

SIMULATION AND PERFORMANCE EVALUATION OF A DISTRIBUTED

REAL-TIME COMMUNICATION PROTOCOL FOR INDUSTRIAL

EMBEDDED SYSTEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÜRAY AYBAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2011

Approval of the thesis

SIMULATION AND PERFORMANCE EVALUATION OF A

DISTRIBUTED REAL-TIME COMMUNICATION PROTOCOL FOR

INDUSTRIAL EMBEDDED SYSTEMS

submitted by GÜRAY AYBAR in partial fulfillment of the requirements for the

degree of Master of Science in Electrical and Electronics Engineering

Department, Middle East Technical University by,

Prof. Dr. Canan ÖZGEN

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ġsmet ERKMEN

Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. ġenan Ece SCHMIDT

Supervisor, Electrical and Electronics Engineering Dept.,

METU

Examining Committee Members:

Prof. Dr. Semih BĠLGEN

Electrical and Electronics Engineering Dept.,

METU

Assoc. Prof. Dr. ġenan Ece SCHMIDT

Electrical and Electronics Engineering Dept.,

METU

Prof. Dr. Gözde BOZDAĞI AKAR

Electrical and Electronics Engineering Dept.,

METU

Assoc. Prof. Dr. Cüneyt BAZLAMAÇCI

Electrical and Electronics Engineering Dept.,

METU

Ms. Sc. Bora KARTAL ___________

REHĠS, ASELSAN

Date: 07.12.2011

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : GÜRAY AYBAR

Signature :

iv

ABSTRACT

SIMULATION AND PERFORMANCE EVALUATION OF A

DISTRIBUTED REAL-TIME COMMUNICATION PROTOCOL FOR

INDUSTRIAL EMBEDDED SYSTEMS

AYBAR, Güray

 M.Sc., Department of Electrical and Electronics Engineering

 Supervisor: Assoc. Prof. Dr. Ece Güran SCHMIDT

December 2011, 77 pages

The Dynamic Distributed Dependable Real-Time Industrial communication

Protocol (D
3
RIP) provides service guarantees for Real-Time traffic and integrates

the dynamically changing requirements of automation applications in their

operation to efficiently utilize the resources. The protocol dynamically allocates

the network resources according to the respective system state. To this end, the

protocol architecture consists of an Interface Layer that provides time-slotted

operation and a Coordination Layer that assigns each time slot to a unique

transmitter device based on a distributed computation.

In this thesis, a software simulator for D
3
RIP is developed. Using the D

3
RIP

Simulator, modifications in D
3
RIP can be easily examined without facing

complexities in real implementations and extensive effort in terms of time and

cost. The simulator simulates the Interface Layer, the Coordination Layer and

additionally, the Shared Medium. Hence, using the simulator, the system-protocol

couple can be easily analyzed, tested and further improvements on D
3
RIP can be

achieved with the least amount of effort.

v

The simulator implements the Timed Input Output Automata (TIOA) models of

the D
3
RIP stack components using C++. The resulting code is compiled on GCC

(Gnu Compiler Collection). The logs of the simulation runs and the real system

with 2 devices connected via cross 100MbE cables are compared. In a 3ms time

slot, the simulator and the system incidents differ about 135µs on the average,

causing no asynchronousity in their instantaneous operational states. The D
3
RIP

Simulator is useful in keeping track of any variable in the D
3
RIP system

automaton at any instant up to 1µs resolution.

Keywords: Distributed Real-Time Ethernet Systems, Timed I-O Automata

(TIOA) Modeling, C++, Simulation of Real-Time Systems, Industrial Control,

Computer Applications, Industrial Communication Networks

vi

ÖZ

ENDÜSTRİYEL GÖMÜLÜ SİSTEMLER İÇİN DAĞITILMIŞ GERÇEK

ZAMANLI BİR HABERLEŞME PROTOKOLUNUN BENZETİMİ VE

BAŞARIM DEĞERLENDİRİLMESİ

AYBAR, Güray

 Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

 Tez Yöneticisi: Doç. Dr. Ece Güran SCHMIDT

Aralık 2011, 77 sayfa

Dinamik DağıtılmıĢ güvenilir Gerçek Zamanlı Endüstriyel iletiĢim Protokolü,

gerçek zamanlı trafik için servis garantisi sağlamaktadır ve haberleĢme

kaynaklarından verimli bir Ģekilde faydalanabilmek için otomatizasyon

uygulamalarının iĢlemlerinde dinamik olarak değiĢim gösteren gereksinimlerini

de birleĢtirmektedir. Protokol, ağ kaynaklarının ilgili sistem durumuna göre

dinamik olarak atanmasını sağlar. Bu amaçla, protokolmimarisi, zaman dilimli

iĢlem sağlayan bir Arayüz Katmanıve her zaman dilimini, dağıtılmıĢ hesaplamalar

sonucunda yalnızca tek bir iletici aygıta atayan bir Koordinasyon Katmanı’ndan

oluĢur.

Bu tezde, D
3
RIP için bir benzetici yazılımı geliĢtirilmiĢtir. D

3
RIP Benzeticisi

kullanılarak, D
3
RIP’teki değiĢiklikler gerçek uygulamalardaki güçlükler ile

karĢılaĢmadan ve zaman ve maliyet açısından ek yük gerektirmeden kolayca

denetlenebilir. Benzetici, Arayüz Katmanı’nı, Koordinasyon Katmanı’nı ve ek

olarak Paylaşımlı Ortam benzetimini yapar. Dolayısıyla, benzetici kullanılarak,

sistem-protokol ikilisi kolaylıkla analiz ve test edilebilir ve D
3
RIP’in en az masraf

ile daha fazla geliĢime ulaĢılır.

vii

Benzetici, C++ kullanarak D
3
RIPyığınındaki parçaların Zamanlı Girdi/Çıktı

Otomat (TIOA) modellerini uygular. Ortaya çıkan kod, GCC (GNU Derleyici

Koleksiyonu) ile derlenmiĢtir. Yapılan benzetimlerin sonuçları ile iki aygıtın

birbirlerine çapraz 100MbE kablolar ile bağlanmasından oluĢan gerçek sistemin

kayıtları karĢılaĢtırılmıĢtır. 3ms zaman aralığında, benzeticide ve sistemde

gerçekleĢen olaylarının anlık durumlarında zaman uyumsuzluklarına yol açmayan,

ortalama 135µs’lik bir fark ortaya çıkmıĢtır. D
3
RIP Benzeticisi, D

3
RIP sistem

otomatındaki herhangi bir değiĢkeni 1µs çözünürlükle herhangi bir anda takip

edilmesinde faydalıdır.

Anahtar Kelimeler: DağıtılmıĢ Gerçek Zamanı Ethernet Sistemleri, Zamanlı

Girdi/Çıktı Otomat Modeli, C++, Gerçek Zamanlı Sistemlerin BenzeĢtirilmesi,

Endüstriyel Kontrol, Bilgisayar Uygulamaları, Endüstriyel HaberleĢme Ağları

viii

to my beloved family

ix

ACKNOWLEDGEMENTS

This thesis work is one of the most important events throughout my entire life.

But I know that without the people I have to thank, it would be impossible for me

to achieve.

First of all, I am sincerely grateful and wish to send my hearthful of thanks and

gratitude to my advisor, then, supervisor, Assoc. Prof. Dr. ġenan Ece SCHMIDT

and Assistant Prof. Dr. Klaus SCHMIDT for their unlimited help, perfect

supervision, leading, guidance and understanding from beginning till the end of

this thesis work.

I would like to thank my parents Hatice Mesar AYBAR and Adnan AYBAR, and

my also-a-colleague brother Bahadır AYBAR for their endless patience, supports,

encouragements and their deep belief in me in my thesis work and throughout all

my education life.

I have to send my special thanks to the love of my life, yet my fiancee, Sinem

ĠġBĠLĠR, who has always encouraged and motivated me on my thesis with her

lovely existence, constant patience and understanding.

Finally, I wish to thank all my friends, especially to Ahmet Korhan GÖZCÜ and

UlaĢ TURAN for their ideas, help and support on completing my thesis.

This work would not have finished if any of them were not there for me.

Really appreciated.

