
i

AN XML-BASED FEATURE MODELING LANGUAGE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

LEILI NABDEL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2011

ii

Approval of the thesis:

AN XML-BASED FEATURE MODELING LANGUAGE

Submitted by LEILI NABDEL in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Canan Özgen _____________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı _____________________
Head of Department, Computer Engineering

Assoc. Prof. Dr. Halit Oğuztüzün _____________________
Supervisor, Computer Eng. Dept., METU

Dr. Ahmet Serkan Karataş _____________________
Co-Supervisor, Computer Eng. Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Ferda Nur Alpaslan _____________________
Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün _____________________
Computer Engineering Dept., METU

Assoc. Prof. Dr. Cem Bozşahin _____________________
Computer Engineering Dept., METU

Assist. Prof. Dr. Pınar Şenkul _____________________
Computer Engineering Dept., METU

Dr. Bülent Mehmet Adak _____________________
Senior Engineer, ASELSAN

Date: 16. 09.2011

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name, Last Name : Leili Nabdel

Signature :

iv

ABSTRACT

AN XML-BASED FEATURE MODELING LANGUAGE

Nabdel, Leili

M.Sc., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Halit Oğuztüzün

Co-Supervisor: Dr. Ahmet Serkan Karataş

September 2011, 136 pages

Feature modeling is a common way of representing commonality and variability in

Software Product Lines. There are alternative notations reported in the literature to

represent feature models. Compared to the graphical notations, the text-based

notations are more amenable to automated processing and tool interoperability. This

study presents an XML-based feature modeling language to represent extended

feature models that can include complex relationships involving attributes. We first

provide a Context Free Grammar for the extended feature model definitions

including such complex relationships. Then we build the XML Schema Definitions

and present a number of XML instances in accordance with the defined schema. In

addition, we discuss a validation process for the validation of the XML instances

against the defined schema, which also includes additional tasks such as well-

formedness checking for the XML instances.

Keywords: Feature Modeling Language, Extended Feature Model, Complex

Constraint, XML

v

ÖZ

XML TABANLI ÖZELLİK MODELLEME DİLİ

Nabdel, Leili

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Halit Oğuztüzün

Ortak Tez Yöneticisi: Dr. Ahmet Serkan Karataş

Eylül 2011, 136 sayfa

Özellik modelleme, yazılım ürün hatlarında ortaklık ve değişkenliğin gösterilmesinde

yaygın olarak kullanılan bir yoldur. Literatürde özellik modellerin ifadesi için farklı

gösterimler bulunmaktadır. Metin tabanlı gösterimler, grafik gösterimlere nazaran,

otomatik işleme ve araçlar arası uyumluluk gibi kıstaslar göz önüne alındığında daha

elverişli çözümler sağlamaktadır. Bu çalışmada özniteliklerin yer aldığı karmaşık

ilişkiler içerebilen genişletilmiş özellik modellerinin gösterimi için XML tabanlı bir

özellik modelleme dili sunulmaktadır. İlk olarak, karmaşık ilişkiler içerebilen

genişletilmiş özellik modelleri için bir bağlamdan-bağımsız gramer sunulmaktadır.

Daha sonra XML şema tanımları kurulmakta ve bu şemaya uygun birtakım XML

örnekleri verilmektedir. Ayrıca, XML örneklerinin tanımlanmış şemaya

uygunluğunun gösterilebilmesi için bir doğrulama süreci de tartışılmaktadır. Bu

süreç XML örneklerinin biçimsel olarak düzgünlüğünün kontrolü gibi ek görevler de

içermektedir.

Anahtar kelimeler: Özellik Modelleme Dili, Genişletilmiş Özellik Modeli, Karmaşık

İlişki, XML

vi

“To My Family”

vii

ACKNOWLEDGEMENTS

The author wishes to express his deepest gratitude to Assoc. Prof. Dr. Ali Doğru for

his guidance, advice, and encouragement throughout the research.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... v

ACKNOWLEDGEMENTS .. vii

TABLE OF CONTENTS ... viii

CHAPTER

1. INTRODUCTION.. ….1

2. BACKGROUND AND RELATED WORK .. 6

 2.1 Feature Models and Feature Representations ... 6

 2.1.1 Feature Models .. 6

 2.1.2 Feature Relationships .. 7

 2.1.2.1 Mandatory Relations ... 7

 2.1.2.2 Optional Relations ... 7

 2.1.2.3 Alternative Relations ... 8

 2.1.2.4 Or Relations .. 8

 2.1.2.5 Requires Relations .. 8

 2.1.2.6 Excludes Relations .. 8

 2.2 Graphical Notations for Feature Diagrams ... 10

 2.2.1 Feature Oriented Domain Analysis (FODA) .. 10

 2.2.2 FODA Subsequent Proposals .. 11

 2.3 Extended Feature Models .. 11

 2.3.1 Cardinality-based Feature Models .. 11

 2.3.2 Attribute Included Feature Models ... 13

 2.4 Textual Notations for Feature Diagrams ... 14

 2.4.1 Feature Description Language (FDL) ... 15

 2.4.2 Text-based Variability Language (TVL) .. 15

 2.4.3 XML-based Feature Modeling Language ... 17

 2.4.3.1 XML-based Feature Modeling (XFeature) ... 17

 2.4.3.2 Feature Modeling Markup Language (FeatureML) 18

ix

 2.4.3.3 The Feature Modeling Plug-In for Eclipse (FeaturePlugin) 19

 2.4.3.4: Tooling a Framework for the Automated Analysis of Feature Models:

(FAMA) ... 19

 2.4.3.5 A Tool Framework for Feature Oriented Software Development:

FeatureIDE .. 20

 2.5 Automated Reasoning on Feature Models .. 20

 2.5.1 Automated Support on the Automated Analysis of Feature Models 21

 2.5.1.1 Propositional Logic-based Analysis .. 21

 2.5.1.2 Description Logic-based Analysis .. 22

 2.5.1.3 Constraint Programming-based Analysis .. 22

 2.5.1.4 Other Proposals ... 22

3. CONTEXT FREE GRAMMAR EXPRESSING EXTENDED FEATURE

MODELS .. 23

 3.1 Context Free Grammar (CFG) .. 23

 3.1.1 Backus-Naur Form (BNF)... 24

 3.1.2 Extended BNF (EBNF) ... 24

 3.2 CFG for Extended Feature Models ... 25

 3.2.1 A CFG for Expressing Features .. 26

 3.2.2 A CFG for Expressing Decomposition Relationships 27

 3.2.2.1 A CFG for Expressing Cardinality-based Decomposition Relationships 29

 3.2.3 A CFG for Expressing Complex Cross-Tree Relationships 31

 3.2.3.1 A CFG for Expressing Condition Relationship 31

 3.2.3.2 A CFG for Expressing Excludes Relationship .. 34

 3.2.3.3 A CFG for Expressing Requires Relationship .. 35

 3.2.3.4 A CFG for Expressing Complex Constraint Relationship 37

 3.2.3.5 A CFG for Expressing Guarded Constraint Relationship 39

 3.2.3.5.1 A CFG for Expressing Guarded Constraint Combination

Relationship .. 40

4. XML SCHEMA DEFINITION FOR EXPRESSING EXTENDED FEATURE

MODELS .. 42

 4.1 XML Schema Definition (XSD) ... 42

 4.1.1 XSD <schema> Element ... 43

x

 4.1.2 XSD Simple Elements .. 44

 4.1.2.1 XSD Restrictions ... 44

 4.1.3 XSD Complex Elements ... 45

 4.1.3.1 XSD Indicators .. 45

 4.2 XSD for Extended Feature Models .. 45

 4.2.1 XSD for Expressing Features ... 46

 4.2.2 XSD for Expressing Decomposition Relationships 48

 4.2.3 XSD for Expressing Complex Cross-Tree Relationships 55

 4.2.3.1 XSD for Condition Relationship .. 56

 4.2.3.2 XSD for Expressing Excludes Relationship .. 60

 4.2.3.3 XSD for Expressing Requires Relationship .. 61

 4.2.3.4 XSD for Expressing Complex Constraint Relationship 64

 4.2.3.5 XSD for Expressing Guarded Constraint Relationship 65

 4.2.3.5.1 XSD for Expressing Guarded Constraint Combination Relationship . 67

5. EXTENSIBLE MARKUP LANGUAGE INSTANCES EXPRESSING

EXTENDED FEATURE MODELS ... 69

 5.1 eXtensible Markup Language (XML) ... 69

 5.1.1 XML Elements .. 70

 5.1.2 XML Attributes ... 71

 5.1.3 XML Tree.. 71

 5.2 XML Instances for Extended Feature Models .. 71

 5.2.1 XML Instances for Expressing Features ... 72

 5.2.2 XML Instances for Expressing Decomposition Relationships 75

 5.2.3 XML Instances for Expressing Complex Cross-Tree Relationships 78

 5.2.3.1 XML Instances for Expressing Condition Relationships 78

 5.2.3.2 XML Instances for Expressing Excludes Relationship 80

 5.2.3.3 XML Instances for Expressing Requires Relationship 81

 5.2.3.4 XML Instances for Expressing Complex Constraint Relationship 84

 5.2.3.5 XML Instances for Expressing Guarded Constraint Relationship 88

 5.2.3.5.1 XML Instances for Expressing Guarded Constraint Combination 93

6. FEATURE MODEL MARKUP LANGUAGE VALIDATION 97

 6.1 XSD Validation ... 98

xi

 6.1.1 Valid and Invalid Instances ... 99

 6.2 XML Well-Formedness Validation... 103

 6.2.1 Valid and Invalid Instances ... 106

7. CONCLUSION .. 114

REFERENCES .. 116

APPENDIX

A. GRAPHICAL XML SCHEMA STRUCTURE FOR THE EXPRESSIONS

DEFINED IN CHAPTER 4 .. 120

xii

LIST OF FIGURES

FIGURES
Figure 1.1 The envisioned tool structure [8] ... 4
Figure 2.1 An example feature model [13] ... 7
Figure 3.1 Sample BNF grammar .. 24
Figure 3.2 Sample feature with attributes ... 27
Figure 3.3 Mandatory relationship .. 28
Figure 3.4 Optional relationship .. 28
Figure 3.5 Alternative relationship ... 29
Figure 3.6 Or relationship ... 29
Figure 3.7 Group cardinality ... 30
Figure 3.8 Solitary cardinality... 31
Figure 3.9 A sample feature model ... 33
Figure 3.10 A sample feature model expressing Excludes relationship 34
Figure 3.11 A sample feature model ... 36
Figure 3.12 A sample feature model ... 38
Figure 3.13 A sample feature model ... 40
Figure 3.14 A sample feature model ... 41
Figure 4.1 A simple schema structure ... 44
Figure 4.2 A sample of restrictions from [10] .. 44
Figure 4.3 XSD representation for feature .. 47
Figure 4.4 XSD representation for feature attributes .. 47
Figure 4.5 XSD representation for all of the features ... 48
Figure 4.6 XSD representing Decomposition relationship 49
Figure 4.7 XSD expressing Mandatory relation ... 50
Figure 4.8 XSD expressing Optional relation .. 50
Figure 4.9 XSD expressing Alternative relation ... 51
Figure 4.10 XSD expressing Or relation ... 51
Figure 4.11 XSD expressing Feature Cardinality ... 52
Figure 4.12 XSD expressing Solitary Cardinality .. 53
Figure 4.13 XSD expressing Group Cardinality ... 53
Figure 4.14 XSD expressing Cardinality .. 54
Figure 4.15 XSD expressing ChildSet .. 54
Figure 4.16 XSD expressing cross-tree relationships ... 55
Figure 4.17 XSD expressing Condition relationship .. 56
Figure 4.18 XSD expressing ExpressionRelOpExpression 57
Figure 4.19 XSD expressing the structure of Expression ... 58
Figure 4.20 XSD expressing BoolAttributeDesequaltoTruthValue.......................... 59
Figure 4.21 XSD expressing NumericAttributeDes.. 60
Figure 4.22 XSD expressing Excludes relationship .. 61
Figure 4.23 XSD expressing Requires relationship .. 62
Figure 4.24 XSD expressing the structure of Boolean Formula 62
Figure 4.25 XSD expressing BooleanFormulaConBooleanFormula 63
Figure 4.26 XSD expressing Propositional Logic Connectives 63

xiii

Figure 4.27 XSD expressing ComplexConstraint relationship 64
Figure 4.28 XSD expressing Complex Part (CP) ... 65
Figure 4.29 XSD expressing GuardedConstraint .. 66
Figure 4.30 XSD expressing the structure of Guard ... 66
Figure 4.31 XSD expressing GuardedConstraintCombination 67
Figure 4.32 XSD expressing NegationGuardedConstraint 68
Figure 5.1 XML instance expressing Attribute value ... 71
Figure 5.2 XML tree structure [6] ... 71
Figure 5.3 A sample feature model for a Computer ... 72
Figure 5.4 XML instance expressing the Feature Model ... 73
Figure 5.5 XML instance for expressing Mandatory relation 75
Figure 5.6 XML instance for expressing Optional relation 76
Figure 5.7 XML instance for expressing Alternative relation 76
Figure 5.8 XML instance for expressing Or relation .. 77
Figure 5.9 XML instance for expressing SolitaryCardinality 77
Figure 5.10 XML instance for expressing GroupedCardinality................................ 78
Figure 5.11 XML instance expressing Condition relationship including
ExpressionRelOpExpression ... 79
Figure 5.12 XML instance expressing Condition relationship including
BoolAttributeDesequaltoTruthValue .. 80
Figure 5.13 XML instance expressing Excludes relationship 81
Figure 5.14 XML instance expressing Requires relationship 82
Figure 5.15 XML instance expressing Requires relationship 83
Figure 5.16 XML instance expressing Complex Constraint relationship 85
Figure 5.17 XML instance expressing Complex Constraint relationship 86
Figure 5.18 XML instance expressing Guarded Constraint relationship 89
Figure 5.19 XML instance expressing Guarded Constraint relationship 91
Figure 5.20 XML instance expressing Guarded Constraint Combination
relationship .. 93
Figure 6.1 Validating processes .. 98
Figure 6.2 Mandatory relation... 99
Figure 6.3 XML instance expressing Mandatory relation according to Figure 6.2 and
XSD illustrated in Figure 4.7 .. 100
Figure 6.4 Valid XML instance expressing Mandatory relation 100
Figure 6.5 XML instance expressing Mandatory relation according to Figure 6.2 and
XSD illustrated in Figure 4.7 .. 101
Figure 6.6 Unacceptable XML instance expressing Mandatory relation 101
Figure 6.7 A Sample feature including Attribute .. 102
Figure 6.8 XML instance expressing feature including Attribute according to Figure
6.7 and XSD illustrated in Figure 4.4 ... 102
Figure 6.9 Unacceptable XML instance expressing feature including attribute 103
Figure 6.10 Feature model sample .. 104
Figure 6.11 XML validating process .. 104
Figure 6.12 XML instance illustrating Mandatory relationship according to Figure
5.3 and XSD illustrated in Figure 4.7 ... 106
Figure 6.13 Valid XML instance expressing relationship among features 107

xiv

Figure 6.14 XML instance illustrating Mandatory and Optional relationships
according to Figure 5.3 and XSD illustrated in Figure 4.7 and 4.8 107
Figure 6.15 Unacceptable XML instance expressing the relationships among features
 ... 108
Figure 6.16 XML instance expressing Grouped Cardinality according to Figure 5.3
and XSD illustrated in Figure 4.13 ... 109
Figure 6.17 Acceptable XML instance expressing the Feature Cardinality 110
Figure 6.18 XML instance expressing Feature Cardinality according to Figure 5.3
and XSD illustrated in Figure 4.11 ... 110
Figure 6.19 Unacceptable XML instance expressing Feature Cardinality 111
Figure 6.20 XML instance expressing Feature Cardinality according to Figure 5.3
and XSD illustrated in Figure 4.11 .. 112
Figure 6.21 Unacceptable XML instance expressing Feature Cardinality 113

xv

LIST OF TABLES

TABLES
Table 2.1 Symbols used for designing a feature model .. 9
Table 2.2 Most common multiplicities .. 12
Table 2.3 Cardinality notations with explanations .. 13
Table 2.4 Symbols for designing a feature model including Attributes 14
Table 3.1 EBNF symbols .. 25
Table 5.1 Entity references [6] .. 70
Table 6.1 Java Libraries applied for validating XML instances according to
XSD ... 99
Table 6.2 Java Libraries applied for validating XML instances 105

1

CHAPTER 1

INTRODUCTION

As the use of software systems started to increase rapidly in a more complex way and

software business become the bottom line for many organizations, it became more

difficult to handle the new problems of software systems with the traditional methods

in terms of quality, cost and time. As a result, software reuse becomes a significant

concept employed by many applications. By reusing existing assets, development

costs will be reduced and a faster development will be possible. Consequently,

efficiency and productivity will be improved. A number of new approaches for

software reuse have been provided over the past years. The introduction to Object

Oriented Programming paradigm (OOP) [1] is one the significant approaches to

software reuse. OOP supports software reusability introducing concepts such as

polymorphism, encapsulation and inheritance [2].

