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ABSTRACT 

 

 

KINEMATIC AND FORCE ANALYSES OF OVERCONSTRAINED 

MECHANISMS 

 

 

Üstün, Deniz 

M.Sc. Department of Mechanical Engineering 

 Supervisor: Prof. Dr. M. Kemal Özgören  

 

September 2011, 91 pages 

 

 

This thesis comprises a study on the kinematic and force analyses of the 

overconstrained mechanisms. The scope of the overconstrained mechanisms is too 

wide and difficult to handle. Therefore, the study is restricted to the planar 

overconstrained mechanisms. Although the study involves only the planar 

overconstrained mechanisms, the investigated methods and approaches could be 

extended to the spatial overconstrained mechanisms as well. 

 

In this thesis, kinematic analysis is performed in order to investigate how an 

overconstrained mechanism can be constructed. Four methods are used. These are 

the analytical method, the method of cognates, the method of combining identical 

modules and the method of extending an overconstrained mechanism with extra links. 



v 
 

This thesis also involves the force analysis of the overconstrained mechanisms. A 

method is introduced in order to eliminate the force indeterminacy encountered in the 

overconstrained mechanisms. The results are design based and directly associated 

with the assembly phase of the mechanism.   

 

 

Keywords: Overconstrained mechanisms, kinematic analysis, force analysis, 

cognates, planar mechanisms. 
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ÖZ 

 

 

FAZLA KISITLI MEKANİZMALARIN KİNEMATİK VE KUVVET 

ANALİZLERİ 

 

 

Üstün, Deniz 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Kemal Özgören 

 

Eylül 2011, 91 sayfa 

 

 

Bu tez, fazla kısıtlı mekanizmaların kinematik ve kuvvet analizleri üzerine bir 

çalışmadır. Fazla kısıtlı mekanizmalar geniş kapsamlı ve ele alması zor bir konudur. 

Bu yüzden, çalışma düzlemsel fazla kısıtlı mekanizmaları kapsayacak biçimde 

sınırlandırılmıştır. Çalışma sadece düzlemsel fazla kısıtlı mekanizmaları içerse de 

incelenen metotlar ve yaklaşımlar uzaysal fazla kısıtlı mekanizmalar için de 

kullanılabilir.  

 

Bu tezde, kinematik analiz fazla kısıtlı mekanizmaların nasıl oluşturulabileceğini 

incelemek için yapılmıştır. Dört metot kullanılmıştır. Bunlar analitik metot, kökteş 

mekanizmalar metodu, aynı modüllerin birleştirilmesi metodu ve fazla kısıtlı bir 

mekanizmaya ekstra uzuvlar ekleme metodudur. 
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Bu tez aynı zamanda fazla kısıtlı mekanizmaların kuvvet analizini de içerir. Fazla 

kısıtlı mekanizmalarda karşılaşılan kuvvet belirsizliklerini ortadan kaldırmak için bir 

metot sunulmuştur. Sonuçlar tasarım temellidir ve direkt olarak mekanizmanın 

montaj fazı ile ilişkilendirilmiştir.   

 

      

Anahtar Kelimeler: Fazla kısıtlı mekanizmalar, kinematik analiz, kuvvet analizi, 

kökdeş mekanizmalar, düzlemsel mekanizmalar. 

 

  



viii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       To my family 
  



ix 
 

 

ACKNOWLEDGMENTS 

 

 

The author wishes to express her deepest gratitude to her supervisor Prof. Dr. 

M.Kemal Özgören for his guidance, advice, criticism and insight througout the 

research.  

 

The examining committee members Prof. Dr. Eres Söylemez, Prof. Dr. Reşit Soylu, 

Prof. Dr. Kemal İder and Dr. Selçuk Himmetoğlu greatly acknowledged for their 

participation, comments and suggestions.  

 

The author would like to thank Dr. Gökhan Kiper for his helpful advices and support. 

 

The author would also like to thank to her friends from ÇSDFL and METU and 

collegues at TAI for their friendship, moral support and suggestions throughout the 

study. 

 

The author would like to express her endless gratitude to her parents for their love, 

endless support and trust throughout her life. 

 

Lastly, the author is thankful to her brother (who is also her home mate) as he is the 

best brother ever. 

  



x 
 

 

TABLE OF CONTENTS  

 

 

 

ABSTRACT ................................................................................................................ iv 

ÖZ ............................................................................................................................... vi 

ACKNOWLEDGMENTS .......................................................................................... ix 

TABLE OF CONTENTS ............................................................................................. x 

LIST OF FIGURES ................................................................................................... xii 

LIST OF TABLES .................................................................................................... xiv 

CHAPTERS 

1.INTRODUCTION..................................................................................................... 1 

2.KINEMATIC ANALYSIS ....................................................................................... 5 

2.1 Analytical Method .............................................................................................. 6 

2.1.1 Example I: A Parallelogram Mechanism (an overconstrained mechanism 

with 5 links and 6 revolute joints) ......................................................................... 11 

2.1.2 Example II: A Double Slider Mechanism (an overconstrained mechanism 

with 5 links and 4 revolute and 2 prismatic joints) ............................................... 16 

2.1.3 Example III: A Parallelogram Mechanism (an overconstrained mechanism 

with 6 links and 8 revolute joints) ......................................................................... 20 

2.2 Method of Cognates ......................................................................................... 21 

2.3 Method of Combining Identical Modules ........................................................ 28 

2.4 Method of Extending an Overconstrained Mechanism with Extra Links ........ 33 

3.FORCE ANALYSIS ............................................................................................... 35 

3.1 Example I: A Parallelogram Mechanism (an overconstrained mechanism with 

5 links and 6 revolute joints) Loaded with Torque T12 ......................................... 38 



xi 
 

3.2 Example II: A Parallelogram Mechanism (an overconstrained mechanism with 

5 links and 6 revolute joints) Loaded with Force F ................................................ 48 

3.3 Example III: A Double Slider Mechanism (an overconstrained mechanism with 

5 links and 4 revolute and 2 prismatic joints) Loaded with Force F14 ................... 57 

3.4 Example IV: A Double Slider Mechanism (an overconstrained mechanism 

with 5 links and 4 revolute, 2 prismatic joints) Loaded with Force F .................... 70 

3.5 Example V: A Parallelogram Mechanism (an overconstrained mechanism with 

6 links and 8 revolute joints) Loaded with Torque T12 ......................................... 82 

4.DISCUSSION AND CONCLUSION ..................................................................... 85 

REFERENCES ........................................................................................................... 88 

 

  



xii 
 

 

LIST OF FIGURES 

 

 

 

Figure 1: Vectorial Representation of a Closed Kinematic Chain ............................... 7 

Figure 2: A structure with 5 links and 6 revolute joints ............................................. 11 

Figure 3: An overconstrained mechanism with 5 links and 6 revolute joints ............ 15 

Figure 4: A structure with 5 links and 4 revolute and 2 prismatic joints ................... 16 

Figure 5: An overconstrained mechanism with 5 links and 4 revolute and 2 prismatic 

joints ........................................................................................................................... 19 

Figure 6: A structure with 6 links and 8 revolute joints ............................................. 20 

Figure 7: An overconstrained mechanism with 6 links and 8 revolute joints ............ 21 

Figure 8: Cognates of Four-Bar ................................................................................. 23 

Figure 9: Angular Velocities of Four-Bar Cognates .................................................. 24 

Figure 10: Right-hand Cognate of Four-Bar .............................................................. 25 

Figure 11: Shifted Right-hand Cognate of Four-bar .................................................. 25 

Figure 12: An Overconstrained Mechanism Constructed Using Cognates ............... 26 

Figure 13: An Overconstrained Mechanism Obtained by 7R Watt II Mechanism with 

one of its Function Cognates ...................................................................................... 27 

Figure 14: An Overconstrained Mechanism Obtained by 3RT3R Watt II Mechanism 

with one of its Function Cognates .............................................................................. 27 

Figure 15: Regular Scissor Element ........................................................................... 28 

Figure 16: An Overconstrained Mechanism obtained by combining Regular Scissor 

Elements ..................................................................................................................... 28 

Figure 17: Polar Scissor Element ............................................................................... 29 

Figure 18: Combination of Polar Scissor Elements ................................................... 29 

Figure 19: Angulated Scissor Element ....................................................................... 30 

Figure 20: Combination of Angulated Scissor Elements ........................................... 30 

Figure 21: A Planetary Gear Train ............................................................................. 31 

Figure 22: An Overconstrained Planetary Gear Train ............................................... 32 



xiii 
 

Figure 23: A Mobile Overconstrained Extended Parallelogram ................................ 33 

Figure 24: A Mobile Overconstrained Extended Double Slider ................................ 34 

Figure 25: An Overconstrained Parallelogram Mechanism Loaded with Torque ..... 38 

Figure 26: Free Body Diagram of link 2 belongs to the Mechanism in Figure 25 .... 39 

Figure 27: Free Body Diagram of link 3 belongs to the Mechanism in Figure 25 .... 40 

Figure 28: Free Body Diagram of link 4 belongs to the Mechanism in Figure 25 .... 41 

Figure 29: Free Body Diagram of link 5 belongs to the Mechanism in Figure 25 .... 42 

Figure 30: F23 and F43 versus F53 Graphs for Different θ12 Values of Example 3.1 .. 45 

Figure 31: An Overconstrained Parallelogram Mechanism Loaded with an External 

Force ........................................................................................................................... 48 

Figure 32: Free Body Diagram of link 2 belongs to the Mechanism in Figure 31 .... 49 

Figure 33: Free Body Diagram of link 3 belongs to the Mechanism in Figure 31 .... 50 

Figure 34: Free Body Diagram of link 4 belongs to the Mechanism in Figure 31 .... 51 

Figure 35: Free Body Diagram of link 5 belongs to the Mechanism in Figure 31 .... 52 

Figure 36: F23 and F43 versus F53 Graphs for Different θ12 Values of Example 3.2 .. 55 

Figure 37: An Overconstrained Double Slider Mechanism Loaded with Force F14 .. 58 

Figure 38: Free Body Diagram of link 2 belongs to the Mechanism in Figure 37 .... 59 

Figure 39: Free Body Diagram of link 5 belongs to the Mechanism in Figure 37 .... 59 

Figure 40: Free Body Diagram of link 3 belongs to the Mechanism in Figure 37 .... 60 

Figure 41: Free Body Diagram of link 4 belongs to the Mechanism in Figure 37 .... 61 

Figure 42: F23 and F43 versus F53 Graphs for Different θ12 Values of Example 3.3 .. 65 

Figure 43: F12, G12 and G14 versus F53 Graphs for Different θ12 Values of Example 

3.3 ............................................................................................................................... 67 

Figure 44: An Overconstrained Double Slider Mechanism Loaded with F............... 70 

Figure 45: Free Body Diagram of link 2 belongs to the Mechanism in Figure 44 .... 71 

Figure 46: Free Body Diagram of link 5 belongs to the Mechanism in Figure 44 .... 72 

Figure 47: Free Body Diagram of link 4 belongs to the Mechanism in Figure 44 .... 72 

Figure 48: Free Body Diagram of link 3 belongs to the Mechanism in Figure 44 .... 73 

Figure 49: F23 and F43 versus F53 Graphs for Different θ12 Values of Example 3.4 .. 77 

Figure 50: F14, G14 and G12 versus F53 Graphs for Different θ12 Values of Example 

3.4 ............................................................................................................................... 79 

Figure 51: An Overconstrained Parallelogram Mechanism Loaded with Torque ..... 83 

Figure 52: Free body diagrams of the mechanism in figure 51 ................................. 83 



xiv 
 

 

LIST OF TABLES 

 

 

 

Table 1: Minimum Forces for Example 3.1 ............................................................... 46 

Table 2: Final Forces for Example 3.1 ....................................................................... 47 

Table 3: Minimum Forces for Example 3.2 ............................................................... 56 

Table 4: Final Forces for Example 3.2 ....................................................................... 57 

Table 5: Minimum Forces for Example 3.3 ............................................................... 68 

Table 6: Final Forces for Example 3.3. ...................................................................... 69 

Table 7: Final Forces for Example 3.3 ....................................................................... 70 

Table 8: Minimum Forces for Example 3.4 ............................................................... 81 

Table 9: Final Forces for Example 3.4. ...................................................................... 82 

Table 10: Final Forces for Example 3.4. .................................................................... 82 

 

 

 



1 
 

 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

A linkage whose degree of freedom obtained by the general degree of freedom 

formula is less than its actual degree of freedom is called an overconstrained 

mechanism. Overconstrained mechanisms usually have zero or less degree of 

freedom (DOF) according to the general degree of freedom formula but do have full 

cycle mobility. The first overconstrained mechanism is proposed by Sarrus in 1853. 

Bennett (1914), Delassus (1922), Bricard (1927), Myard (1931),  Goldberg (1943),  

Waldron (1967, 1968, 1969), Wohlhart (1987, 1991) are the researchers who had 

proposed the well known overconstrained mechanisms most of which are recognized 

with their names.  

 

Overconstrained mechanisms have many advantages. They are mobile using fewer 

links and joints than it is expected. For example, an ordinary closed loop spatial 

mechanism with revolute and prismatic joints must have at least seven links to be 

mobile. Overconstrained mechanisms can be mobile with four, five or six links [13]. 

