SIMULATION AND PERFORMANCE EVALUATION OF A DISTRIBUTED
REAL-TIME COMMUNICATION PROTOCOL FOR INDUSTRIAL
EMBEDDED SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GURAY AYBAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2011

Approval of the thesis

SIMULATION AND PERFORMANCE EVALUATION OF A
DISTRIBUTED REAL-TIME COMMUNICATION PROTOCOL FOR

INDUSTRIAL EMBEDDED SYSTEMS

submitted by GURAY AYBAR in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering

Department, Middle East Technical University by,

Prof. Dr. Canan OZGEN
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ismet ERKMEN
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Senan Ece SCHMIDT
Supervisor, Electrical and Electronics Engineering Dept.,
METU

Examining Committee Members:

Prof. Dr. Semih BILGEN
Electrical and Electronics Engineering Dept.,
METU

Assoc. Prof. Dr. Senan Ece SCHMIDT
Electrical and Electronics Engineering Dept.,
METU

Prof. Dr. Gézde BOZDAGI AKAR
Electrical and Electronics Engineering Dept.,
METU

Assoc. Prof. Dr. Ciineyt BAZLAMACCI
Electrical and Electronics Engineering Dept.,
METU

Ms. Sc. Bora KARTAL
REHIS, ASELSAN

Date: 07.12.2011

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. | also
declare that, as required by these rules and conduct, | have fully cited and
referenced all material and results that are not original to this work.

Name, Last name : GURAY AYBAR

Signature

ABSTRACT

SIMULATION AND PERFORMANCE EVALUATION OF A
DISTRIBUTED REAL-TIME COMMUNICATION PROTOCOL FOR
INDUSTRIAL EMBEDDED SYSTEMS

AYBAR, Giiray
M.Sc., Department of Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Ece Giiran SCHMIDT

December 2011, 77 pages

The Dynamic Distributed Dependable Real-Time Industrial communication
Protocol (D°RIP) provides service guarantees for Real-Time traffic and integrates
the dynamically changing requirements of automation applications in their
operation to efficiently utilize the resources. The protocol dynamically allocates
the network resources according to the respective system state. To this end, the
protocol architecture consists of an Interface Layer that provides time-slotted
operation and a Coordination Layer that assigns each time slot to a unique

transmitter device based on a distributed computation.

In this thesis, a software simulator for D°RIP is developed. Using the D°RIP
Simulator, modifications in D°RIP can be easily examined without facing
complexities in real implementations and extensive effort in terms of time and
cost. The simulator simulates the Interface Layer, the Coordination Layer and
additionally, the Shared Medium. Hence, using the simulator, the system-protocol
couple can be easily analyzed, tested and further improvements on D°RIP can be
achieved with the least amount of effort.

The simulator implements the Timed Input Output Automata (TIOA) models of
the D®RIP stack components using C++. The resulting code is compiled on GCC
(Gnu Compiler Collection). The logs of the simulation runs and the real system
with 2 devices connected via cross 100MbE cables are compared. In a 3ms time
slot, the simulator and the system incidents differ about 135us on the average,
causing no asynchronousity in their instantaneous operational states. The D°RIP
Simulator is useful in keeping track of any variable in the D°RIP system

automaton at any instant up to 1us resolution.

Keywords: Distributed Real-Time Ethernet Systems, Timed I-O Automata
(TIOA) Modeling, C++, Simulation of Real-Time Systems, Industrial Control,

Computer Applications, Industrial Communication Networks

(0Y/

ENDUSTRIYEL GOMULU SiSTEMLER iCiN DAGITILMIS GERCEK
ZAMANLI BiR HABERLESME PROTOKOLUNUN BENZETIMi VE
BASARIM DEGERLENDIRILMESI

AYBAR, Giiray
Yiiksek Lisans, Elektrik Elektronik Miihendisligi Bolimii
Tez Yoneticisi: Dog. Dr. Ece Giiran SCHMIDT

Aralik 2011, 77 sayfa

Dinamik Dagitilmis giivenilir Gergek Zamanli Endiistriyel iletisim Protokolii,
gergek zamanli trafik i¢in servis garantisi saglamaktadir ve haberlesme
kaynaklarindan verimli bir sekilde faydalanabilmek ic¢in otomatizasyon
uygulamalarinin islemlerinde dinamik olarak degisim gosteren gereksinimlerini
de birlestirmektedir. Protokol, ag kaynaklarmin ilgili sistem durumuna gore
dinamik olarak atanmasini saglar. Bu amagla, protokolmimarisi, zaman dilimli
islem saglayan bir Arayiiz Katmanive her zaman dilimini, dagitilmis hesaplamalar
sonucunda yalnizca tek bir iletici aygita atayan bir Koordinasyon Katmani’ndan

olusur.

Bu tezde, D®RIP i¢in bir benzetici yazilimi gelistirilmistir. D°RIP Benzeticisi
kullanilarak, D®RIP’teki degisiklikler ger¢ek uygulamalardaki giicliikler ile
karsilagmadan ve zaman ve maliyet agisindan ek yiik gerektirmeden kolayca
denetlenebilir. Benzetici, Arayiiz Katmani’m, Koordinasyon Katmani’nmi ve ek
olarak Paylagimli Ortam benzetimini yapar. Dolayisiyla, benzetici kullanilarak,
sistem-protokol ikilisi kolaylikla analiz ve test edilebilir ve D®RIP’in en az masraf

ile daha fazla gelisime ulagilir.

Vi

Benzetici, C++ kullanarak D®RIPyigmindaki parcalarin Zamanli Girdi/Cikti
Otomat (TIOA) modellerini uygular. Ortaya ¢ikan kod, GCC (GNU Derleyici
Koleksiyonu) ile derlenmistir. Yapilan benzetimlerin sonuclari ile iki aygitin
birbirlerine ¢apraz 100MbE kablolar ile baglanmasindan olusan gercek sistemin
kayitlar1 karsilagtirilmistir. 3ms zaman araliginda, benzeticide ve sistemde
gergeklesen olaylarinin anlik durumlarinda zaman uyumsuzluklarina yol agmayan,
ortalama 135us’lik bir fark ortaya ¢cikmistir. D°RIP Benzeticisi, D°RIP sistem
otomatindaki herhangi bir degiskeni 1ps ¢oziliniirliikle herhangi bir anda takip

edilmesinde faydalidir.

Anahtar Kelimeler: Dagitilmis Gergek Zamani Ethernet Sistemleri, Zamanli
Girdi/Cikti Otomat Modeli, C++, Ger¢ek Zamanli Sistemlerin Benzestirilmesi,

Endiistriyel Kontrol, Bilgisayar Uygulamalari, Endiistriyel Haberlesme Aglar

vii

to my beloved family

viii

ACKNOWLEDGEMENTS

This thesis work is one of the most important events throughout my entire life.
But | know that without the people | have to thank, it would be impossible for me
to achieve.

First of all, 1 am sincerely grateful and wish to send my hearthful of thanks and
gratitude to my advisor, then, supervisor, Assoc. Prof. Dr. Senan Ece SCHMIDT
and Assistant Prof. Dr. Klaus SCHMIDT for their unlimited help, perfect
supervision, leading, guidance and understanding from beginning till the end of

this thesis work.

| would like to thank my parents Hatice Mesar AYBAR and Adnan AYBAR, and
my also-a-colleague brother Bahadir AYBAR for their endless patience, supports,
encouragements and their deep belief in me in my thesis work and throughout all

my education life.

| have to send my special thanks to the love of my life, yet my fiancee, Sinem
ISBILIR, who has always encouraged and motivated me on my thesis with her

lovely existence, constant patience and understanding.

Finally, I wish to thank all my friends, especially to Ahmet Korhan GOZCU and
Ulas TURAN for their ideas, help and support on completing my thesis.

This work would not have finished if any of them were not there for me.
Really appreciated.

TABLE OF CONTENTS

ABSTRACT .ottt ettt sttt sttt st be bt nennearens WY

OZ . oo ettt vi

ACKNOWLEDGEMENTS ..ottt iX

TABLE OF CONTENTS ..ttt nne e X

LIST OF FIGURES ...ttt Xii

LIST OF TABLES......c ottt Xiv

LIST OF ABBREVIATONS ..ottt XV
CHAPTERS

1 INTRODUCTION ..ottt 1

2 ETHERNET FOR DISTRIBUTED REAL-TIME COMMUNICATION ..4

2.1 ENEINEL.. .o 4

2.2 Distributed and Real-time SyStemsccccccevieveiieviec e, 6

2.3 Distributed Real-Time Ethernet Systemscccccevevveveciieieeneen, 9

3 DYNAMIC DISTRIBUTED DEPENDABLE REAL-TIME

INDUSTRIAL COMMUNICATION PROTOCOL (D3RIP) 15

3.1 Example System and Communication Scenario.................cocve... 16

3.2 DPRIP Protocol StACKcovvvervirerirsesissisessissssssssiesssse 21

3.3 TIOA FOrmMaliSm ..o 23

4 D3RIP SIMULATORcvoeteeeeeeeeteeeeeeeeeeeeeesee s esess et sseeseseeeseneenes 25

4.1 Abstractions and Assumptions in the D®RIP Simulator 27

4.2 Shared Medium (SM)oooiiiii e 29

4.2.1 Shared Medium Operation and TIOA Model..................... 29

4.2.2 SM Implementation and Related Class Definitions............ 32

4.3 Interface Layer (IL)oooveiiiiiieiie e 38

4.3.1 Interface Layer (IL) TIOA Model...........cccoooveviiiiievinnne, 39

4.3.2 Real-Time Access Interface Layer (RAIL) Protocol 43

4.3.3 Time Slotted Interface Layer (TSIL) Protocol................... 45

4.3.4 IL Implementation and Related Class Definitions.............. 46

4.4 Coordination Layer (CL)ccooveeeieieee e 49

4.4.1 Coordination Layer (CL) TIOA Model...........ccccoverurrnenenn 49

4.4.2 Dynamic Allocation Real-Time Protocol (DART) 53

4.4.3 Urgency-Based Real-Time Protocol (URT)........cccccvevenen. 55

4.4.4 CL Implementationand Related Class Definitions............. 56

5 COMPARISON RESULTSooii et 60
51 Real-Time PaCKetS........cccvriiiriiieieiene e 62

5.2 Non-Real-Time Packetsc.ccoovrrrenenene e, 65

6 CONCLUSIONS AND FUTURE WORKccoiiiiieeecee e, 71
6.1 CONCIUSTONS.....ceitieie ettt enes 71

6.2 FULUIE WOTK ..o 73
REFERENGCESooooiiiieieese ettt e 74

Xi

LIST OF FIGURES

FIGURES

Figure 2-1. The Mostly Used Ethernet Connector: RJ-45.cccooiiniiiniienennn, 5
Figure 2-2. (a)-(b) A Distributed System, (c) A Parallel System.cccccoenene. 7
Figure 2-3. Centralized System vs. Distributed System illustration [32]. 8
Figure 3-1. Automation Hierarchy [26]........c.ccooviiriiiniiieee e 16
Figure 3-2. Workcell: Robot-Conveyor-Painting Device............ccccoovvvreiieinenene 17
Figure 3-3. lllustration of the Behaviour of the workcell [26].cccccoevveriennen, 19
Figure 3-4. D°RIP Software ArchiteCture [26].ovvveeveeeereereeeeeeeeeesreeseeseserenes 21
Figure 3-5. The Structure of the Framework Proposed for a Distributed Real-Time
SYSTEIM [26]. .ottt bbbt 22
Figure 4-1. PQ Structure — Events Are Enqueued with respect to their Occurrence
TS, ettt bt bbbttt bbb e r e r et neas 26
Figure 4-2. TIOA Model of the Shared-Medium [26].........cccccovvrerininieniienn 30
Figure 4-3. The Time SIot Structure [26].cooeririeriiieee e 33
Figure 4-4. Event Class for the Event 0DJeCtS.cccoeveiiniiiiciice 34
Figure 4-5. Possible Events ina Time SI0t [29].......ccoooiiiiinincee 35
Figure 4-6. The system: SM-IL-CL and the Control Application Running in
DIBVICES. ittt bttt ettt r e ae e 36
Figure 4-7. Timing Diagram between IL-SM..........c..ccociviiiiiiiie e 37
Figure 4-8. IL2SM Transmission and SM2IL Broadcast.cccoevvvrviinienne 38
Figure 4-9. TIOA Model Definition of the Interface Layer [26].........cccccoevenene. 39
Figure 4-10. TIOA Model of IL [26].....ccooiiiiiiiiieie e 42
Figure 4-11. TIOA Model Definition of CL [26].......ccoovevviiiiiiiieiecee e 49
Figure 4-12. TIOA Model of the Coordination Layer [26].ccoovrvvrivrivninnnenn 52

Xii

Figure 5-1. RT COMMUNICALION. ..c..ecviieeie et 61
Figure 5-2. Fair Scheduling Used During the TesSt.........cccocceviveveeievieve e, 62

Xiii

LIST OF TABLES

TABLES

Table 2-1. Some Other Real Time Ethernet Protocol Proposals [33]..........cccc...... 12
Table 3-1. Channel Requirements of a Sample System [26]........cccccceeevivevvenenne. 20
Table 4-1. The sM Class for the Shared Medium Object.cccoveririniiiieienn. 32
Table 4-2. The M Class Definition.ccccoeiiiiiiiiicie e 36
Table 4-3. The node Class DefINITION.cccviiiiiiiiiiicce e 47
Table 4-4. The Interface Layer (I1.) Class Definition...........cccccovevveieieivennene 47
Table 4-5. The Abstract Data Class 211 Definition.cccccovveviiieninininicienn, 48
Table 4-6. The ADO Class Definition.cccvireieiiiiiiiieeeseeee e 54
Table 4-7. The CL Class DefinItioN.ccccoviiiiiiiiiiicee e 57
Table 4-8. The Ac1 Class Definition.cccccviiiriiiiiiisieee e 57
Table 4-9. The PAR Class Definition.cccccviieieiiiiiiiieeesesceeeeees 58
Table 4-10. The REQ Class Definition.ccccoviriiiiiniiee s 59
Table 5-1. Simulation Results and Comparisons of the RT traffic............c.cccc...... 63
Table 5-2. The Differences Between the Real System and the Simulation for RT
PACKELS. ..t 65
Table 5-3. Simulation Results and Comparisons of the nRT traffic...................... 65
Table 5-4. The Differences Between the Real System and the Simulation for nRT
PACKELS. ...t 66
Table 5-5. The Confidence Interval of the Standard Deviation..............c.cccceeuenee. 68

