An aggregator n and a scheduler s next to n.

An aggregator is fair, if and only if, for every input flow f which is aggregated at

aggregator n with other flows to form the output flow g, and for all i, i ≥ 1, there

exists a constant λ.n.f.i such that

 (6-4)

where s is the next scheduler of g, and p.g.j = p.f.i.

[20] shows analytically that if all the schedulers in a network are start time

schedulers and all the aggregators are fair; the delay bound is preserved with respect

to the case in which there is no flow aggregation.

It is said that flow r is the root of flow f at some point in the network if f is a

constituent of r and r is not a constituent of any other flow. Let r be the root flow of

f at scheduler s and p.r.j = p.f.i for some i and j, i ≥ 1, j ≥ 1. Then,

rp.(s.f.i) = p.r.j

(6-5)

where rp.(s.f.i) is called the root packet corresponding to p.f.i at s.

The end to end delay bound for the networks which consist of fair aggregators and

start time schedulers is given in [20] by the following theorem.

ifnifnSjgsS λ+≤

84

Theorem: Let f be an input flow of scheduler t1 and let f traverse schedulers t1, ..., tk.

Each of these schedulers is a start time scheduler and is fair. Then, the worst case

delay can be written as:

 (6-6)

where Λ is defined as:

If s is a fair aggregator with input flow f, then for all i, i ≥ 1,

 (6-7)

If s is a start time scheduler with input flow f, then for all i, i ≥ 1,

 (6-8)

By comparing (6-3) and (6-6), it can be seen that the end to end delay bound

obtained via flow aggregation is similar to the end to end delay bound obtained

without flow aggregation. The difference is that while the per-hop delay of packet

p.f.i at scheduler t is ∆.t.f.i without flow aggregation, it is Λ.rp(t.f.i) with flow

aggregation. If t is a non-aggregating scheduler, then Λ.rp(t.f.i) = ∆.rp(t.f.i). This

means, per-hop delay of f at t is the same as the per-hop delay of its root flow at t.

This shows that the delay is determined by the root flow.

When rate-proportional deadlines are used, each packet p.g.j of input flow g would

exit scheduler s no later than F.s.g.j + α.s where α.s is a constant. The per-hop delay

of flow f at scheduler s without flow aggregation is Lmax.f / R.f + α.s, and with flow

aggregation is Lmax.g / R.g + α.s, where g is the root flow of f at s. If f is a

)...(.)...(....

)...(....)..(.
1

1
1

iftrpiftrpSiftE

iftrpiftSiftrpS

kkk

i

i
xk

δ+≤

Λ+≤ ∑
−

=

}{ ikkfsifs <≤=Λ 1|...max... λ

ifsifs Δ=Λ

85

constituent of g, then R.f ≤ R.g. As a consequence, delay with aggregation is smaller

than the delay without aggregation provided Lmax.f ≈ Lmax.g.

[20] presents two possible implementations of fair aggregators. The first

implementation is “the basic fair aggregator”. Let n be an aggregator with an output

flow g and channel capacity C.n. Assume v is a fictitious start time scheduler whose

input flows are the same as that of n and whose output channel capacity is R.g. In

this method, n forwards each packet to its output channel at exactly the same rate

that v would forward it.

The disadvantage of this method is that even if the output channel of the aggregator

has infinite capacity, the data rate at the output channel of the aggregator cannot

exceed R.g which is equal to the sum of the rates of the input flows. The other

method is “the greedy fair aggregator”. This aggregator has access to a real time

clock and maintains a variable that is a function of the elapsed time and the number

of bits forwarded from a flow. A packet is forwarded when the real time clock is

larger than this variable or when all the input flows have at least one packet in their

queues. In this method, the data rate at the output channel of the aggregator can

exceed R.g. However, the higher rate may be maintained only as long as all input

flows have an arrival rate greater than their reserved rates.

The problem about the utilization of the output channel can be better illustrated on

an example. Figure 6-2-a shows the arrival times of the three packets of size L to

the input of the aggregator n which is shown in Figure 6-1. All three packets are

received from the same input flow f. For this case, both the fair aggregator and the

greedy fair aggregator forward the packets to the output channel as shown in Figure

6-2-b. The forwarding times are calculated as:

 (6-9)

hRfR
Lttttt

..23121 +
=−=−=

86

Although the output channel of the aggregator n may have a much larger capacity,

the packets are forwarded with a rate R.f + R.h.

Figure 6-2 (a) The arrival and (b) the departure times of the packets to the

aggregator n.

6.2.2 Window Based Fair Aggregator

Our proposed Window Based Fair Aggregator (WBFA) is designed to aggregate

two input flows into a single output flow such that QoS guarantees can still be

provided for the input flows. Although WBFA is designed to aggregate only two

flows, it is possible to aggregate larger number of flows by simply cascading

several WBFAs back to back.

In the WBFA scheduler, a window based accounting approach is used to provide

fairness and delay guarantees for the aggregated flows. In this approach, a window

function w(t) is used to keep track of the relative difference in the received service

for each flow. The input flows are allowed to use the full capacity of the output

channel as long as w(t) is within the predefined limits. The increase in the

utilization will help WBFA achieve lower average end-to-end delays than the basic

and greedy fair aggregators proposed by [20]. Allowing w(t) to take values within a

restricted range also helps to preserve the fairness of service to the aggregated

flows. As a result of the easily computable w(t), WBFA has low implementation

87

complexity and can be efficiently implemented on hardware.

6.2.3 Calculation of w(t)

Initially, when no packets have been transmitted in the flows f and h, w(t) is equal to

zero. As time progresses, w(t) is increased and decreased when flow f and h get

service respectively normalized by their reserved rates. We limit the drift of w(t)

from 0 within an amount of wmax to preserve the fairness between the services

received by f and h. wmax is a parameter to be selected by the designer.

Accordingly, if at time t, a packet of flow f gets service, w(t) is updated as

 (6-10)

where Sf (t1,t2) is the service received by flow f between t1 and t2. Whenever a

packet of flow h gets service, w(t) is updated as

 (6-11)

The input flows f and h have a total reserved rate which is equal to R.f + R.h. As a

result of this, as long as w(t) is different than 0, w(t) approaches 0 with a slope

R.f + R.h. Thus,

 when w(t) < 0 for t, t2 > t > t1

 when w(t) > 0 for t, t2 > t > t1
(6-12)

fR
ttS

twtw f

.
),(

)()(
−

− +=

hR
ttS

twtw h

.
),(

)()(
−

− −=

)..)(()()(1212 hRfRtttwtw +−+= ∀

)..)(()()(1212 hRfRtttwtw +−−= ∀

88

6.2.4 Packet Transmission

The window function w(t) is used to limit the difference in the service offered to the

flows f and h. To achieve this, w(t) is allowed to take values between wmax and

–wmax. The packets that are received from flows f and h are kept in separate FIFO

queues. When a packet becomes head of line in the queue of flow f, the amount of

service that is required to transmit the packet is compared with the amount of

service that w(t) permits to flow f. Let Pf(t) denote the size of the head of line packet

in queue of flow f at time t. If

 (6-13)

then the head of line packet is eligible for transmission and sent to the output

channel. Similarly, let Ph(t) denote the size of the head of line packet in queue of

flow h at time t. If

max.
)(

)(w
hR
tP

tw h −≥− (6-14)

then Ph(t) is eligible for transmission and sent to the output channel. When the head

of line packets of the two flows are eligible for transmission at the same time, one

of the packets can be selected arbitrarily. It must be noted that in the bursty intervals

of the flows, the window based fair aggregation approach allows the transmission of

packets without waiting, as long as the window function does not reach the limit.