The decrease in the number of links and joints result in decrease in the cost, 

complexity and weight of the mechanisms. Another advantage of the overconstrained 

mechanisms is that they are more rigid and robust. These properties make 

overconstrained mechanisms desirable.    
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Overconstrained mechanisms have been studied extensively by the mechanism 

researchers. The research activities regarding the overconstrained mechanisms can be 

divided into three main groups.  

 

The first group of research activities focuses on generating a mobility formula valid 

for the overconstrained mechanisms.  In literature, methods for the DOF calculation 

of mechanisms can be grouped into two categories:  Those in the first category are 

based on setting up the kinematic constraint equations and their rank calculation for a 

given position of the mechanism with specific joint location. The ones in the second 

category do not need to develop the set of constraint equations. The former methods 

are valid for all kinds of mechanisms without exception; however, writing loop 

closure equations and performing position/velocity analysis by using analytical tools 

(screw system theory, linear algebra, affine geometry, Lie algebra, etc) is needed. 

Therefore, these formulas are not considered to be practical [5].  Rico et al. [15], 

Huang et al. [7], Zhao et al. [22], Fayet [4], Baker [1], Waldron [21] are the main 

contributors of this group. The later methods are much more practical. In this group, 

the proposed formulas of DOF are explicit relationships between structural 

parameters of the mechanism: the number of links and joints, the motion/constraint 

parameters of the joints and of the mechanism [5]. These formulas do not need 

kinematic constraint equations and are suitable for quick calculation of DOF whereas,  

they are not valid for overconstrained mechanisms. The most known and most 

commonly used DOF formula is the Kutzbach-Grübler formula. Dobrovolski and 

Hunt also proposed methods to compute DOF of mechanisms. However, these 

formulas do not give correct results for overconstrained mechanisms. A general 

formula for a quick calculation of DOF of all kind of mechanisms is not proposed yet. 

For calculation of mobility of overconstrained mechanisms, the former category is 

preferred by the researchers due to their precision. Gogu [5], discussed the general 

validity of the degree of freedom formulas proposed by many researches. In this 

thesis, mobility calculation of overconstrained mechanisms is not focused.  Only the 

general DOF formula is used to emphasize that the mechanism is overconstrained. 
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The second group of research activities is the investigation of various 

overconstrained mechanisms. In literature it is inevitable to encounter too many 

researches in which a new type of overconstrained mechanism introduced. This is 

because an analytical approach for the construction of overconstrained mechanisms 

has not been introduced yet. Most of these overconstrained mechanisms are 

discovered intuitively. Very few of them are introduced as a result of analytical 

mathematic methods. Waldron used closure equations in order to state 4 link 

overconstrained mechanisms. Waldron 1979 [19], stated that all 4 link 

overconstrained mechanisms with lower pairs are determined. Unfortunately, the 

study was restricted to 4 link mechanisms and also linkages with mobility greater 

than one were excluded. Therefore, the overconstrained mechanisms determined by 

Waldron were only spatial overconstrained mechanisms. Pamidi, Soni and Dukkipati 

in 1971 [14] have also used a similar method to Waldron's. Although in 1973 they 

expand the type of joints in their study, it was restricted to 5 link mechanisms. Lee 

and Yan in 1993 [10] studied 6R mechanisms by using matrix loop equations and 

they stated that there are only three types of movable spatial 6R mechanisms.  

Mavroidis and Roth in 1994 [12], discussed the difficulty to know the existence of 

other overconstrained mechanisms. They classified known overconstrained 

mechanisms in four classes according to general common characteristics of all 

mechanisms belonging in this class: (i) symmetric mechanisms, (ii) Bennett based 

mechanisms, (iii) combined special geometry mechanisms and (iv) mechanisms 

derived by overconstrained manipulators. Overconstrained manipulators are the 6 

joint manipulators that have less than 6 DOF for their end-effectors motion. Then 

using synthetic methods, they proposed new overconstrained mechanisms. They 

studied 6 link mechanisms.  

 

The last group of research activities composes of the studies for the development of a 

method in the force analysis of overconstrained mechanisms.  In terms of force 

analysis, overconstrained mechanisms show statically indeterminate characteristics. 

The total number of unknown forces and moments of an overconstrained mechanism 

is always more than the number of available equations. So the unknowns cannot be 

determined by the force analysis methods involving rigid bodies only. By relaxing 
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the rigidity assumption and using stress-strain relationships it is possible to increase 

the number of equations and obtain a solution. However, this process is not practical. 

Therefore, researchers investigate a practical but efficient solution of the problem. 

Himmetoğlu and Özgören in 2000 [6], introduce a method to eliminate force 

indeterminacy encountered in the overconstrained mechanisms without using stress-

strain relationships. They added extra joints to mechanisms in order to increase the 

equation number. Each unactuated single-DOF joint added to the system brings in 6 

more equations and 5 more unknowns, thus 1 equation surplus.  

 

This thesis contributes to the second and third groups of the relevant literature 

mentioned above. Chapter 2 of the thesis is about the second group. It involves a 

study on how an overconstrained mechanism can be constructed.  Four methods are 

considered: (i) the analytical method, (ii) the method of cognates, (iii) the method of 

combining identical modules, (iv) the method of extending an overconstrained 

mechanism. Although nothing is novel with these methods, they are discussed in 

order to emphasize their significance in the construction of the overconstrained 

mechanisms.  Chapter 3 of the thesis is about the third group of the relevant literature. 

It introduces a method in order to eliminate the indeterminacy in the unknown joint 

reaction forces and moments. This method is directly related to the construction 

phase of the mechanism. At the time of the assembly process, preloading is applied 

to some links and as a result the indeterminacy is eliminated in favour of the intended 

usage of the mechanism. An optimization process is performed in order to decide the 

amount of preloading.   

 

This thesis is restricted to the planar overconstrained mechanisms only. Planar 

mechanisms are simpler than spatial mechanisms. However when overconstrained 

mechanisms are considered, planar mechanisms do not form a simple research field. 

This is because most of the overconstrained mechanisms are spatial. The possibility 

of obtaining an overconstrained planar mechanism is less than the possibility of 

obtaining an overconstrained spatial mechanism.  
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CHAPTER 2 

 

 

KINEMATIC ANALYSIS 

 

 

 

Kinematic analysis is performed to investigate the motion characteristics of the 

mechanisms for given geometrical parameters. Motion characteristics comprise 

displacement, velocity and acceleration knowledge of any point on a moving body 

and path traced by a point on any link of the mechanism.  

 

In this chapter, the ways of generating overconstrained planar mechanisms are 

investigated. Four methods are considered: (i) the analytical method, (ii) the method 

of cognates, (iii) the method of combining identical modules, (iv) the method of 

extending an overconstrained mechanism with extra links. In the analytical method, 

by using velocity characteristics of a mechanism, the conditions that make it 

overconstrained are obtained. In the method of cognates, the cognate mechanisms 

that trace identical coupler curves are connected to each other in order to generate an 

overconstrained mechanism. In the method of combining identical modules, as the 

name implies, identical modules such as scissors like linkages are successively 

connected in order to generate an overconstrained mechanism. In the method of 

extending an overconstrained mechanism with extra links, a new overconstrained 

mechanism is generated by adding extra links and joints to an already existing 

overconstrained mechanism. 

 

The details of these methods are explained in the sequel. 
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2.1 Analytical Method 

 

This method utilizes the velocity analysis of the mechanisms. In order to apply this 

method, some of the structural characteristics of the mechanism should be 

determined primarily. Firstly, the number of links and joints and the joint types 

should be determined for the overconstrained mechanism to be generated. After the 

determination of these structural parameters, a closed kinematic chain should be 

constructed. A kinematic chain is a series of links connected by kinematic pairs. The 

chain is said to be closed if every link is connected to at least two other links [11], 

[18]. For the same number of links and joints and the joint types, it may be possible 

to construct several different kinematic chains. So, in order to proceed with the 

method, a closed kinematic chain should be selected out of the possible ones. After 

the selection of the closed kinematic chain, the loop closure equations for every 

independent loop in the kinematic chain should be written. The equations that 

describe the closure of the loops are known as the loop closure equations [18]. The 

number of the unknown joint variables should be equal to the number of the scalar 

loop closure equations. By differentiating the loop closure equations with respect to 

time, the velocity loop equations are obtained. 

 

Any of the loop closure equations of a mechanism can be written as the following 

vector equation: 

rଵሬሬሬԦ ൅ rଶሬሬሬԦ ൅ rଷሬሬሬԦ ൅ rସሬሬሬԦ ൅ ڮ ൅ r୬ሬሬሬԦ ൌ 0 

where r୩ሬሬሬԦ is the kth vector in the loop. 
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The preceding vector equation can be written into two scalar equations for planar 

mechanisms. That is, 

rଵ cos θଵ ൅ rଶ cos θଶ ൅ rଷ cos θଷ ൅ rସ cos θସ ൅ ڮ ൅ r୬ cos θ୬ ൌ 0 

rଵ sin θଵ ൅ rଶ sin θଶ ൅ rଷ sin θଷ ൅ rସ sin θସ ൅ ڮ ൅ r୬ sin θ୬ ൌ 0 

where θk is the angle between the x axis and the vector r୩ሬሬሬԦ and rk is the magnitude of 

r୩ሬሬሬԦ. 

 

For every independent loop these scalar equations should be written so that the total 

number of such scalar equations is equal to the number of unknowns. 

 

In order to obtain velocity loop equations, the loop closure equations are to be 

differentiated with respect to time. Thus, the velocity loop equations are obtained as: 

rଵሶ cos θଵ െ rଵθଵ
ሶ sin θଵ ൅ rଶሶ cos θଶ െ rଶθଶ

ሶ sin θଶ ൅ rଷሶ cos θଷ െ rଷθଷ
ሶ sin θଷ

൅ rସሶ cos θସ െ rସθସ
ሶ sin θସ ൅ ڮ ൅ r୬ሶ cos θ୬ െ r୬θ୬

ሶ sin θ୬ ൌ 0 

rଵሶ sin θଵ ൅ rଵθଵ
ሶ cos θଵ ൅ rଶሶ sin θଶ ൅ rଶθଶ

ሶ cos θଶ ൅ rଷሶ sin θଷ ൅ rଷθଷ
ሶ cos θଷ

൅ rସሶ sin θସ ൅ rସθସ
ሶ cos θସ ൅ ڮ ൅ r୬ሶ sin θ୬ ൅ r୬θ୬

ሶ cos θ୬ ൌ 0 

Figure 1: Vectorial Representation of a Closed Kinematic Chain

rଵሬሬሬԦ 

rଶሬሬሬԦ 
rଷሬሬሬԦ 

rସሬሬሬԦ 

r୬ሬሬሬԦ 

x 

y 

θଵ 

θଶ 

θଷ 

θସ 

θ୬ 
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The links of the mechanisms are assumed to be rigid. Therefore, their shapes remain 

the same throughout the motion. Thus, the change of magnitude of vectors with 

respect to time is zero. Hence, the equations become; 

െrଵθଵ
ሶ sin θଵ െ rଶθଶ

ሶ sin θଶ െ rଷθଷ
ሶ sin θଷ െ rସθସ

ሶ sin θସ െ ڮ െ r୬θ୬
ሶ sin θ୬ ൌ 0 

rଵθଵ
ሶ cos θଵ ൅ rଶθଶ

ሶ cos θଶ ൅ rଷθଷ
ሶ cos θଷ ൅ rସθସ

ሶ cos θସ ൅ ڮ ൅ r୬θ୬
ሶ cos θ୬ ൌ 0 

As seen, each pair of these scalar velocity loop equations is linear in the rates of the 

joint variables. Such a pair can be written as the following matrix equation: 

൤
െrଵ sin θଵ െrଶ sin θଶ െrଷ sin θଷ െrସ sin θସ … െr୬ sin θ୬

rଵ cos θଵ rଶ cos θଶ rଷ cos θଷ rସ cos θସ … r୬ cos θ୬
൨

ۏ
ێ
ێ
ێ
ێ
ێ
θଵۍ

ሶ

θଶ
ሶ

θଷ
ሶ

θସ
ሶ

:
θ୬

ሶ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ ሾ0ሿ 

All such equations written for the independent loops can be combined into the 

following overall matrix equation: 

ሾAሿሾxሶ ሿ ൌ ሾBሿሾyሶ ሿ 

Here, in general, 

[A] is a pxn coefficient matrix, 

[B] is a pxm coefficient matrix, 

ሾxሶ ሿ is an nx1 matrix of the unknown joint variable rates, 

ሾyሶ ሿ is an mx1 matrix of the specified (i.e. known) joint variable rates.  

m is the mobility (degree of freedom) of the system. 

p is the number of scalar loop closure equations. 

 

Before proceeding with the analytical method, the notion of a general mechanical 

system should be introduced. Then, its association with the coefficient matrix [A] 

should be considered.  In general, a mechanical system is composed of mobile and 
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immobile subsystems. If the mechanical system contains at least one mobile 

subsystem, it is called a mobile mechanical system. If it consists of only immobile 

subsystems then it is called an immobile mechanical system. An immobile subsystem 

is a substructure. Whereas, a mobile subsystem is a submechanism. If the geometric 

characteristics of a substructure can be selected in a special way, it may become a 

submechanism. Such a submechanism is called an overconstrained submechanism. A 

mechanical system that contains overconstrained submechanisms is called an 

overconstrained mechanism. 

