ACYL AZIDES: APPLICATION TO THE SYNTHESIS OF VARIOUS HETEROCYCLES

A THESIS SUBMITTED TO
 THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÇAĞATAY DENGİZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CHEMISTRY

Approval of the thesis:

ACYL AZIDES: APPLICATION TO THE SYNTHESIS OF VARIOUS HETEROCYCLES

submitted by ÇAĞATAY DENGİZ in partial fulfillment of the requirements for the degree of Master of Science in Department of Chemistry, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. İlker Özkan
Head of Department, Chemistry
Prof. Dr. Metin Balcı
Supervisor, Chemistry Dept., METU

Examining Committee Members:

Prof. Dr. Canan Ünaleroğlu
Chemistry Dept., Hacettepe University
Prof. Dr. Metin Balcı
Chemistry Dept., METU
Assist. Prof. Dr. Salih Özçubukçu
Chemistry Dept., METU
Assist. Prof. Dr. Raşit Çalışkan
Chemistry Dept., S.Demirel University
Assist. Prof. Dr.Gani Koza
Chemistry Dept., Ahi Evran University

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name: Çağatay Dengiz

Signature:

ABSTRACT
\title{ ACYL AZIDES: APPLICATION TO THE SYNTHESIS OF VARIOUS HETEROCYCLES }
Dengiz, Çağatay
M.Sc., Department of Chemistry
Supervisor: Prof. Dr. Metin Balcı

November 2011, 185 pages

Pyrazoles, isoindolinones, benzodizepinones and dihydroquinolinones are very important heterocycles for their biological properties. Many pharmaceutical agents include these units as core structures. Reactive molecules such as acyl azides, free radicals and formyl groups are used as key step reactants in these studies. Regiospesific hydrolysis and esterifications are used to reach target starting materials. Two different methodology are used for critical ring closure steps. Benzodiazepinones, and isoindolinones are obtained by base mediated ring closure reactions whereas thionyl chloride mediated procedure is used for dihydroquinolinones. Moreover, chloroacetonylation of the double bonds is also examined. Addition of acetylacetone to various alkenes was performed with in the presence of $\mathrm{Mn}(\mathrm{OAc})_{3}$ and HCl . Removal of one of the acetyl groups with ammonia under very mild conditions provided compounds derived from chloroacetonylation of the double bonds.

Keywords: Acyl azides, pyrazoles, isoindolinones, benzodizepinones, dihydroquinolinones, chloroacetonylation.

ÖZ

AÇİL AZİTLER: ÇEŞiTLİ HETEROSİKLİK BİLEŞİKLERİN SENTEZİNDE UYGULAMALARI

Dengiz, Çağatay
Yüksek Lisans, Kimya Bölümü
Tez Yöneticisi: Prof. Dr. Metin Balcı

Kasım 2011, 185 sayfa

Pirazoller, izoindolinonlar, benzodiazepinonlar ve dihidrokinolinonlar, biyolojik Özellikleri sebebiyle çok önemli heterosiklik bileşiklerdir. Farmasötik ajanların çoğunda bu yapılar ana iskeleti oluşturur. Bu çalışmada, açil azitler, serbest radikaller ve formil grupları gibi reaktif moleküller anahtar basamak reaktantları olarak kullanılır. Hedef başlangıç bileşikleri sentezi için bölge seçici hidroliz ve esterleşme reaksiyonları kullanılmıştır. Kritik halka kapanması basamakları için iki farklı yol seçilmiştir. Benzodiazepinonlar ve izoindolinonlar için baz ortamında halka kapanması reaksiyonları denenirken, tiyonil klorür ortamındaki prosedür dihidrokinolinonlar için kullanıldı. Bunların yanında, çift bağların kloroasetonilasyonu da incelenen konulardandır. Asetilasetonun $\mathrm{Mn}(\mathrm{OAc})_{3}$ ve HCl varlığında çeşitli alkenlere eklenmesi denenmektedir. Asetil gruplarından birinin çıkarılmasıyla ılımlı koşullarda çift bağların kloroasetonilasyonundan türeyen bileşikler sentezlenmiştir.

Anahtar Kelimeler: Açil azitler, pirazoller, izoindolinonlar, benzodiazepinonlar, dihidrokinolinonlar, kloroasetonilasyon.

To my family and Burçak,

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation and thanks to my supervisor Prof. Dr. Metin Balcı for his guidance, valuable advices, moral support and for enlightening my professional and academic vision throughout my study.

I would like to express my sincere thanks to Dr. Sevil Özcan and Murat Kadir Deliömeroğlu for their valuable guidance, discussion and support.

I would like to thank to NMR specialist Zehra Uzunoglu for the NMR experiments.

I would like to express my great thanks to all the members of SYNTHOR Research Group especially to Zeynep, Emrah, Nalan, Yasemin, Merve, Tolga and Serdal for their friendship and helps.

I wish to express my appreciation to the academic staff of METU Department of Chemistry for their professional support and guidance to the students of Department of Chemistry.

I am also indebted to TUBITAK (Scientific and Technological Research Council of Turkey, 2228) for their financial support.

I would like to thank my friends Elif Ertem, Özden Çelikbilek, Șeyma Ekiz and Esra Eroğlu for their precious friendship.

I would like to give the biggest thanks my family who have made everything possible for me with their love, affection, support and guidance throughout my whole life. The completion of this study would not have been possible without them.

Finally, I would like to thank Burçak Dölek for her understanding and patience. It cannot be possible to complete this thesis without her support.

TABLE OF CONTENTS

ABSTRACT iv
ÖZ
ACKNOWLEDGEMENTS vii
TABLE OF CONTENTS viii
LIST OF FIGURES xiii
LIST OF SCHEMES xviii
LIST OF TABLES XX
LIST OF ABBREVIATIONS xxi
CHAPTERS

1. INTRODUCTION 1
1.1 Pyrazoles 1
1.1.1 Synthesis of pyrazoles 1
1.2 Isoindolinones 3
1.2.1 Synthesis of isoindolinones 5
1.3 Benzodiazepinones 8
1.3.1 Synthesis of benzodiazepinones 10
1.4 Dihydroquinolinones 17
1.4.1 Synthesis of dihydroquinolinones 18
1.5 Chloroacetonylation $\mathrm{C}=\mathrm{C}$ double bonds 20
1.5.1 Manganese (III) acetate- oxidative free radical additions 20
1.6 Aim of the study 24
2. RESULTS AND DISCUSSION 25
2.1 Synthesis of pyrazole derivatives 25
2.1.1 Synthesis of starting compounds: homophthalic anhydrides 25
2.1.2 Synthesis of formylated homophthalic anhydrides 26
2.1.3 Synthesis of isocoumarin- condensed pyrazoles and structure 27
2.1.4 Synthesis of isocoumarin-condensed pyrazoles from hydrazide and 28
2.2 Synthesis of isoindolinone derivatives 30
2.2.1 Synthesis of diester molecules from homophthalic acid derivatives 30
2.2.2 Regiospesific synthesis of half esters $156 \mathrm{~b}-\mathrm{c}$ 31
2.2.3 Synthesis of acyl azides 32
2.2.4 Synthesis of urea and urethane derivatives from acyl azides 32
2.2.5 Synthesis of target isoindolinones 34
2.3 Synthesis of benzodiazepinone derivatives 36
2.3.1 Synthesis of starting compound: 2-(2-carboxyethyl)benzoic acid 36
2.3.2 Synthesis of bis(acyl azide) compounds 37
2.3.3 Synthesis of urea from bis(acyl azide) and its ring closure reactions 38
2.3.4 Synthesis of urethanes from bis(acyl azide) and their ring closure 40
2.4 Synthesis of dihydroquinolinone derivatives 44
2.4.1 Synthesis of starting compound: mono methyl ester 44
2.4.2 Synthesis of acyl azide compound 45
2.4.3 Synthesis of urea derivative from acyl azide 46
2.4.4 Synthesis of urethane derivatives from acyl azide 46
2.4.5 Hydrolysis of urea and urethane derivatives 47
2.4.6 Ring closure of the hydrolyzed urea and urethane derivatives 48
2.5 Chloroacetonylation of $\mathrm{C}=\mathrm{C}$ double bonds 49
2.5.1 Reaction of acetylacetone with $\mathrm{C}=\mathrm{C}$ double bonds in the presence of 4 49
2.5.2 Removal of acetyl group from addition products by ammonia 52
3. EXPERIMENTAL 53
3.1 General 53
3.2 Synthesis of isochromeno[3,4-c]pyrazol-5(2H)-one (145a) 54
3.3 Synthesis of 7-bromoisochromeno[3,4-c]pyrazol-5(2H)-one (145b) 54
3.4 Synthesis of 7-methoxyisochromeno[3,4-c]pyrazol-5(2H)-one (145c) 55
3.5 Synthesis of tert-butyl 5-oxoisochromeno[3,4-c]pyrazole-2(5H)-carboxylate 55
3.6 Synthesis of methyl 5-bromo-2-(2-methoxy-2-oxoethyl)benzoate (162b) . 56
3.7 Synthesis of methyl 5-methoxy-2-(2-methoxy-2-oxoethyl)benzoate (162c). 57
3.8 Synthesis of [4-bromo-2-(methoxycarbonyl)phenyl]acetic acid (156b) 57
3.9 Synthesis of [4-methoxy-2-(methoxycarbonyl)phenyl]acetic acid acid 58
3.10 Synthesis of methyl-5-bromo-2-(2-chloro-2-oxoethyl)benzoate (163b). 5
3.11 Synthesis of methyl 2-(2-chloro-2-oxoethyl)-5-methoxybenzoate (163c) ..59
3.12 Synthesis of methyl 2-(2-azido-2-oxoethyl)-5-bromobenzoate (164b) 59
3.13 Synthesis of methyl 2-(2-azido-2-oxoethyl)-5-methoxybenzoate (164c) 60
3.14 Synthesis of 5-bromo-2-(isocyanatomethyl)benzoate (158b) 60
3.15 Synthesis of methyl 2-(isocyanatomethyl)-5-methoxybenzoate (158c). 61
3.16 Synthesis of methyl 5-Bromo-2-\{[(methoxycarbonyl)amino]methyl\} 61
3.17 Synthesis of methyl 5-methoxy-2 \{[(methoxycarbonyl) amino]methyl \} 62
3.18 Synthesis of methyl 2-\{[(Anilinocarbonyl)amino]methyl\}-5-bromo 63
3.19 Synthesis of methyl 2-\{[(anilinocarbonyl)amino]methyl\}-5-methoxy 63
3.20 Synthesis of methyl 6-bromo-1-oxo-1,3-dihydro-2H-isoindole-2 64
3.21 Synthesis of methyl 6-methoxy-1-oxo-1,3-dihydro-2H-isoindole-2 65
3.22 Synthesis of 6-bromo-1-oxo- N -phenyl-1,3-dihydro-2 H -isoindole-2- 65
3.23 Synthesis of 6-methoxy-1-oxo- N-phenyl-1,3-dihydro- $2 H$-isoindole-2-.. 66
3.24 Synthesis of 1-chloro-3-[2-(chlorocarbonyl)phenyl]propan-1-one (173) 66
3.25 Synthesis of 1-azido-3-[2-(azidocarbonyl)phenyl]propan-1-one (174).. 67
3.26 Synthesis of 1-isocyanato-2-(2-isocyanatoethyl)benzene (175) 67
3.27 Synthesis of N-(2-\{2-[(anilinocarbonyl)amino]ethyl \}phenyl)-N'-phenyl 68
3.28 Synthesis of N, N^{\prime}-Diphenylurea (179) 69
3.29 Synthesis of methyl 2-\{2 [(methoxycarbonyl)amino]ethyl $\}$ phenyl 69
3.30 Synthesis of methyl 2-oxo-1,2,4,5-tetrahydro-3H-1,3-benzodiazepine-3-. 70
3.31 Synthesis of tert-butyl 2-\{2-[(tert-butoxycarbonyl)amino]ethyl\}phenyl.. 70
3.32 Synthesis of tert-butyl 2-oxo-1,2,4,5-tetrahydro-3H-1,3-benzodiazepine 71
3.33 Synthesis of 1,3,4,5-Tetrahydro-2H-1,3-benzodiazepin-2-one (180) 72
3.34 Synthesis of 1,3-Diacetyl-1,3,4,5-tetrahydro-2H-1,3-benzodiazepin-2- one 72
3.35 Synthesis of diethyl 2-oxo-4,5-dihydro-1H-1,3-benzodiazepine-1,3(2H).. 73
3.36 Synthesis of 2-(2-Methoxycarbonylethyl)benzoic acid (190) 73
3.37 Synthesis of methyl 3-[2-(chlorocarbonyl)phenyl]propanoate (191) 74
3.38 Synthesis of 1-[2-(3-methoxy-3-oxopropyl)benzoyl]triaza-1,2-dien-2-ium 74
3.39 Synthesis of methyl 3-(2-isocyanatophenyl)propanoate (193) 75
3.40 Synthesis of methyl 3-\{2-[(anilinocarbonyl)amino]phenyl\}propanoate 75
3.41 Synthesis of methyl 3-\{2-[(metoxycarbonyl)amino]phenyl\}propanoate 76
3.42 Synthesis of methyl 3-\{2-[(tert-butoxycarbonyl)amino]phenyl $\}$ propanoate 77
3.43 Synthesis of 3-\{2-[(anilino-carbonyl)amino]phenyl\}propanoic acid (197) 77
3.44 Synthesis of 3-\{2-[(methoxycarbonyl)amino]phenyl\}propanoic acid (198) 78
3.45 Synthesis of 3-\{2-[(tert-butoxycarbonyl)amino]phenyl\}propanoic acid 78
3.46 Synthesis of 2-oxo- N -phenyl-3,4-dihydroquinoline-1 2 H)-carboxamide79
3.47 Synthesis of methyl 2-oxo-3,4-dihydroquinoline-1(2H)-carboxylate (201) 79
3.48 Synthesis of methyl 2-oxo-3,4-dihydroquinoline-1(2H)-carboxylate (183)80
3.49 General Procedure for oxidative addition of acetylacetone to alkenes in 80
3.50 General Procedure for conversion of diacyl derivatives to acetonyl 80
3.51 Synthesis of rel-(1R,2S)-3-(2-chlorocyclopentyl)pentane-2,4-dione (208) \& 81
3.52 Synthesis of rel-(1R,2S)-3-(2-chlorocyclohexyl)pentane-2,4-dione (211). 82
3.53 Synthesis of rel-(1R,2S)-3-(2-chlorocycloheptyl)pentane-2,4-dione (213) \& 82
3.54 Synthesis of rel-1-((3aR,8bS)-(2-methyl-4,8b-dihydro-3aH-indino[1,2-b] 83
3.55 Synthesis of rel-3((1R,2R,3R,4S)-(3-chlorobicyclo[2.2.1]hept-2-yl) 84
3.56 Synthesis of rel-3-(($1 S, 2 R, 3 R, 4 S)$-3-chloro-1,2,3,4-tetrahydro-1,4- 85
3.57 Synthesis of rel-1-(($1 R, 2 S)$-2-chlorocyclopentyl)propan-2-one (210) 86
3.58 Synthesis of rel-1-(($1 R, 2 S)$-2-chlorocyclohexyl)propan-2-one (212) 86
3.59 Synthesis of rel-1-(($1 R, 2 S)$-2-chlorocycloheptyl)propan-2-one (215). 87
3.60 Synthesis of rel-1-(($1 R, 2 R, 3 R, 4 S)-3$-chlorobicyclo[2.2.1]hept-2yl)acetone 87
3.61 Synthesis of rel-1-(1S,2R,3R,4S)-3-chloro-1,2,3,4-tetrahydro-1,4- 88
4. CONCLUSION 89
REFERENCES 93
APPENDIX A. SPECTRAL DATA 97

LIST OF FIGURES

FIGURES

Figure 1 X-ray analysis of compound 146 28
Figure 2 X-ray analysis of compound 184 41
Figure $3{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 145a 97
Figure $4{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 145a 98
Figure 5 IR Spectrum of Compound 145a 98
Figure $6{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 145 b 99
Figure $7{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 145 b 99
Figure 8 IR Spectrum of Compound 145b 100
Figure $9{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 145c 100
Figure $10{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 145 c 101
Figure 11 IR Spectrum of Compound 145c 101
Figure $12{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 146 102
Figure $13{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 146 102
Figure 14 IR Spectrum of Compound 146 103
Figure $15{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 162 b 103
Figure $16{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 162 b 104
Figure 17 IR Spectrum of Compound 162b 104
Figure $18{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 162c 105
Figure $19{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 162c 105
Figure 20 IR Spectrum of Compound 162c 106
Figure $21{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 156b 106
Figure $22{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 156 b 107
Figure 23 IR Spectrum of Compound 156b 107
Figure $24{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 156c 108
Figure $25{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 156 c 108
Figure 26 IR Spectrum of Compound 156c 109
Figure $27{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 163b 109
Figure $28{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 163 b 110
Figure 29 IR Spectrum of Compound 163b 110
Figure $30{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 163c 111
Figure $31{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 163 c 111
Figure 32 IR Spectrum of Compound 163c 112
Figure $33{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 164b 112
Figure $34{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 164 b 113
Figure 35 IR Spectrum of Compound 164b 113
Figure $36{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 164 c 114
Figure $37{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 164c 114
Figure 38 IR Spectrum of Compound 164c 115
Figure $39{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 158 b 115
Figure $40{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 158 b 116
Figure 41 IR Spectrum of Compound 158b 116
Figure $42{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 158c 117
Figure $43{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 158c 117
Figure 44 IR Spectrum of Compound 158c 118
Figure $45{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 165 b 118
Figure $46{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 165 b 119
Figure 47 IR Spectrum of Compound 165b 119
Figure $48{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 165c 120
Figure $49{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 165 c 120
Figure 50 IR Spectrum of Compound 165c 121
Figure $51{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 166 b 121
Figure $52{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 166 b 122
Figure 53 IR Spectrum of Compound 166b 122
Figure $54{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 166 c 123
Figure $55{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 166 c 123
Figure 56 IR Spectrum of Compound 166c 124
Figure $57{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 167 b 124
Figure $58{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 167 b 125
Figure 59 IR Spectrum of Compound 167b 125
Figure $60{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 167c 126
Figure $61{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 167c 126
Figure 62 IR Spectrum of Compound 167c 127
Figure $63{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 168 b 127
Figure $64{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 168 b 128
Figure 65 IR Spectrum of Compound 168b 128
Figure $66{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 168 c 129
Figure $67{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 168c 129
Figure 68 IR Spectrum of Compound 168c 130
Figure $69{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 173 130
Figure $70{ }^{13}$ C-NMR Spectrum of Compound 173 131
Figure 71 IR Spectrum of Compound 173 131
Figure $72{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 174 132
Figure $73{ }^{13} \mathrm{C}-$ NMR Spectrum of Compound 174 132
Figure 74 IR Spectrum of Compound 174 133
Figure $75{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 175 133
Figure $76{ }^{13}$ C-NMR Spectrum of Compound 175 134
Figure 77 IR Spectrum of Compound 175 134
Figure $78{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 176 135
Figure $79{ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of Compound 176 135
Figure 80 IR Spectrum of Compound 176 136
Figure $81{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 182 136
Figure $82{ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of Compound 182 137
Figure 83 IR Spectrum of Compound 182 137
Figure $84{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 184 138
Figure $85{ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of Compound 184 138
Figure 86 IR Spectrum of Compound 184 139
Figure $87{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 185 139
Figure $88{ }^{13}$ C-NMR Spectrum of Compound 185 140
Figure 89 IR Spectrum of Compound 185 140
Figure $90{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 186 141
Figure $91{ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of Compound 186 141
Figure 92 IR Spectrum of Compound 186 142
Figure $93{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 180 142
Figure $94{ }^{13}$ C-NMR Spectrum of Compound 180 143
Figure $95{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 188 143
Figure $96{ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of Compound 188 144
Figure $97{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 189 144
Figure $98{ }^{13} \mathrm{C}-$ NMR Spectrum of Compound 189 145
Figure 99 IR Spectrum of Compound 189 145
Figure $100{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 190 146
Figure $101{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 190 146
Figure $102{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 191 147
Figure $103{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 191 147
Figure 104 IR Spectrum of Compound 191 148
Figure $105{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 192 148
Figure $106{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 192 149
Figure 107 IR Spectrum of Compound 192 149
Figure $108{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 193 150
Figure $109{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 193 150
Figure 110 IR Spectrum of Compound 193 151
Figure $111{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 194 151
Figure $112{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 194 152
Figure 113 IR Spectrum of Compound 194 152
Figure $114{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 195 153
Figure $115{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 195 153
Figure 116 IR Spectrum of Compound 195 154
Figure $117{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 196 154
Figure $118{ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of Compound 196 155
Figure 119 IR Spectrum of Compound 196 155
Figure $120{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 197 156
Figure $121{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 197 156
Figure 122 IR Spectrum of Compound 197 157
Figure $123{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 198 157
Figure $124{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 198 158
Figure 125 IR Spectrum of Compound 198 158
Figure $126{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 199 159
Figure $127{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 199 159
Figure 128 IR Spectrum of Compound 199 160
Figure $129{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 200 160
Figure $130{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 200 161
Figure 131 IR Spectrum of Compound 200 161
Figure $132{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 201 162
Figure $133{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 201 162
Figure 134 IR Spectrum of Compound 201 163
Figure $135{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 183 163
Figure $136{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 183 164
Figure $137{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 208 164
Figure $138{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 208 165
Figure 139 IR Spectrum of Compound 208 165
Figure $140{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 209 166
Figure $141{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 209 166
Figure 142 IR Spectrum of Compound 209 167
Figure $143{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 211 167
Figure $144{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 211 168
Figure 145 IR Spectrum of Compound 211 168
Figure $146{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 213 169
Figure $147{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 213 169
Figure 148 IR Spectrum of Compound 213 170
Figure $149{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 214 170
Figure $150{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 214 171
Figure 151 IR Spectrum of Compound 214 171
Figure $152{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 216 172
Figure $153{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 216 172
Figure 154 IR Spectrum of Compound 216 173
Figure $155{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 217 173
Figure $156{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 217 174
Figure 157 IR Spectrum of Compound 217 174
Figure $158{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 218 175
Figure $159{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 218 175
Figure 160 IR Spectrum of Compound 218 176
Figure $161{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 220 176
Figure $162{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 220 177
Figure 163 IR Spectrum of Compound 220 177
Figure $164{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 210 178
Figure $165{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 210 178
Figure 166 IR Spectrum of Compound 210 179
Figure $167{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 212 179
Figure $168{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 212 180
Figure 169 IR Spectrum of Compound 212 180
Figure $170{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 215 181
Figure $171{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 215 181
Figure 172 IR Spectrum of Compound 215 182
Figure $173{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 219 182
Figure $174{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 219 183
Figure 175 IR Spectrum of Compound 219 183
Figure $176{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 221 184
Figure $177{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 221 184
Figure 178 IR Spectrum of Compound 221 185

