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ABSTRACT 

 

 

SLIDING MODE CONTROL ALGORITHM DEVELOPMENT  

FOR 

ANTI-LOCK BRAKE SYSTEM 

 

 

Okyay, Ahmet 

                        M.Sc., Department of Mechanical Engineering 

                        Supervisor      : Assist. Prof. Dr. Ender Ciğeroğlu 

                        Co-supervisor : Assist. Prof. Dr. S. Çağlar Başlamışlı 

 

August 2011, 66 pages 

 

 

 

In this thesis, a sliding mode controller employing a new sliding surface for 

antilock brake system (ABS) is proposed, its stability is proven formally and its 

performance is compared with existing sliding mode controllers. The new sliding 

mode controller uses the integral-derivative surface, which includes error, its 

derivative and its integral, all at the same time. This and the already existing 

derivative surface, which includes error and its derivative only, are named zeroth-

order sliding surfaces. Their stability analysis is done using first-order auxiliary 

surfaces. Auxiliary surfaces equal the sliding surfaces when derivative of the error 

becomes zero. The first-order error surface, which includes only the error, and the 

integral surface, which includes error and its integral, were also designed for 

comparison. During design, tire brake force response is modelled as an 

uncertainty. Controllers are simulated on a road with an abrupt change in road 
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coefficient of adhesion. Controller parameters used are optimized, which results in 

comparable stopping distances while braking on a constant coefficient of adhesion 

road. Effect of first order actuator dynamics with varying time constants and 

actuator absolute time delay were considered. Reaching and sliding properties of 

controllers were also investigated, using results on a constant coefficient of 

adhesion road. It is observed that zeroth-order sliding surfaces give smoother 

response for both derivative and integral-derivative cases. As the controllers 

employing error and derivative surfaces get unstable in the presence of actuator 

time delay, the integral-derivative surface, proposed in this study, stands as the 

best controller. 

 

 

Keywords: Sliding Mode Control, Sliding Surface, Zeroth-Order Sliding Surface, 

Actuator Time Delay, Auxiliary Surface 
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ÖZ 

 

 

KİLİTLENME ÖNLEYİCİ FREN SİSTEMİ (ABS) 

İÇİN 

KAYMA KİPİNDE KONTROL ALGORİTMASI GELİŞTİRİLMESİ 

 

 

Okyay, Ahmet 

                           Yüksek Lisans, Makina Mühendisliği Bölümü 

                           Tez Yöneticisi           : Yrd. Doç. Dr. Ender Ciğeroğlu 

                           Ortak Tez Yöneticisi : Yrd. Doç. Dr. S. Çağlar Başlamışlı 

 

Ağustos 2011, 66 sayfa 

 

 

 

Bu tezde, kilitlenme önleyici fren sistemi (ABS) için, yeni bir kayma yüzeyi 

kullanan bir kayma kipinde kontrolcü önerilmiş, kararlılığı matematiksel olarak 

gösterilmiş ve performansı var olan kayma kipinde kontrolcülerle 

karşılaştırılmıştır. Yeni kayma kipinde kontrolcü, hatayı, hatanın türevini ve 

hatanın integralini aynı anda içeren, integral-türev yüzeyini kullanmaktadır. Bu ve 

zaten var olan, sadece hatayı ve hatanın türevini içeren türev yüzeyi, sıfırıncı-

dereceden kayma yüzeyleri olarak adlandırılmıştır. Bu kontrolcülerin kararlılık 

analizleri birinci dereceden yardımcı yüzeyler kullanılarak yapılmıştır. Hatanın 

türevi sıfır olduğunda yardımcı yüzeyler kayma yüzeylerine eşittir. Sadece hatayı 

içeren hata yüzeyi ve hata ile hatanın integralini içeren integral yüzeyi de, 

karşılaştırma amacıyla tasarlanmıştır. Tasarım sırasında, lastik fren kuvveti cevabı 

belirsizlik olarak modellenmiştir. Kontrolcüler, sürtünme katsayısında ani bir 
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değişim bulunan bir yolda benzetime tabi tutulmuştur. Kontrolcü parametreleri, 

sabit sürtünme katsayısına sahip bir yolda birbirine yakın durma mesafeleri 

sağlayacak şekilde optimize edilmiştir.  Farklı zaman sabitlerine sahip birinci 

dereceden eyletici dinamikleri ve mutlak eyletici gecikmesinin etkileri hesaba 

katılmıştır. Sabit sürtünme katsayısına sahip bir yolda, denetçilerin erişme ve 

kayma özellikleri de araştırılmıştır. Sıfırıncı-dereceden yüzeylerin, hem türev hem 

de integral-türev durumları için daha pürüzsüz bir cevap verdiği gözlenmiştir. Hata 

ve türev yüzeylerini kullanan kontrolcüler, eyletici gecikmesi durumunda 

karasızlaştıkları için, bu çalışmada önerilen sıfırıncı-dereceden integral-türev 

yüzeyini kullanan kontrolcü, en iyi seçenek olmuştur.  

   

 

Anahtar Kelimeler: Kayma Kipinde Kontrol, Kayma Yüzeyi, Sıfırıncı-Dereceden 

Kayma Yüzeyi , Eyletici Gecikmesi,Yardımcı Yüzey 
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CHAPTER I 

 

 

OVERVIEW OF THE ANTI-LOCK BRAKE SYSTEM 

 

 

 

1.1. Necessity of the Anti-Lock Brake System (ABS) 

 

1.1.1. Manual Braking in Emergency Situations 

 

The Anti-Lock Brake System (ABS) has found basis for its development in a 

number of problems associated with manual braking, especially in emergency 

conditions. In order to better understand these facts, automobile braking should be 

redefined in engineering terms.  

 

In a common car, the driver is connected to the brake system via the brake pedal. 

The brake pedal acts as the interface to the hydraulic brake circuit and allows for 

the modulation of hydraulic brake pressure. A schematic view of the hydraulic 

brake system is given in Figure 1. The hydraulic brake pressure determines the 

braking torque, which acts opposite to the direction of wheel rotation. Although 

novel systems may have a slightly different outlook, a certain feature of braking is 

common in all such systems. In all cases, the driver is only capable of controlling 

the braking torque acting on the wheel, thus affecting wheel deceleration. This is 

quiet an intriguing fact, as the large inertia of the longitudinally displacing vehicle 

is independent from wheel rotational inertia. What determines the deceleration of 

the vehicle body is the longitudinal force formed at the tire-road interface. 

Therefore, having full control over braking requires substantial knowledge of the 

complex tire behavior. Brake torque modulation, or wheel deceleration, which is 
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the sole tool of the driver, only indirectly affects the braking process. Moreover, 

the driver has a perception of a direct proportionality between the effort applied to 

the brake pedal and the intensity of braking. This perception quite closely 

approximates what happens when the brakes are applied for short intervals on a 

good adhesion road. However, in emergency situations this perception leads to 

wheel locking and poorer braking forces due to excessive wheel deceleration.  

 

 

 

 

Figure 1. Automobile braking system. (Limpert, 1999) 

 

 

The primary adversity associated with wheel locking in the case of front wheels, is 

obviously the loss of directional control due to the lack of lateral forces. In an 

emergency, this may lead to hazardous accidents as steering away from obstacles 

or boundaries may be needed together with braking. Furthermore, yaw inputs 

resulting from split adhesion coefficient roads or effects of side-winds may not be 

possible to neutralize. In the case of rear wheel locking, vehicle gets unstable. The 

secondary effect, reduction from the optimum braking force in the case of a locked 
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wheel, is a less obvious phenomenon. To better understand this and the relation of 

ABS to traction control, an introduction to tire dynamics and behavior has to be 

made. 

