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ABSTRACT

KINEMATIC AND FORCE ANALYSES OF OVERCONSTRAINED
MECHANISMS

Ustiin, Deniz
M.Sc. Department of Mechanical Engineering

Supervisor: Prof. Dr. M. Kemal Ozgéren

September 2011, 91 pages

This thesis comprises a study on the kinematic and force analyses of the
overconstrained mechanisms. The scope of the overconstrained mechanisms is too
wide and difficult to handle. Therefore, the study is restricted to the planar
overconstrained mechanisms. Although the study involves only the planar
overconstrained mechanisms, the investigated methods and approaches could be

extended to the spatial overconstrained mechanisms as well.

In this thesis, kinematic analysis is performed in order to investigate how an
overconstrained mechanism can be constructed. Four methods are used. These are
the analytical method, the method of cognates, the method of combining identical
modules and the method of extending an overconstrained mechanism with extra links.

v



This thesis also involves the force analysis of the overconstrained mechanisms. A
method is introduced in order to eliminate the force indeterminacy encountered in the
overconstrained mechanisms. The results are design based and directly associated

with the assembly phase of the mechanism.

Keywords: Overconstrained mechanisms, kinematic analysis, force analysis,

cognates, planar mechanisms.



0z

FAZLA KISITLI MEKANIZMALARIN KINEMATIK VE KUVVET
ANALIZLERI

Ustiin, Deniz
Yiiksek Lisans, Makine Miihendisligi Boliimii

Tez Yéneticisi: Prof. Dr. M. Kemal Ozgoren

Eyliil 2011, 91 sayfa

Bu tez, fazla kisith mekanizmalarin kinematik ve kuvvet analizleri {lizerine bir
calismadir. Fazla kisitli mekanizmalar genis kapsamli ve ele almasi zor bir konudur.
Bu ylizden, ¢aligma diizlemsel fazla kisith mekanizmalar1 kapsayacak bigimde
siirlandirilmigtir. Calisma sadece diizlemsel fazla kisitli mekanizmalart igerse de
incelenen metotlar ve yaklasimlar uzaysal fazla kisith mekanizmalar i¢in de

kullanilabilir.

Bu tezde, kinematik analiz fazla kisitli mekanizmalarin nasil olusturulabilecegini
incelemek i¢in yapilmistir. Dort metot kullanilmistir. Bunlar analitik metot, koktes
mekanizmalar metodu, aynt modiillerin birlestirilmesi metodu ve fazla kisith bir

mekanizmaya ekstra uzuvlar ekleme metodudur.
vi



Bu tez ayn1 zamanda fazla kisitlh mekanizmalarin kuvvet analizini de igerir. Fazla
kisith mekanizmalarda karsilasilan kuvvet belirsizliklerini ortadan kaldirmak i¢in bir
metot sunulmustur. Sonuglar tasarim temellidir ve direkt olarak mekanizmanin

montaj fazi ile iliskilendirilmigtir.

Anahtar Kelimeler: Fazla kisitlh mekanizmalar, kinematik analiz, kuvvet analizi,

kokdes mekanizmalar, diizlemsel mekanizmalar.
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CHAPTER 1

INTRODUCTION

A linkage whose degree of freedom obtained by the general degree of freedom
formula is less than its actual degree of freedom is called an overconstrained
mechanism. Overconstrained mechanisms usually have zero or less degree of
freedom (DOF) according to the general degree of freedom formula but do have full
cycle mobility. The first overconstrained mechanism is proposed by Sarrus in 1853.
Bennett (1914), Delassus (1922), Bricard (1927), Myard (1931), Goldberg (1943),
Waldron (1967, 1968, 1969), Wohlhart (1987, 1991) are the researchers who had
proposed the well known overconstrained mechanisms most of which are recognized

with their names.

Overconstrained mechanisms have many advantages. They are mobile using fewer
links and joints than it is expected. For example, an ordinary closed loop spatial
mechanism with revolute and prismatic joints must have at least seven links to be
mobile. Overconstrained mechanisms can be mobile with four, five or six links [13].
The decrease in the number of links and joints result in decrease in the cost,
complexity and weight of the mechanisms. Another advantage of the overconstrained
mechanisms is that they are more rigid and robust. These properties make

overconstrained mechanisms desirable.



Overconstrained mechanisms have been studied extensively by the mechanism
researchers. The research activities regarding the overconstrained mechanisms can be

divided into three main groups.

The first group of research activities focuses on generating a mobility formula valid
for the overconstrained mechanisms. In literature, methods for the DOF calculation
of mechanisms can be grouped into two categories: Those in the first category are
based on setting up the kinematic constraint equations and their rank calculation for a
given position of the mechanism with specific joint location. The ones in the second
category do not need to develop the set of constraint equations. The former methods
are valid for all kinds of mechanisms without exception; however, writing loop
closure equations and performing position/velocity analysis by using analytical tools
(screw system theory, linear algebra, affine geometry, Lie algebra, etc) is needed.
Therefore, these formulas are not considered to be practical [5]. Rico et al. [15],
Huang et al. [7], Zhao et al. [22], Fayet [4], Baker [1], Waldron [21] are the main
contributors of this group. The later methods are much more practical. In this group,
the proposed formulas of DOF are explicit relationships between structural
parameters of the mechanism: the number of links and joints, the motion/constraint
parameters of the joints and of the mechanism [5]. These formulas do not need
kinematic constraint equations and are suitable for quick calculation of DOF whereas,
they are not valid for overconstrained mechanisms. The most known and most
commonly used DOF formula is the Kutzbach-Griibler formula. Dobrovolski and
Hunt also proposed methods to compute DOF of mechanisms. However, these
formulas do not give correct results for overconstrained mechanisms. A general
formula for a quick calculation of DOF of all kind of mechanisms is not proposed yet.
For calculation of mobility of overconstrained mechanisms, the former category is
preferred by the researchers due to their precision. Gogu [5], discussed the general
validity of the degree of freedom formulas proposed by many researches. In this
thesis, mobility calculation of overconstrained mechanisms is not focused. Only the

general DOF formula is used to emphasize that the mechanism is overconstrained.



The second group of research activities is the investigation of various
overconstrained mechanisms. In literature it is inevitable to encounter too many
researches in which a new type of overconstrained mechanism introduced. This is
because an analytical approach for the construction of overconstrained mechanisms
has not been introduced yet. Most of these overconstrained mechanisms are
discovered intuitively. Very few of them are introduced as a result of analytical
mathematic methods. Waldron used closure equations in order to state 4 link
overconstrained mechanisms. Waldron 1979 [19], stated that all 4 link
overconstrained mechanisms with lower pairs are determined. Unfortunately, the
study was restricted to 4 link mechanisms and also linkages with mobility greater
than one were excluded. Therefore, the overconstrained mechanisms determined by
Waldron were only spatial overconstrained mechanisms. Pamidi, Soni and Dukkipati
in 1971 [14] have also used a similar method to Waldron's. Although in 1973 they
expand the type of joints in their study, it was restricted to 5 link mechanisms. Lee
and Yan in 1993 [10] studied 6R mechanisms by using matrix loop equations and
they stated that there are only three types of movable spatial 6R mechanisms.
Mavroidis and Roth in 1994 [12], discussed the difficulty to know the existence of
other overconstrained mechanisms. They classified known overconstrained
mechanisms in four classes according to general common characteristics of all
mechanisms belonging in this class: (i) symmetric mechanisms, (ii) Bennett based
mechanisms, (iii) combined special geometry mechanisms and (iv) mechanisms
derived by overconstrained manipulators. Overconstrained manipulators are the 6
joint manipulators that have less than 6 DOF for their end-effectors motion. Then
using synthetic methods, they proposed new overconstrained mechanisms. They

studied 6 link mechanisms.

The last group of research activities composes of the studies for the development of a
method in the force analysis of overconstrained mechanisms. In terms of force
analysis, overconstrained mechanisms show statically indeterminate characteristics.
The total number of unknown forces and moments of an overconstrained mechanism
is always more than the number of available equations. So the unknowns cannot be

determined by the force analysis methods involving rigid bodies only. By relaxing
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the rigidity assumption and using stress-strain relationships it is possible to increase
the number of equations and obtain a solution. However, this process is not practical.
Therefore, researchers investigate a practical but efficient solution of the problem.
Himmetoglu and Ozgdren in 2000 [6], introduce a method to eliminate force
indeterminacy encountered in the overconstrained mechanisms without using stress-
strain relationships. They added extra joints to mechanisms in order to increase the
equation number. Each unactuated single-DOF joint added to the system brings in 6

more equations and 5 more unknowns, thus 1 equation surplus.

This thesis contributes to the second and third groups of the relevant literature
mentioned above. Chapter 2 of the thesis is about the second group. It involves a
study on how an overconstrained mechanism can be constructed. Four methods are
considered: (1) the analytical method, (ii) the method of cognates, (iii) the method of
combining identical modules, (iv) the method of extending an overconstrained
mechanism. Although nothing is novel with these methods, they are discussed in
order to emphasize their significance in the construction of the overconstrained
mechanisms. Chapter 3 of the thesis is about the third group of the relevant literature.
It introduces a method in order to eliminate the indeterminacy in the unknown joint
reaction forces and moments. This method is directly related to the construction
phase of the mechanism. At the time of the assembly process, preloading is applied
to some links and as a result the indeterminacy is eliminated in favour of the intended
usage of the mechanism. An optimization process is performed in order to decide the

amount of preloading.