x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ….... ... vi

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS .. x

LIST OF FIGURES ... xii

LIST OF TABLES .. xiv

LIST OF ABBREVIATONS ... xv

CHAPTERS

1 INTRODUCTION ... 1

2 ETHERNET FOR DISTRIBUTED REAL-TIME COMMUNICATION .. 4

2.1 Ethernet .. 4

2.2 Distributed and Real-time Systems ... 6

2.3 Distributed Real-Time Ethernet Systems .. 9

3 DYNAMIC DISTRIBUTED DEPENDABLE REAL-TIME

INDUSTRIAL COMMUNICATION PROTOCOL (D
3
RIP) 15

3.1 Example System and Communication Scenario 16

3.2 D
3
RIP Protocol Stack .. 21

3.3 TIOA Formalism ... 23

4 D
3
RIP SIMULATOR ... 25

4.1 Abstractions and Assumptions in the D
3
RIP Simulator 27

4.2 Shared Medium (SM) .. 29

4.2.1 Shared Medium Operation and TIOA Model 29

4.2.2 SM Implementation and Related Class Definitions 32

4.3 Interface Layer (IL) ... 38

4.3.1 Interface Layer (IL) TIOA Model 39

xi

4.3.2 Real-Time Access Interface Layer (RAIL) Protocol 43

4.3.3 Time Slotted Interface Layer (TSIL) Protocol 45

4.3.4 IL Implementation and Related Class Definitions 46

4.4 Coordination Layer (CL) ... 49

4.4.1 Coordination Layer (CL) TIOA Model 49

4.4.2 Dynamic Allocation Real-Time Protocol (DART) 53

4.4.3 Urgency-Based Real-Time Protocol (URT) 55

4.4.4 CL Implementationand Related Class Definitions 56

5 COMPARISON RESULTS ... 60

5.1 Real-Time Packets .. 62

5.2 Non-Real-Time Packets ... 65

6 CONCLUSIONS AND FUTURE WORK .. 71

6.1 Conclusions .. 71

6.2 Future Work ... 73

REFERENCES .. 74

xii

LIST OF FIGURES

FIGURES

Figure 2-1. The Mostly Used Ethernet Connector: RJ-45. 5

Figure 2-2. (a)-(b) A Distributed System, (c) A Parallel System. 7

Figure 2-3. Centralized System vs. Distributed System illustration [32]. 8

Figure 3-1. Automation Hierarchy [26]. .. 16

Figure 3-2. Workcell: Robot-Conveyor-Painting Device. 17

Figure 3-3. Illustration of the Behaviour of the workcell [26]. 19

Figure 3-4. D
3
RIP Software Architecture [26]. ... 21

Figure 3-5. The Structure of the Framework Proposed for a Distributed Real-Time

System [26]. ... 22

Figure 4-1. PQ Structure – Events Are Enqueued with respect to their Occurrence

Times. .. 26

Figure 4-2. TIOA Model of the Shared-Medium [26]. .. 30

Figure 4-3. The Time Slot Structure [26]. ... 33

Figure 4-4. Event Class for the Event objects. .. 34

Figure 4-5. Possible Events in a Time Slot [29]. ... 35

Figure 4-6. The system: SM-IL-CL and the Control Application Running in

Devices. ... 36

Figure 4-7. Timing Diagram between IL-SM. ... 37

Figure 4-8. IL2SM Transmission and SM2IL Broadcast. 38

Figure 4-9. TIOA Model Definition of the Interface Layer [26]. 39

Figure 4-10. TIOA Model of IL [26]. .. 42

Figure 4-11. TIOA Model Definition of CL [26]. ... 49

Figure 4-12. TIOA Model of the Coordination Layer [26]. 52

xiii

Figure 5-1. RT Communication. .. 61

Figure 5-2. Fair Scheduling Used During the Test. ... 62

xiv

LIST OF TABLES

TABLES

Table 2-1. Some Other Real Time Ethernet Protocol Proposals [33]. 12

Table 3-1. Channel Requirements of a Sample System [26]. 20

Table 4-1. The SM Class for the Shared Medium Object. 32

Table 4-2. The M Class Definition. .. 36

Table 4-3. The node Class Definition. ... 47

Table 4-4. The Interface Layer (IL) Class Definition. .. 47

Table 4-5. The Abstract Data Class Ail Definition. .. 48

Table 4-6. The ADO Class Definition. ... 54

Table 4-7. The CL Class Definition. .. 57

Table 4-8. The Acl Class Definition. ... 57

Table 4-9. The PAR Class Definition. ... 58

Table 4-10. The REQ Class Definition. ... 59

Table 5-1. Simulation Results and Comparisons of the RT traffic. 63

Table 5-2. The Differences Between the Real System and the Simulation for RT

Packets. .. 65

Table 5-3. Simulation Results and Comparisons of the nRT traffic. 65

Table 5-4. The Differences Between the Real System and the Simulation for nRT

Packets. .. 66

Table 5-5. The Confidence Interval of the Standard Deviation. 68

xv

LIST OF ABBREVIATONS

AP2CL : Control Application to Coordination Layer

AP2ILnRT : Control Application to Interface Layer

CL : Coordination Layer

CL2AP : Coordination Layer to Control Application

CL2ILRT : Coordination Layer to Interface Layer

CSMA/CD : Carrier Sense Multiple Access with Collision Detection

D
3
RIP : Dynamic Dependable Distributed Real-time Industrial Protocol

DART : Dynamic Access Real-Time Protocol

IL : Interface Layer

IL2APnRT : Interface Layer to Control Application

IL2CLRT : Interface Layer to Coordination Layer

IL2SM : Interface Layer to Shared Medium

LAN : Local Area Network

nRT : non-Real-Time

RAIL : Real-Time Access Interface Layer

REQRT : Real-Time Request Issued by Interface Layer

RT : Real-Time

RTE : Real-Time Ethernet

SM : Shared Medium

SM2IL : Shared Medium to Interface Layer

TIOA : Timed Input/Output Automata

TSIL : Time-Slotted Interface Layer

UPD : Update

URT : Urgency-based Real-Time Protocol

1

CHAPTER 1

1 INTRODUCTION

In recent years, distributed electronic Real-Time control systems have become

more and more widespread and also essential due to the large demand on hard real

time requirements of the technological improvements, such as flight control

systems, automotives; signal tracking, aerospace and industrial applications, etc.

However, as the technology evolves and develops, it also advances the necessity

of the physical distribution of control systems in strict real time. As a result, a

need for the network protocols to meet the stringent real time requirements arises,

such that the service of operation of real time signals is guaranteed and the

network will operate deterministically, meeting the demands.

A hard real-time system must operate within the deadline constraints and does not

tolerate unexpected delays. A missed deadline can be disastrous since most of the

hard real-time systems are safety critical applications. Ethernet is widely utilized

for the communication of industrial automation system components that perform

local computations and exchange information via communication networks. But,

as defined in IEEE 802.3, the arbitration mechanism is the nondeterministic

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) [6], [2], [3].

Thus, it is not convenient to be used for hard real time applications since

unpredictable packet transmission delays (back-offs) and transmission errors

might take place. To address these issues, there are various ongoing research and

development efforts to provide Ethernet-based industrial network solutions with

RT support [5], [6] and thus, converge to a single network technology on the

different levels of the automation hierarchy.

The D
3
RIP stack presented in [26] is investigated. The framework has a time-

slotted Interface Layer (IL) for RT and nRT; and a Coordination Layer (CL) for

2

RT signals, such that the system has a guaranteed RT traffic and is dynamically

adapting to the changing needs of the application.

The D
3
RIP stack is quite an effective and a detailed protocol family. The system

state depends on many different variables. But it is hard to be implemented in real

life. Especially for each new idea or a modification to be examined, it is

impossible to adjust at the setup level, since it would take a lot of effort and time.

Moreover, the real system is complicated.

As a result, if a simulator, which simulates the system behaviour as closely as

possible, is figured out, it would be possible to investigate new ideas or apply

possible changes and modifications to the protocol with the results of the

simulation as if they were actually built and run.

Therefore, using a realistic simulator design is quite a way observe the system

behaviour, saving a lot of time and effort and minimizes the cost.

In the thesis, the aim of the work is to develop a simulator software for the D
3
RIP

framework and verify the correctness of both the simulator and the actual

implementation in the laboratory that was carried out independently. This

verification is carried out by comparing the outcomes of the simulation with those

of the actual system in terms of instantaneous states of the system, the values of

the variables, i.e. the event times, actions, owner of the time slots, etc.

The simulation is designed as an event-based operation. Hence, in every event, the

operation of the event takes place and messages are transmitted and received, the

system states are updated, etc. However these actions all occur instantaneously,

with no duration, at all. The actual implementation of the D
3
RIP stack involves

the calculation and reading latencies, line propagation delays, synchronization

problems, jitter, etc.

Hence, as well as being hard to be predicted, these communication defects might

cause slight differences in the comparison of the real and simulated system

behaviours. Our experiments show that the impact of the assumptions and

3

abstractions in the simulator model can lead to discrepancies in the results from

the real system.

This thesis totally consists of 6 chapters. The remainder of the thesis is organized

as follows.

In Chapter 2, general concepts and some background information on Ethernet,

Distributed Systems and finally, Distributed Real-Time Ethernet Systems are

given.

In Chapter 3, the protocol in [26] and the work is defined. An example for RTE

Systems is given and has been inspected in detail. Then, a solution is proposed;

performance specs and challenges are claimed. The Timed Input/Output Automata

(TIOA) Models is introduced as a formal modeling tool.

In Chapter 4, The D
3
RIP Simulator is defined. Moreover, the models for the

Shared Medium, Interface Layer (IL) and the Coordination Layers (CL) both for 2

different types of ILs and CLs are explained in detail. The abstractions and the

assumptions are explained and finally, the implementations of these TIOA models

for the SM, the IL types and the CL types are elaborated.

In Chapter 5, Simulation results are presented and comparisons to the

experimental set-up are discussed.

Lastly, in Chapter 6, the conclusions are given, and results are interpreted with the

possible future studies.

References are given in the end.

4

CHAPTER 2

2 ETHERNET FOR DISTRIBUTED REAL-TIME

COMMUNICATION

We first present some brief information about Ethernet, how it was founded and

its application areas, then, we move into the systems that employ Ethernet as the

communication protocol family.

2.1 Ethernet

IEEE 802.3 CSMA/CD, namely Ethernet, is a standard embedded protocol family

that controls the data delivery technology over a Local Area Network (LAN). It is

the most widely employed LAN protocol, today.

Ethernet was first created in 1973 by Robert Metcalfe, being inspired by his

studies about Alohanet. Later, DEC (Digital Equipment Corporation), Intel and

Xerox worked together for the promotion of Ethernet as a new standard in

networking. The group published the standard, which was called the “DIX”

standard. The DIX specified Ethernet at the data rate of 10Mbps and addresses of

48-bits. In 1980, for the standardization of local area networks (LAN),

the Institute of Electrical and Electronics Engineers (IEEE) launched Project 802.

The DIX-group suggested the CSMA/CD protocol in opposition to the Token

Ring and the Token Bus.

The connection between nodes is usually provided by RJ-45 jacks. Most

commonly, the Ethernet systems are the 10BASE-T systems supporting a data rate

5

of 10Mbps and the devices try to get access to the medium using CSMA/CD

protocol via the RJ-45 cables for the connection, shown in Figure 2-1.

Figure 2-1. The Mostly Used Ethernet Connector: RJ-45.

Often in backbone systems, 10BASE-T cards are used to implement the Fast

Ethernet, namely 100BASE-T which provides up to a 100Mbps data rate. Faster

Ethernet protocols also exist, such as the Gigabit Ethernet (GbE) supporting a data

rate of 1Gbps and 10GbE, which provides 10Gbps of data rate as an invulnerable

option for large scale systems requiring a large support of networking

infrastructure.

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) method is a

Medium Access Control method which employs a carrier sensing scheme. The

station or device that has the medium access, detects another message

transmission attempt from another station. Then, it immediately halts the

transmission and after sending a jam signal, it waits a random back-off until next

transmission attempt for the same frame. The collision detection feature was

added to decrease the time consumed until next attempt, hence increasing the

efficiency.

The devices detect the collision in several different ways depending on the

medium. For electrical busses as 10BASE-2 or 10BASE-5, by comparing the

transmitted data with the received data, collisions can be detected easily.

Moreover, the collision might cause higher signal amplitude than the successful

http://www.itusozluk.com/gorseller/rj45/355

6

transmission on the bus. Hence, the collision can also be detected by checking the

amplitude of the signal on the bus.

In the past, the widest use of CSMA/CD was on the Shared Medium Ethernet

types that have currently become obsolete, 10BASE-2 or 10BASE-5, and the

earlier twisted-pair Ethernet versions. Too many stations transmitting on an

Ethernet network might cause an unacceptable level of collisions. This could

result in a large amount of reduction on the bandwidth of an Ethernet network due

to the lost bandwidth for the re-transmisison. For this reason, Ethernet swithces

are employed to reduce these difficulties.

2.2 Distributed and Real-time Systems

A distributed system is composed of a number of autonomous devices. These

devices are able to communicate with each other, enabling the cooperation and

resource sharing with each other. Hence, the users perceive the network with the

devices as a whole integrated system.

In a distributed system, there are multiple control points as well as multiple failure

points. A diagram for the difference of a parallel and a distributed system is

depicted in Figure 2-2.

7

Figure 2-2. (a)-(b) A Distributed System, (c) A Parallel System.

A centralized system malfunctions if a small number of hierarchically high level

devices do not work properly. However, a distributed system has no such central

nodes. Hence, the system does not have to be dependent on any other node to

operate. This is the major advantage of distributed systems.

In addition, as the number of nodes increase, the robustness and resilience of the

system increases. Figure 2-3 shows the difference of a distributed system from a

centralized system.

8

Figure 2-3. Centralized System vs. Distributed System illustration [32].

Some of the main areas of the distributed systems are listed below [30]:

 Telecommunication networks:

o Telephone and cellular networks.

o Computer networks; Internet.

o Routing algorithms.

o Wireless Sensor Networks.

 Network applications:

o World Wide Web and peer-to-peer networks.

o Interface Protocols employing IEEE1553.

o Multiplayer games and virtual reality communities.

o Distributed databases and management systems.

o Distributed information processing systems

 Banking systems.

 Airline reservation systems.