 

If a mechanical system is mobile, without any overconstrained submechanism, then 

[A] will be a full-rank matrix such that p = n. Furthermore, if the system is not in a 

dead center position with respect to ሾyሶ ሿ, ሾxሶ ሿ can be found as 

ሾxሶ ሿ ൌ ሾAሿିଵሾBሿሾyሶ ሿ 

However, if the mechanical system contains an overconstrained submechanism, then 

det[A] becomes zero and the number of independent scalar equations reduces 

to pᇱ ൌ p െ r. As a consequence, the mobility of the system increases tomᇱ ൌ m ൅ r. 

In other words, mᇱ elements of  ሾxሶ ሿ  must be additionally specified and incorporated 

into ሾyሶ ሿ.  In such a case, the velocity equation can be rearranged as 

ሾAᇱሿሾxሶ ᇱሿ ൌ ሾBᇱሿሾyሶ ᇱሿ 

Now, pᇱ ൌ nᇱ ൌ n െ mᇱ and 

ሾAᇱሿ is the new nᇱxnᇱ coefficient matrix, 

ሾBᇱሿ is the new nᇱxmᇱ coefficient matrix, 

ሾxሶ ᇱሿ  is the nᇱx1 matrix of the new unknown joint variable rates, 

ሾyሶ ᇱሿ is the mᇱx1 matrix of the new specified (i.e. known) joint variable rates. Note 

that mᇱ is the increased mobility (new degree of freedom) of the system. 

Hence, if the system is not in a dead center position with respect to ሾyሶ ᇱሿ , ሾxሶ ᇱሿ  can be 

found as 
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ሾxሶ ᇱሿ ൌ ሾAᇱሿିଵሾBᇱሿሾyሶ ᇱሿ 

 

The preceding analysis implies that an overconstrained mechanism can be generated 

if a substructure in a mechanical system can be converted into an overconstrained 

submechanism. The conditions of this conversion can be obtained by considering the 

conversion of a single structure into a single overconstrained mechanism.  

 

For a structure with m ൑ 0, ሾyሶ ሿ ൌ ሾ0ሿ. Therefore, the velocity equation becomes  

ሾAሿሾxሶ ሿ ൌ ሾ0ሿ 

In this structure, ሾAሿ is pxn and ሾxሶ ሿ is nx1. This structure can be converted into an 

overconstrained mechanism if the number of independent scalar equations can be 

reduced permanently by choosing the geometric features in a special way. If this 

number can thus be reduced to nᇱ ൌ p െ r, then the mobility of the system will be 

mᇱ ൌ m ൅ r  and the velocity equation can be written as  

൤
Aଵଵ Aଵଶ
Aଶଵ Aଶଶ

൨ ൤
xሶ ଵ
xሶ ଶ

൨ ൌ ቂ0
0

ቃ 

Here, ሾAଵଵሿ  is a full-rank nᇱxnᇱ  matrix, ሾxሶ ଵሿ  is an nᇱx1  vector of unknown joint 

variable rates, and ሾxሶ ଶሿ is an mᇱx1 vector of the known joint variable rates, which are 

specified as the inputs of the mobilized structure with DOF ൌ mᇱ. Due to the rank 

deficiency, the second row of the preceding equation can be disregarded and ሾxሶ ଵሿ can 

be determined in terms of ሾxሶ ଶሿ as follows, provided that detሾAଵଵሿ ് 0 due to a dead 

center position 

ሾxሶ ଵሿ ൌ ሾAଵଵሿିଵሾAଵଶሿሾxሶ ଶሿ 

 

The analytical approach described above is clarified by means of the following three 

examples.  
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2.1.1 Example I: A Parallelogram Mechanism (an overconstrained mechanism 

with 5 links and 6 revolute joints) 

 

In this example, a planar, overconstrained mechanism with five links and six revolute 

joints will be generated from a structure with a similar kinematic chain. This 

kinematic chain with arbitrary geometric features is illustrated in figure 2. 

 

 

 

The loop closure equations for the considered mechanical system are  

A଴AሬሬሬሬሬሬሬԦ ൅ ACሬሬሬሬሬԦ ൅ CC଴ሬሬሬሬሬሬሬԦ ൅ C଴A଴ሬሬሬሬሬሬሬሬሬԦ ൌ 0 

C଴CሬሬሬሬሬሬሬԦ ൅ CBሬሬሬሬሬԦ ൅ BB଴ሬሬሬሬሬሬሬԦ ൅ B଴C଴ሬሬሬሬሬሬሬሬሬԦ ൌ 0 

Using complex exponential notation the above equations can be written as; 

a2eiθ12൅b3eiሺ஑య+θ13ሻ െ a5eiθ15 െ b1e୧஑భ=0 

a5ei஘భఱ ൅ c3eiሺ‐ஒయశθ13ሻ െ a4e୧஘భర െ c1eiሺ‐ஒభሻൌ0 

c1 b1 

c3 
π-β3+θ13 

b3 

a4 a5 a2 

C 
B 

A 

C0 

B0 A0 

θ14 

θ13 

θ12 

A0B0  = a1 

AB = a3 β3 

θ15 

α3

α1 β1 

Figure 2: A structure with 5 links and 6 revolute joints
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Expanding the equations and equating real and imaginary parts separately the four 

equations below are obtained: 

aଶ cos θଵଶ ൅ bଷ cosሺαଷ ൅ θଵଷሻ െ aହ cos θଵହ െ bଵ cos αଵ ൌ 0 

aଶ sin θଵଶ ൅ bଷ sinሺαଷ ൅ θଵଷሻ െ aହ sin θଵହ െ bଵ sin αଵ ൌ 0 

aହ cos θଵହ ൅ cଷ cosሺെβଷ ൅ θଵଷሻ െ aସ cos θଵସ െ cଵ cosሺെβଵሻ ൌ 0 

aହ sin θଵହ ൅ cଷ sinሺെβଷ ൅ θଵଷሻ െ aସ sin θଵସ െ cଵ sinሺെβଵሻ ൌ 0 

 

The corresponding velocity equations are obtained as 

െaଶ sin θଵଶθሶ
ଵଶ െ bଷ sinሺαଷ ൅ θଵଷሻθሶ

ଵଷ ൅ aହ sin θଵହθሶ
ଵହ ൌ 0 

aଶ cos θଵଶθሶ
ଵଶ ൅ bଷ cosሺαଷ ൅ θଵଷሻ θሶ

ଵଷ െ aହ cos θଵହ θሶ
ଵହ ൌ 0 

െaହ sin θଵହ θሶ
ଵହ െ cଷ sinሺെβଷ ൅ θଵଷሻθሶ

ଵଷ ൅ aସ sin θଵସ θሶ
ଵସ ൌ 0 

aହ cos θଵହθሶ
ଵହ ൅ cଷ cosሺെβଷ ൅ θଵଷሻθሶ

ଵଷ െ aସ cos θଵସθሶ
ଵସ ൌ 0 

 

Writing in matrix form; 

൦

െaଶ sin θଵଶ െbଷ sinሺαଷ ൅ θଵଷሻ
aଶ cos θଵଶ bଷ cosሺαଷ ൅ θଵଷሻ           

0          aହ sin θଵହ
0      െaହ cos θଵହ

          
0       െcଷ sinሺെβଷ ൅ θଵଷሻ
0             cଷ cosሺെβଷ ൅ θଵଷሻ

aସ sin θଵସ െaହ sin θଵହ
െaସ cos θଵସ aହ cos θଵହ

൪

ۏ
ێ
ێ
ێ
θሶۍ

ଵଶ

θሶ
ଵଷ

θሶ
ଵସ

θሶ
ଵହے

ۑ
ۑ
ۑ
ې

ൌ ሾ0ሿ 

 

In order to have non-zero velocities; which is the indication of mobility; the 

determinant of the coefficient matrix must be zero permanently. That is, 

ተ

െaଶ sin θଵଶ െbଷ sinሺαଷ ൅ θଵଷሻ
aଶ cos θଵଶ bଷ cosሺαଷ ൅ θଵଷሻ           

0          aହ sin θଵହ
0      െaହ cos θଵହ

          
0       െcଷ sinሺെβଷ ൅ θଵଷሻ
0             cଷ cosሺെβଷ ൅ θଵଷሻ

aସ sin θଵସ െaହ sin θଵହ
െaସ cos θଵସ aହ cos θଵହ

ተ=0 
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By using a symbolic manipulation software, such as mathcad, the equation below is 

obtained: 

aଶaସaହሼbଷሾsinሺθଵହ െ θଵସሻ sinሺെθଵଶ ൅ θଵଷ ൅ αଷሻሿ

൅ cଷሾsinሺθଵଶ െ θଵହሻ sinሺβଷ െ θଵଷ ൅ θଵସሻሿሽ ൌ 0 

 

The solution of this equation can be obtained by considering the following 

possibilities. 

(a) sinሺθଵହ െ θଵସሻ ൌ 0 and sinሺθଵଶ െ θଵହሻ ൌ 0   

θଵହ ൌ θଵସ   or  θଵହ ൌ θଵସ േ π    

θଵଶ ൌ θଵହ  or  θଵଶ ൌ θଵହ േ π 

This result implies that link 5, link 4 and link 2 must always be parallel to each other. 

(b) sinሺെθଵଶ ൅ θଵଷ ൅ αଷሻ ൌ 0 and sinሺθଵଶ െ θଵହሻ ൌ 0 

θଵଶ ൌ ሺθଵଷ ൅ αଷሻ or θଵଶ ൌ ሺθଵଷ ൅ αଷሻ േ π 

 θଵଶ ൌ θଵହ  or  θଵଶ ൌ θଵହ േ π 

This result implies that AC must be parallel to A0A while C0C is also parallel to A0A. 

Therefore, this solution cannot be permanent. So, it is not valid. 

(c) sinሺθଵହ െ θଵସሻ ൌ 0 and sinሺβଷ െ θଵଷ ൅ θଵସሻ ൌ 0  

θଵହ ൌ θଵସ  or θଵହ ൌ θଵସ േ π   

 θଵଷ ൌ ሺθଵସ ൅ βଷሻ or  θଵଷ ൌ ሺθଵସ ൅ βଷሻ േ π 

This result implies CB must be parallel to B0B while C0C is also parallel to B0B. 

Therefore, this solution is not valid either as in case (b). 

 

(d)  sinሺെθଵଶ ൅ θଵଷ ൅ αଷሻ ൌ 0 and sinሺβଷ െ θଵଷ ൅ θଵସሻ  

θଵଶ ൌ ሺθଵଷ ൅ αଷሻ  or θଵଶ ൌ ሺθଵଷ ൅ αଷሻ േ π   
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  θଵଷ ൌ ሺθଵସ ൅ βଷሻ or θଵଷ ൌ ሺθଵସ ൅ βଷሻ േ π 

This result implies AC must be parallel to A0A while CB is parallel to B0B. 

Therefore, this solution is not valid either as in case (b) and (c). 

 

Among the four possibilities considered above, only the possibility (a) may be 

satisfied permanently. The additional conditions for its permanent satisfaction can be 

obtained from the loop closure equations. With θ12=θ14=θ15, the loop closure 

equations become: 

aଶ cos θଵଶ ൅ bଷ cosሺαଷ ൅ θଵଷሻ െ aହ cos θଵଶ െ bଵ cos αଵ ൌ 0 

aଶ sin θଵଶ ൅ bଷ sinሺαଷ ൅ θଵଷሻ െ aହ sin θଵଶ െ bଵ sin αଵ ൌ 0 

aହ cos θଵଶ ൅ cଷ cosሺെβଷ ൅ θଵଷሻ െ aସ cos θଵଶ െ cଵ cosሺെβଵሻ ൌ 0 

aହ sin θଵଶ ൅ cଷ sinሺെβଷ ൅ θଵଷሻ െ aସ sin θଵଶ െ cଵ sinሺെβଵሻ ൌ 0 

These can be written as; 

cos θଵଶ ሺaଶ െ aହሻ ൅ bଷ cosሺαଷ ൅ θଵଷሻ െ bଵ cos αଵ ൌ 0 

sin θଵଶ ሺaଶ െ aହሻ ൅ bଷ sinሺαଷ ൅ θଵଷሻ െ bଵ sin αଵ ൌ 0 

cos θଵଶ ሺaହ െ aସሻ ൅ cଷ cosሺെβଷ ൅ θଵଷሻ െ cଵ cosሺെβଵሻ ൌ 0 

sin θଵଶ ሺaହ െ aସሻ ൅ cଷ sinሺെβଷ ൅ θଵଷሻ െ cଵ sinሺെβଵሻ ൌ 0 

For any arbitrary value of θ12, which is selected here as the input variable, these 

equations should be satisfied in order to obtain a permanently overconstrained 

mechanism. The only solution is:  

a2 = a4 = a5  ,  b1 = b3 ,  α3+θ13 = α1 ,  c1 = c3  ,  and   β3+θ13 = β1 

These results imply that θ13=0. 

The generated overconstrained mechanism is shown in figure 3. Note that, although 

the general DOF formula gives m=0, the actual DOF of the mechanism is mᇱ ൌ 1. 