This thesis is restricted to the planar overconstrained mechanisms only. Planar
mechanisms are simpler than spatial mechanisms. However when overconstrained
mechanisms are considered, planar mechanisms do not form a simple research field.
This is because most of the overconstrained mechanisms are spatial. The possibility
of obtaining an overconstrained planar mechanism is less than the possibility of

obtaining an overconstrained spatial mechanism.



CHAPTER 2

KINEMATIC ANALYSIS

Kinematic analysis is performed to investigate the motion characteristics of the
mechanisms for given geometrical parameters. Motion characteristics comprise
displacement, velocity and acceleration knowledge of any point on a moving body

and path traced by a point on any link of the mechanism.

In this chapter, the ways of generating overconstrained planar mechanisms are
investigated. Four methods are considered: (i) the analytical method, (ii) the method
of cognates, (iii) the method of combining identical modules, (iv) the method of
extending an overconstrained mechanism with extra links. In the analytical method,
by using velocity characteristics of a mechanism, the conditions that make it
overconstrained are obtained. In the method of cognates, the cognate mechanisms
that trace identical coupler curves are connected to each other in order to generate an
overconstrained mechanism. In the method of combining identical modules, as the
name implies, identical modules such as scissors like linkages are successively
connected in order to generate an overconstrained mechanism. In the method of
extending an overconstrained mechanism with extra links, a new overconstrained
mechanism is generated by adding extra links and joints to an already existing

overconstrained mechanism.

The details of these methods are explained in the sequel.



2.1 Analytical Method

This method utilizes the velocity analysis of the mechanisms. In order to apply this
method, some of the structural characteristics of the mechanism should be
determined primarily. Firstly, the number of links and joints and the joint types
should be determined for the overconstrained mechanism to be generated. After the
determination of these structural parameters, a closed kinematic chain should be
constructed. A kinematic chain is a series of links connected by kinematic pairs. The
chain is said to be closed if every link is connected to at least two other links [11],
[18]. For the same number of links and joints and the joint types, it may be possible
to construct several different kinematic chains. So, in order to proceed with the
method, a closed kinematic chain should be selected out of the possible ones. After
the selection of the closed kinematic chain, the loop closure equations for every
independent loop in the kinematic chain should be written. The equations that
describe the closure of the loops are known as the loop closure equations [18]. The
number of the unknown joint variables should be equal to the number of the scalar
loop closure equations. By differentiating the loop closure equations with respect to

time, the velocity loop equations are obtained.

Any of the loop closure equations of a mechanism can be written as the following

vector equation:
I+, +r;+1,++1,=0

where T}, is the kth vector in the loop.



L.

Figure 1: Vectorial Representation of a Closed Kinematic Chain

The preceding vector equation can be written into two scalar equations for planar

mechanisms. That is,
r; cos®; +r,cos0, +rzcosBz; +r,cos0, +--+r,cos6, =0
r;sin@; +r,;sinB; +rz3sinB; +rysin@, + -+ r,sinB, = 0

where 0y is the angle between the x axis and the vector Ty, and ry is the magnitude of

.

For every independent loop these scalar equations should be written so that the total

number of such scalar equations is equal to the number of unknowns.

In order to obtain velocity loop equations, the loop closure equations are to be

differentiated with respect to time. Thus, the velocity loop equations are obtained as:

r; cos0; —ry0; sin®; + 1, cos 0, —r,0,sin B, + r3 cos B3 — r30; sin B3

+r1,cos0, —r,0,sin0, + -+ 1, cos B, — r,0,, sinB, = 0

r; sin©; + r,0; cos 0; + ¥, sin 0, + r,0, cos 0, + r’5 sin 03 + r30; cos O,

+ 1, sin®, + 1,0, cos0, + - + 1, sin O, + r,0, cosH, = 0
7



The links of the mechanisms are assumed to be rigid. Therefore, their shapes remain
the same throughout the motion. Thus, the change of magnitude of vectors with

respect to time is zero. Hence, the equations become;
—r,0; sin0; — r,0, sin B, — ry03 sinO; —r,0, sinO, — -~ — r,,0,, sinH,, = 0
r;0; cos 0; + 1,0, cos0, + 305 cos B3 + 1,0, cos O, + -+ r,0, cos B, = 0

As seen, each pair of these scalar velocity loop equations is linear in the rates of the

joint variables. Such a pair can be written as the following matrix equation:

6,1
0,
[—rl sin@; -r,sin®, -rgsin6; -—-r,sinB®, .. -r,sinB, 8. (0]
r; cos®; r,cos0, rscosf; rycos@, .. r,cos0, g
4
16,1

All such equations written for the independent loops can be combined into the

following overall matrix equation:

Here, in general,

[A] is a pxn coefficient matrix,

[B] is a pxm coefficient matrix,

[X] is an nx1 matrix of the unknown joint variable rates,

[y] is an mx1 matrix of the specified (i.e. known) joint variable rates.
m is the mobility (degree of freedom) of the system.

p is the number of scalar loop closure equations.

Before proceeding with the analytical method, the notion of a general mechanical
system should be introduced. Then, its association with the coefficient matrix [A]

should be considered. In general, a mechanical system is composed of mobile and
8



immobile subsystems. If the mechanical system contains at least one mobile
subsystem, it is called a mobile mechanical system. If it consists of only immobile
subsystems then it is called an immobile mechanical system. An immobile subsystem
is a substructure. Whereas, a mobile subsystem is a submechanism. If the geometric
characteristics of a substructure can be selected in a special way, it may become a
submechanism. Such a submechanism is called an overconstrained submechanism. A
mechanical system that contains overconstrained submechanisms is called an

overconstrained mechanism.

If a mechanical system is mobile, without any overconstrained submechanism, then
[A] will be a full-rank matrix such that p = n. Furthermore, if the system is not in a

dead center position with respect to [y], [X] can be found as

[x] = [A]*[B][Y]

However, if the mechanical system contains an overconstrained submechanism, then
det[A] becomes zero and the number of independent scalar equations reduces
top’ = p —r. As a consequence, the mobility of the system increases tom’ = m + r.
In other words, m’ elements of [X] must be additionally specified and incorporated

into [y]. In such a case, the velocity equation can be rearranged as
[A'][x'] = [B'][y']

Now,p' =n’=n—m' and

[A’] is the new n'xn’ coefficient matrix,

[B'] is the new n'xm’ coefficient matrix,

[X'] is the n’x1 matrix of the new unknown joint variable rates,

[y'] is the m’x1 matrix of the new specified (i.e. known) joint variable rates. Note

that m' is the increased mobility (new degree of freedom) of the system.

Hence, if the system is not in a dead center position with respect to [y'], [X'] can be

found as



The preceding analysis implies that an overconstrained mechanism can be generated
if a substructure in a mechanical system can be converted into an overconstrained
submechanism. The conditions of this conversion can be obtained by considering the

conversion of a single structure into a single overconstrained mechanism.
For a structure with m < 0, [y] = [0]. Therefore, the velocity equation becomes

In this structure, [A] is pxn and [X] is nx1. This structure can be converted into an
overconstrained mechanism if the number of independent scalar equations can be
reduced permanently by choosing the geometric features in a special way. If this
number can thus be reduced to n’ = p —r, then the mobility of the system will be

m’ = m + r and the velocity equation can be written as

[An A12] [X1] _ [0]

Az Azl % 0
Here, [A;1] is a full-rank n'xn’ matrix, [X;] is an n'x1 vector of unknown joint
variable rates, and [X,] is an m'x1 vector of the known joint variable rates, which are
specified as the inputs of the mobilized structure with DOF = m'. Due to the rank
deficiency, the second row of the preceding equation can be disregarded and [X;] can

be determined in terms of [X,] as follows, provided that det[A;;] # 0 due to a dead

center position

[%1] = [A11]7 AL ][]

The analytical approach described above is clarified by means of the following three

examples.

10



2.1.1 Example I: A Parallelogram Mechanism (an overconstrained mechanism

with 5 links and 6 revolute joints)

In this example, a planar, overconstrained mechanism with five links and six revolute
joints will be generated from a structure with a similar kinematic chain. This

kinematic chain with arbitrary geometric features is illustrated in figure 2.
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043

AoBy =2,

‘e

)

=
A .‘.1‘“‘\\\ '\

a4

a as

C -

{1

Figure 2: A structure with 5 links and 6 revolute joints

The loop closure equations for the considered mechanical system are
AyA+AC+CCqy +CoAg =0
Co,C+CB+BB, +B,C, =0
Using complex exponential notation the above equations can be written as;
2,012 +byei(@1013) — 5 6015 — by eiti—()
asel®15 + c;el(P3+013) — g, 01014 _ ¢ i(B1)=Q

11



Expanding the equations and equating real and imaginary parts separately the four

equations below are obtained:
a, cos 0, + bz cos(az; + 0;3) —ascosB;5 —bycosoy =0
a, sin 0, + b sin(az + 043) —agsinB;5 — by sina; =0
as cos 0,5 + c3 cos(—P3 + 043) —azcos B4 —cycos(—B1) =0

ag sin0;5 + c3 sin(—B3 + 013) —azsinBy4, — ¢y sin(—f;) =0

The corresponding velocity equations are obtained as
—a, sin0,,0;, — by sin(az + 0;3)0;5 + a5 sin6;56,5 = 0
a, 05 0;,0;, + by cos(az + 0;3) 0,3 —agcosB;50,5 =0
—ag Sin 0,5 0,5 — c3 Sin(—P3 + 0,3)0,3 +a,5in0;,6,, =0

as CoS 615615 + c3 cos(—B3 + 613)613 — a4 COS 914914 =0

Writing in matrix form;