For the example case that is illustrated in Figure 6-2, as opposed to the basic and

greedy fair aggregators, WBFA scheduler would be able to transmit all three

packets back to back using full capacity of the channel provided that wmax is large

enough to allow the transmission of three packets of size L.

fR
tP

tww f

.
)(

)(max +≥

89

When the limit is reached the packets of the “greedy” flow must wait for the

window to decrease either suddenly by the service received by the other flow or

slowly by the slope R.f + R.h. The operation of the WBFA aggregator can be better

explained on an example. For simplicity, in this example we can assume that the

output channel of the scheduler n which is shown in Figure 6-1 has an infinite

capacity. Figure 6-3 shows the amount of service received by each input flow, w(t)

and the packet departure times for an example incoming traffic pattern.

At t = 0, w(t) starts from 0. Until the arrival of p.f.4, the condition given in (6-13) is

satisfied and the packets are transmitted immediately. In this period, at the instances

of packet transmission, w(t) increases according to (6-10) and at the other times

decreases with a slope R.f + R.h according to (6-12). When p.f.4 arrives, w(t) is too

high to satisfy (6-13) hence, the packet waits for being transmitted until w(t)

decreases enough to satisfy (6-13). In a similar manner, p.f.5 waits for w(t) to

decrease enough to satisfy (6-13). When p.h.1 arrives, it satisfies the condition (6-

14) and is transmitted immediately. When p.h.1 is transmitted, w(t) decreases

according to (6-11) and as a result of the sudden decrease in w(t), (6-13) is satisfied

and p.f.5 is also transmitted immediately. Similar to p.h.1, when p.h.2 and p.h.3

arrive they are transmitted without waiting. After the transmission of p.h.3, w(t)

takes a negative value. From this point on, w(t) increases according to (6-12) until it

reaches 0. After this point, p.f.6 and p.f.7 satisfy (6-13) and are transmitted as soon

as they arrive.

90

Figure 6-3 An example for the operation of WBFA. (a) shows w(t) and the service

received by flows f and h, (b) shows the arrival times and sizes of the packets and

(c) shows the departure times of the packets.

6.3 ANALYSIS OF THE WINDOW BASED FAIR

AGGREGATOR

In this section, we show analytically that WBFA is a fair aggregator. Let m be an

ideal Generalized Processor Sharing (GPS) scheduler based aggregator with an

output channel capacity equal to C.m = R.f + R.h and n be a WBFA aggregator with

same input flows f, h and output channel capacity C.n > R.f + R.h. Let the outputs

of the aggregators be forwarded to a start time scheduler s with an output channel

capacity equal to C.s > R.f + R.h as shown in Figure 6-4.

91

Figure 6-4 The aggregators m, n and the scheduler s.

Lemma 1: The relative ordering of the packets in each of the flows f and h does not

change in the schedulers m and n.

Proof: In both m and n, the packets of flows f and h are kept in separate FIFO

queues. Consequently, no packet in these queues can leave before its predecessor.

Lemma 2:

 (6-15)

Proof: The WBFA method allows one of the flows receive service as long as the

window function which is updated according to (6-10), (6-11) and (6-12) does not

reach the maximum window size.

Lemma3:

 (6-16)

fR
kfmES

fR
kfnESw

.
)...,0(

.
)...,0(

max −≥

kfnSkfmS =

92

Proof: In Section 6.2.1, the definition of the start time was given as the time that the

packet is forwarded to the output channel when each flow is served exactly with its

own reserved rate. The flow f has the same reserved rate in schedulers m and n.

Theorem: WBFA aggregator n is a fair aggregator.

Proof: As the output channel capacity of m is limited to R.f + R.h, m is a basic fair

aggregator according to [20] and there exists a constant λ.m.f.i such that

 (6-17)

where p.d.j = p.f.i.

Using Lemma 1 and Lemma 2, it is possible to say one can always find a constant

α.m.f.i such that

 (6-18)

where p.g.k = p.d.j = p.f.i.

Then, according to the definition of the start time, one can always find a constant

β.m.f.i such that

 (6-19)

where p.g.k = p.d.j = p.f.i.

When we put (6-17) and (6-19) together,

ifmifmSjdtS λ+≤

ifmjk ...α≤−

ifmkgsSjdsS β≤−

93

 (6-20)

where p.g.k = p.f.i.

When we apply Lemma 2 to (6-20), we get

 (6-21)

where p.g.k = p.f.i.

(6-21) shows that, according to the fair aggregator definition in (6-4), n is a fair

aggregator and according to the results of [20] it preserves the individual delay

bounds of the constituent flows in spite of flow aggregation.

6.3.1 Calculation of the Delay Bound

In (6-6), while ∆.s.f.i and δ.s.f.i depend on the types of the start time schedulers

used in the network, λ.s.f.i is determined by the WBFA aggregator. Hence, for the

calculation of the end to end delay bound for a network consisting of start time

schedulers and WBFA aggregators, it is necessary to find λ.s.f.i. Once λ.s.f.i is

found, the end to end delay bound can be calculated by inserting the characteristic

parameters of the start times schedulers which are used in the network into (6-6).

In Figure 6-4, m was defined as a GPS scheduler. So, it can be written that

 (6-22)

It was stated that C.s > R.f + R.h. As a result of this, any packet leaving scheduler m

will start to recive service immediately. Hence,

ifmifmifmSkgsS βλ ++≤

ifmifmifnSkgsS βλ ++≤

fR
ifmLifmSifmE

.
......... +=

94

 (6-23)

where p.f.i = p.d.j. Combining the equations (6-22) and (6-23),

 (6-24)

The maximum value of S.s.d.j is obtained when the packet size is maximum.

 (6-25)

From (6-17), λ.m.f.i can be written as

 (6-26)

As a result of the difference in the order of packets in the flows d and g, the same

packets in different flows will have different start times in the scheduler s. The

order of the packets is determined mainly by the difference in the service received

by each flow in the schedulers m and n. The scheduler s serves each flow packet by

packet. Hence, the service difference for the flows d and g can get worse one

maximum size packet in the input of the scheduler s.