Xiv

AP2CL
AP2ILnRT
CL
CL2AP
CL2ILRT
CSMA/CD
D°RIP
DART

IL
IL2APNRT
IL2CLRT
IL2SM
LAN

nRT

RAIL
REQRT
RT

RTE

SM
SM2IL
TIOA
TSIL

UPD

URT

LIST OF ABBREVIATONS

: Control Application to Coordination Layer
: Control Application to Interface Layer

: Coordination Layer

: Coordination Layer to Control Application
- Coordination Layer to Interface Layer

: Carrier Sense Multiple Access with Collision Detection

: Dynamic Dependable Distributed Real-time Industrial Protocol
: Dynamic Access Real-Time Protocol

- Interface Layer

. Interface Layer to Control Application

. Interface Layer to Coordination Layer

. Interface Layer to Shared Medium

: Local Area Network

: non-Real-Time

: Real-Time Access Interface Layer

: Real-Time Request Issued by Interface Layer
: Real-Time

: Real-Time Ethernet

: Shared Medium

: Shared Medium to Interface Layer

: Timed Input/Output Automata

: Time-Slotted Interface Layer

. Update

: Urgency-based Real-Time Protocol

XV

CHAPTER 1

INTRODUCTION

In recent years, distributed electronic Real-Time control systems have become
more and more widespread and also essential due to the large demand on hard real
time requirements of the technological improvements, such as flight control
systems, automotives; signal tracking, aerospace and industrial applications, etc.
However, as the technology evolves and develops, it also advances the necessity
of the physical distribution of control systems in strict real time. As a result, a
need for the network protocols to meet the stringent real time requirements arises,
such that the service of operation of real time signals is guaranteed and the

network will operate deterministically, meeting the demands.

A hard real-time system must operate within the deadline constraints and does not
tolerate unexpected delays. A missed deadline can be disastrous since most of the
hard real-time systems are safety critical applications. Ethernet is widely utilized
for the communication of industrial automation system components that perform
local computations and exchange information via communication networks. But,
as defined in IEEE 802.3, the arbitration mechanism is the nondeterministic
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) [6], [2], [3].
Thus, it is not convenient to be used for hard real time applications since
unpredictable packet transmission delays (back-offs) and transmission errors
might take place. To address these issues, there are various ongoing research and
development efforts to provide Ethernet-based industrial network solutions with
RT support [5], [6] and thus, converge to a single network technology on the

different levels of the automation hierarchy.

The D°RIP stack presented in [26] is investigated. The framework has a time-

slotted Interface Layer (IL) for RT and nRT; and a Coordination Layer (CL) for
1

RT signals, such that the system has a guaranteed RT traffic and is dynamically

adapting to the changing needs of the application.

The D®RIP stack is quite an effective and a detailed protocol family. The system
state depends on many different variables. But it is hard to be implemented in real
life. Especially for each new idea or a modification to be examined, it is
impossible to adjust at the setup level, since it would take a lot of effort and time.
Moreover, the real system is complicated.

As a result, if a simulator, which simulates the system behaviour as closely as
possible, is figured out, it would be possible to investigate new ideas or apply
possible changes and modifications to the protocol with the results of the

simulation as if they were actually built and run.

Therefore, using a realistic simulator design is quite a way observe the system

behaviour, saving a lot of time and effort and minimizes the cost.

In the thesis, the aim of the work is to develop a simulator software for the D*RIP
framework and verify the correctness of both the simulator and the actual
implementation in the laboratory that was carried out independently. This
verification is carried out by comparing the outcomes of the simulation with those
of the actual system in terms of instantaneous states of the system, the values of
the variables, i.e. the event times, actions, owner of the time slots, etc.

The simulation is designed as an event-based operation. Hence, in every event, the
operation of the event takes place and messages are transmitted and received, the
system states are updated, etc. However these actions all occur instantaneously,
with no duration, at all. The actual implementation of the D°RIP stack involves
the calculation and reading latencies, line propagation delays, synchronization

problems, jitter, etc.

Hence, as well as being hard to be predicted, these communication defects might
cause slight differences in the comparison of the real and simulated system

behaviours. Our experiments show that the impact of the assumptions and

2

abstractions in the simulator model can lead to discrepancies in the results from

the real system.

This thesis totally consists of 6 chapters. The remainder of the thesis is organized

as follows.

In Chapter 2, general concepts and some background information on Ethernet,
Distributed Systems and finally, Distributed Real-Time Ethernet Systems are

given.

In Chapter 3, the protocol in [26] and the work is defined. An example for RTE
Systems is given and has been inspected in detail. Then, a solution is proposed;
performance specs and challenges are claimed. The Timed Input/Output Automata

(TIOA) Models is introduced as a formal modeling tool.

In Chapter 4, The D°RIP Simulator is defined. Moreover, the models for the
Shared Medium, Interface Layer (IL) and the Coordination Layers (CL) both for 2
different types of ILs and CLs are explained in detail. The abstractions and the
assumptions are explained and finally, the implementations of these TIOA models
for the SM, the IL types and the CL types are elaborated.

In Chapter 5, Simulation results are presented and comparisons to the
experimental set-up are discussed.

Lastly, in Chapter 6, the conclusions are given, and results are interpreted with the

possible future studies.

References are given in the end.

CHAPTER 2

ETHERNET FOR DISTRIBUTED REAL-TIME
COMMUNICATION

We first present some brief information about Ethernet, how it was founded and
its application areas, then, we move into the systems that employ Ethernet as the

communication protocol family.

2.1 Ethernet

IEEE 802.3 CSMA/CD, namely Ethernet, is a standard embedded protocol family
that controls the data delivery technology over a Local Area Network (LAN). It is

the most widely employed LAN protocol, today.

Ethernet was first created in 1973 by Robert Metcalfe, being inspired by his
studies about Alohanet. Later, DEC (Digital Equipment Corporation), Intel and
Xerox worked together for the promotion of Ethernet as a new standard in
networking. The group published the standard, which was called the “DIX”
standard. The DIX specified Ethernet at the data rate of 10Mbps and addresses of
48-bits. In 1980, for the standardization of local area networks (LAN),
the Institute of Electrical and Electronics Engineers (IEEE) launched Project 802.
The DIX-group suggested the CSMA/CD protocol in opposition to the Token
Ring and the Token Bus.

The connection between nodes is usually provided by RJ-45 jacks. Most
commonly, the Ethernet systems are the 10BASE-T systems supporting a data rate
4

of 10Mbps and the devices try to get access to the medium using CSMA/CD

protocol via the RJ-45 cables for the connection, shown in Figure 2-1.

Figure 2-1. The Mostly Used Ethernet Connector: RJ-45.

Often in backbone systems, 10BASE-T cards are used to implement the Fast
Ethernet, namely 100BASE-T which provides up to a 100Mbps data rate. Faster
Ethernet protocols also exist, such as the Gigabit Ethernet (GbE) supporting a data
rate of 1Gbps and 10GbE, which provides 10Gbps of data rate as an invulnerable
option for large scale systems requiring a large support of networking

infrastructure.

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) method is a
Medium Access Control method which employs a carrier sensing scheme. The
station or device that has the medium access, detects another message
transmission attempt from another station. Then, it immediately halts the
transmission and after sending a jam signal, it waits a random back-off until next
transmission attempt for the same frame. The collision detection feature was
added to decrease the time consumed until next attempt, hence increasing the

efficiency.

The devices detect the collision in several different ways depending on the
medium. For electrical busses as 10BASE-2 or 10BASE-5, by comparing the
transmitted data with the received data, collisions can be detected easily.

Moreover, the collision might cause higher signal amplitude than the successful

5

http://www.itusozluk.com/gorseller/rj45/355

transmission on the bus. Hence, the collision can also be detected by checking the

amplitude of the signal on the bus.

In the past, the widest use of CSMA/CD was on the Shared Medium Ethernet
types that have currently become obsolete, 10BASE-2 or 10BASE-5, and the
earlier twisted-pair Ethernet versions. Too many stations transmitting on an
Ethernet network might cause an unacceptable level of collisions. This could
result in a large amount of reduction on the bandwidth of an Ethernet network due
to the lost bandwidth for the re-transmisison. For this reason, Ethernet swithces

are employed to reduce these difficulties.

2.2 Distributed and Real-time Systems

A distributed system is composed of a number of autonomous devices. These
devices are able to communicate with each other, enabling the cooperation and
resource sharing with each other. Hence, the users perceive the network with the
devices as a whole integrated system.

In a distributed system, there are multiple control points as well as multiple failure
points. A diagram for the difference of a parallel and a distributed system is
depicted in Figure 2-2.

ia) Cx:;iiﬂf{)

(b)
!
fffff; Mermory
&
N t v
Mermory
\
*
-

lc)

Figure 2-2. (a)-(b) A Distributed System, (c) A Parallel System.

A centralized system malfunctions if a small number of hierarchically high level
devices do not work properly. However, a distributed system has no such central
nodes. Hence, the system does not have to be dependent on any other node to

[Processur||Prucessor||Processor|

Memory

operate. This is the major advantage of distributed systems.

In addition, as the number of nodes increase, the robustness and resilience of the

system increases. Figure 2-3 shows the difference of a distributed system from a

centralized system.

L Link
Node

CENTRALIZED DISTRIBUTED

Figure 2-3. Centralized System vs. Distributed System illustration [32].

Some of the main areas of the distributed systems are listed below [30]:

e Telecommunication networks:

o

o

o

o

Telephone and cellular networks.
Computer networks; Internet.
Routing algorithms.

Wireless Sensor Networks.

e Network applications:

o

o

o

World Wide Web and peer-to-peer networks.
Interface Protocols employing IEEE1553.
Multiplayer games and virtual reality communities.
Distributed databases and management systems.
Distributed information processing systems

= Banking systems.

= Airline reservation systems.

e Real-time process control:
o Aircraft control systems.
o Industrial control systems.
e Parallel computation:
o Scientific computing

o Distributed rendering in computer graphics.

A Real-time System has two major constraints:
e Successful execution of each command,

e Execution of each command before deadline.

Moreover, the real-time systems can be divided into two groups:
e Hard RT: eg. Aircraft control networks,

e Soft RT: eg. Online multiplayer gaming networks.

2.3 Distributed Real-Time Ethernet Systems

Ethernet has become one of the most popular data networks in recent years. The
current Ethernet standards most frequently support up to 1 Gbps of data
transmission, which is way higher than DeviceNet (500 Kbps) [31] and
ControlNet (5 Mbps) [31]. Ethernet is much easy to maintain and upgrade since it
is compatible with its older versions. In addition, it is inexpensive with respect to
other network types.

The most important foible of Ethernet in real-time systems is its collision-
proneness. The collision occurs when two or more devices try to transmit at the
same time. As the utilization of the network increases, i.e. the number of devices
connected or the network load increases, the probability of collision dramatically
increases. If the collisions are somehow eliminated, with respect to its speed and

maintenance ease, Ethernet is the most suitable and efficient network type.

In today’s RTE protocols, RT Bandwidth is allocated statically. Hence, due to the
operating conditions of the application, except for the FTT-Ethernet [3] which has
a master-slave architecture, the dynamically-changing demands of automation
systems are not taken into consideration [3], [19]. This is a problem for RTE

systems that have hard RT demands.

There are various communication protocols that support RTE [5], [6]. Even
though in [7] and [8], soft RT performance is provided using traffic smoothing,
this is not suitable at the device level. Because at the device level, hard RT

guarantees are required.

Several approaches exist; one of them is to use the full-duplex switched Ethernet
with a prioritization scheme similar to Ethernet/IP (EIP) [9]. With this approach,
an extra parameterization is made and a possible complicated scheduling in the
switch [10], [11] is faced but the collision is vanished. Moreover, the existence of
switches add the network some extra timing delays, decreasing the hard RT
performance [12].

A majority of automation systems require synchronization between devices and
hence employ synchronization protocols, such as IEEE 1588 [13]. In addition, the
synchronization precision is another issue in switched network designs. If the
devices are interconnected via several switches cascaded, the end-to-end delay
guarantees and precise synchronization is tough [14]. Some industrial protocols
such as ProfiNet [15], employ special hardware to handle the synchronization
problems but this enhances the cost of the system.

In some protocols, there are interface layers that are responsible for the controlling
or shaping the traffic transmitted to the Ethernet layer; thus, avoiding collision
manually. Some of these protocols are FTT-Ethernet [3], Ethernet Powerlink
(EPL) [16], Time Critical Control Network (TCNet) [17] and Ethernet for Plant
Automatization (EPA) [18]. But, in EPL and FTT-Ethernet, the IL is a slave in the
master-slave configuration. Similarly, the TCNet has a token-passing mechanism

and in EPA, TDMA is employed. If these protocols are investigated to be used in
10

industrial automation systems, since the automation systems are distributed, the
master-slave operation is useless. In addition, the maximum utilization in EPL [6]
IS observed to be 25%, which is insufficient. Likewise, the tokens take time to be
passed between devices; the token-passing mechanism slows the network speed.

The TDMA uses exclusive and static allocated bandwidth for each device.

Today’s RTE protocols use static allocation of the RT bandwidth or static
configuration of possible transmission times to provide real-time supports on
Ethernet. But, these protocols require that the demands of the system do not alter
due to the state of the application [3], [19]. The sole protocol that adapts the
dynamically changing demands of the application is the master-slave protocol,
FTT-Ethernet [3].