LIST OF SCHEMES

SCHEMES

Scheme 1 Synthesis of pyrazole 6 2
Scheme 2 Synthesis of N-aryl pyrazoles 10 2
Scheme 3 N -aryl pyrazole formation mechanism 3
Scheme 4 Synthesis of 1,3,4-substituted pyrazoles 3
Scheme 5 Synthesis of indolin-2-one derivative 23 5
Scheme 6 Palladium catalyzed isoindolinone synthesis 5
Scheme 7 Rearrangement of o-phthalaldehyde 6
Scheme 8 Synthesis of isoindolin-1-ones 38 7
Scheme 9 Synthesis of fluoro substituted indolinone 42 7
Scheme 10 Synthesis of compound 43. 8
Scheme 11 Synthesis of 1,3-benzodiazepin-2-one by CDI 10
Scheme 12 Synthesis of benzodiazepine-di-one 54 10
Scheme 13 Synthesis of benzodiazepinone 59 11
Scheme 14 Synthesis of 1,4-benzodiazepinone derivatives 64 12
Scheme 15 Synthesis of benzodiazepinone by azomethine ylide 13
Scheme 16 Synthesis benzodiazepinone 73 by cascade reactions 13
Scheme 17 Synthesis of 2,4-benzodiazepin-1-ones 76 14
Scheme 18 Synthesis of 1,4-benzodiazepinon-5-one 82 14
Scheme 19 Solid phase synthesis of 1,4-benzodiazepine-2,5-dione 88 15
Scheme 20 Synthesis of benzodiazepinone 92. 16
Scheme 21 Synthesis of 3,4-dihydroquinolin-2-one 99 18
Scheme 22 Formation of 5-exo product 102 18
Scheme 23 Manganese(III) acetate mediated dihydroquinolinone synthesis 19
Scheme 24 One pot synthesis of 2-aryl-2,3-dihydroquinolin-4-one 110 19
Scheme 25 Synthesis of γ-lactones 114 20
Scheme 26 Synthesis of dihydrofuran derivatives 117 20
Scheme 27 synthesis of 4-cyano-2,3-dihydrofuran-3-carboxamides 120 21
Scheme 28 Mechanism for compounds 124 and 127 22
Scheme 29 Mechanism for rearranged product 135 having [2.2.2] skeleton. 23
Scheme 30 Target molecules of the study. 24
Scheme 31 Synthesis of homophthalic anhydrides 25
Scheme 32 Homophthalic anhydride formation mechanism 26
Scheme 33 Synthesis of formylated homophthalic anhydrides 26
Scheme 34 Synthesis of isocoumarin-condensed pyrazoles 27
Scheme 35 Synthesis of Boc-protected isocoumarin-condensed pyrazoles 27
Scheme 36 Synthesis of 2-aminoisoquinoline-1,3(2H,4H)-dione 148 28
Scheme 37 Proposed mechanism for compound 145a 29
Scheme 38 Synthetic plan for isoindolinones and indolinones 30
Scheme 39 Synthesis of diester compouds 31
Scheme 40 Hydrolysis of diesters 162b-c 31
Scheme 41 Synthesis of acyl azides 164b-c 32
Scheme 42 Synthesis of urethane derivatives 165b-c 33
Scheme 43 Synthesis of urea derivatives 166b-c 33
Scheme 44 Synthesis of isoindolinones 167b-c 34
Scheme 45 Synthesis of isoindolinones 168b-c 35
Scheme 46 Formation mechanism of 168b-c 35
Scheme 47 Synthesis of 2-(2-carboxyethyl)benzoic acid 36
Scheme 48 Synthesis of acyl azide 174 37
Scheme 49 Synthesis of urea 176 38
Scheme 50 Ring closure reactions of compound 176 38
Scheme 51 Synthesis of N, N '-diphenylurea 179 39
Scheme 52 Reaction of urea 176 with LDA 39
Scheme 53 Proposed mechanism for compound 180 40
Scheme 54 Synthesis of benzodiazepinone 184 41
Scheme 55 Synthesis of benzodiazepinone 186 42
Scheme 56 Mechanism for the synthesis of 184 and 187 43
Scheme 57 Derivatization of benzodiazepinone 180 44
Scheme 58 Syntheis of mono methyl ester 190 44
Scheme 59 Synthesis of acyl azide 192 45
Scheme 60 Synthesis of urea 194 46
Scheme 61 Synthesis of urethanes 195 and 196 46
Scheme 62 Ring closure reaction of urea 194 with base 47
Scheme 63 Synthesis of hydrolyzed urea and urethanes 47
Scheme 64 Ring closure reactions of urea and urethanes by thionyl chloride 48
Scheme 65 Chlorocetonylation of cyclopentene 49
Scheme 66 Outline for isocoumarin-condensed pyrazoles 145a-c 90
Scheme 67 Outline for isoindolinone and indolinones 160 and 161 90
Scheme 68 Outline for benzodiazepinone 184 91
Scheme 69 Outline for dihydroquinolinone 201 91
Scheme 70 Outline for chloroacetonylation product 212 92

LIST OF TABLES

TABLES

Table 1 Reaction of various alkenes with acetylacetone 50

LIST OF ABBREVIATIONS

DCM:	Dichloromethane
EtOAc:	Ethyl acetate
CDI:	Carbonyldiimidazole
TMS:	Tetramethylsilane
LDA:	Lithium diisopropylamide
BHT:	Benzotriazole
LiHMDS:	Lithium bis(trimethylsilyl)amide
Fmoc:	Fluorenylmethyloxycarbonyl
Boc:	N-tert-butoxycarbonyl
EDC.HCl:	1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
THF:	Tetrahydrofuran
NMR:	Nuclear magnetic resonance
IR:	Infrared
J:	Coupling constant
Hz:	Hertz
ppm:	Parts per million
mg:	milligram
mmol:	millimole

CHAPTER 1

INTRODUCTION

1.1 Pyrazoles

Pyrazoles are known as extensively used heteroaromatic compounds in the pharmaceutical industry. ${ }^{1}$ Many pharmaceutical agents include pyrazole units as core structures. Pyrazole skeleton based molecules show antiinflammatorial and antimicrobial properties. ${ }^{2-4}$ Two very famous pyrazole-based COX-2 inhibitors are Celecoxib (1) and Sildenefil (Viagra) (2). ${ }^{2,5}$

Celecoxib (1)

Sildenefil (2)

Importance of the pyrazole based molecules due to their potential bioactivity attracts high attention of scientists.

1.1.1 Synthesis of pyrazoles

Numerous methods were published for construction of pyrazole based structures. The most classical synthesis of pyrazoles is achieved by the reaction of 1,3-diketones with hydrazine as shown in Scheme $1 .{ }^{6}$

Scheme 1 Synthesis of pyrazole 6

The first step is the synthesis of 1,3-diketones $\mathbf{5}$ from reaction of the ketones and acid chlorides $\mathbf{4}$ in the presence of LiHMDS. Formed enolates $\mathbf{3}$ react efficiently with acid chlorides 4. After obtaining 1,3-diketones $\mathbf{5}$ as reaction intermediates, in situ conversion to pyrazoles were obtained by addition of hydrazine derivatives. This procedure is very important because pyrazole containing fused rings can be obtained very easily by using cyclic ketones as starting materials. In addition to these advantages, this method is extremely fast and chemoselective.

More recently, a simple one-pot method was designed to obtain N-aryl pyrazoles $\mathbf{1 0}$ (Scheme 2). ${ }^{7}$ In this study, target pyrazole derivatives were obtained by using aryl nucleophiles 7, di-tert-butylazodicarboxylate 8 and 1,3-dicarbonyl compounds 9 . Although these target molecules are not known natural products, they are very important for pharmaceutical industry.

Scheme 2 Synthesis of N -aryl pyrazoles 10

According to proposed mechanism, first step includes the formation of bis-Boc protected aryl hydrazine $\mathbf{1 1}$ by the addition of aryl lithium species $\mathbf{7}$ to di-tert-butyl azodicarboxylate $\mathbf{8}$ (Scheme 3). Then, addition of this intermediate $\mathbf{1 1}$ to 1,3dicarbonyl compounds $\mathbf{9}$ gives target pyrazole molecules $\mathbf{1 0}$.

Scheme 3 N -aryl pyrazole formation mechanism

This quick and simple one-pot method provides an easy access to crucial N-aryl pyrazole derivatives. It can be also applied to synthesis of indazole derivatives.

Although there is much interest in synthesis of pyrazole structures, relatively little study has been carried out on 3,4-disubstituted derivatives. Hu et al. have reported the synthesis of 1,3,4-substituted pyrazoles 14 via reaction of iodochromone 12, phenylboronic acid 13, and hydrazine (Scheme 4). ${ }^{8}$ The mechanism includes Suzuki coupling and condensation reactions.

Scheme 4 Synthesis of 1,3,4-substituted pyrazoles

In this process, Suzuki coupling is performed by phenylboronic acid 13 and iodochromone 12. Then addition of hydrazine to this mixture gives the target pyrazole derivatives 14 as condensation products. By using the same methodology, isoaxole derivatives are also synthesized using hydroxyl amine instead of hydrazine.

1.2 Isoindolinones

Many natural substances include the isoindolinone skeleton in their structure. One of the most common example of them is pictonamine (15) which is isolated from the

Chilean Barberis. ${ }^{9}$ Another indolocarbazole structure which is isolated from natural sources is staurosporine (16). ${ }^{10}$

Pictonamine (15)

Staurosporine (16)

In literature, indolin-2-one (18), an oxidation product of indole (17), and its derivatives are known as tyrosine kinase inhibitors due to their selectivity towards different receptor tyrosine kinases. ${ }^{11}$ Various indolin-2-one (18) derivatives was monitored as bioactive compounds in extracts of the herb, isotis tinctoria. ${ }^{12}$ Active research on bioactivities of indolinones (18) explains the increasing number of studies for their synthesis.

Indole (17)

Indolin-2-one (18)

Isoindolin-1-one (19)

Isoindolin-1-one (19) structure is also very similar with indolin-2-one (18) and indole (17) structure. Due to this similarity, isoindolinone derivatives (19) attract much interest both in medical chemistry and synthetic organic chemistry. Recently, many isoindolinone derivatives (19) were synthesized and screened. ${ }^{13}$ Moreover, some substituted isoindolinone structures show potent metabotropic glutamate receptor
antagonist activity. ${ }^{14}$ Some derivatives also have antipsychotic-like effects in animals and some other derivatives were selected for treatment of schizophrenia. ${ }^{15-16}$

1.2.1 Synthesis of isoindolinones

Several methods have been published for the synthesis of isoindolinones (19). Malogni et al. have published the synthesis of indolin-2-one derivatives by starting from 2-(3-methoxyphenyl)acetonitrile 20.

Scheme 5 Synthesis of indolin-2-one derivative 23

Firstly, 2-(3-methoxyphenyl)acetonitrile $\mathbf{2 0}$ was nitrated with electrophilic nitration by using HNO_{3}, acetic anhydride and acetic acid. Then, subsequent hydrolysis of the nitrile group gave the target carboxylic acid derivative 22. Finally, reduction of the carboxylic acid derivative $\mathbf{2 2}$ formed indolin-2-one derivative $\mathbf{2 3}$ (Scheme 5). ${ }^{17}$

Scheme 6 Palladium catalyzed isoindolinone synthesis

Kundu et al. published another methodology for the synthesis isoindolinones by using palladium catalyzed ring closure mechanism. First step includes the Sonogashira coupling reaction between 2-iodobenzamides 24 and acetylene derivatives. Then, ring closure reaction was facilitated by using acylation reagents (Scheme 6). ${ }^{18}$

Scheme 7 Rearrangement of o-phthalaldehyde

Rearrangement of o-phthalaldehyde 27 with primary amines was examined to explore the reaction mechanism (Scheme 7). ${ }^{19} \mathrm{TMSCl}$ is used as catalyst for this reaction. According to the related information about the reaction mechanism of o phthalaldehyde and primary amines, it is shown that intermediate $\mathbf{2 8}$ has crucial role in providing the target compounds based on computational studies. ${ }^{20}$ After the formation of the intermediate 28, $[1,5] \mathrm{H}$ - sigmatropic rearrangement gave the final isoindolinone derivatives 31 .

Scheme 8 Synthesis of isoindolin-1-ones 38

Recently, Pfizer described the preparation of a series of isoidolin-1-ones 37 (Scheme 8). ${ }^{21}$ An relatively easy pathway was followed to synthesize them. Starting from the 3-methoxy-2-methyl benzoic acid 32, regioselective bromination was done by $\mathrm{Br}_{2} / \mathrm{AcOH}$ in water. Then, bromoester $\mathbf{3 4}$ was obtained by esterification reaction by using $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{SO}_{4}$. The next step was the cyanation with CuCN . The molecule 35 was reduced by $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ to afford free amine and spontaneous ring closure gave the isoindolinone product $\mathbf{3 6}$. Treatment of $\mathbf{3 6}$ with BBr_{3} gave the target molecule $\mathbf{3 7}$ in high yield.

Scheme 9 Synthesis of fluoro substituted indolinone 42

Sun et al. described the synthesis of fluoro substituted indolinone compound 41 (Scheme 9). ${ }^{11}$ Starting from the 2,5-difluoronitrobenzene 38, compound 41 was synthesized successfully. First step was the displacement of fluoro group by dimethylmalonate followed by decarboxylation with 6 N HCl to obtain compound $\mathbf{4 0}$. Lastly reductive cyclization gave the final product 41.

Scheme 10 Synthesis of compound 43

In another study, reaction of phenyl isocyanate and arylmagnesium reagent $\mathbf{4 2}$ gave the target molecule $\mathbf{4 3}$ in high yield (Scheme 10). ${ }^{22}$

1.3 Benzodiazepinones

Basically, benzodiazepinones can be defined as seven membered heterocyclic compounds which include the benzene ring and diazepine part. These molecules are very popular due to sedative, tranquilizing effects of diazepam. ${ }^{23}$ Studies on this area led to the synthesis of many benzodiazepinone derivatives. Some of them showed important bioactivity towards diseases like cancer, HIV and cardiac arrhythmia. ${ }^{24}$

Chlordiazepoxide (44)

Diazepam (45)

Nitrazepam (46)

Flurazepam (47)

Leo Sternbach is the scientist who discovered accidentally the first benzodiazepine which is known as chlordiazepoxide (Librium) (44). Then diazepam (Valium) (45) was accepted as drug due to its better activity results. Another derivative Nitrazepam (46) was used against sleeping problems. Lastly, Flurazepam (47) was introduced to the literature in $1973 .{ }^{25}$

There are plenty of benzodiazepinone derivatives, which are named as 1,3-, 1,4-, 1,5-2,4-benzodiazepinones. 1,3-Benzodiazepinones take great interest due to activity results of known examples.

1,3-Benzodiazepin-2-ones 48

49

Some derivatives of 1,3-benzodiazepin-2-ones 48 , such as 49 piperidine ring substituted at nitrogen are known as calcitonin gene-related peptide receptor antagonists for the treatment of migraine. ${ }^{26}$

1.3.1 Synthesis of benzodiazepinones

Scheme 11 Synthesis of 1,3-benzodiazepin-2-one by CDI

Easiest way to reach 1,3-benzodiazepin-2-one skeleton 48 is treatment of diamine compound $\mathbf{5 0}$ with CDI (Scheme 11). ${ }^{27}$

Scheme 12 Synthesis of benzodiazepine-di-one 54

In the Scheme 12, Taylor et al. used carbonyldiimidazole 52 with diamine molecule 51. Reaction is very similar to the study in Scheme 11. Only difference is that starting material 51 includes a carbonyl group. Moreover, intermediate 53 could be isolated. Heating compound $\mathbf{5 3}$ with water gave the target benzodizepin-di-one molecule 54 (Scheme 12). ${ }^{28}$

Recently, Han and co-workers successfully synthesized the benzodiazepinone derivatives (Scheme 13). ${ }^{29}$ First step is the Stille-coupling reaction of ohalonitrobenzene 55. After that, Michael addition of tert-butyl 4-aminopiperidine-1carboxylate to the activated vinyl compound 56 gave the compound 57 . Then, hydrogenation of the compound 57 with $\mathrm{PtO}_{2} / \mathrm{H}_{2}$ gave the amine $\mathbf{5 8}$ in good yield. Last step of the study was the cyclic urea formation by using CDI. With application of this method, many type of benzodiazepinone derivatives were synthesized. Deprotection of Boc group was done by using HCl at the end of ring closure reaction.

Scheme 13 Synthesis of benzodiazepinone 59

In Scheme 14, Deschrijver et al. described the synthesis of 1,4-benzodiazepinone derivatives 64 by four steps starting from 2-fluoro-5-nitro-benzaldehyde $60 .{ }^{30}$ The methodology includes the reductive amination of starting compound $\mathbf{6 0}$ with 4methoxybenzylamine by using sodium cyanoborohydride $\left(\mathrm{NaCNBH}_{3}\right)$. Reductive amination is a well-known method to synthesize amine compounds from ketones and aldehydes. First step is the formation of hemiaminal intermediate followed by water elimination to give imines. After addition of cyanoborohydride, hydrogenation of imines gives the target amino compounds. Second step of the synthetic pathway includes coupling reaction of fluorenylthyloxycarbonyl (Fmoc) protected amino
acids with secondary amine 61 to give compound 62. In this step, 2-(1H-7-azabenzotriazol-1-yl)-1,1,2,2-tetra-methyl uranium hexafluoro phosphate (HATU) was used as coupling agent. Deprotection was done by using bulky base 8-diazabicyclo[5.4.0]undec-7-ene (DBU) to prevent unwanted nucleophilic aromatic substitution due to activated benzene ring. Final cyclization step is the nucleophillic aromatic substitution by deprotected amine $\mathbf{6 3}$ occurred smoothly by $\mathrm{Et}_{3} \mathrm{~N}$ in DMSO. Nucleophilic aromatic substitution reactions are quite important reactions for organic synthesis. There should be good leaving group such as halide on the aromatic ring and electron withdrawing group is needed to stabilize the intermediate that is formed.

Scheme 14 Synthesis of 1,4-benzodiazepinone derivatives 64

Ryan et al. published an article about benzodiazepinone synthesis by azomethine ylide (Scheme 15). ${ }^{31}$

Scheme 15 Synthesis of benzodiazepinone by azomethine ylide

According to the proposed mechanism, azomethine ylides undergo a 1,3-dipolar cycloaddition reaction with anhydride 65 to give oxazolidine intermediate 66 followed by cascade ring opening-decarboxylation-ring closing reactions to obtain benzodiazepinone molecule 67 (Scheme 16).

Scheme 16 Synthesis benzodiazepinone 73 by cascade reactions

Katritzky et al. showed the formation of 2,4-benzodiazepin-1-ones by one-pot synthesis (Scheme 17). ${ }^{32}$

Scheme 17 Synthesis of 2,4-benzodiazepin-1-ones 76
N-alkylbenzamide 74 was used to obtain dianions 75 by orthometalation. Orthometalation is a kind of electrophilic aromatic substitution. Electrophile group attaches itself to ortho position of directing group. In this reaction, lithium is used as electrophile to obtain dianion. Then, reaction of dianion and benzotriazole gives the target benzodiazepinone derivatives $\mathbf{7 6}$ in moderate yields. ZnBr_{2} is very crucial reagent for this reaction, because benzodiazepinone formation was not occurred without $\mathrm{ZnBr}_{2 \text {. }}$ It is used as Lewis acid and activates the benzotriazole compound.

$$
\begin{aligned}
& \mathrm{X}=\mathrm{H}, \mathrm{Cl}, \mathrm{Br} \\
& \mathrm{R}=\mathrm{Me} \text { Allvl }
\end{aligned}
$$

$$
\mathrm{R}=\mathrm{Me}, \text { Allyl }
$$

Scheme 18 Synthesis of 1,4-benzodiazepinon-5-one 81

A new method for construction of 1,4-benzodiazepinon-5-one skeleton is described in Scheme 18. ${ }^{33}$ Microwave energy mediated synthesis is popular because it
accelerates rates of reactions and improves classical methods. Moreover, it is not always necessary to use organic solvent for all microwave reactions. It is known as green chemistry (more environmentally friendly). In the Scheme 18, reaction of isatoic anhydride 77 with allyl amine in microwave gives the compound 78. Then, diazotization was done by NaNO_{2} in acidic medium followed by nucleophillic substitution by sodium azide. Formed intermediate $\mathbf{8 0}$ was cyclized to $\mathbf{8 1}$ by microvawe radiation. Advantages of this methodology are better yields and cleaner reactions compare to those reactions with conventional heating.

Scheme 19 Solid phase synthesis of 1,4-benzodiazepine-2,5-dione 88

Ettmayer et al. published an article about solid-phase synthesis of 1,4-benzodiazepine-2,5-dione derivatives (Scheme 19). ${ }^{34}$ Solid state synthesis can be defined as method; molecules attached to insoluble polymeric material were synthesized in reactant solution. It is easy to remove excess reactants from solution if we compare this method with liquid state synthesis. To attach starting material to polymer, 4-hydroxy-2,6-dimethoxybenzaldhyde $\mathbf{8 2}$ was reacted with chloromethylpolystyrene by NaH . Formed product 83 was reacted with (S)cyclohexylalanine methyl ester by free reductive amination to give compound $\mathbf{8 4}$. Then, acylation process was done for the synthesis of $\mathbf{8 5}$ by using 1-ethyl-3-(3dimethylaminopropyl) carbodiimide hydrochloride (EDC.HCl) and 5-nitroanthranilic acid. Process is quite similar to DCC promoted synthesis of amides from carboxylic acids. For lactamization, lithium acetanilide was used to give compound 86. Next step was the reduction of nitro group by SnCl_{2} which gave target polymer bonded benzodiazepinone molecule 87. To cleave polymer TFA, $\mathrm{Me}_{2} \mathrm{~S}$ and water mixture was used. This step was only for characterization. Only very small amount of compound $\mathbf{8 8}$ was isolated.

Scheme 20 Synthesis of benzodiazepinone 92

According to the procedure in Scheme 20, synthesis of benzodiazepinone derivatives was achieved by starting from 2-aminobenzophenone derivatives. ${ }^{35}$ Condensation reaction of halogen substituted 2-aminobenzophenone $\mathbf{9 0}$ and glutamate substituted acid chloride gave the anilide molecule 91 without any racemization problem. Then, protecting group, fluorenylmethyloxycarbonyl chloride (Fmoc) was removed easily by triethyl amine. Fmoc group is generally used for the protection of amines. After removing the protecting group Fmoc, free amine reacted with carbonyl group of benzophenone by cyclodehydration reaction in 5\% acetic acid-dichloromethane solution. Target benzodiazepinone molecule $\mathbf{9 2}$ was obtained at the end of two step reaction without any significant racemization.

