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ABSTRACT 

 

 

MATCHING AND RECONSTRUCTION OF  

LINE FEATURES FROM ULTRA-HIGH RESOLUTION  

STEREO AERIAL IMAGERY  

 

 

 
OK, Ali Özgün 

PhD., Department of Geodetic and Geographic Information Technologies 

Supervisor: Prof. Dr. Vedat TOPRAK 

Co-Supervisor: Prof. Dr. Uwe SOERGEL 

 

September 2011, 196 pages 

 

 

 

In this study, a new approach for the matching and reconstruction of line features 

from multispectral stereo aerial images is presented. The advantages of the 

existing multispectral information in aerial images are fully taken into account all 

over the steps of pre-processing and edge detection. To accurately describe the 

straight line segments, a principal component analysis technique is adapted. The 

initial correspondences between the stereo images are generated using a new pair-

wise stereo matching approach which involves a total of seven relational 

constraints. The final line to line correspondences between the stereo images are 

established in a precise matching stage in which the final line matches are 

assigned by means of three novel measures and a final similarity voting scheme. 

Once the line matches are established, the stereo reconstruction of those matches 

is performed by an innovative reconstruction approach that manipulates the 

redundancy inherent in line pair-relations. By this way, the reconstruction of the 

stereo matches that are observed in a nearly-parallel geometry with the epipolar  
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lines can also be performed accurately. 

 

The proposed approach is tested over two different urban test sites with various 

built-up characteristics, and as a result, very successful and promising stereo line 

matching and reconstruction performances are reached. Besides, the comparison 

of the results of the proposed approach with the results of one of the state-of-the-

art stereo matching approaches proves the superiority and the potential of 

proposed approach. 

 

 

Keywords: Pair-wise Line Matching, Reconstruction, Straight Line Extraction, 

Stereo Aerial Images, Photogrammetry. 
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ÖZ 

 

 

ULTRA YÜKSEK ÇÖZÜNÜRLÜKLÜ STEREO HAVA 

FOTOĞRAFLARINDAN DOĞRUSAL NESNELERİN 

EŞLENMESİ VE GERİ ÇATIMI  
 

 

 

OK, Ali Özgün 

Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü 

Tez Yöneticisi: Prof. Dr. Vedat TOPRAK 

Ortak Tez Yöneticisi: Prof. Dr. Uwe SOERGEL 

 

Eylül 2011, 196 sayfa 

 

 

 

Bu çalışmada, çok-bantlı stereo hava görüntülerinden elde edilen çizgisel 

nesnelerin eşlenmesi ve üç boyutlu geri-çatımı için yeni bir yaklaşım sunulmuştur. 

Hava görüntülerinde var olan çok-bant bilgisi, ön-işleme ve kenar bulma 

aşamalarında tam olarak kullanılmıştır. Doğrusal çizgilerin başarılı bir şekilde 

çıkarılabilmesi amacıyla temel bileşenler analizi yöntemi uygulanmıştır. Stereo 

görüntülerdeki ilk eşlemeler, toplamda yedi adet ilişkisel koşul içeren yeni bir 

çift-tabanlı stereo çizgi eşleme yöntemi ile gerçekleştirilmiştir. Stereo 

görüntülerdeki nihai bire-bir çizgi eşlemeleri, üç adet yeni ölçüt ve son-benzerlik 

değerlendirilmesi kısımlarını içeren hassas eşleme aşamasında belirlenmiştir. 

Çizgi eşlemeleri bulunduktan sonra bu çizgilerin üç boyutlu geri-çatımı, çift-

tabanlı çizgisel ilişkilerin doğasında bulunan ve mükerrer eşleme bilgisini 

kullanan yenilikçi bir yaklaşım ile gerçekleştirilmiştir. Bu sayede, epipolar 

çizgisine neredeyse paralel olarak bulunan stereo eşlemelerin geri-çatımının da 

başarılı bir şekilde yapılabilmesi mümkün olabilmektedir.  
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Önerilen yaklaşım çeşitli yerleşim şekilleri barındıran iki farklı test alanında 

değerlendirilmiş ve oldukça başarılı ve umut verici stereo çizgi eşleme ve geri-

çatım sonuçlarına ulaşılmıştır. Bunun yanı sıra, önerilen yaklaşımın sonuçları ile 

çizgi eşlemede başarısı kabul edilmiş ve bilinen bir yöntemin sonuçlarının 

karşılaştırması da önerilen yaklaşımın üstünlüğünü ve potansiyelini 

kanıtlamaktadır.  

 

 

Anahtar Kelimeler: Çift-tabanlı Çizgi Eşleme, Geri-çatım, Doğrusal Çizgi 

Çıkarımı, Stereo Hava Görüntüleri, Fotogrametri. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Purpose and Scope 

 

Aerial imaging is one of the most common and versatile ways of obtaining 

information about the objects on the Earth’s surface. The information can be quite 

detailed and of high-quality due to the advanced capabilities of aerial imaging 

such as the availability of ultra-high-resolution (UHR) cameras (3-10 cm), 

involved geometric fidelity, broadened spectral sensitivity, permanent recording 

etc. These special characteristics have turned aerial imagery into one of the most 

important state-of-the-art data acquisition techniques. 

 

Accurate and reliable knowledge of the terrain surface and/or the height of various 

off-terrain objects extracted from UHR aerial images are essential for a wide 

range of applications. Besides, in addition to accuracy and reliability concerns, the 

reconstructed surface must also be represented in detail to guide further automated 

image understanding and interpretation tasks. Therefore, the management of 

height discontinuities turns out to be a very important issue since most of the 

generated dense surface models suffer from the problem of smoothing caused by 

the interpolation around the height discontinuities. At this point, feature-based 

image matching takes an important part, since the height discontinuities in the real 

world mostly appear as intensity and/or color differences in the images. Managing 

those differences in different ways determines the type of feature-based matching 

method to be utilized and finally results in three distinctive types of features that 
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can be used for matching, i.e., interest points, edges/lines and regions/polygons. 

The urban areas that consist of various man-made objects are mostly dominated 

by linear structures. Thus, reliable and accurate reconstruction of 3D edge/line 

features has a major importance and is a vivid field of research to this day. 

 

Up to now, a significant number of research studies have been completed in the 

field of line matching from aerial images. However, in a stereo environment, the 

ambiguity problem of line matching is an issue that remains unsolved. The major 

problem arises from the lack of measure(s) and/or constraint(s) for line features 

that are invariant under different viewing conditions. Therefore, although a 

number of fully automated approaches have been tested so far, achieving 

acceptable results from those systems are still limited to certain multiple imaging 

conditions and far below the human perceptual abilities. Besides those matching 

problems, it is well-known that the reconstruction of straight lines which are 

nearly parallel to the epipolar line is numerically unstable within a stereo image 

pair or a single image strip. This is due to the reason that if the angles of lines in 

image space get closer to the epipolar direction, the projection planes generated 

from line segments become similar and in the worst case (exact alignment) they 

turn out to be the same plane. For those cases, the direct construction of 3D lines 

from the intersection of planes is highly problematic and in some cases the 

intersection (or the reconstruction) may not be possible. 

 

The work presented in this thesis is a new approach for the matching and 3D 

reconstruction of straight line features from UHR stereo aerial imagery. The 

developed scheme aims to provide solutions for the problems stated above and 

attempts to improve the performances of the matching and reconstruction of the 

line segments observed in a stereo geometry. The approach consists of three 

fundamental steps; (i) 2D line extraction, (ii) stereo matching of the extracted line 

segments, and (iii) stereo reconstruction of the matched line segments (Fig. 1.1). 

For the implementation of the developed approach, a single stand-alone system 

that is fully capable to execute the proposed approach is also developed. 
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Figure 1.1 Flowchart of the proposed approach. 
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1.2 Contributions 

 

The contributions and innovations of this thesis are: 

 

 Although aerial images have been rich of multispectral information, so far, 

this fact was almost completely disregarded or not efficiently used during 

the low level processing such as filtering, edge detection etc. However, 

multispectral aerial images provide opportunities to extract line features 

that cannot be detected in the grayscale images due to several reasons, 

such as low contrast, accidental object alignments etc. Thus, the proposed 

approach takes full advantage of the existing multispectral information in 

aerial images in all the steps, especially during pre-processing and edge 

detection. Thus, even object boundaries that show only a very slight color 

difference could be detected. 

 

 To accurately describe the straight line segments, a two stage method is 

proposed, (i) the extraction of straight edge segments with principal 

component analysis, and (ii) fitting line segments to the extracted straight 

edge segments. With the improvements of the straight edge detector, the 

straight line extraction algorithm works quite robustly, even for the areas 

where an enormous number of edges are found. This offers an opportunity 

to detect and reconstruct lines that belong to objects and their certain 

details. 

 

 A new relational approach in which the line correspondences between the 

stereo aerial images are established in a pair-wise manner is developed. 

The approach initially generates reference line pairs in the base image and 

collects all potential matching candidate pairs from the search image. A 

total of seven unique pair-wise constraints are involved during the 

matching of line pairs including various new and improved constraints in 
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different domains such as geometry, radiometry, correlation, regional and 

epipolarity. 

 

 To assign the final line-to-line correspondences between the stereo images, 

a precise matching approach is proposed. During the precise matching 

stage, the matching inconsistencies are eliminated using three novel 

measures (line-based Daisy, Redundancy, and Pair-wise Quality) and a 

final similarity voting scheme. At this step, in contrast to previous studies, 

the line-to-line relations are fully taken into account to solve the matching 

inconsistencies by imposing the Redundancy measure computed from the 

entire pair-wise matches. 

 

 A new stereo reconstruction approach is proposed for the line segments 

that are nearly-aligned (≤ 10º) with the epipolar line. The method exploits 

the redundancy inherent in line pair-relations to generate artificial 3D 

point entities and utilize those entities during the estimation process to 

improve the height values of the reconstructed line segments. For the 

selection of the best point entities for the reconstruction, a new weight 

function and directional region-based selection method is proposed. Thus, 

we have a possibility to accurately reconstruct the line segments that are 

nearly-aligned with the epipolar line. 

 

 A single stand-alone system (within the Matlab 7 environment with 

graphical user interfaces) that is fully capable of executing the proposed 

approaches is developed. In addition to the implementation of the 

proposed approach, the system has additional capabilities such as the 

processing of the images acquired with both analog and digital frame 

sensors, performing simultaneous bundle-block-adjustment of frame 

sensors (with and without self-calibration parameters), etc.   
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1.3 Organization of the Thesis 

 

This thesis is composed of seven chapters. The next chapter (Chapter 2) provides 

a review of existing optical airborne cameras and the literature review related to 

line matching and reconstruction. A short definition and comparison of the vision 

techniques utilized in this thesis is also presented. 

 

In Chapter 3, the extraction of the 2D line segments is described. The chapter 

starts with describing the pre-processing techniques utilized. Thereafter, the 

details of the edge and straight edge detectors are explained. Finally, the 

extraction of the straight line segments is stated.  

 

The details of the developed line matching approach are provided in Chapter 4. 

First, the method for the formation of the potential matching candidates is given. 

Next, the developed matching strategy and the related constraints are clarified. 

Finally, the proposed precise matching approach is described. 

 

The following chapter (Chapter 5) presents the reconstruction of the matched line 

segments. First, the generation of the artificial point entities is described. Finally, 

the details of the approach for the joint height estimation of the point and plane 

entities are explained. 

 

Chapter 6 involves the information related to the test data utilized, the 

performance assessment, and the discussion. First, the test sites and the available 

datasets are described. After that, the matching and reconstruction results of the 

proposed approach are given. The comparative evaluation of the results of the 

proposed approach with a state-of-the-art line matching approach is also 

presented. 

 

In the final chapter (Chapter 7), the conclusions derived from this study and the 

recommendations that can be useful for further studies are stated. 
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CHAPTER 2 

 

 

 

BASICS AND STATE-OF-THE-ART 

 

 

 

2.1 Optical Airborne Cameras 

 

The standard environment of analogue photogrammetric imaging and processing 

has been well known and established for decades (Cramer, 2005). However, 

commercial large-scale digital cameras were introduced to the photogrammetric 

community just before the beginning of the 21
st
 century. Since that time, the 

digital imaging sensor technologies and the camera systems have significantly 

evolved. For sure, this technological development has been well issued, followed 

and reported by the photogrammetric community. An early review of digital 

frame camera systems can be found in Petrie (2003). Two years after that, Cramer 

(2005) presented the status of the digital airborne imaging and predicted the role 

of the digital sensors in the future. Thereafter, the rapid developments in the 

airborne digital imaging technologies including both digital frame cameras and 

push-broom line scanners were revealed in another review paper (Petrie and 

Walker, 2007). Recently, Charles Toth (2009) gave extensive overview lists 

related to the state-of-the-art airborne optical and LIDAR data collection systems. 

As a last step of the technological evolution, Jacobsen (2010) pointed out the next 

generation large-format digital frame cameras that were fully designed with single 

monolithic charge-coupled device (CCD) sensors. Since UHR aerial images 

utilized in this thesis are acquired only with large-format frame cameras, in this 

section, a brief overview and a summary of the current status of the large-scale 

optical frame airborne cameras is presented. 
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The analogue cameras are very similar from their design systems using a large 

format film, and the majority of the analogue photogrammetric images were taken 

by only two different cameras, namely the RMK, LMK and RC series and their 

predecessors (Cramer, 2005). In order to achieve high geometric quality, most of 

the analogue cameras were designed as single-lens concept. In general, 152-mm 

focal length lenses with a film format size of 230x230 mm are preferred during 

photogrammetric mapping. Depending on the altitude of the acquisition, 90, 210 

and 300 mm focal lengths are utilized (Lillesand, 2005). The angular field-of-

view of the lenses is also adaptable and depends on the purpose of the acquisition. 

Once the aerial images are acquired with analogue cameras, they are converted to 

raster images by photogrammetric scanners. A common trend for the scanning 

resolutions is to perform the scanning between 12.5 and 21 microns (Neumann, 

2008). The resolution of the scanning and the photo scale both determine the final 

ground sampling distance (GSD) of each pixel of the output raster aerial images. 

Despite many years of development, refinement and optimization of performance, 

the introduction and growing demand of digital cameras has pushed aside 

analogue cameras. According to Jacobsen (2010), the advantages of the digital 

cameras are so clear that in several countries, new analogue aerial photos are not 

accepted anymore. Based on this context, the further production of the analogue 

cameras has already come to an end. 

 

In the review paper of Petrie and Walker (2007), large-format digital frame 

cameras are divided into two main categories: 

 

 individual cameras equipped with individual large-format area arrays 

producing monochrome (black-and-white) frame images 

 

 systems employing multiple medium-format frame cameras which 

produce sub-images that are combined later using image processing 

techniques to form a single composite large-format digital frame image 
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Until recently, all large-format cameras used for civilian purposes belonged to the 

second category in which several medium-format cameras with relatively small 

CCD Chip Sizes are utilized to acquire several small images (sub-images) of a 

region of interest. Those sub-images are then rectified and stitched together to 

form a single large-format digital monochromatic image (Petrie and Walker, 

2007). Color images of the area can be acquired with a second set of medium-

format multispectral cameras which are then utilized in the subsequent pan-

sharpening process to generate high-resolution color images of the region of 

interest. Even today, except for the 2
nd

 generation of DMC (Digital Mapping 

Camera) cameras (DMC II), all commercial large-format cameras (Table 1) utilize 

the same image acquisition logic which can be divided into three distinct groups: 

 

 Closely mounted four tilted cameras synchronically acquire four images 

with small overlaps to form a single composite panchromatic image 

(DMC, Trimble AIC x4, DigiCam Quattro) 

 

 In-line mounted four nadir cameras acquire synoptically nine individual 

images with small overlaps to form a single composite panchromatic 

image (UltraCam series) 

 

 Side by side mounted two nadir pointing cameras synchronically acquire 

two images with a small overlap to form a single composite panchromatic 

image (Dimac Wide+) 

 

The first group cameras utilize four closely coupled cameras together in a block 

configuration such that all four tilted images are acquired simultaneously and 

overlap slightly along two of their edges (Petrie, 2009). Figure 2.1a illustrates the 

position of the four tilted panchromatic heads of the DMC camera. Due to the 

tilted acquisition with low-oblique imaging, the acquired images must be rectified 

before the stitching process. The final stitching process that utilizes automatically 
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Table 2.1 Summary of the large format digital frame cameras (k = 1024 pixels). 

 

Product 

Name 

Focal Length 

(mm) 

{Pan + MS} 

Pixel Size 

(µm) 

{Pan + MS} 

Final Image Size 

(pixel) 

CCD Chip Size (pixel)  

{Pan + MS} 

Radiometric 

Resolution 

(bits) 

Number of 

Sensors 

(Pan + MS) 

Max Frame 

Rate 

(sec / image) 

DMC 120 + 25 12 + 12 13,824 x 7,680 {7k x 4k} + {3k x 2k} 12 4 + 4 2.1 

DMC II - 140 92 + 45 7.2 + 7.2 12,096 x 11,200 {12.2k x 11.4k} + {6.8k x 6.1k} 14 1 + 4 2 

DMC II - 230 92 + 45 5.6 + 7.2 15,552 x 14,144 {15.5k x 14.1k} + {6.8k x 6.1k} 14 1 + 4 1.7 

DMC II - 250 112 + 45 5.6 + 7.2 17,216 x 14,656 {17.2k x 14.6k} + {6.8k x 6.1k} 14 1 + 4 1.7 

UltraCamD 100 + 33 9 + 9 11,500 x 7,500 {4k x 2.7k} 12 9 + 4 1.3 

UltraCamX 100 + 33 7.2 + 7.2 14,430 x 9,420 {5k x 3.4k} 14 9 + 4 1.35 

UltraCamXP 100 + 33 6 + 6 17,310 x 11,310 {6k x 4k} 14 9 + 4 2 

UltraCamXpWA 70 + 23 6 + 6 17,310 x 11,310 {6k x 4k} 14 9 + 4 2 

UltraCamEagle 
80 + 27 

210 + 70 
5.2 +5.2 20,010 x 13,080 N/A 14 9 + 4 1.8 

Dimac Wide+ 70/120/210 6 + 6 13,000 x 8,900 {9k x 6.7k} 16 2 2 

Trimble AIC x4 60/72/100 6 + 6 17,000 x 12,400 {8.9k x 6.7k} 16 4 2 

DigiCam Quattro 80/100/150 6 + 6 18,500 x 12,750 N/A 16 4 1.6 

 

1
0
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(a) 

 

(b) 

 

 

 

(c) 

Figure 2.1 Multiple camera image acquisition techniques (Petrie, 2006) 

 

collected tie points converts all four sub-images into a single panchromatic image. 

In the DMC Camera shown in Figure 2.1a, the four nadir-looking additional 

small-format cameras positioned in each side are responsible for the acquisition of 

the reduced-resolution multi-spectral images. However, it should be noted that the 

other cameras belonging to this group (Trimble AIC x4, DigiCam Quattro) utilize 

a Bayer pattern for the generation of their true or false color images; thus, they do 

not involve additional cameras for the multi-spectral image acquisition. 

 

The design concept of the second group cameras (UltraCam series) is composed 

of a sensor head consisting of eight independent camera cones, four of them 

contributing to the large format panchromatic image and four contributing to the 

multi-spectral image. Altogether, the UltraCam sensor head is equipped with 13 

CCD sensor arrays (9 μm pixel size for UltraCamD, 7.2 μm pixel size for 

UltraCamX, 6 μm pixel size for both the UltraCamXp and Xp WA, and 5.2 μm 

for UltraCamEagle). Four individual camera cones of the panchromatic sensor 

head have a specific mechanical distance from the camera center which needs to 

be compensated during image exposure to produce a consistent virtual image 

(Figure 2.1b). This process is unique and is known as “syntopic exposure”. It 

exploits the movement of the aircraft in such way that the shutters of the cones are 

delayed so they don’t open at the same time but at the same position (syntopic) 

(USGS, 2010). This concept causes all cones to produce sub-images from a single 
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same physical location in space and thus, a single perspective center is achieved 

theoretically (Leberl et al., 2003). The final stitching process converts all acquired 

sub-images into a single image based on a selected master sub-image. Similar to 

the first group of cameras, automatically generated tie points are required to 

perform the stitching process which also removes the potential residual errors 

among different cones. 

 

The camera arrangement of the third group cameras (Dimac Wide+) is based on a 

twin-design in which two cameras are positioned side-by-side with a nadir-

looking geometry (Fig. 2.1c). The CCD area arrays are then offset with respect to 

the optical axes so that they cover the areas to the left and right of the flight line 

(Petrie and Walker, 2007). Once again, the full image is formed after a stitching 

process which utilizes the common overlapping parts between the two images. 

 

All of the three groups described above are very successful in terms of image 

acquisition with specific characteristics; however, for some cases, they share a 

common basic problem which occurs due to the process of stitching. The stitching 

process is based on the tie points collected in an automated manner over the 

common overlapping parts of the sub-images available (there is a total of 4 sub-

images for the first group, 9 sub-images for the second group and 2 sub-images 

for the last group of cameras). However, the process of stitching requires a 

textured terrain since a textured environment provides a chance to collect and 

match large numbers of tie points within the overlap areas. A less-textured terrain 

leads to a dramatic decrease in terms of the number of tie points collected and 

therefore, results in lower geometric accuracy for the final stitched image. 

Furthermore, not surprisingly, in some specific texture-less terrain like a desert 

area or a water body, it may not be possible to perform the stitching operation. 

Recently, for the UltraCam images, an interesting solution has been proposed to 

solve the problem (Ladstädter et al., 2010). The technique is called “monolithic 

stitching” and the idea is to utilize the geometric information of a single lower 

resolution color sensor (green) along with the panchromatic sensors in an 
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integrated adjustment process to collect tie points. However, although the 

developed technique seems to improve the current stitching performances, 

Jacobsen (2010) stated that the stitching to a lower resolution reference image is 

not the optimal solution and contradicts to the syntopic acquisition mode of the 

UltraCam sensors. It is apparent that the optimal and ultimate solution is not to 

perform the image acquisition by multiple cameras; thus, all stitching operations 

can be avoided. But, this certainly requires the manufacturing of single large-

format “monolithic CCD” arrays. More recently, this type of large-format CCDs 

is introduced by the second generation of DMC Cameras (DMC II – 140, 230, and 

250). Thus, this group of new commercial sensors utilizes a single panchromatic 

camera for the image acquisition and resembles the basic optics design principle 

of the film cameras used for many decades. 

 

In summary, at the moment, current CCD pixel sizes of large-format cameras are 

on the order of 5 µm and the image size of a single panchromatic frame reached 

>260 MB. Frame rates of less than 2 seconds give opportunity to maintain high-

air speed for high-forward overlap with high resolution. With the availability of 

single large-format CCD arrays, the geometric quality of the analogue cameras 

can be achieved by the digital counterparts. To conclude, there is a real 

competition in terms of the development of the airborne imaging technologies and 

this is expected to increase in the near-future. 

 

2.2 Edge and Line Matching 

 

The term image matching refers to the automatic generation of correspondences in 

multiple descriptions of a scene. Once the image-to-image correspondences are 

established, the 3D information of the scene can be provided. Matching 

algorithms can be used in different tasks in photogrammetry and remote sensing 

such as automatic orientation purposes, DSM generation, road and terrain tracking 

etc. Very detailed overviews and summaries on the topic of image matching can 

be found in a wide variety of review papers, book chapters and thesis, see e.g., 
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Dhond and Aggarwal (1989); Heipke (1996); Heipke (1997); Schenk (1999); 

Manual of Photogrammetry (2004); Zhang (2005). Since this thesis is devoted to 

the matching of line features, this section gives a review about the previous 

studies on the subject of line matching from aerial and/or satellite images (Table 

2.2). The first part examines the previous studies in an article by article manner, 

which investigates and summarizes each article based on their certain key aspects 

such as the methodology proposed, the data used, and the results reported. The 

second part is devoted to the discussion of the previous studies in a categorizing 

manner, which classifies previous studies based on several aspects such as the 

trends followed, data used, etc.  

 

2.2.1 Related Work 

 

In an early work, Ohta and Kanade (1985) presented a stereo matching algorithm 

that utilized the edges as fundamental elements to be matched, and employed two 

different search techniques for the matching procedure. The first technique was 

the inter-scan line search for possible correspondences of connected edges in the 

right and left images, and the second technique was the intra-scan line search for 

correspondences of edges on each scan line pair. In their method, dynamic 

programming was utilized for the implementation of the search techniques which 

proceeded simultaneously in two ways: the former supplies the consistency 

constraints to the latter while the latter supplies the matching score to the former. 

A final interval-based similarity metric was used to compute a matching score. 

The method was tested on two urban aerial images, and found to be satisfactory in 

terms of matching the edges in a stereo environment. 

 

Herman and Kanade (1986) proposed an incremental system for the 

reconstruction of 3D scenes. In their work, the stereo matching was performed by 

the junction features extracted from the intersection of the line segments, and 

sparse 3D wire-frames were generated. Thereafter, linear structures were extracted 

from monocular image analysis, and based on several task-specific assumptions 
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Table 2.2 Summary of the previous work on the topic of line matching using 

aerial and/or satellite images. Terms “V” and “O” are acronyms for “Vertical” and 

“Oblique” images, respectively.  

 

Previous Work 
GSD 

(cm) 

Num. of 

images 

Data 

Source 

Utilized 

Radiometry 

Supplementary 

Data/Method 

Ohta & Kanade 

(1985) 
N/A 2 

Analog 

(V) 
Grayscale - 

Herman & Kanade 

(1986) 
N/A 2-3 

Analog 

(V) 
Grayscale 

Junctions by 

Image Matching 

Greenfeld & Schenk 

(1989) 
N/A 2 

Analog 

(V) 
Grayscale - 

Mohan et al. 

(1989) 
N/A 2 

Analog 

(V) 
Grayscale - 

Hoff & Ahuja 

(1989) 
N/A 2 

Analog 

(V) 
Grayscale - 

Cochran & Medioni 

(1992) 
N/A 2 

Analog 

(V) 
Grayscale - 

Roux & McKeown 

(1994) 
50 4 

Analog 

(V & O) 
Grayscale 

Corners by Image 

Matching 

Jordan & Cocquerez 

(1995) 
85 2 

Analog 

(V) 
Grayscale - 

Bignone et al. 

(1996) 
7.5 4 

Analog 

(V) 
Color - 

Henricsson & Baltsavias 

(1997) 
7.5 4 

Analog 

(V) 
Color - 

Schmid & Zisserman 

(1997) 
8.5 2-3 

Analog 

(V) 
Grayscale - 

Atalay & Yilmaz 

(1998) 
N/A 2 

Analog 

(V) 
Grayscale - 

Collins et al. 

(1998) 
31-110 >2 

Analog 

(V & O) 
Grayscale - 

Henricsson 

(1998) 
7.5 4 

Analog 

(V) 
Color - 

Moons et al. 

(1998) 
8 3-6 

Analog 

(V) 
Color - 

Baillard et al. 

(1999) 
8.5 >3 

Analog 

(V) 
Grayscale - 

Baillard & Dissard 

(2000) 
16-103 2 

Analog 

(V) 
Grayscale 

Area-based 

matching 

Park et al. 

(2000) 
N/A 2 

Analog 

(V) 
Grayscale - 
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Table 2.2 (continued) 

 

Previous Work 
GSD 

(cm) 

Num. of 

images 

Data 

Source 

Utilized 

Radiometry 

Supplementary 

Data/Method 

Schmid & Zisserman 

(2000) 
8.5 2-3 

Analog 

(V) 
Grayscale - 

Scholze  

(2000) 
8 4 

Analog 

(V) 
Color - 

Scholze et al. 