    

1.1.2. Tire Behavior in Braking 

 

In this section, only some general information will be presented for the sake of 

clarity.  A detailed explanation of tire behavior and model used in this study will 

be made in subsequent sections. The response of the air filled elastic tire structure 

is reminiscent of a nonlinear spring; input being the extension of tire outer fibers. 

However, as the longitudinal forces are formed while the wheel is rotating, a 

dynamic variable analogous to net displacement is needed. This variable, which 

was found by experimental evidence to have a governing role in the formation of 

longitudinal forces, is the slip ratio. The slip ratio, defined positively for braking, 

is given by the equation: 

 

 x

x

V r

V




 
 , (1) 

 

where, 

 

xV : longitudinal speed of car body 

r : effective radius 

 : rotational speed of tire. 

 

In the case of a neutral camber angle and absence of side slip (due to steering 

angle), tire longitudinal force can be written as a function of longitudinal slip ratio 

and normal force,  x zF F    . The term     refers to the dynamic 

coefficient of friction.  
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The importance of slip ratio is a result of its involvement in tire contact patch 

dynamics. The slip velocity, s xV V r  determines the maximum deformation of 

tread elements which travel the contact patch (Rajamani, 2006). In free rolling, this 

quantity is zero. A schematic diagram of the brush model which gives insight in 

this matter is given in Figure 2. As shown, tread elements can be thought of 

entering and leaving the contact patch in neutral position, while deformed in 

between according to the slip velocity. The slip ratio is the scaled version of slip 

velocity with respect to vehicle longitudinal speed.  

 

 

 

 

Figure 2. Brush model for tire dynamics; the case for combined longitudinal and 

lateral slip (Pacejka, 2006). 

 

 

As observed from Equation (1), tire force is determined by dynamic variables. The 

driver can directly influence only the rotational speed of wheels. However, the 
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resulting braking force is determined by the difference between the wheel 

rotational speed and the car longitudinal speed. Experimental work was done to 

produce tire force (or dynamic coefficient of friction) curves with respect to the 

slip ratio. The results were used in the formulation of tire models either by curve 

fitting or deducing parameters of theoretical models. In each case, the longitudinal 

brake force coefficient, x

z

F

F
  , is found to increase almost linearly up to a certain 

peak and then to decrease quiet abruptly with increasing slip ratio. The initial 

linear phase is called stable region and the latter phase is the unstable region 

(Bosch, 1995). These names are derived according to the fact that keeping the 

brake torque constant, braking to a point in the stable region produces a constant 

slip ratio, while eventual wheel locking occurs once it gets into the unstable region 

(Solyom, 2002). In this study, the Magic Formula Tire Model due to Pacejka, 

which is a semi-empirical curve fitting method involving an extensive set of 

shaping and modification factors, is used. The parameter set was taken from the 

example set given in (Pacejka, 2006). For different road and weather conditions, 

different sets of tire parameters are needed. On the other hand, there are also less 

accurate models with less parameters and readily available data for different cases. 

One of these is the Burckhardt Steady State Tire Model (Burckhardt, 1993). Figure 

3 shows the variation of dynamic coefficient of friction for different road and 

weather conditions, at a longitudinal speed of 25 m/s.   

 

The plots of Figure 3 reveal an important fact we have reserved until now. The 

wheel locking condition, 1   produces significantly lower braking forces than at 

low slip values of about 0.1. Furthermore, there exists a peak slip value which 

results in highest brake forces. Thus, apart from the prevention of wheel locking, 

the proper ABS has to track this optimum slip ratio as much as possible.  
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Figure 3. Variation of dynamic coefficient of friction with respect to the slip ratio 

for varying road and weather conditions, at the speed of 25 m/s.  

 

 

1.1.3. Aims of the Anti-lock Brake System (ABS) 

 

Until today, numerous industrial and academic studies have been carried out for 

the development and enhancement of ABS. Each study attempted to improve a 

certain aspect associated with it. Limpert (1999) and Bosch (1995) give a good 

outline of those criteria for ABS. The factors which will be handled in this thesis 

are: 

 

1. ABS must utilize available tire-road friction optimally. 

2. ABS must adapt quickly to changes in tire-road friction levels. 
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Other requirements are about stability, turning, split coefficient of friction, security 

checks, warnings, steering, etc. The two requirements involved in this thesis are 

those directly affected by the design methodology of the ABS controller.  

 

1.2. Short History of the Anti-Lock Brake System (ABS) 

 

Skidding has long been a serious problem of wheeled means of transportation. The 

idea of active braking control systems was studied in the early 1900's for trains. 

An early patent, "An Improved Safety Device for Preventing the Jamming of the 

Running Wheels of Automobiles When Braking", dates to 1932. In 1936, a system 

called "Apparatus for Preventing Wheel Sliding" (US Patent 2038144) due F. B. 

Thomas was introduced. In the same year, Bosch acquired a similar patent using 

electromagnetic wheel speed sensors. When wheel locking occurred, an orifice 

controlled by electric motors regulated brake pressure. In 1940, Fritz Oswald 

designed and built a non-locking, non-intermittent brake controller. This, like other 

similar studies, was left unrealized due to their ineffectiveness in reducing 

stopping distance and providing stability in emergency situations. 

 

Several ABS projects were undertaken in the 1950s. In 1953, Maxaret anti-skid 

system was developed by Dunlop for aviation industry. Maxaret was a fully 

mechanical, complex system. In 1972, in England, the Jensen Interceptor 

automobile became the first production car to offer the Maxaret-based ABS.  In 

1954, Ford fitted Lincoln sedan with an anti-lock brake system taken from a 

French aircraft. In 1957, Kelsey-Hayes started their research on automatic braking 

systems. The problem associated with mechanical systems was that mechanical 

sensors used were not suitable for working conditions in automobiles and 

mechanical actuation was too slow to produce notable results. 

 

In the late 1960's and early 1970's, ABS employing analog electronics and 

vacuum-actuated hydraulic modulation were introduced. In 1968, Kelsey-Hayes 
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completed the development of a rear-wheel-only ABS. This system was used by 

Ford in 1969, in Thunderbird and Lincoln Continental Mark III, under the name 

"Sure Track". In 1971, four-wheel ABS was used in Chrysler Imperial, developed 

in cooperation with Bendix Corporation. This first four-wheel, three way (two 

front, one rear) electronically controlled ABS bore the name “Sure Brake”. Also in 

1971, GM introduced an electronically controlled rear-wheel-only ABS in 

Cadillac. ABS was available in GM Eldorado, Toronado, Cadillac Deville and 

Fleetwood between 1976 and 1982. There were two main weaknesses of these 

systems. First, system electronics was subject to interferences caused by large 

working temperature variations, humidity and vibrations. Secondly, slow cycle 

rates of vacuum actuation significantly increased stopping distances.  

 

Digital electronics were being adapted to ABS in Europe, in the late 1970's. The 

research on an electronically controlled ABS was already underway in Teldix 

(affiliate of Telefunken and Bendix Corporation) to put analogue controlled 

"Tekline" on market. In 1978, Bosch ABS 2, equipping digital technology (instead 

of analogue) was introduced in Mercedes-Benz S-class cars. In 1980's, ABS 

improved and found wider application. In 1985, the "integrated" ABS developed 

by Teves, Mk II, was used in Lincoln Mark VII and Ford Scorpio. This system 

which integrated servo booster, brake master cylinder and ABS modulator is 

pictured in Figure 4. It was also the first microprocessor based ABS. In 1986, 

Kelsey-Hayes introduced the rear-wheel-only ABS for pickup trucks. Delco 

Moraine NDH began production of its ABS VI system in 1990.  

 

In the model year '91, ABS was offered in approximately one-third of all 

passenger vehicles, while in 2007, more than three quarters of all new vehicles 

worldwide were equipped with ABS. (Chrysler, 1970; SAE, 1992; Limpert, 1999; 

Eckermann, 2001; Garrett, et al., 2001; Savaresi, et. al, 2010). 
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Figure 4. Teves integrated ABS.  