1.4 Dihydroquinolinones

Dihydroquinolinones have great potential in pharmaceutical area due to their important bioactivity results. There are many important known examples in literature. Carteolol (93), NMDA antagonist (94), HIV-1 reverse transcriptase inhibitor ($\mathbf{9 5}$) and insecticidal antibiotic (96) can be given as examples which include dihydroquinolinone framework. ${ }^{36}$

carteolol (93)

HIV-1 reverse transcriptase inhibitor (95)

NMDA antagonist (94)

insecticidal antibiotic (96)

1.4.1 Synthesis of dihydroquinolinones

Jiao et al. described a tandem methodology which includes radical and ionic processes to synthesize 3,4-dihydroquinolin-2-ones (Scheme 21). ${ }^{36}$

Scheme 21 Synthesis of 3,4-dihydroquinolin-2-one 99

It is known that it is not easy to obtain 3,4-dihydroquinolin-2-ones $\mathbf{1 0 0}$ by intramolecular radical cyclization reactions of compound 101 (Scheme 22) because these reactions favor the formation of 5 -exo products $\mathbf{1 0 2}$. To reach 6 -endo products 100, a new method was used. Mechanism includes the radical addition and lactamization between compound 97 and 98 (Scheme 21).

Scheme 22 Formation of 5-exo product 102

Another approach to dihydroquinolinones is manganese(III) acetate mediated synthesis (Scheme 23). ${ }^{37}$ Nishino et al. used diethyl 2-[2-(N-methyl- N-phenylamino) -2-oxoethyl]malonate $\mathbf{1 0 3}$ as starting material for the reaction. Oxidation of malonate compound $\mathbf{1 0 3}$ with manganese (III) acetate in acetic acid gives the desired 3,4-dihydro- $2(1 \mathrm{H})$-quinolinone $\mathbf{1 0 4}$ in 60% yield.

Scheme 23 Manganese(III) acetate mediated dihydroquinolinone synthesis

One pot synthesis of 2-aryl-2,3-dihydroquinolin-4-one $\mathbf{1 1 0}$ was reported by S . Chandrasekhar (Scheme 24). ${ }^{38}$ In this reaction, L-proline is used as catalyst. Condensation reactions of aryl aldehydes $\mathbf{1 0 6}$ with o-aminoacetophenone 105 in the presence of L-proline as catalyst gave the target molecule 2-aryl-2,3-dihydroquinolin-4-one 110.

Scheme 24 One pot synthesis of 2-aryl-2,3-dihydroquinolin-4-one 110

1.5 Chloroacetonylation $\mathrm{C}=\mathrm{C}$ double bonds

Recently, free radical reactions have gained great popularity in synthetic organic chemistry due to their crucial advantageous abilities like selectivity, specificity and mild reaction conditions. Manganase (III) acetate is a spectacular reagent to obtain carbon radicals which can be easily added to double bonds. C-C bond formation by using manganese (III) acetate is a very effective tool to reach more complex molecules. ${ }^{39}$

1.5.1 Manganese (III) acetate- oxidative free radical additions

The most classical example of manganese(III) mediated free radical addition is the acetic acid addition to olefins 112. Manganase(III) acetate $\mathbf{1 1 3}$ in acetic acid at reflux gives γ-lactones 114 as resulted products (Scheme 25). ${ }^{40}$

Scheme 25 Synthesis of γ-lactones 114

Wang et al. described the free radical addition of 1,3-cyclohexanediones $\mathbf{1 1 5}$ to 1-(Pyridin-2-yl)-enones 116 (Scheme 26). ${ }^{41}$ Due to the presence of 1,3-diketones, dihydrofuran derivatives $\mathbf{1 1 7}$ were obtained instead of lactone derivatives.

$$
\mathrm{X}=\mathrm{CH}, \mathrm{~N}
$$

Scheme 26 Synthesis of dihydrofuran derivatives 117

First step involves the radical formation on 1,3-cyclohexanediones. Then addition to double bond and successive cyclization by nucleophilic attack of oxygen gives target dihydrofurans. Extremely high diastereoselectivity and regioselectivity are the advantages of this study.

In another study, regio- and stereo-selective synthesis of 4-cyano-2,3-dihydrofuran3 -carboxamides $\mathbf{1 2 0}$ was done by using manganese(III) mediated reaction. Oxidative cyclization of 3-oxopropanenitriles 118 with α, β-unsaturated amides 119 was examined in Scheme 27. ${ }^{42}$

Scheme 27 Synthesis of 4-cyano-2,3-dihydrofuran-3-carboxamides $\mathbf{1 2 0}$

In this reaction free radical formation occurs on compound 118. Then addition of free radical to α, β-unsaturated amides $\mathbf{1 1 9}$ gives stereo- and regio-selective products 120.

According to proposed mechanism, reaction involves the free radical formation on compound 121. At that point, there are two different positions on olefin for free radical attack (i, ii). After the formation of addition product, formed radical is oxidized one more time by manganese(III) acetate to give carbocation 126. Attack of oxygen atom to intermediate $\mathbf{1 2 6}$ gives cyclization product $\mathbf{1 2 7}$ as shown in Scheme 28.

Scheme 28 Mechanism for compounds 124 and 127

Recently, Balcı et al. published a mechanistic study which proves second oxidation mechanism in dihydrofuran formation. Reaction of homobenzonorbornadiene and 1,3-diketones in the presence of manganese(III) acetate and $\mathrm{Cu}(\mathrm{OAc})_{2}$ gave mainly rearranged products having [2.2.2] skeleton and non-rearranged dihydrofuran derivatives (Scheme 29). ${ }^{43}$

Homobenzonorbornadiene molecule is used because it is capable of generating both classical and non-classical carbocations. Rearranged products proved that formation mechanism includes additional oxidation. On the other hand, radicals are not capable of making rearrangement. Therefore, rearranged product 135 cannot be formed by radical mechanism.

Scheme 29 Mechanism for rearranged product $\mathbf{1 3 5}$ having [2.2.2] skeleton

1.6 Aim of the study

Heterocyclic organic chemistry attracts high attention of scientists due to importance of the heterocyclic compounds. Many drugs include heterocyclic structures in their core skeletons. Many natural processes depend on these heterocyclic compounds. Our aim is to develop new and easy synthetic methods for the construction of the important heterocyclic compound's skeletons. Pyrazoles 136, isoindolinones 137, benzodizepinones 138, dihydroquinolinones $\mathbf{1 3 9}$ and acetonylation products are our targets in this study (Scheme 30). To reach these molecules, acyl azides are used as key compounds in our synthetic methodology. Manganese(III) acetate chemistry is also examined to obtain acetonylation products. One pot synthetic procedure will be used for the synthesis of pyrazole derivatives starting from homophthalic anhydride molecules.

Scheme 30 Target molecules of the study

CHAPTER 2

RESULTS AND DISCUSSION

2.1 Synthesis of pyrazole derivatives

2.1.1 Synthesis of starting compounds: homophthalic anhydrides

Homophthalic anhydrides were synthesized according to the literature starting from homophthalic acid derivatives (Scheme 31). ${ }^{44-47}$

Scheme 31 Synthesis of homophthalic anhydrides

Addition of thionyl chloride to solution of homophthalic acid in dichloromethane gives homophthalic anhydride derivatives in high yields $>95 \%$. Mechanism includes the formation of semi-acyl chlorides as intermediates. Second step is the intramolecular nucleophilic attack of carboxylic acid oxygen to acyl chloride groups. Crucial point is the semi-acyl chloride formation due to reactivity difference of the carbonyl groups. Carbonyl group which is directly bonded to benzene ring is less reactive due to conjugation with benzene. Therefore, acyl chloride formation
occurs from the carbonyl group which is separated from the benzene ring by $-\mathrm{CH}_{2}-$ group. (Scheme 32).

Scheme 32 Homophthalic anhydride formation mechanism

2.1.2 Synthesis of formylated homophthalic anhydrides

In this study, our strategy was the formyl group addition to methylene group of homophthalic anhydrides by using dimethylformamide both as solvent and reactant. This target molecule was very important because additional formyl group gives a new reactive side for further cascade reactions.

Scheme 33 Synthesis of formylated homophthalic anhydrides

Formyl compounds 144a-c could not be isolated due to their high reactivities. Formylation of molecules by DMF in the presence of bases is classical method for the introduction of formyl group to reactive sides of the molecules. In our case, hydrazine monohydrate was used as base in this reaction. After proton abstraction from methylene group, nucleophilic attack to dimethylformamide gave intermediates 144a-c. We proposed these structures based on the structures of the final products 145a-c (Scheme 33).

2.1.3 Synthesis of isocoumarin- condensed pyrazoles and structure confirmation

According to our strategy, cyclization with excess hydrazine was examined as final step. Formylation and cyclization are the two crucial steps to reach isocoumarincondensed pyrazoles (Scheme 34).

Scheme 34 Synthesis of isocoumarin-condensed pyrazoles

To reach these target compounds, we herein reported a novel one-pot, threecomponent reaction. Homophthalic anhydrides 141a-c were dissolved in excess dimethylformamide. Then, addition of hydrazine monohydrate to this solution and overnight reflux gave the final products in yields 63-81\%.

To confirm structure, NMR techniques were used. There were some problems due to nature of final products. First problem was that structures do not have any important informative proton signal in NMR spectra to elucidate the structures exactly. Secondly, solubility problems prevented us to crystalize molecule for X-ray analysis. To obtain single crystals and to increase solubility, Boc group was introduced to molecule with an easy procedure (Scheme 35).

Scheme 35 Synthesis of Boc-protected isocoumarin-condensed pyrazoles

Confirmation of structure was done after reaction of compound 145a with di-tertbutyl dicarbonate $\left[(\mathrm{Boc})_{2} \mathrm{O}\right]$ in the presence of NaH . An X-ray analysis on the compound $\mathbf{1 4 6}$ gave exact evidence for the structures of 145a-c (Figure 1).

Figure 1 X-ray analysis of compound 146

2.1.4 Synthesis of isocoumarin-condensed pyrazoles from hydrazide and

 imide compoundsTo propose a mechanism for isocoumarin-condensed pyrazoles 145a-c formation, we used independent reactions. While monitoring the reaction medium by GC-MS, the formation of 2-aminoisoquinoline-1,3(2H,4H)-dione 148 was detected (Scheme 36).

Scheme 36 Synthesis of 2-aminoisoquinoline-1,3(2H,4H)-dione 148

To confirm whether compound 148 was formed during the formation of isocoumarin-condensed pyrazoles 145a-c, hydrazide 148 was synthesized by reaction of homophthalic anhydride and hydrazine monohydride in refluxing ethanol in 85% yield. ${ }^{48}$ Although compound $\mathbf{1 4 7}$ has both amide and amine functionality, cyclization occurred surprisingly from less nucleophilic amide nitrogen to form hydrazide molecule 148. Then, application of the same conditions to hydrazide $\mathbf{1 4 8}$ gave same products as we expected. This results showed that 1 H -isochromene-1,3(4H)-dione 141a undergoes a ring opening reaction at some step. Imide was also synthesized for further support by reaction of compound 141a with ammonia. ${ }^{49}$ Treatment of imide molecule with hydrazine and DMF also gave the target products in 87% yield.

Scheme 37 Proposed mechanism for compound 145a

After combining all these results, mechanism for the formation of the products 145ac was proposed. According to our suggested echanism, first step is the formation of hydrazide molecule 148. Hydrazide product 148 may undergo formylation reaction. After proton abstraction from methylene group, nucleophilic attack to dimethylformamide gives intermediate molecule 150. Reaction of hydrazine monohydrate with compound 150 gives the hydrazone 151. Ring opening reaction by attack of amine group on the carbonyl to produce 153 via intermediate 152. Further cyclization with the carbonyl oxygen atom of the formed pyrazolone derivative $\mathbf{1 5 3}$ followed by displacement of the hydrazine moiety and a subsequent H -shift in $\mathbf{1 5 5}$ results in formation of the target compound 145a (Scheme 37).

2.2 Synthesis of isoindolinone derivatives

2.2.1 Synthesis of diester derivatives from homophthalic acid derivatives

In this study, a new methodology was developed for the synthesis of isoindolinone 160 and indolinones 161 from homophthalic acid derivatives 140a-c (Scheme 38).

Scheme 38 Synthetic plan for isoindolinones and indolinones

Regiospesific synthesis of the [2-(2-methoxycarbonyl)phenyl] acetic acid 156a and 2-(2-methoxy-2-oxoethyl)benzoic acid 157a are the key steps for this study. Regiospesific hydrolysis of diester molecule was used to reach key compound [2-(2-
methoxycarbonyl)phenyl] acetic acid 156a. Diester molecules were obtained from homophthalic acid derivatives as shown in Scheme 39.

Scheme 39 Synthesis of diester compouds

Esterification reaction was done by refluxing methanol solution of homophthalic acid derivatives 140b-c in the presence of thionyl chloride. The yields of diester molecules 162b-c are quite high $92-97 \%$.

2.2.2 Regiospesific synthesis of half esters 156b-c

Recently, Balci et al. reported the reactivity of the ester carbonyl groups in similar systems are different. ${ }^{50}$ The ester group bonded to methylene group is more reactive than the carbonyl group directly bonded to benzene ring. By using this reactivity advantage, regiospesific hydrolysis of the more reactive side was done (Scheme 40).

Scheme 40 Hydrolysis of diesters 162b-c

To reach half ester molecules, regiospesific hydrolysis was done by reaction of compounds 162b-c with potassium carbonate in solution of water/methanol (1:1). Time dependent reflux of the solution gave target half esters 156b-c in $60-74 \%$ yields.

2.2.3 Synthesis of acyl azides

The half ester molecules reacted with oxalyl chloride in dichloromethane in the presence of catalytic amount of N, N-dimethylformamide to give acyl chlorides in quite high yields $90-97 \%$ (Scheme 41). By these transformations, better leaving group chlorine attached to molecule to facilitate azide formation.

Scheme 41 Synthesis of acyl azides 164b-c

Common method was used to reach acyl azide molecules 164b-c. Aqueous solution of sodium azide was added to solution of acyl chlorides 163b-c in acetone. The acyl azide 164b-c formation was observed in high yields $80-85 \%$.

2.2.4 Synthesis of urea and urethane derivatives from acyl azides

Acyl azides 164b-c are very reactive molecules. By using this advantage, urethane derivatives were obtained by heating acyl azides in methanol. This process involves the intermediate molecule isocyanates $\mathbf{1 5 8 b}$-c. First step is the Curtius rearrangement of the acyl azide molecules and then, nucleophilic attack of the methanol to reactive intermediate isocyanates gave target urethane molecules 165b-c in yields of 48-86\% (Scheme 42).

Scheme 42 Synthesis of urethane derivatives 165b-c

Similarly, urea derivatives 166b-c were also synthesized. Acyl azides are very versatile reactants. If these molecules are heated in non-nucleophilic medium, reactive isocyanate molecules can also be isolated. Although this isolation is possible, many studies prefer to use them as reactive intermediates to continue successive reactions instead of isolation of the unstable isocyanates. In our case, we synthesized isocyanates $\mathbf{1 5 8 b} \mathbf{- c}$ and characterization was done by using especially IR spectrum. After this evidence, we continued next reaction without any purification.

Scheme 43 Synthesis of urea derivatives 166b-c

Both urea derivatives in Scheme 43 and urethane derivatives in Scheme 42 were our last building blocks for the synthesis of target isoindolinone derivatives. Our methodology is quite useful and functional to obtain substrate molecules urea and urethanes in quite overall high yields. Structure of the ureas and urethanes were characterized by NMR spectroscopy.

Formed urea 166b-c and urethane derivatives $\mathbf{1 6 5 b}$-c were purified by using column chromatography before final cyclization step.

2.2.5 Synthesis of target isoindolinones

After the synthesis of ureas $166 \mathrm{~b}-\mathrm{c}$ and urethanes $\mathbf{1 6 5 b}-\mathbf{c}$, we turned our attention to ring closure of these systems. Treatment of urethanes 165b-c with potassium carbonate in acetonitrile gave the target isoindolinone derivatives 167b-c in quite good yields $88-95 \%$ (Scheme 44). These smooth transformations are another advantageous part of our methodology. Structure elucidation was done by analysis of elemental analysis, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR data. All these information were in consistent with each other.

Scheme 44 Synthesis of isoindolinones 167b-c

Similarly, we applied the same condition to urea derivatives to reach target isoindolinone derivatives. Treatment of urea derivatives 166b-c with potassium carbonate in acetonitrile also gave the target isoindolinone derivatives 168b-c in quite good yields 83-85\% (Scheme 45).

Scheme 45 Synthesis of isoindolinones 168b-c

In the cyclization reaction of $\mathbf{1 6 6} \mathbf{b} \mathbf{- c}$, there were two different amide functionalities in the molecule. Therefore, two different products were expected due to two different attack possibilities of the different amide groups (Scheme 46).

Scheme 46 Formation mechanism of 168b-c

No trace of compounds $\mathbf{1 6 9 b}-\mathbf{c}$ was detected in reaction mixture. The reason is that formation of five membered ring compounds $\mathbf{1 6 8 b} \mathbf{- c}$ was preferred over the seven membered ring compounds $169 \mathrm{~b}-\mathbf{c}$.

All these results proved that cyclization by using acyl azides is a very advantageous methodology to reach important heterocycles.

2.3 Synthesis of benzodiazepinone derivatives

2.3.1 Synthesis of starting compound: 2-(2-carboxyethyl)benzoic acid

2-(2-carboxyethyl)benzoic acid $\mathbf{1 7 2}$ was prepared according to the description in the literature. ${ }^{51}$ This molecule is very important for this study because it served as a building block for benzodiazepinone molecules (Scheme 47).

Scheme 47 Synthesis of 2-(2-carboxyethyl)benzoic acid

2-(2-Carboxyethyl)benzoic acid 172 was synthesized starting from β-naphthol 170. First step was the oxidation of β-naphthol $\mathbf{1 7 0}$ to o-carboxycinnamic acid $\mathbf{1 7 1}$ by reaction of peroxyacetic acid. Then successive hydrogenation with Raney nickel in basic aqueus solution gave the target starting material, 2-(2-carboxyethyl)benzoic acid 172.

Although it was not reported in the literature, exact structure of the ocarboxycinnamic acid $\mathbf{1 7 1}$ was determined as trans according to the coupling constant of double bond protons which is approximately 16 Hz . Exact structure of the molecule was quite important for this study. According to our synthetic plan, trans-configuration could be problematical for cyclization steps. Therefore, we decided to reduce double bond in the presence of Raney nickel. Otherwise, geometry of the molecule could prevent the formation of the diazepinone rings.

2.3.2 Synthesis of bis(acyl azide) compounds

A method for acyl azide formation was described in isoindolinone part 2.2.3. In this study, we also used the same procedures to reach our target bis(acyl azide) compound 174 (Scheme 48).

Scheme 48 Synthesis of acyl azide 174

First step includes the chlorination of the 2-(2-carboxyethyl)benzoic acid 172. 2-(2carboxyethyl)benzoic acid $\mathbf{1 7 2}$ was dissolved in dichloromethane and treated with oxalyl chloride in the presence of catalytic amount of N, N-dimethylformamide. Reaction medium was monitored and reaction was stopped according to the change in solution. At room temperature, solubility of 2-(2-carboxyethyl)benzoic acid $\mathbf{1 7 2}$ is very low in dichloromethane. Reaction was stopped after all the 2-(2carboxyethyl)benzoic acid $\mathbf{1 7 2}$ had dissolved in dichloromethane.

Bis(acyl azide) compound $\mathbf{1 7 4}$ was synthesized with a common method which we described previously in isoindolinone part 2.2.3. Aqueous solution of sodium azide was added to solution of bis(acyl chloride) $\mathbf{1 7 3}$ in acetone. The bis(acyl azide) $\mathbf{1 7 4}$ formation was observed in 79% yield. After formation of the key bis(acyl azide) molecule, we turned our attention to intramolecular ring closure reactions of the diisocyanate 175. Curtius rearrangement of the bis(acyl azide) 174 to disocyanate 175 was examined. As we described earlier, this methodology is quite easy and useful to reach important urea and urethane derivatives. In the next part, synthesis of the urea and urethane derivatives are described.

2.3.3 Synthesis of urea from bis(acyl azide) and its ring closure reactions

Curtius reaarrengement of the bis(acyl azide) $\mathbf{1 7 4}$ was used to obtain target diisocyanate 175 (Scheme 49). Addition of the nucleophiles to disocyanate 175 gave target urea and urethanes.

Scheme 49 Synthesis of urea 176

Diisocyanate 175 was isolated and characterized by using $\mathrm{IR},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy. To facilitate rearrangement, bis(acyl azide) solution in benzene was heated to reflux for 1 hour. Then, treatment of the diisocyanate with aniline in dichloromethane at room temperature gave the target urea derivative 176. Precipitation was used to reach clean urea product 176 without any further purification in 69% yield. Until this point, we synthesized our target urea compound without any problem. After directing our efforts to ring closure reactions of this formed urea derivative 176, we faced with the biggest disappointment of the project (Scheme 50). At first glance, we were very hopeful for ring closure reaction of the urea because it includes four different amide functionalities inside the molecule.

Scheme 50 Ring closure reactions of compound 176

All efforts to the ring closure reaction of urea derivative $\mathbf{1 7 6}$ were failed. Various bases, such as, pyridine, potassium carbonate, cesium carbonate were tried to facilitate ring closure reactions. None of them revealed the formation of the ring closure product 177. However, treatment of the urea derivative 176 with lithium diisopropylamide under reflux for one week afforded N, N '-diphenylurea ${ }^{52}$ (179) in 47% yield (based on consumed starting material) as only isolable product. To confirm the structure of the formed N, N 'diphenylurea 179, we conducted an independent experiment. Reaction of phenyl isocyanate $\mathbf{1 7 8}$ with aniline also gave the same product N, N '-diphenylurea 179 (Scheme 51). Comparison of the all spectroscopic data showed complete agreement

Scheme 51 Synthesis of N, N '-diphenylurea 179

Due to complex reaction medium and solubility problems, we could not isolate any other products. Actually, we expected the formation of $\mathbf{1 8 0}$ based on the mechanism of fragmentation of N, N '-diphenylurea (179) (Scheme 52) as depicted in Scheme 53.

Scheme 52 Reaction of urea $\mathbf{1 7 6}$ with LDA

Scheme 53 Proposed mechanism for compound 180

According to the proposal, first step includes the abstraction of the proton from the amide bonded to methylene group of the compound 176. Then, nucleophilic attack to carbonyl group gives the target benzodiazepinone molecule 177. At this point, reaction continues with the attack of the leaving aniline anion to compound 177. It gives hydrolyzed benzodiazepinone 180 and fragmentation product 179. This proposal could not be supported any further evidence due to isolation problems.