(2000) 
8 4 

Analog 

(V) 
Color - 

Shao et al. 

(2000) 
N/A 3 

Analog 

(V) 
Grayscale - 

Zhang & Baltsavias 

(2000) 
20-40 2 

Analog 

(V) 
Color - 

Cheng et al. 

(2001) 
31-110 >2 

Analog 

(V & O) 
Grayscale - 

Heuel & Förstner 

(2001) 
N/A >2 

Analog 

(V) 
Grayscale 

Corners by Image 

Matching 

Leloglu 

(2001) 
7.5-8.5 3-4 

Analog 

(V) 
Color Planar Surfaces 

Noronha & Nevatia 

(2001) 
15-130 2-4 

Analog 

(V & O) 
Grayscale 

Junctions by 

Image Matching 

Chehata et al. 

(2002) 
50-60 2 

Analog 

(V) 
Grayscale DSM 

Jung et al. 

(2002) 
20 9 

Digital 

(V) 
Grayscale DSM 

Taillander & Deriche 

(2002) 
20 6 

Digital 

(V) 
Grayscale - 

Elaksher et al. 

(2003) 
12 4 

Analog 

(V) 
Grayscale 

Regions by Image 

Matching 

Jung & Paparoditis 

(2003) 
20 9 

Digital 

(V) 
Grayscale DSM 

Beder 

(2004) 
14.3 7 

Analog 

(V) 
Grayscale - 

Kim & Nevatia 

(2004) 
25 4-7 

Analog 

(V) 
Grayscale 

Junctions by 

Image Matching 

Zhang 

(2005) 
5.7 3-6 

Digital 

(V) 

Grayscale 

(Red Band) 

Point Cloud by 

Image Matching 

Zhongliang & Zhiqun 

(2008) 
N/A 2 

Analog 

(V) 
Grayscale - 

Woo et al. 

(2009) 
7.5-100 2 

Analog 

Digital 

(V) 

Grayscale - 
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Table 2.2 (continued) 

 

Previous Work 
GSD 

(cm) 

Num. of 

images 

Data 

Source 

Utilized 

Radiometry 

Supplementary 

Data/Method 

Habib et al. 

(2010) 
6 2 

Analog 

(V) 
Grayscale 

Point Cloud by 

LIDAR 

Xiao et al. 

(2010) 
10-16 8 

Digital 

(O) 
Color - 

 

 

the final 3D wire frames were generated. The intermediate and final visual results 

are illustrated for a set of analogue aerial images. 

 

A different study that implemented stereo matching by means of edge-based 

features was performed by Greenfeld and Schenk (1989). They presented two 

methods for describing the edge features; (i) a method based on a polygonal 

approximation (vertices and legs) and (ii) a method derived from Ψ–S curve 

which is a functional representation of a line where the arc length S is the 

parameter of the tangent Ψ. During the matching of the edges, first, an initial 

matching list was established by taking into account four similarity measures 

(angle and orientation of the polygon vertices, steepness and sign of the zero-

crossings). Next, the ambiguities of the initial matching list were resolved by a 

consistency check that involved a voting based on vertical disparity, azimuth and 

distance between pairs of matched vertices. The result of the matching was 

assessed visually and reported as successful. 

 

Mohan et al. (1989) described a method which utilized linear segments to improve 

the performance of the stereo matching. The stereo matches were collected from 

the algorithm developed by Ohta and Kanade (1985). After that, they presented a 

post-processing method which rejected the disparities violating the constraint of 

figural continuity. They computed a linear function describing the disparity 

change along the linear segments, and used the function to correct the wrong 
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disparities due to incorrect matches. Furthermore, a total of four cost functions 

were also proposed to quantitatively analyze the quality of the matching.  

 

An integrated approach for the reconstruction of surfaces from stereo matching 

was performed by Hoff and Ahuja (1989). The aim of the approach was to enforce 

a surface smoothness constraint during the matching stage which was based on a 

multi-resolution strategy. The boundary information is then extracted by locating 

the ridges and contours. The evaluations of the approach were performed for 

different sets of images including a single stereo aerial image. As a result, the 

problems and the advantages of the proposed approach were stated.  

 

Cochran and Medioni (1992) proposed an approach to combine the information 

extracted from area-based and edge-based approaches. The approach utilized 

manually registered three-level image pyramids to provide dense depth maps of 

the regions of interest. The normalized cross-correlation and a set of constraints 

(left-right checking, ordering, and no-isolated pixels) were imposed to improve 

the performance of the area-based method. A local interpolation was then 

performed and edge-based approach was used to extract the discontinuities to 

remove the smoothing effects from the final disparity map. Only visual results 

were given for a set of six close range images and one aerial image. 

 

Roux and McKeown (1994) proposed a feature based matching approach to be 

used for the extraction of buildings from multiple aerial images. In their approach, 

the corner features were used as a fundamental cue for matching, and the edge 

information was integrated to infer 3D segments. For the matching process, they 

fully utilized the knowledge about the imaging geometry and acquisition 

parameters to provide several geometric constraints (epipolar, height and 

orientation). Their study was also one of the first (studies) that incorporated 

multiple aerial images having large amounts of obliquity. The results of the 

matching process were evaluated based on a visual assessment. 
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Jordan and Cocquerez (1995) presented a matching approach to guide the 3D 

description of urban areas from stereo aerial images. The matching process was 

initialized with a search interval defined along the epipolar line based on a 

function of the altitude variation in a scene. Next, for the edge segments, a search 

depending on the similarity of the alpha parameter of the Canny-Deriche 

(Deriche, 1987) edge detector was performed. In addition, the ordering constraint 

was imposed to further improve the performance of the matching process. Once 

the search was completed, the consistency of matching was further checked to 

eliminate isolated and aberrant matches. The approach was tested in two urban 

test sites, and the matching results were illustrated. Although the numerical results 

for the reconstruction stage were provided, no explicit matching performances 

were given.    

 

One of the early works that investigated the color information during the matching 

process was performed by Bignone et al. (1996). Later, the same matching 

strategy was also followed in several different studies (Henricsson and Baltsavias, 

1997; Henricsson, 1998). The idea was to automatically match and reconstruct 3D 

segments to guide the automated reconstruction of buildings. First, the edge 

information was extracted from a specific image and the related matches were 

collected from other available images based on an edginess measure (based on 

image gradients) computed along the epipolar lines. The approach used the 

advantages of multiple (a total of four images) image geometry as well as 

photometric edge attributes (luminance and chromaticity) to perform high-level 

segment matching. The performance of the approach was evaluated on a 

residential test site and the results contained a number of incorrect matches. Most 

of those incorrect matches were later removed after performing the coplanar 

grouping of the 3D segments for the building reconstruction task.    

 

A rigorous method for the matching of line segments acquired in stereo and/or 

triple imaging combinations was developed by Schmid and Zisserman (1997). In 

their method, the epipolar geometry was successfully utilized to provide point-to-
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point correspondences along the line segments. To exploit the intensity 

neighbourhood of the segments, direct and warped correlation measures were 

proposed around the line neighbourhoods observed by short and long range 

motions, respectively. For the matching of line segments in three-views, they 

proposed two different methods both of which fully utilize the trifocal tensor. In 

their paper, explicit matching results were given for image pairs and triplets, and 

very high rates (> 95%) of matching accuracies were computed. Later, their 

algorithm was extended to multiple views (> 3) by Baillard et al. (1999). First, 

they collected the line matches in a single strip triple combination and next, the 

matches were verified in other images available in the adjacent strip(s). Their 

multiple view approach also revealed very good performances (> 98%) for the 

matching lines in three or more views. The same approach for the line segments 

and its extension to curve matching can also be found in detail in the work 

performed by Schmid and Zisserman (2000). 

 

Atalay and Yilmaz (1998) proposed a two step feature based matching algorithm 

based on linear features. In the first step, the rotation angle (Δκ) between the 

stereo images was computed and the lines extracted from one of the images were 

rotated based on the other image with the computed rotation angle. In the second 

step, the line geometric attributes were used and the matching was performed by 

relaxation. The conditions on which the matching algorithm was intended for was 

also clearly provided in the paper. The algorithm was tested with a single aerial 

image pair and the final matching performance was computed to be nearly 87%. It 

was also pointed out by the researches that most of the mismatches occurred due 

to incorrectly matched short line segments. 

 

Collins et al. (1998) designed and developed a system to reconstruct buildings 

from multiple overlapping aerial images. First an automated building detector was 

run on one of the images to hypothesize potential building rooftops and next, 

those rooftop polygons were matched in other overlapping images with a multi-

baseline stereo matching algorithm. The basic primitives of matching were the 
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line segments that formed the polygons. The matching ambiguities were resolved 

by multi-image verification supported by epipolar geometry. The system was 

evaluated using both nadir and oblique images with varying numbers of images, 

and only the reconstruction performances were stated. According to the results, 

3D building corner positions were recovered to well within a meter of accuracy, 

with height being estimated more accurately than horizontal position. 

 

Moons et al. (1998) presented an approach for automated modeling and 3D 

reconstruction of urban buildings from high-resolution multiple aerial images. 

During the roof modeling process, straight line segments were selected as image 

features. Epipolar geometry was utilized to collect line matches and the trifocal 

constraints were applied to eliminate the matching ambiguities. It is noteworthy to 

state that only the matches visible in at least three images were accepted and 

utilized for the subsequent polygon grouping stage. No explicit performances of 

line matching were stated in the paper. 

 

In the study of Baillard and Dissard (2000), area-based and edge-based matching 

approaches were both utilized to generate a dense DSM. The approach was 

initialized with an edge matching step. The matching was performed by dynamic 

programming based on a cost function. Three attributes were utilized during edge-

matching; orientation of the image gradient and two intensity values on the sides 

of the edges. In the next step, the edges were used as supplementary information 

for the area-based matching procedure to provide a better dense matching result. 

No explicit numbers of the correct and incorrect edge matches were stated in the 

paper. 

 

Park et al. (2000) proposed an eigenvector-based line feature matching approach 

that was based on the geometric relations between pairs of line segments. First, a 

preliminary correspondence test consisting of a total of four geometric measures 

was forced to restrict and reduce the number of matching possibilities. Second, a 

modal analysis with two non-directional measures was utilized to yield a final 
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dissimilarity measure and to determine the quantitative degree of the 

dissimilarities between the two pairs of line segments. The method was tested on 

several synthetic, close-range and aerial stereo images, and as a result, the authors 

claim that the performance of matching bears a resemblance to human perception. 

 

Shao et al. (2000) described an approach for edge-based matching of line 

segments from multi-view aerial imagery. The approach consisted of three steps. 

In the first step, initial edge matches were collected by means of epipolar and 

trifocal constraints. Next, the number of matches was extended through segment 

prediction which utilized a local affine model with a certain error space. Finally, a 

consistency checking by means of a relaxation process was applied. The 

assessments on an aerial image indicated that the proposed approach yielded 

reliable matches and a successful recovery. 

 

A multi-image matching algorithm that significantly benefits from the 

multispectral nature of the aerial images was proposed by Scholze (2000) and 

Scholze et al. (2000). In the algorithm, chromatic similarity measures were 

combined with cross-correlation measure (Schmid and Zisserman, 1997) to reduce 

the matching ambiguities. The approach also utilized multi-view geometric 

constraints to further restrict and eliminate the mismatches. The reconstruction of 

the line matches collected from multiple images was performed by the singular 

value decomposition (SVD) technique. The tests of the approach were carried out 

on an aerial image acquired with a four-way overlap and it was stated that the 

presented method produced a highly reliable set of 3D line segments.  

 

In a different work, Zhang and Baltsavias (2000) proposed a line matching 

approach for the reconstruction of road networks from aerial images. Their 

method utilized similarity measures including photometric edge attributes along 

with the geometric information between the line segments. The epipolar constraint 

was applied to reduce the search space. The final matching list was achieved 

through structural matching with probability relaxation. The experiments were 
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performed on a number of image patches extracted from stereo aerial images and 

the matching approach was found to be very reliable with a high success matching 

rate. 

 

Cheng et al. (2001) presented a study that involved the topic of matching and 

reconstruction of point and line features.  Two different affinity measures were 

proposed in the study, and those measures were also utilized to determine the final 

matches in a weighted bipartite graph matching. The matching for the line 

features required at least three images since the affinities for the line segments 

could not be computed in a stereo environment. Furthermore, during the line 

matching, a constraint that dealt with the common parts of the line segments 

between the multiple images was also imposed. The performance tests were 

performed on a number of synthetic and real images; however, for the aerial 

dataset, only visual matching results were provided. 

 

Heuel and Förstner (2001) presented a method for the matching of line segments 

in multiple views. In their work, the fundamentals for the optimal reconstruction 

of the 3D line segments from the matched features were also described. Their 

matching method was based on multi-view geometrical constraints with error 

propagation and hypotheses testing. Corner features were also integrated into the 

matching stage and a final grouping phase was performed along with the line and 

corner features. The tests of the method were conducted for a test site that was 

visible in four different aerial views and results of the method were found to be 

reasonable for both the matching and grouping stages. 

 

A 3D reconstruction approach that deals with dense and complex environments 

was proposed by Leloglu (2001). In his work, for the matching and 

reconstruction, area and feature based matching approaches were simultaneously 

taken into account. In the feature matching part, the similarities were computed by 

a similarity function that also employs planar surfaces. The assessment of the 

similarities was performed by evaluating three geometrical attributes (orientation, 
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length and distances). The line matching was accomplished after projecting the 

line segments onto the planes defined by the planar surfaces. The approach was 

tested with two different test datasets and explicit numerical and visual results for 

the reconstructed surfaces were provided. 

 

Noronha and Nevatia (2001) proposed a hierarchical hypothesize and verify 

strategy for the detection and reconstruction of buildings. The general strategy 

used was, first, to generate parallels from the line segments, then, U-shapes from 

the parallels, and finally, rectangular features from the U-shapes. The generated 

features at each step were matched in the hierarchy using the available multi-

images. The line matches were collected with a single epipolar constraint and the 

junction features were utilized for disambiguation along with a set of geometric 

constraints (orthogonality, trinocular etc.). The aerial images were acquired from 

both nadir and oblique angles. The paper presents explicit results for the final 

building detection and reconstruction, but no specific matching performances 

were provided. Later, their line matching algorithm was also implemented by Kim 

and Nevatia (2004). 

 

In the work performed by Chehata et al. (2002), 3D line segments were utilized to 

recognize building objects. During the line matching stage, epipolar information 

was combined with an external DSM to reduce the search space and to limit the 

matching complexity. A geometric constraint and the photometric neighborhoods 

of the line segments were evaluated for eliminating the wrong matches. A final 

matching score was computed from the geometric and photometric information, 

and the matching was performed based on a winner-takes-all scheme. The 

numerical results of the approach for a single test site were provided and the 

results revealed a number of mismatches. 

 

Jung et al. (2002) and Jung and Paparoditis (2003) proposed an edge matching 

technique to be used for the matching and reconstruction of both straight and 

curved linears. The method used the epipolar constraint to collect potential 
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matching edges from the search images. Next, robust bundle estimation was 

applied to test and analyze the distances of each image ray to the reconstructed 

candidate 3D object points. The image rays obtaining large distances were 

eliminated from the matching list, and only the matches observed in more than 

three images were accepted as a potential matching edge. Thereafter, the 3D 

tangent directions of each edge were computed and analyzed to further eliminate 

the incorrect matches. Finally, by means of an external robust DSM, the 

remaining mismatches were eliminated. A total of nine overlapping aerial images 

were utilized during the matching process, and the final matches were found to be 

successful. 

 

Taillander and Deriche (2002) presented a method for the reconstruction of 3D 

segments from multiple images. They performed the matching of line segments in 

object space through a plane sweeping method. Thereafter, the matched line 

segments were reconstructed and the residuals of the reconstruction process were 

utilized as a geometric criterion to evaluate the correctness of the 

correspondences. In addition, a unicity criterion was applied to further prune the 

set of possible correspondences. Both synthetic and real images were used to 

assess the approach. For the tests that involved real aerial datasets, a total of six 

overlapping images were utilized and promising matching results were achieved. 

 

A roof boundary extraction technique from multiple aerial images was proposed 

by Elaksher et al. (2003). The idea was to first extract and divide regions into two 

classes (roof and non-roof). Next, the region correspondences were established 

over the images with the aid of regional constraints such as region size, region 

shape, and region intensity values and an epipolar constraint. Thereafter, the line 

segments within the corresponding regions were matched over available images. 

Four-way overlapping images were used to evaluate the algorithm and explicit 

reconstruction performances were provided. It was also stated that the algorithm 

provided successful matching results for the line matching. 
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A unified framework for the automatic reconstruction of point and line features 

from multiple images was presented by Beder (2004). Statistical geometric 

properties of the extracted features were utilized in image domain and the 

framework utilized graphs deduced from relational geometric properties. The 

features that were visible by a minimum number of images across all views were 

finally accepted as correct matches. A total of seven overlapping images were 

used to test the framework, and based on the results, the author claimed that the 

geometric information from the images was sufficient to establish successful 

matches over multiple images without requiring any assistance of the radiometric 

information. 

 

In a different work, Zhang (2005) developed an edge matching approach for UHR 

linear array images for the automated generation of DSMs. In his work, epipolar 

geometry, average intensities around line neighborhoods (edge signs), and line 

orientations in image space were used to restrict the matching. In addition, a-priori 

matched point features were also integrated into the edge matching stage to 

further reduce the matching ambiguities. Final matches were assigned after 

consistency checking with iterative probabilistic relaxation. Successful matching 

and reconstruction results were provided for a set of images acquired with linear 

arrays, including images from both satellite and airborne platforms.  

 

Zhongliang and Zhiqun (2008) implemented a method for matching line segments 

in stereo geometry. They adopted a hierarchical straight line matching strategy. 

First, an initial matching was performed to restrict and reduce the matching 

possibilities. Next, the matching was completed by weighting a number of 

geometric and radiometric measures including various flanking region measures. 

The length, direction, position, intensity, sharp degree, brightness, darkness, 

contrast measures are involved during the matching stage and computed for each 

line and the flanking regions. The results were presented for three test sites, and 

an average of 89% correct matching rate was computed. 
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Woo et al. (2009) proposed a method for line matching based on geometric and 

intensity information extracted for each line segment. A set of line attributes 

(intensity, length, orientation, end-points) and constraints (epipolar and figural 

continuity) were implemented during the matching phase. Thereafter, those 

attributes were utilized with a multi-thresholding scheme in which the matching 

thresholds for each attribute were iteratively modified. Stereo aerial and satellite 

images were used to test the method and a final matching correctness ratio of 96% 

was reported. 

 

A recently proposed approach that integrated LIDAR derived information to the 

line matching process was performed by Habib et al. (2010). In the approach, the 

line segments were matched after projecting them onto the LIDAR planes derived 

from a segmentation procedure. The matching was performed by taking into 

account the projected line segments with three geometric constraints (angular 

deviation, normal distance, and overlap). Finally, those matched segments were 

utilized to acquire precise boundaries of the building objects. Although specific 

results for the building extraction and reconstruction were provided in the paper, 

the matching performances were not explicitly stated. 

 

In a different recent work, Xiao et al. (2010) proposed a methodology for the 

automatic detection of buildings from multiple oblique aerial images. The first 

step of the methodology was to robustly acquire 3D line segments from the 

overlapping eight oblique views. To do that, line hypotheses were generated by 

means of stereo images, and after that, the verification of the stereo hypotheses 

were performed with the aid of other images in a geometric manner. A matching 

line segment was accepted if that segment was observed in at least six images. 

Although detailed numerical results for the building detection task were provided 

in the paper, the line matching performances were only evaluated qualitatively. 
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2.2.2 Discussion of the Related Work 

 

Up to now, a significant number of research papers have been published in the 

field of line matching from aerial images. A useful classification of existing line 

matching approaches was proposed by Schmid and Zisserman (1997). They 

divided the line matching algorithms into two types, (i) those that match 

individual line segments, and (ii) those that match groups of line segments. In any 

case, the search space for matches has to be pruned in some way in order to limit 

the matching complexity. For most of the studies, basic geometric parameters of 

line segments such as orientation, length, mid-point, etc. are involved to filter the 

set of correspondence hypotheses; however, probably the most preferred 

constraint is the quadrilateral constraint generated using the epipolar geometry 

(Roux and McKeown, 1994; Collins et al., 1998; Moons et al., 1998; Heuel and 

Förstner, 2001; Noronha and Nevatia, 2001; Chehata et al., 2002; Kim and 

Nevatia, 2004; Suveg and Vosselman, 2004; Woo et al., 2009). Some studies also 

investigated the radiometric information around the line segments (Bignone et al., 

1996; Schmid and Zisserman, 1997; Henricsson, 1998; Baillard et al., 1999; 

Scholze et al., 2000; Schmid and Zisserman, 2000; Shao et al., 2000; Zhang and 

Baltsavias, 2000; Chehata et al., 2002; Zhongliang and Zhiqun, 2008; Woo et al., 

2009) or the information extracted from image gradients (Bignone et al., 1996; 

Baillard and Dissard, 2000). Additional constraints such as surface smoothness 

(Hoff and Ahuja, 1989), uniqueness (Suveg and Vosselman, 2004), ordering 

(Jordan and Cocquerez, 1995; Suveg and Vosselman, 2004) and figural continuity 

(Mohan et al., 1989; Zhang, 2005; Woo et al., 2009) can also be included; 

however, for a stereo line matching problem, these constraints are not sufficient to 

solve the image to image multi-correspondence problem. Thus, additional effort 

has been spent on different algorithms to select the best line correspondences. For 

example, dynamic programming (Ohta and Kanade, 1985; Yip and Ho, 1996; 

Baillard and Dissard, 2000), weighted criterion functions (Henricsson, 1998; 

Zhongliang and Zhiqun, 2008), modal analyses (Park et al., 2000), graph based 

approaches (Cheng et al., 2001; Beder, 2004) and probabilistic relaxation (Atalay 
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and Yilmaz, 1998; Shao et al., 2000; Zhang and Baltsavias, 2000; Zhang, 2005) 

are among those approaches. 

 

So far, in a stereo environment, the ambiguity problem of line matching is an 

issue that remains unsolved. The major problem arises from the lack of 

measure(s) and/or constraint(s) for line features that are invariant under different 

viewing conditions. Furthermore, the stereo matching and reconstruction of the 

line segments that are nearly-aligned with the epipolar line is also very 

problematic since a point-to-point correspondence is not reliable for those cases. 

Therefore, the general attempt is to strengthen the geometrical constraint by 

integrating one or more additional views (Roux and McKeown, 1994; Bignone et 

al., 1996; Henricsson and Baltsavias, 1997; Schmid and Zisserman, 1997; Collins 

et al., 1998; Henricsson, 1998; Moons et al., 1998; Baillard et al., 1999; Scholze, 

2000; Heuel and Förstner, 2001; Noronha and Nevatia, 2001; Jung et al., 2002; 

Elaksher et al., 2003; Jung and Paparoditis, 2003; Kim and Nevatia, 2004; 

Taillandier and Deriche, 2004; Zhang, 2005; Xiao et al., 2010). Several others 

utilized external DSMs (Chehata et al., 2002; Jung and Paparoditis, 2003; 

Taillandier and Deriche, 2004), point/corner/junction features (Herman and 

Kanade, 1986; Roux and McKeown, 1994; Heuel and Förstner, 2001; Noronha 

and Nevatia, 2001; Kim and Nevatia, 2004; Zhang, 2005), surfaces/regions (Stilla 

and Michaelsen, 1997; Leloglu, 2001; Elaksher et al., 2003) or LIDAR data 

(Habib et al., 2010) for both reducing the search space and filtering out the 

matching ambiguities. Nevertheless, the final matching performance of those 

algorithms is highly dependent and determined by the efficiency and the quality of 

the auxiliary information. On the other hand, the probabilistic relaxation based 

methods (Zhang and Baltsavias, 2000; Zhang, 2005) utilize the predefined local 

neighborhood information which mostly suffer from the piecewise smoothness 

constraints involved. Inevitably, smoothing based on the local neighborhood 

violates the standpoint of height discontinuity (except artificial edges such as 

shadows etc.) of the edges and the subsequent line matching. 
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To summarize, most of the previous work related with stereo line matching relies 

on various descriptors specialized for one-to-one line matching. The aim was 

always towards to reduce the ambiguity problem by integrating additional view(s) 

to the matching stage. However, the topic of automated line matching has proved 

to be a challenging task even for images formed under perfect imaging conditions. 

Although a number of fully automated approaches have been tested so far, 

achieving acceptable results from those systems are still limited to certain 

multiple imaging conditions and far below the human perceptual abilities. 

 

2.3 A Short Comparison of the Vision Techniques Utilized 

 

In this thesis, during the matching step (estimation of epipolar lines, stereo 

intersection etc.), the well known non-linear (or linearized) photogrammetric 

concepts are applied. On the other hand, during the reconstruction step (2D and 

3D point generation, 3D line generation, error propagation etc.), concepts of 

computer vision are applied. Both approaches are used and implemented by 

different disciplines and therefore, have different benefits and drawbacks. 

Fundamental photogrammetric concepts have been known for a long time and are 

well-described in Manual of Photogrammetry (1980), Kraus (1993), Wolf and 

Dewitt (2000), Mikhail et al. (2001), and Manual of Photogrammetry (2004). 

Alternatively, the computer vision concepts are relatively newly implemented; 

essentials of the computer vision based techniques can for example be found in 

Faugeras (1993), Hartley and Zisserman (2001), Heuel (2004), Manual of 

Photogrammetry (2004), ans Paragios et al. (2005). The comparison between the 

two concepts can also be found in (Mundy, 1993; Förstner, 2002; Ressl, 2004; 

Manual of Photogrammetry, 2004; Förstner, 2009). An interested reader may refer 

to those references; here, we only very briefly review and compare those vision 

techniques. 

 

The primary objectives of photogrammetry are the extraction of topography 

related information and the identification of various objects from terrestrial 
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landscapes with satisfying final accuracy in all three dimensions. Depending on 

the type of sensor (frame, linear array, etc.), the geometric camera modeling may 

vary; however, today, most of the aerial cameras utilize a perspective camera 

model in which the light rays intersect at a single point called projection center. 

Due to the central projection, the fundamental collinearity equations can be used 

to relate the image space and the object space (Manual of Photogrammetry, 2004): 
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where; x and y are the image space coordinates of a point, X, Y, Z are the object 

space coordinates of the point, XL, YL, ZL are the object space coordinates of the 

perspective centre, f is the focal length of the sensor, x0 and y0 are the coordinates 

of the principal point, and R is the rotation matrix that represents the ω, φ, κ 

rotations of the image coordinates with respect to ground coordinates. 

 

Eq. 2.1 assumes perfect conditions for relating an image space with the 

corresponding object space. However, during image acquisition, systematic errors 

may arise from a number of sources (Manual of Photogrammetry, 2004). To 

remove systematic errors, additional parameters (APs) can be introduced to 

collinearity equations (Fraser, 1997; Manual of Photogrammetry, 2004; Habib et 

al., 2002). After including the APs in the collinearity model, Eq. 2.1 becomes 
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where; Δx and Δy represent the correction functions for image coordinates. Of the 

AP model categories, the physical models seek the most appropriate parameters 

for computing the correction functions of the image coordinates based on four 

principal sources of distortions. These distortions include the symmetric radial 

distortion, decentering distortion, image plane unflatness, and in-plane image 

distortion (Fraser, 1997). At any point in the image, the net image displacement 

(Eq. 2.4) will amount to the cumulative contribution of these distortions (Manual 

of Photogrammetry, 2004). 
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In Eq. 2.4, the subscripts r, d, u, and f represent, the radial distortion, decentering 

distortion, image plane unflatness, and the in-plane distortion, respectively. The 

sources and the formulation of these distortions are well explained in Fraser 

(1997), Manual of Photogrammetry (2004), and Poli (2005). As an example, the 

complete AP formation including the corrections for the interior orientation 

parameters can be given as: 
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where; Δf is the correction to focal length, K1, K2 are the symmetric radial lens 

distortions, and P1, P2 are the decentering distortions parameters. The terms A1 

and A2 introduce the in-plane distortions and represent the coefficients of the 

affine distortion model. In Eq. 2.5, A1 and A2 were designed in a way that they 

eliminate the correlations between the other APs. This is done by eliminating the 

shifts of the affine model since the coefficients are perfectly correlated with the 

coordinates of the principal point (Habib et al., 2002). 