—a, sinBy, —bssin(az + 643) 0 agsin 0,5 1[612]

a,cosB;,  bscos(as + 0;3) 0 —ag cos ;5 Iél3 | o
0 —C3 sin(—B3 + 913) a, sin 914 —ds sin e15 [614‘ B [ ]
0 c3cos(—PBz +013) —azcosB;, ascosBOis 0,5

In order to have non-zero velocities; which is the indication of mobility; the

determinant of the coefficient matrix must be zero permanently. That is,

—a, sinB;, —bssin(as; + 0;3) 0 as sin 045
a,cosB;, bzcos(az + 0;3) 0 —ag Ccos 045
0 —c3sin(—B3 +08;3)  a,sin®;, —assinBg|
0 czcos(—B3 +0;3) —azcosBy, ascosBis

12



By using a symbolic manipulation software, such as mathcad, the equation below is

obtained:

azasas{bs[sin(B;5 — B1,) sin(—01, + 653 + a3)]
+ c3[sin(0;; — 615) sin(Bz — 053 + 014)]} =0

The solution of this equation can be obtained by considering the following

possibilities.
(a) sin(0,5 — 6,,) = 0 and sin(B;, — 045) =0 =
015 =614 Or B35 =01, ™

012 =615 or B, =05+ ™
This result implies that link 5, link 4 and link 2 must always be parallel to each other.
(b) sin(—0;, + 0843 + a3) = 0 and sin(8;; — 645) = 0=

012 = (B13+az)or6;, = (B3 +az) £m
012 =015 or 65, =05

This result implies that AC must be parallel to AjA while CyC is also parallel to ApA.

Therefore, this solution cannot be permanent. So, it is not valid.
(C) Sin(915 - 614) s 0 al’ld Sln(B:; - 613 + 614) = 0 =
015 =014 0r0;5 =0, £m

013 = (014 +B3)or B;3=(0;4+B3) ™

This result implies CB must be parallel to BoB while CoC is also parallel to B¢B.

Therefore, this solution is not valid either as in case (b).

(d) Sin(_elz + 613 + 0(3) =0 and Sin(B3 - 613 + 914) =

01, = (013 +a3) or0;, = (B3 +az) ™
13



013 = (014 +B3)or06;3 =(0;4+B3)xm

This result implies AC must be parallel to AjA while CB is parallel to BoB.

Therefore, this solution is not valid either as in case (b) and (¢).

Among the four possibilities considered above, only the possibility (a) may be
satisfied permanently. The additional conditions for its permanent satisfaction can be
obtained from the loop closure equations. With 0;,=6,4=0;5, the loop closure

equations become:
a, cos 0, + bz cos(a; + 0;3) —ascosB;, —bycosay; =0
a, sin 0, + b sin(az + 043) —agsinB;, — by sina; =0
ag cos 0, + c3 cos(—P3 + 043) —azcos By, —cycos(—B1) =0
as sin 0, + c3 sin(—f3 + 0;3) —a, sinB;, — ¢y sin(—B4) =0
These can be written as;
cos 0, (a, —ag) + bz cos(az + 0,3) —bycosa; =0
sin 0,, (a; — ag) + b sin(ag + 06;3) —b; sina; =0
cos 01, (as —a,) + c3 cos(—PB3 + 013) — ¢y cos(—Py) =0
sin0;, (ag —ay) + c3sin(—PB3 + 0;3) — ¢y sin(—B,) =0

For any arbitrary value of 0, which is selected here as the input variable, these
equations should be satisfied in order to obtain a permanently overconstrained

mechanism. The only solution is:
a=as=as, by=bz, astOiz=a;, ci=c3 , and P3+0;3=P;
These results imply that 6,5=0.

The generated overconstrained mechanism is shown in figure 3. Note that, although

the general DOF formula gives m=0, the actual DOF of the mechanism is m’ = 1.

14
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Figure 3: An overconstrained mechanism with 5 links and 6 revolute joints

For the specially selected geometric features of the mobile overconstrained

mechanical system, the coefficient matrix becomes;

—a,sinB;, —b;sinay 0 a, sin 04,
a;cosB;, bycosay 0 —a, cos 04,
0 —c; sin(—By) a,sinB;, —a,sinb;,
0 c;cos(—By) —apcosB;, a,cosHq,

As seen the last column becomes the linear combination of the first and third
columns. Thus, the matrix has become rank deficient. That is, the rank of the matrix
has decreased to 3. Previously, it was 4. The difference between the ranks gives the
actual DOF gained by the mechanical system. Previously, the actual DOF was 0, the
mechanical system was not mobile. With the special geometric features, the actual

DOF becomes 1 and the system becomes mobile.

15



2.1.2 Example II: A Double Slider Mechanism (an overconstrained mechanism

with 5 links and 4 revolute and 2 prismatic joints)

In this example, a planar, overconstrained mechanism with five links and four
revolute and two prismatic joints will be generated from a structure with a similar

kinematic chain. This kinematic chain with arbitrary geometric features is illustrated

in figure 4.
AC= a3
\ /2
Al M
b; C
013
/]
? o
S2
I " 013-1-B3
18
0
Co/) & 15
Ty, B

Figure 4: A structure with 5 links and 4 revolute and 2 prismatic joints

The loop closure equations for the considered mechanical system are
CoA+AC+CCo =0
Co,C+CB+BC, =0

Using complex exponential notation the above equations can be written as;

i) i(o3+0 0
s,€'2) + bsel(@st013) — 3 elf15=0

agel®154cyei(Pst013) 4 5 ™ =0

16



Expanding the equations and equating real and imaginary parts separately the four

equations are obtained:
b cos(az + 0;3) —agcosB5 =0
s,+bs sin(as + 0;3) —assinB;5 =0
a5 cos 0,5 + c3cos(—P3 +0643) —s, =0

ag sin 0,5 + c3sin(—P3 +043) =0

The corresponding velocity equations are obtained as
—b, sin(az + 0;3)0;3 + a5 sin ;0,5 = 0
s, + bs cos(ag + 0;3) 053 — a5 c0s 05 0,5 = 0
—ag sinB;5 0,5 — c3 sin(—P3 + 0,3)0,5 — s, = 0
a5 c0s 0,5 0,5 + c3 cos(—P3 + 0;3)0;3 = 0

Writing in matrix form;

0 —bssin(az + 6;3) 0 as sin 045 [ S, ]

1  bscos(az + 043) 0 —ascosBis |03 = [0]
0 —cgsin(—B3 +043) —1 —agsinB;; l Sy
0 c3cos(—B3+0;3) 0 +ascosB5116;;

In order to have non-zero velocities; which is the indication of mobility; the

determinant of the coefficient matrix must be zero permanently. That is,

—bs sin(az + 043) 0 as sin 0,5

b; cos(asz + 6;3) 0 —agcosO5 | 0
—czsin(—B3 +643) —1 —agsinBO;;
czcos(—B3+06;3) 0 +agcosHis

9P R o
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By using a symbolic manipulation software, such as mathcad, the following equation

is obtained:

as[—bs cos(B;5)sin (013 + a3) — c3 sin(B;5)cos (—P3 +6;3)] =0

Ifbs=cs3, cos(By5) = cos (—B3 + 0,3) and —sin(B,3 + az) = sin(O;5) the

equation is satisfied.
az = —PB3

015 = B3 — 013

These equations should be satisfied permanently. The additional conditions for their
permanent satisfaction can be obtained from the loop closure equations. With

01,=014=0,5, the loop closure equations become:

bz cos(—B3 + 013) — a5 cos(—Ps + 013) =0
Sz+b3 Sln(_B3 + 913) - a5 Sln(_B3 + 613) = 0
dsg COS(_Bs + 913) + b3 COS(_Bs + 913) — 54 = 0

—ag sin(—B3 + 043) + bz sin(—B3 + 6,3) =0

For any arbitrary value of 0,3, which is selected here as the input variable, these
equations should be satisfied in order to obtain a permanently overconstrained

mechanism. The only solution is:
as=bs=csyand o3=p3=0

So, 015=-013

The generated overconstrained mechanism is shown in figure 5. Note that, although

the general DOF formula gives m=0, the actual DOF of the mechanism is m’ = 1.
18
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Figure 5: An overconstrained mechanism with 5 links and 4 revolute and 2 prismatic joints

The mechanical system in figure 5 with special geometric characters is mobile, thus
it is a mechanism. Although according to the general DOF formula m=0, the actual

freedom of the mechanism is m’ = 1.

For specially selected geometric characters of the mobile overconstrained mechanical

system the coefficient matrix becomes;

0 —agsin(B;3) O —ag sin(0;3)
1 ascos(B3) 0 —ascos(043)

0 -—agsin(B43) —1 +agsin(B43)
0 agcos(By3) 0 +4ascos(B:3)

By using mathcad, the rank of the matrix is find to be equal to 3. Previously, it was 4.
The difference between the ranks gives the actual DOF gained by the mechanical
system. Previously, the actual DOF was 0; the mechanical system was not mobile.