2.3.4 Synthesis of urethanes from bis(acyl azide) and their ring closure

reactions

After the failure of the ring closure reactions of compound 176, we turned our attention to increase reactivity of carbonyl groups in 176. Therefore, we synthesized urethane derivatives starting from bis(acyl azide) 174. Bis(acyl azide) $\mathbf{1 7 4}$ was reacted with alcohols such as methanol and tert-buthyl alcohole to give corresponding urethane derivatives. At the reflux temperature of methanol, two different products were observed. One was the target urethane $\mathbf{1 8 2}$ and the other one was the ring closure product $\mathbf{1 8 3}$ due to semi rearrangement of the compound 174 to isocyanate. Reactions of urethane $\mathbf{1 8 2}$ with various bases were also failed. No ring
closure product was detected at the end of the reactions. However, treatment of the urethane $\mathbf{1 8 2}$ with lithium hexamethyldisilazide for 30 minutes gave the target 1,3benzodiazepinone derivative 184 in 44% yield (Scheme 54). Prolonged reaction time resulted in a decreased amount of the desired product.

184

Scheme 54 Synthesis of benzodiazepinone 184

Structure confirmation was done at first glance by using IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ - NMR spectroscopy. Exact confirmation of the structure was provided by X-ray analysis of the compound 184.

Figure 2 X-ray analysis of compound 184

Similarly we applied same reaction conditions to tert-butyl urethane derivative $\mathbf{1 8 5}$. In this case, target urethane derivative $\mathbf{1 8 5}$ was obtained in $\mathbf{6 5 \%}$ yield (Scheme 55).

Scheme 55 Synthesis of benzodiazepinone 186

After the isolation of the urethane 185, we applied ring closure reaction conditions. Treatment of the urethane $\mathbf{1 8 5}$ with lithium hexamethyldisilazide for 30 minutes gave the target 1,3-benzodiazepinone derivative $\mathbf{1 8 6}$ in 52% yield. Structure confirmation was done by using IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ - NMR spectroscopy. We also compared ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ - NMR spectra of compounds 184 and 186. Both spectra showed same characteristics. Finally, the exact structure of $\mathbf{1 8 6}$ was confirmed by single crystal Xray analysis.

Hydrolysis of the compound $\mathbf{1 8 6}$ was also done by using trifluoroacetic acid in dichloromethane at room temperature. This reaction gave the 1,3-benzodizepinon-2one $\mathbf{1 8 0}$ in $\mathbf{9 1 \%}$ yield. The spectroscopic data of 1,3-benzodizepinon-2-one $\mathbf{1 8 0}$ was fully in accordance with those reported in the literature. ${ }^{53}$

Careful analysis of the reaction mixture did not reveal the formation of any other product. Actually in the reaction of $\mathbf{1 8 2}$ as well as of $\mathbf{1 8 5}$, two isomers were expected
as a result of the attack of the amide functionalities to the two different carbonyl groups (Scheme 56). Because of the increased acidity of the NH attached directly to benzene ring, one would expect compound 187 as a sole major product. Surprisingly, the isomer 184 was formed as sole product. We assume that the abstraction of the more acidic -NH proton in diurethane $\mathbf{1 8 2}$ is hindered by the bulky base which is used, or the nucleophilicity of the amide functionality conjugated with the benzene ring may also be reduced due to the conjugation.

Scheme 56 Mechanism for the synthesis of $\mathbf{1 8 4}$ and $\mathbf{1 8 7}$

After the proposal for the regiospesific product formation, we used another base for further reaction. Lithium diisopropylamide was freshly prepared from diisopropylamine and butyl lithium. Tetrahydrofuran solution of the lithiumdiisopropylamide was reacted with the compound 182. Two products were formed. After isolation, products were identified as the cyclization products $\mathbf{1 8 4}$ and 1,3-benzodizepinon-2-one $\mathbf{1 8 0}$ (Scheme 57).

For further derivatization of the 1,3-benzodiazepin-2-one 180, we used sodium hydride for proton abstraction and addition of acetic anhydride or ethyl chloroformate to this mixture as quenching reagent gave the diacetylated compound 188 and diester compound 189 in yields 70% and 83% respectively.

Scheme 57 Derivatization of benzodiazepinone 180

2.4 Synthesis of dihydroquinolinone derivatives

2.4.1 Synthesis of starting compound: mono methyl ester

Scheme 58 Syntheis of mono methyl ester 190

In the benzodiazepinone part, we described the synthesis of the starting material 2-(2-carboxyethyl)benzoic acid 172. Carboxylic acid derivative 172 was synthesized
from β-naphthol 170. Oxidation of β-naphthol $\mathbf{1 7 0}$ by reaction of peroxyacetic acid gave o-carboxycinnamic acid 171. Then successive hydrogenation with Raney nickel in basic aqueus solution gave the target starting material, 2-(2-carboxyethyl)benzoic acid 172. In this case, we needed to go one step further. Mono methyl ester compound 190 was obtained by esterification reaction at room temperature (Scheme 58). ${ }^{54}$

In this study, most important step was the regiospesific synthesis of mono methyl ester compound 190. There are two reactive site inside the molecule for esterification reaction. After 30 minutes at room temperature, only the carboxylic acid which is bonded to $-\mathrm{CH}_{2}$ - group undergoes esterification. The reason is obvious; this carboxylic acid is more reactive than the carboxylic acid which is directly bonded to benzene ring. If we compare the carboxylic acid groups, one of the groups is bonded directly to the benzene ring. This conjugation decreases reactivity of carboxylic acid. For the carboxylic acid bonded to CH_{2} - group, there are two methylene groups between benzene and carboxylic acid, which prevent conjugation. Therefore, this part is more reactive and esterification occurs exclusively at this position.

2.4.2 Synthesis of acyl azide compound

As we described in earlier, the mono methyl ester 190 was reacted with oxalyl chloride in dichloromethane in the presence of catalytic amount of N, N dimethylformamide to give acyl chloride 191 in quite high yield 96% (Scheme 59). By using this chlorination reaction, a better leaving group, chlorine atom was attached to molecule for next step. This methodology was used to reach desired acyl azide 192 which is key compound in Curtius rearrangement.

Scheme 59 Synthesis of acyl azide 192

An aqueous solution of sodium azide was added to solution of acyl chloride $\mathbf{1 9 1}$ in acetone. The formation of acyl azide $\mathbf{1 9 2}$ was observed and proved by characteristic frequency of azide functionality at around $2100 \mathrm{~cm}^{-1}$ in IR spectrum.

2.4.3 Synthesis of urea derivative from acyl azide

For the synthesis of target urea derivative 194, acyl azide 192 was heated in benzene to give corresponding isocyanate 193 by Curtius rearrangement. Treatment of isocyanate molecule 193 with aniline in dichloromethane at room temperature gave the target urea derivative 194 (Scheme 60).

Scheme 60 Synthesis of urea 194

2.4.4 Synthesis of urethane derivatives from acyl azide

We also synthesized urethane derivatives to expand our substrate molecules for ring closure reactions. Urethane derivatives were synthesized by heating acyl azide compound 192 in alcohols such as methanol and tert-butyl alcohol. This transformation includes in situ formation of isocyanate molecule 193. In situ formed isocyanate 193 was reacted with nuclephiles to give target urethane derivatives 195 and 196 (Scheme 61).

Scheme 61 Synthesis of urethanes 195 and 196

After the successful synthesis of target urea and urethane derivatives, we focused on hydrolysis reactions of the formed urea and urethane substrates.

2.4.5 Hydrolysis of urea and urethane derivatives

Base mediated ring closure reaction of urea derivative 194 was failed. We isolated the hydrolyzed product 183 at the end of the reaction as sole product (Scheme 62). Therefore, we turned our attention to a new ring closure methodology. A mild ring closure conditions were provided by this technique.

Scheme 62 Ring closure reaction of urea 194 with base

This method depends on the reactivity increase of the ester groups in urea and urethane molecules. We hydrolyzed all three ester molecules by potassium carbonate in refluxing methanol-water mixture (1:1) (Scheme 63).

194

197

195

198

196

199

Scheme 63 Synthesis of hydrolyzed urea and urethanes

Carboxylic acid derivatives 197-199 were used for the ring closure reactions to reach dihydroquinolinones.

2.4.6 Ring closure of the hydrolyzed urea and urethane derivatives

As explained earlier, base mediated ring closure reactions were failed. Then we decided to increase reactivity of the carbonyl groups by transforming ester groups to acyl chlorides. To use this methodology, we hydrolyzed all urea and urethane derivatives' ester groups in Scheme 58. Acyl chloride formation was described in earlier chapters by oxalyl chloride in dichloromethane at room temprature. In this study, we used another chlorination process to force ring closure reactions by reactive acyl chlorides. Treatment of carboxylic acid derivatives with thionyl chloride in tetrahydrofuran gave the target dihydroquinolinone molecules $\mathbf{2 0 0}$ and 201 (Scheme 64).

197
SOCl $_{2}$
THF, reflux

200

198

201

199
$\downarrow \begin{aligned} & \mathrm{SOCl}_{2} \\ & \text { THF, reflux }\end{aligned}$

183

Scheme 64 Ring closure reactions of urea and urethanes by thionyl chloride

Acyl chloride molecules were not isolated. In situ formed acyl chloride molecules spontaneously transformed to dihydroquinoline products 200, 201 and 183. For the Boc protected molecule 199, hydrolyzed dihydroquinolinone 183 was obtained as sole product. Boc groups are not very stable in acidic medium. After ring closure, medium was acidic due to formed hydrochloric acid.

2.5 Chloroacetonylation of $\mathrm{C}=\mathrm{C}$ double bonds

2.5.1 Reaction of acetylacetone with $\mathbf{C}=\mathbf{C}$ double bonds in the presence of

$\mathrm{Mn}(\mathrm{OAc})_{3}$ and HCl

Scheme 65 Chlorocetonylation of cyclopentene

In this study, we were interested in addressing the question whether the carbocation generated by reaction of 1,3-dicarbonyl compounds in the presence of $\mathrm{Mn}(\mathrm{OAc})_{3}$ can be trapped with a nucleophile or not. As a nucleophile, we used conc. HCl solution. Therefore, we searched the reaction of $\mathrm{Mn}(\mathrm{OAc})_{3}$ with various alkenes in the presence of HCl to incorporate chlorine atom into the molecule (Table $1 \&$ Scheme $65)$.

Table 1 Reaction of various alkenes with acetylacetone in the presence of conc. HCl
Entry

Acetylacetone was chosen as 1,3-dicarbonyl compound to explore addition reactions. The purpose of choosing acetyl acetone will be shown in second part of this study. Treatment of cyclopentene 202 and $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in acetic acid with acetylacetone and HCl at $55^{\circ} \mathrm{C}$ for 24 hours gave the dihydrofuran adduct $\mathbf{2 0 9}$ in a 46\% yield, whereas the desired trapping product 208 was formed in 31% yield (Entry 1, Table 1). The structures of the compounds 208 and 209 were characterized by their NMR spectra. The cis configuration of dihydrofuran ring was determined by comparison with similar systems ${ }^{55}$ and measuring the coupling constant between protons $\mathrm{H}-3 \mathrm{a}$ and $\mathrm{H}-6 \mathrm{a}$ ($J=8.0 \mathrm{~Hz}$), which supports cis-configuration of the coupled protons. Furthermore, we performed a restricted hybrid HF-DFT SCF calculation using the basis set $6-31 \mathrm{G}^{* *}$ as implemented in the Spartan'08 V111 package program and shown that the cis-isomer $20915.3 \mathrm{kcal} / \mathrm{mol}$ more stable than the corresponding trans-isomer. The trans-configuration in 208 was also assigned by same calculations. It was shown that trans-isomer 208 is about $6.76 \mathrm{kcal} / \mathrm{mol}$ more stable than the cisisomer.

Reaction of cyclohexene with acetyl acetone in the presence of $\mathrm{Mn}(\mathrm{OAc})_{3} .2 \mathrm{H}_{2} \mathrm{O}$ gave the adduct $\mathbf{2 1 1}{ }^{56}$ as sole product, in 85% yield (Entry 2, Table 1). Interestingly, we have not detected any amount of dihydrofuran derivative as in the case of cyclopentene 202. On the other hand, cycloheptene 204 surprisingly afforded cyclization product 214 in 35% yield beside the expected product 213 which was formed in 53\% yield (Entry 3, Table 1)

For entry 4 , the reaction of indene $\mathbf{2 0 5}$ with $\mathrm{Mn}(\mathrm{OAc})_{3}$, having a strained double bond, did not form the expected addition product. Mainly, cyclization product 216 was formed in a yield of 75%, whereas trans-1,2-dichloroindene (217) formed by addition of in situ generated chlorine to the double bond of indene, wasformed as the minor product.

Reaction of acetylacetone with bicyclic olefins such as norbornene 206 and oxabenzonorbornadiene 207 proceeded smoothly; the desired addition products 218 and $\mathbf{2 2 0}$ were isolated in 65 and 87% yields, respectively. The exo-configuration of the substituents was confirmed by measuring the coupling constants between the
bridgehead protons and protons adjacent to the substituents. The bridgehead protons in $\mathbf{2 2 0}$ resonate as two separate singlets at 5.24 and 4.85 ppm . The absence of any coupling between the protons $\mathrm{H} 1-\mathrm{H} 2$ and $\mathrm{H} 3-\mathrm{H} 4$ confirms the endo-orientation of the protons, a high value of $J_{I 2}\left(J_{34}\right)$ about $3.5-5.0 \mathrm{~Hz}$ would be expected in case of endoorientation of the substituents. In the case of norbornene system, the observed small couplings $J_{12}=1.1$ and $J_{34}=1.3 \mathrm{~Hz}$ also support the exo-configuration of the substituents in 219. The isolated adducts were again converted to the corresponding acetonyl derivatives $\mathbf{2 1 9}$ and $\mathbf{2 2 1}$ in a yield of $\mathbf{9 5 \%}$.

2.5.2 Removal of acetyl group from addition products by ammonia

In the last part of our study, we used a method to reach our target chloroacetonylation products. Reaction of addition products with gaseous ammonia in methanol gave target chloroacetonylation products with quite high yields (Scheme 65). Acetyl group was removed under very mild reaction conditions. Room temperature was enough for removal of acetyl group from the molecules.

Addition product 208 was reacted with NH_{3} and desired chloroacetonylation product 210 was obtained in 87% yield (Scheme 65). We also performed same reaction for the other addition products (Entry, 1,2,3,5,6, Table 1).

As a result, we developed simple and short method for chloroacetonylation of the various double bonds in two subsequent steps.

CHAPTER 3

EXPERIMENTAL

3.1 General

Nuclear magnetic resonance (${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$) spectra were recorded on a Bruker Instrument Avance Series-Spectrospin DPX-400 Ultrashield instrument in DMSO- ${ }_{\mathrm{d} 6}$ and CDCl_{3} with TMS as internal reference. Chemical shifts (δ) were expressed in units parts per million (ppm). Spin multiplicities were specified as singlet (s), doublet (d), doublet of doublets (dd), triplet (t) and multiplet (m) and coupling constants (J) were reported in Hertz (Hz).

Infrared spectra were recorded on a Matson 1000 FT-IR spectrometer and Vertex 70 series FT-IR spectrometer. Band positions were reported in reciprocal centimeters (cm^{-1}).

Column chromatographic separations were performed by using Fluka Silica Gel 60 plates with a particle size of $0.063-0.200 \mathrm{~mm}$. Thin layer chromatography (TLC) was performed by using 0.25 mm silica gel plates purchased from Fluka.

Compounds were named by using ChemDraw Ultra 11.0 and ACD NMR.

Solvents were purified as reported in the literature. ${ }^{57}$

3.2 Synthesis of isochromeno[3,4-c]pyrazol-5(2H)-one (145a)

To a solution of homophthalic anhydride 141a ($0.60 \mathrm{~g}, 3.7 \mathrm{mmol}$) in DMF (5 mL), an excess amount of hydrazine monohydrate ($1.0 \mathrm{~mL}, 14.2 \mathrm{mmol}$) was added at room temperature and the resulting mixture was refluxed overnight. After cooling to room temperature, the residue was triturated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, filtered and dried to give an analytically pure sample of 145a. (isolated yield: $0.56 \mathrm{~g}, 81 \%$); mp 263-264 ${ }^{\circ} \mathrm{C}$.

${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO-d d_{6}) $\delta 13.14$ (br s, 1H, -NH), 8.46 (br s, 1H, H-1), 8.17 (br d, $J_{6,7}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.92 (br d, $\left.J_{9,8}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 7.92\left(\mathrm{br} \mathrm{dd}, J_{8,9}=7.7 \mathrm{~Hz}, J_{8,7}=7.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-8$), 7.49 (br dd, $J_{7,8}=7.5 \mathrm{~Hz}, J_{7,6}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$).
${ }^{13}$ C NMR (100 MHz, DMSO-d $_{6}$) $\delta 161.8,157.3,135.9,133.3$, 131.2, 127.2, 125.6, 123.7, 118.7, 100.0.

IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3218,2958,1733,1705,1685,1625,1590,1496,1434,1318,1242$, 1187, 1076, 1053, 942, 871, 757.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 64.52; H, 3.25; N, 15.05. Found: C, $64.25 ; \mathrm{H}, 3.45$; N, 16.03.

HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}$: 187.0508; found: 187.0506 .

3.3 Synthesis of 7-bromoisochromeno[3,4-c]pyrazol-5(2H)-one (145b)

To a solution of homophthalic anhydride $\mathbf{1 4 1 b}(1.44 \mathrm{~g}, 6.0 \mathrm{mmol})$ in DMF (12 mL), an excess amount of hydrazine monohydrate ($2.4 \mathrm{~mL}, 34.1 \mathrm{mmol}$) was added at room temperature and the resulting mixture was refluxed overnight. After cooling to room temperature, the residue was triturated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, filtered and dried to give an analytically pure sample of $\mathbf{1 4 5 b}$. (isolated yield: ($1.16 \mathrm{~g}, 73 \%$), mp 322$324^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}$ (400 MHz, DMSO-d ${ }_{6}$) $\delta 13.27$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.57 (br s, 1H, H-1), 8.28 (d, $\left.J_{6,8}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 8.09$ (dd, $J_{8,9}=$ $\left.8.4, J_{8,6}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.95\left(\mathrm{~d}, J_{9,8}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right)$.
${ }^{13}$ C NMR (100 MHz, DMSO-d $_{6}$) $\delta 160.2,156.7,138.0,132.6,132.0,125.5,125.1$, 120.2, 118.7, 99.0

IR (ATR, cm^{-1}) 3216, 1735, 1622, 1586, 1485, 1231, 1177, 1072, 822.

HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}$: 264.9613; found: 264.9611 .

3.4 Synthesis of 7-methoxyisochromeno[3,4-c]pyrazol-5(2H)-one (145c)

To a solution of homophthalic anhydride $141 \mathbf{c}(0.34 \mathrm{~g}, 1.8 \mathrm{mmol})$ in DMF (2 mL), an excess amount of hydrazine monohydrate ($0.5 \mathrm{~mL}, 7.1 \mathrm{mmol}$) was added at room temperature and the resulting mixture was refluxed overnight. After cooling to room temperature, the residue was triturated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, filtered and dried to give an analytically pure sample of $\mathbf{1 4 5 c}$ with 63% yield, $\mathrm{mp} 275-276^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 13.04$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.39 (d, $\left.J_{1,2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 7.87\left(\mathrm{~d}, J_{8,9}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right)$, $7.60\left(\mathrm{~d}, J_{6,8}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.47\left(\mathrm{dd}, J_{8,9}=8.6 \mathrm{~Hz}, J_{6,8}=\right.$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10,-\mathrm{OCH}_{3}\right.$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 161.2,157.8,156.3,126.2,124.5,124.1,123.9$, 119.3, 112.5, 99.4, 55.5.

IR (ATR, cm^{-1}) 3649, 3446, 1734, 1653, 998.
HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3}$: 217.0613; found: 217.0612.

3.5 Synthesis of tert-butyl 5-oxoisochromeno[3,4-c]pyrazole-2(5H)-carboxylate (146)

Isochromeno[3,4-c]pyrazol-5(2H)-one 145a ($0.38 \mathrm{~g}, 2.0 \mathrm{mmol}$) was dissolved in 10 ml THF and temperature cooled down to $0^{\circ} \mathrm{C}$. To this mixture was added $\mathrm{NaH}(0.09$ $\mathrm{g}, 2.3 \mathrm{mmol}$, (\%60)) and reaction mixture was mixed for 30 min . Then, $\mathrm{Boc}_{2} \mathrm{O}(2.3$
mmol, 0.49 g) was added at room temperature and reaction mixture was mixed another 30 min with TLC control. After the completion of the reaction, excess NaH was quenched with dropwise addition of water. The reaction crude was obtained by extraction with $3 x 50 \mathrm{ml}$ EtOAc and concentration at vacuo. Finally, tert-butyl 5-oxoisochromeno[3,4-c]pyrazole-2(5H)-carboxylate 146 ($0.53 \mathrm{~g}, 91 \%$, mp 270.0$271.5^{\circ} \mathrm{C}$) was obtained with flash chromatography with DCM.

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1$), 8.36 (br d, $\left.J_{6,7}=7.9,1 \mathrm{H}, \mathrm{H}-6\right), 7.85-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dt}, J=7.5, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 1.69$ (s, 9H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4,159.0,147.4,135.3$, $131.9,130.6,128.5,125.0,123.1,120.2,105.2,86.7,27.9$.
IR (ATR, cm^{-1}) 3649, 3446, 1734, 1653, 998.
HRMS m/z (M+Na) ${ }^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$: 309.0850; found: 309.0851.
X-ray Crystallographic data (excluding structure factors) for structure $\mathbf{1 4 6}$ have been deposited (CCDC 800464) with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: (+44) 1223336 033; e-mail: deposit@ccdc.cam.ac.uk).

3.6 Synthesis of methyl 5-bromo-2-(2-methoxy-2-oxoethyl)benzoate (162b)

To a solution of 5-bromo-2-(carboxymethyl)benzoic acid 140b ($2.43 \mathrm{~g}, 9.4 \mathrm{mmol}$) in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added $\mathrm{SOCl}_{2}(1.70 \mathrm{ml}, 23.5 \mathrm{mmol})$ dropwise at room temperature; the mixture was refluxed for 12 h . After completion of the reaction, the solvent was evaporated to give methyl 5-bromo-2-(2-methoxy-2-oxoethyl)benzoate 162b. Chromatography of the residue over a short column (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave pure diester (yield: $2.48 \mathrm{~g}(92 \%)$; mp 101-103 ${ }^{\circ} \mathrm{C}$).