Over the past few years, a new approach to software reuse has gained considerable

attention both by industry and academia. It is known as Software Product Line

development [3] which refers to a set of software-intensive systems that share a

common set of features in order to resolve the specific needs of a market

organization or specific mission. The product line concept has been used by the

manufacturing industry for a long time in order to decrease human effort, cost and

time consumption by exploiting commonalities between products. As an example,

Boeing, Ford and McDonalds are some companies that apply product lines for a long

time. However, product line concept for software industry is relatively new.

Although software product line development might seem just like traditional

software reuse, it is lot more complex. Software Product Line Engineering is "a

2

paradigm to develop software applications (software-intensive systems and software

products) using platforms and mass customization" [3].

Managing commonality and variability in software product lines is a key concept.

Variability defines the scope of product family via predicting which family members

may change over the lifetime of family. Commonality specifies the common

products in a product family. Feature models establish an important foundation for

product line development and play an important role in product lines success. The

commonalities and variabilities of the product line are presented in the problem

space [3].Whereas solution space, describes the required platform elements and

additional application parts. Problem space can be defined using a feature model or a

Domain Specific Language (DSL) [4]. In order to illustrate the solution space,

different options are applicable such as DSL compilers and component libraries.

Feature modeling (FM) is a key activity for managing commonality and differences

in Software Product Lines [3] and feature models are hierarchical models specifying

the common and different parts of a product line. In most researches they have been

quoted as one of the most important contributions to Software Product Line (SPL)

modeling. Using feature modeling, the domain of the feature model will be specified

in order to compare with other domains. Generally, a domain is an abstract space

where common requirements, functionality and terminology of related software

systems can be shared. Commonalities specified in the model indicate obviously

where reuse opportunities are and complex interactions between features become

apparent. As an example, suppose we want to buy a new car. In order to buy a new

car, we can configure some features such as color, product year, power, etc. A

feature model is a way represents all these features in a single model. It illustrates the

information of all available products of a software product line [5]. Furthermore, it

represents the possible products with features and relationships among them.

In order to represent feature models different approaches are presented so far. Some

of these approaches are graphical; on the other hand others are textual. Compared

with graphical notations, text-based notations can be more amenable to automated

3

processing and tool interoperability. Both of the approaches are going to be described

in detail in the subsequent chapter.

In this work, we propose a text-based feature modeling language. The eXtensible

Markup Language (XML) [6] is utilized to encode feature models through a

language. XML is a universally accepted standard way of structuring data and is

recommended by World Wide Web Consortium (W3C) since February 10, 1998.

XML is much like HTML. But, it is designed for different aims; XML is designed in

order to transport and store data. On the other hand, displaying the data is the most

significant goal for designing HTML. The marketplace supports XML with a wide

selection of free or inexpensive tools, and all modern browsers have a built-in XML

parser that works straightforward over the Internet. It is an open standard that no

single vendor can make changes on it. In addition, according to the textual encoding

of it, any source code illustrated in XML can be interchanged among different

computer systems. Domain-specific XML-based markup languages have proved to

be a convenient means of exchanging models among tools for developers. As a

result, we believe that XML provides a flexible and extensible framework to our

feature modeling language.

In this work we propose an XML-based feature modeling language to represent the

structure of feature models. It accounts for the features including attributes. By

inclusion of attributes more information about features can be provided. In addition,

the relationships among the features can be defined which consists of decomposition

and cross-tree relationships covered in next chapter. Furthermore, complex cross-tree

constraints which may include feature-feature, feature-attribute and attribute-attribute

relationships can be presented with the language presented in this work. Some parts

of the thesis work appears in [7] as an introduction to an XML-based feature

modeling language. Figure 1.1 illustrates the envisioned tool structure accessed from

the [8] and this thesis work covers the FMML [7] part in order to be the tool

language.

4

Figure 1.1 The envisioned tool structure [8]

In this Figure the file i/o component retrieve or store the feature modeling language

the tool can process it. The user int. component has the capability of processing the

user language which should be comprehensive language for the user. It can be a

combination of both textual and graphical notations. The mapping component

performs the translations to the required notation, and the analysis component

applies an off-the shelf constraint solver for the analysis operations. The post-

processor component illustrates the results provided by the solver in a more user

friendly and smooth way.

This thesis document is divided into seven chapters. The organization of this paper is

as follows: second chapter will provide necessary knowledge in order to understand

the concepts discussed in this thesis work. It will discuss feature models with related

examples and the relationships among them. We will also describe the important

extensions for feature models in detail. It will also cover the different approaches for

presenting feature models and point to the related works. In third chapter, a Context

Free Grammar (CFG) [9] for feature models and relationships among them is

illustrated. The grammar also covers the complex cross-tree constraints according to

the definitions specified in detail. Fourth section covers the structure of the XML

Schema Definition (XSD) [10] built on the definitions and related CFG presented in

the third section. Fifth chapter contains a case study in order to illustrate how the

proposed approach is utilized. The Sixth chapter will present a validation process in

order to check the validity of the XML instances according to the XSD and do extra

5

well-formedness controls. The last chapter provides an analysis of the proposed

approach, concludes the document, and points to future work.

6

CHAPTER 2

 BACKGROUND AND RELATED WORK

This section covers the concept of feature models and related extensions. In addition,

different approaches for presenting feature models will be illustrated. The section

will also provide a brief explanation of the works which are related to our research

study.

2.1 Feature Models and Feature Representations

2.1.1 Feature Models

A feature is a distinct property or aspect of a software system such as components

related to same stakeholder of the system. A feature model is a hierarchical structure

of system requirements of a given problem domain [11]. Feature diagrams are an

important part of a feature model which is used to illustrate common and variable

features and their relations. The feature diagram is illustrated with a graph including

nodes and edges in a 2-D space. It starts with a node representing features at the root

position and at the next level beneath the features will follow hierarchically. A high-

level node may illustrate a concept or a feature in a specific domain. Feature models

are commonly used in order to provide a compact and comprehensive view of all the

products of an SPL in terms of features. They support variability management in

SPLs [12]. An example of feature model from [13] is provided below.

7

Figure 2.1 An example feature model [13]

2.1.2 Feature Relationships

There are two kinds of relationships among features in basic feature models:

decomposition relationships and cross-tree relationships. Decomposition

relationships determine hierarchically arranged set of features. The relationship is

between a parent and its child features (or sub features) and includes four relations

which are written as follows:

2.1.2.1 Mandatory Relations

A child feature has a mandatory relationship with its parent when the child is

included in which its parent feature is included in a model as well. A mandatory

relation is illustrated with a simple edge between parent and child feature with a

filled circle on its connection point to the child feature.

2.1.2.2 Optional Relations

A child feature has an optional relationship with its parent when the child can be

optionally included in which its parent feature is included in a model. An optional

8

relation is shown with a simple edge between parent feature and child feature with an

empty circle on its connection point to the child feature.

2.1.2.3 Alternative Relations

A set of child features have an alternative relationship with their parent when only

one feature of the child features must be included when its parent feature is included

in a model. An alternative set is provided by an empty arc connecting the parent

feature to the child set of features.

2.1.2.4 Or Relations

A set of child features have an Or relationship with their parent when one or more

feature of the child features can be included when its parent feature is included in a

model.

Note that inclusion of the child feature is possible only when its parent feature is

included in the model of a product. Furthermore, the root feature is a part of all the

model of the product line.

In addition to the parental relationships between features in a basic feature models, a

feature model may include cross-tree constraints between features which are written

and explained below:

2.1.2.5 Requires Relations

If a feature A requires feature B, the inclusion of A in a model of a product implies

the inclusion of B as well in that model.

2.1.2.6 Excludes Relations

If a feature A excludes a feature B, the inclusion of A in a model of a product implies

the exclusion of B in such a model.

9

The notations of these explanations are shown in table 2.1 which is similar to the one

proposed by Benavides et al. in [5].

Table 2.1 Symbols used for designing a feature model

Symbol Name

Mandatory Relation

Optional Relation

Alternative Relation

Or Relation

Requires Relation

Excludes Relation

10

In addition to the represented relationships among features, the proposed language in

this work accounts for the features with attributes and more complex cross tree

constraints which will be discussed in subsequent chapters in detail.

2.2 Graphical Notations for Feature Diagrams

Human designers may be more convenient using graphical notations since graphical

models are more intuitive and editing the graphical notations may be much easier.

This section will cover the feature modeling languages using graphical notation

proposed so far.

2.2.1 Feature Oriented Domain Analysis (FODA)

Feature diagrams were introduced by Kang et al. as a part of Feature Oriented

Domain Analysis (FODA) [13] back in 1990. It is a domain analysis method

developed at the Software Engineering Institute (SEI). The FODA method provides

software reusability in both functional and architectural levels. Domain analysis

provides the scope of the domain product according to the domain requirements and

represents the common functionality and architecture of applications in a domain.

FODA analysis the domain in three steps written as below:

• Context analysis in order to understand the scope

• Domain modeling in order to illustrate the problem and system requirements.

They provide features of the domain, a standard vocabulary of domain

experts, documentation of entities and generic software requirements.

• Architecture modeling in order to establish the solution space; the

presentations provide developers with architectural models. The models may

also provide the libraries of existing components.

The domain analysis gained considerable success applying in many mature domains.

In general, there are some criteria results the domain analysis become successful

which is explained below:

11

• The scope of the domain should be suitable; for instance the size of the

domain for analysis is feasible.

• A complete and comprehensive abstraction of requirements should exist from

the application level to the problem level.

• Providing a documentation of the problem abstraction in order to specify the

requirements in detail is needed.

2.2.2 FODA Subsequent Proposals

FODA gained a large popularity due to number of unique characteristics. One of

them is including a comprehensive and straightforward scheme in order to classify

the domain knowledge in order to make it understandable for human. This leads to

the development of several extended FODA model over the years. One of the most

important extensions for FODA is FeatuRSEB [14] which is an integration of feature

modeling with the Reuse driven Software Engineering Business (RSEB). RSEB is a

use-case driven reuse process in which the architecture of the system is described

using use-cases and subsequently transformed into object models. FODA and

FeatuRSEB are both model-driven approach with a domain knowledge captured

from different models with their specific requirements.

In addition to FaetuRSEB which is an extension for FODA concept, there are other

extensions which will be explained in next section in detail.

2.3 Extended Feature Models

2.3.1 Cardinality-based Feature Models

After FODA, several extensions to feature models were proposed. One particular

extension to feature models is UML-like cardinalities [11] which are used in

decomposition relations. Feature diagrams have multiplicities that are used when a

set of features are going to be applied. The most common multiplicities are shown in

table 2.2.

12

Table 2.2 Most common multiplicities

Multiplicity Explanation

0..1 At most one feature should be chosen from the set

1 Exactly one feature should be chosen from the set

0..* Zero or more feature(s) should be chosen from the set

1..* At least one feature should be chosen from the set

The proposed work illustrates multiplicities of features in an understandable way. In

addition, it unifies the notation of multiplicity in feature modeling and UML. Note

that other multiplicities beside the common ones can be applied such as 0..3, 1..3 or

simply 3. In [15] Riebisch et al. has been introduced the use of UML multiplicities as

group cardinalities in order to illustrate multiplicities in the form of <m..n>.

 Beside the proposed extension, in [16, 17] there is another cardinality-based

extension including feature cardinalities as well as group cardinalities. Czarnecki et

al. proposes feature cardinality as an interval of the form <m..n> where m � Z � n � Z

� {�} � 0 ≤ m � (m ≤ n � n = �). In the cases that any feature of the feature model has

feature cardinality, the hierarchy of these features will be called cardinality-based

feature models. Notice that the Kleene star * in the formula, shows the possibility of

selection of the feature in unbounded number of times. In this case the feature with

the cardinality [1..1] is equal to mandatory and [0..1] is equal to optional relation

concept in feature modeling language.

Table 2.3 illustrates the notation of cardinalities with their related meaning.

13

Table 2.3 Cardinality notations with explanations

Symbol Name Explanation

Group Cardinality

P is a parent feature of
features (C1, C2, …, and
Cn) with a group
cardinality <i..j>. If P is
included in the model,
then at least i and at last j
of the child features must
be included.

P

C

<i..j>

Solitary Cardinality

P is a parent feature and
C is the solitary child
feature. If P is included
with solitary cardinality,
then at least i and at last j
number of times C may
be included.

2.3.2 Attribute Included Feature Models

Another extension to basic feature models is the introduction of the attributes of

features, which provides more information about features. An attribute of a feature, is

any observable characteristic of the feature. Every attribute belongs to a domain

which is a space of possible values where the attribute takes its values. The domain

of an attribute may be discrete such as integers or continuous such as real [5].

The relationships between features and feature attributes are illustrated by Kang et al.

in [13]. The author also has mentioned non-functional features related to feature

attributes in [18] which is the introduction of Feature Oriented Reuse Method

(FORM). FORM is an extension of FODA with a specific phase for software design

and illustrates how the feature model is used to develop domain architectures and

components for reuse. It is a systematic method finding the variability and

commonalities in a domain in terms of features and making use of analysis results in

order to enhance the system. The main purpose of this extension is managing and

reusing the features of a specific domain which characterize each variant product in

14

that domain. Czarnecki et al. in [19] introduces the use of attributes in feature

models. Later a notation for extended feature models was proposed by Benavides et

al. in [5]. Table 2.4 illustrates the feature attribute notation in a feature diagram.

Table 2.4 Symbols for designing a feature model including Attributes

Symbol Name

Feature Attribute (F.attr)

2.4 Textual Notations for Feature Diagrams

Although graphical representations are supposed to be more accessible to non-

technical stakeholders, working with large size of feature models has some

disadvantages listed below:

• Without a tool support, creating a large industry-size feature diagram needs

extraordinary human effort in order to create an understandable and accurate

graphical syntax.

• Navigating and interpreting the feature model is hard as the distances

between the features in large size models may be too much.

• There are not any appropriate graphical notations in order to represent

concepts such as attributes and constraints.

An advantage of text-based languages is that there are many accepted applications

supporting this kind of modeling such as text editors, source control systems and etc.

In addition a text-based model is a convenient way in order to specify the input for

driving the code generator and implement in modeling tool in a more convenient

way.

15

Textual representations should not only contain all the information illustrated via

diagrams, but also they should support automatic processing.

This part of the thesis work will provide an overview of related text-based works

presenting feature models.

2.4.1 Feature Description Language (FDL)

Feature Description Language (FDL) [20] is the first text-based language supporting

a feature diagram algebra provides a syntax for writing a program specification. An

FDL definition defines the feature model with a feature name followed by ":" and

consequently feature expression. The most important notations in FDL for expressing

feature models are described as following:

• An atomic or a composite feature; the definition of the composite feature is

given in another place of the definition.

• An optional feature; a feature expression followed by "?" notation.

• Mandatory and alternative features terminated with "all ()" and "one-of ()"

notations in order.

However, FDL does not support attributes, cardinality-based decomposition,

complex cross-tree constraints, DAGs or duplicate feature names.

2.4.2 Text-based Variability Language (TVL)

A notable feature modeling language is Text-based Variability Language (TVL)

proposed in [21]. The main goal of proposing TVL was to provide a language with

high readability for users with a comprehensive syntax to make modeling easy and

convenient. It also avoids ambiguity with formal semantics. It has a C-like syntax

described by an LALR grammar. It accounts for cardinality-based decompositions

and feature attributes which is not proposed in most existing feature modeling

languages. In addition, complex cross-tree constraints can be expressed in this

language. As TVL is text-based, many applications such as text editors supports the

16

modeling as well. Besides that, it can be used in combination with graphical

notations. The language consists of five major parts which are defined as follows:

• Features: the features and the relationships, including decomposition and

cross-tree relationships, among them can be represented. The hierarchically

presentation of the feature model is practical applying keywords such as root,

group, allof and etc.

• Attributes: TVL supports four different attribute types including integer, real,

Boolean and enumeration. Attributes are illustrated by type and name of them

in TVL.

• Expressions: expressions are used in order to determine the value of an

attribute. Basic expressions such as integer can be combined by applying

operators such as +, &&, > etc. in addition, keywords illustrating cross-tree

constraints (requires and excludes) can be used as Boolean expressions.

• Constraints: ifIn and ifOut are the keywords that used in order to perform

constraints. ifIn means that it is only applicable if the containing feature is

selected. On the other hand, ifOut is applicable only when the containing

feature is not selected.

• Modularization mechanisms: this concept is one of the most important goals

for designing the TVL to make the system organizable. As a result there are

some methods and keywords offered by TVL in order modularize models.

For instance the include keyword is used to take the path of the file as a

parameter and processes directives.