 (6-27)

Using Lemma 2,

ifmEjdsS =

fR
ifmLifmSjdsS

.
......... +=

fR
ifLifmSjdsS

.
........ max+≤

fR
fLifm

.
.... max=λ

hRfR
fLifmESifnES

kgsSjdsS
..

.)...,0()...,0(
...... max

+
+−

≤−

95

 (6-28)

From (6-19), β.m.f.i can be taken as

 (6-29)

Writing (6-26) and (6-29) into (6-21), λ.n.f.i can be written as

 (6-30)

6.4 IMPLEMENTATION AND TEST RESULTS

The effect of the flow aggregation of WBFA on the packet delays is measured by

implementing WBFA on our hardware testbed. WBFA is designed on Xilinx ISE

design environment using VHDL language for FPGA implementation. In our

experiments, FPGEN traffic generator generates Poisson traffic at adjustable loads.

This traffic initially consists of 16 flows. Later, the 16 flows are aggregated into 4

flows through a two level WBFA array. The two level WBFA array is given in

Figure 6-5. Here, wmax is selected as 2048. With this selection, even the flow with

the smallest reserved bandwidth is able to transmit 10 maximum sized packets

before wmax is reached. The aggregated traffic is then delivered to a W2FQ+

scheduler which is explained in Chapter 5. A timestamp is inserted into the header

of the packets before they enter the scheduler. At the output of the scheduler, the

time that a packet leaves the scheduler is compared with the timestamp in the packet

header and the queuing delay is calculated. In this way, the packet queuing delay is

measured as the time between the time the first bit of the packet enters the scheduler

and leaves the scheduler excluding the packet transmission time on the interface.

hRfR
fLfRnwkgsSjdsS

..
.).)(.(...... maxmax

+
+

≤−

hRfR
fLfRnwifm

..
.).)(.(... maxmax

+
+

=β

hRfR
fLfRnw

fR
fLifn

..
.).)(.(

.
.... maxmaxmax

+
+

+=λ

96

Similar to the experiments which are presented in Section 5.4, we did not employ a

traffic shaper to limit the maximum burst size.

Table 6-1 summarizes the results of the performance measurement of the WF2Q+

scheduler when WBFA is used to aggregate the input flows. It can be seen that the

average delay received by the packets increase with the increasing number of traffic

load. However, the maximum delay figure does not have the same tendency. It can

be seen that when the traffic load is inceased from 50% to 80%, maximum delay

decreases.

Table 6-1 The experiment results of the WBFA implementation.

Exp i No of

packets

% Mean

 total load

Mean

queuing

delay (ns)

Maximum

queuing

delay (ns)

1 10000 35 20,08 232

2 10000 50 23,28 5816

3 10000 80 25,84 3808

The reason of this decrease is the more fair distribution of the packets among the

queues when the load is increased. This can be more clearly explained on an

example. In our implementation, the WF2Q+ scheduler has 4 input queues q1, q2, q3

and q4 which are assigned to the aggregated flows g1, g2, g3 and g4 as shown in

Figure 6-5. As a result of flow aggregation, there is the possibility that at some

instance, g1 may be consisting of flows f1, f2, f3 and f4 where g2 may be consisting of

f5 only. In this case, g1 will receive a scheduling service share proportional to the

sum of the reserved rates of f1, f2, f3 and f4. However, g2 will receive a much lower

service which is proportional to the reserved rate of f5 only. What makes the case

much more dramatic is that, in addition to the greater service share received by g1,

the number of packets waiting to be served in q1 is four times the number of packets

in q2. This unfairness may result in large delay for the packets of f5. However, when

the traffic

equally oc

the traffic

In the imp

scheduler

are fair a

aggregatio

case wher

obtained i

experimen

transmissi

maximum

bound for

c load is in

ccupied also

load is ince

Fig

plementatio

which is W

aggregators

on preserves

re flow agg

in our exper

nts is 6.14

ion time to

m delay of 1

the WF2Q+

ncreased, th

o increases.

eased from

gure 6-5 The

on we used

WF2Q+. Acc

and all th

s, and in som

gregation is

riments is 5

44 μs for

o the maxim

1.96 μs. In

+ scheduler

97

he possibilit

This explai

50% to 80%

e two level W

a fair aggr

cording to [2

he schedule

me cases im

not used. T

5.816 μs. T

1536 Byte

mum queui

Section 5.4

r is above 4

ty of the a

ins the decr

%.

WBFA arra

egator whic

20], when a

ers are star

mproves the

Table 6-1 t

he maximu

e packets.

ing delay o

4 we calcula

43 μs for the

aggregated

ease in max

ay structure

ch is WBFA

all the aggre

rt time sch

 delay boun

tells that th

um transmis

If we ad

of 5.816 μ

ated that, th

e flow with

flows being

ximum dela

.

A and a sta

egators in a

hedulers, th

nd compared

e maximum

ssion delay

dd this ma

μs, we get

he theoretica

h the tightes

g more

y when

art time

system

he flow

d to the

m delay

for our

aximum

a total

al delay

st delay

98

bound. Hence, the maximum delay in our test results is within the theoretical delay

bound even for the flow with the tightest delay bound. We can conclude that using

the fair aggregator WBFA and the start time scheduler WF2Q+, the system

succeeded in remaining within the theoretical delay bound.

When we compare the average delay figures in Table 6-1 with those of Table 5-3,

we see that when WBFA is added to the WF2Q+ scheduler, the average delay is

improved according to the case where WF2Q+ scheduler is used on its own.

6.5 CONCLUSIONS

Fair aggregators are used for providing QoS guarantees when flow aggregation is

performed in the network. We propose Window Based Fair Aggregator (WBFA)

and show that it is a fair aggregator which preserves the individual delay bounds of

the constituent flows in the aggregate.

WBFA uses a window function to keep track of the relative difference in the

received service for each flow. This method allows the input flows to use the full

capacity of the output channel as long as the value of the window function is within

the allowed range. The benefit of WBFA becomes more significant if the

aggregated flows have similar traffic characteristics such as burst times and

allocated rates. In this case the service difference will mostly stay in the allowed

window range while the available resources are utilized. We would like to note that

[20] also states this conclusion for the proposed aggregators. As a result of the

increase in the utilization the average end-to-end delays provided by WBFA would

be lower than the basic and greedy fair aggregators proposed by [20].

While increasing the utilization, WBFA preserves the fairness of service to the

aggregated flows as we demonstrate in Lemma 2. In WBFA, the service given to

each flow differs from the service given in the ideal GPS scheduler by only a

99

constant which can be determined by the designer.

The calculation of the window function does not involve complex arithmetic

operations and has low computational complexity. The calculation requires only

addition, comparison and division operations. In hardware design, while addition

and comparison operations can be implemented efficiently using very little logic

resources, division may demand more resources depending on the number of bits

involved in the operation. However, it must be noted that the operands L and R.g

which are used in the division operation can take only a finite number of values.