 

 

1.3. Conventional Anti-Lock Brake System (ABS) 

 

In the stable range of tire response, from zero slip to the peak braking point, if the 

braking torque is held in the range of stable braking, an equilibrium slip ratio will 

be formed (Olson, et al., 2003). Figure 5 shows example of such a response. If 

there is initially zero slip, slip ratio is going to be attracted to the lower, stable 

equilibrium.  
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Figure 5. Vehicle dynamic response to a fixed braking torque input. u : car speed, 

s : slip ratio. (Olson, et al., 2003) 

 

 

On the stable trajectories of braking (with constant slip), braking force will also 

remain the same. Thus, wheel deceleration will be determined by the moment 

differential between the braking torque and the moment of braking force acting on 

the rim of the wheel. In the stable region, this differential will be rather small 

(Bosch, 1995). On the other hand, it will increase if the unstable region is entered 

due to the braking force reduction as presented in Figure 3. Therefore, an abrupt 

increase in wheel deceleration is expected when instability is initiated. Thus, wheel 

deceleration can be monitored to deduce stability information. In the widely used 

Bosch® ABS, these properties of wheel deceleration is employed for ABS control.    

 

The Bosch® ABS is activated whenever tire deceleration exceeds a certain 

threshold. A typical control cycle for dry road conditions is given in Figure 6. In 

the figure, a  is the point ABS is switched on.  
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Figure 6. A typical ABS control cycle for dry road conditions. A , a : 

acceleration/deceleration thresholds, Fv : car speed, Rv : wheel peripheral speed, 

Re fv : reference speed, 1 : wheel peripheral speed following reference slip. (Bosch, 

1995) 

 

 

After the ABS is switched on, controller unit forms a reference speed,
Re fv  which 

is the estimated vehicle speed. According to this reference, which is decreasing by 

a predetermined ramp function, a reference wheel speed, 1  is formed. During 

phase 2, brake pressure is held constant until the slip ratio implied by 1  is passed. 

1  is selected in such a way to prevent under-braking at initial stages, especially on 

a dry road. In phase 3, brakes switch to the release mode and stay until a  

threshold is passed for the second time. Then, a pressure hold mode follows, until 

A  acceleration limit is reached at the end of phase 4. Phases 5, 6 and 7, activated 
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by deceleration thresholds, apply and hold brake pressure until a  is reached 

again. In phase 8, pressure is reduced to let wheel deceleration drop from a . This 

time, as stopping distance is less affected due to decreased vehicle speed, wheel 

speed reference is not generated.  

 

Viewing Figure 5, one may be tempted to think that even in the stable region, large 

wheel decelerations are possible. As increased slip values at constant vehicle 

speeds correspond to wheel deceleration, the large upward sloping trajectories in 

stable region (below the lower equilibrium) suggest such a fact. However, in 

reality, brake torque build-up is a slower process as can be seen in phase 1 of 

Figure 6. During this process, the lower equilibrium of the phase portrait of Figure 

5 is gradually brought upwards by increasing torque. On the other hand, if the 

critical torque value is exceeded, the lower equilibrium is suddenly vanished. This 

puts the system on an upwardly sloping trajectory pointed towards the wheel 

locking condition at 1s  . Therefore, keeping brake torque application rate at 

certain limits, control algorithm can distinguish between decelerations caused by 

eventual locking and torque application. 

 

The Bosch ABS prevents wheel locking, but optimal braking requires a lot of 

effort to be put in tuning the equipment. Deceleration thresholds used need to be 

determined very well and altered according to road conditions, as well as the 

sequence of brake apply-hold-release phases. The system needs a rich library of 

instructions for different braking scenarios. Therefore, extensive tests have to be 

performed to adapt the system to newly designed cars. As a result, this and other 

rule-based ABS controllers need to be replaced by model based controllers fixing 

the slip ratio at a predetermined set point.  

 

In this study, the application of sliding-mode controllers to the ABS problem will 

be investigated. Attention will be focused on the formulation of a better controller, 

rather than problems associated with realization and instrumentation.    
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1.4. Anti-lock Brake System (ABS) Control Literature 

 

The emergence of ABS control as a popular academic research topic strongly 

parallels its historical development in automotive industry. The use of electronics 

in the late 1960's, boosted opportunities for both manufacturers and academia. 

Study on an adaptive brake control system by Guntur dates to as early as 1972. 

Studies at that time were on threshold based logic schemes for constraining the slip 

within certain bounds during braking. As Guntur has also stated in his thesis 

(1975), ABS control performed the two main tasks of slip prediction and 

reselection. Prediction was the term defining the controller's judgment that the 

wheel was about to lock. On the other hand, reselection involved the reapplication 

of brakes, considering that the wheel has sufficiently accelerated. The actual slip at 

the time of prediction was dependent on initial velocity, rate of application of 

torque, variables used in prediction and threshold values designated for these 

variables. Guntur's work was partly involved in obtaining the prediction and 

reselection methods, which would give the best stopping distance results, while 

preventing intermittent wheel locking. 

 

In the period 1980-1990, ABS control studies were still in moderate levels. 

However, controllers with a set-point and error based compensation, rather than 

logical schemes were emerging. The controller in (Fling and Fenton, 1981) is 

based on a describing-function approach. Stable, small amplitude limit cycles are 

secured around the peak slip, using a nonlinear compensator. The work (Tan and 

Tomizuka, 1990) integrates sliding-mode control with an estimation algorithm for 

tire/road characteristics. The controller design is taken from a former work dating 

1988. The authors of this work have presented their controller in (Tan and Chin, 

1991). Being probably the first journal article to present sliding-mode control 

applied in ABS, their sliding surface comprises both error and derivative of error 

terms. However, their stability criterion does not guarantee reaching for negative 

values of switching function. Chin (1992) presents a test validation of the same 
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controller design. Interestingly, the proposed control law is bang-bang type 

controller which does not spring from the stability analysis presented. It is known 

that with a sufficiently large relay term, many sliding-mode controllers can be 

assured to be stable. Therefore, Chin's is not a strong example, considering rigor.  

A satisfactory stability analysis for derivative surface was done in (Shim, et al, 

2008).  

 

In the 1990's, analytical controller designs for ABS started to capture strong 

attention from academia. Many of the works in this period have been frequently 

cited in ABS literature. Controller design approaches employed seem to branch out 

mainly as fuzzy logic, sliding-mode and neural network controllers.   

 

An extensive survey and general design methodology for fuzzy control systems 

were given by Lee, C. C. (1990). Fuzzy control was applied to ABS in (Madau, et 

al., 1993; Layne, et al., 1993; Mauer, 1995). Madau, et al. (1993) tested the 

efficiency of their rule base on an experimental setup and refined them according 

to the outcome. Layne, et al. (1993) have applied their fuzzy model reference 

learning algorithm to the ABS control problem. The fuzzy rule base is updated by 

the algorithm whenever output is significantly deviant from that of the reference 

model. Mauer (1995) has integrated the fuzzy controller with a discrete logic 

element for the determination of road conditions, which uses actual slip, brake 

torque and the results from the slip predictor. Predicted slip is also used in the rule 

base of fuzzy controller.  

 

The sliding-mode control was also widely studied. Several approaches are 

presented in (Drakunov, et al., 1995; Kawabe, et al., 1997; Ünsal and Kachroo, 

1999; Choi and Cho, 1999; Lee and Sin, 2000). In the paper by Drakunov, et al. 

(1995), ABS control is achieved by an optimum search for best braking force. 