DAG structures can also represented by TVL. The shared keyword is used in order

to illustrate this concept and means that the shared feature has several parents. As

TVL is a text-based modeling language, it has the advantages of being text-based. In

addition, due to the C-like syntax of TVL, less learning effort is required for

engineers. Apart from FDL, TVL is the only language for which a formal semantics

exists.

17

2.4.3 XML-based Feature Modeling Languages

The availability of a wide range of free and commercial XML tools facilitates the

processing of XML-based representations. Furthermore, all modern browsers have a

built-in XML parser straightforwardly usable over the Internet. In addition, due to the

application independent nature of XML and the facility to define the XML Schema,

the interoperability between XML documents is convenient. Generally XML is a

meta-language for creating markup languages. A Schema specifies which structures

and attribute values are allowed to be explained. Creating a schema has the following

advantages:

• The schema specifies the permissible documents for XML.

• Computer documents can specify whether the XML document is acceptable

or not by applying the schema.

• Creating application programs is possible by benefiting from the schema.

As a result XML-Schemas are an important factor for the development of XML-

based applications. XSD is one of the most important and acceptable schema

languages in order to specify and manage the XML document precisely.

All the mentioned advantages cause a wide range of using XML-based

representations during the passage of time. In this section the most important XML-

based feature modeling languages are going to be explained.

2.4.3.1 XML-based Feature Modeling (XFeature)

XFeature is an XM-based feature modeling tool, provided as a plug-in for the Eclipse

platform and graphical editor based on the Graphical Editing Framework (GEF) from

Eclipse foundation [22]. It uses XML languages to express the feature models and

XML schemas to represent the meta-model. The graphical elements used in the GUI

editor for the feature model are similar to the ones in FODA feature diagrams with

cardinality support.

18

XFeature provides two kinds of constraints: local constraints and global constraints.

Local constraints are referred to the combination of sub-features which are children

of the same feature. For instance consider the constraint in such a way that a parent

feature must contain one of the four child features. Local constraints are similar to

group relationships defined by FODA. Global constraints can apply to any feature in

any vertical or parallel structure. This kind of constraint is explained in a separate

XML Schema document as a constraint meta-model. There are four types of global

constraints: Require, exclude, if-then and custom constraint. If-then constraint means

that if constraint A is included then constraint B must be applied as well. Arbitrary

constraint relationships are defined with custom constraints. However, attributes in

cross-tree constraints and expressions for complex cross-tree constraints are not

covered by XFeature. This tool does not support the automated analysis of feature

models either.

2.4.3.2 Feature Modeling Markup Language (FeatureML)

FeatureML [23] is another XML based feature modeling language which consists of

feature elements in order to construct the hierarchical feature diagram and

relationships between features similar to those found in FODA and FORM. The

language syntax is written as an XML Schema. Feature models are defined by XML

document conforming to the XML Schema.

FeatureML defines static and dynamic entity structures and dependency

relationships. It specifies features into two categories: behavior features and data

features. Data features define the data content and property structures whereas

behavior features specifies the dynamic aspects of the features. A behavior feature is

influenced by feature variation points. The more the number of feature variation

points, the more possible design choices for a behavior feature. In addition to the

definitions related to the feature model structure and design choices, a feature model

also includes additional elements such as code generation instructions and

traceability information among the design choices and code generation. Code

generation instructions have different types corresponding to a specific generation

19

pattern. FeatureML supports cardinality-based feature modeling, specialization of

feature diagrams, and configuration based on feature diagrams. It has an XML

schema definition that does not support attributed feature models and complex cross-

tree constraints.

2.4.3.3 The Feature Modeling Plug-In for Eclipse (FeaturePlugin)

FeaturePlugin [24] is another XML-based approach. It is an extension of FODA

providing feature and group cardinalities, feature attributes, feature diagram

references and user-defined annotations. FeaturePlugin is generated from an Eclipse

Modeling Framework (EMF) and some additional customization codes. The

constraints such as implies and excludes are expressed using XPath [25] with a tree

representation of the XML document to navigate through elements and attributes in

an XML document.

2.4.3.4 Tooling a Framework for the Automated Analysis of Feature Models:
(FAMA)

The FAMA framework [26] also uses an XML-based file format and is used for

editing and automated analysis of feature models. FAMA describes two main

functionalities: visual model edition/creation and automated model analysis. In

general FAMA utilizes four different operations listed below:

• Validity control of the feature model

• Calculating the number of products resulted from the feature model

• List the possible products of a feature model

• Calculating the commonality of a feature

FAMA optimizes the analysis process by integrating different logic representations

and solvers. The current version of FAMA integrates three logic representations of

automated analysis on feature models named Constraint Satisfaction Problem (CSP)

20

[27], Boolean Satisfiablity problem (SAT) [28] and Binary Decision Diagrams

(BDD) [.29]. More solvers may be added if required according to the requirements.

FAMA framework has a simple Java interface, implementing a query-base

interaction; as a result it facilitates the integration. In addition extending or updating

the existing product is feasible in FAMA architecture. The framework has an XML

schema that supports decomposition relationships, but not complex cross-tree

constraints.

2.4.3.5 A Tool Framework for Feature Oriented Software Development:
FeatureIDE

FeatureIDE [30] is an open source frame work of an Integrated Development

Environments (IDE) for SPL engineering based on Feature Oriented Software

Development (FOSD). Benefiting from FOSD designing and implementing

applications based on features is achievable. FeatureIDE supports FOSD in many

languages such as Java, C++, C#, XML, and etc. It supports the whole life cycle of a

product line which starts with domain analysis, feature modeling, design,

implementation and maintenance at last. However, cardinality-based feature

diagrams and features including attributes in a feature diagram are not supported. In

addition complex cross-tree constraints cannot be explained with the tool in order to

construct complex feature-feature, feature-attribute and attribute-attribute

relationships.

2.5 Automated Reasoning on Feature Models

Automated analysis for feature models was defined in FODA by Kang et al. [13] and

still it is an ongoing research area. There are four main proposals for automated

reasoning on feature models which will be explained in subsequent sub-section.

However, among the proposals, only some of them are capable of handling extended

feature models.

21

2.5.1 Automated Support on the Automated Analysis of Feature Models

Automated analysis of feature models can be divided into four main groups

explained by Benavides et al. in [31], although it is an ongoing research area and the

mapping among feature models and automated platforms are not fully specified.

This work proposed an XML-based feature modeling language in order to represent

extended feature models with complex relationships. Although graphic-based feature

modeling makes the editing and managing more convenient, from a code generation

point of view textual feature model is the only way as input specification to drive the

code generator. The language represented in this work do the automated processing

in addition to the basic editing processes utilizing XML-based modeling.

2.5.1.1 Propositional Logic-based Analysis

There are some proposals in literature that represents the translation of basic feature

models into propositional formulas. The first representation was proposed by

Mannion [32] where the feature models were utilized as requirements in SPLs. In

order to map the models into propositional formulas, specific rules were provided.

Later Zhang et al. [33] proposed an extension to the previous work by making use of

an automated tool support based on Software Variability Management (SVM) [34]. It

also includes an explanation of a process function that can be followed on the

automated analysis of feature models. Consequently, by Batory's [35] proposal, a

connection between feature models, grammars and propositional formula was

established. This approach supports the basic feature models and does not support

cardinality-based and extended feature models.

22

2.5.1.2 Description Logic-based Analysis

The analysis proposed a translation of feature models into Ontology Web Language

(OWL) Description Language (DL) ontology. The OWL is a family of knowledge

representation languages in order to describe an ontology. Basic feature models are

supported by this approach.

2.5.1.3 Constraint Programming-based Analysis

Constraint programming is a programming paradigm in which relations between

variables are represented as constraints. Constraint Programming techniques can be

utilized in order to automate the feature models. It is the only approach in which

extended and cardinality-based feature models are supported beside the basic feature

models proposed by Benavides et al.

2.5.1.4 Other Proposals
There are some other related works [20, 36] which are not strongly proposed so far.

The existing proposals support only the basic feature models but not the extended

feature models and the cardinality-based feature models.

23

CHAPTER 3

 CONTEXT FREE GRAMMAR EXPRESSING

EXTENDED FEATURE MODELS

This section will cover the grammar we proposed for the feature modeling language.

The grammar will cover the explanation of basic feature models structure including

features and decomposition relationships among them. The decomposition

relationships are listed as mandatory, optional, alternative, and or which is defined in

the previous section. In addition it will cover the grammar of extended feature

models including feature attributes and cardinality-based feature models. An attribute

of the feature is used in order to expose more information about the feature.

Furthermore, the proposed grammar will cover the definitions explained in [37] in

order to construct more complex feature models which may consist of feature-

feature, feature-attribute, and attribute-attribute relationships.

In this thesis work we use Context Free Grammar (CFG) with Extended Backus-

Naur Form (EBNF) notations in order to explain the language we defined. This

section will be covered by an overview of the concept of the CFG grammar and its

extended productions. The CFG grammar for our markup language will be defined in

detail consequently.

3.1 Context Free Grammar (CFG)

A CFG [9] is a formal grammar in which every production rule is in the form of

V w where V is a single nonterminal symbol and w is a string of terminals and/or

nonterminals. "Nonterminals are syntactic variables that denote set of strings". They

are used to define the language generated by the grammar and structure of the

24

language hierarchically. Terminals are the basic symbols from which strings are

formed. The word token is a synonym for terminal when we are talking about

grammars for programming languages. A context free language is the language

generated by context free grammars. The CFG is developed in the middle of 1950s

by Naom Chamsky.

3.1.1 Backus-Naur Form (BNF)

BNF is an accepted notation for CFGs and is used for describing the syntax of

languages [38] developed by John Backus (and possibly Peter Naur as well). A

sample of BNF grammar is as following.

 S := '-' FN |FN
 FN := DL |DL '.' DL
 DL := D |D DL
 D := '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

Figure 3.1 Sample BNF grammar

Where, S demonstrates the Start symbol, FN produces Fractional Number, DL is a

Digit List and D is a Digit. The start symbol is FN which may be followed by more

FNs. FN may be negative or not. It will continue with Digit List. In order to product

a fractional number, the '.' is used between two DLs. According to the grammar

given here, all the numbers, possibly fractional and negative ones are valid sentences

such as 3.14 or -3.14.

3.1.2 Extended BNF (EBNF)

There are many extensions to BNF notation such as Extended BNF (EBNF) [39]

introduced by Niklaus Wirth. EBNF is a notation for representing the grammar of a

language. EBNF has some advantages over BNF described below:

• Options and repetitions could be directly expressed in EBNF.

• Terminals are expressed in quotation marks ("…" or '…') in EBNF facilitates

the use of characters in the language.

25

• In EBNF a terminating character, the semicolon ",", applied in order to

illustrate a rule is terminated. However, a rule can be expressed in one line

using BNF syntax.

Table 3.1 demonstrates the standards defined for EBNF.

Table 3.1 EBNF symbols

Usage Notation

definition =

concatenation ,

termination ;

alternation |

option […]

repetition { … }

grouping (…)

terminal string " … "

terminal string ' … '

comment (* … *)

special sequence ? … ?

exception -

Note that EBNF is more convenient than BNF defining the language. However,

power of the two approaches is the same for defining languages and any EBNF

production can be translated to a BNF production.

3.2 CFG for Extended Feature Models

This part will cover the CFG defined in order to explain the extended feature models.

It will cover the definition of both basic and extended feature models which may

include complex cross-tree relationships among them proposed in [37].

26

3.2.1 A CFG for Expressing Features

A feature is a distinguishable characteristic of a software item. A feature diagram

contains hierarchically set of features and relationships defined among them. A

feature is defined with its specific name and it may include an attribute or not. An

attribute of a feature is any characteristic of a feature that can be measured [5]. A

feature is defined by its name.

Definition 3.2.1:

A feature diagram consists of features with a specific relation among them. In order

to illustrate the features, the name of the features will be utilized. The parent name of

any feature may be demonstrated in order to validate the hierarchically design of the

feature. If a feature is represented as a root feature, it will not get any value for its

parent name. The right-hand side rewriting rule of the feature name will be the name

of the features included in the feature model.

Numeric attribute designator and Boolean attribute designator are non terminals that

are used in order to define the feature with its attribute [8]. They are defined with

feature name followed with the attribute name as illustrated in rule 3.2.1.

Rule 3.2.1:

 NumericAttributeDes ::= FeatureName.AttributeName ;

 BooleanAttributeDes ::= FeatureName.AttributeName ;

The attributes of the Numeric Attribute Designator are used in order to express the

infinite set of numeric digits belonging to the feature with the name FeatureName.

The attributes belonging to the Boolean Attribute Designator demonstrate the

attributes ranging over a Boolean domain with the name FeatureName.

27

Example 3.2.1:

For instance, consider the given feature model. The feature is illustrating the hard

disk with two attributes. The Capacity attribute with the integer value [1.5..3] TB and

the Type attribute with the string value which may be Maxtor or Hitachi.

Figure 3.2 Sample feature with attribute

3.2.2 A CFG for Expressing Decomposition Relationships

Decomposition relationships among the features are declared using four types of

relationships: Mandatory, Optional, Alternative, and Or between the parent feature

and child feature(s).

Definition 3.2.2:

Mandatory relations and Optional relations are placed exactly between a parent and

one child. On the other hand, alternative and or relations are placed among the

parent feature and a set of child features. The child set may include one or more

children. The type of the parent and child are both features declared by a specific

name.

Rule 3.2.2:

The CFG rules for deriving the decomposition relationships are as follows:

MandatoryRel ::= Parent "Mandatory" Child ;

OptionalRel ::= Parent "Optional" Child ;

OrRel ::= Parent "Or" Children ;

AlternativeRel ::= Parent "Alternative" Children ;

28

 Parent ::= FeatureName;

 Child ::= FeatureName;

 Children ::= "(" FeatureName Siblings ")"

 Siblings ::= "," FeatureName | "," FeatureName Siblings ;

Example 3.2.2:

For instance consider the following Figures demonstrating the discussed

relationships:

Figure 3.3 Mandatory relationship

Figure 3.3 illustrates the Mandatory relation among P and C. "P Mandatory C" is a

valid Mandatory relationship as the relationship among the parent and child features

is mandatory. Similarly, Figure 3.4 illustrates the optional relationship among the

parent feature "P" and child feature "C".

P

C

Figure 3.4 Optional relationship

29

As another example consider "P Alternative C1, C2, C3" in which exactly one child

from the child set should be selected from the child set. The relationship is illustrated

in Figure 3.5.

P

C1 C2 C3

Figure 3.5 Alternative relationship

The "Or" relation exists among the parent feature and a set of child features. For

instance consider the Figure 3.6 illustrating the relationship.

Figure 3.6 Or relationship

3.2.2.1 A CFG for Expressing Cardinality-Based Decomposition Relationships

There are two kinds of cardinality-based relationships illustrated in feature models,

Group cardinality and Solitary cardinality. The Group cardinality relationship is

expressed among the parent and set of children in which the inclusion of the parent

feature causes the inclusion of child set according to lower and upper bound of the

cardinality. The Solitary cardinality relationship is expressed as a relationship among

the parent feature and child feature in which the inclusion of parent feature causes

30

the inclusion of child feature in many number of times which is specified by the

lower and upper bound of the cardinality.

The CFG rules for generating cardinality-based decomposition relationships are as

follows:

Rule 3.2.2.1:

 SolitaryCardinality ::= Parent "<" LowerBound ".." UpperBound ">" Child ;

 GroupCardinality ::= Parent "<" LowerBound ".." UpperBound ">" Children ;

 LowerBound ::= "0" | "1" | "2" | …

 UpperBound ::= "0" | "1" | "2" | …

 Parent ::= FeatureName;

 Child ::= FeatureName;

 Children ::= "(" FeatureName Siblings ")"

 Siblings ::= "," FeatureName | "," FeatureName Siblings ;

Example 3.2.2.1

Figure 3.7 illustrates Group Cardinality in which the lower bound is equal to one and

the upper bound is equal to three means that the inclusion of the parent feature "P"

implies at least one and at most three of the child features "C1, C2, C3".

P

C1 C2 C3

<1..3>

Figure 3.7 Group cardinality

31

The following Figure also is represented in order to demonstrate the Solitary

Cardinality among the parent and child feature. The lower bound is equal to one and

the upper bound is equal to three means that the inclusion of the parent feature "P"

implies at least once and at last three times of occurrence of the child feature C.

Figure 3.8 Solitary cardinality

3.2.3 A CFG for Expressing Complex Cross-Tree Relationships

This section will cover the basic cross-tree relationships among the features in a

feature model. In addition complex cross-tree constraints for constructing complex

feature-feature, feature-attribute and attribute-attribute relationships will be covered.

An abstract syntax proposed in [37] describes all the possible complex cross-tree

constraints among features. The CFG for expressing the definitions will be expressed

in this work.

3.2.3.1 A CFG for Expressing Condition Relationship

Definition 3.2.3.1

A condition is a Boolean expression either in the form Expression1 relop

Expression2, or Feature.attribute = truth-value. A relop {=, ≠, <, ≤, >, ≥}

designates common relational operators where the domain of the operands are

subsets of integers and possibly infinite.