The previous works on protocols that can be parameterized dynamically according

to the communication needs of automation system networks are given in [22],

[19]. A detailed comparison between RTE protocols is given in Table 2-1 [33].

11

paseq Jojsewr snq aAe[s | puoaas Jad ou ‘vonerado Z€ 01 dn) 22100
Apau snq p[ay UOIRZIUOIIUAS -13)Se[y | suonoesuer) o | juapuadap JAR[S [euorjeu LANd
ON A 00€ 1a1se[y -13)SE I ysiue(q
(d12) (pa[puey si Ae[ap
S301AIDS
020101 ou ‘a[nparas e o} (uonewomy
ajqe[eAe iawnsuod
I SHQ plag 88C1-T9H1 [ersmpU] = Buipioaoe auop [[PM20Y) d1/1eutaty
10N -19onpotd
I0BAPO MMM uounuo) s1 Buraiaas) [eLsnpuy
51930
uo paseg [eanjayjodiy]
JpaTuI sqny uonnjos
M0 AN (payoraraq duisn snoauagoworg 5 q (fuedwo)
urjo
0] UoTd uwd snj > 1apil) £q pauwoy a[qe[ieae pue (qouss o Iourmey] % NUI[IaMO]
snqpagy 0¥C ik
nponuy/sapige jp 88C1 HHHl 3q ued 10N pangLIsip ou) la3joaag) jawiaylg
S VINAL
PRI paseq Ja)se[y Adojodoy uonesado paseq [eLnsnpup
TEone MAGA//anY Auy JAR[S-19)SBIA]
ajqissod
Jafsuei] canc
UOLEIUNIUW0D (19quasgng
aelg (Auedwo))
pajeansiydos q Jagstqng
44 BRIV ajqe[eAr apsodwo o0
A snq praty B8S 1Al : et ¥57 ou 13ad-01-1aad ') HiPol aw]-[ey)
yoddns uen I1SBIN 10N » Japiaurag)
ST(POUT MAAL/7 AT ou os ‘uonerado SdlL
Iaquosqng |eLysnpup
JAR[S Ja)seul
! — W/SNEAON
uo spuada(g
pajtoddng
11oddn jun SapoN jo eLsnpu
syui| suoneaddy S Adojodo, - RNY sadejueapesyq | yoeoaddy) £ [030}0.4J
UOLRZIUO.IYIUAG [BI2100Y] | Jaquiny /Juapedy
XEA

‘[eg] spesodoag (000301 JPUIAY)T SWIL], [¥Y 13y} dWOS *[-7 IqEL

12

7o snq [onuod uoyeZILoIyIuls 10 ueya a|qe[IeAR ‘payqryoud aAB[S -[ey [el2S)
- . 3 FST
500195 MAA /AT UONo paseq 121y -Asreqq JON SI asn yaumg 13188y SODYHES
pamo[e ore
(Snd1d0¥d
J|qe[ieAR Sapou prepue)s van
JU09°S snq p[ay - - pauuun) - — suawalg)
. JON ON "Uonn[os LANIJO¥d
Mgy oId A/ diyg [eLnsnpuy
snoauagowor]
‘}seOpROI ase uorjELWwom
Gojodoy peoIq paseq (uo v
ajqe[ieae adessaw YINL (fesodord e[
B snq proy - Iaquosqgns -
1ON atpousad v1A auop 124z asauly)) - | 10J jouIaNye)
~13ayst|qng
st 3ulnpayos JVI vdd
sagessow
ayyjen
JseapeoIq
laquosgng a|qe|leae aull)-jea1 (equyso])
- snq pjay - - uo paseq Ju
-1aystqng 10N 10] 1IN0 [BLSnpuf
UONEBZIUOIIUAS
-[enuiA
poads mor
[onuoa
Iaquosqng ou sofessaw
J1yen (uonerodion
‘arjen -Jaystgn atmt}-eal
auy anoa[g
JUI00 BAL snq pray auwi)-[eal 10 9]949 MO sdqo | - 10] Jq[) s9sn EIELTN
-[ea1 10] emedoyor)
BI0YOA MMM,/ a0 Surnparyas swg| I3A108 1sn jooojord
ddn sesn [esNpuU]
-uar) aNSIUIWIAJIP
€ 10N
"SajeI ejep
[EO1131I09Y] MO]
Iajsuen UONBZIUOIYOUAS
rlEp snouoaousse | ‘AJojodo} | sdq gpgoL pamngisip (s19)sBW

13

Jujen (o112Ay JO
awn Ays1aA1un)/
1PUWRYIg
[Bal-uou V194l e
a|qe[eA. paepue;s puRyyg
- snq pray - - pue aun Alojeloqe]
10N ym arqueduwo) LLA
-|Ba1 y1oq SwoysAg
DVIN 49A0 JaAe]
104 "paseq | oIuoI03[H)
VINAL Jluapesy
AFojodoy (dnoin
uoperado
(sn| > £oeInooe) ElREI s | AFojouyaa
Ie)S 10 a|qe[ieae Jo apowr
JaI0 snq ppRy S320[0 PaNqLysip PayIpoy DI % LvDIeyig
2aq ‘aul] JON JAB[S
TesIa i mmm/Tdn paseq 86 AL ‘uonnjosg JoyeRg)
-1315e|A]
snoauadowoy [eLgsnpup
(snq
PIoT M (aorpI2)U]
a1adwos jou ‘uonnjos "oy
$20p pue jou) ‘sadessaw Fury snosuagowoy aw],

14

CHAPTER 3

DYNAMIC DISTRIBUTED DEPENDABLE
REAL-TIME INDUSTRIAL COMMUNICATION
PROTOCOL (D°RIP)

Dynamic Distributed Dependable Real-Time Industrial communication Protocol
(D°RIP) family, introduced in [26] as a new Real Time Ethernet protocol,
provides a collision-free industrial communication with an efficient use of the
bandwidth since the behaviour of the D°RIP adapts itself due to the changing
specifications of dynamic systems. This adaption mechanism is based on the
previously known communication requirements, such as the timing and
scheduling of messages and needs, that is broadcast to every node in the system,
dynamically. Hence, it is possible to provide Real-Time guarantees and
dependability.

As the system, i.e. the control application, behavior is assumed to be known from
the system design; D°RIP allocates the bandwidth due to the needs of the
application, so that the remaining bandwidth could be present for non-real-time

communications.

D°RIP is a framework for the distributed shared-medium communication
architectures, that is applicable to similar environments including the well-known
protocols IEEE 802.11 and WirelessHART.

The framework dwells mainly on the real-time communication of distributed

devices that control the system through a network based on Ethernet that adapts to

15

the communication needs of the automation structure on the lower levels, i.e. the

machine, the cell and the subsystem levels [26], provided in Figure 3-1.

factory level

/ system level \

subsystem level

/ AN
/ cell level \
/ machine level \

Figure 3-1. Automation Hierarchy [26].

In general, the needs include various types of messages to be transmitted, so the
requirements change dynamically. For instance, in the system, there can be signals
with real-time restrictions. Some of these signals could be periodic with small
delay and jitter constraints such as position control signals, as well as sporadic or
event-based signals with limited delay permissions, such as limit switches. In
addition, there can be non-real-time signals for that time is not critical.
Maintenance or diagnosis related data signals are also members of nRT traffic.

3.1 Example System and Communication Scenario

The workcell given in Figure 3-2 is modified from a manufacturing system in [23]
and [24]. The devices are as follows:

Robot (R): moves the arm of the robot
Conveyor (C): carries the parts
Painting Device (PD): paints the manufactured parts using spray paint

guns

On top of these devices, there also are 4 controller devices. These are DevR,

DevC, DevPD and DevS. Each controller device except DevsS is responsible for
16

the corresponding local device, i.e. DevR, DevC and DevPD control the actions of
Robot (R), Conveyor (C) and Painting Device (PD), respectively. DevS is

responsible for the coordination of the devices.

In the framework, the model of the operation is given in an event-based fashion;
each action is defined by an event. These events constitute commands for Devs,
notifications given by controller devices, and the local discrete actions or

start/stop actions of the closed-loop control processes performed by them [26].

The Part

ao1AaQ bunuied ayL

The Network

P
T

i —
| 1

DevC

Figure 3-2. Workcell: Robot-Conveyor-Painting Device.

In the beginning, the system is in initial state that is the robot has put no parts on

the conveyor belt, yet.

DevsS sends an mvC command to the network and DevR receives it and powers up
the robot to place a part on the conveyor, which is the sC event in DevR. Then,
DevR executes the robot’s closed loop control action and processes the position
information in posR (position) and actR (actuator) signals, before the conveyor

is reached by the robot, the stopping signal stpR, and the arrival signal arc,
17

informs the DevsS about the arrival of the part. Similarly, the signals mvI, sI and

arI refer to the same actions in the reverse direction.

When mvPd signal is received by DevS, the conveyor is responsible for the
transportation of a part into the Painting Device (PD), by the signal, sPD.
Whenever the signal posC which indicates the position of the conveyor signals
the arrival to the PD, the conveyor stops (stpC) issuing a notification action of its
arrival to DevS (arPD). This is the one-way motion. The signals during the return

of the part from the PD to the Robot are mvR, sR and arR.

Moreover, the PD could be operational, i.e. it could be switched on and off due to
its current operation. If it is to be set on, DevS transmits a PDon signal, initiating
the painting process by iPD immediately after the cover of the PD is locked
(1PD). Then, it unlocks its cover (u1PD) whenever it finished the painting action
(£PD). Finally, the Painting Device is switched off, notifying DevS by the PDof £
signal. During process, the Painting Device carries out the position control for the

spray gun via posPD and actPD.

Basically, for overall communication, the position signals, arrival notifications,
commands must be shared between devices. Moreover, the local controller
devices must acquire signals from the plant components; robot, conveyor and
painting device and must apply actuators to them, using their I/O interfaces, ioR,

ioCand ioPD.

First, in industrial automation networks, there exist various signals of different RT
requirements, i.e. some signals (periodic sensor or actuator signals — posR,
actR, posC, posPD, actPD) might be delivered in hard RT messages, while
some others (event based notifications or commands in DevsS, local start/stop
signals — sC, stpR, sI, sPD, stpC, sR, 1PD, ulPD, iPD, £PD) may fit into

sporadic messages, that have soft RT needs.

18

In addition, all of the devices and components of the workcell are supposed to

deliver diagnostic data via nRT messages.

The logical behaviour of the sample system in an automated painting factory is
depicted in Figure 3-3.

DevS$ mvPD arPD
mvR PDof £ gPDon
DevR e . DEVP PDon
arl sC
posR
actR PDoff()
stp sStpR ulPD
posR
actR arc
I
S . posPD
mvI actPD
DevC mvED ’
arRk sPD
posC
stpC stpC
posC
sR arPD
) mvR

Figure 3-3. lllustration of the Behaviour of the workcell [26].

When we examine the workcell given above, as long as the components are
known from system design never to operate at the same instant, it could easily be
observed that the static allocation of the bandwidth would be overly conservative.
The effective allocation algorithm should allocate the bandwidth only to the active

device; which cannot be provided by current static RTE protocols.

19

For instance, considering a conventional industrial network, assume that all hard
real-time signals have a deadline of 5ms and the soft real-time signals have a
deadline of 10ms. As long as the allocation of the bandwidth in conventional
Ethernet is static, we have to allocate the required bandwidth according to the
worst case scenario, in terms of communication channels. Assume that the

channel requirements of such a system are given in Table 3-1.

Table 3-1. Channel Requirements of a Sample System [26].

Required number of channels

Channel periods
5ms 10ms Related Signal
DevS - 1 soft RT signals
DevR > 1 posR—a.ctR-sporadlc
signals
DevC 1 1 posC-soft RT signals
DevPD 2 1 posPD.—af:tPD-
sporadic signals

If each signal is transmitted in a single Ethernet Frame of minimum size, 576bits,
the net RT bandwidth of

576 bits 576 bits
* ——————————

W'F * TS = 0.806 Mbps

is needed to handle the requirements.

On the other hand, if the medium access could be shifted among devices by the
command from Devs, it would be possible to achieve a relatively much less
bandwidth, but today’s static Real Time Ethernet protocols cannot actualize such

allocation.

20

3.2 D°RIP Protocol Stack

D°RIP (Dynamic Distributed Dependable Real-time Industrial Protocol)
framework’s software architecture includes two different protocol layers operating
upon the conventional MAC layer as presented in Figure 3-4. The IL runs the
conventional TDMA Protocol for RT and nRT traffic, where each CL coordinates
the ownership of the current RT slot, due to distributed computations, as

previously claimed.

RT,|RT,| - - « |RT

coordination layer (CL)

mn

nRT

interface laver (IL)

Ethernet MAC(SM)

Figure 3-4. D°RIP Software Architecture [26].

The operative details and functionalities of IL and CL will be examined in detail
in the further sections. The formal definition of the model we use, TIOA first

introduced in [21], will be presented in the first section of the next chapter.

The protocol, D°RIP is presented to run as a dynamic and dependable protocol
operating on Real Time Systems via Ethernet. The dependability proposed here
presents a collision-free protocol. Hence, the protocol should be able to adapt the
changing requirements of the system while keeping its collision-free structure, as

well.

The D°RIP Protocol Family is composed of a Shared Medium (SM) which is the
MAC layer, an Interface Layer (IL) that implements TDMA on the SM and a
Coordination Layer (CL) enabling instantaneous allocations of Real-Time

messages on the TDMA scheduling via ILs.

21

The system is modelled using TIOA Formalism as previously stated. The overall

system structure is provided in Figure 3-5.

Application Layer

Application Layer

RT/nRT

RT/nRT

Begins Message
Transmission

Begins Message
Transmission

Coordination
Layer

RT nRT

Coordination
of the devices
about

Coordination
Layer

RT nRT

Coordination
of the devices
about

Application Layer

RT/nRT

Begins Message
Transmission

Coordination
Layer

RT nRT

Coordination
of the devices
about
ownership

ownership
LV

Interface Layer

RT/nRT

ownership

Interface Layer
....... RT/nRT
Message interface Message interface Message interface

between SM-CL and between SM-CL and between SM-CL and
SM-AP SM-AP SM-AP

Interface Layer
RT/nRT

Shared Medium - Ethernet MAC

Figure 3-5. The Structure of the Framework Proposed for a Distributed Real-Time System
[26].