Search algorithm is specified in a way that whenever braking force is sufficiently 

deviant from optimality, trajectories of the system are attracted to a sliding regime 
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which increases the braking force. Therefore, it is not a sliding-mode controller of 

the common type. Kawabe, et al. (1997) have designed an integral surface 

modified for ABS application. They have tested their design in hardware-in-the-

loop simulation and on an actual vehicle. Ünsal and Kachroo (1999) have used a 

nonlinear observer (extended Kalman filter and sliding observers were both 

considered) for the estimation of difficult to measure car velocity. In the paper by 

Choi and Cho (1999), a sliding mode controller for actuators employing pulse 

width modulation is designed and tested on a test bench. Lee and Sin (2000) have 

also designed a sliding regime using a derivative surface, which is difficult to 

stabilize. Unfortunately, steps of the stabilization process are not given. 

Furthermore, their use of the term equivalent control is significantly different from 

Edwards and Spurgeon (1998). 

 

Neural networks were also used in 1990s. Davis, et al. (1992) have designed a 

neural network controller on a preliminary simulation model with unlimited runs 

to train the identification and controller networks. Then, they trained them on an 

experimental simulation model with different parameters. Limiting runs on the 

experimental model to 100, they still obtained promising results.  

 

Although model based and set-point following feedback control systems were 

increasingly designed in 1990's, the industry still preferred rule based systems. 

Validation of improvements in the rule base was done by simulations, but this 

yielded only qualitative data. Wellstead and Pettit's work (1997), employed a then 

novel piecewise linear analysis method, which allowed for the analysis of the 

combined nonlinear-dynamic and logic controller systems. The two piecewise 

linear systems were intermingled to capture dynamic paths of the system. As a 

result, obscure drawbacks of the initial, intuitive logic controller were discovered 

and a redesign was made.  Yu (1997) have designed a robust adaptive controller 

for ABS. Bounds of uncertainties are not incorporated directly into the design, but 

an adaptive law is designed for the dynamics of uncertainty bound estimation. 
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System is stable in the error domain in terms of both slip error and uncertainty 

bound estimation error. The controller specified resembles the sliding-mode 

controller designed with error sliding surface. However, controller dynamics is 

also governed by a decaying auxiliary signal.  

 

In the period beginning with 2000, ABS control became an area flocked by 

academicians. Fuzzy control maintained its importance and was used in (Lee and 

Zak, 2002; Khatun, et al., 2003; Lin and Hsu, 2003a; Precup, et al., 2004; Mirzaei, 

et al., 2006; Yazicioglu and Unlusoy, 2008; Sahin and Unlusoy, 2010). Lee and 

Zak (2002) have used genetic algorithms to optimize their fuzzy rule set. Khatun, 

et al. (2003) have applied fuzzy control to both ABS and traction control, and 

refined their rule base by experimentation. Lin and Hsu (2003a) have integrated a 

robust controller with a fuzzy logic controller, where the former compensates for 

approximation error between the latter and an ideal controller. Precup, et al. (2004) 

have proposed a Takagi-Sugeno and an interpolative fuzzy controller for ABS. 

They compared resulting system responses with that of a conventional PI 

controller. Mirzaei, et al. (2006) have designed a Takagi-Sugeno-Kang type fuzzy 

controller and optimized both membership functions and rules using genetic 

algorithms. Yazicioglu and Unlusoy (2008) have designed an ABS for braking 

performance and steering stability on a nonlinear full car model. Sahin and 

Unlusoy (2010) have designed a fuzzy logic and a PID controller for ABS for use 

in integrated active safety systems. 

 

Sliding-mode controllers have also improved after 2000. Notable works in the area 

include (Schinkel and Hunt, 2002; Wu and Shih, 2003; Lin and Hsu,  2003b; Chun 

and Sunwoo, 2005; Patel, et al., 2007; Harifi, et al., 2008; Shim, et al., 2008; 

Amodeo, et al., 2010). Schinkel and Hunt (2002) have started by approximating 

the nonlinear variation of tire friction coefficient by a piecewise linear 

relationship. Then, they transformed the whole system to an uncertain piecewise 

linear system, using operating point linearization for vehicle speed terms. The 



 

17 

resulting system turned out to be unstable for slip values past the peak point. 

(However, due to the stabilizing effect of the operating point dependent constant 

input term appearing after linearization, the corresponding system still approaches 

to the origin.) Then, they designed a sliding-mode like controller, with the 

equivalent control term slightly changed for reaching the peak slip. For the 

intermediate region between the two controller structures of different slip bounds, 

they have designed a PI controller. Wu and Shih (2003) have compared the effects 

of switching and pulse-width modulation control of hydraulic valves by using the 

control signal from a sliding-mode controller with derivative surface. However, 

the formal proof for stability of the controller used is not given. Lin and Hsu 

(2003b) have used the integral surface in their design. They used a recurrent 

neural network (RNN) to estimate uncertainties. This way, relay coefficient could 

be reduced, resulting in less chattering. Chun and Sunwoo (2005) have designed a 

conventional sliding-mode controller with only the error term in sliding surface. 

Their sole contribution was to feed a higher than necessary reference slip value at 

the beginning of the braking process, which would decay to its desired level in 

time. They have neither compared their approach with results of a fixed surface, 

nor clearly shown the reference slip decay process in simulations. Patel, et al.'s 

work (2007) is an important example for its rigor and causality. Sliding-mode 

observers are employed to estimate road/tire characteristics based on a LuGre 

friction model. Estimated parameters are used in the control law of error surface 

sliding mode. Furthermore, system is shown to be stable in the sliding-mode, for a 

given range of parameters. Although stability regarding vehicle velocity is 

obvious, internal friction variable associated with the tire made analytical proof 

complicated. Harifi, et al. (2008) have designed an integral surface controller 

which accounts for uncertainties. Shim, et al. (2008) have investigated the effects 

of different surface designs on the overall performance of the sliding mode 

controller. They have given a formal proof to the derivative surface which had 

been included in many works without being analyzed rigorously. Amodeo, et al. 

(2010) have designed a second order sliding-mode controller. The difference of 
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second and higher order modes is that the input term appears in the second 

derivative (rather than first derivative for first order modes) of the switching 

function. Therefore, switching effects the derivative of torque, and torque itself 

becomes continuous. However, chattering free implementation of the algorithm 

requires correct estimation of many non-measurable states.  

 

Yi, et al. (2002) have proposed an adaptive control algorithm which uses estimated 

values for optimal slip ratio and overall hydraulic gain. Nouillant, et al. (2002) 

have designed a fractional controller for ABS. They have also proposed two 

methods for slip reference generation, namely the fuzzy logic mapping and 

Pacejka's Inverse Model.  

 

Recently, Jing, et al. (2011) have designed a switching control strategy for ABS. 

The advantage of the proposed design is that it is ensured stability within the 

discontinuous input structure of the industrial ABS. Rather than former designs 

which necessitate a secondary -though, influential- controller for the tracking of 

the desired continuous torque by the discontinuous hydraulic brake dynamics, 

design is constrained by the three ABS modes (brake / hold / release) from the 

beginning.  
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CHAPTER II 

 

 

SLIDING MODE CONTROLLER DESIGN 

 

 

 

2.1. Brake System Model 

 

2.1.1. Vehicle and Tire Models 

 

In this study, the quarter car braking model is used to represent braking dynamics 

of the vehicle, as shown in Figure 7. Values of vehicle parameters are given in 

Appendix A.1. 

 

 

 

 

Figure 7. Quarter car model. 
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Equations of motion for the car model presented are given by, 

 

 
x xm V F   , (2) 

 

 x bJ r F T    , (3) 

 

where, 

 

m : mass of the quarter vehicle, 

xV : forward velocity, 

xF : braking force, 

J : wheel moment of inertia, 

 : wheel rotational speed, 

r : effective radius, 

bT : braking torque. 