 

As can be seen easily in Eq. 2.1, regardless of any AP, the collinearity equations 

are inherently nonlinear. Therefore, from a photogrammetric point of view, since 

the equations of the central projection are non-linear, a linearized form of those 

equations is required in parameter estimation, and any adjustment requires 

iterative solutions with appropriate approximate initial values. 

 

Alternatively, computer vision approaches also obeys the central projection 

principle. Projective geometry is very useful during the representation of the 

computer vision problems. In projective geometry, an object point in 3D space 

with homogeneous coordinates X = (x, y, z, t)
T
 represents a 3D point with 

Euclidean coordinates X = (x/t, y/t, z/t)
 T

, and an image point in 2D space with 

homogeneous coordinates x = (u, v, w)
T
 represents a 2D point with Euclidean 

coordinates x = (u/w, v/w)
 T

. From this definition, the photogrammetric 

collinearity equations given in Eq. 2.1 can be replaced by a linear representation 

for the central projection, and the projection from the object point X to the image 

point x, both represented by homogenous vectors, can be obtained by a matrix 

multiplication with a single point projection matrix (P) (Manual of 

Photogrammetry, 2004): 

 

           (2.6) 
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The 3x4 point projection matrix can be related to the interior and exterior 

orientation parameters of the camera used in Eq. 2.1 and Eq. 2.2 (Manual of 

Photogrammetry, 2004): 

 

    [ |    ]            (2.7) 

 

where, XL is object space coordinates of the perspective centre, and R is the 

rotation matrix, and K represents the combined calibration matrix including the 

three interior orientation parameters (f, x0, y0) and as well as the scale difference m 

and the shear s. With this definition, the explicit mapping with the elements of pij 

of matrix P turns out to be: 

 

   
                        
                        

 

(2.8) 

   
                        
                        

 

 

 

Apparently, if the APs are introduced in the collinearity model as in Eq. 2.3, the 

projection model cannot be handled in a linear way, since the distortions have 

non-linear characteristics. Furthermore, as can be easily seen in Eq. 2.5, the 

distortions of APs depend on the specific image positions within the entire image. 

According to Förstner (2004), there are two alternative solutions to include APs 

into the projective model. One solution is to assume locally constant distortions 

for specific window sizes which results in a local projective model. The second 

solution is to perform the projection in a two step computation: 

 

                                   (2.9) 

 

where the matrix K
g
 involved the introduced APs: 
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   [
    
    
   

]    (2.10) 

 

As a conclusion, projective geometry allows linear representations for the well-

known photogrammetric equations. Due to the characteristics of linearity, there is 

no need for the approximate values as required by the iterative solutions. 

Compared to the classical photogrammetric equations, this turns out to be a major 

advantage. However, some drawbacks are associated with these linear solutions 

(over-parameterization, non-linear image distortion is not considered, etc.). 

Therefore, the solutions for orientation obtained through linear equations will 

never be accurate enough based on a photogrammetric point of view, but provide 

an easy way of getting approximate values for the required unknown parameters 

(Ressl, 2004). 
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CHAPTER 3 

 

 

 

PRE-PROCESSING AND 2D LINE SEGMENT EXTRACTION 

 

 

 

It is a widely-accepted and well-known issue that the success and performance of 

image matching is highly affected by the radiometric characteristics of the aerial 

images utilized. The summary of previous work on line matching provided in 

Chapter 2 proves that, so far, only a limited number of studies have used and 

tested digital images for line matching. However, today, a large number of digital 

aerial cameras are available (see Chapter 2 section 2.1) and the information 

content of a digital image is proven to be much better than the information content 

of an analogue aerial image (see e.g., Jacobsen, 2007; Jacobsen, 2008). Therefore, 

utilizing digital images instead of analogue ones may reduce the radiometric 

instabilities and may lead significant improvements during the matching of the 

edge/line segments.  

 

In this perspective, the general radiometric problems of aerial images can be 

summarized as (Zhang, 2005):  

 

 Image noise is still a problem even in digital images while many feature 

extraction and image matching algorithms are sensitive to image noise. 

Therefore, the images have to be pre-processed in order to reduce the 

image noise. 

 Poor image contrast, i.e. the peak of their histogram is typically towards 

the darker grey values, with the right part of the histogram decreasing 

smoothly towards the higher values.  
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 Radiometric problems caused by the variations in the sensor view 

angle, the sun angle and shadowing, the seasons and the atmospheric 

conditions should also be considered. 

 

One important different aspect from the review of the line matching literature is 

that while aerial images have been rich of multispectral information, this fact was 

completely discarded or not efficiently used during the low level processing such 

as filtering, edge detection etc. In general, the multispectral information was 

effectively integrated during the matching stage (Bignone et al., 1996; Henricsson 

and Baltsavias; 1997; Henricsson, 1998; Moons et al., 1998; Scholze, 2000; 

Scholze et al., 2000; Zhang and Baltsavias, 2000; Leloglu, 2001). However, 

multispectral aerial images also provide opportunities for the extraction of line 

features that cannot be detected in the grayscale images (Scholze et al., 2000, 

Koschan and Abidi, 2005) due to several reasons, such as low contrast, accidental 

object alignments etc. 

 

In this chapter, we introduce a new framework for the 2D extraction of line 

features from multispectral aerial images. Fig. 3.1 summarizes the proposed 2D 

line extraction framework. In the first step, in order to maximize the performance 

of the line detection, existing multispectral information in aerial images is fully 

utilized throughout the steps of pre-processing and edge detection. First, a multi-

level non-linear color diffusion filter that involves the discontinuity information 

existing in different image bands is applied. Next, the method of color boosting is 

implemented to improve the color contrast between the adjacent objects in a 

scene.  The edges are successfully extracted by integrating the edge information 

available in different multispectral bands of the aerial images. To accurately 

describe the straight edge segments, a principal component analysis (PCA) 

technique is adapted. Thereafter, the extracted segments are converted to their line 

counterparts using orthogonal regression. Finally, the uncertainty and attributes 

(geometric and radiometric) of each line are computed. 
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Figure 3.1 Flowchart of the proposed 2D line extraction approach. 

 

3.1 Pre-processing 

 

3.1.1 Multi-Level Non-Linear Color Diffusion Filter 

 

Image filtering for smoothing purposes can now be easily defined as one of the 

preliminary tasks for a wide variety of topics in the fields of photogrammetry and 
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computer vision. So far, a large number of smoothing algorithms have been 

developed (see e.g. Abramson and Schowengerdt, 1993; Weickert, 1997). In the 

edge/line matching context, most of the previous studies utilize widely accepted 

and well-known edge detectors such as Canny (Canny, 1986) or Canny-Deriche 

(Deriche, 1987). Those detectors utilize a classical Gaussian smoothing filter at an 

initial stage, and therefore, they can be regarded as homogeneous linear diffusion 

filters. Due to the Gaussian scale-space, those filters have two typical limitations 

(Weickert, 1997): 

 

 Gaussian smoothing does not only reduce noise, but also blurs important 

features such as edges, and makes them harder to identify, 

 

 Linear diffusion filtering results in dislocated edges when moving from 

finer to larger scales.  

 

It is apparent that those limitations may deteriorate the final edge/line detection 

and matching performances. To improve the performance of the filtering, one 

attempt can be adaptively defining the size and/or shape of the Gaussian 

smoothing based on the underlying image structure (Nitzberg and Shiota, 1992) or 

to apply an inhomogeneous linear diffusion filtering process which further 

reduces smoothing around the edges detected by a fuzzy edge detector |  | 

(Weickert, 1997): 

 

 (|  | )  
 

√  |  |    
        (3.1) 

 

where g defines the diffusivity, and λ controls the sensitivity of diffusion to the 

detected edges. Although the diffusivity term in Eq. 3.1 is non-linear, the equation 

of diffusion for an inhomogeneous filtering stays linear as the original image is 

utilized for diffusivity in each time step t :  
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       ( (|  |
 )   )    (3.2) 

 

In Eq. 3.2, δtu represents the concentration gradient, u is the actual image, and div 

is the divergence operator. Although the edges are better preserved than the 

homogeneous filtering, the fundamental problem of inhomogeneous filtering can 

be easily seen in Eq. 3.2, in which the diffusivity term will always be dependent 

on the differential structure of the original image. Thus, for large values of t, the 

filtered image may reveal some artifacts (Weickert, 1997). A solution to this 

problem can be achieved by using the gradient of the actual image u(x,t) instead of 

the original image f in the diffusivity term g. This leads to a non-linear diffusion 

equation (Perona and Malik, 1987): 

 

       ( (|  |
 )   )    (3.3) 

 

The outcome after applying the non-linear diffusion filter is no or considerably 

reduced blurring around the edges. Although this seems to be a desired result for a 

general smoothing task, unsurprisingly, the noise around the edges cannot be 

removed completely since the blurring around the edges is entirely inhibited. A 

possible solution for this problem is to convert the scalar diffusion term g to a 

diffusion tensor leading to anisotropic diffusion filtering. However, a different and 

easy alternative way to solve the problem is to apply a multi-level non-linear 

diffusion filtering by jointly modifying the sigma parameter (σ) and diffusion 

sensitivity (λ) in each iteration level. The sigma parameter (σ) is involved in the 

edge detection part in which the gradient is extracted. Therefore, decreasing the 

sigma parameter causes the gradient to be calculated at a less blurred image. Since 

the lambda parameter determines the gradient level to be diffused, an increase on 

the lambda parameter is required to reduce the noise level around the 

discontinuities. Thus, jointly modifying these two parameters enables us to lessen 

the noise around the image discontinuities. In this thesis, a three-level smoothing 

chain (decreasing the parameter sigma while increasing the parameter lambda) is 

designed to diminish the noise level around the discontinuities.  
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Up to this part, the smoothing approach works for grayscale images, since the 

edge detector |  | in Eq. 3.1 works on single band images. However, in our 

domain, we have aerial images that involve multi-band information. Therefore, 

identifying edges within a multi-band environment has crucial importance, since 

the smoothing is only restricted to the image parts where the discontinuities do not 

exist. In a multiband environment, for sure, the simplest idea would be to diffuse 

all available bands separately (Weickert, 1997). However, this may lead to 

different edge locations for each channel; thus, the final smoothed image may not 

be formed properly. One other basic approach is the calculation of the derivatives 

of each channel separately and adding them to produce a single combined 

gradient. However, for each channel, the derivatives of a color edge can be in 

opposing directions. Therefore, a summation of the derivatives per channel will 

discard the correlation between the color channels (Di Zenzo, 1986). In order to 

better locate the edges considering the available multi-band information, we 

adapted a gradient computed through tensor mathematics (see details in part 3.2.1) 

(Weijer et al., 2006b). By this way, edge information obtain from different bands 

strengthen each other to improve the performance of the multi-level non-linear 

filter. This can be done in an easy way; the grayscale edge detector |  | for each 

time step t is replaced by a color edge detector (see details in part 3.2.1) to 

perform the gradient extraction. Thus, in each step, the gradient of the actual 

image u(x,t) is computed by a multi-band edge detector, and subsequently utilized 

in the diffusion process.  

 

In Fig. 3.2 and 3.3, two examples are given to illustrate the performance of the 

proposed multi-level non-linear color diffusion filter. The examples are 

intentionally selected from analogue images to further expose the filter 

performance. It is clear from those figures that, the dominant noise has been 

suppressed successfully from the images without blurring the edges. Besides, 

most of those critical edges, even the ambiguous ones (especially the edges 

belonging to dormers), are clearly improved and strengthened. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3.2 (a) Raw aerial image #1 and (b) the filtered result. (c-f) illustrates the 

evolution of the diffusion filtering process. (c) Original patch, (d) result of the 

first-level diffusion (λ = 0.03, σ = 2), (e) result of the second-level diffusion (λ = 

0.05, σ = 1), and (f) result of the third-level diffusion (λ = 0.075, σ = 0.5). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3.3 (a) Raw aerial image #2 and (b) the filtered result. (c-f) illustrates the 

evolution of the diffusion filtering process. (c) Original patch, (d) result of the 

first-level diffusion (λ = 0.03, σ = 2), (e) result of the second-level diffusion (λ = 

0.05, σ = 1), and (f) result of the third-level diffusion (λ = 0.075, σ = 0.5). 
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3.1.2 Color Boosting 

 

The goal of color boosting is to improve the apparent color difference between 

adjacent objects in a scene. For the aerial images (especially for analog cameras), 

the contrasts in the RGB values caused by the color variations are generally not 

high enough to exploit this distinction. Therefore, the idea is to amplify the color 

variations between the objects (for example, a building roof and its background) 

before the edge detection to find and extract the edges that cannot be detected due 

to low color variation. We utilized the boosting technique developed by Weijer et 

al. (2006a). First, the original RGB color space is transformed to the de-correlated 

Opponent Color Space (o1, o2, and o3): 
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Next, to improve the color contrast in the images, color directions of the opponent 

space (o1 and o2) are selected and multiplied with a factor of k (k  > 1). Finally, the 

modified opponent color space is back-transformed to the boosted version of RGB 

color space: 
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   (3.5) 

 

The results of color boosting method based on various boosting factors are 

illustrated in Fig. 3.4 and 3.5. The boosted results prove that, for each small k, the 

color differences between adjacent objects in a scene are improved. However, on 

the contrary to the results provided by small boosting factors (k < 5), larger k
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3.4 (a) Image #1 after discontinuity preserving filtering, and the results of 

color boosting with (b) k = 2, (c) k = 3, (d) k = 5, (e) k = 20, and (f) k = 200. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3.5 (a) Image #2 after discontinuity preserving filtering, and the results of 

color boosting with (b) k = 2, (c) k = 3, (d) k = 5, (e) k = 20, and (f) k = 200. 
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values starts to lose some of the critical edges that are formed by shading effects. 

Not surprisingly, for extremely large boosting factors (such as k = 200), the 

boosting results converge to a stable constant boosted image which can be 

regarded as a very simple color classification output. For those cases, the boosted 

output of a three-band aerial image have at most 8 color classes (black, white, 

blue, green, red, cyan, magenta, and yellow) based on the dominant color value of 

each pixel in the input RGB image. 

 

One important property of color boosting is that it is highly sensitive to the noise 

level inherent in aerial images, and if the noise in the images is not suppressed 

adequately, it also tends to boost the noise level of the images. Fig. 3.6 clarifies 

this issue. Color boosting with an excessive boosting factor (k = 200) is applied to  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3.6 (a, d) The original images, boosted (k = 200) images (b, e) after 

discontinuity preserving filtering, and (c, f) without performing any filtering 

operation. 
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the original and filtered images and the results prove that it is essential to apply 

color boosting to the noise filtered images. 

 

3.2 Line Extraction 

 

3.2.1 Color Edge Detection:  

 

One way or another, the final performances of the developed methods mainly rely 

on the performance of a basic procedure known as the detection of the low level 

features, i.e. edges, in aerial images. Until now, a wide variety of edge detection 

techniques have been developed; however, the edge detectors used so far are 

mostly based on monochromatic techniques which either performs the detection 

on a single band, e.g. panchromatic, or a single band derived from several 

available bands using a certain method such as PCA. In the monochromatic 

context, a variety of edge detectors were proposed and/or used, some examples 

are Nevatia-Babu line finder algorithm (Huertas and Nevatia, 1988; Mohan and 

Nevatia, 1989), Suppression and Enhancement operator (Henricsson, 1998), Boldt 

hierarchical algorithm (Collins et al., 1998; Jaynes et al., 2003), Optimal Zero 

Crossing operator (Sahar and Krupnik, 1999), Prewitt operator (Turker and San, 

2004) and Laplacian operator (You and Shiqiang, 2006). Besides those detectors, 

the Canny (Canny, 1986) or Canny-Deriche (Deriche, 1987) edge detectors were 

probably the most preferred ones (see e.g., Lin and Nevatia, 1998; Kim and 

Nevatia, 1999; Stassopoulou and Caelli, 2000; Cord et al., 2001; Bilen, 2004; 

Güler, 2004; Koc San, 2009; Habib et al., 2010). However, the low level object 

extraction performances of those detectors are always limited since they work on 

a single band or component. A very clear and good example that shows the 

potential of a multi-band (or color) processing is illustrated in Fig. 3.7.  In the 

example, a color variant (Koschan and Abidi, 2005) and a classical grayscale 

Canny edge detector were applied to a checkerboard pattern consisting of three 

different color squares that have similar intensity values. The edge detection 

results in Fig. 3.7 unquestionably prove the importance of multi-band or color
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Figure 3.7 (a) Original image in a grid pattern, (b) result of a color variant canny 

edge detector, and (c) result of a grayscale canny edge detector (Koschan and 

Abidi, 2005). 

 

edge processing. In this thesis, to maximize the performance of the edge 

detection, the multiband edge detection approach proposed by Weijer et al. 

(2006b) is utilized. They proposed a color Canny edge detection algorithm to 

accurately locate the edges in multispectral images. The algorithm mainly consists 

of calculation of the spatial derivatives of different image channels, and the 

computed derivatives are combined using tensor mathematics. In this way, 

differential structures of the bands in multispectral images are mutually supported, 

and an edge detection of better completeness is accomplished. Here we briefly 

review the approach; more details can be found in Weijer et al. (2006b). 

 

Adding the differential structure of multispectral channels may cause cancellation 

even when apparent edges exist in the image (Di Zenzo, 1986). Thus, instead of 

dealing with edge directions defined in the range of [0, 2л], it is more appropriate 

to work on the orientation ranges between [0, л]. By this way, during the 

summation of edge information, opposite directions will contribute and reinforce 

each other. Since the tensor of a vector and its 180 rotated counterpart vector are 

equal, tensors are convenient to describe color derivative vectors. Given a 
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grayscale image f, the structure tensor is given by (Di Zenzo, 1986; Förstner, 

1994): 

 

  (
   ̅̅ ̅     ̅̅ ̅̅ ̅

    ̅̅ ̅̅ ̅    ̅̅ ̅
),      (3.6) 

 

where the subscripts indicate spatial derivatives and the bar (‾) indicates 

convolution with a Gaussian filter. For a multispectral image f = (f 
1
, f 

2
, … ,f 

n
)
T
, 

the structure tensor can be defined as (Weijer et al., 2006b) 
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With the aid of the spatial derivatives, two eigenvalues of the tensor G in eq. 3.7 

can be defined as 

 

   
 

 
(     ̅̅ ̅̅ ̅̅ ̅̅       ̅̅ ̅̅ ̅̅ ̅̅  √(     ̅̅ ̅̅ ̅̅ ̅̅       ̅̅ ̅̅ ̅̅ ̅̅ )

 
 (      ̅̅ ̅̅ ̅̅ ̅̅ )

 
) 

(3.8) 

   
 

 
(     ̅̅ ̅̅ ̅̅ ̅̅       ̅̅ ̅̅ ̅̅ ̅̅  √(     ̅̅ ̅̅ ̅̅ ̅̅       ̅̅ ̅̅ ̅̅ ̅̅ )

 
 (      ̅̅ ̅̅ ̅̅ ̅̅ )

 
)   

 

The most prominent local orientation can also be defined as (Weijer et al., 2006b) 

 

  
 

 
      (

      ̅̅ ̅̅ ̅̅ ̅̅

     ̅̅ ̅̅ ̅̅ ̅̅       ̅̅ ̅̅ ̅̅ ̅̅ )       (3.9) 

 

By means of the large eigenvalue (λ1) in Eq. 3.8 and the orientation (θ) in Eq. 3.9, 

the color Canny edge detector can be introduced (Gevers, 2006): 

 

 Compute the spatial derivatives, fx and fy 
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 Compute eigenvalue (λ1) and its orientation (θ) 

 

 Apply non-maximum suppression on λ1 in the prominent direction. 

 

Here, two minor adaptations enhance the results of the algorithm: (i) the output of 

the final gradient map is scaled between zero-and-one before further processing, 

which significantly reduces the remaining noisy edges, and (ii) a two level 

hysteresis thresholding is designed to have a better control on the final edge 

contours. 

 

The results of the color edge detection are illustrated in Fig. 3.8. It can be seen 

that the edges describing the object boundaries are successfully extracted. 

Furthermore, the building boundaries that show only a very slight color difference 

are detected. 

 

3.2.2 Straight Line Extraction:  

 

One of the common problems of image processing is to extract application 

specific geometric primitives (straight line segments, circles etc.) from the 

complete edge maps. In the domain of straight edges/lines, until now, a significant 

number of methods/detectors were proposed and some examples are the Nevatia-

Babu detector (Nevatia and Babu, 1980), Burns edge detector (Burns, 1986), 

Hough Transform (Hough, 1962) and its variants (Ballard, 1981; Li et al., 1986; 

Illingworth and Kittler, 1987; Ben-Tzvi and Sandler, 1990; Princen et al. 1990), 

and Steger Line Extractor (Steger, 1998). On the other hand, more recently, 

eigenvalue (Guru et al., 2004) and PCA (Nagabhushan et al., 2005; Shekar et al., 

2006; Lee et al., 2006) based approaches gained more attention from the 

community.  

 

In this part, a two stage solution for the straight line extraction problem is 

proposed, (i) the extraction of straight edge segments, and (ii) fitting line 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.8 (a, c) Color boosted images with (k = 3), and the results of color Canny 

edge detection with σ = 2 and hysteresis thresholds of τ1 = 20 and τ2 = 0. 

 

segments to the extracted straight edge segments. In the study performed by Lee 

et al. (2006), a fast and efficient PCA based approach was proposed to extract the 

straight edge segments.  Besides, they also compared the results of their approach 

with the results of the popular Hough Transform method and proved that their 

approach is more efficient than Hough Transform in several aspects in terms of 

straight edge extraction (see details in Lee et al., 2006). Therefore, in this thesis, 

their approach is further developed and utilized for the extraction of line segments 
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from aerial images. Furthermore, in this study, several drawbacks of the approach 

are identified and corrected. 

 

The approach starts with a labeling procedure in which the extracted edges are 

classified into two distinct edge classes, row and column segments. To do that, 

four types of marks (row, column, cross, and single) are used, and the row and 

column edge segments are labeled using 8-neighbour connectivity. Thereafter, 

PCA method is used to extract two principal components of each row and column 

segment. To do that, the scatter matrices of edge segments must be computed (Lee 

et al., 2006): 

 

  (
      
      

)     (3.10) 

 

If n is the number of pixels of a labeled segment and (xi, yi) is the coordinates of 

the ith pixel of that segment, the components of the scatter matrix S is calculated 

as (Lee et al., 2006): 
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where xm and ym are the mean coordinate values of the pixels that fall in that 

segment. The first (λ1) and second (λ2) eigenvalues from the given scatter matrix 

in Eq. 3.10 can be computed as (Lee et al., 2006):  
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 ) 

 

In principle, the straightness of an edge segment can be determined from the 

magnitude of the second eigenvalue (λ2) computed in Eq. 3.12. Thus, an absolute 

threshold (ta) can be forced on the second eigenvalues of each segment to 

determine whether the segment is straight or not. However, depending on the 

length of the edge segment, noise which arises from several short primitives may 

distort the computed straightness values of the segment. Due to this reason, the 

straightness of long segments may not be correctly determined with a single 

absolute threshold. Therefore, to solve this problem, Lee et al. (2006) proposed a 

relative thresholding scheme. The edge segments are labeled as straight if the 

eigenvalue of the second principal component (λ2) is less than a predefined value 

(ti) which is also a function relative to the length of the segment (li): 

 

   (
  

    
)
 

   ,    (3.13) 

 

where lmin denotes the total number of pixels of the shortest line permitted. By this 

way, depending on the length of each segment, threshold values are automatically 

determined and used to test the straightness of each segment. 

 

Although the method has proven to be fast and efficient, several problems are 

identified during the extraction of the straight edge segments. First, the input 

binary edge images are assumed to be segments that are only a single pixel wide. 

However, this is generally not the case for the output of the binary images 

generated by the color canny edge detection. Although non-maximum suppression 

is applied after the detection stage, this does not always guarantee one pixel wide 

edges extracted from color images, since separate spatial derivatives of the image 

bands are combined during edge detection. To solve this problem, we utilized the 

image skeleton technique (MatLab, 2009) to remove the redundant boundary 
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pixels of the binary edges. The technique ensures that the binary objects shrink to 

a minimally connected structure without breaking apart.  

 

A different shortcoming observed is that, since the approach mainly depends on 

row and column primitives, after the edge detection stage, a straight object 

boundary in an image may be represented by more than one primitive. This is 

actually an expected output if the straight object boundary actually occurs in the 

same arrangement in the image space. However, in some cases, accidental edge 

alignments may cause the straight edges to break apart into several straight pieces 

which in turn significantly reduce the performance of the straight edge detector. 

Several examples are illustrated in Fig 3.9a. The figure points out some critical 

edge locations in which the straight edges are split into row and column segments. 

Therefore, those cases must be handled and corrected before the determination of  

 

  

Figure 3.9 (a) Artificial critical locations and (b) the corrected result. 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.10 Masks utilized to identify and correct the artificial critical locations. 
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row and column primitives. In this thesis, four different masks (Fig. 3.10) are 

utilized to identify those critical configurations. Thereafter, those locations are 

corrected by replacing them with the cross primitives (Fig. 3.9b).  

 

Another critical shortcoming occurs if two same label (for example two row-

directional) edge segments are connected with a cross primitive junction, in this 

case the algorithm is not capable to determine the correct straightness value. 

Unfortunately, this type of line to line combinations is not rare in aerial images. 

To solve the problem, four different directional masks with 5x5 pixels (Fig. 3.12) 

are applied to identify problematic intersections. An example is given in Fig. 3.11.  

In the figure, two reddish ellipses cover only a single segment composed of only 

row primitives. Thus, it is impossible to validate the segment as a single straight 

row edge, as the second-eigenvalue (λ2) of this segment may simply exceed the

 

 

(a) 

 

(b) 

Figure 3.11 (a) A problematic same-label intersection and (b) the corrected result. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.12 Masks utilized to identify and correct the critical intersections. 
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predefined straightness threshold ti in Eq. 3.13. Thus, we identify the intersection 

point of this segment and thereafter, the problematic intersection is removed prior 

to the computation of the second-eigenvalue (λ2). 

 

The results of the straight edge detector based on the two image patches are 

illustrated on Fig. 3.13 and 3.14. The row and column edges are extracted from 

the edge images generated by the color Canny edge detector (Fig. 3.13c and 

3.14c). After that, the edge segments are labeled as row and column primitives, 

and the straightness of each segment is tested based on the second-eigenvalue (λ2) 

of the PCA analysis. In order to better visualize the difference between the 

absolute and relative thresholding, same thresholds (ta = 0.1) are applied to both 

image patches. As seen in Fig. 3.13f and 3.14f, most of the straight edge segments 

were missed with the absolute eigenvalue threshold of 0.1. However, the detected 

straight segments can be considered as the most reliable ones. On the other hand, 

more straight segments are observed in Fig. 3.13i and 3.14i, in which the 

thresholding is performed in a relative manner with same eigenvalue threshold. In 

that case, the effects are taken into account for longer edge segments; thus, a large 

number of straight segments are detected. Nevertheless, it is also clear from those 

results that, although the relative thresholding is applied during the selection of 

straight edge segments, several important object boundaries are still missing. 