Both the number of packet sizes in IP networks and the number of possible reserved

rates for the flows has a limited set of values. Hence, by using this set of values, a

look-up table can be constructed and division operation can be transformed into

simply reading the corresponding entry in a table. In this way, division can also be

implemented efficiently by using small amount of logic resources.

The motivation for flow aggregation is to decrease the complexity of the scheduling

algorithm. Hence, it is important that the flow aggregation hardware does not

increase the overall complexity of the design.

100

CHAPTER 7

SUMMARY AND CONCLUSIONS

In this thesis, we try to identify the difficulties in the design of PFQ schedulers and

overcome these difficulties using different techniques. The first step of our research

is the design of a hardware testbed where we can implement schedulers and

evaluate their performance on hardware. The hardware testbed consists of three

FPGA based data processing boards and a backplane to provide communication and

power distribution among the boards. The electrical design, PCB design and

manufacturing of all the data processing boards and the backplane are performed in

the context of this thesis work. Each of the data processing boards are able to

communicate with the other boards through two OC-48 optical fiber channels.

These channels provide each board a communication capacity of 5 Gbps.

The next step of our research is the design of a FPGA-based hardware traffic

generator that can generate IP traffic to be used in the performance evaluation of the

schedulers in the testbed. In today’s network environment, design of hardware

traffic generators is an independent and hot research problem. The testing and

performance evaluation of high-speed network devices requires high-speed packet

generators which can generate network traffic at predetermined load conditions and

traffic patterns. The software-based traffic generators do not scale to high speeds in

the order of Gbps. One other problem with the software traffic generators is that the

lack of dedicated hardware resources and CPU-based operation lead to deviation

from intended traffic profile at lower speeds than the saturation point of the

101

throughput. Hence, hardware-based traffic generators are required to investigate the

performance of the backbone network devices.

Our traffic generator design, FPGEN is developed on FPGA. FPGEN is scalable to

high-speeds as it is implemented purely on hardware without using any high level

programming or processors. The packet generation times are computed in real-time

entirely using the logic resources of the FPGA. FPGEN can generate one packet per

clock period, hence it supports up to 125 Mpps per interface at 125 MHz clock rate

of our board. Furthermore this rate scales linearly with increased clock rate, number

of interfaces or interface speed. Our experiments show that the FPGEN board can

support a total traffic generation rate of 5 Gbps and 250 million packets per second

with its two OC-48 interfaces. FPGEN is configurable to generate traffic with

different parameters due to the programmability of the FPGA. FPGEN generates

Poisson traffic with exponentially distributed packet sizes. We present a model

which overcomes the inherent difficulties of generating this traffic on a serial

interface due to the required independence between the packet sizes and the inter-

packet times. In addition, FPGEN can generate Markov-modulated on–off traffic

entirely on hardware. We present the design and implementation details of FPGEN

followed by an experimental demonstration of achieving packet generation at OC-

48 rate per interface. FPGEN serves as the packet generator for the performance

evaluation of the developed schedulers.

Next, with the aim of discovering the challenges and difficulties in the design of

PFQ schedulers, we construct a system level architecture to identify the functional

blocks that are used commonly in all PFQ schedulers and the blocks that are unique

to the scheduling algorithms. Using this architecture, we introduce some new design

tricks and also make use of some previously suggested approaches to overcome

these difficulties. We try to identify the resource-hungry operations and try to find

alternative ways of performing these operations. Hardware division is used in many

different blocks throughout the design. The scheduler design requires a lot of

hardware dividers working in parallel which results in the waste of huge amount of

102

logic resources. We try to prevent the waste of resources by using a look-up-table

instead of dividers. In the scheduler design, it is necessary to find the minimum of

the time stamps in several different functions. Hence, searching efficiency in terms

of speed and logic area affects the performance of the scheduler closely. In our

design we use a RAM-based searching engine to enhance the searching

performance. Some vectors in the scheduler design are updated continuously. Due

to their continuously increasing behavior, after some time these vectors reach their

maximum (all bits are ones) and then, overflow and restart counting up from zero.

This problem is known as counter aging problem. As a solution to this problem, we

apply a counter renewal procedure. In addition to these measures, we use dynamical

adaptation to enhance the performance of the scheduler design. The scheduler is

given the ability to simplify some calculations according to the set of flows present

in the scheduler at the time of operation.

We use our proposed architecture and the design enhancements to implement a

popular PFQ algorithm Worst Case Fair Weighted Fair Queuing (WF2Q+) on our

FPGA-based hardware testbed. Using the traffic generated by FPGEN, packet

statistics are collected and the performance evaluation of the algorithm is

demonstrated. It is seen that the average processing delay received by the packets

increase with the increasing traffic load. However, even for a traffic load of 0.8, the

scheduler is able to process packets with reasonable delay figures. One important

point we note in our design is that, in our PFQ scheduler architecture, the

implementation complexity increases with the number of flows that are scheduled.

In PFQ schedulers, some of the functions are calculated in per flow basis. The

packets of different flows are kept in different queues. Also, there are other

operations such as searching and sorting which become more complicated with the

increasing number of flows. Hence, for a given amount of logic and hardware

resources, when the number of flows exceeds a certain limit, the scheduling

algorithm will be unable to continue its proper operation.

103

A solution to support high number of flows is aggregating them to decrease the

implementation complexity. The basic problem in flow aggregation is preserving

QoS guarantees of the constituent flows in the aggregate. As a result of the greedy

behavior of one of these flows, the others may receive decreased delay and fairness

performance. This problem is tackled in [20] which proposes a network model that

consists of flow aggregators and packet schedulers. It is proved that if the flow

aggregation is performed fairly and the packet schedulers have certain properties,

the end-to-end delay guarantees are preserved with respect to the case that no flow

aggregation is performed. [20] presents two different approaches for the design of

fair aggregators. The first one is “the basic fair aggregator” which limits the service

rate for the aggregated flow to the sum of the reserved rates of the input flows. The

second approach is “the greedy fair aggregator” which relaxes this limit only if all

input flows have an arrival rate greater than their reserved rates. It is possible that

the arrival rate of the flows to be aggregated exceed the total reserved rate

temporarily. In such case even if there is available capacity to serve these flows, it

will not be utilized.

We propose Window Based Fair Aggregator (WBFA) and analytically show that it

is a fair aggregator as defined in [20]. Hence, the individual delay bounds of the

constituent flows aggregated by WBFA are preserved. Our approach allows the

constituent flows to use the full capacity of the output channel until the difference in

the service received by the flows reaches a limit. As a result of the increase in the

utilization, the average end-to-end delays provided by WBFA are expected to be

lower than the basic and greedy fair aggregators proposed by [20]. While increasing

the utilization, WBFA also preserves the fairness of service to the aggregated flows.