 

It is assumed that torque build-up is of first order dynamics. This is a common 

assumption for electromechanical actuators (Savaresi and Tanelli, 2010). Actuator 

time constant will be given various values during simulations. Cases with an 

additional absolute time delay will also be considered. The resulting brake torque 

dynamics, which results in delays on the brake torque calculated by the controller, 

can be given as, 

 

  
1

1

s

bG s e
TB s

  
 

 (4) 

 

where, 

 

TB: actuator time constant 
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 : actuator time delay constant 

 

The tire model shows the relationship between longitudinal force, xF
 
and certain 

other quantities such as car velocity, normal force, slip velocity and slip ratio. The 

slip ratio is defined as, 

 

 s

x

V

V
   , (5) 

 

where the slip velocity, sV  is given by, 

 

 s xV V r    . (6) 

 

The effective radius, r  represents the rolling radius of a freely rolling tire. The 

Magic Formula Tire Model due to Pacejka (2006), used in this study, is expressed 

as, 

 

    sin arctan arctanx x x x x x x x x x VxF D C B E B B S      
 

, (7) 

 

where 

 

 x HxS   . (8) 

 

The various quantities, , , , ,x x x x VxB C D E S
 
and HxS

 
are functions of static tire model 

parameters p  and dynamic variables such as car velocity, slip velocity, slip ratio 

and normal force. Tire model parameters, p  are obtained by special testing 

procedures. Shaping factors ( , , ,x x x xB C D E ) and horizontal/vertical shifts  

 ,Hx VxS S  can be further modified using “User Scaling Factors”,  , for different 
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road conditions. Model parameters, scaling factors and equations for shaping 

factors and shifts are given in the Appendix A.2. 

 

2.1.2. Equations of motion in   and  : 

 

For the proper representation and design of the ABS controller, equations of 

motion given in Equations (2) and (3) are written in terms of slip ratio and forward 

velocity. In order to simplify the resulting equations, the following non-

dimensional parameters are introduced, 

 

 
2m r

J



 , (9) 

 

 b
b

T r

J g


 


. (10) 

 

For brevity, Equation (7) is shortened as, 

 

  , , ,x z xF m g F V     (11) 

 

Hence, for braking on a flat road, equations of motion can be obtained as follows: 

 

 
xV g    , (12) 

 

  1 b

x

g

V
          , (13) 

 

where   is the dynamic coefficient of friction. 

 

The slip ratio used in (12) and (13) corresponds to the positive definition of slip 
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ratio for braking, such that, 

 

 s

x

V

V
  . (14) 

 

2.2. Controller Design 

 

The block diagram for the ABS control system is given in Figure 8 below, 

 

 

 

Figure 8. Block diagram for the ABS control system. 

 

 

By setting the non-dimensional brake torque, b , as the input to the system, 

bu   , the discontinuous sliding-mode controller using the equivalent control 

approach is expressed as, 
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  sgnequ u     . (15) 

 

Extending the simplified notation given by Slotine and Li (1991) to integral 

control, the sliding surface, 0  , for a general single-input dynamic system of 

the form 
     n

x f x b x u   , is given by,  

 

  
1n q

qd
K e

dt


 

 
  
 

, (16) 

 

 de x x  , (17) 

 

where q  takes values from  0, 1
 

and K  is strictly positive. 

 ...
T

d d d dx x x x  is the vector of reference states. The case 0q  corresponds 

to the error surface, while the case 1q    gives the integral surface, i.e. 

( 1)

0

t

e e d   . This formulation ensures that discontinuous input term effects the 

first derivative of sliding surface function,  . The reachability or the sliding 

condition for a sliding-mode controller utilizing the form of sliding surface as in 

Equation (16) is given in (Slotine and Li, 1991), as,  
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2

d

dt
      (18) 

 

To ensure the design of a stabilizing sliding-mode controller, i.e. to constrain 

system states to approach a sliding surface and stay in the sliding-mode, it is 

desirable for the sliding surface to be one order lower than the system, as implied 

by the formulation in Equation (16).  
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However, exceptions to this can be made at the expense of making a more 

complicated stability analysis. For example, a certain kind of sliding surfaces can 

be designated as "derivative" or "zeroth-order" and denoted
 0 . Similar to the 

definition for sliding surfaces given in Equations (16) and (17), corresponding 

zeroth-order sliding surfaces can be expressed as, 

 

  
0

n q

qd
K e

dt




 
  
 

, (19) 

 

where K  is strictly positive. As their proposed name suggests, they have zero 

order difference with the system. This property differentiates them from common 

sliding surfaces. With the inclusion of derivative states, they are no more capable 

of being stabilized by the simple first-order stabilization strategy employed by the 

relay part of the sliding-mode controller. The sliding surface itself becomes 

discontinuous. Therefore, this kind of controllers often needs an auxiliary surface 

and additional terms in the stability condition. 

 

The form of the reachability condition given in Equation (18) assures finite 

reaching time. As is common practice, it can also be defined as a Lyapunov 

stability condition with the Lyapunov function in error domain selected as, 

21

2
V  , where 0V   is sought for asymptotic stability. Thus, argument of the 

Lyapunov function determines the final sliding surface.  For zeroth-order sliding 

surfaces, argument of the stability condition may be different from the sliding 

surface itself, as such surfaces cannot be stabilized in the usual way. Thus, an 

auxiliary surface, * 0  , may be used, along with other terms for such cases. For 

zeroth-order sliding surfaces, the auxiliary surface is obtained from the sliding 

surface by letting, 0e . By using the auxiliary surface in the stability condition, 

sliding only on the auxiliary surface is guaranteed, while the actual switching takes 

place with respect to the sliding surface function,  . 
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In the works (Lee and Sin, 2000; Wu and Shih, 2003; Shim, et al., 2008) a 

"derivative surface" in the form, e e    were proposed. In (Lee and Sin, 2000) 

and (Wu and Shih, 2003), simulations were carried out without giving a formal 

stability proof. In (Shim, et al., 2008), the stability proof for such a sliding surface 

used in ABS control was given for the first time. However, the Lyapunov function 

used was 21

2
V e ( * e  ) , while the  sliding surface was e e   . They have 

not given account for the difference between the sliding surface and the auxiliary 

surface used in the stability condition. Stability proof for this controller is given in 

Section 2.2.2.1 below, within our terms. Furthermore, a new sliding-mode 

controller is given in Section 2.2.2.2, which utilizes a zeroth-order, integral-

derivative sliding surface , 
0

t

e e e d       ,  and an auxiliary surface, 

*

0

t

e e d      . 

 

Apart from the relay part which is directly affected by the sliding surface, the 

equivalent control, 
equ , is also important. This term is the active portion of the 

control expression, once sliding ( 0  ) is achieved. In the ideal case, this term 

ensures staying on the sliding surface by maintaining 0  . In such a case, "ideal 

sliding" occurs. However, this requires that the designer knows all particulars of 

the system, i.e. there is no uncertainty. In the presence of uncertainties, equivalent 

control,
equ , will involve uncertain terms. Thus, it is inevitable to omit or average 

certain variables involved in it. Still, by making equivalent control part close to its 

ideal version, one needs lower relay coefficients,  , to stabilize the system. Hence, 

intensity of switching is also reduced. 
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2.2.1. Controllers with First Order Sliding Surfaces 

 

2.2.1.1. Error Surface (Case I) 

 

The error surface with 0q   in Equation (16) is given by, 

 

 de     , (20) 

 

where, d  is the desired slip ratio. 

 

The error surface is a limiting case of the sliding-mode controller, as no actual 

sliding takes place in that case. It arises from the same formulation for actual 

sliding surfaces when the system is first order. 

 

In our design of the SMC, for all cases, tire response will be considered uncertain. 