15 
 

 

 

For the specially selected geometric features of the mobile overconstrained 

mechanical system, the coefficient matrix becomes; 

൦

െaଶ sin θଵଶ െbଵ sin αଵ
aଶ cos θଵଶ bଷ cos αଵ

           
0          aଶ sin θଵଶ
0      െaଶ cos θଵଶ

              
0         െcଵ sinሺെβଵሻ
0            cଵ cosሺെβଵሻ

aଶ sin θଵଶ െaଶ sin θଵଶ
െaଶ cos θଵଶ aଶ cos θଵଶ

൪ 

 

As seen the last column becomes the linear combination of the first and third 

columns. Thus, the matrix has become rank deficient. That is, the rank of the matrix 

has decreased to 3. Previously, it was 4. The difference between the ranks gives the 

actual DOF gained by the mechanical system. Previously, the actual DOF was 0, the 

mechanical system was not mobile. With the special geometric features, the actual 

DOF becomes 1 and the system becomes mobile. 

  

b1 c1 

b1 c1 

a2 a5 a4 

B0 

C0 

B A 

A0 θ14= θ12 

θ15= θ12 

θ12 
α1 β1

β1α1

C 

Figure 3: An overconstrained mechanism with 5 links and 6 revolute joints 
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2.1.2 Example II: A Double Slider Mechanism (an overconstrained mechanism 

with 5 links and 4 revolute and 2 prismatic joints) 

 

In this example, a planar, overconstrained mechanism with five links and four 

revolute and two prismatic joints will be generated from a structure with a similar 

kinematic chain. This kinematic chain with arbitrary geometric features is illustrated 

in figure 4. 

 

 

The loop closure equations for the considered mechanical system are 

C଴AሬሬሬሬሬሬሬԦ ൅ ACሬሬሬሬሬԦ ൅ CC଴ሬሬሬሬሬሬሬԦ ൌ 0 

C଴CሬሬሬሬሬሬሬԦ ൅ CBሬሬሬሬሬԦ ൅ BC଴ሬሬሬሬሬሬሬԦ ൌ 0 

Using complex exponential notation the above equations can be written as; 

s2eiሺπ
ଶሻ ൅ b3eiሺ஑య൅θ13ሻ െ a5eiθ15ൌ0 

a5eiθ15൅c3eiሺ‐ஒయ൅θ13ሻ ൅ s4ei஠ ൌ 0 

 

π 

π/2 

a5 

C0 

C 

B 

A 

c3 

θ15 

b3 

AC = a3 

α3

β3

θ13 

θ13-π-β3 

s2 

s4 

Figure 4: A structure with 5 links and 4 revolute and 2 prismatic joints
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Expanding the equations and equating real and imaginary parts separately the four 

equations are obtained: 

bଷ cosሺαଷ ൅ θଵଷሻ െ aହ cos θଵହ ൌ 0 

sଶ൅bଷ sinሺαଷ ൅ θଵଷሻ െ aହ sin θଵହ ൌ 0 

aହ cos θଵହ ൅ cଷ cosሺെβଷ ൅ θଵଷሻ െ sସ ൌ 0 

aହ sin θଵହ ൅ cଷ sinሺെβଷ ൅ θଵଷሻ ൌ 0 

 

The corresponding velocity equations are obtained as 

െbଷ sinሺαଷ ൅ θଵଷሻθሶ
ଵଷ ൅ aହ sin θଵହθሶ

ଵହ ൌ 0 

sଶሶ ൅ bଷ cosሺαଷ ൅ θଵଷሻ θሶ
ଵଷ െ aହ cos θଵହ θሶ

ଵହ ൌ 0 

െaହ sin θଵହ θሶ
ଵହ െ cଷ sinሺെβଷ ൅ θଵଷሻθሶ

ଵଷ െ sସሶ ൌ 0 

aହ cos θଵହ θሶ
ଵହ ൅ cଷ cosሺെβଷ ൅ θଵଷሻθሶ

ଵଷ ൌ 0 

Writing in matrix form; 

൦

0 െbଷ sinሺαଷ ൅ θଵଷሻ
1 bଷ cosሺαଷ ൅ θଵଷሻ

0     aହ sin θଵହ
0 െaହ cos θଵହ

  0 െcଷ sinሺെβଷ ൅ θଵଷሻ
  0 cଷ cosሺെβଷ ൅ θଵଷሻ

െ1 െaହ sin θଵହ
0 ൅aହ cos θଵହ

൪

ۏ
ێ
ێ
ۍ

sሶଶ
θሶ

ଵଷ
sሶସ

θሶ ଵହے
ۑ
ۑ
ې

ൌ ሾ0ሿ 

 

In order to have non-zero velocities; which is the indication of mobility; the 

determinant of the coefficient matrix must be zero permanently. That is, 

ተ

0 െbଷ sinሺαଷ ൅ θଵଷሻ
1 bଷ cosሺαଷ ൅ θଵଷሻ

0     aହ sin θଵହ
0 െaହ cos θଵହ

  0 െcଷ sinሺെβଷ ൅ θଵଷሻ
  0 cଷ cosሺെβଷ ൅ θଵଷሻ

െ1 െaହ sin θଵହ
0 ൅aହ cos θଵହ

ተ ൌ 0 
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By using a symbolic manipulation software, such as mathcad, the following equation 

is obtained: 

aହሾെbଷ cosሺθଵହሻsin ሺθଵଷ ൅ αଷሻ െ cଷ sinሺθଵହሻcos ሺെβଷ ൅ θଵଷሻሿ ൌ 0 

 

If b3 = c3,   cosሺθଵହሻ ൌ cos ሺെβଷ ൅ θଵଷሻ and െsinሺθଵଷ ൅ αଷሻ ൌ sinሺθଵହሻ the 

equation is satisfied. 

αଷ ൌ െβଷ 

θଵହ ൌ βଷ െ θଵଷ 

These equations should be satisfied permanently. The additional conditions for their 

permanent satisfaction can be obtained from the loop closure equations. With 

θ12=θ14=θ15, the loop closure equations become: 

 

bଷ cosሺെβଷ ൅ θଵଷሻ െ aହ cosሺെβଷ ൅ θଵଷሻ ൌ 0 

sଶ൅bଷ sinሺെβଷ ൅ θଵଷሻ െ aହ sinሺെβଷ ൅ θଵଷሻ ൌ 0 

aହ cosሺെβଷ ൅ θଵଷሻ ൅ bଷ cosሺെβଷ ൅ θଵଷሻ െ sସ ൌ 0 

െaହ sinሺെβଷ ൅ θଵଷሻ ൅ bଷ sinሺെβଷ ൅ θଵଷሻ ൌ 0 

 

For any arbitrary value of θ13, which is selected here as the input variable, these 

equations should be satisfied in order to obtain a permanently overconstrained 

mechanism. The only solution is:  

a5 = b3 = c3  and   α3 = β3 = 0 

So, θ15 = -θ13 

 

The generated overconstrained mechanism is shown in figure 5. Note that, although 

the general DOF formula gives m=0, the actual DOF of the mechanism is mᇱ ൌ 1. 
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The mechanical system in figure 5 with special geometric characters is mobile, thus 

it is a mechanism.  Although according to the general DOF formula m=0, the actual 

freedom of the mechanism is mᇱ ൌ 1.  

 

For specially selected geometric characters of the mobile overconstrained mechanical 

system the coefficient matrix becomes; 

൦

0 െaହ sinሺθଵଷሻ
1 aହ cosሺθଵଷሻ

0     െaହ sinሺθଵଷሻ
0 െaହ cosሺθଵଷሻ

  0 െaହ sinሺθଵଷሻ
  0 aହ cosሺθଵଷሻ

െ1 ൅aହ sinሺθଵଷሻ
0 ൅aହ cosሺθଵଷሻ

൪ 

 

By using mathcad, the rank of the matrix is find to be equal to 3. Previously, it was 4. 

The difference between the ranks gives the actual DOF gained by the mechanical 

system. Previously, the actual DOF was 0; the mechanical system was not mobile. 

Finally, the actual DOF is 1 and the system is mobile. 

π 

π/2 

a5 

C0 

C 

B 

A 

a3 

θ15 

θ13 

Figure 5: An overconstrained mechanism with 5 links and 4 revolute and 2 prismatic joints
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2.1.3 Example III: A Parallelogram Mechanism (an overconstrained mechanism 

with 6 links and 8 revolute joints) 

 

This example is given in order to discuss more about the rank reduction of the 

coefficient matrix [A] in an immobile mechanical system when it is converted into a 

mobile overconstrained mechanical system. 

 

The immobile mechanical system in figure 6 is the extended version of the immobile 

mechanical system with 6 links and five revolute joints. One more link, D0D is added 

into the system.  

 

The mechanical system in figure 6 with arbitrarily selected geometric features is 

immobile. In other words, according to the general DOF formula, it is a structure 

with m = -1. 

 

There are 3 independent loops; so, 6 independent scalar equations can be written. 

The number of variables is 5. Thus, the coefficient matrix is 6x5. When the 

mechanical system is made mobile with 1 DOF, one of the variables becomes the 

B0 

D0 
C0 A0 

A 

C 

D 

B 

θ12 
θ15 

θ16 

θ14 

θ13 

Figure 6: A structure with 6 links and 8 revolute joints
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input of the system. Then, the remaining 4 variables are to be determined. In order to 

determine these 4 unknowns 4 independent equations are sufficient. Therefore, the 

rank of the coefficient matrix of the mobile overconstrained mechanical system has 

to be 4. In other words, two of the six equations become dependent and thus can be 

disregarded.  

 

Figure 7: An overconstrained mechanism with 6 links and 8 revolute joints 
 

The mechanical system in figure 7 with special geometric features is mobile. 

Although according to the general DOF formula m=-1, the actual DOF of the 

mechanism is mᇱ ൌ 1.  

 

2.2 Method of Cognates 

 

The name cognate was first introduced by Hartenberg and Denavit for alternative 

four-bar linkages that trace identical coupler-curves. The property was already 

introduced by Roberts-Chebyshev theorem. Roberts-Chebyshev theorem states that 

three different planar 4R linkages trace identical coupler curves. These three linkages 

are referred to as coupler curve cognates [11]. Hartenberg and Denavit [23] also 

extended the notion to special forms of six-bar linkages. Soni and Harrisberger [17] 

studied planar six-bar and spatial four-bar cognates. Dijksman [3] distinguishes 

between (a) curve cognates, (b) timed-curve cognates, (c) coupler-cognates, (d) 

timed-coupler cognates and (e) function cognates. Curve-cognates are those that 

A0 C0 D0 B0 

A C D B 

θ12 θ12 θ12 θ12 
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generate the same (coupler) curve by a coupler-point attached to a moving body of 

the mechanism. Curve-cognates that additionally show the same functional 

relationship between coupler-point-position and the position of the input-crank, are 

called timed-curve cognates. Coupler-cognates are alternative mechanisms with the 

same kinematic chain and a common coupler-plane as well as a common frame. With 

respect to coupler-cognates, timed coupler cognates additionally have the same 

functional relationship between the position coordinates of the plane and the position 

of the input-crank. Function-cognates are cognate mechanisms that produce the same 

functional relationship between the in- and output angle [3]. 

 

The occurrence of cognates in planar mechanism kinematics and their association 

with overconstrained mechanisms have been studied extensively.  

 

Firstly, starting from Roberts-Chebyshev theorem, cognate-overconstrained 

mechanism relationship indicated, then some examples are given to overconstrained 

mechanisms derived from cognates. 
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In figure 8, O2ABO4 is a four-bar linkage with a coupler curve C.  O2ACD, OECF 

and O4GCB parallelograms and ABC, DCE and CGF similar triangles are drawn. As 

a result the two other four-bars O2DEO and O4GFO which also generate the same 

coupler curve for the coupler point C are obtained. This mechanism is an 

overconstrained mechanism. According to general DOF formula m=-1  The 

redundant constrained can be indicated as: 

 

OଶO ൌ OଶD ൅ DE ൅ EO 

ൌ AC ൅ DC
DE
DC

e୧஑ ൅ CF 

ൌ AB
AC
AB

e୧஑ ൅ OଶA
DE
DC

e୧஑ ൅ CG
CF
CG

e୧஑ 

ൌ ሺAB ൅ OଶA ൅ BOସሻ
AC
AB

e୧஑ 

G

F 

B

A 

C

D

E 

O

O4 O2 

α

α

α

ββ

β
γ

γ

γ

Figure 8: Cognates of Four-Bar
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OଶO ൌ OଶOସ
AC
AB

e୧஑ 

This equation shows that the point O is stationary (there is no variable parameter). If 

the pivot is not fixed, nothing will be changed; the mechanism will make exactly the 

same motion. If this pivot is not connected to the fixed link the mechanism become 

constrained with mᇱ ൌ 1. [11]. 