Finally, the actual DOF is 1 and the system is mobile.
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2.1.3 Example III: A Parallelogram Mechanism (an overconstrained mechanism

with 6 links and 8 revolute joints)

This example is given in order to discuss more about the rank reduction of the
coefficient matrix [A] in an immobile mechanical system when it is converted into a

mobile overconstrained mechanical system.

Figure 6: A structure with 6 links and 8 revolute joints

The immobile mechanical system in figure 6 is the extended version of the immobile
mechanical system with 6 links and five revolute joints. One more link, D¢D is added

into the system.

The mechanical system in figure 6 with arbitrarily selected geometric features is
immobile. In other words, according to the general DOF formula, it is a structure

with m = -1.

There are 3 independent loops; so, 6 independent scalar equations can be written.
The number of variables is 5. Thus, the coefficient matrix is 6x5. When the

mechanical system is made mobile with 1 DOF, one of the variables becomes the
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input of the system. Then, the remaining 4 variables are to be determined. In order to
determine these 4 unknowns 4 independent equations are sufficient. Therefore, the
rank of the coefficient matrix of the mobile overconstrained mechanical system has
to be 4. In other words, two of the six equations become dependent and thus can be

disregarded.

Figure 7: An overconstrained mechanism with 6 links and 8 revolute joints

The mechanical system in figure 7 with special geometric features is mobile.
Although according to the general DOF formula m=-1, the actual DOF of the

mechanismis m’ = 1.

2.2 Method of Cognates

The name cognate was first introduced by Hartenberg and Denavit for alternative
four-bar linkages that trace identical coupler-curves. The property was already
introduced by Roberts-Chebyshev theorem. Roberts-Chebyshev theorem states that
three different planar 4R linkages trace identical coupler curves. These three linkages
are referred to as coupler curve cognates [11]. Hartenberg and Denavit [23] also
extended the notion to special forms of six-bar linkages. Soni and Harrisberger [17]
studied planar six-bar and spatial four-bar cognates. Dijksman [3] distinguishes
between (a) curve cognates, (b) timed-curve cognates, (c) coupler-cognates, (d)
timed-coupler cognates and (e) function cognates. Curve-cognates are those that
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generate the same (coupler) curve by a coupler-point attached to a moving body of
the mechanism. Curve-cognates that additionally show the same functional
relationship between coupler-point-position and the position of the input-crank, are
called timed-curve cognates. Coupler-cognates are alternative mechanisms with the
same kinematic chain and a common coupler-plane as well as a common frame. With
respect to coupler-cognates, timed coupler cognates additionally have the same
functional relationship between the position coordinates of the plane and the position
of the input-crank. Function-cognates are cognate mechanisms that produce the same

functional relationship between the in- and output angle [3].

The occurrence of cognates in planar mechanism kinematics and their association

with overconstrained mechanisms have been studied extensively.

Firstly, starting from Roberts-Chebyshev theorem, cognate-overconstrained
mechanism relationship indicated, then some examples are given to overconstrained

mechanisms derived from cognates.
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Figure 8: Cognates of Four-Bar

In figure 8, O,ABOy is a four-bar linkage with a coupler curve C. O,ACD, OECF
and O4GCB parallelograms and ABC, DCE and CGF similar triangles are drawn. As
a result the two other four-bars O,DEO and O4GFO which also generate the same
coupler curve for the coupler point C are obtained. This mechanism is an
overconstrained mechanism. According to general DOF formula m=-1 The

redundant constrained can be indicated as:

—Ac+D(:DE la 4 CF

= DCt

AC . DE . CF .
= AB—e'*+ 0,A—e'* + CG—=¢e'“

AB DC CG

= (AB + 0,A + BO AC
= ( 2 4)ABe
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AC .
020 = 0204Ee1a

This equation shows that the point O is stationary (there is no variable parameter). If

the pivot is not fixed, nothing will be changed; the mechanism will make exactly the

same motion. If this pivot is not connected to the fixed link the mechanism become

constrained with m’ = 1. [11].

Moreover, focusing on the angular velocities some other overconstrained

mechanisms can be obtained.

Figure 9: Angular Velocities of Four-Bar Cognates
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Figure 10: Right-hand Cognate of Four-Bar

Figure 10 shows the four-bar O,ABO4 and its right hand cognate O4GFO. The
cognate O4GFO can be translated without rotation, as a rigid body, so that O

coincides with O,.

Figure 11: Shifted Right-hand Cognate of Four-bar
25



The angular velocities of links O,A and O,F are the same; thus, these links can be
connected to each other rigidly. Additionally, the paths of C and C' are parallel to
each other. The distance between these points always remains the same so, a rigid

link can be added to connect C and C'.

Figure 12: An Overconstrained Mechanism Constructed Using Cognates

Mechanism in figure 12, is an overconstrained mechanism with m=0 according to
general DOF formula. The presence of link CC' does not contribute the motion of
the mechanism. If this link is removed the mechanism will make exactly the same

motion.

Dijksman [3] found that six-bar, 7R, Watt II linkage has a double infinity of function
cognates.. Simionescu [16] also reached the same result by using a different
technique. Furthermore, Simionescu constituted overconstrained linkages by using
7R Watt II mechanism and its cognates. Similarly, via 3RT3R Watt II mechanism
and its cognates, overconstrained mechanisms had been constructed in the same

study.
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Figure 13: An Overconstrained Mechanism Obtained by 7R Watt II Mechanism with one of its
Function Cognates

The overconstrained mechanism in figure 13 is obtained by merging a reference
dimensional configuration 7R Watt II mechanism with one of its function cognates

[16].

Figure 14: An Overconstrained Mechanism Obtained by 3RT3R Watt II Mechanism with one of
its Function Cognates
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The overconstrained mechanism in figure 14 is obtained by merging a reference
dimensional configuration 3RT3R Watt II mechanism with one of its function

cognates [16].

2.3 Method of Combining Identical Modules

Overconstrained mechanisms can be generated by combining identical modules
without obstructing the basic motion of the modules. This process may not be
feasible for all module types. In order to combine the modules, primarily the basic

motion should be studied extensively.

Assume a scissor element seen in figure 13. For regular scissor mechanisms, the
intermediate links have three collinear hinges and two of such element are joined at

the mid joint such that the resulting regular scissor element is symmetric with respect

to the horizontal [9]

>

Figure 15: Regular Scissor Element

Figure 16: An Overconstrained Mechanism obtained by combining Regular Scissor Elements
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By combining regular scissor elements the overconstrained mechanism in figure 16,
is obtained. According to general DOF formula m=0, but the actual freedom of the

mechanismis m’ = 1.

When the element is symmetric with respect to the vertical instead of the horizontal

the so-called polar scissor element is obtained [9].

-~

Figure 17: Polar Scissor Element

Combination of polar scissor elements is also possible.

Figure 18: Combination of Polar Scissor Elements

Similar to combined regular scissor elements, this combination can also be used to

construct overconstrained mechanisms.
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Scissor elements with hinges that are not collinear are called angulated elements and

can also be used to construct overconstrained mechanisms.

Figure 19: Angulated Scissor Element

Combination of angulated scissor elements is also possible.

N
AV

Figure 20: Combination of Angulated Scissor Elements

This combination can also be used to construct overconstrained mechanisms

An overconstrained mechanism can also be generated by combining gear pairs.
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In Figure 21 a planetary gear train with one planet gear is shown. A simple gear train
consists of a sun gear (S) in the center, a planet gear (P), a planet carrier or arm (C),
and an internal or ring gear (R) is called as planetary gear train or epicyclic gear train.
In these gear trains, one or more gears are carried on a rotating planet carrier rather

than on a shaft that rotates on a fixed axis.

/770777

Figure 21: A Planetary Gear Train

The freedom of the planetary gear train shown in figure 21 is 1. This mechanism may

become overconstrained by the addition of planet gears.
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Figure 22: An Overconstrained Planetary Gear Train

In figure 22, two more planet gears are combined to the mechanism symmetrically
around the sun gear. Although the symmetry is not necessary, it is used to balance
out the centrifugal forces. The additional planet gears are identical to the first one.
The motion of the basic mechanism, mechanism in figure 21, does not change. For
large force transmission this combined planetary gear train is preferred as it has

better force transmission characteristics.

The degree of freedom of the overconstrained planetary gear train is m=-1 by the
general DOF formula but the actual freedom is still m’ = 1. Although this planetary
gear train is overconstrained, it is mobile. By addition of more planets the

mechanism may become more and more overconstrained.
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2.4 Method of Extending an Overconstrained Mechanism with Extra Links

Once an overconstrained mechanism is generated it can be extended in order to
obtain various other overconstrained mechanisms. In other words, by adding extra
links and joints to an already existing overconstrained mechanism, a new

overconstrained mechanism can be generated.

3>

Ay Co

Figure 23: A Mobile Overconstrained Extended Parallelogram
In figure 23, an overconstrained parallelogram mechanism (ApABBy) is extended

with a slider crank mechanism (BDE). The actual DOF of the system is m’ = 2.

However, the general DOF formula gives m=1.

33



AN

Co

7777

B

Figure 24: A Mobile Overconstrained Extended Double Slider

In figure 24, a overconstrained double slider mechanism (ACyB) is extended with a

four bar mechanism (CDEE,). The actual DOF of the system is m’ = 2. However,

the general DOF formula again gives m=1.
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CHAPTER 3

FORCE ANALYSIS

A mechanism is designed to transmit force and motion. Firstly a motion
characteristic of a mechanism is designated, and then the sizes and shapes of its links
and joints are determined to finalize the design. To do this, information about the

forces and moments acting on the links of mechanisms is required.