32

Domain of Feature.attribute is {true, false}, and domains of Expression1 and

Expression2 are compatible.

An expression is:

• An integer constant, or

• Value of an attribute which will be described as attribute designator in this

work and is in the form of Feature.attribute, or

• Any well-formed formula constructed by combining integer constants and/or

attributes' values with the common integer arithmetic operators {+, -, *, div,

mod}.

Rule 3.2.3.1

The CFG rule in order to represent the condition relation is written below:

ConditionRel ::= "(" Expression RelOp Expression ")" |

BooleanAttributeDesignator "=" TruthValue ;

Expression ::= IntegerConstant |

NumericAttributeDesignator |

"(" Expression IntOp Expression ")" ;

NumericAttributeDesignator ::= FeatureName "." AttributeName ;

RelOp ::= "=" | "≠" | "<" | "≤" | ">" | "≥" ;

IntOp ::= "+" | "-" | "*" | "div" | "mod" ;

Example 3.2.3.1

As an example of valid condition, consider the following condition relationships

belongs to the feature model illustrated in Figure 3.9. P is the parent feature. The

33

Mandatory relation connects the "P" to "X" and "Z" and the Optional relationship is

among the "P" as a parent feature and "Y" as its child.

Figure 3.9 A sample feature model

(1) X.a ≥ Y.b div 2

It is in the form of Expression1 relop Expression2. In this example, X.a and Y.b are

called attribute numeric designators where X and Y illustrates the features belongs to

the feature model demonstrated with their names. a is the attribute of feature X and b

is the attribute of feature Y. The relop operator between Expression1 and Expression2

is defined as ≥. (Y.b div 2) illustrates the formula combining attribute value with an

integer constant and the div operator is defined as an arithmetic operator.

As another valid example consider the following:

(2) Z.c = true

The expression is in the form of Feature.attribute = truth-value. The left hand side

of the equation is an attribute designator which is illustrated as a feature name

followed by "." and attribute name. The feature name is Z with an attribute named c.

34

3.2.3.2 A CFG for Expressing Excludes Relationship

Definition 3.2.3.2

An excludes is a relationship in the form of P excludes Q among two features. P and

Q are both features.

Rule 3.2.3.2

The CFG rule for deriving an excludes relation is illustrated below:

ExcludesRel ::= FeatureName "excludes" FeatureName ;

Example 3.2.3.2

For instance, consider a feature model as shown in Figure 3.10. The relationship

among the feature X and feature Y is defined as an excludes relationship, which can

be explained as following. It means that the inclusion of X in the feature model

implies the exclusion of Y in that model. It is a valid sample demonstrating exclude

relationship.

(1) X excludes Y

Figure 3.10 A sample feature model expressing Excludes relationship

35

3.2.3.3 A CFG for Expressing Requires Relationship

Definition 3.2.3.3

A requires is a relationship in the form of P requires Q, where P is a feature and Q

may be:

• A feature, or

• A condition, which is defined in definition 1, or

• Any well formed formula constructed by combining features and/or

conditions with the propositional logic connectives {and, or, not, conditional,

biconditional}

Rule 3.2.3.3

The CFG derived from the requires relationship is written as following:

RequiresRel ::= FeatureName "requires" Q ;

Q ::= FeatureName |

 ConditionRel |

 "(" Q BinaryConnective Q ")" |

 Negation "(" Q ")" ;

BinaryConnective ::= "and" | "or" | "conditional" | "biconditional" ;

Negation ::= "not" ;

Example 3.2.3.3

For instance consider the following feature model with the requires relationship in

Figure 3.11.

36

 Figure 3.11 A sample feature model

The reuqires relationship below is a valid one expressed in expression (1):

(1) F requires (X.a > 10)

In this example, F is a feature existing in the feature model. (X.a >10) is in the form

of condition relation (Expression1 relop Expression2). The relop is > between two

expressions. The left hand side expression is an attribute designator in the form of

feature name followed by "." and attribute name consequently. The right hand side

expression is an integer constant.

As another example consider the following example expressed in expression (2) as a

valid one:

(2) F requires (X and not Y)

In this example, the left hand side of the requires relationship is a feature named F

existing in the feature model. The right hand side of the relationship is in the form of

"(" Q BinaryConnective Q ")", where the binary connective is expressed as "and". X

and Y are the names of a features existing in the feature model. The negation

notation is represented using "not" keyword.

37

3.2.3.4 A CFG for Expressing Complex Constraint Relationship

Definition 3.2.3.4

A complex constraint is a requires/excludes relationship, or any well-formed formula

constructed by combining features and/or requires/excludes relationships with the

propositional logic connectives.

Rule 3.2.3.4

Rule 3.2.3.4 illustrates the CFG rule deriving the Complex Constraint relationship

which is written below:

ComplexConstraintRel ::= RequiresRel |

ExcludesRel |

"(" CP BinaryConnective CP")"|

Negation "(" CP ")" ;

CP ::= RequiresRel |

ExcludesRel |

FeatureName |

Negation "(" CP ")" |

"(" CP BinaryConnective CP ")" ;

BinaryConnective ::= "and" | "or" | "conditional" | "biconditional" ;

Negation ::= "not" ;

Example 3.2.3.4

In order to make a valid example, consider the feature model illustrated in Figure

3.12. The root feature "P" contains three children named A, B and C. C is the parent

of X.

38

P

B
a(integer):[10..50]

C
b(integer):[2..80]

A
h(integer):[10..50]

X
c(integer):[70..500]

Figure 3.12 A sample feature model

The complex constraint relationships written below are some valid samples:

(1) A and B implies not C

Expression (1) is a well-formed combination of features with propositional logic

connectives in the form of "(" ComplexConstraintRel BinaryConnective

ComplexConstraintRel ")". A, B, and C demonstrates feature names which is defined

as a choice for a complex constraint relationship. and and implies are binary

connectives and not is described as negation formula.

As another example consider the one written as follows:

(2) A requires (B.a > C.b or X.c >100)

In expression (2) the complex constraint relationship is in the form of RequiresRel.

Left hand side of the RequiresRel demonstrate a feature named A. The right hand

side of the relationship is in the form of "(" Q BinaryConnective Q ")" which one of

the right hand side choices defined in RequiresRel. The BinaryConnective is defined

with "or" and both sides of the BinaryConnective are defined as a ConditionRel.

According to the rule defined for ConditionRel, they are in the form of "("

Expression RelOp Expression ")".

39

3.2.3.5 A CFG for Expressing Guarded Constraint Relationship

Definition 3.2.3.5

In some cases the use of conditional constraints may be inevitable. It is in the form of

"if (some feature-related condition holds) then (some feature-related constraint must

hold)".

The conditional constraint is provided as a separate type of constraint for

convenience and it is often found in practice in different domains and purposes. The

constraint is defined as Guarded Constraint which is defined as follows:

A Guarded Constraint is a relationship in the form: if Guard then Complex

Constraint. Guard is any Boolean combination of conditions.

Rule 3.2.3.5

GuardedConstraintRel ::= "If" Guard "Then" ComplexConstraintRel ;

Guard ::= "(" Guard BinaryConnective Guard ")" |

Negation "(" Guard ")" |

ConditionRel ;

BinaryConnective ::= "and" | "or" | "conditional" | "biconditional" ;

Negation ::= "not" ;

Example 3.2.3.5

As an example, consider the feature model demonstrated in Figure 3.13. The root

feature P has two sub features named A and B with their own attributes.

40

Figure 3.13 A sample feature model

There may be a conditional constraint between features such as the following one:

(1) If the value of attribute of feature A is greater than 4, then feature A requires

B.b ≥ 10. It will be illustrated in the form: if A.a > 4 then A requires B.b ≥

10 which is a valid conditional constraint according to the rule. In this

sample, Guard is in the form of ConditionRel. It is defined in the form of "("

Expression RelOp Expression ")". The ComplexConstraintRel part is in the

form of RequiresRel which is defined in Rule 3.2.3.4.

3.2.3.5.1 A CFG for Expressing Guarded Constraint Combination Relationship

Definition 3.2.3.5.1

The guarded constraints can be combined with the propositional logic connectives in

order to establish more complex and complicated constraints.

Rule 3.2.3.5.1

GuardedConstraintRelCombination ::=

 "(" GuardedConstraintRel BinaryConnective GuardedConstraintRel ")" |

GuardedConstraintRel |

Negation "(" GuardedConstraintRel ")" ;

BinaryConnective ::= "and" | "or" | "conditional" | "biconditional" ;

Negation ::= "not" ;

41

Example 3.2.3.5.1

As an example consider the feature model given in Figure 3.14. X, Y and Z are some

of the existing features in the feature model.

Figure 3.14 A sample feature model

Now, consider an example of combined guarded constraint which is a valid one and

written below:

(1) If X.a < 10 and X.a >2 then X excludes Y or if X.a=Y.b then X requires Z.

This sample is in the form of "(" GuardedConstraintRel BinaryConnective

GuardedConstraintRel ")". The BinaryConnective is illustrated with "or". The left

hand side of the "or" connective is a GuardedConstraintRel in which the Guard is

ConditionRel in the form of "(" Expression RelOp Expression ")" and the

ComplexConstraintRel is in the form of ExcludesRel. The right hand side of the "or"

connective is a GuardedConstraintRel as well. The Guard is ConditionRel in the

form of "(" Expression RelOp Expression ")" and the ComplexConstraintRel is in the

form of RequiresRel.

42

CHAPTER 4

XML SCHEMA DEFINITION FOR EXPRESSING

EXTENDED FEATURE MODELS

In this section, we present the XML Schema Definition (XSD) that has been built on

the definitions discussed in the previous chapter in order to illustrate feature models.

Feature models are used to illustrate SPL in terms of features and relationships

among them. Via extending feature models, demonstrating extended feature models

with attributes and cardinality-based feature modeling become achievable as well.

The main contribution of this work is the proposal of an XML-based feature

modeling language. In addition to the capability of expressing the structure of basic

feature models with the relationships among them, the language also provides the

modeling language in order to express features with complex cross-tree constraints

involving attributes. Benefiting from an XML-based language as a meta-model, the

use of rich selection of off-the-shelf XML parsers which offers advantages that are

not readily available with traditional text encoding, will be convenient.

The language we present in this work uses XML languages to express the feature

models and XML Schemas to express the meta-model. According to the relationship

among a model and a meta-model is then expressed by saying that the XML-based

language must be validated by using XML Schema which represents its meta-model.

4.1 XML Schema Definition (XSD)

An XML Schema is published as a W3C recommendation in May 2001. In general,

schema is an abstract collection of meta-data including schema components such as

complex types, simple types, declarations for elements and attributes and etc. [10]

43

Similar to most of the schema languages, XSD can be used in order to represent a set

of rules to which an XML document must conform considering the validity of the

XML document according to that schema.

An XSD describes the structure of an XML document and in spite of wide range of

use of Document Type Definition (DTDs) it is a replacement for DTDs. DTD is a set

of markup declarations defining a document type. It was a precursor to XML Schema

with similar functionalities but different capabilities. XML Schema approach has the

following advantages:

• Schemas support rich set of data types. Thus, describing document content

and validating the correctness of data become more convenient.

• Schemas have the same syntax as XML. As a result, there is no need for an

extra learning effort, and special tools in order to edit and parse.

• Schemas are extensible as they are written in XML. Due to this property, one

Schema can be reused in another Schema and multiple Schemas may be

referred in the same document.

• Creating new data types is possible.

• They provide enhanced control over markup and secure data communication.

Thus make it readable and understandable for both sender and receiver of the

document.

4.1.1 XSD <schema> Element

Every XML Schema starts with a root element <schema> [10] and may contain a

reference element to an XML document. A simple structure of a schema is illustrated

in Figure 4.1.

44

Figure 4.1 A simple schema structure

4.1.2 XSD Simple Elements

A simple element is used to define an XML element containing only texts. The text

can be defined as one of the types included in XSD such as integer, string and etc. in

addition it can be custom type defined by the user. Simple elements may also have

default or fixed values. At the time that no value is specified to an element, a default

value is automatically assigned to the element. In the case of applying the fixed

values, specifying another value automatically is impossible.

4.1.2.1 XSD Restrictions
In order to define acceptable values for an XML element restrictions are used called

facets. As an example, Figure 4.2 illustrates a restriction applied on a set of values. It

defines an element called "car" with a restriction. The only acceptable values for

"car" are "Golf", "Audi" and "BMW".

Figure 4.2 A sample of restrictions from [10]

<xs:element name="car">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Audi"/>

 <xs:enumeration value="Golf"/>

 <xs:enumeration value="BMW"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

45

4.1.3 XSD Complex Elements

A complex element may contain other elements and/or attributes [10]. Four main

types of complex elements are as written in the following:

(1) empty elements

(2) elements including only other elements

(3) elements includes only text

(4) elements that contain both other elements and text

These types of complex elements may include attributes as well.

4.1.3.1 XSD Indicators

Indicators are used in order to control the behavior of the elements in a document.

There are three main types representing indicators which are listed below:

(1) Order indicators: in order to define the order of the elements these kinds of

indicators are used. <all>, <choice> and <sequence> indicators are listed

as order indicators. Applying <all> indicator means that each child element

must occur exactly once. They can apply in any order. Applying <choice>

indicator means that you can choose the elements to be occurred.

<sequence> indicator is used where the order of the elements is significant.

(2) Occurrence indicators: consist of two main types: minOccurs and

maxOccurs. In order to specify the minimum number of times that an

element should be occurred, minOccurs is used. On the other hand while

specifying the maximum number of times that an element can be occurred,

maxOccurs indicator is used.

(3) Group indicators: they are used to define the elements related to each other.

4.2 XSD for Extended Feature Models

This part will cover the XSD provided in order to explain the extended feature

models by both graphical and textual XML Schema. Graphical and textual modeling

46

languages serve different audience. Working with graphical modeling elements may

be more convenient for human designers because of the ease of editing and managing

graphs compared to the text including a complex syntax. On the other hand, from a

code generation point of view, a textual feature model is the only way as input

specification to drive the code generator. Editing and parsing a feature model via a

graphical model is difficult utilizing computer programs.

The XSD represented in this section will cover the textual definition of both basic

and extended feature models which may include complex cross-tree relationships

among them. The graphical XML schema definitions are shown in Appendix A. The

XSD explanations are provided according to the CFG rules illustrated in previous

chapter.

4.2.1 XSD for Expressing Features

A feature model consists of hierarchically set of features starts with a root feature

and continues with sub feature(s) with feature relationships among them. Features

are identified by their specific names. They also may include attributes or not which

is an extension for basic feature models [5]. Generally an attribute of a feature is

illustrated by its name, domain and value. If a feature including its attribute is

mentioned in a relationship among features, it would be shown as an attribute

designator. An attribute designator is represented as a feature name followed by its

attribute name with "." among them. Another main extension to the concept is

including the feature cardinalities to basic ones [15]. There are two kinds of

cardinalities: feature cardinality and group cardinality. The solitary cardinality

between a parent feature and its child feature with <i..j> cardinality means that when

the parent feature is included, the child feature will be included at least i and at most

j number of times. Group cardinality between a parent feature and a set of child

features with a <i..j> cardinality, the inclusion of a parent feature causes the

inclusion of at least i and at most j child features. The i is less than or equal to j, and j

is the maximum number of child features.

47

The schema definition in order to express the features is illustrated as follows.

Appendix A also demonstrates the graphical representation for schema.

 <xsd:complexType name="Feature">

 <xsd:sequence>

 <xsd:element ref="FeatureAttribute" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="Name" type="xsd:string" use="required"/>

 <xsd:attribute name="ParentName" type="xsd:string" />

 </xsd:complexType>

Figure 4.3 XSD representation for feature

 <xsd:element name="FeatureAttribute">

<xsd:complexType>

 <xsd:attribute name="Name" type="xsd:string" use="required"/>

 <xsd:attribute name="Domain" type="xsd:string" use="required"/>

 <xsd:attribute name="Value" type="xsd:string"/>

</xsd:complexType>

 </xsd:element>

Figure 4.4 XSD representation for feature attributes

48

 <xsd:element name="AllFeatures">

 <xsd:complexType>

 <xsd:sequence minOccurs="0" maxOccurs="unbounded" >

 <xsd:element name="Features" type="Feature" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.5 XSD representation for all of the features

In Figure 4.3, an XSD is represented demonstrating the structure of a basic feature

which is identified by its name. It is defined as a complex type due to the use of

feature type in other definitions with different name but similar structure. The

<sequence> indicator is used in order to express the definitions in a specific order.

By making use of the Occurrence indicators, the number of including an each

element in the definition can be managed. The default number of occurrences is

identified as one by default which may be changed by the programmer. The

ParentName of any feature may be expressed while defining the feature. The

structure of the "FeatureAttribute" and "AllFeatures" is expressed in a separate part

in Figure 4.4 and Figure 4.5. As a result, referencing the elements with number of

occurrences will be appropriate in other parts. "FeatureAttribute" and "AllFeatures"

are both defined as an element in order to make the referring process convenient.