In addition to these, WBFA has low implementation complexity and can be

efficiently implemented on hardware.

Following our analytical study, WBFA is implemented in our hardware testbed. In

our implementation, the traffic generated by FPGEN is delivered to WBFA for the

aggregation of incoming flows to a fewer outgoing flows. Then, the aggregated

104

flows are processed in the WF2Q+ scheduler before reaching the output channel.

Our implementation results show that the average delay performance of the overall

scheduling system is improved when WBFA is used, compared with the case where

there is no flow aggregation.

As a conclusion, the scalability of the scheduler implementations in high speed core

networks can be improved by decreasing either the complexity of the per-flow

operations or the number of flows in the scheduler. The complexity of the per-flow

operations can be decreased by using efficient hardware implementation methods.

The scheduling algorithms should take the advantage of being implemented on

hardware and make use of the benefits offered by the hardware implementation

techniques. The number of flows can be decreased by aggregating the flows. Fair

aggregation techniques can be used to preserve the QoS guarantees of the

constituent flows when aggregation is used. However, while the non-work-

conserving approaches in fair aggregation results in poor output channel utilization,

the work-conserving approaches introduce problems about delay performance and

implementation complexity. WBFA improves the output channel utilization while

still providing tight delay guarantees to the constituent flows. It also helps to

provide fairness among the constituent flows. Its low implementation complexity

makes it a favorable aggregation method for high speed core networks.

Our entire development and performance evaluation is carried out on FPGA

hardware platform. Our future work includes developing a software simulator to

conduct experiments with any number of nodes to investigate WBFA QoS support.

Furthermore such software simulator can be used to compare WBFA and the basic

fair aggregator [20] under similar traffic conditions and the packet delay statistics

may be collected to show the increase in average utilization when WBFA is used. In

addition to these experiments, some other experiments or simulations may be

performed to illustrate the fairness provided to the constituent flows when WBFA is

used. In these experiments, per-hop delay statistics may be collected and compared

with the delay performance of other fair aggregation approaches.

105

REFERENCES

[1] J. L. Salina, P. Salina, “Next generation networks: perspectives and potentials,”

Wiley, 2008.

[2] A. K. Parekh, R. G. Gallager, “A generalized processor sharing approach to

flow control in integrated services networks: The single node case,” IEEE/ACM

Trans. Networking, vol. 1, pp. 344-357, June 1993.

[3] A. Demers, S. Keshav, S. Shenker, “Analysis and simulation of a fair queueing

algorithm,” in Proc. ACM SIGCOMM, pp. 1-12, Sept. 1989.

[4] R. L. Cruz, “A calculus for network delay, part I: Network elements in

isolation,” IEEE Trans. Inform. Theory, vol. 37, pp. 114-131, Jan. 1991.

[5] A. K. Parekh, R. G. Gallager, “A generalized processor sharing approach to

flow control in integrated services networks: The multiple node case,” IEEE/ACM

Trans. Networking, vol. 2, pp. 137-150, Apr. 1994.

[6] L. Georgiadis, R. Guerin, V. Peris, R. Rajan, “Efficient support of delay and rate

guarantees in an internet,” in Proc. ACM SIGCOMM, pp. 106-116, Aug. 1996.

[7] S. J. Golestani, “A self-clocked fair queueing scheme for broadband

applications,” in Proc. IEEE INFOCOM, pp. 636-646, 1994.

106

[8] S. Suri, G. Varghese, G. Chandranmenon, “Leap forward virtual clock: A new

fair queueing scheme with guaranteed delays and throughput fairness,” in Proc.

IEEE INFOCOM, pp. 557-565, 1997.

[9] D. Stiliadis, A. Varma, “Latency-rate servers: A general model for analysis of

traffic scheduling algorithms,” in Proc. IEEE INFOCOM, pp. 111–119, 1996.

[10] D. Stiliadis, A. Varma, “Design and analysis of frame-based fair queueing: A

new traffic scheduling algorithm for packet-switched networks,” in Proc. ACM

SIGMETRICS, pp. 104-115, 1996.

[11] D. Stiliadis, A. Varma, “A general methodology for design efficient traffic

scheduling and shaping algorithms,” in Proc. IEEE INFOCOM, pp. 326-335, 1997.

[12] D. Stiliadis, A. Varma, “Rate-proportional server: A design methodology for

fair queueing algorithms,” IEEE/ACM Trans. Networking, vol. 6, pp. 164-174,

1998.

[13] D. Stiliadis, A. Varma, “Efficient fair queueing algorithms for packet-switched

networks,” IEEE/ACM Trans. Networking, vol. 6, pp. 175–185, 1998.

[14] H. Zhang, S. Keshav, “Comparison of rate based service disciplines,” in Proc.

ACM SIGCOMM, pp. 113-122, 1991.

[15] J. C. R. Bennett, H. Zhang, “WF2Q: Worst-case fair weighted fair queueing,”

in Proc. IEEE INFOCOM, pp. 120-128, 1996.

[16] J. C. R. Bennett, H. Zhang, “Hierarchical packet fair queueing algorithms,”

IEEE/ACM Trans. Networking, vol. 5, pp. 675-689, Oct 1997.

107

[17] P. Goyal, H. M. Vin, H. Cheng, “Start-time fair queueing: A scheduling

algorithm for integrated services packet switching networks,” IEEE/ACM Trans.

Networking, vol. 5, pp. 690-704, Oct 1997.

[18] S. Sezer, C. Toal, E. Garcia, V. Stewart, “A reconfigurable tag computation

architecture for terabit packet scheduling,” in Proc. 18th International Parallel and

Distributed Processing Symposium, 2004.

[19] A. Ioannou, M. G. Katevenis, “Pipelined heap (priority queue) management for

advanced scheduling in high-speed networks,” IEEE/ACM Transactions on

Networking, vol. 15, no. 2, pp. 450-461, 2007.

[20] J. A. Cobb, “Preserving quality of service guarantees in spite of flow

aggregation,” IEEE/ACM Transactions on Networking, vol. 10, no. 1, 2002.

[21] M. Sanlı, E. G. Schmidt and H. C. Güran, “FPGEN: A fast, scalable and

programmable traffic generator for the performance evaluation of high-speed

computer networks,” Elsevier Performance Evaluation, vol. 68, no. 12, pp. 1276-

1290, 2011.

[22] H. J. Chao, X. Guo, “Quality of service control in high-speed networks,”

Wiley, 2001.

[23] H. J. Chao, B. Liu, “High performance switches and routers,” Wiley, 2007.

[24] J. Evans, C. Filsfils, “Deploying IP and MPLS QOS for multiservice networks,

theory and practice,” Morgan Kaufmann, 2007.