9

 Real-time process control:

o Aircraft control systems.

o Industrial control systems.

 Parallel computation:

o Scientific computing

o Distributed rendering in computer graphics.

A Real-time System has two major constraints:

 Successful execution of each command,

 Execution of each command before deadline.

Moreover, the real-time systems can be divided into two groups:

 Hard RT: eg. Aircraft control networks,

 Soft RT: eg. Online multiplayer gaming networks.

2.3 Distributed Real-Time Ethernet Systems

Ethernet has become one of the most popular data networks in recent years. The

current Ethernet standards most frequently support up to 1 Gbps of data

transmission, which is way higher than DeviceNet (500 Kbps) [31] and

ControlNet (5 Mbps) [31]. Ethernet is much easy to maintain and upgrade since it

is compatible with its older versions. In addition, it is inexpensive with respect to

other network types.

The most important foible of Ethernet in real-time systems is its collision-

proneness. The collision occurs when two or more devices try to transmit at the

same time. As the utilization of the network increases, i.e. the number of devices

connected or the network load increases, the probability of collision dramatically

increases. If the collisions are somehow eliminated, with respect to its speed and

maintenance ease, Ethernet is the most suitable and efficient network type.

10

In today’s RTE protocols, RT Bandwidth is allocated statically. Hence, due to the

operating conditions of the application, except for the FTT-Ethernet [3] which has

a master-slave architecture, the dynamically-changing demands of automation

systems are not taken into consideration [3], [19]. This is a problem for RTE

systems that have hard RT demands.

There are various communication protocols that support RTE [5], [6]. Even

though in [7] and [8], soft RT performance is provided using traffic smoothing,

this is not suitable at the device level. Because at the device level, hard RT

guarantees are required.

Several approaches exist; one of them is to use the full-duplex switched Ethernet

with a prioritization scheme similar to Ethernet/IP (EIP) [9]. With this approach,

an extra parameterization is made and a possible complicated scheduling in the

switch [10], [11] is faced but the collision is vanished. Moreover, the existence of

switches add the network some extra timing delays, decreasing the hard RT

performance [12].

A majority of automation systems require synchronization between devices and

hence employ synchronization protocols, such as IEEE 1588 [13]. In addition, the

synchronization precision is another issue in switched network designs. If the

devices are interconnected via several switches cascaded, the end-to-end delay

guarantees and precise synchronization is tough [14]. Some industrial protocols

such as ProfiNet [15], employ special hardware to handle the synchronization

problems but this enhances the cost of the system.

In some protocols, there are interface layers that are responsible for the controlling

or shaping the traffic transmitted to the Ethernet layer; thus, avoiding collision

manually. Some of these protocols are FTT-Ethernet [3], Ethernet Powerlink

(EPL) [16], Time Critical Control Network (TCNet) [17] and Ethernet for Plant

Automatization (EPA) [18]. But, in EPL and FTT-Ethernet, the IL is a slave in the

master-slave configuration. Similarly, the TCNet has a token-passing mechanism

and in EPA, TDMA is employed. If these protocols are investigated to be used in

11

industrial automation systems, since the automation systems are distributed, the

master-slave operation is useless. In addition, the maximum utilization in EPL [6]

is observed to be 25%, which is insufficient. Likewise, the tokens take time to be

passed between devices; the token-passing mechanism slows the network speed.

The TDMA uses exclusive and static allocated bandwidth for each device.

Today’s RTE protocols use static allocation of the RT bandwidth or static

configuration of possible transmission times to provide real-time supports on

Ethernet. But, these protocols require that the demands of the system do not alter

due to the state of the application [3], [19]. The sole protocol that adapts the

dynamically changing demands of the application is the master-slave protocol,

FTT-Ethernet [3].

The previous works on protocols that can be parameterized dynamically according

to the communication needs of automation system networks are given in [22],

[19]. A detailed comparison between RTE protocols is given in Table 2-1 [33].

15

CHAPTER 3

3 DYNAMIC DISTRIBUTED DEPENDABLE

REAL-TIME INDUSTRIAL COMMUNICATION

PROTOCOL (D
3
RIP)

Dynamic Distributed Dependable Real-Time Industrial communication Protocol

(D
3
RIP) family, introduced in [26] as a new Real Time Ethernet protocol,

provides a collision-free industrial communication with an efficient use of the

bandwidth since the behaviour of the D
3
RIP adapts itself due to the changing

specifications of dynamic systems. This adaption mechanism is based on the

previously known communication requirements, such as the timing and

scheduling of messages and needs, that is broadcast to every node in the system,

dynamically. Hence, it is possible to provide Real-Time guarantees and

dependability.

As the system, i.e. the control application, behavior is assumed to be known from

the system design; D
3
RIP allocates the bandwidth due to the needs of the

application, so that the remaining bandwidth could be present for non-real-time

communications.

D
3
RIP is a framework for the distributed shared-medium communication

architectures, that is applicable to similar environments including the well-known

protocols IEEE 802.11 and WirelessHART.

The framework dwells mainly on the real-time communication of distributed

devices that control the system through a network based on Ethernet that adapts to

16

the communication needs of the automation structure on the lower levels, i.e. the

machine, the cell and the subsystem levels [26], provided in Figure 3-1.

Figure 3-1. Automation Hierarchy [26].

In general, the needs include various types of messages to be transmitted, so the

requirements change dynamically. For instance, in the system, there can be signals

with real-time restrictions. Some of these signals could be periodic with small

delay and jitter constraints such as position control signals, as well as sporadic or

event-based signals with limited delay permissions, such as limit switches. In

addition, there can be non-real-time signals for that time is not critical.

Maintenance or diagnosis related data signals are also members of nRT traffic.

3.1 Example System and Communication Scenario

The workcell given in Figure 3-2 is modified from a manufacturing system in [23]

and [24]. The devices are as follows:

 Robot (R): moves the arm of the robot

 Conveyor (C): carries the parts

 Painting Device (PD): paints the manufactured parts using spray paint

guns

On top of these devices, there also are 4 controller devices. These are DevR,

DevC, DevPD and DevS. Each controller device except DevS is responsible for

17

the corresponding local device, i.e. DevR, DevC and DevPD control the actions of

Robot (R), Conveyor (C) and Painting Device (PD), respectively. DevS is

responsible for the coordination of the devices.

In the framework, the model of the operation is given in an event-based fashion;

each action is defined by an event. These events constitute commands for DevS,

notifications given by controller devices, and the local discrete actions or

start/stop actions of the closed-loop control processes performed by them [26].

Figure 3-2. Workcell: Robot-Conveyor-Painting Device.

In the beginning, the system is in initial state that is the robot has put no parts on

the conveyor belt, yet.

DevS sends an mvC command to the network and DevR receives it and powers up

the robot to place a part on the conveyor, which is the sC event in DevR. Then,

DevR executes the robot’s closed loop control action and processes the position

information in posR (position) and actR (actuator) signals, before the conveyor

is reached by the robot, the stopping signal stpR, and the arrival signal arC,

18

informs the DevS about the arrival of the part. Similarly, the signals mvI, sI and

arI refer to the same actions in the reverse direction.

When mvPd signal is received by DevS, the conveyor is responsible for the

transportation of a part into the Painting Device (PD), by the signal, sPD.

Whenever the signal posC which indicates the position of the conveyor signals

the arrival to the PD, the conveyor stops (stpC) issuing a notification action of its

arrival to DevS (arPD). This is the one-way motion. The signals during the return

of the part from the PD to the Robot are mvR, sR and arR.

Moreover, the PD could be operational, i.e. it could be switched on and off due to

its current operation. If it is to be set on, DevS transmits a PDon signal, initiating

the painting process by iPD immediately after the cover of the PD is locked

(lPD). Then, it unlocks its cover (ulPD) whenever it finished the painting action

(fPD). Finally, the Painting Device is switched off, notifying DevS by the PDoff

signal. During process, the Painting Device carries out the position control for the

spray gun via posPD and actPD.

Basically, for overall communication, the position signals, arrival notifications,

commands must be shared between devices. Moreover, the local controller

devices must acquire signals from the plant components; robot, conveyor and

painting device and must apply actuators to them, using their I/O interfaces, ioR,

ioC and ioPD.

First, in industrial automation networks, there exist various signals of different RT

requirements, i.e. some signals (periodic sensor or actuator signals – posR,

actR, posC, posPD, actPD) might be delivered in hard RT messages, while

some others (event based notifications or commands in DevS, local start/stop

signals – sC, stpR, sI, sPD, stpC, sR, lPD, ulPD, iPD, fPD) may fit into

sporadic messages, that have soft RT needs.

19

In addition, all of the devices and components of the workcell are supposed to

deliver diagnostic data via nRT messages.

The logical behaviour of the sample system in an automated painting factory is

depicted in Figure 3-3.

Figure 3-3. Illustration of the Behaviour of the workcell [26].

When we examine the workcell given above, as long as the components are

known from system design never to operate at the same instant, it could easily be

observed that the static allocation of the bandwidth would be overly conservative.

The effective allocation algorithm should allocate the bandwidth only to the active

device; which cannot be provided by current static RTE protocols.

20

For instance, considering a conventional industrial network, assume that all hard

real-time signals have a deadline of 5ms and the soft real-time signals have a

deadline of 10ms. As long as the allocation of the bandwidth in conventional

Ethernet is static, we have to allocate the required bandwidth according to the

worst case scenario, in terms of communication channels. Assume that the

channel requirements of such a system are given in Table 3-1.

Table 3-1. Channel Requirements of a Sample System [26].

Required number of channels

 Channel periods

 5ms 10ms Related Signal

DevS - 1 soft RT signals

DevR 2 1
posR-actR-sporadic

signals

DevC 1 1 posC-soft RT signals

DevPD 2 1
posPD-actPD-
sporadic signals

If each signal is transmitted in a single Ethernet Frame of minimum size, 576bits,

the net RT bandwidth of

is needed to handle the requirements.

On the other hand, if the medium access could be shifted among devices by the

command from DevS, it would be possible to achieve a relatively much less

bandwidth, but today’s static Real Time Ethernet protocols cannot actualize such

allocation.

21

3.2 D
3
RIP Protocol Stack

D
3
RIP (Dynamic Distributed Dependable Real-time Industrial Protocol)

framework’s software architecture includes two different protocol layers operating

upon the conventional MAC layer as presented in Figure 3-4. The IL runs the

conventional TDMA Protocol for RT and nRT traffic, where each CL coordinates

the ownership of the current RT slot, due to distributed computations, as

previously claimed.

Figure 3-4. D
3
RIP Software Architecture [26].

The operative details and functionalities of IL and CL will be examined in detail

in the further sections. The formal definition of the model we use, TIOA first

introduced in [21], will be presented in the first section of the next chapter.

The protocol, D
3
RIP is presented to run as a dynamic and dependable protocol

operating on Real Time Systems via Ethernet. The dependability proposed here

presents a collision-free protocol. Hence, the protocol should be able to adapt the

changing requirements of the system while keeping its collision-free structure, as

well.

The D
3
RIP Protocol Family is composed of a Shared Medium (SM) which is the

MAC layer, an Interface Layer (IL) that implements TDMA on the SM and a

Coordination Layer (CL) enabling instantaneous allocations of Real-Time

messages on the TDMA scheduling via ILs.