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06\left(\mathrm{~d}, J_{6,4}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$, $7.51\left(\mathrm{dd}, J_{4,3}=8.1 \mathrm{~Hz}, J_{4,6}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.05\left(\mathrm{~d}, J_{3,4}=8.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $3.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.61$ ($\mathrm{s}, 3 \mathrm{H}$,
OCH_{3}).
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 171.3,166.1,135.2,134.9,133.9,133.8,131.3$, 121.1, 52.3, 52.0, 39.8.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2991, 2951, 1723, 1591, 1288, 1254, 1167.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{4}$: C, 46.02; H, 3.86. Found: C, 46.23; H, 3.75.

3.7 Synthesis of methyl 5-methoxy-2-(2-methoxy-2-oxoethyl)benzoate (162c)

2-(carboxymethyl)-5-methoxybenzoic acid $140 \mathrm{c}(2.84 \mathrm{~g}, 13.5 \mathrm{mmol})$ was dissolved in 50 ml MeOH and was added $\mathrm{SOCl}_{2}(2.45 \mathrm{ml}, 33.8 \mathrm{mmol})$ dropwise at room temperature; mixture was refluxed for 12 hours. After the completion of the reaction, the solvent was evaporated to give diester 162c. Chromatography of the residue over a short column (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave pure $\mathbf{1 6 2 c}(3.12 \mathrm{~g}, 97 \%)$ as colorless oil.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47\left(\mathrm{br} \mathrm{d}, J_{6,4}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 6), 7.09 (br d, $J_{3,4}: 8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 6.95 (br dd, $J_{4,3}=8.4 \mathrm{~Hz}$ and $\left.\mathrm{J}_{46}: 2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.3,167.3,158.6,133.3,130.5,128.0,118.4$, 115.9, 55.5, 52.0, 51.9, 39.7.

IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2951,2835,1736,1712,1286,1213,1044,793$.
HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{5}$: 239.0914; found: 239.0865 .

3.8 Synthesis of [4-bromo-2-(methoxycarbonyl)phenyl]acetic acid (156b)

To a solution of diester $\mathbf{1 6 2 b}(2.82 \mathrm{~g}, 9.8 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1,50 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.31 \mathrm{~g}, 16.7 \mathrm{mmol})$ and the mixture was refluxed for 45 min . The mixture was cooled to r.t. and $\mathrm{H}_{2} \mathrm{O}$ was added. To remove the unreacted diester 162b, the aqueous phase was extracted with EtOAc. The aqueous phase was acidified with 1 M HCl and extracted with EtOAc. Evaporation of the solvent gave
pure 156b as a white solid; yield: 1.75 g (73% based on consumed diester 162b); mp $161-163{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.00-10.20$ (br s, $1 \mathrm{H}, \mathrm{OH}$), $8.07\left(\mathrm{~d}, J_{3,5}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 7.52\left(\mathrm{dd}, J_{5,6}=8.2 \mathrm{~Hz}, J_{5,3}=2.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.05$ (d, $J_{6,5}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $3.90(\mathrm{~s}, 2$
$\mathrm{H}, \mathrm{CH}_{2}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.5,165.4,134.5,133.3,133.0,132.9,130.1$, 120.5, 51.5, 39.0.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3500, 2953, 1706, 1435, 1288, 1255, 1080.

3.9 Synthesis of [4-methoxy-2-(methoxycarbonyl)phenyl]acetic acid acid (156c)

To a solution of diester $\mathbf{1 6 2 c}(1.45 \mathrm{~g}, 6.1 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1,50 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.43 \mathrm{~g}, 10.4 \mathrm{mmol})$ and the mixture was refluxed for 45 min . The mixture was cooled to r.t. and $\mathrm{H}_{2} \mathrm{O}$ was added. To remove the unreacted diester 162c, the aqueous phase was extracted with EtOAc. The aqueous phase was acidified with 1 M HCl and extracted with EtOAc. Evaporation of the solvent gave pure $\mathbf{1 5 6 c}$ as a white solid; yield: $0.82 \mathrm{~g}\left(60 \%\right.$ based on consumed diester 162c); mp $136-137^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.00-8.00$ (br s, $1 \mathrm{H}, \mathrm{OH}$), 7.54 (d, $J_{3,5}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.22 (part of AB system d, $J_{65}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.05 (part of AB system, dd, $J_{53}=2.8$ and $J_{56}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.94 (s, 2H, CH 2), 3.91 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.84 ($\mathrm{s}, 3 \mathrm{H}$,

OMe).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.9,168.0,158.8,133.4,130.3,127.4,118.8$, 116.0, 55.5, 52.4, 39.9.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2953, 1714, 1691, 1610, 1287, 1231, 1072, 781.

3.10 Synthesis of methyl-5-bromo-2-(2-chloro-2-oxoethyl)benzoate (163b)

To a stirred suspension of half ester $\mathbf{1 5 6 b}(0.82 \mathrm{~g}, 3.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added oxalyl chloride $(0.28 \mathrm{ml}, 3.3 \mathrm{mmol})$ and DMF (2 drops) as catalyst. The
resulting solution was stirred at room temperature for 1 hour. After completion of the reaction, the solvent was evaporated to give $\mathbf{1 6 3 b}(0.85 \mathrm{~g}, 97 \%)$ as a yellowish viscous oil.

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15\left(\mathrm{~d}, J_{6,4}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$, $7.58\left(\mathrm{dd}, J_{4,3}=8.1 \mathrm{~Hz}, J_{4,6}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.06\left(\mathrm{~d}, J_{3,4}=8.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $4.42\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,165.7,135.8,134.4$, 133.7, 132.9, 130.7, 122.5, 52.6, 51.9.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2953, 1799, 1721, 1259, 963, 752.

3.11 Synthesis of methyl 2-(2-chloro-2-oxoethyl)-5-methoxybenzoate (163c)

To a stirred suspension of half ester $\mathbf{1 5 6 c}(0.79 \mathrm{~g}, 3.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added oxalyl chloride ($0.36 \mathrm{ml}, 4.2 \mathrm{mmol}$) and DMF (2 drops) as catalyst. The resulting solution was stirred at room temperature for 1 hour. After completion of the reaction, the solvent was evaporated to give $163 \mathrm{c}(0.81 \mathrm{~g}, 95 \%)$ as a yellowish viscous oil.

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61\left(\mathrm{~d}, J_{6,4}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$, $7.16\left(\mathrm{~d}, J_{3,4}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 7.06\left(\mathrm{dd}, J_{4,3}=8.5 \mathrm{~Hz}, J_{4,6}=2.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 4$), 4.46 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.91 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.85 (s, $3 \mathrm{H}, \mathrm{OMe}$).

[^0]IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2954, 1799, 1716, 1287, 904.

3.12 Synthesis of methyl 2-(2-azido-2-oxoethyl)-5-bromobenzoate (164b)

To a solution of acyl chloride $\mathbf{1 6 3 b}(1.54 \mathrm{~g}, 5.3 \mathrm{mmol})$ in acetone (30 mL) was added a solution of $\mathrm{NaN}_{3}(0.69 \mathrm{~g}, 10.56 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ dropwise at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After the addition of $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ the mixture was extracted with EtOAc $(3 \times 25 \mathrm{~mL})$, and the combined extracts were washed with
sat. NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, and dried $\left(\mathrm{MgSO}_{4}\right)$. After concentration of the solvent, acyl azide $\mathbf{1 6 4 b}$ ($1.34 \mathrm{~g}, 85 \%$), unstable at room temperature, was obtained as yellowish oil, which was used for the next step without purification.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12\left(\mathrm{~d}, J_{3,5}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, $7.56\left(\mathrm{dd}, J_{5,6}=8.1 \mathrm{~Hz}, J_{5,3}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.05\left(\mathrm{~d}, J_{6,5}=8.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.7,164.9,134.5,133.1$, 133.0, 132.9, 130.0, 120.7, 51.4, 41.3.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2952, 2316, 1716, 1640, 1289, 1254, 1064, 833.

3.13 Synthesis of methyl 2-(2-azido-2-oxoethyl)-5-methoxybenzoate (164c)

To a solution of acyl chloride $\mathbf{1 6 3 c}(1.51 \mathrm{~g}, 6.2 \mathrm{mmol})$ in acetone $(30 \mathrm{~mL})$ was added a solution of $\mathrm{NaN}_{3}(0.81 \mathrm{~g}, 12.4 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ dropwise at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour. After the addition of $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ the mixture was extracted with EtOAc $(3 \times 25 \mathrm{~mL})$, and the combined extracts were washed with sat. NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, and dried $\left(\mathrm{MgSO}_{4}\right)$. After concentration of the solvent, acyl azide $\mathbf{1 6 4 c}$ ($1.39 \mathrm{~g}, 89 \%$), unstable at room temperature, was obtained as yellowish oil, which was used for the next step without purification.

${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57\left(\mathrm{~d}, J_{3,5}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, $7.16\left(\mathrm{~d}, J_{6,5}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.05\left(\mathrm{dd}, J_{5,6}=8.4 \mathrm{~Hz}, J_{5,3}=2.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.7,167.1,158.9,133.5,130.2,127.1,118.6$, 116.1, 55.5, 52.2, 42.2.

IR (KBr, $\left.\mathrm{cm}^{-1}\right)$ 2953, 2254, 2138, 1716, 1610, 1504, 1275, 905, 728.

3.14 Synthesis of 5-bromo-2-(isocyanatomethyl)benzoate (158b)

Acyl azide 164b ($0.30 \mathrm{~g}, 1.0 \mathrm{mmol}$) was dissolved in dry benzene (50 mL) and refluxed for 1 hour. After completion of the reaction, the reaction mixture was concentrated at vacuo to give 5-bromo-2-(isocyanatomethyl)benzoate $\mathbf{1 5 8 b}(0.27 \mathrm{~g}$,
99%) as yellowish oil which was directly used for the next steps without further purification.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06$ (d, $\left.J_{64}: 2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$, $7.60\left(\mathrm{dd}, J_{43}=8.3 \mathrm{~Hz}\right.$ and $\left.J_{46}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.38(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{34}=8.3 \mathrm{~Hz}, \mathrm{H}-3\right), 4.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.9,137.9,136.0,134.2,130.4,129.5,125.2$, 121.8, 52.7, 45.5

IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2264,1720,1642,1292,1255,907,730$.

3.15 Synthesis of methyl 2-(isocyanatomethyl)-5-methoxybenzoate (158c)

Acyl azide 164 c ($1.39 \mathrm{~g}, 5.6 \mathrm{mmol}$) was dissolved in dry benzene (50 mL) and refluxed for 1 hour. After completion of the reaction, the reaction mixture was concentrated at vacuo to give methyl 2-(isocyanatomethyl)-5-methoxybenzoate 158c $(1.20 \mathrm{~g}, 98 \%)$ as yellowish oil which was directly used for the next steps without further purification.

${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50\left(\mathrm{~d}, J_{64}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$, 7.37 (part of AB system d, $J_{34}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.03 (part of AB system dd, $J_{43}=8.5 \mathrm{~Hz}$ and $\left.J_{46}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.75(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.89 (s, 3H, OMe), 3.80 (s, $3 \mathrm{H}, \mathrm{OMe}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,159.0,130.6,130.3,128.9,128.3,118.4$, 116.2, 55.4, 52.2, 45.2.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2255, 1716, 1504, 1436, 1231, 904.

3.16 Synthesis of methyl 5-Bromo-2-\{[(methoxycarbonyl)amino]methyl\} benzoate (165b)

A solution of acyl azide $\mathbf{1 6 4 b}(1.54 \mathrm{~g}, 5.17 \mathrm{mmol})$ in $\mathrm{MeOH}(150 \mathrm{~mL})$ was refluxed for 12 h with TLC monitoring. After completion of reaction,the solvent was removed
under vacuum. Chromatography of the residue (silica gel, 50 g , EtOAc-hexane$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1: 2$) afforded $\mathbf{1 6 5 b}(0.75 \mathrm{~g}, 48 \%)$ as a colorless solid; $\mathrm{mp}: 82-83{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05$ (d, $J_{6,4}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6), 7.55 (dd, $\left.J_{4,3}=8.2 \mathrm{~Hz}, J_{4,6}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.35$ (d, $J_{3,4}$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.43\left(\mathrm{~d}, J_{(C H 2)(N H)}=\right.$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.4,157.0,139.5,135.7$,
133.9, 132.8, 130.2, 121.4, 52.5, 52.1, 43.6.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3442, 2952, 1708, 1497, 1447, 1246, 996.
HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{4} \mathrm{Na}: 323.9842$; found: 323.9842 .

3.17 Synthesis of methyl 5-methoxy-2 \{[(methoxycarbonyl) amino]methyl\} benzoate (165c)

A solution of acyl azide $\mathbf{1 6 4 c}(1.15 \mathrm{~g}, 4.61 \mathrm{mmol})$ in $\mathrm{MeOH}(150 \mathrm{~mL})$ was refluxed for 12 h with TLC monitoring. After completion of reaction, the solvent was removed under vacuum. Chromatography of the residue (silica gel, 50 g , EtOAchexane, 1:2) afforded $\mathbf{1 6 5 c}(0.88 \mathrm{~g}, 75 \%)$ as a colorless oil.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49\left(\mathrm{~d}, J_{4,6}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$, 7.45 (d, $\left.J_{3,4}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 7.03$ (dd, $J_{3,4}=8.5 \mathrm{~Hz}, J_{4,6}=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.47\left(\mathrm{br} \mathrm{d}, J_{(\mathrm{CH} 2)(\mathrm{NH})}=\right.$ $\left.6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.62 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.5,158.8,157.0,132.8,129.6,118.4,116.1,55.5$, 52.3, 51.9, 43.6.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3349, 2952, 1707, 1608, 1500, 1217, 1074, 1036.
HRMS m/z (M+Na) ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{Na}$: 276.0842; found: 276.0843.

3.18 Synthesis of methyl 2-\{[(Anilinocarbonyl)amino]methyl\}-5-bromo benzoate (166b)

A solution of acyl azide $\mathbf{1 6 4 b}(1.5 \mathrm{~g}, 13.4 \mathrm{mmol})$ in benzene $(50 \mathrm{~mL})$ was refluxed for 1 hour. After completion of the reaction, the mixture was cooled to room temperature and the solvent was removed under vacuum. The formed isocyanate 158b was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. A solution of aniline ($1.25 \mathrm{~g}, 13.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added dropwise at room temperature. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 hours. The organic phase was extracted with $10 \% \mathrm{HCl}$ soln and $\mathrm{H}_{2} \mathrm{O}$. Evaporation of the solvent gave urea derivative 166b $(0.84 \mathrm{~g}$, 46%).Crystallization (EtOAc-n-hexane, 10:2) gave analytical pure 166b; mp 170$172{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01\left(\mathrm{~d}, J_{6,4}=2.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-6), 7.52\left(\mathrm{dd}, J_{4,3}=8.2 \mathrm{~Hz}, J_{4,6}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 4), $7.39\left(\mathrm{~d}, J_{3,4}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 7.30-7.10(\mathrm{~m}$, 4H), 7.05-6.90 (m, 1H), 6.51 (br s, 1H, NH), 5.94 (br $\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.50\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.7, 155.8, 139.9, 138.6, 135.7, 133.8, 133.7, 130.2, 129.2, 123.6, 121.5, 120.7, 52.5, 42.6.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3303, 1709, 1626, 1557, 1247, 1073.
HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{Na}: 385.0164$; found: 385.0168.

3.19 Synthesis of methyl 2-\{[(anilinocarbonyl)amino]methyl\}-5-methoxy benzoate (166c)

A solution of acyl azide $164 \mathrm{c}(0.65 \mathrm{~g}, 2.6 \mathrm{mmol})$ in anhydrous benzene (50 mL) was refluxed for 1 hour. After completion of the reaction, the mixture was cooled to room temperature and the solvent was removed under vacuum. The formed isocyanate $\mathbf{1 5 8} \mathbf{c}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. A solution of aniline ($0.24 \mathrm{~g}, 2.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise at room temperature. The resulting mixture was stirred at room temperature for 2 hours. The organic phase was extracted with 10%

HCl soln and $\mathrm{H}_{2} \mathrm{O}$. Evaporation of the solvent gave urea derivative $166 \mathrm{c}(0.336 \mathrm{~g}$, 41%). Crystallization (EtOAc-n-hexane, 10:2) gave analytical pure 166c; mp 142$144{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49\left(\mathrm{~d}, J_{3,4}=8.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-3), 7.46\left(\mathrm{~d}, J_{6,4}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.40-7.20$ (m, 4H), 7.10-6.90 (m, 2H), 6.58 (br s, $1 \mathrm{H}, \mathrm{NH}$), 6.03 (br s, $1 \mathrm{H}, \mathrm{NH}$), 4.55 (br d, J $=5.62 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,158.7,155.4,138.7,133.1,133.0,129.7$, 129.1, 123.5, 120.7, 118.4, 116.1, 55.5, 52.3, 42.7.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3310, 3056, 1718, 1627, 1597, 1357, 1177, 1066, 784.
HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$: 337.1159; found: 337.1141.

3.20 Synthesis of methyl 6-bromo-1-oxo-1,3-dihydro-2H-isoindole-2-

carboxylate (167b)

To a solution of urethane $\mathbf{1 6 5 b}(0.48 \mathrm{~g}, 1.59 \mathrm{mmol})$ in $\mathrm{MeCN}(40 \mathrm{~mL})$ was added excess $\mathrm{K}_{2} \mathrm{CO}_{3}(0.66 \mathrm{~g}, 4.77 \mathrm{mmol})$ and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 6 hours. After completion of the reaction, excess $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off and washed with $\mathrm{MeCN}(10 \mathrm{~mL})$. After evaporation of the solvent, the residue was purified by column chromatography (silica gel, 20 g , EtOAc-hexane, 8:2) to give $\mathbf{1 6 7 b}(0.41 \mathrm{~g}$, 95%) as a colorless solid; $\mathrm{mp} 164-165^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06\left(\mathrm{~d}, J_{7,5}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 7), 7.77 (dd, $\left.J_{5,4}=8.1 \mathrm{~Hz}, J_{5,7}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.39(\mathrm{~d}$, $\left.J_{4,5}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.97(\mathrm{~s}, 3 \mathrm{H}$,
OCH_{3}).
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 164.7,152.3,139.4,136.8,133.0,128.2,124.8$, 122.7, 53.9, 48.9.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2949, 1767, 1695, 1438, 1363, 1320, 1208, 842.
HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{Na}$: 291.9585; found: 2919587.

3.21 Synthesis of methyl 6-methoxy-1-oxo-1,3-dihydro-2H-isoindole-2-

carboxylate (167c)

To a solution of urethane $\mathbf{1 6 5 c}(0.42 \mathrm{~g}, 1.66 \mathrm{mmol})$ in $\mathrm{MeCN}(40 \mathrm{~mL})$ was added excess $\mathrm{K}_{2} \mathrm{CO}_{3}(0.69 \mathrm{~g}, 4.98 \mathrm{mmol})$ and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 6 hours. After completion of the reaction, excess $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off and washed with $\mathrm{MeCN}(10 \mathrm{~mL})$. After evaporation of the solvent, the residue was purified by column chromatography (silica gel, 20 g , EtOAc-hexane, 8:2) to give $167 \mathrm{c}(0.34 \mathrm{~g}$, 92%) as a white solid; $\mathrm{mp} 161-163^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37\left(\mathrm{~d}, J_{4,5}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 4), $7.36\left(\mathrm{~d}, J_{7,5}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.22\left(\mathrm{dd}, J_{5,4}=8.3 \mathrm{~Hz}\right.$, $\left.J_{5,7}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 4.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.97(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 3.88 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.3,160.3,152.5,133.2,132.2,124.0,122.8$, 107.1, 55.7, 53.7, 48.7.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1771, 1690, 1494, 1423, 1272, 1250, 1002, 779.
HRMS m/z (M+Na) ${ }^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{Na}: 244.0580$; found: 244.0580 .

3.22 Synthesis of 6-bromo-1-oxo- N -phenyl-1,3-dihydro-2H-isoindole-2-

carboxamide (168b)

To a solution urea derivative $\mathbf{1 6 6 b}(0.60 \mathrm{~g}, 1.65 \mathrm{mmol})$ in $\mathrm{MeCN}(150 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.68 \mathrm{~g}, 4.95 \mathrm{mmol})$. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 2 hours. After completion of the reaction, excess $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered and washed with MeCN (10 mL). The solvent was evaporated and the residue was chromatographed (silica gel, EtOAc-hexane, 1:1) to give $\mathbf{1 6 8 b}(0.47 \mathrm{~g}, 85 \%)$ as a white powder; mp $241-243{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.55$ (br s, 1 H , NH), $8.00\left(\mathrm{~d}, J_{7,5}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.74\left(\mathrm{dd}, J_{5,4}=\right.$
$\left.8.1 \mathrm{~Hz}, J_{5,7}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40\left(\mathrm{~d}, J_{4,5}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.0,149.9,139.7,137.3,137.0,133.0,129.1$, 127.9, 125.0, 124.3, 122.7, 120.2, 48.4.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1702, 1678, 1444, 1368, 1311.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{2}$: C, 54.40; H, 3.35; N, 8.46. Found: C, 54.09; H, 3.41; N, 8.35.

3.23 Synthesis of 6-methoxy-1-oxo- N -phenyl-1,3-dihydro- 2 H -isoindole-2-

 carboxamide (168c)To a solution of urea derivative $\mathbf{1 6 6 c}(0.32 \mathrm{~g}, 1.02 \mathrm{mmol})$ in $\mathrm{MeCN}(150 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.42 \mathrm{~g}, 3.06 \mathrm{mmol})$. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 2 hours. After completion of the reaction, excess $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered and washed with MeCN (10 mL). The solvent was evaporated and the residue was chromatographed (silica gel, EtOAc-hexane, 1:1) to give $\mathbf{1 6 8 c}(0.24 \mathrm{~g}, 83 \%)$ as a white powder, mp $193-195{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.7$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $7.53(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38\left(\mathrm{br} \mathrm{d}, J_{4,5}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-4), 7.33-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.18\left(\mathrm{dd}, J_{5,4}=8.4, J_{5,7}=\right.$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.05 (br t, J = 7.4 Hz, 1 H), 4.79
(s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,159.3,149.3,136.5,132.5,131.1,128.1$,
123.3, 123.1, 121.8, 119.1, 105.9, 54.7, 47.2.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3242, 3220, 3034, 1710, 1674, 1339, 1257, 1145, 749.
HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}: 305.0902$; found: 305.0926.