 

Moreover, focusing on the angular velocities some other overconstrained 

mechanisms can be obtained. 
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Figure 9: Angular Velocities of Four-Bar Cognates
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Figure 10 shows the four-bar O2ABO4 and its right hand cognate O4GFO. The 

cognate O4GFO can be translated without rotation, as a rigid body, so that O 

coincides with O2. 
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Figure 10: Right-hand Cognate of Four-Bar

Figure 11: Shifted Right-hand Cognate of Four-bar
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The angular velocities of links O2A and O2F are the same; thus, these links can be 

connected to each other rigidly. Additionally, the paths of C and C' are parallel to 

each other.  The distance between these points always remains the same so, a rigid 

link can be added to connect C and C'. 

 

 

Mechanism in figure 12, is an overconstrained mechanism with m=0 according to 

general DOF formula.  The presence of link CC' does not contribute the motion of 

the mechanism. If this link is removed the mechanism will make exactly the same 

motion. 

 

Dijksman [3] found that six-bar, 7R, Watt II linkage has a double infinity of function 

cognates.. Simionescu [16] also reached the same result by using a different 

technique.  Furthermore, Simionescu constituted overconstrained linkages by using 

7R Watt II mechanism and its cognates. Similarly, via 3RT3R Watt II mechanism 

and its cognates, overconstrained mechanisms had been constructed in the same 

study. 

F

G

C' 

C

B

A

O4O2 

Figure 12: An Overconstrained Mechanism Constructed Using Cognates 



27 
 

 

 

Figure 13: An Overconstrained Mechanism Obtained by 7R Watt II Mechanism with one of its 
Function Cognates 
 
 

The overconstrained mechanism in figure 13 is obtained by merging a reference 

dimensional configuration 7R Watt II mechanism with one of its function cognates 

[16]. 

 

 

Figure 14: An Overconstrained Mechanism Obtained by 3RT3R Watt II Mechanism with one of 
its Function Cognates 
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The overconstrained mechanism in figure 14 is obtained by merging a reference 

dimensional configuration 3RT3R Watt II mechanism with one of its function 

cognates [16]. 

 

2.3 Method of Combining Identical Modules 

 

Overconstrained mechanisms can be generated by combining identical modules 

without obstructing the basic motion of the modules. This process may not be 

feasible for all module types. In order to combine the modules, primarily the basic 

motion should be studied extensively.  

 

Assume a scissor element seen in figure 13. For regular scissor mechanisms, the 

intermediate links have three collinear hinges and two of such element are joined at 

the mid joint such that the resulting regular scissor element is symmetric with respect 

to the horizontal [9] 

 

 

 

 

 

Figure 15: Regular Scissor Element

Figure 16: An Overconstrained Mechanism obtained by combining Regular Scissor Elements
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By combining regular scissor elements the overconstrained mechanism in figure 16, 

is obtained. According to general DOF formula m=0, but the actual freedom of the 

mechanism is mᇱ ൌ 1. 

 

When the element is symmetric with respect to the vertical instead of the horizontal 

the so-called polar scissor element is obtained [9].  

 

 

 

Combination of  polar scissor elements is also possible.  

 

 

 

Similar to combined regular scissor elements, this combination can also be used to 

construct overconstrained mechanisms. 

 

Figure 17: Polar Scissor Element

Figure 18: Combination of Polar Scissor Elements
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Scissor elements with hinges that are not collinear are called angulated elements and 

can also be used to construct overconstrained mechanisms.  

 

 

Figure 19: Angulated Scissor Element 
 

Combination of angulated scissor elements is also possible.  

 

 

Figure 20: Combination of Angulated Scissor Elements 
 

This combination can also be used to construct overconstrained mechanisms 

 

An overconstrained mechanism can also be generated by combining gear pairs. 
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In Figure 21 a planetary gear train with one planet gear is shown. A simple gear train 

consists of a sun gear (S) in the center, a planet gear (P), a planet carrier or arm (C), 

and an internal or ring gear (R) is called as planetary gear train or epicyclic gear train. 

In these gear trains, one or more gears are carried on a rotating planet carrier rather 

than on a shaft that rotates on a fixed axis. 

 

 

The freedom of the planetary gear train shown in figure 21 is 1. This mechanism may 

become overconstrained by the addition of planet gears.  

 

 

S 

R 

P 

C 

Figure 21: A Planetary Gear Train
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In figure 22, two more planet gears are combined to the mechanism symmetrically 

around the sun gear. Although the symmetry is not necessary, it is used to balance 

out the centrifugal forces. The additional planet gears are identical to the first one. 

The motion of the basic mechanism, mechanism in figure 21, does not change. For 

large force transmission this combined planetary gear train is preferred as it has 

better force transmission characteristics.  

 

The degree of freedom of the overconstrained planetary gear train is m=-1 by the 

general DOF formula but the actual freedom is still mᇱ ൌ 1. Although this planetary 

gear train is overconstrained, it is mobile. By addition of more planets the 

mechanism may become more and more overconstrained. 

  

Figure 22: An Overconstrained Planetary Gear Train
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2.4 Method of Extending an Overconstrained Mechanism with Extra Links 

 

Once an overconstrained mechanism is generated it can be extended in order to 

obtain various other overconstrained mechanisms. In other words, by adding extra 

links and joints to an already existing overconstrained mechanism, a new 

overconstrained mechanism can be generated.  

 

 

In figure 23, an overconstrained parallelogram mechanism (A0ABB0) is extended 

with a slider crank mechanism (BDE). The actual DOF of the system is mᇱ ൌ 2. 

However, the general DOF formula gives m=1.   

A0 B0 C0 

A C B 

D 

E 

Figure 23: A Mobile Overconstrained Extended Parallelogram 
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In figure 24, a overconstrained double slider mechanism (AC0B) is extended with a 

four bar mechanism (CDEE0). The actual DOF of the system is mᇱ ൌ 2. However, 

the general DOF formula again gives m=1.  

 

  

C0 

A 

B 

C 

D 

E 

E0 

Figure 24: A Mobile Overconstrained Extended Double Slider
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CHAPTER 3 

 

 

FORCE ANALYSIS 

 

 

 

A mechanism is designed to transmit force and motion. Firstly a motion 

characteristic of a mechanism is designated, and then the sizes and shapes of its links 

and joints are determined to finalize the design. To do this, information about the 

forces and moments acting on the links of mechanisms is required.  

 

In the force analysis of mechanisms, if they do not move at very high speeds, they 

can be assumed to be in pseudo-static equilibrium. In other words, in the pseudo-

static force analysis, the inertia forces and moments are not considered because of 

their negligible values. Thus, this analysis method is based on writing the static 

equilibrium equations. Free body diagrams are used to indicate all the known and 

unknown forces and moments clearly. For each body, free body diagrams are drawn 

and unknowns are identified. Then, the static equilibrium equations are written for all 

the moving links.  The total number of unknown forces and moments should be equal 

to the number of static force equilibrium equations in order to find the unknowns. In 

a regular mechanism, which is not overconstrained, this is the case. That is, the 

number of unknowns is equal to the number of static force equilibrium equations. 

Therefore, all of the unknowns can be determined.  

 

On the other hand, in overconstrained mechanisms total number of unknown forces 

and moments is always more than the number of static force equilibrium equations. 
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Therefore, performing force analysis in overconstrained mechanisms is troublesome. 

The difference between the number of unknowns and equations is equal to the 

difference between actual mobility of the mechanism and mobility calculated by 

general DOF formula. By using stress-strain relationships it is possible to increase 

the number of equations and obtain a solution. However, this process needs intensive 

effort and consumes too much time. On the other hand, all unknowns can be written 

in terms of minimum number of unknowns and by giving a range of values to this 

minimum number of unknowns it is possible to see the relationship between the joint 

reaction forces and moments. This practically accessed knowledge can be used in 

design phase of the mechanism. In this part of the study a systematic procedure for 

the mentioned approach is described and also applied to some sample mechanisms.  

 

If m is the number of static equilibrium equations and n is the total number of 

unknown forces and moments, all other unknowns can be written in terms of any n-m 

number of unknowns. For example, if there are five static equilibrium equations but 

seven unknowns, all other unknowns can be written in terms of any two of the 

unknowns. It is not possible to describe all unknowns with less than two unknowns. 

So the minimum number of unknowns in terms of which other unknowns can be 

written is two. A range of values can be given to the unknowns in terms of which 

other unknowns are written. So that, the values of all other unknowns correspond to 

the given values can be calculated. This process helps the designer to perceive the 

relationship between the unknowns. Moreover, the influence of change in the input 

can also be noticed via this process. The designer can use this knowledge in design 

phase to construct a more reliable overconstrained mechanism. It is possible to 

observe under which circumstances all the joint reaction forces/moments take 

smaller values and accordingly to decide giving preloading to some of the links while 

assembling the mechanism. Most probably all the forces/moments will not take their 

smallest values simultaneously. In such a case, an optimization should be performed 

to decide most suitable assembling mode. 
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In this thesis, the method described for the force analysis of overconstrained 

mechanisms is based on three main assumptions:   

i ) The preloaded link is so less stiff than the other links that it can assumed as the 

only non-rigid link in the mechanism. 

ii ) The clearances in the joints are negligible.  

iii) The preloaded link should be a two force member, based on the assumption that 

its inertia effects are negligible. 

 

When a link is assembled with preloading (compression or tension) it will act as a 

spring. If the link is assembled with initial compression, it will act as a compression 

spring; if it is assembled in tension it will act as tension/extension spring.  For 

springs Hooke's law states that; 

F ൌ െkx 

 x is the displacement of the spring's end from its equilibrium position 

 F is the restoring force exerted by the spring on that end 

 k is the spring constant 

As the links are rigid, the distance between the two end points of the preloaded link 

is constant. Therefore, the displacement of the so called spring's end is also constant. 

This result in constant force on the spring. Via this process one of the potential 

unknowns can be eliminated previously.  

 

To clarify mentioned force analysis method five examples are given. Different 

loading and operating conditions of similar mechanism is also discussed to 

emphasize their effects on force analysis.  
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3.1 Example I: A Parallelogram Mechanism (an overconstrained mechanism 

with 5 links and 6 revolute joints) Loaded with Torque T12 

 

As mentioned in Chapter 2.1 this parallelogram mechanism is an overconstrained 

mechanism with actual mobility mᇱ ൌ 1.  while mobility obtained from general DOF 

formula is m=0.  

 

 

aଶ ൌ aସ ൌ aହ ൌ 80 mm 

aଵ ൌ aଷ ൌ 120 mm 

aଷଵ ൌ 60 mm 

Tଵଶ ൌ 300 Nmm 

 

In this case, the mechanism is designed to transmit moment. The input torque is T12. 

while the output torque is M. The operation range of θ12 is assumed to be 0° to 90° 

 

The free body diagrams and static equilibrium  equations are given. 

a4 
a5 a2 

B C 

B0 C0 

A 

A0 
θ12 θ12 θ12 

T12 
M 

A0B0  = a1 

AB = a3 

AC = a31 

Figure 25: An Overconstrained Parallelogram Mechanism Loaded with Torque 
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Link 2: Two force & a moment member 

 

 

Gଵଶ ൌ െFଷଶ    

െTଵଶ െ Fଷଶ,୶ sin θଵଶ aଶ ൅ Fଷଶ,୷ cos θଵଶaଶ ൌ 0  (∑ MAబ
ൌ 0)                               (3.1.1) 

where F32,x is the x component of the force F32 while F32,y is the y component of the 

same force. 

 

  

θ12 

G12 

a2 

A0 

A 

T12 

F32 

Figure 26: Free Body Diagram of link 2 belongs to the Mechanism in Figure 25 
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Link 3: Three force member 

 

 

Fଶଷ,୶ ൅ Fହଷ cos θଵଶ ൅ Fସଷ,୶ ൌ 0  (∑ F୶ ൌ 0ሻ                                                         (3.1.2) 

Fଶଷ,୷ ൅ Fହଷ sin θଵଶ ൅ Fସଷ,୷ ൌ 0   (∑ F୷ ൌ 0ሻ                                                        (3.1.3) 

െFହଷ sin θଵଶ aଷଵ െ Fସଷ,୷ aଷ ൌ 0   (∑ MA ൌ 0)                                                      (3.1.4) 

 

where F23,x is the x component of the force F23 while F23,y is the y component of the 

same force and F43,x is the x component of the force F43 while F43,y is the y 

component of the same force. 

 

  

B C A 

θ12 F23 

F53 
F43 

Figure 27: Free Body Diagram of link 3 belongs to the Mechanism in Figure 25 
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Link 4: Two force & a moment member 

 

 

 Gଵସ ൌ െFଷସ 

M െ Fଷସ,୶ sin θଵଶ aସ ൅ Fଷସ,୷ cos θଵଶaସ ൌ 0  (∑ MBబ
ൌ 0)                                    (3.1.5) 

 

where F34,x is the x component of the force F34 while F34,y is the y component of the 

same force. 