In the force analysis of mechanisms, if they do not move at very high speeds, they
can be assumed to be in pseudo-static equilibrium. In other words, in the pseudo-
static force analysis, the inertia forces and moments are not considered because of
their negligible values. Thus, this analysis method is based on writing the static
equilibrium equations. Free body diagrams are used to indicate all the known and
unknown forces and moments clearly. For each body, free body diagrams are drawn
and unknowns are identified. Then, the static equilibrium equations are written for all
the moving links. The total number of unknown forces and moments should be equal
to the number of static force equilibrium equations in order to find the unknowns. In
a regular mechanism, which is not overconstrained, this is the case. That is, the
number of unknowns is equal to the number of static force equilibrium equations.

Therefore, all of the unknowns can be determined.

On the other hand, in overconstrained mechanisms total number of unknown forces

and moments is always more than the number of static force equilibrium equations.
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Therefore, performing force analysis in overconstrained mechanisms is troublesome.
The difference between the number of unknowns and equations is equal to the
difference between actual mobility of the mechanism and mobility calculated by
general DOF formula. By using stress-strain relationships it is possible to increase
the number of equations and obtain a solution. However, this process needs intensive
effort and consumes too much time. On the other hand, all unknowns can be written
in terms of minimum number of unknowns and by giving a range of values to this
minimum number of unknowns it is possible to see the relationship between the joint
reaction forces and moments. This practically accessed knowledge can be used in
design phase of the mechanism. In this part of the study a systematic procedure for

the mentioned approach is described and also applied to some sample mechanisms.

If m is the number of static equilibrium equations and n is the total number of
unknown forces and moments, all other unknowns can be written in terms of any n-m
number of unknowns. For example, if there are five static equilibrium equations but
seven unknowns, all other unknowns can be written in terms of any two of the
unknowns. It is not possible to describe all unknowns with less than two unknowns.
So the minimum number of unknowns in terms of which other unknowns can be
written is two. A range of values can be given to the unknowns in terms of which
other unknowns are written. So that, the values of all other unknowns correspond to
the given values can be calculated. This process helps the designer to perceive the
relationship between the unknowns. Moreover, the influence of change in the input
can also be noticed via this process. The designer can use this knowledge in design
phase to construct a more reliable overconstrained mechanism. It is possible to
observe under which circumstances all the joint reaction forces/moments take
smaller values and accordingly to decide giving preloading to some of the links while
assembling the mechanism. Most probably all the forces/moments will not take their
smallest values simultaneously. In such a case, an optimization should be performed

to decide most suitable assembling mode.
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In this thesis, the method described for the force analysis of overconstrained

mechanisms is based on three main assumptions:

1) The preloaded link is so less stiff than the other links that it can assumed as the

only non-rigid link in the mechanism.
i1 ) The clearances in the joints are negligible.

ii1) The preloaded link should be a two force member, based on the assumption that

its inertia effects are negligible.

When a link is assembled with preloading (compression or tension) it will act as a
spring. If the link is assembled with initial compression, it will act as a compression
spring; if it is assembled in tension it will act as tension/extension spring. For

springs Hooke's law states that;
F = —kx
x is the displacement of the spring's end from its equilibrium position
F is the restoring force exerted by the spring on that end
k is the spring constant

As the links are rigid, the distance between the two end points of the preloaded link
is constant. Therefore, the displacement of the so called spring's end is also constant.
This result in constant force on the spring. Via this process one of the potential

unknowns can be eliminated previously.

To clarify mentioned force analysis method five examples are given. Different
loading and operating conditions of similar mechanism is also discussed to

emphasize their effects on force analysis.
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3.1 Example I: A Parallelogram Mechanism (an overconstrained mechanism

with 5 links and 6 revolute joints) Loaded with Torque T,

As mentioned in Chapter 2.1 this parallelogram mechanism is an overconstrained
mechanism with actual mobility m" = 1. while mobility obtained from general DOF

formula is m=0.

A()B() =a

AB = as

AC= a31
Ay

Figure 25: An Overconstrained Parallelogram Mechanism Loaded with Torque

a, =a, = as = 80 mm
al=ag=120mm
az; = 60 mm

T12 = 300 Nmm

In this case, the mechanism is designed to transmit moment. The input torque is T,

while the output torque is M. The operation range of 0, is assumed to be 0° to 90°

The free body diagrams and static equilibrium equations are given.
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Link 2: Two force & a moment member

G12

Figure 26: Free Body Diagram of link 2 belongs to the Mechanism in Figure 25

Gz = —F3;
_T12 - F32,X Sln 912 az + F32'y COoSs 91232 == 0 (Z MAO == 0) (3.1.1)

where F3;,is the x component of the force F3; while Fs, is the y component of the

same force.
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Link 3: Three force member

Figure 27: Free Body Diagram of link 3 belongs to the Mechanism in Figure 25

Fa3x + F5300501; + Fy35, =0 (X Fx =0) (3.1.2)
Fa3y + Fs3sin6;, + Fy3y =0 (XF, =0) (3.1.3)
_F53 sin 912 a31 - F43’y a3 = O (Z MA = 0) (3.1.4)

where F»; s the x component of the force F,3 while F»3y is the y component of the
same force and Fi3x is the x component of the force F43 while Fusy is the y

component of the same force.
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Link 4: Two force & a moment member

F34

Gis

Figure 28: Free Body Diagram of link 4 belongs to the Mechanism in Figure 25

G4 = —F34

M —F34x5in0;;a, + Fauycos655a, =0 (X Mg, = 0) (3.1.5)

where F34,1s the x component of the force F34 while Fs4y is the y component of the

same force.
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Link 5: Two force member

as

Gis

.,-"'\912

Figure 29: Free Body Diagram of link 5 belongs to the Mechanism in Figure 25

Gys = —Fs3s

Due to action-reaction (Newton's third law):

Fy3 = —F3;
Fg3 = —F35
Fy3 = —F3y
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Unknowns; Fa3y, F23,y »Fs3, Fazx, F43,y M
Equations;

—Ti; — F3x8in 015 a; + F35 5 cos 052, =0
Fa3x + Fs3€080:; + Fy3, =0

Fa3y + Fs3sin®y; + Fy43, =0
—Fs3sin05a3; —Fy3ya3 =0

M - F34,X Sln 912 a4 + F34_’y CcoSs 91234 = O

(3.1.1)
(3.1.2)
(3.1.3)
(3.1.4)

(3.1.5)

The number of unknowns is six while the number of equations is five. As the

unknown quantity is more than the equations, the solution cannot be obtained. All

other unknowns can be written in terms of one of the unknown. Link 5 is the only

two force member in this mechanism; therefore, all other unknowns are written in

terms of Fs;.

Fs3sin 05, a3;

F = —
43y as
F34—,y = _F43,y
Fy3y = —Fa3y — Fs3sin 012
F32,y = _F23,y
—_— F3,y c0s015a; — Ty,
32X sin 0, a,
Fasx = —Faax
Fy3x = —Fa3x — Fs3c0504;
Faax = —Fazx

M = F34,X Sln 912 a4 - F34‘y cos 91234
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By using virtual work method M value can be calculated. The output moment is

equal to the input moment and it is independent of the 6, value.

For a given range of Fs3 values (-20 N to 20 N) Fs3 versus F43 and F,; graphs are
drawn in figure 30 for different 0, values with a 10° increment. It should be noted

that as at 0,,=0° singularity occurs the first graph is drawn at 6,,=0.5°

440 T T T 35 T T T
435 -
Fr3 430 - - Fa3
Fa3 Fa3
—_— 225 N —_—
420
15 I I I 10 1 I I
=20 -10 0 10 20 =20 -10 0 10 20
Fs3 Fs3
912=0.5 912=10°
25 T T T 20 T T T

=20 -10 0 10 20 —20 -10 0 10 20
Fs3 Fs3
01,=20° 01,=30°
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Figure 30: F,; and F4; versus Fs; Graphs for Different 0,, Values of Example 3.1
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Figure 30 shows that F,3 is the symmetric of F43 with respect to Fs3=0 axis. Therefore,
abs(F23) values for negative Fs; are replaced with abs(F43) values for positive Fs; and
vice versa. It should be noted that the positive values of Fs3 imply the direction of
this force is as given in free body diagrams and the negative values imply the
direction is just the opposite. In other words, the positive values of Fs3 show that link

5 is in compression and the negative values of Fs3 show link 5 is in tension.

In this case in order to progress, the designer should determine whether link 2 or link
4 is more critical. For example, if link 2 is more critical for some reason, the designer
can decide to assemble link 5 with initial compression because F,3; take smaller
values for positive Fs3 values and the positive values of Fs3 imply that link 5 is in
compression. Now the problem is demoted to decide the value of the initial
compression. For the minimum values of F,3;, Fi3 takes relatively higher values
especially up to 6,,=60° as shown in figure 30. Choosing Fs; values that make Fy;
minimum may not be an appropriate approach especially for smaller 0, values. In
order to restrain F43 at acceptable values, selecting Fs; value between zero and
giving minimum F»3 is more suitable. The table 1 is arranged accordingly by using
MathCAD. The values for 0,,=0° and 0,,=90° are accepted as extremums and

disregarded in order to get more reliable results.