Thus, the noise affects that may cause curvilinear straight object boundaries must 

be considered, and handled with a larger eigenvalue threshold. In Fig. 3.13m and 

3.14m, straight edge segments that are extracted with a large eigenvalue threshold 

(ta = 1.6) is shown. In that case, we observe that almost all of the straight 

segments are successfully located. Not surprisingly, the large threshold also 

recognizes and labels some short curved edge segments as straight objects. 

However, those segments can be treated and handled in the next step, in which the 

straight edge segments are converted into straight line segments. 

 

In this study, we refer to a line segment, a single straight object that is composed 

of only two endpoints (xs, ys; xf, yf). To accurately describe the line segments, we
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

 

(k) 

 

(m) 

Figure 3.13 (a) Original image #1, (b) filtered and boosted image, and (c) color 

Canny edges. Straight row, straight column and final straight edges are illustrated 

in first, second and third columns, respectively. (d-f) Straight edges with absolute 

thresholding with ta = 0.1, (g-i) straight edges with relative thresholding with ta = 

0.1, and (j-m) straight edges with relative thresholding with ta = 1.6. For all cases, 

minimum segment length is selected as 10 pixels. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

 

(k) 

 

(m) 

Figure 3.14 (a) Original image #2, (b) filtered and boosted image, and (c) color 

Canny edges. Straight row, straight column and final straight edges are illustrated 

in first, second and third columns, respectively. (d-f) Straight edges with absolute 

thresholding with ta = 0.1, (g-i) straight edges with relative thresholding with ta = 

0.1, and (j-m) straight edges with relative thresholding with ta = 1.6. For all cases, 

minimum segment length is selected as 10 pixels. 
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consider that the accumulation of coordinates (x, y) of all pixels forming a straight 

edge segment be a set of two-dimensional data points (xi, yi), i = 1...n. Thus, the 

aim is to fit the line segments to those set of points (xi, yi) in which both xi and yi 

are assumed to be influenced by an isotropic noise model that has same variances 

for each coordinate: 

  [
      
  

       
 ] ,        (3.14) 

 

where Σ is the covariance matrix associated with each pixel and σpixel is the 

standard deviation of the edge pixel coordinate noise distribution (Madsen and 

Christensen, 1995). At this point, a line representation is required (Fig. 3.15); in 

this part, the line representation proposed by Deriche et al. (1991) is utilized: 

 

     ( )       ( )         (3.15) 

 

The required parameters (τ, ρ) of the straight line in Eq. 3.15 can be computed by

 

 

 

Figure 3.15 Fitting a straight line to a set of edge pixels (Madsen and Christensen, 

1995) 
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where 
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After fitting the infinite straight line, the endpoints of a line segment can be 

defined by projecting the extent of edge segment onto the infinite line (Madsen 

and Christensen, 1995): 

 

      (     ( )       ( )   )    ( ) 

      (     ( )       ( )   )    ( ) 

(3.18) 

      (     ( )       ( )   )    ( ) 

      (     ( )       ( )   )    ( ) 

 

Assuming the basic edge pixel noise model presented in Eq. 3.14, it can be shown 

that the covariance matrix of the parameters of the infinite line, (τ, ρ) becomes 

(Madsen and Christensen, 1995): 

 

  
(   )      

 

(   )    
[
   
    

]  [
  

 
      
 

 

]          (3.19) 

 

   ̅    ( )   ̅    ( )        (3.20) 

 

Once again, the coordinate covariance matrices of the two segment endpoints (xs, 

ys; xf, yf) can also be computed from Eq. 3.18. Using the starting endpoint as 

example, the vector   ⃗  [    ]  expresses the endpoint coordinates as 
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functions of the coordinates of a vector   ⃗  [      ]. If Δ
s
 defines the 

covariance matrix associated with the coordinates of the endpoint: 

 

   [
     
      

 

     
      

 ]  
  ⃗⃗⃗ 

  ⃗ 
 
  ⃗⃗⃗ 

  ⃗ 

 

   (3.21) 

 

where   ⃗    ⃗  is the 2x4 Jacobian matrix and Γ is the 4x4 covariance of   ⃗ : 

 

  [
 

  
  

  
  

 
]     (3.22) 

 

Thus, Δ
s
 is a 2x2 covariance matrix expressing the two variances of the 2D 

distribution function of endpoint coordinates (Madsen and Christensen, 1995). 

 

In some cases, a single straight edge segment may be formed by more than one 

straight line segment. In this case, a recursive strategy is utilized. First, an infinite 

line model is estimated from the entire set. Next, the edge points that support the 

line model (based on a specific orthogonal distance tolerance) are removed from 

that straight edge segment. The estimation is repeated with the remainder of the 

points to find the next infinite line model. The iteration stops if the number of 

pixels left is less than the number of pixels of the shortest line permitted (lmin) or 

there are no pixels left on the straight edge segment. Fig. 3.16b and 3.16e 

illustrate the line segments that are estimated from the detected straight edge 

segments. The overlay figures with the original images in 3.16c and 3.16f indicate 

that almost all of the straight line boundaries that are related with objects and their 

details are well extracted and most of the short curved segments are eliminated. 

 

After the extraction of line segments, several geometric attributes of each line 

segment, such as orientation (θl) and length (Ll), can be computed. The orientation 

attribute (θl) of each line can be easily computed with the following equation: 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3.16 Original images (a, d), straight line segments overlaid to straight edge 

segments (b, e), and straight line segments overlaid to original images (c, f). 

 

 

      {      (
     

     
)       }        (3.23) 

 

where mod{a, b} is the modulus operator that guarantees the computed angle 

value is bounded with 0-pi radians. The computation of the length attribute of 

each line is also straightforward: 

 

   √(     )
 
 (     )

 
    (3.24) 

 

Radiometric attributes which obtain the image surface reflectance values in the 

vicinity of each line segment can be computed by generating flanking regions on 

each side of the line segments (Fig. 3.17). Two parameters, flanking distance (fD)
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(a) 

 

(b) 

 

(c) 

Fig. 3.17 (a) An edge segment and the left and right flanking regions. (b, c) The 

generated flanking regions for each line segment. 

 

and flanking width (fW), are sufficient to determine the flanking regions on each 

side (Fig. 3.17a). Once the flanking regions are generated, the pixels that fall in 

each region must be determined. However, this issue is not trivial, since some of 
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the pixels on the edge of a region are only partially covered (Fig. 3.17a). At this 

point, a simple rule is sufficient to decide which pixels will be included to the 

region: if a pixel's central point is inside the boundary of a flanking region, the 

pixel is regarded as inside the flanking region. Once the flanking pixels are 

determined, the radiometric values available in each band are collected. However, 

since a flanking region may also contain irrelevant objects or disturbances, e.g., 

chimneys and shadows, with spectral characteristics other than the main 

reflectance, these disturbances (outliers) must be taken into account during the 

computation of the radiometric attributes (Henricsson, 1998). In this thesis, the 

mean values of each band in the flanking region are robustly estimated using the 

method of minimum covariance determinant (Meucci, 2005). The method 

searches for an observation xt such that if we remove it from a given set of 

observations {x1, . . ., xT}, the determinant of the resulting sample covariance is 

reduced the most. This would mean, after removing that observation from the set 

of observations, the sample mean and covariance shrinks the most, and thus that 

observation (xt) is the farthest outlier in the sample. To perform this, the following 

equation must hold (Meucci, 2005): 

 

| (  )
  (  )|  (    )| 

  |   

where              (3.25) 

  [
  
   ̂ 

 
  
   ̂ 

]

   

 

 

In Eq. 3.25,  ̂  is the sample mean of the data,  (  )  denotes the matrix after 

removing the t-th row, N is the number of bands, and    is the t-th element of the 

diagonal of the following matrix: 

 

   ( ( 
  )    )      (3.26) 
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It can be proved that 0 ≤ λt ≤ 1. Thus, the farthest outlier corresponds to the 

highest value of λt, unless λt = 1: in that case, if we remove the t-th observation, 

the sample covariance in Eq. 3.25 turns out to be singular (Meucci, 2005). In this 

way, in each iteration, the minimum covariance determinant method removes a 

single observation from the entire set which has the highest value of λt. However, 

since we do not know a priori the total number of outliers in each flanking region, 

we defined a breakdown factor of 50%. Thus, we stop the iterations if the number 

of observations in the dataset is less than half of the original number in the 

flanking regions. 
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CHAPTER 4 

 

 

 

STEREO LINE MATCHING 

 

 

 

Once the straight line segments are independently extracted for both of the stereo 

images, a matching strategy is required to find the line correspondences between 

the images. In this chapter, we propose a new line matching approach to establish 

the correspondences in a stereo manner (Fig. 4.1). The proposed approach initially 

generates reference line pairs in the first image and collects all potential matching 

candidate pairs from the second image with the aid of a-priori known image to 

image geometry. Next, the number of candidate pairs for the matching is

 

 

Figure 4.1 Flowchart of the proposed stereo line matching approach 
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significantly reduced after imposing a weighted pair-wise matching similarity 

score computed over a total of seven pair-wise constraints (an epipolar, three 

geometric, a photometric, a correlation and a regional constraint). Thereafter, to 

select the best line-to-line correspondences, a precise matching step is developed. 

This step involves newly proposed line-to-line measures (line-based Daisy, 

Redundancy, Pair-wise Quality) and for each line in the base image, the best 

corresponding line in the search image is assigned after an iterative final 

disambiguation process in which the matching inconsistencies are further 

eliminated using nearest/next distance ratios and a final similarity voting scheme. 

 

During the implementation, for the realization of the image-to-image relations 

(estimation of the epipolar lines, stereo intersection etc), the well-known 

photogrammetric techniques are utilized. For this purpose, the precise knowledge 

of the position of the perspective centers, image orientations and the camera 

calibration is required. Therefore, for all images, it is assumed that this 

information is available from a bundle solution (precise exterior, interior and (if 

available) self-calibration parameters). For this study, we further assumed that the 

processed stereo images are not significantly different (within ±5°) in terms of 

their kappa (κ) angles. Thus, we do not apply any a priori rotation to the line 

segments before the matching step. 

 

4.1 Formation of Potential Matching Candidates on the Base Image 

 

In UHR images, the number of extracted line segments is quite large even for a 

small part of an urban aerial image. For this reason, in a pair-wise strategy, it is 

necessary to select reference line pairs in a meaningful manner due to two 

reasons; (i) to select and search for pairs of lines that have a possible connection 

in terms of their height values, and (ii) to reduce the time required for the 

processing of pair-wise matching to a reasonable level. At this point, the former is 

quite important. The aim is to search for pairs of line segments that have a 

connection in terms of their height values, and to discard those pair-wise relations 
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that do not show any reasonable similarity (it is noteworthy to state at this point 

that, this aim neither requires that the line segments in a pair must have exactly 

the same height values, nor they must be really intersecting in object space). Since 

the height values of line segments are not known at this stage, we assess three 

criteria, (i) proximity, (ii) angle of intersection in image space, (iii) similarity of 

the radiometric values in the flanking regions, during the selection of the line 

pairs. 

 

The first measure, proximity (Tprox), defines the minimum 2D Euclidean distance 

(dij) between two lines (li and lj) (Fig. 4.2). It can be defined as a joint minimum of 

two Euclidean distances: the minimum distance between the endpoints of the line 

segments in a pair, and the minimum of the orthogonal distances computed from 

one of the lines to any point on the other line segment. However, it should be 

noted that in order to accept the orthogonal distance computed, the orthogonal 

projection must fall exactly on to the line segment. For example in Fig. 4.2, the 

shortest orthogonal 2D distance between the line segments l1 and l4 is selected as 

the d14 distance. Although the other orthogonal projection line (d41) is much 

smaller than the d14 distance, it is not accepted as a valid distance since the 

orthogonal projection point does not fall on to the line segment l1. 

 

 

Figure 4.2 The proximity measure for grouping the line pairs on the base image. 
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The second measure (Torient) is the angle enclosed by line segments li and lj (Fig. 

4.3). In this part, we only allow formations of line pairs that have a finite 

intersection point (not parallel) and an angle of intersection value larger than a 

specific threshold (≥ 5°). In Fig. 4.3, the line segments, l1 and l3 have 

approximately similar orientation; therefore, the pair grouping of l1 and l3 is not 

allowed.  

 

Figure 4.3 The orientation measure for grouping the line pairs on the base image. 

 

The third measure, related to the flanking regions (Tflank), is another metric to 

evaluate the selection of reference line pairs (Fig. 4.4). Apparently, if two line 

segments in a pair does not confirm any similarity within their flanking regions; 

those line segments can generally be assumed to be parts of different objects. On 

the other hand, the line segments that expose large differences within their 

flanking regions may also have a chance to belong the same object. Thus, the aim 

at this point is not to eliminate the line pairs that do not show any similarities 

within their flanking regions, but to compare and learn which side(s) of a pair 

represents the most similarity. As a result, this information is also held in reserve 

to be used in the next stage, identifying candidate pair models on the search 

image.  

 

Apparently, the information of the flanking regions can be computed in several
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Figure 4.4 The flanking regions measure for grouping the line pairs on the base 

image. 

 

ways and may involve different color spaces (Henricsson, 1998; Zhang and 

Baltsavias, 2000); however; here, the multispectral bands are utilized directly by 

taking the Euclidean norms of the differences of the flanking region information. 

Thus, a joint minimum of four differences must be computed, i.e., for the line 

pairs l1 and l2 in Fig. 4.4, the flanking region measure can be computed as: 

 

       (‖     ‖   ‖     ‖   ‖     ‖   ‖     ‖ )
        (4.1) 

 

where, Li and Ri represent vectors for mean color values (e.g. RGB) computed for 

each flanking region in a robust manner (see Chapter 3), and (.)
–
 is the joint 

minimum operator. Note that, if the computed minimum value in Eq. 4.1 is 

equally shared by a number of difference combinations (e.g. for both ‖   

  ‖  and ‖     ‖ ), then all those combinations are held in reserve for future 

testing during the pair-wise matching. 

 

The three measures (proximity, orientation, and flanking regions) used at this 

stage are not directional, that is the selection of mutual pair relations of (li and lj) 

or (lj and li) do not have any numerical difference. Therefore, if mutual relations 
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occur during the processing, we only keep one of the pairs for further processing. 

This, for sure, reveals a noticeable improvement in terms of speed of the 

processing; if we have n lines that have possibility of generating mutual pairs, 

after the elimination, we have n(n-1)/2 possibilities instead of having n(n-1). 

 

4.2 Identification of Candidate Pair Models on the Search Image 

 

Once all the line pairs are selected from the base image, their corresponding 

matches on the other image are also searched in a pair-wise manner. To fulfill this 

objective, for each reference pair, all candidate pair models must be collected 

from the other image. With the knowledge of the image orientations along with 

the user-specified minimum and maximum height values (or the approximated 

height information derived from an external DSM data), for a single line, an 

epipolar quadrilateral region (Fig. 4.5) can be employed to reduce the search 

space. So far, this regional constraint has been well-known by the 

photogrammetry and computer vision society and integrated in most of the 

previous studies dealing with line matching.  

 

 

Figure 4.5 The constraint of quadrilateral region to reduce the search space. 
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On the contrary to the previous studies, in a pair-wise strategy, there are two lines 

in a pair; thus, all candidates for a pair of lines are collected using two different 

quadrilateral regions. For example, in Fig. 4.6b, two quadrilateral regions (defined 

by certain minimum and maximum height) are illustrated for the line pairs, l1 and 

l2 (Fig. 4.6a). However, even for a single line, the number of candidates in each 

quadrilateral region could be excessive. Here, a constraint is proposed to construct 

the candidate pair model sets from the individual candidates. As a result, for each 

line segment, the number of candidates can be considerably reduced. First, the 

intersection point of the reference pair (Fig. 4.6c) is computed. Since the 

formation of the reference pairs is restricted in the previous stage with a specific 

angle (Torient, see section 4.1); there is always an intersection point between the 

line segments that form a reference pair. Thereafter, the epipolar line segment 

(with the same minimum and maximum heights) of the intersection point on the 

search image is estimated (Fig. 4.6d). Next, for all candidate pair models, the 

individual intersection points are computed and the proximity of the points to the 

epipolar line segment is tested by computing their orthogonal distances. If the 

distance value is computed to be less than a threshold (Tepi), the candidate pair is 

justified, otherwise deleted. For the threshold Tepi, rigorous experimental 

evaluations are performed (see Chapter 6), and it is found that almost all the 

correct pair intersections are within the range of 5 pixels distance to the epipolar 

line. Very similar results for the features of junctions are already verified by (Kim 

and Nevatia, 2004); thus, the relations that have provided orthogonal distances of 

less than Tepi are deleted. In Fig. 4.6d, the intersection points of candidate pair 

models that are computed to be less than Tepi for the line pair l1 and l2 are shown. 

 

Although the epipolar line of intersection constraint is very successful if the lines 

in a pair actually intersect in object space (or intersect hypothetically), it does not 

hold for the pairs that are formed by the lines that do not intersect. Thus, the 

correct pair model (if it exists) on the other image might be missed. For example, 

in Fig. 4.6a, if we try to force this constraint on a pair formed by the line segment 

l2 and any other line that is found on the road surface nearby, the constraint will
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.6 (a) Reference line pairs, (b) two quadrilateral regions, (c) the 

intersection point of l1 and l2, (d) the epipolar line of intersection and the 

intersections of candidate pair models that are computed to be less than Tepi. 

 

fail. This is simply due to the reason that, the line segment l2 has not in height 

based relation with the segments found on the road surface. However, that kind of 

pair formations are generally known and can be followed from the pair formation 

step with the information obtained through the flanking regions of the line 
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segments (see section 4.1). One different aspect of this constraint is that it also 

automatically eliminates the reference pairs in which two line segments in one 

view correspond to a single segment in the other view (lack of a unique 

intersection point). For instance, in Fig. 4.6a, assume that the line segment l1 is 

extracted much longer in a case which discriminates the entire building roof 

completely from the road segment. In this case, a single segment, l1, will simply 

correspond to two different line segments on the second view. To solve these 

cases, the repetitive nature of the pair formation is used considering the fact that a 

single line is allowed to have a part in different pair models. Thus, a single line 

has possibility to be matched with its correct correspondences in different pair 

models; therefore in such a case, l1 has possibility to be matched with its two 

separate correspondences in different combinations of reference pair models. 

 

At the end of this step, for each reference pair model, all possible candidate pair 

models are collected. Thus, the pair-wise relations between the entire reference 

and candidate pairs are established and ready for the subsequent matching stage. 

 

4.3 Initial Pair-wise Matching 

 

In this part, new pair-wise constraints are developed and utilized for the initial 

stereo pair-wise line matching scheme. In particular, a total of seven pair-wise 

constraints (an epipolar, three geometric, one photometric, a correlation and a 

spatiogram constraint) from different domains (geometric, radiometric, and 

regional) are developed. These constraints are integrated in a weighted pair-wise 

matching similarity function to select the best matching candidate pair for each 

reference line pair generated from the base image.  

 

4.3.1 Geometric Constraints 

 

In order to describe the geometrical relations between the line segments in a pair, 

we employ three different measures (Park et. al., 2000). The first measure is the 
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angle which two line segments l1 and l2 form (Fig. 4.7a), the second measure is 

the angle from the midpoint of l1 to that of l2, which is measured from the first line 

to the second line (Fig. 4.7a), and the third measure is the ratio of the sum of the 

line lengths of segments to the average distance between the endpoints of the line 

segments (Fig. 4.7b). Thus, the geometrical relations utilized are defined as (Park 

et. al., 2000): 

 

  (     )      

  (     )          (4.2) 

  (     )  
 

 
(  ̅̅ ̅̅    ̅̅ ̅̅ ) 

 

where   (  ̅̅ ̅̅    ̅̅ ̅̅    ̅̅ ̅̅     ̅̅ ̅̅ )    . 

 

In the line matching literature, these types of geometric constraints were already 

known and utilized (eg., Park et. al., 2000, Zhang and Baltsavias, 2000). 

However, in most of the cases, two geometrical relations (r2 and r3) are 

inappropriate for most of the aerial images, since the line segments found in 

different views may have different lengths and midpoints due to several reasons 

such as occlusion, image noise etc. In addition, the perspective distortion

 

 

(a) 

 

(b) 

Figure 4.7 The geometrical measures utilized. 
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combined with relief of terrain and/or of individual objects also plays an 

important role at this point and in summary, the measures completely become 

inconsistent from one view to another. 

 

Assume that the lines c1 and c2 in Fig. 4.8b form one of the candidate pair models 

of the lines l1 and l2 in Fig. 4.8a. If we compare the lengths of the lines in each 

pair, only the length of the line c2 is significantly different; however, even in this 

case, two geometrical measures computed are different from each other. For this 

reason, a normalization scheme is developed to deal with the problems of the 

geometrical reliability of the line segments extracted from different views. It relies 

on the epipolar geometry and the idea of finding the common overlaps of lines in 

different views. For the endpoints of each line, the corresponding epipolar lines on 

the other view are estimated. Thus, a point to point correspondence (Schmid and

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.8 (a) A reference model, (b) a candidate pair model and its geometrical 

measures, (c) and (d) normalization with epipolar lines and the normalized 

measures. 
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Zisserman, 1997) is performed on each line to provide a final single overlapping 

line for each line in a pair (Fig. 4.8c- and 4.8d-left). This normalization scheme 

for each reference pair and its candidate pair model is also applied before the 

computation of the second and third geometrical measures. Thus, the measures 

turn out to be more reliable (Fig. 4.8c- and 4.8d-right) when compared to their 

non-normalized counterparts.  

 

Once the geometrical relations are computed, we define the geometrical 

constraints between a reference pair and a candidate pair by taking the absolute 

differences: 

 

   |  (     )    (     )|                      (4.3) 

 

4.3.2 Radiometric Constraint 

 

In this study, a flanking region constraint that searches for the intra-pair similarity 

between the reference pairs and the candidate pairs are developed (Fig. 4.9). The 

constraint takes into account the similarity of the side(s) of the reference pair 

model previously found (Eq. 4.1) and searches whether a similar relationship of 

the flanking information of the same sides for the candidate pair models exist or 

not. To allow such a constraint, the illumination of the images is assumed to be 

similar (the case in a single strip acquisition) and the reflections are assumed to 

comply with the lambertian theory.  

 

Assuming that the most similar flanking regions in a reference pair is computed as 

‖     ‖ , the Eq. 4.1 becomes: 

 

      
  (‖     ‖   ‖     ‖   ‖     ‖   ‖     ‖ )

  

 ‖       ‖             (4.4) 

 

Subsequently, a similar relationship of the flanking information of the same sides
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(a) 

 

(b) 

Figure 4.9 (a) A reference pair and (b) a candidate pair with flanking regions. 

 

for the candidate pair model must hold: 

 

      
  ‖       ‖      (4.5) 

 

Thus, the intra-pair similarity constraint between the two flanking regions can be 

defined as: 

 

   |      
        

 |     (4.6) 

 

4.3.3 Correlation Constraint 

 

In order to further assess the similarities between the reference and candidate 

pairs, a pair-wise correlation constraint forced on a hypothesized 3D triangular 

plane is developed. The correlation constraint performs on a 3D plane fitted to the 

line pairs and their intersection point based on the assumptions that (i) they are the 

correct match, and (ii) they belong to a single plane. A correlation measure 

bounded for all the area marked by the 3D lines and the intersection point is not 

appropriate, since there may be different planes on a building roof (chimneys, 

dormers etc). Thus, we apply the correlation measure to the immediate vicinity of
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.10 (a, b) The back projected plane estimated from the line pairs and the 

intersection point, (c, d) points that are utilized for the one-to-one correspondence 

based on the height values obtained from the estimated 3D plane. 

 

the point of intersection and the corresponding plane, which can also be defined as 

a 3D triangular planar patch (Fig. 4.10). We fixed the side lengths of the triangle 

which are exactly on the same direction of the lines by a single distance parameter 

d = 2 m. Fig. 4.10a and Fig.4.10b illustrate the extents of the back projected plane 

that is estimated through the line pairs given in the figure. Next, the 3D surface of 

the plane is then utilized to perform point-to-point correspondence between the 
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two images (Fig. 4.10c and Fig.4.10d). Thus, a correlation value can be computed 

between the two images by collecting the pixel values (nearest-neighbor re-

sampling). At this point, the original image is converted to the Lab color space 

(CIE, 1976) and the luminance band of the Lab space is utilized during the 

computation of the correlation values. Thus, if we have m distinct points on the 

surface of the 3D plane, two vectors that consist of m values can be generated for 

the base and the search image: 

 

  [  
   

    
 ]       [  

   
    

 ]   (4.7) 

 

where L represents the Luminance values collected, R and C denotes reference 

and candidate pairs, respectively. Thus, the correlation constraint between the two 

vectors can be computed as: 

 

        
 [(    )(    )]

    
     (4.8) 

 

In Eq. 4.8, ρ defines the correlation coefficient, E is the expected value operator, μ 

and σ denote the mean and standard deviations, respectively. However, it should 

be noted that there may be several cases that may violate the plane formation and 

the correlation value computed: (i) the intersection point of the lines that are 

exactly on the same plane may appear to be on a different plane(s) than their own 

plane (Fig. 4.11a – pairAB) (ii), the lines that really intersect in object space may 

not correspond to a physical object plane (Fig. 4.11a – pairCD), and (iii) the planes 

formed by the line pairs may be hidden or occluded in one view (Fig. 4.11b – 

pairEF). It is straightforward to track the last violation; we compute the angle 

difference of the plane with its projected plane (to a flat terrain), and only apply 

the correlation measure if the computed plane angle is narrower than a specific 

angle threshold (≤ 75°). However, the other two violations cannot be handled in a 

similar manner, since the hypothesized 3D planes are not correct. For that reason, 

it is important to note that some of the correct pair relations may also produce low  
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(a) 

 

(b) 

Figure 4.11 (a, b) Several cases that may violate the plane constraint. 

 

correlation scores. Therefore, the threshold value utilized for the constraint is 

carefully analyzed and determined after performing a detailed investigation (see 

details in Chapter 6). 

 

4.3.4 Regional Constraint 

 

The regional similarities dominated by the reference line pairs and the candidate 

pair models are also evaluated. To do that, first, the 2D regions that are 

consistently described by the line pairs are selected. Fig. 4.12 illustrates the 

selection procedure. Initially, for each reference and the candidate line pair, point-

to-point correspondence is applied to obtain consistent line end-point locations 

(Fig. 4.12 c, d). Next, the regions dominated by those line segments are selected 

(Fig. 4.12 e, f). However, it is simply impossible to compare the regions directly, 

since the perspective distortion and the features belong to many different planes 

on the roofs (e.g., chimneys, dormers etc.) may simply alter the positions of the 

pixels to some extent. On the other hand, it is not logical to compare the regions 

with a simple histogram measure, since many parts of the images may contain 

similar radiometric information; very different regions generally produce similar 

histograms. Therefore, we utilize the spatiogram measure (Ó Conaire et. al., 2007) 

to evaluate the regional similarity between the regions. A very important aspect of  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4.12 (a, b) Corresponding line pairs, (c, d) same line pairs after point-to-

point correspondence, (e, f) regions dominated by the line pairs. 
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the spatiogram measure is that it has a unique capability to combine the 

distribution of the radiometric information along with the spatial information. 