The CL in each device in the automation makes the distributed computation and a
single device is assigned for transmission for each time slot of IL. On the other
hand, the remaining bandwidth, i.e. the time slots that are not used in RT

communication, are allocated for non-real-time message (nRT) transmissions.
The framework proposes interface layers and coordination layers, and some

distributed computations in distributed devices; not a particular real-time protocol

is proposed. Thereby, the protocol family is general.

22

3.3 TIOA Formalism

The Timed 1/0 Automata (TIOA), whose states alter by discrete trajectories or by
trajectories evolving over time, is introduced for the analysis and modeling of RT
systems in the mathematical frameworks of [21] and [25]. Each TIOA belongs to
a component in the system and the composition of TIOA describes the behavior of
a system with respect to time. The timed systems are considered with components
changing instantaneously and as well as continuously in time. So, TIOA is used
for the description of the framework [26].

For the representation of the states of a TIOA, a variable set is used. Each variable
has two types: a static type and a dynamic type. The static type of a variable
defines the possible range of values; whereas the dynamic type is responsible for
holding the possible evolutions of time for the variable. Depending on the
dynamic type of variables, they are either analog or discrete. The dynamic types
of discrete variables are in step function forms and those of analog variables are

assumed to be piecewise continuous functions.

A function val(X) for a set X of variables is called a valuation of X if it matches
each variable of X with a value in the static type of the variable, in turn, a function
is called a trajectory if it is a mapping of time instants into [0, val(X)] time

interval, so that the time evolution of the variables of X will be described.

A TIOA is defined as an eight-tuple A = X,Q, Q,,I,0,H,D,T

. The variable set X
. The state set Q € val(X)
o Non-empty set Q, € @ of start states

. | is the input action set describing inputs from external world, O is the
output action set representing outputs, H is the internal action set with all actions

givenas /| UO U H.

23

° D € Q x A x Q is the discrete transition set, for the (q,a, q") € D transition,

q ¢ q' is used. Each discrete transition can be input, output or internal according
to the action which labels the transition.

o T is the trajectory set with t € Q VYt € T with tin the domain of .

For convenience, the external action set which is in interaction with the external
world is given as E = I U 0, with the locally controlled actions under the control

of A isdefinedas L = O U H.

24

CHAPTER 4

D°RIP SIMULATOR

The D°RIP Simulator is needed to simulate the DRIP system behavior, instead of
running a complicated and slow test in the actual system. Namely, the simulator
runs identically to the actual system, hence, making it possible to examine the

system states at any time instant for any protocol modifications.

It takes a lot of time to make arrangements for the tests in the real system and also
it is not possible to monitor every single variable in the automata. The overall
system modeled, monitored and analyzed easily. As a result, new ideas and
changes in the D®RIP family will be integrated much more easily and

inexpensively at both time and cost.

In the previous sections, it is mentioned that the D®RIP protocol stack is
composed of a common Shared Medium, the Interface Layer (IL) and the
Coordination Layer (CL) of each device, in co-operation with the Application
Layer (AP). Hence, in the D°RIP simulator, each of these instances has to be

simulated.

The simulator incorporates the class definitions of SM, IL and CL. In addition, as

given in [26], the actions and transitions are implemented.

First of all, the actions are to be handled as events, such that, in the actual system,
if an action is supposed to be active at an instant, the D®RIP simulator is
responsible of the creation of that action as an event and its service according to

the D®RIP Protocol Stack.
25

We considered several different models for the simulator. The time could be
polled or the actions could be assumed to occur periodically. However, our D°RIP
simulator is designed to simulate the dynamic adaptation of our D°RIP Protocol
Stack to the changing needs of the industrial automation systems, hence; we
cannot make early predictions and assume periodicity. In addition, polling the
time or having an infinite loop in the simulation would cause our D°RIP simulator
to behave in a time slotted manner. But, since the real time functioning
automation system is not time slotted, we cannot make such assumptions. Hence,

the D°RIP simulator is designed as an event-based simulator.

There is a Priority Queue (PQ) of Events. The events are created and pushed into
the PQ. The D°RIP simulator then serves the event with the highest priority.

Each event is identified by its occurrence time, the device id that the
corresponding action belongs to and its type. Hence, once the D®RIP simulator
pops an event out of the PQ, it will be informed about the details of the event it
will serve. The priority order is defined first by its occurrence time, then its type,
finally the device number that the event occurs at. Hence, the events are queued

with priorities.

The Priority Queue of Events is depicted in Figure 4-1.

R

EVENT PUSHED

etype=IL25M|etype=AP2Cletype=IL25M
device=2 device=5 device=1 EVENT POPPED
|time:50 time=42 time=24

7

Figure 4-1. PQ Structure — Events Are Enqueued with respect to their Occurrence Times.

26

The next event that is invoked by the current one is pushed into the PQ of events..

During some events, it will be observed that more than one event will get pushed

into the PQ, where in some, no event will.

It is required to note that, according to the D*RIP Stack design in [26], in every

time slot, an UPDATE event is pushed into the PQ for the update of the state of the

system. Hence, the PQ never becomes empty.

4.1 Abstractions and Assumptions in the D°*RIP Simulator

During the simulation of the system, there are some assumptions and abstractions

made.

The assumptions are listed below.

Line delays: The real system is connected through 100Mbps Ethernet
cables. The messages transmitted is standard and of size 150B = 1200bits.
In a 100Mbps line, 1200 bits takes 12us to be transmitted. In the
simulation, m.length is taken as 12us. Hence, the time
now+m.length becomes now+12 (in us), as in real systems. The SM
experiences no line delays, so, the line delay has been created as the

message length for more precise results.

Synchronization latencies: In the devices in the real implementation, RT
Linux system is operating and the machines are synchronized at less than
500us. Hence, the timings of the events regarding the SM might differ at
this amount. The simulator assumes that all devices are synchronized. As a
result, no pings or IEEE 1588 Synchronization packets are transmitted or
received. In the D®RIP Simulator, exactly the same as the synchronization
packets, the nRT packets are being transmitted at the same time instants as
they are in the real system, but they are not treated as synchronization
27

packets or any other packet than regular nRT packets, since it is assumed

that all the devices are already synchronized.

e Transmission Errors: In the devices, there might be transmission errors or

line failures, but these are not considered in the simulation.

e Device Related Lags: The devices that operate in the automation network
might cause themselves delays due to internal calculations and/or any

other computer related lags such as the stack delays.

e Guard Periods: The guard periods [28] and [29], i.e. the time intervals that
a device waits before transmission until it is guaranteed in the real system
to be in the same time slot synchronously with its neighboring devices, are
not taken into account since there is no synchronization error in the

simulation.

e ISR Delays: The RT Linux operating system in the real implementation is
not purely Real-time. Hence, it supports RT up to a limit. One
consequence of this lack is in the interrupt service routine calls. The OS
provides an ISR service with a 100us guarantee. This boundary is
calculated as 25us on the average. As a result, the experimental and

simulation results are possible to be at least that much in difference.

e Timer delays: The real implementation uses timers to call the ISR causing

extra delays, which are not present in the simulator.

e NIC Delays: The Network Interface Card adds additional delays to the

communication, the simulator neglects it.

In the following sections, having these abstractions and assumptions, the SM, IL

and CL implementations are explained.

28

4.2 Shared Medium (SM)

In this subsection, the Timed I/O Automata of the shared medium of a generic
broadcast channel in networks that the communication is based on a shared

medium is presented.

4.2.1 Shared Medium Operation and TIOA Model

We know that the conventional Ethernet employs a shared medium, called the
MAC Layer, in which CSMA/CD algorithm runs. But in our framework, such an
algorithm is not applied since only a single device is guaranteed to have access to
the SM. Thus, the SM only has to get the message transmitted and broadcast it on
the right time. Besides, it will check the collision situation, i.e. if a message is

held at the time another message transmission begins.

The SM operation is given in Figure 4-2 [26].

29

TIOA SM(dNwmber, M) where dNumber € N

Variables X Actions A

mess? € M (empty) input IL2SM(m);, m € M,
collde B (false) 1< i < dNumber

nextd € R (0) output SM2IL(m), m € M
now® € R (0)

Transitions D

input IL2SM(m); output SM2IL(m)
effect:
if mess is empty
messd =m

precondition:
now® = next?

next? = now®+m.length effect:
else m = messd
coll? = true set messd empty
nextd =0 nextd = 0

set mess? empty

Trajectories T

stop when evolve
now® = next? Amess? not empty d(now®) =1

Figure 4-2. TIOA Model of the Shared-Medium [26].

The devices connected to the SM is represented by the variable dNumber and the
messages flowing in the SM by the variable m € M each of whose data is

characterized by m. data € R* and length by where M is the message class.

The variables used whose initial values are given in parenthesis are of two types.
For the discrete variables, a superscript “d” is used while a superscript “a” for
analog variables. The variables used in the TIOA of SM are mess’, the message
that is being transmitted in SM, coll®, the Boolean variable indicating collision
status, next’, the next reception time, now?® which holds the current time

evolution, i.e. keeping track of the time spent in message transmission in SM.

There are two actions given in SM, that are IL2SM(m) and SM2IL(m). IL2SM is

responsible for the reception of the message transmitted from the interface layer

30

(IL) of the transmitting device into the SM. Then, in the appropriate time, an

SM2IL action will happen in order to broadcast the recently received message.

Note that, IL2SM is declared as an input action for SM, whereas SM2IL an output
action. This is there must be an incoming message, so that the SM will get the
message by its action IL2SM. Thus, IL2SM is an input action since it is initiated
by a message reception from an IL of a device from outside world, i.e. the ILs of
connected devices. Unlikely, the IL2SM activates a SM2IL to broadcast the
message to the outside world; hence, it is an output action. In Section 4.3, these
actions will be observed as output and input actions in the TIOA models of ILs,

respectively.

As explained above, the action IL2SM; takes the message from the IL of device i.
Then, the mess® variable is checked if it holds any other message. If not, it means
that the SM is idle and ready. If this is the case, the message taken from the IL of
device i is saved in mess® with the update of the next® variable. Otherwise, i.e. if
the mess” is not empty, an overwrite will occur, resulting in collision and the reset

of next. As a result, the messages will be discarded.

Like IL2SM, SM2IL; occurs when the current time is equal to the next®, which
was updated in IL2SM, previously. As SM2IL; action happens, each device
connected to the SM invokes its respective input SM2IL; actions in it IL in order
to receive the message being transmitted in the SM. Then, mess® is saved in m and

reset. The next reception time next” is also reset.

The variable that holds the current time, now?, evolves with time with a time
derivative of 1. That is

d(now%) _ 1
de —
In addition, the current time now?, stops if now? equals next® and mess® is not

empty, else is the halting condition.

31

It is clear that for SM, on input transitions, there are no preconditions present.
Furthermore, in IL2SM transitions, the stop condition is invalidated; hence the
time can evolve further. Hence, SM is input action and time passage enabling
[26].

4.2.2 SM Implementation and Related Class Definitions

The shared-medium has various variables given in the previous subsection; each
will constitute a member of SM class variable family. The SM Class definition

can be found in Table 4-1.

Table 4-1. The SM Class for the Shared Medium Object.

SM

int next
int now
bool collision
int dNumber
M mess

Represents
the class of
the Shared
Medium

The next reception variable next’, the number of connected devices, dNumber
and current time variable now? are declared as integers, with the Boolean coll® as

bool. The message currently transmitted in SM, mess®, is a member of class M.

Unlike the variables, the actions are not declared as members of SM. We

implement IL2SM; and SM2IL actions as events.

32

The simulation process is not based on polling now? and checking if it is equal to
some values. The idea is to update now? in the beginning of every event and if
there is, add the invoked event whose time is increased from the current now?® at

the required amount.

Every time slot of length dslot has 3 portions reserved for data transmission
(data), protocol related computations (cmp) and operation for the upper layer

protocol (rem-cmp). The structure of time slots is given below in Figure 4-3.

dSlot dSlot

| data |

) 4

| data |

“dSlot — rememp

Figure 4-3. The Time Slot Structure [26].

The events are declared as objects of class Event. The class has event type,
time and device as members. The event type is of type Etype, which is the
enumeration of different event types. Hence, a switchable main loop will be
obtained depending on the type of the popped event. The time variable constitutes
the time that the event is supposed to happen. The events will be pushed into the
PQ and sorted with respect to their times. Hence, the event whose time is the
closest to the current time will be popped as the next event. The Event Class is

depicted in Figure 4-4.

33

enum Etype

{
IL_REQRT,
CL_REQRT,

CL_CLZ2ILRT,
IL_CL2ILRT,
IL_IL2SM,
SM_IL2SM,
SM_SM2IL,
IL_SMZ2IL,
IL_IL2CLRT,
CL_IL2CLRT,
IL2APNRT,
AP2ILNRT,
CL2AP,
AP2CL,
UPD
Etype etype S
int time
int device

Event

operator overloading
<, =and >

Represents the Event
Class

Figure 4-4. Event Class for the Event objects.

The brief explanations of the enumerated events are:

e IL_REQRT: The request issued by IL to the CL

e CL_REQRT: The request received by CL from the IL

e CL_CLZ2ILRT: The response of CL to the request from IL (might contain a
message)

e IL_CL2ILRT: The response of CL is received by IL (might contain a
message)

e |IL_IL2SM: IL transmits message to the SM

e SM_IL2SM: The SM receives the message transmitted by IL

e SM_SM2IL: The SM broadcasts the message it currently holds to IL

e IL_SM2IL: IL receives the message broadcast by the SM

o IL_IL2CLRT: IL forwards the message received from the SM to the CL

e CL_IL2CLRT: CL receives the message forwarded by IL
34

IL2APNRT: The application gets the nRT message from IL
AP2ILnRT: The application puts an nRT message to IL

CL2AP: The application gets the RT message from CL
AP2CL: The application puts an RT message to CL

UPD: The update of the state of the automaton; i.e. includes update of the

message buffers, timings, calculations of decision variables, etc.