4.2.2 XSD for Expressing Decomposition Relationships

This section is covered by the XSD definitions for decomposition relationships

among features. There are four kinds of decomposition relationships among features:

Mandatory, Optional, Alternative and Or. The definition of these four relationships is

grouped into two different expressions. Mandatory and Optional Relations are

similar as the number of child features is only one. In contrast, the number of

children features applying Alternative and Or relations is more than one. In addition,

49

the decomposition relationship may include feature cardinalities. There are two kinds

of cardinalities; solitary cardinality and grouped cardinality. The

"FeatureCardinality" element is defined as complex type including a <choice>

indicator in order to choose the elements to be occurred in the definition. The

element consists of two choices, "SolitaryCardinality" and "GroupedCardinality".

The definitions are illustrated in the consequent Figures.

 The XSD textual definitions of decomposition relationships are illustrated in the

following Figures.

 <xsd:element name="DecompositionRelation">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="MandatoryRelation" minOccurs="0"/>

 <xsd:element ref="OptionalRelation" minOccurs="0"/>

 <xsd:element ref="AlternativeRelation" minOccurs="0"/>

 <xsd:element ref="OrRelation" minOccurs="0"/>

 <xsd:element ref="FeatureCardinality" minOccurs="0" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.6 XSD representing Decomposition relationship

The DecompositionRelation may include different types which are defined with the

complex type including <sequence> indicator. Each of the decomposition relation

types are referred to their own definitions illustrated as follows.

50

 <xsd:element name="MandatoryRelation">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="Parent" type="Feature" />

 <xsd:element name="MandatoryRelationKeyword" type="xsd:string"

 fixed="Mandatory"/>

 <xsd:element name="Child" type="Feature" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.7 XSD expressing Mandatory relation

 <xsd:element name="OptionalRelation">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="Parent" type="Feature" />

 <xsd:element name="OptionalRelationKeyword" type="xsd:string"

fixed="Optional"/>

 <xsd:element name="Child" type="Feature" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.8 XSD expressing Optional relation

51

 <xsd:element name="AlternativeRelation">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="Parent" type="Feature" />

 <xsd:element name="AlternativeRelationKeyword" type="xsd:string"

 fixed="Alternative"/>

 <xsd:element ref="ChildSet" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.9 XSD expressing Alternative relation

 <xsd:element name="OrRelation">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="Parent" type="Feature" />

 <xsd:element name="OrRelationKeyword" type="xsd:string" fixed="Or"/>

 <xsd:element ref="ChildSet" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.10 XSD expressing Or relation

52

The Mandatory, Optional, Alternative and Or relationships are defined as a

complexType including <sequence> indicator in which the Parent element should

be defined at first, continued with the related keyword and Child/ChildSet definition

at the end. The XSD definition for FeatureCardinality is illustrated as the

following. It consists of two different types, SolitaryCardinality and

GroupedCardinality. They are defined as a complex type including a <sequence>

indicator which means that the set of definitions should be applied in a specific order.

They are demonstrated in Figure 4.12 and 4.13.

 <xsd:element name="FeatureCardinality">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="SolitaryCardinality" minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element ref="GroupedCardinality" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.11 XSD expressing Feature Cardinality

53

 <xsd:element name="SolitaryCardinality">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="Parent" type="Feature" />

 <xsd:element ref="Cardinality" />

 <xsd:element name="Child" type="Feature"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.12 XSD expressing Solitary Cardinality

 <xsd:element name="GroupedCardinality">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="Parent" type="Feature" />

 <xsd:element ref="Cardinality" />

 <xsd:element ref="ChildSet" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.13 XSD expressing Group Cardinality

54

 <xsd:element name="Cardinality">

 <xsd:complexType>

 <xsd:attribute name="Min" type="xsd:integer" use="required"/>

 <xsd:attribute name="Max" type="xsd:integer" use="required"/>

 </xsd:complexType>

 </xsd:element>

Figure 4.14 XSD expressing Cardinality

Figure 4.14, illustrates the definition of the Cardinality which includes two attributes.

"Min" illustrates the minimum number of occurrences of the cardinality and "Max" is

utilized in order to represent the maximum number of cardinality. The use of the

attributes are expressed as "required" emphasizing that the inclusion of the attributes

is obligatory.

The definition of the ChildSet is illustrated in the following Figure. The minimum

number of children is two and it can be more than two.

 <xsd:element name="ChildSet">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="Child" type="Feature"

 minOccurs="2" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.15 XSD expressing ChildSet

55

4.2.3 XSD for Expressing Complex Cross-Tree Relationships

This section will cover the XSD definitions expressing the basic and complex cross-

tree relationships including feature-feature, feature-attribute, and attribute-attribute

relationships. The definitions and CFG rules of the relationships are given in section

3.2.3. In Figure 4.16 the different types of the complex cross-tree relationship is

illustrated.

 <xsd:element name="CrossTreeRelation">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="Excludes" minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element ref="Requires" minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element ref="ComplexConstraint" minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element ref="GuardedConstraint" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element ref="GuardedConstraintCombination"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.16 XSD expressing cross-tree relationships

4.2.3.1 XSD for Condition Relationship

The condition may be in the form of Expression1 relop Expression2, or

Feature.attribute = truth-value. The XSD is defined as an element including a

<choice> indicator in order to be chosen which is illustrated in Figure 4.17.

56

 <xsd:element name="Condition">

 <xsd:complexType>

 <xsd:choice>

 <xsd:element ref="ExpressionRelOpExpression"/>

 <xsd:element ref="BoolAttributeDesequaltoTruthValue"/>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

Figure 4.17 XSD expressing Condition relationship

The structure of two alternatives expressing condition expression is illustrated in

Figure 4.18 and 4.20. The first element is "ExpressionRelOpExpression" defined

as a complex type including a <sequence> indicator in order to illustrate a set of

expressions in a specific order. The sequence includes the left hand side Expression

followed by RelOp and right hand side Expression. The RelOp is defined as a

simple type in order to define the set of acceptable values (relop {=, ≠, <, ≤, >, ≥}).

The structure of the Expression is expressed in Figure 4.19 as well. The Expression

may be expressed as an integer constant, attribute designator, or any well-formed

formula by combining integer constants and/or attributes' values with the integer

operators. IntegerOperator is defined as a simple type with restrictions on a set of

acceptable values.

57

 <xsd:element name="ExpressionRelOpExpression">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="ExpressionStructure"/>

 <xsd:element name="RelOp">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="="/>

 <xsd:enumeration value="#"/>

 <xsd:enumeration value="<"/>

 <xsd:enumeration value="<="/>

 <xsd:enumeration value=">"/>

 <xsd:enumeration value=">="/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element ref="ExpressionStructure"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.18 XSD expressing ExpressionRelOpExpression

58

 <xsd:element name="ExpressionStructure">

 <xsd:complexType>

 <xsd:choice>

 <xsd:element name="IntegerConstant" type="xsd:integer"/>

 <xsd:element ref="NumericAttributeDes"/>

 <xsd:sequence>

 <xsd:element ref="ExpressionStructure" />

 <xsd:element name="IntegerOperator">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="+"/>

 <xsd:enumeration value="-"/>

 <xsd:enumeration value="*"/>

 <xsd:enumeration value="div"/>

 <xsd:enumeration value="mod"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element ref="ExpressionStructure" />

 </xsd:sequence>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

Figure 4.19 XSD expressing the structure of Expression

The condition expression may also be in the form of

"BoolAttributeDesequaltoTruthValue" illustrated in Figure 4.20. It is defined as a

59

complex type including <sequence> indicator, as the order of expressions is

important. The "DotKeyword" and "EqualKeyword" are defined as a fixed value

and will be always illustrated by their defined values. "TruthValue" is expressed

with a Boolean type. The structure of the "NumericAttributeDes" is given in Figure

4.21.

 <xsd:element name="BoolAttributeDesequaltoTruthValue">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="FeatureName" type="Feature"/>

 <xsd:element name="DotKeyword" type="xsd:string" fixed="."/>

 <xsd:element name="AttributeName" type="xsd:string"/>

 <xsd:element name="EqualKeyword" type="xsd:string" fixed="="/>

 <xsd:element name="TruthValue" type="xsd:boolean"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.20 XSD expressing BoolAttributeDesequaltoTruthValue

"NumericAttributeDes" is expressed with a sequence starting with a feature name

continuing with a fixed value of "." keyword and attribute name at the end of

sequence. There are two kinds of Attribute Designators; Numeric and Boolean. The

value of the NumericAttributeDes will always numeric where as the Boolean one

can be illustrated with two values true or false.

60

 <xsd:element name=" NumericAttributeDes ">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="FeatureName" type="Feature"/>

 <xsd:element name="DotKeyword" type="xsd:string" fixed="."/>

 <xsd:element name="AttributeName" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.21 XSD expressing NumericAttributeDes

4.2.3.2 XSD for Expressing Excludes Relationship

The Excludes relationship is expresses in XSD as illustrated in Figure 4.22. It is

defined in a sequence which may be occurred zero or more times. The left hand side

and right hand side of the "excludes" keyword are features following the structure

defined for a basic feature in Figure 4.3.

61

 <xsd:element name="Excludes">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="LeftFeatureOfExclude" type="Feature"/>

 <xsd:element name="ExcludeKeyword" type="xsd:string" fixed="excludes"/>

 <xsd:element name="RightFeatureOfExclude" type="Feature"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.22 XSD expressing Excludes relationship

4.2.3.3 XSD for Expressing Requires Relationship

The XSD definition for "Requires" relationship structure is expressed in Figure

4.23. The "Requires" relation is defined as a complex type in which the

<sequence> indicator is used as the order of the expressions is important. The

relationship may or may not occur. The left hand side structure of the "requires"

keyword is a feature all the time following the properties defined in the XSD for

features in Figure 4.3. The right hand side is identified as a "BooleanFormula". The

structure of the "BooleanFormula" is illustrated in Figure 4.24.

62

 <xsd:element name="Requires">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="ReqFeature" type="Feature"/>

 <xsd:element name="RequireKeyword" type="xsd:string" fixed="requires"/>

 <xsd:element ref="BooleanFormula"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.23 XSD expressing Requires relationship

 <xsd:element name="BooleanFormula">

 <xsd:complexType>

 <xsd:choice>

 <xsd:element name="FormulaFeature" type="Feature"/>

 <xsd:element ref="Condition"/>

 <xsd:element ref="NegationBooleanFormula"/>

 <xsd:element ref="BooleanFormulaConBooleanFormula"/>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

Figure 4.24 XSD expressing the structure of Boolean Formula

A "BooleanFormula" can be expressed with a "Feature", "Condition" relationship,

"NegationBooleanFormula" or a combination of features and/or conditions with

63

propositional logic connectives expressed in Figure 4.26. The

"NegationBooleanFormula" is defined in order to express the negation structure

illustrated with "not" keyword.

 <xsd:element name="BooleanFormulaConBooleanFormula">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="BooleanFormula"/>

 <xsd:element ref="BinConnective"/>

 <xsd:element ref="BooleanFormula"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.25 XSD expressing BooleanFormulaConBooleanFormula

<xsd:element name="BinConnective">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="and"/>

 <xsd:enumeration value="or"/>

 <xsd:enumeration value="conditional"/>

 <xsd:enumeration value="biconditional"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:element>

Figure 4.26 XSD expressing Propositional Logic Connectives

64

4.2.3.4 XSD for Expressing Complex Constraint Relationship

The XSD definition for expressing the Complex Constraint relationship is illustrated

in Figure 4.27.

 <xsd:element name="ComplexConstraint">

 <xsd:complexType>

 <xsd:choice>

 <xsd:element ref="Requires" minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element ref="Excludes" minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element ref="NegationCP" minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element ref="CPConCP" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

Figure 4.27 XSD expressing ComplexConstraint relationship

The "ComplexConstraint" is defined as a complex type including <choice>

indicator as it can be expressed as a "Requires" relationship, "Excludes"

relationships, or Complex Part (CP) which may be illustrated as a negation CP,

with "not" keyword, or combination of CPs with propositional logic connectives. The

structure of CP is illustrated below in Figure 4.28.

65

 <xsd:element name="CP">

 <xsd:complexType>

 <xsd:choice>

 <xsd:element ref="Requires" minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element ref="Excludes" minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element ref="NegationCP" minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element ref="CPConCP" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="CPFeature" type="Feature"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

Figure 4.28 XSD expressing Complex Part (CP)

The CP definition restricts the occurrence of a feature solely. It can be expressed

only as a combination with another feature using propositional logic connectives.

"NegationCP" illustrated with a fixed "not" value followed by the structure of CP.

4.2.3.5 XSD for Expressing Guarded Constraint Relationship

The XSD definition for expressing the Guarded Constraint relationships is illustrated

in Figure 4.29. It is defined as a complex type applying the <sequence> indicator as

the sequence of inclusion is important in the structure. Firstly, the "IfKeyword" is

defined which has a fixed value, "If" followed by "Guard". The XSD expression of

"Guard" is illustrated in Figure 4.30. The definition continues with "ThenKeyword"

with a fixed value of "Then". The termination definition expressing is the

"ComplexConstraint" which is defined in section 4.2.3.4.

66

 <xsd:element name="GuardedConstraint">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="IfKeyword" type="xsd:string" fixed="If"/>

 <xsd:element ref="Guard"/>

 <xsd:element name="ThenKeyword" type="xsd:string" fixed="Then"/>

 <xsd:element ref="ComplexConstraint"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.29 XSD expressing GuardedConstraint

 <xsd:element name="Guard">

 <xsd:complexType>

 <xsd:choice>

 <xsd:element ref="GuardConGuard"/>

 <xsd:element ref="Condition"/>

 <xsd:element ref="NegationGuard"/>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

Figure 4.30 XSD expressing the structure of Guard

As it is illustrated in Figure 4.30, the "Guard" is any Boolean combination of

conditions which may expressed as "Condition" or any well-formed formula by

combining conditions with propositional logic connectives.

67

4.2.3.5.1 XSD for Expressing Guarded Constraint Combination Relationship

Guarded Constraints can be combined with the propositional logic connectives in

order to build more complex constraints. The definition is expressed in Figure 4.31.

 <xsd:element name="GuardedConstraintCombination">

 <xsd:complexType>

 <xsd:choice>

 <xsd:element ref="GuardedConstraint"/>

 <xsd:element ref="NegationGuardedConstraint"/>

 <xsd:element ref="GuardedConstraintConGuardedConstraint"/>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

Figure 4.31 XSD expressing GuardedConstraintCombination

"GuardedConstraintCombination" is defined as a complex type expressing with a

<choice> indicator. It can be represented as a "GuardedConstraint", a

"NegationGuardedConstraint" expressed with a "not" keyword expressed in

Figure 4.32. It may be also represented as

"GuardedConstraintConGuardedConstraint" which is a combination of guarded

constraints with propositional logic connectives.

68

 <xsd:element name="NegationGuardedConstraint">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="NegationKeyword" type="xsd:string" fixed="not"/>

 <xsd:element ref="GuardedConstraint"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

Figure 4.32 XSD expressing NegationGuardedConstraint

69

CHAPTER 5

EXTENSIBLE MARKUP LANGUAGE INSTANCES

EXPRESSING EXTENDED FEATURE MODELS

In this section a complete sample of a feature model will be illustrated. According to

the feature model and XSD definitions as a meta-model, the XML instances will be

proposed. The syntax of the language we proposed is implemented as XML schema

and as a result each feature model is an XML document conforming to the XSD. The

feature model includes four different kinds of decomposition relationships

(Mandatory, optional, Alternative and Or). In addition to the decomposition

relationships, cross-tree relationships will be illustrated as well. Furthermore,

complex cross-tree relationships will be utilized for the sample feature model which

may include complex feature-feature, feature-attribute and attribute-attribute

relationships as defined in [37]. The CFG rules and XSD definitions of the abstract

syntax is covered in previous sections. Features may include attributes in order to

express more information about the features.

5.1 eXtensible Markup Language (XML)

XML is a World Wide Web Consortium (W3C) recommendation since February 10,

1998 and is designed to carry and save data [6]. XML data stores in a plain text

format causing software/hardware independent way for data storing. It is a

complement to Hyper Text Markup Language (HTML) for web pages [40] which is

used in order to display the data.

70

5.1.1 XML Elements

XML has a simple and comprehensive syntax rules expressed with tags. Tag is a

markup construct which starts with "<" and ends with ">". Tags are expressed in

three flavors: start tags <start>, end tags </end> and empty element tags such as

<line-break> [6]. The tags are case sensitive, opening and closing tags should be

written with the same cases. Everything includes among the start and end tag is

referred to an element in XML. An element may consist of another element, text,

attributes or it may be a mix of all these types.