The dynamic coefficient of friction is assumed to be uniformly distributed within 

known bounds. The uncertain dynamic coefficient of friction,  , accounts for a 

number of uncertainties of the system. As seen in Equation (11), it is a function of 

slip ratio,  , normal force, zF , forward velocity, xV , and a number of other 

variables which are not effective in our case due to the selection of tire model 

parameters. Therefore, making controller design for the whole range of this value 

provides robustness regarding the state of slipping, changes in normal force due to 

dynamic weight transfer and speed of the vehicle. Controllers of Case I and the 

three other design cases below, all possess this robustness property. The tire model 

described in Section 2.1.1 will be used only in simulations. The longitudinal force 

produced by the uncertain tire model is given as follows, 

 

 x zF F   , (21) 
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where 0 2    holds.  A typical value for   is 0.5, which will be used in 

simulations. 

 

Letting 0  , the equivalent control is obtained as follows, 

 

  1 0eq

b d

x

g

V
           . (22) 

 

For the uncertain coefficient of friction,  , the average value can be used as,

.   As the equivalent control is only an approximation due to the presence of 

uncertainties, 
d  

term can be discarded for simplicity. Stability will be assured by 

the proper specification of the relay coefficient,  . So, the equivalent control can 

be given as, 

 

  1eq

b        . (23) 

 

For the states designated in the sliding surface to be attracted to the zero error 

surface, i.e. 0  achieved, we define a Lyapunov function of the form, 

 

 21

2
V  . (24) 

 

Then, stability can be achieved if 0V   is ensured by the controller. Using 

the equivalent control in the form of controller given in Equation (15), the 

condition for stability is given by, 

 

      1 1 sgn 0d

x

g

V
                       . (25) 
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For the robust design of relay coefficient,  , we set up triangle inequality as, 

 

      1 sgnx
d

V

g
                  , (26) 

 

 1 x
d

V

g
                    , (27) 

 

Using the fact that     , for robustness, 

 

 1 x
d

V

g
                  . (28) 

 

Cancelling  ’s, one concludes that 1 x
d

V

g
         

 
is sufficient for 

robust stability. Then the controller is given by, 

 

    1 1 sgnx
b d

V

g
        

 
              

 
, (29) 

 

where   is an arbitrary, positive, design quantity.  

 

During the course of controller design,   is usually given an essentially large 

value. This way, effects of any uncertainties in model parameters and road 

conditions, which may not be included in controller design, are effectively 

eliminated. Therefore, in many cases 1      and x
d

V

g
  terms can be 

removed and a single large   can be used as the relay coefficient. 
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2.2.1.2 Integral Surface (Case II) 

 

This surface corresponds to the integral counterpart of the surface presented in 

section 2.2.1.1, with 
0

t

e e d     . This time, equivalent control is found as, 

 

  1 0eq

b d

x

g
e e e

V
                  , (30) 

 

Discarding the 
d  term as we did in Equation (23), 

 

  1eq x
b

V
e

g
         . (31) 

 

For stability, defining the Lyapunov function as in Equation (24), 

 

 
     1 1 sgn

0

x

x

d

Vg
e

V g

e

        
 

 

  
          

   
 
  

, (32) 

 

      1 sgn 0d

x

g

V
       
 

         
 

. (33) 

 

We set up the triangle inequality, 

 

 1 x
d

V

g
                , (34) 

 

 1 x
d

V

g
              . (35) 
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Thus, 1 x
d

V

g
             achieves robust control. The controller is then 

given as, 

 

    1 1 sgnx x
b d

V V
e

g g
         

 
              

 
. (36) 

 

2.2.2. Controllers with
 
Zeroth-Order Sliding Surfaces

 

 

2.2.2.1. Derivative Surface (Case III) 

 

This case is the first one of the controllers with zeroth-order sliding surfaces.  The 

zeroth-order sliding surface can be given as, 

 

 e e   , (37) 

 

where  is strictly positive. 

 

For the equivalent control, 
equ , we set 0   to stay on the zero error plane. Then,  

 

  1 0eq

b d

x

g
e e e

V
                  , (38) 

 

and 

 

  1eq x
b

V
e

g
         . (39) 

 

The equivalent control uses an average value for the uncertain coefficient of 

friction,   and disregards 
d . This facilitates lowering the magnitude of the relay 
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part by assisting stability, rather than perfectly following 0  , as in an ideal 

case. 

 

For the stability of the controller, we use Lyapunov function in the error domain 

as, 

 

  
2

* 21 1

2 2
V e  , (40) 

 

which assures reaching to the auxiliary surface, * 0  . The auxiliary surface is an 

exception of the sliding surface, 0  , at 0e  . Then, 

 

   21 1 1
0V ee e e e e 

  
      , (41) 

 

should be satisfied. As 21
e


 is ultimately negative, the condition reduces to, 

 

 0e  . (42) 

 

Then, one may obtain the following relationships consecutively, 

 

      1 1 sgn 0x
d

x

Vg
e

V g
          

 
            

 
, (43) 

 

      1 sgnx x
d

V V
e

g g
          

 
           
 

, (44) 

 

    1 x x
d

V V
e

g g
         

 
          
 

. (45) 
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Setting the triangle inequality for robustness,  

 

 1 x x
d

V V
e

g g
         

 
          
 

, (46) 

 

 1 x x
d

V V
e

g g
        

 
         
 

. (47) 

 

Finally, the controller is given by,  

 

 

 

 

1

1 sgn

x
b

x x
d

V
e

g

V V
e

g g

   

      

      

 
       
 

. (48) 

 

Using the auxiliary surface, * 0  , the controller using the zeroth-order sliding 

surface, 0   is stabilized for tracking. The resulting controller uses the zeroth-

order surface for switching, but is guaranteed only to track * 0  . Effects of this 

will be investigated in Section 3. 

 

2.2.2.2. Integral-Derivative Surface (Case IV) 

 

In this case, the auxiliary surface, *

0

0

t

e e d        will be used. The zeroth-

order sliding surface is given by,  

 

 
0

0

t

e e e d        . (49) 
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The equivalent control is found similar to Case III, by setting 0  , 

 

  
0 0

. 1 . 0

t t

eq

b d

x

g
e e e d e e d

V
                         . (50) 

 

Thus, 

 

  
0

1 .

t

eq x x
b

V V
e e d

g g
             . (51) 

 

For stability, we define the Lyapunov function in error domain as, 

 

  
2

* 21 1

2 2
V e   , (52) 

 

which principally ensures reaching to the auxiliary surface, *

0

0

t

e e d       . 

As for the zeroth-order sliding surface of Case III, this auxiliary surface is also an 

exception of the sliding surface at 0e  . The extra term in stability condition,

21

2
e , assures that the auxiliary surface, * 0   is approached from the correct 

direction, yielding to the stabilization by switching with respect to  . Proceeding 

as in Case III, the following relationships may be consecutively obtained, 

 

 * * 0V ee     , (53) 

 

 
0

. 0

t

e e e e d ee     
 

    
 

 , 
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2 2 2

0 0

. . 0

t t

ee e e d e e e d ee            , 

 

 
2 0e e e ee ee           . (54) 

 

Setting   and removing the ultimately negative term, the following inequality, 

 

 0e e


 


  , (55) 

 

becomes the stability condition. Then, 

 

  1 0b d

x

g
e

V


     



 
         

 
, (56) 

 

 

   

 
0

1 1

0

. sgn

x

dt

x x

V
e

gg
e

V V
e d

g

      


  


   

  
         

      
       



, (57) 

 

 

   

 

0

1 1 .

sgn

t

x x

x x
d

V V
e e d

g g

V V
e

g g

         


    



 
         

 

     


. (58) 
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Setting the triangle inequality for robustness, 

 

 0

1 .

t

x x x

x
d

V V V
e e d e

g g g

V

g


       



   

 
         

 

    


, (59) 

 

 0

1 .

t

x x x

x
d

V V V
e e d e

g g g

V

g


      



   

 
        

 

    


. (60) 

 

The relay coefficient is given by, 

 

 
0

1 .

t

x x x
d

V V V
e e d

g g g


        



 
          

 
 . (61) 

 

Finally, the equation for the controller can be expressed as, 

 

 

 

 

0

0

1 .