The events possible to be popped out of the PQ are depicted in Figure 4-5 [29].

AP I
or @ o \W
_____________________ T T — - AP2CL (D)
(Il)l' (1) | \(TV) (II0) | I". (Iv) | IL2ZCLRT (1)
Lo I T N —_— REQRT (I
dslot- CL2ILRT (IV)
Stol-rem cmp. CLIAP (V:l
data data
dslot time

Figure 4-5. Possible Events in a Time Slot [29].

There is only one SM which is common for all connected devices. The system
architecture and the SM-IL-CL interfaces can be seen in Figure 3-4. So the

common variables should be used and altered by all devices in various events.

Hence, in SM, the default constructor constructs the shared-medium with the

variables of their initial values; i.e. (now?, next®, coll?, mess®.data/mess’.length) =

(0, 0, false, 0/0). We shall now investigate the class M for message type. As given
in Table 4-2, the class M has 8 members.

35

Table 4-2. The M Class Definition.

M

int length

int data

int nodelD

int packetID
int framenum
int frameseq
int framelength

PAR par

Represents the
Message Class

The first seven, int length, int data, int nodelID, int packetID, int
framenum, int frameseq and int framelength, are integers
representing the message length, the data being transmitted, the ID of the node
that transmits or receives the message, the number of frames that the original non-
real-time packet is fragmented into, the sequence of the frame being transmitted
and the length of the frame as a fragment of the packet, respectively. The eighth
member is the PAR par indicating the protocol parameters of the message, which

are of PAR class, to be determined later.

SHARED MEDIUM

Figure 4-6. The system: SM-IL-CL and the Control Application Running in Devices.

36

In the event IL2SM; of SM, as depicted in Figure 4-2, if no collision occurred, that
is mess? is empty, next® is updated. So, we know from the behavior that when
now? equals next’, the precondition of SM2IL; will be satisfied and the output
action SM2IL must happen for all devices, since broadcast messages will be
received by all connected devices. This structure is built by pushing an event of
type SM2IL for each device, with the event time of now® + m. length at the end
of IL2SM; reception as the transmission of the message ends m.length unit time

later than the current time now?.

REQRT
IL2CLR‘|’I I CL2ILRT
dSlot dS'lot
I data |UPDI I data I - = =
IL2SM SM2IL [L25M

Figure 4-7. Timing Diagram between IL-SM.

In the SM2IL that occurs after m.length unit time after the IL2SM;, the message in
the SM is copied into m and mess® is reset using the reset () function of class
M. Later, m will be used to deliver the message that was received by SM to the ILs

of all devices, as seen in Figure 4-8.

37

Ty

1--'"_ iy T——

[& SM2IL 1"'7,'\1?[L
L S occup:m ------------ SM
no Xmission no Xmission sth SM2IL
- N

Y

Figure 4-8. IL2SM Transmission and SM2IL Broadcast.

At that instant, the output action SM2IL invokes its respective input action
SM2IL;, in the IL, namely, a SM2IL; event of time now® is pushed into PQ since
there is no time spent between the events SM2IL of SM and SM2IL; of IL of
device i. This is as mentioned before, due to the input actions being enabled
without any precondition. The case is the same in IL. The details of operation and

implementation of IL will be examined in the Subsection 4.3.1.

4.3 Interface Layer (IL)

In this subsection, the Interface Layer (IL) protocol family is introduced. As given
before, IL is operating on top of the SM as a broadcast channel and under a
Coordination Layer (CL), to be discussed later. The operation of IL provides a
collision-free communication for both RT and nRT traffic by allocating each time
slot to a unique owner based on information that are locally stored or requested

from the CL; for each time slot.

38

4.3.1 Interface Layer (IL) TIOA Model

First, the TIOA model of IL is presented generically; then, the two types will be
analyzed. The TIOA Model definition is given in Figure 4-9.

TIOA IL;(dSlot, rem, emp, M, (), A,)

Variables X Actions A

now; € R (0) input SM2IL(m), m € M

1:‘1ext§l € R (dSlot) input AP2ILNRT(m);, me M

TxRT{ € M (empty) input CL2ILRT (b1, b2, m)i, m€ M, by.by € B
TxnRT{ € Q (empty) input IL2APNRT(q);, g€ Q

RxRT{ € M (empty) output IL2CLRT(m,t);, meM,t eR
RxnRT{ € Q (empty) output IL2SM(m);, m € M

RTILY € B (false) internal UPDATE;

myILd € B (false) output REQRT(%);, t € R

vILY € Ap, (InitV)
reqILy € B (false)

Figure 4-9. TIOA Model Definition of the Interface Layer [26].

For each device i, the IL functionalities are parameterized by several variables.
These variables are dSlot € R* that represents the slot duration, the First-In-
First-Out type queue, Q of messages, time intervals, rem € R* and cmp € R™,
Booleans RTILY, myILY, reqlL®and the message type M. In addition to the variables
presented, we also use an abstract data type 2., each of whose choice will select
a type of the interface layer protocol family. This abstract data type will be

discussed in the Subsection 4.3.4.

As depicted in Figure 4-3, each time slot is of length dSlot. Each slot can be
divided into two time intervals: for data transmission, and the remaining. rem is
the interval remaining from the message transmission, hence, used for other
purposes. cmp is a part of rem, which is reserved for protocol related
computations of the interface layer, and the rest of rem consists of the time for the

operation of the upper layer protocol.

39

Similar to SM, the only analog variable now;* holds the time evolution of each IL,
IL;. The variables except now? are discrete. next? holds the beginning of the
next slot as well as the end of the current one, TxRT#, TxnRT#, RxRTY,
RxnRT# are the transmit and receive buffers. The RT buffers are single-message
buffers that hold the active message, where the nRT buffers are FIFO queues of

type Q that buffers messages of type M.

For the IL of device i, the variable RTIL? shows the type of the message being
transmitted, that is RT of nRT. If RTIL? = true, the message is RT. Similarly,
myIL% indicates if the current time slot is assigned to device i. If the assignment is
to be done by the upper layer, reqIL? is true to issue a request to the CL in order
to calculate RTIL% and myIL%. The abstract data type class object vIL? € A,
contains extra information. The updates of RTIL%, myIL? and vIL¢ are performed

by frr, fmy, freq@nd fupa, respectively.

In the TIOA model of IL, an internal action called UPDATE; is introduced. The
UPDATE action is responsible for the computation of the state of the protocol for
the next slot. This computation takes place after the transmission of the message
in the current time slot is finished. The computations include the update of
viL%and the computation of reqIL? according to the updated vIL¢. The
preconditions of the UPDATE; are that now;* is at the end of the time interval
reserved for data transmission or in the beginning of the time interval remaining
from data transmission, and the RT receive buffer RxRTS is empty. Then, if
reqIL? is false, then RTIL? becomes false and myIL? calculation is made locally

by fmy. Regardless of reqIL%, next? is incremented by dS1ot, i.e. updated.

Here, we examine the output action, REQRT(t);. According to the preconditions,
we see that REQRT(t); can only happen after the reqIL? returns true in UPDATE;
at the right interval. As next{ is updated in the UPDATE;, in precondition checks
of the upcoming actions, the updated version of will be used. Hence, the cmp

interval in the current time slot now becomes next® — dSlot — rem + cmp.
40

When now{ is in the beginning of cmp interval, the time has come for
REQRT(t);. If reqIL? turned true, at that instant a REQRT(t); will be called. In
that case, the myIL? calculations are not made locally, but instead, a request for
the calculations to the upper layer is issued. It provides the current time now{ to
CL and requests an RT message with the ownership information of the next slot.
The response is delivered from CL in CL2ILRT; (b1,b2,m);. The b1l and b2 are
used for the determination of the new values of RTIL? and myIL?. The argument

m is the RT message in CL if present.

The message broadcast from a device to every device begins with the transmission
of a message from IL; to SM in the output transition, IL2SM(m);. The action in
device i whose myIL? is true, takes place at the time when now{ equals the
beginning of the next time slot, that is next? — dSlot since next? was updated
before. The type of the message transmitted is based on the valuation of RTILY. If
true, then the message is an RT message. On the other hand, the input transition
SM2IL(m) is responsible for the message reception and its storage in RxRT# or

RxnRTE.

We select RT messages of length less m.length less than the transmission
window, i.e. next? + dSlot — rem. For such selection of RT messages, upon
reception, each RT message is immediately forwarded to the CL; of the device by
the transition IL2ZCLRT(RxRT#, now?).

In addition, as presented in Figure 4-11, the input transitions AP2ILnRT(m); and
IL2APNRT(RxnRT?); give access to the application layer (AP) to the transmit and
receive buffers of the IL at any time instant, since the application determines
when to transmit or get the nRT messages. But it must be noted that the case is
different for RT messages. The IL2CLRT; is an output transition since IL controls
the RT message transmission from IL to CL at the appropriate time slot and time
interval. The whole TIOA Model of IL is presented in Figure 4-10 [26].

41

TIOA IL;(dSlot, rem, cmp, M, @), A)
Variables X'
now; € R (0)
next e B (dSlot)
TxRTJ € M (empty)
TxnRT! € @ (empty)
RxRTJ € M (empty)
RxnRT{ € @ (empty)
RTIL] € B (false)
my ILd € B (false)
vIL e Ap (InitV)
reqIld € B (false)
Transitions I}
internal UPDATE;
precondition:
now;‘:nextf —TEem
RxRT{ empty
effect:
vInd =
Jupa(vILY RTILY)
reqTLY = fru (VILY)
if ~reqrid
RTILY = false
mg.rIL"T‘;i =
fm:r(v:[l'g:- RIIL?: bz: i)

next? = next? + dSlot

output IL2ZCLRT(m, now?);
precondition:
nowi=next] —rem
—(RxRT{ empty)
effect:
set m = RxRT{
set 134‘.:»111'1‘1‘?1 empty

output REQRT(now?);
precondition:

I‘qu-Lg = true

now? = nextd — dSlot — rem 4 cmp
effect:

reqIl{ = false

input IL2ZAPNRT(RxnRT);
effect:
set RxnRT; empty

Trajectories T
stop when
now; = nextg — dSlot A myTLY

now; = nexti —rem

(now? = nextd—dSlot —rem-+ecmp) AreqILd

Actions A

input SM2IL(m),m € M

input AP2ILNRT(m);, m e M

input CL2ILRT(by, ba, m);, meM, b1, b €
input IL2ZAFNRT(g);, ¢ €Q

output IL2CLRT(m, t);, me M, t e R
output IL25M(m);, m € M

internal UPDATE;

output REQRT(t);, t € K

input SM2IL({m)
effect:
if RTTLY
ExRTd =m
else
RxnRTY.Push(m)

output IL25M(m);
precondition:
(now? = next?— dSiot) A myIL$
(—(TxRT$ empty) A RTILY)
Vv (-RTIL{ A —(TxnRTI. Top empty))

effect:
if RTILY
set m = IxR'I‘f
set TxRT{ empty
if “RTILY
set m = I:i:nRI;;i Top
TxnRTZ.Pop
my ILY = false

input CL2ILRT(by, bz, m);

effect:
RTILY =frr(vILL, by)

My ILY = fuuy(vILY, RTILY, b, i)
:[“.»;RTT‘;'1 =1m

input AP2ILNRT(m);
effect:
TxnRT{ . Push{m)

evolve
d(nowi) =1

Figure 4-10. TIOA Model of IL [26].

As explained before, due to the choice of the variable of the abstract data type,

vIL;, the IL protocol family divides into two:

1. Real-Time Access Interface Layer (RAIL) Protocol
2. Time Slotted Interface Layer (TSIL) Protocol.

The protocols are designed such that they do not use any different functions from
each other, but the functions operate differently according to the choice of the
protocol that is made before the simulation is run.

In the following subsections, the protocol operations and differences with respect

to each other with the implementation details are given.

4.3.2 Real-Time Access Interface Layer (RAIL) Protocol

The RAIL Protocol operates in a time-slotted manner. In each time slot, access is
granted to a single device while the time slots that are used for RT and nRT
messages are separated statistically. For this separation, the variable vIL; must be
defined.

As a member of the abstract data type, cyc variable is introduced. The ownership
arbitration schedule repeats itself each cyc slots. There is also a set defined for
every device that determines the reserved nRT slots in each slot cycle containing a
total of cyc slots for that device only, and another set which is general and the
same for all devices, which determine the RT slots in the cyc slots. The sets are
the RTSet and the nRTSet with. On the other hand, vIL%. nRTSet is also a subset

of the same set, but vIL{. nRTSet of device i and vIL{. nRTSet of device j has no
intersection with each other, i.e. vIL{.nRTSet N vIL{.nRTSet = @, with non-

equal device numbers, i and j.

43

The functions frr, fimy, freqand fypg that take place in the updates of variables are to

be defined finally.

. fupd is responsible for the update of the slot counter, in mod cyc, as defined
previously.

. freq ISSues the request to the upper layer.

. frr determines if the slot is assigned as an RT Slot or not

o fmy determines the owner of the slot.

The RAIL Protocol suggests the fupd, freq, frr and fmy functions as follows:

. In every single time slot, the cnt variable of each device i is incremented
by 1. That is,
fupa VILY = (vILY. ent + 1)

mod VIL?.Cl’lt'

. freq ISsues the request to the upper layer if the slot counter is an element of
the vIL?. RTSet, i.e. returns 1, hence the request will be made in UPDATE;.

true, vILY.cnt € vIL RTSet

vild =
freq VILi false, otherwise

. The reply of the request issued by freq If the upper layer announces the slot
to be an RT slot, becomes CL2ILRT (true, b1, b2). As bl is true, then fry returns

true, else false.

true, vIL%.cnt € vILL RTSet
fRT VIL?I bl = /\bl = true
false, otherwise

44

o fmy shows if device i is the owner of the next time slot or not, using
b2coming from the upper layer with RTIL? and also if the slot counter is an

element of the vIL?. nRTSet, then, returns 1.

b,, RTIL{
fmy VILLRTILS, by, 1) = true, ('RTILY) AvILLcnt € vILL nRTSet
false, otherwise

4.3.3 Time Slotted Interface Layer (TSIL) Protocol

The TSIL Protocol is also based on a time-slotted structure. But as explained

before, what is different is the operation of the functions.