22

The system is modelled using TIOA Formalism as previously stated. The overall

system structure is provided in Figure 3-5.

Figure 3-5. The Structure of the Framework Proposed for a Distributed Real-Time System

[26].

The CL in each device in the automation makes the distributed computation and a

single device is assigned for transmission for each time slot of IL. On the other

hand, the remaining bandwidth, i.e. the time slots that are not used in RT

communication, are allocated for non-real-time message (nRT) transmissions.

The framework proposes interface layers and coordination layers, and some

distributed computations in distributed devices; not a particular real-time protocol

is proposed. Thereby, the protocol family is general.

23

3.3 TIOA Formalism

The Timed I/O Automata (TIOA), whose states alter by discrete trajectories or by

trajectories evolving over time, is introduced for the analysis and modeling of RT

systems in the mathematical frameworks of [21] and [25]. Each TIOA belongs to

a component in the system and the composition of TIOA describes the behavior of

a system with respect to time. The timed systems are considered with components

changing instantaneously and as well as continuously in time. So, TIOA is used

for the description of the framework [26].

For the representation of the states of a TIOA, a variable set is used. Each variable

has two types: a static type and a dynamic type. The static type of a variable

defines the possible range of values; whereas the dynamic type is responsible for

holding the possible evolutions of time for the variable. Depending on the

dynamic type of variables, they are either analog or discrete. The dynamic types

of discrete variables are in step function forms and those of analog variables are

assumed to be piecewise continuous functions.

A function val(X) for a set X of variables is called a valuation of X if it matches

each variable of X with a value in the static type of the variable, in turn, a function

is called a trajectory if it is a mapping of time instants into [0, val(X)] time

interval, so that the time evolution of the variables of X will be described.

A TIOA is defined as an eight-tuple

 The variable set X

 The state set

 Non-empty set of start states

 I is the input action set describing inputs from external world, O is the

output action set representing outputs, H is the internal action set with all actions

given as

24

 is the discrete transition set, for the transition,

 is used. Each discrete transition can be input, output or internal according

to the action which labels the transition.

 is the trajectory set with with t in the domain of .

For convenience, the external action set which is in interaction with the external

world is given as , with the locally controlled actions under the control

of is defined as .

25

CHAPTER 4

4 D
3
RIP SIMULATOR

The D
3
RIP Simulator is needed to simulate the D

3
RIP system behavior, instead of

running a complicated and slow test in the actual system. Namely, the simulator

runs identically to the actual system, hence, making it possible to examine the

system states at any time instant for any protocol modifications.

It takes a lot of time to make arrangements for the tests in the real system and also

it is not possible to monitor every single variable in the automata. The overall

system modeled, monitored and analyzed easily. As a result, new ideas and

changes in the D
3
RIP family will be integrated much more easily and

inexpensively at both time and cost.

In the previous sections, it is mentioned that the D
3
RIP protocol stack is

composed of a common Shared Medium, the Interface Layer (IL) and the

Coordination Layer (CL) of each device, in co-operation with the Application

Layer (AP). Hence, in the D
3
RIP simulator, each of these instances has to be

simulated.

The simulator incorporates the class definitions of SM, IL and CL. In addition, as

given in [26], the actions and transitions are implemented.

First of all, the actions are to be handled as events, such that, in the actual system,

if an action is supposed to be active at an instant, the D
3
RIP simulator is

responsible of the creation of that action as an event and its service according to

the D
3
RIP Protocol Stack.

26

We considered several different models for the simulator. The time could be

polled or the actions could be assumed to occur periodically. However, our D
3
RIP

simulator is designed to simulate the dynamic adaptation of our D
3
RIP Protocol

Stack to the changing needs of the industrial automation systems, hence; we

cannot make early predictions and assume periodicity. In addition, polling the

time or having an infinite loop in the simulation would cause our D
3
RIP simulator

to behave in a time slotted manner. But, since the real time functioning

automation system is not time slotted, we cannot make such assumptions. Hence,

the D
3
RIP simulator is designed as an event-based simulator.

There is a Priority Queue (PQ) of Events. The events are created and pushed into

the PQ. The D
3
RIP simulator then serves the event with the highest priority.

Each event is identified by its occurrence time, the device id that the

corresponding action belongs to and its type. Hence, once the D
3
RIP simulator

pops an event out of the PQ, it will be informed about the details of the event it

will serve. The priority order is defined first by its occurrence time, then its type,

finally the device number that the event occurs at. Hence, the events are queued

with priorities.

The Priority Queue of Events is depicted in Figure 4-1.

Figure 4-1. PQ Structure – Events Are Enqueued with respect to their Occurrence Times.

27

The next event that is invoked by the current one is pushed into the PQ of events..

During some events, it will be observed that more than one event will get pushed

into the PQ, where in some, no event will.

It is required to note that, according to the D
3
RIP Stack design in [26], in every

time slot, an UPDATE event is pushed into the PQ for the update of the state of the

system. Hence, the PQ never becomes empty.

4.1 Abstractions and Assumptions in the D
3
RIP Simulator

During the simulation of the system, there are some assumptions and abstractions

made.

The assumptions are listed below.

 Line delays: The real system is connected through 100Mbps Ethernet

cables. The messages transmitted is standard and of size 150B = 1200bits.

In a 100Mbps line, 1200 bits takes 12µs to be transmitted. In the

simulation, m.length is taken as 12µs. Hence, the time

now+m.length becomes now+12 (in µs), as in real systems. The SM

experiences no line delays, so, the line delay has been created as the

message length for more precise results.

 Synchronization latencies: In the devices in the real implementation, RT

Linux system is operating and the machines are synchronized at less than

500µs. Hence, the timings of the events regarding the SM might differ at

this amount. The simulator assumes that all devices are synchronized. As a

result, no pings or IEEE 1588 Synchronization packets are transmitted or

received. In the D
3
RIP Simulator, exactly the same as the synchronization

packets, the nRT packets are being transmitted at the same time instants as

they are in the real system, but they are not treated as synchronization

28

packets or any other packet than regular nRT packets, since it is assumed

that all the devices are already synchronized.

 Transmission Errors: In the devices, there might be transmission errors or

line failures, but these are not considered in the simulation.

 Device Related Lags: The devices that operate in the automation network

might cause themselves delays due to internal calculations and/or any

other computer related lags such as the stack delays.

 Guard Periods: The guard periods [28] and [29], i.e. the time intervals that

a device waits before transmission until it is guaranteed in the real system

to be in the same time slot synchronously with its neighboring devices, are

not taken into account since there is no synchronization error in the

simulation.

 ISR Delays: The RT Linux operating system in the real implementation is

not purely Real-time. Hence, it supports RT up to a limit. One

consequence of this lack is in the interrupt service routine calls. The OS

provides an ISR service with a 100µs guarantee. This boundary is

calculated as 25µs on the average. As a result, the experimental and

simulation results are possible to be at least that much in difference.

 Timer delays: The real implementation uses timers to call the ISR causing

extra delays, which are not present in the simulator.

 NIC Delays: The Network Interface Card adds additional delays to the

communication, the simulator neglects it.

In the following sections, having these abstractions and assumptions, the SM, IL

and CL implementations are explained.

29

4.2 Shared Medium (SM)

In this subsection, the Timed I/O Automata of the shared medium of a generic

broadcast channel in networks that the communication is based on a shared

medium is presented.

4.2.1 Shared Medium Operation and TIOA Model

We know that the conventional Ethernet employs a shared medium, called the

MAC Layer, in which CSMA/CD algorithm runs. But in our framework, such an

algorithm is not applied since only a single device is guaranteed to have access to

the SM. Thus, the SM only has to get the message transmitted and broadcast it on

the right time. Besides, it will check the collision situation, i.e. if a message is

held at the time another message transmission begins.

The SM operation is given in Figure 4-2 [26].

30

Figure 4-2. TIOA Model of the Shared-Medium [26].

The devices connected to the SM is represented by the variable dNumber and the

messages flowing in the SM by the variable each of whose data is

characterized by and length by where M is the message class.

The variables used whose initial values are given in parenthesis are of two types.

For the discrete variables, a superscript “d” is used while a superscript “a” for

analog variables. The variables used in the TIOA of SM are mess
d
, the message

that is being transmitted in SM, coll
d
, the Boolean variable indicating collision

status, next
d
, the next reception time, now

a
, which holds the current time

evolution, i.e. keeping track of the time spent in message transmission in SM.

There are two actions given in SM, that are IL2SM(m) and SM2IL(m). IL2SM is

responsible for the reception of the message transmitted from the interface layer

31

(IL) of the transmitting device into the SM. Then, in the appropriate time, an

SM2IL action will happen in order to broadcast the recently received message.

Note that, IL2SM is declared as an input action for SM, whereas SM2IL an output

action. This is there must be an incoming message, so that the SM will get the

message by its action IL2SM. Thus, IL2SM is an input action since it is initiated

by a message reception from an IL of a device from outside world, i.e. the ILs of

connected devices. Unlikely, the IL2SM activates a SM2IL to broadcast the

message to the outside world; hence, it is an output action. In Section 4.3, these

actions will be observed as output and input actions in the TIOA models of ILs,

respectively.

As explained above, the action IL2SMi takes the message from the IL of device i.

Then, the mess
d
 variable is checked if it holds any other message. If not, it means

that the SM is idle and ready. If this is the case, the message taken from the IL of

device i is saved in mess
d
 with the update of the next

d
 variable. Otherwise, i.e. if

the mess
d
 is not empty, an overwrite will occur, resulting in collision and the reset

of next
d
. As a result, the messages will be discarded.

Like IL2SM, SM2ILi occurs when the current time is equal to the next
d
, which

was updated in IL2SM, previously. As SM2ILi action happens, each device

connected to the SM invokes its respective input SM2ILi actions in it IL in order

to receive the message being transmitted in the SM. Then, mess
d
 is saved in m and

reset. The next reception time next
d
 is also reset.

The variable that holds the current time, now
a
, evolves with time with a time

derivative of 1. That is

.

In addition, the current time now
a
, stops if now

a
equals next

d
 and mess

d
 is not

empty, else is the halting condition.

32

It is clear that for SM, on input transitions, there are no preconditions present.

Furthermore, in IL2SM transitions, the stop condition is invalidated; hence the

time can evolve further. Hence, SM is input action and time passage enabling

[26].

4.2.2 SM Implementation and Related Class Definitions

The shared-medium has various variables given in the previous subsection; each

will constitute a member of SM class variable family. The SM Class definition

can be found in Table 4-1.

Table 4-1. The SM Class for the Shared Medium Object.

The next reception variable next
d
, the number of connected devices, dNumber

and current time variable now
a
 are declared as integers, with the Boolean coll

d
 as

bool. The message currently transmitted in SM, mess
d
, is a member of class M.

Unlike the variables, the actions are not declared as members of SM. We

implement IL2SMi and SM2IL actions as events.

33

The simulation process is not based on polling now
a
 and checking if it is equal to

some values. The idea is to update now
a
 in the beginning of every event and if

there is, add the invoked event whose time is increased from the current now
a
 at

the required amount.

Every time slot of length dSlot has 3 portions reserved for data transmission

(data), protocol related computations (cmp) and operation for the upper layer

protocol (rem-cmp). The structure of time slots is given below in Figure 4-3.