Thus, the positional differences occur between the line pairs are handled 

(somewhat alleviated) while providing the histogram information. The details of 

the derivation of the spatiogram measure are explained in (Ó Conaire et. al., 

2007); in this part, only the final similarity measure is provided: 

 

   ∑ √    
  

   [  |    
 |    (     

   (     
 ))] ,  (4.9) 

 

where, B is the number of histogram bins utilized, N(x; μ, Σ) operator represents a 

normalized Gaussian evaluated at x, {       and   } and {  
    

   and   
 } are the 

two spatiograms extracted from the base and the search images with the specific 

histogram parameters of bin count, spatial mean and spatial covariance, 

respectively.  

 

4.3.5 Epipolar Constraint 

 

In section 4.1, during the formation of candidate pairs, to limit and reduce the 

number of candidate pair models, an epipolar line based approach is proposed. 

The approach initially generates an intersection point between the line segments 

that form a reference pair. Thereafter, the epipolar line segment (with certain 

minimum and maximum heights) of the intersection point on the search image is 

estimated. Next, the proximity of each intersection point to the epipolar line 

segment is tested by computing the orthogonal distances (d
┴
) between the point 

and the epipolar line segment (Fig. 4.13). As a result, this orthogonal distance can 

also be utilized as a new measure, since we search for pairs of line segments that 

confirm a relation in terms of their height values (more strictly, intersecting line 

segments in object space). Thus, if the computed distance for a candidate line pair 

is relatively shorter than the distances of the other candidate line pairs, it’s clear 

that the pair with the shortest distance is more likely to be the correct matching 

pair. Thus, if (x1, y1; x2, y2) represents two arbitrary points on the epipolar line
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(a) 

 

(b) 

 

(c) 

Figure 4.13 (a) A reference pair selected from the base image and the intersection 

point (in red color), (b) the estimated epipolar line of the intersection point on the 

search image (in dark blue color) and the possible intersection points (in light blue 

color) of candidate pairs around the epipolar line, and (c) the orthogonal distance 

between the intersection points and the epipolar line. 

  

segment and (xi, yi) is the image coordinates of the intersection point; a similarity 

measure can be defined as: 
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4.3.6 Pair-wise Matching 

 

The final pair matches are assigned after a weighted pair-wise matching similarity 

score which is computed over a total of seven measures (ξ1 – ξ7); an epipolar, 

three geometric, one photometric, a correlation and a regional measure. However, 

it is clear from those measures that, except for the correlation and regional scores 

(ξ5 and ξ6), the scores of the other five measures define the dissimilarities between 

the two pair relations. Therefore, prior to the computation of overall pair-wise 

similarities, the scores of all measures are computed as dissimilarities by 

normalizing each measure (by means of min. and max. values) from 0 to 1, and 

the overall similarity result (ΘS) between the two pair relations is computed as: 
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)

 

                                        ( .  ) 

 

In Eq. 4.11, ξi
n
 is the normalized dissimilarity value of each measure, and wi 

represents the weights associated with each measure. During the computation of 

the overall similarities, the weights utilized for each measure are selected as equal 

(         ) and the computed similarities are squared (Eq. 4.11) in order to 

give more weight to high similarity values, and to be more selective. 

 

4.4 Precise Line-to-Line Matching 

 

Once the initial pair-wise matches are established, the line-to-line relations 

between the stereo images can be inferred. However, the results of the pair-wise 

matching rarely provide one-to-one line correspondences between the images. 

Based on our experiences, after the pair-wise matching, the ambiguities mostly 

occur for the lines that are adjacently located within a very short perpendicular 

distance. Typical examples can be seen in Fig. 4.14c, d. This is mainly due to two
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.14 The matching ambiguities after pair-wise matching. (a, b) The stereo 

images and the extracted lines, (c, d) potential ambiguities after the pair-wise 

matching. 

 

explicit reasons; (i) the lines that are very close to each other that belong to the 

same object (building, road etc.) reveal similar pair-wise characteristics and (ii) 

since a relaxed threshold (Tepi) is applied for the epipolar intersection during the 

candidate pair formation, very close lines are mostly susceptible to satisfy that 

threshold. Therefore, in this thesis, a great care has been devoted to the precise 

line-to-line matching stage and a new iterative disambiguation algorithm is 
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developed. For this purpose, we combined three novel measures during the 

selection of the best line correspondences. (i) The first measure relies on the 

gradient orientation information in the local neighborhood of lines which is 

computed using a recently proposed dense matching measure, Daisy (Tola et. al., 

2010). Since the original Daisy measure is point based, in this thesis, the measure 

is extended and adapted to fulfill the requirements of the linear features and their 

local neighborhood. (ii) The second measure, the Redundancy, is computed from 

the entire pair-wise matches based on the fact that a single line is allowed to have 

a part in different pair combinations. Thus, after the pair-wise matching, there is a 

quite large number of matching redundancy available for most of the line 

correspondences. By this way, the redundancy measure gives a possibility to 

understand and integrate exclusive local matching information for line segments 

during the disambiguation process. (iii) The third measure is computed from the 

results of each individual pair-wise matching. Since we assigned the best pair 

using a pair-wise matching similarity score, this information can also be utilized 

during the precise matching stage, since the quality of the pair matches are 

inherently determined by the quality of the line correspondences in each pair. 

Those three measures are integrated for the final disambiguation process in an 

newly developed iterative way, in which the matching inconsistencies are 

eliminated using nearest/next ratios and a final similarity voting scheme. 

 

4.4.1 Line-based Daisy Measure 

 

In recent years, the gradient orientation histograms has proven to be robust to 

distortions (up to a level) and found to be successful in terms of point matching 

when compared to the classical pixel-based measures such as cross-correlation 

and pixel differencing. Some good examples can be found in (Lowe, 2004; 

Mikolajczyk and Schmid, 2005; Bay et. al., 2006). More recently, Tola et. al. 

(2010) proposed a dense matcher, Daisy, which has also proven to be much more 

efficient during the computation of the gradient orientation histograms. In the line 

matching context, up to our knowledge, the only study that takes into account the 
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gradient orientation around the line local neighborhood was proposed by Wang et. 

al. (2009). However, for aerial images, the final matching results that are only 

based on the information obtained from the line local neighborhoods could be 

ambiguous. Because all those measures are almost non-discriminative on their 

own for the aerial image case and suffer from the same problem, repetitive 

patterns, where the information extracted from local neighborhoods of very 

different lines has similar information (Fig. 4.15). However, the information 

within those neighborhoods may reveal some hints and may provide opportunities 

to indicate and eliminate the indisputably wrong matches.  

 

In this study, we selected the Daisy as a fundamental local neighborhood measure 

for the post-processing due to two explicit reasons: (i) great efficiency and speed 

during the computation of the gradient orientation histograms, and (ii) its circular, 

symmetric shape and isotropic kernel structure turns out in a small overhead 

during the computation of the measure for different line orientations. Here, first, 

we only briefly review the original point-based Daisy measure and refer the reader 

to the reference (Tola et. al., 2010) for further details. Thereafter, we will 

introduce new adaptations for Daisy and present how efficiently the measure

 

 

(a) 

 

(b) 

Figure 4.15 Two examples of line segments commonly observed in repetitive 

patterns and their very similar local neighborhoods. 
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Figure 4.16 The original Daisy descriptor (Tola et. al., 2010). 

 

could be utilized for capturing the local line neighborhoods.  

 

The Daisy descriptor is given in Fig. 4.16. In the descriptor, each circle represents 

a region where the radius is proportional to the standard deviations of the 

Gaussian kernels and the “+” sign represents the pixel locations of the convolved 

orientation map centers where the descriptor is computed. Daisy is controlled by a 

total of four parameters; where R is the distance from the center pixel to the outer 

most grid point, Q is the number of convolved orientation levels, T is the number 

of histograms at a single layer, and H is the number of bins in the histogram. For a 

given input image, first, depending on the number of bins H, orientation maps are 

computed. Each orientation map is then incrementally convolved with Gaussian 

kernels of different sigma values to obtain convolved orientation maps. At each 

pixel location illustrated in Fig. 4.16, a vector made of values from the convolved 

orientation maps is computed. Let h∑(u,v) represent the vector made of the 

gradient orientation values at location (u,v) in the orientation maps after 

convolution by a Gaussian kernel of standard deviation ∑, and let Q represents the 

number of different circular layers, then the Daisy descriptor D(u0,v0) for location 

(u0,v0) is defined as (Tola et. al., 2010): 
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 (4.12) 

 

where lj(u,v,R) is the location with distance R from (u,v) in the direction given by j 

when the directions are quantized into the T values. 

 

Since the Daisy descriptor is point-based (it belongs to the center grid point), in 

this study, the measure is extended and adapted to fulfill the requirements of the 

line features and their local neighborhood. First, we centralize the center grid 

point of the descriptor to the center of the overlapping parts of the line segments 

which are defined by point to point correspondence (Fig. 4.17 a, b). Next, to 

achieve rotation invariance over gradient vectors, we rotate the Daisy grid and 

align the direction vector of the descriptor with the orientation of each line (Fig. 

4.17 c, d). Since the amount of rotation must be adjusted for all lines based on 

their angle values in image space, during this procedure, we fully utilize one of 

the main advantages of the Daisy descriptor in which we only circularly shift the 

final orientation histograms to compute the descriptor. To achieve invariance to 

perspective distortion exactly on the line segments, for each line, we utilize 

adaptive R values for the Daisy grid (distance from the center pixel to the outer 

most grid point). The original Daisy measure has a specific constant R value; 

however, adaptive R values for line segments could be computed with the 

knowledge of the overlapping parts after imposing point to point correspondence. 

Since we apply this correspondence during the initial pair-wise matching, it does 

not bring any further overhead during the computation of the measure. In addition, 

it is apparent that we don’t have any knowledge about the surfaces attached to the 

lines in their neighborhoods; thus, we further utilize the adaptively computed R 

values for entire Daisy grid points (Fig. 4.17 e, f). After these adaptations, for the 

computation of the similarities, we divide the Daisy grid points into two separate
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 4.17 The adaptation of the Daisy descriptor. (a, b) The line segments with 

point-to-point correspondence and the located Daisy grids to the center of each 

line segment, (c, d) rotated grids based on the orientation of the line segments, and 

(e, f) final Daisy grids with adaptive scaling, (g, h) divided Daisy grid points. 

 

classes and produce two constant grid binary masks {Mm(x)} for each line; the 

grid points that are located (i) above the line, and (ii) below the line (Fig. 4.17 g, 

h). Thus, we perform the similarity computations independently for each grid 

class. Moreover, we also mask out the vectors, h∑(u,v), from the descriptor matrix 

D(u0,v0) whose grid locations are exactly on the line. This is due to the reason that 

if one of the sides of the lines is occluded, then the histograms computed for the 

points that are exactly on the lines have no reason to resemble each other. 

Therefore, we exclude those pixel locations and their histograms from the Daisy 

measure. For the computation of the dissimilarities between two Daisy 

descriptors, Tola et. al. (2010) proposed a Euclidean difference metric;  
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where S is the number of grid points, M
[k]

 is the kth element of the binary mask M, 

and Di
[k]

 is the kth histogram h in D(x) computed from image i. However, we 

observed that, although the metric is successful in most of the cases, it completely 

ignores the cross-correlation between the two descriptors, Di and Dj. Thus, we 

define a modified-similarity (MS) metric that can be jointly utilized with the cross-

correlation: 
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First, the normalization coefficient in Eq. 4.13 is not necessary any longer since 

our binary masks have constant number of points for each side of the lines. After 

the modification, the similarity metric produces values between 0 and 1, and in 

order to be more discriminative, we take the square of the total dissimilarity, thus, 

we further penalize the higher dissimilarities values (D > 1) and give more weight 

on the lower ones. We also define the cross-correlation-similarity (CS) between 

two descriptors as: 
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where µ(.) and s(.) operators denote the mean and standard deviations, 

respectively. Note that, in Eq. 4.15, similar to Eq. 4.13, the correlation is also 

squared in order to give more weight to high similarity values, and to be even 

more discriminative. Finally, since the similarities in Eq. 4.13 and 4.14 are 

computed independently for both sides of lines (for the above and below grid 

points); we propose the final line-based Daisy similarity (SimD) for line matching 

as: 
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where (.)
+
 and (.)

–
 denote max(a, b) and min(a, b), respectively. The final (.)

–
 

operator in Eq. 4.16 ensures that the final Daisy similarity metric (SimD) should be 

high for both of the similarity metrics, MS and CS. 

 

4.4.2 Redundancy Measure 

 

In this thesis, a new measure, Redundancy, is proposed to solve the matching 

ambiguities. The Redundancy is computed from the entire pair-wise matches 

based on the fact that a single line is allowed to have a part in different pair 

combinations. Thus, after the pair-wise matching, for each line segment, there is a 

number of matching redundancy that could be efficiently utilized for the 

disambiguation. The idea is illustrated in Fig. 4.18. Assume that Fig. 4.18 shows 

the line segments extracted from two stereo images, and Table 4.1a gives the 

results of the pair-wise matches for those line segments that only had a pair-wise 

relation with segment #1. In Table 4.1a, the left column represents the search pairs 

generated from the left image, and the right column represents the best pair 

matches assigned after the pair-wise matching. If we look at the results of the 

pair-wise matches in detail, the segment #1 had a total of five pair-wise relations 

with other line segments within the pre-defined proximity (see part 4.1) in image 

space. One-to-one line matches inferred from the pair-wise relations are given in 

Table 4.1b. Based on the uniqueness constraint, a single line segment from the left 

image has, at most, one corresponding line segment in the right image (Suveg and 

Vosselman, 2004). However, during the extraction of line segments, a single 

segment is often fragmented into several shorter segments, such as in the case for 

the segments #2 and #3. In this case, the uniqueness constraint must be handled 

carefully by taking into account the collinearity of the fragmented ones (segments 

#2 and #3). It is also obvious from the Table 4.1b is that we have two candidate 

line matches over the segment #1, however, visually, it is clear that, segment #1 in 

the left image corresponds to the segment #a in the right image. To solve the 

ambiguity, we evaluate the redundancy within the pair-wise matches (Table 4.1a). 

To be specific, we search the total number of occurrences of each one to one
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Image 1 

 

(a) 

Image 2 

 

(b) 

Figure 4.18 Line segments extracted from two stereo images. 

 

Table 4.1 The results of the (a) pair-wise matching and (b) the inferred one-to-one 

line matches from the pair relations. 
 

Pair-wise Matches  Line Matches 

Left Right  Left Right 

1 – 2 a – b  1 a – e 

1 – 3 a – b  2 – 3 b 

1 – 4 a – c  4 c 

1 – 5 e – d  5 d 

1 – 6 a – f  6 f 

(a)  (b) 
 

 

relation within the entire pair-wise relations. This gives us quite powerful unique 

information, since most of the ambiguities occur due to accidental alignments and 

have a very limited chance to occur in multiple times. For example, in Table 4.1a, 

among the total of five pair-wise relations that involve segment #1, four out of 

five corresponds to the segment #a in the right image. Only one pair-wise relation 

indicates the correspondence with segment #1 and #e for the left and right images, 

respectively. Thus, the number of occurrences computed from the pair-wise 

relations over segment #1 reveals the segment #a as the correct match.  
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In general, the ambiguities can be successfully solved with just counting the 

number of occurrences. However, due to the perspective distortion, in some rare 

cases, the number of pair-wise occurrences of wrong candidate may exceed the 

number of occurrence of the correct match. One good example for this problem is 

illustrated in Fig. 4.19. It is shown in the figure that, after the pair-wise matching, 

the line represented with red in the left image have two candidates for matching 

(two different red lines in the right image). In the next figure, the left column (Fig. 

4.20 a, c) and right column (Fig. 4.20 b, d) belong to the left and right stereo 

images, respectively, and the blue lines demonstrate the lines that assist the pair 

relations for both candidates. As expected, the correct match (Fig. 4.20 a, b) had 

successfully paired with a total of four lines that belong to the surrounding 

boundaries of the building roof. However, surprisingly, the wrong candidate (Fig. 

4.20 c, d) paired with a total of six lines (some of them are multiple matches) 

extracted from the boundaries of a car parked on the nearby street. Thus, for this 

example, blindly counting the number of occurrences may lead the redundancy 

measure to a wrong match (red lines in Fig. 4.20 c, d). Therefore, we weight all 

pair relations proportional to their within pair minimum distances. By this way, 

the redundancy measure provides a possibility to understand and integrate a local 

matching support for the line segments. It is clear from Fig. 4.20a and b that

 

 

(a) 

 

(b) 

Figure 4.19 Left and right stereo images and one of the matching ambiguities due 

to the perspective viewing and occlusion. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.20. A problematic case of the Redundancy measure. 

 

minimum distances between the lines in pair relations that belong to the correct 

match are much shorter than the ones that belong to the wrong match (Fig. 4.20 c, 

d). Thus, we propose the new redundancy measure (SimR) for a line pair as: 
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provided that the    
[ ]
≠0 and    

[ ]
≠0. In Eq. 6, N is the number of pair relations 

assist to matching, dij is the pixel-based minimum 2D Euclidean distance between 

two lines (li and lj) in a pair, L and R indicates the pair relations in left and right 

images, respectively. 
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4.4.3 Pair-wise Quality Measure 

 

During pair-wise matching, the final pair matches are assigned after a weighted 

pair-wise matching similarity score which is computed over a total of seven 

measures (ξ1 – ξ7); an epipolar, three geometric, one photometric, a correlation 

and a regional measure (see section 4.3.6). The overall pair-wise similarity score 

(ΘS) for each pair that is computed from those seven measures may give us a hint 

about the quality of the line matches in that pair. Thus, if a line match is a part of 

N number of pairs, the pair-wise quality metric (SimQ) for that line match is 

computed as the average of all pair-wise similarities: 

 

      
 

 
∑   

[ ] 
        (4.18) 

 

where   
[ ]

 is the overall pair-wise similarity of the qth pair relation. 

 

4.4.4 Precise Matching 

 

In this study, the measures developed for the precise matching is integrated for the 

final disambiguation process in a newly developed iterative pair-wise manner, in 

which the matching inconsistencies are eliminated using nearest/next distance 

ratios (NNDR) and a final similarity voting scheme. The pseudo code of the 

developed approach is given below: 

 

 Eliminate indisputably wrong relations using NNDR computed for the Daisy 

measure (ratioD) 

 Initiate Iterative Precise Matching  

o while ambiguity exist  

o Compute the Total Similarity Metric (SimT) 

o Initiate matching with the highest SimT value and label the relation that 

has the highest value as correct 
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o Identify the line segments that violate the correct relation 

o Check the collinearity of those line segments with the line segments in 

the correct relation and label them as incorrect if not collinear 

o Update pair-wise relation table and update the values (SimR & SimQ)  

o return  

 Apply hysteresis Global Thresholding 

 

Our aim during post-processing is to first eliminate indisputably wrong relations 

based on a very strict NNDR value forced over the measure line-based Daisy 

(SimD). NNDR is first introduced by Lowe (2004) based on the fact that the 

correct matches need to have the closest matching similarity significantly closer 

than the closest incorrect match to achieve reliable matching. For false matches, 

there will likely be a number of other false matches within comparable matching 

similarities (Lowe, 2004). For a large number of datasets, we investigated the 

NNDR metric in terms of the ratio of closest to second-closest matches of each 

line (see details in Chapter 6), and for the line matching problem, we reject all the 

related matches of a match that has a line-based Daisy dissimilarity (1- SimD) ratio 

lower than ratioD. The threshold is selected in a way that only a very limited 

number of line matches that have enough confidence have possibility to fulfill this 

threshold. Thereafter, we delete the line relations indicated by NNDR from the 

pair-wise matches, and for each match, we update the redundancy and quality 

metrics. At this point, it should be pointed out that, if a line relation in a pair is 

found to be wrong, we do not directly delete the pair, since we don’t have any 

inference (correct or incorrect) for the other match in the pair. The example given 

in Table 4.1a clarifies this fact. For the fourth pair relation (1–5, e–d), assume that 

we found that the line match (1–e) is wrong. However, we do not have any 

information about the other match (5–d) in the pair; thus, we cannot directly label 

the other relation as incorrect (although it may be in some cases). Therefore, since 

one of the matches in a pair is labeled as wrong, we update the redundancy (SimR) 

and quality measures (SimQ) of the other match in that pair by eliminating the 

contribution of that pair from its similarity values. By this way, for example, the 
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match (5–d) given in the Table 4.1a is not directly eliminated, but penalized, due 

to reason that the relation (1–e) in the pair is labeled as incorrect.  

  

Once all the measures are updated, we initiate an iterative matching scheme by 

starting from the match that has the highest total similarity value. For all matches, 

the total similarity metric (SimT) is computed by integrating the similarity 

measures in a weighted linear combination:  

 

                 
    

(    ) 
           (4.19) 

 

In Eq. 4.19, for each selected match, we normalize the Redundancy measure 

(between 0 and 1) with the maximum Redundancy value of the selected matches, 

so that the contribution of all similarities is consistent for the final voting. Based 

on our experiments, we found that the Redundancy is the most reliable and unique 

measure among the three measures, thus, in this study, weights of the similarities 

in Eq. 4.19 are designed as {wD, wR, wQ} = {1/4, 1/2, 1/4}. 

 

Apparently, among the selected matches, the correct match is the one that 

maximizes the total similarity metric (SimT). Thereafter, we fix the correct match 

and check for the matching ambiguities that violate the selected match. At this 

point, the collinearity of the line segments of the matching violations (if found 

any) are individually tested with the line segments of the correct match in order to 

avoid the deletion of the fragmented lines. The ones that are found to be collinear 

are labeled along with the correct match for the final matching list. The ones that 

are not collinear are deleted from the pair-wise matches. After the deletion, we 

apply the same updating strategy as explained above. Thus, at the end of each 

iteration, we penalize all related matches in the pairs that are labeled as incorrect. 

Thus, the (updated) measures (SimR and SimQ) turn out to be more and more 

reliable after each iteration.    
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Finally, the iterations stop after there is no ambiguity left in the final matching 

list. Like any other system developed so far, if a line segment in the first image 

has no corresponding line segment in the second image, the system cannot 

identify and label the match as incorrect (if accidentally assigned) since the 

correct line to be matched is missing. To solve this problem, a final check with a 

global threshold is required. On the contrary to the previous studies that rely on a 

single threshold, we propose a new hysteresis-like global thresholding to solve the 

problem and to maximize the performance of the matching. As we penalize the 

Redundancy measure (SimR) for each match after each iteration, once the 

iterations has stopped, we have a near-perfect final (SimR) values for the final 

matching list. This gives us a unique way to solve the above mentioned problem, 

in principle; those ill-posed matches have very low Redundancy values when 

compared to values of the correct matches. Thus, we define a two-level global 

thresholding: 

 

(i).          
  

(ii).          
                       

 

From experiments, we have found that a global Daisy threshold of     
  must be 

independently satisfied by every match. However, due to lack of rich textures in 

local line neighborhood, some false matches may easily exceed this threshold. 

Increasing the threshold may have a possibility to eliminate some of the correct 

matches as well, thus results in reducing the overall completeness of the matching. 

So, we propose to utilize a second high Daisy threshold,     
  restricted with a 

global Redundancy threshold of      . By this way, compared to case where only 

a single global threshold is enforced, using a two-level thresholding at the same 

time can eliminate most of the remaining false matches while keeping the 

matching precision and matching completeness. 
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CHAPTER 5 

 

 

 

STEREO LINE RECONSTRUCTION 

 

 

 

In this chapter, our motivation and contribution is mainly on the height estimation 

of the matched segments. Although the method of direct construction gives 

satisfactory reconstruction results for the lines that are not aligned with the 

epipolar line, a dramatic decrease in terms of height accuracy for the lines that are 

nearly or exactly aligned (≤ 10º) with the epipolar line is inevitable (Fig. 5.1). 

This is due to the reason that if the angles of lines in image space get closer to the 

epipolar direction, the two projection planes generated from line segments 

become similar and in the worst case (exact alignment) they turn out to be the 

same plane. For those cases, the direct construction of 3D lines from the 

intersection of planes is highly problematic in terms of final height accuracy and 

in some cases the intersection (or the reconstruction) may not be possible. 

Therefore, in this thesis, a new reconstruction method which relies on the relations 

developed in the pair-wise approach is developed. The main idea is to manipulate 

the redundancy inherent in pair-relations to generate artificial 3D point entities 

(Xi) from available pair matches and utilize those points during the estimation 

process to improve the height estimation of the matched segments. However, 

since we do not exactly know whether the two lines in a pair really intersect on 

the Earth surface or not, before the estimation process, we select the proper point 

entities by means of a new weight function which is composed of mainly three 

terms computed in a pair-wise manner: Euclidean distance, epipolar constraint 

and intersection angle in image space. For each problematic matching case (≤ 

10º), we automatically select the appropriate artificial 3D point entities and
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(a) 

 

(b) 

Figure 5.1 The line segments extracted from two images. The red ones indicate 

the lines that are aligned (≤ 10º) with the epipolar line (flight direction). 

 

integrate each selected entity during the estimation process along with the 

projection planes of the problematic line segments. Thus, at the end of this joint 

estimation, we have a possibility to reconstruct those problematic line segments 

with promising final performances. 

 

5.1 Reconstruction of Line Segments 

 

It is well-known that the reconstruction of straight lines which are nearly parallel 

to the epipolar line is numerically unstable within a stereo image pair or a single 

image strip (Zhang, 2005). For that reason, Zhang (2005) proposed an alternative 

way which relies on free-form line structures generated from multiple line 

segments. The major difficulty with the free-form structures is that the 

problematic line(s) must have an edge connection with the other neighboring 

lines; however, this is rarely the case for most of the line segments. Here, we 

present a new approach which also relies on line to line relations developed in the 

pair-wise approach. Thus, we have a possibility to reconstruct those problematic
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line segments without having such an edge connectivity assumption. 

 

The reconstruction process starts with a test which determines the angle difference 

(0 – 90º) between the line segments and the related epipolar line. Based on our 

experiences, the line segments that have angle differences of less than 10 degrees 

are highly susceptible to produce inaccurate reconstruction results. Therefore, 

during the test, we label the lines as not-aligned if the angle difference is 

computed to be larger than 10 degrees. The reconstruction of all those matched 

line segments are performed by intersecting the projection planes (Fig. 5.2), A
1
(l1) 

and A
2
(l2), with the method of direct construction as introduced in Heuel and 

Förstner (2001) and Heuel (2001). 

 

The underlying approach for the reconstruction of line segments that is nearly-

aligned (≤ 10º) with the epipolar line is to manipulate the redundancy (see Chapter 

4, section 4.4.2) inherent in pair-relations to generate artificial 3D point entities 

(Xi) and utilize those points during the estimation process. By this way, the 

neighbouring line segments that have a pair-connection with the problematic 

segment contribute to the height estimation (Fig. 5.3). However, the 

reconstruction cannot be performed in a single framework, since all 2D

 

 

Figure 5.2 The reconstruction of line segments that are not aligned with the 

epipolar line. 

Image 1 Image 2

C1

p1

q1

p2

q2

C2

N1

N2

Object Space (X, Y, Z)

P12(X, Y, Z)

Q12(X, Y, Z)

Epipolar 
Line



105 

 

 

Figure 5.3 The reconstruction of line segments that are nearly-aligned with the 

epipolar line. 

 

intersection points generated lie exactly on the problematic line segments; thus 

also belong to the projection planes. Therefore, each artificial 3D point entity (Xi) 

must be generated beforehand, and the final estimation should be jointly 

performed along with the related projection planes (Ai). In this section, we follow 

the similar representation of the homogeneous uncertain vectors given in Heuel 

and Förstner (2001). 