Different from RAIL, the slot counter of the IL of the devices are updated, i.e.
incremented by fy,q In NRT slots and freq returns true at each call, hence the upper

layer will make the choice of the type of the slot via frr.
The main difference is that the slot ownership decision of the RT Slots is made by
the upper layer, where for the nRT slots, the decision is made locally, by the TSIL

protocol.

The TSIL Protocol suggests the fypg, freq, frr and fimy functions as follows:

o The cnt variable of each device i is incremented by 1 if the slot is an RT
Slot.. That is,
(vl ent + +) 4., RTILY
fupd VIL(i'l, RTIL(lj — 1 mod VIL1 .cnt 1
vIL{. ent, otherwise
. freq ISSUeS the request to the upper layer in each slot, hence it returns true.

freq VILY = true

45

. frr depends only on b;. As b, is true, then frrreturns true, else false.

d _ true, b; = true
far VILi, by = false, otherwise
. fmy does not differ from RAIL Protocol. It again shows if device i is the

owner of the next time slot or not, using b2 coming from the upper layer with

RTIL? and also if the slot counter is an element of the vIL%. nRTSet, then, returns

true.
b,, RTILS
fmy VILLRTILY,b,,0) = true, !RTILIAVILYL cnt € vILY nRTSet
false, otherwise

We can imply here that, since the slot type is dynamically controlled and decided
by the upper layer, the TSIL protocol can adapt to the immediate needs of the RT
communication networks, better than RAIL protocol.

4.3.4 1L Implementation and Related Class Definitions

The Interface Layer exists in every device, i.e. node. Hence, every device is a
node in the system. First, the node class shall be defined. The node class is
defined as illustrated in Table 4-3.

46

Table 4-3. The node Class Definition.

node
int id
IL il
CL cl

Represents the class of
the devices, i.e. nodes.
Each node has its IL
and CL together with an
1o,

There are 3 members of each node: integer id representing the device ID, and IL
and CL which are IL and CL class objects. So, it is clear that, every node has its

own IL and CL. The 1L class definition is given in Table 4-4.

Table 4-4. The Interface Layer (IL) Class Definition.

IL
int next
M TxRT
queue <M= TxnRT
M RxRT

gqueue =M= RxnRT

vector <vector <M> > framebuf
bool mylIL

bool reqIL

bool b1, b2

int Tx_valid

int fragmentation

Ail vIL

void fupd(Ail &)

bool freg(Ail &)

bool frt(Ail &, bool &)
bool fmy(Ail &, bool &)

Represents the class of the
Interface Layer objects. The
operations are given as fupd,
freq, frt and fmy.

47

The Interface Layer has two nRT message queues for non-real-time transmission
and reception and two message buffers for real-time transmission and reception.
These queues and buffers hold the message until delivered to SM, CL or Control

Application.

The Boolean variables, myIl, reqgIl, bl and b2 are as they have been
explained in Section 4.3. The integer Tx valid shows if the message being
transmitted is valid, and the other integer fragmentation shows if there is a

fragmentation on the packet currently being delivered.

The abstract data class object, 211 vIL is for the protocol related computations.

The class 211 can be shown in Table 4-5.

Table 4-5. The Abstract Data Class Ail Definition.
Al
int cyc

int cnt
int NRTSet[n]

Represents the class of the
Abstract Data Type for IL, i.e.
the class of the object, vIL.
The constructor initializes the
cyc and cnt variables.

The integer array nRTSet [] of the IL in each device keeps the slot numbers that
are reserved for non-real-time communication for that device. Hence, when the
update functions are called at each node, the node then comprehends if the nRT

slot is assigned for itself by finding the cnt variable in nRTSet [].

48

The approach is similar for nRTSet []. But in this case, the array nRTSet []is
common for all nodes, hence, it is not a member of the vIL objects of the IL of

any node.

4.4 Coordination Layer (CL)

In this section, the Coordination Layer (CL) protocol family that is connected to
IL and its TIOA Model is explained [26].

Basically, the CL of each device is responsible of broadcasting and processing
information between the control application and its IL, using RT messages. So,

using this information, the CL’s adjust their RT operating behavior according to

the distributed computations made in each device.

4.4.1 Coordination Layer (CL) TIOA Model

The TIOA Model definition of CL is shown below in Figure 4-11.

TIOA CL;(del;, M, Q, V, Agp, InitCL), del; € B

send? € B (del;) input AP2CL(dat,p, ch);, dat € M.data, p e M.par, che H
Txf €V (empty) input CL2AP(q);, ¢ € Q

Rxf € () (empty) input IL2ZCLRT(m,t);, me M,te R

R]?CL;?1 e B (false) input REQRT(1);, t € R

myCLY € B (false) output CL2ILRT(RTCLY, mycLd, m);

chd e N (0)

reqCLWi‘d £ B (false)
vCLd € Aqy (InitCL)

Figure 4-11. TIOA Model Definition of CL [26].

49

Brief explanation for each variable is as follows:

. send}: the time that passes after a request was issued from the interface
layer

. Tx{: the vector of RT messages

. Rx%: the queue of messages

. RTCLY: the Boolean decision variable that indicates whether the slot is

decided to be a real time slot

o myCL%: the Boolean decision variable that indicates whether the slot is
owned by the i-th device

o ch?: the decision variable that indicates the channel to be used for
communication

. reqCL%: the flag indicating whether a request is issued from the interface
layer

o del;: the delay between REQRT;and the CL2ILRT; following afterwards,
with del; < rem — cmp

. dat: the data being transmitted

o par: the protocol information kept in the message

As claimed, the Coordination Layer is responsible of several duties. One is the
message transmission between Application Layer and the Interface Layer. The
messages are kept in the Tx? and Rx buffers. The CL is capable of transmissions
of messages of different protocol parameters via various communication channels.
The Boolean variables are the decision variables for communication related
calculations and they are updated due to the abstract type variable, vCL.

The control of the protocol is handled by the CL. Upon receiving a request from
the IL, the CL, together with the timing information, assigns a single transmitter
device for the subsequent time slot, such that, there will be only one unique

transmitter device for each slot, avoiding collision.

50

Whenever a request from IL arrives at the CL via REQRT (t)¢, the CL updates the
real time status flag, RTCL? with the ownership details of the next slot included in
myCL% and ch{. After sendfamount of time which is less than or equal to del; ,
via CL2ILRT; RTCL?, myCL% m , these detail are transferred to IL. But to note,

the message m is non-empty for only the i-th device whose myCL% is true.

The Coordination Layer receives RT messages from the Application Layer via
AP2CL; and from the Interface Layer via IL2CLRT; actions. When AP2CL;
occurs, the message kept in Tx? ch is built from the data, dat, the protocol
parameters, par, using the channel ch. For the reception from the IL, the received
message is kept in Rx{, and using the parameters in the received message, par,
and the timing information t received from the Interface Layer, the decision
variables are updated. The received message is forwarded to the upper layer, i.e.

the control application, via CL2AP; on demand.

The current values of the decision variables vCL?, the slot type RTCL? and the
channel ch with its owner, device i where myCL? is true, are determined by the
functions, gypa, grr and gp,,. The Coordination Layer definition is given based

on these functions. The operations of these functions vary slightly according to

the selected Coordination Layer protocol.

o gupd(vCL?,m. par,t) is responsible for the update of the slot counter, in

mod vCLY. cyc as defined previously, as well as protocol related updates for two

different protocols.

. grr VCL%, RTCL%,t determines if the slot is assigned as an RT Slot or
not.
. 9my(VCLE, RTCLY, t, 1) decides about the owner of the slot.

The TIOA Model of the Coordination Layer [26] is presented in Figure 4-12.

51

TIOA IL;(dSlot, rem, emp, M, Q, ArL)

Variables X Actions A

now? € R (0) input SM2IL(m),m € M

nextd € R (dSlot) input AP2ILNRT(m);, me M

TMRT;i €M (empty) input CL2ILRT(by,ba, m);, meM, by, bo € B
TxnRTY € Q (empty) input IL.2APNRT(q);, ¢ €Q

RxRT{ € M (empty) output 1L2CLRT(m,t);, me M, t € R

RxnRT{ € Q (empty) output 1.25M(m);, m € M

RTIL! € B (false) internal UPDATE;

myILY € B (false) output REQRT(t);, t € R

vILd € Ay, (InitV)
reqlLd € B (false)

Transitions D

internal UPDATE; input SM2IL(m)
precondition: effect:
nowi=nextd—rem if RTILY
d
RxRT; empty RxRTY =m
effect: else
vIL{ = RxnRT.Push(m)
fapa(VILE, RTILY)
reqILld = freq(vILY) output 1L.25M(m);
if ~reqILy precondition:
RTILY = false (now? = next?— dSlot) A myILd
myIL] = (~(TxRTY empty) A RTILY) v
d d M
Sy (VILE, RTILE, bo, i) (-RTILS A =(TxnRTY.Top empty))
d_ d
next{ = nextf{ + dSlot offoct:
output IL2CLRT(m, now?®); if RTIL{
precondition: set m = TXRT?

d
now?=nextd—rem set TxRT} empty
—(RxRT¢ empty) if -RTTLY

effect: set m = TxnRT.Top
d
set m = RxRTY TxnRT{.Pop
set RxRTY empty myIL¢ = false
output REQRT(now?); input CL2ILRT(b1, b, m);
. effect:
precondition: 4 ay
reqIL{ = true RTiis__fﬁT(VILw 1)
now? = next?d — dSlot — Y 2 _d a)
rem 4 cmp fmy(VdIL:' ,RTILS, by,)
effect: TxRT; = m

reqIL{ = false

input AP2ILNRT(m);
effect:
TxnRT{.Push(m)

input 1.2APNRT(RxnRTY);
effect:
set RxnRT; empty

Trajectories T

stop when evolve

now? = next¢ — dSlot AmyTLZ d(now?) =1
now; = next‘;‘ —rem

(now? = next{ —dSlot—rem+cmp)AreqILd

Figure 4-12. TIOA Model of the Coordination Layer [26].

52

Similar to the Interface Layer design, due to the choice of the variable of the

abstract data type, vCL;, the protocol family divides into two:

1. Dynamic Allocation Real-Time (DART) Protocol
2. Urgency-Based Real-Time (URT) Protocol.

The protocols are designed such that they do not use any different functions from
each other, but the functions operate differently according to the choice of the

protocol that is made before the simulation is run.

In the following subsections, the protocol operations and differences with respect
to each other with the implementation details are given. Further details of two
different types of Coordination Layer (CL) are given in the Subsections 4.4.2 and
4.4.3.

4.4.2 Dynamic Allocation Real-Time Protocol (DART)

The DART Protocol holds the variables and information as allocated real-time
slots assigned to specific controller devices. These variables and information
depend on the state of the control application such that, they are dynamically

updated and modified relative to the instantaneous state of the application.

Up to now, vCL%.cyc and vCL?.cnt are present as the decision variables
constituting the cycle and the slot counter variables, respectively. Furthermore,
the allocation data object ado is introduced with members ado.num € N,
ado.slots € {0,1,2,...,cyc —1} and ado.used < N x N, where ado.num
holds the RT Slot number allocated in every cyc RT slots, ado. slots is an ordered
list of ado.num allocated RT Slots and finally, ado.used is a tuple indicating
the device that uses the ADO together with its channel id ((0,0) if not used). The

class definition of the allocation data objects is given in Table 4-6.

53

Table 4-6. The ADO Class Definition.

ADO

int num
vector<int> slots
pair<int,int> used

Represents the
class of the
Allocation Data
Objects.

The CL of each device has a vector of allocation data objects (ado),
vCL%. alloc[]. But for k = [, it has to hold that vCL?. alloc[k] # vCL%. alloc(l].

So that, every ado is different from each other.

The protocol parameter of the messages m.par in DART has two members:
par.free and par.new. par.freeis a vector of 2-tuples (par.freel € N X N)
indicating the ado with member alloc[k].used = par. free[1] should be freed,
i.e. the allocation data objects that exist in the par.free vector will be deleted from
alloc[k].used vector. par.newis a vector of triples (a,b,c) € NxX N XN,
indicating the new allocation data object to be assigned such that, an ado with a

slots is to be assigned to the channel ¢ for node b.

The update functions for DART are defined in [26] as:

d d
. Jupa VCL;, m.par,t = vCLj.cnt+1 mod vCLlcyc
d

and updates the allocation data objects such that each entry in m.par.free is
removed from ado.used and the first suitable unused ado in vCLd. alloc[] is
assigned.

d d
R grr VCLL RTCLL ¢ = true, vCLi.cr%t € vCL;.alloc k .slots, 3k
false, otherwise

54

. 9my VCLE,RTCLY i =

L’

true,c , vCL% cnt € vCL% alloc k .slots
A
vCL‘l-i.alloc k .used = i,c, 3k

false,0 , otherwise

4.4.3 Urgency-Based Real-Time Protocol (URT)

In the Urgency-Based Real-Time Protocol, there are communication requests that

contain information about the transmission rights for each device in the network.

The decision variable is a priority queue vCL?.PQ of 4-tuple requests. The
members of this priority queue are sorted according to their eT values such that
the device having the most urgent available request gets the access. A request
could be explained as:
b,c,eT,dT

b - device

¢ = channel

eT - eligibility time

dT — deadline.

Note that, the deadline is not absolute. The deadline of each request is relative to
the time instant that the request is issued. The meaning of b, c,eT,dT is, device
b can send its next message via channel c after eT and must finish sending before
dT. Moreover, the URT suggests that each message being transmitted contain a
set of requests m.par.req as its protocol related parameter. The requests that

exist in the message received are stored in vCL%.PQ.