[25] D. Ferrari, D. C. Verma, “A scheme for real-time channel establishment in

wide-area networks,” IEEE J. Select. Areas Commun., vol. 8, pp. 368-379, 1990.

108

[26] H. Zhang, D. Ferrari, “Rate-controlled static-priority queuing,” in Proc.

INFOCOM, pp. 227-236, 1993.

[27] S. Kweon, K. G. Shin, “Providing deterministic delay guarantees in ATM

Networks,” IEEE Trans. Networking, vol. 6, pp.838-850, 1998.

[28] S. J. Golestani, “Congestion-free communication in high-speed packet

networks,” IEEE Trans. Commun, vol. 39, pp.1802-1812, 1991.

[29] C. Kalmanek, H. Kanakia, S. Keshav. “Rate-controlled servers for very high-

speed networks,” in Proc. GLOBECOM, pp. 300.3.1-300.3.9, 1990.

[30] J. H. Huang, P. C. Tsao, “Continuous framing mechanism for congestion

control in broad-band networks,” Computer Communications, vol. 18, pp. 718-724,

1995.

[31] I. R. Philip, J. W. S. Liu, “End-to-end scheduling in real-time packet-switched

networks,” in Proc. International Conference on Network Protocols, pp. 23-30,

1996.

[32] P. Goyal, H. M. Vin, H. Cheng, “Start-time fair queueing: A scheduling

algorithm for integrated services packet switching networks,” in Proc. ACM

SIGCOMM, pp. 157-168, 1996.

[33] S. Cheung, C. Pencea, “BSFQ: Bin sort fair queueing,” in Proc. IEEE

INFOCOM, pp. 1640-1649, 2002.

[34] S. Ramabhadran, J. Pasquale, “Stratified round robin: A low complexity packet

scheduler with bandwidth fairness and bounded delay,” in Proc. ACM SIGCOMM,

pp. 239-249, 2003.

109

[35] X. Yuan, Z. Duan, “FRR: A proportional and worst-case fair round robin

scheduler,” in Proc. IEEE INFOCOM, pp. 831-842, 2005.

[36] Z. Dwekat, G. N. Rouskas, “A practical fair queuing scheduler: Simplification

through quantization,” Computer Networks, vol. 55, no. 10, pp. 2392-2406, 2011.

[37] M. Coss, R. Sharp, “The Network processor decision,” Bell Labs Technical

Journal, vol. 9, no. 1, pp. 177-189, 2004.

[38] F. Sabrina, S. Kanhere, S. Jha, “Implementation and Performance Analysis of a

Packet Scheduler on a Programmable Network Processor,” In Proc. IEEE

Conference on Local Computer Networks, pp. 242-249, 2005.

[39] K. E. Dombkowski, K. F. Kocan, “FPGA technology to minimize extended

life-cycle development,” Bell Labs Technical Journal, vol. 9, no. 1, pp. 191-195,

2004.

[40] Miercom, Available online at:

(http://www.miercom.com/?url=services/), last accessed on 1/9/2011.

[41] Spirent, Available online at:

(http://www.spirent.com/Planet-Spirent/SPoC_lab.aspx), last accessed on 1/9/2011.

[42] Ixia, Available online at: (http://www.ixiacom.com/), last accessed on

1/9/2011.

[43] K. Yashigoe, K. J. Christensen, “An evolution to crossbar switches with virtual

output queuing and buffered cross points,” IEEE Network, vol. 17, no. 5, pp. 48-56,

2003.

110

[44] M. Song, W. Zhu, “Throughput analysis for multicast switches with multiple

input queues,” IEEE Communications Letters, vol. 8, no. 7, pp. 479-481, 2004.

[45] G. Sapountzis, M. Katevenis, “Benes switching fabrics with O(N)-complexity

internal backpressure,” IEEE Communications Magazine, vol. 43, no. 1, pp. 88-94,

2005.

[46] J. Garofalakis, E. Stergiou, “Analytical model for performance evaluation of

multilayer multistage interconnection networks servicing unicast and multicast

traffic by partial multicast operation,” Performance Evaluation, vol. 67, no. 10, pp.

959-976, 2010.

[47] Z. Zenghao, Y. Yuanyuan, “A novel analytical model for switches with shared

buffer,” IEEE/ACM Transactions on Networking, vol. 15, no. 5, pp. 1191-1203,

2007.

[48] N. Chrysos, N. Dimitrakopoulos, “Practical high-throughput crossbar

scheduling,” IEEE Micro, vol. 29, no. 4, pp. 22-35, 2009.

[49] D. Zaragoza, C. Belo, “Experimental validation of the on–off packet-level

model for IP traffic,” Computer Communications, vol. 30, no. 5, pp. 975-989,

2007.

[50] A. Gupta, V. Sharna, “A unified approach for analyzing persistent, non-

persistent and ON–OFF TCP sessions in the Internet,” Performance Evaluation, vol.

63, no. 2, pp. 79-98, 2006.

[51] H. Ferng, J. Chang, “Connection-wise end-to-end performance analysis of

queueing networks with MMPP inputs,” Performance Evaluation, vol. 43, no. 1, pp.

39-62, 2001.

111

[52] I. D. Moscholios, M. D. Logothetis, G. K. Kokkinakis, “Call-burst blocking of

ON–OFF traffic sources with retrials under the complete sharing policy,”

Performance Evaluation, vol. 59, no. 4, pp. 279-312, 2005.

[53] K. V. Vishwanath, A. Vahdat, “Swing: realistic and responsive network traffic

generation,” IEEE/ACM Transactions on Networking, vol. 17, no. 3, pp. 712-725,

2009.

[54] S. Avvalone, D. Emma, A. Pescape, G. Ventre, “High performance Internet

traffic generators,” The Journal of Supercomputing, vol. 35, no. 1, pp. 5-26, 2006.

[55] S. Avvalone, D. Emma, A. Pescape, G. Ventre, “Performance evaluation of an

open distributed platform for realistic traffic generation,” Performance Evaluation,

vol. 60, no. 1–4, pp. 359-392, 2005.

[56] R. Simmonds, B.W. Unger, “Towards scalable network emulation,” Computer

Communications, vol. 26, no. 3, pp. 264-277, 2003.

[57] Traffic Generator, Available online at: (http://www.postel.org/tg/tg.htm), last

accessed on 1/9/2011.

[58] Multi-Generator MGEN, Available online at:

(http://cs.itd.nrl.navy.mil/work/mgen/index.php), last accessed on 1/9/2011.

[59] RUDE and CRUDE, Available online at: (http://rude.sourceforge.net/), last

accessed on 1/9/2011.

[60] D-ITG, Distributed Internet Traffic Generator, Available online at:

(http://www.grid.unina.it/software/ITG/), last accessed on 1/9/2011.

112

[61] A. Botta, A. Dainotti, A. Pescape, “Do you trust your software-based traffic

generator,” IEEE Communications Magazine, Computer Communications, vol. 48,

no. 9, pp. 158-165, 2010.