3.24 Synthesis of 1-chloro-3-[2-(chlorocarbonyl)phenyl]propan-1-one (173)

To a suspension of 2-(2-carboxyethyl)benzoic acid $172(1.0 \mathrm{~g}, 5.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, oxalyl chloride ($1.77 \mathrm{~mL}, 20.6 \mathrm{mmol}$) was added quickly at room temperature. This was followed by the addition of DMF (2 drops) as catalyst, and the reaction mixture was stirred for 4 hours at room temperature. The reaction was
completed after all the starting material had dissolved in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was concentrated under reduced pressure to afford dichloride $\mathbf{1 7 3}$ as a colorless oil; yield: 1.14 g (96\%).

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6)$, 7.59 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.37$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.27-3.19 (m, 4 H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,168.1,141.4,134.9$, 134.5, 132.2, 131.7, 127.8, 47.5, 30.0.

IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2922,1797,1771,1451,1275,1188,750$.

3.25 Synthesis of 1-azido-3-[2-(azidocarbonyl)phenyl]propan-1-one (174)

To a solution of dichloride $\mathbf{1 7 3}(1.14 \mathrm{~g}, 4.93 \mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, a solution of $\mathrm{NaN}_{3}(1.28 \mathrm{~g}, 19.7 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added. Precipitation of inorganic salt was immediately observed. After completion of the addition, the resulting mixture was stirred for 1 hour and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added. The mixture was extracted with EtOAc $(3 \times 75 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent under reduced pressure, bis(acyl azide) $\mathbf{1 7 4}$ was obtained as a colorless oil which was directly used for the next step without further purification; yield: 0.948 g (79\%).

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{dd}, \mathrm{J}=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6), 7.43 (dt, J = 7.5, 1.4 Hz, 1H, H-4), 7.25-7.21 (m, $2 \mathrm{H}, \mathrm{H}-3$ and H-5), 3.23 (t, J = 7.6 Hz, 2H, H-2'), $2.63(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-1$ ').
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.3$, 173.7, 143.5, 134.4, 132.3, 132.0, 129.6, 127.5, 38.5, 30.2.
IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2979, 2275, 2137, 1715, 1692, 1229, 1082, 913, 748.

3.26 Synthesis of 1-isocyanato-2-(2-isocyanatoethyl)benzene (175)

Bis(acyl azide) 174 ($0.59 \mathrm{~g}, 2.4 \mathrm{mmol}$) was dissolved in anhyd benzene (50 mL) and the mixture was refluxed for 1 hour. After completion of the reaction, the reaction
mixture was concentrated under reduced pressure to give the diisocyanate $\mathbf{1 7 5}$ as a colorless oil which was directly used for the next step without further purification; yield: $0.33 \mathrm{~g}(72 \%)$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-$ 5), 7.10 (br dd, $\mathrm{J}=7.3,1.4 \mathrm{~Hz}, \mathrm{H}-3$ or $\mathrm{H}-6), 7.06(\mathrm{br} \mathrm{dd}, \mathrm{J}=7.9$, $1.2 \mathrm{~Hz}, \mathrm{H}-3$ or H-6), $3.46\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.87(\mathrm{t}, \mathrm{J}=$ $\left.6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.4,133.7,132.6,130.3,128.3,128.0,127.3$, 124.3, 44.7, 35.8.

IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2968,2274,2146,1713,1513,1226,756$.

3.27 Synthesis of \boldsymbol{N}-(2-\{2-[(anilinocarbonyl)amino]ethyl\}phenyl)-N'-phenyl urea (176)

A solution of aniline ($1.2 \mathrm{~g}, 12.9 \mathrm{mmol}$) in benzene (5 mL) was added dropwise to a stirred solution of diisocyanate $175(1.0 \mathrm{~g}, 5.32 \mathrm{mmol})$ in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at room temperature and the mixture was stirred for 12 hours. The formed diurea 176 was collected by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5-10 \mathrm{~mL})$ to give a colorless powder; yield: $1.36 \mathrm{~g}(69 \%) ; \mathrm{mp} 207-208.5^{\circ} \mathrm{C}$.

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 8.84$ (s, NH), 8.63 (s, NH), 8.33 (s, NH), 7.87 (dd, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (br d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{br} \mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (br t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (br t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.21-$ $7.18(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{dt}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (br t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (br t, $J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{NH}), 3.38-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 155.8,152.8,140.2,139.8,137.4,129.5,129.2$, $128.8,128.6,126.7,122.9,121.74,121.69,121.3,118.1,117.9,39.1,31.7$.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3347, 3218, 3043, 1648, 1620, 1565, 1317, 1179, 893, 709, 691
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 70.57; H, 5.92; N, 14.96. Found: C, 70.22; H, 5.88; N, 15.03.

3.28 Synthesis of N, N '-Diphenylurea (179)

LDA solution was prepared by the addition of $1.6 \mathrm{M} n-\mathrm{BuLi}$ in hexane ($3.67 \mathrm{~mL}, 5.9$ $\mathrm{mmol})$ to a solution of freshly distilled $i-\mathrm{Pr}_{2} \mathrm{NH}(0.83 \mathrm{~mL}, 5.9 \mathrm{mmol})$ in THF (5 mL) at $-78{ }^{\circ} \mathrm{C}$, followed by stirring for 30 min . Diurea $176(0.5 \mathrm{~g}, 1.34 \mathrm{mmol})$ was added to the solution. The mixture was refluxed for 7 days. The reaction was monitored by TLC. After completion of the reaction, aq $\mathrm{NH}_{4} \mathrm{Cl}$ solutionn (20 mL) was added, the mixture was extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$ and the extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of EtOAc gave a mixture (0.35 g). Chromatography of this mixture over silica gel (EtOAc-hexane, 1:2) gave N, N '-diphenylurea 179; yield: 99 mg (35%; 47% based on the consumed starting material); as the second fraction, unreacted starting material 176 was isolated ($130 \mathrm{mg}, 0.35 \mathrm{mmol}$).

${ }^{1} \mathbf{H}-\mathrm{NMR}$ (400 MHz, DMSO- d_{6}) $\delta 8.72$ (s, 2H, NH), 7.50 (br d, J = 7.6 Hz, 4H), 7.32 (br t, J = 7.6 Hz, 4 H), 7.00 (br $\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 152.5,139.7,128.7,121.8,118.2$.

3.29 Synthesis of methyl 2-\{2 [(methoxycarbonyl)amino]ethyl\}phenyl

carbamate (182)

Bis(acyl azide) $\mathbf{1 7 4}$ ($2.87 \mathrm{~g}, 11.75 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(150 \mathrm{~mL})$ and the mixture was refluxed for 6 hours. The reaction was monitored by TLC. After completion of the reaction, the solvent was removed under reduced pressure. Chromatography of the residue on silica gel (50 g ; $\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 3$) afforded the known 3,4-dihydroquinolin- $2(1 \mathrm{H})$-one ${ }^{58}(\mathbf{1 8 3})$ as the first fraction; yield: 0.092 g (5.4\%). The second fraction was identified as diurethane 182; yield: $2.55 \mathrm{~g}(86 \%)$; colorless crystals (EtOAc); mp 82-84 ${ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79$ (br s, 1 H), 7.42 (br s, $1 \mathrm{H}, \mathrm{NH}), 7.18(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.99 (t, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (br s, $1 \mathrm{H}, \mathrm{NH}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$, OCH_{3}), $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.23(\mathrm{dt}, \mathrm{J}=7.4,6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.75(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.8,155.1,136.1,129.9,129.2,127.6,124.5$, 122.6, 52.5, 52.3, 41.3, 31.8.

IR $\left(\mathrm{KBr}^{2} \mathrm{~cm}^{-1}\right) 3324,3015,2953,1704,1533,1242,1068,757$.
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 57.13; H, 6.39; N, 11.10. Found: C, 57.43; H, 6.43; N, 11.12.

3.30 Synthesis of methyl 2-oxo-1,2,4,5-tetrahydro-3H-1,3-benzodiazepine-3-

 carboxylate (184)Diurethane 182 ($500 \mathrm{mg}, 1.98 \mathrm{mmol}$) was dissolved in THF (25 mL) under N_{2} atmosphere and reacted with LiHMDS as described for the reaction of $\mathbf{1 8 5}$ below. After reaction workup, the residue was chromatographed on silica gel (EtOAc$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1$) to give $\mathbf{1 8 4}$ as colorless crystals (EtOAc-n-hexane); yield: 176 mg (44%); mp 145-147 ${ }^{\circ} \mathrm{C}$. Prolonged reaction time resulted in decreased yield of the product; the hydrolysis product was formed.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.157.11 (m, 2H), 7.02 (dt, J = 7.4, 1.3 Hz, 1H, H-7), 6.82 (br dd, $\mathrm{J}=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.95(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 3.73$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.03(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.5,154.4,135.8,130.7,128.6,127.6,124.9$, 121.2, 53.8, 46.5, 31.6.

IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3245,2956,2916,1700,1403,1309,1219,772$.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 59.99; H, 5.49; N, 12.72. Found: C, 59.62; H, 5.49; N, 12.70.

3.31 Synthesis of tert-butyl 2-\{2-[(tert-butoxycarbonyl)amino]ethyl\}phenyl carbamate (185)

Bis(acyl azide) $\mathbf{1 7 4}$ ($2.37 \mathrm{~g}, 9.7 \mathrm{mmol}$) was dissolved in t - $\mathrm{BuOH}(200 \mathrm{~mL})$ and the mixture was refluxed for 12 hours. The reaction was monitored by TLC. After completion of the reaction, the solvent was removed under reduced pressure. Chromatography of the residue on silica gel (50 g ; EtOAc- n-hexane, $1: 3$) afforded
diurethane 185; yield: 2.12 g (65\%); colorless crystals (EtOH- n-hexane); mp 90-92 ${ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{br} \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}$, 1 H), 7.43 (br s, $1 \mathrm{H}, \mathrm{NH}$), $7.14(\mathrm{dt}, \mathrm{J}=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.01 (br d, J = $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{br} \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.80 (br s, 1H, NH), 3.16 (dt, J = 7.8, $6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$), $2.70(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.45\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.39\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 156.7,153.8,136.8,129.7,128.7,127.4,123.7$, 122.2, 80.0, 79.7, 41.1, 32.1, 28.4, 28.0.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3333, 2979, 2934, 1690, 1520, 1166, 744.
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 64.26; H, 8.39; N, 8.33. Found: C, 64.01; H, 8.25; N, 8.62.

3.32 Synthesis of tert-butyl 2-oxo-1,2,4,5-tetrahydro-3H-1,3-benzodiazepine

3-carboxylate (186)

Diurethane 185 ($1.14 \mathrm{~g}, 3.4 \mathrm{mmol}$) was dissolved in THF (25 mL) under N_{2} atmosphere. A solution of 1 M LiHMDS in THF (5.1 mL , 5.1 mmol) was added dropwise and the resulting mixture was refluxed for 1 hour. After completion of the reaction, aq $\mathrm{NH}_{4} \mathrm{Cl}$ solution (25 mL) was added, the mixture was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and the extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. After evaporation of the solvent, the residue was crystallized (EtOAc-n-hexane) to give 186 as colorless crystals; yield: 462 mg (52%); mp 177-179 ${ }^{\circ} \mathrm{C}$.

${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.19 (br d, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 7.17 (br d, J $=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6), 7.08-7.03 (m, 2 H, H-7 and H-8), 3.98 (t, J = 6.0 Hz ,
$2 \mathrm{H}, \mathrm{H}-4), 3.09$ (t, J = $6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 1.51\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.2,152.5,136.4,130.7,128.1,127.3,124.2$, 121.3, 82.4, 45.3, 32.3, 28.1.

IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3243,3162,3003,2989,2901,1702,1156,759$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 64.10; H, 6.92; N, 10.68. Found: C, 63.89; H, 6.92; N, 10.70.

3.33 Synthesis of 1,3,4,5-Tetrahydro-2H-1,3-benzodiazepin-2-one (180)

1,3-Benzodiazepine-3-carboxylate $\mathbf{1 8 6}(80 \mathrm{mg}, 0.3 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$. TFA ($235 \mathrm{mg}, 2 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 1 hour at room temperature. After completion of the reaction, $\mathrm{H}_{2} \mathrm{O}$ (20 mL) was added and the resulting mixture was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent gave the crude product $\mathbf{1 8 0}$ [yield: $\mathbf{4 5} \mathrm{mg}$ (91%)] which was crystallized (EtOAc-n-hexane) to give colorless crystals; mp 170-172 ${ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.00(\mathrm{br} \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8)$, 6.94 (br d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 6.85 (br d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 6.80 (br t, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 4.75 (br s, 2H, NH), 3.26-3.24 (m, 2H, H-4), 2.89-2.87 (m, 2H, H-5).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 159.2,138.4,130.5,130.2,127.8,123.0,119.7$, 43.2, 35.3.

3.34 Synthesis of 1,3-Diacetyl-1,3,4,5-tetrahydro-2H-1,3-benzodiazepin-2-one

 (188)1,3-Benzodiazepin-2-one $\mathbf{1 8 0}$ ($120 \mathrm{mg}, 0.74 \mathrm{mmol}$) was dissolved in THF (10 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. $\mathrm{NaH}(60 \% ; 150 \mathrm{mg}, 3.75 \mathrm{mmol})$ was added and the reaction mixture was allowed to warm to room temperature and was stirred for 30 min . Then, $\mathrm{Ac}_{2} \mathrm{O}$ ($500 \mathrm{mg}, 4.9 \mathrm{mmol}$) was added and the mixture was stirred for an additional 30 min at room temperature. After completion of the reaction, excess NaH was quenched by the dropwise addition of $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times$ 25 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated to give the crude diacetyl derivative 188. Chromatography of the residue over a short silica gel column (EtOAc- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1$) gave pure 188 as a colorless oil; yield: $127 \mathrm{mg}(70 \%)$.

${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.17(\mathrm{~m}, 4 \mathrm{H}), 4.01$ (br s, $2 \mathrm{H}, \mathrm{H}-4), 3.00(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.24$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.3,168.5,154.7,132.9$, $130.8,128.2,127.02,126.97,125.4,42.0,27.8,23.2,22.3$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 63.40; H, 5.73; N, 11.38. Found: C, 63.02; H, 5.56; N, 11.61.

3.35 Synthesis of diethyl 2-oxo-4,5-dihydro-1H-1,3-benzodiazepine-1,3(2H)

dicarboxylate (189)

1,3-Benzodiazepin-2-one $\mathbf{1 8 0}$ ($120 \mathrm{mg}, 0.74 \mathrm{mmol}$) was carboxylated by adding NaH as described above, then adding ethyl chloroformate ($540 \mathrm{mg}, 5 \mathrm{mmol}$). Chromatography of the residue over a short silica gel column ($\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1$) gave pure diester derivative 189; yield: 188 mg (83\%); mp 62-64 ${ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.15(\mathrm{~m}, 4 \mathrm{H}), 4.23(\mathrm{q}$,
$\left.\mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.13\left(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 3.97 ($\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4$), $3.03(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5)$, $1.23(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} 3), 1.18\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.7,152.9,152.2,135.2$, 132.5, 129.7, 128.6, 128.5, 127.2, 63.5, 63.4, 46.1, 30.0, 14.23, 14.16.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2984, 1791, 1728, 1370, 1220, 773.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 58.82; H, 5.92; N, 9.15. Found: C, 58.51; H, 6.12; N, 9.16.

3.36 Synthesis of 2-(2-Methoxycarbonylethyl)benzoic acid (190)

2-(2-carboxyethyl)benzoic acid $\mathbf{1 7 2}$ ($4.98 \mathrm{~g}, 25.6 \mathrm{mmol}$) was dissolved in methanol $(100 \mathrm{~mL})$, concentrated sulphuric acid (2.5 mL) was added and the solution stirred at room temperature for 30 minutes. The solution was concentrated at $30^{\circ} \mathrm{C}$ to about $1 / 10$ of the solution. The residue was dissolved in water (60 mL), and 1 M NaOH (60 mL) was added while stirring. The pH was brought to 8 by saturated NaHCO_{3} and more 1 M NaOH . The aqueous solution was washed with diethylether ($2 \times 100 \mathrm{~mL}$)
and the ether phases were discarded. The aqueous phase was acidified with concentrated HCl to pH 1-2 and the acidic product extracted four times with diethylether. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents removed by a rotary evaporator at $30^{\circ} \mathrm{C}$ to give (190) $(5.04 \mathrm{~g}, 95 \%)$ was obtained as a colourless solid. ${ }^{49}$

${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (dd, $J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6), 7.43$ (dt, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H})$, $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.28\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.65(\mathrm{t}, J=$ 7.6 Hz, 2H, H-1').
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,171.6,142.4,132.2,130.9,130.4,127.1$, 125.6, 50.6, 34.5, 28.9.

3.37 Synthesis of methyl 3-[2-(chlorocarbonyl)phenyl]propanoate (191)

To a stirred suspension of half ester $190(0.96 \mathrm{~g}, 4.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added oxalyl chloride $(0.44 \mathrm{ml}, 5.07 \mathrm{mmol})$ and DMF (2 drops) as catalyst. The resulting solution was stirred at room temperature for 1 hour. After completion of the reaction, the solvent was evaporated to give $191(0.97 \mathrm{~g}, 93 \%)$ as a viscous oil.

${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\delta, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, $7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 7.27 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.13(\mathrm{t}, J=$ $\left.7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 2.54\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,167.8,143.3,134.5,134.1,132.3,131.4$, 127.1, 51.7, 34.8, 29.7.

IR (ATR, cm^{-1}) 2952, 1770, 1736, 1437, 1188, 868, 650.

3.38 Synthesis of 1-[2-(3-methoxy-3-oxopropyl)benzoyl]triaza-1,2-dien-2-ium

 (192)To a solution of acyl chloride $191(0.90 \mathrm{~g}, 3.97 \mathrm{mmol})$ in acetone (25 mL) was added a solution of $\mathrm{NaN}_{3}(0.52 \mathrm{~g}, 7.94 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ dropwise at $0{ }^{\circ} \mathrm{C}$ and the
mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour. After the addition of $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ the mixture was extracted with EtOAc $(3 \times 25 \mathrm{~mL})$, and the combined extracts were washed with sat. NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, and dried $\left(\mathrm{MgSO}_{4}\right)$. After concentration of the solvent, acyl azide 192 ($0.82 \mathrm{~g}, 89 \%$), unstable at room temperature, was obtained as colorless oil, which was used for the next step without purification.

${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6)$, $7.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.30-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.23\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2{ }^{\prime}\right), 2.59(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, 1 ').
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,173.1,143.6,133.7,131.7,131.3,129.1$, 126.7, 51.6, 35.3, 29.9.

IR (ATR, cm^{-1}) 2952, 2277, 2133, 1736, 1689, 1436, 1224, 1175, 976.

3.39 Synthesis of methyl 3-(2-isocyanatophenyl)propanoate (193)

Acyl azide 192 ($0.5 \mathrm{~g}, 2.14 \mathrm{mmol}$) was dissolved in anhydrous benzene (50 mL) and the mixture was refluxed for 1 hour. After completion of the reaction, the reaction mixture was concentrated under reduced pressure to give the isocyanate 193 as a colorless oil which was directly used for the next step without further purification; yield: 0.37 g (83%).

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.15-6.95 (m, 4H), 3.58 ($\mathrm{s}, 3 \mathrm{H}$, OCH_{3}), $2.88\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2{ }^{\prime}\right), 2.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, H-3').
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,134.6,132.1,130.0,128.4,127.7,126.1$, 125.0, 51.7, 34.1, 27.4.

IR (ATR, cm^{-1}) 2952, 2268, 1736, 1510, 1158, 754.

3.40 Synthesis of methyl 3-\{2-[(anilinocarbonyl)amino]phenyl\}propanoate

A solution of aniline $(0.34 \mathrm{~g}, 3.70 \mathrm{mmol})$ in benzene $(5 \mathrm{~mL})$ was added dropwise to a stirred solution of isocyanate 193 ($0.69 \mathrm{~g}, 3.36 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL)
at room temperature and the mixture was stirred for 12 hours. The formed urea 194 was collected by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5-10 \mathrm{~mL})$ to give a white solid; yield: $0.79 \mathrm{~g}(79 \%) ; \mathrm{mp} 138.5-140{ }^{\circ} \mathrm{C}$.
 ${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 7.54 (br d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{br} \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.05(\mathrm{~m}, 5 \mathrm{H})$, $7.00(\mathrm{dt}, \mathrm{J}=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.81\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 2.56(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, 2H, H-2').
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 174.6,154.2,138.6,135.9,133.7,129.8,129.0$, $127.5,125.4,125.2,123.3,120.2,52.0,34.5,25.9$.

IR (ATR, cm^{-1}) 3275, 1739, 1638, 1547, 1451, 1209, 1155,753.

3.41 Synthesis of methyl 3-\{2-[(metoxycarbonyl)amino]phenyl\}propanoate

 (195)A solution of acyl azide $192(0.53 \mathrm{~g}, 2.27 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL})$ was refluxed for 12 hours with TLC monitoring. After completion of reaction,the solvent was removed under vacuum. Chromatography of the residue (silica gel, $50 \mathrm{~g}, \mathrm{EtOAc}-$ hexane, 1:1.5) afforded $195(0.46 \mathrm{~g}, 86 \%)$ as a white solid; mp $69-71{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.71 (br s, $1 \mathrm{H}, \mathrm{H}-3$), 7.24 (dt, J = 7.9, $1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.16 (dd, $\mathrm{J}=7.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.09 (dt, J = 7.5, $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.80 (s , $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.90(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$ '), $2.71\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.5,155.0,135.7,131.8,129.6,127.3,124.8$, 123.5, 52.3, 52.0, 34.9, 25.3.

IR (ATR, cm^{-1}) 3290, 1743, 1693, 1527, 1453, 1252, 1151, 754.
3.42 Synthesis of methyl 3-\{2-[(tert-butoxycarbonyl)amino]phenyl\}propanoate (196)

A solution of acyl azide $192(0.67 \mathrm{~g}, 2.87 \mathrm{mmol})$ in t-BuOH (100 mL) was refluxed for 48 hours with TLC monitoring. After completion of reaction,the solvent was removed under vacuum. Chromatography of the residue (silica gel, 50 g , EtOAchexane, 1:2) afforded $196(0.66 \mathrm{~g}, 82 \%)$ as a colorless oil.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{br} \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18-7.07 (m, 2H), $7.06(\mathrm{dd}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dt}, \mathrm{J}=$ $7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.82(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}-3^{\prime}\right), 2.61\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2{ }^{\prime}\right), 1.46\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]$. ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 174.0,153.7,136.0,131.5,129.3,127.1,124.4$, 123.4, 80.2, 51.9, 34.6, 28.4, 25.6.

IR (ATR, $\left.\mathrm{cm}^{-1}\right) 3343,1720,1589,1516,1447,1233,1153,752$.