1 . sgn

t

x x
b

t

x x x
d

V V
e e d

g g

V V V
e e d

g g g

     


        



       

  
              





 (62) 

 

An important property of the controllers in Cases III and IV is that the eventual 

auxiliary sliding surfaces have the same terms as the actual sliding surfaces of 

Cases I and II, respectively. Therefore, after the auxiliary surfaces are reached, 

zeroth-order Cases III and IV track almost first-order surfaces, with additional 

derivative terms in switching strategy. 
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2.3. Saturation Function and Reference Forming  

 

Due to the delays/imperfections in actuators and sensors, high frequency 

oscillations around the sliding surface, known as chattering, is often seen in 

sliding-mode control. To smoothen these to a certain degree, the saturation 

function, 

  

  
 sgn ,

,
sat

 

 


  


 
 

 

, (63) 

 

given in Figure 9 is used, instead of  the sign function. In this case, reaching 

stability is loosened as reaching to the boundary formed by saturation. 

 

 

 

 

Figure 9. Saturation function.  

 

 

Another issue in ABS controller design is supplying the reference slip ratio, d , to 

the controller, which gives the best stopping distance. Various methods are 
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proposed for this, including the Inverse Pacejka Model used by Nouillant, et al. 

(2002), used also in (Başlamışlı, et al., 2007). As this study is mainly concerned 

with exploring the properties of different sliding mode controller structures, this 

issue is left out for ease in comparison. Optimal reference slip, which gives the 

lowest stopping distance, will be supplied to the controllers at every instant.  

 

By using the reference slip value, d , which gives the lowest stopping distance, 

stopping distances can be compared to investigate tracking performance of the 

controllers. However, in reality, providing such a reference slip is not desirable. 

Regardless of the extent of utilization of ground adhesion, longitudinal and lateral 

forces are maximized to the expense of each other. Therefore, having maximal 

braking forces deteriorates steering response and directional stability in the case of 

turning while braking. A higher level controller may be necessary to set the 

reference slip according to the current motion of the vehicle, in the optimal sense. 

In Section 2.4, controller parameters are optimized for effectively tracking the 

reference slip, but the formation of the reference slip regarding both varying road 

conditions and dynamics of the vehicle, are left out.  

 

2.4. Optimization of Controller Parameters 

 

To make an appropriate comparison of controllers, parameters of the sliding-mode 

controllers designed are optimized using genetic algorithms. Each set of 

parameters (like a pair of   and   values for Case II) corresponds to a member 

with unique genes.  Given the bounds of parameter values, the algorithm starts by 

creating a random population. Members of this population are used as sets of 

controller design parameters. The cost function, selected as the stopping distance 

among many other possible alternatives, is evaluated on a straight road with a 

constant road coefficient of adhesion, 1.0x  . Initial velocity is selected as, 

30 /xV m s . After the cost function is evaluated for the initial population, 
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successive populations are created. During their creation, the algorithm either 

changes (mutates), preserves (considers as elite) or mixes (crossovers) genes of 

existing members.  

 

During optimization and simulations, saturation function was used with 

0.005.   In reality, much different cases may occur other than the straight road 

with constant road coefficient of adhesion. However, stability and robustness 

properties of the designed controllers guarantee controller performance in a wide 

range of real world emergency braking scenarios, as will be shown in the next 

section. Optimization results are presented in Table 1 for varying brake actuator 

time constants, TB. 
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Table 1. Optimal controller parameters.  

 

Switching Function TB       
stopping 

distance [m] 

 
e   0.20 23.083 - - 47.82 

e   0.05 51.063 - - 46.32 

 

0

t

e e d      0.20 25.702 - 0.016 47.82 

0

t

e e d      0.05 132.080 - 0.029 46.32 

 
e e  

 
0.20 88.065 283.961 - 47.78 

e e  
 

0.05 79.498 149.277 - 46.31 

 

0

t

e e e d      
 

0.20 12.145 100.011 1.583 47.77 

0

t

e e e d      
 

0.05 6.104 85.850 7.129 46.31 
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CHAPTER III 

 

 

CASE STUDIES 

 

 

 

3.1. Reaching and Sliding Results  

 

Before testing the proposed controllers for general operating conditions, their 

reaching and sliding characteristics are investigated. In this respect, simulations on 

a constant coefficient of friction road are made with an actuator of time constant, 

TB=0.05 and without any time delay. For each controller, states making up the 

sliding surface, 0  , or the auxiliary surface, 
* 0  , are plotted in Figure 10. 

Hence, e  is plotted for Cases I and III, while e  and 
0

t

e d are plotted for Cases II 

and IV. 

 

Comparing Figures 10a-b to 10c-d, it is observed that using the zeroth-order  

sliding surface has eliminated chattering and oscillations. Both Cases I and III, are 

stabilized to converge to the state, 0e  . With the inclusion of derivative term in 

sliding surface in Case III, chattering is eliminated (Figure 10c.). Cases II and IV 

converge to the integral surface, 
0

0

t

e e d    . As seen in Figure 10b, 

oscillations caused by the integrator degrade tracking performance. The 

improvement of sliding surface in Case IV with the additional derivative term, as 

seen in Figure 10d, solves this problem. 
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In Cases III and IV, a zeroth-order sliding surface has been used. Actual switching 

takes place around 0  , while reaching is guaranteed only to the auxiliary 

surface, * 0  , which is first-order. To show how the sliding surface converges to 

the auxiliary surface, terms of the actual sliding surface are plotted for these cases 

in Figures 11 and 12. 
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Figure 11. Reaching for Case III. Dashed line represents the sliding surface, 

0  . 

 

 

 

 

Figure 12. Reaching for Case IV. Green plane represents the sliding surface, 

0. 
 
Dashed line is the auxiliary surface, * 0  . 
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In both Cases III and IV, it is seen from Figures 11 and 12 that actual switching 

takes place about the sliding surface, 0  . At 0e  , the sliding surface and the 

auxiliary surface become identical. Although the controller of Case III was 

guaranteed to reach only to the zero error state, 0e  , some uncontrived sliding on 

0   also takes place. Similarly, for Case IV, as the system trajectory approaches 

the auxiliary surface, * 0  , some sliding on 0  , given by the green plane in 

Figure 12, takes place. As expected, eventually, the sliding happens on * 0  . 

 

3.2. Results for Varying Conditions  

 

The more realistic operating conditions of the controllers, simulated in this work, 

involve sudden changes in road coefficient of friction and time delay in actuators.  

Among possible changes in road coefficient of friction, the event of suddenly 

entering a portion of the road with much lower adhesion (like riding over a patch 

of ice), is very undesirable. In such a case, the moment applied on the wheel hub 

from the road abruptly drops and if the brake torque is not rapidly decreased, 

wheel locking occurs. On the other hand, in the case of an actuator time delay, a 

phase difference between measurement and control manipulation is introduced. 

This generally has a strongly destabilizing effect. During simulations, the 

maximum road coefficient of friction, x , is varied such that, 

 

 
0.8, 0 1.5

0.3, 1.5
x

t

t


 
 

  
. (64) 

 

Actuator time delay is given a typical value as, 10ms   (Savaresi and Tanelli, 

2010), while time constant of first-order actuator dynamics is varied through cases. 

The vehicle is braked from an initial speed of 30 /xV m s . Results are plotted in 

Figures 13-20. 
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Considering Figures 14b and 16b, with no time delay, tracking performances in the 

initial phase (until the sudden change of x  at 1.5t s ) are observed to be similar 

for the fast actuator, TB=0.05. On the other hand, for TB=0.20, oscillations about 

the reference slip tend to increase for Case I (Figure 14a). This adversity of the 

slow actuator is eliminated in Case II (Figure 16a). Therefore, the integral surface 

is robust to instability caused by actuator first-order delays.  