 

  

θ12 

F34 

G14 

a4 

B0 

B 

M 

Figure 28: Free Body Diagram of link 4 belongs to the Mechanism in Figure 25 
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Link 5: Two force member  

 

 

Gଵହ ൌ െFଷହ    

 

 

Due to action-reaction (Newton's third law): 

Fଶଷ ൌ െFଷଶ 

Fହଷ ൌ െFଷହ 

Fସଷ ൌ െFଷସ 

 

  

θ12 

G15 

F35 

a5 

C0 

C 

Figure 29: Free Body Diagram of link 5 belongs to the Mechanism in Figure 25 
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Unknowns;  Fଶଷ,୶ , Fଶଷ,୷ , Fହଷ , Fସଷ,୶ , Fସଷ,୷ , M  

Equations; 

െTଵଶ െ Fଷଶ,୶ sin θଵଶ aଶ ൅ Fଷଶ,୷ cos θଵଶaଶ ൌ 0                                                      (3.1.1) 

Fଶଷ,୶ ൅ Fହଷ cos θଵଶ ൅ Fସଷ,୶ ൌ 0                                                                             (3.1.2) 

Fଶଷ,୷ ൅ Fହଷ sin θଵଶ ൅ Fସଷ,୷ ൌ 0                                                                             (3.1.3) 

െFହଷ sin θଵଶ aଷଵ െ Fସଷ,୷ aଷ ൌ 0                                                                            (3.1.4) 

M െ Fଷସ,୶ sin θଵଶ aସ ൅ Fଷସ,୷ cos θଵଶaସ ൌ 0                                                          (3.1.5) 

 

The number of unknowns is six while the number of equations is five. As the 

unknown quantity is more than the equations, the solution cannot be obtained. All 

other unknowns can be written in terms of one of the unknown. Link 5 is the only 

two force member in this mechanism; therefore, all other unknowns are written in 

terms of F53. 

Fସଷ,୷ ൌ െ
Fହଷ sin θଵଶ aଷଵ

aଷ
 

Fଷସ,୷ ൌ െFସଷ,୷  

Fଶଷ,୷ ൌ െFସଷ,୷ െ Fହଷ sin θଵଶ 

Fଷଶ,୷ ൌ െFଶଷ,୷ 

Fଷଶ,୶ ൌ
Fଷଶ,୷ cos θଵଶaଶ െ Tଵଶ

sin θଵଶ aଶ
 

Fଶଷ,୶ ൌ െFଷଶ,୶ 

Fସଷ,୶ ൌ െFଶଷ,୶ െ Fହଷ cos θଵଶ 

Fଷସ,୶ ൌ െFସଷ,୶ 

M ൌ Fଷସ,୶ sin θଵଶ aସ െ Fଷସ,୷ cos θଵଶaସ 
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By using virtual work method M value can be calculated. The output moment is 

equal to the input moment and it is independent of the θ12 value. 

 

For a given range of F53 values (-20 N to 20 N) F53 versus F43 and F23 graphs are 

drawn in figure 30 for different θ12 values with a 10° increment. It should be noted 

that as at θ12=0° singularity occurs the first graph is drawn at θ12=0.5° 
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Figure 30: F23 and F43 versus F53 Graphs for Different θ12 Values of Example 3.1 
 

θ12=40° θ12=50° 

θ12=60° θ12=70° 

θ12=80° θ12=90° 
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Figure 30 shows that F23 is the symmetric of F43 with respect to F53=0 axis. Therefore, 

abs(F23) values for negative F53 are replaced with abs(F43) values for positive F53 and 

vice versa. It should be noted that the positive values of F53 imply the direction of 

this force is as given in free body diagrams and the negative values imply the 

direction is just the opposite. In other words, the positive values of F53 show that link 

5 is in compression and the negative values of F53 show link 5 is in tension.  

 

In this case in order to progress, the designer should determine whether link 2 or link 

4 is more critical. For example, if link 2 is more critical for some reason, the designer 

can decide to assemble link 5 with initial compression because F23 take smaller 

values for positive F53 values and the positive values of F53 imply that link 5 is in 

compression. Now the problem is demoted to decide the value of the initial 

compression. For the minimum values of F23, F43 takes relatively higher values 

especially up to θ12=60° as shown in figure 30. Choosing F53 values that make F23 

minimum may not be an appropriate approach especially for smaller θ12 values.  In 

order to restrain F43 at acceptable values, selecting F53 value between zero  and 

giving minimum F23 is more suitable. The table 1 is arranged accordingly by using 

MathCAD. The values for θ12=0° and θ12=90° are accepted as extremums and 

disregarded in order to get more reliable results.  

 

Table 1: Minimum Forces for Example 3.1 

θ12 F53 (N) abs(F23) (N) abs(F43) (N) 

10° 6 18,648 24,555 

20° 6 8,210 13,821 

30° 6 5,126 10,209 

40° 5 4,236 7,914 

50° 3 4,096 5,971 

60° 2 3,927 4,907 

70° 3 3,752 4,719 

80° 1 3,754 3,926 
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Now the final F53 value can be calculated by using the equation:  

Fହଷ ൌ
∑ ሺFହଷሻ୧

୬ୀ଼
୧ୀଵ

n
 

 

Fହଷ ൌ
ሺFହଷሻଵ ൅ ሺFହଷሻଶ ൅ ሺFହଷሻଷ ൅ ሺFହଷሻସ ൅ ሺFହଷሻହ ൅ ሺFହଷሻ଺ ൅ ሺFହଷሻ଻ ൅ ሺFହଷሻ଼

8
 

 

Fହଷ ൌ 4 N 

 

As a result, link 5 can be assembled with 4 N initial compression. The F23 and F43 

values for F53=4 N needed to be checked before finalizing the design. If 

corresponding F23 and F43 values are acceptable the design can be finalized. 

 

Table 2: Final Forces for Example 3.1 

θ12 F53 (N) abs(F23) (N) abs(F43) (N) 

10° 4 19,629 23,568 

20° 4 9,111 12,862 

30° 4 5,854 9,286 

40° 4 4,490 7,477 

50° 4 3,921 6,368 

60° 4 3,754 5,604 

70° 4 3,803 5,038 

80° 4 3,982 4,598 
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3.2 Example II: A Parallelogram Mechanism (an overconstrained mechanism 

with 5 links and 6 revolute joints) Loaded with Force F 

 

 

 

 

 

 

 

 

 

 

aଶ ൌ aସ ൌ aହ ൌ 80 mm 

aଵ ൌ aଷ ൌ 120 mm 

F ൌ 5 N 

aଷଵ ൌ 60 mm 

AD ൌ 45 mm 

 

In this case, the mechanism is designed to carry load F. The input is torque T12. The 

operation range of θ12 is assumed to be 0° to 90° 

 

The free body diagrams and static equilibrium  equations are given. 

  

Figure 31: An Overconstrained Parallelogram Mechanism Loaded with an External Force

D 
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AB = a3 

AC = a31 
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Link 2: Two force & a moment member 

 

 

Gଵଶ ൌ െFଷଶ    

െTଵଶ െ Fଷଶ,୶ sin θଵଶ aଶ ൅ Fଷଶ,୷ cos θଵଶaଶ ൌ 0  (∑ MAబ
ൌ 0)                               (3.2.1) 

 

where F32,x is the x component of the force F32 while F32,y is the y component of the 

same force. 

  

θ12 

G12 

a2 

A0 

A 

T12 

F32 

Figure 32: Free Body Diagram of link 2 belongs to the Mechanism in Figure 31 
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Link 3: Three force member 

 

 

Fଶଷ,୶ ൅ Fହଷ cos θଵଶ ൅ Fସଷ cos θଵଶ ൌ 0  (∑ F୶ ൌ 0ሻ                                               (3.2.2) 

Fଶଷ,୷ ൅ Fହଷ sin θଵଶ ൅ Fସଷ sin θଵଶ െ F ൌ 0   (∑ F୷ ൌ 0ሻ                                        (3.2.3) 

െFହଷ sin θଵଶ aଷଵ െ Fସଷ sin θଵଶ  aଷ ൅ F ଷୟయభ

ସ
ൌ 0   (∑ MA ൌ 0)                             (3.2.4) 

 

where F23,x is the x component of the force F23 while F23,y is the y component of the 

same force. 

  

D 

F 

B C A 

θ12 F23 

F53 
F43 

Figure 33: Free Body Diagram of link 3 belongs to the Mechanism in Figure 31 
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Link 4: Two force member 

 

 

 Gଵସ ൌ െFଷସ 

  

θ12 

F34 

G14 

a4 

B0 

B 

Figure 34: Free Body Diagram of link 4 belongs to the Mechanism in Figure 31 
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Link 5: Two force member  

 

 

Gଵହ ൌ െFଷହ    

 

 

Due to action-reaction (Newton's third law): 

Fଶଷ ൌ െFଷଶ 

Fହଷ ൌ െFଷହ 

Fସଷ ൌ െFଷସ 

  

θ12 

G15 

F35 

a5 

C0 

C 

Figure 35: Free Body Diagram of link 5 belongs to the Mechanism in Figure 31 
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Unknowns;  Tଵଶ, Fଶଷ,୶ , Fଶଷ,୷ , Fହଷ , Fସଷ   

Equations; 

െTଵଶ െ Fଷଶ,୶ sin θଵଶ aଶ ൅ Fଷଶ,୷ cos θଵଶaଶ ൌ 0                                                      (3.2.1) 

Fଶଷ,୶ ൅ Fହଷ cos θଵଶ ൅ Fସଷ cos θଵଶ ൌ 0                                                                  (3.2.2) 

Fଶଷ,୷ ൅ Fହଷ sin θଵଶ ൅ Fସଷ sin θଵଶ െ F ൌ 0                                                            (3.2.3) 

െFହଷ sin θଵଶ aଷଵ െ Fସଷ sin θଵଶ  aଷ ൅ F ଷୟయభ

ସ
ൌ 0                                                   (3.2.4) 

 

 

The number of unknowns is five while the number of equations is four. As the 

unknown quantity is more than the equations, the solution cannot be obtained. All 

other unknowns can be written in terms of one of the unknown. Link 5 is a two force 

member and in this example all other unknowns are written in terms of F53. 

 

Fସଷ ൌ
F

3aଷଵ
4 െ Fହଷ sin θଵଶ aଷଵ

sin θଵଶ aଷ
 

Fଶଷ,୷ ൌ F െ Fହଷ sin θଵଶ െ Fସଷ sin θଵଶ 

Fଷଶ,୷ ൌ െFଶଷ,୷ 

Fଶଷ,୶ ൌ െFହଷ cos θଵଶ െ Fସଷ cos θଵଶ 

Fଷଶ,୶ ൌ െFଶଷ,୶ 

Tଵଶ ൌ െFଷଶ,୶ sin θଵଶ aଶ ൅ Fଷଶ,୷ cos θଵଶ aଶ 
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For a given range of F53 values (-20 N to 20 N ) F53 versus F43 and F23 graphs are 

drawn in figure 36 for different θ12 values with a 10° increment. It should be noted 

that as at θ12=0° singularity occurs the first graph is drawn at θ12=0.5° 
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Figure 36: F23 and F43 versus F53 Graphs for Different θ12 Values of Example 3.2 
 

 

Figure 36 shows that there is no symmetry between F23 and  F43 in this case. For 

higher θ12 values it is obviously seen from the graphs that for positive F53 values both 

F23 and  F43 take their minimum values. The positive values of F53 imply the direction 

of this force is as given in free body diagrams and the negative values imply the 

direction is just the opposite. In other words, the positive values of F53 show that link 

5 is in compression and the negative values of F53 show link 5 is in tension.  

 

In this case, the designer already knows to assemble link 5 with initial compression. 

Again the problem is demoted to decide the value of the initial compression. If, for 

some reason, one of the link is more critical than the other, the minimum values of 

θ12=90° θ12=80° 

θ12=70° θ12=60° 
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force on that link should be focused. If the links are equally critical, values between 

their minimum cases should be considered.   

 

Assuming link 2 and link 4 are equally critical an initial compression value i.e.  F53, 

between F53 value corresponding to minimum F23 and F53 value corresponding to 

minimum F43 should be decided.  

x ൌ ඥሺminሺFଶଷሻ െ Fଶଷሻଶ ൅ ሺminሺFସଷሻ െ Fସଷሻଶ 

For each θ12 values x values are calculated and minimum x value is determined. For 

minimum x values corresponding F53, F23 and  F43 values are tabulated in table 3. 

Similar to example 3.1 the values for θ12=0° and θ12=90° are accepted as extremes 

and disregarded in order to get more reliable results. 

 

Table 3: Minimum Forces for Example 3.2 

θ12 F53 abs(F23) abs(F43) 

10° 5 13,369 8,298 

20° 6 8,242 2,482 

30° 5 5,728 1,250 

40° 5 4,419 0,417 

50° 5 3,403 0,052 

60° 4 2,505 0,165 

70° 4 1,849 0,005 

80° 4 1,340 0,096 

 

Similar to former example, the final F53 value can be calculated by using the equation:  

Fହଷ ൌ
∑ ሺFହଷሻ୧

୬ୀ଼
୧ୀଵ

n
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Fହଷ ൌ
ሺFହଷሻଵ ൅ ሺFହଷሻଶ ൅ ሺFହଷሻଷ ൅ ሺFହଷሻସ ൅ ሺFହଷሻହ ൅ ሺFହଷሻ଺ ൅ ሺFହଷሻ଻ ൅ ሺFହଷሻ଼

8
 

 

Fହଷ ൌ 4,75 N 

 

As a result, link 5 can be assembled with 4,75 N initial compression. The F23 and F43 

values for F53=4,75 N needed to be checked before finalizing the design. If 

corresponding F23 and F43 values are acceptable the design can be finalized. 