3.43 Synthesis of 3-\{2-[(anilino-carbonyl)amino]phenyl\}propanoic acid (197)

To a solution of ester $194(0.72 \mathrm{~g}, 2.41 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1,50 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.40 \mathrm{~g}, 2.89 \mathrm{mmol})$ and the mixture was refluxed for 45 min . The mixture was cooled to r.t. and $\mathrm{H}_{2} \mathrm{O}$ was added. To remove the unreacted ester 194, the aqueous phase was extracted with EtOAc. The aqueous phase was acidified with 1 M HCl and extracted with EtOAc. Evaporation of the solvent gave pure 197 as a pale yellow solid; yield: $0.62 \mathrm{~g}(91 \%)$; mp $159.5-161^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 12.21$ (br s, 1 H), 9.01 (br s, 1 H), 7.97 (br s, 1H), 7.77 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.88$ (m, 2H), $2.84(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.

[^1]IR (ATR, cm^{-1}) 3283, 3037, 1699, 1639, 1548, 1443, 1236,748.

3.44 Synthesis of 3-\{2-[(methoxycarbonyl)amino]phenyl\}propanoic acid (198)

To a solution of ester $195(0.51 \mathrm{~g}, 2.15 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1,50 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.36 \mathrm{~g}, 2.58 \mathrm{mmol})$ and the mixture was refluxed for 45 min . The mixture was cooled to r.t. and $\mathrm{H}_{2} \mathrm{O}$ was added. To remove the unreacted ester 195, the aqueous phase was extracted with EtOAc. The aqueous phase was acidified with 1 M HCl and extracted with EtOAc. Evaporation of the solvent gave pure 198 as a white solid; yield: 0.46 g (95%); mp $158-159{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.20$ (br s, 1H), 8.93 (br s, $1 \mathrm{H}), 7.32$ (d, J = 7.7 Hz, 1H), 7.25-7.15 (m, 2H), 7.11 (d, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.80(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.48$ (t, J = 7.7 Hz, 2H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 172.8,153.8,134.6,133.6,127.9,125.1,124.3$, 123.9, 50.4, 32.6, 24.5.

IR (ATR, cm^{-1}) 3290, 2949, 1710, 1692, 1533, 1246, 1067.

3.45 Synthesis of 3-\{2-[(tert-butoxycarbonyl)amino]phenyl\}propanoic acid

 (199)To a solution of ester $196(0.42 \mathrm{~g}, 1.50 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1,50 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.25 \mathrm{~g}, 1.80 \mathrm{mmol})$ and the mixture was refluxed for 45 min . The mixture was cooled to r.t. and $\mathrm{H}_{2} \mathrm{O}$ was added. To remove the unreacted ester 196, the aqueous phase was extracted with EtOAc. The aqueous phase was acidified with 1 M HCl and extracted with EtOAc. Evaporation of the solvent gave pure 199 as a white solid; yield: $0.36 \mathrm{~g}(89 \%)$; mp $112.5-114{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.00-10.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.65(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.25-7.15$ (m, 3H), 7.09 (t, J = 7.5 Hz, 1H), 2.93 (t, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.80-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.53$ [s, 9H, OC($\left.\left.\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.6,154.6,135.8,132.0$, 129.4, 127.1, 124.9, 124.0, 80.9, 34.4, 28.3, 25.6.

IR (ATR, cm^{-1}) 3394, 2983, 1702, 1523, 1458, 1157, 742.

3.46 Synthesis of 2-oxo- N -phenyl-3,4-dihydroquinoline-1(2H)-carboxamide

 (200)To a solution of the 3-\{2-[(anilino-carbonyl)amino]phenyl \}propanoic acid 197 (0.50 $\mathrm{g}, 1.76 \mathrm{mmol}$) in 50 ml dry THF was added thionyl chloride $(0.26 \mathrm{ml}, 3.52 \mathrm{mmol})$ and refluxed for 12 hours. The reaction medium was checked by TLC. After the completion of the reaction, evaporation of the solvent gave crude product which was purified by chromatography (silica gel, 50 g , EtOAc-hexane, 1:2) afforded 200 (0.39 $\mathrm{g}, 84 \%)$ as a white solid; $\mathrm{mp} 117-119{ }^{\circ} \mathrm{C}$.

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.82$ (br s, 1 H), $7.52(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.00(\mathrm{~m}, 6 \mathrm{H}), 2.84(\mathrm{t}, \mathrm{J}=$ 6.7 Hz, 2H), $2.70(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.6,150.7,137.5,135.9,130.2$, $129.1,127.2,126.8,125.7,124.5,124.2,120.5,35.8,25.0$.

IR (ATR, $\left.\mathrm{cm}^{-1}\right) 3180,2916,1717,1592,1548,1445,1160,751$.

3.47 Synthesis of methyl 2-oxo-3,4-dihydroquinoline-1(2H)-carboxylate (201)

To a solution of the 3-\{2-[(methoxycarbonyl)amino]phenyl\}propanoic acid 198 $(0.50 \mathrm{~g}, 2.24 \mathrm{mmol})$ in 50 ml dry THF was added thionyl chloride $(0.33 \mathrm{ml}, 4.48$ mmol) and refluxed for 8 hours. The reaction medium was checked by TLC. After the completion of the reaction, evaporation of the solvent gave crude product which was purified by chromatography (silica gel, $50 \mathrm{~g}, \mathrm{EtOAc}$-hexane, 1:1.5) afforded $201(0.35 \mathrm{~g}, 76 \%)$ as a white solid; $\mathrm{mp} 149-151^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{dt}, \mathrm{J}=7.4$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.97(\mathrm{t}, \mathrm{J}$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,154.0,136.8,127.9,127.4$, 127.0, 124.8, 118.6, 54.9, 33.0, 25.5.

IR (ATR, cm^{-1}) 3336, 2954, 1701, 1526, 1460, 1237, 758.

To a solution of the 3-\{2-[(tert-butoxycarbonyl)amino]phenyl\}propanoic acid 199 $(0.45 \mathrm{~g}, 1.70 \mathrm{mmol})$ in 50 ml dry THF was added thionyl chloride $(0.25 \mathrm{ml}, 3.39$ $\mathrm{mmol})$ and refluxed for 8 hours. The reaction medium was checked by TLC. After the completion of the reaction, evaporation of the solvent gave crude product which was purified by chromatography (silica gel, 50 g , EtOAc-hexane, 1:1) afforded $\mathbf{1 8 3}$ ($0.17 \mathrm{~g}, 68 \%$) as a white solid.

${ }^{1} \mathbf{H}-\mathrm{NMR} \quad\left(400 \mathrm{MHz}, \quad \mathrm{DMSO}-d_{6}\right) \quad \delta \quad 10.08 \quad(\mathrm{br} \quad \mathrm{s}, \quad 1 \mathrm{H}$, NH), 7.25-7.05 (m, 2H), $6.90(t, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.86(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 170.2,138.2,127.7,127.0,123.5,121.9,114.9$, 30.4, 24.7.

3.49 General Procedure for oxidative addition of acetylacetone to alkenes in the presence of $\mathrm{Mn}(\mathrm{OAc})_{3}$ and HCl

A solution of alkene (5 mmol) and acetylacetone $(0.50 \mathrm{~g}, 5 \mathrm{mmol})$ in 15 mL of glacial acetic acid was added to a solution of $\mathrm{Mn}(\mathrm{OAc})_{3} 2 \mathrm{H}_{2} \mathrm{O}(2.68 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{HCl}(1,5 \mathrm{~mL}, 37 \%)$ in 50 mL of glacial acetic acid. The resulting mixture was stirred under N_{2} at $55^{\circ} \mathrm{C}$ for 24 h . When the reaction was complete, the solution was concentrated in vacuo and quenched with 2 x 75 ml saturated NaHCO_{3} solution. The solution was extracted with dichloromethane. The combined organic layers were washed several times with water and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent gave the crude compound, which was purified by column chromatography.

3.50 General Procedure for conversion of diacyl derivatives to acetonyl compounds with ammonia

1,3-Diacetyl compound (3 mmol) was dissolved in 50 mL of methanol. The mixture was stirred magnetically for 24 h at room temperature while passing $\mathrm{NH}_{3}(\mathrm{~g})$ through this solution. The solvent was removed under reduced pressure to give the hydrolysis
products. To obtain analytical sample, the crude product was subjected to column chromatography (SiO_{2} Hexane/EtOAc, 4:1).

3.51 Synthesis of rel-(1R,2S)-3-(2-chlorocyclopentyl)pentane-2,4-dione (208) \&

 rel-(1-((3aR,6aR)-(2-methyl-4,5,6,6a - tetrahydro- 3aH- cyclopenta[b]furan-3 yl) ethanone (209)Acetylacetone ($2.21 \mathrm{~g}, 22.02 \mathrm{mmol}$), cyclopentene ($1.5 \mathrm{~g}, 22.02 \mathrm{mmol}$), $\mathrm{Mn}(\mathrm{OAc})_{3} 2 \mathrm{H}_{2} \mathrm{O}(11.81 \mathrm{~g}, 44.04 \mathrm{mmol})$ in 220 mL of glacial acid was reacted as described above. Chromatography of the residue on silica gel (hexane/EtOAc, 4:1) gave 208 as the first fraction. The dihydrofuran derivative 209 was isolated as the second fraction.
rel-(1R,2S)-3-(2-chlorocyclopentyl)pentane-2,4-dione (208) Colorless oil (1.38 g, 31%).

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.50(\mathrm{br} \mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76 (dddd, $J=11.2,10.8,7.4$ and 4.1 Hz , $1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.80-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.40(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 203.1, 202.4, 71.4, 65.8, 45.6, 35.9, 30.7, 29.3, 26.1, 21.2.

IR (ATR, cm^{-1}): 2959, 1734, 1698, 1421, 1358, 1266, 735;
HRMS: Calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClO}_{2}$: 203.0833. Found: 203.0796. rel-(1-((3aR,6aR)-(2-methyl-4,5,6,6a - tetrahydro- 3 aH - cyclopenta[b]furan-3
yl) ethanone (209) Pale yellow oil ($1.68 \mathrm{~g}, 46 \%$).

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.04$ (br dt, $J=8.0$ and 2.9 Hz , 1 H), 3.59 (br t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19 (s, 3H), 2.17 (d $J=1.2 \mathrm{~Hz}$, $3 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.40(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.8,167.0,116.3,88.6,47.2$, 35.1, 33.7, 29.2, 23.0, 15.2.

IR (ATR, cm^{-1}): 2970, 1720, 1604, 1376, 1239, 1016, 953.

HRMS: Calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}$: 167.10666 Found: 167.10700.
3.52 Synthesis of rel-(1R,2S)-3-(2-chlorocyclohexyl)pentane-2,4-dione (211).

Acetylacetone $(0.61 \mathrm{~g}, 6.09 \mathrm{mmol})$, cyclohexene $(0.5 \mathrm{~g}, 6.09 \mathrm{mmol})$, $\mathrm{Mn}(\mathrm{OAc})_{3} 2 \mathrm{H}_{2} \mathrm{O}(3.26 \mathrm{~g}, 12.08 \mathrm{mmol})$ in 120 mL of glacial acid was reacted as described above. Chromatography of the residue on silica gel (30 g , hexane/EtOAc, 4:1) gave the addition product 211; colorless oil ($1.12 \mathrm{~g}, 85 \%$).

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.95(\mathrm{~d}, \quad J=10.7$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.48(\mathrm{tt}, J=10.7$ and $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}$, $3 H), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.33(\mathrm{~m}, 2 \mathrm{H})$, $1.30-1.15(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (100 MHz, CDCl_{3}) $\delta 203.0,202.5,72.9,61.9,42.3,34.1,31.4,29.5,25.3$, 24.1, 19.3.

IR (ATR, cm^{-1}): 2937, 1733, 1697, 1358, 1201, 1170, 735.
HRMS (M-HCl), Calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$: 181.12231. Found: 181.12232.
3.53 Synthesis of rel-(1R,2S)-3-(2-chlorocycloheptyl)pentane-2,4-dione (213) \& rel-1-((3aR,8aR)-2-methyl-4,5,6,7,8,8a-hexahydro-3aH-cyclohepta[b]furan-3-yl) ethanone (214).

Acetylacetone ($0.52 \mathrm{~g}, 5.2 \mathrm{mmol}$), cycloheptene ($0.5 \mathrm{~g}, 5.2 \mathrm{mmol}$), $\mathrm{Mn}(\mathrm{OAc})_{3} 2 \mathrm{H}_{2} \mathrm{O}$ ($2.79 \mathrm{~g}, 10.4 \mathrm{mmol}$) in 120 mL of glacial acid was reacted as described above. Chromatography of the residue on silica gel (hexane/EtOAc, 4:1) gave 213 as the first fraction. The dihydrofuran derivative $\mathbf{2 1 4}$ was isolated as the second fraction.
rel-(1R,2S)-3-(2-chlorocycloheptyl)pentane-2,4-dione (213) Colorless oil (635 mg , 53%.

${ }^{1}$ H-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.23-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=$ $10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{tt}, J=10.9$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$, 82
$2.10(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.25(\mathrm{~m}, 7 \mathrm{H}) .1 .08-1.02(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (100 MHz, CDCl_{3}) δ 203.5, 202.6, 73.9, 64.6, 45.0, 37.1, 31.2, 29.1, 27.4, 26.6, 25.8, 22.0.

IR (ATR, cm^{-1}): 2929, 1733, 1696, 1420, 1357, 1158, 952.
HRMS: Calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{ClNaO}_{2}$: 253.0966 Found: 253.0964.
rel-1-((3aR,8aR)-2-methyl-4,5,6,7,8,8a-hexahydro-3aH-cyclohepta[b]furan-3-yl) ethanone (214). Pale yellow oil ($355 \mathrm{mg}, 35 \%$).

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.67(\mathrm{dt}, J=9.9 \mathrm{~Hz}$ and 4.7 Hz , $1 \mathrm{H}), 3.18$ (br t, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~d}, J=1.1$ $\mathrm{Hz}, 3 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.10(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 194.1,167.4,117.8,86.4,47.4,31.13,31.1,29.1$, 28.8, 28.4, 23.7, 15.4

IR (ATR, cm^{-1}): 2926, 1713, 1605, 1388, 1223, 948, 734.

HRMS: Calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2}: 195.1380$. Found: 195.1360 .
3.54 Synthesis of rel-1-((3aR,8bS)-(2-methyl-4,8b-dihydro-3aH-indino[1,2-b]
furan-3-yl)ethanone (216). \& rel-(1S,2S)-1,2-Dichloro-2,3-dihydro-1H-indene (217)

Acetylacetone ($0.86 \mathrm{~g}, 8.61 \mathrm{mmol}$), 1 H -indene ($1.0 \mathrm{~g}, 8.61 \mathrm{mmol}$), $\mathrm{Mn}(\mathrm{OAc})_{3} 2 \mathrm{H}_{2} \mathrm{O}$ $(4.62 \mathrm{~g}, 17.22 \mathrm{mmol})$ in 170 mL of glacial acid was reacted as described above. Chromatography of the residue on silica gel (hexane/EtOAc, 5:1) gave 217 as the first fraction. The dihydrofuran derivative $\mathbf{2 1 6}$ was isolated as the second fraction.
rel-1-((3aR,8bS)-(2-methyl-4,8b-dihydro-3aH-indino[1,2-b] furan-3-yl)ethanone (216). White powder, m.p. $81.5-83.5^{\circ} \mathrm{C}(1.38 \mathrm{~g}, 75 \%)$.

${ }^{1} \mathbf{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-$ $7.15(\mathrm{~m}, 3 \mathrm{H}), 5.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 1 \mathrm{H})$, $3.35(\mathrm{dd}$, A-part of AB system, dd, $J=17.0$ and $8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.00 (dd, B-part of AB system, $J=17.0$ and $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.21(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.9,166.2,142.0,139.0,128.6,126.0,124.7$, $124.3,116.4,88.9,44.6,38.5,28.3,14.3$

IR (ATR, cm^{-1}) 2957, 1616, 1343, 1216, 957, 752
HRMS: Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{2}$: 215.1067 Found: 215.1041.
rel-(1S,2S)-1,2-Dichloro-2,3-dihydro-1H-indene (217) Colorless oil (217 mg, $13.5 \%)$.

${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.43-7.35 (m,1H), 7.30-7.15 $(\mathrm{m}, 3 \mathrm{H}), 5.27(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dt}, J=6.1$ and 3.2 Hz , $1 \mathrm{H}), 3.63$ (dd, A-part of AB system, $J=16.8$ and $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (dd, B-part of the AB system, $J=16.8 \mathrm{~Hz}$ and $3.4 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.8$ (2C), 128.6, 126.9, 124.4, 124.0, 66.6, 63.4, 39.7.

IR (ATR, cm^{-1}): 3030, 1475, 1463, 1327, 964, 715, 658.

3.55 Synthesis of rel -3((1R,2R,3R,4S)-(3-chlorobicyclo[2.2.1]hept-2-yl)

pentane-2,4-dione (218).
Acetylacetone ($0.53 \mathrm{~g}, 5.31 \mathrm{mmol})$, norbornene $206(0.5 \mathrm{~g}, 5.31 \mathrm{mmol})$, $\mathrm{Mn}(\mathrm{OAc})_{3} 2 \mathrm{H}_{2} \mathrm{O}(2.85 \mathrm{~g}, 10.62 \mathrm{mmol})$ in 120 mL of glacial acid was reacted as described above. Chromatography of the residue on silica gel (hexane/EtOAc, 5:1) gave the product 218. White crystalls, m.p. $50-52{ }^{\circ} \mathrm{C}$ ($793 \mathrm{mg}, 65 \%$).

${ }^{\mathbf{1}} \mathbf{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.11(\mathrm{dd}, J=7.1$ and 1.3 Hz , $1 \mathrm{H}), 3.93(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{ddd}, J=12.1,7.1$ and 1.1 $\mathrm{Hz}, 1 \mathrm{H}), 2.36(\mathrm{br} \mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$, $1.83-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.25-$ 1.08 (m, 3H)
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.9,202.7,72.3,66.6,47.8,46.7,39.4,33.4,29.6$, 28.2, 25.8

IR (ATR, cm^{-1}): 2968, 1693, 1357, 1241, 1176, 1158, 893
HRMS: Calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClNaO}_{2}$: 251.0809. Found: 203.0781.

3.56 Synthesis of rel-3-((1S,2R,3R,4S)-3-chloro-1,2,3,4-tetrahydro-1,4-

epoxynaphthalen-2-yl)pentane-2,4-dione (220).
Acetylacetone ($0.35 \mathrm{~g}, 3.47 \mathrm{mmol}$), oxa-benzonorbornadiene $207(0.5 \mathrm{~g}, 3.47 \mathrm{mmol}$), $\mathrm{Mn}(\mathrm{OAc})_{3} 2 \mathrm{H}_{2} \mathrm{O}(1.86 \mathrm{~g}, 6.94 \mathrm{mmol})$ in 120 mL of glacial acid was reacted as described above. Chromatography of the residue on silica gel (hexane/EtOAc, 5:1) gave the product 220. White powder, m.p. $113-115^{\circ} \mathrm{C}(843 \mathrm{mg}, 87 \%)$.

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.38-7.00 (m, 4H), 5.24 ($\mathrm{s}, 1 \mathrm{H}$), $4.85(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=11.9 \mathrm{~Hz}$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.27(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.2,201.8,145.7,141.1,128.2,127.4,120.8$, 119.2, 87.1, 81.8, 70.8, 61.5, 46.2, 30.2.

IR (ATR, cm^{-1}): 3022, 1717, 1694, 1354, 1215, 956, 854, 759.
HRMS: Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClO}_{3}$: 279.07825. Found: 279.07893.

3.57 Synthesis of rel-1-((1R,2S)-2-chlorocyclopentyl)propan-2-one (210)

1,3-Diacetyl compound 208 ($547 \mathrm{mg}, 3.7 \mathrm{mmol}$) was reacted with NH_{3} in 50 mL of methanol as described above. Analytical sample 210 was obtained by silica gel column chromatography. Colorless oil, ($377 \mathrm{mg}, 87 \%$).

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.47(\mathrm{dt}, J=3.3$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.75 (dd, A-part of AB-system, $J=18.0 \mathrm{~Hz}$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.50 (dd, B-part of AB-system, $J=18.0 \mathrm{~Hz}$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45-2.30 $(\mathrm{m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.65-$ $1.55(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.30(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100 MHz, CDCl_{3}) $\delta 208.0,67.3,45.1,41.2,36.3,30.4,28.0,21.1$.
IR (ATR, cm^{-1}): 2958, 1716, 1406, 1356, 1260, 1170, 914.

3.58 Synthesis of rel-1-((1R,2S)-2-chlorocyclohexyl)propan-2-one (212).

1,3-Diacetyl compound 211 ($624 \mathrm{mg}, 2.88 \mathrm{mmol}$) was reacted with NH_{3} in 50 mL of methanol for 72 h as described above. Analytical sample 212 was obtained by silica gel column chromatography. Colorless oil, ($490 \mathrm{mg}, 92 \%$).

${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.35$ (br s, 1H), 2.60 (dd, A-part of AB-system, $J=17.8 \mathrm{~Hz}$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 (B-part of ABsystem, dd, $J=17.8 \mathrm{~Hz}$ and $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.08$ $(\mathrm{s}, 3 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.20(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.8,64.6,47.6,37.4,34.2,30.8,26.5,25.2,19.8$
IR (ATR, $\left.\mathrm{cm}^{-1}\right) 1710,1445,1360,1270,1227,1159,684$.

HRMS: Calcd. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{ClO}$: 174.0811 Found: 174.1066.

3.59 Synthesis of rel-1-((1R,2S)-2-chlorocycloheptyl)propan-2-one (215).

1,3-Diacetyl compound 213 ($150 \mathrm{mg}, 0.65 \mathrm{mmol}$) was reacted with NH_{3} in 20 mL of methanol for 48 h as described above. An analytical sample 215 was obtained by silica gel column chromatography. Colorless oil, ($105 \mathrm{mg}, 87 \%$).

${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.35-4.28(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=$ 17.3 Hz and $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.09$ (s, 3H), 2.00$1.88(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.25(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.0,67.7,48.7,40.3,36.9,30.7,28.8,27.1,26.0$, 22.7.

IR (ATR, cm^{-1}): 2927, 1713, 1457, 1359, 1165, 757.

HRMS (M-HCl), Calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$: 153.12739 Found: 153.12841 .

3.60 Synthesis of rel-1-((1R,2R,3R,4S)-3-chlorobicyclo[2.2.1]hept-2yl)acetone

 (219).1,3-Diacetyl compound 218 ($100 \mathrm{mg}, 0.65 \mathrm{mmol}$) was reacted with NH_{3} in 25 mL of methanol for 48 h as described above. An analytical sample 219 was obtained by silica gel column chromatography. Colorless oil, ($77 \mathrm{mg}, 95 \%$).