Table 1: Minimum Forces for Example 3.1

612 Fs3(N) | abs(Fa3) (N) | abs(Fa3) (N)
10° 6 18,648 24,555
20° 6 8,210 13,821
30° 6 5,126 10,209
40° 5 4,236 7,914
50° 3 4,096 5,971
60° 2 3,927 4,907
70° 3 3,752 4,719
80° 1 3,754 3,926
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Now the final Fs3 value can be calculated by using the equation:

b _ TS

n

Fy, = (Fs3)1 + (Fs3)2 + (Fs3)3 + (Fs3)a + (Fs3)s + (Fs3)6 + (Fs3)7 + (Fs3)8
8

F53:4’N

As a result, link 5 can be assembled with 4 N initial compression. The F,3 and Fa3
values for Fs;=4 N needed to be checked before finalizing the design. If

corresponding F,3 and F43 values are acceptable the design can be finalized.

Table 2: Final Forces for Example 3.1

01 Fss(N) | abs(Fa3) (N) | abs(Fs3) (N)
10° 4 19,629 23,568
20° 4 9,111 12,862
30° 4 5,854 9,286
40° 4 4,490 7,477
50° 4 3,921 6,368
60° 4 3,754 5,604
70° 4 3,803 5,038
80° 4 3,982 4,598

47



3.2 Example II: A Parallelogram Mechanism (an overconstrained mechanism

with 5 links and 6 revolute joints) Loaded with Force F

A(]B(] = a1
AB = as
AC= asy

Figure 31: An Overconstrained Parallelogram Mechanism Loaded with an External Force

a, =a, =as = 80 mm

a; =az; =120 mm

AD = 45 mm

In this case, the mechanism is designed to carry load F. The input is torque T, The

operation range of 0, is assumed to be 0° to 90°

The free body diagrams and static equilibrium equations are given.
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Link 2: Two force & a moment member

G12

Figure 32: Free Body Diagram of link 2 belongs to the Mechanism in Figure 31

Gy, = —F3;

_T12 - F32,X Sln 912 az + F32'y COS 91232 s 0 (Z MAO s 0) (321)

where F3;,is the x component of the force F3, while Fs, is the y component of the

same force.
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Link 3: Three force member

Fa43

Figure 33: Free Body Diagram of link 3 belongs to the Mechanism in Figure 31

Fa3x + Fs300861; + Fy3c086;, =0 (X Fy =0) (3.2.2)
Fa3y + Fs3sin0;; + Fy3sin6;, —F =0 (X Fy =0) (3.2.3)
_F53 sin 912 a31 - F43 sin 612 a3 + F 33431 = 0 (Z MA = 0) (3.2.4)

where Fj3 4 is the x component of the force F»3 while F3 is the y component of the

same force.
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Link 4: Two force member

F34

Figure 34: Free Body Diagram of link 4 belongs to the Mechanism in Figure 31

G4 = —F34
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Link 5: Two force member

as

Gis

.,-"'\912

Figure 35: Free Body Diagram of link 5 belongs to the Mechanism in Figure 31

Gys = —Fs3s

Due to action-reaction (Newton's third law):

Fy3 = —F3;
Fg3 = —F35
Fy3 = —F3y
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Unknowns; Tiz, Fa34,Fasy, Fs3, Fas

Equations;

_le - F32,X Sln 912 az + F32‘y COS 91232 s 0

F23,X + F53 COoSs 912 + F4_3 COosS 912 = O

F23,y + F53 sin 912 + F4_3 sin 612 —_ F = O

3azq

—F53 Sin 612 a31 - F4_3 Sin 912 ag + F

=0

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

The number of unknowns is five while the number of equations is four. As the

unknown quantity is more than the equations, the solution cannot be obtained. All

other unknowns can be written in terms of one of the unknown. Link 5 is a two force

member and in this example all other unknowns are written in terms of Fsj.

F 331_31 - F53 Sln 912 a31

F4 = -
3 sin 04, as

F23‘y =F— F53 sin 912 - F4_3 sin 612

F32,y = _F23,y

Fy3x = —Fs3 €050, —F43 €050,

Faox = —Fazx

Ty, = —F3548in0; a; + Fs, 5 cos 055 a,
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For a given range of Fs3 values (-20 N to 20 N ) Fs3 versus F43 and F»3 graphs are
drawn in figure 36 for different 0, values with a 10° increment. It should be noted

that as at 0,,=0° singularity occurs the first graph is drawn at 6,,=0.5°
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Fa3 215
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200
-20 10 0 10 20

Fs3

912:0.5 912:100

Fa3
Fy3
9122200 912:300
15 T T T 15 T T T
Fys Fa3
Fy3 Fy3

912:500
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Figure 36: F»; and F; versus Fs; Graphs for Different 0, Values of Example 3.2

Figure 36 shows that there is no symmetry between F,3 and Fa3 in this case. For
higher 0;, values it is obviously seen from the graphs that for positive Fs3 values both
Fy3 and F4;3 take their minimum values. The positive values of Fs3 imply the direction
of this force is as given in free body diagrams and the negative values imply the
direction is just the opposite. In other words, the positive values of Fs; show that link

5 is in compression and the negative values of Fs3 show link 5 is in tension.

In this case, the designer already knows to assemble link 5 with initial compression.
Again the problem is demoted to decide the value of the initial compression. If, for

some reason, one of the link is more critical than the other, the minimum values of
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force on that link should be focused. If the links are equally critical, values between

their minimum cases should be considered.

Assuming link 2 and link 4 are equally critical an initial compression value i.e. Fs3,
between Fs; value corresponding to minimum F3; and Fs; value corresponding to

minimum F4; should be decided.

X = \/(min(F23) — Fp3)% + (min(F,3) — F43)2

For each 0;, values x values are calculated and minimum x value 1s determined. For
minimum x values corresponding Fs3, Fo3 and Fa; values are tabulated in table 3.
Similar to example 3.1 the values for 8,,=0° and 0,,=90° are accepted as extremes

and disregarded in order to get more reliable results.

Table 3: Minimum Forces for Example 3.2

012 Fs3 abs(F23) abs(Fa3)
10° 5 13,369 8,298
20° 6 8,242 2,482
30° 5 5,728 1,250
40° 5 4,419 0,417
50° 5 3,403 0,052
60° 4 2,505 0,165
70° 4 1,849 0,005
80° 4 1,340 0,096

Similar to former example, the final Fs3 value can be calculated by using the equation:

b _ T (Fs),
53—
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Fo, = (Fs3)1 + (Fs3)2 + (Fs3)3 + (Fs3)a + (Fs3)s + (Fs3)6 + (Fs3)7 + (Fs3)s
S 8

Fs3 = 4,75N

As a result, link 5 can be assembled with 4,75 N initial compression. The F,3 and Fy3
values for Fs3=4,75 N needed to be checked before finalizing the design. If

corresponding F,3 and F43 values are acceptable the design can be finalized.

Table 4: Final Forces for Example 3.2

01 Fs3(N) | abs(Fa3) (N) | abs(Fa3) (N)
10° 4,75 13,253 8,423
20° 4,75 7,737 3,107
30° 4,75 5,647 1,375
40° 4,75 4358 0,542
50° 4,75 3,364 0,073
60° 4,75 2,509 0,210
70° 4,75 1,741 0,380
80° 4,75 1,082 0,471

3.3 Example III: A Double Slider Mechanism (an overconstrained mechanism

with 5 links and 4 revolute and 2 prismatic joints) Loaded with Force F4

As mentioned in Chapter 2.1 this double slider mechanism is an overconstrained
mechanism with actual mobility m’ = 1. while mobility obtained from Griibler

formula is m=0.
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C()C = as

F
AB = a; 12
AC=a31 A
O
AB—AC_C C
2 - — Y0
/] C
/1 (@)
015 F
C()/O O 14
V4

{i

Figure 37: An Overconstrained Double Slider Mechanism Loaded with Force Fy,

F14=5N
as = 60 mm

a; =120 mm

In this case the mechanism is designed to transmit force. The mechanism is in static
equilibrium with two external forces. The operation range of 0;, is assumed to be 0°

to 90°

The free body diagrams and static equilibrium equations are given.
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Link 2: Three force member

G12 l

F32

Figure 38: Free Body Diagram of link 2 belongs to the Mechanism in Figure 37

Giz = F3x =0 (3.3.1)
_F12 + F32'y == 0 (3.32)

where F3;,is the x component of the force F3, while Fs, is the y component of the

same force.

Link 5: Two force member

Figure 39: Free Body Diagram of link S belongs to the Mechanism in Figure 37
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Gys = —Fs3s

Link 3: Three force member

F23

Figure 40: Free Body Diagram of link 3 belongs to the Mechanism in Figure 37

—F33y + F535in0;5 +Fy3, =0 (3.3.3)
Fazx + Fs3€05015 —Fy3, =0 (3.3.4)
_F53 Sln 615 COS( 2T[ - 913)331 - F53 COoS 615 Sln(ZT[ - 613)331

_F43,y COS( ZT[ - 913)33 + F43,X Sil’l(Z‘l‘[ - 613) a3 = 0 (335)

where F»3 4 1s the x component of the force F»3 while Fasy is the y component of the
same force and Fs3x is the x component of the force Fs3 while F43y is the y

component of the same force.
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Link 4: Three force member

Gy

Figure 41: Free Body Diagram of link 4 belongs to the Mechanism in Figure 37

Giq — F34,y =0

—Fi14 +F3x=0

(3.3.6)

(3.3.7)

where F34,1s the x component of the force F34 while Fz4y is the y component of the

same force.