[62] J. Jaeger, “FPGA-based prototyping grows up,” Electronic Engineering Times,

no. 518, 2008.

[63] B. Kirk, “FPGA-prototyping and ASIC-conversion considerations,” EDN, vol.

52, no. 21, pp. 67-70, 2007.

[64] A. Abdo, H. Awad, S. Paredes, T. J. Hall, “OC-48 configurable IP traffic

generator with DWDM capability,” in Proc. Canadian Conference on Electrical and

Computer Engineering, pp. 1842-1845, 2006.

[65] G. Salmon, M. Ghobadi, Y. Ganjali, M. Labrecque, J.G. Steffan, “NetFPGA-

based precise traffic generation,” in Proc. NetFPGA Developers Workshop’09,

2009.

[66] G. A. Covington, G. Gibb, J. W. Lockwood, N. Mckeown, “A packet generator

on the NetFPGA platform,” in Proc. IEEE Field-Programmable Custom Computing

Machines, pp. 235-238, 2009.

[67] A. Tagami, T. Hasegawa, K. Nakao, “OC-48c traffic tester for generating and

analyzing long-range dependence traffic,” Seventh International Symposium on

Computers and Communications, pp. 975-982, 2002.

[68] B. Matthews, I. Elhanany, “A high-speed reconfigurable architecture for

heterogeneous multimodal packet traffic generation,” in Proc. IEEE 48th Midwest

Symposium on Circuits & Systems, pp. 1143-1146, 2005.

113

[69] P. Chu, B. Frantz, “A reprogrammable FPGA-based ATM traffic generator,” in

Proc. Sixth Great Lakes Symposium on VLSI, pp. 35-38, 1996.

[70] Altera, Available online at: (http://www.altera.com), last accessed on 1/9/2011.

[71] Xilinx, Available online at: (http://www.xilinx.com), last accessed on

1/9/2011.

[72] NetFPGA, Available online at: (http://www.netfpga.org/), last accessed on

1/9/2011.

[73] B. Lemouzy, J. Garnier, N. Neufeld, “FPGA based data-flow injection module

at 10 Gbit/s reading data from network exported storage and using standard

protocols,” Journal of Instrumentation, vol. 6, no. 2, 2011.

[74] A. A. Alves, “The LHCb detector at the LHC,” Journal of Instrumentation, vol.

3, no. 8, 2008.

[75] M. Frank, J. Garnier, C. Gaspar, G. Liu, N. Neufeld, A. S. Varela, “Online

testbench for LHCb high level trigger validation,” Journal of Physics Conference

Series, vol. 219, no. 2, 2010.

[76] O. Callot, M. Frank, J. Garnier, C. Gaspar, G. Liu, N. Neufeld, A. S. Varela, A.

C. Smith, D. Sonnick, “High-speed data-injection for data-flow verification at

LHCb,” IEEE Transactions on Nuclear Science, vol. 57, no. 2, pp. 497-502, 2010.

[77] LHCb ECS, Available online at: (http://cern.ch/lhcb-online/ecs), last accessed

on 1/9/2011.

[78] V. Sharma, R. Mazumdar, “Estimating traffic parameters in queueing systems

with local information,” Performance Evaluation, vol. 32, no. 3, pp. 217-230, 1998.

114

[79] F. Baccelli, S. Machiraju, D. Veitch, J. Bolot, “The role of PASTA in network

measurement,” IEEE/ACM Transactions Network, vol. 17, no. 4, pp. 1340-1353,

2009.

[80] G. Terdik, T. Gyires, “Lévy flights and fractal modeling of Internet traffic,”

IEEE/ACM Transactions on Networking, vol. 17, no. 1, pp. 120-129, 2009.

[81] T. Karagiannis, M. Molle, M. Faloutsos, A. Broido, “A nonstationary Poisson

view of Internet traffic,” in Proc. INFOCOM, pp. 1558-1569, 2004.

[82] J. Cao, W. S. Cleveland, D. Lin, D.X. Sun, “Internet traffic tends toward

Poisson and independent as the load increases,” Nonlinear Estimation and

Classification, pp. 83-109, 2002.

[83] E. Pallares-Segarra, J. Garcia-Haro, “Fluid-flow approach to evaluate the

information loss probability in a finite buffering switching node under

heterogeneous ON/OFF input traffic sources,” Performance Evaluation, vol. 51, no.

2, pp. 153-169, 2003.

[84] X. Li, I. Elhanany, “Heterogeneous maximal-throughput bursty traffic model

with application to packet switches,” in Proc. IEEE/Sarnoff Symposium on

Advances in Wired and Wireless Communication, pp. 158-159, 2005.

[85] A. Adas, “Traffic models in broadband networks,” IEEE Communications

Magazine, vol. 35, no. 7, pp. 82-89, 1997.

[86] T. Benson, A. Anand, A. Akella, M. Zhang, “Understanding data center traffic

characteristics,” ACM SIGCOMM Computer Communications Review, vol. 40, no.

1, pp. 92-99, 2010.

115

[87] M. E. Crovella, A. Bestavros, “Self-similarity in World Wide Web traffic:

evidence and possible causes,” IEEE/ACM Transactions on Networking, vol. 5, no.

6, pp. 835-846, 1997.

[88] A. T. Andersen, B. F. Nielsen, “A Markovian approach for modeling packet

traffic with long-range dependence,” IEEE Journal on Selected Areas in

Communications, vol. 16, no. 5, pp. 719-732, 1998.

[89] NIST/SEMATECH e-Handbook of Statistical Methods, Available online at:

(http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc331.htm), last

 accessed on 1/9/2011.

[90] P.J. Burke, “The output of a queuing system,” Operations Research, vol. 4, pp.

699-704, 1956.

[91] Xilinx Virtex-II Pro and Virtex-II Pro X FPGA user guide, Available online at:

(www.xilinx.com/support/documentation/user_guides/ug012.pdf), last accessed on

1/9/2011.

[92] Linear Feedback Shift Registers in Virtex Devices, Available online at:

(http://www.xilinx.com/support/documentation/application_notes/xapp210.pdf),

last accessed on 1/9/2011.

[93] Xilinx Rocketio transceiver user guide, Available online at:

(www.xilinx.com/support/documentation/user_guides/ug024.pdf), last accessed on

1/9/2011.

[94] NIST/SEMATECH e-Handbook of Statistical Methods, Available online at:

(http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm), last accessed

on 1/9/2011.

116

[95] MATLAB version 7.8.0, The MathWorks Inc., 2009.

[96] H. J. Chao, Y. R. Jenq, X. Guo, C. H. Lam, “Design of packet-fair queuing

schedulers using a RAM-based searching engine,” IEEE Journal on Selected Areas

in Communications, vol. 17, no. 6, pp. 177-189, Jun 1999.