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.08(\mathrm{dd}, J=7.0 \mathrm{~Hz}$ and 1.4 Hz , 1 H), 2.78 (dd, $J=19.4$ and $10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40-2.25 (m, 3H), 2.10 $(\mathrm{s}, 3 \mathrm{H}), 1.90-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H})$, $1.48-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.05(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100 MHz, CDCl_{3}) $\delta 207.9,67.5,47.1,46.2,43.3,42.0,33.2,30.0,29.4$, 26.2;

IR (ATR, cm^{-1}): 2957, 1716, 1408, 1353, 1168, 804;

HRMS (M-HCl), Calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}: 151.11174$. Found: 151.11242.

3.61 Synthesis of rel-1-(1S,2R,3R,4S)-3-chloro-1,2,3,4-tetrahydro-1,4-

epoxynaphthalen-2-ylpropan-2-one (221).
1,3-Diacetyl compound $\mathbf{2 2 0}$ ($133 \mathrm{mg}, 0.48 \mathrm{mmol}$) was reacted with NH_{3} in 20 mL of methanol for 48 h as described above. An analytical sample 221 was obtained by silica gel column chromatography. White crystals, m.p. $64-66^{\circ} \mathrm{C}(77 \mathrm{mg}, 95 \%)$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.08$ $(\mathrm{m}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.00 (dd, A-part of AB-system, $J=18.5 \mathrm{~Hz}$ and 7.1 Hz , $1 \mathrm{H}), 2.71(\mathrm{dd}, J=18.5 \mathrm{~Hz}$ and $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 207.4, 145.9, 141.6, 128.0, 127.2, 120.5, 119.4, 87.3, 83.8, 62.0, 45.1, 40.5, 30.2.

IR (ATR, cm^{-1}): 2915, 1710, 1362, 1154, 980, 770.
HRMS: Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClO}_{2}$: 237.06768 Found: 237.06928.

CHAPTER 4

CONCLUSION

In this study, new synthetic methodologies for the synthesis of important heterocyclic compounds were developed. Pyrazoles 136, isoindolinones 137, benzodizepinones 138, dihydroquinolinones $\mathbf{1 3 9}$ and acetonyl derivatives 222 were synthesized successfully.

136

137

138

139

Reactive molecules such as acyl azides, free radicals and formyl groups are used as key steps in these studies. Moreover, we used advantage of reactivity difference of the similar carbonyl groups for regiospesific reactions. Controlling the number of -
CH_{2} - groups separating the carbonyl groups from benzene ring can be useful approach for synthesis of five-, six-, and seven membered heterocycles fused to benzene ring. In the first part of the study, we described one-pot, three-component reaction of substituted homophthalic anhydrides with hydrazine in DMF as solvent and reactant, at reflux temperature, to afford isochromeno[3,4-c]pyrazole-5(2H)-one derivatives 136 in high yields (Scheme 66).

Scheme 66 Outline for isocoumarin-condensed pyrazoles 145a-c

These compounds are very important due to potential biological properties. Therefore, this study was published in Tetrahedron Letters in this year. ${ }^{59}$

In the second part, synthesis of isoindolinone derivatives was described. The most crucial step is the regiospesific synthesis of semi esters. Then, isoindolinone skeleton was obtained by using acyl azide chemistry.

Scheme 67 Outline for isoindolinone and indolinones $\mathbf{1 6 0}$ and 161

Preparation of indolin-2-one and isoindolin-1-one and their derivatives starting from 2-(carboxymethyl) benzoic acid, which was first regiospecifically converted into the isomeric half esters (Scheme 67). Transformation of the acid functionalities to the acyl azides followed by Curtius rearrangement gave the regioisomeric isocyanates. Reaction of the isocyanates with aniline produced urethane derivatives. This study was also published by Synthesis in this year. ${ }^{60}$

We also report a new synthetic methodology for construction of the 1,3,4,5-tetrahydro- 2 H -1,3-benzodiazepin-2-one skeleton. 2-(2-Carboxyethyl) benzoic acid was converted into the corresponding bis(acyl azide). Curtius rearrangement of the diazide followed by reaction with alcohols provided diurethane derivatives. Ringclosure reaction of the diurethanes with base resulted in formation of the 1,3-benzodiazepin-2-one skeleton (Scheme 68). This study was published in Synthesis last year. ${ }^{61}$

Scheme 68 Outline for benzodiazepinone 184

We applied similar methodologies to the synthesis of dihydroquinolinone derivatives starting from 2-(2-carboxyethyl)benzoic acid 170. Acyl azide formation was followed by urea and urethane transformation. Then successive hydrolysis of esters and ring closure reactions by thionyl chloride were achieved (Scheme 69).

Scheme 69 Outline for dihydroquinolinone 201

Finally, we described addition of acetylacetone to various alkenes was performed with in the presence of $\mathrm{Mn}(\mathrm{OAc})_{3} 2 \mathrm{H}_{2} \mathrm{O}$ and HCl . Removal of one of the acetyl groups with ammonia under very mild conditions provided compounds derived from chloroacetonylation of the double bonds. This study was also accepted by Tetrahedron Letters.

Scheme 70 Outline for chloroacetonylation product 212

REFERENCES

1. Elguero, J. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol. 5.
2. Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Kaboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997, 40, 1347.
3. Haque, T. S.; Tadesse, S.; Marcinkevicience, J.; Rogers, M. J.; Sizemore, C.; Kopcho, L. M.; Amsler, K.; Ecret, L. D.; Zhang, D. L.; Hobbs, F.; Slee, A.; Trainor, G. L.; Stern, A. M.; Copeland, R. A.; Combs, A. P. J. Med. Chem. 2002, 45, 4669.
4. Wang, D. J.; Fan, L.; Zheng, C. Y.; Fang, Z. D. J. Fluorine Chem. 2010, 131, 584.
5. Terret, N. K; Bell, A. S.; Brown, D.; Ellis, P. Bioorg. Med. Chem. Lett. 1996, 6, 1819.
6. Heller, S.T.; Natarajan, S. R. Org. Lett. 2006, 8, 2675.
7. Gerstenberger, B. S.; Rauckhorst, M. R.; Starr, J. T. Org. Lett. 2009, 11, 2097.
8. Xie, F.; Cheng, G.; Hu, Y. J. Comb. Chem. 2006, 8, 286.
9. Valencia, E.; Fajardo, V.; Firdous, S.; Freyer, A. J.; Shamma, M.; Tetrahedron Lett. 1985, 26, 993.
10. Furusaki, A.; Hashiba, N.; Matsumoto, T.; Hirano, A.; Iwai, Y.; Omura, S. Bull. Chem. Soc. Jpn. 1982, 55, 3681.
11. Sun, L.; Tran, N.; Tang, F.; App, H.; Hirth, P.; McMahon, G.; Tang, C.; J. Med. Chem. 1998, 41, 2588.
12. Kiefer, S.; Mertz, A. C.; Koryakina, A.; Hamburger, M.; Kuenzi, P. Eur. J. Pharmac. Sci. 2010, 53, 8140.
13. Powers, J. J.; Favor, D. A.; Rankin, T.; Sharma, R.; Pandit, C.; Jeganathan, A.; Maiti, S. N. Tetrahedron Lett. 2009, 50, 1267.
14. Ito, S.; Hirata, Y.; Nagatomi, Y.; Satoh, A.; Suzuki G.; Kimura, T.; Satow, A.; Maehara, S.; Hikichi, H.; Hata, M.; Ohta, H.; Kawamoto, H.; Bioorg. Med. Chem. Lett. 2009, 19, 5310.
15. Simpson, G. M.; Verga, E. Curr. Ther. Res. 1974, 16, 679.
16. Meltzer, H. Y. Drug Dev. Res. 1986, 9, 23.
17. Malogni, L.; Rostagno, R.; Brussola, S.; Knowles, P. P.; Kjaer, S.; MurrayRust, J.; Rosso, E.; Zambon, A.; Scapozza, L.; McDonald, N. Q.; Lucchini, V.; Gambacorti-Passerini, C. Bioorg. Med. Chem. 2010, 18, 1482.
18. Khan, M. W.; Kundu, N. G. Synlett 1997, 1435.
19. Wan, J.; Wu, B.; Pan, Y. Tetrahedron 2007, 63, 9338.
20. Alajarini M.; Sanchez-Andrada, P.; Lopez-Leonardo, C.; Alvarez, A. J. Org. Chem. 2005, 70, 7617.
21. Powers, J. J.; Favor, D. A.; Rankin, T.; Sharma, R.; Psnfit, C.; Jeganathan, A.; Maiti, S. N. Tetrahedron Lett. 2009, 50, 1267.
22. Delacroix, T.; Berillon, L.; Cahiez, G.; Knochel, P. J. Org. Chem. 2000, 65, 8108.
23. Archer, G. A.; Sternbach, L. H. Chem. Rev. 1968, 68, 747.
24. Costa, B.; Salvetti, A.; Rossi, L.; Spinetti, F.; Lena, A.; Chelli, B.; Rechichi, M.; Da Pozzo, E.; Gremigni, V.; Martini, C. Mol. Pharmacol. 2006, 69, 37.
25. Sternbach, L. H. Agents Actions, 1972, 2, 193.
26. Gottschling, D.; Dahmann, G.; Doods, H.; Heimann, A.; Mueller, S. G.; Rudolf, K.; Schaenzle, G.; Stenkamp, D. PCT Int. Appl. WO 2009065919 A2, 2009.
27. Jen, T.; Bender, P.; Van Hoeven, H.; Dienel, B.; Love, B. J. Med. Chem. 1973, 16, 407.
28. Taylor, J. B.; Trully, W. R. J. Chem. Soc., Perkin. Trans. 1 1976, 12, 1331.
29. Han, X.; Civiello, R. L.; Mercer, S. E.; Macor, J. E.; Dubowchik, G. M. Tetrahedron Lett. 2009, 50, 386.
30. Deschrijver, T.; Verwilst, P.; Broos, K.; Deckmyn, H.; Dehaen, W.; De Borggraeve, W. Tetrahedron 2009, 65, 4521.
31. D’Souza, A. M.; Spiccia, N.; Basutto, J.; Jokisz, P.; Wong, L. S. M.; Meyer, A. G.; Holmes, A. B.; White, J. M.; Ryan, J. H. Org. Lett. 2011, 13, 486.
32. Katritzky, A. R.; Satheesh, K. N.; Rodriguez-Garcia, V.; Xu, Y. J. Org. Chem. 2002, 67, 8237.
33. Santagada, V; Perissutti, E; Fiorino, F; Vivenzio, B; Caliendo, G. Tetrahedron Lett. 2001, 42, 2397.
34. Ettmayer, P.; Chloupek, S.; Weigand, K. J. Comb. Chem. 2003, 5, 253.
35. Stafford, J. A.; Pacofsky, G. J.; Cox, R. F.; Cowan, J. R.; Dorsey, G. F.; Gonzales, S. S.; Jung, D. K.; Koszalka, G. W.; McIntyre, M. S.; Tidwell, J. H.; Wiard, R. P.; Feldman, P. L. Bioorg. Med. Chem. Lett. 2002, 12, 3215.
36. Zhou, W.; Zhang, L.; Jiao, N. Tetrahedron 2009, 65, 1982.
37. Tsubaki, T.; Nishino, H. Tetrahedron 2009, 65, 9448.
38. Chandrasekhar, S.; Vijeender, K.; Sridhar, C. Tetrahedron Lett. 2007, 48, 4935.
39. Jasperse, C. P.; Curran, D. P. Chem. Rev. 1991, 91, 1237.
40. Bush, J. B.; Finkbeiner, H. J. Am. Chem. Soc. 1968, 90, 5903.
41. Wang, G. W.; Dong, Y. W.; Wu, P.; Yuan, T. T.; Shen, Y. B. J. Org. Chem. 2008, 73, 7088.
42. Burgaz, E. V.; Yilmaz, M.; Pekel, A. T.; Oktemer, A. Tetrahedron 2007, 63, 7229.
43. Ali, M. F.; Caliskan, R.; Sahin, E.; Balci, M. Tetrahedron 2009, 65, 1430.
44. Deliomeroglu, M. K.; Özcan, S.; Balci, M. ARKIVOC, 2010, ii, 148.
45. Nash, I. A.; Page, K. M.; Bethel, P. A. PCT Int. Appl. 2006, WO 2006067444; Chem. Abstr. 2006, 145, 103576.
46. Harrison, J. J.; Pellegrini, J. P.; Selwitz, C. M. J. Org. Chem. 1981, 46, 2169.
47. Hill, R. A.; Rudra, S.; Peng. B.; Roane, D. S.; Bounds, J. K.; Zhang, Y.; Adloo, A.; Lu, T. Bioorg. Med. Chem. 2003, 11, 2099.
48. Rosen, G.; Popp, F. D. J. Heterocycl. Chem. 1969, 6, 9.
49. Crockett, G. C.; Swanson B. J.; Anderson, D. R.; Koch, T. H. Synth. Comтип. 1981, 11, 447.
50. Koza, G.; Karahan, E.; Balci, M. Helv. Chim. Acta 2010, 93, 1698.
51. Page, G. A.; Tarbell, D. S.; Org. Synth. 1954, 34, 8.
52. Murai, N.; Komatsu, M.; Yagii, T.; Nishihara, H.; Ohshiro, Y.; Agawa, T. J. Org. Chem. 1977, 42, 847.
53. Yoshida, T.; Kambe, N.; Murai, S.; Sonoda, N. Tetrahedron Lett. 1986, 27, 3037.
54. Genrich, F.; Harms, G.; Schaumann, E.; Gjikaj, M.; Adiwidjaja, G. Tetrahedron 2009, 65, 5577.
55. Gunther, H.; Jikeli, G. Chem. Rev. 1977, 77, 599.
56. Vinogradov, M. G.; Dolinko, V. I.; Nikishin, G. I. B. Acad. Sci. USSR Ch. 1984, 375.
57. Furniss, B. S.; Hannaford, A. C.; Smith, G. S. W.; Tatchell, A. R. Vogel's Textbook of Practical Organic Chemistry 5th ed.; Wiley and Sons: 1994.
58. Tsuritani, T.; Yamamoto, Y.; Kawasaki, M.; Mase, T. Org. Lett. 2009, 11, 1043.
59. Ozcan, S.; Dengiz, C.; Deliomeroglu, M. K.; Sahin, E.; Balci, M. Tetrahedron Lett. 2011, 52, 1495.
60. Kilikli, A. A.; Dengiz, C., Ozcan, S.; Balci, M. Synthesis 2011, 22, 3697.
61. Dengiz, C., Ozcan, S.; Sahin, E.; Balci, M. Synthesis 2010, 8, 1365.

APPENDIX A

SPECTRAL DATA

Figure $3{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 145a

Figure $4{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 145 a

Figure 5 IR Spectrum of Compound 145a

Figure $6{ }^{1} \mathrm{H}$-NMR Spectrum of Compound $\mathbf{1 4 5 b}$

Figure $7{ }^{13} \mathrm{C}$-NMR Spectrum of Compound $\mathbf{1 4 5 b}$

Figure 8 IR Spectrum of Compound 145b

Figure $9{ }^{1} \mathrm{H}$-NMR Spectrum of Compound $\mathbf{1 4 5 c}$

Figure $10{ }^{13} \mathrm{C}$-NMR Spectrum of Compound $\mathbf{1 4 5 c}$

Figure 11 IR Spectrum of Compound 145c

Figure $12{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 146

Figure $13{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 146

Figure 14 IR Spectrum of Compound 146

Figure $15{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 162b

Figure $16{ }^{13} \mathrm{C}$-NMR Spectrum of Compound $\mathbf{1 6 2 b}$

Figure 17 IR Spectrum of Compound 162b

Figure $18{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 162c

Figure $19{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 162c

Figure 20 IR Spectrum of Compound 162c

Figure $21{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 156b

Figure $22{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 156b

Figure 23 IR Spectrum of Compound 156b
107

Figure $24{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 156c

Figure $25{ }^{13} \mathrm{C}$-NMR Spectrum of Compound $\mathbf{1 5 6 c}$

Figure 26 IR Spectrum of Compound 156c

Figure $27{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 163b

Figure $28{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 163b

Figure 29 IR Spectrum of Compound 163b

Figure $30{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 163c

Figure $31{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 163 c

Figure 32 IR Spectrum of Compound 163c

Figure $33{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 164b

Figure $34{ }^{13} \mathrm{C}$-NMR Spectrum of Compound $\mathbf{1 6 4 b}$

Figure 35 IR Spectrum of Compound 164b

Figure $36{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 164c

Figure $37{ }^{13} \mathrm{C}$-NMR Spectrum of Compound $\mathbf{1 6 4} \mathrm{c}$

Figure 38 IR Spectrum of Compound 164c

Figure $39{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 158b

Figure $40{ }^{13} \mathrm{C}$-NMR Spectrum of Compound $\mathbf{1 5 8 b}$

Figure 41 IR Spectrum of Compound 158b

Figure $42{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 158 c

Figure $43{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 158 c

Figure 44 IR Spectrum of Compound 158c

Figure $45{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 165b

Figure $46{ }^{13} \mathrm{C}$-NMR Spectrum of Compound $\mathbf{1 6 5 b}$

Figure 47 IR Spectrum of Compound 165b

Figure $48{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 165 c

Figure $49{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 165 c

Figure 50 IR Spectrum of Compound 165c

Figure $51{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 166b

Figure $52{ }^{13} \mathrm{C}$-NMR Spectrum of Compound $\mathbf{1 6 6 b}$

Figure 53 IR Spectrum of Compound 166b

Figure $54{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 166c

Figure $55{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 166 c

Figure 56 IR Spectrum of Compound 166c

Figure $57{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 167b

Figure $58{ }^{13} \mathrm{C}$-NMR Spectrum of Compound $\mathbf{1 6 7 b}$

Figure 59 IR Spectrum of Compound 167b

Figure $60{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 167 c

Figure $61{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 167 c

Figure 62 IR Spectrum of Compound 167c

Figure $63{ }^{1} \mathrm{H}$-NMR Spectrum of Compound $\mathbf{1 6 8 b}$

Figure $64{ }^{13} \mathrm{C}$-NMR Spectrum of Compound $\mathbf{1 6 8 b}$

Figure 65 IR Spectrum of Compound 168b

Figure $66{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 168 c

Figure $67{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 168 c

Figure 68 IR Spectrum of Compound 168c

Figure $69{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 173

Figure $70{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 173

Figure 71 IR Spectrum of Compound 173

Figure $72{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 174

Figure $73{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 174

Figure 74 IR Spectrum of Compound 174

Figure $75{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 175

Figure $76{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 175

Figure 77 IR Spectrum of Compound 175

Figure $78{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 176

Figure $79{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 176

Figure 80 IR Spectrum of Compound 176

Figure $81{ }^{1} \mathrm{H}$-NMR Spectrum of Compound $\mathbf{1 8 2}$

Figure $82{ }^{13} \mathrm{C}$-NMR Spectrum of Compound $\mathbf{1 8 2}$

Figure 83 IR Spectrum of Compound 182

Figure $84{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 184

Figure $\mathbf{8 5}{ }^{13} \mathrm{C}$-NMR Spectrum of Compound $\mathbf{1 8 4}$

Figure 86 IR Spectrum of Compound 184

Figure $87{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 185

Figure $88{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 185

Figure 89 IR Spectrum of Compound 185

Figure $90{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 186

Figure $91{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 186

Figure 92 IR Spectrum of Compound 186

Figure $93{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 180

Figure $94{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 180

Figure $95{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 188

Figure $96{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 188

Figure $97{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 189

Figure $98{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 189

Figure 99 IR Spectrum of Compound 189

Figure $100{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 190

Figure $101{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 190

Figure $102{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 191

Figure $103{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 191

Figure 104 IR Spectrum of Compound 191

Figure $105{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 192

Figure $106{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 192

Figure 107 IR Spectrum of Compound 192

Figure $108{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 193

Figure $109{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 193

Figure 110 IR Spectrum of Compound 193

Figure $111{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 194

Figure $112{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 194

Figure 113 IR Spectrum of Compound 194

Figure $114{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 195

Figure $115{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 195

Figure 116 IR Spectrum of Compound 195

Figure $117{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 196

Figure $118{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 196

Figure 119 IR Spectrum of Compound 196

Figure $120{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 197

Figure $121{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 197

Figure 122 IR Spectrum of Compound 197

Figure $123{ }^{1}$ H-NMR Spectrum of Compound 198

Figure $124{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 198

Figure 125 IR Spectrum of Compound 198

Figure $126{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 199

Figure $127{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 199

Figure 128 IR Spectrum of Compound 199

Figure $129{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 200

Figure $130{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 200

Figure 131 IR Spectrum of Compound 200

Figure $132{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 201
(

Figure $133{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 201

Figure 134 IR Spectrum of Compound 201

Figure $135{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 183

Figure $136{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 183

Figure $137{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 208

Figure $138{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 208

Figure 139 IR Spectrum of Compound 208

Figure $140{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 209

Figure $141{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 209

Figure 142 IR Spectrum of Compound 209

Figure $143{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 211

Figure $144{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 211

Figure 145 IR Spectrum of Compound 211

Figure $146{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 213

Figure $147{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 213

Figure 148 IR Spectrum of Compound 213

Figure $149{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 214

Figure $150{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 214

Figure 151 IR Spectrum of Compound 214

Figure $152{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 216

Figure $153{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 216

Figure 154 IR Spectrum of Compound 216

Figure $155{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 217

Figure $156{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 217

Figure 157 IR Spectrum of Compound 217

Figure $158{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 218

Figure $159{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 218
(

Figure 160 IR Spectrum of Compound 218

Figure $161{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 220

Figure $162{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 220

Figure 163 IR Spectrum of Compound 220

Figure $164{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 210
(

Figure $165{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 210

Figure 166 IR Spectrum of Compound 210

Figure $167{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 212

Figure $168{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 212
(

Figure 169 IR Spectrum of Compound 212

Figure $170{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 215

Figure $171{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 215

Figure 172 IR Spectrum of Compound 215

Figure $173{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 219

Figure $174{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 219

Figure 175 IR Spectrum of Compound 219

Figure $176{ }^{1} \mathrm{H}$-NMR Spectrum of Compound 221

Figure $177{ }^{13} \mathrm{C}$-NMR Spectrum of Compound 221

Figure 178 IR Spectrum of Compound 221

[^0]: ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 172.2,166.8,159.4,133.3,130.1,126.0,118.7$, 116.3, 55.6, 52.4, 51.9.

[^1]: ${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}_{-} d_{6}\right) \delta 173.8,152.9,139.9,136.8,131.4,128.9,128.8$, 126.4, 123.3, 122.6, 121.7, 118.1, 33.6, 25.9.