Some characters are not allowed to be written in their original syntax in XML. For

instance if you want to insert a character "<" inside an XML element demonstrating

"less than", it will cause an error as the parser interprets it as the start of a new

element [6]. In order to avoid these kinds of errors, "entity references" are illustrated

in table 5.1 from [6].

Table 5.1 Entity references [6]

Symbol Description Entity reference

< Less than <

> Greater than >

& Ampersand &

' Apostrophe '

" Quotation mark "

71

5.1.2 XML Attributes

Attributes are expressed in order to provide additional information about the

elements. Attribute values should be always quoted. It may be a single or double

quote. The both alternatives are illustrated in Figure 5.1.

<person sex="female">

<person sex='female'>

Figure 5.1 XML instance expressing Attribute value

XML attributes cannot be expressed in a tree structure. In addition multiple values

are not allowed to be used for attributes. On the other hand, utilizing a tree structure

and multiple values is convenient for the elements of the XML document.

5.1.3 XML Tree

XML documents establish a tree structure that starts with "root" and branches to the

lowest levels with "leaves" hierarchically. As an example, consider the Figure 5.2

accessed from [6].

<root>

 <child>

 <subchild>.....</subchild>

 </child>

</root>

Figure 5.2 XML tree structure [6]

5.2 XML Instances for Extended Feature Models

This section will cover the XML instances according to the feature model illustrated

in Figure 5.3. The feature model covers all types of the decomposition relationships,

72

basic and complex cross-tree relationships as well. Some of the features may include

attributes identified with their name, domain and value. The relationship among the

features may include feature and group cardinality which was covered in previous

sections.

Figure 5.3 A sample feature model for a Computer

The XML instances represented in this section are written based on the XSD

definitions expressed in previous chapter. All of the XML documents and the XSD

definition are checked in order to control that they are valid or not. This process is

done by the tool that will be discussed in next chapter.

5.2.1 XML Instances for Expressing Features

The feature diagram we selected representing in this section consists all the basic

decomposition and complex cross-tree relationships defined in [37]. The

decomposition relationship is consisting of Mandatory, Optional, Alternative and Or

relationship. Besides theses, it may include cardinality-based relationships [15]. The

feature cardinality is the relationship among the parent feature and child feature. In

Figure 5.3 the feature cardinality is illustrated among the computer feature and

73

external memory feature with [1..5] cardinality. It means that the inclusion of

computer feature implies the inclusion of external memory at least 1 and at most 5

numbers of times. The group cardinality is a relationship among the parent feature

and list of child features in which the inclusion of the parent feature implies the

inclusion of set of children according to the minimum and maximum cardinality. For

instance, in Figure 5.3 the group cardinality is among the Accessories as a parent

feature and a set of child features. The inclusion of accessories implies the inclusion

of at least zero and at most three number of set of children. In addition complex

cross-tree relationships including feature-feature, feature-attribute and attribute-

attribute relationships are covered which will be discussed in consequent sections.

 <?xml version="1.0"?>

 <AllFeatures xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="AllFeatures.xsd">

 <Features Name="Computer" />

 <Features Name="Motherboard" >

 <FeatureAttribute Name="WirelessLANSupport" Domain="Boolean"

 Value="true,false"/>

 <FeatureAttribute Name="type" Domain="string" Value="ASUS,INTEL"/>

 </Features>

 <Features Name="CPU" >

 <FeatureAttribute Name="speed" Domain="integer" />

 <FeatureAttribute Name="brand" Domain="string" Value="AMD,INTEL"/>

 </Features>

 <Features Name="HardDisk" >

 <FeatureAttribute Name="capacity" Domain="integer" />

 <FeatureAttribute Name="type" Domain="string" Value="Maxtor,Hitachi"/>

 </Features>

 <Features Name="RAM" >

Figure 5.4 XML instance expressing the Feature Model (continued)

74

 <FeatureAttribute Name="speed" Domain="integer" />

 <FeatureAttribute Name="busspeed" Domain="integer" />

 <FeatureAttribute Name="type" Domain="string" Value="SDRAM,RDRAM"/>

 </Features>

 <Features Name="Card" />

 <Features Name="VGAcard" >

 <FeatureAttribute Name="size" Domain="integer" />

 <FeatureAttribute Name="price" Domain="integer" />

 <FeatureAttribute Name="type" Domain="string" Value="ASUS,CLUB,MSI"/>

 </Features>

 <Features Name="SoundCard" />

 <Features Name="Accessories" />

 <Features Name="Printer" >

 <FeatureAttribute Name="price" Domain="integer" />

 <FeatureAttribute Name="type" Domain="string" Value="HP,CANON"/>

 </Features>

 <Features Name="Speaker" />

 <Features Name="Mouse" >

 <FeatureAttribute Name="price" Domain="integer" />

 <FeatureAttribute Name="type" Domain="string" Value="wired,wireless"/>

 </Features>

 <Features Name="Wired" />

 <Features Name="Wireless" />

 <Features Name="HeadSet" />

 <Features Name="ExternalMemory" />

 <Features Name="Modem" />

 </AllFeatures>

Figure 5.4 XML instance expressing the Feature Model

75

Figure 5.4 represents all the features existing in Figure 5.3. Some of the features

include attributes consisting name, domain and values, in some cases. The

relationship among the features will be discussed in consequent sections.

5.2.2 XML Instances for Expressing Decomposition Relationships

This section will cover the XML instances in order to demonstrate the structure of

decomposition relationships of the Figure 5.3. When inclusion of a feature implies

the inclusion of its child feature, the relationship among them will be Mandatory. For

instance, the parent feature Computer implies the inclusion of MotherBoard, CPU,

HardDisk, RAM that are expressed as its children. The relationship among them is a

mandatory relationship which is expressed in Figure 5.5.

 <MandatoryRelation>

 <Parent Name="Computer" ParentName=""/>

 <MandatoryRelationKeyword>Mandatory</MandatoryRelationKeyword>

 <Child Name="Motherboard" />

 <Child Name="CPU" />

 <Child Name="HardDisk" />

 <Child Name="RAM" />

 <Child Name="Card" />

 </MandatoryRelation>

Figure 5.5 XML instance for expressing Mandatory relation

The relationship among the computer feature as a parent feature and card and

accessories as child features is optional as the inclusion of the child features is

optional means they may or may not be included. The relationship among them is

expressed in Figure 5.6.

76

 <OptionalRelation>

 <Parent Name="Computer" ParentName=""/>

 <OptionalRelationKeyword>Optional</OptionalRelationKeyword>

 <Child Name="Accessories" />

 <Child Name="Modem" />

 </OptionalRelation>

Figure 5.6 XML instance for expressing Optional relation

Another decomposition relation instance is the Alternative relation which is occurred

among the parent feature and set of child features. In Figure 5.7, this kind of

relationship is illustrated among the speaker feature as a parent feature. The child set

features are wired and wireless in which if the speaker feature is included, exactly

one of the child features must be included.

 <AlternativeRelation>

 <Parent Name="Mouse" ParentName="Accessories"/>

 <AlternativeRelationKeyword>Alternative</AlternativeRelationKeyword>

 <ChildSet>

 <Child Name="Wired" />

 <Child Name="Wireless" />

 </ChildSet>

 </AlternativeRelation>

Figure 5.7 XML instance for expressing Alternative relation

The Or relationship is occurred among the parent feature and set of child features in

which the inclusion of the parent feature implies the inclusion of nonempty set of

child features. According to Figure 5.3, the Or relation in this example is among the

card feature as a parent feature and VGA Card and Sound Card as a set of child

features.

77

<OrRelation>

 <Parent Name="Card" ParentName="Computer"/>

 <OrRelationKeyword>Or</OrRelationKeyword>

 <ChildSet>

 <Child Name="VGAcard" />

 <Child Name="SoundCard" />

 </ChildSet>

 </OrRelation>

Figure 5.8 XML instance for expressing Or relation

The feature cardinality is expressed in Figure 5.9 and 5.10 including both solitary

cardinality and grouped cardinality. The solitary cardinality is occurred between the

parent feature and child feature. As it is illustrated in the sample Figure, the solitary

cardinality relationship is among the computer feature and external memory feature

with the cardinality <1..5> means that the child feature may be included at least one

and at last five number of times. The XML instance is illustrated as below in Figure

5.9.

<FeatureCardinality>

 <SolitaryCardinality>

 <Parent Name="Computer" ParentName=""/>

 <Cardinality Min="1" Max="5" />

 <Child Name="ExternalMemory" />

 </SolitaryCardinality>

</ FeatureCardinality>

Figure 5.9 XML instance for expressing SolitaryCardinality

An XML instance demonstrating grouped cardinality is illustrated in Figure 5.10.

The parent feature is Accessories and the child set to be chosen is printer, speaker,

mouse, and headset in order. The minimum and maximum cardinality is defined as

<0..3> means that at least zero and at most three of the children of Accessories may

be included while including Accessories.

78

<FeatureCardinality>

<GroupedCardinality>

 <Parent Name="Accessories" ParentName="Computer"/>

 <Cardinality Min="0" Max="3" />

 <ChildSet>

 <Child Name="Printer" />

 <Child Name="Speaker" />

 <Child Name="Mouse" />

 <Child Name="HeadSet" />

 </ChildSet>

 </GroupedCardinality>

 </FeatureCardinality>

Figure 5.10 XML instance for expressing GroupedCardinality

5.2.3 XML Instances for Expressing Complex Cross-Tree Relationships

This section will cover the XML instances representing the cross-tree relationships of

the feature model which is illustrated in Figure 5.3. The relationships may construct

feature-feature, feature-attribute, and attribute-attribute relationships. The XML

instances are expressed according to the XSD definitions which are derived from the

definitions of the relationships covered in [37].

5.2.3.1 XML Instances for Expressing Condition Relationships

As it is illustrated in section 4.2.3.1, the condition relationship may be expressed in

two different forms Expression1 relop Expression2 and

BoolAttributeDesequaltoTruthValue. Consider the following constraints for instance:

C1: The price of the mouse feature will always be more than $40. The XML instance

of C1 will be as follows:

79

 <?xml version="1.0"?>

 <Condition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Condition.xsd">

<ExpressionRelOpExpression>

 <ExpressionStructure>

 <NumericAttributeDes>

 <FeatureName Name="Mouse" />

 <DotKeyword>.</DotKeyword>

 <AttributeName>price</AttributeName>

 </NumericAttributeDes>

 </ExpressionStructure>

 <RelOp>></RelOp>

 <ExpressionStructure>

 <IntegerConstant>40</IntegerConstant>

 </ExpressionStructure>

 </ExpressionRelOpExpression>

 </Condition>

Figure 5.11 XML instance expressing Condition relationship including
ExpressionRelOpExpression

C2: Motherboard supports wireless LAN. Figure 5.12, illustrates the condition which

is in the form of BoolAttributeDesequaltoTruthValue.

80

 <?xml version="1.0"?>

 <Condition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Condition.xsd">

<BoolAttributeDesequaltoTruthValue>

 <FeatureName Name="Motherboard" />

 <DotKeyword>.</DotKeyword>

 <AttributeName>WirelessLANSupport</AttributeName>

 <EqualKeyword>=</EqualKeyword>

 <TruthValue>true</TruthValue>

</BoolAttributeDesequaltoTruthValue>

 </Condition>

Figure 5.12 XML instance expressing Condition relationship including
BoolAttributeDesequaltoTruthValue

5.2.3.2 XML Instances for Expressing Excludes Relationship

This section will cover an XML instance utilizing the Excludes relationship.

Consider the following constraint as a basic one demonstrated in C3.

C3: External Memory excludes Accessories. The XML instance is written in Figure

5.13.

81

 <?xml version="1.0"?>

 <Excludes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Excludes.xsd">

<LeftFeatureOfExclude Name="ExternalMemory" />

<ExcludeKeyword>excludes</ExcludeKeyword>

<RightFeatureOfExclude Name="Accessories" />

 </Excludes>

Figure 5.13 XML instance expressing Excludes relationship

5.2.3.3 XML Instances for Expressing Requires Relationship

The Requires relationship may be illustrated in more than one way which is defined

in section 4.2.3.3. This section will cover all the defined situations of the

relationship. As some simple instances, consider the following constraints.

C4: speaker requires motherboard and CPU. This constraint will be illustrated as the

following as an XML instance.

82

 <?xml version="1.0"?>

 <Requires xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Requires.xsd">

 <ReqFeature Name="Speaker" />

 <RequireKeyword>requires</RequireKeyword>

 <BooleanFormula>

 <BooleanFormulaConBooleanFormula>

 <BooleanFormula>

 <FormulaFeature Name="Motherboard" />

 </BooleanFormula>

 <BinConnective>and</BinConnective>

 <BooleanFormula>

 <FormulaFeature Name="CPU" />

 </BooleanFormula>

 </BooleanFormulaConBooleanFormula>

 </BooleanFormula>

 </Requires>

Figure 5.14 XML instance expressing Requires relationship

C5: external memory requires 3 GHz CPU speed and hard disk. (external memory

requires CPU.speed=3 GHz and hard disk.) In Figure 5.15 the related XML instance

is illustrated.

83

 <?xml version="1.0"?>

 <Requires xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Requires.xsd">

 <ReqFeature Name="ExternalMemory" />

 <RequireKeyword>requires</RequireKeyword>

 <BooleanFormula>

 <BooleanFormulaConBooleanFormula>

 <BooleanFormula>

 <Condition>

 <ExpressionRelOpExpression>

 <ExpressionStructure>

 <NumericAttributeDes>

 <FeatureName Name="CPU" />

 <DotKeyword>.</DotKeyword>

 <AttributeName>speed</AttributeName>

 </NumericAttributeDes>

 </ExpressionStructure>

 <RelOp>=</RelOp>

 <ExpressionStructure>

 <IntegerConstant>3</IntegerConstant>

 </ExpressionStructure>

 </ExpressionRelOpExpression>

 </Condition>

Figure 5.15 XML instance expressing Requires relationship (continued)

84

 </BooleanFormula>

 <BinConnective>and</BinConnective>

 <BooleanFormula>

 <FormulaFeature Name="HardDisk" />

 </BooleanFormula>

 </BooleanFormulaConBooleanFormula>

 </BooleanFormula>

 </Requires>

Figure 5.15 XML instance expressing Requires relationship

5.2.3.4 XML Instances for Expressing Complex Constraint Relationship

The Complex Constraint relationship can be a Requires/Excludes relationship which

was discussed in section 5.2.3.1 and 5.2.3.3. In addition it can be expressed as any

well-formed formula constructed by combining features and/or Requires/Excludes

relationships with the propositional logic connectives. This section will cover the

XML instances of Complex Constraint relationship according to the sample feature

model illustrated in Figure 5.3. As an instance consider the following relationships

and their explanations.

C6: speaker and headset implies soundcard.

Figure 5.16 illustrates the XML instance expressing the relationship.

85

 <?xml version="1.0"?>

 <ComplexConstraint

 xmlns:xsi="http://www.w3.org/2001/XMLSchema- instance"

 xsi:noNamespaceSchemaLocation="ComplexConstraint.xsd">

 <CPConCP>

 <CP>

 <CPConCP>

 <CP>

 <CPFeature Name="Speaker" />

 </CP>

 <BinConnective>and</BinConnective>

 <CP>

 <CPFeature Name="HeadSet" />

 </CP>

 </CPConCP>

 </CP>

 <BinConnective>conditional</BinConnective>

 <CP>

 <CPFeature Name="SoundCard" />

 </CP>

 </CPConCP>

 </ComplexConstraint>

Figure 5.16 XML instance expressing Complex Constraint relationship

C7: (CPU requires ((RAM.speed>266 MHz and motherboard)) or (RAM.speed>466

MHz)) and (CPU excludes speaker). The XML document of this relationship is

written as follows in Figure 5.17.