[97] A. Lyengar, M. E. Zarki, “Switched prioritized packets,” in Proc. IEEE

GLOBECOM, pp. 1181-1186, 1989.

[98] Y. R. Jenq, “Design of a fair queueing scheduler for packet switching

networks,” Ph.D. dissertation, Elect. Eng. Dept., Polytechnic Univ., Brooklyn, NY,

1998.

[99] K. McLaughlin, S. Sezer, H. Blume, X. Yang, F. Kupzog, T. Noll, “A scalable

packet sorting circuit for high-speed WFQ packet scheduling,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 7, pp. 781-791, 2008.

[100] R. Brown, “Calendar queues: a fast O(1) priority queue implementation for

the simulation event set problem,” Communications of the ACM, vol. 31, no. 10,

pp. 1220-1227, 1988.

[101] K. Dooley, I. Brown, “Cisco IOS Cookbook,” O’Reilly Media, Inc., 2006.

[102] R. Bolla, R. Bruschi, F. Davoli, M. Repetto, “Hybrid optimization for QoS

control in IP virtual private networks,” Computer Networks, vol. 52, no. 3, pp. 563-

580, 2008.

[103] K. McLaughlin, D. Burns, C. Toal, C. McKillen, S. Sezer, “Fully hardware

based WFQ architecture for high-speed QoS packet scheduling,” Integration, the

VLSI Journal, (In Press), 10.1016/j.vlsi.2011.01.001, 2011.

117

[104] M. Song, J. Song, H. Li, “Implementing a high performance scheduling

discipline WF2Q+ in FPGA,” in Proc. IEEE Canadian Conference on Electrical and

Computer Engineering, pp. 187-190, 2003.

[105] G. Kornaros, T. Orphanoudakis, I. Papaefstathiou, “GFS: An efficient

implementation of fair scheduling for multigigabit packet networks,” in Proc. IEEE

International Conference on Application-Specific Systems, Architectures, and

Processors, pp. 389-399, 2003.

[106] R. Krishnamurthy, S. Yalamanchili, K. Schwan, R. West, “Share-streams: A

scalable architecture and hardware support for high-speed QoS packet schedulers,”

in Proc. 12th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines, pp. 115-124, 2004.

[107] A. Merhebi, O. A. Mohamed, “FPGA implementation of a modular and

pipelined WF scheduler for high speed OC192 networks,” 15th ACM Great Lakes

Symposium on VLSI, pp. 422-425, 2005.

[108] J. B. Schmitt, F. A. Zdarsky, M. Fidler, “Delay bounds under arbitrary

multiplexing: When network calculus leaves you in the lurch,” in Proc. INFOCOM,

pp. 1669-1677, 2008.

[109] W. Sun, K. G. Shin, “End-to-end delay bounds for traffic aggregates under

guaranteed-rate scheduling algorithms,” IEEE/ACM Transactions on Networking,

vol. 13, no. 5, pp. 1188-1201, 2005.

[110] J. Joung, J. Song, S. L. Soon, “Flow-based QoS management architectures for

the next generation network,” ETRI Journal, vol. 30, no. 2, pp. 238-248, 2008.

118

[111] V. Laatu, J. Harju, P. Loula, “The impacts of aggregation on the performance

of TCP flows in DS networks,” in Proc. International Conference on Networking,

pp. 528-531, 2004.

[112] V. Laatu, J. Harju, P. Loula, “Fairness comparisons of per-flow and aggregate

marking schemes in DiffServ networks,” in Proc. The 9th Open European Summer

School and IFIP Workshop on Next Generation Networks, pp. 82-87, 2003.

[113] A. Eshete, Y. Jiang, “On the flow fairness of aggregate queues,” in Proc.

Baltic Congress on Future Internet Communications, pp. 120-127, 2011.

[114] Y. Jiang, "Relationship between guaranteed rate server and latency rate

server," in Proc. Global Telecommunications Conference GLOBECOM, pp. 2415-

2419, 2002.

[115] J. A. Cobb, “Scalable quality of service across multiple domains,” Computer

Communications, vol. 28, no. 18, pp. 1997-2008, 2005.

[116] W. Sun, K. G. Shin, “Coordinated aggregate scheduling for improving end-to-

end delay performance,” in Proc. IEEE International Workshop on Quality of

Service (IWQoS), pp. 77-86, 2004.

[117] J. A. Cobb, X. Zhe, “Maintaining flow isolation in work-conserving flow

aggregation,” in Proc. Global Telecommunications Conference GLOBECOM, pp.

436-441, 2005.

[118] J. Cobb, Z. Xu, “Guaranteed throughput in work-conserving flow aggregation

through deadline reuse,” in Proc. IEEE International Conference on Computer

Communication and Networks (ICCCN), pp.87-94, 2006.

119

[119] J. Cobb, “Work conserving fair-aggregation with rate-independent delay,” in

Proc. IEEE International Conference on Computer Communication and Networks

(ICCCN), pp. 1-6, 2008.

[120] J. Cobb, “Rate-independent delay across state-reduced networks,” in Proc.

Local Computer Networks, pp. 577-584, 2009.

[121] N. Figueira, J. Pasquale, “Leave-in-time: A new service discipline for real-

time communications in a packet-switching network,” in Proc. ACM SIGCOMM,

pp. 207-218, 1995.

120

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Sanlı, Mustafa

Nationality: Turkish (TC)

Date and Place of Birth: 29 March 1980, İzmir

Marital Status: Single

Phone: +90 312 5921468

Email: musanli@gmail.com

EDUCATION

Degree Institution Year of Graduation

MS METU Electrical and Electronics Eng. 2005

BS METU Electrical and Electronics Eng. 2002

High School Selma Yiğitalp High School, İzmir 1998

121

WORK EXPERIENCE

Year Place Enrollment

2004 – Present Aselsan AŞ Engineer

2002-2004 METU EE Department Research Assistant

2001 August Vestel Intern Engineering Student

2000 August AR Electronics Intern Engineering Student

FOREIGN LANGUAGES

Fluent English, Intermediate French

PUBLICATIONS

1. M. Sanlı, E. G. Schmidt and H. C. Güran, “FPGEN: A fast, scalable and

programmable traffic generator for the performance evaluation of high-

speed computer networks,” Elsevier Performance Evaluation, vol. 68, no.

12, pp. 1276-1290, 2011.

2. M. Sanlı, E. G. Schmidt, “Yüksek Hızlı Ağlar İçin Zamanlama ve

Anahtarlama Mimarilerinin Tasarımı ve Gerçeklenmesi – Design and

Implementation of the Scheduling and Switching Architectures for High-

Speed Networks,” Gömülü Sistemler ve Uygulamaları Sempozyumu,

GÖMSİS2008.

122

HOBBIES

Windsurfing, seamanship, reading