55

The update functions of URT are given as the followings:

. If gupa vCLY, m.par,t is called and RTCLY = true, the first request that
is the request that was available, i.e. eligible, in the previous RT slot, is popped
out from vCL%.PQ if m.par is non-empty as a result of a successful reception of a
valid RT message. If the received message is not valid, the first request is re-
pushed into the vCL%.PQ since its transmission has not been successfully
completed. In addition, all the requests kept in m.par.req are pushed in

vCL%.PQ after their 4T members are made absolute by adding it the current time.

true, vCL*. PQ.Top.eT <t
CL,RTCLY,t = S
* grr VL ' false, otherwise

true,a , vCL‘ii.PQ.Top.b =1
VAN
RTCL? = true
AN
vCL:. PQ.Top.c = a
false,0 , otherwise

. 9my VCLY,RTCLY, i =

4.4.4 CL Implementationand Related Class Definitions

In every node in our system, as well as the Interface Layer, there is a Coordination
Layer. Hence, every node should have the object c1 of class CL. The CL class

is presented in Table 4-7.

56

Table 4-7. The CL Class Definition.

CL
M msg

double send
vector<M= Tx
queue<Mz= Rx

boal RTCL
bool myCL
int ch

bool reqCL
Acl vCL

void qupd(Acl &, M)

bool grit(Acl &)

pair<int,int= gmy{Acl &, bool &, int)
Represents the class of the
Coordination Layer objects. The
operations are given as gupd, grt and
gmy.

The CL class has a M type msg to keep the real-time message being held at the CL
momentarily and a double send as given in the definitions, previously. In
addition, two vectors of messages, one for transmission and reception each. These
vectors contain RT messages until removal by transmission down to IL or CL2AP
actions. The Boolean variables are RTCL, myCL and reqgCL, as explained before.
Moreover, the integer ch is added to keep the active channel. Finally, the abstract

class object; vCL. The abstract class Ac1 can be declared as in Table 4-8.

Table 4-8. The Ac1 Class Definition.

Acl
int cyc
int RTent
vector<ADO> alloc
priority_queue <REQ, vector<REQ>, greater<REQ> > PQ
PAR par_acl

Represents the class of the Abstract Data Type for CL, i.e.
the class of the object, vCL. The constructor initializes the
ADOs.

57

The abstract class contains the cyc variable and the RTcnt variable, which is the

analogue of cnt variable in the A1i1 class.

The CL definition is unique, i.e. there is only one CL that can run both of the two
suggested protocols, DART and URT. Hence, the vector of ADOS alloc, is
declared to be used in case the CL protocol is DART as well as the priority queue

of requests PQ, exists for URT.

Furthermore, there is a par variable in the Acl class. The PAR class that
represents the protocol parameters and the REQ class that is the type of the

requests are declared as in Table 4-9 and Table 4-10, respectively.

Table 4-9. The PAR Class Definition.

PAR

vector< pair<int,int> > Free
vector< pair<int, pair<int,int> > = New
vector<REQ> req_par

Represents the class of the protocol
parameters transmitted in the messages

The vectors Free is a 2-tuple where New is a 3-tuple. The operational functions
are given in Section 4.3.1. The vector of requests req par holds the requests to

be used later.

58

Table 4-10. The REQ Class Definition.

REQ
int b
int c
int eT
int dT

operator overloading
<, =and =

pair<pair<int,int>, pair<int,int> > req

Represents the class of the requests to
be used in URT protocol of CL.

The REQ class objects are 4-tuple requests. The entries are the b for the node, c
representing the channel and eT the eligibility time and dT the deadline time, as
previously mentioned. These integers constitute the req as a 4-tuple request

object.

59

CHAPTER S

COMPARISON RESULTS

In Chapter 4, The D°RIP Simulator is examined in detail. The reason the
simulator is created is to simulate the actual system as realistically and identically
as possible, such that the states and values of the variables and times that
simulator calculates are identical to those of the real system; i.e. it is checked if a
packet that is created at the same time in both the experiment and simulation,
delivered at the same time instants, if these packets are transmitted to the SM at

the same times, etc.

We compare the output of the D°RIP simulator to the output of the real
implementation of the D3RIP stack [28], [29]. The laboratory test bed system is
composed of 2 devices; Controllers G1 and G2. These controllersare identical PCs
equipped with Intel Core i3 550@3.20GHz Processors and 4GB of RAMs.

The system runs the Real-time Access Interface Layer Protocol (RAIL) as the IL
protocol and on top of it, the Urgency-based Real-Time Protocol (URT) is
employed as the CL protocol.

As given in [29], there are 3 message transmission as the Real-Time
communication, i.e. 7y, 'n and p. The message ?u is the first request that a
controller sends to the other controllerover a cross Ethernet cable. In each
comparison, there will be 6 message transmissions. For RT communication, these
are ?u, 'y, w, ?u, 'p and p, in order. Where for nRT traffic, the messages are just

ordinary nRT messages.

60

The test bed is run for more than 900 seconds. 31 RT packets are transmitted and
received. For RT communication, the message order is the same, i.e. 7y, !n and p
as illustrated in Figure 5-1. Hence, transmissions of these 3 messages always
repeats itself. In the comparisons, two cycles are taken as comparison data. The

average, maximum and minimum delays are presented in Table 5-2.

Controller G1 i

Figure 5-1. RT Communication.

Controller G2

For nRT communication, as claimed in Section 4.1, the synchronization packets
are generated and transmitted every second according to IEEE 1588. The
experiment in the test bed was run for 90 seconds, so, more than 90 nRT packets
are transmitted and received. The average, maximum and minimum delays are
presented in Table 5-4.

We set dSlot =3ms, rem = 0.5ms and cmp = 0.1ms. In the simulator, dSlot is
taken as 3000, making each time unit equal to 1us. Hence, rem = 500 and cmp =
100 time units. According to Figure 4-3, the rem is less than dS1ot, similarly,
cmp is less than rem. Different selections of these variables are possible, but
every selection has boundaries for the system performance. For instance,
depending on dslot, the maximum message length that could be transmitted

within the time slot would decrease; if it is too high, then, the bandwidth would be
wasted.

61

The other issue to be noted is the scheduling while tests. The cycle variable is

chosen as 4, and the scheduling is made as depicted in Figure 5-2.

nRT nRT
RT (G1) RT (G2)
cht=0 cht=1 cht=2 cht=3

Figure 5-2. Fair Scheduling Used During the Test.

For RT communications, the occurrence times of AP2CL events are obtained
from the laboratory as real values, and then, input to the simulation. Then, the
only thing to examine is the flow of the simulation, i.e. check and trace in the
simulation results, if the packet, which had been created at a specific known time
in the real system, pass to the IL via CL2IL at the source and are taken by the
application via CL2AP at both controllers at same instants with the real time logs.
Likewise, for the nRT traffic, the AP2ILnRT, IL2SM at the source and
IL2APNRT events are logged and will be compared.

We are now ready to investigate the simulation results for the RT and nRT

communication.

5.1 Real-Time Packets

The comparison of the simulation and the obtained logs for the RT
communication are given in Table 5-1. The RT messages, ?u, !n and p, are
created by the control application running in the transmitter node at different
times via AP2CL_Tx. First, the experimental system is run and the timings are
noted. Then, at these times, the D3RIP Simulator creates an identical messageat

the corresponding time instant for every RT message in the real system. Hence,

62

the initialization of the simulation is triggered and CL2IL and CL2AP timings are

noted to be compared with the real logs.

In Table 5-1, the AP2CL_Tx and CL2IL_Tx events represent the AP2CL and the
CL2ILRT events that take place at the transmitting node, likely, the CL2AP_Tx
and CL2AP_Rx events denote the reception of these messages by the control

applications on the transmitting and the other devices, respectively.

As shown in Figure 5-1, ?u, 'u and p are the RT messages. These messages are
randomly selected six of all the messages created by the control applications in
the real system. The numbers are the time instants in uS at which each
corresponding event is observed to occur in the experiment and in simulation.
Then, the difference between the occurrence times of each event in obtained from
real system and the simulation are also given in us. The difference between the

experimental and the simulation timings yield the simulation precision.

Table 5-1. Simulation Results and Comparisons of the RT traffic.

EXPERIMENT (us) | SIMULATION (us) | At(ps)
u Messagel |
: 0 (Input
AP2CL_Tx 2469 2469 I to
} Simulator)
CL2IL_Tx 2535 2550 115
CL2AP_Tx 3078 3024 154
CL2AP_Rx 3204 3024 1180
) Message 2 | _ _Ai(EE)__
AP2CL_Tx 3733 3733 ' o
CL2IL_ Tx 8536 8550 14
CL2AP_Tx 9051 9024 127
CL2AP_Rx 9253 9024 1229

63

u Message 3 At(us)
AP2CL_Tx 9890 9890 i 0
CL2IL_Tx 14551 14550 ;z:::
CL2AP_Tx 15092 15024 168
CL2AP_Rx 15351 15024 1327

21 Message 4 | At(ps)
AP2CL_Tx 64324 64324 o
CL2IL Tx 66581 66550 31
CL2AP_Tx 67090 67024 Ir§6: :::
CL2AP_Rx 67387 67024 1363

) Message 5 At(ps)
AP2CL_Tx 67906 67906 1 0
CL2IL_Tx 72553 72550 I3
CL2AP_Tx 73063 73024 E
CL2AP_Rx 73372 73024 1348

u Message 6 At(ps)
AP2CL Tx 73769 73769 I 0
CL2IL_Tx 78578 78550 28
CL2AP_Tx 79079 79024 E'ES_ _____
CL2AP_Rx 79312 79024 1288

As a result, we observed that for a total of 31 RT packet transmissions. For each
packet,six events that occur in both systems are timestamped. The timestamps
obtained from the real system are then compared with the corresponding ones

taken from the simulator.

Finally, for a total of 186 events, the average differences between the occurrence

times of the same events in the simulator and the test bed is found as 122,6 ps, the

maximum difference as 401 ps, where the minimum difference is 0.

64

Table 5-2. The Differences Between the Real System and the Simulation for RT Packets.

Average Min
RT Communication | Difference Max (uLs)
(ns)
(ns)
‘ TOTAL (31 Packets) 122,6 0 401

5.2 Non-Real-Time Packets

Similarly to Table 5-1, the timings are obtained for random six nRT message
transmissions from the experiment and in simulation are presented. In the
simulation, the messages are created and delivered to the IL by AP2ILnRT_Tx
and the timings of the corresponding IL2SM and IL2APnRT events are observed.

The AP2ILNnRT_Tx and IL2SM_Tx events represent the AP2ILnRT and the
IL2SM events that take place at the transmitting node, similarly, the
IL2APNRT_Tx and IL2APNRT_Rx events denote the reception of these messages

by the control applications on the transmitting and the other devices, respectively.
Note that, in the simulation, the messages are forwarded to the control application

via IL2APNRT at both stations as soon as the IL2SM action ends. Hence, the

IL2SM and the IL2APNnRT events are assumed to occur at the same time instants.

Table 5-3. Simulation Results and Comparisons of the nRT traffic.

EXPERIMENT (ps) | SIMULATION (ps) At(ps)
Message 1
0 (Input
AP2ILnRT_Tx 6509100 6509100 to
Simulator)
IL2SM_Tx & IL2APnRT_Tx 6515016 6515012 4
IL2SM_Rx &IL2APnRT_Rx 6515302 6515012 290

65

Message 2 At(ps)
AP2ILnRT_Tx 6515354 6515354 0
IL2SM_Tx & IL2ZAPnRT_Tx 6521016 6521012 4
IL2SM_Rx &IL2APnRT_Rx 6521300 6521012 288
Message 3 At(ps)
AP2ILnRT_Tx 14509111 14509111 0
IL2SM_Tx & IL2APnRT_Tx 14519021 14519012 9
IL2SM_Rx &IL2APnRT_Rx 14519323 14519012 311
Message 4 At(ps)
AP2ILnRT_Tx 14519369 14519369 0
IL2SM_Tx & IL2APnRT_Tx 14525017 14525012 5
IL2SM_Rx &IL2APnRT_Rx 14525334 14525012 322
Message 5 At(ps)
AP2ILnRT_Tx 22509104 22509104 0
IL2SM_Tx & IL2ZAPnRT_Tx 22511017 22511012 5
IL2SM_Rx &IL2APnRT_Rx 22511318 22511012 306
Message 6 At(ps)
AP2ILnRT_Tx 22511384 22511384 0
IL2SM_Tx & IL2ZAPNRT_Tx 22517018 22517012 6
IL2SM_Rx &IL2APnRT_Rx 22517225 22517012 213

It is observed that in a total of 95 nRT packets, the average difference between the
simulation and the real timestamps is found to be 139,6us, the maximum
difference between the simulation and the logs obtained in the lab is 344ps, where

the minimum is found as 0.

Table 5-4. The Differences Between the Real System and the Simulation for nRT Packets.

Average
NRT Communication | Difference Min
(us) (us) | Max (us)
| TOTAL (95 Packets) 139,6 0 344

66

The selection of dS1ot length changes the collisions in the test bed. Due to the
constant synchronization error that is at most 500us, if the slot length is not big
enough, the real system would face with collisions and retransmissions. Hence, all
the timings would be shifted ambiguously. But in our selection as 3ms, the safety

margin is three times the minimum required. That is why no such errors occur.

It is interesting that when we examine Table 5-3 and Table 5-4, we observe that
the transmitting device receives its message earlier than the other device.
Actually, for the six messages each for RT and nRT traffic, three of them were
sent by Controller G1 and the other three were sent by Controller G2. But it is

found that the message is always received earlier by the transmitting device.

In fact, this is not the case. This is only the synchronization error between the

devices. In the beginning, it was claimed to be less than 500us.