Figure 4-3. The Time Slot Structure [26].

The events are declared as objects of class Event. The class has event type,

time and device as members. The event type is of type Etype, which is the

enumeration of different event types. Hence, a switchable main loop will be

obtained depending on the type of the popped event. The time variable constitutes

the time that the event is supposed to happen. The events will be pushed into the

PQ and sorted with respect to their times. Hence, the event whose time is the

closest to the current time will be popped as the next event. The Event Class is

depicted in Figure 4-4.

34

Figure 4-4. Event Class for the Event objects.

The brief explanations of the enumerated events are:

 IL_REQRT: The request issued by IL to the CL

 CL_REQRT: The request received by CL from the IL

 CL_CL2ILRT: The response of CL to the request from IL (might contain a

message)

 IL_CL2ILRT: The response of CL is received by IL (might contain a

message)

 IL_IL2SM: IL transmits message to the SM

 SM_IL2SM: The SM receives the message transmitted by IL

 SM_SM2IL: The SM broadcasts the message it currently holds to IL

 IL_SM2IL: IL receives the message broadcast by the SM

 IL_IL2CLRT: IL forwards the message received from the SM to the CL

 CL_IL2CLRT: CL receives the message forwarded by IL

35

 IL2APnRT: The application gets the nRT message from IL

 AP2ILnRT: The application puts an nRT message to IL

 CL2AP: The application gets the RT message from CL

 AP2CL: The application puts an RT message to CL

 UPD: The update of the state of the automaton; i.e. includes update of the

message buffers, timings, calculations of decision variables, etc.

The events possible to be popped out of the PQ are depicted in Figure 4-5 [29].

Figure 4-5. Possible Events in a Time Slot [29].

There is only one SM which is common for all connected devices. The system

architecture and the SM-IL-CL interfaces can be seen in Figure 3-4. So the

common variables should be used and altered by all devices in various events.

Hence, in SM, the default constructor constructs the shared-medium with the

variables of their initial values; i.e. (now
a
, next

d
, coll

d
, mess

d
.data/mess

d
.length) =

(0, 0, false, 0/0). We shall now investigate the class M for message type. As given

in Table 4-2, the class M has 8 members.

36

Table 4-2. The M Class Definition.

The first seven, int length, int data, int nodeID, int packetID, int

framenum, int frameseq and int framelength, are integers

representing the message length, the data being transmitted, the ID of the node

that transmits or receives the message, the number of frames that the original non-

real-time packet is fragmented into, the sequence of the frame being transmitted

and the length of the frame as a fragment of the packet, respectively. The eighth

member is the PAR par indicating the protocol parameters of the message, which

are of PAR class, to be determined later.

Figure 4-6. The system: SM-IL-CL and the Control Application Running in Devices.

37

In the event IL2SMi of SM, as depicted in Figure 4-2, if no collision occurred, that

is mess
d
 is empty, next

d
 is updated. So, we know from the behavior that when

now
a
 equals next

d
, the precondition of SM2ILi will be satisfied and the output

action SM2IL must happen for all devices, since broadcast messages will be

received by all connected devices. This structure is built by pushing an event of

type SM2IL for each device, with the event time of at the end

of IL2SMi reception as the transmission of the message ends m.length unit time

later than the current time now
a
.

Figure 4-7. Timing Diagram between IL-SM.

In the SM2IL that occurs after m.length unit time after the IL2SMi, the message in

the SM is copied into m and mess
d
 is reset using the reset() function of class

M. Later, m will be used to deliver the message that was received by SM to the ILs

of all devices, as seen in Figure 4-8.

38

Figure 4-8. IL2SM Transmission and SM2IL Broadcast.

At that instant, the output action SM2IL invokes its respective input action

SM2ILi, in the IL, namely, a SM2ILi event of time now
a
 is pushed into PQ since

there is no time spent between the events SM2IL of SM and SM2ILi of IL of

device i. This is as mentioned before, due to the input actions being enabled

without any precondition. The case is the same in IL. The details of operation and

implementation of IL will be examined in the Subsection 4.3.1.

4.3 Interface Layer (IL)

In this subsection, the Interface Layer (IL) protocol family is introduced. As given

before, IL is operating on top of the SM as a broadcast channel and under a

Coordination Layer (CL), to be discussed later. The operation of IL provides a

collision-free communication for both RT and nRT traffic by allocating each time

slot to a unique owner based on information that are locally stored or requested

from the CLi for each time slot.

39

4.3.1 Interface Layer (IL) TIOA Model

First, the TIOA model of IL is presented generically; then, the two types will be

analyzed. The TIOA Model definition is given in Figure 4-9.

Figure 4-9. TIOA Model Definition of the Interface Layer [26].

For each device i, the IL functionalities are parameterized by several variables.

These variables are that represents the slot duration, the First-In-

First-Out type queue, Q of messages, time intervals, and ,

Booleans RTIL
d
, myIL

d
, reqIL

d
and the message type M. In addition to the variables

presented, we also use an abstract data type AIL, each of whose choice will select

a type of the interface layer protocol family. This abstract data type will be

discussed in the Subsection 4.3.4.

As depicted in Figure 4-3, each time slot is of length dSlot. Each slot can be

divided into two time intervals: for data transmission, and the remaining. rem is

the interval remaining from the message transmission, hence, used for other

purposes. cmp is a part of rem, which is reserved for protocol related

computations of the interface layer, and the rest of rem consists of the time for the

operation of the upper layer protocol.

40

Similar to SM, the only analog variable holds the time evolution of each IL,

ILi. The variables except are discrete. holds the beginning of the

next slot as well as the end of the current one,

 are the transmit and receive buffers. The RT buffers are single-message

buffers that hold the active message, where the nRT buffers are FIFO queues of

type Q that buffers messages of type M.

For the IL of device i, the variable shows the type of the message being

transmitted, that is RT of nRT. If , the message is RT. Similarly,

 indicates if the current time slot is assigned to device i. If the assignment is

to be done by the upper layer, is to issue a request to the CL in order

to calculate and . The abstract data type class object

contains extra information. The updates of , and are performed

by fRT, fmy, freq and fupd, respectively.

In the TIOA model of IL, an internal action called UPDATEi is introduced. The

UPDATE action is responsible for the computation of the state of the protocol for

the next slot. This computation takes place after the transmission of the message

in the current time slot is finished. The computations include the update of

and the computation of according to the updated . The

preconditions of the UPDATEi are that is at the end of the time interval

reserved for data transmission or in the beginning of the time interval remaining

from data transmission, and the RT receive buffer is empty. Then, if

 is false, then becomes false and calculation is made locally

by fmy. Regardless of , is incremented by dSlot, i.e. updated.

Here, we examine the output action, REQRT(t)i. According to the preconditions,

we see that REQRT(t)i can only happen after the returns true in UPDATEi

at the right interval. As is updated in the UPDATEi, in precondition checks

of the upcoming actions, the updated version of will be used. Hence, the cmp

interval in the current time slot now becomes .

41

When is in the beginning of cmp interval, the time has come for

REQRT(t)i. If turned true, at that instant a REQRT(t)i will be called. In

that case, the calculations are not made locally, but instead, a request for

the calculations to the upper layer is issued. It provides the current time to

CL and requests an RT message with the ownership information of the next slot.

The response is delivered from CL in CL2ILRTi (b1,b2,m)i. The b1 and b2 are

used for the determination of the new values of and . The argument

m is the RT message in CL if present.

The message broadcast from a device to every device begins with the transmission

of a message from ILi to SM in the output transition, IL2SM(m)i. The action in

device i whose is true, takes place at the time when equals the

beginning of the next time slot, that is since was updated

before. The type of the message transmitted is based on the valuation of . If

true, then the message is an RT message. On the other hand, the input transition

SM2IL(m) is responsible for the message reception and its storage in or

.

We select RT messages of length less m.length less than the transmission

window, i.e. . For such selection of RT messages, upon

reception, each RT message is immediately forwarded to the CLi of the device by

the transition IL2CLRT(,).

In addition, as presented in Figure 4-11, the input transitions AP2ILnRT(m)i and

IL2APnRT()i give access to the application layer (AP) to the transmit and

receive buffers of the IL at any time instant, since the application determines

when to transmit or get the nRT messages. But it must be noted that the case is

different for RT messages. The IL2CLRTi is an output transition since IL controls

the RT message transmission from IL to CL at the appropriate time slot and time

interval. The whole TIOA Model of IL is presented in Figure 4-10 [26].

42

Figure 4-10. TIOA Model of IL [26].

43

As explained before, due to the choice of the variable of the abstract data type,

vILi, the IL protocol family divides into two:

1. Real-Time Access Interface Layer (RAIL) Protocol

2. Time Slotted Interface Layer (TSIL) Protocol.

The protocols are designed such that they do not use any different functions from

each other, but the functions operate differently according to the choice of the

protocol that is made before the simulation is run.

In the following subsections, the protocol operations and differences with respect

to each other with the implementation details are given.

4.3.2 Real-Time Access Interface Layer (RAIL) Protocol

The RAIL Protocol operates in a time-slotted manner. In each time slot, access is

granted to a single device while the time slots that are used for RT and nRT

messages are separated statistically. For this separation, the variable vILi must be

defined.

As a member of the abstract data type, cyc variable is introduced. The ownership

arbitration schedule repeats itself each cyc slots. There is also a set defined for

every device that determines the reserved nRT slots in each slot cycle containing a

total of cyc slots for that device only, and another set which is general and the

same for all devices, which determine the RT slots in the cyc slots. The sets are

the RTSet and the nRTSet with. On the other hand, is also a subset

of the same set, but of device i and of device j has no

intersection with each other, i.e. , with non-

equal device numbers, i and j.

44

The functions fRT, fmy, freq and fupd that take place in the updates of variables are to

be defined finally.

 fupd is responsible for the update of the slot counter, in mod cyc, as defined

previously.

 freq issues the request to the upper layer.

 fRT determines if the slot is assigned as an RT Slot or not

 fmy determines the owner of the slot.

The RAIL Protocol suggests the fupd, freq, fRT and fmy functions as follows:

 In every single time slot, the cnt variable of each device i is incremented

by 1. That is,

.

 freq issues the request to the upper layer if the slot counter is an element of

the , i.e. returns 1, hence the request will be made in UPDATEi.

 The reply of the request issued by freq If the upper layer announces the slot

to be an RT slot, becomes . As b1 is true, then fRT returns

true, else false.

45

 fmy shows if device i is the owner of the next time slot or not, using

b2coming from the upper layer with and also if the slot counter is an

element of the , then, returns 1.

4.3.3 Time Slotted Interface Layer (TSIL) Protocol

The TSIL Protocol is also based on a time-slotted structure. But as explained

before, what is different is the operation of the functions.

Different from RAIL, the slot counter of the IL of the devices are updated, i.e.

incremented by fupd in nRT slots and freq returns true at each call, hence the upper

layer will make the choice of the type of the slot via fRT.

The main difference is that the slot ownership decision of the RT Slots is made by

the upper layer, where for the nRT slots, the decision is made locally, by the TSIL

protocol.

The TSIL Protocol suggests the fupd, freq, fRT and fmy functions as follows:

 The cnt variable of each device i is incremented by 1 if the slot is an RT

Slot.. That is,

 freq issues the request to the upper layer in each slot, hence it returns true.