 

5.1.1 The Generation of Uncertain Artificial 3D Point Entities: 

 

Formally the uncertain homogeneous vectors are denoted as (x, Σxx), where Σxx is 

the covariance matrix of the homogeneous vector x. A 2D uncertain line (l, Σll) in 

image space can be generated by joining the end-points of the line segment, (x, 

Σxx) and (y, Σyy): 

 

(l, Σll) = (x × y, S(y) Σxx S(y)
T
 + S(x) Σyy S(x)

T
)       (5.1) 

 

where skew-symmetric matrix S(x) and S(y) are the matrix representation of the 

points x and y, respectively. Similar to Eq. 1, the intersection point x of two lines l 

and m can be computed as 

Image 1

Image 2

C1 C2

Object Space (X, Y, Z)
P12 Q12

X1

X2

X3
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(x, Σxx) = (l × m, S(l) Σmm S(l)
T
 + S(m) Σll S(m)

T
)         (5.2) 

 

with the related skew-symmetric matrices, S(l) and S(m). In our case, initially, the 

covariance matrices of each line endpoints are computed from edges that form the 

line segment, the details are given in Chapter 3. Next, the lines and their 

uncertainties are computed from those endpoints using Eq. 5.2 (Fig. 5.4a). 

Thereafter, for each problematic segment, the neighbouring line segments that 

have a pair-connection with the problematic segment are collected (from the 

available pair-wise matches) and their intersection points are computed using Eq. 

5.2. Fig. 5.4b illustrates an example of a generated artificial intersection point 

with its elliptical confidence region. 

 

The estimation of the artificial 3D point entities (Xi) from 2D correspondences 

cannot be performed using direct construction since the projecting rays emerge 

from 2D points rarely intersect in object space. Therefore, we estimated the 3D 

points using the iterative linear estimation model Gauss-Helmert with constraints.  

 

 

(a) 

 

(b) 

Figure 5.4 (a) Confidence regions of the extracted line segments, (b) an example 

of the generated artificial intersection point and its elliptical confidence region. 

Entities and confidence regions are shown in red and green colors, respectively. 

Confidence regions are 15 times exaggerated for visualization. 
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The details of the Gauss-Helmert model can be found in Appendix A. In our case, 

we have 6 observations for each case (two homogeneous 3 vectors for image 

points xij) and 4 unknowns for the homogeneous coordinates of each 3D point 

entity. Thus, referring to the Gauss-Helmert model, we have the vector l of the 

observations and the vector u of the unknown parameters: 

 

     [
   
   
]                                            (5.3) 

 

With the aid of the reduced skew-symmetric matrices S
[r]

(.) (Manual of 

Photogrammetry, 2004), there are 2 independent constraints g for each observed 

image point x and the unknown parameters (Xi). In addition, we have a single 

length constraint h on the unknown parameters. Thus, the relations of the Gauss-

Helmert model for the estimation of the 3D point entities can be written as: 

 

 (   )     [
 [ ](   )    
 [ ](   )    

]    

      (5.4) 

 ( )     
        

 

where P1 and P2 are the 3x4 projection matrices for points on images 1 and 2, 

respectively. The initial approximate values of Xi for the iterative solution can be 

obtained from the SVD solution (Heuel and Förstner, 2001), and once the 

estimation is completed, the covariance matrices of the estimated 3D point entities 

can be computed from the inverted normal equation matrix. 

 

5.1.2 The Joint Estimation of the 3D Line Segments: 

 

For the estimation procedure, we parameterize the 3D lines in Plücker 

representation    (  
    

 )  (                 )  and utilize an iterative 

linear Gauss-Markoff model with constraints (Appendix A). The algebraic 

expressions of the form   (    )    with respect to all possible observations 

(  ) and unknown ( ) entities are developed and explicitly given in Förstner et. al. 



108 

 

(2000) and Heuel and Förstner (2001). In our case, we are searching for an 

unknown line M which primarily must lie in two planes; thus,   (    )  

  (  )    where   is the homogeneous matrix representation of planes Ai. 

The projection planes Ai for each line li and the related uncertainties can be 

determined using the projection matrices Pj of the images (Förstner, 2010): 

 

     
    

 (5.5) 

        
         (     )     (     

 ) 

 

where, In represents n x n unit matrix and   denotes the Kronecker product. The 

uncertainty of each line is derived from Eq. 5.1 and for this study we assume that 

the projection matrices are free of error. In addition to the projection planes, the 

unknown line must also satisfy the artificial 3D point entities (Xi) generated from 

the neighbouring line segments,   (    )   
 
(  )   , where   is the 

homogeneous matrix form of points Xi. However, since we do not exactly know 

whether the two lines in a pair really intersect on the Earth surface or not, before 

the estimation process we compute weights for each 3D point entity generated. 

The weights utilized depend on three measures computed in a pair-wise manner; 

minimum 2D Euclidean distance (   ) between two lines (li and lj), the minimum 

angle (   ) enclosed by line segments li and lj, and the minimum orthogonal 

distance (   
 ) between the intersection points and related epipolar lines (lepi). In 

principle, the reliability of a point increases if the distances (both     and    
 ) 

computed are relatively short and decreases if the intersection angle is quite 

narrow (ex. < 10º). Therefore, we designed the new cumulative weight function 

(Wi) as: 

 

         
 (
           

 

     
)
 

(5.6) 

    {
                     

                     
  



109 

 

where the parameter σ1 and σ2 controls the weighting for metrics     and    
 , 

respectively. Fig. 5.5 shows the weighting curves separately computed for each 

measure. 

 

 
 

Figure 5.5 Independent weight curves for each measure. The control parameters 

(σ1 and σ2) are (5 and 2), respectively. 

 

For each nearly-aligned matching case (≤ 10º), the existing 3D point entities (Xi) 

are collected and their weights (Wi) are automatically determined using Eq. 5.6. 

However, it is not logical to integrate all observed point entities directly to the 

estimation process, since some of those points may be generated from wrong 

matches. Therefore, first, we eliminate all point entities that have weights less 

than a pre-defined threshold (Tw ≤ 0.05). Thereafter, among the remaining point 

entities, only the points that have the highest weights are integrated to the 

estimation process along with the observed projection planes. However, the 

selection approach for the best point entities is not trivial and must be carefully 

handled. Fig. 5.6 demonstrates a case in which a matching line (le) is aligned with 

the epipolar line. Assume that le is paired with three neighbouring lines (l1, l2, and 

l3) after matching. We estimate the related 3D point entities (X1, X2, and X3) from 

each corresponding intersection point (pij) using the Eqs. 5.1-5.4 and compute the 

related weights (W1, W2 and W3) for each entity from Eq. 5.6. However, it is clear 
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                              (a)                                                                 (b) 

 

                              (c)                                                                 (d) 

Figure 5.6 Left (a-c) and right (b-d) stereo images. The directional regions utilized 

during the selection of the best weighted point entities. 

 

that the entities (X2 and X3) will get higher weights than entity X1, since the 

computed minimum 2D Euclidean distance (dij) measure for X1 is significantly 

larger than the other distances. Thus, for this case, the 3D line will be estimated 

from the entities (X2 and X3) along with the projection planes (Ae1 and Ae2). 

However, since those entities are very close to each other and are located just one 

side (right) of the lines (le1 and le2) the final position of the line segments in object 

space is highly sensitive to the small deviations between the entities X2 and X3, 
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which may significantly reduce the final accuracy of the 3D line estimated. To 

solve this problem, we propose a region based weighting of points (Fig. 5.6c-d) in 

which the highest weighted points are calculated for each region separately. We 

utilize two split points (l/3, 2l/3) to divide the direction dominated by each line 

into three classes, left (RL) – center (RC) – right (RR). Next, best weights are 

computed for each region separately. Thus, we guarantee that the point entity (X1) 

generated by the intersection points (p11 and p12) contributes to the final 

estimation. 

 

For the estimation process, we form the point-line and plane-line incidence 

relations in 3D space and perform an iterative linear Gauss-Markoff model with 

constraints. For each case, we have six unknowns and two constraints (Plucker 

and length) for each 3D line (Li). In addition to the two projection planes, the final 

observation number depends on the number of point entities Xi available for each 

region. Once again, the required initial values can be taken from the SVD solution 

and the covariance matrices of the estimated 3D line entities can be computed 

from the inverted normal equation matrix of the Gauss-Markoff model. 
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CHAPTER 6 

 

 

 

DISCUSSION: TEST DATA AND PERFORMANCE EVALUATION 

 

 

 

This chapter presents the performance evaluation of the proposed stereo line 

matching and reconstruction approach. The assessments are performed for both 

analogue and digital images acquired over two different parts of Germany. To 

evaluate the results of the line matching, the quantitative line matching results in 

terms of the correctness, completeness and quality levels are provided. The 

performance of the reconstruction is assessed for three image patches selected 

from the test site Vaihingen (Cramer, 2010) by comparing them with the highly 

accurate reference data obtained from airborne Light Detection and Ranging 

(LIDAR). 

 

6.1 Test Sites and Image Datasets 

 

6.1.1 The Vaihingen/Enz Test Site 

 

The Vaihingen/Enz test site was first established for the geometrical performance 

tests of one of the first digital airborne line scanning systems in 1995. After that, 

the test site was used several times for different kinds of investigations: For the 

independent in-flight evaluation of new digital airborne sensors as well as for 

investigations on the potential of direct georeferencing using integrated 

GPS/inertial systems in combination with standard analogue frame cameras (Web 

1). The test site is located about 20km north-west of the city of Stuttgart-Germany 

and the spatial extension of the overall test area is about 7.5 km (east-west) x 4.7 
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km (north-south). The terrain heights differ between 193m and 356m above the 

mean sea level. The terrain variations, the extent of the overall test site, and the 

image area utilized from the test site are depicted in the Figure 6.1 (vertical 

component 2x exaggerated, © Landesvermessungsamt Baden-Württemberg) 

(Web 1). 

 

 

Figure 6.1 Vaihingen/Enz test site (Web 1) and the aerial ortho-image  

(rotated 90° CCW) 

 

From the overall test site, nine UHR Digital Mapping Camera (DMC) images 

from three different strips covering the urban area of the city of Vaihingen are 

selected. The images were acquired with 70% forward overlaps with a base-to-

height (B/H) ratio of 0.28. The focal length of the camera was 120 mm and the 

flying heights for the test fields were approximately 800 m above ground, which 

corresponds to ground sampling distances (GSD) of approximately 8 cm. The 

bundle adjustment of the test site was reported as sub-pixel level in planimetry 
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and a pixel level in elevation. Additional flights with almost a month time 

difference with the DMC acquisitions were done with a Leica ALS 50 LIDAR 

sensor in order to produce a highly accurate reference height data of the test site. 

The accuracy evaluations of the LIDAR data proved that the acquired LIDAR 

point cloud has an overall height accuracy of 3.3 cm (Haala et al., 2010). 

 

6.1.2 The Hannover Test Site 

 

The city of Hannover (Fig. 6.2) is the capital of the federal state of Lower Saxony 

(Niedersachsen) of Germany which is the second largest in area and the fourth 

crowded in population among the sixteen states of Germany. The selected test site 

is located near to the central part of the Hannover city with a spatial extent of

 

 

Figure 6.2 The Hannover test site and the aerial ortho-images 
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approximately 1.3 km (east-west) x 2.1 km (north-south) (© Geoinformation 

Hannover). The site mainly consists of built-up and residential environments with 

very dense and complex buildings including other manmade objects. The site has 

a flat topography, with an average elevation of 54 m. 

 

The UHR aerial images of the city of Hannover were taken with Zeiss RMK 

TOP30 analog camera with standard 60% forward overlaps with a B/H ratio of 

0.3. The calibrated focal length of the camera was 305.560 mm with a flying 

height of approximately 1600 m. The images were scanned at 14 μm resolution 

and this corresponds to a final GSD of approximately 7 cm. The bundle 

adjustment of the test site was performed as a sub-pixel level both in planimetry 

and in elevation. 

 

6.2 Assessment Strategies for the Line Matching and Reconstruction 

 

6.2.1 Assessment Strategy for the Line Matching 

 

In order to assess the accuracy of the line matching, the line matches were 

classified into three categories: True Positive (TP), False Positive (FP), and False 

Negative (FN), by comparing the automatically matched line segments with the 

manually generated reference line matching list. We term a line match as a True 

Positive if that match correctly corresponds to a matching relation in the reference 

list. On the other hand, a False Positive is a line match that does not correspond to 

any of the line matches in the reference list, and a False Negative is a line match 

that exists in the reference list but cannot be found by the automated approach. In 

this thesis, we follow the well-known three metrics to evaluate the quality of the 

line matching (Rutzinger et. al., 2009): 

 

              
‖  ‖

‖  ‖   ‖  ‖
                                  (   ) 
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‖  ‖

‖  ‖   ‖  ‖
                                  (  2) 

 

          
‖  ‖

‖  ‖   ‖  ‖   ‖  ‖
                              (   ) 

 

where ‖  ‖ denotes the number of line matches assigned to each specific class. 

The Quality metric in Eq. 6.3 gives an overview of the performance of the line 

matching, since a successful matching output must have high rates of 

completeness and correctness levels at the same time. 

 

6.2.2 Assessment Strategy for the Line Reconstruction  

 

For the Vaihingen test dataset, the accuracy of the reconstructed line segments 

could be evaluated by comparing them to reference LIDAR data. In order to 

compare the reconstructed line segments, we automatically extracted 3D planes 

from the point cloud in the vicinity of each line. Depending on the type of the line 

segment, this plane reconstruction process results in one plane if the line 

corresponds to a step edge and in two planes if the line corresponds to the 

intersection of two different planes (Fig. 6.3). Thereafter, for each of the line 

segments, we determined the line's average orthogonal distance from its

 

 

(a) 

 

(b) 

 

(c) 

Figure 6.3 (a) A test building, and two different types of line segments observed. 

Blue segments illustrate some examples for (b) the step edges, and (c) the 

intersection edges. The reference LIDAR point cloud is shown in green color. 
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neighbouring planes and used these distances to compute the RMS average 

distance between the reconstructed line segments and the LIDAR planes. The 

RMS distance was determined separately for line segments corresponding to one 

plane and those corresponding to two; furthermore, a total RMS distance was also 

determined. 

 

6.3 The Results and Discussion of the Proposed Line Matching Approach 

 

6.3.1 The Results and Discussion of the Vaihingen Test Site 

 

6.3.1.1 Parameter Selection for the Initial Pair-wise Matching Stage 

 

Both the success and the complexity of the matching are first determined by the 

proximity distance parameter (Tprox, see Chapter 4, section 4.1). The parameter 

controls the total number of pair-wise line relations generated for the matching. 

Figure 6.4 clearly demonstrates the underlying complexity for various proximity 

values defined on object space. The figure illustrates the level of increase in the 

total number of pair-wise relations generated between the line segments for each 

test patch given in Figure 6.5. It is clear from the figure that the number of

 

 

Figure 6.4 The total number of pair-wise relations computed with respect to 

Proximity measure (Tprox)  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

 

(k) 

 

(l) 

Figure 6.5 Six stereo test patches selected from the Vaihingen test site. 

 

pair-wise relations may reach over ten thousand even for such small urban 

patches. For sure, the slope of each increasing curves in Figure 6.4 not only 

depend on the proximity parameter, but also the total number of line segments 

extracted for each patch. Thus, it is possible to conclude that the highest number 

of line segments is extracted for the image patch #4 which has the steepest slope 

among all the six image patches. 

 

Since the pair-wise matching stage initially determines the line segments that will 

be utilized for the final precise matching stage, it is essential to include all 

possible correctly matching line segments into pair-wise relations. Thus, although 

reducing the proximity values to less than 5 m seems to be effective to limit the 

number of pair-wise combinations generated, short proximity values may prevent 
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some of the correct line matches from being paired with other nearby line 

segments. On the other hand, increasing the proximity values to over 10 m 

ensures that almost all of the correct matches are successfully paired with nearby 

line segments, but at the same time, the numbers of pairs generated reach an 

excessive level (Figure 6.4). At this point, manual investigations revealed that a 

proximity distance of 8 m gives a good sense of balance between the number of 

pairs generated and the number of correct matches paired successfully. Thus, in 

this study, the proximity distance is fixed to 8 m on object space for the pair-wise 

matching of all test patches. 

 

During the initial pair-wise matching stage, various threshold values can be 

defined for each of the seven pair-wise constraints (ξ1 – ξ7) to further limit the 

number of incorrect matches. Besides, restricting some of the practically 

impossible pair-wise matches with thresholds may also have a massive impact on 

the speed of the processing, since if one constraint is not fulfilled, in that case, 

there is no need to further test the remaining constraints. However, at this point, as 

already stated in Kim and Nevatia (2004), the major difficulty arises in the stage 

of gathering supervised ground truth examples of correct pair-wise matches, 

because it is rather time consuming to manually assign or provide ground truth for 

thousands of pair-wise combinations. Therefore, here, a different approach is 

utilized for this purpose. First, for each constraint, very relaxed thresholds which 

can hardly be exceeded by the correct pair-wise matches are manually determined. 

Next, the initial pair-wise matching stage is performed automatically by 

restricting the matches with those very relaxed thresholds. After that, matching 

pairs found from the automatic matching results are collected and assessed to 

determine the values of the thresholds. During the assessments, since both correct 

and incorrect pair-wise matches are labeled, probability density functions (PDF) 

for correct pair-wise matches and as well as incorrect matches can be computed. 

Thus, this also gives a chance to analyze the empirical distribution of the incorrect 

pair-wise matches to further understand the limits of the initial pair-wise matching 

stage. 
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Fig. 6.6 shows the computed PDFs of the correct and incorrect pair-wise matches 

that are generated using the six image pairs given in Fig. 6.5. For the first two 

geometrical constraints (ξ1 and ξ2), it is clear that almost 60% of the correct pair-

wise relations in stereo images found to be having no difference in terms of their 

geometrical pair-wise intersection and directional angle values (Fig. 6.6a, b). The 

maximum threshold values for those constraints seem to be around 30 degrees. 

For the third geometrical pair-wise constraint (ξ3), a ratio difference threshold of 

0.4 can effectively hold more than 99% of the correct matches. The PDF of the 

correct pair-wise matches of the radiometric constraint (ξ4) shows that 

approximately 60% of the correct pair-wise matches have intra-pair radiometric 

value differences of 5 or less. It is also clear that almost 95% of the correct 

matches have pair-wise radiometric differences of less than 25. In terms of the 

correlation constraint (ξ5), unsurprisingly, almost 30% of the correct matches have 

correlation values of less than 0.6. Obviously, this kind of result is related to the 

violations that may occur during the plane formation (see details in Chapter 4, 

section 4.3.3). Therefore, a relaxed correlation threshold, such as 0.2, must be 

selected to cover most of the correct pair-wise matches. The PDF computed for 

the correct pair-wise matches of regional constraint (ξ6) shows that a regional 

similarity threshold of 0.4 can effectively handle more than 95% of the correct 

matches. For the pair-wise epipolar constraint (ξ6), we see that about 95% of the 

pair-wise intersections have orthogonal distance errors of less than 5 pixels, which 

can be considered as the allowed maximum orthogonal distance error for the 

Vaihingen test patches. Thus, for the Vaihingen test site, we fixed the pair-wise 

thresholds as given in Table 6.1.  

 

For all constraints, if we analyze the PDFs of the incorrect pair-wise matches, it is 

clear that, we do not have very distinct separation between the correct and 

incorrect pair-wise matches. Fig 6.6a-c shows that, in terms of geometric 

constraints (ξ1-3), the remaining incorrect pair-wise matches after applying the 

thresholds have a very similar distribution compared to the distribution of the 

correct pair-wise matches. Thus, it is almost impossible to differentiate the
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 6.6 PDFs of pair-wise constraints and the final similarity function 

computed for the six Vaihingen test patches. 
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Table 6.1 Selected thresholds of the pair-wise constraints for the Vaihingen site. 

Pair-wise Constraints Selected Threshold (Tξ1- ξ7) 

Intersection Angle (ξ1)  0° 

Directional Angle (ξ2)  0° 

Distance Ratio (ξ3) 0.4 

Intra-pair Radiometric Value (ξ4) 25 

Correlation Score (ξ5) 0.2 

Regional Score (ξ6) 0.4 

Orthogonal Epipolar Distance (ξ7) 5 pixels 

 

remaining false matches with the selected geometric thresholds in Table 6.1. On 

the other hand, the PDF of the incorrect pair-wise matches revealed an interesting 

characteristic for the radiometric constraint (ξ4), being almost equally distributed 

between the radiometric extents (0-40). Thus, it is apparent that the selected 

radiometric threshold (Tξ4 = 25) can eliminate 30% of the remaining false pair-

wise matches while providing most of the correct pair-wise matches. Similarly, 

the selected thresholds for the correlation and regional constraints may also have 

potential to eliminate approximately 30% and 20% of the false pair-wise matches, 

respectively. However, it is very important to state that most of those incorrect 

pair-wise matches may have a high possibility to be shared between different 

constraints. The PDF of overall similarity score indicates this fact (Fig. 6.6h). For 

all matches, a very nice bi-modal distribution with two distinct peaks is observed 

for the linear (equal-weighted) combination of the pair-wise constraints. The two 

normal distributions also have almost same variances with a mean similarity 

scores of 0.8 and 0.6 for the correct and incorrect pair-wise matches, respectively. 

However, it is clear that the overlapping part of the two normal distributions is so 

large that it can be easily represented by either class (correct or incorrect) mean 

value. Thus, as a result, the separation of the correct pair-wise matches from the 

incorrect ones is not further possible. However, the results given in Table 6.2 

shows that those constraints have successfully reduced the total number of 

matching possibilities by ≈ 80%. Thus, the complexity of matching has also
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Table 6.2 The total number of pair-wise relations observed before and after the 

initial pair-wise matching.  

Processing Level 
Number of Pair-wise Relations 

Patch #1 Patch #2 Patch #3 Patch #4 Patch #5 Patch #6 

Before Matching 2809 3627 1813 6032 3893 3194 

After Initial Matching 478 637 484 1536 629 545 

Reduction ratio 83% 82% 73% 75% 84% 83% 

 

successfully reduced to an acceptable level. 

 

6.3.1.2 Parameter Selection for the Precise Matching Stage 

 

After setting up the thresholds provided in Table 6.1, the initial pair-wise 

matching stage is performed, and one-to-one line matches between stereo images 

are inferred from the entire pair-wise relations. After that, precise matching stage 

evaluates those one-to-one matches by means of three novel similarity measures, 

line-based Daisy (SimD), Redundancy (SimR), and Pair-wise Quality (SimQ). At 

this point, since it is proved in the previous section that it is not possible to 

separate all correct pair-wise matches from the incorrect ones, we immediately 

investigate the PDF distributions of those one-to-one matches inferred from the 

pair-wise relations. Figure 6.7a-c illustrates the PDFs of the correct and incorrect 

one-to-one line matches for those three measures. It is apparent from the Fig. 6.7a 

that most of the correct line matches revealed Daisy similarity values (SimD) of 

more than 0.8, whereas only a few portion of correct line matches show similarity 

values of less than 0.6. On the other hand, all of the incorrect line matches have a 

relatively constant PDF distribution among the similarity values. Thus, for 

instance, just a single Daisy similarity threshold of 0.8 will take out almost 80% 

of the incorrect matches after pair-wise matching while preserving 85% of the 

correct matches. A very similar decisive discrimination between the correct and 

incorrect line matches can also be seen from the PDFs computed for the
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.7 (a-c) PDFs of each measure utilized in the precise matching stage, and 

(d) the number of correct and incorrect matches deleted with respect to different 

Daisy dissimilarity NNDR thresholds. 

 

normalized Redundancy measure (SimR) (Fig. 6.7b). As strongly anticipated, the 

incorrect line matches have very low similarity values for the Redundancy 

measure; almost 95% of the incorrect matches have a normalized similarity value 

of less than 0.1, and almost all (99%) of the incorrect matches stay in a region 

defined by a maximal normalized Redundancy similarity value of 0.2. On the 

other hand, 80% of the correct line matches provided normalized Redundancy 

similarity value of larger than 0.1. Thus, a single similarity threshold 0.1 forced 

over the normalized Redundancy measure eliminates most of the incorrect line 

matches while keeping most of the correct matches. On the contrary to the Daisy 

and Redundancy distributions, the PDFs of the Pair-wise Quality measure (SimQ) 

shown in Fig. 6.7c does not provide a good discrimination between the correct 

and incorrect matches. However, this is also an expected fact, since Pair-wise 
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Quality measure is computed by averaging the overall pair-wise similarity scores 

of each one-to-one line matches. Thus, it is not surprising to come up with a 

similar pattern for the overall pair-wise similarity scores illustrated in Fig. 6.6h. 

However, eventually, the quality measure also provides a hint about the correct 

and incorrect line matches.  

 

One intersecting fact for all those three PDFs figures is that it is not possible to 

eliminate a significant amount of incorrect line matches without removing any of 

the correct matches. For each case, a number of correct matches will be lost. Here, 

to avoid this, Daisy dissimilarity NNDR (1 - SimD) metric in terms of the ratio of 

closest to second-closest matches of each line is investigated (Fig. 6.7d). The 

figure shows the number of correct and incorrect matches deleted based on 

various Daisy dissimilarity NNDR thresholds (ratioD). As can be seen from the 

Fig. 6.7d, a logarithmic increase of the number of incorrect matches proves that a 

huge number of incorrect line matches can be easily recognized by NNDR and 

can be immediately deleted with sacrificing only a relatively small number of 

correct matches. However, at this point, our aim is to delete only the line matches 

that are indisputably wrong; thus, we found that a strict dissimilarity NNDR 

threshold of 0.1 deletes almost 300 incorrect matches without removing any of the 

correct matches. As a result, a significant amount of false line matches can be 

deleted by Daisy dissimilarity NNDR before the iterative precise matching stage. 

Thereafter, we delete the line relations indicated by NNDR from the pair-wise 

matches, and for each match, we update the Redundancy and Pair-wise Quality 

measures. The PDFs of each measure after revising the Redundancy and Pair-wise 

Quality measures and the PDF of the overall similarity metric (SimT) which is 

computed by the weighted combination {wD, wR, wQ} = {1/4, 1/2, 1/4} of each 

measure is given in Fig. 6.8. If we visually compare the Fig. 6.7 with Fig.6.8, the 

differences between the PDFs of incorrect matches can be easily seen. Of course, 

the most important difference can be seen in Fig. 6.8c in which some of the 

incorrect matches have absolute zero value for their Pair-wise Quality metric. At 

this point, it should be pointed out that if a line relation in a pair is found to be 
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wrong (e.g. after NNDR), we do not directly delete the pair, since we don’t have 

any inference (correct or incorrect) for the other match in that pair. However, if 

the other match in the pair is only observed in that wrong pair, since the 

Redundancy and Pair-wise Quality measures are computed in a pair-wise manner, 

that match will get zero values for the Redundancy and Pair-wise Quality 

measures. Thus, updating those pair-wise measures will always have a positive 

effect on the matching quality. We also continue to update Redundancy and Pair-

wise Quality measures during the iterative processing; thus, the (updated) 

measures (SimR and SimQ) turn out to be more reliable after each iteration. 

 

Once the iterative matching procedure is completed, there is no ambiguity in the 

final matching list. However, the matching list may involve incorrect matches that 

may not violate any of the correct matches. To solve this problem, a final check 

with a global thresholding is performed with two global Daisy thresholds and

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.8 PDFs of each measure after enforcing the NNDR threshold of 0.1. 



127 

 

one Redundancy threshold (see Chapter 4, section 4.4.4): 

 

(i).          
  

(ii).          
                       

 

It is clear from the PDF of the correct matches, that a global Daisy threshold of 

    
      must be independently satisfied by every match. Thus, we eliminate 

all line-to-line matches that have Daisy similarity values of less than 0.1. For the 

second level of thresholding, increasing the Daisy threshold (    
 ) may have a 

high possibility to eliminate some of the correct matches as well, thus the 

elimination must also be controlled by a Redundancy threshold value of     . 