The delays due to the operating system running on the controllers, which are
because of the ISR call lags, are also a major instance since for a single
transmission, in each event that occurs, i.e. IL2SM and SM2IL, the interrupt
service routine is called once. Hence for nRT transmissions, the ISR is called
twice and for RT traffic, the ISR is called 4 times, additionally for CL2IL and
IL2CL. Hence, since the average ISR delay is provided as 25us with a maximum
of 100us, on the average, an additional 50us for nRT and 100us for RT traffic is
included in the experimental results as another main reason for the differences

between the results of the simulation and the experiment.

Moreover, the experimental setup uses two timers for rem and dSlot values. With
the help of these timers, the ISR is called for actions. This is also an additional
two ISR calls, 50us on the average, at each slot beginning and for each

transmission.

It can be inferred that since the maximum delayed action within all actions in the

system is 401us, the packets and the events are guaranteed to be transmitted or

67

served at the same time slots without any asynchronization between service of
events such that, the simulation is serving the same event that the two controllers
are also serving, at the same time slot. As a result, the non-real-time message
queues, the slot numbers, the event times, every variable, i.e. the state of the
TIOA representing the overall system in the simulator and the system are at the

same state.

To sum up, the simulation is claimed to be consistent with the real system under
some assumptions and abstractions. They are mainly the ISR and timer delays
(each 100us max) and the synchronization errors when the timestamps in real
systemare obtained at the maximum synchronousity of 100us due to current RT

Linux capabilities.

The timestamps in the experiment began to be taken while the machines are in
synchronization up to 500us, such that, in the results, we observed a 401us
latency. But in the best case, this would not be the case. Generally, if the
timestamps are obtained while the machines are at maximum synchronization, i.e.
less than 100us, it can be inferred that the simulation is reliable at about a

maximum of 300us error.
To conclude. for 35,3us standard deviation, for 126 packets in total, i.e. 756 event
comparisons, the Confidence Intervals of the Standard Deviations are given in

Table 5-5.

Table 5-5. The Confidence Interval of the Standard Deviation.

Cl SD
90% 33.871 to 36.866
95% 33.605 to 37.176
99% 33.096 to 37.794

68

Namely, if the comparison process is repeated on different samples, the calculated
CI would contain the true parameter 90, 95 and 99% of the time with respect to

the given SD.

For a total of 756 events, the average difference is calculated as 135.42us. For
constant SD, the 0.95 confidence interval is then calculated as (134,994-135,841)
in ps. Hence, we can claim that in 95% of different simulations, even with the
assumed and abstracted cases, the simulation would be confident within these

limits.

One last addition is about the complexity of the simulator. In the worst case, we
can assume that in every time slot a device will be ready for transmission.
Consequently, for every RT packet of the transmitting device, AP2CL -
CL2ILRT — IL2SM events will be pushed into the PQ of events. For the reception
of there RT packets in every receiving device, SM2IL — IL2CLRT — CL2AP
events will be pushed. For nRT messages, the events are onl AP2ILnRT — IL2SM
and SM2IL — IL2APNnRT, in transmitting and receiving devices, respectively.
Namely, for each RT transmission 3, for each RT reception 3, for each nRT

transmission 2 and for each nRT reception 2 events are pushed.

As a result, in the 4 time slots as given in Figure 5-2, 2 RT and 2 nRT messages

will be transmitted. These messages will be received by both devices.

69

So, totally,

L events . events
2 RT transmission * 3 ———+ 2 RT reception * 3 ——
RT transmission RT reception
+
o events . events
2 nRT transmission * 2 + 2 nRT reception * 2

nRT transmission nRT reception

= 20 events

will be pushed and served in 4 time slots. That is, if the load is not more than the
amount discussed above, the size of the PQ remains the same after each cycle

represented in Figure 5-2.

If the load is much more, such as if the control application transmits many more
messages, then, the PQ will begin to queue the events. Depending on the machine
capabilities, the PQ size may cause space inadequacies in hard disks. This issue
may constitute a boundary for the simulator.

70

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, the Dynamic Distributed Dependable Real-Time Industrial
communication Protocol, the D*RIP [26], that adapts to the dynamically changing
demands of industrial real-time Ethernet automation networks with an Interface
Layer and a Coordination Layer that cooperate between the MAC layer and the
control application, is simulated using GCC compiler and the simulation results

including the packet transmission and arrival times are discussed.

The major contribution of this thesis is the D®RIP Protocol Simulator that can be
used to try and analyze new ideas and the changes in the D°RIP Family, without

any real instrument, extensive effort, with no cost and time.

The major works accomplished in the thesis are listed as follows:

e The Shared Medium (SM) as the MAC Layer is implemented.

e The Interface Layer (IL) that is connected to CL for RT traffic and the
Control Application for the nRT traffic, providing the time-slotted access
to the SM for RT and nRT communication is implemented.

e The Coordination Layer (CL), that deterministically arbitrates the access
to the MAC Layer that is provided by the IL for the RT traffic, is

implemented.

71

e The Real-time Access Interface Layer (RAIL), that provides time-slotted
access to the MAC Layer with exclusively and specifically distinguished
the time slots for RT and nRT traffic, is implemented.

e The Time-Slotted Interface Layer (TSIL), that for each time slot, allows
the CL make the decision about the type, is implemented.

e The Dynamic Allocation Real-time Protocol (DART) is implemented

e The Urgency-based Real-Time Protocol (URT) is implemented.

e The Shared Medium is integrated with both ILs and both CLs. The user
chooses the types of IL and CL and then the D*RIP Simulator runs.

e A real sample system with RAIL as IL protocol and URT as CL protocol
is run in the laboratory, and the experimental results are logged. Then, the
logs are compared with the D*RIP Simulator results. The assumptions

made, the similarities and the differences are discussed.

For the slot length of 3ms, the real system and the D®RIP Simulator are run. The
data are logged after the synchronization difference between Controller G1 & G2
was 500ps, and the D°RIP Simulator results have come out to be less than 401us
for both RT and nRT traffic, using RAIL as the IL protocol and URT as the CL
protocol.

The simulator behaviour fits to the D*RIP framework. So, the simulator can be
plugged and used in any D®RIP module. Namely, making no change in the
simulator but the subtle modifications in the update functions, new versions of IL
and CL layers could be modelled. As a result, keeping in mind that as long as the
assumptions and abstractions made do not constitute problematic issues and they
are reasonable for such systems, it can be claimed that the simulator for the D*RIP
Protocol using RAIL-URT protocol couple implemented and delivered is precise.

For D®RIP systems whose behaviour and parameters are known from the design,
the simulator can be used for modelling. Hence, using this simulator, innovative
ideas and further investigations with modications would be much more easier to

be applied and tested rather than setting up a real system. Moreover, if a new
72

protocol type for IL and CL is created, the modification required in the simulator
is quite simple. Eventually, with the simulator, the D*RIP framework will also be

developed quickly, easily and smoothly.

6.2 Future Work

In addition to the RAIL as the IL protocol and URT as the CL protocol choices,
the D°RIP Simulator is capable of simulating the 4 different RTE Protocols
presented in [26] as the D°RIP Protocol Family. In each case, the simulator can

analyze every variable in every state or time instant.

In the future, for a more dependable simulator, a real system that can implement
the other offered protocols, TSIL and DART, can be set up, and the simulator and
the system could be cross-checked and investigated. So that, the simulator would
be more trustworthy since it would be guaranteed for all of the protocol couples to
simulate correctly. Additionally, the D°RIP Simulator will be integrated with a
simulator for the control system to simulate the overall system behaviour, from

head to toe.

In addition, the delays experienced in the Network Interface Card (NIC) can be
modelled and added to the simulator for more realistic results. In general, for
more precise and realistic behaviour, the assumptions can be included in the

simulator.

73

REFERENCES

[1] J. Baillieul and P. Antsaklis, “Control and communication challenges in
networked real-time systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 9-28,
Jan. 2007.

[2] J. Moyne and D. Tilbury, “The emergence of industrial control networks
for manufacturing control, diagnostics, and safety data,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 29-47, Jan. 2007.

[3] P. Pedreiras, P. Gai, L. Almeida, and G. Buttazzo, “FTT-Ethernet. a
flexible real-time communication protocol that supports dynamic QoS
management on Ethernet-based systems,” Industrial Informatics, IEEE
Transactions on, vol. 1, no. 3, pp. 162-172, Aug. 2005.

[4] P. Neumann, “Communication in industrial automation — what is going

on?” Control Engineering Practice, vol. 15, pp. 1332-1347, 2007.

[5] M. Felser, “Real-time Ethernet - industry prospective,” Proceedings of the
IEEE, vol. 93, no. 6, pp. 1118-1129, June 2005.

[6] J.-D. Decotignie, “The many faces of industrial ethernet [past and
present],” Industrial Electronics Magazine, IEEE, vol. 3, no. 1, pp. 8-19, March
20009.

[7] S.-K. Kweon and K. G. Shin, “Statistical real-time communication over

ethernet,” Parallel and Distributed Systems, IEEE Transactions on, vol. 14, no. 3,

pp. 322-335, 2003.

[8] S.-K. Kweon, M.-G. Cho, and K. G. Shin, “Soft real-time communication
over Ethernet with adaptive traffic smoothing,” Parallel and Distributed Systems,

IEEE Transactions on, vol. 15, no. 10, pp. 946-959, 2004.

74

[9] “Real-time Ethernet: Ethernet/IP with time synchronization: Proposal for
a publicly available specification for real-time Ethernet,” Doc. IEC 65C/361/NP,
2004.

[10] H. Hoang, M. Jonsson, U. Hagstrom, and A. Kallerdahl, “Switched real-
time Ethernet with earliest deadline first scheduling protocols and traffic

handling,” in Parallel and Distributed Processing Symposium, 2002, pp. 94 —99.

[11] J. Wang and B. Ravindran, “Time-utility function-driven switched
ethernet: Packet scheduling algorithm, implementation, and feasibility analysis,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 15, no. 2, pp. 119-
133, 2004.

[12] (2010) Ethernet powerlink standardization group. [Online]. Available:
http://www.ethernet-powerlink.org/index.php?id=17, last visited on 16.08.2011.

[13] (2002, Nov.) IEEE 1588 standard for a precision clock synchronization
protocol for networked measurement and control systems. [Online]. Available:
http://ieee1588.nist.gov, last visited on 16.08.2011.

[14] R. Zarick, M. Hagen, and R. Bartos, “The impact of network latency on
the synchronization of real-world ieee 1588-2008 devices,” in Precision Clock
Synchronization for Measurement Control and Communication, International
IEEE Symposium on, 2010.

[15] “Real-time Ethernet: Profinet 10: Proposal for a publicly available
specification for real-time Ethernet,” Doc. IEC 65C/359/NP, 2004.

[16] “Real-time Ethernet: EPL (Ethernet powerlink): Proposal for a publicly
available specification for real-time Ethernet,” Doc. IEC 65C/356a/NP, 2004.

[17] “Real-time Ethernet: TCnet (Time-Critical Control Network): Proposal
for a publicly available specification for real-time Ethernet,” Doc. IEC
65C/353/NP, 2004.

75

http://www.ethernet-powerlink.org/index.php?id=17
http://ieee1588.nist.gov/

[18] “Real-time Ethernet: EPA (Ethernet for plant automation): Proposal for a
publicly available specification for real-time Ethernet,” Doc. IEC 65C/357/NP,
2004.

[19] K. Schmidt, E. Schmidt, and J. Zaddach, “Safe operation of distributed
discrete-event controllers: A networked implementation with real-time
guarantees,” in [IFAC World Congress, 2008.

[20] T. Sauter, “The three generations of field-level networks-evolution and

compatibility issues,” Industrial Electronics, [IEEE Transactions on, vol. 57, no.

11, pp. 3585 ~3595, 2010.

[21] D. E. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “The theory of
timed I/O automata,” MIT Laboratory for Computer Science, Cambridge, MA,
Tech. Rep. MIT-LCS-TR-917, 2003.

[22] K. Schmidt, E. Schmidt, and J. Zaddach, “A shared-medium
communication architecture for distributed discrete event systems,” Control &

Automation, Mediterranean Conference on, pp. 1-6, June 2007.

[23] M. H. de Queiroz, J. E. R. Cury, and W. M. Wonham, “Multitasking
supervisory control of discrete-event systems,” Journal on Discrete Event

Dynamic Systems: Theory and Applications, vol. 15, pp. 375-395, 2005.

[24] K. Schmidt, M. de Queiroz, and J. Cury, “Hierarchical and decentralized
multitasking control of discrete event systems,” Decision and Control, IEEE

Conference on, pp. 5936-5941, Dec. 2007.

[25] D. E. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “Timed I/O
automata: A mathematical framework for modeling and analyzing real-time

systems,” in 24th IEEE International Real-Time Systems Symposium, 2003.

[26] K. Schmidt, E. Schmidt, and J. Zaddach, Distributed real-time protocols
for industrial control systems: Framework and examples, IEEE Transactions on

Parallel and Distributed Systems, Accepted for publication,2011.

76

[27] Gerald W. Brock (2003-09-25). The Second Information Revolution.
Harvard University Press. p. 151.1SBN 0674011783.

[28] A. K. Gozcu, Implementation and Evaluation of a Synchronous Time-
Slotted Medium Access Protocol for Networked Industrial Embedded Systems,
MSc. Thesis, Middle East Technical University, 2011.

[29] U. Turan, “Implementation and evaluation of a new protocol for industrial

communication networks,” MSc Thesis, Middle East Technical University, 2011.

[30] Andrews (2000), p. 10-11. Ghosh (2007), p. 4-6. Lynch (1996), p. xix, 1.
Peleg (2000), p. xv. Elmasri & Navathe (2000), Section 24.]

[31] Lian, F., Moyne, J. R., and Tilbury, D. M., “Performance Evaluation of
Control Networks: Ethernet, ControlNet and DeviceNet”, IEEE Control Systems
Magazine, pp. 66-83, Feb 2001.

[32] Paul Baran, 1964.

[33] Yusuf Bora Kartal, Ph.D Thesis Monitoring Committee Report, 2011.

77