86

 <?xml version="1.0"?>

 <ComplexConstraint xmlns:xsi="http://www.w3.org/2001/XMLSchema-

 instance" xsi:noNamespaceSchemaLocation="ComplexConstraint.xsd">

 <CPConCP>

 <CP>

 <Requires>

 <ReqFeature Name="CPU" />

 <RequireKeyword>requires</RequireKeyword>

 <BooleanFormula>

 <BooleanFormulaConBooleanFormula>

 <BooleanFormula>

 <BooleanFormulaConBooleanFormula>

 <BooleanFormula>

 <Condition>

 <ExpressionRelOpExpression>

 <ExpressionStructure>

 <NumericAttributeDes>

 <FeatureName Name="RAM" />

 <DotKeyword>.</DotKeyword>

 <AttributeName>speed</AttributeName>

 </NumericAttributeDes>

 </ExpressionStructure>

Figure 5.17 XML instance expressing Complex Constraint relationship (continued)

87

 <RelOp>></RelOp>

 <ExpressionStructure>

 <IntegerConstant>266</IntegerConstant>

 </ExpressionStructure>

 </ExpressionRelOpExpression>

 </Condition>

 </BooleanFormula>

 <BinConnective>and</BinConnective>

 <BooleanFormula>

 <FormulaFeature Name="Motherboard" />

 </BooleanFormula>

 </BooleanFormulaConBooleanFormula>

 </BooleanFormula>

 <BinConnective>or</BinConnective>

 <BooleanFormula>

 <Condition>

 <ExpressionRelOpExpression>

 <ExpressionStructure>

 <NumericAttributeDes>

 <FeatureName Name="RAM" />

 <DotKeyword>.</DotKeyword>

 <AttributeName>speed</AttributeName>

 </NumericAttributeDes>

 </ExpressionStructure>

 <RelOp>></RelOp>

Figure 5.17 XML instance expressing Complex Constraint relationship (continued)

88

 <ExpressionStructure>

 <IntegerConstant>466</IntegerConstant>

 </ExpressionStructure>

 </ExpressionRelOpExpression>

 </Condition>

 </BooleanFormula>

 </BooleanFormulaConBooleanFormula>

 </BooleanFormula>

 </Requires>

 </CP>

 <BinConnective>and</BinConnective>

 <CP>

 <Excludes>

 <LeftFeatureOfExclude Name="CPU" />

 <ExcludeKeyword>excludes</ExcludeKeyword>

 <RightFeatureOfExclude Name="Speaker" />

 </Excludes>

 </CP>

 </CPConCP>

 </ComplexConstraint>

Figure 5.17 XML instance expressing Complex Constraint relationship

5.2.3.5 XML Instances for Expressing Guarded Constraint Relationship

This section will cover some XML instances utilized on the feature model which is

demonstrated in Figure 5.3. The Guarded Constraint is a relationship in the form:

89

If Guard then Complex Constraint. The XML instances of this relationship are

shown in the following examples.

C8: If VGAcard.size < 1 GB or RAM.speed ≤ 100 MHz then RAM excludes

Accessories. The XML instance illustrating the constraint is shown in Figure 5.18.

 <?xml version="1.0"?>

 <GuardedConstraint xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="GuardedConstraint.xsd">

 <IfKeyword>If</IfKeyword>

 <Guard>

 <GuardConGuard>

 <Guard>

 <Condition>

 <ExpressionRelOpExpression>

 <ExpressionStructure>

 <NumericAttributeDes>

 <FeatureName Name="VGAcard" />

 <DotKeyword>.</DotKeyword>

 <AttributeName>size</AttributeName>

 </NumericAttributeDes>

 </ExpressionStructure>

 <RelOp><</RelOp>

 <ExpressionStructure>

 <IntegerConstant>1</IntegerConstant>

 </ExpressionStructure>

 </ExpressionRelOpExpression>

 </Condition>

Figure 5.18 XML instance expressing Guarded Constraint relationship (continued)

90

 </Guard>

<BinConnective>or</BinConnective>

 <Guard>

 <Condition>

 <ExpressionRelOpExpression>

 <ExpressionStructure>

 <NumericAttributeDes>

 <FeatureName Name="RAM" />

 <DotKeyword>.</DotKeyword>

 <AttributeName>speed</AttributeName>

 </NumericAttributeDes>

 </ExpressionStructure>

 <RelOp><=</RelOp>

 <ExpressionStructure>

 <IntegerConstant>100</IntegerConstant>

 </ExpressionStructure>

 </ExpressionRelOpExpression>

 </Condition>

 </Guard>

 </GuardConGuard>

 </Guard>

 <ThenKeyword>Then</ThenKeyword>

 <ComplexConstraint>

Figure 5.18 XML instance expressing Guarded Constraint relationship (continued)

91

 </GuardConGuard>

 </Guard>

 <ThenKeyword>Then</ThenKeyword>

 <ComplexConstraint>

 <Excludes>

 <LeftFeatureOfExclude Name="RAM" />

 <ExcludeKeyword>excludes</ExcludeKeyword>

 <RightFeatureOfExclude Name="Accessories" />

</Excludes>

 </ComplexConstraint>

 </GuardedConstraint>

Figure 5.18 XML instance expressing Guarded Constraint relationship

C9: if the motherboard supports wireless LAN then CPU requires harddisk.type =

Hitachi. The relationship is illustrated in Figure 5.19.

 <?xml version="1.0"?>

 <GuardedConstraint xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="GuardedConstraint.xsd">

 <IfKeyword>If</IfKeyword>

 <Guard>

 <Condition>

 <BoolAttributeDesequaltoTruthValue>

 <FeatureName Name="Motherboard" />

 <DotKeyword>.</DotKeyword>

 <AttributeName>WirelessLANSupport</AttributeName>

 <EqualKeyword>=</EqualKeyword>

 <TruthValue>true</TruthValue>

 </BoolAttributeDesequaltoTruthValue>

Figure 5.19 XML instance expressing Guarded Constraint relationship (continued)

92

 </Condition>

 </Guard>

 <ThenKeyword>Then</ThenKeyword>

 <ComplexConstraint>

 <Requires>

 <ReqFeature Name="CPU" />

 <RequireKeyword>requires</RequireKeyword>

 <BooleanFormula>

 <Condition>

 <ExpressionRelOpExpression>

 <ExpressionStructure>

 <NumericAttributeDes>

 <FeatureName Name="HardDisk" />

 <DotKeyword>.</DotKeyword>

 <AttributeName>type</AttributeName>

 </NumericAttributeDes>

 </ExpressionStructure>

 <RelOp>=</RelOp>

 <ExpressionStructure>

 <IntegerConstant>2</IntegerConstant>

 </ExpressionStructure>

 </ExpressionRelOpExpression>

 </Condition>

 </BooleanFormula>

 </Requires>

 </ComplexConstraint>

 </GuardedConstraint>

Figure 5.19 XML instance expressing Guarded Constraint relationship

93

Note that HardDisk has an attribute and its name is type, with the domain

{Maxtor,Hitachi}, which does not consist of integer values. As only integer values in

operands of the relop can be included, the following conversion is utilized in which

{Maxtor 1, Hitachi 2}. As a result the new domain of the attribute becomes {1,

2}.

5.2.3.5.1 XML Instances for Expressing Guarded Constraint Combination

Guarded Constraint Combination structure is as same as the Guarded Constraint in

which Guarded Constraints can be combined using Propositional Logic Connectives.

This section will cover an XML instance of Guarded Constraint combination

illustrated in the sample feature diagram. The relationship is defined as follows:

C10: (If Mouse.price > 30$ Then RAM excludes Mouse) and (If Mouse.price < 15$

Then RAM requires Mouse). The related XML instance is demonstrated in Figure

5.20.

<?xml version="1.0"?>

<GuardedConstraintCombination xmlns:xsi="http://www.w3.org/2001/XML

Schema- instance"

 xsi:noNamespaceSchemaLocation="GuardedConstraintCombination.xsd">

 <GuardedConstraintConGuardedConstraint>

 <GuardedConstraint>

 <IfKeyword>If</IfKeyword>

 <Guard>

 <Condition>

 <ExpressionRelOpExpression>

 <ExpressionStructure>

 <NumericAttributeDes>

 <FeatureName Name="Mouse" />

Figure 5.20 XML instance expressing Guarded Constraint
Combination relationship (continued)

94

<DotKeyword>.</DotKeyword>

<AttributeName>price</AttributeName>

</NumericAttributeDes>

 </ExpressionStructure>

<AttributeName>price</AttributeName>

 </NumericAttributeDes>

</ExpressionStructure>

<RelOp>></RelOp>

 <ExpressionStructure>

 <IntegerConstant>30</IntegerConstant>

 </ExpressionStructure>

 </ExpressionRelOpExpression>

 </Condition>

 </Guard>

 <ThenKeyword>Then</ThenKeyword>

 <ComplexConstraint>

 <Excludes>

 <LeftFeatureOfExclude Name="RAM" />

 <ExcludeKeyword>excludes</ExcludeKeyword>

 <RightFeatureOfExclude Name="Mouse" />

 </Excludes>

 </ComplexConstraint>

 </GuardedConstraint>

 <BinConnective>and</BinConnective>

 <GuardedConstraint>

 <IfKeyword>If</IfKeyword>

 <Guard>

Figure 5.20 XML instance expressing Guarded Constraint Combination relationship
(continued)

95

<Condition>

 <ExpressionRelOpExpression>

<ExpressionStructure>

<NumericAttributeDes>

<FeatureName Name="Mouse" />

 <DotKeyword>.</DotKeyword>

 <AttributeName>price</AttributeName>

</NumericAttributeDes>

 </ExpressionStructure>

 <RelOp><</RelOp>

 <ExpressionStructure>

 <IntegerConstant>30</IntegerConstant>

 </ExpressionStructure>

 </ExpressionRelOpExpression>

 </Condition>

 </Guard>

 <ThenKeyword>Then</ThenKeyword>

 <ComplexConstraint>

 <Requires>

 <ReqFeature Name="RAM" />

 <RequireKeyword>requires</RequireKeyword>

 <BooleanFormula>

 <FormulaFeature Name="Mouse" />

 </BooleanFormula>

</Requires>

</ComplexConstraint>

</GuardedConstraint>

Figure 5.20 XML instance expressing Guarded Constraint Combination
relationship (continued)

96

</GuardedConstraintConGuardedConstraint>

 </GuardedConstraintCombination>

Figure 5.20 XML instance expressing Guarded Constraint Combination relationship

97

CHAPTER 6

FEATURE MODEL MARKUP LANGUAGE

VALIDATION

This chapter provides validating process in order to validate the XML notations

defined in chapter four according to the XSD expressions. The XSD expressions are

written based on the abstract syntax mentioned in [37] and related CFGs presented in

chapter three. The XML instances provided in previous section are provided

according to the sample feature model illustrated in Figure 5.3 consisting different

kinds of relationships among the features which includes basic decomposition and

complex feature-feature, feature-attribute, and attribute-attribute relationships. The

XML instances are provided according to the schema definitions.

In this chapter the validation of FMML will be represented which is implemented

with java eclipse. The validation process is done in two steps. The first part validates

the XML instances according to the schema definitions. The second part is

implemented in order to control the XML instances according to the design of the

feature models. For validation purposes, the user can facilitates the functionalities

offered by the validate submenu illustrated in Figure 6.1 including XSD validate and

XML validate.

98

Figure 6.1 Validating processes

6.1 XSD Validation

This section provides the validation process of the XML instances according to the

schema definition. The XSD expressions are represented in chapter four which are

defined based on the CFG rules expressed in chapter three.

While expressing the schema definition, specific rules and techniques are utilized in

order to organize the definitions. For instance, <sequence> indicator is utilized to

define consecutive symbols. As another example in the case of an event that rewrite

rule provides at least two alternative symbols, the <choice> indicator is utilized. In

addition, occurrence constraints can be used defining repetitive symbols. They are

defined as minOccurs and maxOccurs keywords and can be utilized constraining

cardinality. optional and required indicators are also can be utilized defining the

usage of the attributes that may be obligatory or an optional one.

In order to implement the validity control of the XML instances according to the

XSD expressions, some of existing Java libraries are utilized illustrated in table 6.1.

99

Table 6.1 Java libraries applied for validating XML instances according to XSD

Java library Explanation

javax.xml.transform.stream.

StreamSource;

Acts as a holder for a transformation
source in a form of a stream of XML
markup

javax.xml.validation.Schema Represents a set of constraints that
can be checked against an XML
document

javax.xml.validation.Schema

Factory

Reads representations of schema and
prepare it for validation

javax.xml.validation.Valida

tor

Checks XML document against
Schema

6.1.1 Valid and Invalid Instances

This section provides acceptable and unacceptable XML instances according to the

XSD definitions. Consider the following XML instance illustrated in Figure 6.3

illustrating a Mandatory relation according to the Figure 6.2. The XSD expression of

Mandatory relation is also defined in Figure 4.7.

Figure 6.2 Mandatory relation

100

<?xml version="1.0"?>

<MandatoryRelation xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="MandatoryRelation.xsd">

 <Parent Name="P" />

 <MandatoryRelationKeyword>Mandatory</MandatoryRelationKeyword>

 <Child Name="C" />

 </MandatoryRelation>

Figure 6.3 XML instance expressing Mandatory relation according to Figure 6.2 and
XSD illustrated in Figure 4.7

The XML instance is validated and the output is illustrated in Figure 6.4 which

demonstrates the instance is valid.

Figure 6.4 Valid XML instance expressing Mandatory relation

As an unacceptable example, consider the following XML instance for defining the

Mandatory relation of the sample feature model given in Figure 6.2.

101

 <?xml version="1.0"?>

 <MandatoryRelation xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="MandatoryRelation.xsd">

 <Child Name="C" />

 <MandatoryRelationKeyword>MandatoryRelation</MandatoryRelationKeyword>

 <Parent Name="P" />

 </MandatoryRelation>

Figure 6.5 XML instance expressing Mandatory relation according to Figure 6.2 and
XSD illustrated in Figure 4.7

The result of validating the XML instance according to XSD is unacceptable which

is illustrated in Figure 6.6. The Mandatory relation is defined as a complexType

including a <sequence> indicator in which the order of the expressions is

important. In order to illustrate the Mandatory relation Parent Name,

MandatoryRelationKeyword, and Child Name must be expressed consecutively.

Figure 6.6 Unacceptable XML instance expressing Mandatory relation

102

As another invalid example, consider a feature including an attribute illustrated in

Figure 6.7. The attribute consists of name (id), domain (integer) and value

([1..3500]).

Student
ID (integer) :

[1...3500]

Figure 6.7 A sample feature including Attribute

Figure 6.8 demonstrates an XML instance according to the schema definition

expressed in Figure 4.4, and the output is illustrated in Figure 6.9.

<?xml version="1.0"?>

<AllFeatures xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="AllFeatures.xsd">

 <Features Name="Student" >

 <FeatureAttribute Name="ID" Value="[1800..3500]"/>

 </Features>

 </AllFeatures>

Figure 6.8 XML instance expressing feature including Attribute according to Figure
6.7 and XSD illustrated in Figure 4.4

103

Figure 6.9 Unacceptable XML instance expressing feature including attribute

One of the attributes defined in FeatureAttribute element is the Domain of an

attribute of a feature. The usage of the Domain is "required" according to the schema

definition.

6.2 XML Well-Formedness Validation

There are other rules a feature model must adhere which are not covered in XSD

schema definition. For instance, the schema definition allows declaring a feature

which is the parent of another feature to be the child of that feature. As an example,

consider the following Figure where the X is the parent of the Y feature and the

decomposition relation among them is optional. According to the XSD expressions

the Y feature can be defined as the parent of the X feature which is unacceptable case

illustrating a feature model.

104

Figure 6.10 Feature model sample

In addition, decomposition cardinalities <min,max> have to be so that min ≤ max in

both cases of FeatureCardinality (SolitaryCardinality and GroupedCardinality). In

the situation of applying GroupedCardinality, the value of max should not exceed the

number of child features.

In order to solve the problems, an XML well-formedness implementation is added to

the validity control of the XML instances according to XSD definitions.

In order to implement the required validation processes an existing XML parser for

Java is utilized and the validation processes are inserted to the existing code. Figure

6.11 shows a Data Flow Diagram of the XML well-formedness validating process.

Figure 6.11 XML validating process

105

For validating process, while parsing the XML document, all the decomposition

relationship types are checked one by one in order to control the parent-child

relationship. For instance, if a feature (X) is defined as parent feature of other

feature(s) (Y) in a relationship, then the child feature (Y) cannot be defined as a

parent feature for (X) in another decomposition relationship.

In addition, the cardinality values in cardinality-based relationships are checked as

well in validating process. Both the group cardinality and solitary cardinality are

validated. In solitary cardinality, the minimum cardinality value should be less or

equal to the value of maximum cardinality. In group cardinality, the minimum

cardinality value should be less or equal to the value of maximum cardinality.

Besides that, the value of maximum cardinality should not exceed the number of

child/children. Table 6.2 illustrates the Java libraries imported in order to validate the

XML document solely.

Table 6.2 Java libraries applied for validating XML instances

Java library Explanation

org.xml.sax.SAXException Encapsulates a basic
error or warning
information from the
XML parser

org.xml.sax.SAXParseException Encapsulates an XML
parse error or warning

org.w3c.dom.* Constructs a
Document Object
Model according to
w3c standards

javax.xml.parsers.DocumentBuilderFactory Enables applications
to obtain a parser that
produces DOM object
trees from XML
documents

javax.xml.parsers.DocumentBuilder Defines the API to
obtain DOM
document instances
from an XML
document

106

6.2.1 Valid and Invalid Instances

This section provides acceptable and unacceptable samples in order to illustrate how

the XML document is validated according to the constraints expressed in the

previous section.

As an instance, consider the sample feature model illustrated in Figure 5.3.

The relationship among the "Computer" and "Motherboard" is Mandatory in which

the parent feature is "Computer" and the child feature is "Motherboard". The XML

instance illustrating the relationship is shown in Figure 6.12.