Thus, we tested a total of 20 different parameter combinations to analyze and 

understand the effect of the two thresholds utilized in the second level. We 

evaluated the final matching performances of each threshold combination in terms 

of the computed matching accuracy measures (matching correctness, 

completeness and quality). Fig. 6.9 presents the threshold values involved in the 

tests and the computed matching results for each combination. It is clear from the 

Fig. 6.9 that highest matching completeness values are achieved for the low Daisy 

threshold values. Actually, this can be easily validated by Fig. 6.8a, because only 

a small portion of the correct line matches have Daisy similarity values of less 

than 0.55. However, it is also clear that at the same level, the correctness values 

have the lowest matching percentages; thus, it states that the incorrect matches 

could not be eliminated efficiently. On the other hand, increasing the Daisy 

threshold to higher values yield better correctness results; however, at the same 

time, the completeness levels reached depends on the Redundancy thresholds 

utilized. As can be seen easily from the Fig. 6.9, high Daisy thresholds combined 

with high Redundancy thresholds cause a significant increase in terms of the 

matching correctness (up to 99%), whereas a significant decrease in terms of the 

matching completeness (down to 58%) is inevitable. Indeed, matching quality 

values reveals a good balance between the values of the matching correctness and 

completeness. It is obvious that the highest quality values computed are on the
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Comb ID     
       Comb ID     

       

#1 0.55 0.1 #11 0.75 0.3 

#2 0.55 0.2 #12 0.75 0.4 

#3 0.55 0.3 #13 0.85 0.1 

#4 0.55 0.4 #14 0.85 0.2 

#5 0.65 0.1 #15 0.85 0.3 

#6 0.65 0.2 #16 0.85 0.4 

#7 0.65 0.3 #17 0.95 0.1 

#8 0.65 0.4 #18 0.95 0.2 

#9 0.75 0.1 #19 0.95 0.3 

#10 0.75 0.2 #20 0.95 0.4 

Figure 6.9 The results of the performance test based on various hysteresis 

thresholding combinations for the Vaihingen test site. 

 

order of 83%. For line matching, our aim is to first minimize the number false 

matches (thus to increase the correctness level) while preserving the highest level 

of completeness. Therefore, according to the results, that sense of balance is 

provided by the threshold combination #13 in which the Daisy and Redundancy 

thresholds are defined as 0.85 and 0.1, respectively. Actually, if we analyze the 

Fig. 6.8a and b, those threshold values can also be interpreted from those figures. 

It is evident that both thresholds are very close to the intersection points of the
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Table 6.3 The selected thresholds for the precise matching of the Vaihingen site. 

Precise Matching Parameters Selected Threshold 

Daisy dissimilarity NNDR (ratioD) 0.1 

Global Daisy Threshold – 1 (    
 ) 0.1 

Global Daisy Threshold – 2 (    
 ) 0.85 

Global Redundancy Threshold (    ) 0.1 

 

PDFs of the correct and incorrect line matches. Accordingly, for the Vaihingen 

test site, we fix all the required parameters for the precise matching stage provided 

in Table 6.3. 

 

6.3.1.3 Evaluation and Discussion of the Line Matching Results 

 

To evaluate the matching performance of the proposed line matching approach, in 

addition to the 6 stereo test patches shown in Fig. 6.5, we selected 9 more test 

patches from the Vaihingen test site (Fig. 6.10). All those 15 image patches are 

selected based on their various built-up characteristics (dense-sparse 

environments, flat-gable-complex roofs styles, repetitive linear patterns, constant-

irregular height variations, moving objects etc.). During the experiments, for all 

test patches, we applied a 50 m (≈   2 pixels for the Vaihingen images) search 

range difference along the epipolar lines. In order to perform a detailed matching 

analysis, for all test patches, a line-to-line reference matching list is generated by 

visual inspection. Thus, for each test site, the number of correct and incorrect line 

matches is computed automatically by comparing the automated matching results 

with the manually generated reference matching list. The numerical and visual 

results of the correct and incorrect line matches are provided in Fig. 6.10. In order 

to further assess the quality level of the line matching, we further analyzed the 

number of line matches missed by the approach; thus, the final line matching 

results in terms of the correctness, completeness and quality levels for each test 

patch are also provided (Fig. 6.11). The numerical and visual results of the missed 

line matches can also be found in Fig. 6.10. 



130 

 

    

Test Patch #1 - Matched Lines: 101, Incorrect: 2, Missed: 8 

    

Test Patch #2 - Matched Lines: 95, Incorrect: 5, Missed: 11 

    

Test Patch #3 - Matched Lines: 55, Incorrect: 6, Missed: 7 

    

Test Patch #4 - Matched Lines: 165, Incorrect: 5, Missed: 16 

    

Test Patch #5 - Matched Lines: 113, Incorrect: 13, Missed: 21 

Figure 6.10 The results of the proposed approach. The colors green, red, and cyan 

correspond to correct, incorrect and missed matches, respectively. 
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Test Patch #6 - Matched Lines: 125, Incorrect: 2, Missed: 27 

    

Test Patch #7 - Matched Lines: 255, Incorrect: 4, Missed: 30 

    

Test Patch #8 - Matched Lines: 87, Incorrect: 2, Missed: 9 

    

Test Patch #9 - Matched Lines: 101, Incorrect: 2, Missed: 6 

    

Test Patch #10 - Matched Lines: 270, Incorrect: 3, Missed: 40 

 

Figure 6.10 (continued) 
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Test Patch #11 - Matched Lines: 115, Incorrect: 3, Missed: 9 

    

Test Patch #12 - Matched Lines: 140, Incorrect: 6, Missed: 10 

    

Test Patch #13 - Matched Lines: 142, Incorrect: 8, Missed: 21 

    

Test Patch #14 - Matched Lines: 82, Incorrect: 4, Missed: 19 

    

Test Patch #15 - Matched Lines: 112, Incorrect: 1, Missed: 23 

 

Figure 6.10 (continued) 
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Patch Id 

Correctness (%)  

[
  

     
] 

Completeness (%) 

[
  

     
] 

Quality (%) 

[
  

        
] 

#1 98.0 92.5 90.8 

#2 94.7 89.1 84.9 

#3 89.1 87.5 79.0 

#4 96.9 90.9 88.4 

#5 88.5 82.6 74.6 

#6 98.4 82.0 80.9 

#7 98.4 89.3 88.1 

#8 97.7 90.4 88.5 

#9 98.0 94.2 92.5 

#10 98.9 86.9 86.1 

#11 97.4 92.6 90.3 

#12 95.7 93.1 89.3 

#13 94.4 86.5 82.2 

#14 95.1 80.4 77.2 

#15 99.1 82.8 82.2 

Patches 1-6 (μ ± σ) 94.3 ± 4.4 87.5 ± 4.3 83.1 ± 6.1 

Patches 7-15 (μ ± σ) 97.2 ± 1.7 88.5 ± 4.7 86.3 ± 4.9 

Overall (μ ± σ) 96.0 ± 3.3 88.1 ± 4.4 85.0 ± 5.4 

Figure 6.11 The final matching performances of the proposed approach computed 

for the 15 test patches selected from the Vaihingen test site. 
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According to the matching results presented in Fig. 6.11, the proposed approach 

revealed very high rates of correctness values ranging between 88% and 99%. 

Among all 15 test patches, 13 of them have reached correctness levels of over 

94%, thus the overall correctness performance of matching is computed to be 96% 

with a standard deviation of 3.3%. If the complexities of the test sites are taken 

into account, this seems to be a very good matching performance. If we visually 

examine the incorrect line matches in detail, most of them appear in the occluded 

parts that are only visible in one of the stereo images. This is due to the reason 

that if a line segment in one of the images has no corresponding line segment in 

the other image (especially the case of occluded parts), that line segment can still 

be matched with a line segment in the other image. Although we apply a two level 

global thresholding to reduce the number of incorrect matches that may occur due 

to this reason; unfortunately, it is not always possible to fully remove the 

erroneous matches in a stereo environment. One other reason to cause incorrectly 

matched line segments is moving objects such as cars, pedestrians etc. in the 

images. Although there is only a very short time difference during the acquisitions 

between the in-strip stereo images, the moving objects may also cause incorrect 

line matches. Various examples of moving cars are visible in different parts of 

image patches #2, #7 and #14, and walking of several pedestrians is recognizable 

in patches #6, #7 and #9. However, among all those image patches, the erroneous 

line matches due to moving objects is only observed in patch #14 (the white 

vehicle in the top-left corner) and no incorrect matches are identified in the other 

concerned patches (#2, #6, #7, and #9). This is related with the directional 

movement of the white vehicle in patch #14 which is in that case from right to 

left. Thus, this directional movement coincides with the flight path which is also 

the same direction of the epipolar search region utilized during the matching 

stage. Therefore, although the three line segments matched correspond to exactly 

the correct parts of the white vehicle in patch #14; since the object is moving, the 

matching line segments are no longer representing the correct disparities, and they 

are labeled as incorrect. 
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The completeness values of the line matches for the test patches are also revealed 

remarkable results ranging between 80% and 94%. The overall completeness 

value is computed to be 88.1% with a standard deviation of 4.4%. Similar to the 

level of correctness computed, it is believed that the completeness levels reached 

in each patch is also relatively good. On the other hand, a number of correct line 

matches are missed for each stereo image patch. Therefore, at this point, we 

believe that it is essential to examine missed matches in detail to fully understand 

the reasons behind those missed matches. Therefore, we carefully investigated all 

15 patches and as a result, the possible reasons can be categorized into six 

different groups: 

 

i. line segments that cannot be paired with any other line segments, 

ii. line segments that are exactly aligned with the epipolar line, 

iii. line segments whose left and right flanking regions are both occluded from 

other objects due to perspective distortion, 

iv. line segments that correspond to multiple non-collinear line segments in 

one of the stereo images, 

v. line segments that correspond to multiple very short collinear line 

segments in one of the stereo images, 

vi. line segments that are very short, 

 

It is evident from most of the test patches that a large portion of the missed 

matches belongs to the first category. In general, this is probably the reason most 

expected, since the line segments that are located in the corners and the sides of 

the images have relatively less opportunity to get paired with other nearby line 

segments. For sure, this type of missed matches can be reduced by increasing the 

proximity distance (Tprox) utilized during the pair generation step; however, as we 

already demonstrated in section 6.3.3.1, increasing the proximity distance will 

result in an enormous number of line pairs which significantly increases the 

matching complexity. For example, in the stereo patch #8, 4 out of 6 missed 

matches (three line matches in the top-right corner and one line match in the top-
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left corner) occur due to this reason. Although those line matches are very distinct 

and clear, it is impossible to match those line segments with a pair-wise logic, 

because there are not any line segments in their close neighborhoods to form a 

line pair. Thus, this is one of the major limitations of the pair-wise matching logic, 

and we can conclude that in a pair-wise approach, the lines that do not have any 

consistent line segments in their neighborhoods cannot be matched. 

 

The second category of missed matches involves the line segments that are 

exactly aligned with the epipolar line. Currently, the proposed line matching 

approach requires only a very slight difference (θdiff > 0°) between the line 

segments and the epipolar line. However, if the line segments are exactly aligned 

with the epipolar line (θdiff = 0°), the quadrilateral region that is utilized to collect 

matching candidates turns into a line segment; thus, the correct matching 

candidates on the other image may not be collected properly. Moreover, it is 

impossible to perform a point-to-point correspondence for those cases, and 

therefore, the reliability of some of the pair-wise constraints decreases 

dramatically. Some examples of the missed matches due to this reason are noticed 

in stereo patch #14. Since the epipolar direction is from right to left, four line 

segments that are exactly aligned with the epipolar line could not be matched.  

 

One interesting reason for losing some of the correct matches is due to their 

dissimilarity of the left and right flanking regions at the same time caused by 

different perspective views. In aerial images, in most of the cases, at least one side 

of the corresponding line segments in stereo aerial images is similar. However, in 

exceptional cases, this rule can be violated. The long line segment in the central 

part of the stereo patch #9 is a very good example for this type of violation. For 

that case, in the left image, one neighborhood of the line segment is occluded by 

the tower located in the vicinity of the building. On the other hand, in the right 

image, the other neighborhood of the line segment is occluded by the shed 

dormers of the building. As a result, both sides of the line segments in stereo 
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images are different from each other, and the rejection of the match is 

unavoidable. 

 

The fourth category of missed matches occurs due to the accidental merging of 

the line segments during the stage of straight line extraction. Typically, the line 

segments observed for the buildings that have gable roof structures belong to this 

group. The example given in the gable roof located in the bottom-right corner of 

the stereo patch #11 clarifies the problem. In the left view of stereo patch #11, the 

two line segments belonging to the two sides of the gable roof are accidentally 

merged into a single line segment due to perspective view. On the other hand, in 

the right view of the patch #11, they are successfully found as two separate line 

segments. In the proposed line matching approach, although the initial pair-wise 

matching stage can successfully match an individual line segment extracted in one 

view to the multiple non-collinear segments in the other view, the precise 

matching stage only allows the matching formations for the multiple line 

segments consisting of only collinear lines. For that specific case, apparently, the 

collinearity of the two matching segment is violated; thus, as can be seen in the 

results presented in Fig. 6.10 - patch #11, only one of those matches which has the 

highest matching similarity score is matched successfully, and the other match is 

deleted from the matching list. A different example can also be seen for the gable 

roof shown in the left-bottom corner of the same stereo patch which also suffers 

from the same problem. 

 

In contrast to the fourth category, the fifth category of missed matches occurs due 

to the accidental fragmentation of the line segments during the stage of straight 

line extraction. Indeed, in this category, we encounter two different reasons which 

are responsible for the missed matches. The two line matches missed in the left-

center part of the stereo patch #4 illustrate clear examples for this category. The 

first problem is related with the pair-wise logic, some of the fragmented short line 

segments may not be paired successfully with other line segments. Thus, the 

matching of those line segments is not possible. The multiple segments that 
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belong to the shadow of the building in the stereo patch #4 are good examples for 

this case. As can be seen in the figure, the three line segments in the left view 

correspond to a single segment in the right view. However, the short segment in 

the left view is not matched with the segment in the right-view, since it cannot be 

paired with any other line segment nearby and failed to match. The second 

problem of this category is related with the difficulties that may occur during the 

verification of the collinearity of two or more line segments in image space. The 

example in the stereo patch #4 clarifies this problem. In the left-view, the 

boundary of the building is split into two line segments, whereas the 

corresponding line segment in the right view is found as a single segment. In that 

case, it is clear that there is a slight angle difference between the short and the 

long segments shown in the left view, thus those two lines cannot be verified as a 

collinear line segments in image space. As a result, the correct match with the 

short segment in the left view is missing. 

 

The sixth category is related with the line segments that are very short. During the 

line matching stage, we allow very short line segments (a minimum length 

threshold of 10 pixels is utilized for all cases) to capture the highest level of detail 

(≈ 80 cm for the test site Vaihingen) in the aerial images. However, the 

uncertainty of the short line segments, especially in the orientation component 

may have a major negative effect during the computation of some of the pair-wise 

constraints especially the epipolar constraint. Since the orthogonal distances are 

evaluated during the epipolar constraint, any orientation error may cause 

considerable positional errors during the computation of the point of intersection 

of a pair; hence computed orthogonal distances may also contain substantial 

errors. As a result, the correct matching candidate pair in the other image may not 

be correctly identified and may be lost. One other problem is that, some of the 

short line segments are observed in the cases in which they belong to a natural 

object such as vegetation. As can be seen in stereo patch #1, although most of the 

correct line matches on the vegetation objects are successfully identified, it is not 

always possible to recover all of those correct line matches detected over a 
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vegetation object. This is certainly related with the pair-wise logic: the line 

segments extracted on the vegetation objects must be correctly paired in order to 

be accurately matched with their corresponding line segments. 

 

In overall, for the proposed approach, a line matching quality level of 

approximately 85% is achieved for the Vaihingen test patches (Fig 6.11). It is 

believed that, if the complexities of the test patches are taken into account, this 

seems to be a very good performance. Furthermore, on the contrary to most of the 

previous line matching approaches, we do not impose any external dataset to the 

matching (stereo DSM, additional views etc.) to solve the line matching 

ambiguities. It should also be emphasized that the curved segments (belonging to 

buildings, roads, etc.) that can be piece-wise linear approximated are also matched 

successfully. The results of the stereo test patch #14 prove this issue. Actually, 

this is not a surprising fact, since the piece-wise approximated linear segments are 

also particularly suitable to be matched by the proposed pair-wise approach. 

 

6.3.2 The Results and Discussion of the Hannover Test Site 

 

6.3.2.1 Parameter Selection for the Initial Pair-wise Matching Stage 

 

In this part, to determine the required parameters for the pair-wise matching of the 

Hannover test site, the same strategy presented for the Vaihingen test site is 

followed. Six test patches selected from the different parts of the Hannover test 

site are used to analyze and understand the behavior of the pair-wise parameters 

(Fig. 6.12). Similar to the Vaihingen test site, the proximity distance (Tprox) is 

fixed to 8 m on object space for the pair-wise matching of all test patches. During 

the assessments, PDF for the correct pair-wise matches and as well as incorrect 

pair-wise matches are computed for the selected six test patches. Fig. 6.13 shows 

the computed PDFs of the correct and incorrect pair-wise matches that are 

generated using the six image pairs given in Fig. 6.12. As can be seen from Fig. 

6.13, the PDFs of the correct and incorrect pair-wise matches are quite similar to
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

 

(k) 

 

(l) 

Figure 6.12 Six stereo test patches selected from the Hannover test site. 

 

the PDF distributions of the Vaihingen test patches shown in Fig. 6.6. Actually, 

this is not a surprising fact due to the similar image acquisition geometry. 

Although the average image baseline distance of the Hannover test site is two 

times larger than the average baseline distance of the Vaihingen test site, the 

stereo images of the two test sites are acquired with very similar B/H ratios. Thus, 

similar PDF distributions are strongly anticipated. However, the radiometric 

quality differences of the images (digital vs. analogue) of the two test sites caused 

an interesting effect on the PDFs computed for the correlation constraint (ξ5). It is 

clear from the Fig. 6.13e that the correlation scores of the correct pair-wise 

matches are negatively affected. On the other hand, the scores of the incorrect 

pair-wise matches are clearly reduced to the desired level which actually is not 

observed for the correlation scores of the incorrect pair-wise matches computed
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 6.13 PDFs of each pair-wise constraint and the final similarity function 

computed for the six Hannover test patches. 



142 

 

for the Vaihingen test site (Fig 6.6e). Nevertheless, a correlation threshold of (Tξ4 

= 0.2) still seems to be a good choice. Thus, for the Hannover test site, we also 

utilize the same thresholds utilized for the Vaihingen test site (in Table 6.1), since 

those thresholds seem to be valid and appropriate for the pair-wise matching of 

Hannover images as well. 

 

6.3.2.2 Parameter Selection for the Precise Matching Stage 

 

We also applied the similar strategy to evaluate the PDF distributions of those 

one-to-one matches inferred from the pair-wise relations. Figure 6.14a-c illustrate 

the PDFs of the correct and incorrect one-to-one line matches for the three 

similarity measures (line-based Daisy (SimD), Redundancy (SimR), and Pair-wise

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.14 (a-c) PDFs of each measure utilized in the precise matching stage, and 

(d) the number of correct and incorrect matches deleted with respect to different 

Daisy dissimilarity NNDR thresholds. 
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Quality (SimQ)) computed for the six Hannover test patches. Once again, the PDF 

results of the Hannover test patches bear a clear resemblance to the PDF results 

obtained from Vaihingen test patches. The PDFs of correct and incorrect matches 

in Fig. 6.14a, b reveals that the measures of line-based Daisy (SimD) and the 

normalized Redundancy (SimR) are robust to noise inherent in the analogue 

images. The results in Fig. 6.14d proves that a huge number of incorrect line 

matches can still be easily recognized by NNDR. However, at this point, on the 

contrary to the Vaihingen test site results, a dissimilarity NNDR threshold (ratioD) 

of 0.15 seems to be the optimum threshold value to eliminate the incorrect 

matches without removing any of the correct matches. However, the strict 

threshold value (ratioD = 0.1) selected for the Vaihingen site also achieves to 

eliminate more than 200 indisputably wrong line-to-line relations; thus, for the 

sake of simplicity, we also continue to utilize the same Daisy dissimilarity NNDR 

threshold of 0.1 for the Hannover test site as well. After removing the line

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.15 PDFs of each measure after enforcing the NNDR threshold of 0.1. 
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relations indicated by NNDR from the pair-wise matches, and successively 

updating the Redundancy and Pair-wise Quality measures, the resulting PDFs of 

each measure and the PDF of the overall similarity metric (SimT) which is 

computed by the weighted combination {wD, wR, wQ} = {1/4, 1/2, 1/4} of each 

measure is given in Fig. 6.15. If we visually compare the results in Fig. 6.15 with 

results in Fig. 6.8, the similar trend between the Hannover and Vaihingen datasets 

are also clearly visible and evident. For the hysteresis global thresholding, once 

again, we investigated a total of 20 different parameter combinations and 

evaluated the final matching performances of each threshold combination in terms 

of the computed matching accuracy measures (matching correctness, 

completeness and quality). Fig. 6.16 presents the threshold values involved in the 

tests and the computed matching results for each combination. As the results 

indicated, the hysteresis thresholds selected for the Vaihingen test site is also 

found to be the best combination for the Hannover test site; thus, for the precise 

matching of Hannover test patches, we utilized the same thresholds provided in 

Table 6.3. 

 

6.3.2.3 Evaluation and Discussion of the Line Matching Results 

 

To evaluate the matching performances of the proposed line matching approach, 

in addition to the 6 stereo test patches shown in Fig. 6.12, we selected 9 more test 

patches from the Hannover test site (Fig. 6.17). Similar to the previous 

experiments, for all test patches, we applied a 50 m (≈ 216 pixels for Hannover 

images) search range difference along the epipolar lines and all the results are 

evaluated with respect to a line-to-line reference matching list generated by visual 

inspection. The numerical and visual results of the correct, incorrect and missed 

line matches are provided in Fig. 6.17. The line matching results of the Hannover 

test patches in terms of the correctness, completeness and quality levels are also 

provided in Fig. 6.18. 
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Comb ID     
       Comb ID     

       

#1 0.55 0.1 #11 0.75 0.3 

#2 0.55 0.2 #12 0.75 0.4 

#3 0.55 0.3 #13 0.85 0.1 

#4 0.55 0.4 #14 0.85 0.2 

#5 0.65 0.1 #15 0.85 0.3 

#6 0.65 0.2 #16 0.85 0.4 

#7 0.65 0.3 #17 0.95 0.1 

#8 0.65 0.4 #18 0.95 0.2 

#9 0.75 0.1 #19 0.95 0.3 

#10 0.75 0.2 #20 0.95 0.4 

Figure 6.16 The results of the performance test based on various hysteresis 

thresholding combinations for the Hannover test site. 

 

According to the matching results presented in Fig. 6.18, similar to the results of 

the Vaihingen test patches, the proposed approach revealed very high rates of 

correctness values ranging between 90% and 98%. The overall correctness 

performance of the matching is computed to be 94.5% with a standard deviation 

of 2.5%. If the complexities of the test sites and the noise level of the images are 

taken into account, we believe that this is an impressive stereo line matching 

performance. On the other hand, the completeness values of the line matches for



146 

 

    

Test Patch #1 - Matched Lines: 185, Incorrect: 10, Missed: 44 

    

Test Patch #2 - Matched Lines: 110, Incorrect: 9, Missed: 28 

    

Test Patch #3 - Matched Lines: 186, Incorrect: 18, Missed: 45 

    

Test Patch #4 - Matched Lines: 99, Incorrect: 3, Missed: 42  

    

Test Patch #5 - Matched Lines: 154, Incorrect: 14, Missed: 47 

Figure 6.17 The results of the proposed approach. The colors green, red, and cyan 

correspond to correct, incorrect and missed matches, respectively. 
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Test Patch #6 - Matched Lines: 157, Incorrect: 10, Missed: 31 

    

Test Patch #7 - Matched Lines: 166, Incorrect: 6, Missed: 39 

    

Test Patch #8 - Matched Lines: 120, Incorrect: 7, Missed: 24 

    

Test Patch #9 - Matched Lines: 188, Incorrect: 9, Missed: 43 

    

Test Patch #10 - Matched Lines: 142, Incorrect: 5, Missed: 28 

Figure 6.17 (continued) 
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Test Patch #11 - Matched Lines: 342, Incorrect: 6, Missed: 107 

    

Test Patch #12 - Matched Lines: 92, Incorrect: 3, Missed: 30 

    

Test Patch #13 - Matched Lines: 149, Incorrect: 11, Missed: 17 

    

Test Patch #14 - Matched Lines: 140, Incorrect: 11, Missed: 32 

    

Test Patch #15 - Matched Lines: 348, Incorrect: 9, Missed: 118 

Figure 6.17 (continued) 



149 

 

 

Patch Id 

Correctness (%) 

[
  

     
] 

Completeness (%) 

[
  

     
] 

Quality (%) 

[
  

        
] 

#1 94.6 79.9 76.4 

#2 91.8 78.3 73.2 

#3 90.3 78.9 72.7 

#4 96.9 69.6 68.1 

#5 90.9 74.9 69.7 

#6 93.6 82.6 78.2 

#7 96.4 80.4 78.0 

#8 94.2 82.5 78.5 

#9 95.2 80.6 77.5 

#10 96.5 83.0 80.6 

#11 98.3 75.8 74.8 

#12 96.7 74.8 72.9 

#13 92.6 89.0 83.1 

#14 92.1 80.1 75.0 

#15 97.4 74.2 72.7 

Patches 1-6 (μ ± σ) 93.0 ± 2.5 77.4 ± 4.6 73.0 ± 3.9 

Patches 7-15 (μ ± σ) 95.5 ± 2 1 80.1 ± 4 7 77.0 ± 3.5 

Overall (μ ± σ) 94 5 ± 2 5 78 9 ± 4 7 75 4 ± 4 0 

Figure 6.18 The final matching performances of the proposed approach computed 

for the 15 test patches selected from the Hannover test site. 
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the test patches revealed results ranging between 69% and 89%. The overall 

completeness performance of the matching is computed to be 78.9% with a 

standard deviation of 4.7%. Actually, the average completeness values are 

approximately 10% less than the average completeness values achieved for the 

Vaihingen test patches. In fact, this is an expected result, since the images of the 

Hannover dataset were taken by an analog camera and scanned afterwards. Thus, 

the quality of the images and the noise level involved has probably affected the 

final quality of the extracted line segments. As expected, the quality of the line 

matching also decreased by an amount of 10% in average compared to the 

Vaihingen results.  

 

If the incorrect line matches of the Hannover test patches are visually examined, 

similar to the Vaihingen test patches, most of them appear in the occluded parts. 

On the other hand, in terms of missed matches, we see that the reasons explicitly 

stated for the Vaihingen patches are also valid for the Hannover test patches. 

However, in this case, the fragmentation of a single line into multiple line 

segments due to poor image quality mostly dominated the number of missed 

matches and seems to be the major reason for the 10% decrease compared to the 

Vaihingen results. Nevertheless, it is believed that the proposed approach revealed 

very good line matching results for both the Vaihingen and Hannover test 

datasets.  

 

6.3.3 Comparison to the State-of-the-Art 

 

In this section, we compared the results of the proposed approach with the results 

of the stereo matching approach presented in Schmid and Zisserman (1997). They 

proposed a line matching algorithm which utilizes direct and warped correlation 

measures computed around the line neighborhoods. The related MatLab toolbox 

of the approach can be found in Werner and Zisserman (2002). Here, we also 

investigated the approach with and without epipolar ordering constraint (Werner, 

2002) in order to fully expose the stereo matching performances of their approach. 
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In order to perform a meaningful comparison, for both approaches, we utilized the 

same straight line segments extracted in the previous section, and the comparative 

results in terms of the correctness, completeness and quality levels for the 

Vaihingen and Hannover test patches are provided (Table 6.4-6.5, Fig. 6.19-6.20). 