 

At 1.5t s , an abrupt change in road coefficient of friction is introduced. This 

change causes a sharp rise in slip ratio, especially in cases when the actuator 

cannot react in time, as in seen in Figures 14a and 16a, compared to Figures 14b 

and 16b. 

 

In the cases involving actuator time delay, the error surface (Case I) is observed to 

get unstable with increasing magnitude of oscillations (Figures 14c-d). It is 

interesting that increased actuator speed only worsens the situation by increasing 

frequency. On the other hand, as seen from Figures 16c and 16d, the integral 

surface (Case II) remains stable. Therefore, the integral surface is robust to 

actuator time delays. 

 

 

 

 

 

 

 

 

 

 

 

 



 

51 

 

F
ig

u
re

 1
7

. 
B

ra
k

e 
to

rq
u

e,
 f

o
rw

ar
d

 v
el

o
ci

ty
 a

n
d

 w
h

ee
l 

v
el

o
ci

ty
 f

o
r 

C
as

e 
II

I.
 a

) 
T

B
=

0
.2

0
, 

b
) 

T
B

=
0

.0
5

, 
c)

 T
B

=
0

.2
0
 w

it
h

 t
im

e 
d

el
ay

, 
d

) 
T

B
=

0
.0

5
 w

it
h

 t
im

e 

d
el

ay
. 

 



 

52 

 
F

ig
u

re
 1

8
. 

S
li

p
 r

at
io

 a
n

d
 r

ef
er

en
ce

 s
li

p
 r

at
io

 f
o
r 

C
as

e 
II

I.
 a

) 
T

B
=

0
.2

0
, 

b
) 

T
B

=
0

.0
5
, 

c)
 T

B
=

0
.2

0
 w

it
h

 t
im

e 
d

el
ay

, 
d

) 
T

B
=

0
.0

5
 w

it
h

 t
im

e 
d

e
la

y
. 

 



 

53 

 

F
ig

u
re

 1
9

. 
B

ra
k

e 
to

rq
u

e,
 f

o
rw

ar
d

 v
el

o
ci

ty
 a

n
d

 w
h

ee
l 

v
el

o
ci

ty
 f

o
r 

C
as

e 
IV

. 
a)

 T
B

=
0

.2
0

, 
b

) 
T

B
=

0
.0

5
, 

c)
 T

B
=

0
.2

0
 w

it
h

 t
im

e 
d

el
ay

, 
d

) 
T

B
=

0
.0

5
 w

it
h

 t
im

e 

d
el

ay
. 

 



 

54 

 

F
ig

u
re

 2
0

. 
S

li
p

 r
at

io
 a

n
d

 r
ef

er
en

ce
 s

li
p

 r
at

io
 f

o
r 

C
as

e 
IV

. 
a)

 T
B

=
0

.2
0

, 
b
) 

T
B

=
0

.0
5
, 

c)
 T

B
=

0
.2

0
 w

it
h

 t
im

e 
d

el
ay

, 
d

) 
T

B
=

0
.0

5
 w

it
h

 t
im

e 
d

el
ay

. 

 



 

55 

From Figures 17a-b and 19a-b the effect of using derivative term in sliding surface 

can be observed. Comparing Figures 17a-b (Case III) to 13a-b (Case I), it is seen 

that chattering has almost vanished for the derivative surface. A similar situation is 

present for the integral-derivative surface (Cases IV-II), as observed from Figures 

19a-b and 15a-b. In Case III, instability caused by slow actuation, has also been 

eliminated by using the derivative term (Figures 14a and 18a).  

 

In both Cases III and IV, excellent tracking is observed in the absence of time 

delay (Figures 18a-b and 20a-b). However, in the case of actuator time delay, 

Figures 18c-d reveal that change of the switching strategy from Case I to III, could 

not prevent instability for the resulting error surface. On the other hand, in the case 

of integral-derivative surface, in Case IV, stability is preserved with smaller 

oscillations compared to Case II (Figure 16c-d and 20c-d).  
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CHAPTER IV 

 

 

CONCLUSIONS 

 

 

 

In this study, performances of sliding-mode controllers employing different sliding 

surfaces of different order are compared for ABS slip control. In all cases, tire 

behavior is considered as an uncertainty and controllers are stabilized for the 

whole range of resulting dynamic coefficients of friction. 

 

In Cases I and II, common sliding surface designs are used, for which reaching the 

sliding surface can be assured by the stability analysis involving only the sliding 

surface. On the other hand, Cases III and IV involve zeroth-order sliding surfaces, 

stability of which cannot be assured by the bang-bang strategy of the sliding-mode 

controller. For these cases, stability condition is constructed for auxiliary surfaces 

which are sub-surfaces or exceptions of the sliding surface. Although the eventual 

auxiliary sliding surfaces of Cases III and IV are the same as the actual sliding 

surfaces of Cases I and II, the modification introduced substantially affects 

controller behavior. 

 

It is seen that having the derivative of the error in the sliding surface and 

stabilizing the controller with this strategy reduces chattering and improves 

tracking for both derivative and integral-derivative surfaces (Cases III and IV). 

These cases achieve sliding on the auxiliary, first-order surfaces more smoothly. 

Although they were stabilized only for the auxiliary surface, while reaching it, 

some sliding also takes place on the zeroth-order sliding surface. 
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Investigating performances in the face of actuator time delay, error and derivative 

surfaces are seen to get unstable, while the integral and integral-derivative surfaces 

perform well. Therefore, sliding on the integral surface, either with an integral 

switching strategy or as the eventual result of the zeroth-order integral-derivative 

switching strategy, is robust to actuator time delays. As a result, the zeroth-order 

integral-derivative surface (Case IV), stabilized for the auxiliary first-order sliding 

surface, proposed in this study, stands as the best option.   

 

During controller design, it was assumed that slip values could be measured. 

However, in reality, observers could be necessary, as direct measurement devices 

may be unavailable. Furthermore, observers could still be used in order to decrease 

processing times. As a future study, performance of the controllers coupled with 

slip observers can be investigated. Observer designs can be made using sliding-

mode control theory. Furthermore, new observer designs can be made employing 

zeroth-order sliding surfaces. 
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APPENDIX A 

 

 

VEHICLE AND TIRE MODEL PARAMETERS 

 

 

 

A.1. Vehicle Model 

 

 407.7 /zom kg F g  

22J kgm  

0.300r m  

 

A.2. Magic Formula Tire Model 

 

1x Cx CxC p    

1x x zD F     

  *

1 2x Dx Dx z xp p df      

    2

1 2 3 41 sgnx Ex Ex z Ex z Ex x ExE p p df p df p         

   1 2 3expx z Kx Kx z Kx z KxK F p p df p df       

 /x x x x xB K C D    

 1 2Hx Hx Hx z HxS p p df     

     '

1 2 1/Vx z Vx Vx z x Vx x Vx xS F p p df V V             

 

 *

0/ 1 /x x V sV V       
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 ' * *10 / 1 9x x x       

 

0 16.67 /V m s   0 4000zF N  

 

1 21.510Kxp    2 0.163Kxp     3 0.245Kxp   

1 1.685Cxp    1 1.210Dxp    2 0.037Dxp    

1 0.344Exp    2 0.095Exp    3 0.020Exp     

4 0.0Exp   

1 0.002Hxp     2 0.002Hxp    1 0.0Vxp    

2 0.0Vxp   

 

1.000Kx    1.000Cx    1.000x   (changes 

for varying road friction) 

 

0.0V    1.000Ex    1.000Hx    

1.000Vx   

 

0.1x    0.0Vx    1 1.000   

 