 

Table 4: Final Forces for Example 3.2 

θ12 F53 (N) abs(F23) (N) abs(F43) (N) 

10° 4,75 13,253 8,423 

20° 4,75 7,737 3,107 

30° 4,75 5,647 1,375 

40° 4,75 4,358 0,542 

50° 4,75 3,364 0,073 

60° 4,75 2,509 0,210 

70° 4,75 1,741 0,380 

80° 4,75 1,082 0,471 

 

 

3.3 Example III: A Double Slider Mechanism (an overconstrained mechanism 

with 5 links and 4 revolute and 2 prismatic joints) Loaded with Force F14 

 

As mentioned in Chapter 2.1 this double slider mechanism is an overconstrained 

mechanism with actual mobility mᇱ ൌ 1 .  while mobility obtained from Grübler 

formula is m=0.  
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Fଵସ ൌ 5 N 

aହ ൌ 60 mm 

aଷ ൌ 120 mm 

 

In this case the mechanism is designed to transmit force. The mechanism is in static 

equilibrium with two external forces. The operation range of θ12 is assumed to be 0° 

to 90° 

 

The free body diagrams and static equilibrium  equations are given. 

  

C0 

F12 

C 

B 

A 

F14 

۰ۯ
૛

ൌ ۱ۯ ൌ ۱૙۱ 

C0C  = a5 

AB = a3 

AC = a31 

 

θ15 

Figure 37: An Overconstrained Double Slider Mechanism Loaded with Force F14 
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Link 2: Three force member 

 

 

Gଵଶ െ Fଷଶ,୶ ൌ 0                                                                                                     (3.3.1) 

െFଵଶ ൅ Fଷଶ,୷ ൌ 0                                                                                                   (3.3.2) 

where F32,x is the x component of the force F32 while F32,y is the y component of the 

same force. 

 

Link 5: Two force member 

 

 

 

θ15 

θ15 

G15 

F35 

F32 

F12 

G12 

Figure 38: Free Body Diagram of link 2 belongs to the Mechanism in Figure 37 

Figure 39: Free Body Diagram of link 5 belongs to the Mechanism in Figure 37 
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Gଵହ ൌ െFଷହ 

Link 3: Three force member 

 

 

 

െFଶଷ,୷ ൅ Fହଷ sin θଵହ ൅ Fସଷ,୷ ൌ 0                                                                          (3.3.3)                       

Fଶଷ,୶ ൅ Fହଷ cos θଵହ െ Fସଷ,୶ ൌ 0                                                                             (3.3.4) 

െFହଷ sin θଵହ cosሺ 2π െ θଵଷሻaଷଵ െ Fହଷ cos θଵହ sinሺ2π െ θଵଷሻaଷଵ 

െFସଷ,୷ cosሺ 2π െ θଵଷሻaଷ ൅ Fସଷ,୶ sinሺ2π െ θଵଷሻ aଷ ൌ 0                                       (3.3.5) 

 

where F23,x is the x component of the force F23 while F23,y is the y component of the 

same force and F43,x is the x component of the force F43 while F43,y is the y 

component of the same force. 

  

θ13 
F23 

F43 

θ15 F53 

A 

C 

B 

Figure 40: Free Body Diagram of link 3 belongs to the Mechanism in Figure 37 
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Link 4: Three force member 

 

 

Gଵସ െ Fଷସ,୷ ൌ 0                                                                                                     (3.3.6) 

െFଵସ ൅ Fଷସ,୶ ൌ 0                                                                                                   (3.3.7) 

 

where F34,x is the x component of the force F34 while F34,y is the y component of the 

same force. 

 

Due to action-reaction (Newton's third law): 

Fଶଷ ൌ െFଷଶ 

Fହଷ ൌ െFଷହ 

Fସଷ ൌ െFଷସ 

  

F34 

F14 

G14 

Figure 41: Free Body Diagram of link 4 belongs to the Mechanism in Figure 37 
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Unknowns;  Fଶଷ,୶ , Fଶଷ,୷ , Fହଷ , Fସଷ,୶ , Fସଷ,୷,  Fଵଶ , Gଵଶ, Gଵସ  

Equations; 

Gଵଶ െ Fଷଶ,୶ ൌ 0                                                                                                     (3.3.1) 

െFଵଶ ൅ Fଷଶ,୷ ൌ 0                                                                                                   (3.3.2) 

െFଶଷ,୷ ൅ Fହଷ sin θଵହ ൅ Fସଷ,୷ ൌ 0                                                                          (3.3.3) 

Fଶଷ,୶ ൅ Fହଷ cos θଵହ െ Fସଷ,୶ ൌ 0                                                                             (3.3.4) 

െFହଷ sin θଵହ cosሺ 2π െ θଵଷሻaଷଵ െ Fହଷ sin θଵହ cosሺ2π െ θଵଷሻaଷଵ 

െFସଷ,୷ cosሺ 2π െ θଵଷሻaଷ ൅ Fସଷ,୶ sinሺ2π െ θଵଷሻ aଷ ൌ 0                                       (3.3.5) 

Gଵସ െ Fଷସ,୷ ൌ 0                                                                                                     (3.3.6) 

െFଵସ ൅ Fଷସ,୶ ൌ 0                                                                                                   (3.3.7) 

 

The number of equations is seven while the number of unknowns is eight. As the 

unknown quantity is more than the equations, the solution cannot be obtained. All 

other unknowns can be written in terms of one of the unknown. Link 5 is the only 

two force member in this mechanism; therefore, all other unknowns are written in 

terms of F53.  

 

Fଷସ,୶ ൌ Fଵସ                                                                                             

Fସଷ,୶ ൌ െFଷସ,୶ 

Fଶଷ,୶ ൌ െFହଷ cos θଵହ ൅ Fସଷ,୶                                                                       

 Fଷଶ,୶ ൌ െFଶଷ,୶ 

Gଵଶ ൌ Fଷଶ,୶                                                                         

 



63 
 

Fସଷ,୷

ൌ
െFହଷ sin θଵହ cosሺ 2π െ θଵଷሻaଷଵ െ Fହଷ cos θଵହ sinሺ2π െ θଵଷሻaଷଵ ൅ Fସଷ,୶ sinሺ2π െ θଵଷሻ aଷ

cosሺ 2π െ θଵଷሻaଷ
 

Fଷସ,୷ ൌ െFସଷ,୷ 

Gଵସ ൌ Fଷସ,୷ 

Fଶଷ,୷ ൌ Fହଷ sin θଵହ ൅ Fସଷ,୷                                                                                             

Fଷଶ,୷ ൌ െFଶଷ,୷ 

Fଵଶ ൌ Fଷଶ,୷      

         

For the given range of F53 values obtained values of F43, F23, F12, G12 and G14  are 

given in figures 42 and 43. Figure 42 shows F53 versus F43 and F23 values and figure 

43 shows F53 versus F12, G12 and G14  values. All graphs are drawn in figure 42 and in 

figure 43 for different θ15 values with a 10° increment. It should be noted that as at 

θ15=90° singularity occurs the last graphs are drawn at θ15=89.5° 
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Figure 42: F23 and F43 versus F53 Graphs for Different θ12 Values of Example 3.3 
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Figure 43: F12, G12 and G14 versus F53 Graphs for Different θ12 Values of Example 3.3 
 

 

Figure 42 shows that there is no symmetry between F23 and F43 in this case. For 

intermediate values of θ12 it is obviously seen from the graphs that for negative F53 

values both F23 and  F43 take their minimum values. The negative values of F53 imply 

the direction is just the opposite of shown in free body diagrams. In other words, the 

negative values of F53 show that link 5 is in tension while the positive values of F53 

show link 5 is in compression.  

 

θ15=60° θ15=70° 

θ15=80° θ15=89.5° 
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In this case, the designer already knows to assemble link 5 with initial tension. Again 

the problem is demoted to decide the value of the initial tension. If, for some reason, 

one of the link is more critical than the other, the minimum values of force on that 

link should be focused. If the links are equally critical, values between their 

minimum cases should be considered.   

Assuming link 2 and link 4 are equally critical an initial tension value i.e.  F53, 

between F53 value corresponding to minimum F23 and F53 value corresponding to 

minimum F43 should be decided.  

x ൌ ඥሺminሺFଶଷሻ െ Fଶଷሻଶ ൅ ሺminሺFସଷሻ െ Fସଷሻଶ 

For each θ12 values x values are calculated and minimum x value is determined. For 

minimum x values corresponding F53, F23 and  F43 values are tabulated in table 5. 

Similar to example 3.1 and 3.2 the values for θ12=0° and θ12=90° are accepted as 

extremes and disregarded in order to get more reliable results. 

 

Table 5: Minimum Forces for Example 3.3 

θ12 F53 abs(F23) abs(F43) 

10° -5 0,885 5 

20° -5 1,845 5,001 

30° -6 2,893 5,001 

40° -7 4,211 5,009 

50° -8 5,960 5,003 

60° -10 8,660 5 

70° -15 13,738 5,013 

80° -20 28,397 10 

 

 

F12 is independent of F53 values. It is constant for each θ12 value but if G12 and G14 

are assumed to be as important as F23 and F43 they can be also implemented into x 

equation. However, for this example implementation of G12 and G14 into the equation 
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does not affect the result because they also take minimum values for the F53 values in 

table 5.  

 

Similar to former examples, the final F53 value can be calculated by using the 

equation:  

Fହଷ ൌ
∑ ሺFହଷሻ୧

୬ୀ଼
୧ୀଵ

n
 

Fହଷ ൌ
ሺFହଷሻଵ ൅ ሺFହଷሻଶ ൅ ሺFହଷሻଷ ൅ ሺFହଷሻସ ൅ ሺFହଷሻହ ൅ ሺFହଷሻ଺ ൅ ሺFହଷሻ଻ ൅ ሺFହଷሻ଼

8
 

 

Fହଷ ൌ െ9,5 N 

 

As a result, link 5 can be assembled with 9,5 N initial tension. The F23 and F43 values 

for F53=-9,5 N needed to be checked before finalizing the design. If corresponding 

F23 and F43 values are acceptable the design can be finalized. 

 

Table 6: Final Forces for Example 3.3. 

θ12 F53 (N) abs(F23) (N) abs(F43) (N) 

10° -9,5 4.444 5.059 

20° -9,5 4.328 5.200 

30° -9,5 4.330 5.336 

40° -9,5 4.774 5.353 

50° -9,5 6.061 5.171 

60° -9,5 8.664 5.019 

70° -9,5 13.849 6,938 

80° -9 28.554 19,648 
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Table 7: Final Forces for Example 3.3 

θ12 F53 (N) abs(G12) (N) abs(G14) (N) abs(F12) (N) 

10° -9,5 4,356 0,768 0,882 

20° -9,5 3,927 1,429 1,820 

30° -9,5 3,227 1,863 2,887 

40° -9,5 2,277 1,911 4,195 

50° -9,5 1,106 1,319 5,959 

60° -9,5 0,250 0,433 8,660 

70° -9,5 1,751 4,810 13,737 

80° -9,5 3,350 19,001 28,356 

 

 

3.4 Example IV: A Double Slider Mechanism (an overconstrained mechanism 

with 5 links and 4 revolute, 2 prismatic joints) Loaded with Force F 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: An Overconstrained Double Slider Mechanism Loaded with F 
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F ൌ 10 N 

aହ ൌ 60 mm 

aଷ ൌ 120 mm 

In this case the mechanism is designed to cut materials with a cutting tool on point C. 