<?xml version="1.0"?>

<DecompositionRelation xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="DecompositionRelation.xsd">

 <MandatoryRelation>

 <Parent Name="Computer" ParentName=""/>

 <MandatoryRelationKeyword>Mandatory</MandatoryRelationKeyword>

 <Child Name="Motherboard" />

 </MandatoryRelation>

 </DecompositionRelation>

Figure 6.12 XML instance illustrating Mandatory relationship according to Figure
5.3 and XSD illustrated in Figure 4.7

The XML instance is validated and the output is as follows shown in Figure 6.13.

107

Figure 6.13 Valid XML instance expressing relationship among features

Now, consider the following XML instance, Figure 6.14, in which an optional

relationship is expressed as well. The parent feature is "Motherboard" and the child

features are "Accessories" and "Modem". In order to illustrate how the XML

instance is validated we also add "Computer" feature as a child feature of

"Motherboard".

 <?xml version="1.0"?>

 <DecompositionRelation

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="DecompositionRelation.xsd">

 <MandatoryRelation>

 <Parent Name="Computer" ParentName=""/>

 <MandatoryRelationKeyword>Mandatory</MandatoryRelationKeyword>

 <Child Name="Motherboard" />

 </MandatoryRelation>

Figure 6.14 XML instance illustrating Mandatory and Optional relationships
according to Figure 5.3 and XSD illustrated in Figure 4.7 and 4.8 (continued)

108

 <OptionalRelation>

 <Parent Name="Motherboard" ParentName="Computer"/>

 <OptionalRelationKeyword>Optional</OptionalRelationKeyword>

 <Child Name="Accessories" />

 <Child Name="Modem" />

 <Child Name="Computer" />

 </OptionalRelation>

 </DecompositionRelation>

Figure 6.14 XML instance illustrating Mandatory and Optional relationships
according to Figure 5.3 and XSD illustrated in Figure 4.7 and 4.8

The output of validating the XML instance is illustrated as follows in Figure 6.15

which is shown as an unacceptable one.

Figure 6.15 Unacceptable XML instance expressing the relationships among features

As another valid example expressing minimum and maximum cardinality in an

acceptable way, consider the following XML instance according to the sample

feature model illustrated in Figure 5.3.

109

 <?xml version="1.0"?>

 <DecompositionRelation
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="DecompositionRelation.xsd">

 <FeatureCardinality>

 <GroupedCardinality>

 <Parent Name="Accessories" ParentName="Computer"/>

 <Cardinality Min="0" Max="3" />

 <ChildSet>

 <Child Name="Printer" />

 <Child Name="Speaker" />

 <Child Name="Mouse" />

 <Child Name="HeadSet" />

 </ChildSet>

 </GroupedCardinality>

 </FeatureCardinality>

 </DecompositionRelation>

Figure 6.16 XML instance expressing Grouped Cardinality according to Figure 5.3
and XSD illustrated in Figure 4.13

The result of validating the XML instance is illustrated in Figure 6.17. It shows that

the XML instance is valid according to the rules defined in section 5.2.

110

Figure 6.17 Acceptable XML instance expressing the Feature Cardinality

Now consider the following examples illustrated in Figure 6.18 in which the

minimum cardinality and maximum cardinality are defined in an invalid way.

 <?xml version="1.0"?>

 <DecompositionRelation
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
 instance" xsi:noNamespaceSchemaLocation="DecompositionRelation.xsd">

 <FeatureCardinality>

 <GroupedCardinality>

 <Parent Name="Accessories" ParentName="Computer"/>

 <Cardinality Min="3" Max="1" />

Figure 6.18 XML instance expressing Feature Cardinality according to Figure 5.3
and XSD illustrated in Figure 4.11 (continued)

111

 <ChildSet>

 <Child Name="Printer" />

 <Child Name="Speaker" />

 <Child Name="Mouse" />

 <Child Name="HeadSet" />

 </ChildSet>

 </GroupedCardinality>

 </FeatureCardinality>

 </DecompositionRelation>

Figure 6.18 XML instance expressing Feature Cardinality according to Figure 5.3

and XSD illustrated in Figure 4.11

The result validating the XML instance expressed in Figure 6.19 is as follows

illustrating the instance is not valid. In this example the value of minimum

cardinality is three where as the value of maximum cardinality is one. The result is

shown as unacceptable XML instance as the min>max.

Figure 6.19 Unacceptable XML instance expressing Feature Cardinality

112

 <?xml version="1.0"?>

 <DecompositionRelation
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="DecompositionRelation.xsd">

 <FeatureCardinality>

 <GroupedCardinality>

 <Parent Name="Accessories" ParentName="Computer"/>

 <Cardinality Min="0" Max="10" />

 <ChildSet>

 <Child Name="Printer" />

 <Child Name="Speaker" />

 <Child Name="Mouse" />

 <Child Name="HeadSet" />

 </ChildSet>

 </GroupedCardinality>

 </FeatureCardinality>

 </DecompositionRelation>

Figure 6.20 XML instance expressing Feature Cardinality according to Figure 5.3
and XSD illustrated in Figure 4.11

In this example, however, the min≤max the value of maximum cardinality exceeds

the number of child set of the parent feature. The output is illustrated in Figure 6.21.

113

Figure 6.21 Unacceptable XML instance expressing Feature Cardinality

Although all of the samples illustrated in this section are valid according to the XSD

definitions, they are not allowed to be expressed according to the well-formedness

rules.

114

CHAPTER 7

CONCLUSION

In this thesis study, an XML-based feature modeling language in order to represent

commonality and variability in Software Product Line engineering is provided.

Beside the capability of expressing the structure of basic feature models, constructing

complex cross-tree constraints including feature-feature, feature-attribute, attribute-

attribute, and cardinality-based decomposition is feasible utilizing the proposed

language. The approach suggested in this thesis provides CFG rules according to the

abstract definitions expressed previously. Consequently, XML schema definitions

are provided according to the CFG rules. Next chapter provides XML instances

according to a sample feature model including basic and complex relationships in

order to illustrate the decomposition and cross-tree relationships. XML instances are

validated according to the XSD expressions defined for language. In addition, the

XML instances are validated solely in order to examine if they are well-formed

according to the defined rules for expressing feature models.

Although graphical notations seem to be more convenient to non-technical

stakeholders working with large feature diagrams can be difficult on a two-

dimensional surface. In addition, graphical notations do not support expressing

constructs like attributes and constraints which are essential factors for feature

modeling. Compared with graphical notations, text-based notations can be more

convenient to express feature models and automated processing.

The main contribution of this work is the XML representation for the feature

modeling language with confidentiality extensions. This style of representation offers

advantages that are hard to achieve with other text-based feature modeling

languages. Benefiting from XML-based feature modeling language enables the use

115

of a rich selection of off-the-shelf XML parsers which offers advantages that are not

readily available with traditional plain-text encoding. Further, the availability of a

wide range of free and commercial tools facilitates the processing of XML-based

representations.

The main drawback of this approach is its dependency on the user's experience and

knowledge of XML-based representations, which is difficult to interpret mainly due

to the overhead caused by XML tags and technical information. However, this

problem will be going to be addressed by the envisioned tool utilizing a human

readable and user friendly language for the users [8].

For future, this work can be enhanced by expressing the global constraints [41]. It

can also be checked by different XML parsers and tools in order to realize whether

the features in XSD expressions are tool dependent or not. In addition, a tool can be

implemented extending this work in order to implement a graphical environment

representing extended feature models including complex cross-tree and cardinality-

based relationships and attributes.

116

REFERENCES

[1] Magnus Eriksson Alvis Hägglunds, AN INTRODUCTION TO SOFTWARE
PRODUCT LINE DEVELOPMENTSE-891 82 Örnsköldsvik, Sweden

[2] Ezran, M., Morisio, M., Tully, C. (2002). Practical Software Reuse, Springer

[3] K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, 2005.

[4] A. VAN DEURSEN, P. KLINT, AND J. VISSER, Domain-specific languages:
An annotated bibliography. ACM SIGPLAN Notices,35 6_:26–36, June 2000

[5] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. “Automated Reasoning on
Feature Models”, Conference on Advanced Information Systems Engineering
(CAISE), July 2005.

[6] XML Tutorial, http://www.w3schools.com/xml/default.asp, (last accessed on
25/03/2011)

[7] Nabdel, L., Karataş, A.S., Oğuztüzün, H., Doğru, A., "FMML: A Feature Model
Markup Language", In: International Conference on Numerical Analysis and Applied
Mathematics (ICNAAM 2011), AIP Conf. Proc. / Volume 1389 / Issue 1, pp. 841-
844 (September 2011)

[8] A. S. Karataş, H. Oğuztüzün, and A. Doğru. "From extended feature models to
constraint logic programming", (Submitted for publication)

[9] Chomsky, Noam (Sept. 1956). "Three models for the description of language".
Information Theory, IEEE Transactions 2 (3)

[10] XML Schema Tutorial, http://www.w3schools.com/schema/default.asp, (last
accessed on 20/03/2011)

[11] P. Schobbens, J.C. Trigaux P. Heymans, and Y. Bontemps. “Generic semantics
of feature diagrams”, Computer Networks, 51(2):456–479, Feb 2007.

[12] Danilo Beuche, Holger Papajewski, Wolfgang Schröder-Preikschat "Variability
management with feature models Science of Computer Programming", Volume 53,
Issue 3, December 2004, Pages 333-352

117

[13] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. “Feature-Oriented
Domain Analyses (FODA) Feasibility Study”, Technical Report CMU/SEI-90-TR-
21, Software Eng. Inst., Carnegie Mellon Univ., Pittsburgh, 1990..

[14] M. Griss, J. Favaro, and M. dlAlessandro. Integrating Feature Modeling with the
RSEB. In Proceedings of the Fifth International Conference on Software Reuse,
pages 76-85, Vancouver, BC, Canada, June 1998

[15] M. Riebisch, K. Bollert, D. Streitferdt, and I. Philippow. “Extending Feature
Diagrams With UML Multiplicities”, 6th Conference on Integrated Design &
Process Technology (IDPT 2002), Pasadena, California, USA, 2002.

[16] K. Czarnecki, S. Helsen, and U. Eisenecker. “Staged Configurations Using
Feature Models”, Software Product Lines: Third International Conference, SPLC
2004, Proceedings,Vol. 3154 of Lecture Notes in Computer Science, Springer-
Verlag, Heidelberg, Germany, pp. 266–283, Boston, MA, USA, August 30-
September 2, 2004.

[17] K. Czarnecki and C.H.P. Kim. “Cardinality-based feature modeling and
constraints: a progress report”, International Workshop on Software Factories, San
Diego, California, Oct2005.

[18] K. Kang, S. Kim, J. Lee, and K. Kim. “FORM: A feature-oriented reuse method
with domain-specific reference architectures”, Annals of Software Engineering,
volume 5, pp 143-168, 1998.

[19] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker. “Generative
programming for embedded software: An industrial experience report”, Proceedings
of the ACM SIGPLAN/ SIGSOFT Conference on Generative Programming and
Component Engineering (GPCE’02), Pittsburgh, LNCS 2487, Springer-Verlag
(2002) 156–172, October 6–8, 2002.

[20] Arie van Deursen, Paul Klint: "Domain-Specific Language Design Requires
Feature Descriptions", Journal of Computing and Information Technology -CIT
10, 2002, 1, 1–17

[21] Boucher, Q., Classen, A., Faber, P., Heymans, P.: Introducing TVL, A text-
based approach to feature modelling: Syntax and semantics of TVL Science of
Computer Programming, Volume 76, Issue 12, 1 December 2011, Pages 1130-1143

[22] V. Cechticky, A. Pasetti, O. Rohlik, W. Schaufelberger: Xml-based feature
modelling presented at the ICSR conference in 2004 and published in the book
Software Reuse: Methods, Techniques, and Tools edited by J. Bosch and C. Krueger
and published by Springer-Verlag.

118

[23] G. Ge, "Rhizome: A Feature Modeling and Generation Platform for Software
Product Lines," Department of Computer Science,Ph.D. Thesis, Santa Cruz:
University of California, Santa Cruz,2008

[24] M. Antkiewicz, K. Czarnecki, Featureplugin: Feature modeling plug-in for
Eclipse, in: Proceedings of the OOPSLA’04 ETX Workshop.

[25] XPath Tutorial, http://www.w3schools.com/xpath/ , (last accessed on 10/03/2011)

[26] D. Benavides, S. Segura, P. Trinidad, A. R. Cort´es, FAMA: Tooling a
framework for the automated analysis of feature models, in: Proceedings of
VaMoS’07, pp. 129–134.

[27] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1995.

[28] S. Cook. The complexity of theorem-proving procedures. In Conference Record
of Third Annual ACM Symposium on Theory of Computing, pages 151–158,1971.

[29] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

[30] Christian Kastner, Thomas Thum, Gunter Saake, Janet Feigenspan, Thomas
Leich, Fabian Wielgorz, Sven Apel. FeatureIDE: A Tool Framework for Feature-
Oriented Software Development , (ICSE) 2009.

[31] D. Benavides, S. Segura, A. Ruiz-Cortes. “Automated analysis of feature
models 20 years later: A literature review”, Information Systems, Volume 35, Issue
6, pages 615-636, 2010.

[32] M. Mannion. Using First-Order Logic for Product Line Model Validation. In
Proceedings of the Second Software Product Line Conference (SPLC2), LNCS 2379,
pages 176–187, San Diego, CA, 2002. Springer.

[33] W. Zhang, H. Zhao, and H. Mei. A propositional logic-based method for
verification of feature models. In J. Davies, editor, ICFEM 2004, volume 3308,
pages 115–130. Springer–Verlag, 2004.

[34] SMV, http://www.cs.cmu.edu/˜modelcheck/smv.html, (last accessed on
28/03/2011)

[35] D. Batory. Feature models, grammars, and propositional formulas. In Software
Product Lines Conference, LNCS 3714, pages 7–20, 2005.

[36] P. Klint. A meta-environment for generating programming environments. ACM
Trans. Softw. Eng. Methodol., 2(2):176–201, April 1993.

119

[37] Karataş, A.S., Oğuztüzün, H., Doğru, A.,"Mapping Extended Feature Models to
Constraint Logic Programming over Finite Domains", In: Proceedings of the 14th
International Software Product Line Conference (SPLC 2010), LNCS Volume
6287/2010, pp. 286-299 (2010)

[38] Backus-Naur Form, http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form,
(last accessed on 28/03/2011)

[39] R. S. Scowen, Extended BNF – A Generic Base Standard (EBNF), ISO-14997

[40] HTML Tutorial, http://www.w3schools.com/html/default.asp, (last accessed on
11/04/2011)

[41] Karataş, A.S., Oğuztüzün, H., Doğru, A., "Global Constraints on Feature
Models", In: Proceedings of the 16th International Conference on Principles and
Practices of Constraint Programming (CP 2010), LNCS Volume 6308/2010, pp. 537-
551 (2010)

120

APPENDIX A

GRAPHICAL XML SCHEMA STRUCTURE FOR THE

EXPRESSIONS DEFINED IN CHAPTER 4

Figure A.1 Graphical XSD expressing feature

Figure A.2 Graphical XSD expressing feature attribute

121

Figure A.3 Graphical XSD expressing All Features

Figure A.4 Graphical XSD expressing Decomposition relation

122

Figure A.5 Graphical XSD expressing Mandatory relation

123

Figure A.6 Graphical XSD expressing Optional relation

124

Figure A.7 Graphical XSD expressing Alternative relation

Figure A.8 Graphical XSD expressing Or relation

125

Figure A.9 Graphical XSD expressing Feature Cardinality

Figure A.10 Graphical XSD expressing Solitary Cardinality

126

Figure A.11 Graphical XSD expressing Group Cardinality

Figure A.12 Graphical XSD expressing Cardinality

127

Figure A.13 Graphical XSD expressing Child Set

Figure A.14 Graphical XSD expressing Cross Tree relation

128

Figure A.15 Graphical XSD expressing Condition

Figure A.16 Graphical XSD expressing Expression RelOp Expression

129

Figure A.17 Graphical XSD expressing Expression Structure

Figure A.18 Graphical XSD expressing BoolAttributeDes=TruthValue

130

Figure A.19 Graphical XSD expressing Numeric Attribute Designator

Figure A.20 Graphical XSD expressing Excludes relationship

131

Figure A.21 Graphical XSD expressing Requires relationship

Figure A.22 Graphical XSD expressing Boolean Formula

132

Figure A.23 Graphical XSD expressing BooleanFormulaConBooleanFormula

Figure A.24 Graphical XSD expressing Complex Constraint

133

Figure A.25 Graphical XSD expressing CP

134

Figure A.26 Graphical XSD expressing Guarded Constraint

Figure A.27 Graphical XSD expressing Guard

135

Figure A.28 Graphical XSD expressing Guarded Constraint Combination

136

Figure A.29 Graphical XSD expressing Negation Guarded Constraint