46

 fRT depends only on . As is true, then fRT returns true, else false.

 fmy does not differ from RAIL Protocol. It again shows if device i is the

owner of the next time slot or not, using b2 coming from the upper layer with

 and also if the slot counter is an element of the , then, returns

true.

We can imply here that, since the slot type is dynamically controlled and decided

by the upper layer, the TSIL protocol can adapt to the immediate needs of the RT

communication networks, better than RAIL protocol.

4.3.4 IL Implementation and Related Class Definitions

The Interface Layer exists in every device, i.e. node. Hence, every device is a

node in the system. First, the node class shall be defined. The node class is

defined as illustrated in Table 4-3.

47

Table 4-3. The node Class Definition.

There are 3 members of each node: integer id representing the device ID, and IL

and CL which are IL and CL class objects. So, it is clear that, every node has its

own IL and CL. The IL class definition is given in Table 4-4.

Table 4-4. The Interface Layer (IL) Class Definition.

48

The Interface Layer has two nRT message queues for non-real-time transmission

and reception and two message buffers for real-time transmission and reception.

These queues and buffers hold the message until delivered to SM, CL or Control

Application.

The Boolean variables, myIL, reqIL, b1 and b2 are as they have been

explained in Section 4.3. The integer Tx_valid shows if the message being

transmitted is valid, and the other integer fragmentation shows if there is a

fragmentation on the packet currently being delivered.

The abstract data class object, Ail vIL is for the protocol related computations.

The class Ail can be shown in Table 4-5.

Table 4-5. The Abstract Data Class Ail Definition.

The integer array nRTSet[] of the IL in each device keeps the slot numbers that

are reserved for non-real-time communication for that device. Hence, when the

update functions are called at each node, the node then comprehends if the nRT

slot is assigned for itself by finding the cnt variable in nRTSet[].

49

The approach is similar for nRTSet[]. But in this case, the array nRTSet[]is

common for all nodes, hence, it is not a member of the vIL objects of the IL of

any node.

4.4 Coordination Layer (CL)

In this section, the Coordination Layer (CL) protocol family that is connected to

IL and its TIOA Model is explained [26].

Basically, the CL of each device is responsible of broadcasting and processing

information between the control application and its IL, using RT messages. So,

using this information, the CL’s adjust their RT operating behavior according to

the distributed computations made in each device.

4.4.1 Coordination Layer (CL) TIOA Model

The TIOA Model definition of CL is shown below in Figure 4-11.

Figure 4-11. TIOA Model Definition of CL [26].

50

Brief explanation for each variable is as follows:

 : the time that passes after a request was issued from the interface

layer

 : the vector of RT messages

 : the queue of messages

 : the Boolean decision variable that indicates whether the slot is

decided to be a real time slot

 : the Boolean decision variable that indicates whether the slot is

owned by the i-th device

 : the decision variable that indicates the channel to be used for

communication

 : the flag indicating whether a request is issued from the interface

layer

 : the delay between and the following afterwards,

with

 : the data being transmitted

 : the protocol information kept in the message

As claimed, the Coordination Layer is responsible of several duties. One is the

message transmission between Application Layer and the Interface Layer. The

messages are kept in the and buffers. The CL is capable of transmissions

of messages of different protocol parameters via various communication channels.

The Boolean variables are the decision variables for communication related

calculations and they are updated due to the abstract type variable, vCL.

The control of the protocol is handled by the CL. Upon receiving a request from

the IL, the CL, together with the timing information, assigns a single transmitter

device for the subsequent time slot, such that, there will be only one unique

transmitter device for each slot, avoiding collision.

51

Whenever a request from IL arrives at the CL via , the CL updates the

real time status flag, with the ownership details of the next slot included in

 and . After amount of time which is less than or equal to ,

via , these detail are transferred to IL. But to note,

the message m is non-empty for only the i-th device whose is true.

The Coordination Layer receives RT messages from the Application Layer via

 and from the Interface Layer via actions. When

occurs, the message kept in is built from the data, dat, the protocol

parameters, par, using the channel ch. For the reception from the IL, the received

message is kept in , and using the parameters in the received message, par,

and the timing information t received from the Interface Layer, the decision

variables are updated. The received message is forwarded to the upper layer, i.e.

the control application, via on demand.

The current values of the decision variables , the slot type and the

channel with its owner, device i where is true, are determined by the

functions, , and . The Coordination Layer definition is given based

on these functions. The operations of these functions vary slightly according to

the selected Coordination Layer protocol.

 is responsible for the update of the slot counter, in

mod as defined previously, as well as protocol related updates for two

different protocols.

 determines if the slot is assigned as an RT Slot or

not.

 decides about the owner of the slot.

The TIOA Model of the Coordination Layer [26] is presented in Figure 4-12.

52

Figure 4-12. TIOA Model of the Coordination Layer [26].

53

Similar to the Interface Layer design, due to the choice of the variable of the

abstract data type, vCLi, the protocol family divides into two:

1. Dynamic Allocation Real-Time (DART) Protocol

2. Urgency-Based Real-Time (URT) Protocol.

The protocols are designed such that they do not use any different functions from

each other, but the functions operate differently according to the choice of the

protocol that is made before the simulation is run.

In the following subsections, the protocol operations and differences with respect

to each other with the implementation details are given. Further details of two

different types of Coordination Layer (CL) are given in the Subsections 4.4.2 and

4.4.3.

4.4.2 Dynamic Allocation Real-Time Protocol (DART)

The DART Protocol holds the variables and information as allocated real-time

slots assigned to specific controller devices. These variables and information

depend on the state of the control application such that, they are dynamically

updated and modified relative to the instantaneous state of the application.

Up to now, and are present as the decision variables

constituting the cycle and the slot counter variables, respectively. Furthermore,

the allocation data object ado is introduced with members ,

 and , where

holds the RT Slot number allocated in every cyc RT slots, is an ordered

list of allocated RT Slots and finally, is a tuple indicating

the device that uses the ADO together with its channel id ((0,0) if not used). The

class definition of the allocation data objects is given in Table 4-6.

54

Table 4-6. The ADO Class Definition.

The CL of each device has a vector of allocation data objects (ado),

. But for , it has to hold that .

So that, every ado is different from each other.

The protocol parameter of the messages m.par in DART has two members:

 and . is a vector of 2-tuples ()

indicating the ado with member = should be freed,

i.e. the allocation data objects that exist in the par.free vector will be deleted from

 vector. is a vector of triples ,

indicating the new allocation data object to be assigned such that, an ado with a

slots is to be assigned to the channel c for node b.

The update functions for DART are defined in [26] as:

and updates the allocation data objects such that each entry in m.par.free is

removed from ado.used and the first suitable unused ado in is

assigned.

55

4.4.3 Urgency-Based Real-Time Protocol (URT)

In the Urgency-Based Real-Time Protocol, there are communication requests that

contain information about the transmission rights for each device in the network.

The decision variable is a priority queue .PQ of 4-tuple requests. The

members of this priority queue are sorted according to their eT values such that

the device having the most urgent available request gets the access. A request

could be explained as:

Note that, the deadline is not absolute. The deadline of each request is relative to

the time instant that the request is issued. The meaning of is, device

b can send its next message via channel c after eT and must finish sending before

dT. Moreover, the URT suggests that each message being transmitted contain a

set of requests m.par.req as its protocol related parameter. The requests that

exist in the message received are stored in .PQ.

56

The update functions of URT are given as the followings:

 If is called and , the first request that

is the request that was available, i.e. eligible, in the previous RT slot, is popped

out from .PQ if m.par is non-empty as a result of a successful reception of a

valid RT message. If the received message is not valid, the first request is re-

pushed into the .PQ since its transmission has not been successfully

completed. In addition, all the requests kept in m.par.req are pushed in

.PQ after their dT members are made absolute by adding it the current time.

4.4.4 CL Implementationand Related Class Definitions

In every node in our system, as well as the Interface Layer, there is a Coordination

Layer. Hence, every node should have the object cl of class CL. The CL class

is presented in Table 4-7.

57

Table 4-7. The CL Class Definition.

The CL class has a M type msg to keep the real-time message being held at the CL

momentarily and a double send as given in the definitions, previously. In

addition, two vectors of messages, one for transmission and reception each. These

vectors contain RT messages until removal by transmission down to IL or CL2AP

actions. The Boolean variables are RTCL, myCL and reqCL, as explained before.

Moreover, the integer ch is added to keep the active channel. Finally, the abstract

class object; vCL. The abstract class Acl can be declared as in Table 4-8.

Table 4-8. The Acl Class Definition.

58

The abstract class contains the cyc variable and the RTcnt variable, which is the

analogue of cnt variable in the Ail class.

The CL definition is unique, i.e. there is only one CL that can run both of the two

suggested protocols, DART and URT. Hence, the vector of ADOs alloc, is

declared to be used in case the CL protocol is DART as well as the priority queue

of requests PQ, exists for URT.

Furthermore, there is a par variable in the Acl class. The PAR class that

represents the protocol parameters and the REQ class that is the type of the

requests are declared as in Table 4-9 and Table 4-10, respectively.

Table 4-9. The PAR Class Definition.

The vectors Free is a 2-tuple where New is a 3-tuple. The operational functions

are given in Section 4.3.1. The vector of requests req_par holds the requests to

be used later.

59

Table 4-10. The REQ Class Definition.

The REQ class objects are 4-tuple requests. The entries are the b for the node, c

representing the channel and eT the eligibility time and dT the deadline time, as

previously mentioned. These integers constitute the req as a 4-tuple request

object.

60

CHAPTER 5

5 COMPARISON RESULTS

In Chapter 4, The D
3
RIP Simulator is examined in detail. The reason the

simulator is created is to simulate the actual system as realistically and identically

as possible, such that the states and values of the variables and times that

simulator calculates are identical to those of the real system; i.e. it is checked if a

packet that is created at the same time in both the experiment and simulation,

delivered at the same time instants, if these packets are transmitted to the SM at

the same times, etc.

We compare the output of the D
3
RIP simulator to the output of the real

implementation of the D3RIP stack [28], [29]. The laboratory test bed system is

composed of 2 devices; Controllers G1 and G2. These controllersare identical PCs

equipped with Intel Core i3 550@3.20GHz Processors and 4GB of RAMs.

The system runs the Real-time Access Interface Layer Protocol (RAIL) as the IL

protocol and on top of it, the Urgency-based Real-Time Protocol (URT) is

employed as the CL protocol.

As given in [29], there are 3 message transmission as the Real-Time

communication, i.e. ?µ, !µ and µ. The message ?µ is the first request that a

controller sends to the other controllerover a cross Ethernet cable. In each

comparison, there will be 6 message transmissions. For RT communication, these

are ?µ, !µ, µ, ?µ, !µ and µ, in order. Where for nRT traffic, the messages are just

ordinary nRT messages.

61

The test bed is run for more than 900 seconds. 31 RT packets are transmitted and

received. For RT communication, the message order is the same, i.e. ?µ, !µ and µ

as illustrated in Figure 5-1. Hence, transmissions of these 3 messages always

repeats itself. In the comparisons, two cycles are taken as comparison data. The

average, maximum and minimum delays are presented in Table 5-2.

Figure 5-1. RT Communication.