Based on the correctness results given in Fig. 6.19a, for all Vaihingen test patches, 

the performance of the proposed approach exceeded the performance of the 

Schmid’s method  After imposing the epipolar ordering constraint to the Schmid’s 

method, it is clear that the correctness level reached by the method is significantly 

increased. However, for most of the test patches, even after applying the 

constraint, the Schmid’s method cannot reach the same correctness level of the 

proposed approach. If we take into account the completeness values computed for 

the approaches, first, it is clear that the ordering constraint has no significant 

effect on the completeness ratios. Besides, the levels of completeness computed 

for the approaches are also comparable. It is clear that the proposed approach 

provided better completeness values for ten of the fifteen test patches. If we look 

in detail the five test patches (#4-6, #14-15) that the proposed approach resulted in 

lower completeness values with respect to the Schmid’s method, it is clear that 

there is correlation between the total number of line segments that cannot be 

matched around the side and the corners of the tests patches. Although those line 

matches are very distinct and clear, as already indicated before, it may not be 

possible to match those line segments in a pair-wise logic. However, since the 

Schmid method searches the corresponding line segments independent of line 

relations, apparently, the method successfully recovered those matches. 

Nevertheless, note that, the proposed approach provided a total of 3% 

improvement for the computed completeness values in an overall sense (Table 

6.4). 

 

For the Hannover test patches, it is clear that the proposed approach completely 

outperformed the Schmid’s method in terms of the computed correctness values 

(Fig. 6.20). Once again, it is clear that the epipolar ordering constraint has boosted 

the stereo matching performance of the Schmid’s method  Nonetheless, the
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Table 6.4 Comparative matching results of the proposed approach and the 

Schmid’s method for the Vaihingen test patches. 

Patch 

Id 

Correctness – Completeness – Quality (%) 

{TP / FP / FN} 

Proposed Approach Schmid’s Method 
Schmid’s Method + 

Epipolar Ordering 

#1 
9988..00  ––  9922..55  ––  9900..88  

{99 / 2 / 8} 

8899..11  ––  8844..11  ––  7766..33 

{90 / 11 / 17} 

9922..88  ––  8844..11  ––  7788..99 

{90 / 7 / 17} 

#2 
9944..77  ––  8899..11  ––  8844..99 

{90 / 5 / 11} 

8811..88  ––  8800..22  ––  6688..11 

{81 / 18 / 20} 

9933..22  ––  8811..22  ––  7766..66 

{82 / 6 / 19} 

#3 
8899..11  ––  8877..55  ––  7799..00 

{49 / 6 / 7} 

8855..55  ––  8833..99  ––  7733..44 

{47 / 8 / 9} 

9900..44  ––  8833..99  ––  7777..00 

{47 / 5 / 9} 

#4 
9966..99  ––  9900..99  ––  8888..44 

{160 / 5 / 16} 

9922..77  ––  9933..88  ––  8877..33 

{165 / 13 / 11} 

9988..22  ––  9944..33  ––  9922..77 

{166 / 3 / 10} 

#5 
8888..55  ––  8822..66  ––  7744..66 

{100 / 13 / 21} 

7788..44  ––  8866..88  ––  7700..00 

{105 / 29 / 16} 

8899..11  ––  8877..66  ––  7799..11 

{106 / 13 / 15} 

#6 
9988..44  ––  8822..00  ––  8800..99 

{123 / 2 / 27} 

9900..11  ––  8855..33  ––  7788..11 

{128 / 14 / 22} 

9977..00  ––  8877..33  ––  8855..11 

{131 / 4 / 19} 

#7 
9988..44  ––  8899..33  ––  8888..11 

{251 / 4 / 30} 

9911..88  ––  8833..22  ––  7777..55 

{234 / 21 / 47} 

9955..11  ––  8833..33  ––  7799..99 

{234 / 12 / 47} 

#8 
9977..77  ––  9900..44  ––  8888..55 

{85 / 2 / 9} 

8844..88  ––  8822..99  ––  7722..22 

{78 / 14 / 16} 

8888..66  ––  8822..99  ––  7755..00 

{78 / 10 / 16} 

#9 
9988..00  ––  9944..22  ––  9922..55 

{99 / 2 / 6} 

8833..00  ––  8888..66  ––  7755..00 

{93 / 19 / 12} 

8877..99  ––  8899..55  ––  7799..77 

{94 / 13 / 11} 

#10 
9988..99  ––  8866..99  ––  8866..11 

{267 / 3 / 40} 

8888..11  ––  7799..88  ––  7722..11 

{245 / 33 / 62} 

9911..44  ––  7799..55  ––  7733..99 

{244 / 23 / 63} 

#11 
9977..44  ––  9922..66  ––  9900..33 

{112 / 3 / 9} 

8899..77  ––  8855..99  ––  7788..22 

{104 / 12 / 17} 

9922..00  ––  8855..99  ––  8800..00 

{104 / 9 / 17} 

#12 
9955..77  ––  9933..11  ––  8899..33 

{134 / 6 / 10} 

8899..66  ––  8844..00  ––  7766..66 

{121 / 14 / 23} 

9933..88  ––  8844..77  ––  8800..33 

{122 / 8 / 22} 

#13 
9944..44  ––  8866..55  ––  8822..22 

{134 / 8 / 21} 

8833..66  ––  8811..99  ––  7700..66 

{127 / 25 / 28} 

9944..33  ––  8855..88  ––  8811..66 

{133 / 8 / 22} 

#14 
9955..11  ––  8800..44  ––  7777..22 

{78 / 4 / 19} 

8844..22  ––  8877..66  ––  7755..22 

{85 / 16 / 12} 

8877..66  ––  8877..66  ––  7777..99 

{85 / 12 / 12} 

#15 
9999..11  ––  8822..88  ––  8822..22 

{111 / 1 / 23} 

8855..44  ––  8877..33  ––  7755..99 

{117 / 20 / 17} 

9922..11  ––  8877..33  ––  8811..33 

{117 / 10 / 17} 

Overall 

mean 
96.0 – 88.1 – 85.0 86.5 – 85.0 – 75.1 92.2 – 85.7 – 79.9 
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(a) 

 

(b) 

 

(c) 

Figure 6.19 Performance comparisons of the proposed approach and the Schmid’s 

method for the Vaihingen test patches. 
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Table 6.5 Comparative matching results of the proposed approach and the 

Schmid’s method for the Hannover test patches  

Patch 

Id 

Correctness – Completeness – Quality (%) 

{TP / FP / FN} 

Proposed Approach Schmid’s Method 
Schmid’s Method + 

Epipolar Ordering 

#1 
9944..66  ––  7799..99  ––  7766..44  

{185 / 10 / 44} 

6688..77  ––  6688..00  ––  5511..99 

{217 / 68 / 70} 

8822..22  ––  6699..44  ––  6600..33 

{185 / 33 / 67} 

#2 
9911..88  ––  7788..33  ––  7733..22 

{110 / 9 / 28} 

5544..66  ––  5599..77  ––  3399..99 

{141 / 64 / 52} 

6644..00  ––  5566..66  ––  4422..99 

{114 / 41 / 56} 

#3 
9900..33  ––  7788..99  ––  7722..77  

{186 / 18 / 45} 

6611..66  ––  6622..44  ––  4444..99 

{216 / 83 / 80} 

7788..66  ––  6677..11  ––  5566..77 

{182 / 39 / 70} 

#4 
9966..99  ––  6699..66  ––  6688..11  

{99 / 3 / 42} 

7711..77  ––  5555..11  ––  4455..22  

{106 / 30 / 62} 

8811..44  ––  5577..33  ––  5500..66 

{97 / 18 / 59} 

#5 
9900..99  ––  7744..99  ––  6699..77 

{154 / 14 / 47} 

7711..33  ––  6600..99  ––  4488..99 

{160 / 46 / 73} 

8811..66  ––  6611..55  ––  5544..00 

{141 / 26 / 72} 

#6 
9933..66  ––  8822..66  ––  7788..22 

{157 / 10 / 31} 

7744..88  ––  6655..22  ––  5533..55 

{155 / 39 / 62} 

8844..55  ––  6677..44  ––  6600..00 

{142 / 22 / 58} 

#7 
9966..44  ––  8800..44  ––  7788..00  

{166 / 6 / 39} 

7733..11  ––  6644..33  ––  5522..00 

{175 / 47 / 71} 

7777..88  ––  6633..33  ––  5533..66 

{162 / 36 / 73} 

#8 
9944..22  ––  8822..55  ––  7788..55 

{120 / 7 / 24} 

7722..22  ––  7700..11  ––  5555..22 

{133 / 37 / 41} 

8844..66  ––  7755..99  ––  6666..77 

{123 / 19 / 33} 

#9 
9955..22  ––  8800..66  ––  7777..55 

{188 / 9 / 43} 

6699..44  ––  7711..66  ––  5544..55 

{229 / 70 / 63} 

8800..00  ––  7733..99  ––  6622..44 

{205 / 41 / 58} 

#10 
9966..55  ––  8833..00  ––  8800..66 

{142 / 5 / 28} 

6622..00  ––  6622..00  ––  4444..99 

{150 / 42 / 57} 

8844..66  ––  6699..77  ––  6611..88 

{136 / 21 / 50} 

#11 
9988..22  ––  7755..88  ––  7744..88 

{342 / 6 / 107} 

7777..22  ––  7788..44  ––  6633..66 

{451 / 103 / 96} 

9900..66  ––  7799..99  ––  7733..88 

{392 / 37 / 89} 

#12 
9966..77  ––  7744..88  ––  7722..99 

{92 / 3 / 30} 

6611..66  ––  6644..77  ––  4466..11 

{125 / 48 / 42} 

7766..22  ––  6699..88  ––  5577..22 

{109 / 26 / 36} 

#13 
9922..66  ––  8899..00  ––  8833..11 

{149 / 11 / 17} 

7733..66  ––  7700..33  ––  5566..22 

{148 / 39 / 46} 

8800..00  ––  6699..77  ––  5599..33 

{135 / 27 / 47} 

#14 
9922..11  ––  8800..11  ––  7755..00 

{140 / 11 / 32} 

7733..11  ––  7700..88  ––  5566..22 

{156 / 42 / 47} 

8811..77  ––  7722..11  ––  6622..00 

{142 / 26 / 45} 

#15 
9977..44  ––  7744..22  ––  7722..77 

{348 / 9 / 118} 

8866..44  ––  7755..22  ––  6677..33 

{397 / 54 / 113} 

9922..88  ––  7766..11  ––  7711..88 

{374 / 27 / 109} 

Overall 

mean 
94.5 – 78.9  – 75.4 70.1 – 66.6 – 52.0 81.4 – 68.6 –59.6 
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(a) 

 

(b) 

 

(c) 

Figure 6.20 Performance comparisons of the proposed approach and the Schmid’s 

method for the Hannover test patches. 
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proposed approach clearly provides better correctness levels with an overall 

performance improvement of 13% (Table 6.5). Similarly, the proposed approach 

provided an overall completeness performance improvement of around 10% with 

a final overall quality improvement of about 15% (Table 6.5). Thus, if the results 

are taken as a whole, we can easily conclude that the proposed approach presented 

highly promising line matching results for the selected test patches from the 

Vaihingen and Hannover test datasets. 

 

It is clear that one of the main disadvantages of the proposed approach is the 

algorithm complexity due to the pair-wise nature. Therefore, as a final comment, 

compared to the Schmid’s method, the proposed approach requires a significant 

amount of time, especially for large areas where an enormous number of line 

segments are observed.  

 

6.4 The Results and Discussion of the Proposed Line Reconstruction 

Approach 

 

The performance assessment of the reconstruction is performed for three image 

patches selected from the test site Vaihingen (Fig. 6.21). Those test patches are 

intentionally selected based on their special characteristics of which a number of 

line segments in each patch are observed in a (nearly) aligned condition with the 

epipolar line (from left to right). The matching results revealed that, for all three 

test patches, very high correctness levels are achieved. The correct and false 

matches are explicitly illustrated in Fig. 6.21. The matching results indicate that 

the proposed line matching approach remains robust for the image patches that 

contain a significant number of line segments that are (nearly) parallel to the 

epipolar line. For example, for the third image patch, approximately half of the 

extracted line segments are nearly-aligned with the epipolar line (Fig. 6.21). 

 

Despite the successful line matching performances, the classical direct 

construction method produced dramatic reconstruction problems for the lines that
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 6.21 Test patches for the evaluation of the proposed reconstruction 

approach. Left (a-c-e) and right (b-d-f) stereo images. Correct and false matches 

are shown in green and red colors, respectively. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

Figure 6.22 3D line segments generated with the method of direct construction (a-

d-g) and the proposed reconstruction approach (b-e-h). Block arrows point parts 

where some of the critical improvements are observed. The LIDAR point cloud 

overlaid with the lines reconstructed with the proposed approach (c-f-i). Each 

color in the point cloud belongs to the automatically extracted 3D planes in the 

vicinity of each line. 

 

are nearly-aligned with the epipolar line (Fig. 6.22 a-d-g). It is clear from those 

figures that the reconstruction results of the line segments that are nearly-aligned 

with the epipolar line are extremely defective and irrelevant. On the other hand, 

the proposed reconstruction approach successfully recovered most of those
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Table 6.6 The computed RMS distances for the method of Direct Construction 

Patch ID 

RMS Average Distance (m) 

Not-Aligned Nearly-Aligned Total 

#1 0.152 1.041 0.495 

#2 0.173 4.451 2.240 

#3 0.194 6.278 3.768 

 

 

Table 6.7 The computed RMS distances for the proposed approach 

Patch ID 

RMS Average Distance (m) 

Not-Aligned Nearly-Aligned Total 

#1 0.152 0.357 0.204 

#2 0.173 0.196 0.179 

#3 0.194 0.459 0.275 

 

 

problematic cases (Fig. 6.22 b-e-h). Although we believe that the level of 

improvement is visually apparent, we also evaluated the accuracy of the 

reconstructed line segments by comparing them to LIDAR data. In order to 

compare the reconstructed lines, we automatically extracted 3D planes from the 

point cloud in the vicinity of each line (Fig. 6.22 c-f-i). Thereafter, we determined 

the line's average orthogonal distance from its neighbouring planes and used these 

distances to compute the RMS average distance between the reconstructed lines 

and the LIDAR planes. The quantitative results of the direct construction and the 

proposed reconstruction approach for each patch are provided in Tables 6.6 and 

6.7, respectively. As expected, the method of direct construction produced 

reasonable RMS distances (≈ 2 pixels) for the line segments that are not aligned 

with the epipolar line. On the other hand, large RMS distances (> 1 m) are 
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inevitable for the nearly-aligned cases, which also reduce the overall performance 

considerably. In contrast to the results of the direct construction, for each test 

patch, our approach led to massive RMS improvements after the reconstruction of 

the nearly-aligned line segments. Not surprisingly, in each case, this achievement 

reflects to the overall RMS performances as well. More significantly, for the 

second patch, the final RMS distances of the nearly-aligned cases (0.196 m) are 

almost at the same level of the not-aligned cases (0.173 m). This fact also 

confirms the quality level that can be reached by the proposed reconstruction 

approach. 

 

Based on those results, we can easily conclude that, the proposed approach can 

produce highly promising reconstruction results for the line segments that are 

(nearly) aligned with the epipolar line. Indeed, the final improvements are 

massive in terms of RMS performance; if we think that the results of the previous 

approaches that rely on just direct construction consistently result in large RMS 

errors (> 1 m).  It is also obvious that the selected 3D point entities (Xi) during the 

estimation process determine the final height quality of the 3D line estimated. In a 

worst-case scenario in which only a single 3D point entity is available, our 

method will not perform worse than the standard direct construction.  

 

In Fig. 6.23 and 6.24, the final reconstruction results for the entire Vaihingen and 

Hannover patches are visualized.  
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Figure 6.23 The final reconstruction results for the Vaihingen test patches 
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Figure 6.23 (continued) 
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Figure 6.24 The final reconstruction results for the Hannover test patches 
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CHAPTER 7 

 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

In this chapter, the conclusions derived from the developed approaches are stated 

and the recommendations regarding to possible further studies are given. 

 

7.1 Conclusions 

 

The following conclusions are reached from the results achieved for the proposed 

line extraction, stereo line matching, and stereo reconstruction approaches: 

 

 The proposed line extraction approach takes full advantage of the existing 

multispectral information in aerial images all over the steps especially for 

the pre-processing and edge detection. Thus, even object boundaries that 

show only a very slight color difference could be detected. 

 

 With the improvements performed to the straight edge detector, the 

straight line extraction algorithm works quite robust, even for the areas 

where an enormous number of edges were found. This offers an 

opportunity to concentrate on not only to the major components of the 

building objects but also to certain details such as dormers, solar panels, 

etc.  

 

 The line matching results computed indicate that, the proposed line 

matching approach provides quite promising results. For all test patches 
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selected from the Vaihingen and Hannover test sites, the overall 

correctness and completeness values are computed to be 95.2% and 

83.5%, respectively. 

 

o  For the Vaihingen test patches selected, the proposed line 

matching approach revealed very high rates of correctness values 

ranging between 88% and 99%. Among all 15 test patches, 13 of 

them have reached correctness levels of over 94%, thus the overall 

correctness performance of matching is computed to be 96% with a 

standard deviation of 3.3%. The completeness values of the line 

matches for those test patches also revealed remarkable results 

ranging between 80% and 94%. The overall completeness value is 

computed to be 88.1% with a standard deviation of 4.4%. 

 

o According to the matching results of the Hannover test patches, the 

proposed line matching approach revealed quite satisfactory 

correctness values ranging between 90% and 98%. The overall 

correctness performance of the matching is computed to be 94.5% 

with a standard deviation of 2.5%. On the other hand, the 

completeness levels of the line matches for the test patches are 

computed to be in the range of 69% and 89%. The overall 

completeness performance of the matching is computed to be 

78.9% with a standard deviation of 4.7%. 

 

 According to the PDFs computed for the developed pair-wise constraints, 

the separation of the entire correct pair-wise matches from the incorrect 

ones is not possible with just specifying pair-wise constraints. However, 

those pair-wise constraints enable us to develop a local matching support 

during the precise matching, and to decrease the level of complexity 

involved during the pair-wise line matching. According to the results 



169 

 

achieved, the total number of line matching possibilities can be reduced 

around 80% after imposing the pair-wise constraints. 

 

 It is found from the PDFs computed for the Vaihingen and Hannover test 

patches that the proposed line-based Daisy (SimD) measure are very useful 

to identify the correct and incorrect matches during the precise matching 

stage. Furthermore, the proposed Daisy dissimilarity NNDR (1 - SimD) 

metric can have possibility to remove a large number of incorrect line 

matches beforehand without removing any of the correct matches. 

 

 The exclusive line local matching support that is proposed by the 

normalized Redundancy (SimR) measure is also found to be highly 

discriminative between the correct and incorrect line matches. As strongly 

anticipated, the incorrect line matches provided very low similarity values 

for the Redundancy measure; whereas it is proved that most of the correct 

line matches have significantly larger local matching support. Thus, this 

information gives an excellent opportunity to separate the correct line 

matches from the incorrect ones during matching of line segments. 

 

 For the final step of the precise matching, it is proved that the proposed 

hysteresis like thresholding can eliminate most of the remaining incorrect 

line matches while keeping the desired levels of matching correctness and 

completeness. This turns out to be one of the very strong aspects of the 

proposed approach, since all previous approaches relies on a final 

thresholding based on a single measure; thus, for those approaches, it may 

not be possible to provide a good balance between the levels of correctness 

and completeness. 

 

 In this study, it is also verified that the entire threshold values utilized 

during the line matching stage can be fixed for the aerial stereo image 

pairs that are acquired in a consecutive order. In addition, the threshold 
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values do not depend on the type of the aerial image used (analogue or 

digital) and can also be applied successfully for the aerial images with 

standard forward overlaps of 60% or more. 

 

 The line matching results computed for the Hannover test sites revealed 

that the quality of the line matching is decreased for an amount of 10% in 

average compared to the Vaihingen results. In fact, this is an expected 

result, since the images of the Hannover dataset were taken by an analogue 

camera and scanned afterwards. Thus, the quality of the images and the 

noise level involved has probably affected the line matching performance. 

As a conclusion, the approach can provide better line matching 

performances for the aerial images acquired by digital cameras.  

 

 Comparative results between the proposed line matching approach with 

the state-of-the-art line matching approach presented in Schmid and 

Zisserman (1997) revealed that the proposed approach clearly 

outperformed the Schmid’s method in all aspects. It is also found that the 

proposed approach can also provide better performances in an overall 

sense compared to the Schmid’s method which is enhanced with the 

constraint of epipolar ordering. 

 

 According to the analyses of the incorrect line matches, it is clear that the 

occlusion is still the major reason of the mismatches for the proposed line 

matching approach. Nevertheless, the computed correctness levels for the 

test patches prove that, since the proposed line matching approach handles 

the matching by means of line pairs; apparently, this configuration is more 

robust and efficient to handle the occlusion phenomena. 

 

 The reconstruction results provided by the method of direct construction 

revealed gross RMS errors (> 1 m) for the line segments that are nearly-

aligned with the epipolar line. It can be easily concluded that the 
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reconstructed line segments by means of direct construction are not 

reliable and useful for those ill-posed cases. 

 

 The proposed stereo reconstruction approach produced highly promising 

results for the line segments that are nearly-aligned with the epipolar line. 

The numerical and visual evaluations revealed that the proposed approach 

completely outperformed the method of direct construction, and provided 

substantial improvements for the final height values of the reconstructed 

line segments. Thus, as a conclusion, we have a possibility to reconstruct 

those ill-posed cases with promising final accuracies. 

 

7.2 Recommendations 

 

The followings are recommended for further studies: 

 

 The matching of more than two images can provide solutions for the 

occlusion phenomena. Additionally, higher reconstruction performances 

can be achieved through the intersection of more than two projection 

planes. Inspired by Baillard et al. (1999), an obvious future work is to 

improve and extend the current stereo approach to the cases in which 

multiple aerial images are available. 

 

 It is clear that one of the main disadvantages of the proposed approach is 

the algorithm complexity due to the pair-wise nature. Therefore, how to 

provide a compromise between the algorithm complexity and matching 

efficiency constitutes another topic for further development. 

 

 In principle, the proposed line matching and reconstruction approaches can 

be further extended to other image sources such as linear array sensors and 

close-range images. Extending the approach based on the geometry of 

linear array sensors will give a chance to reconstruct the line segments for 



172 

 

UHR aerial linear array images and as well as forthcoming very high 

resolution satellite images that are planned to have image resolutions of 

around 30 cm (such as WorldView-3). 

 

 Integrating coarse DSMs/DTMs generated from dense stereo image 

matching algorithms into the line matching stage may have possibility to 

further reduce the number of mismatches and to increase the speed of the 

processing. A future work may include experimental tests based on 

specific DSMs/DTMs generated from stereo aerial images. 

 

 The reconstructed line segments by the proposed approach can be used in 

different applications such as the complete reconstruction of the building 

and road features, improving the quality of the existing dense DSMs etc. 

After the complete reconstruction, a different future application area of 

this work also involve the generation of virtual environments with 

promising level-of-details.  
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APPENDIX A 

 

 

 

The details of the definitions and various forms of mathematical models can be 

found in elsewhere (Manual of Photogrammetry, 1980; Koch, 1999; Manual of 

Photogrammetry, 2004; Förstner, 2005). Here, only the derivation of the well-

known generic Gauss-Helmert estimation model with constraints is provided. The 

Gauss-Markov model (with constraints) which can also be expressed as a special 

type of the Gauss-Helmert model is also stated. The following part is based on the 

least squares estimation section provided in Manual of Photogrammetry (2004). 

 

The Gauss-Helmert model with constraints is expressed by a functional model 

composed of not only condition equations  (   ̂  ̂)   , but also a set of 

constraints  ( ̂)   . In those equations, l, p, and v denote the observations, 

unknown parameters, and corrections, respectively. The operator (^) indicate the 

estimated forms of the related term. Since the given functional model can be non-

linear, the linearized form of the Gauss-Helmert model with constraints can be 

written as: 

 

   ̂     ̂        (A.1) 

    ̂               (A.2) 

with 

     ( ̂
( )  ̂( ))    (   ̂( ))        (A.3) 

     ( ̂
( ))    (A.4) 

  ̂     ̂( )     (A.5) 

 

In Eq. A.1 and A.2, the matrices A and H contain the partial derivatives with 

respect to parameters, whereas the matrix B involves the partial derivatives with 
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respect to observations. The terms cg and ch (contradiction vectors) contain the 

differences between the function values g and h, respectively, evaluated at the 

approximate values  ̂( ) and their ideal values is 0. Note also that the 

contradiction vector cg depends on the observations l and is iteratively refined. 

 

Assuming that an initial covariance matrix    
( )

 of the observations l is known and 

related to the true covariance matrix     by       
    

( )
 with a possibly unknown 

variance factor   
 . In a weighted least square sense, it is necessary to minimize a 

quadratic equation that involves the square of the residuals and inverse of the 

initial covariance matrix    
( )

 : 

 

   ̂    
   ̂  ( ̂   )    

  ( ̂   )    (A.6) 

 

under the linear constraints    ̂     ̂     and     ̂    . To do that, with the 

help of Lagrange multipliers (λ, µ), it is necessary to minimize the form: 

 

  ( ̂   )
 
   
  ( ̂   )     (   ̂     ̂    )    

 (    ̂    )      (A.7) 

 

After setting the partial derivatives of   to zero, we obtain with  ̂   ̂    

 

 

 
(
  

  ̂
)
 

    
   ̂          (A.8) 

 

 
(
  

  ̂
)
 

                      (A.9) 

 

 
(
  

  
)
 

        ̂   
  ̂          (A.10) 

 

 
(
  

  
)
 

      
   ̂                 (A.11) 

 

From Eq. A.8, follows the relation, 

 

 ̂                      (A.12) 
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Substituting Eq. A.12 into Eq. A.10 yields 

 

  (      )
  (   ̂    )     (A.13) 

 

Thereafter, substituting Eq. A.13 into Eq. A.9 yields the normal equation system: 

 

[
  (      )

    

   
] [
  ̂
 
]  [

  (      )
    

  
]      (A.14) 

 

With the solution of the normal equation system, the Lagrange multiplier λ can be 

obtained from Eq. A.13, which then yields the estimated residuals in Eq. A.12. 

The estimated variance factor is given by 

 

 ̂ 
  

 ̂    
   ̂

 
     (A.15) 

 

with the redundancy term R = G + H – U, where G, H and U denote the number of 

equations for the observations, constraints and unknowns, respectively. The 

estimated covariance matrix of the estimated parameters can be obtained by 

 ̂ ̂ ̂   ̂ 
   ̂ ̂ where   ̂ ̂ results from the inverted normal equation matrix: 

 

[
  ̂ ̂  

   
]  [

  (      )
    

   
]
  

        (A.16) 

 

Different models derived for the evaluation of the results based on the estimated 

residuals  ̂ and their covariance matrix   ̂ ̂ can also be found in Manual of 

Photogrammetry (2004). Since the presented estimation model Gauss-Helmert 

with constraints is the most generic estimation model, the Gauss-Markov model 

with constraints can be obtained by replacing the matrix B with –I, and the well-

known Gauss-Markov model can be obtained by replacing the matrix B with 

matrix –I and leaving out the constraints. 
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