Due to action-reaction (Newton's third law):

Fy3 = —F3;
Fg3 = —F35
Fy3 = —F3y
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Unknowns; Fa3y, F23,y ,Fs3, Fazx, F43,y' F12,G12, Gy
Equations;

Giz = F32x =0

—Fi; +F3, =0

—Fj3y + Fs38in0;5 +Fy3, =0

Fa3x + F53€05015 —Fy3, =0

—F53 sin 05 cos(2m — 0;3)az; — Fs35in 055 cos(2m — 043)as;
—F43y cos(2m — 0;3)az + Fygy sin(2m—0;3)a; =0

Gig —F34y =0

—Fi14 +F3x=0

(3.3.1)
(3.3.2)
(3.3.3)

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)

The number of equations is seven while the number of unknowns is eight. As the

unknown quantity is more than the equations, the solution cannot be obtained. All

other unknowns can be written in terms of one of the unknown. Link 5 is the only

two force member in this mechanism; therefore, all other unknowns are written in

terms of Fs3.

F34x = Fia

F43,x = _F34,x

Fa3x = —Fs3€080;5 + Fy34
F32,x = _F23,x

Gip = F3ox
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F43,y

_ —Fs35in0;5 cos(2m — 013)az; — Fs3 €05 05 sin(2m — 0;3)ag; + Fyzx sin(2m — 013) ag

cos(2m — 043)as
F34—,y = _F43,y
Gis = F34,y
Fa3y = Fs3sinfy5 +Fu3y
F32,y = _F23,y

Fip, = F32,y

For the given range of Fs3 values obtained values of Fa3, F23, Fi2, Gi2 and G4 are
given in figures 42 and 43. Figure 42 shows Fs; versus F4; and F»3 values and figure
43 shows Fs3 versus Fiz, Gi2 and G4 values. All graphs are drawn in figure 42 and in
figure 43 for different 0,5 values with a 10° increment. It should be noted that as at

0,15=90° singularity occurs the last graphs are drawn at 6,5=89.5°
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Figure 42: F»; and F; versus Fs; Graphs for Different 0,, Values of Example 3.3

65



30 I I I 30 | | |

Gio

Fio
LN ]

Gy

_ 1 1 I - l l I
=20 -10 0 10 20 -20 -10 0 10 20
Fsy Fs3
915=0° 915=10°
30 T T T 30 T T T

-5 | | | -5 | | |
=20 ~10 0 10 20 —20 ~10 0 10 20
Fs3 Fs3
915=40° 915=50°

66



30 T T T 40 T T T
25 35 —
B i 30
Gy 20 Gpa
—_— —_— 25
15
Fip / Fioo ok
— ok i —_—
Giq Gy 15
— 5 = — = pl
0 1 5 —
. | | | 0 | |
=20 -10 0 10 20 =20 -10 0 10 20
Fs3 Fs3
915:600 915:700

604 e

504 [~ -

S12 4ou - m

Fla 504 -
G

14 204 - —

104 [~ -

| | |
=20 -10 0 10 20
F
53
915:800 915=89.5o

Figure 43: Fq,, G1; and Gy4 versus Fs; Graphs for Different 0,, Values of Example 3.3

Figure 42 shows that there is no symmetry between F»; and Fa3 in this case. For
intermediate values of 0, it is obviously seen from the graphs that for negative Fs;
values both Fy; and Fg3 take their minimum values. The negative values of Fs3 imply
the direction is just the opposite of shown in free body diagrams. In other words, the
negative values of Fs3; show that link 5 is in tension while the positive values of Fs;

show link 5 is in compression.
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In this case, the designer already knows to assemble link 5 with initial tension. Again
the problem is demoted to decide the value of the initial tension. If, for some reason,
one of the link is more critical than the other, the minimum values of force on that
link should be focused. If the links are equally critical, values between their

minimum cases should be considered.

Assuming link 2 and link 4 are equally critical an initial tension value i.e. Fs3,
between Fs; value corresponding to minimum F,3 and Fs3; value corresponding to

minimum F43 should be decided.

X = \/(min(Fzg) — F23)% + (min(F,3) — F43)2

For each 0, values x values are calculated and minimum x value is determined. For
minimum X values corresponding Fs3, Fo3 and Fa3 values are tabulated in table 5.
Similar to example 3.1 and 3.2 the values for 0;,=0° and 0,,=90° are accepted as

extremes and disregarded in order to get more reliable results.

Table 5: Minimum Forces for Example 3.3

012 Fs3 abs(F23) abs(Fa3)
10° -5 0,885 5
20° -5 1,845 5,001
30° -6 2,893 5,001
40° -7 4,211 5,009
50° -8 5,960 5,003
60° -10 8,660 5
70° -15 13,738 5,013
80° -20 28,397 10

Fi; is independent of Fs3 values. It is constant for each 6, value but if Gj; and G4
are assumed to be as important as F,3 and F43 they can be also implemented into x
equation. However, for this example implementation of G, and G4 into the equation
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does not affect the result because they also take minimum values for the Fs3 values in

table 5.

Similar to former examples, the final Fs; value can be calculated by using the

equation:

b _ (s,
53—

Fo, = (Fs3)1 + (Fs3)2 + (Fs3)3 + (Fs3)a + (Fs3)s + (Fs3)6 + (Fs3)7 + (Fs3)s
8

Fey = —9,5N

As a result, link 5 can be assembled with 9,5 N initial tension. The F,3; and F43 values
for Fs3=-9,5 N needed to be checked before finalizing the design. If corresponding

F»3 and F43 values are acceptable the design can be finalized.

Table 6: Final Forces for Example 3.3.

01 Fss(N) | abs(Fa3) (N) | abs(Fs3) (N)
10° 9,5 4.444 5.059
20° 9,5 4328 5.200
30° 9,5 4330 5.336
40° 9,5 47774 5.353
50° 9,5 6.061 5.171
60° 9,5 8.664 5.019
70° 9,5 13.849 6,938
80° 9 28.554 19,648
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Table 7: Final Forces for Example 3.3

012 Fss(N) | abs(Gp2) (N) | abs(G1a) (N) | abs(Fy2) (N)
10° 9,5 4,356 0,768 0,882
20° 9,5 3,927 1,429 1,820
30° 9,5 3,227 1,863 2,887
40° 9,5 2,277 1,911 4,195
50° 9,5 1,106 1,319 5,959
60° 9,5 0,250 0,433 8,660
70° 9,5 1,751 4,810 13,737
80° 9,5 3,350 19,001 28,356

3.4 Example IV: A Double Slider Mechanism (an overconstrained mechanism

with 5 links and 4 revolute, 2 prismatic joints) Loaded with Force F

C()C = as
AB=a3
AC=a31 A |
O

AB—AC—C C
2 - - 0

/] C

/

Cy 7 015 3 Fi4

Figure 44: An Overconstrained Double Slider Mechanism Loaded with F
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F=10N
as; = 60 mm
az = 120 mm

In this case the mechanism is designed to cut materials with a cutting tool on point C.
F is the reaction force of the material and it is in static equilibrium with F4. The

operation range of 0,5 is assumed to be 0° to 90°

Link 2: Three force member

\

F32

Figure 45: Free Body Diagram of link 2 belongs to the Mechanism in Figure 44

G12 —_ F32,X = 0 (341)

F32’y = O (3.42)
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Link 5: Two force member

Figure 46: Free Body Diagram of link 5 belongs to the Mechanism in Figure 44

Gy5 = —Fss

Link 4: Three force member

O [«——Fu

|

Gy

Figure 47: Free Body Diagram of link 4 belongs to the Mechanism in Figure 44

Gig = F34y =0 (3.4.6)

—Fi14 +F34x =0 (3.4.7)
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Link 3: Three force member

Figure 48: Free Body Diagram of link 3 belongs to the Mechanism in Figure 44

~Fy3y + Fs3 5in 05 + Fygy — FsinC — 655) = 0 (3.4.3)
Faax + Fs3 08015 — Fyzy + Feos(C —85) = 0 (3.4.4)
—Fzg‘y COS( 2T[ - 913)331 + F23,X Sin(ZT[ - 613)331

_F43,y COS( ZT[ - 913)33 + F43,X Sil’l(Z‘l‘[ - 613) a3 = 0 (345)

Due to action-reaction (Newton's third law):

Fy3 = —F3;
Fs3 = —F35
Fy3 = —F34
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Unknowns; F23,x ) F23,y yFs3,Fazx, F43,y' F14,G12, Gy

Equations;

Giz2 = F32x =0 3.4.1)
Fzy =0 (3.4.2)
—F3y + Fs3sin 015 + Fagy — Fsin(S + 035) = 0 (3.4.3)
Fasx + Fs3 €05 015 — Fag + Fcos(3- + 6;5) = 0 (3.4.4)

_F23'y COS( ZT[ - 613)331 + F23,X Sln(ZT[ - 613)331

_F43‘y COS( 2T[ _— 613)33 + F43,X Sin(ZT[ - 913) a3 = 0 (345)
Giqg —F34y =0 (3.4.6)
—Fi4 +F3,4=0 3.4.7)