For nRT communication, as claimed in Section 4.1, the synchronization packets

are generated and transmitted every second according to IEEE 1588. The

experiment in the test bed was run for 90 seconds, so, more than 90 nRT packets

are transmitted and received. The average, maximum and minimum delays are

presented in Table 5-4.

We set dSlot = 3ms, rem = 0.5ms and cmp = 0.1ms. In the simulator, dSlot is

taken as 3000, making each time unit equal to 1µs. Hence, rem = 500 and cmp =

100 time units. According to Figure 4-3, the rem is less than dSlot, similarly,

cmp is less than rem. Different selections of these variables are possible, but

every selection has boundaries for the system performance. For instance,

depending on dSlot, the maximum message length that could be transmitted

within the time slot would decrease; if it is too high, then, the bandwidth would be

wasted.

62

The other issue to be noted is the scheduling while tests. The cycle variable is

chosen as 4, and the scheduling is made as depicted in Figure 5-2.

Figure 5-2. Fair Scheduling Used During the Test.

For RT communications, the occurrence times of AP2CL events are obtained

from the laboratory as real values, and then, input to the simulation. Then, the

only thing to examine is the flow of the simulation, i.e. check and trace in the

simulation results, if the packet, which had been created at a specific known time

in the real system, pass to the IL via CL2IL at the source and are taken by the

application via CL2AP at both controllers at same instants with the real time logs.

Likewise, for the nRT traffic, the AP2ILnRT, IL2SM at the source and

IL2APnRT events are logged and will be compared.

We are now ready to investigate the simulation results for the RT and nRT

communication.

5.1 Real-Time Packets

The comparison of the simulation and the obtained logs for the RT

communication are given in Table 5-1. The RT messages, ?µ, !µ and µ, are

created by the control application running in the transmitter node at different

times via AP2CL_Tx. First, the experimental system is run and the timings are

noted. Then, at these times, the D3RIP Simulator creates an identical messageat

the corresponding time instant for every RT message in the real system. Hence,

63

the initialization of the simulation is triggered and CL2IL and CL2AP timings are

noted to be compared with the real logs.

In Table 5-1, the AP2CL_Tx and CL2IL_Tx events represent the AP2CL and the

CL2ILRT events that take place at the transmitting node, likely, the CL2AP_Tx

and CL2AP_Rx events denote the reception of these messages by the control

applications on the transmitting and the other devices, respectively.

As shown in Figure 5-1, ?µ, !µ and µ are the RT messages. These messages are

randomly selected six of all the messages created by the control applications in

the real system. The numbers are the time instants in µs at which each

corresponding event is observed to occur in the experiment and in simulation.

Then, the difference between the occurrence times of each event in obtained from

real system and the simulation are also given in µs. The difference between the

experimental and the simulation timings yield the simulation precision.

Table 5-1. Simulation Results and Comparisons of the RT traffic.

 EXPERIMENT (µs) SIMULATION (µs) ∆t(µs)

?µ Message 1

AP2CL_Tx 2469 2469
0 (Input

to
Simulator)

CL2IL_Tx 2535 2550 15

CL2AP_Tx 3078 3024 54

CL2AP_Rx 3204 3024 180

!µ Message 2 ∆t(µs)

AP2CL_Tx 3733 3733 0

CL2IL_Tx 8536 8550 14

CL2AP_Tx 9051 9024 27

CL2AP_Rx 9253 9024 229

64

µ Message 3 ∆t(µs)

AP2CL_Tx 9890 9890 0

CL2IL_Tx 14551 14550 1

CL2AP_Tx 15092 15024 68

CL2AP_Rx 15351 15024 327

?µ Message 4 ∆t(µs)

AP2CL_Tx 64324 64324 0

CL2IL_Tx 66581 66550 31

CL2AP_Tx 67090 67024 66

CL2AP_Rx 67387 67024 363

!µ Message 5 ∆t(µs)

AP2CL_Tx 67906 67906 0

CL2IL_Tx 72553 72550 3

CL2AP_Tx 73063 73024 39

CL2AP_Rx 73372 73024 348

µ Message 6 ∆t(µs)

AP2CL_Tx 73769 73769 0

CL2IL_Tx 78578 78550 28

CL2AP_Tx 79079 79024 55

CL2AP_Rx 79312 79024 288

As a result, we observed that for a total of 31 RT packet transmissions. For each

packet,six events that occur in both systems are timestamped. The timestamps

obtained from the real system are then compared with the corresponding ones

taken from the simulator.

Finally, for a total of 186 events, the average differences between the occurrence

times of the same events in the simulator and the test bed is found as 122,6 µs, the

maximum difference as 401 µs, where the minimum difference is 0.

65

Table 5-2. The Differences Between the Real System and the Simulation for RT Packets.

RT Communication
Average

Difference

(µs)

Min

(µs)
Max (µs)

TOTAL (31 Packets) 122,6 0 401

5.2 Non-Real-Time Packets

Similarly to Table 5-1, the timings are obtained for random six nRT message

transmissions from the experiment and in simulation are presented. In the

simulation, the messages are created and delivered to the IL by AP2ILnRT_Tx

and the timings of the corresponding IL2SM and IL2APnRT events are observed.

The AP2ILnRT_Tx and IL2SM_Tx events represent the AP2ILnRT and the

IL2SM events that take place at the transmitting node, similarly, the

IL2APnRT_Tx and IL2APnRT_Rx events denote the reception of these messages

by the control applications on the transmitting and the other devices, respectively.

Note that, in the simulation, the messages are forwarded to the control application

via IL2APnRT at both stations as soon as the IL2SM action ends. Hence, the

IL2SM and the IL2APnRT events are assumed to occur at the same time instants.

Table 5-3. Simulation Results and Comparisons of the nRT traffic.

 EXPERIMENT (µs) SIMULATION (µs) ∆t(µs)

 Message 1

AP2ILnRT_Tx 6509100 6509100
0 (Input

to
Simulator)

IL2SM_Tx & IL2APnRT_Tx 6515016 6515012 4

IL2SM_Rx &IL2APnRT_Rx 6515302 6515012 290

66

 Message 2 ∆t(µs)

AP2ILnRT_Tx 6515354 6515354 0

IL2SM_Tx & IL2APnRT_Tx 6521016 6521012 4

IL2SM_Rx &IL2APnRT_Rx 6521300 6521012 288

 Message 3 ∆t(µs)

AP2ILnRT_Tx 14509111 14509111 0

IL2SM_Tx & IL2APnRT_Tx 14519021 14519012 9

IL2SM_Rx &IL2APnRT_Rx 14519323 14519012 311

 Message 4 ∆t(µs)

AP2ILnRT_Tx 14519369 14519369 0

IL2SM_Tx & IL2APnRT_Tx 14525017 14525012 5

IL2SM_Rx &IL2APnRT_Rx 14525334 14525012 322

 Message 5 ∆t(µs)

AP2ILnRT_Tx 22509104 22509104 0

IL2SM_Tx & IL2APnRT_Tx 22511017 22511012 5

IL2SM_Rx &IL2APnRT_Rx 22511318 22511012 306

 Message 6 ∆t(µs)

AP2ILnRT_Tx 22511384 22511384 0

IL2SM_Tx & IL2APnRT_Tx 22517018 22517012 6

IL2SM_Rx &IL2APnRT_Rx 22517225 22517012 213

It is observed that in a total of 95 nRT packets, the average difference between the

simulation and the real timestamps is found to be 139,6µs, the maximum

difference between the simulation and the logs obtained in the lab is 344µs, where

the minimum is found as 0.

Table 5-4. The Differences Between the Real System and the Simulation for nRT Packets.

nRT Communication
Average

Difference

(µs)

Min

(µs) Max (µs)

TOTAL (95 Packets) 139,6 0 344

67

The selection of dSlot length changes the collisions in the test bed. Due to the

constant synchronization error that is at most 500µs, if the slot length is not big

enough, the real system would face with collisions and retransmissions. Hence, all

the timings would be shifted ambiguously. But in our selection as 3ms, the safety

margin is three times the minimum required. That is why no such errors occur.

It is interesting that when we examine Table 5-3 and Table 5-4, we observe that

the transmitting device receives its message earlier than the other device.

Actually, for the six messages each for RT and nRT traffic, three of them were

sent by Controller G1 and the other three were sent by Controller G2. But it is

found that the message is always received earlier by the transmitting device.

In fact, this is not the case. This is only the synchronization error between the

devices. In the beginning, it was claimed to be less than 500µs.

The delays due to the operating system running on the controllers, which are

because of the ISR call lags, are also a major instance since for a single

transmission, in each event that occurs, i.e. IL2SM and SM2IL, the interrupt

service routine is called once. Hence for nRT transmissions, the ISR is called

twice and for RT traffic, the ISR is called 4 times, additionally for CL2IL and

IL2CL. Hence, since the average ISR delay is provided as 25µs with a maximum

of 100µs, on the average, an additional 50µs for nRT and 100µs for RT traffic is

included in the experimental results as another main reason for the differences

between the results of the simulation and the experiment.

Moreover, the experimental setup uses two timers for rem and dSlot values. With

the help of these timers, the ISR is called for actions. This is also an additional

two ISR calls, 50µs on the average, at each slot beginning and for each

transmission.

It can be inferred that since the maximum delayed action within all actions in the

system is 401µs, the packets and the events are guaranteed to be transmitted or

68

served at the same time slots without any asynchronization between service of

events such that, the simulation is serving the same event that the two controllers

are also serving, at the same time slot. As a result, the non-real-time message

queues, the slot numbers, the event times, every variable, i.e. the state of the

TIOA representing the overall system in the simulator and the system are at the

same state.

To sum up, the simulation is claimed to be consistent with the real system under

some assumptions and abstractions. They are mainly the ISR and timer delays

(each 100µs max) and the synchronization errors when the timestamps in real

systemare obtained at the maximum synchronousity of 100µs due to current RT

Linux capabilities.

The timestamps in the experiment began to be taken while the machines are in

synchronization up to 500µs, such that, in the results, we observed a 401µs

latency. But in the best case, this would not be the case. Generally, if the

timestamps are obtained while the machines are at maximum synchronization, i.e.

less than 100µs, it can be inferred that the simulation is reliable at about a

maximum of 300µs error.

To conclude. for 35,3µs standard deviation, for 126 packets in total, i.e. 756 event

comparisons, the Confidence Intervals of the Standard Deviations are given in

Table 5-5.

Table 5-5. The Confidence Interval of the Standard Deviation.

CI SD

90% 33.871 to 36.866

95% 33.605 to 37.176

99% 33.096 to 37.794

69

Namely, if the comparison process is repeated on different samples, the calculated

CI would contain the true parameter 90, 95 and 99% of the time with respect to

the given SD.

For a total of 756 events, the average difference is calculated as 135.42µs. For

constant SD, the 0.95 confidence interval is then calculated as (134,994-135,841)

in µs. Hence, we can claim that in 95% of different simulations, even with the

assumed and abstracted cases, the simulation would be confident within these

limits.

One last addition is about the complexity of the simulator. In the worst case, we

can assume that in every time slot a device will be ready for transmission.

Consequently, for every RT packet of the transmitting device, AP2CL –

CL2ILRT – IL2SM events will be pushed into the PQ of events. For the reception

of there RT packets in every receiving device, SM2IL – IL2CLRT – CL2AP

events will be pushed. For nRT messages, the events are onl AP2ILnRT – IL2SM

and SM2IL – IL2APnRT, in transmitting and receiving devices, respectively.