F is the reaction force of the material and it is in static equilibrium with F14. The 

operation range of θ15 is assumed to be 0° to 90° 

 

Link 2: Three force member 

 

 

Gଵଶ െ Fଷଶ,୶ ൌ 0                                                                                                     (3.4.1) 

Fଷଶ,୷ ൌ 0                                                                                                                (3.4.2) 

  

F32 

G12 

Figure 45: Free Body Diagram of link 2 belongs to the Mechanism in Figure 44 
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Link 5: Two force member 

 

 

Gଵହ ൌ െFଷହ 

 

Link 4: Three force member 

 

 

Gଵସ െ Fଷସ,୷ ൌ 0                                                                                                     (3.4.6) 

െFଵସ ൅ Fଷସ,୶ ൌ 0                                                                                                  (3.4.7) 

 

F34 

F14 

G14 

θ15 

θ15 

G15 

F35 

Figure 46: Free Body Diagram of link 5 belongs to the Mechanism in Figure 44 
 

Figure 47: Free Body Diagram of link 4 belongs to the Mechanism in Figure 44 
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Link 3: Three force member 

 

 

 

െFଶଷ,୷ ൅ Fହଷ sin θଵହ ൅ Fସଷ,୷ െ F sinሺ஠

ଶ
െ θଵହሻ ൌ 0                                              (3.4.3)            

Fଶଷ,୶ ൅ Fହଷ cos θଵହ െ Fସଷ,୶ ൅ F cosሺ஠

ଶ
െ θଵହሻ ൌ 0                                                (3.4.4)                       

െFଶଷ,୷ cosሺ 2π െ θଵଷሻaଷଵ ൅ Fଶଷ,୶ sinሺ2π െ θଵଷሻaଷଵ 

െFସଷ,୷ cosሺ 2π െ θଵଷሻaଷ ൅ Fସଷ,୶ sinሺ2π െ θଵଷሻ aଷ ൌ 0                                       (3.4.5) 

 

Due to action-reaction (Newton's third law): 

Fଶଷ ൌ െFଷଶ 

Fହଷ ൌ െFଷହ 

Fସଷ ൌ െFଷସ 

  

F 

B 

C 

A 

θ13 

F23 

F43 

θ15 F53 

(π/2)-θ15 

Figure 48: Free Body Diagram of link 3 belongs to the Mechanism in Figure 44 
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Unknowns;  Fଶଷ,୶ , Fଶଷ,୷ , Fହଷ , Fସଷ,୶ , Fସଷ,୷,  Fଵସ , Gଵଶ, Gଵସ  

Equations; 

Gଵଶ െ Fଷଶ,୶ ൌ 0                                                                                                     (3.4.1) 

Fଷଶ,୷ ൌ 0                                                                                                                (3.4.2) 

െFଶଷ,୷ ൅ Fହଷ sin θଵହ ൅ Fସଷ,୷ െ F sinሺଷ஠

ଶ
൅ θଵହሻ ൌ 0                                            (3.4.3)            

Fଶଷ,୶ ൅ Fହଷ cos θଵହ െ Fସଷ,୶ ൅ F cosሺଷ஠

ଶ
൅ θଵହሻ ൌ 0                                               (3.4.4)                       

െFଶଷ,୷ cosሺ 2π െ θଵଷሻaଷଵ ൅ Fଶଷ,୶ sinሺ2π െ θଵଷሻaଷଵ 

െFସଷ,୷ cosሺ 2π െ θଵଷሻaଷ ൅ Fସଷ,୶ sinሺ2π െ θଵଷሻ aଷ ൌ 0                                       (3.4.5) 

Gଵସ െ Fଷସ,୷ ൌ 0                                                                                                     (3.4.6) 

െFଵସ ൅ Fଷସ,୶ ൌ 0                                                                                                   (3.4.7) 

 

The number of equations is seven while the number of unknowns is eight. As the 

unknown quantity is more than the equations , the solution cannot be obtained. . All 

other unknowns can be written in terms of one of the unknown. Link 5 is the only 

two force member in this mechanism; therefore, all other unknowns are written in 

terms of F53. 

 

Fଷଶ,୷ ൌ 0 

Fଶଷ,୷ ൌ 0 

Fସଷ,୷ ൌ െFହଷ sin θଵହ ൅ F sinሺ
3π
2

൅ θଵହሻ 

Fଷସ,୷ ൌ െFସଷ,୷ 

Gଵସ ൌ Fଷସ,୷ 



75 
 

Fଶଷ,୶ ൌ െFହଷ cos θଵହ ൅ Fସଷ,୶ െ F cosሺ
3π
2

൅ θଵହሻ 

Fଶଷ,୶ ൌ
Fସଷ,୷ cosሺ 2π െ θଵଷሻaଷ െ Fସଷ,୶ sinሺ2π െ θଵଷሻ aଷ

sinሺ2π െ θଵଷሻ aଷଵ
 

combining the two equation above; 

Fସଷ,୶ ൌ ሺ
aଷଵ

aଷଵ ൅ aଷ
ሻሺFହଷ cos θଵହ ൅ F cos ൬

3π
2

൅ θଵହ൰ ൅
Fସଷ,୷ cosሺ 2π െ θଵଷሻaଷ

sinሺ2π െ θଵଷሻ aଷଵ
ሻ 

now Fଶଷ,୶ can also be found 

Fଷଶ,୶ ൌ െFଶଷ,୶ 

Gଵଶ ൌ Fଷଶ,୶ 

Fଷସ,୶ ൌ െFସଷ,୶ 

Fଵସ ൌ Fଷସ,୶ 

 

For the given range of F53 values obtained values of F43, F23, F14, G12 and G14  are 

given in figures 49 and 50. Figure 49 shows F53 versus F43 and F23 values and figure 

50 shows F53 versus F14, G12 and G14  values. All graphs are drawn in figure 49 and in 

figure 50 for different θ15 values with a 10° increment. It should be noted that as at 

θ15=0° singularity occurs the first graphs are drawn at θ15=0.5° 
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Figure 49: F23 and F43 versus F53 Graphs for Different θ12 Values of Example 3.4 
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Figure 50: F14, G14 and G12 versus F53 Graphs for Different θ12 Values of Example 3.4 
  

 

Figure 49 shows that there is no symmetry between F23 and F43 in this case. For 

lower values of θ12 it is seen from the graphs that for positive F53 values both F23 and  

F43 take their minimum values. However, for higher values of θ12, F23 take its 

minimum value when F53 is negative while F43 take its minimum value when F53 is 

positive. Therefore, in this case, the designer should decide whether to assemble link 

5 in compression or in tension and the value of initial loading simultaneously.  

 

θ15=60° θ15=70° 

θ15=80° θ15=90° 
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Similar to other cases, the positive values of F53 imply the direction of this force is as 

given in free body diagrams and the negative values imply the direction is just the 

opposite. In other words, the positive values of F53 show that link 5 is in compression 

and the negative values of F53 show link 5 is in tension. 

 

If, for some reason, one of the link is more critical than the other, the minimum 

values of force on that link should be focused. If the links are equally critical, values 

between their minimum cases should be considered.   

 

Assuming link 2 and link 4 are equally critical an initial loading value i.e.  F53, 

between F53 value corresponding to minimum F23 and F53 value corresponding to 

minimum F43 should be decided.  

 

x ൌ ඥሺminሺFଶଷሻ െ Fଶଷሻଶ ൅ ሺminሺFସଷሻ െ Fସଷሻଶ 

 

For each θ12 values x values are calculated and minimum x value is determined. For 

minimum x values corresponding F53, F23 and  F43 values are tabulated in table 8. 

Similar to former examples the values for θ12=0° and θ12=90° are accepted as 

extremes and disregarded in order to get more reliable results. 
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Table 8: Minimum Forces for Example 3.4 

θ12 F53 abs(F23) abs(F43) 

10° 18 0,267 20,339 

20° 7 0,252 12,001 

30° 3 0,931 9,783 

40° 2 2,774 8,218 

50° 0 3,309 7,762 

60° -1 4,311 7,016 

70° -1 5,508 5,621 

80° -1 6,290 4,343 

 

F12 is independent of F53 values. It is constant for each θ12 value. G12 is equal to F32,x 

and G14 is equal to F34,y. If G12 and G14 are assumed to be as important as F23 and F43 

they can be also implemented into x equation. However, for this example from figure 

46 and figure 47 it is obvious that, the behaviour of G12 is similar to F23 and the 

behaviour of G14 is similar to F43. Therefore, such an implementation is not needed 

as the impact is negligible.  

 

As aforementioned, the final F53 value can be calculated by using the equation:  

Fହଷ ൌ
∑ K୧ሺFହଷሻ୧

୬ୀ଼
୧ୀଵ

n
 

Fହଷ ൌ
ሺFହଷሻଵ ൅ ሺFହଷሻଶ ൅ ሺFହଷሻଷ ൅ ሺFହଷሻସ ൅ ሺFହଷሻହ ൅ ሺFହଷሻ଺ ൅ ሺFହଷሻ଻ ൅ ሺFହଷሻ଼

8
 

 

Fହଷ ൌ 3,375 N 

As a result, link 5 can be assembled with 3,375 N initial compression. The F23 and 

F43 values for F53=3,375 N needed to be checked before finalizing the design. If 

corresponding F23 and F43 values are acceptable the design can be finalized. 
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Table 9: Final Forces for Example 3.4. 

θ12 F53 (N) abs(F23) (N) abs(F43) (N) 

10° 3,375 14,136 21,314 

20° 3,375 3,154 12,764 

30° 3,375 1,256 9,647 

40° 3,375 3,828 7,553, 

50° 3,375 5,478 5,805 

60° 3,375 6,499 4,374 

70° 3,375 7,004 3,556 

80° 3,375 7,049 3,738 

 

 

Table 10: Final Forces for Example 3.4. 

θ12 F53 (N) abs(G12) (N) abs(G14) (N) abs(F12) (N) 

10° 3,375 14,136 9,262 19,196 

20° 3,375 3,154 8,243 9,746 

30° 3,375 1,256 6,973 6,667 

40° 3,375 3,828 5,491 5,186 

50° 3,375 5,478 3,842 4,351 

60° 3,375 6,499 2,077 3,849 

70° 3,375 7,004 0,249 3,547 

80° 3,375 7,049 1,587 3,385 

 

 

3.5 Example V: A Parallelogram Mechanism (an overconstrained mechanism 

with 6 links and 8 revolute joints) Loaded with Torque T12 

 

This example is given as a further consideration about the preloaded link selection in 

overconstrained mechanisms. As discussed in chapter 2.1.3, the overconstrained 
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mechanism in figure 51 has actual mᇱ ൌ 1. However, by the general DOF formula 

m=-1 is obtained.  

 

Figure 51: An Overconstrained Parallelogram Mechanism Loaded with Torque 
 

 

Figure 52: Free body diagrams of the mechanism in figure 51 
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In figure 52, it is obviously seen that,  

Fଷଶ ൌ െGଵଶ 

Fଷହ ൌ െGଵହ 

Fଷ଺ ൌ െGଵ଺ 

Fଷସ ൌ െGଵସ 

Due to action-reaction (Newton's third law): 

Fଶଷ ൌ െFଷଶ 

Fହଷ ൌ െFଷହ 

F଺ଷ ൌ െFଷ଺ 

Fସଷ ൌ െFଷସ 

 

So the unknowns are; F23,x, F23,y, F43,x, F43,y,  F53, F63, M. The number of independent 

static force equilibrium equations is 5, however the number of unknowns is 7. 

Therefore, all other unknowns can be written in terms of  2 of the unknowns. As link 

5 and link 6 are the only two force members of the mechanism. So, they can be 

selected as the links to be preloaded and all the other unknowns can be expressed in 

terms of F53 and F63. 
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CHAPTER 4 

 

 

DISCUSSION AND CONCLUSION 

 

 

 

In this thesis kinematic and force analyses of overconstrained mechanisms are 

performed. The study is restricted to planar overconstrained mechanisms only. 

However, the investigated methods and approaches could be extended to the spatial 

overconstrained mechanisms as well. 

 

In chapter 1, general information about overconstrained mechanisms, previous 

studies, open problems in the literature and motivation are given.  

 

In chapter 2, overconstrained mechanisms are investigated in terms of kinematic 

analysis. Indeed, in that chapter what performed is not the kinematic analysis of 

existing overconstrained mechanisms but the methods to generate overconstrained 

mechanisms by using kinematics. Four different methods for the generation of 

overconstrained mechanisms are discussed. The first one, analytical method, is 

applicable to all kinds of planar overconstrained mechanisms; however, obtaining a 

mobile overconstrained mechanisms using the results of this method is not simple. 

On the other hand, such a mobile overconstrained mechanism, for the given link 

number, joint number and joint type, may never be exist. The second one, the method 

of cognates, is a practical way of mobile overconstrained mechanism generation. If 

one or more cognates of any mechanism is known, a mobile overconstrained 

mechanism can always be constructed using the cognates. Various cognate types, 
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such as coupler curve cognates, function cognates can be used for this purpose. 

However, cognate linkages are a different extensive research topic within mechanism 

researches. Although many methods are improved for the derivation of cognates, a 

general procedure applicable to all kinds of linkages has not been introduced yet. 

Nevertheless, if cognates of a mechanism are known, a mobile overconstrained 

mechanism can always be generated using cognates. The third one, the method of 

combining identical modules, is another practical way of mobile overconstrained 

mechanism constitution. If combination of identical modules without blocking the 

basic motion of the module is possible, a mobile overconstrained mechanism can be 

generated via this way. This basic motion can be a straight line or circular motion or 

any kind of motion. The only necessary condition is that the basic motion of the 

module should not be blocked. Via the last method, the method of extending an 

overconstrained mechanism with extra links, a new overconstrained mechanism can 

be generated by adding extra links and joints to an already existing overconstrained 

mechanism. 

 

In chapter 3, a method for the force analysis of overconstrained mechanisms is 

introduced. This analysis should not be performed to find the forces on any 

overconstrained mechanism which is already constructed. On the contrary, that 

should be performed before the assembly process of the mechanism. Overconstrained 

mechanisms show statically indeterminate characteristics. In order to cope with the 

indeterminacy, applying preloading at assembly phase is suggested in the method.   

Prior to preloading, the forces and moments are written in terms of each other. Then, 

the amount of preloading is decided such that the other joint reaction forces/moments 

kept in minimum.  An optimization process is performed to determine the minimum 

point. This preloading may be compression or tension. The direction of the 

preloading is decided as well as the amount of preloading. Finally, the designated 

preloading is applied at assembly phase of the mechanism. The method described in 

chapter 3 is based on three main assumptions: i) The preloaded link is so less stiff 

than the other links that it can assumed as the only non-rigid link in the mechanism. 

ii) The clearances in the joints are negligible.  iii)  The preloaded link should be a 

two force member, based on the assumption that its inertia effects are negligible. 
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A future work can be the application of the analytical method to different groups of 

link-joint combinations in order to generate new overconstrained mechanisms. As 

another future work, the methods presented in this study can be extended to spatial 

overconstrained mechanisms.  
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