The number of equations is seven while the number of unknowns is eight. As the
unknown quantity is more than the equations , the solution cannot be obtained. . All
other unknowns can be written in terms of one of the unknown. Link 5 is the only

two force member in this mechanism; therefore, all other unknowns are written in

terms of Fs;.
F32’y =0
F23’y = O

3n
F43’y = _F53 sin 915 +F Sin(T + 915)
F34,y = _F43,y

Gig = F34,y
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31
Fa3x = —F53€056;5 +Fy35x — F COS(? + 015)

Fu3y cos(2m — 6;3)az — Fy3sin(2m — 6;3) a3
Fosx =

Sln(Z‘lT - 613) 331
combining the two equation above;

Fy3y cos(2m— 03)a;

azq 31
Fisx = (—_I_ - )(Fs3 cos 0,5 + Fcos (— + 915) +
3

31 2 sin(2m — 813) az;

now F,3 4 can also be found
F32,x = _F23,x

Gip = F3ox

F34,x = _F43,x

Fiqa = F34—,x

For the given range of Fs3 values obtained values of Fa3, Fa3, Fi4, G12 and G4 are

given in figures 49 and 50. Figure 49 shows Fs; versus F4; and F»3 values and figure

50 shows Fs3 versus Fi4, Gi2 and G4 values. All graphs are drawn in figure 49 and in

figure 50 for different 0,5 values with a 10° increment. It should be noted that as at

0,5=0° singularity occurs the first graphs are drawn at 0;5=0.5°
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Figure 49 shows that there is no symmetry between F»; and Fa3 in this case. For
lower values of 01 it is seen from the graphs that for positive Fs3 values both F»3 and
F43 take their minimum values. However, for higher values of 0;,, F»3 take its
minimum value when Fs3 is negative while Fy43 take its minimum value when Fs; is

positive. Therefore, in this case, the designer should decide whether to assemble link

5 in compression or in tension and the value of initial loading simultaneously.
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Similar to other cases, the positive values of Fs3 imply the direction of this force is as
given in free body diagrams and the negative values imply the direction is just the
opposite. In other words, the positive values of Fs3 show that link 5 is in compression

and the negative values of Fs3 show link 5 is in tension.

If, for some reason, one of the link is more critical than the other, the minimum
values of force on that link should be focused. If the links are equally critical, values

between their minimum cases should be considered.

Assuming link 2 and link 4 are equally critical an initial loading value i.e. Fs3,
between Fs; value corresponding to minimum F,3 and Fs3; value corresponding to

minimum F43 should be decided.

x = /(min(F,3) — F23)2 + (min(Fy3) — Fy3)?

For each 0, values x values are calculated and minimum x value is determined. For
minimum x values corresponding Fs3, Fo3 and Fa3 values are tabulated in table 8.
Similar to former examples the values for 0,,=0° and 0,,=90° are accepted as

extremes and disregarded in order to get more reliable results.
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Table 8: Minimum Forces for Example 3.4

012 Fs3 abs(F23) abs(F43)
10° 18 0,267 20,339
20° 7 0,252 12,001
30° 3 0,931 9,783
40° 2 2,774 8,218
50° 0 3,309 7,762
60° -1 4311 7,016
70° -1 5,508 5,621
80° -1 6,290 4,343

Fi, is independent of Fs3 values. It is constant for each 0, value. G, is equal to Fa
and G4 1s equal to Fasy. If Gi2and G4 are assumed to be as important as F»3 and Fa3
they can be also implemented into x equation. However, for this example from figure
46 and figure 47 it is obvious that, the behaviour of G, is similar to F,3 and the
behaviour of Gy4 is similar to F43. Therefore, such an implementation is not needed

as the impact is negligible.

As aforementioned, the final Fs3 value can be calculated by using the equation:

YIS K(Fs3);
Fog =————

Fy, = (Fs3)1 + (Fs3)2 + (Fs3)3 + (Fs3)a + (Fs3)s + (Fs3)6 + (Fs3)7 + (Fs3)8
8

Fs3 = 3,375 N

As a result, link 5 can be assembled with 3,375 N initial compression. The F,3; and
F43 values for Fs3=3,375 N needed to be checked before finalizing the design. If

corresponding F,3 and F43 values are acceptable the design can be finalized.
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Table 9: Final Forces for Example 3.4.

01 Fss(N) | abs(Fa3) (N) | abs(Fs3) (N)
10° 3,375 14,136 21,314
20° 3,375 3,154 12,764
30° 3,375 1,256 9,647
40° 3,375 3,828 7,553,
50° 3,375 5,478 5,805
60° 3,375 6,499 4374
70° 3,375 7,004 3,556
80° 3,375 7,049 3,738

Table 10: Final Forces for Example 3.4.

012 Fs3(N) | abs(Gy2) (N) | abs(Gi4) (N) | abs(F12) (N)
10° 3,375 14,136 9,262 19,196
20° 3,375 3,154 8,243 9,746
30° 3,375 1,256 6,973 6,667
40° 3,375 3,828 5,491 5,186
50° 3,375 5,478 3,842 4,351
60° 3,375 6,499 2,077 3,849
70° 3,375 7,004 0,249 3,547
80° 3,375 7,049 1,587 3,385

3.5 Example V: A Parallelogram Mechanism (an overconstrained mechanism

with 6 links and 8 revolute joints) Loaded with Torque Ty,

This example is given as a further consideration about the preloaded link selection in

overconstrained mechanisms. As discussed in chapter 2.1.3, the overconstrained
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mechanism in figure 51 has actual m’ = 1. However, by the general DOF formula

m=-1 is obtained.

Figure 52: Free body diagrams of the mechanism in figure 51
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In figure 52, it is obviously seen that,

F32 - _G12
F3s = —Gys
F36 - _G16
F34— - _G14-

Due to action-reaction (Newton's third law):

Fp3 = —F3;
Fs3 = —F35
Fe3 = —F34
F43 = —F3,4

So the unknowns are; Fas x, Fa3y, Fasx, Fa3y, Fs3, Fe3, M. The number of independent
static force equilibrium equations is 5, however the number of unknowns is 7.
Therefore, all other unknowns can be written in terms of 2 of the unknowns. As link
5 and link 6 are the only two force members of the mechanism. So, they can be
selected as the links to be preloaded and all the other unknowns can be expressed in

terms of Fs3 and Fg;.
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CHAPTER 4

DISCUSSION AND CONCLUSION

In this thesis kinematic and force analyses of overconstrained mechanisms are
performed. The study is restricted to planar overconstrained mechanisms only.
However, the investigated methods and approaches could be extended to the spatial

overconstrained mechanisms as well.

In chapter 1, general information about overconstrained mechanisms, previous

studies, open problems in the literature and motivation are given.

In chapter 2, overconstrained mechanisms are investigated in terms of kinematic
analysis. Indeed, in that chapter what performed is not the kinematic analysis of
existing overconstrained mechanisms but the methods to generate overconstrained
mechanisms by using kinematics. Four different methods for the generation of
overconstrained mechanisms are discussed. The first one, analytical method, is
applicable to all kinds of planar overconstrained mechanisms; however, obtaining a
mobile overconstrained mechanisms using the results of this method is not simple.
On the other hand, such a mobile overconstrained mechanism, for the given link
number, joint number and joint type, may never be exist. The second one, the method
of cognates, is a practical way of mobile overconstrained mechanism generation. If
one or more cognates of any mechanism is known, a mobile overconstrained

mechanism can always be constructed using the cognates. Various cognate types,
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such as coupler curve cognates, function cognates can be used for this purpose.
However, cognate linkages are a different extensive research topic within mechanism
researches. Although many methods are improved for the derivation of cognates, a
general procedure applicable to all kinds of linkages has not been introduced yet.
Nevertheless, if cognates of a mechanism are known, a mobile overconstrained
mechanism can always be generated using cognates. The third one, the method of
combining identical modules, is another practical way of mobile overconstrained
mechanism constitution. If combination of identical modules without blocking the
basic motion of the module is possible, a mobile overconstrained mechanism can be
generated via this way. This basic motion can be a straight line or circular motion or
any kind of motion. The only necessary condition is that the basic motion of the
module should not be blocked. Via the last method, the method of extending an
overconstrained mechanism with extra links, a new overconstrained mechanism can
be generated by adding extra links and joints to an already existing overconstrained

mechanism.

In chapter 3, a method for the force analysis of overconstrained mechanisms is
introduced. This analysis should not be performed to find the forces on any
overconstrained mechanism which is already constructed. On the contrary, that
should be performed before the assembly process of the mechanism. Overconstrained
mechanisms show statically indeterminate characteristics. In order to cope with the
indeterminacy, applying preloading at assembly phase is suggested in the method.
Prior to preloading, the forces and moments are written in terms of each other. Then,
the amount of preloading is decided such that the other joint reaction forces/moments
kept in minimum. An optimization process is performed to determine the minimum
point. This preloading may be compression or tension. The direction of the
preloading is decided as well as the amount of preloading. Finally, the designated
preloading is applied at assembly phase of the mechanism. The method described in
chapter 3 is based on three main assumptions: 1) The preloaded link is so less stiff
than the other links that it can assumed as the only non-rigid link in the mechanism.
i1) The clearances in the joints are negligible. iii) The preloaded link should be a

two force member, based on the assumption that its inertia effects are negligible.
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A future work can be the application of the analytical method to different groups of
link-joint combinations in order to generate new overconstrained mechanisms. As
another future work, the methods presented in this study can be extended to spatial

overconstrained mechanisms.
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