Namely, for each RT transmission 3, for each RT reception 3, for each nRT

transmission 2 and for each nRT reception 2 events are pushed.

As a result, in the 4 time slots as given in Figure 5-2, 2 RT and 2 nRT messages

will be transmitted. These messages will be received by both devices.

70

So, totally,

+

= 20

will be pushed and served in 4 time slots. That is, if the load is not more than the

amount discussed above, the size of the PQ remains the same after each cycle

represented in Figure 5-2.

If the load is much more, such as if the control application transmits many more

messages, then, the PQ will begin to queue the events. Depending on the machine

capabilities, the PQ size may cause space inadequacies in hard disks. This issue

may constitute a boundary for the simulator.

71

CHAPTER 6

6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, the Dynamic Distributed Dependable Real-Time Industrial

communication Protocol, the D
3
RIP [26], that adapts to the dynamically changing

demands of industrial real-time Ethernet automation networks with an Interface

Layer and a Coordination Layer that cooperate between the MAC layer and the

control application, is simulated using GCC compiler and the simulation results

including the packet transmission and arrival times are discussed.

The major contribution of this thesis is the D
3
RIP Protocol Simulator that can be

used to try and analyze new ideas and the changes in the D
3
RIP Family, without

any real instrument, extensive effort, with no cost and time.

The major works accomplished in the thesis are listed as follows:

 The Shared Medium (SM) as the MAC Layer is implemented.

 The Interface Layer (IL) that is connected to CL for RT traffic and the

Control Application for the nRT traffic, providing the time-slotted access

to the SM for RT and nRT communication is implemented.

 The Coordination Layer (CL), that deterministically arbitrates the access

to the MAC Layer that is provided by the IL for the RT traffic, is

implemented.

72

 The Real-time Access Interface Layer (RAIL), that provides time-slotted

access to the MAC Layer with exclusively and specifically distinguished

the time slots for RT and nRT traffic, is implemented.

 The Time-Slotted Interface Layer (TSIL), that for each time slot, allows

the CL make the decision about the type, is implemented.

 The Dynamic Allocation Real-time Protocol (DART) is implemented

 The Urgency-based Real-Time Protocol (URT) is implemented.

 The Shared Medium is integrated with both ILs and both CLs. The user

chooses the types of IL and CL and then the D
3
RIP Simulator runs.

 A real sample system with RAIL as IL protocol and URT as CL protocol

is run in the laboratory, and the experimental results are logged. Then, the

logs are compared with the D
3
RIP Simulator results. The assumptions

made, the similarities and the differences are discussed.

For the slot length of 3ms, the real system and the D
3
RIP Simulator are run. The

data are logged after the synchronization difference between Controller G1 & G2

was 500µs, and the D
3
RIP Simulator results have come out to be less than 401µs

for both RT and nRT traffic, using RAIL as the IL protocol and URT as the CL

protocol.

The simulator behaviour fits to the D
3
RIP framework. So, the simulator can be

plugged and used in any D
3
RIP module. Namely, making no change in the

simulator but the subtle modifications in the update functions, new versions of IL

and CL layers could be modelled. As a result, keeping in mind that as long as the

assumptions and abstractions made do not constitute problematic issues and they

are reasonable for such systems, it can be claimed that the simulator for the D
3
RIP

Protocol using RAIL-URT protocol couple implemented and delivered is precise.

For D
3
RIP systems whose behaviour and parameters are known from the design,

the simulator can be used for modelling. Hence, using this simulator, innovative

ideas and further investigations with modications would be much more easier to

be applied and tested rather than setting up a real system. Moreover, if a new

73

protocol type for IL and CL is created, the modification required in the simulator

is quite simple. Eventually, with the simulator, the D
3
RIP framework will also be

developed quickly, easily and smoothly.

6.2 Future Work

In addition to the RAIL as the IL protocol and URT as the CL protocol choices,

the D
3
RIP Simulator is capable of simulating the 4 different RTE Protocols

presented in [26] as the D
3
RIP Protocol Family. In each case, the simulator can

analyze every variable in every state or time instant.

In the future, for a more dependable simulator, a real system that can implement

the other offered protocols, TSIL and DART, can be set up, and the simulator and

the system could be cross-checked and investigated. So that, the simulator would

be more trustworthy since it would be guaranteed for all of the protocol couples to

simulate correctly. Additionally, the D
3
RIP Simulator will be integrated with a

simulator for the control system to simulate the overall system behaviour, from

head to toe.

In addition, the delays experienced in the Network Interface Card (NIC) can be

modelled and added to the simulator for more realistic results. In general, for

more precise and realistic behaviour, the assumptions can be included in the

simulator.

74

REFERENCES

[1] J. Baillieul and P. Antsaklis, “Control and communication challenges in

networked real-time systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 9–28,

Jan. 2007.

[2] J. Moyne and D. Tilbury, “The emergence of industrial control networks

for manufacturing control, diagnostics, and safety data,” Proceedings of the IEEE,

vol. 95, no. 1, pp. 29–47, Jan. 2007.

[3] P. Pedreiras, P. Gai, L. Almeida, and G. Buttazzo, “FTT-Ethernet: a

flexible real-time communication protocol that supports dynamic QoS

management on Ethernet-based systems,” Industrial Informatics, IEEE

Transactions on, vol. 1, no. 3, pp. 162–172, Aug. 2005.

[4] P. Neumann, “Communication in industrial automation – what is going

on?” Control Engineering Practice, vol. 15, pp. 1332–1347, 2007.

[5] M. Felser, “Real-time Ethernet - industry prospective,” Proceedings of the

IEEE, vol. 93, no. 6, pp. 1118–1129, June 2005.

[6] J.-D. Decotignie, “The many faces of industrial ethernet [past and

present],” Industrial Electronics Magazine, IEEE, vol. 3, no. 1, pp. 8–19, March

2009.

[7] S.-K. Kweon and K. G. Shin, “Statistical real-time communication over

ethernet,” Parallel and Distributed Systems, IEEE Transactions on, vol. 14, no. 3,

pp. 322–335, 2003.

[8] S.-K. Kweon, M.-G. Cho, and K. G. Shin, “Soft real-time communication

over Ethernet with adaptive traffic smoothing,” Parallel and Distributed Systems,

IEEE Transactions on, vol. 15, no. 10, pp. 946–959, 2004.

75

[9] “Real-time Ethernet: Ethernet/IP with time synchronization: Proposal for

a publicly available specification for real-time Ethernet,” Doc. IEC 65C/361/NP,

2004.

[10] H. Hoang, M. Jonsson, U. Hagstrom, and A. Kallerdahl, “Switched real-

time Ethernet with earliest deadline first scheduling protocols and traffic

handling,” in Parallel and Distributed Processing Symposium, 2002, pp. 94 –99.

[11] J. Wang and B. Ravindran, “Time-utility function-driven switched

ethernet: Packet scheduling algorithm, implementation, and feasibility analysis,”

Parallel and Distributed Systems, IEEE Transactions on, vol. 15, no. 2, pp. 119–

133, 2004.

[12] (2010) Ethernet powerlink standardization group. [Online]. Available:

http://www.ethernet-powerlink.org/index.php?id=17, last visited on 16.08.2011.

[13] (2002, Nov.) IEEE 1588 standard for a precision clock synchronization

protocol for networked measurement and control systems. [Online]. Available:

http://ieee1588.nist.gov,last visited on 16.08.2011.

[14] R. Zarick, M. Hagen, and R. Bartos, “The impact of network latency on

the synchronization of real-world ieee 1588-2008 devices,” in Precision Clock

Synchronization for Measurement Control and Communication, International

IEEE Symposium on, 2010.

[15] “Real-time Ethernet: Profinet IO: Proposal for a publicly available

specification for real-time Ethernet,” Doc. IEC 65C/359/NP, 2004.

[16] “Real-time Ethernet: EPL (Ethernet powerlink): Proposal for a publicly

available specification for real-time Ethernet,” Doc. IEC 65C/356a/NP, 2004.

[17] “Real-time Ethernet: TCnet (Time-Critical Control Network): Proposal

for a publicly available specification for real-time Ethernet,” Doc. IEC

65C/353/NP, 2004.

http://www.ethernet-powerlink.org/index.php?id=17
http://ieee1588.nist.gov/

76

[18] “Real-time Ethernet: EPA (Ethernet for plant automation): Proposal for a

publicly available specification for real-time Ethernet,” Doc. IEC 65C/357/NP,

2004.

[19] K. Schmidt, E. Schmidt, and J. Zaddach, “Safe operation of distributed

discrete-event controllers: A networked implementation with real-time

guarantees,” in IFAC World Congress, 2008.

[20] T. Sauter, “The three generations of field-level networks-evolution and

compatibility issues,” Industrial Electronics, IEEE Transactions on, vol. 57, no.

11, pp. 3585 –3595, 2010.

[21] D. E. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “The theory of

timed I/O automata,” MIT Laboratory for Computer Science, Cambridge, MA,

Tech. Rep. MIT-LCS-TR-917, 2003.

[22] K. Schmidt, E. Schmidt, and J. Zaddach, “A shared-medium

communication architecture for distributed discrete event systems,” Control &

Automation, Mediterranean Conference on, pp. 1–6, June 2007.

[23] M. H. de Queiroz, J. E. R. Cury, and W. M. Wonham, “Multitasking

supervisory control of discrete-event systems,” Journal on Discrete Event

Dynamic Systems: Theory and Applications, vol. 15, pp. 375–395, 2005.

[24] K. Schmidt, M. de Queiroz, and J. Cury, “Hierarchical and decentralized

multitasking control of discrete event systems,” Decision and Control, IEEE

Conference on, pp. 5936–5941, Dec. 2007.

[25] D. E. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “Timed I/O

automata: A mathematical framework for modeling and analyzing real-time

systems,” in 24th IEEE International Real-Time Systems Symposium, 2003.

[26] K. Schmidt, E. Schmidt, and J. Zaddach, Distributed real-time protocols

for industrial control systems: Framework and examples, IEEE Transactions on

Parallel and Distributed Systems, Accepted for publication,2011.

77

[27] Gerald W. Brock (2003-09-25). The Second Information Revolution.

Harvard University Press. p. 151.ISBN 0674011783.

[28] A. K. Gozcu, Implementation and Evaluation of a Synchronous Time-

Slotted Medium Access Protocol for Networked Industrial Embedded Systems,

MSc. Thesis, Middle East Technical University, 2011.

[29] U. Turan, “Implementation and evaluation of a new protocol for industrial

communication networks,” MSc Thesis, Middle East Technical University, 2011.

[30] Andrews (2000), p. 10–11. Ghosh (2007), p. 4–6. Lynch (1996), p. xix, 1.

Peleg (2000), p. xv. Elmasri & Navathe (2000), Section 24.]

[31] Lian, F., Moyne, J. R., and Tilbury, D. M., “Performance Evaluation of

Control Networks: Ethernet, ControlNet and DeviceNet”, IEEE Control Systems

Magazine, pp. 66-83, Feb 2001.

[32] Paul Baran, 1964.

[33] Yusuf Bora Kartal, Ph.D Thesis Monitoring Committee Report, 2011.

